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1 Introduction and summary

Symmetric product orbifold conformal field theory (CFT) is a prominent ingredient in
the study of string theory, holographic correspondence, as well as studies of black hole
microstates [1–20] — see [21, 22] for reviews. In particular, various formulations of the
AdS3/CFT2 correspondence incorporate families of the symmetric product orbifold CFTs,
distinct by the seed theories on which the symmetric group acts, as either the dual CFT
or a point on its moduli space [23–44]. An important aspect of these solvable theories is
the computation of their correlation functions. While there exist general prescriptions for
computing the correlation functions of symmetric product orbifold CFTs [45–47], as well as
many exact computations (of mainly 3- and 4-point functions) including [48–64], computation
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of generic higher-point functions still remains a challenging problem. The goal of this paper
is to compute families of arbitrary higher-point functions and to provide exact formulae.

The necessity of computing higher-point correlation functions of symmetric product
orbifold CFTs is twofold. On the one hand, to perform non-trivial tests of the holographic
correspondence in some of its most powerful incarnations, namely string theory on AdS3
backgrounds, one has to match correlation functions in the symmetric orbifold CFT, string
worldsheet theory, and supergravity [65–79]. On the other hand, to reach points in the
moduli space of the dual CFT which are suitable to describe black holes, one has to perturb
the symmetric orbifold CFT along specific directions, corresponding to exactly marginal
(1,1) operators in the CFT. Conformal perturbation theory involves computation of multi-
integrals of particular types of higher-point functions, originally considered in [80–84], for
recent progress see [85, 86] and references therein. The correlation functions computed in
this work provide new data for testing the AdS3/CFT2 dualities, but are also relevant for
conformal perturbation theory.

Symmetric product orbifold CFTs1 are constructed by copying a seed CFT N times,
and then identifying states that are related by permuting the copies of the seed CFT. The
orbifold theory contains new states on the cylinder where fields are periodic up to the action
of the orbifold group: these are the twisted sector states. The twisted sectors are labeled
by the conjugacy classes of the symmetric group SN, and we denote the “conjugacy class
of g” as [g]. We note that the conjugacy class [g] is a group action invariant concept (by
conjugation), and so is in this sense orbifold invariant. By the state-operator mapping, there
are associated twisted sector operators as well. The lowest dimension operators in their twist
class are called “bare twists” and we will denote these with an un-dressed σ[g]. When we wish
to consider more general twist fields, with possible excitations, we will denote them as σ̂[g].

While the twisted sector operators are labeled by their conjugacy class [g], they may
be expanded in terms of effective operators which have twisted boundary conditions which
are labeled by individual group elements [46, 47, 51, 52]. These non-orbifold invariant
twist operators impose boundary conditions up to the action of specific symmetric group
element g ∈ SN acting on the fields. We denote these by dropping the bracket notation, σg,
emphasizing that they correspond to individual group elements rather than conjugacy classes.
Group elements of SN are decomposed in terms of disjoint cycles, and the non-orbifold
invariant twist operators corresponding to single-cycle group elements may be considered
as fundamental. This is because correlation functions of twist fields corresponding to group
elements with many cycles may be constructed by taking limits of correlation functions
constructed from single-cycle twist operators. We will therefore focus on correlators of
single-cycle twist operators in this work.

Being more explicit, single-cycle orbifold-invariant twist operators are obtained from
summing over the elements in each conjugacy class

σ[ŵ](z) =
1√

w(N − w)!N !
∑

g∈SN

σg(1···w)g−1 . (1.1)

1In this work we use the language of symmetric product orbifolds even though the techniques can be
used anytime the group action on the fundamental fields is a permutation — see e.g. [87, 88] for holographic
correspondences of this type.
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Above, we have used the shorthand notation ŵ to represent one of the cycles in the conjugacy
class [ŵ], rather than g, to emphasize that these are single-cycles (windings). Without the
“hat” the w refers to the integer length of the cycle. A generic correlation function of bare
twist operators is of the form

⟨σ[ŵ1](z1) σ[ŵ2](z2) · · ·σ[ŵℓ](zℓ)⟩ , (1.2)

which may be written as a sum over correlation functions of conjugacy class representative-
dependent twist operators

⟨σŵ1(z1) σŵ2(z2) · · ·σŵℓ
(zℓ)⟩ . (1.3)

Thus, the main challenge remains to compute correlation functions of the form (1.3). To
construct excited twist operator correlators, one may use various techniques [46, 51, 54, 59,
60, 89, 90] to dress the calculations of the bare twists.

The correlation functions computed in this work are of the form

⟨σŵ1(y1) σŵ2(y2) σŵ3(y3) σ2̂(z1) · · · σ2̂(zk︸ ︷︷ ︸
k insertions

)⟩ (1.4)

where 2̂ refers to some un-specified 2-cycles. We will focus on the connected part of correlation
functions of bare twist operators. We note that these form the skeleton of the higher-point
functions with excited twist operators, particularly those needed in high order conformal
perturbation theory. We explicitly provide new exact formulae for k = 1, 2, and we will
also comment on how to take limits of the above functions to merge the twist-2 operators
into higher twists.

One method to compute correlation functions of twist fields on the sphere in symmetric
orbifold CFTs is to find maps to a branched covering surface where the fields twisted under σw

are mapped to a single field with usual periodic boundary conditions [46, 51].2 The covering
space is a Riemann surface whose genus g is determined by the structure of the twists on the
original (base) space. Finding covering space maps is in general a difficult problem. We will
directly construct new maps which allow us to compute the higher-point functions (1.4).

In the large N limit (i.e. large central charge Nc of the symmetric product orbifold CFT),
the leading order contribution to the connected correlation functions (1.2) comes from the
spherical covering surfaces g = 0 [46] — see [55–60] for a partial list of more recent studies of
aspects of large N symmetric orbifolds. This limit in turn corresponds holographically to the
leading order contribution to the genus expansion of the string worldsheet theory [29, 33, 91].
In this work we will compute connected correlation functions (1.4) with genus 0 covering spaces.

To compute n-point functions of bare twist operators, we need certain information about
the covering space maps. The basic procedure for this was worked out in [46], although a more
algebraic approach is taken in the work of [47]. In [47], they take advantage of the fact that a
specific fractional mode of the stress tensor acting on a bare twist state gives a null vector (also

2A different method to compute correlation functions in symmetric product orbifold CFTs is the stress-
energy method of [45]. In this work we use the covering space method pioneered in [46], bypassing the need to
perform the integrals of the Weyl factor by using [47].
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noted in [55–57, 59, 60]). This may be used to constrain the form of the n-point functions of
bare twists to a specific function of map parameters, up to a constant. Requiring the n-point
function agree with factorization, i.e. the conformal bootstrap, fixes this remaining constant
and so fixes the form of the n-point function in terms of map parameters. One then only needs
to these map parameters, defined near the ramified points, from the covering space map.

Near the ramified points at finite locations ti, one defines the expansion

z(t) = zi + ai(t − ti)wi +O((t − ti)wi+1) (1.5)

where z is the coordinate of the base space, and t is the coordinate on the cover. For the
point near infinity, we have

z(t) = an−1twn−1 +O(twn−1−1) . (1.6)

In both of these expressions, wi is the size of the single cycle defining the twist operator.
We will denote

ri = wi − 1 (1.7)

which is the “ramification” of the point in the map, and denotes the number of “extra sheets”
that come together at this point. We also need to define the coefficients of the unramified
images of infinity which are given by

z(t) = Cρ

t − tρ
+O((t − tρ)0) . (1.8)

The n-point functions are given by [47]

⟨σŵ0(z0, z̄0)σŵ1(z1, z̄1) · · ·σŵn−2(zn−2, z̄n−2)σŵn−1(∞, ∞̄)⟩ (1.9)

=
n−2∏
i=0

w
− c(wi+1)

12
i w

c(wn−1+1)
12

n−1

n−2∏
j=0

|aj |
−

c(wj−1)
12wj |an−1|

c(wn−1−1)
12wn

∏
ρ

|Cρ|−
c
6 ,

where c is the central charge of the seed CFT, and we have assumed c = c̃. Note, in the above
we have indexed i = 0 · · ·n− 1 for the n bare twists. This allows us to denote (t0 = 0, z0 = 0),
and (t1 = 1, z1 = 1), and we use interchangeably r∞ = rn−1 and (tn−1 = ∞, zn−1 = ∞).
Furthermore, the above is to be read for a specific group element representative. One must
then sum over all preimages of the maps, see [52] and [47].

While (1.9) gives the desired correlation function in terms of map data, one still needs
to find the map and extract this data. It is the purpose of this paper to construct and
explore new covering space maps.

The rest of the paper is organized as follows. In section 1.1 we give a brief introduction to
sphere covering spaces and their connection to ordinary differential equations. In section 2 we
consider the construction of covering space maps. We start in section 2.1 by considering the
hypergeometric differential equation and introduce an interesting limit of the hypergeometric
sum that reconstructs the well known map in [46]. In section 2.2 we consider a construction
from the literature [92] which writes solutions to Heun’s differential equations as a finite
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sum of hypergeometric functions. We apply our method for extracting pairs of polynomials
from hypergeometric sums to generate the covering space map

z(t) = f2(t)
f1(t)

=

Nmax∑
N=Nmin

bN t(N+1)P
(N+1),−(n1+n3−N)
n3−N−1 (1− 2t)

Nmax∑
N=Nmin

bN P
−(N+1),−(n1+n3−N)
n1 (1− 2t)

, (1.10)

where n1, n3, Nmin, and Nmax are integers, the coefficients bN are parameters of the map,
and P α,β

γ are the Jacobi polynomials. We show that the Wronskian has the form

W = f ′
2f1 − f2f ′

1 = tNmin(t − 1)(n1+n3−Nmax−1)Q(t) (1.11)

and so the ramifications of the map at t = 0, 1,∞ are given by r0 = Nmin, r1 = (n1 + n3 −
Nmax − 1), and r∞ = n3 − n1 − 1. The identification of ramifications using the Wronskian is
reviewed in section 1.1, and the specific case above is derived in section 2.1. The polynomial
Q(t) has degree ∆N = Nmax −Nmin, and the zeros of this polynomial determine the location
of a cloud of ramification 1 points in the map: we denote this total ramification by rc = ∆N .
In section 2.3 we show that these maps are sufficient to cover all group theoretically allowed
r0, r1, r∞, and rc. The coefficients bN and λbN define the same map and we therefore argue
that these coefficients are valued in CP∆N , which is of the correct dimension to parameterize
the ∆N cross ratios of a (3 + ∆N)-point function.

In section 3 we analyze the maps (1.10). In section 3.1 we consider the OPE limits where
one of the ramified points in the cloud approaches one of the ramified points at t = 0, t = 1,
or t = ∞, summarized in table 1. We find that the bN parameterize both the location and
the crossing channel of the OPE limits (i.e. which group element representative is taken
from amongst the product of the conjugacy classes). We also consider other OPE limits,
including in section 3.2 where we consider the special case ∆N = 2. This is the lowest
value of ∆N where there are multiple ramified points in the cloud and so we can study the
OPE limits as these points approach each other, and we find explicitly the cases where they
fuse into a ramification 2 point (twist-3), and when they fuse into a ramification 0 point
(untwisted). All examples found in our work give OPE limits as homogeneous polynomials in
the bN which are set to 0, giving them as algebraic varieties in CP∆N . Finally, in section 4,
we construct the correlation functions. We focus on cases where ∆N is small so that we
may analytically evaluate the Wronskian, and use this to find closed form expressions for
the 4-point and 5-point functions in the ∆N = 1, 2 cases. We end with a discussion and
future directions in section 5. We also provide several appendices which give background for
Jacobi polynomials (appendix A), proofs of Jacobi polynomial identities used in the main text
(appendix B), constraints from group theory that show our maps are general (appendix D),
some detailed examples of taking the OPE limits (appendix C), and an algorithmic technique
for computing the Wronskian (appendix E).

1.1 Brief introduction to sphere covering spaces

In this subsection we briefly introduce some necessary components for motivating our covering
space maps. First, a natural place to start is to consider functions that are well defined on
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the sphere, rather than on a general Riemann surface. Furthermore, we expect a generic
point z to be mapped to a finite number of points t in the covering space, and that all generic
points should be mapped to the same number of points on the cover. This strongly suggests
the use of polynomials, and so we consider covering space maps of the form

z(t) = f2(t)
f1(t)

(1.12)

where f1 and f2 are polynomials that have been fully reduced so that they share no common
zeros. At locations where f1 is not 0, but otherwise undistinguished, one may expand the map

z(t) = f2(t)
f1(t)

= zn + q0(t − t0) + · · · (1.13)

However, there are also a finite number of special points in the map where q0 = 0, and so the
above power expansion begins at some power (t − t0)wi where wi ≥ 2. These special points,
which we denote ti, are where the map z(t) is said to be ramified. In the neighborhood of
one such ti, the map is of the form (1.5), which we reproduce here

z(t) = zi + ai(t − ti)wi +O((t − ti)wi−1) (1.14)

remembering that we require that ai ̸= 0 so that the order of the zero of z(t)− zi has been
properly identified. We recall the definition of ramification (1.7): ri = wi − 1. When ri = 0
this is an ordinary point where the map is one-to-one in a small neighborhood, and is not
really part of the finite list of ramified points. We must have ri ≥ 1 to call these ramified
points in the map. Technically ri = −2 are also ordinary points, and correspond to unramified
images of z = ∞: these are the simple poles of (1.12). Any points with ri ≤ −3 are also
ramified, and correspond to specific cycles in the twist operator at z = ∞. We will consider
the case of single-cycle twist operators, and so the point at z = ∞ is associated with only
one cycle, and we choose to map this to the point t = ∞ in the cover. Thus, for the case at
hand, we will consider the case where ri ≥ 1 (except for the unramified images of z = ∞,
given by the simple zeros of f1). These points, ti, are necessarily finite and distinct from
the zeros of f1, and the full list of such points is a finite list.

Therefore, we are considering maps where the point t = ∞, z = ∞ corresponds to a
single cycle twist operator, and so the degree of f2 is greater than the degree of f1. Further,
the other images of z = ∞ correspond to the zeros of f1. The zeros of f1 must each have
multiplicity 1 such that the neighborhoods of each one of these images of z = ∞ is locally
one-to-one (unramified). Therefore, f1(t) is a separable polynomial (i.e. has distinct roots).
As mentioned above, we reserve the notation ti in (1.14) to refer to the finite list of ramified
points at finite locations ti, which must also correspond to zi which are finite, given that
all images of z = ∞ have been identified.

The ramifications ri are related to the group elements in the symmetric group SN, as
explained in appendix D. The ramification of a group element is the minimal number of 2-cycle
group elements it takes to construct the group element: for the single cycle twist operators
we are considering, this is just the relationship ri = wi − 1. Thus, given a group product
that multiplies to the identity, we may count the ramification of group element. For a given
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product, the genus of the covering surface is determined by the Riemann-Hurwitz formula

g = 1
2
∑

i

ri − S + 1 (1.15)

where S is the total number of sheets in the cover, and is simply the total number of distinct
indices appearing in the cycles of the group elements in the product under consideration.3 The
genus of the cover being 0 puts certain restrictions on what group products one can consider.
These correspond in the orbifold CFT to the leading order in the large N limit of the CFT [46].

Let us now begin to address how we may obtain the polynomials f1 and f2 by more
closely examining the map near the ramified points ti. One may combine (1.12) and (1.14)
with wi = ri + 1 to arrive at

z(t)− zi =
f2(t)− zif1(t)

f1(t)
= ai(t − ti)ri+1 +O((t − ti)ri+2) . (1.16)

We note that because f2(t) shares no zeros with f1(t), then f2(t)− zif1(t) also shares no zeros
with f1(t), and so the left hand side of (1.16) is fully reduced. To reproduce the (ri + 1)th

order zero on the right hand side of (1.16), it must be that

f2(t)− zif1(t) = (t − ti)ri+1f i
2(t) (1.17)

where f i
2(t) is a polynomial that is not zero at t = ti because ai ̸= 0. Further, f i

2(t) shares
no zeros with f1(t) because f2(t) − zif1(t) shares no zeros with f1(t).

Next, we note that near a ramified point, (1.16) can be rephrased as

∂z = ai(ri + 1)(t − ti)ri +O((t − ti)ri+1) (1.18)

where ∂ is the derivative with respect to t. We see that ∂z|ti = ai if ri = 0, and so the point
is not ramified (and technically should not be on our list of ti). We see that ∂z|ti = 0 if
the point is ramified. Therefore, every ramified point at a finite location is a zero of the
function ∂z, and any zero of ∂z is a ramified point in the map because the expansion begins
at some power (t − ti)ri+1 with ri ≥ 1.

Applying the derivative to z(t) as presented in (1.12) or (1.16) will give the same answer
since they differ by a constant zi, and we find

∂z = (f2 − zif1)′f1 − (f2 − zif1)f ′
1

f2
1

= f ′
2f1 − f2f ′

1
f2

1
(1.19)

where we have truncated notation ∂fi = f ′
i . The numerator of this expression is the Wronskian

of f1 and f2 or of f1 and f2 − zif1, which is equivalent because the part proportional to zi

cancels. Analyzing this near one of the points ti we see that (1.19) combined with (1.18) gives

∂z = (f2 − zif1)′f1 − (f2 − zif1)f ′
1

f2
1

= f ′
2f1 − f2f ′

1
f2

1
= ai(ri + 1)(t − ti)ri +O((t − ti)ri+1) .

(1.20)
3More generally, the Riemann Hurwitz formula can be written in terms of the Euler characteristic of

the base space and the covering surface, in which case it reads χ↑ = Sχ −
∑

i
ri, where χ is the Euler

characteristic of the base space and χ↑ is the Euler characteristic of the S sheeted cover. Using the Euler
characteristic is more natural for disconnected covering surfaces because the Euler characteristic is additive
over the disconnected pieces.
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Again, the ti are distinct from the zeros of f1, and so the above rth
i order zero on the right hand

side of (1.20) must come from the numerator of the left hand side, i.e. the Wronskian. The
fact that there is a factor of (t − ti)ri in the Wronskian is obvious if we use the factorization
of f2 − zif1 in (1.17). Thus, the Wronskian must admit zeros of the form (t − ti)ri near
ramified points ti at finite locations, and so one may factor this from the Wronskian. Doing
so for the complete list of ramified points at finite locations in the map, we see that we
may factor out

∏
i(t − ti)ri from the Wronskian.

Finally, we ask whether there can be other zeros of the Wronskian, other than the ramified
points. It is clear that if W (t0) = 0 and f1(t0) ̸= 0, then ∂z = W (t0)/(f1(t0))2 = 0, and so
the point must be ramified. The form of the map is as (1.20) with ri ≥ 1, and so z must be of
the form (1.14). Therefore, t0 appears in our list ti, and is not distinct. The only way to avoid
this conclusion is if f1(t0) = 0, and so the question becomes whether f1 can share zeros with
W . We denote the list of zeros of f1 as tρ, and assume that the Wronskian also has a zero
at this point. Plugging in, we find W (tρ) = f ′

2(tρ)f1(tρ)− f2(tρ)f ′
1(tρ) = −f2(tρ)f ′

1(tρ) = 0.
Thus, it is either that f2(tρ) = 0, and so f1 and f2 share a root and f2/f1 was not fully
reduced, or f ′

1(tρ) = 0, and so f1 and f ′
1 share a root, and so f1 is not separable. These

two possibilities conflict with our assumptions, and so we conclude that W and f1 share no
common zeros, at least in the case where the ramified point at t = ∞, z = ∞ is the only
ramified image of z = ∞. Thus, the complete set of zeros of ∂z are the complete set of zeros
of W , and this is the complete set of ramified points at finite locations. We conclude that

W = f ′
2f1 − f2f ′

1 = A0
∏

i

(t − ti)ri (1.21)

where ti are at finite locations, and z(ti) are also finite locations. We have fixed the Wronskian
up to an overall coefficient A0, which depends on the normalization of f1 and f2. Thus, the
zeros of the Wronskian are one-to-one with the ramified points at finite locations in the map
z = f2/f1 when f1 and f2 have been fully reduced, and when f1 is separable: exactly the case
we are concerned with when the point t = ∞, z = ∞ is the only ramified image of z = ∞.

One may also make the following statement. Assume that f1 and W share no zeros.
Then, evaluating at one of the zeros of f1, which we call tρ, we find W (tρ) = (f ′

2f1−f2f ′
1)|tρ =

−f2(tρ)f ′
1(tρ). Because W (tρ) ̸= 0, it must be that f2(tρ) ̸= 0 and f ′

1(tρ) ̸= 0. This gives that
if f1 and W share no common zeros, then f2/f1 is fully reduced and f1 is separable.

Seeing the appearance of the Wronskian motivates us to look for guidance from second
order differential equations. We note that given a pair of functions (f1, f2), one may always
write a linear second order differential equation

∂2f(t)− f ′′
2 (t)f1(t)− f2(t)f ′′

1 (t)
f ′

2(t)f1(t)− f2(t)f ′
1(t)

∂f(t) + f ′′
2 (t)f ′

1(t)− f ′
2(t)f ′′

1 (t)
f ′

2(t)f1(t)− f2(t)f ′
1(t)

f(t) = 0 (1.22)

where the two independent solutions for f are f1 and f2. The above is simply the Wronskian
of three functions (f, f1, f2), of which f is kept arbitrary. We notice the above equation
may be written as

∂2f(t)− ∂ ln(W )∂f(t) + f ′′
2 (t)f ′

1(t)− f ′
2(t)f ′′

1 (t)
f ′

2(t)f1(t)− f2(t)f ′
1(t)

f(t) = 0 . (1.23)
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For the form of the Wronskian (1.21) the coefficient of ∂f becomes

∂ ln(W ) =
∑

i

ri

(t − ti)
. (1.24)

Where this function becomes singular are singular points of the differential equation. Re-
stricting the covering space map to be constructed from polynomials means that the local
Frobenius solutions are positive integer power law, and so we expect these to be regular
singular points. In fact, we can see this directly. First, ∂ ln(W ) only has simple poles, given
by (1.24), and so there are only the allowable 1/(t − ti) divergences in the coefficient of f ′.
One may consider the coefficient of f in (1.23) in the following way. We recall that (1.16)
implies factorization (1.17). Looking at the coefficient of f in (1.23), we see that

f ′′
2 (t)f ′

1(t)− f ′
2(t)f ′′

1 (t)
f ′

2(t)f1(t)− f2(t)f ′
1(t)

= (f2(t)− zif1(t))′′f ′
1(t)− (f2(t)− zif1(t))′f ′′

1 (t)
A0
∏

i(t − ti)ri
(1.25)

where in the numerator we have chosen to express the Wronskian using f1 and f2 − zif1.
We see that the form (1.17) gives that the numerator of the right hand side of (1.25) has at
least a power of (t − ti)ri−1 surviving the differentiation, and so at worst the right hand side
of (1.25) diverges like 1/(t−ti) at each ti, a more gentle divergence than the maximum allowed
1/(t − ti)2, and so t = ti is a regular singular point. One can generate 1/(t − tρ)2 divergences
if we allow f1 to have roots tρ with multiplicity, however, we do not consider this case here.

Finally, one may also consider a generic linear homogenous differential equation of the form

∂2f − H1(t)∂f + H2(t)f = 0 . (1.26)

Such a differential equation always has two independent solutions f1 and f2. We write

∂2f1 − H1(t)∂f1 + H2(t)f1 = 0
∂2f2 − H1(t)∂f2 + H2(t)f2 = 0 .

(1.27)

Viewing this as two equations for two unknowns H1 and H2, one can solve for H1 and H2 and
arrive at (1.23). Thus, given a known differential equation, i.e. that H1 and H2 are specified,
then the two solutions to the differential equation are guaranteed to have ∂ ln(W ) = H1.
Because H1 is known in a given differential equation, this determines the Wronskian W of
the two solutions up to an overall constant; this constant can be adjusted by the overall
normalizations of f1 and f2. Thus, the fact that two functions solve a given second order
differential equation guarantees the form of the Wronskian of the two functions, and given
two functions, one may construct a differential equation that they both solve.

If the two functions that satisfy a given differential equation are both polynomials, and
f1 and f2 are fully reduced, and f1 is separable, then z(t) = f2(t)/f1(t) is a covering space
map where the ramified points in the map (at finite locations) are precisely the zeros of the
Wronskian. As above, f2 and f1 are fully reduced and f1 is separable if and only if f1 and W

share no roots. The former or latter can be easier to check in different circumstances.
We recognize this type of differential equation (1.23) as being of Fuchsian type with

regular singular points. When there are three regular singular points, one may use sl(2)
transformations to bring these points to t = 0, 1, and ∞, and one gets a differential equation
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of hypergeometric form. The polynomial “cousins” of hypergeometric functions are Jacobi
polynomials, and the covering space maps for this case have been constructed in [46].

For four regular singular points, the story is more complicated: one may not use sl(2)
invariance to fix all points. The CFT interpretation of this is that there is a cross ratio
for a 4-point function, and so a non-trivial function of this cross ratio must be calculated.
This type of differential equation is called a Heun differential equation, and has been studied
extensively [93]: in this case, the sum (1.24) has only three terms, which correspond to
the location of three ramified points in the map at finite positions. There are polynomial
solutions to Heun’s equations [94, 95], and these have been previously used in the literature
to address the problem of 4-point functions [47, 52]. However, we find the presentation for
Heun functions as finite sums over hypergeometric functions in [92] particularly useful.

In the presentation of [92], the sum over hypergeometric functions is found to truncate
to a finite sum under certain circumstances. This finite sum has coefficients that must satisfy
a set of algebraic constraints to make them a solution to Heun’s differential equation. We
may take advantage of this form of the solution because, as we will show, one may take a
limit of hypergeometric functions to generate two Jacobi polynomials. We show this in the
next section exploring the 3-point function. This gives us a method of generating a pair of
polynomial solutions to Heun’s equation, recalling that one must also impose the algebraic
constraints. Interestingly, without imposing these algebraic constraints, we find that the
sums over Jacobi polynomials generated in this way satisfy a more general Fuchsian type
of differential equation: one where there are more than three terms in (1.24). We show this
form of the differential equation by finding the form of the Wronskian for the two sums
over Jacobi polynomials. This Wronskian shows that there are three long cycle twists at
(t = 0, z = 0), (t = 1, z = 1) and (t = ∞, z = ∞), and a cloud of twist-2 insertions at other
points. The algebraic restrictions in [92] amount to a particular OPE limit where the twist-2
cycles in the cloud “twist together” into one long twist operator. However, without this
constraint, the sum provides a more general covering space map. One may consider other
types of OPE limits, as we discuss in section 3.1.

The construction of the covering space map as a ratio of sums over Jacobi polynomials
also seems quite natural from a bootstrap perspective. In a CFT, the building blocks of
higher-point functions are 3-point functions. The higher-point functions are written in terms
of conformal blocks (which are generic) along with conformal weights and structure constants
(which are the CFT-specific data). The construction of higher-point covering space maps
in terms of the covering space maps for 3-point functions, i.e. Jacobi polynomials, therefore
seems quite natural. We now turn to our construction of the covering space maps.

2 Maps for n-point functions with three long twists

2.1 3-point function maps from Jacobi polynomials

We first consider the case where there are only three regular singular points: at t = 0, t = 1,
and t = ∞. Thus, there are only two terms in the sum (1.24), which is of hypergeometric form

f ′′(t) +
(

γ

t
+ α + β − γ + 1

t − 1

)
f ′(t) + αβ

t(t − 1)f(t) = 0 . (2.1)
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This is satisfied by the hypergeometric series

f(t) = 2F1

(
α, β

γ
; t
)
=

∞∑
ℓ=0

(α)ℓ(β)ℓ

(γ)ℓ

tℓ

ℓ! , (2.2)

where ( )ℓ denotes the Pochhammer symbol

(α)ℓ =
ℓ−1∏
i=0

(α + i) = Γ(α + ℓ)
Γ(α) = (−1)ℓ Γ(−α + 1)

Γ(−α − ℓ + 1) . (2.3)

The last expression allows us to more easily consider cases where the argument of gamma
functions is near a negative integer. For ease of notation, from now on we shall drop the
indices p and q of the hypergeometric series pFq and exhibit them respectively by the number
of terms in the upper and lower levels of the argument: F

(α1,··· ,αp

β1,··· ,βq
; t
)
.

An important property of the Pochhammer symbol is that (α)ℓ becomes 0 when α is a
non-positive integer and ℓ is sufficiently large: one term will be zero in the product. More
precisely, for m a non-negative integer, (−m)ℓ = 0 when ℓ ≥ m + 1. However, such 0 values
may be regulated by shifting m by ϵm, giving

(−m + ϵm)ℓ =


(−1)ℓ m!

(m−ℓ)! +O(ϵm) , if ℓ < m + 1

(−1)mm!(ϵm)(ℓ − m − 1)! +O(ϵ2
m) , if ℓ ≥ m + 1

. (2.4)

The fact that the leading order approximation is either constant or order O(ϵm) is because
at most one term in the product (−m + ϵm)ℓ gets close to 0. This means all Pochhammer
symbols, once regulated in the above way, will either be constant or go linearly to zero as
the control parameter ϵm goes to zero.4 This will allow us to examine the hypergeometric
series in an interesting way.

Consider the “regulated-near-negative-integer” hypergeometric series with constant coef-
ficient A (the reason for the coefficient will become clear in a moment)

A F

(−n1 + r1ϵ,−n3 + r3ϵ

−n2 + r2ϵ
; t
)
= A

∞∑
ℓ=0

(−n1 + r1ϵ)ℓ(−n3 + r3ϵ)ℓ

(−n2 + r2ϵ)ℓ

tℓ

ℓ! (2.5)

where we pick three non-negative integers 0 ≤ n1 ≤ n2 ≤ n3 such that no divergences of the
coefficients appear as ϵ → 0. The above coefficients in the power series expansion on the
right hand side of (2.5) have Pochhammer symbols are either constant or go to zero linearly
when ϵ → 0, depending on ℓ. However, the fraction (−n1+r1ϵ)ℓ(−n3+r3ϵ)ℓ

(−n2+r2ϵ)ℓ
is always finite. In

the limit as ϵ → 0, the above sum is truncated into two “windows” for ℓ where the regulation
parameter ϵ does not eliminate the term in the sum (2.5). The second window is empty
unless we have that n2 < n3, and so we restrict to the cases 0 ≤ n1 ≤ n2 < n3. Examining

4The analogous statement using gamma functions is that all gamma functions near non-positive integers
−m behave as Γ(−m+x) = (−1)m/(m!x)+O(1)+ · · · , i.e. these exhibit only simple poles. In the Pochhammer
symbol αℓ = Γ(α+ℓ)

Γ(α) the poles in the gamma functions either do not exist, cancel between numerator and
denominator, or only the denominator pole exists, leading to a linear 0 in the control parameter.
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closely how ri appear, we suggest the choice r2 = A, r1 = B, although only the ratio appears
r1/r2 appears in the ϵ → 0 limit. Using this, we may explicitly write that

lim
ϵ→0

A
(−n1+Bϵ)ℓ(−n3+r3ϵ)ℓ

(−n2+Aϵ)ℓ
=



A (−n1)ℓ(−n3)ℓ

(−n2)ℓ
0≤ ℓ≤n1 ≤n2 < n3

0 n1+1≤ ℓ≤n2 < n3

B (−1)n1+n2 (n1)!(ℓ−n1−1)!(−n3)ℓ

(n2)!(ℓ−n2−1)! n1 < n2+1≤ ℓ≤n3

0 n1 ≤n2 < n3+1≤ ℓ

(2.6)
which we may in turn write in terms of factorials.

The choice of regulator in (2.5) is tuned so that powers of ϵ cause no divergences: the linear
zeros in (−n1+Bϵ)ℓ cancels the linear zero in (−n2+Aϵ)ℓ in the window n1 < n2+1 ≤ ℓ ≤ n3.
This preserves two linearly independent pieces of the function (with coefficients A and B)
in the limit ϵ → 0. Thus, the terms that survive the limit are for 0 ≤ ℓ ≤ n1 ≤ n2 < n3,
and n1 < n2 + 1 ≤ ℓ ≤ n3. We note that the regulator r3 never plays a role, and so we may
take r3 = 0 from the onset. Doing so immediately truncates the hypergeometric (2.2) to
a polynomial of degree n3, which is a Jacobi polynomial [96, 18.5.7]. While not necessary,
setting r3 = 0 does make convergence issues of ϵ → 0 clear because only a finite number
of coefficients exist.

Therefore, we may simply plug in (2.6) into (2.5), truncate the sums, and find

lim
ϵ→0

A F

(−n1+Bϵ,−n3+r3ϵ

−n2+Aϵ
; t
)
=A

n1!n3!
n2!

n1∑
ℓ=0

(n2−ℓ)!
(n1−ℓ)!(n3−ℓ)!

(−t)ℓ

ℓ!

+B(−1)n2−n1 n1!n3!
n2!

n3∑
ℓ=n2+1

(ℓ−n1−1)!
(ℓ−n2−1)!(n3−ℓ)!

(−t)ℓ

ℓ! ≡Af1(t)−Bf2(t) ,

(2.7)

where now all of the Pochhammer symbols have been replaced by factorials. We see that
the hypergeometric sum has separated into two separate polynomials f1 and f2 with two
separate coefficients A and −B. Thus, any linear relationship that the hypergeometric series
satisfies must be satisfied by the two separate sums, so long as the linear relationship does
not become singular in the ϵ → 0 limit.

It is not too hard to identify the polynomials f1 and f2, finding

f1(t) =
n1!n3!

n2!
(−1)n1 (n2 − n1)!

n3!
P−(n2+1),−(n3+n1−n2)

n1 (1− 2t) ,

f2(t) =
n1!n3!

n2!
(−1)n1 (n2 − n1)!

n3!
tn2+1P

(n2+1),−(n1+n3−n2)
n3−n2−1 (1− 2t) ,

(2.8)

where P α,β
γ (x) is the Jacobi polynomial (α, β, γ different from above); see appendix A for

definitions and useful identities. The functions (2.8) are easy to show to be the same as
the sums appearing in (2.7): one need only shift the indices, and identify the Pochhammer
symbols in both the hypergeometric series and the Jacobi polynomials. This is easiest to do
by replacing the Pochhammer symbols with factorials, which one may do in all cases.5

5As an interesting side note, one may consider a set of generalized hypergeometric series

F

(
α1, α3, · · · , α2W−1

α2, α4, · · · , α2W−2
; t
)

=
∞∑

ℓ=0

∏W

w=1(α2w−1)ℓ∏W

w=2(α2w−2)ℓ

tℓ

ℓ! .
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The differential equation (2.1) does not become singular in the ϵ → 0 limit: α, β, and
γ approach finite values, and every coefficient in the differential equation remains finite,
and independent of A and B. Therefore, we have obtained two distinct polynomials that
solve the second order differential equation (2.1) with α = −n1, β = −n3, γ = −n2 and
0 ≤ n1 ≤ n2 < n3, and thus supply a complete set of solutions. We now show this explicitly.

Consider the hypergeometric function F
(α,β

γ ; t
)

with β = −n3 (i.e. r3 = 0). This
function is in fact a Jacobi polynomial of degree n3 — see [96, 18.5.7]. Next consider
the differential equation (2.1) with β = −n3: this differential equation is just the Jacobi
polynomial differential equation (with variable x = 1 − 2t) where the Jacobi polynomial
f = F

(α,−n3
γ ; t

)
solves it. Setting α = −n1 + Bϵ and β = −n2 + Aϵ we obtain

∂2
(

AF
(−n1 + Bϵ,−n3

−n2 + Aϵ
; t
))

+
(−n2 + Aϵ

t
+ −n1 + Bϵ − n3 + n2 − Aϵ + 1

t − 1

)
∂

(
AF

(−n1 + Bϵ,−n3
−n2 + Aϵ

; t
))

+ (−n1 + Bϵ)(−n3)
t(t − 1) AF

(−n1 + Bϵ,−n3
−n2 + Aϵ

; t
)
= 0 .

(2.9)

Taking the limit ϵ → 0 renders the coefficients of the above differential equation finite, and
so the differential equation, as a linear relationship, does not become singular. Neither do
the truncated hypergeometric sums, which become the functions f1 and f2 in (2.8). The
limit ϵ → 0 on the above differential equation gives

A

(
∂2f1(t) +

(−n2
t

+ −n1 − n3 + n2 + 1
t − 1

)
∂f1 +

(−n1)(−n3)
t(t − 1) f1(t)

)
− B

(
∂2f2(t) +

(−n2
t

+ −n1 − n3 + n2 + 1
t − 1

)
∂f2 +

(−n1)(−n3)
t(t − 1) f2(t)

)
= 0 .

(2.10)

The above limit exists for any generic finite choices of A and B.6 Therefore, the
coefficients of A and B must individually be zero

∂2f1(t) +
(−n2

t
+ −n1 − n3 + n2 + 1

t − 1

)
∂f1 +

(−n1)(−n3)
t(t − 1) f1(t) = 0

∂2f2(t) +
(−n2

t
+ −n1 − n3 + n2 + 1

t − 1

)
∂f2 +

(−n1)(−n3)
t(t − 1) f2(t) = 0 .

(2.11)

We thus conclude that f1 and f2 both satisfy the above differential equation. This should
agree with any other method for generating solutions to the differential equation.

Consider the αi near negative integers −ni, appropriately regulated, i.e.

F

(
−n1 + r1ϵ,−n3 + r3ϵ, · · · ,−n(2W−1) + r(2W−1)ϵ

−n2 + r2ϵ,−n4 + r4ϵ, · · · ,−n(2W−2) + r(2W−2)ϵ
; t
)

.

Above, we require that the ni satisfy 0 ≤ n1, n2w−1 ≤ n2w, and n2w < n2w+1. The integer w is between 1 and
W labeling the “windows”. In the limit that ϵ → 0 we find W windows where the coefficients of the generalized
hypergeometric sum are non-zero, each with independent coefficients. These W polynomials satisfy the linear
W th order generalized hypergeometric differential equation, providing a complete set of solutions.

6The limits as A = 0 or B = 0 may seem to be problematic because this may compete with the smallness
of ϵ, however, carefully taking these limits before ϵ → 0 gives the same results as taking the limit A → 0 or
B → 0 of (2.10), and so these limits commute.
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One may for example consider the two solutions to the hypergeometric equation (2.1).
These are given by F

(α,β
γ ; t

)
and z1−γF

(α−γ+1,β−γ+1
2−γ ; t

)
. One can consider the strict α = −n1

case in the first solution, giving F
(−n1,β

γ ; t
)
, which truncates the hypergeometric series, giving

a Jacobi polynomial [96, 18.5.7]. One can then set β = −n3, and γ = −n2, arriving at f1, up
to normalization. These substitutions are not singular in the Jacobi polynomial. The function
f2 may similarly be generated by substituting γ = −n2 into the second solution finding
zn2+1F

(α+n2+1,β+n2+1
n2+2 ; t

)
which has non-singular coefficients in the hypergeometric series.

When α = −n1 and β = −n3, one arrives at exactly f2 in (2.8), up to normalization [96, 18.5.7].
The two separate solutions, therefore, may also be arrived at by taking independent

limits of various solutions to the hypergeometric equation. However, we still prefer the
limit ϵ → 0 of (2.5) because this limit may be taken on any linear relationship that the
parent hypergeometric function F

(α1,··· ,αp

β1,··· ,βq
; t
)

satisfies. For example, linear relationships that
F
(α1,··· ,αp

β1,··· ,βq
; t
)

satisfies will descend to relationships that are separately obeyed by f1 and
f2 (possibly with index reassignment), so long as the linear relationship is not singular in
the limit ϵ → 0. The linear differential equation is just one such linear relationship. This
allows easier identification for certain proofs for Jacobi polynomials, if one knows the parent
linear relationship for the hypergeometric functions.

It is easy to see that f1 and f2 give a covering space map z(t) = f2(t)/f1(t). For the
particular f2 and f1 above, the Wronskian is known. It is given by [46]

W = f ′
2f1 − f2f ′

1 = A0tn2(t − 1)n1+n3−n2 (2.12)

where A0 is not presently important (one may also find W directly by using (2.27) which is
proved as (B.1) in appendix B). Thus, the only zeros of the Wronskian are t = 0 and t = 1,
neither of which are zeros of f1. Therefore f1 and W share no roots, and so f1 is separable
and f1 and f2 are fully reduced. Therefore, z(t) = f2(t)/f1(t) constructs a good covering
space map with ramified points at t = 0 and t = 1, by the discussion in section 1.1. There
is also a ramified point at t = ∞, by inspection.

The ramifications at t = 0, t = 1 and t = ∞ are easy to identify. At t = 0 we have
ramification r0 = n2, and at t = 1 we have ramification r1 = n1+n3−n2−1. The ramification
at infinity is given by r∞ = n3 − n1 − 1 which is read from the highest order terms in the
numerator and denominator of f2/f1. Furthermore, the total number of sheets for a generic
point z is given by the maximum degree of the polynomials, i.e. n3, the degree of f2. Thus,
plugging in the ri above and S = n3 in the Riemann-Hurwitz formula (1.15) we find that
the genus of the covering surface is g = 0 as expected. Furthermore, it is clear that all of
these expressions make sense for the range 0 ≤ n1 ≤ n2 < n3. However, relaxing the first
and last inequality can be useful for certain proofs.

2.2 n-point function maps from sums over Jacobi polynomials

We now wish to consider correlation functions beyond the 3-point function. This suggests
having more than two terms in (1.24). Looking at the case where there are three terms
seems to be the next logical step, where the equation becomes Heun’s differential equation(s)
(see [93] for a monograph on this equation, and its solutions, known as Heun functions).
However, we would like to focus on a construction in the literature [92] where they build
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Heun functions out of hypergeometric functions. This will give us a way to build covering
space maps with multiple insertions.

First, Heun’s differential equation is

f ′′(t) +
(

γ

t
+ δ

t − 1 + ε

t − a

)
f ′(t) + (αβt − q)

t(t − 1)(t − a)f(t) = 0 . (2.13)

The extra regular singular point at t = a cannot be fixed with sl(2) transformations, and
so must be left with an arbitrary complex location a. For us, ε will be a non-positive
integer to give a ramified point in the covering space map. This will lead to ramifications
at t = {0, 1,∞, a} which we refer to as {r0, r1, r∞, ra}, respectively. The above constants
satisfy a relation α + β + 1 = γ + δ + ε. In addition, there is an extra parameter q above
which is not present in the hypergeometric case (2.1). In the case that ε = 0, we recover
the hypergeometric equation setting q = αβa. Recall that in the hypergeometric series (2.2)
depends symmetrically on α and β, and so the differential equation (2.1) depends only on
α + β and αβ.

The analysis of [92] builds solutions to Heun’s differential equations from a finite sum
of hypergeometric functions

f(t) =
nmax∑
n=0

cn F

(
α, β

γ + ε + n
; t
)

(2.14)

with complex coefficients cn. This takes advantage of the fact that F (α, β; γ; t) satisfies
the differential equation (2.1), and this shares some of the singularity structure of (2.13).
Plugging into the Heun equation, and using certain recurrence relations for hypergeometric
functions to combine terms, one finds an algebraic recurrence relation [92]

Rncn +Qn−1cn−1 + Pn−2cn−2 = 0 (2.15)

for the coefficients cn. When this recurrence relation is solved, then this particular combination
of hypergeometric functions solves the Heun equation. The terms in the recurrence relation are

Rn = (1− a)n(ε + γ + n − 1)
Qn = −Rn + a(1 + n − δ)(n + ε) + (aαβ − q)

Pn = − a

n + ε + γ
(n + ε)(n + ε + γ − α)(n + ε + γ − β) . (2.16)

For the recurrence relation to terminate, it is enough that two of the cn vanish in sequence:
subsequent cn then automatically vanish. However, it must be that the first two that vanish,
i.e. cnmax+1 and cnmax+2, are preceded by an nmax where Pnmax = 0, such that the recurrence
relation is satisfied. The function Pn in (2.16) can vanish if there is some positive integer
nmax such that

ε = −nmax, or ε + γ − α = −nmax, or ε + γ − β = −nmax . (2.17)

We consider only the first of these, namely ε = −nmax for various reasons. First, the case
ε = −nmax is the easiest to analyze because, similar to the last subsection, a limit of the
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hypergeometric functions appearing in (2.14) will generate two polynomials with separate
coefficients. Furthermore, we will also see that the case ε = −nmax generates maps which
furnish all group theoretically allowed ramifications for the class of covering maps which (2.14)
can generate.7 Therefore, from here on we only consider the case ε = −nmax.

Now we use the basic construction of the last subsection. Consider the hypergeometric
functions in (2.14), this time for each n

A F

(
α, β

γ − nmax + n
; t
)
= A

∞∑
ℓ=0

(α)ℓ(β)ℓ

(γ − nmax + n)ℓ

tℓ

ℓ! . (2.18)

We consider the indices near negative integers

α = −n1 + Bϵ , γ = −n2 + Aϵ , β = −n3 + r3ϵ , (2.19)

and take the limit ϵ → 0 to obtain two polynomials: we see that ε = −nmax guarantees
that γ − nmax + n is also near an integer (note that ε and ϵ are different). The limit is
well-defined when none of the coefficients of the hypergeometric series become infinite as
ϵ → 0. Therefore we need (−n1 + Bϵ)ℓ/(−n2 − nmax + n + Aϵ)ℓ to be well defined for all ℓ

in this limit. This requires that the numerator Pochhammer symbol becomes infinitesimal
“first” (i.e. at a lower value of ℓ), which gives the constraint 0 ≤ n1 ≤ n2 + nmax − n. This
must be true for all n and so 0 ≤ n1 ≤ n2. In cases where n1 < n3 ≤ n2 + nmax − n is
“out of order”, then the nth term of (2.14) has no second window. However, not all such
second windows for all n may vanish: we need at least one term proportional to B to get
two linearly independent pieces. To ensure at least one piece proportional to B survives,
we must have n2 < n3, and so 0 ≤ n1 ≤ n2 < n3.

Plugging in (2.19) into (2.14) and then taking the limit ϵ → 0 subject to the constraints
from the last paragraph then gives one polynomial proportional to A and the other proportional
to −B, i.e

lim
ϵ→0

A
nmax∑
n=0

F

( −n1 + Bϵ,−n3 + r3ϵ

−n2 + Aϵ − nmax + n
; t
)
= (−1)n1(n1!)(n2 − n1)!

(n2 + nmax)!
(
Af1(t)− Bf2(t)

)
(2.20)

along with the requirement

0 ≤ n1 ≤ n2 < n3 . (2.21)

7One could use the recurrence relations (2.16) to find a pair of polynomials directly, taking advantage of
the other possibilities in (2.17). This is because both numerator and denominator terms in (2.16) can become
small when parameters are near negative integers. Having these terms become small for different values of n,
as n increases can give two windows with distinct coefficients where cn are finite — see equation (20) of [92].
The terms in the recurrence relation (2.16) which become small are also parameters in the hypergeometric
functions in (2.14), and one would also need evaluate the effect of taking parameters near negative integers in
the hypergeometric functions themselves. We have not explored these avenues due to these complications, as
well as the apparent completeness of the case ε = −nmax, as discussed below (2.17).
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In (2.20) we have removed a common factor from both windows, which cancel in the covering
space map z = f2/f1. We find explicitly

f1(t) =
nmax∑
n=0

cn(n2 + nmax − n + 1)n(n2 − n1 + 1)(nmax−n)

× P−(n2+nmax−n+1),−(n1+n3−(n2+nmax−n))
n1 (1− 2t) ,

f2(t) =
nmax∑

n=nmin

cn(n2 + nmax − n + 1)n(n2 − n1 + 1)(nmax−n)t
(n2+nmax−n+1)

× P
(n2+nmax−n+1),−(n1+n3−(n2+nmax−n))
n3−(n2+nmax−n+1) (1− 2t) ,

nmin ≡ max
(
0,−

(
n3 − (n2 + nmax + 1)

))
.

(2.22)

In f2 we note that certain occurrences of Jacobi polynomials with negative order would
appear if n3 − (n2 +nmax −n+1) ≤ −1. These are simply an indication that the lower index
of the parent hypergeometric function, n2+nmax−n, is “out of order”, i.e. n2+nmax−n ≥ n3,
and so the second window doesn’t exist for that n (but the limit ϵ → 0 is still well defined). We
have excluded these terms from the sum by adjusting the lower limit of the sum for f2 above.
Rather than restricting the sum, we find it much more convenient to use the following rule:

Whenever a Jacobi polynomial appears with negative subscript, we set it to 0, i.e.

P α,β
−γ (x) ≡ 0 , γ ∈ Z>0 .

(2.23)

For now we have used the construction in [92] as much as we need to. We can see that
the normalization of the constant ci, which seems quite natural in (2.14) in the sum over
Hypergeometric functions, seem somewhat less natural in the sum over Jacobi polynomials.
We therefore define new constants which absorb the Pochhammer symbols following the
cn’s in (2.22). Furthermore, we identify

N ≡ n2 + nmax − n (2.24)

as an effective summation variable, where N has a minimum value of Nmin = n2 and a
maximum value of Nmax = n2 + nmax. This gives a more convenient form to write the
two functions as

f1(t) =
Nmax∑

N=Nmin

bN P−(N+1),−(n1+n3−N)
n1 (1− 2t) ,

f2(t) =
Nmax∑

N=Nmin

bN t(N+1)P
(N+1),−(n1+n3−N)
n3−N−1 (1− 2t) ,

(2.25)

where
bN ≡ bn2+nmax−n = cn(n2 + nmax − n + 1)n(n2 − n1 + 1)(nmax−n) . (2.26)

While these expressions were derived using the constraints 0 ≤ n1 ≤ Nmin < n3, we show
that the above expressions generate covering space maps with Nmin < n1 as well. In such
cases we consider the sums defining f1 and f2 in (2.25), and therefore the complex numbers
bN , as being fundamental. The identification (2.26) is only valid when Nmin = n2 ≥ n1.
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We now show that (2.25) generates covering space maps z = f2/f1 with some ramified
points, which we then go about identifying. First, for generic bN , our maps z = f2/f1 are
fully reduced and f1 is separable. This can be seen by considering some n1 ≤ N0 < n3, and
taking bN0 ̸= 0 with all of the other bN infinitesimal, but otherwise free. In this neighborhood,
f1 is approximately a single Jacobi polynomial, and Jacobi polynomials are separable (with
N0 in this range). To this, we are adding infinitesimal Jacobi polymomials of the same degree:
such changes only change the zeros infinitesimally, and so do not ruin separability. Thus, in
this neighborhood, f1 remains separable. The most direct way to see this is to construct the
discriminant of f1, which is written as the determinant of a square matrix Md. Adding the
infinitesimal polynomials changes the coefficients of the polynomial infinitesimally, but does
not add new coefficients with higher degree. So, the discriminant is written as a determinant
of a matrix, i.e. disc(f1) = det(Md + δMd) where δMd is infinitesimal (and Md and δMd are
the same dimension because the infinitesimal polynomials are the same degree as the order
one polynomial). This is clearly not 0 when det(Md) ̸= 0 (which is true for a single Jacobi
polynomial with N0 in the range specified) and δMd is small.

Similarly, in this same neighborhood, the function f2 becomes approximately the numer-
ator of a map for a three-point function, and to this we are adding infinitesimal polynomials
of the same degree. Again, this cannot affect the zeros of the polynomial more than in-
finitesimally. The polynomials that approximate f1 and f2, i.e. the polynomials that are
appropriate for the three-point function, share no roots. Infinitesimal changes to these roots
cannot make them coincide, and so f1 and f2 still share no roots in this neighborhood. More
concretely, one can argue from the resultant res(f1, f2), which may also be written as the
determinant of a square matrix Mr. Therefore, res(f1, f2) = det(Mr + δMr). This is clearly
not 0 when det(Mr) ̸= 0 and δMr is small. These two statements are true simultaneously in
this neighborhood, i.e. z = f2/f1 is fully reduced and f1 is separable: it is therefore generically
true as we vary the bN , and it must be sets of measure 0 that have either disc(f1) = 0 or
res(f1, f2) = 0. From this, we know that the zeros of the Wronskian directly correspond
to ramified points in the map for generic bN .

To identify some of the ramified points, we use two identities

P−(N+1),−(n1+n3−N)
n1 (1− 2t)− tN+1P

N+1,−(n1+n3−N)
n3−N−1 (1− 2t)

= (−1)N (1− t)n1+n3−N P
−(N+1),(n1+n3−N)
N−n1

(1− 2t) ,
(2.27)

which, using the identity (A.7), we may also write as

P−(n1+n3−N),−(N+1)
n1 (2t − 1) + (−1)n1+n3−N tN+1P

−(n1+n3−N),N+1
n3−N−1 (2t − 1)

= (1− t)n1+n3−N P
(n1+n3−N),−(N+1)
N−n1

(2t − 1) ,
(2.28)

which are proved as (B.1) and (B.2) in appendix B. Importantly, the above identities hold
for all integers −∞ < N < ∞ subject to the rule (2.23). We will also need the identity

P α,β
γ (1− 2t) = tγ P−(2γ+α+β+1),β

γ

(
1− 2

t

)
, (2.29)

which we prove in (B.21) and is true for all integers −∞ < γ < ∞, using the rule (2.23).

– 18 –



J
H
E
P
1
1
(
2
0
2
5
)
1
4
7

Using these identities, we may write the covering space map in three equivalent ways.
First, we have

z(t) = f2(t)
f1(t)

=

Nmax∑
N=Nmin

bN t(N+1)P
(N+1),−(n1+n3−N)
n3−N−1 (1− 2t)

Nmax∑
N=Nmin

bN P
−(N+1),−(n1+n3−N)
n1 (1− 2t)

(2.30)

which is adapted to be expanded near the point t = 0, z = 0. We refer to this as the “near
0” form of the map. We may use (2.27) to write

1− z(t) = f1(t)− f2(t)
f1(t)

=

Nmax∑
N=Nmin

bN (1− t)n1+n3−N P
(n1+n3−N),−(N+1)
N−n1

(2t − 1)

Nmax∑
N=Nmin

bN P
−(n1+n3−N),−(N+1)
n1 (2t − 1)

(2.31)

which is adapted to be expanded near the point t = 1, z = 1. We refer to this as the “near
1” form of the map. We finally may use the identity (2.29) to write

1
z(t) =

(1
t

)n3−n1

Nmax∑
N=Nmin

bN P
(n3−n1),−(n1+n3−N)
n1

(
1− 2

t

)
Nmax∑

N=Nmin

bN P
−(n3−n1),−(n1+n3−N)
n3−N−1

(
1− 2

t

) (2.32)

which is adapted to the point at t = ∞, z = ∞. We will refer to this as the “near ∞”
form of the map. These three forms of the map make it easy to identify the ramifications
at each point, namely

r0 = Nmin , r1 = n1 + n3 − Nmax − 1 , r∞ = n3 − n1 − 1 . (2.33)

We require all of these ramifications to be greater than or equal to 1, such that these points
are ramified. We note that Nmin may in fact be less than n1. In such a case some of the
Jacobi polynomials are 0 in the numerator of the “near 1” form of the map (2.31), given
the rule (2.23).

From equations (2.30), (2.31), and (2.32), it is clear that the Wronskian has the gen-
eral form

W = f ′
2f1 − f2f ′

1 = tNmin(t − 1)(n1+n3−Nmax−1)Q(t) . (2.34)

The power of tNmin in (2.34) is guaranteed by the common factor of tNmin+1 appearing
in the numerator of (2.30). Note that the Wronskian is identically equal to W = (f2 −
f1)′f1 − (f2 − f1)f ′

1, and so the power of (t − 1) in (2.34) is guaranteed by the common
factor of (t − 1)n1+n3−Nmax in the numerator of (2.31). Finally, we see that the polynomial
Q(t) must have the form

Q(t) =
∆N∑
i=0

Ai t∆N−i , ∆N ≡ Nmax − Nmin , (2.35)
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by matching degrees of polynomials in (2.34): f1 is of degree n1 and f2 is of degree n3. Above,
∆N is the range of the sums appearing in f1 and f2 — see (2.25). The coefficients Ai in Q(t)
are quadratic homogeneous polynomials of the coefficients bN . Three combinations of the
Ai may be found in the general case, which we discuss in section 3.1. Interestingly, these
give all the information needed to find Q in the ∆N = 0, 1, 2 cases. For cases ∆N ≥ 3,
one may iteratively generate the Ai, as explained in appendix E, and if ∆N is finite, this
is finitely many steps.

We see that the polynomial Q(t) has degree ∆N . Below we argue that the parameter
space spanned by the bN is ∆N -dimensional, and so we expect the polynomial Q(t) has ∆N

zeros which are generically distinct. The locations of these zeros therefore define the location
of points with ramification 1. The maps defined by (2.30), therefore, correspond to having a
cloud of twist-2 operators surrounding the three long twists at (t = 0, z = 0), (t = 1, z = 1),
and (t = ∞, z = ∞). The total ramification of this cloud of operators is rc = ∆N . It is
important to realize that these are a cloud of operators, not a single operator, and so they
may have interesting OPE limits amongst themselves.

Note that the simultaneous scaling of the coefficients bN → λbN give rise to the same
covering space map. There are ∆N +1 such bN coefficients, and so the space of maps is clearly
∆N dimensional, exactly the dimension spanned by the cross-ratios in a (3 + ∆N)-point
function, and matching the number of ramification one points in the cloud rc = ∆N . The
scaling symmetry suggests that these coefficients are valued in CP∆N . We will see that the
map parameters bN parameterize more than just the cross-ratios, but also control which type
of OPE limit is produced when two ramified points come together (i.e. which group product
is taken amongst the many possibilities in the conjugacy class product). We will find in
section 3.1 that our conditions for OPE limits are given by homogeneous polynomials in the
bN set to 0. These are natural subspaces of CP∆N : algebraic varieties.

2.3 Generality of the maps

In this subsection, we consider whether the maps (2.30), or equivalently (2.31), or (2.32)
are general enough to give any r0, r1, r∞, and rc = ∆N . We will find that they are by
showing that all maps corresponding to group theoretically allowed ramifications can be
constructed for some choice of n1, n3, Nmin and Nmax.

We begin by pointing out some restrictions that the maps (2.30), (2.31), or (2.32) must
obey so that they are not pathological. First, in (2.30), it is clear that we must have at least
some terms with n3 − N − 1 ≥ 0, otherwise z(t) = 0. Therefore Nmin < n3. Similarly, by
examining (2.31) we see that we need some terms with N − n1 ≥ 0, and so Nmax ≥ n1. This
guarantees that there exists some N that have n1 ≤ N < n3. This is the special window
where (2.27) and (2.28) have all three Jacobi polynomials present, and corresponds exactly to
case 3 in appendix B where these identities are proven. All in all, we find the set of constraints

n3 − n1 ≥ 2 , Nmax ≥ Nmin , 1 ≤ Nmin < n3 , 0 ≤ n1 ≤ Nmax < n1 + n3 − 1 ,

(2.36)
such that the maps are not pathological, and the points (t = 0, z = 0), (t = 1, z = 1),
and (t = ∞, z = ∞) are ramified.
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We now consider how the ramifications of the map (2.30) can be restricted by group
theoretic considerations. First we recall the ramifications

r0 = Nmin , r1 = n1 + n3 − Nmax − 1 , r∞ = n3 − n1 − 1 , rc = ∆N , (2.37)

where rc is the total ramification from the cloud. We define the ramification of a group
element by rg =

∑
k rk =

∑
k(wk − 1) where rk = wk − 1 are the ramifications of each cycle

appearing in the group element when it is expressed as a set of disjoint cycles, and wk is
just the length of each cycle. We have the following statement that

if
∏

i

gi = e, then
∑
i ̸=j

rgi ≥ rgj for each gj in the product (2.38)

where e is the identity element and gi are cycles. We refer to this as ramification subadditivity
and prove it in appendix D.

Applying restriction (2.38) to each of the ramifications associated with individual cycles
for our maps, we have

r0 ≤ r1 + r∞ + rc , r1 ≤ r0 + r∞ + rc , r∞ ≤ r0 + r1 + rc . (2.39)

One must not enforce rc ≤ r0 + r1 + r∞ because the cloud is composed of distinct ramified
points which correspond to distinct cycles. These can merge and lower the total ramification
in the cloud independently. Inserting (2.37) in (2.39) we find

Nmin ≤ n3 − 1 , n1 ≤ Nmax , 0 ≤ n1 . (2.40)

We combine (2.40) with the restrictions that the points at 0, 1, and ∞ are ramified r0 ≥ 1,
r1 ≥ 1, r∞ ≥ 1, along with rc ≥ 0, and find exactly the constraints (2.36).

We can consider this in another way by inverting (2.37), finding

n1 = r0 + r1 − r∞ + rc

2 , Nmin = r0 , n3 = r0 + r1 + r∞ + rc

2 + 1 , ∆N = rc .

(2.41)

The equation for n3 is exactly the Riemann Hurwitz formula (1.15) with genus g = 0, and
insists that the sum of the ramifications is an even number. This is also guaranteed by
group theory because the twists must multiply to the identity, which is an even element of
the group SN. That n3 is an integer also guarantees that n1 is an integer because flipping
the sign of r∞ differs by 2r∞ in the numerator of the expression for n1. The constraints
from (2.39) guarantee that equations (2.41) define integers which satisfy (2.36) when r0 ≥ 1,
r1 ≥ 1, r∞ ≥ 1, and rc ≥ 0.

Therefore, the constraints imposed by insisting that the maps are well defined (2.36) are
the same constraints one gets from the above group theoretic considerations. Thus, any group
product

∏
i gi = e composed of three long cycles and an arbitrarily large number of 2-cycles

is captured by one of our covering space maps (2.30), or equivalently (2.31), or (2.32). To
construct the map, one starts with ramifications r0, r1, and r∞, and the desired number of
ramification 1 points in the cloud rc = ∆N : these must be specified in a way that is consistent
with group theory. Using (2.41) one obtains the parameters of the map which fix ramifications
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n1, n3, Nmin, and Nmax, and these obey the constraints (2.36) automatically. The bN , valued
in CP∆N , parameterize the location of the ∆N twist-2 operators, or equivalently the ∆N

cross ratios present in a (3 + ∆N)-point function. If, as was suggested in [47], all maps to
sphere covering spaces are connected by analytic continuation, i.e. transport of twist operators
around each other, then our maps (2.30) represent a complete set up to transport.

We return briefly to discussing the approach of [92], and ask whether the maps (2.30) gives
a general set of maps of for the general four-point function of single-cycle operators. Following
the above discussion for the general maps, we find that the ramifications in this case are

r0 = Nmin , r1 = n1 + n3 − Nmax − 1 , r∞ = n3 − n1 − 1 , ra = ∆N , (2.42)

where now ra is the ramification of the additional fourth point (we use the subscript a to
emphasize this is not a cloud of ramified points, but a single ramified point at t = a, following
the notation of [92], and equation (2.13)). One may also arrive at these ramifications by
following the discussion of [92] and reading the relevant coefficients in the Heun equation:
one can read (ln(W ))′ by comparing (2.13) to (1.23).

One must again impose ramification subadditivity (2.38), which gives

r0 ≤ r1 + r∞ + ra , r1 ≤ r0 + r∞ + ra ,

r∞ ≤ r0 + r1 + ra , ra ≤ r0 + r1 + r∞ ,
(2.43)

and substituting (2.42), we find

Nmin ≤ n3 − 1 , n1 ≤ Nmax , 0 ≤ n1 , 1 ≤ n3 . (2.44)

We can generate another constraint by considering the following. Given four ramifications, q1,
q2, q3, and q4, it must be that q1 +q2 ≥ q3 +q4 or q1 +q2 ≤ q3 +q4. In either circumstance, we
map the two points with the larger sum of ramifications to t = 0 and ∞, and map one of the
others to t = 1 leaving the fourth ramified point at t = a. Thus, without loss of generality,

r0 + r∞ ≥ r1 + ra (2.45)

which gives

Nmin ≥ n1 . (2.46)

This constraint reduces us to the case where the sum of hypergeometric equations (2.14) with
the near integer values (2.19) admits a well defined ϵ → 0 limit, and directly generates the
polynomials appearing in (2.30), i.e. the case where Nmin = n2 and n1 ≤ n2 < n3. Thus, this
single case appears to be sufficient to generate maps with arbitrary ramifications for four
single-cycle operators, and so up to transport, generates the complete set of maps.

We now recall the additional algebraic constraints in [92]. Their approach is to find
recurrence relations between the coefficients cn in (2.22) (equivalently the bN in (2.25)), which
ultimately come from the Heun equation. These determine the cn in terms of c0, a, and q —
see (2.13) and (2.14). In [92], c0 is usually set to 1, which we may also do by scaling. The
rest of the ci only depend on the parameters of the recurrence relation. The parameters
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that define the recurrence relation are the parameter a, which gives the location of the new
ramified point, and q, the parameter in the Heun equation, and the integers n, n1, and n3.
Writing the recurrence relation in matrix form gives a matrix which must have determinant
0, giving an algebraic relationship relating a and q, i.e. this constraint gives an effective
q(a). In this way there is only one complex parameter remaining: a, the location of the new
ramified point. For the polynomials that we have extracted, this means that there is only one
remaining parameter, once the algebraic constraints of [92] are imposed. This is expected to
parameterize the single cross-ratio for a four point function of four single-cycle twists.

One may consider reparameterizing the algebraic constraints from [92]. For example,
one could solve for a in terms of c1 to keep dependence on map parameters, and then the
determinant relationship would give q(a(c1)). Thus, all of the quantities could ultimately
be related to the single map parameter c1 via algebraic constraints. However, given the
discussion above, we have a physical interpretation for these algebraic constraints: we view
these as the OPE limit where the ∆N twist-2 operators fuse into a single-cycle twist with
ramification ∆N , i.e. a (∆N + 1)-cycle operator. Thus, the general map (2.30) along with
the algebraic constraints from [92], which we interpret as an OPE limit, give the general map
for four single-cycle twist operators where the covering surface is a sphere, up to transport.

We will see one example of an OPE limit where ramified points in the cloud approach
each other, specifically for the case ∆N = 2 in section 3.2. There, we will see that the
algebraic constraint that fuses the two twist-2 operators into a single twist-3 operator is
again given by a homogeneous polynomial in the bN set to 0, in this case a cubic, and so is
an algebraic variety subspace of CP∆N=2. In section 3 we consider what constraints on the
bN can generate OPE limits. This will help us identify singularity structures that appear
in the correlation functions, which we address in section 4.

3 OPE limits

We start our analysis by considering the OPE limit when one of the ramification 1 points
in the cloud approaches one of the points at (t = 0, z = 0), (t = 1, z = 1), (t = ∞, z = ∞).
We use the forms of the maps (2.30), (2.31), and (2.32) which are adapted to the points
(t = 0, z = 0), (t = 1, z = 1), (t = ∞, z = ∞), respectively. We consider how to identify other
types of OPE limits as well. We then consider the Wronskian in the general case, and are
able to construct certain coefficients of the Wronskian which are written in terms of the OPE
limit polynomials. All of this helps us to construct the n-point functions in section 4 by
identifying singularity structures. We specifically concentrate on the ∆N = 1, 2 cases, where
we can find Q(t) exactly, and construct the n-point functions in closed form.

3.1 OPE limits using bN coefficients and small ∆N Wronskians

In this subsection we construct the OPE limits where one of the ramification 1 points in
the cloud approaches the points at t = 0, t = 1, and t = ∞, which are structurally similar,
and write the limits as restrictions on the bN . The twist 2 operators in the cloud may either
“twist up” the operator they approach when they share one copy index, or “twist down” the
operator they approach when they share two copy indices. We will show that the bN can
parameterize both types of OPE limits, each as different linear constraints on the bN .
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We may address this rather generically, and so we consider the general structure of the
three forms of our maps (2.30), (2.31), and (2.32). The three functions z(t), 1 − z(t), and
1/z(t) given in (2.30), (2.31), and (2.32) will be represented generically as some function
Z. These should be thought of as functions of either t, (1− t), or 1/t, respectively, and we
use the generic variable T to represent these three possibilities in the three respective cases.
Thus, all three versions of the map are of the basic structure

Z(T ) = T rq+1P2(T )
P1(T ) (3.1)

where rq is the ramification of the point for which the map is adapted (T = 0), and P2 and
P1 are polynomials with lowest order terms which are constants. To generate a “twist up”
at the point of concern, we simply take P2(T = 0) = 0, which sets the constant part of this
polynomial to 0. This will be a linear constraint on the bN . Under this constraint, we may
factor out a T , writing P2(T ) = T P̃2(T ) where P̃2(T ) is the remaining polynomial. This gives

Z = T rq+1P2(T )
P1(T ) −−−−−−−→

P2(T =0)=0
Z = T (rq+1)+1P̃2(T )

P1(T ) . (3.2)

We see that the linear constraint P2(T = 0) = 0 leaves one fewer degree of freedom amongst
the bN (and so there is one fewer ramified point in the cloud), but increases the ramification
at T = 0, identifying it as the twist up. To twist down, we simply impose P1(T = 0) = 0,
which is a different linear constraint on the bN . Under this constraint, we similarly factor
P1(T ) = T P̃1(T ), and so we find

Z = T rq+1P2(T )
P1(T ) −−−−−−−→

P1(T =0)=0
Z = T (rq−1)+1P2(T )

P̃1(T )
. (3.3)

In this case, the linear constraint leaves one fewer degree of freedom amongst the bN (so
there is one fewer ramified point in the cloud), and also decreases the ramification at T = 0,
identifying it as the twist down. Furthermore, it should be noted that because a power of
T has been cancelled, the map has one fewer sheet. In this case, the total ramification has
been lowered by 2, but the number of sheets has been lowered by 1, leaving result of the
Riemann-Hurwitz formula for the genus g = 0 unaffected.8

There are three forms of the map with two possible OPE limits each, giving six OPE
limits we may find in this way. Following the above prescription, we arrive at the following
identifications

lim
t→0

f1(t) =
(−1)n1Nmin!

(n1)!(Nmax − n1)!
g(0,↓) , lim

t→0

f2(t)
tNmin+1 = (n3)!

(Nmin + 1)!(n3 − Nmin − 1)!g(0,↑) ,

(3.4)
8One may also consider simply decreasing the ramification by 2, giving g = −1, which is also technically

true: this is the genus for two disconnected spheres, interpreting the genus through the Euler characteristic
χ = (2− 2g), and realizing that the Euler characteristic is additive. This has the added benefit of emphasizing
that indeed the other copy of the seed CFT is present. It is simply inert under the group elements chosen
to represent their conjugacy classes for the operators in the correlator, and so this inert copy “lives” on its
own sphere.
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and

lim
t→1

f1(t) =
(n1 + n3 − Nmax − 1)!
(n1)!(n3 − Nmin − 1)! g(1,↓) , (3.5)

lim
t→1

f2(t)− f1(t)
(t − 1)n1+n3−Nmax

= (−1)n3−Nmax−1(n3)!
(n1 + n3 − Nmax)!(Nmax − n1)!

g(1,↑) ,

and

lim
t→∞

f2(t)
tn3

= (−1)n3−Nmin−1(n3 − n1 − 1)!
(Nmax − n1)!(n3 − Nmin − 1)!g(∞,↓) , lim

t→∞

f1(t)
tn1

= (n3)!
(n1)!(n3 − n1)!

g(∞,↑) ,

(3.6)
where we have named the linear constraint polynomials of the coefficients bN

g(0,↑) = bNmin , g(0,↓) =
Nmax∑

N=Nmin

(N−n1+1)(Nmax−N)(Nmin+1)(N−Nmin)bN ,

g(1,↑) = bNmax , g(1,↓) =
Nmax∑

N=Nmin

(n1+n3−Nmax)(Nmax−N)(n3−N)(N−Nmin)bN , (3.7)

g(∞,↑) =
Nmax∑

N=Nmin

bN , g(∞,↓) =
Nmax∑

N=Nmin

(−1)(N−Nmin)(N−n1+1)(Nmax−N)(n3−N)(N−Nmin)bN .

The definitions of the constraint polynomials g(ti,↕) have been chosen such that the sums over
N are unconstrained between Nmin and Nmax, although some of the Pochhammer symbols
may be 0 (but not all of them). The cases when these Pochhammer symbols are zero directly
correspond to cases where rule (2.23) applies, setting some Jacobi polynomials to 0 in one
of the three forms of the map (2.30), (2.31), or (2.32).

In addition, one may solve the linear constraints as some set of linear functions bN ({BM})
of new variables BM , where there is one fewer BM than there are bN (and so the bounds
of the sum on M are smaller, i.e. ∆M = ∆N − 1). Written in this way, the new functions
reproduce the form of our maps exactly after taking the OPE limit, using the BM . To find
these linear functions bN ({BM}), we start with the known final form of the covering space
map after the OPE limit has been taken, written in terms of the BM . We shift the sums
appropriately, and find Jacobi polynomial identities that shift indices in appropriate ways.
This allows us to directly find the functions bN ({BM}). We give example calculations for the
twist up and twist down OPE limits as one of the operators approaches t = 0 in appendix C.
We simply summarize the other OPE constraints in table 1 below. The solutions bN ({BM})
always solve the linear homogeneous equation in the bN by making this equation a telescoping
sum in the BM which telescopes to 0, which is straightforward to verify.
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We can see that the OPE limits in table 1 seem quite natural geometrically. We have
claimed that the maps (2.30) correspond to the most general set with three long twists
operators and a cloud of ∆N twist-2 operators, and that the parameters of the maps bN are
valued in CP∆N . One way of testing such a claim would be to consider OPE limits. One
can immediately see that a twist-2 operator approaching a long single-cycle twist has two
non-trivial OPE limits: where the twist two increases the ramification of the long twist, or
where it decreases the ramification of the long twist. In either case, one is left with a cloud of
∆N − 1 twist-2 operators, and three long twists. By our claim, this should correspond to a
map of the same form (2.30) with some coefficients BM which take values in CP∆N−1. This
suggests that the OPE limits are given by embedding CP∆N−1 inside of CP∆N . The natural
way of accomplishing this embedding is with linear homogenous polynomials in the bN which
are set to 0. This is exactly the implementation of the OPE limits in table 1.

There are also OPE limits where the group product is trivial, i.e. no indices are shared
between the twist at the point of concern and the twist-2 that approaches the operator
at this point. Let us consider the case where the point of concern is t = 0, and so we
consider the form of the map (2.30). This type of “inert” OPE limit would be found by
insisting that a zero of Q(t), determining a ramified point, is shared by the polynomial∑Nmax

N=Nmin
bN t(N−Nmin)P

(N+1),−(n1+n3−N)
n3−N−1 (1− 2t) which defines a place where z = 0 but that

t ≠ 0. This would be determined by the resultant

Res

Q(t),
Nmax∑

N=Nmin

bN t(N−Nmin)P
(N+1),−(n1+n3−N)
n3−N−1 (1− 2t)

 = 0 (3.8)

which is again a homogenous polynomial constraint on the bN set to 0, given that the
coefficients of Q(t) are quadratic homogenous polynomials in the bN . This makes this
constraint another algebraic variety subspace of CP∆N . The fact that two distinct ramified
points on the cover are both mapped to z = 0 means that the cycles defining the group
element at z = 0 are in fact disjoint: different copies of the CFT are twisted together, but
not into each other. We have not explored these types of OPE limits further.

We can also use the above considerations to extract the leading order coefficients of Q(t)
as t → 0, 1,∞ by realizing that these only depend on the leading order behavior of f1 and f2
in these limits, and these have been computed in (3.4)–(3.6). We find

A0 = lim
t→∞

W

tn1+n3−1 = lim
t→∞

Q(t)
t∆N

= (n3 − n1)
(
lim

t→∞

f2(t)
tn3

)(
lim

t→∞

f1(t)
tn1

)

= (−1)(n3−Nmin−1)(n3)!
n1!(Nmax − n1)!(n3 − Nmin − 1)! g(∞,↓) g(∞,↑) , (3.9)

A∆N = lim
t→0

W

tNmin(t − 1)n3−Nmax−1 = Q(0)

= (−1)n1+n3−Nmax−1(Nmin + 1)
(
lim
t→0

f2(t)
tNmin+1

)(
lim
t→0

f1(t)
)

= (−1)(n3−Nmax−1)(n3)!
n1!(Nmax − n1)!(n3 − Nmin − 1)! g(0,↓) g(0,↑) , (3.10)
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and

AΣ ≡
∆N∑
i=0

Ai = lim
t→1

W

tNmin(t − 1)n1+n3−Nmax−1 = Q(1)

= (n1 + n3 − Nmax)
(
lim
t→1

f2(t)− f1(t)
(t − 1)n1+n2−Nmax

)(
lim
t→1

f1(t)
)

= (−1)n3−Nmax−1(n3)!
(n1)!(n3 − Nmin − 1)!(Nmax − n1)!

g(1,↓)g(1,↑) . (3.11)

To help understand the above, consider the identification of A0. Here we have used the fact
that only the leading order coefficients of f1 and f2 in the t → ∞ limit need to be computed:
the n3 − n1 comes about from taking the derivative of the top term in f2 and f1, which have
degrees n3 and n1 respectively. The identification of A∆N is arrived at by realizing f ′

2f1 has
lowest power tNmin , but f2f ′

1 has lowest power tNmin+1 since the leading order in f1 near t = 0
is a constant (f2f ′

1 is identically 0 if f1 is constant). Thus, only the f ′
2f1 term contributes to

the leading order term in the Wronskian in the t → 0 limit. This also explains the factor of
Nmin+1 on the second line of (3.10), since f2 goes to 0 as tNmin+1. Similar logic applies to AΣ.

The above solves for the Wronskian analytically in the cases ∆N = 0, 1, 2. We note
that the ∆N = 0 case is trivial: W = tNmin(t − 1)n1+n3−NminA0 and Nmin = Nmax = n2,
giving the answer quoted, for example, in [46].

In the case ∆N = 1, we have

Q(t) = A0t + A1 (3.12)

where A0 and A1 are given in (3.9) and (3.10), respectively, and Nmax = Nmin+1. In this case
we have found a map with three long twists and a single twist-2 insertion. These polynomials
are of Heun type, which have been considered previously [47, 52] for use as covering space
maps, however, using recursion relations to solve for coefficients. These recursion relations
may be feasibly solved for finite size twists. Here we have the solution in closed form, at
least for a case where three of the twists are large, and one is a twist-2 insertion. Further,
for us the location of the new twist insertion on the cover is known analytically in terms
of the map parameters: t2 = −A1/A0.

Finally, in the ∆N = 2 case, we have Q(t) = A0t2 + A1t + A2, and A1 is also found
analytically,

A1 = AΣ − A0 − A2 . (3.13)

Therefore, for ∆N = 2 we have

Q(t) = A0t2 + (AΣ − A0 − A2)t + A2 (3.14)

where A0, A2, and AΣ are respectively given by (3.9), (3.10), and (3.11), with Nmax = Nmin+2.
A general method for finding Q(t) for ∆N ≥ 3 is discussed in appendix E. This algorithmic

approach finds the polynomial Q in ∆N steps, and so is feasible when ∆N is not too large.
The form of Q(t) in (3.14) makes the discriminant of Q in the ∆N = 2 case easy to write

Disc (A0t2 + (AΣ − A0 − A2)t + A2) = A2
0 + A2

2 + A2
Σ − 2A0A2 − 2A0AΣ − 2A2AΣ (3.15)

which has an obvious interchange symmetry amongst A0, A2, and AΣ.
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3.2 ∆N = 2 special OPE limits

In the case that ∆N = 2, there are two twist-2 operators in the cloud. These cloud operators
can approach the points at (t = 0, z = 0), (t = 1, z = 1), or (t = ∞, z = ∞), as discussed in
the previous subsection. However, now we have the possibility that the two twist-2 operators
in the cloud can approach each other. These may “twist down” into an untwisted operator, or
“twist up” into a twist-3 operator. This can be easily addressed by insisting that the two zeros
of Q(t) =

∑2
i=0 Ait

2−i are coincident, which we explore by calculating the discriminant of Q

Disc (Q(t)) = A2
1 − 4A0A2 = A2

0 + A2
2 + A2

Σ − 2A0A2 − 2A0AΣ − 2A2AΣ (3.16)

=
(

n3!
n1!(Nmin + 2− n1)!(n3 − Nmin − 1)!

)2
g(c,↓) g(c,↑)

where A0, A2, and AΣ are given by (3.9), (3.10), and (3.11) for the case ∆N = 2, and where
g(c,↓) and g(c,↑) define a factorization of the discriminant. We give these factors momentarily.
Insisting that the discriminant vanishes so that the zeros of Q(t) are coincident now breaks
into two separate cases: g(c,↓) = 0; or g(c,↑) = 0. The first case reads

g(c,↓) ≡ (Nmin−n1+2)(n1+n3−Nmin−1)bNmin+(Nmin−n1+2)(n3−Nmin−1)b(Nmin+1)

+(Nmin+2)(n3−Nmin−1)b(Nmin+2) =0 (3.17)

and can be shown to be the “twist down” case. We show this in appendix C.2.
The other possibility is an OPE limit where the operators in the cloud “twist up” into a

twist-3, i.e. a ramification 2 point, and this is given by the other factor in (3.16),

g(c,↑) ≡ 4(Nmin − n1 + 1)(n1 + n3 − Nmin − 2)b2
Nminb(Nmin+2) (3.18)

− (Nmin − n1 + 2)(n1 + n3 − Nmin − 1)bNminb2
(Nmin+1)

+ 4
(
(Nmin + 1)(n1 + n3 − Nmin − 2)− n1n3

)
bNminb(Nmin+1)b(Nmin+2)

+ 4(Nmin + 1)(n3 − Nmin − 2)bNminb2
(Nmin+2)

− (n3 − Nmin − 1)(Nmin − n1 + 2)b3
(Nmin+1)

− (Nmin + 2)(n3 − Nmin − 1)b(Nmin+1)b
2
(Nmin+2) = 0

which is a homogenous cubic constraint on the bN . We note that this restriction is an algebraic
variety inside of CP∆N=2, similar to all other OPE limits found. The above constraint applied
to the map (2.30) furnishes a map that has three long twists and a single twist-3 operator.

Enforcing either constraint so that the discriminant vanishes, the position on the cover
that the two ramification 1 points approach is given by

t3 = − A1
2A0

=
g(0,↑)g(0,↓) + g(∞,↑)g(∞,↓) − g(1,↑)g(1,↓)

2g(∞,↑)g(∞,↓)
. (3.19)

Thus, there are two OPE limits where the two points in the cloud on the cover approach
each other. One case is the requirement (3.17) in which the two twist-2 operators merge to
give an untwisted operator at (3.19). The map simplifies to

z(t) = f2
f1

=
tNmin+1P

(Nmin+1),−(n1+n3−Nmin−2)
n3−Nmin−2 (1− 2t)

P
−(Nmin+1),−(n1+n3−Nmin−2)
n1−1 (1− 2t)

(3.20)
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which we show in appendix C. This is just a case where we replace n′
i = ni − 1, N ′

min = Nmin,
and N ′

max = Nmax − 2 so that N ′
max = N ′

min = n2 and there is no sum. Furthermore,
these replacements leave the ramifications of the points at t = 0, 1,∞ unaffected. We may
simplify (3.19) in this case, realizing that (3.17) is linear. We solve (3.17) for b(Nmin+1) and
substitute into (3.19), finding

t↓ =
bNmin(Nmin − n1 + 2)

bNmin(Nmin − n1 + 2) + b(Nmin+2)(n3 − Nmin − 1) . (3.21)

This agrees with (C.36) which is the zero of the linear (C.35). This linear cancels between the
numerator and denominator polynomials, identifying it as a twist down — see in appendix C.2.

Note that the original 5-point function, i.e three long twists and a pair of twist-2 insertions,
has two cross ratios. One might be concerned that the OPE limit (3.17) is only a linear
relationship between the bN , and so should decrease the dimension of the space of maps only
by one. However, it is important to note that t↓ is a marked point on the cover where the
ramified points approach each other. At this point we expect a full OPE expansion. Even
the bare twists have such an expansion, given by fractional modes of the stress tensor acting
at the corresponding position in the base space, or equivalently modes of the covering space
stress tensor (along with terms arising from the Schwarzian) acting at the point t = t↓ [55]. If
the twists are excited twists, rather than bare twists, other fractional modes of fields can also
appear, for example modes of the superconformal currents [57]. Therefore, the above OPE
limit still results in a four point function: the fourth operator is in the untwisted sector, and
so does not show up in the covering space map directly. Furthermore, the expression (3.21)
is scaling invariant under bN → λbN , and so is determined by a point in CP1, as should be
expected: a linear algebraic variety (3.17) inside of CP2 is CP1. Of course CP1 is just the
sphere, and so the marked point t↓ takes values on the covering space sphere.

In the twist up case, when (3.18) is enforced, the two ramification 1 points merge into
a ramification 2 point located at (3.19), which is also bN scaling invariant. If we take this
in a limiting way, the 5-point function becomes singular, as expected: this is a contact
singularity. However, to get the correct 4-point function, we recognize that the two zeros
are coincident, and so the Wronskian is given by

W = tNmin(t − 1)n1+n3−(Nmin+2)−1A0(t − t3)2 (3.22)

where t3 is (3.19) with (3.18) imposed. In this case, there is only one additional ramified
point, other than t = 0, 1,∞, which contributes to the 4-point function calculation. This is
distinct from the case where we impose (3.18) in a limiting way, which would correspond
to the singular limit of a 5-point function, where the zeros of Q(t) are close, but distinct

— see the discussion surrounding (4.20).

4 Correlation functions

In the previous sections, we have attempted to be as general as possible analyzing the
maps (2.30). We will continue this for the time being while considering the n-point function
calculation.
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First, the n-point functions are given by [47]

⟨σŵ0(z0, z̄0)σŵ1(z1, z̄1) · · ·σŵn−2(zn−2, z̄n−2)σŵn−1(∞, ∞̄)⟩ (4.1)

=
n−2∏
i=0

w
− c(wi+1)

12
i w

c(wn−1+1)
12

n−1

n−2∏
j=0

|aj |
−

c(wj−1)
12wj |an−1|

c(wn−1−1)
12wn

∏
ρ

|Cρ|−
c
6 ,

which is to be read for a specific group element representative. In the above ai are defined to
be the leading order coefficients of the expansion of z(t) near a ramified point, as in (1.5),
the wi = ri +1 are the lengths of the single-cycle twists, the Cρ are the coefficients describing
the unramified images of z = ∞, see (1.8), and c is the central charge of the seed CFT
(and we have assumed c = c̃). One must then sum over all preimages of the maps, see [52]
and [47]. Recall that we have indexed i = 0, · · · , n − 1 for the n bare twists. This allows
us to denote (t0 = 0, z0 = 0), and (t1 = 1, z1 = 1), and we use interchangeably r∞ = rn−1
and (tn−1 = ∞, zn−1 = ∞).

The ai may be computed by noting that

z(t) = zj + aj(t − tj)wj + · · · ,

∂z(t) = wjaj(t − tj)rj + · · · = W

f2
1
= A0

∏n−2
i=0 (t − ti)ri

f2
1

,
(4.2)

where A0 is the leading order coefficient appearing in Q(t). We can therefore identify

aj = A0

∏
i ̸=j

(tj − ti)ri

wj(f1(tj))2 . (4.3)

The ramified points at finite locations are given by t = 0, t = 1, and the ∆N zeros of
Q(t), i.e. ti for i = 2, · · · ,∆N + 1 where ∆N + 1 = n − 2. This gives us

a0 = (−1)r1 Q(0)
(Nmin + 1)(f1(0))2 = (−1)n1(n1)!(n3)!(Nmax − n1)!

(Nmin + 1)((Nmin)!)2(n3 − Nmin − 1)!
g(0,↑)
g(0,↓)

, (4.4)

a1 = Q(1)
(n1 + n3 − Nmax)(f1(1))2

= (−1)n3−Nmax−1(n1)!(n3)!(n3 − Nmin − 1)!
(n1 + n3 − Nmax)((n1 + n3 − Nmax − 1)!)2(Nmax − n1)!

g(1,↑)
g(1,↓)

.

We note that the generic expression (4.3), and the specific expressions (4.4) depend on the
leading coefficients of the polynomial Q(t), i.e. A0, A∆N , and AΣ which have been found
in the general case in (3.9), (3.10), and (3.11), respectively.

For the other points, we recognize that we do not need to calculate the ai individually,
but rather the product of the ai: these all have the same ramification of 1. Individually,
they are given by

ai =
tNmin
i (ti − 1)n1+n3−Nmax−1 lim

t→ti

Q(t)
(t−ti)

2(f1(ti))2 , i ̸= 0, 1, n − 1 . (4.5)
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The above i only runs over the ramified positions labeled by 2 ≤ i ≤ n − 2, and these
are associated with the cloud of twist-2 operators. These therefore refer to the zeros of
Q(t). We recognize that

Q(t) = A0

∆N+1∏
i=2

(t − ti) (4.6)

and so we may write the product over the ai as

∆N+1∏
i=2

ai =

(
g(0,↑)g(0,↓)

g(∞,↑)g(∞,↓)

)Nmin ( g(1,↓)g(1,↑)
g(∞,↓)g(∞,↑)

)n1+n3−Nmax−1 (−1)
1
2∆N(∆N−1)Disc(Q)

A∆N−2
0

2∆N

(
Res(Q,f1)

A
n1
0

)2 . (4.7)

Above we have written the answer in terms of the resultant Res(Q, f1)/An1
0 , where A0 has

been given in (3.9). In what follows, we will be considering Q with small degree, and so
it is more convenient to evaluate this as Res(Q, f1)/An1

0 =
∏n−2

i=2 f1(ti) so that there are
just a few evaluations of the known function f1 at the location of the zeros of Q. We will
approach this in a systematic way momentarily.

We next consider the point at infinity, writing

z(t) = an−1twn−1 +O(twn−1−1) ,

∂z(t) = wn−1an−1trn−1 + · · · = A0

∏
i(t − ti)ri

wj(f1(t))2 .
(4.8)

Remembering that wn−1 − 1 = rn−1 = n1 − n3 − 1, and that the Wronskian diverges like
tn3+n1−1, we identify

an−1 = A0
(n3 − n1)

1(
lim

t→∞
f1
tn1

)2

=
(−1)n3−Nmin−1(n3 − n1)

(
(n3 − n1 − 1)!

)2(n1)!
(n3)!(Nmax − n1)!(n3 − Nmin − 1)!

g(∞,↓)
g(∞,↑)

. (4.9)

One may also read this directly from the ratio z = f2/f1 in the limit t → ∞.
The result (4.9), up to a constant, is the “twist down” g(∞,↓) divided by the “twist up”

g(∞,↑). Interestingly, this restores some of the symmetry between the ramified points at
finite locations, and the ramified point at infinity by noting the extra minus sign in the
powers of an−1 appearing in (4.1). This is also noted in [47] and [33] by a redefinition of
the coefficient an−1 for the point at infinity, although we have noted it rather directly here
by identifying the polynomials in the bN that compose these coefficients, and how these
correspond to different types of OPE limits.

Finally, we need the product over the Cρ. These are the unramified images of infinity and
are given by the zeros of f1, which we have denoted tρ where ρ runs from 1 to n1. We see that

z(t) = Cρ

(t − tρ)
+ · · · ,

∂z = −Cρ

(t − tρ)2 + · · · = W

(f1(t))2 = tNmin(t − 1)n1+n3−Nmax−1Q(t)
(f1(t))2 ,

(4.10)

– 32 –



J
H
E
P
1
1
(
2
0
2
5
)
1
4
7

and so

Cρ = −
tNmin
ρ (tρ − 1)n1+n3−Nmax−1Q(tρ)(

lim
t→tρ

f1(t)
(t−tρ)

)2 . (4.11)

We note that

f1(t) =
(n3)!

n1!(n3 − n1)!
g(∞,↑)

n1∏
ρ=1

(t − tρ) . (4.12)

With this, we have

(−1)n1

n1∏
ρ=1

Cρ (4.13)

=

(
(Nmin)!(n3−n1)!g(0,↓)

(n3)!(Nmax−n1)!g(∞,↑)

)Nmin ( (−1)n1 (n3−n1)!(n1+n1−Nmax−1)!g(1,↓)
(n3)!(n3−Nmin−1)!g(∞,↑)

)n1+n3−Nmax−1
(

(−1)n1∆N Res(Q,f1)(
(n3)!

n1!(n3−n1)! g(∞,↑)

)∆N

)
(

Disc(f1)(
(n3)!

n1!(n3−n1)! g(∞,↑)

)n1−2

)2 .

Each piece of the n-point function in (4.1), namely (4.4), (4.7), and (4.13), includes terms
which are the polynomials in the bN which give OPE constraints discussed in section 3,
helping identify the singularity structure.

In this last expression, we have a formula that depends on Disc(f1), which is a homo-
geneous polynomial in the bN (possibly factorizable). We expect this discriminant to be
expressible using Res(Q, f1) for the following reasons. First, if Disc(f1) = 0, then f1 has
repeated roots. If this is the case, then the repeated zeros must also be zeros of the Wronskian.
This type of zero must not be part of the prefactor tNmin(t − 1)n1+n2−Nmax−1 of W since
these are generic, and independent of the values of the bN . Therefore, if Disc(f1) = 0 for
some specific values of bN , then Q has a zero at the repeated root, and so Res(Q, f1) = 0 at
those same values of bN . This implies that every zero of Disc(f1) is contained in the zeros
of Res(Q, f1). This means that we expect the polynomials in the bN that compose Disc(f1)
must be contained in the polynomials in the bN that compose Res(Q, f1). In addition, if for
some values of bN the polynomials f1 and f2 share a zero at some ti, the Wronskian must also
be zero at this ti. These are exactly the “twist down” OPE limits we have seen in section 3,
but will also involve the additional “twist down” OPEs that occur when distinct members of
the cloud come together in an OPE limit. We also expect the “twist up” to appear, given
that the discriminant and resultant depend on the leading coefficient of the polynomials
involved. We will have one example of such a limit below in the ∆N = 2 case.

Thus, we expect Res(Q, f1) to contain Disc(f1) along with additional factors of the “twist
down” and “twist up” OPE constraint polynomials. In what follows, we simply reverse
engineer Disc(f1) for the specific cases at hand, ∆N = 1, 2. We do so by calculating specific
examples, identifying polynomials in the bN , and fixing powers and coefficients. As mentioned
above, Res(Q, f1)/An1

0 =
∏n−1

i=2 f1(ti) will be more efficient for us because the latter product
will contain only ∆N terms, which will be small for the examples considered. Given the
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discussion above, we must find the Wronskian in the special cases, and then reverse engineer
Disc(f1) in terms of Res(Q, f1), and this will furnish the n-point functions in closed form.

We start with the case ∆N = 1. We have

Q(t) = A0t + A1 (4.14)

where the coefficients are given by the generic formulas (3.9) and (3.10). The location of
the new ramified point is given by

t = t2 = −A1
A0

=
g(0,↑)g(0,↓)

g(∞,↑)g(∞,↓)
(4.15)

=
bNmin

(
(Nmin − n1 + 1)bNmin + (Nmin + 1)bNmin+1

)
(bNmin + bNmin+1)

(
(n3 − Nmin)bNmin − (Nmin − n1 + 1)bNmin+1

) .

One may check the above by considering the case −ε = nmax = 1 in [92], constructing the
2 × 2 matrix equation (20) in that work. Solving this system of 2 equations for q and t2
(they call t2 = a in their work) in terms of c0 and c1 gives the same answer as the above
for t2, keeping in mind one must change notation from ci to the bN as in (2.26). Reverse
engineering the discriminant, we find

Disc(f1)=
f1(t2)(g(∞,↑))n1−1(g(∞,↓))n1

g(0,↓)g(1,↓)
(4.16)

×
n1∏

j=1
jj+3−2n1

n1−1∏
j=1

(
j−(Nmin+1)

)j−1
n1∏

j=2

(
j−(n1+n3−Nmin)

)j−2
n1∏

j=1
(j−n3−1)n1−j .

One may check that the above gives the correct answer in the limiting cases bNmin = 0 and
bNmin+1 = 0, when these limits are allowed. In these cases f1 reduces to a single Jacobi
polynomial. These discriminants are known [97] and are in fact part of how we have reverse
engineered the answer.

In the case ∆N = 2 we have

Q(t) = A0t2 + A1t + A2 (4.17)

where the Ai are given by (3.9), (3.10), and A1 is given in this special case by (3.13),
using (3.11). The two zeros of Q are given by

t± =
−A1 ±

√
A2

1 − 4A0A2

2A0
. (4.18)

We again reverse engineer the discriminant of f1 finding

Disc(f1)=
f1(t+)f1(t−)(g(∞,↑))n1−1(g(∞,↓))n1

g(0,↓)g(1,↓)g(c,↓)
(4.19)

×
n1∏

j=1
jj+4−2n1

n1−2∏
j=1

(
j−(Nmin+1)

)j−1
n1∏

j=3

(
j−(n1+n3−Nmin)

)j−3
n1∏

j=1
(j−n3−1)n1−j .
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Equations (4.16) and (4.19) therefore give the last remaining ingredients to express the
n-point function (4.1) in closed form for ∆N = 1, 2.

In the case that ∆N = 2 and (3.18) is enforced, there is only a single ai associated
with the point t = t3, rather than the two ai. This is because (3.18) enforces that Q has
the form Q = A0(t − t3)2 with t3 given in (3.19). Thus, rather than

∏3
j=2 aj for the two

zeros of Q, there is only one new ai to calculate

a3 = tNmin
3 (t3 − 1)n1+n3−Nmax−1A0

2
(
f1(t3)

)2 (4.20)

which we can use in (4.1), keeping in mind that all equations in this case must be read
with an extra algebraic constraint (3.18).

5 Discussion

In this paper we have considered covering space maps where both the covering space and
base space are spheres. We have shown that the maps (2.30), or equivalently (2.31), or (2.32),
have arbitrarily large ramifications at (t = 0, z = 0), (t = 1, z = 1) and (t = ∞, z = ∞), and a
cloud of ramification 1 points by computing the Wronskian W in (2.34). The location of the
ramification 1 points are given by the zeros of the polynomial Q(t) in (2.35), which is part of W .
We have shown that the class of maps (2.30) cover all group theoretically allowed ramifications
in this class. The integers in the map n1, n3, Nmin, and Nmax can be found directly from
these ramifications through (2.41), and give non-pathological maps satisfying (2.36).

There are ∆N + 1 coefficients defining the maps (2.30), which we have called bN . We
argued they are valued in CP∆N due to an invariance of the maps under the scaling bN → λbN .
Therefore, the space of maps is ∆N dimensional, the correct dimension to parameterize the
∆N cross ratios for a (3 + ∆N)-point function. The map parameters bN control the cross
ratios, but also control which group product channel is taken when considering an OPE limit,
i.e. when the ramified points approach each other. We considered a set of these OPE limits for
the general map (2.30), which are summarized in table 1. We also considered other OPE limits
in section 3.2 and in appendix C. These OPE limits are all seen to be given by homogenous
polynomials in the coefficients bN , and so are algebraic variety subspaces of CP∆N .

To compute n-point functions, one generally needs to be able to compute certain co-
efficients in the maps. First, we need to evaluate the Wronskian (2.34), which we have
shown can be computed in closed form algorithmically in ∆N steps (see appendix E), finding
the polynomial Q analytically. We have done this explicitly up to ∆N = 2. Next, we
need the discriminant of Q, which furnishes polynomials in bN that encode OPE limits of
operators in the cloud approaching each other. One also needs to compute the resultant
Res(Q(t), f1(t)), and for small ∆N this is simply evaluation of f1 at the zeros of Q. Finally
one also needs to compute the discriminant of f1, which we argue can be written in terms
of the polynomials in bN which make up the resultant Res(Q(t), f1(t)), and other OPE
limit polynomials already found. Thus, our previous identification of the OPE limits helps
express the coefficients that we use to construct the correlators, and in such a way that
the singularity structure is clear. Concentrating on the cases ∆N = 0, 1, 2, we were able
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to write closed form answers for the Wronskian, and the constants necessary to construct
the 4-point and 5-point functions in these cases.

One of our primary motivations for this work is with an eye towards holography. A
canonical example is the D1-D5 CFT. To move to the point on the moduli space that is well
described by classical supergravity, one must deform the theory along a specific direction
in the moduli space. In the D1-D5 CFT, the pertinent exactly marginal operator is in
the twist-2 sector [13, 15, 16]. Thus, to track the parameters of the theory, and ultimately
observables, amounts to using conformal perturbation theory to high order. These calculations
would involve a large number of twist-2 operators to be inserted, for which our maps have
direct relevance.

These considerations also begin to outline our future directions. We would like to use
our maps to further explore conformal perturbation theory applied to candidate holographic
orbifold CFTs. This includes programmes of finding the change of the dimensions of operators
and the change of structure constants — see [86] and references therein. The problem of
studying the changes to the structure constants has been limited to low twist operators. Here,
we have constructed maps for correlation functions with large twists in closed form, and
obtained in some cases closed form solutions for the n-point correlation functions.

Importantly, the closed form expressions are given in terms of the covering space map
parameters bN . One must sum over all images of the map to construct the full correlation
function. For a given point in the base space, z0 = f2(t)/f1(t) has many solutions in t, even
for ramified points [47, 52, 53]. However, at least part of this sum is encoded in the map
parameters. Consider one of the simplest cases, a 4-point function with a single twist-2
insertion, which needs to be integrated over to compute a perturbation to the structure
constant. In this case we have the location of the ramified point as

t = t2 = −A1
A0

=
g(0,↑)g(0,↓)

g(∞,↑)g(∞,↓)
=

bNmin

(
(Nmin − n1 + 1)bNmin + (Nmin + 1)bNmin+1

)
(bNmin + bNmin+1)

(
(n3 − Nmin)bNmin − (Nmin − n1 + 1)bNmin+1

) . (5.1)

Given a specific value for the local coordinate r = bNmin+1/bNmin on CP1, we see that we
can read a value ζ = f2(t2(r))/f1(t2(r)): i.e. this specific value of r defines the cross ratio ζ.
However, the equation ζ = f2(t2(r))/f1(t2(r)) for a fixed value of ζ has many solutions, and
corresponds to distinct maps. The number of these maps are called the connected Hurwitz
number H. One may check that the above computation agrees with [98] (also used in [47])
which gives the number of such maps in this case H= min

i=0,··· ,3

(
wi(S + 1− wi)

)
with S = n3,

w0 = Nmin + 1, w1 = n1 + n3 − Nmax, w2 = 2, and w3 = n3 − n1; we have checked this
for many values of ni and Nmin.

In conformal perturbation theory one has to integrate over the position of the deformation
operator, i.e. over all possible values of ζ. This would be integrating over a set of H patches
of CP1, and each patch represents one cover of the base space (the cross ratio ranges over the
base space sphere). It seems it might be more efficient to simply change to the coordinates
of CP1 and integrate over this coordinate, and this would account for these H transport
equivalent maps. One would have to be careful about how to regulate the integrals, given
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the non-trivial form of the maps z = f2/f1 and the nontrivial form of t2 in (5.1): hard disk
regulators in the original z plane would have complicated pre-images in the t-plane cover, as
well as in the CP1 parameterized by bNmin and bNmin+1, and so a careful treatment would be
necessary. Similarly, the twist-3 deformation operators in [34] would presumably be integrated
over the 1 complex dimensional algebraic variety inside of CP2 defined by (3.18) with similar
complications. We hope to explore these problems in future work.
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A Collected identities for Jacobi polynomials

The Jacobi polynomials are defined through the series expansion

P α,β
γ (x) =

γ∑
ℓ=0

(γ + α + β + 1)ℓ(α + ℓ + 1)γ−ℓ

ℓ!(γ − ℓ)!

(
x − 1
2

)ℓ

(A.1)

where (κ)δ = (κ)(κ + 1) · · · (κ + δ − 1) is Pochhammer’s symbol (i.e. the “rising factorial”
with δ terms). This can be written in terms of the gamma function

(κ)δ = Γ(κ + δ)
Γ(κ) (A.2)

keeping in mind that regulation may be necessary for negative integer values. There is
also the identity

(−κ)δ = (−1)δ(κ − δ + 1)δ . (A.3)

Some particularly useful values of Jacobi polynomials are (assuming γ ≥ 0, and that
α, β, γ are integers)

P α,β
γ (1) = (α + 1)γ

γ! =


(α+γ)!

α!γ! if α ≥ 0

(−1)γ (−α−1)!
(−α−γ−1)!γ! if α ≤ −1 and α + γ + 1 ≤ 0

0 otherwise

. (A.4)
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Using the reflection symmetry (A.7) below, one finds

P α,β
γ (−1) = (−1)γP β,α

γ (1) =


(−1)γ (β+γ)!

β!γ! if β ≥ 0
(−β−1)!

(−β−γ−1)!γ! if β ≤ −1 and β + γ + 1 ≤ 0

0 otherwise

. (A.5)

The Jacobi polynomials can also be written using the Rodrigues formula

P α,β
γ (x) = (−1)γ

2γγ! (1− x)−α(1 + x)−β
(

d

dx

)γ (
(1− x)α+γ(1 + x)β+γ

)
. (A.6)

The Jacobi polynomials have the following recursion relations and symmetries, most
of which can be proved relatively quickly using either the series expression or Rodrigues
formula above

P α,β
γ (−x) = (−1)γP β,α

γ (x) , (A.7)

P α,β−1
γ (x)− P α−1,β

γ (x) = P α,β
γ−1(x) , (A.8)

(1− x)
2 P α+1,β

γ (x) + (1 + x)
2 P α,β+1

γ (x) = P α,β
γ (x) , (A.9)

(2γ + α + β + 1)P α,β
γ (x) = (γ + α + β + 1)P α,β+1

γ (x) + (γ + α)P α,β+1
γ−1 (x) , (A.10)

(2γ + α + β + 1)P α,β
γ (x) = (γ + α + β + 1)P α+1,β

γ (x)− (γ + β)P α+1,β
γ−1 (x) , (A.11)

(2γ + α + β + 2)(1 + x)
2 P α,β+1

γ (x) = (γ + 1)P α,β
γ+1(x) + (γ + β + 1)P α,β

γ (x) , (A.12)

(2γ + α + β + 2)(1− x)
2 P α+1,β

γ (x) = −(γ + 1)P α,β
γ+1(x) + (γ + α + 1)P α,β

γ (x) . (A.13)

The following identity connects Jacobi polynomials of different order, but equivalent indices:

P α,β
γ+1(x) =

(
Aα,β

γ x + Bα,β
γ

)
P α,β

γ (x)− Cα,β
γ P α,β

γ−1(x) , (A.14)

Aα,β
γ = (2γ + α + β + 1)(2γ + α + β + 2)

2(γ + 1)(γ + α + β + 1) , Bα,β
γ = (α2 − β2)(2γ + α + β + 1)

2(γ + 1)(γ + α + β + 1)(2γ + α + β) ,

Cα,β
γ = (γ + α)(γ + β)(2γ + α + β + 2)

(γ + 1)(γ + α + β + 1)(2γ + α + β) .

In addition, the Jacobi Polynomials have the following first derivative

2∂xP α,β
γ (x) = (γ + α + β + 1)P α+1,β+1

γ−1 (x) , (A.15)

and satisfy the differential equation

∂2
xP α,β

γ (x) +
(

α + 1
x − 1 + β + 1

x + 1

)
∂xP α,β

γ (x) + γ(γ + α + β + 1)
2

( −1
x − 1 + 1

x + 1

)
P α,β

γ (x) = 0.

(A.16)
For more complete treatment of Jacobi Polynomials, see [96] (this entry in the bibliography

includes a link to an online version which is frequently updated).
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B Proofs for specific identities used

B.1 Identities used to adapt maps to t = 1 and t = ∞

We consider the identity

(−1)n1P−(N+1),−(n1+n3−N)
n1 (1− 2t)− (−1)n1tN+1P

N+1,−(n1+n3−N)
n3−N−1 (1− 2t) (B.1)

= (−1)N−n1(1− t)n1+n3−N P
−(N+1),(n1+n3−N)
N−n1

(1− 2t)

used in the main text (2.27). Here and throughout we will assume that n1 and n3 are integers
satisfying 0 ≤ n1 < n3, and we will be able to show that (B.1) is true for all integers N ,
using (2.23), i.e. P α,β

−n ≡ 0 for n ≥ 1. The above is written as a power series in t, and we
will often find it convenient to write it as a power series in (t − 1) which we can do using
the identity P α,β

γ (x) = (−1)γP β,α
γ (−x), giving an equivalent form of (B.1) as

P−(n1+n3−N),−(N+1)
n1 (2t − 1) + (−1)n1+n3−N tN+1P

−(n1+n3−N),N+1
n3−N−1 (2t − 1) (B.2)

= (1− t)n1+n3−N P
(n1+n3−N),−(N+1)
N−n1

(2t − 1) .

We explore the equivalent identities (B.1) and (B.2) in three cases:

1. N ≥ n3 such that P
−(n1+n3−N),N+1
n3−N−1 is set to 0 in (B.2) (similarly in (B.1))

(a) N ≥ n1 + n3

(b) n3 ≤ N < n1 + n3

2. N < n1 such that P
(n1+n3−N),−(N+1)
N−n1

is set to 0 in (B.2) (similarly in (B.1))

(a) 0 ≤ N + 1 ≤ n1

(b) N + 1 < 0

3. n1 ≤ N < n3 such that all Jacobi polynomials are present in (B.1) and (B.2)

The main cases above are motivated by the absence of certain Jacobi polynomials. The
sub-cases are motivated by the powers of t and (1− t) appearing in the identity (B.1) or (B.2):
when these powers become negative, the Jacobi polynomials multiplying them will be seen
to truncate, making the expressions evaluate to polynomials.

We can prove the cases 1–3 using a set of standard manipulations which is worth pointing
out. First, if a Jacobi polynomial has a negative subscript it is omitted (2.23). Next, in any
given Jacobi polynomial the Pochhammer symbols only involve integer arguments, and some
of these Pochhammer symbols are zero: a Pochhammer symbol (−m)n is 0 when n ≥ m + 1
(with m, n integers and where m non-negative). This will truncate the sums defining certain
Jacobi polynomials. After doing so, we will often shift summation indices, which does not
affect whether a given Pochhammer symbol is 0 or not. After this, the remaining Pochhammer
symbols are all non-zero with integer arguments, and we express such Pochhammer symbols
in a “normal form” by writing them in terms of factorials, noting that

(m + 1)n = (m + n)!
m! , (−m)n = (−1)n(m − n + 1)n = (−1)n m!

(m − n)! . (B.3)
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(n1 + n3)− 2

[
-1 n1 n3 (n1 + n3)

Max range for sum over N where t = 0, 1,∞ all ramified

)[)[)[) case 3 case 1b case 1acase 2acase 2b

1

Figure 1. The ranges of N for the different cases 1–3.

Here we have assumed that m and n are non-negative in the first equation and that 0 ≤ n ≤ m

in the second equation. In the case where there are only two Jacobi polynomials, these make
identities (B.1) and (B.2) simple to check: the bounds of the sums and the individual terms
become identically equal. We show one such example (case 1b) where all the above steps are
executed. The other cases where only two Jacobi polynomials are present, i.e. cases 1a, 2a,
and 2b follow the same steps, or with a simpler set of steps. Case 3 is sufficiently different
that we include its proof separately, although the above manipulations still prove to be useful.

We now address case 1b as our example where only two Jacobi polynomials are present.
In this case N ≥ n3, which eliminates the Jacobi polynomials with subscript N − n3 − 1,
making (B.2) become

P−(n1+n3−N),−(N+1)
n1 (2t − 1) = (1− t)n1+n3−N P

(n1+n3−N),−(N+1)
N−n1

(2t − 1) . (B.4)

Plugging in the expansion (A.1) for the left hand side of (B.4), we find

P−(n1+n3−N),−(N+1)
n1 (2t − 1) =

n1∑
ℓ=0

(−n3)ℓ(−(n1 + n3 − N) + ℓ + 1)(n1−ℓ)
ℓ!(n1 − ℓ)! (t − 1)ℓ (B.5)

We note that the Pochhammer symbol (N − (n1 + n3) + ℓ + 1)n1−ℓ is 0 unless ℓ is sufficiently
large: ℓ must be large enough to make the smallest term in the product greater than 0. This
gives that ℓ ≥ (n1 +n3)−N , and we note that 0 ≤ (n1 +n3)−N ≤ n1 for case 1b. This gives

P−(n1+n3−N),−(N+1)
n1 (2t − 1)

=
n1∑

ℓ=n1+n3−N

(−n3)ℓ(−(n1 + n3 − N) + ℓ + 1)(n1−ℓ)
ℓ!(n1 − ℓ)! (t − 1)ℓ

= (t − 1)(n1+n3−N)
N−n3∑

ℓ=0

(−n3)(ℓ+n1+n3−N)(ℓ + 1)(N−n3−ℓ)
(n1 + n3 − N + ℓ)!(N − n3 − ℓ)! (t − 1)ℓ

= (1− t)(n1+n3−N)
N−n3∑

ℓ=0

(−1)ℓn3!(N − n3)!
(N − n1 − ℓ)!ℓ!(n1 + n3 − N + ℓ)!(N − n3 − ℓ)! (t − 1)ℓ

(B.6)

where in the third line we shift the summation index and the last line write the Pochhammer
symbols (which are all non-zero) in terms of factorials and absorb some factors of −1 into
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the prefactor. Plugging in the expansion (A.1) for the right hand side of (B.4), we find

(1− t)n1+n3−N P
(n1+n3−N),−(N+1)
N−n1

(2t − 1)

= (1− t)n1+n3−N
N−n1∑

ℓ=0

(n3 − N)ℓ(n1 + n3 − N + ℓ + 1)(N−n1−ℓ)
ℓ!(N − n1 − ℓ)! (t − 1)ℓ .

(B.7)

We note that the Pochhammer symbol (n3 − N)ℓ = 0 if ℓ ≥ ℓmax = N − n3 + 1, which
truncates the sum to
(1− t)n1+n3−N P

(n1+n3−N),−(N+1)
N−n1

(2t − 1)

= (1− t)n1+n3−N
N−n3∑

ℓ=0

(n3 − N)ℓ(n1 + n3 − N + ℓ + 1)(N−n1−ℓ)
ℓ!(N − n1 − ℓ)! (t − 1)ℓ

= (1− t)(n1+n3−N)
N−n3∑

ℓ=0

(−1)ℓn3!(N − n3)!
(N − n1 − ℓ)!ℓ!(n1 + n3 − N + ℓ)!(N − n3 − ℓ)! (t − 1)ℓ

(B.8)

where in the last line we write these non-zero Pochhammer symbols in terms of factorials.
This matches (B.6) to (B.8), concluding case 1b. Cases 1a, 2a, and 2b follow the same steps.

We now address case 3 where n1 ≤ N < n3 and all Jacobi polynomials are present in (B.1).
We start with the hypergeometric identity [99, section 9.13] multiplied by a constant A

A F

(
α, β

γ
; t
)
= A

Γ(γ)Γ(γ − α − β)
Γ(γ − α)Γ(γ − β) F

(
α, β

α + β − γ + 1; 1− t

)

+ (1− t)γ−α−β Γ(γ)Γ(α + β − γ)
Γ(α)Γ(β) A F

(
γ − α, γ − β

γ − α − β + 1; 1− t

)
.

(B.9)

We take as before
α = −n1 + Bϵ , γ = −N + Aϵ , β = −n3 + rϵ ,

γ − α = −N + n1 + (A − B)ϵ , γ − β = −N + n3 + (A − r)ϵ ,

γ − α − β = −N + n1 + n3 + (A − B − r)ϵ ,

(B.10)

where B and r are also constants. We note that with the ordering n1 ≤ N < n3, only certain
combinations of α, β, γ are close to negative integers. Further, the hypergeometric function
on the left hand side of (B.9) has two windows of ℓ that survive the limit, as does the first
hypergeometric function on the right hand side of (B.9). However, the second geometric
function on the right hand side of (B.9) has only one surviving window for ℓ. Taking the
ϵ → 0 limit of the identity we find

A
n1∑

ℓ=0

(−n1)ℓ(−n3)ℓ

(−N)ℓℓ!
tℓ+B

n3∑
ℓ=N+1

(−1)n1−N n1!(ℓ−n1−1)!(−n3)ℓ

N !(ℓ−N−1)!ℓ! tℓ (B.11)

= (−1)n1(n3−N)n1

(N−n1+1)n1
(A−B)

n1∑
ℓ=0

(−n1)ℓ(−n3)ℓ

(−n1−n3+N+1)ℓℓ!
(1−t)ℓ

+(−1)n1(n3−N)n1

(N−n1+1)n1

(A−B)B
(A−B−r)

n3∑
ℓ=n1+n3−N

(−1)n3−N n1!(ℓ−n1−1)!(−n3)ℓ

(n1+n3−N−1)!(ℓ−n1−n3+N)!ℓ! (1−t)ℓ

− n1!n3!
N !(n1+n3−N)!

Br

(A−B−r) (1−t)n1+n3−N
N−n1∑

ℓ=0

(−N+n1)ℓ(−N+n3)ℓ

(−N+n3+n1+1)ℓℓ!
(1−t)ℓ .
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Interestingly, the last two sums on the right hand side of the above expression are the same
function with different coefficients. This can be shown by examining the second to last
line of the above equation

(−1)n1(n3−N)n1

(N−n1+1)n1

n3∑
ℓ=n1+n3−N

(−1)n3−N n1!(ℓ−n1−1)!(−n3)ℓ

(n1+n3−N−1)!(ℓ−n1−n3+N)!ℓ! (1−t)ℓ (B.12)

= (−1)n1n1!(n3−N)n1

(N−n1+1)n1

N−n1∑
ℓ=0

(−1)n3−N (ℓ+n3−N−1)!(−n3)(ℓ+n1+n3−N)
(n1+n3−N−1)!ℓ!(ℓ+n1+n3−N)! (1−t)ℓ+n1+n3−N

= n1!(n1+n3−N−1)!(N−n1)!
(n3−N−1)!N ! (1−t)n1+n3−N

×
N−n1∑

ℓ=0

(−1)ℓ(ℓ+n3−N−1)!n3!
(N−n1−ℓ)!(n1+n3−N−1)!ℓ!(ℓ+n1+n3−N)! (1−t)ℓ

= n1!(N−n1)!
(n3−N−1)!N ! (1−t)n1+n3−N

N−n1∑
ℓ=0

(−1)ℓ(ℓ+n3−N−1)!n3!
(N−n1−ℓ)!ℓ!(ℓ+n1+n3−N)! (1−t)ℓ .

Above we have shifted the sum, and used identities to write all Pochhammer symbols in
terms of factorials. Doing a similar replacement in the last line of (B.11) we find

n1!n3!
N !(n1+n3−N)! (1−t)n1+n3−N

N−n1∑
ℓ=0

(−N+n1)ℓ(−N+n3)ℓ

(−N+n3+n1+1)ℓℓ!
(1−t)ℓ (B.13)

= n1!n3!
N !(n1+n3−N)! (1−t)n1+n3−N

N−n1∑
ℓ=0

(−1)ℓ(N−n1)!(n3−N+ℓ−1)!(n1+n3−N)!
(N−n1−ℓ)!(n3−N−1)!(n1+n3−N+ℓ)!ℓ! (1−t)ℓ

= n1!n3!
N ! (1−t)n1+n3−N

N−n1∑
ℓ=0

(−1)ℓ(N−n1)!(n3−N+ℓ−1)!
(N−n1−ℓ)!(n3−N−1)!(n1+n3−N+ℓ)!ℓ! (1−t)ℓ .

The coefficients of (1 − t)ℓ in the last lines of (B.12) and (B.13) are seen to be equivalent.
This allows us to rewrite the identity (B.11) as

A
n1∑

ℓ=0

(−n1)ℓ(−n3)ℓ

(−N)ℓℓ!
tℓ + B

n3∑
ℓ=N+1

(−1)n1−N n1!(ℓ − n1 − 1)!(−n3)ℓ

N !(ℓ − N − 1)!ℓ! tℓ (B.14)

= (−1)n1(n3 − N)n1

(N − n1 + 1)n1
(A − B)

n1∑
ℓ=0

(−n1)ℓ(−n3)ℓ

(−n1 − n3 + N + 1)ℓℓ!
(1− t)ℓ

+ n1!n3!
N !(n1 + n3 − N)! B (1− t)n1+n3−N

N−n1∑
ℓ=0

(−N + n1)ℓ(−N + n3)ℓ

(−N + n3 + n1 + 1)ℓℓ!
(1− t)ℓ

where we see that the regulator r plays no role on the right hand side, which we should have
anticipated because it plays no role on the left hand side.
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All the sums in the above equation are related to Jacobi polynomials:

n1∑
ℓ=0

(−n1)ℓ(−n3)ℓ

(−N)ℓℓ!
tℓ= (−1)n1n1!(N−n1)!

N ! P−(N+1),−(n1+n3−N)
n1 (1−2t), (B.15)

n3∑
ℓ=N+1

(−1)n1−N n1!(ℓ−n1−1)!(−n3)ℓ

N !(ℓ−N−1)!ℓ! tℓ=−(−1)n1n1!(N−n1)!
N ! P

(N+1),−(n1+n3−N)
n3−N−1 (1−2t),

(B.16)
(−1)n1(n3−N)n1

(N−n1+1)n1

n1∑
ℓ=0

(−n1)ℓ(−n3)ℓ

(−n1−n3+N+1)ℓℓ!
(1−t)ℓ= n1!(N−n1)!

N ! P−(n1+n3−N),−(N+1)
n1 (2t−1),

(B.17)

n1!n3!
N !(n1+n3−N)!

N−n1∑
ℓ=0

(−N+n1)ℓ(−N+n3)ℓ

(−N+n3+n1+1)ℓℓ!
(1−t)ℓ= n1!(N−n1)!

N ! P
n1+n3−N,−(N+1)
N−n1

(2t−1).

(B.18)

These statements can be proven similarly to the last cases: truncating sums, and then
replacing Pochhamer symbols by factorials.

Plugging in (B.15)–(B.18) into the identity (B.14) and canceling the common factor
of n1!(N − n1)!/N ! gives

A(−1)n1P−(N+1),−(n1+n3−N)
n1 (1−2t)−B(−1)n1tN+1P

(N+1),−(n1+n3−N)
n3−N−1 (1−2t)

= (A−B)P−(n1+n3−N),−(N+1)
n1 (2t−1)+B(1−t)n1+n3−N P

n1+n3−N,−(N+1)
N−n1

(2t−1).
(B.19)

We see that the above represents two identities, given that A and B are independent. We
see that the B = 0 case is the familiar identity P α,β

γ (x) = (−1)γP β,α
γ (−x) identity. The

case of interest for us is A = B = 1 and gives

(−1)n1P−(N+1),−(n1+n3−N)
n1 (1−2t)−(−1)n1tN+1P

(N+1),−(n1+n3−N)
n3−N−1 (1−2t)

= (1−t)n1+n3−N P
n1+n3−N,−(N+1)
N−n1

(2t−1)= (−1)(N−n1)P
−(N+1),n1+n3−N
N−n1

(1−2t)
(B.20)

concluding case 3.

Effectively, (B.1) works by swapping the long twist operator at (t = 0, z = 0) with the
long twist operator at (t = 1, z = 1). We wish to also consider swapping the operators at
(t = 0, z = 0) and (t = ∞, z = ∞). This is accomplished by showing that

P α,β
γ (1− 2t) = tγP−(2γ+α+β+1),β

γ

(
1− 2

t

)
(B.21)
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which appears as (2.29) in the main text. We prove this by examining the right hand side:

tγP−(2γ+α+β+1),β
γ

(
1− 2

t

)
(B.22)

=(−1)γ(−t)γ
γ∑

ℓ=0

(γ−(2γ+α+β+1)+β+1)ℓ(−(2γ+α+β+1)+ℓ+1)(γ−ℓ)
ℓ!(γ−ℓ)!

(
−1

t

)ℓ

=(−1)γ
γ∑

ℓ=0

(
−(γ+α)

)
ℓ

(
−(2γ+α+β+1

)
+ℓ+1)(γ−ℓ)

ℓ!(γ−ℓ)! (−t)γ−ℓ

=(−1)γ
γ∑

ℓ=0

(
−(γ+α)

)
(γ−ℓ)

(
−(γ+α+β)−ℓ

)
ℓ

ℓ!(γ−ℓ)! (−t)ℓ

where in the last line we have changed the order of the sum, swapping ℓ ↔ γ − ℓ. We end by
reversing the order of the Pochhammer symbols, i.e. using (a)m = (−1)m(1−m−a)m, and so

tγP−(2γ+α+β+1),β
γ

(
1− 2

t

)
=

γ∑
ℓ=0

(α + 1 + ℓ)(γ−ℓ)(γ + α + β + 1)ℓ

ℓ!(γ − ℓ)! (−t)ℓ = P α,β
γ (1− 2t)

(B.23)

proving the assertion.

B.2 Identities used for OPE limits

We start with by commenting on the identities used in table 1 to show that the OPE limit
gives a map of the same form. In this table, one should use the form of the map (2.30), (2.31),
or (2.32), depending on the approach point. To verify that the map is of the same form,
one may plug in bN ({BM}) in the table into the appropriate form of the map. By shifting
the summation indices in the numerator and denominator, the sums can be written as sums
where the coefficients are BN , rather than BN−1 or other shifts. Once this is accomplished, a
combination of Jacobi polynomials appears as the coefficient of BN , and this combination
of Jacobi polynomials can be addressed using the stated identities to simplify them to one
Jacobi polynomial. If table 1 has only one identity listed, then this identity is used both in
the numerator and denominator; if table 1 has two identities listed, then the upper identity
is used in the numerator and the lower identity is used in the denominator. This final form
of the map matches the general form (2.30), (2.31), or (2.32), appropriate to the point, with
bN → BN and shifts to n1, n3, Nmin, and Nmax labeled as the “equivalent shift” column in
the table. These shifts accomplish the change to the ramifications at the points (t = 0, z = 0),
(t = 1, z = 1) and (t = ∞, z = ∞) appropriate for the OPE. We now turn to proving the
identities in table 1 by using the basic identities in appendix A.

We start by proving the identities used when the approach point is t = 0. First, we show

tP α,β
γ = P α−1,β−1

γ+1 − P α−1,β
γ+1 . (B.24)

This identity is easy to establish, using (A.1), which we use on the right hand side, finding

P α−1,β−1
γ+1 −P α−1,β

γ+1 =
γ+1∑
ℓ=0

((γ+α+β)ℓ(α+ℓ)γ+1−ℓ

ℓ!(γ+1−ℓ)! − (γ+α+β+1)ℓ(α+ℓ)γ+1−ℓ

ℓ!(γ+1−ℓ)!

)
(−t)ℓ .

(B.25)
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We note that the ℓ = 0 term vanishes, and so we may start the sum at ℓ = 1. Shifting
the sum indices down, we find

P α−1,β−1
γ+1 − P α−1,β

γ+1 (B.26)

=
γ∑

ℓ=0

(
(γ + α + β)(ℓ+1)(α + ℓ + 1)γ−ℓ

(ℓ + 1)!(γ − ℓ)! −
(γ + α + β + 1)(ℓ+1)(α + ℓ + 1)γ−ℓ

(ℓ + 1)!(γ − ℓ)!

)
(−t)ℓ+1

=
γ∑

ℓ=0

(γ + α + β + 1)(ℓ)(α + ℓ + 1)γ−ℓ

(ℓ)!(γ − ℓ)!

((γ + α + β)
ℓ + 1 − (γ + α + β + ℓ + 1)

ℓ + 1

)
(−t)ℓ+1

=
γ∑

ℓ=0

(γ + α + β + 1)(ℓ)(α + ℓ + 1)γ−ℓ

(ℓ)!(γ − ℓ)! (−1)(−t)ℓ+1 = t P α,β
γ (1− 2t)

establishing the identity (B.24). Shifting γ we find

tP α,β
γ−1(1− 2t) = P α−1,β−1

γ (1− 2t)− P α−1,β
γ (1− 2t) . (B.27)

We similarly use identity (A.13), but written using the t variable i.e. x = 1− 2t and shifting
γ down by one and shifting α down by one. This gives

(2γ + α + β − 1) t P α,β
γ−1(1− 2t) = −γP α−1,β

γ + (γ + α − 1)P α−1,β
γ−1 (1− 2t)

= −γP α−1,β
γ (1− 2t) + (γ + α − 1)

(
P α−1,β−1

γ (1− 2t)− P α−2,β
γ (1− 2t)

) (B.28)

where in the second line we have used identity (A.8). Now, we take γ times (B.27) and
subtract it from (B.28), finding

(γ +α+ β − 1) t P α,β
γ−1(1− 2t) = (α− 1)P α−1,β−1

γ (1− 2t)− (γ +α− 1)P α−2,β
γ (1− 2t) (B.29)

which we use in showing (C.7). It should be noted that the above identity is still valid for
γ = 0, recognizing that P α,β

1 = 1 and defining P α,β
−1 = 0. It continues to be trivially true

for γ ≤ −1 as well, given rule (2.23). This identity is the only one used in the approaches
to t = 0 and so concludes these cases.

Next, we consider the approaches to the point t = 1. We redefine t → (1− t) in (B.29)
to arrive at the related identity

(γ+α+β−1)(1−t)P α,β
γ−1(2t−1) = (α−1)P α−1,β−1

γ (2t−1)−(γ+α−1)P α−2,β
γ (2t−1) (B.30)

which is the only identity needed for the OPE limit when the approach point is t = 1,
concluding this case.

We may substitute t → 1/t into (B.24) and get

1
t
P α,β

γ−1

(
1− 2

t

)
= P α−1,β−1

γ

(
1− 2

t

)
− P α−1,β

γ

(
1− 2

t

)
(B.31)

which is used for the twist up OPE at t = ∞ for the numerator sum. The basic identity

P α,β−1
γ (x)− P α−1,β

γ (x) = P α,β
γ−1(x) (B.32)
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is used for the twist up OPE near t = ∞ for the denominator sum. We take (B.27) with
t → 1/t to give

(γ+α+β−1)1
t
P α,β

γ−1

(
1− 2

t

)
= (α−1)P α−1,β−1

γ

(
1− 2

t

)
−(γ+α−1)P α−2,β

γ

(
1− 2

t

)
(B.33)

which is used for the twist down OPE near t = ∞ for the numerator sum. We next start
with (A.10) and (A.8) with some indices shifted as

P α,β
γ (x) = P α−1,β+1

γ (x) + P α,β+1
γ−1 (x) . (B.34)

We take γ +α times the above equation, subtract it from (A.10), and evaluate at x = 1− 2/t.
This gives

(γ+β+1)P α,β
γ

(
1− 2

t

)
= (γ+α+β+1)P α,β+1

γ

(
1− 2

t

)
−(γ+α)P α−1,β+1

γ−1

(
1− 2

t

)
(B.35)

which is the identity needed for the twist down OPE near t = ∞ in the numerator sum. We
next begin with (A.13) with some shifts to the indices.

(2γ + α + β + 1) (1− x)
2 P α+1,β+1

γ−1 (x) = −γP α,β+1
γ (x) + (γ + α)P α,β+1

γ−1 (x) (B.36)

and compare with (A.10). We eliminate the first Jacobi polynomial on the right hand side
by multiplying (B.36) by (γ + α + β + 1), multiplying (A.10) by γ, and then adding. Doing
so, a common factor of (2γ + α + β + 1) cancels and we find

(γ + α + β + 1) (1− x)
2 P α+1,β+1

γ−1 (x) = −γP α,β
γ (x) + (γ + α)P α,β+1

γ−1 (x) . (B.37)

Specializing to x = 1 − 2/t we obtain

(γ + α + β + 1) 1
t

P α+1,β+1
γ−1

(
1− 2

t

)
= −γP α,β

γ

(
1− 2

t

)
+ (γ + α)P α,β+1

γ−1

(
1− 2

t

)
(B.38)

which is the identity needed for the twist down OPE limit near t = ∞ for the denominator
polynomial.

C OPE limit examples

C.1 OPE limits for approaches to t = 0

Here we will construct the OPE limits explicitly for the case where one of the ramified points
in the cloud approaches the point at t = 0. We begin by considering the “near 0” maps (2.30)

z(t) =

Nmax∑
N=Nmin

bN t(N+1)P
(N+1),−(n1+n3−N)
n3−N−1 (1− 2t)

Nmax∑
N=Nmin

bN P
−(N+1),−(n1+n3−N)
n1 (1− 2t)

. (C.1)

Factoring out a tNmin+1 from the sum, we see that the remaining polynomial has a constant
term coming only from N = Nmin. Therefore, the situation where the ramification at t = 0
increases is given by

bNmin = 0 . (C.2)
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This is a homogeneous polynomial in the bN , making it a well defined algebraic variety
subspace of the CP∆N defined by the bN . Enforcing this changes the map to

z(t) =

Nmax∑
N=Nmin+1

bN t(N+1)P
(N+1),−(n1+n3−N)
n3−N−1 (1− 2t)

Nmax∑
N=Nmin+1

bN P
−(N+1),−(n1+n3−N)
n1 (1− 2t)

. (C.3)

Thus, ∆N has decreased by one, making the cloud smaller by one twist-2 operator, but
increasing the ramification at t = 0, i.e. r0 = Nmin + 1. This, therefore, represents an OPE
limit where one of the twist-2 operators in the cloud approaches the operator at (t = 0, z = 0)
and increases the length of the cycle by one. This is a “twist up” part of the operator product
expansion, and corresponds to the ramification preserving product between simple cycles —
see appendix D. There is no further processing to be done: (C.3) is already in the correct
form. To generate (C.3) one takes (C.1) and replaces Nmin → Nmin + 1.

We note that if Nmin = n3 − 1, then the numerator of (C.3) would become identically
zero. This means that one may not “twist up” the operator at the origin. If one does this,
the ramification subadditivity constraints become impossible to satisfy, i.e. there is no group
product with those ramifications that can multiply to the identity. This does not mean
that the operators on the base space cannot approach each other: it simply means that the
exchange channels produced in the OPE limit only contain the “twist down” or “ramification
lowering” products, which we now discuss.

So, how do we identify the “twist down” OPE? This can be accomplished by requiring
that the constant term in the denominator of (C.1) is 0. This allows one to factor a t and
cancel one power in the numerator, lowering the ramification at the origin by 1. This is easy to
write as a condition on the bN by setting the denominator of (C.1) evaluated at t = 0 to 0, i.e.

Nmax∑
N=Nmin

bN P−(N+1),−(n1+n3−N)
n1 (1) =

Nmax∑
N=Nmin

bN
(−N)n1

n1!
= (−1)n1Nmin!

(n1)!(Nmax − n1)!
g(0,↓) = 0

(C.4)
which is also a homogeneous polynomial in the bN and so defines an algebraic variety subspace
of CP∆N . We note that many of the above Pochhammer symbols may be 0, given that
−N is negative, while −N + n1 − 1 may be non-negative: these correspond exactly to the
cases where the Jacobi polynomials in the numerator of (2.31) are 0 by rule (2.23). However,
not all such terms are zero given that some N are in the range n1 ≤ N < n3, and so the
above does represent a constraint.

We do have a solution to the constraint (C.4), written in table 1. However, it might be
concerning exactly how one arrives at this solution as being the correct one that gives a new
map in the same form. We may generate the solution in table 1 by knowing the answer. This
situation we are examining is where the twist at the origin has had the ramification decreased
by 1, i.e. Nmin → Nmin − 1. We see that this is possible if one of the twists in the cloud had
approached the operator at (t = 0, z = 0) and a “ramification decreasing” product has been
taken, lowering ∆N by 1 as well, and so Nmax → Nmax − 2. However, we require that the
ramifications at t = 1 and t = ∞ remain unchanged. This can be accomplished by n1 → n1−1
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and n3 → n3 − 1. Therefore, we expect the condition (C.4) to transform the map to the form

z(t) =

Nmax−2∑
N=Nmin−1

BN t(N+1)P
(N+1),−(n1+n3−2−N)
n3−1−N−1 (1− 2t)

Nmax−2∑
N=Nmin−1

BN P
−(N+1),−(n1+n3−2−N)
n1−1 (1− 2t)

(C.5)

for some set of constants BN , which we now set about identifying. Note that there is one
fewer non-zero BN than there are bN , and this should span the same space as the bN with
the constraint (C.4). For the ease of notation we define

BN ≡ 0 for N ≤ Nmin − 2 and N ≥ Nmax − 1 . (C.6)

This will allow us to extend the sums in what follows.
We first consider the denominator of (C.5) and substitute in the identity

(γ + α + β − 1)tP α,β
γ−1(1− 2t) = (α − 1)P α−1,β−1

γ (1− 2t)− (γ + α − 1)P α−2,β
γ (1− 2t)

(C.7)

which is proved in appendix B — see (B.29). It may not be obvious why identity (C.7) is the
correct one to use. This identity is found by seeking an identity where shifts in indices α, β, γ

can be compensated for by shifts in the summation index N in (C.5), making them the Jacobi
polynomial on the right hand side the same after shifting summation indices. This gives us
an idea of how to manipulate basic Jacobi polynomial identities to find one that is useful.

The identity (C.7) is true for all integer γ using rule (2.23). Inserting (C.7) in the
denominator of (C.5) gives

Nmax−2∑
N=Nmin−1

BN P
−(N+1),−(n1+n3−2−N)
n1−1 (1− 2t)

= 1
n3 t

Nmax−2∑
N=Nmin−1

BN (N + 2)P−(N+2),−(n1+n3−1−N)
n1 (1− 2t)

− 1
n3 t

Nmax−2∑
N=Nmin−1

BN (N − n1 + 2)P−(N+3),−(n1+n3−2−N)
n1 (1− 2t) .

(C.8)

We make the functions look identical by shifting summation indices separately:

Nmax−2∑
N=Nmin−1

BN P
−(N+1),−(n1+n3−2−N)
n1−1 (1− 2t)

= 1
n3 t

Nmax−1∑
N=Nmin

BN−1(N + 1)P−(N+1),−(n1+n3−N)
n1 (1− 2t)

− 1
n3 t

Nmax∑
N=Nmin+1

BN−2(N − n1)P−(N+1),−(n1+n3−N)
n1 (1− 2t) . (C.9)
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Now, given our definitions (C.6), we may extend both of the sums, writing

Nmax−2∑
N=Nmin−1

BN P
−(N+1),−(n1+n3−2−N)
n1−1 (1− 2t)

= 1
n3 t

Nmax∑
N=Nmin

(
(N + 1)BN−1 − (N − n1)BN−2

)
P−(N+1),−(n1+n3−N)

n1 (1− 2t) (C.10)

which is of the form of the denominator of (2.30), dressed with an additional factor. This
allows us to identify

bN = 1
n3

(
(N + 1)BN−1 − (N − n1)BN−2

)
(C.11)

for Nmin ≤ N ≤ Nmax. We have written the ∆N + 1 constants bN as linear functions of the
∆N constants BN , and so there must be a liner relationship between them, which is precisely
the relationship (C.4). This is easy to show by plugging in the above constraint. We find

Nmax∑
N=Nmin

bN
(−N)n1

n1!
= 1

n3

Nmax∑
N=Nmin

(
(N + 1)BN−1 − (N − n1)BN−2

)(−N)n1

n1!
. (C.12)

The constant BÑ appears in the sum above when N = Ñ + 1 or when N = Ñ + 2. The
total coefficient of BÑ is

1
n1!n3

(
(Ñ + 2)(−(Ñ + 1))n1 − (Ñ − n1 + 2)(−(Ñ + 2))n1

)
= (−1)n1

n1!n3

(
(Ñ + 2)(Ñ − n1 + 2)n1 − (Ñ − n1 + 2)(Ñ − n1 + 3)n1

)
= (−1)n1

n1!n3

(
(Ñ − n1 + 2)n1+1 − (Ñ − n2 + 2)n1+1

)
= 0 .

(C.13)

Thus, the sum (C.4) becomes a telescoping sum with 0 end contributions when (C.11) is
implemented, making the identification (C.11) equivalent to the constraint (C.4). This can
also be seen by taking the summation bounds in (C.12) and replacing them with a sum over
N that goes from −∞ to ∞ and shifting the two sum indices. This is possible because most
of the BN are 0 in this sum, automatically truncating it.

Thus, we find that (C.11) implements the linear relationship (C.4). Plugging (C.11)
into the denominator of (C.1) gives

Nmax∑
N=Nmin

bN P−(N+1),−(n1+n3−N)
n1 (1−2t) = t

Nmax−2∑
N=Nmin−1

BN P
−(N+1),−(n1−1+n3−1−N)
n1−1 (1−2t) . (C.14)
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We may also check that (C.11) transforms the numerator in the appropriate way. Plugging
in (C.11) into the numerator of (2.30) we find

Nmax∑
N=Nmin

bN t(N+1)P
(N+1),−(n1+n3−N)
n3−N−1 (1− 2t)

= 1
n3

Nmax∑
N=Nmin

(N + 1)BN−1 t(N+1)P
(N+1),−(n1+n3−N)
n3−N−1 (1− 2t)

− 1
n3

Nmax∑
N=Nmin

(N − n1)BN−2 t(N+1)P
(N+1),−(n1+n3−N)
n3−N−1 (1− 2t)

= 1
n3

Nmax−1∑
N=Nmin−1

(N + 2)BN t(N+2)P
(N+2),−(n1+n3−1−N)
n3−1−N (1− 2t)

− 1
n3

Nmax−2∑
N=Nmin−2

(N − n1 + 2)BN t(N+3)P
(N+3),−(n1+n3−2−N)
n3−1−N−2 (1− 2t)

(C.15)

where in the last step we have shifted the sum indices such that BN appears as a coefficient
in both. In the last equality, we may drop the top term in the first sum, and the bottom
term in the second sum, given (C.6). This allows us to combine the sums into

Nmax∑
N=Nmin

bN t(N+1)P
(N+1),−(n1+n3−N)
n3−N−1 (1−2t)= 1

n3

Nmax−2∑
N=Nmin−1

t(N+2)BN (C.16)

×
(
(N+2)P (N+2),−(n1+n3−1−N)

n3−1−N (1−2t)−(N−n1+2) tP
(N+3),−(n1+n3−2−N)
n3−1−N−2 (1−2t)

)
.

We again use (C.7) with α = N + 3, γ = n3 −N − 2 and β = −(n1 + n3 − 2−N) and obtain

Nmax∑
N=Nmin

bN t(N+1)P
(N+1),−(n1+n3−N)
n3−N−1 (1−2t) =

Nmax−2∑
N=Nmin−1

t(N+2)BN P
N+1,−(n1−1+n3−1−N)
n3−1−N−1 (1−2t) .

(C.17)
All in all, plugging in (C.14) and (C.17) into (2.30) we find

z(t) =

Nmax∑
N=Nmin

bN t(N+1)P
(N+1),−(n1+n3−N)
n3−N−1 (1− 2t)∑Nmax

N=Nmin
bN P

−(N+1),−(n1+n3−N)
n1 (1− 2t)

=

Nmax−2∑
N=Nmin−1

t(N+2)BN P
N+1,−(n1−1+n3−1−N)
n3−1−N−1 (1− 2t)

t
∑Nmax−2

N=Nmin−1 BN P
−(N+1),−(n1−1+n3−1−N)
n1−1 (1− 2t)

=

Nmax−2∑
N=Nmin−1

t(N+1)BN P
N+1,−(n1−1+n3−1−N)
n3−1−N−1 (1− 2t)∑Nmax−2

N=Nmin−1 BN P
−(N+1),−(n1−1+n3−1−N)
n1−1 (1− 2t)

(C.18)

which has the exact same form as our covering space maps (C.1) with n1 → n1−1, n3 → n3−1,
Nmin → Nmin − 1, and Nmax → Nmax − 2. This implements a “twist down” at the origin from
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a twist-2 in the cloud approaching the origin, i.e. r0 → r0 − 1 and rc → rc − 1. However, the
ramifications r1 and r∞ remain unchanged. We note that in this operation the covering space
has lost a sheet, directly implemented by n3 → n3 − 1, which is the total number of sheets.
Thus, the general solution for a point z0 = z(t) will have one fewer solution after (C.11) or
equally (C.4) is implemented. This loss of a sheet is seen as the direct cancelation of common
polynomials in the numerator and denominator; t in this case. The order of the polynomial
canceled in the reduction of the polynomials is exactly the number of sheets lost.

We have therefore identified both kinds of OPE limits that give non-trivial group products
when a twist-2 operator approaches the operator at the origin.

As pointed out in the main text, the other forms of the map (2.31) and (2.32) are similar
in structure, and so one may read off the constraints analogous to (C.2) and (C.4). These
are given in table 1. The identities used above, as well as those needed for t = 1 and t = ∞
OPE limits, are proved in section B.2. The appropriate identities to use are always found
by insisting that the final form of the Jacobi polynomials are the same after shifting the
index N , helping us identify the relevant identity needed. One may, of course, simply plug
in bN ({BM}) in table 1 into the relevant form of the map, shift the sum index so that BN

is the coefficient in the sums, and then use the quoted identity (which should be obvious
how to use, given the coefficient of BN ). This will result in a map of the same form (2.30)
or (2.31) or (2.32) depending on the point of approach.

C.2 ∆N = 2 cloud twist down OPE

We consider the OPE constraint for the ∆N = 2 case (3.17), which we claim is a “twist down”
OPE limit. We show this here. First, we take f1 with a convenient prefactor

(Nmin − n1 + 2)(n3 − Nmin − 1)f1

= (Nmin − n1 + 2)(n3 − Nmin − 1)
Nmin+2∑
N=Nmin

bN P−(N+1),−(n1+n3−N)
n1 (1− 2t) . (C.19)

We solve (3.17) for bNmin+1 and substitute into the above, finding

(Nmin − n1 + 2)(n3 − Nmin − 1)f1

= bNmin(Nmin − n1 + 2)
(
(n3 − Nmin − 1)P−(Nmin+1),−(n1+n3−Nmin)

n1 (1− 2t)

− (n1 + n3 − Nmin − 1)P−(Nmin+2),−(n1+n3−Nmin−1)
n1 (1− 2t)

)
(C.20)

+ b(Nmin+2)(n3 − Nmin − 1)
(
(Nmin − n1 + 2)P−(Nmin+3),−(n1+n3−Nmin−2)

n1 (1− 2t)

− (Nmin + 2)P−(Nmin+2),−(n1+n3−Nmin−1)
n1 (1− 2t)

)
.

Next consider the identity (B.30) and use the (−1)γP α,β
γ (−x) = P β,α

γ (x) identity to write it as

(γ+α+β−1)(1−t)P β,α
γ−1(1−2t) = −(α−1)P β−1,α−1

γ (1−2t)+(γ+α−1)P β,α−2
γ (1−2t) . (C.21)
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Evaluating this at α = −(n1 + n3 − Nmin − 2), β = −(Nmin + 1), and γ = n1, we find

− n3(1− t)P−(Nmin+1),−(n1+n3−Nmin−2)
n1−1 (1− 2t)

= (n1 + n3 − Nmin − 1)P−(Nmin+2),−(n1+n3−Nmin−1)
n1 (1− 2t)

− (n3 − Nmin − 1)P−(Nmin+1),−(n1+n3−Nmin)
n1 (1− 2t)

(C.22)

and immediately recognize the coefficient of bNmin in (C.20). We similarly use identity (B.29)
with α = −(Nmin + 1), β = −(n1 + n3 − Nmin) + 2, and γ = n1 and find

− n3tP
−(Nmin+1),−(n1+n3−Nmin−2)
n1−1 (1− 2t)

= −(Nmin + 2)P−(Nmin+2),−(n1+n3−Nmin−1)
n1 (1− 2t)

+ (Nmin − n1 + 2)P−(Nmin+3),−(n1+n3−Nmin−2)
n1 (1− 2t)

(C.23)

which allows us to identify the coefficient of b(Nmin+2) in (C.20). Using (C.22) and (C.23),
we find that f1 (C.20) becomes

(Nmin−n1+2)(n3−Nmin−1)f1 =−n3P
−(Nmin+1),−(n1+n3−Nmin−2)
n1−1 (1−2t) (C.24)

×(bNmin(Nmin−n1+2)(t−1)+bNmin+2(n3−Nmin−1)t).

We note that this single Jacobi polynomial is the appropriate one for the denominator of (C.1)
with ni → ni − 1, Nmin → Nmin, Nmax = Nmin + 2 → Nmin for the “twist down”. To be a
twist down, the linear function appearing as a coefficient must cancel with the numerator,
which we now set about showing.

Exploring f2 the same way, and introducing the same convenient coefficient, we find

(Nmin−n1+2)(n3−Nmin−1)f2

=(Nmin−n1+2)(n3−Nmin−1)
Nmin+2∑
N=Nmin

bN t(N+1)P
(N+1),−(n1+n3−N)
n3−N−1 (1−2t)

= bNmin(Nmin−n1+2)t(Nmin+1)
(
(n3−Nmin−1)P (Nmin+1),−(n1+n3−Nmin)

n3−Nmin−1 (1−2t)

−(n1+n3−Nmin−1) tP
(Nmin+2),−(n1+n3−Nmin−1)
n3−Nmin−2 (1−2t)

)
+b(Nmin+2)(n3−Nmin−1)tNmin+2

(
(Nmin−n1+2) tP

(Nmin+3),−(n1+n3−Nmin−2)
n3−Nmin−3 (1−2t)

−(Nmin+2)P (Nmin+2),−(n1+n3−Nmin−1)
n3−Nmin−2 (1−2t)

)
.

(C.25)

To start, we take (A.12) and subtract off (γ + β + 1) times (A.9) to arrive at

(γ+α+1)(1− t)P α,β+1
γ (1−2t) = βtP α+1,β

γ (1−2t)+(γ+1)
(
tP α+1,β

γ (1−2t)+P α,β
γ+1(1−2t)

)
.

(C.26)
The term in parentheses above can be rewritten using (B.27) to give

(γ + α + 1)(1− t)P α,β+1
γ (1− 2t) = β t P α+1,β

γ (1− 2t) + (γ + 1)P α,β−1
γ+1 (1− 2t) . (C.27)
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Substituting γ = n3 −Nmin − 2, α = Nmin +1, and β = −(n1 +n3 −Nmin − 1) above we have

n3(1− t)P α,β+1
γ (1− 2t) =− (n1 + n3 − Nmin − 1) t P

(Nmin+2),−(n1+n3−Nmin−1)
n3−Nmin−2 (1− 2t)

+ (n3 − Nmin − 1)P (Nmin+1),−(n1+n3−Nmin)
n3−Nmin−1 (1− 2t)

(C.28)
allowing us to identify the term proportional to bNmin in (C.25). We next consider the
identity (B.27) with indices shifted

tP α+1,β
γ (1− 2t) = P α,β−1

γ+1 (1− 2t)− P α,β
γ+1(1− 2t) . (C.29)

We take identity (A.13) and subtract off (γ + 1) times the above equation to find

(γ + α + β + 1)tP α+1,β
γ (1− 2t) = (γ + α + 1)P α,β

γ (1− 2t)− (γ + 1)P α,β−1
γ+1 (1− 2t) . (C.30)

We now rewrite the lowest degree Jacobi polynomial on the right hand side using (A.8), finding

(γ + α + β + 1)tP α+1,β
γ (1− 2t) = −(γ + α + 1)P α−1,β

γ+1 (1− 2t) + αP α,β−1
γ+1 (1− 2t) . (C.31)

Identifying γ = n3 − Nmin − 3, α = Nmin + 2, and β = −(n1 + n3 − Nmin − 2), we have

(Nmin − n1 + 2) t P
(Nmin+3),−(n1+n3−Nmin−2)
n3−Nmin−3 (1− 2t)

− (Nmin + 2)P (Nmin+2),−(n1+n3−Nmin−1)
n3−Nmin−2 (1− 2t)

= −n3P
(Nmin+1),−(n1+n3−Nmin−2)
n3−Nmin−2 (1− 2t) (C.32)

allowing us to identify the coefficient of bNmin+2 in (C.25). We find

(Nmin−n1+2)(n3−Nmin−1)f2 =−n3tNmin+1P
(Nmin+1),−(n1+n3−Nmin−2)
n3−Nmin−2 (1−2t) (C.33)

×(bNmin(Nmin−n1+2)(t−1)+bNmin+2(n3−Nmin−1)t) .

Thus, starting with the covering space map z = f2
f1

in (2.30) for the case ∆N = 2, impos-
ing (3.17), and using (C.33) and (C.24), we obtain

z(t) = f2
f1

=
tNmin+1P

(Nmin+1),−(n1+n3−Nmin−2)
n3−Nmin−2 (1− 2t)

P
−(Nmin+1),−(n1+n3−Nmin−2)
n1−1 (1− 2t)

(C.34)

which is the appropriate covering space map with no cloud of twist-2 operators, and ram-
ifications r0 = Nmin, r1 = (n1 + n3 − (Nmin + 2)) = (n1 − 1 + n3 − 1 − Nmin), and
r∞ = n1 − n3 − 1 = (n1 − 1) − (n3 − 1) − 1. Hence, the ramification of these points
have not been affected. In this case, the 3-point function is simply that given in [46] for
three long twists.

Note that the original 5-point function, i.e three long twists and two twist-2, has two
cross ratios. One might be concerned that the above OPE limit is only a linear relationship
between the bN , and so should decrease the space of maps only by 1. However, it is important
to note that the function that has been canceled, namely

bNmin(Nmin − n1 + 2)(t − 1) + bNmin+2(n3 − Nmin − 1) t (C.35)
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determines the two coincident zeros of Q(t), i.e. where the ramified points come together
on the covering surface when (3.17) is enforced. This point is given by

t↓ =
bNmin(Nmin − n1 + 2)

bNmin(Nmin − n1 + 2) + b(Nmin+2)(n3 − Nmin − 1) (C.36)

matching (3.21) in the main text. This is a marked point on the cover where the ramified
points approach each other, and we expect an OPE expansion, as explained in the main
text after (3.21).

D Ramification subadditivity

In this appendix we briefly discuss ramification subadditivity under group multiplication
in the symmetric group (or permutation groups).

We recall several facts about the symmetric group. First, every group element can be
written as a product of disjoint cycles. This is simply argued by considering the permutation
group acting on a set of distinct elements in ordered positions, finding how these are acted
on by permutation. We start with the objects in their respective positions (first object in
first position, etc). We track where each element gets mapped in the following way. We
consider an element, say the first, and see where it gets mapped. This displaces the object in
that position and we can ask to what position that object is mapped, and so on. Eventually,
one must find the object that maps back to the first position. This gives one of the cycles.
One then considers one of the elements outside of the cycle(s) already discussed and repeats
this procedure. Eventually, all elements are addressed, and each cycle refers to distinct
elements and positions, and so the cycles are disjoint. This decomposition is unique up to
the ordering of these commuting cycles. Trivial cycles are those that have only one element,
corresponding to unmapped elements, and are usually omitted from notation. We refer to this
form of the group elements as their canonical form. One may still regard the decomposition
as unique if one includes the trivial cycles, however, each trivial cycle is included only once.
In this way we may guarantee that each index appears precisely once in each group element’s
product of cycles. We call this form the canonical form as well, realizing that the trivial
cycles may be dropped if one wishes.

Next, every single cycle may be written as a product of two-cycles which only include
the indices of the cycle itself. By direct construction

(1, 2, 3, · · · , n) = (1, 2)(2, 3)(3, 4) · · · (n − 1, n) . (D.1)

Therefore, each non-trivial cycle of the canonical form may be decomposed into a product of
two cycles which is unique using the above prescription, up to cyclic reordering of original
cycle. Each block of two cycles, corresponding to each non-trivial cycle of the canonical form,
refers to a set of indices that is disjoint from every other block of two cycles. We call this the
decomposed form of the group element. The total ramification of the group element is given
by the sums of the ramifications of each cycle in the group element, and the ramification of a
single cycle is the number of indices in the cycle minus 1. This total ramification is the same
as the total number of two cycles it takes to build the group element in the above way, and
represents a minimal number of such two cycles: the two concepts coincide.
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Next, we consider the action of a group element g1 on a group element g2. We consider
decomposing g1 into two cycles. Of these two cycles, one may be regarded as being in the
right-most position in g1, and without loss of generality, we consider this cycle to be (1, 2).
We consider its action on g2, and consider g2 in canonical form, but explicitly writing the
trivial cycles out, once each. In this way, all indices appear in g2 exactly once.

There are different possibilities. First, it may be the case that the indices of (1, 2) appear
distinct cycles in g2. In this case, we write

g2 = (1, 3, 4, · · · , n)(2, n + 1, · · · , n + m)g̃2 , (D.2)

where g̃2 is a product of disjoint cycles. One may pull both of these two cycles to the
left in g2 because they commute with each other, and they each commute with all cycles
in g̃2. In this case,

(1, 2)g2 = (1, 2)(1, 3, 4, · · · , n)(2, n + 1, · · · , n + m)g̃2

= (1, 3, 4, · · · , n, 2, n + 1, · · · , n + m)g̃2 .
(D.3)

The right hand side is already in canonical form: the indices appearing in (1, 3, 4, · · · , n, 2, n+
1, · · · , n+m) do not appear in g̃2. This product even works in the case that either or both of the
original cycles brought to the left of g2 is trivial, simply by deleting the indices 3, · · · , n from
both sides, or deleting the indices n+1, · · · , n+m from both sides, or doing both simultaneously.
Before the product the total ramification was 1+ rg2 = 1+n− 2+m+ rg̃2 = n+m− 1+ rg̃2 .
After the product, the ramification is n + m − 1 + rg̃2 , and so the ramification is maintained
before and after the product. We refer to this operation as a “join” which joins two previously
disjoint cycles, and is “ramification preserving”. Some of the cycles that have been joined
may have been trivial cycles.

The other possibility is that the indices 1 and 2 may both appear in the same cycle of g2.
This may only happen when the cycle of g2 in question is non-trivial. In this case, we write

g2 = (1, 3, 4, · · · , n, 2, n + 1, n + 2, · · · , n + m)g̃2 (D.4)

by bringing the cycle in g2 that has the indices 1 and 2 to the left-most position in g2. Neither
1 nor 2 appear in the remaining cycles of g̃2. Multiplying out we find

(1, 2)g2 = (1, 2)(1, 3, 4, · · · , n, 2, n + 1, n + 2, · · · , n + m)g̃2

= (1, 3, 4, · · · , n)(2, n + 1, n + 2, · · · , n + m)g̃2 . (D.5)

The above again applies even when deleting the indices 3, · · · , n from both sides, or deleting
the indices n+1, · · · , n+m from both sides, or doing both simultaneously, in which case trivial
cycles appear on the right hand side and may be omitted. The product on the right hand side
above is already in canonical form, and so the ramification is easy to read. The total sum of
ramifications of the individual group elements is 1 + rg2 = 1+ n + m − 1 + rg̃2 = n + m + rg̃2 ,
and the ramification of the product is n − 2 + m + rg̃2 , and so the ramification has decreased
by 2. This counting is still valid even in the special cases where the indices are deleted,
explained above. This operation we regard as a “split”, and is “ramification decreasing”.
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Iterating this with all of the two-cycles in the decomposed form of g1 gives that the
ramifications obey

rg1 + rg2 ≥ r(g1g2) . (D.6)

Iterating this again with a series of group elements we see that

rg1 + rg2 + rg3 + · · ·+ rgn ≥ r(g1g2···gn) . (D.7)

Thus, the group product is at best ramification preserving, but often reduces total ramification.
As an important consequence, if we have a group product g1g2 · · · gn = e, where e is the

identity element, then the initial product g1 · · · gn−1 = g−1
n . The ramification of gn and g−1

n

are the same (they are made out of the same size cycles). Therefore, one must have that

rg1 + rg2 + · · ·+ rgn−1 ≥ rgn . (D.8)

One may reach the same conclusion by moving any of the rgi to the right, finding that
the group product must obey ∑

i ̸=j

rgi ≥ rj (D.9)

for all terms in the product whenever considering a case where g1g2 · · · gn = e. This must, in
fact, be the case for individual cycles in each of the gi as well, given that we can decompose
each group element into cycles.

E Finding the Wronskian for finite ∆N ≥ 3

The form of the Wronskian may be used to fix the coefficients Ai in (2.35), given the expansion
of the Jacobi polynomials by looking at the first ∆N + 1 highest powers of t, which we now
show. Expanding the right hand side of (2.34) we find

W =A0tn1+n3−1+(−(n1+n3−Nmax−1)A0+A1)tn1+n3−2

+
((n1+n3−Nmax−2)(2)

2! A0−(n1+n3−Nmax−1)A1+A2

)
tn1+n3−3+. . . .

(E.1)

Above we have only shown the first three terms although one can expand to any order. We
can see that the highest powers of t in the polynomials f1 and f2 fix A0. With this in hand,
the highest and second highest powers of t in f1 and f2 fix (−(n1 + n3 − Nmax − 1)A0 + A1),
which given the last step, gives A1. Repeating this process gives the Ai in terms of the
coefficients of the ∆N + 1 largest powers of t appearing in f1 and f2. We now turn to
finding these coefficients.

We expand

P−(N+1),−(n1+n3−N)
n1 (1− 2t)

=
((n3 − n1 + 1)(n1)

n1!
tn1 +

(n3 − n1 + 2)(n1−1)(n1 − N − 1)n1

n1!
tn1−1

+
(n3 − n1 + 3)(n1−2)(n1 − N − 2)(2)(n1 − 1)(2)

n1!2!
tn1−2 + · · ·

)
(E.2)
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and

tN+1P
(N+1),−(n1+n3−N)
n3−N−1 (1− 2t)

= (−1)n3−N−1
((N − n1 + 1)(n3−N−1)

(n3 − N − 1)! tn3 −
(N − n1 + 1)(n3−N−2)n3

(n3 − N − 2)! tn3−1 (E.3)

+
(N − n1 + 1)(n3−N−3)(n3 − 1)(2)

(n3 − N − 3)!2! tn3−2 + · · ·
)

keeping track of the denominator term, interpreting it as being infinite when (n3 − N − 1) is
a negative integer, i.e. removing the Jacobi polynomial following the rule (2.23). Plugging
these expressions into f1 and f2 we arrive at the expansions

f1 = d1,0tn1 + d1,1tn1−1 + d1,2tn1−2 + . . . , f2 = d2,0tn3 + d2,1tn3−1 + d2,2tn3−2 + . . . , (E.4)

with

d1,0 =
Nmax∑

N=Nmin

(n3 − n1 + 1)(n1)
n1!

bN , d1,1 =
Nmax∑

N=Nmin

(n3 − n1 + 2)(n1−1)(n1 − N − 1)n1

n1!
bN ,

d1,2 =
Nmax∑

N=Nmin

(n3 − n1 + 3)(n1−2)(n1 − N − 2)(2)(n1 − 1)(2)
n1!2!

bN ,

and

d2,0 =
Nmax∑

N=Nmin

(−1)n3−N−1 (N − n1 + 1)(n3−N−1)
(n3 − N − 1)! bN ,

d2,1 = −
Nmax∑

N=Nmin

(−1)n3−N−1 (N − n1 + 1)(n3−N−2)n3

(n3 − N − 2)! bN , (E.5)

d2,2 =
Nmax∑

N=Nmin

(−1)n3−N−1 (N − n1 + 1)(n3−N−3)(n3 − 1)(2)
(n3 − N − 3)!2! bN .

Putting these expansions into the Wronskian, we obtain

A0 = (n3 − n1) d1,0 d2,0 ,

A1 = (n1 + n3 − Nmax − 1)A0 + (n3 − n1 − 1) d1,0 d2,1 + (n3 − n1 + 1) d1,1 d2,0 ,

A2 = −(n1 + n3 − Nmax − 2)2
2! A0 + (n1 + n3 − Nmax − 1)A1

+ (n3 − n1 − 2) d1,0 d2,2 + (n3 − n1) d1,1 d2,1 + (n3 − n1 + 2) d1,2 d2,0 . (E.6)

The above A0 agrees with the generic expression (3.9). Extending these to higher order
terms is straightforward and algorithmic. One may also use similar procedures by expanding
near t = 0 or t = 1.

Data Availability Statement. This article has no associated data or the data will not
be deposited.
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