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1 Introduction

A fertile testing ground for gauge/gravity duality is provided by certain geometries sourced by
fivebranes carrying either fundamental string or momentum charge, known as supertubes. Two-
charge supertube solutions have been completely enumerated, and the correspondence between
individual microstate geometries and coherent states in the non-gravitational dual is well
understood [1–5]. A particularly well-studied set of examples are the round onebrane-fivebrane
supertubes, whose geometry in the AdS decoupling limit is rotating (AdS3 × S3)/Zk [6, 7];
these geometries are dual to particular supersymmetric ground states of the spacetime CFT.
Coherent (spectral flow) excitations of these backgrounds excite a third (momentum) charge,

– 1 –



J
H
E
P
0
1
(
2
0
2
6
)
0
3
4

as well as S3 angular momentum, while still taking the form of rotating (AdS3 × S3)/Zk.
The specific dual states in the spacetime CFT are again known, and consist of Fermi sea
excitations above two-charge CFT ground states [8–13].

Depending on the choice of spectral flow transformation, these backgrounds can preserve
some supersymmetries [8–12] or no supersymmetry [11, 13]. The most general description of
these families of states involves fractional spectral flow, as worked out for the supersymmetric
states in [12], and for the non-supersymmetric states in [13].

As an added bonus, the bulk description of these states (and small excitations around
them) is understood not only at the level of supergravity — an exactly solvable worldsheet
string theory is available [14]. The null-gauged Wess-Zumino-Witten (WZW) model

G
H

=
SL(2,R)× SU(2)× Rt × S1

y

U(1)L × U(1)R
×M , (1.1)

with H a pair of null isometries of G and M = T4 or K3, is an exactly solvable 2d CFT
which describes all of these round supertube geometries, by varying the choice of embedding
H ⊂ G [14, 15].1

These backgrounds have yielded a variety of insights into gauge/gravity duality, see
e.g. the review [16], as well as e.g. the more recent works [17, 18]. They provide a rare
example where we can probe the duality map beyond the level of supergravity, to include
stringy effects at the non-perturbative level in α′ [19–24].

In this work, we focus on the supersymmetric three-charge spectral flowed supertubes [8–
12], and on a particular known feature — that they contain ergoregions with respect to
the canonical asymptotically timelike Killing vector field, but no horizons, as we review in
section 2. The ergoregion surrounds the underlying fivebrane source, out to a distance of
order the AdS3 radius. Having the exact perturbative string theory under control, we can
study the full spectrum of supergravity and stringy modes that probe the ergoregion, as well
as their effect on the background when they are excited.

These supersymmetric ergoregions contain modes that are BPS, but which lower the
energy of the background (or keep the energy unchanged). This can happen because these
modes reduce the y-momentum of the background (as well as the S3 angular momenta).
The existence of such modes is implied by the analysis of [12], and their backreaction was
studied in [18].

Being supersymmetric, these backgrounds are expected to be linearly stable. However,
it has been suggested that, classically, they may be non-linearly unstable [25], see also [26].
This feature was subsequently argued to correspond not to a runaway process, but instead
to slow scrambling motion on a moduli space of nearby states, in which the accumulation
of small deformations modifies the background configuration [21, 27].

The physics of these supersymmetric ergoregions contrasts with what happens in the
absence of supersymmetry. In the asymptotically flat non-supersymmetric solutions in
this family, known as the JMaRT solutions after the authors of [11], certain supergravity
modes are linearly unstable to ergoregion emission [28, 29]. This process has been studied
holographically [13, 30–33].

1Globally, we work with the universal cover of SL(2,R) and we gauge a null cylinder, R× S1.
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In the presentation of these backgrounds as gauged WZW models (1.1), there are two
time coordinates on G, namely t ∈ Rt and τ ∈ SL(2,R), and hence two notions of energy. The
null gauging construction fuses these two times together into one physical time coordinate
transverse to the null gauge orbits. These two time coordinates are conjugate to the two
natural notions of energy — the natural energy ε measured at asymptotic infinity, conjugate
to t, that corresponds to energy in the holographic CFT; and the energy measured in the cap
of the geometry in the natural co-rotating frame, which aligns with the energy conjugate to τ
in SL(2,R). These two energies are related by the null gauging constraints on physical states.
This relation is mediated by all the other conserved quantum numbers carried by the state
which enter the constraints. As a result, some modes have positive “cap energy” conjugate to
τ , but negative “asymptotic energy” ε. These are examples of ergoregion modes [19].

Although the analysis of part of the spectrum in [12, 19] implies the existence of modes
with negative asymptotic energy, so far there has been no detailed analysis of the supergravity
or stringy spectrum. In this work, we provide such an analysis, by studying several aspects
of the ergoregions of these supersymmetric backgrounds:

1. We extend the analysis of massless ergoregion modes to the entire supergravity spectrum,
by analyzing the physical state constraints of the gauged WZW model. In addition, we
map this spectrum to excitations around the corresponding state in the dual spacetime
CFT.

2. We relate the quantum numbers of string states to the semiclassical support of their
wavefunctions (and as a consistency check, demonstrate that modes with negative
energy as measured from infinity are predominantly supported in the ergoregion).

3. We exhibit stringy ergoregion modes, which we refer to as “ergo-strings”, including
twisted sector strings pinned to orbifold singularities in the cap of the geometry.

In section 2 we review the backgrounds we study, and their ergoregions. In section 3
we analyze null geodesics, which were important in the analysis of [25] (see also [34, 35]).
We work in the AdS decoupling limit, and relate such null geodesics to the properties of
harmonics on the group manifold. In particular, we show how the conserved momenta of
null trajectories determine their spacetime location, and determine that the trajectories of
negative energy sit in the ergoregion.

The exact worldsheet presentation of these backgrounds is reviewed in section 4, including
how the orbifold structure arises as a residual discrete subgroup of the gauge group in a
particular gauge choice. We solve the physical state constraints at the massless level, and
exhibit the ergoregion modes for the full range of supergraviton polarizations.

In section 5, we extend the analysis to general string modes, and illustrate the solution
of the constraints with several examples. First, we extend the supergravity modes in a
natural way to sectors of nonzero winding along S1

y; second, we analyze orbifold twisted
sector ground states, whose condensation resolves the orbifold singularity; lastly, we exhibit
ergoregion modes among a simple class of massive string states. We conclude our analysis
with a discussion in section 6. An appendix reviews details of the limit(s) that decouple
the flat spacetime region from the fivebrane throat.
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2 Geometry

2.1 Three-charge supersymmetric spectral flowed supertubes

The three-charge supersymmetric spectral flowed supertube backgrounds [8–12] were originally
constructed with R1,4 × S1

y asymptotics. In six dimensions, supersymmetry guarantees a
globally null Killing vector field [36], which we denote by ∂/∂u. The supersymmetric
spectral flowed supertube backgrounds preserve the supersymmetries that anticommute to
translations generated by this null Killing vector.

We shall study these solutions in the fivebrane decoupling limit, as discussed for instance
in [19]. For the convenience of the reader, we summarize the steps involved in taking this
limit, in the notation and conventions of this work, in appendix A. We set ℓs = 1, we
denote the integer numbers of NS5 branes by n5, and we denote by n1 the integer number
of fundamental strings in the background, which is taken to be parametrically large (see
appendix A). We define

u = t− y , v = t+ y . (2.1)

In the fivebrane decoupling limit, the supergravity solutions take the form

ds2 =n5(dθ2+dρ2)+ 1
Σ

[
−f0 dudv+

s(s+1)
kRy

∆ dv2

+
(
n5 sinh2ρ+n5(s+1)2+k2R2

y

)
sin2 θ dϕ2+

(
n5 sinh2ρ+n5s

2+k2R2
y

)
cos2 θdψ2

+2
( (

kRy−(s+1)∆
)
dy−(s+1)∆dt

)
sin2 θdϕ+2

((
kRy+s∆

)
dy+s∆dt

)
cos2 θ dψ

]

+dz·dz, (2.2)

B= 1
Σ

[
kRy
n5

∆dt∧dy+
(
n5 sinh2ρ+n5 (s+1)2+k2R2

y

)
cos2 θdϕ∧dψ

+
((

kRy−(s+1)∆
)
dy−(s+1)∆dt

)
∧cos2 θdψ+

((
kRy+s∆

)
dy+s∆dt

)
∧sin2 θdϕ

]
,

e2Φ = kRyV4
n1

∆
Σ ,

where z parametrizes T4 whose proper volume is (2π)4V4, and where

∆= kRy+
n5s(s+1)

kRy
, Σ= f0+

kRy
n5

∆ , f0 =sinh2 ρ−s sin2 θ+(s+1)cos2 θ . (2.3)

The parameters s, k are required to satisfy

s(s+ 1)
k ∈ Z . (2.4)
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This condition arises from flux quantization (under the assumption that gcd(n1, n5) = 1) [12].
It is also necessary for the solutions to have a well-defined holographic interpretation, as this
quantity is the quantized momentum per strand of the holographic CFT [12].

We will also be interested in the AdS3 limit of these solutions. This limit consists of
sending Ry → ∞, holding fixed the rescaled energies ERy and y-momenta PyRy. One can
take this limit of the background solutions by defining

t̃ = t

Ry
, ỹ = y

Ry
, (2.5)

and sending Ry → ∞ at fixed t̃, ỹ. The resulting solution is asymptotically AdS3 × S3 × T4,
and the six-dimensional part of the metric is given by

1
n5
ds2 =− 1

k2 cosh
2ρdt̃2+dρ2+ 1

k2 sinh
2ρdỹ2

+dθ2+cos2 θ

(
dψ+ s

kdt̃+
s+1

k dỹ

)2
+sin2 θ

(
dϕ− s+1

k dt̃− s

kdỹ
)2
. (2.6)

The following large coordinate transformation maps these decoupled geometries to orbifolds
of the non-rotating global AdS3×S3 NS-NS vacuum solution, and is known as (fractional)
spacetime spectral flow [12], see also [8–10]:

ψNS =ψ + s

k t̃+
s+ 1

k ỹ , ϕNS = ϕ− s+ 1
k t̃− s

k ỹ , t̃NS = t , ỹNS = ỹ . (2.7)

For generic s, k, the coordinate identification ỹ ∼ ỹ + 2π induces orbifold singularities via
the identification [11, 12]

(
ỹ, ψNS, ϕNS

)
∼
(
ỹ, ψNS, ϕNS

)
+ 2π

(
1, s+ 1

k ,−sk

)
. (2.8)

We will sometimes refer to the general family of these backgrounds as the GLMT backgrounds,
after the authors of [12].

2.2 Supersymmetric ergoregions

We now discuss the ergoregions of the supersymmetric solutions discussed above. First, we
recall that when a spacetime has isometries that correspond to spatial directions of finite
asymptotic size, there is no preferred definition of an ergoregion. For each asymptotically
timelike Killing vector field, one can ask whether there is a region of spacetime where it
becomes spacelike, in which case there is an ergoregion corresponding to that Killing vector
field; see e.g. [37].

In the fivebrane decoupling limit, the y circle and S3 asymptote to fixed proper sizes,
so there is indeed a family of asymptotically timelike Killing vector fields. However, the
asymptotically timelike Killing vector field ∂/∂t plays a preferred role, for two reasons. First,
the energy measured with respect to ∂/∂t corresponds to the energy of the holographically dual
CFT. Second, in the corresponding asymptotically flat five-dimensional solutions obtained
by reducing on the y circle, ∂/∂t is the unique asymptotically timelike Killing vector field.
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We therefore focus on the ergoregion corresponding to ∂/∂t. The norm of ∂/∂t is given
by gtt. So the six-dimensional ergosurface is defined by gtt = 0 and the six-dimensional
ergoregion is defined by gtt > 0.

In the solutions (2.2), there is an ergoregion with respect to ∂/∂t, as noted in [11], since

gtt = −f0 −∆p

Σ , ∆p ≡ s(s+ 1) + n5

(
s(s+ 1)
kRy

)2

. (2.9)

The 6D ergosurface is the locus f0 = ∆p and the 6D ergoregion is given by f0 < ∆p. We
note that ∆p > 0 when s > 0, and that f0 takes its minimum value at ρ = 0 and θ = π/2,
where f0 = −s. In the AdS3 limit, ∆p has the finite limit s(s + 1).

Generic excitations of these supersymmetric backgrounds have positive energy. However,
due to the ergoregion, there are also “excitations” that reduce the absolute value of both
the energy (measured with respect to ∂/∂t) and y-momentum of the background. Moreover,
some of these excitations preserve the BPS relation. A subset of such excitations are present
in the analysis of linearized supergraviton excitations in [12]. The backreaction of collective
excitations of some of these modes was studied in [18]. We will identify the corresponding
massless vertex operators in due course.

In addition to modes that lower the energy, there are supersymmetric modes that exactly
preserve the energy of the background. One way to see this is that there is a family of null
geodesics that are everywhere tangent to the Killing vector corresponding to supersymmetry,
∂/∂u. These geodesics have the property that their energy is equal to their y-momentum.
Moreover, when s > 0, the surface f0 = 0 is inside the 6D ergoregion, since ∆p > 0. On
this surface, the Killing vector fields ∂/∂u and ∂/∂y are orthogonal, and such geodesics
have E6 = py = 0, as noted in [25].

We thus see that there is a rich set of features associated with these supersymmetric
ergoregions. We will analyze these features via both classical geodesics and worldsheet
vertex operators in this paper.

As an aside, we recall that the surface f0 = 0 is also important in the asymptotically
flat five-dimensional solutions. These solutions do not have ergoregions, however, there is a
surface at which the five-dimensional Killing vector field ∂/∂t becomes null. This surface
is given by f0 = 0, and is known as the evanescent ergosurface [38]. We also note that in
the limit s = 0, the spectral flowed solutions reduce to two-charge circular supertubes [6, 7].
These do not have a 6D ergoregion, but rather a 6D evanescent ergosurface at f0 = 0, on
which ∂/∂t becomes null. Correspondingly, the energy of excitations is bounded below by
zero in the two-charge limit.

Due to the globally null Killing vector field, it is expected that the supersymmetric
solutions do not suffer from a linear instability. However, the supersymmetric solutions have
long-lived quasi-normal modes [25], see also [39]. It has been argued that these long-lived
modes may give rise to a classical non-linear instability [25], see also [26]; this phenomenon
has been argued to be better described by slow scrambling dynamics on the moduli space
of nearby states [21, 27].
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3 Geodesics and wavefunctions

In the semi-classical limit, supergraviton wavefunctions localize along null geodesics. One
can discern many of the features of the wavefunctions from a study of such geodesics. In this
section, we use the group symmetry of the GLMT (and JMaRT) geometries in the AdS3
decoupling limit to study the semiclassical dynamics of supergravitons.

We discuss two approaches to geodesic motion. One is group theoretic — exponentiating
a generator of the group, and labeling the resulting geodesic by its eigenvalues under the
currents J3, J̄3 and the quadratic Casimir J⃗ 2. The other employs the formalism of Lagrangian
and Hamiltonian mechanics of a particle on the group manifold.

The group manifolds SL(2,R) and SU(2) play two roles here. First, SL(2,R)× SU(2)
are the k-fold covering space of the 6d part of the physical 10-dimensional spacetime (2.6).
In addition, both SL(2,R) and SU(2) are factors in the “upstairs” 10 + 2-dimensional group
manifold target space of the null gauging construction that we shall describe in section 4.

3.1 Geodesics and classical strings on SU(2)

At high momentum, wavefunctions are concentrated along semi-classical trajectories, which
are geodesics on the group manifolds SL(2,R) and SU(2). We begin with SU(2) and write
the line element as

ds2 = dθ2 + cos2 θdψ2 + sin2 θdϕ2 . (3.1)

This metric is related to the parametrization of the group in terms of Euler angles

gsu = e−i(ϕ−ψ)σ3/2 ei(π/2−θ)σ2 e−i(ϕ+ψ)σ3/2 =
(
e−iϕ sin θ eiψ cos θ
−e−iψ cos θ eiϕ sin θ

)
. (3.2)

Classical solutions to the SU(2) WZW model take the form

g(z, z̄) = gℓ(z)gr(z̄) . (3.3)

A simple solution is geodesic motion along the ϕ circle at θ = π
2 , which corresponds to

the classical solution

gℓ(z) = e−iν
′zσ3/2 , gr(z̄) = e−iν

′z̄σ3/2 , (3.4)

where z, z̄ = ξ0 ± ξ1 are worldsheet coordinates. One can then rotate this geodesic to some
other great circle on S3 via

gℓ(z) = e−iα
′
ℓσ1/2 e−iν

′zσ3/2 , gr(z̄) = e−iν
′z̄σ3/2 e−iα

′
rσ1/2 . (3.5)

Multiplying out the group elements, one finds the geodesic motion

g(ξ0)=

 cosν ′ξ0cos
α′

ℓ+α′
r

2 −isinν ′ξ0cos
α′

ℓ−α
′
r

2 −icosν ′ξ0sin
α′

ℓ+α′
r

2 +sinν ′ξ0sin
α′

ℓ−α
′
r

2

−icosν ′ξ0sin
α′

ℓ+α′
r

2 −sinν ′ξ0sin
α′

ℓ−α
′
r

2 cosν ′ξ0cos
α′

ℓ+α′
r

2 +isinν ′ξ0cos
α′

ℓ−α
′
r

2

 .
(3.6)
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Comparing this matrix to (3.2), one finds a trajectory that oscillates in θ according to

− cos 2θ = cos(α′
ℓ+α′

r) cos2(ν ′ξ0) + cos(α′
ℓ−α′

r) sin2(ν ′ξ0) . (3.7)

The maximum and minimum values of the polar coordinate θ are

θ± = 1
2
(
π −

∣∣α′
ℓ ∓ α′

r

∣∣) . (3.8)

The geodesic motion respects the conservation of the Hamiltonian as well as the Killing
momenta associated to left and right motions generated by J3. The corresponding conserved
charges are

E = n5
2 tr

[
∂g∂g−1]+ n5

2 tr
[
∂̄g ∂̄g−1] = n5

2 (ν ′)2 ,

J3
su = − in5

2 tr
[
(∂g)g−1σ3

]
= n5

(
cos2 θ∂ψ − sin2 θ∂ϕ

)
= −n5

2 ν ′ cos(α′
ℓ) , (3.9)

J̄3
su = − in5

2 tr
[
g−1(∂̄g)σ3

]
= −n5

(
cos2 θ ∂̄ψ + sin2 θ ∂̄ϕ

)
= −n5

2 ν ′ cos(α′
r) ;

in anticipation of the quantization of the dynamics, these quantities are related to the (half)
integer quanta j′,m′, m̄′ of SU(2) representation theory via

j′ = n5
2 ν

′ ,
m′

j′
= − cos

(
α′
ℓ

)
,

m̄′

j′
= − cos

(
α′
r

)
. (3.10)

The unitary range of allowed values in affine SU(2) representation theory is 0 ≤ ν ′ ≤ 1,2

while 0 ≤ α′
ℓ,r ≤ π code m′, m̄′ (or rather coherent states thereof).3 In particular, α′

ℓ = 0
corresponds to m′ = −j′, and similarly α′

r = 0 corresponds to m̄′ = −j′; then the solution (3.4)
corresponds to the lowest-weight state. Holding say αr = 0 and dialing αℓ coherently excites
larger values of m′, resulting in circular trajectories concentrated at fixed latitude lines
θ+ = θ− = 1

2(π − |α′
ℓ|). Dialing both α′

ℓ,r results in a trajectory that oscillates between
θ+ and θ− given by (3.8), and corresponds to a coherent excitation of both m′, m̄′ away
from the lowest-weight state.

3.2 Geodesics and classical strings on SL(2,R)

Similarly, we consider geodesics on global AdS3. We work on the universal cover of SL(2,R),
i.e. with non-compact time direction. We write the line element as

ds2 = − cosh2ρ dτ2 + dρ2 + sinh2ρ dσ2 . (3.11)

We work with the Euler angle parametrization of SL(2,R),

gsl = ei(τ+σ)σ3/2 eρσ1 ei(τ−σ)σ3/2 =
(
eiτ cosh ρ eiσ sinh ρ
e−iσ sinh ρ e−iτ cosh ρ

)
. (3.12)

2The unitarity bound for quantized strings on the SU(2) and SL(2,R) group manifolds is seen in the
classical theory as a bound on stationary solutions — when the momentum exceeds a particular value,
the Lorentz force of the background B-field exceeds the string tension and pulls the string apart. See for
instance [21] section 5 for a discussion.

3The classical solution corresponds to the limit of large n5, with ν′ held fixed, and so does not distinguish
between (ν′)2 = ( j′

n5
)2 and (ν′)2 = j′(j′+1)

n2
5

.
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Highest weight states in the discrete series representation of SL(2,R) (see e.g. [40]) correspond
to geodesics given by

gℓ(z) = eiνzσ3/2 , gr(z̄) = eiνz̄σ3/2 . (3.13)

The matrix gsl is diagonal, and so ρ = 0; the geodesic sits at the center of AdS3, and runs
up the time axis at a velocity ν.

The boost transformation

gℓ(z) = eαℓσ1/2 eiνzσ3/2 , gr(z̄) = eiνz̄σ3/2 eαrσ1/2 (3.14)

leads to a geodesic trajectory

g(ξ0)=

cosνξ0cosh αℓ+αr

2 +isinνξ0cosh αℓ−αr

2 cosνξ0sinh αℓ+αr

2 −isinνξ0sinh αℓ−αr

2

cosνξ0sinh αℓ+αr

2 +isinνξ0sinh αℓ−αr

2 cosνξ0cosh αℓ+αr

2 −isinνξ0cosh αℓ−αr

2

 ,
(3.15)

which oscillates radially according to

cosh 2ρ = cos2(νξ0) cosh(αℓ+αr) + sin2(νξ0) cosh(αℓ−αr) , (3.16)

and thus orbits the center of AdS3 between

ρ± = 1
2
∣∣αℓ±αr∣∣ . (3.17)

Similarly, one has the SL(2,R) conserved quantum numbers

E = −n5
2 tr

[
∂g∂g−1]− n5

2 tr
[
∂̄g ∂̄g−1] = −n5

2 ν2 ,

J3
sl = − in5

2 tr
[
(∂g)g−1σ3

]
= n5

(
cosh2ρ ∂τ − sinh2ρ ∂σ

)
= n5

2 ν cosh(αℓ) , (3.18)

J̄3
sl = − in5

2 tr
[
g−1(∂̄g)σ3

]
= n5

(
cosh2ρ ∂̄τ + sinh2ρ ∂̄σ

)
= n5

2 ν cosh(αr) ;

again, in terms of the labels (j,m, m̄) of SL(2,R) representation theory, we have

j = n5
2 ν ,

m

j
= coshαℓ ,

m̄

j
= coshαr . (3.19)

The lowest weight state m = m̄ = j has αℓ = αr = 0. Increasing αℓ keeping αr = 0
increases m while maintaining m̄ = j, resulting in a circular orbit at radius ρ∗ = ρ± = αℓ.
Increasing m̄, the orbit spreads between minimum and maximum values ρ± given by (3.17),
until at m = m̄ the motion is purely radial. Increasing m̄ further, once again the orbit
becomes elliptical between the radii ρ±.

3.3 Geodesics in spectral flowed supertube backgrounds

We now discuss geodesics on the GLMT backgrounds in the AdS3 decoupling limit, (2.6).
Since most of our discussion in this subsection involves geodesics on the SL(2,R)× SU(2)
group manifold, we will carry out the analysis with a slightly more general parametrization
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of the spacetime spectral flow than (2.7), that also includes the non-supersymmetric JMaRT
backgrounds [11, 13]. These backgrounds are parametrized by two independent integers
m, n, with

m = s+ 1 , n = s , (3.20)

being the specialization to the supersymmetric spacetimes (2.6). We will temporarily use
this more general parametrization.

Geodesic motion of a particle of mass M is governed by the action

S =
∫
dξ

√g
(
gξξ∂ξXµ∂ξX

νGµν(X) + M2
)
. (3.21)

Variation of this action w.r.t. g imposes the Hamiltonian constraint

gξξ∂ξXµ∂ξX
νGµν(X) = M2 . (3.22)

We choose the gauge g = 1 and write Ẋµ ≡ ∂ξX
µ.

We consider the line element (2.6), in the k-fold covering space coordinates τ = t̃/k,
σ = ỹ/k. With the above gauge choice, geodesics are described by the Lagrangian

Lg = Lsl + Lsu = n5
2
[(

− cosh2ρ τ̇2 + ρ̇2 + sinh2ρ σ̇2
)
+
(
θ̇2 + cos2 θ ψ̇2

NS + sin2 θ ϕ̇2
NS

)]
,

(3.23)

where from eq. (2.7) with the replacements s + 1 → m, s → n, we have

ψ̇NS = ψ̇ + n τ̇ + m σ̇ , ϕ̇NS = ϕ̇− m τ̇ − n σ̇ . (3.24)

The isometries corresponding to the Killing vector fields ∂τ , ∂σ, ∂ψ, ∂ϕ commute, and
thus give rise to conserved momenta that Poisson commute, leading to the constants of motion

−pτ = n5
(
cosh2ρ τ̇ − n cos2 θ ψ̇NS + m sin2 θ ϕ̇NS

)
,

pσ = n5
(
sinh2ρ σ̇ + m cos2 θ ψ̇NS − n sin2 θ ϕ̇NS

)
,

mψ = n5
(
cos2 θ ψ̇NS

)
,

mϕ = n5
(
sin2 θ ϕ̇NS

)
.

(3.25)

Substituting the second pair into the first pair, and introducing the constants ε = −pτ/k
and ny = pσ/k, we obtain

kε = n5 cosh2ρ τ̇ − nmψ + mmϕ ,

kny = n5 sinh2ρ σ̇ + mmψ − nmϕ ,
(3.26)

implying that cosh2ρ ṫ and sinh2ρ ẏ are constants of motion.
In terms of the quantum numbers m, m̄,m′, m̄′ introduced in the previous subsections,

we identify

n5 cosh2ρ τ̇ = m+ m̄ , mϕ = m′ + m̄′ ,

−n5 sinh2ρ σ̇ = m− m̄ , mψ = m̄′ −m′ .
(3.27)
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Combining these with the previous set of equations, and making the substitutions (3.20),
we obtain

kε = m+ m̄+ (2s+ 1)m′ + m̄′ ,

−kny = m− m̄+ (2s+ 1)m′ − m̄′ .
(3.28)

In order to connect with the discussion in section 2.2, we note that ε corresponds to the
energy measured with respect to ∂/∂t̃ of the rotating spacetimes (2.6). By contrast, m+ m̄

is the energy measured with respect to the different Killing vector ∂/∂t̃NS of the non-rotating
global AdS3×S3 vacuum solution, see (2.7). These equations give the relation between these
two energies (and similarly for the two different AdS3 angular momenta, ny and m̄ −m).
Deep inside the AdS3 region, m+ m̄ is a natural local measure of energy, being in the natural
co-rotating frame. Due to the rotation in the backgrounds, and the presence of an ergoregion,
it is possible to have m + m̄ > 0, while ε < 0. In due course, we shall see that this will
be an important feature of certain ergoregion modes. The equations (3.28) will reappear
in the worldsheet analysis, in eq. (4.30).

To completely integrate the equations of motion, one needs two more conserved quantities
that Poisson commute with the four momenta in eq. (3.25). These are provided by the
individual Hamiltonians Hsl = Lsl, Hsu = Lsu for geodesic motion on SL(2,R) and SU(2),
which in group theoretic terms are the quadratic Casimirs given by the kinetic terms in
eq. (3.23).

Expressing these Hamiltonians in terms of the conserved momenta, we obtain reduced
Hamiltonians for the radial and polar motions,

Hsl = n2
5 ρ̇

2 + (m− m̄)2

sinh2ρ
− (m+ m̄)2

cosh2ρ
= −4j2 ,

Hsu = n2
5 θ̇

2 + (m′ − m̄′)2

cos2 θ
+ (m′ + m̄′)2

sin2 θ
= +4(j′)2 ,

(3.29)

where the normalization of the constants on the right-hand side has been fixed by consistency
with the previous subsections. The Hamiltonian constraint (3.22) is

Htot = Hsl +Hsu = M2 . (3.30)

So, for massless particles, we have j = j′.
From these relations, setting θ̇ and ρ̇ to zero, one recovers the turning points of the

classical motion (3.8), (3.17). Finally, we obtain the trajectories in the GLMT (and JMaRT)
geometries from those on the factorized group manifold via the coordinate shifts (3.24),
followed by a Zk orbifold quotient.

For the GLMT backgrounds, of particular interest are the BPS null geodesics. These
have m̄ = j, m̄′ = −j, or in other words αr = α′

r = 0. Thus ρ+ = ρ− and θ+ = θ−, and the
motion is stationary in both radial and polar directions (in fact, the equations of motion
imply that ϕ̇ = ψ̇ = 0 as well). It is useful to write the left-moving momenta m′, m in terms
of their lowest-weight values (in D+

j for SL(2,R)) and offsets as

m′ = −j + m̂ , m = j + n̂ . (3.31)
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Then the offsets m̂, n̂ determine the location of the BPS null geodesic to be given by

sinh2 ρ = n̂

2j , cos2 θ = m̂

2j . (3.32)

One can extend the above analysis to the NS5-brane decoupling limit (i.e. finite Ry) version
of these solutions.

3.4 Wavefunctions

The eigenfunctions of the scalar Laplacian on the SU(2) group manifold (Wigner functions)
reflect the above semi-classical features. These (unnormalized) wavefunctions are

Dj′m′m̄′(θ, ϕ, ψ) = e−im
′(ϕ+ψ) e−im̄

′(ϕ−ψ) dj′m′m̄′(θ) ,

dj′m′m̄′(θ) = (cos θ)a(sin θ)bP (a,b)
q (θ) , (3.33)

P (a,b)
q (θ) =

q∑
p=0

(
q + a

q − p

)(
q + b

p

)(
sin θ

)2p( cos θ)2q−2p
,

where a = |m′ − m̄′|, b = |m′ + m̄′|, q = j′ − µ, with µ = max(|m′|, |m̄′|).
For m̄′ = −j′ (α′

r = 0), the sum over p collapses to a single (constant) term; the
trigonometric polynomial dj′m′m̄′(θ) has a single peak at θ∗ = θ+ = θ− determined by the
value of m′ given by α′

ℓ via (3.8), (3.9). As one increases m̄′ starting from m̄′ = −j′, the
wavefunction gains j′ + m̄′ nodes and has support between θ− and θ+, vanishing rapidly
outside this range (over a width δθ ∼ (j′)−1/2), until m̄′ = −|m′|, at which point either θ+ = π

2
(for m′ < 0) or θ− = 0 (for m′ > 0). At this point, the wavefunction stops gaining nodes;
rather its center migrates (toward lower θ until θ− = 0, for m′ < 0; or toward larger θ, until
θ+ = π

2 , for m′ > 0). At this point, the number of nodes starts decreasing until at m̄′ = j′, the
wavefunction once again has no nodes, and is now centered at θ = π

2 − θ∗. At large j′, these
are just the WKB wavefunctions one would expect for the classical trajectories (3.5), (3.7).

Figure 1 depicts two examples of these wavefunctions. In figure 1(a), the BPS wavefunc-
tions are stationary at a fixed value of θ, while in figure 1(b), the non-BPS wavefunctions
describe particles oscillating back and forth in the effective potential of the SU(2) Hamil-
tonian (3.29).

The eigenfunctions of the scalar Laplacian on AdS3 once again reflect the properties
of the geodesics. Formally, the S3 metric analytically continues to that of AdS3 (up to an
overall sign) under a continuation of the S3 polar coordinate θ to the AdS3 radial coordinate;
one can also check that the algebra of isometry generators continues from one to the other.
The discrete series representations of SL(2,R) result from the continuation of the SU(2)
representations if we replace

j′ → −j , m′ → m, m̄′ → m̄ , m̂ → n̂ , (3.34)

in agreement with (3.31), and make the substitutions

(π2 − θ) → −iρ , ϕ→ −τ , ψ → σ + π
2 . (3.35)
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(a) (b)

Figure 1. Wigner functions for SU(2): (a) For |m̄′| = j′ or |m′| = j′, the wavefunction is peaked at
a particular polar angle θ; the plot is for |m̄′| = j′ and generic m′. (b) For generic |m′|, |m̄′| < j′, the
wavefunction oscillates between minimum and maximum values (eq. (3.8) in the semi-classical limit),
as the orbital axis is not aligned with the poles of the three-sphere.

Then the lowest weight state wavefunction of the SU(2) representation of spin j′ continues
to the lowest weight state wavefunction of the positive discrete series D+

j ,

e−2ij′ϕ(sin θ)2j′ −→ e−2ijτ (cosh ρ)−2j , (3.36)

and the fact that the raising operators map from those of SU(2) to those of SL(2,R) guarantees
that the rest of the wavefunctions (3.33) continue appropriately from SU(2) to SL(2,R).
The continuation of j means that the representation has no highest weight (and therefore
j can be real rather than half-integer; the factorials x! appearing in (3.33) should then be
interpreted as Γ(x+ 1)). Upon quantization, the allowed range of j is 1/2 < j < (n5 + 2)/2,
see e.g. [19, 40–42] for discussions in the present context.

Similarly, if one starts near the SU(2) highest weight state by setting m = j− n̂, m̄ = j− ˆ̄n
and performs the continuation (3.34), one arrives near the highest weight state of the negative
discrete series D−.

Analogously to SU(2), the extremal wavefunctions with either n̂ = 0 or ˆ̄n = 0 have no
nodes and are concentrated near ρ+ = ρ−, see eq. (3.17), while the generic wavefunctions
are standing waves which oscillate in the range ρ− ≲ ρ ≲ ρ+, and fall to zero over a scale
1/

√
j outside this range.

3.5 1/4-BPS wavefunctions in three-charge spectral flowed supertubes

In the supersymmetric three-charge spectral flowed backgrounds, the wavefunctions must
satisfy the conditions (3.28) that arose in the geodesic analysis. These relations constrain
the choice of AdS3 and S3 wavefunctions.

Let us consider the BPS null geodesics discussed around (3.32), and analyze the corre-
sponding wavefunctions. Recall that to leading order in large quantum numbers, we have
j = j′, m̄ = j, m̄′ = −j, m = j + n̂, m′ = −j + m̂, and that the motion is stationary in
ρ, θ, ϕ, ψ at the location (3.32). For these geodesics, from (3.28) we have

kε = −kny = n̂+ (2s+ 1)m̂− 2sj . (3.37)
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The corresponding wavefunctions take the form depicted in figure 1(a), with a peak at the
values (3.32) (and a width of order j−1/2). The resulting wavefunctions (3.33), together
with their SL(2,R) counterparts, are none other than the mode functions ∆ℓm̂n̂ of the
superstratum construction [43–52],

∆ℓm̂n̂ e
ivℓm̂n̂ =

(
r♭√

r2
♭ + a2

)n̂( a√
r2
♭ + a2

)ℓ
sinℓ−m̂ θ cosm̂ θ ei[(n̂+(2s+1)m̂−2sj)v/k+(ℓ−m̂)ϕ−m̂ψ] ,

(3.38)

where ℓ = 2j + 1 (and note the spacetime spectral flow from the group coordinates ϕNS, ψNS
to those of the GLMT background, eq. (3.24)). The dimensionless radial coordinate r♭/a
is related to our radial coordinate ρ via (see appendix A)

r2
♭

a2 = sinh2 ρ . (3.39)

We note that plugging (3.32) into (3.37), one obtains

kε = −kny = 2j
(
sinh2 ρ+ (2s+ 1) cos2 θ − s

)
= n5νf0 . (3.40)

This is a generalization of the statement made earlier that on the locus f0 = 0, massless
BPS geodesics have ε = −ny = 0 .

We recall that in the AdS3 limit, the ergoregion is defined by f0 < s(s + 1), so the
question of whether the energy of these geodesics is negative is not quite the same as the
question of whether they are localised in the ergoregion.

Specifically, the negative energy massless BPS geodesics are located in the ergoregion,
orbiting the y circle at fixed ρ, θ, ϕ, ψ, in the region in which f0 < 0. By contrast, the massless
BPS geodesics in the ergoregion at f0 = 0 have zero energy, and those with 0 < f0 < s(s+ 1)
have positive energy. This difference results from the fact that a massless particle must have
spatial momentum and therefore energy to travel a stationary trajectory in the ergoregion.

More generally, let us consider including small non-zero values of αr, α′
r, such that

αr < αℓ and α′
r < α′

ℓ, and also allowing general values of the background spectral flow
parameters m and n. Then combining eqs. (3.8), (3.10), (3.17), (3.19), and (3.28), we obtain

k(ε− ny) ≈ n5ν
[
cosh(ρ++ρ−) + (m + n) cos(θ++θ−)

]
,

k(ε+ ny) ≈ n5ν
[
cosh(ρ+−ρ−)− (m − n) cos(θ+−θ−)

]
.

(3.41)

Adding the two equations in (3.41), we obtain

kε ≈ n5ν
[
cosh ρ+ cosh ρ− − m sin θ+ sin θ− + n cos θ+ cos θ−

]
. (3.42)

Returning to the supersymmetric backgrounds, for which m = s + 1, n = s, one can
expand the second equation in (3.41) for small αr, α′

r, to obtain

k(ε+ ny) ≈
n5ν

2
(
α2
r + (α′

r)2
)
. (3.43)
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Similarly for eq. (3.42), for m = s + 1, n = s and to leading order in small αr, α′
r, one

can interpret the products of trigonometric/hyperbolic functions as an approximate “ge-
ometric mean” of the two extremes of the massless geodesic, such that to leading order
cosh ρ+ cosh ρ− ≈ cosh2ρ, etc. Then we recognize the expression in square brackets as again
being f0 rewritten using trigonometric identities,

f0 = cosh2 ρ− (s+ 1) sin2 θ + s cos2 θ , (3.44)

consistent with the discussion around eq. (3.40) above.

4 Supergravity spectrum, holography, and ergoregion modes

In the fivebrane decoupling limit, the family of backgrounds (2.2) admits an exact worldsheet
description as a gauged Wess-Zumino-Witten model (WZW) for the group quotient

G
H

=
SL(2,R)× SU(2)× Rt × S1

y
U(1)L × U(1)R

, (4.1)

where H consists of a pair of null isometries of G. Globally, we work with the universal
cover of SL(2,R) and we gauge a null cylinder, R × S1. There is also a T4 factor that
does not participate in the gauging.

In this section, we first review the essential features of this construction, including the
general structure of string vertex operators and the physical state constraints they obey. We
then proceed to perform a more complete analysis of the spectrum of supergravity modes
than has previously been performed in the literature, including the map to the dual spacetime
CFT. We pay particular attention to the specific properties of supergravity ergoregion
modes in subsection 4.4.

4.1 Worldsheet cosets and supergravity backgrounds

We use the Euler angle parametrization of the group SL(2,R) and SU(2) as given in (3.12)
and (3.2). The line element for the (6+2)-dimensional part G of the (10+2)-dimensional
target space before gauging is thus4

ds2 = n5(− cosh2ρdτ2 +dρ2 +sinh2ρdσ2)+n5(dθ2 +cos2 θdψ2 +sin2 θdϕ2)−dt2 +dy2 . (4.2)

The null currents and their worldsheet superpartners are

J = J3
sl + l2J

3
su + l3 i∂t + l4 i∂y , λ = ψ3

sl + l2 ψ
3
su + l3 ψ

t + l4 ψ
y ,

J̄ = J̄3
sl + r2J̄

3
su + r3 i∂̄t + r4 i∂̄y , λ̄ = ψ̄3

sl + r2 ψ̄
3
su + r3 ψ̄

t + r4 ψ̄
y ,

(4.3)

where the J3, J̄3 currents were introduced in eqs. (3.9), (3.18), and where the parameters
li, ri satisfy the null conditions

n5(−1 + l22)− l23 + l24 = n5(−1 + r2
2)− r2

3 + r2
4 = 0 . (4.4)

4We use the notation t, y for coordinates on the R×S1 of the (10+2)-dimensional spacetime before gauging,
to distinguish them from the t, y coordinates of the (9+1)-dimensional spacetime after gauging.
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The general three-charge spectral flowed circular supertube solutions [12], in the NS5-
brane decoupling limit given in (2.2), correspond to the coset models with parameters [14,
15, 20]5

l2 = 2s+ 1 , r2 = 1 , l3 = r3 = −∆ = −
(

kRy +
n5s(s+ 1)

kRy

)
,

l4 = kRy −
n5s(s+ 1)

kRy
, r4 = −kRy −

n5s(s+ 1)
kRy

.

(4.5)

The quantity Σ introduced in (2.3) is in general given by

Σ = sinh2ρ + l2r2 cos2 θ + 1− l2r2
2 + l3r3 − l4r4

2n5
. (4.6)

Gauge transformations act on the coordinates of the (10+2)-dimensional target space as

δτ = l1α+r1β = (α+β) , δϕ = −l2α−r2β = −(α+β)(s+ 1)− (α−β)s ,

δσ = l1α+r1β = (α−β) , δψ = l2α−r2β = (α+β)s+ (α−β)(s+ 1) , (4.7)

δt = l3α+r3β = −(α+β)∆ , δy = −l4α−r4β = −kRy (α−β) +
n5s(s+ 1)

kRy
(α+β) .

We integrate out the gauge fields in the gauged sigma model action, which has the effect
of adding a term JJ̄/Σ to the sigma model action on G. Upon fixing the gauge τ = σ = 0,
the remaining coordinates become those of the physical target space background fields in
eq. (2.2), with linear dilaton asymptotics.

Instead of fixing the gauge τ = σ = 0, one can define gauge-invariant coordinates of the
physical spacetime after gauging. For ease of presentation, we focus on the leading form of
these in the AdS3 limit. We define t̃ = t/Ry , ỹ = y/Ry , analogously to (2.5). Then the
gauge-invariant coordinates can be taken to be

t̃gi = t̃ + kτ , ỹgi = ỹ + kσ , (4.8)

and for instance either

ϕgi,1 = ϕ− s+ 1
k t̃ − s

k ỹ , ψgi,1 = ψ + s

k t̃ + s+ 1
k ỹ , (4.9)

or equally well,

ϕgi,2 = ϕ+ (s+ 1)τ + sσ , ψgi,2 = ψ − sτ − (s+ 1)σ . (4.10)

If we fix the gauge τ=σ=0, we identify the respective upstairs coordinates (t̃gi, ỹgi, ϕ, ψ, ϕgi, ψgi)
with the downstairs coordinates (t̃,ỹ,ϕ,ψ,ϕNS,ψNS) in eqs. (2.6)–(2.7).

By contrast, if we instead gauge fix t̃ = ỹ = 0, then we identify the respective upstairs
coordinates (t̃gi, ỹgi, ϕ = ϕgi, , ψ = ψgi) with the downstairs coordinates (kτ = t̃, kσ = ỹ, ϕ, ψ)
in eqs. (2.6)–(2.7). In this case, there is a residual discrete Zk symmetry that acts as [20, 53]

δ(σ, ψ, ϕ) = 2π
k
(
1, s+ 1,−s

)
. (4.11)

This residual symmetry corresponds directly to the coordinate identification that gives rise
to the orbifold singularities in the supergravity solutions.

5Compared to the conventions of [24], we have flipped the signs of l2, r2.
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4.2 Holographic CFT states

In the holographic CFT that arises in the AdS3 limit, at the symmetric product orbifold
point, the supersymmetric spectral flowed circular supertubes correspond to states in which
all “strands” (i.e. cycles in the symmetric orbifold twist sector) have winding k and are in
the same state. For a review and more details on the notation used here, see [12, 13, 54].
The state on each k-wound strand is a left spectral flow of the |++⟩k ground state, which
we denote |++⟩k,s. It has the following quantum numbers under the holographic CFT
L0, J3, L̄0, J̄3 respectively [12] :

|++⟩k,s : h = k
4 + s(s+ 1)

k , M ′ = s+ 1
2 ,

h̄ = k
4 , M̄ ′ = 1

2 . (4.12)

Compared to the ground state |++⟩k, the spectral flowed state |++⟩k,s contains two Fermi
seas of free fermions, filled to the level s/k, with level spacing 1/k [12].

For later use in discussing the spectrum, we also define here the states

|−−⟩k,s = |++⟩k,s−1 : h = k
4 + s(s− 1)

k , M ′ = s− 1
2 ,

h̄ = k
4 , M̄ ′ = 1

2 . (4.13)

As a special case, |−−⟩k,s=1 = |++⟩k. For more general discussions of spectral flowed strands,
see e.g. [44, 55].

4.3 Physical string spectrum — general structure

In the null-gauged WZW model, the physical spectrum is the subsector of the underlying
WZW model on G satisfying the gauge constraints; in the application to worldsheet string
theory, we also must impose the Virasoro constraints. We first briefly review these constraints;
for further details, see [19].

Physical vertex operators are in the cohomology of the worldsheet BRST operator (for
more details, see [21, 23, 24])

QBRST =
∮
dz
[(
cT + γG+ ghosts

)
+
(
c̃J + γ̃λ

)]
, (4.14)

where J , λ were defined in eq. (4.3).
To construct the vertex operators, one begins with the center-of-mass wavefunctions

Φ(w)
j;m,m̄Ψ(w′,w̄′)

j′;m′,m̄′ e
−iEt+iPyy+iP̄y ȳ , (4.15)

where Φ(w)
j;m,m̄ is a primary of the bosonic SL(2,R) WZW model in the spectral flow sector w;

Ψ(w′,w̄′)
j′;m′,m̄′ is a bosonic primary of the SU(2) WZW model in the (L,R) spectral flow sector

(w′, w̄′); and y(z), ȳ(z̄) are the (anti-)chiral parts of the boson y.6 We have

Py =
ny
Ry

+ wyRy , P̄y =
ny
Ry

− wyRy . (4.16)

6There is only a single spectral flow quantum number w = w̄ for SL(2,R) because we are working on the
universal cover, so that there is no winding around the time direction [19].
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One then decorates this center-of-mass operator with SL(2,R) and SU(2) supercurrent raising
operators as well as oscillators in the various free fields, etc.

The total currents appearing for instance in (4.3) are given by

Jasl = jasl −
i

2(ϵsl)
a
bcψ

b
slψ

c
sl , Jasu = jasu − i

2(ϵsu)
a
bcψ

b
suψ

c
su , (4.17)

where jasl and jasu are, respectively, bosonic SL(2,R) level n5 + 2 currents and bosonic SU(2)
level n5 − 2 currents, ϵ123

sl = ϵ123
su = 1, and indices are raised and lowered with the relevant

Killing metric. We denote the total spins by J, J ′ respectively, and by M,M ′ the eigenvalues
of the total J3

sl, J
3
su (and similarly for the right-movers).

We consider only vertex operators with vanishing T4 momentum (see [19] for its inclusion).
The zero-mode Virasoro constraints are [19]7

L0 −
1
2 = −j(j − 1)

n5
+ j′(j′ + 1)

n5
−Mw − n5

4 w
2 +M ′w′ + n5

4 w
′2 − 1

4E
2 + 1

4P
2
y + hL = 0 ,

L̄0 −
1
2 = −j(j − 1)

n5
+ j′(j′ + 1)

n5
− M̄w − n5

4 w
2 + M̄ ′w̄′ + n5

4 w̄
′2 − 1

4E
2 + 1

4 P̄
2
y + hR = 0 ,

(4.18)

where hL,R is the contribution of nonzero modes, plus the ground state energy −1/2.
It is convenient to rewrite the operators in a way that manifests the dependence on

the total currents J3
sl, J

3
su. For SU(2) one has

Ψ(w′,w̄′)
j′;m′,m̄′ = Λ(αsu,ᾱsu)

j′;m′,m̄′ exp
[
i

2
√
n5

((
M ′ + n5

2 w
′
)
Y ′ +

(
M̄ ′ + n5

2 w̄
′
)
Ȳ ′
)]

, (4.19)

where Y ′, Ȳ ′ bosonize the total J3 currents,

J3
su = i

√
n5 ∂Y

′ , J̄3
su = i

√
n5 ∂̄Ȳ

′ , (4.20)

and where Λ is a super-parafermion operator that lives in the SU(2)/U(1) coset model, see
e.g. [19, 21, 57]. The parameters αsu, ᾱsu are the R-charge spectral flow quantum numbers of
the super-parafermion under its N = 2 worldsheet superconformal symmetry, and roughly
codes the ψ±

su fermion charge (and so note that one has the relations M ′=m′+αsu, M̄
′=m̄′+ᾱsu).

The operator Λ has conformal dimension

hΛ = j′(j′ + 1)
n5

− M ′2

n5
+ α2

su
2 , (4.21)

(which is positive, by unitarity); thus the Ψ conformal dimension can be written as

hΨ = hΛ + 1
n5

(
M ′ + n5

2 w
′
)2

. (4.22)

The zero-mode null constraints then read

(2M + n5w) + l2(2M ′ + n5w
′) + l3E + l4Py = 0 ,

(2M̄ + n5w) + r2(2M̄ ′ + n5w̄
′) + r3E + r4P̄y = 0 . (4.23)

7We adopt the conventions of [56] setting α′ = 1, X(z)X(w) ∼ − 1
2 log |z −w|2; note that T (z) = −∂X∂X.
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The supergraviton vertex operators are constructed by decorating the center-of-mass
vertex operator (4.15) with one excitation each on the left and right, in order to satisfy the
GSO projection. For zero winding w = w′ = w̄′ = wy = 0, the Virasoro constraints (4.18)
require j = j′ + 1.

The circular supertube background, which is a special case of the above backgrounds
in which s = 0, was studied in [21, 24]. The null constraints and the BPS condition impose
a lowest weight condition M = J = J ′ = −M ′ on the left, and similarly on the right, on
the total SL(2,R) and SU(2) spins. These vertex operators, denoted

Vαα̇, SAB , (4.24)

sew together 2j′+1 background strands (4.12) (with s = 0) into a single strand of length
(2j′+1)k, while changing the 1/2-BPS ground state polarization in a manner determined
by that of the vertex operator,(

|++⟩k
)2j′+1 −→ |I⟩(2j′+1)k . (4.25)

These operators have a 1/4-BPS generalization, in which one relaxes the lowest weight
condition on the total spins M,M ′. These operators sew together background strands in
the same way, while in addition populating the resulting strand with excitations by J+

− 1
k

and
L− 1

k
−J3

− 1
k
. These modes, and various generalizations where we allow arbitrary rather than

BPS polarization on the left, are the linearized perturbations associated to superstratum
deformations of the round supertube background [24].

4.4 1/4-BPS supergravity spectrum

We now discuss the generalization of these results to the GLMT backgrounds. We begin
with an analysis of the supergravity spectrum, in which we have w = w′ = w̄′ = 0. In the
NS sector in the (−1) picture, we have hL = hR = 0, and in the R sector in the (−1/2)
picture, we have a ground state spin field on both sides.

The axial Virasoro constraint, from (4.18), imposes

nywy = 0 . (4.26)

We solve this by setting wy = 0. Note that the states with ny = 0 and nonzero wy are not
supergravity modes in this duality frame, but become supergravity modes after T-dualizing
along y; for more discussion, see [24]. We work in a large Ry expansion, and write

E = ε

Ry
. (4.27)

Then ε has the interpretation of energy measured with respect to ∂/∂t̃ in the rotating
AdS3 backgrounds (2.6).

Focusing first on the NS-NS sector, at leading order in large Ry the vector combination
of the Virasoro constraints (4.18) imposes

j = j′ + 1 . (4.28)
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This relation receives corrections away from the AdS3 limit [19], but we will work in the
AdS3 limit from now on.

We consider positive discrete series states in SL(2,R), which correspond to modes that
have positive frequency with respect to the AdS “cap” geometry in factorized coordinates [19].
In this sector, at leading order in large Ry, the zero-mode left and right null constraints become

k(ε− ny) = 2M + 2(2s+ 1)M ′ , (4.29a)
k(ε+ ny) = 2M̄ + 2M̄ ′ . (4.29b)

Taking the sum and difference of these equations, we obtain the zero-mode vector and
axial null constraints,

kε =M + M̄ + (2s+ 1)M ′ + M̄ ′ , (4.30a)
−kny =M − M̄ + (2s+ 1)M ′ − M̄ ′ . (4.30b)

We note that in the semiclassical approximation, one does not distinguish M from m, and
similarly for M̄ , M ′, M̄ ′. Then we see that the zero-mode vector and axial null constraints
agree with the geodesic analysis of the previous section, eq. (3.28).

To analyze the 1/4-BPS spectrum, we solve the BPS constraint on the right by fixing

M̄ = J̄ = j + ϵ̄ , M̄ ′ = −J̄ ′ = −(j′ + ϵ̄′) (4.31)

where ϵ̄, ϵ̄′ denote the contributions to the total spins from the worldsheet fermions in the
vertex operator, and are taken to be either ϵ̄ = −1, ϵ̄′ = 0 (denoted V̄+ = W̄− in [24]) or
by taking ϵ̄ = 0, ϵ̄′ = 1 (denoted V̄− = χ̄+ in [24]). In both cases, we have ϵ̄′ − ϵ̄ = 1 which
implies that M̄ = −M̄ ′. Then the R null constraint, eq. (4.29b), imposes

ε = −ny . (4.32)

Note that we are dealing with positive frequency modes of left-moving excitations, so the
typical regime of parameters of most excitations is ny < 0 and E > 0 . By contrast, we
will also exhibit a finite set of modes that have ny > 0 and E < 0 , which are examples of
ergoregion modes, cf. the discussions in section 2.2 and below eq. (3.28). Note that positive
frequency modes with E < 0 are not present in the two-charge supertube backgrounds. These
modes reduce the absolute value of both the energy and y-momentum from the background,
while preserving supersymmetry.

We finally solve the remaining null constraint, which we can take to be the axial null
constraint. From (4.5) and (4.23), and using M̄ = −M̄ ′, this reads:

M + (2s+ 1)M ′ + kny = 0 . (4.33)

On the left we define

M = J + n̂ = (j + ϵ) + n̂ , M ′ = −J ′ + m̂ = −(j′ + ϵ′) + m̂ , (4.34)

with n̂ = 0, 1, 2 . . . and m̂ = 0, 1, 2, . . . , 2J ′; again ϵ, ϵ′ denote the contributions to the total
spins from the worldsheet fermions in the vertex operator. In the holomorphic NS sector,
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these can take values within {−1, 0, 1}, with more freedom than in the anti-holomorphic
sector (discussed below (4.31)), as we shall describe in more detail momentarily. Together
with (4.31), the axial null constraint then becomes

n̂+ (2s+ 1)m̂− 2sj′ + ϵ− (2s+ 1)ϵ′ + 1 = −kny . (4.35)

Since ny ∈ Z, the left-hand side of this equation must be a multiple of k in order for the
vertex operator to be physical.

Note that in the semiclassical approximation, this equation reduces to eq. (3.37) which
arose in the analysis of the corresponding BPS geodesics. The following is therefore the
quantum version of the analysis of the semiclassical modes in section 3.5.

To explain the structure step by step, let us first examine (4.35) with n̂ = m̂ = 0.
Generically, such vertex operators will not satisfy ny ∈ Z, however this condition will be
satisfied in due course by restoring n̂ and m̂. We obtain

−2sj′ + ϵ− (2s+ 1)ϵ′ + 1 = −kny . (4.36)

As an example, let us choose the holomorphic ϵ variables similarly to those in the antiholo-
morphic sector, either by taking V+ = W− which has ϵ = −1, ϵ′ = 0 or by taking V− = χ+

which has ϵ = 0, ϵ′ = 1. Combined with the antiholomorphic sector, this leads to the four
operators Vαα̇. Then we are left with

−2sj′ − 2sϵ′ = −kny , (4.37)

where again ϵ′ = 0 for V+ and ϵ′ = 1 for V−. For simplicity, let us temporarily assume that
s/k ∈ Z, to ensure that we solve the constraint that ny ∈ Z.

Recall that we work with s ≥ 0 without loss of generality. For s = 0, there is no
ergoregion; the lightest excitations are 1/2-BPS, have ε = ny = 0 and wy ≥ 0, and mediate
transitions to other two-charge BPS states [21, 24]. For s > 0 and for j′ > 1, the vertex
operators in (4.37) have ny > 0, which is in the opposite sense to the background, and
thus reduce the absolute value of the momentum charge ny compared to its value of the
background. Moreover, from (4.32), these operators have negative asymptotic energy, despite
being positive frequency modes with respect to the local cap energy (being D+ modes).

The two terms in (4.37) can be understood from the holographic CFT, as follows. First,
let us consider V++, so that ϵ′ = 0. We then have ny = 2j′s/k. The relevant process in
the holographic CFT is (cf. eqs. (4.12)–(4.13))

(
|++⟩k,s

)2j′+1 −→ |++⟩(2j′+1)k ,(2j′+1)s . (4.38)

In more detail, this vertex operator joins together 2j′ + 1 strands of length k. The original
strands of length k had two Fermi seas filled to the level s/k, as discussed around eq. (4.12).
Following the discussion in [12, section 6], the change in m′, m̄′ in this process is fully
accounted for by the polarization of the ground states, and the total number of fermionic
excitations is preserved. The lowest available state on the new strand of length (2j′ + 1)k is
two filled Fermi seas, each containing (2j′ + 1)s fermions filling the Fermi sea to the level
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s/k, with energy spacing [(2j′ + 1)k]−1. The reduction in chiral energy h (and therefore the
reduction in the absolute value of ny = h̄−h) is precisely 2j′s/k, as found in [12, eq. (6.22)].8

Next, we consider V−−, so that ϵ′ = 1. The new element with respect to V++ is the term
−2sϵ′ = −2s in eq. (4.37). The relevant transition in the holographic CFT is

(
|++⟩k,s

)2j′+1 −→ |−−⟩(2j′+1)k ,(2j′+1)s = |++⟩(2j′+1)k ,(2j′+1)(s−1) . (4.39)

In this example, the reduction in the absolute value of ny is precisely 2s(j′ + 1)/k, again
in agreement with (4.37).

The discussion above generalizes straightforwardly to the polarizations |+−⟩ and |−+⟩,
via the vertex operators V+− = V+V̄− and V−+ = V+V̄−, following the discussion around
eq. (4.24).

We next generalize the discussion to include the quantum numbers m̂, n̂, and relax the
temporary assumption s/k ∈ Z, to return to working with general non-negative integer s.
The worldsheet vertex operators are those that fill out the SL(2,R) and SU(2) multiplets,
cf. (4.34). We identify the corresponding operators in the holographic CFT as being those
that mediate the transitions to the family of superstratum-type states built on spectrally
flowed strands, with final states (I = αα̇ = ±±)

∣∣m̂, n̂; I〉(2j′+1)k ,(2j′+1)s =
(

J+
− (2s+1)

k

)m̂ (
L− 1

k
− J3

− 1
k

)n̂ ∣∣I〉(2j′+1)k ,(2j′+1)s . (4.40)

We note in particular the fractional mode numbering of the raising operators on the right-hand
side, which is consistent with the axial null constraint (4.35). The fractionation is limited in
the sense that the modes are multiples of 1/k, whereas the modes on the strand are fractionated
in multiples of 1/((2j′+1)k). This is a generalization of the (limited) fractionation seen in the
supergravity constructions and holographic analysis of [44, 55]. The holographic dictionary
for superstrata is on a firm footing, having passed precision holographic tests [5, 58, 59].

The “supercharged” superstratum modes [48, 49] now follow from generalizing the
discussion in [24]. Specifically, we study the vertex operators that differ from V± by changing
the signs of ϵ and ϵ′. We first discuss changing the sign of ϵ′, namely ϵ = 0, ϵ′ = −1, keeping
the right-movers unchanged. In the case ϵ̄ = 0, ϵ̄′ = 1, the axial null constraint becomes

n̂+ (2s+ 1)m̂− 2sj′ + (2s+ 2) = −kny . (4.41)

This family of vertex operators corresponds to holographic CFT operators that mediate
transitions to the superdescendant states(

G+1
− s+1

k
G+2
− s+1

k
+ 1

kJ+
− 2s+1

k

(
L− 1

k
− J3

− 1
k

)) ∣∣m̂, n̂; + +
〉

(2j′+1)k ,(2j′+1)s . (4.42)

Alternatively, we can change the sign of ϵ, namely ϵ = +1, ϵ′ = 0, keeping the R movers
unchanged. In the case ϵ̄ = −1, ϵ̄′ = 0, the axial null constraint becomes

n̂+ (2s+ 1)m̂− 2sj′ + 2 = −kny . (4.43)
8Note that compared to the notation of [12], (2j′ + 1)here = lthere.
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This corresponds to transitions to(
G+1
− s+1

k
G+2
− s+1

k
+ 1

kJ+
− 2s+1

k

(
L− 1

k
− J3

− 1
k

)) ∣∣m̂, n̂;−−
〉

(2j′+1)k ,(2j′+1)s . (4.44)

Again, the ground state polarizations |+−⟩ and |−+⟩ follow entirely analogously.
We note that the moding of J+

− (2s+1)
k

agrees with the observations on the supergravity

spectrum in [12, eq. (6.22)]. The modings of J+
− (2s+1)

k
and G+A

− (s+1)
k

also agree with the
transformation of the generators under spectral flow,

L n
k
→ L n

k
, J±n

k
→ J±n∓2s

k
, J3

n
k
→ J3

n
k
, G±,A

n
k

→ G±,A
n∓s

k
, (4.45)

as discussed in the perturbative analysis of general superstrata on spectral flowed supertube
backgrounds in [55].

So far we have explicitly identified 8 NS-NS vertex operators for each allowed choice
of j′, m̂, n̂. There are another 8 NS-NS massless 1/4-BPS vertex operators that lie in six-
dimensional vector multiplets. These arise from combining a BPS vertex V̄ for the right-movers
with a T4 polarization ZAȦ of the left-movers. In addition, there are 16 R-R massless 1/4-BPS
vertex operators for each allowed choice of j′, m̂, n̂. The analysis of these remaining vertex
operators follows directly from combining the analysis above with that in [24, section 5.2].

5 Stringy spectrum and twisted sector ground states

In this section we consider more general string states. We begin with a general analysis
of the spectrum of strings with nonzero winding along S1

y. The gauge constraints relate
winding along S1 and in SL(2,R); furthermore, one can shift the winding from one to the
other via a large gauge transformation. The quantities that can be compared with conserved
charges in the holographically dual spacetime CFT should be gauge-invariant, and so we
construct the gauge-invariant worldsheet currents which measure these charges. This leads
to an analysis of winding sector strings which extend the supergravity vertex operators to
untwisted sectors of non-zero winding. We then analyze twisted sector strings that are pinned
to the orbifold singularities of the k > 1 backgrounds. One of the orbifold singularities lies in
the ergoregion, and we exhibit ergoregion modes in this sector. We also exhibit ergoregion
modes among a class of massive string states.

5.1 Stringy spectrum: constraints at large Ry

We now discuss a subset of states with non-zero w,w′, w̄′, wy. To do so, when wy ̸= 0,
and at large Ry, we write

E = wyRy +
ε

Ry
, (5.1)

where wy and ε are independent of Ry. Combining this with the expressions for Py, P̄y
in (4.16), we find that at leading order in large Ry, the zero-mode L and R null constraints
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are respectively

k(ε− ny) = 2
(
Mtot +

n5
2 w

)
+ (2s+ 1)2

(
M ′

tot +
n5
2 w

′
)
− 2s(s+ 1)

k n5wy ,

k(ε+ ny) = 2
(
M̄tot +

n5
2 w

)
+ 2

(
M̄ ′

tot +
n5
2 w̄

′
)
,

(5.2)

where we have defined

Mtot =M +Mosc , M ′
tot =M ′ +M ′

osc , (5.3)

and similarly for M̄tot, M̄
′
tot, where Mosc,M

′
osc are the corresponding contributions of the

oscillator excitations charged under J3
sl, J

3
su, and similarly for M̄osc, M̄

′
osc. The large-Ry limit

of the Virasoro constraints (4.18) is similarly

0 = −j(j − 1) + j′(j′ + 1)
n5

−Mtotw +M ′
totw

′ − n5
4
(
w2−(w′)2

)
− wy

2
(
ε−ny

)
+ hL ,

0 = −j(j − 1) + j′(j′ + 1)
n5

− M̄totw + M̄ ′
totw̄

′ − n5
4
(
w2−(w̄′)2

)
− wy

2
(
ε+ny

)
+ hR ,

(5.4)

where hL, hR contain the non-zeromode excitation levels and the super-parafermion R-charge
spectral flows,

hL = NL + α2
sl + α2

su
2 − 1

2 , hR = NR + ᾱ2
sl + ᾱ2

su
2 − 1

2 . (5.5)

Although we will focus exclusively on the above constraint zero modes, we note that one
must also satisfy all the positive frequency modes of the constraints as well. We will assume
that the set of solutions to these additional constraints is non-empty.

5.2 Gauge-invariant charges

When turning on y-circle winding wy ̸= 0, one must be careful to define conserved charges
such as energy, momentum, and angular momentum in a gauge invariant way. The various
U(1) currents of the null-gauged model are

J3
sl , J3

su , i∂t ≡ Jt , i∂y ≡ Jy ; J̄3
sl , J̄3

su , i∂̄t ≡ J̄t , i∂̄y ≡ J̄y , (5.6)

which measure the respective zero-mode quantum numbers

Mtot +
n5
2 w , M ′

tot +
n5
2 w

′ ,
E

2 ,
1
2

(
ny
Ry

+ wyRy

)
;

M̄tot +
n5
2 w , M̄ ′

tot +
n5
2 w̄

′ ,
E

2 ,
1
2

(
ny
Ry

− wyRy

)
.

(5.7)

To be physical, currents must commute with the null currents J , J̄ in (4.3), and must
measure combinations of zero-mode quantum numbers that are invariant under the following
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shifts induced by the combination of spectral flow transformations which amount to a large
gauge transformation, as discussed in [19],

δw = q , δw′ = −l2q , δw̄′ = −r2q ,

δE = l3q , δPy = −l4q , δP̄y = −r4q , q ∈ Z ,

=⇒ δny = −n5
s(s+ 1)

k q , δwy = −kq .

(5.8)

For instance, recalling that l3 = r3, we have the following examples of physical currents:

M = J3
sl −

n5
l3
Jt , M̄ = J̄3

sl −
n5
l3
J̄t , (5.9)

M′ = J3
su − n5l2

l4
Jy , M̄′ = J̄3

su − n5r2
r4

J̄y , (5.10)

L = Jt +
l3
l4
Jy , L̄ = J̄t +

l3
r4
J̄y . (5.11)

These are not all independent — for instance the linear combination

M+ l2M′ + (l23 + n5)
l3

L = J (5.12)

is trivial upon imposing the constraints.
The combination of zero mode quantum numbers measured by the current M − M̄

is the cap AdS3 angular momentum,

M−M̄ =Mtot − M̄tot , (5.13)

where we use the same notation to refer to both the current and its eigenvalue. At leading order
in large Ry, the combination of zero-mode quantum numbers measured by Mtot + M̄tot is

M+ M̄ =Mtot + M̄tot + n5

(
w + wy

k

)
, (5.14)

which is a gauge-invariant non-zero-winding generalization of the cap energy of supergravity
modes, Mtot + M̄tot.

At leading order in large Ry, the combination of zero mode quantum numbers measured
by L + L̄ is

E = ε− n5
s(s+ 1)

k
wy
k (5.15)

which is a gauge-invariant non-zero-winding generalization of the asymptotic energy ε of
supergravity modes, in which the energy of wound strings is compared to a reference energy
per unit winding of the background, times the winding. Similarly, the leading term in the
large Ry expansion of the zero-mode quantum numbers measured by L̄ − L is

NY = ny + n5
s(s+ 1)

k
wy
k , (5.16)
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and the currents M′,M̄′ measure the S3 angular momenta9

M′ =M ′
tot +

n5
2

(
w′ − (2s+ 1)wyk

)
, M̄′ = M̄ ′

tot +
n5
2

(
w̄′ − wy

k

)
(5.17)

respectively. One can verify that the quantities M, M̄, M′, M̄′, L and L̄ are indeed invariant
under the spectral flow large gauge transformations (5.8).

Recall that when one uses the gauge symmetry to fix the U(1)y coordinate of the gauged
WZW model, there is a residual discrete gauge symmetry that arises [53], given in (4.11),
that corresponds to the supergravity identification (2.8). When considering the effect of
large gauge transformations, one can shift away wy in multiples of k, see eq. (5.8).10 We
can thus restrict to the range

wy ∈ {0, 1, . . . , k − 1} , (5.18)

and use w to account for string winding in multiples of k, which are integer units of F1
winding, while wy can be thought of as labeling orbifold twisted sectors. We can then regard
wy as labeling twisted sectors under the Zk orbifold (4.11), implemented by simultaneous
“fractional spectral flow” in SL(2,R) and SU(2).

5.3 Solving the constraints

When the windings w,wy are nonzero, one can solve the constraints (5.2), (5.4) for ε±ny, n̂ =
M−J, ˆ̄n = M̄−J̄ , as defined in (4.34). When doing so, it is useful to express the solutions
to the constraints in terms of gauge-invariant combinations.

Although there are solutions to the constraints in nonzero winding sectors involving
continuous series representations of SL(2,R), these are unbound winding strings in plane
wave states and thus not localized in the cap. Thus, we continue to focus on solutions for
which the SL(2,R) center of mass wavefunction is in the discrete series D+.

9While it might appear that this expression violates angular momentum quantization in twisted sectors
wy /∈ kZ, this is an artifact of the definition, in which the angular momentum of individual strings is compared
to the angular momentum per unit winding of the background. In the background, each strand of the
holographic CFT accounts for k units of winding and (s+ 1

2 ) units of angular momentum (using the same
labeling as the symmetric product orbifold), cf. eq. (4.12), and so the angular momentum per unit winding
is (s+ 1

2 )/k. In the worldsheet theory, each fundamental string winding translates into n5 units of winding
in CFT terms, accounting for the fractional term in (5.17). Note that if we have several such strings whose
windings wy add up to a multiple of k, as would for instance happen if a unit of background flux were converted
into several fractionally wound strings, the total angular momentum would in fact be properly quantized.

10Alternatively, one can use the gauge spectral flow symmetry to choose a gauge w = 0, and then wy

accounts for all of the string winding charge.
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We remind the reader that ny, n̂, ˆ̄n must be integers, and that n̂, ˆ̄n must be non-negative.
For the left-moving quantities, one finds

E − NY = 2
kw + wy

[
−j(j − 1) + j′(j′ + 1)

n5
+ hL

+M ′
tot

(
w′ − (2s+ 1)wyk

)
+ (2s+ 1)M ′

tot

(
w + wy

k

)
(5.19)

+ n5
4

((
w + wy

k

)2
+
(
w′ − (2s+ 1)wyk

)2

+ 2(2s+ 1)
(
w + wy

k

)(
w′ − (2s+ 1)wyk

))]

and

n̂ = k
kw + wy

[
−j(j − 1) + j′(j′ + 1)

n5
+ hL

− (J +Mosc)
(
w + wy

k

)
+M ′

tot

(
w′ − (2s+ 1)wyk

)
(5.20)

+ n5
4

(
−
(
w + wy

k

)2
+
(
w′ − (2s+ 1)wyk

)2
)]

.

Similarly, for the corresponding right-moving quantities, one finds

E+NY =
2

kw+wy

[
−j(j−1)+j′(j′+1)

n5
+hR+M̄ ′

tot

(
w̄′−wyk

)
+M̄ ′

tot

(
w+wyk

)

+n5
4

((
w+wyk

)2
+
(
w̄′−wyk

)2
+2
(
w+wyk

)(
w̄′−wyk

))]
(5.21)

and

ˆ̄n = k
kw + wy

[
−j(j − 1) + j′(j′ + 1)

n5
+ hR − (J̄ + M̄osc)

(
w + wy

k

)
+ M̄ ′

tot

(
w̄′ − wy

k

)

+ n5
4

(
−
(
w + wy

k

)2
+
(
w̄′ − wy

k

)2
)]

. (5.22)

We have grouped the terms on the right hand sides of (5.19)–(5.22) into combinations that
are invariant under the gauge spectral flow shifts, as described in eq. (5.8). These expressions
show explicitly how wy enters as a fractional string winding related to orbifold twist sectors.
The expressions (5.19), (5.21) generalize the supergravity mode analysis of section 4.4 to
general string modes. Note that the quantization and non-negativity of n̂, ˆ̄n constrain the
choices on the r.h.s. of eqs. (5.20), (5.22).

We can now explore the stringy ergoregion modes by extending the logic of section 4.4,
where we now allow SU(2) spectral flow as well as more general oscillator excitations, for any
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of the twist sectors labeled by w = w + wy/k (including the untwisted sector wy = 0). With
negative SU(2) spectral flows w′, w̄′, we can arrange for an arbitrarily negative asymptotic
energy of the vertex operator in sectors of large y-circle winding — the energy cost of SU(2)
spectral flow is less on longer strands, and the angular momentum overall is less, and so
after the transition the energy is less than that of the initial state. We will now give a class
of examples that illustrate this phenomenon.

5.4 Winding ergo-strings

We now investigate winding sector strings that are localized in the ergoregion. In the
zero winding sector, string vertex operators implement transitions built upon the basic
process (4.38), (4.39) in the spacetime CFT. The natural winding sector generalization
of this transition is (specializing to w = w+wy/k ∈ Z, and maintaining the polarization
state, for simplicity)(

|++⟩k,s
)2j′+1+n5w −→ |++⟩(2j′+1+n5w)k ,(2j′+1+n5w)s , (5.23)

with possible additional excitations needed on the long strand on the r.h.s., in order to
ensure integer momentum and angular momentum, as we shall discuss presently. The above
transition generalizes an analysis of BPS winding strings in the unflowed backgrounds with
s = 0 in [21, 24]. The change in conserved charges resulting from such a transition is given by

∆J3
su = ∆J̄3

su = −
(
j′ + n5

2 w
)
,

∆L0 = −
(
2j′ + n5w

)s
k , ∆L̄0 = 0 .

(5.24)

Note that the final state L0 is in general not an integer; this means that one must excite some
fractionally moded oscillators on the left in order to have properly quantized y-momentum.

This difference is accounted for by the charges of the vertex operator. As mentioned at the
start of this section, charges in the spacetime CFT should be matched to the corresponding
gauge-invariant charges M′,M̄′, E ± NY of eqs. (5.15)–(5.17) (in particular, this is why we
have used the gauge-invariant quantity w in the above expressions).

Consider first the leading n5-dependent terms. To match the angular momenta (5.17)
and (5.24) at leading order, we should choose

w′ = 2swyk − w , w̄′ = −w , (5.25)

and then one finds for the terms proportional to n5

E − NY

2

∣∣∣∣
∝n5

= −n5
s

k

(
w + wy

k

)
,

E +NY

2

∣∣∣∣
∝n5

= 0 , (5.26)

in agreement with (5.24). Note that with the choices (5.25), the terms in n̂, ˆ̄n that are leading
order in large n5 cancel, and one has

n̂ = k
kw + wy

[−j(j − 1) + j′(j′ + 1)
k + hL

]
−
(
J +Mosc +M ′

tot
)
,

ˆ̄n = k
kw + wy

[−j(j − 1) + j′(j′ + 1)
k + hR

]
−
(
J +Mosc +M ′

tot
)
. (5.27)
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For the SL(2,R) ground state, there are no charged oscillator contributions, and we have
j = j′ + 1, hL = hR = 0, and M ′ = M̄ ′ = −J . Excitations must arrange that the two
quantities n̂, ˆ̄n are non-negative integers.

Again setting (5.25), the energy and y-momentum (5.19), (5.21) of a general string vertex
operator are (here and in the following, we ignore the subtle distinctions among the various
polarization states of the string, cf. (4.31), (4.34), which make minor modifications to the
expressions due to the distinction between J and j, etc.)

E = 2
(−j(j − 1) + j′(j′ + 1)

n5(kw + wy)

)
+ hL + hR

kw + wy
+
(
s

k

)[
2M ′

tot − n5

(
w + wy

k

)]

NY = −hL − hR
kw + wy

−
(
s

k

)[
2M ′

tot − n5

(
w + wy

k

)]
; (5.28)

again, the quantum numbers must be chosen so that ny ∈ Z.
Turning off all the excitations, and setting M ′ = M̄ ′ = −j, one finds an exact match

to (5.24), beyond the leading order already observed in (5.26). In addition, just as we saw in
the spacetime CFT, one must add some number of fractionally moded left-moving excitations
in order to have integral y-momentum.

We see that there is a reservoir of negative energy coming from the last two terms in
E , that increases with increasing worldsheet spectral flow. This reservoir can be tapped to
compensate the energy of excitations on the string (which are increasingly less costly at higher
winding due to momentum fractionation), while still lowering the energy of the system.

5.5 Twisted sector ground states

A special case of stringy modes are the ground states in the twisted sectors of the orbifold
identification (4.11). These should be unexcited strings (hL = hR = 0) that are pinned to the
orbifold singularities of the background. Because the background is rotating, a fractionally
wound string might not be able to exactly co-rotate, because this would require a fractional
angular momentum value that is not allowed. In such cases, the best one can do is approximate
with the closest integer value of (angular) momentum, and such a string generically must
have some oscillator excitation.

The structure of the orbifold singularities in the background depends on the diophantine
relations among the integers (s, s+ 1, k) [11, 12]. The product s(s+ 1) must be an integer
multiple of k in order to avoid pathologies,11 so we write

s+ 1 = ℓ1m1 , s = ℓ2m2 , k = ℓ1ℓ2 , (5.29)

for positive integers ℓ1, ℓ2,m1,m2. The geometry has a Zℓ1 singularity at ρ = 0, θ = 0
where y and ϕ degenerate, and a Zℓ2 orbifold singularity at ρ = 0, θ = π/2 where y and ψ

degenerate, see eqs. (2.6)–(2.8) and the analysis in [12].
The right-moving null and Virasoro constraints are satisfied for BPS states, for which

j = j′ + 1 , M̄ = J = J ′ = −M̄ ′ , w = −w̄′ , M̄osc = M̄ ′
osc = 0 . (5.30)

11In the dual CFT, the momentum per strand must be in integer; in the worldsheet theory, the axial gauge
orbits must close; in supergravity, there should be no horizons, closed timelike curves or singularities beyond
orbifolds [15].
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We then look for left-moving ground states with cap energy/momentum n̂ = 0, and no
oscillator excitations. There are two sets of such states; in the spectral flow gauge (5.18),
the first set has

wy = pℓ1 , w=w′= pm2 , M ′=−J ′ , ε=−ny =−2J ′m2
ℓ1

, p=1, . . . , ℓ2−1 , (5.31)

where we require J ′ ∈ ℓ1Z to ensure ny ∈ Z. The second set consists of

wy =−pℓ2 , w=−w′= pm1 , M ′= J ′ , ε=−ny =
2J ′m1
ℓ2

, p=1, . . . , ℓ1−1 , (5.32)

where this time we impose J ′ ∈ ℓ2Z.
Note that for large J ′, the first set, having M ′ = M̄ ′ = −J ′, is localized at θ = π/2, in

the deepest part of the ergoregion at the supertube locus; similarly, for large J ′ the second
set, having M ′ = −M̄ ′ = J ′, is localized at θ = 0.12

Note that in twisted sectors of the orbifold, the gauge invariant charges of the vertex
operator are fractional, because they are being compared to a fraction of a background string
winding, so matching the vertex operator to a specific transition in the spacetime CFT is
intrinsically a bit imprecise. Here we interpret the effect of the vertex operator as creating
the long string with the quantum numbers it specifies, together with an additional residue of
short twisted strings, left over from the integer number of initial state background strands
one needs to sew together to form the long fractionally wound string. These additional
short twisted strings are in general excited.

The quantum numbers (5.31) are compatible with a vertex operator that implements
the transition (for example considering a R-R vertex operator polarization)

(
|++⟩k,s

)2j′+n5pm2+⌈n5p/ℓ2⌉ −→ |Υ1⟩ |00⟩(2j′+n5pm2)k+n5pℓ1 ,2j′s+n5pm2(s+1) , (5.33)

where |Υ1⟩ consists of a set of short twisted strands that account for the small mismatch
in the strand budget between the in-state and the long strand in the out-state, and has
excitations that account for the small mismatch in J3

su, J̄
3
su and L0.

Similarly, the quantum numbers of (5.32) are compatible with a vertex operator that
implements the transition

(
|++⟩k , s

)2j′+n5pm1−⌊n5p/ℓ1⌋ −→ |Υ2⟩ |00⟩(2j′+n5pm1)k−n5pℓ2 , 2j′(s+1)+n5pm1s
; (5.34)

again the state |Υ2⟩ accounts for the small mismatch in quantum numbers.
For the twisted sector strings not in these two series, the term in n̂ proportional to n5

is nonzero, and so generically such strings are located away from the cap of the geometry
by an amount of order the AdS scale.

12The string center-of-mass wavefunctions were exhibited in section 3.4. Note that worldsheet spectral flow,
spinning up the string and extending it along the Euler angles τ, σ, ϕ, ψ, does not change its location in ρ, θ.
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5.6 Non-winding massive string spectrum

We can also find stringy ergoregion modes in the sector where all worldsheet spectral flows
and windings are equal to zero, w = w′ = w̄′ = wy = 0. The vector Virasoro constraint,
from (5.4), then yields

j = 1
2

(
1 +

√
(2j′ + 1)2 + 2n5(hL + hR)

)
. (5.35)

The axial Virasoro constraint sets hL = hR. We see that there are discrete series solutions up
to levels of order √n5 without violating the unitarity bound for discrete series representations,

1
2 < j <

n5 + 1
2 . (5.36)

The null constraints without winding are (4.30); we can again investigate the existence of
ergoregion modes whose SL(2,R) center-of-mass excitation is in the positive discrete series
D+, so that the cap energy M + M̄ > 0, while the asymptotic energy is negative, ε < 0. In
parallel with the supergravity analysis of section 4, we can arrange such modes by starting
with sufficiently large and negative SU(2) angular momenta M ′, M̄ ′.

We see that there is scope for oscillator excitations while remaining in the unitary range
of j, eq. (5.36), for oscillator levels up to of order NL,R ∼ n5/4. The inclusion of oscillator
modes increases j without increasing j′, and so leaves less scope for the possibility that the
asymptotic and cap energies have opposite signs when solving the constraints. Thus, in
addition to the supergravity sector, there will be a spectrum of ergoregion modes among the
unwound stringy excitations (a Hagedorn spectrum at sufficiently high level).

The cost of oscillator excitations is clear from their scale relative to the AdS scale. The
AdS curvature radius is

√
n5 times the string scale, and so we see that in the energy budget, a

string oscillator costs of order
√
n5 times that of a momentum excitation on either AdS3 or S3.

6 Summary and discussion

In this work, we have explored the spectrum of fundamental strings in three-charge super-
symmetric rotating (AdS3 × S3)/Zk backgrounds which correspond to 1/4-BPS states of the
holographically dual CFT. These supergravity solutions have the feature of a supersymmetric
ergoregion, without an event horizon. The presence of the ergoregion means that there
are supersymmetric excitations that lower the asymptotic energy while preserving the BPS
relation between energy and charges.

We have used the exact worldsheet description of these backgrounds in terms of gauged
Wess-Zumino-Witten models to study their spectrum of perturbative string excitations, at
the non-perturbative level in α′. We have exhibited both massless and massive string states
that are localized in the ergoregion, and that can lower the energy as measured from infinity,
or exactly preserve it.

The ungauged theory has two time coordinates, τ ∈ SL(2,R) and t̃ ∈ Rt, that are related
by the gauge constraints. The utility of such a description is that, to a first approximation,
t̃ is the asymptotic time that corresponds to the time in the holographic CFT, while τ is
the time in the natural co-rotating frame in the cap of the geometry. While the two are
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tied together by the gauge constraints, they serve as useful heuristics in the corresponding
regions of the geometry where most of the physical time coordinate flows along one rather
than the other variable.

In previous work, we analyzed the 1/4-BPS supergravity spectrum on two-charge (1/2-
BPS) backgrounds [24], finding a match to the set of linearized superstratum excitations (for a
review, see [60]). However, this analysis was restricted to vertex operators in the sector of zero
worldsheet spectral flow. We have extended these results in two directions. In section 4.4, we
analyzed the 1/4-BPS supergravity spectrum in three-charge supersymmetric spectral flowed
(GLMT) backgrounds, which map onto superstratum deformations of these backgrounds [55].
In section 5.4, these results were extended to sectors of non-zero worldsheet spectral flow. A
feature of these non-zero winding sectors is that, for s ≠ 0 and k > 1, momentum quantization
generically forces such vertex operators to excite left-moving oscillations above the ground
state, and so lie outside of supergravity.

For all of these 1/4-BPS vertex operators, we identified the corresponding transitions
they implement in the dual spacetime CFT. The construction in section 5.2 of gauge-invariant
charges on the worldsheet provided a crucial ingredient in building this map in winding
sectors, since these are the worldsheet quantities that match onto the difference of conserved
charges between the initial and final states.

Another feature of these backgrounds is the generic presence of orbifold singularities
at two loci in their core, one of which is inside the ergoregion. We identified twisted sector
ground state ergo-strings that are localized at this orbifold singularity, and candidates for
the transitions they engineer in the dual CFT, in section 5.5.

Now that we have an improved understanding of the spectrum of perturbations of these
backgrounds, one can re-examine the question of whether and how the resulting dynamics
leads to scrambling of such a perturbation, such that the system evolves to a more typical
state. The dynamics depends on whether the system is coupled to the ambient flat space,
such that the bound state can radiate away angular momentum via low-energy supergravitons,
or whether we consider the system in AdS with Dirichlet boundary conditions, such that the
superselection sector is fixed. The dynamics when the system is coupled to flat space has
been previously considered [25] (see also [26]), and clarified in [21, 27], so here we focus on
working at a fixed superselection sector after the initial perturbation.

The vertex operators that mediate transitions that lower the energy of the system do so
by lowering the S3 angular momentum J3

su, since the energy of the background comes from
left-moving SU(2) spectral flow of the spacetime background (or equivalently, the spacetime
CFT). By contrast, when working in a fixed superselection sector and thus demanding
that the momentum and angular momentum remain unchanged, vertex operators have non-
negative energy. In order not to change the net charges of the system, the vertex operator
must have vanishing left/right SU(2) charges, as well as momentum along S1

y. This requires
M ′

tot = w′ = M̄ ′
tot = w̄′ = ny = 0. From the solution (5.19)–(5.22) of the constraints,

the lower bounds n̂, ˆ̄n ≥ 0 then force a positive hL,R in order to compensate a negative
contribution from the winding w in the cap energy. Looking then at the asymptotic energy,
the contributions of w and hL,R are both positive, and so the effect of the vertex operator is
to raise the energy of the state. This is perhaps not a surprise, as spectral flow is the most
energetically efficient mechanism for imparting a given charge to a system on a single strand.
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However, in a fixed superselection sector for momentum and angular momentum, there is
the possibility of multi-particle (or more generally multi-string) processes that can maintain
or lower the energy. For k > 1, the holographic CFT contains more entropic sectors of states
with the same charges as the backgrounds we have considered. For instance, there is a phase
with one long excited strand and several short ground state strands of winding less than k
(e.g. all of winding 1). The short strands account for the bulk of the J̄3 angular momentum,
and the long strand accounts for the y-momentum and the bulk of the J3 angular momentum.
The long strand gives rise to entropy from the number of ways of partitioning a given total
y-momentum among highly fractionated oscillators [61] (see also the related recent work [62]).

So we can consider a process in which we assemble a subset of q background strands
of length k > 1 into a similar configuration of one long excited strand and several short
ground state strands, while keeping angular momenta and y-momentum fixed, making sure
to respect the condition of integer momentum per strand. Since the long strand excitations
are more highly fractionated, the transition frees up energy which can be distributed in
various ways among the more fractionated oscillators, leading to a density of final states
that grows with the length of the long strand.

What is the likelihood that the system can make such a transition? One can first join
together a number of initial strands into a virtual strand that carries the combined angular
momentum and is thus non-BPS. The amplitude will be suppressed by the energy cost of
the virtual state, for the time it takes to shed its angular momentum onto shorter strands,
but enhanced by the larger (potentially Hagedorn-like) phase space of final states. The
computation of the amplitude for such transitions provides an interesting avenue of future
investigation. For related work, see [63, 64].

This represents a specific string-theoretic process, in both the bulk and dual CFT
descriptions, by which the system can evolve to more typical states when perturbed. It
differs from that considered in [25] in that it takes place in the decoupled theory, rather than
coupling the throat to an asymptotically flat spacetime region. Moreover, the analysis of [25]
is done for the k = 1 backgrounds, whereas it is important in the above discussion that k > 1.

The fact that there are processes in the decoupled theory which make use of ergo-strings
by shedding angular momentum onto a collection of supergravity modes in the throat indicates
that, when one backs slightly away from the decoupling limit, and the geometry opens out
onto asymptotically flat spacetime, there can be superradiant processes in which a string
scattering off the throat carries away energy, y-momentum and angular momentum, leaving
behind a BPS throat of reduced energy.

The present work also opens up opportunities for studying other features of the string
spectrum, including for instance giant gravitons. In related upcoming work [65], a family
of vertex operators is studied, that describe supergravity waves and wound fundamental
strings carrying momentum and angular momentum in supersymmetric two- and three-charge
backgrounds. These strings precisely match solutions to the bubble equations of multi-center
supergravity solutions.

Finally, in a companion paper to the present work, we shall carry out a parallel analysis
of strings in the JMaRT family of non-supersymmetric three-charge backgrounds [66]. Again
there is an ergoregion, and supergravity ergoregion modes, but without supersymmetry. This
makes a substantial difference — when the fivebrane throat is matched onto asymptotically
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flat spacetime, these non-supersymmetric backgrounds have a linear instability whereby they
decay exponentially rapidly via the emission of quanta that carry away momentum and angular
momentum. This phenomenon has been well studied in the emission channel of massless
scalar quanta [13, 29–33]. The worldsheet formalism we have developed allows us to generalize
the analysis of the emission process to other supergravity modes as well as stringy quanta.
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A The scaling limit described by worldsheet models

In this appendix we discuss the normalization of the dilaton and the conditions on moduli
and quantum numbers such that we work consistently in the NS5-F1 frame with a local
string coupling that is everywhere small. We first consider the simple geometry where the
sources are all at r♭ = 0. The geometry is

ds2 = 1
H1

(
− dt2♭ + dy2

♭

)
+H5

(
dr2
♭ + r2

♭ dΩ
2
3
)
+ dz · dz , (A.1)

e2Φ = g2
s

H5
H1

, H1,5 = 1 + Q1,5
r2
♭

, (A.2)

where
Q5 = n5α

′ , Q1 = g2
sn1(α′)3

V4
. (A.3)

Henceforth we work in units in which α′ = 1. Now let us rescale r♭ = gsr̃, so that

ds2 = r̃2

r̃2 + n1/V4

(
− dt2♭ + dy2

♭

)
+
(
g2
s +

n5
r̃2

) (
dr̃2 + r̃2dΩ2

3
)
+ dz · dz

e2Φ = g2
s r̃

2 + n5
r̃2 + n1/V4

. (A.4)

The dilaton evolves from its fixed scalar value n5V4/n1 at r̃ = 0 to its asymptotic value of gs at
r̃ → ∞. In the intermediate range of r̃, that is when r̃ ≫

√
n1/V4 ≡ r1 and r̃ ≪

√
n5/g2

s ≡ r5,
one has a region of linear dilaton. To be consistently in the NS5-F1 frame, we thus arrange

gs ≪ 1 , n5
n1
V4 ≪ 1 , (A.5)

as well as V4 ≥ 1, so that the string coupling in both 10D and 6D is small in both asymptotic
and small r̃ regions. The second of the above two conditions should be thought of as working
at parametrically large n1.

The proper size of S1
y grows from zero at r̃ = 0 to Ry at r̃ = r1, at which point it

saturates and stays that size all the way out to r̃ → ∞. The fivebrane decoupling limit
is, as usual, gs → 0, which sends r5 → ∞ and then the linear dilaton regime extends all
the way out to infinite r̃.
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The geometry is not yet in AdS3 form in the small r̃ region; we thus do a further rescaling

r♭ = gsr̃ = ar , a2 ≡ g2
sn1n5
V4R2

y

, t = t♭/Ry , y = y♭/Ry , (A.6)

to arrive at

ds2 =
r2R2

y

r2 +R2
y/n5

(
− dt2 + dy2)+ (g2

sn1n5
V4R2

y

+ n5
r2

)(
dr2 + r2Ω2

3
)
+ dz · dz ,

e2Φ =
g2
sr

2 + V4R
2
y/n1

r2 +R2
y/n5

. (A.7)

Thus, in the region r ≪ Ry
√
n5, we have a canonical AdS3 metric with radius n5 in string

units. The fivebrane decoupling limit, gs → 0 at fixed r, has a linear dilaton regime which
extends over Ry/

√
n5 ≪ r < ∞.

If we want a decoupling limit in which AdS3 fills all of spacetime, we simply scale Ry → ∞
in these coordinates; the constant terms in both harmonic functions go away. Note that,
in the original flat coordinates, we don’t have to scale gs in any particular way in order to
achieve this result. In that case, we are holding the asymptotic region fixed and blowing up
the y circle while sending the energy to zero like 1/Ry to obtain a decoupled theory with
nontrivial dynamics. Finally, note that when r1 = r5, i.e. g2

sn1 = n5V4, the dilaton is constant
in the above solution. Indeed, the geometry interpolates directly from AdS3 to asymptotically
flat spacetime at the scale r = Ry, without an intervening linear dilaton region,

When we take the fivebrane decoupling limit, we rescale the radial coordinate with gs as
above. Correspondingly, we define Q̃1 via Q1 = g2

sQ̃1 and hold Q̃1 finite as we scale gs → 0.
Then, in units in which α′ = 1, and ignoring factors of 2π, we have

Q̃1 = n1
V4
, Q5 = n5 . (A.8)

Then, the condition that the string coupling is weak at small r̃ can be expressed as

n1 ≫ n5V4 ⇒ Q̃1 ≫ Q5 . (A.9)

We emphasize that the original Q1 has been scaled towards zero, and is therefore parametrically
smaller than Q5. However, n1 is parametrically large, and has scaled out of the metric and
B-field; it only appears in the dilaton.

For the GLMT backgrounds, the value of Σ at ρ = 0 depends on θ, and ranges between
the values

(s+ 1)2 +
k2R2

y

n5
and s2 +

k2R2
y

n5
. (A.10)

For large Ry, to leading order these are both k2R2
y/n5. So at large Ry, the value of the

dilaton in the cap is again given to leading order by

e2Φ = n5V4
n1

, (A.11)

where the first subleading corrections are down by a factor of n5/R
2
y. Thus, the condition (A.9)

ensures that we have a parametrically small dilaton everywhere in the backgrounds that
we study in this work.
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