The University of Southampton
University of Southampton Institutional Repository

Heat transfer and second law analyses of forced convection in a channel partially filled by porous media and featuring internal heat sources

Heat transfer and second law analyses of forced convection in a channel partially filled by porous media and featuring internal heat sources
Heat transfer and second law analyses of forced convection in a channel partially filled by porous media and featuring internal heat sources
This paper provides a comprehensive study on the heat transfer and entropy generation rates in a channel partially filled with a porous medium and under constant wall heat flux. The porous inserts are attached to the walls of the channel and the system features internal heat sources due to exothermic or endothermic physical or physicochemical processes. Darcy-Brinkman model is used for modelling the transport of momentum and an analytical study on the basis of LTNE (local thermal non-equilibrium) condition is conducted. Further analysis through considering the simplifying, LTE (local thermal equilibrium) model is also presented. Analytical solutions are, first, developed for the velocity and temperature fields. These are subsequently incorporated into the fundamental equations of entropy generation and both local and total entropy generation rates are investigated for a number of cases. It is argued that, comparing with LTE, the LTNE approach yields more accurate results on the temperature distribution within the system and therefore reveals more realistic Nusselt number and entropy generation rates. In keeping with the previous investigations, bifurcation phenomena are observed in the temperature field and rates of entropy generation. It is, further, demonstrated that partial filling of the channel leads to a substantial reduction of the total entropy generation. The results also show that the exothermicity or endothermicity characteristics of the system have significant impacts on the temperature fields, Nusselt number and entropy generation rates.
0360-5442
106-127
Torabi, M.
cca46013-f51a-4d5d-b8d0-7d54bcff33d0
Karimi, N.
620646d6-27c9-4e1e-948f-f23e4a1e773a
Zhang, K.
cff0adcf-4e17-4cec-a729-680dd21ec732
Torabi, M.
cca46013-f51a-4d5d-b8d0-7d54bcff33d0
Karimi, N.
620646d6-27c9-4e1e-948f-f23e4a1e773a
Zhang, K.
cff0adcf-4e17-4cec-a729-680dd21ec732

Torabi, M., Karimi, N. and Zhang, K. (2015) Heat transfer and second law analyses of forced convection in a channel partially filled by porous media and featuring internal heat sources. Energy, 93 (1), 106-127. (doi:10.1016/j.energy.2015.09.010).

Record type: Article

Abstract

This paper provides a comprehensive study on the heat transfer and entropy generation rates in a channel partially filled with a porous medium and under constant wall heat flux. The porous inserts are attached to the walls of the channel and the system features internal heat sources due to exothermic or endothermic physical or physicochemical processes. Darcy-Brinkman model is used for modelling the transport of momentum and an analytical study on the basis of LTNE (local thermal non-equilibrium) condition is conducted. Further analysis through considering the simplifying, LTE (local thermal equilibrium) model is also presented. Analytical solutions are, first, developed for the velocity and temperature fields. These are subsequently incorporated into the fundamental equations of entropy generation and both local and total entropy generation rates are investigated for a number of cases. It is argued that, comparing with LTE, the LTNE approach yields more accurate results on the temperature distribution within the system and therefore reveals more realistic Nusselt number and entropy generation rates. In keeping with the previous investigations, bifurcation phenomena are observed in the temperature field and rates of entropy generation. It is, further, demonstrated that partial filling of the channel leads to a substantial reduction of the total entropy generation. The results also show that the exothermicity or endothermicity characteristics of the system have significant impacts on the temperature fields, Nusselt number and entropy generation rates.

This record has no associated files available for download.

More information

Published date: 15 December 2015

Identifiers

Local EPrints ID: 508880
URI: http://eprints.soton.ac.uk/id/eprint/508880
ISSN: 0360-5442
PURE UUID: 69911983-c35c-4614-b046-c83b2a463d18
ORCID for N. Karimi: ORCID iD orcid.org/0000-0002-4559-6245
ORCID for K. Zhang: ORCID iD orcid.org/0000-0003-0414-7387

Catalogue record

Date deposited: 05 Feb 2026 17:49
Last modified: 06 Feb 2026 03:12

Export record

Altmetrics

Contributors

Author: M. Torabi
Author: N. Karimi ORCID iD
Author: K. Zhang ORCID iD

Download statistics

Downloads from ePrints over the past year. Other digital versions may also be available to download e.g. from the publisher's website.

View more statistics

Atom RSS 1.0 RSS 2.0

Contact ePrints Soton: eprints@soton.ac.uk

ePrints Soton supports OAI 2.0 with a base URL of http://eprints.soton.ac.uk/cgi/oai2

This repository has been built using EPrints software, developed at the University of Southampton, but available to everyone to use.

We use cookies to ensure that we give you the best experience on our website. If you continue without changing your settings, we will assume that you are happy to receive cookies on the University of Southampton website.

×