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Abstract: The prospect of observing asymmetric compact binaries with next-generation

gravitational-wave detectors has motivated the development of fast and accurate waveform

models in gravitational self-force theory. These models are based on a two-stage process:

in a (slow) offline stage, waveform ingredients are pre-computed as functions on the orbital

phase space; in a (fast) online stage, the waveform is generated by evolving through the

phase space. While this framework has traditionally been restricted to the inspiral stage of

a binary, we recently extended it across the transition to plunge, where the small companion

crosses the innermost stable circular orbit around the primary black hole. In this paper,

for the special case of quasicircular, nonspinning binaries, we show how the “offline/online”

phase-space paradigm also extends through the final plunge, which generates the binary’s

merger-ringdown signal. We implement the method at leading, geodesic order in the plunge.

The resulting plunge waveform agrees well with a stationary-phase approximation at early

times and with a (self-consistently calculated) quasinormal mode sum at late times, but

we highlight that neither of the two approximations reaches the peak of the full plunge

waveform. Finally, we compare the plunge waveform to numerical relativity simulations.

Our framework offers the prospect of fast, accurate inspiral-merger-ringdown waveform

models for asymmetric binaries.
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1 Introduction

Since the first detection of a binary black hole merger in 2015 [1], three observing runs

of the LIGO-Virgo-KAGRA Collaboration have seen close to a hundred events [2–4]. The

majority of the observed signals originated from the merger of compact binaries with mass

ratios typically close to 1, but several binaries have been detected with much more disparate

masses. This includes one signal thought to have originated from the merger of a binary

with mass ratio ≈ 1:26 (GW191219 16312), outside the range in which current waveform

models have been validated [4]. Future observing runs and next-generation ground-based

detectors such as the Einstein Telescope [5] and Cosmic Explorer [6] promise an increase

in the number of detections [7, 8] and likely also in the number of events with smaller mass

ratios. Space-based gravitational-wave (GW) detectors such as the Laser Interferometer

Space Antenna (LISA) [9] will be able to detect GWs in the mHz frequency band, allow-

ing us to access a greater variety of sources such as intermediate- and extreme-mass-ratio

inspirals (I/EMRIs) [10, 11]. In addition, LISA will also detect the coalescence of massive

black hole binaries, which could exhibit a long tail in their distribution of mass ratios ex-

tending to around 1:103 [12–14]. Intermediate-mass-ratio binaries are also possible sources

of multiband signals detectable with both space- and ground-based detectors [15]. The

prospect of these future observations motivates the production of fast, accurate inspiral-

merger-ringdown (IMR) models for asymmetric binaries, in which the secondary of mass

mp (labeled with “p” because we treat it as a particle) is significantly lighter than the

primary of mass M .

Gravitational self-force (GSF) theory is recognized as the primary method of modelling

I/EMRIs [16] and has been used to inform effective models that cover the full binary param-

eter space [17–20]. Although originally designed for EMRIs, second-order GSF waveforms

have proven to be very accurate even at mass ratios ≈1:10, with sub-radian dephasing com-

pared to fully nonlinear numerical relativity (NR) simulations [21, 22]. GSF waveforms can

also now be generated on a timescale of milliseconds, fast enough for data analysis [23].

However, the methods leading to these GSF waveforms are specialized to slow evolutions;
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they cannot capture the rapid final stages of a binary merger. Although these final stages

contribute negligible signal-to-noise ratio for EMRIs [24], they are critical for more moder-

ate mass ratios and for ground-based detectors (which are most sensitive to the end stages

of an asymmetric binary due to their low-frequency floor [25]).

The basic anatomy of a binary evolution consists of three stages: the inspiral, which is

well modeled by post-Newtonian (PN) theory [26] (for comparable-mass binaries) or GSF

theory [27, 28] (for asymmetric binaries); the merger, which has historically been the realm

of fully nonlinear NR simulations [29]; and the post-merger ringdown, which is accurately

described by vacuum black hole perturbation theory [30, 31].

Effective-one-body theory (EOB) [32, 33] offered the simplest semi-analytical under-

standing of this evolution. Rather than a three-stage process, EOB proposed that there

are only two stages: an extended inspiral that persists all the way to the light ring of the

effective-one-body black-hole metric, followed by a ringdown. This description stems from

the reduction of the two-body problem to a (reduced-mass) secondary object orbiting in

an effective-one-body black hole spacetime. In that reduced problem, we can apply the

following physical intuition. Before the secondary object crosses the effective spacetime’s

light ring, the waveform is dominated by radiation propagating directly from the orbit-

ing secondary, and the amplitude of the radiation grows steadily as the secondary moves

deeper into the strong-field, relativistic regime. After it crosses the light ring, any radi-

ation the secondary emits falls into the black hole. The waveform is then dominated by

radiation that was trapped on the light ring, which then leaks out to future null infinity as

quasinormal modes.

To meet accuracy requirements for GW science, this simple description has had to

be corrected by non-quasicircular corrections (NQCs) [34–38] and other phenomenologi-

cal adaptations calibrated to NR waveforms. However, the core idea proved remarkably

accurate.

Complementary to EOB, the Phenom family of IMR models [39–42] takes advantage

of another feature of the merger. The amplitude and phase of the waveform through

merger are surprisingly simple and can be very well approximated by elementary functions.

Directly approximating the amplitude and phase observed in NR allows Phenom models to

avoid stitching together an inspiral to a ringdown. Instead, an inspiral waveform based on

PN and tuned to EOB is effectively stitched (in an NR-calibrated way) to an NR-informed

merger-ringdown waveform.

Both these models leverage the fact that during the inspiral, the waveform can be

written as a function of the two-body, mechanical phase-space variables—the bodies’ rel-

ative positions and momenta, for example. GSF waveform models double down on this,

using it to formulate a multiscale expansion of the Einstein field equations that puts the

field equations in a practical form and simultaneously enables rapid waveform genera-

tion [28, 43, 44]. In the multiscale expansion, waveform generation is divided into offline

and online calculations. The offline calculations consist of solving the field equations to

precompute waveform ingredients as functions on the binary’s mechanical phase space.

The online stage then consists of a rapid, inexpensive evolution through the phase space,

together with a summation of waveform modes [23].
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This GSF framework for modeling the inspiral has traditionally relied on a separation

of time scales: the system’s parameters (e.g., its fundamental frequencies) evolve on a

radiation-reaction time scale that is large compared to the periods of orbital motion. Dur-

ing the inspiral, the radiation-reaction time scale is of order M2/mp, and the multiscale

expansion takes the form of a post-adiabatic expansion [28, 43–45]. This scaling breaks

down as the secondary approaches the innermost stable circular orbit (ISCO), or more

generally the separatrix between stable and plunging orbits [46], where the post-adiabatic

expansion becomes singular. However, there is still a separation of time scales, as the

ISCO-crossing time is long, of order M(M/mp)
1/5, compared to the orbital period [33, 47].

In Refs. [48–51], we exploited this fact to develop a multiscale expansion adapted to the

transition across the ISCO. In Ref. [51], in particular, we showed how the phase-space

paradigm persists in this regime and how it continues to facilitate an offline-online split

of the field equations, ultimately enabling rapid waveform generation. (EOB models, in

contrast, do not fully exploit the separation of scales, which allows them to smoothly evolve

across the ISCO but prevents a complete offline-online split.)

In this paper, we continue this development by building a merger-ringdown GSF frame-

work within the phase-space paradigm, restricting to the case of quasicircular, nonspinning

binaries (as we also did for the transition to plunge). There is no separation of time scales

during the final plunge, when the secondary falls from the ISCO down to the black hole

horizon. Nevertheless, we show that one can continue to treat the waveform as a function

on the binary’s mechanical phase space, linking the waveform to the orbital dynamics all

the way into the infinite future. Unlike in EOB, where the connection to the orbit is lost at

the light ring, we obtain the entire merger-ringdown waveform without having to switch to

a separate ringdown approximation. Like in the inspiral and transition to plunge, this en-

ables an offline-online split in which we can pre-compute waveform ingredients as functions

on the orbital phase space.

Our phase-space formulation differs in two ways from previous approaches to mod-

elling the merger-ringdown at leading order within GSF theory [52–56]: first, our approach

maintains the rapid waveform generation framework of the inspiral; second, it can be sys-

tematically applied beyond leading order. We ultimately aim to combine our treatment of

the plunge with the treatments of the inspiral and transition to plunge in order to construct

a model that can seamlessly and rapidly generate complete IMR waveforms for asymmet-

ric binaries. In the present paper, we limit our ambitions to three goals: (i) developing

an appropriate “post-geodesic” expansion of the motion and field equations in the plunge

regime; (ii) implementing the method to generate plunge waveforms at leading, geodesic

order; (iii) exploring this leading-order waveform’s features and accuracy.

For our formulation of the post-geodesic expansion in the plunge, we emphasize how the

early-time behaviour of this expansion, when the secondary is near the ISCO, appropriately

matches the late-time behaviour of our transition-to-plunge expansion. We then make

use of this matching in our implementation of the leading, geodesic-order plunge. We

compute plunge waveforms at that order using a Fourier transform adapted to the phase-

space representation of the problem. Our calculations then closely follow earlier ones

in Refs. [57, 58]. However, we go beyond those calculations by placing them within a
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framework that can be applied at higher orders and by using the matching to the transition

to plunge to more rigorously justify various steps.

With the geodesic plunge waveform in hand, we then explore how well it can be

separated into two distinct segments: an extended inspiral and a ringdown, as in EOB.

Our final waveform is given by an inverse Fourier transform, which presents two clear

approximations. Before the waveform’s peak amplitude, we can approximate the inverse

Fourier transform by a stationary-phase approximation (SPA), in which the waveform

frequency becomes equal to an integer multiple of the orbital frequency; this is in the spirit

of EOB’s waveform generation in its extended inspiral. The inverse Fourier transform

can also be written in terms of a sum of quasinormal modes (QNMs), power-law tails,

and prompt response, and we are able to internally compute the excitation coefficients of

the QNMs. In line with EOB’s basic description of merger, we find that the SPA works

remarkably well until near the waveform’s peak, and we find good agreement with the

QNM sum after the peak. However, neither approximation is accurate at the waveform’s

peak, and stitching the two together does not reproduce the full plunge waveform. It is

possible that inclusion of higher-order terms in the SPA will bring it closer to the peak. On

the other hand, the QNM sum clearly breaks down near the peak and can only be sensibly

used at times ≳ 10M after the peak, consistent with studies of numerical fits to numerical

merger-ringdown waveforms [59–62].

The paper is structured as follows. Section 2 contains the phase-space description

of our merger-ringdown model. In Sec. 3 we present the post-geodesic expansion of the

orbital motion and asymptotically match it with the late-time transition-to-plunge solution

of Ref. [51]. We present the plunge field equations through second order in the mass ratio in

Sec. 4. We then proceed to solve the Regge-Wheeler-Zerilli equations to obtain first-order

plunge waveforms in Sec. 5. This section also explains the stationary-phase approximation

to the plunge waveform and the construction of the QNM sum. In Sec. 6 we present our

numerical implementation, perform internal consistency checks and compare our first-order

waveforms to NR simulations. Finally, we discuss our results and future directions in Sec. 7.

We work in geometric units where the gravitational constant G and the speed of light

c are set to unity, G = c = 1. The small mass ratio is defined as ε := mp/M . It will also

be useful to introduce the large mass ratio q := 1/ε.

Data availability. For the ease of reproducibility of our results, we provide several Math-

ematica notebooks in ancillary files [63].

2 Merger-ringdown in a phase-space description

Before detailing our method, in this section we explain how the merger-ringdown regime

can be described within the same phase-space paradigm as the inspiral and transition to

plunge. For concreteness, we specialize immediately to the case of a nonspinning particle

orbiting a slowly spinning primary black hole.
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2.1 Self-force primer

We start from the equations of second-order self-force theory in the self-consistent ap-

proach [64–67], which are valid on all timescales. These equations will then be expanded

on the relevant timescales of the inspiral, transition to plunge, and plunge.

The spacetime metric is split into a background plus a perturbation, gαβ +hαβ, where

gαβ is the Schwarzschild metric of the primary black hole as if it were isolated, with constant

mass M . The perturbation hαβ ∼ ε, due to the presence of the orbiting secondary, encodes

all corrections sourced by the secondary as well as all nonlinear effects of the two bodies’

gravitational interaction, such as the primary’s slow accumulation of mass and spin due to

absorption of radiation. hαβ will be expanded in a series for small ε, but the form of that

series will depend on the stage of the binary’s evolution.

Without specifying the form of that expansion, we can write the Einstein equations

perturbatively in hαβ as

δGαβ[h] + δ2Gαβ[h, h] +O(ε3) = 8πTαβ, (2.1)

where δGαβ is the linearized Einstein tensor on the background gαβ, δ
2Gαβ is quadratic in

hαβ,
1 and so on. On the right-hand side, the secondary is represented by the point-particle

Detweiler stress-energy tensor [67, 68],

Tαβ = mp

∫
ũαũβ

δ4(xµ − zµ(τ̃))√
−g̃

dτ̃ , (2.2)

where zµ(τ̃) is the particle’s orbital trajectory. g̃αβ = gαβ + hRαβ is a certain effective

metric, which is regular at the particle’s position, and in which the particle moves as a test

mass. Here we have split the metric perturbation into hαβ = hPαβ + hRαβ, where hPαβ is an

analytically known “puncture”, which is singular at the particle’s position, and hRαβ is the

regular residual field, as defined in Ref. [69]. The parameter τ̃ is proper time in g̃αβ, and

the particle’s 4-velocity is ũα := dzα/dτ̃ (with ũα := g̃αβũ
β).

While the particle obeys the geodesic equation in the effective metric g̃αβ, its motion

is accelerated in the background metric gαβ, such that

D2zµ

dτ2
= fµ. (2.3)

Here τ is proper time in gαβ and D/dτ := uα∇α, with the 4-velocity uα := dzα/dτ and

covariant derivative ∇α compatible with gαβ. Explicitly, the self-force (per unit mass)

acting on the secondary is given by [64, 66]

fµ = −1

2
Pµν(δρν − hRρ

ν )(2∇αh
R
βρ −∇ρh

R
αβ)u

αuβ +O(ε3), Pµν := gµν + uµuν . (2.4)

Just as the particle’s orbit evolves self-consistently in response to the metric pertur-

bation, the primary’s mass and spin evolve due to the GW fluxes of energy and angular

1Due to its strong singularity at the particle, δ2Gαβ is not uniquely defined on a domain that includes

the particle’s worldline. We assign it the distributional definition of Ref. [67], which is consistent with our

use of the Detweiler stress-energy tensor.
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momentum through its horizon. In order to build a consistent perturbative expansion, we

need to take into account this dynamical change. We write the black hole’s total mass as

M + ε δM and total spin as ε δJ , where M is the constant mass of the Schwarzschild back-

ground and δM(v, ε) and δJ(v, ε) are the evolving corrections (normalized by ε), which are

functions of advanced time v along the horizon. These perturbations appear in hαβ, rather

than in the background, following the self-consistent prescription of Refs. [43? ]. Adopting

the conventions of Ref. [51], we define δM := δM+ and δJ := δM− and collectively denote

them as δM±.

To describe the three stages of binary evolution, we now foliate the spacetime with

surfaces of constant time s. As explained in detail in Refs. [43, 70], s is most conveniently

chosen to be a hyperboloidal time (or quasi-hyperboloidal, allowing null segments), such

that each s = constant slice extends from the black hole’s future horizon H + to future

null infinity I +; this avoids some of the spurious divergences that arise at subleading

orders in ε if using Schwarzschild time t [71, 72]. Here we leave the choice of time generic,

only restricting it to the form s = t − κ(x), where t is Schwarzschild time and x is the

tortoise coordinate. In the present section, for simplicity we also assume s = t at the

particle’s worldline, but in Secs. 4 and 5.1 we will allow for more general choices. Figure 1

illustrates the two most extreme examples: “sharp” slicing in which s = v to the left of the

particle and s = u to the right; and “flat” slicing s = t everywhere. On each slice, we use

Schwarzschild coordinates xi = (r, θ, ϕ). We can then conveniently use t as a parameter

along the particle’s worldline, such that zµ(t, ε) = (t, xip(t, ε)), with the spatial trajectory

xip(t, ε) = (rp(t, ε), π/2, ϕp(t, ε)). (2.5)

We refer to the space spanned by (xip, ẋ
i
p, δM

±) as the binary’s phase space, where

an overdot denotes d/dt. A particular binary system evolves through this space, and, via

the Einstein field equations, the phase-space evolution is linked to the metric’s evolution

on spacetime. The particular form of the evolution, and the congruous form of the metric

perturbation, depends on the regime: inspiral, transition to plunge, or plunge.

2.2 Inspiral

During the binary’s quasicircular inspiral stage, the particle’s orbit is characterized by a

single slowly evolving orbital frequency,

dϕp

dt
= Ω, (2.6)

and a slowly evolving orbital radius. The mechanical variables describing the binary are

then the constants M and mp, the orbital phase ϕp, which varies on a “fast” orbital

time scale ∼ 2π/Ω ∼ M , and the evolving parameters Ja = (Ω, δM±), which evolve on

the “slow” radiation-reaction time scale ∼ M/ε. The orbital radius, rather than being

independent, is expressed in terms of the other variables through an expansion of the form
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Figure 1. Plunging geodesic (blue curve) in the Schwarzschild exterior, using the standard arctan

compactification [73]. Here the constant t0 in Eq. (3.43) is chosen such that the geodesic passes

through r = 3M at t = 0. The waveform at I + is expressed as a function on the two-body phase

space by foliating the spacetime with slices that connect I + to the particle, covering all of I +

before the particle passes behind the horizon. Left: surfaces of constant s (orange curves) with

sharp v-u slicing. Right: surfaces of constant s in t slicing.

rp = r(0)(Ω)+ε r(1)(J
a)+O(ε2),2 where r(0)(Ω) = M(MΩ)−2/3 is the geodesic relationship,

and the correction r(1) is due to the radial self-force.

We define the mechanical variables (ϕp, J
a) as functions on spacetime by making them

constant on slices of constant global time s, recalling that s = t on the particle’s worldline.

Their evolution from slice to slice is then governed by simple differential equations of the

form [43, 70]

dϕp

ds
= Ω, (2.7a)

dΩ

ds
= ε

[
FΩ
(0)(Ω) + ε FΩ

(1)(Ja) +O(ε2)
]
, (2.7b)

d

ds
δM± = ε F±

(1)(Ω) +O(ε2). (2.7c)

Here numeric labels (n) denote the post-adiabatic order (nPA) at which a term contributes

to the orbital phase. The forcing terms FΩ
(n) are obtained from the self-force using the

equation of motion (2.3), while F±
(n) are determined from the fluxes of energy and angular

momentum through the horizon.

The fundamental assumption in our phase-space approach is that the metric pertur-

bation only depends on s through a dependence on the evolving mechanical variables, such

2Note that here and throughout this paper, we suppress functional dependence on the background

mass M .
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that

hαβ(s, x
i, ε) = hαβ(ϕp(s, ε), J

a(s, ε), xi, ε). (2.8)

We can then treat the perturbation as a function on phase space, hαβ(ϕp, J
a, xi, ε). In the

inspiral regime, we expand this function at fixed values of the phase-space coordinates,

such that

hαβ(ϕp, J
a, xi, ε) =

∑
n≥1

εnh
(n)
αβ (ϕp, J

a, xi). (2.9)

Moreover, since ϕp is a 2π-periodic variable, assuming continuity on phase space allows us

to expand the metric perturbations in discrete Fourier series:

hαβ(ϕp, J
a, xi, ε) =

∑
n≥1

εn
∞∑

m=−∞
h
(n),m
αβ (Ja, xi)e−imϕp . (2.10)

For the metric perturbations, a label (n) indicates their absolute order in ε.

Concrete calculations are performed by rewriting the Einstein equations as equations

on phase space, as we review in Sec. 4 below. The leading-order field equations, for h
(1),m
αβ ,

are identical to traditional frequency-domain field equations for a particle on a precisely

circular geodesic of frequency Ω, even though ϕp and Ja are never ascribed the time de-

pendence they would have for a geodesic. The forcing functions F a
(n) = (FΩ

(n), F
±
(n)) in

Eqs. (2.7b) and (2.7c) are then calculated from the amplitudes h
(n),m
αβ .

In this approach, the asymptotic waveform is obtained as a function on phase space

simply by taking the r → ∞ limit of Eq. (2.10). Rapid waveform generation is made possi-

ble by the fact that the waveform’s inputs (the amplitudes h
(n),m
αβ and forcing functions FΩ

(n)

and F±
(n)) are all pre-computed in advance as functions on phase space, prior to specifying

the value of ε or any particular trajectory through phase space. Given the pre-computed

inputs, waveforms are then generated by solving the ordinary differential equations (2.7)

to determine the waveform’s time dependence.

2.3 Transition to plunge

When the particle approaches the ISCO, which lies at a radius r∗ := 6M or frequency

Ω∗ := 1/(63/2M),3 the frequency begins to evolve more rapidly, and the assumption that

dΩ/dt ∼ ε breaks down. The particle then transitions across the ISCO, on a time scale

∼ M/ε1/5 and over a frequency band of size ∼ ε2/5.

We describe this transition to plunge in essentially the same way as we did the inspiral.

In place of Ω, we adopt a scaled frequency

∆Ω :=
Ω− Ω∗

ε2/5
, (2.11)

which is of order unity in the transition regime. We then work with mechanical variables ϕp

and ∆Ja = (∆Ω, δM±), and Eqs. (2.7) are replaced by evolution equations of the form [51]

3Note that we chose to use x rather than r∗ to denote the tortoise coordinate in order to avoid confusion

with the numerical constant r∗.
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dϕp

ds
= Ω = Ω∗ + ε2/5∆Ω, (2.12a)

d∆Ω

ds
= ε1/5

[
F∆Ω
[0] (∆Ω) + ε2/5F∆Ω

[2] (∆Ω) + ε3/5F∆Ω
[3] (∆Ja) +O(ε4/5)

]
, (2.12b)

d

ds
δM± = ε F±

[3](∆Ω) +O(ε6/5). (2.12c)

We use numeric labels [n], rather than (n), to denote the post-leading-transition order

(nPLT) at which a term contributes to the orbital phase4. Here, functions on phase space

admit series expansions in powers of the small parameter ε1/5 rather than in powers of ε.

This behaviour, as well as the ε2/5 scaling of ∆Ω in Eq. (2.11), is readily derived from the

requirement that the transition-to-plunge expansion asymptotically matches the expansions

in the inspiral and plunge.

Although the frequency Ω now evolves at a rate dΩ/ds = ε2/5(d∆Ω/ds) ∼ ε3/5, the

rate of change of δM± remains O(ε). This is true in all regimes, including even the plunge,

because the fluxes of energy and angular momentum across the horizon are always O(ε2),

as they are proportional to the square of the time derivative of the metric perturbation

(and we recall that δM± are normalized by ε).

Just as for the inspiral, we expand the metric perturbation for small ε at fixed values

of our phase-space variables:

hαβ =
∞∑

m=−∞

[
ε h

[5],m
αβ (∆Ja, xi)+ε7/5h

[7],m
αβ (∆Ja, xi)+ε8/5h

[8],m
αβ (∆Ja, xi)+O(ε9/5)

]
e−imϕp .

(2.13)

Similarly to the inspiral, for the metric perturbations a label [n] indicates the absolute

order of ε1/5. Here the dependence on ε1/5 is inherited from the orbital evolution through

the field equations. Like in the inspiral, we express the field equations as equations on

phase space, allowing us to directly compute the metric amplitudes h
[n],m
αβ (∆Ja, xi) and

forcing functions F a
[n](∆Jb) as functions of ∆Ja. Again, we review this method in Sec. 4;

and again, the forcing functions F a
[n](∆Jb) can be computed from the amplitudes h

[n],m
αβ .

Since we are able to precompute all the waveform ingredients, we maintain the rapid

waveform-generation framework of the inspiral. Given the waveform amplitudes and forcing

functions, we rapidly generate waveforms by solving the orbital evolution equations (2.12).

2.4 Plunge

Once the particle has fallen sufficiently far below the ISCO, after a time ≳ M/ε1/5, the

transition-to-plunge approximation breaks down and the orbital frequency begins to evolve

on a time scale ∼ M . This occurs as the steepness of the radial potential begins to drive

the inward motion, dominating over radiation-reaction effects. The secondary then plunges

following a nearly geodesic orbit in the primary’s geometry with almost constant orbital

energy and angular momentum [47].

4The quantity F δM±
[n] defined in Ref. [74] is now denoted as F±

[n+3].
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One might intuitively doubt that the phase-space picture can be extended to this

final plunge regime. That intuition stems from thinking that the ringdown portion of the

waveform occurs in some sense “after” the particle has fallen behind the black hole horizon.

However, the meaning of “after” entirely depends on one’s choice of spacetime foliation.

From the perspective of an asymptotic observer, the particle never falls behind the horizon.

Using either our sharp or flat slicings, we can foliate the entire black hole exterior with

constant-s slices, and the particle’s trajectory intersects every such slice, never crossing the

horizon at any time s < ∞. See again Fig. 1 for an illustration of this. As a consequence,

the entire merger and ringdown can be parameterized by the binary’s trajectory through

phase space.

In the bulk of the paper, we show how to apply this idea to develop an appropriate

expansion for the plunge. The fundamental difference between the plunge and the other

regimes is that the orbital frequency now evolves on the same time scale ∼ M as the

orbital phase. Hence, instead of equations of the form (2.7) or (2.12), in the plunge we

have equations of the form

dϕp

ds
= Ω, (2.14a)

dΩ

ds
= FΩ

{0}(Ω) + ε FΩ
{1}(J

a) +O(ε2), (2.14b)

d

ds
δM± = ε F±

{1}(Ω) +O(ε2), (2.14c)

where we have reverted to phase-space coordinates Ja = (Ω, δM±), and we use labels {n}
to denote post-geodesic orders (nPG). The metric perturbation, still treated as a function

on phase space, has a corresponding expansion

hαβ =

∞∑
m=−∞

[
ε h

{1},m
αβ (Ja, xi) + ε2h

{2},m
αβ (Ja, xi) +O(ε3)

]
e−imϕp . (2.15)

The label {n} indicates the metric perturbation’s absolute order in ε. Just as for the

inspiral and transition to plunge, we will rewrite the field equations as equations for the

functions h
{n},m
αβ (Ja, xi).

This formulation of merger and ringdown markedly contrasts with EOB’s. As alluded

to in the Introduction, in the EOB description, the waveform’s link to the binary phase

space is broken when the effective particle passes the light ring of the effective-one-body

metric; after that point, a phenomenological ringdown waveform is attached. By main-

taining the waveform’s link to the phase-space trajectory, we maintain the structure that

enables fast waveform generation: all waveform ingredients are pre-computed by solving

field equations on phase space, and waveforms are then rapidly generated by solving the

evolution equations (2.14).

We also emphasize that our treatment of the plunge fundamentally differs from an

expansion around a geodesic solution, even though we refer to our expansion as “post-

geodesic” for lack of a better name. An expansion around a geodesic solution would involve

an expansion of the phase-space trajectory itself, as in ϕp(t, ε) = ϕ0(t) + ε ϕ1(t) + O(ε2),
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Ω(t, ε) = Ω0(t) + εΩ1(t) + O(ε2), and δM±(t, ε) = δM±
0 (t) + O(ε), where a subscript 0

denotes a geodesic solution. Correspondingly, the metric perturbation would be expanded

as hαβ = ε h
{1}
αβ (s, x

i) + ε2h
{2}
αβ (s, x

i) +O(ε3), where h
{1}
αβ would be sourced by the particle

on the geodesic trajectory. This would be a “Gralla-Wald” formulation [75, 76], which is an

expansion in powers of ε at fixed spacetime coordinates (s, xi); in our approach, we instead

expand all quantities, including Ω̇ and ˙δM±, at fixed values of (ϕp, J
a, xi). Our leading

perturbation h
{1}
µν is a function of (ϕp,Ω, δM

±), which becomes a function of time when

evaluated along phase-space trajectories obtained by solving Eqs. (2.14). Those phase-

space trajectories are only geodesic trajectories when F a
{1} and higher terms are omitted.

Historically, a Gralla-Wald expansion has not been used in the inspiral because it

is only valid on time scales much shorter than the dephasing time ∼ M/
√
ε over which

the accelerated trajectory dephases significantly from the geodesic trajectory [71]. This

restriction would not in itself be problematic in the transition or plunge, which occur on

the time scales ∼ M/ε1/5 and ∼ M , respectively. However, a Gralla-Wald expansion

would not allow us to assemble the inspiral, transition to plunge and plunge in an efficient

asymptotically matched expansion scheme.

By treating all three regimes in the same manner, we put the problem in a uniform

offline/online format. Ultimately, one can hybridize the waveforms between the inspiral,

transition-to-plunge, and plunge regimes at the level of the precomputed forcing functions

F a
(n), F

a
[n], and F a

{n} and the amplitudes h
(n),m
αβ , h

[n],m
αβ , h

{n},m
αβ (with r → ∞), such that the

full IMR waveform can be generated from pre-computed ingredients by solving a single set

of three ordinary differential equations for ϕp(s, ε), Ω(s, ε), and δM±(s, ε).

In this paper, we defer the presentation of such a hybridization, focusing on the plunge

regime and its asymptotic matching to the transition-to-plunge regime.

3 Plunge: orbital motion

We now develop the equations (2.14a) and (2.14b) describing the plunging orbit. We work

in Schwarzschild coordinates (t, r, θ, ϕ), such that the background metric reads

ds2 = −f(r)dt2 +
dr2

f(r)
+ r2

(
dθ2 + sin2 θ dϕ2

)
, f(r) := 1− 2M

r
, (3.1)

and the particle’s spatial trajectory xip(t, ε) is as in Eq. (2.5).

We present two different formulations of the plunge expansion, based on two different

choices of phase-space coordinates (ϕp, J
a). In Sec. 3.1, we choose Ja = (Ω, δM±) as

in Sec. 2.4. This choice exhibits potentially problematic features because Ω does not

provide a single coordinate chart over the whole plunge; it increases to a maximum at

the light ring and then decreases to zero at the horizon, such that (ϕp,Ω, δM
±) actually

represents two distinct coordinate patches (completely analogous to the “isofrequency”

orbits described in Ref. [77]). In Sec. 3.3 instead we make a choice that avoids this issue:

Ja = (rp, δM
±), where rp is the orbital radius. Since the two formulations only differ in

their choice of phase-space coordinates, they are formally equivalent. In Appendix B we

derive the transformation between them.
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In either approach, the variables Ja satisfy evolution equations of the form

dJa

dt
= F a(Jb, ε) = F a

{0}(J
b) + ε F a

{1}(J
b) +O(ε2). (3.2)

If Ja = (Ω, δM±), then the functions F a
{n} are the only needed orbital input in the online

waveform generation described in the previous section. If Ja = (rp, δM
±), then Ω in

Eq. (2.14a) becomes Ω(rp, ε) = Ω{0}(rp) + εΩ{1}(J
a) + O(ε2), and the functions Ω{n}

become necessary inputs in the waveform generation.

To derive the forcing functions F a
{n} and the frequency corrections Ω{n}, we rewrite

the orbital equation of motion (2.3) in terms of t. Defining the redshift U := dt/dτ , we can

write the four-velocity uµ := dzµ/dτ as

uµ(Ja, ε) = U

(
1,

drp
dt

, 0,Ω

)
. (3.3)

If we choose Ja = (Ω, δM±), then drp/dt here is expressed in terms of F a
{n} by applying the

chain rule to rp(t, ε) = rp(J
a(t, ε), ε). The normalization of the four-velocity for timelike

curves, gµνu
µuν = −1, leads to an equation for the redshift,

U−2 = −gµν
dzµ

dt

dzν

dt
. (3.4)

Rewritten in terms of the parameter t, the equation of motion (2.3) becomes

d2zµ

dt2
+ U−1dU

dt

dzµ

dt
+ Γµ

νσ

dzν

dt

dzσ

dt
= U−2fµ, (3.5)

where Γµ
νσ are the background Schwarzschild Christoffel symbols. The self-force fµ has

only two independent components because fθ = 0 on equatorial orbits and because the

normalization gµνu
µuν = −1 implies uµfµ = 0.

Obtaining the forcing functions FΩ
{n} will additionally require information from the

transition-to-plunge regime. This is because the PG expansion is not self-contained; with-

out information from the transition to plunge, we would have no way of determining which

geodesic is the correct one to expand around, for example. Picking out the correct PG

dynamics requires asymptotic matching conditions between the PG and PLT expansions.

These conditions come from the requirement that the PG and PLT expansions commute.

If we expand a function for small ε at fixed Ω (a PG expansion) and then re-expand for

small ε at fixed ∆Ω (a PLT expansion), we must obtain the same result as we do by first

expanding for small ε at fixed ∆Ω and then re-expanding for small ε at fixed Ω. In both

cases, we obtain a double series in ε and (Ω − Ω∗), and the two double series must agree

term by term. Equivalently, we can say that a late-time expansion (for M∆Ω ≫ 1) of the

PLT dynamics must match, term by term, an early-time expansion (M(Ω − Ω∗) ≪ 1) of

the PG dynamics.

3.1 Expansion at fixed orbital frequency

We start by expanding the orbital radius rp and the redshift U in powers of the mass ratio

ε at fixed phase-space coordinates Ω and δM±:

rp(Ω, δM
±, ε) = r{0}(Ω) +

∞∑
n=1

εnr{n}(Ω, δM
±), (3.6)
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U(Ω, δM±, ε) = U{0}(Ω) +
∞∑
n=1

εnU{n}(Ω, δM
±). (3.7)

Note that these quantities are independent of ϕp: as a consequence of the background’s

axisymmetry, the metric perturbation only ever depends on ϕp in the combination (ϕ −
ϕp) [28], such that it is independent of ϕp when evaluated on the particle at ϕ = ϕp; this

implies the self-force and other dynamical quantities derived from it (such as r{n}) are

likewise independent of ϕp.

Since all functions are expanded at fixed phase-space coordinates, we also expand the

coordinates’ rates of change (with respect to t) as

Ω̇(Ω, δM±, ε) = FΩ
{0}(Ω) +

∞∑
n=1

εnFΩ
{n}(Ω, δM

±), (3.8)

δṀ±(Ω, δM±, ε) =
∞∑
n=1

εnF±
{n}(Ω, δM

±). (3.9)

Finally, the self-force can be similarly expanded as

fµ(Ω, δM±, ε) =
∞∑
n=1

εnfµ
{n}(Ω, δM

±). (3.10a)

We now substitute the post-geodesic expansion of the worldline (2.5) and the four-

velocity (3.3) into the equation of motion (3.5) and the normalization condition (3.4). This

leads straightforwardly to a sequence of equations for r{n}, U{n}, and F a
{n}, describing the

plunging motion at each nPG order. Those equations are then completed using information

from the transition-to-plunge regime.

3.1.1 Leading-order match with the late-time transition-to-plunge solution

Our derivation of the 0PG dynamics in the next section will crucially rely on information

from the asymptotic match with the transition to plunge close to the ISCO. Here we give

a brief overview of how this matching works, focusing on the 0PG information it implies;

we defer a more detailed analysis to Sec. 3.2.

The transition-to-plunge expansions to 2PLT order for the orbital radius and the rate

of change of the orbital frequency read [51]

rp = 6M + ε2/5
[
r[0](∆Ω) + ε2/5r[2](∆Ω) +O(ε3/5)

]
, (3.11)

dΩ

dt
= ε3/5

[
F∆Ω
[0] (∆Ω) + ε2/5F∆Ω

[2] (∆Ω) +O(ε3/5)
]
. (3.12)

The terms r[n] are algebraically determined, while F∆Ω
[n] solve sourced linearized Painlevé

transcendental equations of the first kind [51]. In the late-time limit ∆Ω → +∞ (where

the transition to plunge asymptotically matches with the plunge) we have

r[0] = r
(2,1)
[0] ∆Ω, r[2] = r

(4,2)
[2] ∆Ω2 +O(∆Ω−1), (3.13)
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and

F∆Ω
[0] = F

(3,3/2)
[0] ∆Ω3/2 +O(∆Ω−1), F∆Ω

[2] = F
(5,5/2)
[2] ∆Ω5/2 +O(∆Ω0), (3.14)

where r
(2,1)
[0] , r

(4,2)
[2] , F

(3,3/2)
[0] and F

(5,5/2)
[2] are numerical constants given in Appendix A.1.

Plugging these solutions into Eqs. (3.11) and (3.12) and re-expressing ∆Ω as (Ω−Ω∗)/ε
2/5

yields

rp =
[
6M + r

(2,1)
[0] (Ω− Ω∗) + r

(4,2)
[2] (Ω− Ω∗)

2 +O
[
(Ω− Ω∗)

3
]]

+O(ε), (3.15)

dΩ

dt
=
[
F

(3,3/2)
[0] (Ω− Ω∗)

3/2 + F
(5,5/2)
[2] (Ω− Ω∗)

5/2 +O
[
(Ω− Ω∗)

7/2
]]

+O(ε). (3.16)

The O(ε) terms come from the subleading terms in the late-time expansion of the PLT

orders, e.g., the O(∆Ω−1) term in F∆Ω
[0] . Subleading terms in the square brackets originate

from the leading-order terms in the late-time expansion of higher PLT orders.

As explained above, the ε0 terms in Eqs. (3.15) and (3.12) must match, term by term,

with the near-ISCO expansion of 0PG quantities in the plunge. Hence, we can infer that,

in the near-ISCO limit Ω → Ω∗,

r{0} = 6M + r
(2,1)
[0] (Ω− Ω∗) + r

(4,2)
[2] (Ω− Ω∗)

2 +O
[
(Ω− Ω∗)

3
]
, (3.17)

FΩ
{0} = F

(3,3/2)
[0] (Ω− Ω∗)

3/2 + F
(5,5/2)
[2] (Ω− Ω∗)

5/2 +O
[
(Ω− Ω∗)

7/2
]
. (3.18)

From this, we see that the 0PG plunge trajectory must asymptote to a circular orbit with

r{0} → 6M and Ω̇ → 0—i.e., a circular geodesic infinitesimally below the geodesic ISCO.

3.1.2 Geodesic order

At leading order, we can use the t component of the equation of motion (3.5) to solve for

∂2
Ωr{0}:

∂2
Ωr{0} =

3M(∂Ωr{0})
2

r{0}(r{0} − 2M)
−

∂ΩF
Ω
{0}∂Ωr{0}

FΩ
{0}

+
2M2 − r{0}(r

2
{0}Ω

2(r{0} − 4M) +M)− r4{0}Ω(r{0} − 2M)/∂Ωr{0}

r3{0}(F
Ω
{0})

2
.

(3.19)

Plugging this result into the radial component of the equation of motion allows us the

obtain the following simple expression for ∂Ωr{0}:

∂Ωr{0} = −
r{0}(r{0} − 2M)

2Ω(r{0} − 3M)
. (3.20)

We can use this to simplify U{0}, which we obtain from Eq. (3.4) at order O(ε0),

U{0} =
2Ω r

1/2
{0}(r{0} − 3M)√

4Ω2(r{0} − 3M)2(r{0} − 2M − r3{0}Ω
2)− (r{0} − 2M)r4{0}(F

Ω
{0})

2
. (3.21)
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The geodesic orbital energy and angular momentum per unit mass of the plunging

particle, E{0} and L{0}, are given by

E{0} = −u
{0}
t = −gtt(r{0})U{0} = f(r{0})U{0}, (3.22a)

L{0} = u
{0}
ϕ = gϕϕ(r{0}, π/2)ΩU{0} = r2{0}ΩU{0}. (3.22b)

Since ut and uϕ are constant along any geodesic of Schwarzschild, E{0} and L{0} must be

constant “on shell”, when Ω satisfies Ω̇ = FΩ
{0}. Moreover, making use of Eq. (3.19), it is

straightforward to verify that they are constants even if Ω satisfies Ω̇ = FΩ(Ω, ε) because

dE{0}/dΩ = dL{0}/dΩ = 0. The values of these constants are fixed by the requirement for

the plunge to asymptotically match the transition to plunge close to the ISCO. We can

take the limit as Ω → Ω∗ of Eqs. (3.22) keeping in mind that the geodesic radius reduces

to the ISCO radius while FΩ
{0} vanishes as prescribed by Eqs. (3.17) and (3.18). We get

E{0} = E∗ :=
2
√
2

3
, L{0} = L∗ := 2

√
3M, (3.23)

which correspond to the (specific) energy and angular momentum of a test particle on the

ISCO. The plunging geodesics with these values of E and L are the “universal” geodesics

studied in the past [57, 58, 78–80]; at 0PG order, all quasicircular inspirals transition onto

one of these geodesics, with the only difference between them being a constant shift in ϕp.

By imposing E{0}/L{0} = E∗/L∗, where E{0} and L{0} are given in Eq. (3.22) and the

constants E∗ and L∗ are defined in Eq. (3.23), we obtain a cubic master equation for the

orbital radius in terms of the orbital frequency,

√
2Ωr3{0} − 3

√
3Mr{0} + 6

√
3M2 = 0. (3.24)

The solution has two branches, as shown in Fig. 2: on the first branch, r1{0}(Ω), the orbital

frequency increases monotonically from Ω = Ω∗ := 1/
(
6
√
6M
)
at the ISCO to its light

ring value Ω = ΩLR := 1/
(
3
√
6M
)
. On the second branch, r2{0}(Ω), the orbital frequency

monotonically decreases to Ω = 0 at the horizon-crossing.

The condition (E{0})
2 = (E∗)

2, together with Eqs. (3.21) and (3.22), also yields the

expression for the geodesic forcing term,

FΩ
{0} =

Ω(r{0} − 3M)
(
36M2 − 20Mr{0} + r2{0} + 8Ω2r4{0}

)1/2
√
2r

5/2
{0}
(
2M − r{0}

)1/2 . (3.25)

Above the light ring, the frequency increases with t (FΩ
{0}(r{0}) > 0 for 3M < r{0} < 6M),

while it decreases between the light ring and the horizon (FΩ
{0}(r{0}) < 0 for 2M < r{0} <

3M), consistently with Fig. 2.
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Figure 2. Geodesic orbital radius r{0}(Ω) on the two branches obtained by solving Eq. (3.24): the

early solution r1{0}(Ω) (dashed curve) from the ISCO to the light-ring frequency, and the late solution

r2{0}(Ω) (solid curve) up to the horizon-crossing. The horizontal dashed lines at r{0} = 2M, 3M, 6M

indicate the horizon, the light ring and the ISCO, respectively.

3.1.3 First post-geodesic order

At first post-geodesic order, the t and r components of the equation of motion (3.5) lead

to hierarchical differential equations for r{1} and FΩ
{1},

∂Ωr{1} +
r2{0} − 6Mr{0} + 6M2

2Ω(r{0} − 3M)2
r{1} =

1

32r4{0}Ω
3(r{0} − 3M)2

[
9r3{0}(r{0} − 2M)3f r

{1}

−
18

√
2r

5/2
{0}(2M − r{0})

7/2
(
r3{0}Ω

2 − r{0} + 2M
)

(36M2 − 20Mr{0} + r2{0} + 8Ω2r4{0})
1/2

f t
{1}

]
,

(3.26a)

∂ΩF
Ω
{1} −

4Ω
(
3M2 +Ω2r4{0} −M(3Ω2r3{0} + r{0})

)
+ r4{0}F

Ω
{0}∂ΩF

Ω
{0}

r4{0}(F
Ω
{0})

2
FΩ
{1}

=
1

4Ω2r5{0}(r{0} − 3M)2(r{0} − 2M)2(FΩ
{0})

2

[
8Ω3r4{0}(r{0} − 2M)(r{0} − 3M)3(FΩ

{0})
3∂2

Ωr{1}

− 8Ω2r3{0}(r{0} − 3M)2FΩ
{0}

[
4Ω4(r{0} − 3M)3 − 3Mr{0}(r{0} − 2M)(FΩ

{0})
2

−Ω r{0}(r{0} − 3M)(r{0} − 2M)FΩ
{0}∂ΩF

Ω
{0}

]
∂Ωr{1}

− 4Ω(r{0} − 3M)FΩ
{0}

[
2Ω2(r{0} − 3M)2

(
12M3 + 3Ω2r5{0} + 2M2r{0}(6Ω

2r2{0} − 5)

(3.26b)
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−M(14Ω2r4{0} − 2r2{0})
)
− 3Mr4{0}(r

2
{0} − 3Mr{0} + 2M2)(FΩ

{0})
2
]
r{1}

+ (r{0} − 2M)
[
4Ω2(r{0} − 3M)2(Ω2r3{0} − r{0} + 2M) + r4{0}(r{0} − 2M)(FΩ

{0})
2
]2

f t
{1}

]
.

(3.26c)

Contrary to the 0PG equations, which describe a geodesic in the background spacetime, the

motion at 1PG order is driven by both the t and r components of the first-order self-force,

f t
{1} and f r

{1}.

We notice that the post-geodesic expansion derived in this section breaks down at the

light ring, where the evolution equations (3.26) encounter a pole. This is a consequence of

the fact that the frequency does not provide a global coordinate for the whole plunge, as

mentioned previously. It motivates an alternative choice of coordinates, which we develop

in Sec. 3.3.

Like the 0PG dynamics, the 1PG dynamics is not fully specified by the orbital equations

of motion (3.26). Since those equations are first-order differential equations, they only

determine FΩ
{1} up to a constant. Fixing that constant requires additional input from the

transition-to-plunge regime. Moreover, we note that Eq. (3.26) becomes singular at the

ISCO as FΩ
{0} vanishes there. In general, we expect the post-geodesic expansion to become

increasingly singular at the ISCO at higher PG orders. Matching to the transition-to-

plunge solution then becomes increasingly important.

3.2 Asymptotic match with the transition to plunge

In this section, following Ref. [74], we derive the asymptotic match with the late-time

transition-to-plunge motion of Ref. [51]. Specifically, we generalize the brief description in

the previous section to 1PG order and high PLT orders. This will allow us to determine

how the transition to plunge selects the correct solution to the 1PG equations (3.26),

analogously to what we have done at geodesic order in Sec. 3.1.2.

To explain the structure of the asymptotic matching, we consider a function g(ε, Ja)

that admits both a transition-to-plunge expansion (a regular expansion in powers of λ :=

ε1/5 at fixed ∆Ja) and a plunge expansion (a regular expansion in powers of ε at fixed Ja).

We write the PLT expansion as g(λ,∆Ja) = g∗ + λp
∑

n≥0 λ
ng[n](∆Ja); for examples, see

Eqs. (3.11) and (3.12) for rp and dΩ/dt. At late times, where ∆Ω → +∞, we can expand

in half-integer powers of ∆Ω. Since ∆Ω = (Ω − Ω∗)/ε
2/5, re-expanding g for large ∆Ω is

equivalent to re-expanding for small ε at fixed Ω > Ω∗:

g(λ,∆Ja) = g∗ +
∑
n≥0

∑
m

λp+n∆Ωm/2g
(p+n,m/2)
[n] (δM±) (3.27a)

= g∗ +
∑
n≥0

∑
m

ε(p+n−m)/5(Ω− Ω∗)
m/2g

(p+n,m/2)
[n] (δM±). (3.27b)

In principle, there is no restriction on the integers m. However, the range of m is restricted

by the requirement of asymptotically matching the early-time behaviour of the plunge

expansion, which contains only integer powers of the mass ratio, εi with i = 0, 1, 2, . . . ; see
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Sec. 3.1. This restricts the powers of ∆Ω that can appear in the late-time expansion of a

given nPLT order:

m = p+ n− 5i, n, i ≥ 0. (3.28)

As an example, if we consider the 0PLT forcing term F∆Ω
[0] we have the following: as

anticipated in Sec. 3.1.1, since p = 3 and n = 0, the late-time expansion is given by

a series expansion with powers ∆Ω(3−5i)/2. We obtain the coefficients r
(p+n,m/2)
[n] for rp

and F
(p+n,m/2)
[n] for Ω̇ by substituting expansions of the form (3.27a) into the transition-

regime equations for r[n] and F∆Ω
[n] (see Ref. [51]). These coefficients are given explicitly in

Appendix A.1.

We can follow the analogous procedure for the plunge. The plunge expansion of a

function g is given by g(ε, Ja) =
∑

i≥0 ε
ig{i}(J

a). Re-expanding close to the ISCO and

substituting (Ω− Ω∗) = λ2∆Ω we obtain

g(ε, Ja) = g∗ +
∑
i≥0

∑
j

λ5i+j∆Ωj/2g
(5i+j,j/2)
{i} (δM±). (3.29)

We can restrict the range of j by requiring the powers of λ in the near-ISCO plunge

solution to match those in the late-time transition-to-plunge solution (3.27a). This yields

the condition

j = p+ n− 5i, n, i ≥ 0. (3.30)

At geodesic order (i = 0), we plug the asymptotic expansions (3.29) into Eqs. (3.24) and

(3.25) and solve for the coefficients g
(j,j/2)
{0} with j ≥ p + n and n ≥ 0. These coefficients

are given explicitly in Appendix A.2.

At first post-geodesic order, we need to know the near-ISCO structure of the self-

force. The first-order field equations in the plunge regime yield a metric perturbation

that contains pieces which are smooth at the ISCO and pieces ∼ FΩ
{0} ∼ (Ω − Ω∗)

3/2 due

to the presence of time derivatives (see Sec. 5.1, where the first-order field equations are

presented in a slightly different expansion scheme, but the general statement made here

remains unchanged). The self-force inherits this structure through Eq. (2.4), where at most

one time derivative acts on the metric perturbations and gives rise to half-integer powers

≥ 3/2 of (Ω − Ω∗) in the near-ISCO limit. We can therefore write the first-order plunge

self-force as

fµ
{1}(Ω → Ω∗, δM

±) = fµ
{1},0(δM

±) +
∞∑
n=2

fµ
{1},n(δM

±)(Ω− Ω∗)
n/2, (3.31)

where f t
{1},n and fϕ

{1},n are independent of δM± for n = 0, 2.5

5For µ = t, ϕ, linear-in-δM± perturbations towards Kerr appear at first order in Eq. (2.4) always

accompanied by a factor ur = ∂Ωr{0}F
Ω
{0}U{0}. Close to the ISCO, ur is O

[
(Ω− Ω∗)

3/2
]
or higher, as

follows from Eqs. (3.17) and (3.18). The coefficients in Eq. (3.31) therefore start to depend on δM± from

n = 3. This is consistent with the results of Ref. [51] (i.e., that fµ
[5] and fµ

[7]A in that paper do not depend

on δM± for µ = t, ϕ), which becomes manifest from the match of the self-force in Eq. (A.23) below.
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Knowing the structure of the self-force, we can solve Eq. (3.26) in the near-ISCO limit.

From Eqs. (3.29) and (3.30) we get

ε r{1}(Ω → Ω∗, δM
±) = λ5

∑
j≥−3

r
(5+j,j/2)
{1} λj∆Ωj/2, (3.32)

ε FΩ
{1}(Ω → Ω∗, δM

±) = λ5
∑
j≥−2

F
(5+j,j/2)
{1} λj∆Ωj/2. (3.33)

From the transition to plunge we have that r
(2,−3/2)
[0] = 0 and r

(3,−1)
[1] = 0; see Ap-

pendix A.1. Through the asymptotic match this also implies that r
(2,−3/2)
{1} = r

(2,−1)
{1} = 0,

and the series in Eq. (3.32) therefore starts at ∆Ω−1/2. Solving Eq. (3.26) iteratively

in the limit Ω → Ω∗ determines all these coefficients, with the exception of r
(5,0)
{1} in

Eq. (3.32). We fix this coefficient by enforcing the match with the transition-to-plunge

solution: r
(5,0)
{1} = r

(5,0)
[3] = −54M2f r

{1},0. The coefficients appearing in the near-ISCO so-

lutions (3.32) and (3.33) are given explicitly in Appendix A.2. The asymptotic solu-

tions (3.32) and (3.33) can then be used to obtain initial conditions to solve Eq. (3.26)

(once the plunge self-force has been computed) and obtain 1PG solutions that asymptoti-

cally match with the transition to plunge close to the ISCO.

In summary, the asymptotic matching has (i) restricted the form of the plunge expan-

sion by restricting the powers of (Ω − Ω∗) in the plunge’s near-ISCO behaviour, and (ii)

fixed the value of a single near-ISCO coefficient, r
(5,0)
{1} . This minimal information from the

matching (together with the orbital equations of motion, field equations, and boundary

conditions) serves to completely fix the plunge solution.

Although the plunge solution requires only a small amount of information from the

transition regime, we can use the other term-by-term matching conditions as consistency

checks. The conditions for Eqs. (3.27) and (3.29) to match term by term are obtained by

equating the powers of λ and ∆Ω:

p+ n = 5i+ j, m = j. (3.34)

Therefore,

• the near-ISCO expansion of the 0PG forcing term FΩ
{0} (p = 3, i = 0) is matched

by the terms with m = 3 + n in Eq. (3.27), that is, a term ∼ ∆Ω3/2 from 0PLT, a

(vanishing) term ∼ ∆Ω2 from 1PLT, a term ∼ ∆Ω5/2 from 2PLT, . . .

• the near-ISCO expansion of the 0PG forcing term FΩ
{1} (p = 3, i = 1) is matched by

the terms with m = −2 + n in Eq. (3.27), that is, a term ∼ ∆Ω−1 from 0PLT, a

(vanishing) term ∼ ∆Ω−1/2 from 1PLT, a constant term ∼ ∆Ω0 from 2PLT, . . .

and analogously for the orbital radius. This structure of the asymptotic match between

the transition-to-plunge and plunge orbital motions is summarized in Table 1.

We have explicitly verified the matching conditions in Table 1 for all terms involved in

the match between the transition to plunge to 7PLT order and the plunge to 1PG order,

using the coefficients listed in Appendices A.1 and A.2. In order to do so successfully, we
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0PG 1PG · · ·

0PLT
r
(2,1)

{0} = r
(2,1)

[0]

F
(3,3/2)

{0} = F
(3,3/2)

[0]

−

F
(3,−1)

{1} = F
(3,−1)

[0]

· · ·

1PLT − − · · ·

2PLT
r
(4,2)

{0} = r
(4,2)

[2]

F
(5,5/2)

{0} = F
(5,5/2)

[2]

r
(4,−1/2)

{1} = r
(4,−1/2)

[2]

F
(5,0)

{1} = F
(5,0)

[2]

· · ·

3PLT −
r
(5,0)

{1} = r
(5,0)

[3]

F
(6,1/2)

{1} = F
(6,1/2)

[3]

· · ·

4PLT
r
(6,3)

{0} = r
(6,3)

[4]

F
(7,7/2)

{0} = F
(7,7/2)

[4]

r
(6,1/2)

{1} = r
(6,1/2)

[4]

F
(7,1)

{1} = F
(7,1)

[4]

· · ·

5PLT −
r
(7,1)

{1} = r
(7,1)

[5]

F
(8,3/2)

{1} = F
(8,3/2)

[5]

· · ·

6PLT
r
(8,4)

{0} = r
(8,4)

[6]

F
(9,9/2)

{0} = F
(9,9/2)

[6]

r
(8,3/2)

{1} = r
(8,3/2)

[6]

F
(9,2)

{1} = F
(9,2)

[6]

· · ·

7PLT −
r
(9,2)

{1} = r
(9,2)

[7]

F
(10,5/2)

{1} = F
(10,5/2)

[7]

· · ·

...
...

...
. . .

Table 1. Matching conditions between plunge and transition to plunge for the asymptotic coef-

ficients (r
(p,q)
{n} , r

(p,q)
[n] , F

(p,q)
{n} , and F

(p,q)
[n] ) of λp(∆Ω)q in the solutions for the orbital radius rp and

the rate of change dΩ/dt. The coefficients are labeled with their PLT ([n]) or PG order ({n}) in

addition to the powers of λ = ε1/5 and of ∆Ω = (Ω− Ω∗)/λ
2 in the asymptotic expansions (3.27)

and (3.29). Here we only show nonzero coefficients.

required the match of the self-force. In practice, one proceeds order by order, obtaining

matching conditions for both the orbital motion and the self-force. The matching conditions

for the self-force are presented in Appendix A.3.

3.3 Expansion at fixed orbital radius

In this section we derive an alternative to the formulation of Sec. 3.1. Instead of parametriz-

ing the orbit using the orbital frequency Ω, we can recast the equations describing the

plunge in terms of the orbital radius rp, which is monotonically decreasing during the

plunge—in contrast to Ω, which encounters a maximum at the light ring (see Fig. 2). We

refer to the two approaches as the fixed-Ω and the fixed-rp formulation, respectively. In

Appendix B we show how to transform between the formulations. Numerous other quanti-

ties would serve equally well as global coordinates for the plunge; an example is the orbital

frequency with respect to advanced time, Ωv := dϕp/dv. However, we find the plunge

dynamics is particularly simple when written in terms of rp.
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If using rp as a phase-space coordinate, we expand all orbital quantities in powers of

ε holding the coordinates (ϕp, rp, δM
±) fixed. The orbital frequency Ω and the redshift U

are therefore expanded as

Ω(rp, δM
±, ε) = Ω{0}(rp) +

∞∑
n=1

εnΩ{n}(rp, δM
±), (3.35)

U(rp, δM
±, ε) = U{0}(rp) +

∞∑
n=1

εnU{n}(rp, δM
±). (3.36)

The expansion of the rate of change of the orbital radius is given by

ṙp(rp, δM
±, ε) = F

rp
{0}(rp) +

∞∑
n=1

εnF
rp
{n}(rp, δM

±), (3.37)

while the corrections to the background mass and spin evolve as

δṀ±(rp, δM
±, ε) =

∞∑
n=1

εnF±
{n}(rp, δM

±). (3.38)

The expansion of the self-force finally reads

fµ(rp, δM
±, ε) =

∞∑
n=1

εnfµ
{n}(rp, δM

±). (3.39)

As we have done for the fixed-Ω formulation, we now perform the post-geodesic expansion

of the equation of motion (3.5) and the normalization of the four-velocity (3.4), and obtain

equations describing the plunging motion at each nPG order.

3.3.1 Geodesic order

We follow a procedure analogous to the one used for the fixed-Ω formulation. At leading

order, we then find the geodesic quantities

Ω{0}(rp) =

√
3

2

3M

r2p
f(rp), U{0}(rp) =

2
√
2

3f(rp)
. (3.40)

The leading-order rate of change of the orbital radius, ṙ{0}, is defined as

ṙ{0}(rp) := F
rp
{0}(rp) = − 1

23/2
(6M/rp − 1)3/2f(rp), (3.41)

and the leading-order radial acceleration, r̈{0}, is then given by

r̈{0}(rp) := ṙ{0}∂rp ṙ{0} =
M(30M/rp − 11)(6M/rp − 1)2

8r2p
f(rp). (3.42)

We also obtain expressions for the coordinate time and the azimuthal angle at geodesic

order:

tG(rp) =

∫ rp dr′p
ṙ{0}(r′p)

=
2
√
2(rp − 24M)

(6M/rp − 1)1/2
− 44

√
2M arctan

[
(6M/rp − 1)1/2

]
+ 4Marctanh

[
1√
2
(6M/rp − 1)1/2

]
+ t0,

(3.43)
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Figure 3. The trajectory of the geodesic plunge obtained from Eq. (3.47) (blue curve). In this plot

we set ϕ0 = 0. The red lines at r = 2M, 3M, 6M mark the event horizon, light ring and ISCO,

respectively.

ϕG(rp) =

∫ rp

Ω{0}(r
′
p)

dr′p
ṙ{0}(r′p)

= − 2
√
3

(6M/rp − 1)1/2
+ ϕ0, (3.44)

where t0 and ϕ0 are integration constants. The asymptotic behaviours close to the horizon

and to the ISCO are given by

tG(rp → 2M) = −2M log
( rp
2M

− 1
)
+O

[
(rp − 2M)0

]
, (3.45)

tG(rp → 6M) = −72
√
3M3/2(6M − rp)

−1/2 +O
[
(6M − rp)

1/2
]
. (3.46)

By inverting Eq. (3.44), we obtain a simple relationship for the plunging trajectory at

geodesic order:

rp(ϕG) =
6M

1 + 12/(ϕG − ϕ0)2
. (3.47)

This is a known result at least since Ref. [81]. The plunging trajectory is displayed in

Fig. 3. Our expressions at geodesic order match those in Refs. [57, 58].

3.3.2 First post-geodesic order

At first post-geodesic order we obtain the following nested differential equations for Ω{1}
and F

rp
{1} from the time and radial components of Eq. (3.5):

∂rpΩ{1} +
2(rp − 3M)

rp(rp − 2M)
Ω{1} = −

√
6

8M
f r
{1} −

√
3(rp − 2M)(2r3p − 27M2rp + 54M3)

4Mr
5/2
p (6M − rp)3/2

f t
{1},

(3.48a)
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∂rpF
rp
{1} −

M(5rp + 6M)

rp(rp − 2M)(6M − rp)
F

rp
{1} =− 12

√
3M(rp − 2M)

r
1/2
p (6M − rp)3/2

Ω{1} −
9(rp − 2M)2

8r2p
f t
{1}

− 9
√
2r

1/2
p (rp − 2M)

4(6M − rp)3/2
f r
{1}.

(3.48b)

We notice that these equations are simpler and more compact than the ones in Eq. (3.26)

obtained from the fixed-Ω formulation. More importantly, Eq. (3.48) admits a smooth

evolution across the light ring.

Solving Eq. (3.48) requires initial conditions close to the ISCO. We start by considering

the near-ISCO behaviour of the plunge self-force:

fµ
{1}(rp → 6M, δM±) = fµ

{1},0(δM
±) +

∞∑
n=2

fµ
{1},n(δM

±)(6M − rp)
n/2. (3.49)

This follows from Eq. (2.4) and the field equations (5.7) below: the first-order field contains

a piece that is a smooth function of rp at the ISCO and a piece that is not smooth ∼
ṙ{0} ∼ (6M − rp)

3/2. Equation (2.4) does not alter this structure since it introduces at

most one time derivative, which yields terms of the form ∼ ṙ{0} ∼ (6M − rp)
3/2 and with

higher half-integer powers. The coefficients in Eq. (3.49) can be obtained via asymptotic

matching with the transition-to-plunge regime in an analogous manner to what is shown in

Appendix A.3. Using Eq. (3.49), we then get the following asymptotic solutions from the

near-ISCO limit of Eq. (3.48) (these solutions are obtained by enforcing the match with

the late-time transition to plunge, similarly to the procedure described in Sec. (3.2)):

Ω{1}(rp → 6M, δM±) = −
9
√
2M1/2f t

{1},0

(6M − rp)1/2
− 3

4

√
3

2
f r
{1},0 +O(6M − rp)

1/2, (3.50)

F
rp
{1}(rp → 6M, δM±) = −

864M2f t
{1},0

(6M − rp)
+ 24M

(
f t
{1},0 + 12Mf t

{1},2

)
+O(6M − rp)

1/2.

(3.51)

These solutions can be used to obtain initial conditions to solve Eq. (3.48) once the plunge

self-force has been computed.

4 Plunge: field equations at first and second order

We now turn to deriving the field equations for the metric perturbation (2.15). We first con-

sider the simple case in which the global time s reduces to t along the particle’s trajectory,

as assumed in Sec. 2. We then describe how to lift that restriction.

The essential idea, regardless of which regime we consider and which choice of s we

make, is to convert derivatives with respect to time into differential operators on phase

space. When acting on a function of (ϕp(s, ε), J
a(s, ε), xi), assuming s = t on the trajectory,

we apply the chain rule together with dϕp/ds = Ω and dJa/ds = F a(Jb, ε):

∂

∂s
= Ω

∂

∂ϕp
+ F a(Jb, ε)

∂

∂Ja
. (4.1)
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We then expand this in the form appropriate to each regime. In the inspiral,

F a ∂

∂Ja
= ε

(
FΩ
(0)

∂

∂Ω
+ F±

(1)

∂

∂δM±

)
+O(ε2), (4.2)

where F±
(1)∂δM± := F+

(1)∂δM+ + F−
(1)∂δM− . In the transition to plunge, with an obvious

change of notation,

F a ∂

∂∆Ja
= ε1/5

(
F∆Ω
[0] + ε2/5F∆Ω

[2] + ε3/5F∆Ω
[3] + ε4/5F∆Ω

[4]

) ∂

∂∆Ω

+ ε F±
[3]

∂

∂δM± +O(ε6/5). (4.3)

Finally, in the plunge,

F a ∂

∂Ja
= FΩ

{0}
∂

∂Ω
+ ε

(
FΩ
{1}

∂

∂Ω
+ F±

{1}
∂

∂δM±

)
+O(ε2). (4.4)

Focusing on the plunge, we can then write time derivatives as

∂

∂s
= Ω

∂

∂ϕp
+ FΩ

{0}(Ω)
∂

∂Ω
+ ε F a

{1}(J
b)

∂

∂Ja
+O(ε2), (4.5)

assuming we work in phase-space coordinates (ϕp,Ω, δM
±). If instead we work with

(ϕp, rp, δM
±), then Ω is expanded, and time derivatives become

∂

∂s
= Ω{0}(rp)

∂

∂ϕp
+ F

rp
{0}(rp)

∂

∂rp
+ ε

[
Ω{1}(J

a)
∂

∂ϕp
+ F a

{1}(J
b)

∂

∂Ja

]
+O(ε2). (4.6)

When acting on a perturbation of the form (2.15), which has been expanded in discrete

Fourier modes, we also use
∂

∂ϕp
= −im. (4.7)

If s does not reduce to t along the particle’s trajectory, then the above treatment

must be generalized. Two options present themselves. First, one can formulate the orbital

equations of motion directly in terms of s, defining an orbital frequency Ωs := dϕp/ds and

deriving equations for the forcing functions appearing in dJa/ds. Alternatively, one can

continue to use t as the parameter along the trajectory and account for how t changes with

s when applying the chain rule for ∂/∂s. In the next section, we take the latter approach.

We define tp(s) as the value of t on the particle at global time s (i.e., at the point where

the slice of constant s intersects the trajectory). The definition s = t − κ(x) then implies

tp(s) = s+ κ(xp(tp(s))). Differentiating with respect to s and rearranging, we obtain

dtp
ds

=
1

1− f−1(rp)H(rp)ṙp
, (4.8)

with H := dκ/dx, rp = rp(tp(s)), and ṙp = ṙp(tp(s)). Equation (4.1) then becomes

∂

∂s
=

dtp
ds

[
Ω

∂

∂ϕp
+ F a(Jb, ε)

∂

∂Ja

]
. (4.9)
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This formula holds in all regimes. Equation (4.8) is additionally expanded for small ε,

using the expansion appropriate to the regime (inspiral, transition to plunge, or plunge)

and to the choice of phase-space coordinates (Ω or rp).

This treatment of time derivatives implies an expansion

δGαβ[h
{n}] = δG

{0}
αβ [h

{n}] + ε δG
{1}
αβ [h

{n}] + ε2δG
{2}
αβ [h

{n}] +O(ε3). (4.10)

Here h
{n}
αβ =

∑∞
m=−∞ h

{n},m
αβ (Ja, xi)e−imϕp , and the expansion in powers of ε is at fixed

(ϕp, J
a, xi). The leading term, δG

{0}
αβ [h

{n}] comes from omitting all order-ε and higher

terms in ∂/∂s. Subleading terms arise from the subleading terms in ∂/∂s. Analogously,

δ2Gαβ[h
{1}, h{1}] = δ2G

{0}
αβ [h

{1}, h{1}] + ε δ2G
{1}
αβ [h

{1}, h{1}] +O(ε2). (4.11)

The stress-energy tensor (2.2) is likewise expanded at fixed phase-space coordinates:

Tαβ = mp
ũαũβ
ũt

δ3(xi − xip(ϕp, J
a, ε))

√
−g̃

= ε T
{1}
αβ + ε2T

{2}
αβ +O(ε3). (4.12)

Here T
{n}
αβ is a function of (ϕp, J

a, xi), given at lowest order by

T
{1}
αβ = Mgαµ gβν ẋ

µ
{0}ẋ

ν
{0} U{0}

δ(r − r{0})

r2{0}
δ(θ − π/2)δ(ϕ− ϕp), (4.13)

with ẋµ{0} =
(
1,

∂r{0}
∂Ω FΩ

{0}, 0,Ω
)
in a fixed-Ω expansion or by ẋµ{0} =

(
1, F

rp
{0}, 0,Ω{0}

)
in a

fixed-rp expansion.

Once we have converted time derivatives to phase-space operators in this way, and

suitably expanded the stress-energy tensor, we can then equate coefficients of powers of ε in

the expansion of the Einstein equation (2.1), treating (ϕp, J
a, xi) as independent variables.

This leads to a sequence of field equations for each h
{n}
αβ ,

δG
{0}
αβ [h

{1}] = 8πT
{1}
αβ , (4.14a)

δG
{0}
αβ [h

{2}] = 8πT
{2}
αβ − δ2G

{0}
αβ [h

{1}, h{1}]− δG
{1}
αβ [h

{1}]. (4.14b)

These are equations on a seven-dimensional product manifold made up of phase space

(with coordinates ϕp and Ja) and space (with coordinates xi). However, the dimension-

ality is quickly reduced. By virtue of the background’s stationarity, the Fourier basis

functions e−imϕp are eigenfunctions of δG
{0}
αβ , meaning the discrete Fourier modes decouple

in δG
{0}
αβ [h

{n}], reducing the problem to six-dimensional partial differential equations for

each of the mode coefficients h
{n},m
αβ . Moreover, by virtue of the background’s spherical

symmetry, the angular dependence can be separated by expanding the metric perturba-

tions in a basis of tensor or spin-weighted spherical harmonics [82, 83]. This reduces the

equations to four-dimensional partial differential equations in Ja and r for each ℓm mode

coefficient. Finally, we note that derivatives with respect to δM± do not appear on the

left-hand side of the field equations because they are suppressed by a power of ε in the
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chain rule (4.5). This means they only enter Eq. (4.14) in the source term δG
{1}
αβ [h

{1}].

Hence, the field equations are reduced to two-dimensional partial differential equations in

Ω (or rp) and r.

In the next section, we work through a concrete example of deriving mode-expanded

phase-space field equations. We also describe how to recast them in the more familiar form

of frequency-domain Regge-Wheeler-Zerilli (RWZ) equations.

5 First-order Regge-Wheeler-Zerilli waveforms

We restrict our attention to the first-order field equations for h
{1}
αβ . Rather than working

directly with the Einstein equation (4.14a), we develop the associated RWZ equations for

even- and odd-parity master functions. We first present the equations in a generic hyper-

boloidal slicing s and then restrict the analysis to our frequency-domain implementation in

t slicing, obtained from transforming the phase-space equations to the frequency domain.

Our analysis in the remainder of the paper is restricted to 0PG order. For simplicity, we

omit labels {n} on the field variables, sources, and linear operators, with the understanding

that all quantities and operations are restricted to leading order.

5.1 RWZ equations and sources

We consider the RWZ equations describing the odd- and even-parity perturbations in

Schwarzschild spacetime [84, 85],(
∂2
x − ∂2

t − V
e/o
ℓ (r)

)
Ψ

e/o
ℓm (t, r) = S̃

e/o
ℓm (t, r). (5.1)

Following Ref. [86], in the odd-parity sector, we use the Cunningham-Price-Moncrief master

function [87], while in the even-parity sector we use the Zerilli-Moncrief master function [88,

89]. The even- and odd-parity potentials are given by [86]

V e
ℓ (r) :=

f(r)

r2Λ2
ℓ

[
2γ2ℓ

(
γℓ + 1 +

3M

r

)
+

18M2

r2

(
γℓ +

M

r

)]
, (5.2a)

V o
ℓ (r) :=

f(r)

r2

[
ℓ(ℓ+ 1)− 6M

r

]
, (5.2b)

where γℓ := (ℓ + 2)(ℓ − 1)/2 and Λℓ(r) := γℓ + 3M/r. We write the master functions and

the sources as

Ψ
e/o
ℓm (t, r) = R

e/o
ℓm (rp(tp(s)), r)e

−imϕp(tp(s)), S̃
e/o
ℓm (t, r) = S

e/o
ℓm (rp(tp(s)), r)e

−imϕp(tp(s)),

(5.3)

where we recall that tp is the value of t where the slice of constant s intersects the worldline,

tp = s + κ(x(rp(s))). The master functions are related to the tensor spherical-harmonic

modes of h
{1}
αβ through a linear operation, in which we neglect subleading terms in the chain

rules (4.5) and (4.9); likewise, the sources are constructed through a linear operation on

T
{1}
αβ , again neglecting subleading terms in the chain rule.
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Our primary goal in this paper is to calculate the GW strain, which is expressed in

terms of the two GW polarizations as the limit r → ∞ of the expression

r(h+ − ih×) = rhµνm̄
µm̄ν =

∞∑
ℓ=2

ℓ∑
m=−ℓ

rhℓmm̄m̄ −2Yℓm(θ, ϕ). (5.4)

Here m̄ = 1√
2r
(0, 0, 1,−i csc θ) and −2Yℓm is a spin-weighted spherical harmonic. The limit

is taken at fixed (ϕp, J
a), assuming slices of global time s smoothly connect to future

null infinity. We define hℓm := limr→∞(r hℓmm̄m̄) and write the asymptotic ℓm mode of the

waveform as [28]

hℓm = ε

√
Dℓ

2
(Ψe

ℓm − iΨo
ℓm) = ε

√
Dℓ

2
(Re

ℓm − iRo
ℓm) e−imϕp := Hℓme−imϕp := |Hℓm|e−iΦℓm ,

(5.5)

where Dℓ := (ℓ − 1)ℓ(ℓ + 1)(ℓ + 2) and Φℓm = mϕp − arg(Hℓm). Only m ≥ 0 modes

need to be computed as the m < 0 modes are deduced from the usual symmetry relation

hℓ,−m = (−1)ℓh∗ℓm.

We allow a generic choice of time s, which might not reduce to t on the particle

trajectory. By plugging Eq. (5.3) into Eq. (5.1) and applying the chain rule (4.9), we put

the RWZ equations in the following form:(
∂2
x − V

e/o
ℓ

)
R

e/o
ℓm − 2H

dtp
ds

(
ṙ{0}∂x∂rp − imΩ{0}∂x

)
R

e/o
ℓm − dH

dx

dtp
ds

(
ṙ{0}∂rp − imΩ{0}

)
R

e/o
ℓm

+
(
1−H2

) [
imΩ{0}

d2tp
ds2

+
(
m2Ω2

{0} + im∂rpΩ{0}ṙ{0}

)(dtp
ds

)2

−ṙ{0}
d2tp
ds2

∂rp − ṙ2{0}

(
dtp
ds

)2

∂2
rp −

(
r̈{0} − 2imΩ{0}ṙ{0}

)(dtp
ds

)2

∂rp

]
R

e/o
ℓm = S

e/o
ℓm .

(5.6)

The quantities dtp/ds and d2tp/ds
2 are functions of rp, as given in Eq. (4.8) (and the s

derivative thereof). The geodesic quantities Ω{0}(rp), ṙ{0}(rp) and r̈{0}(rp) are given in

Eqs. (3.40), (3.41) and (3.42), respectively.

While the original, time-domain RWZ equations are hyperbolic, our phase-space equa-

tions (5.6) have an unusual character. They are hyperbolic for all 2M < rp < 6M , as is

easily confirmed by calculating the discriminant, which is proportional to
(
ṙ{0}

dtp
ds

)2
> 0

for any H. However, this discriminant vanishes in the limit to rp = 6M , since ṙ{0} van-

ishes in that limit. One might conclude that the equations are consequently parabolic at

rp = 6M , but ṙ{0}(6M) = 0 implies they actually reduce to radial ordinary differential

equations there. Fundamentally, this singular behaviour is a consequence of the fact that

the plunging geodesic asymptotes to rp = 6M in the infinite past but never actually reaches

6M ; the physical domain for the plunge solution is the open region 2M < rp < 6M . To

obtain the physically correct solution in that domain, one must ensure that the solution

appropriately matches to the transition-to-plunge solution; we discuss this further in the

next section.
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In the remainder of this section and the practical implementation of first-order wave-

forms in this paper, we will consider t slicing, κ(x) = H(x) = 0. Appendix D provides

the parallel development of the field equations in generic slicing, which are important in

establishing the validity of our approach. With t slicing, the RWZ equations become

[
∂2
x +

(
m2Ω2

{0} + im∂rpΩ{0} ṙ{0}

)
− ṙ2{0}∂

2
rp

−
(
r̈{0} − 2imΩ{0}ṙ{0}

)
∂rp − V

e/o
ℓ (r)

]
R

e/o
ℓm (rp, r) = S

e/o
ℓm (rp, r). (5.7)

The source appearing on the right-hand side of this equation is that of the plunging point-

particle. We construct this source in the even and odd sectors using the formalism described

in Appendix C of Ref. [86]. We write

S̃e
ℓm(t, r) :=

1

(γℓ + 1)Λℓ

[
r2f

(
f2∂rQ

tt
ℓm − ∂rQ

rr
ℓm

)
+ r (Λℓ − f)Qrr

ℓm + rf2Qb
ℓm

− f2

rΛℓ

(
γℓ(γℓ − 1)r2 + (4γℓ − 9)Mr + 15M2

)
Qtt

ℓm

]
+

2f

Λℓ
Qr

ℓm − f

r
Q#

ℓm,

(5.8a)

S̃o
ℓm(t, r) :=

rf

γℓ

(
1

f
∂tP

r
ℓm + f∂rP

t
ℓm +

2M

r2
P t
ℓm

)
, (5.8b)

with

P a
ℓm(t, r) :=

16πr2

ℓ(ℓ+ 1)

∫
T aB
{1}(t, r, θ, ϕ)X

ℓm∗
B (θ, ϕ) sin θ dθdϕ, (5.9a)

Qa
ℓm(t, r) :=

16πr2

ℓ(ℓ+ 1)

∫
T aB
{1}(t, r, θ, ϕ)Y

ℓm∗
B (θ, ϕ) sin θ dθdϕ, (5.9b)

Qab
ℓm(t, r) := 8π

∫
T ab
{1}(t, r, θ, ϕ)Y

ℓm∗(θ, ϕ) sin θ dθdϕ, (5.9c)

Qb
ℓm(t, r) := 8πr2

∫
TAB
{1} (t, r, θ, ϕ)ΩABY

ℓm∗(θ, ϕ) sin θ dθdϕ, (5.9d)

Q#
ℓm(t, r) := 32πr4

(ℓ− 2)!

(ℓ+ 2)!

∫
TAB
{1} (t, r, θ, ϕ)Y

ℓm∗
AB (θ, ϕ) sin θ dθdϕ. (5.9e)

In these expressions, lowercase Latin letters stand for the coordinates {t, r}, while uppercase
Latin letters indicate the coordinates {θ, ϕ}. The scalar (Y ℓm), vector (Y ℓm

A and Xℓm
A )

and tensor (Y ℓm
AB and Xℓm

AB) spherical harmonics are defined in Appendix C, and ΩAB =

diag(1, sin2 θ) is the metric on the unit 2-sphere.

We evaluate the integrals in Eq. (5.9) using the point-particle stress-energy tensor (4.13).

The differential operator ∂t in Eq. (5.8) should therefore be understood as the operator

ṙ{0}∂rp +Ω{0}∂ϕp . Recalling Eq. (5.3), we can then write the sources (5.8) as

S
e/o
ℓm (rp, r) = A

e/o
ℓm (rp)δ(r − rp) +B

e/o
ℓm (rp)∂rδ(r − rp), (5.10)
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where

Ae
ℓm(rp) :=− 2

√
2πM(rp − 2M)2

(γℓ + 1)r7pΛℓ(rp)2

[
324M4 + 36M3(3 + 8γℓ)rp + 9M2(1 + 4γ2ℓ )r

2
p

+ 2M(1 + 9γℓ)r
3
p + 3γℓ(1 + γℓ)r

4
p

]
Y ℓm(π/2, 0)

− 16
√
6πM2(rp − 2M)2(6M − rp)

3/2

ℓ(ℓ+ 1)r
11/2
p Λℓ(rp)

Y ℓm∗
ϕ (π/2, 0)

− 288
√
2πM3(ℓ− 2)!(rp − 2M)2

(ℓ+ 2)! r5p
Y ℓm∗
ϕϕ (π/2, 0),

(5.11a)

Ao
ℓm(rp) :=− 4

√
3πM2(rp − 2M)2

ℓ(ℓ+ 1)γℓ r7p

[
756M3 − 6

√
3iMmr1/2p (6M − rp)

3/2

− 216M2rp + 45Mr2p + 7r3p

]
Xℓm∗

ϕ (π/2, 0),

(5.11b)

Be
ℓm(rp) :=

6
√
2πM (rp − 2M)3

(
r2p + 12M2

)
(γℓ + 1)r5pΛℓ(rp)

Y ℓm(π/2, 0), (5.11c)

Bo
ℓm(rp) :=

36
√
3πM2 (rp − 2M)3

(
r2p + 12M2

)
ℓ(ℓ+ 1)γℓ r6p

Xℓm∗
ϕ (π/2, 0). (5.11d)

Here Y ℓm∗
ϕ (π/2, 0) = −imY ℓm(π/2, 0) and Y ℓm

ϕϕ (π/2, 0) =
(
−m2 + ℓ(ℓ+1)

2

)
Y ℓm(π/2, 0).

The even- and odd-parity sectors are sourced by respectively even and odd ℓ +m modes

since

Se
ℓm(rp, r) = 0 for ℓ+m odd, (5.12a)

So
ℓm(rp, r) = 0 for ℓ+m even. (5.12b)

5.2 Punctured RWZ equations

As highlighted above, the plunge field equations become singular at rp = 6M . Our physical

boundary condition is that at early times, in a neighbourhood of the singular surface

rp = 6M , our plunge solution must asymptotically match the transition-to-plunge solution.

This asymptotic matching was discussed at the level of the orbital dynamics in Sec. 3.2.

For the metric perturbations (2.13) and (2.15), the matching condition applies at the

level of Fourier coefficients h
[n],m
αβ and h

{n},m
αβ . At 0PG order, the condition is that if

(i) h
{1},m
αβ (Ω, xi) is expanded for small (Ω − Ω∗), and (ii) h

[n],m
αβ (∆Ω, xi) = h

[n],m
αβ ((Ω −

Ω∗)/ε
2/5, xi) is expanded for small ε at fixed Ω, then (iii) the small-(Ω−Ω∗) expansion of

ε h
{1},m
αβ (Ω, xi) must agree, term by term, with the linear-in-ε terms in the re-expansion of∑∞
n=5 ε

n/5h
[n],m
αβ . Here and in many expressions below, we suppress dependence on δM±

for simplicity.

From Eq. (2.13), we see that the re-expansion of the transition-to-plunge metric takes

the form

hαβ =

∞∑
m=−∞

∞∑
n=5

∞∑
k=5−n

εn/5
εk/5

(Ω− Ω∗)k/2
h
[n,k],m
αβ (δM±, xi)e−imϕp . (5.13)
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For Ω > Ω∗, this re-expansion for small ε at fixed Ω is equivalent to an expansion in the

limit ∆Ω → +∞ (i.e., the “late transition to plunge”). The expansion contains a power

series in ∆Ω1/2 (or, equivalently, (Ω − Ω∗)
1/2/ε1/5) rather than ∆Ω due to the structure

of the orbital forcing functions in the transition to plunge.6 Here we have restricted the

range of k using the fact that this must match the plunge expansion, which begins at linear

order in ε; hence, (k + n)/5 ≥ 1. Moreover, (k + n)/5 must be an integer, equal to the

order {n} in the plunge metric, implying h
[n,k],m
αβ vanishes except when k = (5{n} − n) for

integers {n} ≥ 1. Hence, the terms that must match the near-ISCO expansion of h
{1}
αβ are

1/(Ω−Ω∗)
(5−n)/2: a constant term ∝ (Ω−Ω∗)

0 from h
[5],m
αβ , a linear term ∝ (Ω−Ω∗) from

h
[7],m
αβ , a term ∝ (Ω− Ω∗)

3/2 from h
[8],m
αβ , and so on.

From the above analysis, we see that the leading term in the near-ISCO expansion of

h
{1},m
αβ must be a constant, equal to h

[5,0],m
αβ . In fact, the analysis in Ref. [51] shows that the

first two terms in the transition-to-plunge regime are exactly equal to the first two terms

in the near-ISCO expansion of the first-order inspiral solution:

ε h
[5],m
αβ + ε7/5h

[7],m
αβ = ε

[
h
(1),m
αβ (Ω∗, x

i) + (Ω− Ω∗)∂Ωh
(1),m
αβ (Ω∗, x

i)
]
. (5.14)

The first two terms in the near-ISCO expansion of h
{1},m
αβ must agree with these two terms

from the inspiral solution. This immediately extends to the RWZ master variables as

functions of rp:

R
e/o
ℓm (rp, r) = R

e/o(1)
ℓm (6M, r) + (rp − 6M)∂rpR

e/o(1)
ℓm (6M, r) +O[(rp − 6M)2], (5.15)

where R
e/o(1)
ℓm (rp, r) are the first-order master functions in the inspiral.

To enforce this near-ISCO matching to the transition-to-plunge solution, we adopt a

puncture scheme [70]. In a region near the ISCO, we write the physical field as the sum of

two terms,

R
e/o
ℓm (rp, r) = R

e/oR
ℓm (rp, r) +R

e/oP
ℓm (rp, r). (5.16)

The residual field R
e/oR
ℓm has vanishing boundary conditions at the ISCO, R

e/oR
ℓm (6M, r) =

0. The puncture field R
e/oP
ℓm consists of the near-ISCO solution (5.15) truncated at some

order in (rp − 6M), and it “lives” until an orbital radius rP such that 2M < rP < 6M . As

an example, here we truncate at leading order, meaning

R
e/oP
ℓm (rp, r) := R

e/o (1)
ℓm (6M, r)θ(rp − rP). (5.17)

The inspiral field R
e/o (1)
ℓm (6M, r) satisfies Eq. (5.7) evaluated at rp = 6M . To understand

this, recall that ṙ{0}(6M) = 0 = ∂rp ṙ{0}(6M) (from Eq. (3.41)), implying that the limit of

6The reason for this can be understood as follows: in the transition-to-plunge expansion, the Fourier

coefficients h
[n],m
αβ can always be written as a sum of terms that are factored into a ∆Ω-dependent and a ∆Ω-

independent piece [51]. The ∆Ω-dependent factors consist in integer powers of ∆Ω itself, the forcing terms

F∆Ω
[n] and their ∆Ω derivatives. For example, in the notation of Ref. [51], the 4PLT metric perturbation

is given by h
[9],m
αβ (∆Ω, xi) = ∆Ω2h

[9]A,m
αβ (xi) + F∆Ω

[0] ∂∆ΩF
∆Ω
[0] h

[9]B,m
αβ (xi). In the large-∆Ω limit, the forcing

terms F∆Ω
[n] admit asymptotic solutions in half-integer powers of ∆Ω, as can be seen from Eq. (3.27) or

Table 1.
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Eq. (5.7) to rp = 6M is simply the RWZ equation for a particle on a circular orbit at the

ISCO: [
∂2
x +m2 Ω2

{0}

∣∣∣
∗
− V

e/o
ℓ (r)

]
R

e/o (1)
ℓm (6M, r) = S

e/o
ℓm (6M, r), (5.18)

where |∗ indicates evaluation at rp = 6M . We now plug Eq. (5.16) into Eq. (5.7), move

the puncture fields to the right-hand side and use Eq. (5.18). We then obtain the following

equation for the residual field:[
∂2
x +

(
m2Ω2

{0} + im∂rpΩ{0} ṙ{0}

)
− ṙ2{0}∂

2
rp

−
(
r̈{0} − 2imΩ{0}ṙ{0}

)
∂rp − V

e/o
ℓ (r)

]
R

e/oR
ℓm (rp, r) = S

e/o eff
ℓm (rp, r). (5.19)

The effective source, S
e/o eff
ℓm , can be split into two pieces: the ordinary point particle

source in the region rp < r−P and a more complicated, extended source in the punctured

region 6M ≥ rp ≥ r−P , where we use the notation r−P = rP −0+ to indicate that the interval

[r−P , 6M ] encloses the point rp = rP . Explicitly, we write

S
e/o eff
ℓm (rp, r) = S

e/o pp
ℓm (rp, r) + S

e/o ext
ℓm (rp, r), (5.20)

where S
e/o pp
ℓm is the source outside the punctured region,

S
e/o pp
ℓm (rp, r) := S

e/o
ℓm (rp, r)θ(rP − rp), (5.21)

and S
e/o ext
ℓm is the source inside the punctured region,

S
e/o ext
ℓm (rp, r) := θ(rp − rP)

[
S
e/o
ℓm (rp, r)− S

e/o
ℓm (6M, r)

]
− θ(rp − rP)

(
m2Ω2

{0} −m2 Ω2
{0}

∣∣∣
∗
+ im∂rpΩ{0} ṙ{0}

)
R

e/o (1)
ℓm (6M, r)

− δ(rp − rP) ṙ{0}
∣∣
P

(
2im Ω{0}

∣∣
P + ∂rp ṙ{0}

∣∣
P

)
R

e/o (1)
ℓm (6M, r)

+ ∂rpδ(rp − rP) ṙ
2
{0}

∣∣∣
P
R

e/o (1)
ℓm (6M, r).

(5.22)

We use |P to indicate quantities evaluated at rp = rP . In arriving at this result we have

used ṙ2{0}(rp)∂rpδ(rp − rP) = ṙ2{0}(rP)∂rpδ(rp − rP)− ∂rp ṙ
2
{0}(rP)δ(rp − rP).

The essential feature of the extended source is that it vanishes as rp → 6M (i.e., in the

infinite past), consistent with our initial condition that the residual field vanishes there;

the total solution (residual field plus puncture) then reduces to the transition-to-plunge

solution, as desired. We also explain in the next section how this behaviour of the effective

source eliminates ill-defined integrals that would otherwise appear.

Since the puncture vanishes for rp < rP , the residual field reduces to the physical field

in that region:

R
e/oR
ℓm (rp, r) = R

e/o
ℓm (rp, r) for rp < rP . (5.23)
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We also note that the Dirac δ and δ′ terms in Eq. (5.22) can be discarded and replaced

with the junction condition that

lim
rp→r−P

R
e/o
ℓm (rp, r) = lim

rp→r+P

[
R

e/oR
ℓm (rp, r) +R

e/oP
ℓm (rp, r)

]
. (5.24)

Moreover, although we said that the punctured region [r−P , 6M ] is “near the ISCO”, the

physical solution (5.16) must be independent of rP , so long as 2M < rP < 6M . This

independence follows from the same type of arguments as in Ref. [70]. Finally, we comment

that we have only worked with a leading-order puncture in this section, but a higher-order

(in (rp− 6M)) puncture could be required. It is possible for the puncture to be sufficiently

high order to obtain a convergent solution for the residual field, without being high enough

order to obtain the correct solution; see again Ref. [70]. We leave investigation of this, and

derivation of the required order of the puncture, to future work.

5.3 Frequency-domain equations

In order to solve Eq. (5.19) for the residual field we work in the frequency domain. This

allows us to use well-known Green-function techniques to solve the problem.

We start by defining the following forward and inverse transforms:

ĝ(ω, r) =

∫ 6M

2M

drp
ṙ{0}(rp)

g(rp, r)e
iωtG(rp)−imϕG(rp), (5.25a)

g(rp, r) = − 1

2π

∫ +∞

−∞
dω ĝ(ω, r)e−iωtG(rp)+imϕG(rp), (5.25b)

with tG and ϕG defined in Eqs. (3.43) and (3.44), respectively. For simplicity we have set

t0 = ϕ0 = 0, noting that t0 and ϕ0 cancel between the forward and inverse transforms. We

can verify that the above transforms are self-consistent in the range of interest 2M ≤ rp ≤
6M :

g(rp, r) = − 1

2π

∫ +∞

−∞
dω e−iωtG(rp)+imϕG(rp)

∫ 6M

2M

dr′p
ṙ{0}(r′p)

g(r′p, r)e
iωtG(r′p)−imϕG(r′p)

=
1

2π

∫ 6M

2M

dr′p
|ṙ{0}(r′p)|

g(r′p, r)e
im(ϕG(rp)−ϕG(r′p))

∫ +∞

−∞
dω eiω(tG(r′p)−tG(rp))

=

∫ 6M

2M

dr′p
|ṙ{0}(r′p)|

g(r′p, r)e
im(ϕG(rp)−ϕG(r′p))|ṙ{0}(r′p)|δ(r′p − rp) = g(rp, r),

(5.26)

where we have used ṙ{0} = −|ṙ{0}| since ṙ{0} ≤ 0 between the ISCO and the event horizon.

We now take the transform of Eq. (5.19). This transform is delicate because we arrive

at ill-defined boundary terms if we apply the transform naively and integrate by parts to

move derivatives onto the exponential. If we naively discard those boundary terms, we

obtain (
∂2
x + ω2 − V

e/o
ℓ (r)

)
R̂

e/oR
ℓm (ω, r) = Ŝ

e/o eff
ℓm (ω, r) (5.27)
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where Ŝ
e/o eff
ℓm is the transform of S

e/o eff
ℓm . To properly justify this equation, we treat each

side of Eq. (5.19) as a tempered distribution and adopt the standard definition ⟨φ,F [f ]⟩ :=
⟨F [φ], f⟩, where f is any tempered distribution, F is our forward transform, φ is any

element of the Schwartz space, and ⟨φ, f⟩ is the integral over the real line (for integrable

f) or the action of f on φ (for distributional f). Writing Eq. (5.19) schematically as

(∂2
x + D)Rℓm = Seff

ℓm, we apply the forward transform to obtain
〈
F [φ], (∂2

x + D)Rℓm

〉
=〈

φ,F [Seff
ℓm]
〉
. On the left, we apply the standard definition ⟨φ,Df⟩ := ⟨D†φ, f⟩ for any

linear operator D, where D† is the adjoint of D. Defining the frequency-domain operator

D†
ω via D†F [φ] = F [D†

ωφ], we obtain
〈
F [φ],DRℓm

〉
=
〈
F [D†

ωφ], Rℓm

〉
=
〈
D†

ωφ,F [Rℓm]
〉
=〈

φ,DωF [Rℓm]
〉
. Therefore, (∂2

x + Dω)F [Rℓm] = F [Seff
ℓm] as a distribution, which is simply

Eq. (5.27).

Equation (5.27) has the standard form of the frequency-domain RWZ equation. Our

method of reaching this form applies equally well at higher PG orders. At all orders, we

use tG and ϕG in the transforms, rather than tp and ϕp, since we require known functions

of rp; tp and ϕp are never determined until the online waveform-generation stage.

5.4 Inhomogeneous solutions

We solve Eq. (5.27) using the standard Green-function method (or equivalently, variation

of parameters), building a retarded Green function from a basis of homogeneous solutions.

In the limits r → +∞ and r → 2M (or, equivalently, x → ±∞), the homogeneous

solutions to Eq. (5.27) are complex exponentials of the form e±iωx. We consider two

independent homogeneous solutions to Eq. (5.27), the so-called “in” and “up” solutions,

with the following asymptotic behaviours:

R̂
e/o in
ℓ (ω, x) ∼

{
A

e/o in
ℓ (ω)e−iωx +A

e/o out
ℓ (ω)e+iωx as r → +∞ (x → +∞),

e−iωx as r → 2M (x → −∞),
(5.28a)

R̂
e/o up
ℓ (ω, x) ∼

{
eiωx as r → +∞ (x → +∞),

B
e/o in
ℓ (ω)e−iωx +B

e/o out
ℓ (ω)e+iωx as r → 2M (x → −∞).

(5.28b)

Here and below we freely write functions of r as functions of x(r). According to the

Chandrasekhar-Detweiler transformation between the Regge-Wheeler and Zerilli-Moncrief

solutions [90], the homogeneous even and odd “in” solution are related by

(Dℓ − 12iMω) R̂e in
ℓ (ω, x) =

[
Dℓ +

72M2f(r)

(ℓ− 1)(ℓ+ 2)r2 + 6Mr
+ 12M

∂

∂x

]
R̂o in

ℓ (ω, x). (5.29)

As a consequence, the coefficients A
e/o in
ℓ (ω) and A

e/o out
ℓ (ω) obey the relations

Ae in
ℓ (ω) = Ao in

ℓ (ω), Ae out
ℓ (ω) =

Dℓ + 12iMω

Dℓ − 12iMω
Ao out

ℓ (ω). (5.30)

From here on we will therefore omit the label e/o on A
e/o in
ℓ (ω). As a consequence of the

RWZ equation we have R̂
e/o in
ℓ (−ω∗, x) = R̂

e/o in*
ℓ (ω, x). This implies

Ain
ℓ (−ω∗) = Ain∗

ℓ (ω), A
e/o out
ℓ (−ω∗) = A

e/o out*
ℓ (ω). (5.31)
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Using the two independent homogeneous solutions (5.28) we can construct the following

Green function:

Ĝ
e/o
ℓ (ω, x, x′) =

1

Wℓ(ω)

[
θ(x− x′)R̂

e/o in
ℓ (ω, x′)R̂

e/o up
ℓ (ω, x)

+θ(x′ − x)R̂
e/o in
ℓ (ω, x)R̂

e/o up
ℓ (ω, x′)

]
,

(5.32)

where Wℓ is the Wronskian

Wℓ(ω) = R̂
e/o in
ℓ (ω, x)∂xR̂

e/o up
ℓ (ω, x)− R̂

e/o up
ℓ (ω, x)∂xR̂

e/o in
ℓ (ω, x), (5.33)

which we anticipate is identical for the even and odd sector. This Green function satisfies(
∂2
x + ω2 − V

e/o
ℓ

)
Ĝ

e/o
ℓ (ω, x, x′) = δ(x− x′). (5.34)

It is straightforward to verify that Wℓ is independent of the field point where it is computed

(since ∂xWℓ = 0). We can therefore compute it in the limit r → +∞ using the asymptotic

solutions (5.28), yielding

Wℓ(ω) = 2iωAin
ℓ (ω) . (5.35)

This justifies Wℓ having no e/o label. Evaluating the Wronskian in the limit r → 2M ,

we deduce B
e/o out
ℓ (ω) = Ain

ℓ (ω). The inhomogeneous solution to Eq. (5.27) can then be

obtained as

R̂
e/oR
ℓm (ω, r) =

∫ +∞

−∞
dx′Ĝ

e/o
ℓ (ω, x, x′)Ŝ

e/o eff
ℓm (ω, x′)

=
R̂

e/o up
ℓ (ω, r)

Wℓ(ω)

∫ r

2M

dr′

f(r′)
R̂

e/o in
ℓ (ω, r′)Ŝ

e/o eff
ℓm (ω, r′)

+
R̂

e/o in
ℓ (ω, r)

Wℓ(ω)

∫ +∞

r

dr′

f(r′)
R̂

e/o up
ℓ (ω, r′)Ŝ

e/o eff
ℓm (ω, r′).

(5.36)

As written, the integrals over the (transform of the) extended effective source (5.21) fail

to converge due to the source’s behaviour at r = 2M and r → ∞; this is an artifact of t

slicing, which we address in Appendix D.

The goal of our implementation in this paper is to construct the 0PG asymptotic

waveform. Moreover, since we are interested in the merger and ringdown and not in very

early times when the particle is near the ISCO, we restrict our attention to the region

rp < rP , outside the puncture window. In this region the physical and residual fields are

identical, and we can omit the superscript R on the field; see Eq. (5.23). To obtain the

waveform for rp < rP , we now focus on the only source in that region: the point-particle

portion of the effective source, S
e/o pp
ℓm . At large distances the field generated by this source,

R̂
e/o
ℓm

∣∣∣
pp∞

(ω) := R̂
e/o
ℓm

∣∣∣
pp

(ω, r → ∞), is given by

R̂
e/o
ℓm

∣∣∣
pp∞

(ω) =
eiωx

Wℓ(ω)

∫ ∞

2M

dr′

f(r′)
R̂

e/o in
ℓ (ω, r′)Ŝ

e/o pp
ℓm (ω, r′)

=
eiωx

Wℓ(ω)

∫ ∞

2M

dr′

f(r′)
R̂

e/o in
ℓ (ω, r′)

∫ rP

2M

drp
ṙ{0}(rp)

eiωtG(rp)−imϕG(rp)S
e/o pp
ℓm (rp, r

′).

(5.37)
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Here we have used the asymptotic behaviour of the “up” solution (5.28). We evaluate the

rp integral using the properties of the Dirac delta function, recalling that δ′(r′ − rp) =

−∂rpδ(r
′ − rp). We are then left with

R̂
e/o
ℓm

∣∣∣
pp∞

(ω) =
eiωx

2iωAin
ℓ (ω)

∫ rP

2M

dr′

ṙ{0}(r′)
eiωtG(r′)−imϕG(r′)K

e/o
ℓm (ω, r′), (5.38)

where

K
e/o
ℓm (ω, r) =

A
e/o
ℓm (r)R̂

e/o in
ℓ (ω, r)

f(r)
−B

e/o
ℓm (r)

d

dr

(
R̂

e/o in
ℓ (ω, r)

f(r)

)
. (5.39)

The solution on phase space is obtained after taking the inverse transform (5.25b):

Ψ
e/o
ℓm

∣∣∣
pp∞

(ϕp, rp) = R
e/o
ℓm

∣∣∣
pp∞

(rp)e
−imϕp

= − 1

2π

[∫ +∞

−∞
dω e−iω[tG(rp)−x] C

e/o
ℓm (ω)

2iωAin
ℓ (ω)

]
eim[ϕG(rp)−ϕp],

(5.40)

where

C
e/o
ℓm (ω) :=

∫ rP

2M

dr′

ṙ{0}(r′)
eiωtG(r′)−imϕG(r′)K

e/o
ℓm (ω, r′). (5.41)

This becomes a time-domain waveform when we substitute the solutions ϕp(t) and rp(t)

to the orbital equations of motion, Ψ
e/o
ℓm

∣∣∣
pp∞

(t) = Ψ
e/o
ℓm

∣∣∣
pp∞

(ϕp(t), rp(t)). At geodesic

order, the difference ϕG(rp(t))− ϕp(t) is a constant. At 1PG and higher orders, Eq. (5.40)

still represents the leading-order waveform, but ϕp(t) and rp(t) become ε dependent, and

ϕp(t) no longer cancels ϕG(rp(t)); this incomplete cancellation will be true even at leading,

0PG order if ϕp(t) is obtained from an equation of motion that is hybridized with the

transition-to-plunge dynamics.

We can now point to the singular behaviour cured by the puncture. If there were no

puncture, the integral (5.41) would run from 2M to 6M . That integral would not converge,

due to the fact that ṙ{0}(r
′) ∼ (6M − r′)3/2 near the ISCO. Obtaining the final physical

solution requires adding the piece of the field sourced by the effective source (5.22) in the

puncture region, call it R
e/oR
ℓm

∣∣∣
ext

. However, as shown in Appendix E, a large part of

R
e/oR
ℓm

∣∣∣
ext

vanishes in the limit rP → 6M , and the remainder makes a small contribution

to the final waveform for values of rp sufficiently far below rP ; this is to be expected

because any small interval of rp near 6M corresponds to an asymptotically large interval

of coordinate time. As a first approximation, we therefore place rP very near the ISCO,

at rP = 5.999M , and we neglect R
e/oR
ℓm

∣∣∣
ext

. We expect that a complete implementation of

the puncture scheme will become more important at higher PG orders, as the early-time

behaviour becomes more singular at each successive order.

As a final remark in this section, we highlight that Eq. (5.40) does not precisely yield

the waveform at future null infinity. This is because we work with t as our time coordinate.

Our waveform therefore represents the coefficient of 1/r in a large-r expansion of h
{1}
m̄m̄ as a
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function of t along a timelike surface at large r. A consequence is the explicit appearance

of the tortoise coordinate x in Eq. (5.40), which makes our waveform phase depend on

the value of r at which the waveform is extracted. Such a dependence is degenerate with

a choice of initial time, meaning it has no physical consequence in the present paper. A

more complete treatment will use hyperboloidal slicing or the sharp null slicing displayed

in Fig. 1 to unambiguously obtain the waveform at future null infinity.

5.5 Stationary-phase approximation

We can immediately extract qualitative information from the overall structure of the wave-

form (5.40). The waveform comes with a total phase factor e−iωtG(rp)+imϕG(rp)−imϕp . At

early times, the particle is near the ISCO on a very nearly circular orbit. We therefore

expect the waveform to be strongly peaked around the orbital frequency ω = mΩ at these

early times, such that the first two terms in the exponential cancel, leaving an overall

phase factor e−imϕp ; in words, the waveform phase closely mimics the orbital phase. On

the other hand, at very late times, when the particle has plunged deep behind the effective

potential and is near the black hole horizon, we expect the waveform to be dominated by

QNM ringdown frequencies. In that case, ωtG(rp) is unrelated to ϕG(rp); instead, the final

two terms in the exponential cancel, leaving e−iωtG(rp).

In this section we apply a stationary-phase approximation that makes the above reason-

ing about the early-time behaviour more precise. We develop the complementary late-time

approximation in the next section.

We can rewrite the rp-domain solution (the coefficient of e−imϕp in Eq. (5.40)) as

R
e/o
ℓm

∣∣∣
pp∞

(rp) =

∫ +∞

−∞
dω

∫ rP

2M
dr′g(ω, r′)eiφ(ω,r

′,rp), (5.42)

where we have defined

g(ω, r′) := − 1

2π ṙ{0}(r′)

K
e/o
ℓm (ω, r′)

2iωAin
ℓ (ω)

, (5.43)

φ(ω, r′, rp) := ω
[
tG(r

′)− tG(rp)
]
−m

[
ϕG(r

′)− ϕG(rp)
]
. (5.44)

For simplicity, here we have set x = 0. We notice that Eq. (5.42) has the form of a two-

dimensional integral against a rapidly oscillating complex exponential, especially as the

particle is close to the ISCO; recall that tG(rp → 6M) → −∞. We can therefore evaluate

the integral using a leading-order SPA,

R
e/o
ℓm

∣∣∣
pp∞

(rp) ≈
2πg(ω, r′)

|det (Hess(φ)) |1/2
eiφ(ω,r

′,rp)+iπσ/4

∣∣∣∣
(ω,r′)=stationary point

, (5.45)

where the stationary point (ω, r′) = (mΩ{0}(rp), rp) is obtained from the condition ∇φ =

(∂ωφ, ∂r′φ) = 0. Hess(φ) is the Hessian of φ. Its signature, σ, vanishes, and its determinant

evaluates to |det (Hess(φ)) |1/2 = 1/|ṙ{0}(rp)| = −1/ṙ{0}(rp) since ṙ{0} is negative; see

Eq. (3.41). The leading-order SPA to Eq. (5.42) then gives the final solution

Ψ
e/o
ℓm

∣∣∣
pp∞

(ϕp, rp) ≈

[
K

e/o
ℓm (ω, r′)

2iωAin
ℓ (ω)

]
ω=mΩ{0}(rp),r′=rp

e−imϕp . (5.46)
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Re(ω)

Im(ω)

Figure 4. Integration contour for Eq. (5.40) leading to Eq. (5.47). The branch cut is indicated

by the hatched area, while the zeros of the Wronskian (5.35) are depicted as full (regular QNM

frequencies) and empty (mirror QNM frequencies) circles.

Equation (5.46) is an “instantaneous” representation of the waveform, in which the

state of the binary system is instantaneously transmitted to infinity. It relies on the wave-

form frequency and amplitude changing slowly relative to the waveform phase, just as in

the inspiral and transition-to-plunge regimes. In Sec. 6.2 we show that the SPA is a good

approximation almost up to merger.

5.6 Quasinormal mode sum

At late times, we expect our 0PG solution to be well described by a sum of QNM modes.

In this section we describe how to uniquely extract the amplitudes of these modes.

We can evaluate the real-line ω integral in Eq. (5.40) by expressing it in terms of

residues at poles in the complex ω plane. Figure 4 shows the analyticity properties of the

Green function, which has a branch cut along the negative imaginary axis and poles in

the lower half plane; the poles, at zeros of the Wronskian (5.35), correspond to the QNM

frequencies. Following the standard procedure [91], we define a contour that runs along

the real axis and closes in the lower half plane, with a detour around the branch cut. By

virtue of the residue theorem, the integral along the real line in Eq. (5.40) is equal to the

sum of residues of the enclosed poles, minus the integral along the high-frequency arc and

the integral around the branch cut:

Ψ
e/o
ℓm

∣∣∣
pp∞

= Ψ
e/o
ℓm

∣∣∣
QNM

− Ψ
e/o
ℓm

∣∣∣
bc

− Ψ
e/o
ℓm

∣∣∣
arc

. (5.47)

Here we focus on the QNM contribution and leave assessing the impact of the branch-cut

and arc pieces on the waveform to future work. Using the residue theorem, we then obtain

Ψ
e/o
ℓm

∣∣∣
QNM

= i

∞∑
n=0

Res

[
C

e/o
ℓm (ω)

2iωAin
ℓ (ω)

e−iω[tG(rp)−x]

]
ω=ωℓn,−ω∗

ℓn

eim[ϕG(rp)−ϕp]. (5.48)

A minus sign due to the clockwise orientation of the contour cancels the overall minus sign

in Eq. (5.40). ωℓn with n = 0, 1, 2, . . . are the QNM frequencies, for which Ain
ℓ (ωℓn) = 0.
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The fundamental mode is indicated by n = 0, while n ≥ 1 label the nth overtone. Note that

for all “regular” frequencies ωℓn (living in the quadrant where Re(ωℓn) > 0), we also need

to include “mirror” frequencies −ω∗
ℓn, since the QNM frequency spectrum is symmetric

with respect to the imaginary axis.

Computing the residues explicitly and multiplying and dividing by A
e/o out
ℓ (ωℓn), we

can write

Ψ
e/o
ℓm

∣∣∣
QNM

=

∞∑
n=0

[
E

e/o
ℓm (ω)e−iω(tG(rp)−x)

]
ω=ωℓn,−ω∗

ℓn

eim[ϕG(rp)−ϕp], (5.49)

where E
e/o
ℓm (ωℓn) := B

e/o
ℓ (ωℓn)D

e/o
ℓm (ωℓn) are the so-called quasinormal excitation coeffi-

cients, given by the product of the quasinormal excitation factors B
e/o
ℓ (ωℓn) [92–94] and

the coefficients D
e/o
ℓm (ωℓn) defined as

B
e/o
ℓ (ωℓn) :=

1

2ωℓn

A
e/o out
ℓ (ωℓn)
dAin

ℓ
dω (ωℓn)

, D
e/o
ℓm (ωℓn) :=

C
e/o
ℓm (ωℓn)

A
e/o out
ℓ (ωℓn)

. (5.50)

While the excitation factors only depend on the Schwarzschild geometry, the coefficients

D
e/o
ℓm (ωℓn) depend on the nature of the perturbation, that is, in our case, on the plunging

point-particle source. As a consequence of Eq. (5.30), the even and odd excitation factors

are related by

Be
ℓ (ωℓn) =

Dℓ + 12iMωℓn

Dℓ − 12iMωℓn
Bo

ℓ (ωℓn). (5.51)

Furthermore, the properties (5.31) imply that

B
e/o
ℓ (−ω∗

ℓn) =
[
B

e/o
ℓ (ωℓn)

]∗
. (5.52)

The integrand in C
e/o
ℓm (ωℓn) (5.41) is exponentially convergent at the upper limit when

rP ≈ 6M , while at the horizon it behaves as (r′− 2M)−4iMωℓn . The integral therefore con-

verges when Im(ωℓn) > −1/(4M), which only holds for the fundamental QNM frequencies.

In order to compute the excitation coefficients for the overtones we consider the following

regularization procedure [57, 95]:

C
e/o
ℓm

∣∣∣
reg

(ω) :=

∫ rP

2M
dr′

[
eiωtG(r′)−imϕG(r′)

ṙ{0}(r′)
K

e/o
ℓm (ω, r′)− q

e/o
ℓm (ω, r′)

]
+Q

e/o
ℓm (ω, rP). (5.53)

Here we have introduced an auxiliary function q
e/o
ℓm (ω, r′),

q
e/o
ℓm (ω, r′) = (r′ − 2M)−4iMω

[
q
e/o
0ℓm + q

e/o
1ℓm(ω)(r′ − 2M) + q

e/o
2ℓm(ω)(r′ − 2M)2 + . . .

]
,

(5.54)

where the coefficients q
e/o
iℓm with i = 0, 1, 2, . . . are obtained from the near-horizon expan-

sion of the integrand in Eq. (5.41). Subtracting q
e/o
ℓm from the integrand ensures that the

r′ integral is finite. This regularized integral is then added to the antiderivative of q
e/o
ℓm ,

Q
e/o
ℓm (ω, r) =

∫ r
dr′q

e/o
ℓm (ω, r′) (neglecting any constant arising from the integration), evalu-

ated at the integral’s upper boundary, r = rP . We justify this regularization procedure in

Appendix F.

Like for the SPA, we explore the accuracy of the QNM sum in Sec. 6.2.
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6 Numerical implementation and comparisons

In this section we present our numerical implementation to obtain first-order plunge wave-

forms from the formalism presented in Sec. 5.4, discussing and validating our implementa-

tion choices. We also outline the procedure to obtain SPA and QNM waveforms following

Secs. 5.5 and 5.6, and assess how well they approximate the full waveform in their respec-

tive regimes of validity. Finally, we compare the 0PG waveforms to NR simulations. Our

numerical implementation is freely accessible in the ancillary material [63].

6.1 Implementation and validation

We start by describing our numerical implementation to obtain first-order (0PG) waveforms

from Eq. (5.40), with rP = 5.999M . Computing the waveforms consists in two major steps:

we first tabulate the quantity C
e/o
ℓm (ω) (5.41) on a grid of ω values. The final waveform is

then obtained as a function of tG(rp)− x by evaluating Eq. (5.40) using a discrete Fourier

transform (DFT). We almost exclusively present the time-domain waveform obtained using

the geodesic orbital dynamics, rp(t) = r{0}(t) and ϕp(t) = ϕG(rp(t)). In this case, using

the freedom to absorb x into a choice of initial time, we are able to rename “tG(rp) − x”

simply as “geodesic time” tG. Our complete time-domain waveform (5.40) is then

Ψ
e/o
ℓm

∣∣∣
pp∞

(tG) = − 1

2π

∫ +∞

−∞
dω e−iωtG

C
e/o
ℓm (ω)

2iωAin
ℓ (ω)

; (6.1)

our early-time SPA waveform (5.46) is

Ψ
e/o
ℓm

∣∣∣
pp∞

(tG) ≈

[
K

e/o
ℓm (ω, r{0}(tG))

2iωAin
ℓ (ω)

]
ω=mΩ{0}(tG)

e−imϕG(tG); (6.2)

and our late-time QNM waveform (5.49) is

Ψ
e/o
ℓm

∣∣∣
QNM

(tG) =

∞∑
n=0

[
E

e/o
ℓm (ω)e−iωtG

]
ω=ωℓn,−ω∗

ℓn

. (6.3)

All numerical results are obtained setting M = 1.

We first construct the odd-parity “in” solution, which goes into C
e/o
ℓm (ω) (as defined

in Eq. (5.41)) through the function Ko
ℓm. We use Mathematica’s built-in HeunC function

(available in Mathematica version 12.1 or higher) as

R̂o in
ℓ (ω, r) =

2M

r
e−i(4M−r)ω

( r

2M
− 1
)−2iMω

HeunC

[
ℓ+ ℓ2 − 2− 8iMω − 16M2ω2,

− 4Mω(4Mω − i), 1− 4iMω,−3,−4iMω, 1− r

2M

]
.

(6.4)

The even-parity “in” solution is then obtained from the odd-parity one using the rela-

tion (5.29). We have numerically checked that the definition (6.4) matches with the current

implementations of the “in” solution in the ReggeWheeler package within the Black Hole

– 39 –



Perturbation Toolkit [96] (ReggeWheelerRadial[2,ℓ,ω,Method -> "HeunC"]["In"][r]).

Our “in” solution differs from the one defined in Ref. [95] by an overall factor, R̂o in
ℓ (ω, r) =

e−2iMω R̂o in
ℓ (ω, r)

∣∣∣
Leaver

. We get high-precision values for Ain
ℓ (ω) in the denominator of

Eq. (6.1) using the ReggeWheeler package.

Most of the computation time is spent in the radial numerical integration at a given

value of ω, which defines C
e/o
ℓm (ω). Through trial and error, we settled on the following

integration strategy:∫ 5.999

2
=

∫ 2.1

2
|GK +

∫ 3

2.1
|GK +

∫ 4

3
|Levin +

∫ 5

4
|Levin +

∫ 5.999

5
|Levin. (6.5)

The individual integrals are performed either using the Gauss-Kronrod rule (GK) with 50

points or the Levin rule (Levin) with 50 points as options for Mathematica’s NIntegrate.

We set a timeout of 5000 seconds for each such integral. We found that for all 2 ≤ ℓ ≤ 12,

−ℓ ≤ m ≤ ℓ (m ̸= 0), and ω in the range [−4, 4] these integrals were performed successfully.

We tabulate C
e/o
ℓm (ω) on an evenly spaced grid of ω values with spacing ∆ω = 10−3M−1

in the range ω ∈ [−ωcutoff, ωcutoff] with ωcutoff = 4M−1. In order to attenuate the effects

of the frequency cutoff on the Fourier transform, we used the low-pass filter described in

Eq. (16) of Ref. [97] with parameters (x0, w, q, s) = (−4, 0.2,−3.9, 1) in the negative ω

range, and a symmetrically defined low-pass filter in the positive ω range. With this filter,

there are only marginally small high-frequency residual oscillations that remain visible in

the deep QNM regime; see Fig. 10. As a benchmark of the implementation, the maximal

value for Re Ψ
e/o
ℓm (tG) is reached for the (ℓ,m) = (2, 2) mode at tpeak ≈ −104.1M where

Ψe
22(tpeak) ≈ (0.5877 + 0.0137i)M .

We have investigated how the choice of ∆ω impacts the waveforms. We found that

using a spacing ∆ω = 1/(500M) leads to qualitatively incorrect waveforms because the

peak of the (ℓ,m) = (2, 2) mode is not captured. In order to test the accuracy of the

waveforms with our choice of ∆ω = 1/(1000M), we have computed the relative numerical

difference between waveforms with different sampling intervals and a benchmark waveform

with sampling interval ∆ω = 1/(8000M). The result is displayed in Fig. 5 for the (ℓ,m) =

(2, 2) mode: the waveform with ∆ω = 1/(1000M) has a relative precision of 10−7 with

respect to the waveform with ∆ω = 1/(8000M). The precision scales globally according

∆ω: shortening the interval by a factor 2 increases the accuracy by a factor 10.

In order to study the frequency-cutoff dependence, we computed the relative error of

the real amplitude as a function of ωcutoff as

Eℓm(ω′
cutoff) =

1

ReΨe
22(tG)|ωcutoff=4/M

maxtG

(
ReΨ

e/o
ℓm (tG)|ωcutoff=ω′

cutoff
− ReΨ

e/o
ℓm (tG)|ωcutoff=4/M

)
.

(6.6)

We numerically obtained that Eℓm(ωcutoff = 2M−1) < 10−4 for all 2 ≤ ℓ ≤ 12 and −ℓ ≤
m ≤ ℓ, m ̸= 0 modes except (ℓ,m) = (11, 11) where E11 11(2) ≈ 2.1 × 10−4. In that

sense, it is barely sufficient to set the frequency cutoff to ωcutoff = 2M−1 in order to obtain

accurate waveforms with a 10−4 precision. The cutoff ωcutoff = 1M−1 only allows us to

have waveform with a precision of 10−2: the maximal value of Eℓm(1) is reached for the
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Figure 5. Relative difference between the absolute value of the real part of the waveforms

|ReΨe
22|pp∞|[∆ωbest] for the (ℓ,m) = (2, 2) mode with ωcutoff = 4M−1 and sampling interval

∆ω = ∆ωbest := 1/(8000M) as compared with the corresponding waveform |ReΨe
22|pp∞|[∆ωi]

with sampling ∆ω1 = 1/(1000M) (light gray), ∆ω2 = 1/(2000M) (gray) and ∆ω3 = 1/(4000M)

(dark gray).

(ℓ,m) = (5, 5) mode with E55(1) ≈ 6.3 × 10−3. The analysis of the error at the cutoff

ωcutoff = 3M−1 allows us to provide an estimate of the accuracy of our waveforms which

are defined for ωcutoff = 4M−1. We find Eℓm(ωcutoff = 3M−1) < 10−6 for all 2 ≤ ℓ ≤ 12

and −ℓ ≤ m ≤ ℓ, m ̸= 0 modes except (ℓ,m) = (4, 4) where E4 4(3) ≈ 1.1 × 10−6. In

that sense, setting the cutoff to 4M−1 leads to a loss of precision less than 10−6. The

higher the value of ℓ, the higher the cutoff should be in order to qualitatively capture the

peak of the waveform. This is illustrated in Fig. 6. Setting the cutoffs at 1M−1 or 2M−1

does not allow us to correctly capture the (ℓ,m) = (12, 12) waveform, while it is correctly

captured using a cutoff at 3M−1. We learn that even if the precision is 10−4 at cutoff value

2M−1, we need a larger cutoff frequency in order to qualitatively capture the peak of the

waveforms at high ℓ. After this analysis we conclude that our waveforms are qualitatively

and quantitatively accurate upon setting ωcutoff = 4M−1.

We also investigated the effects of changing the radial cutoff rP . In Fig. 7 we plot the

waveform corresponding to rP = 5.9M and rP = 5.99M . In the case rP = 5.9M , we observe

that the waveform fails to capture the correct behaviour around the time corresponding

to the cutoff tG(rP) ≈ −401M , due to our omission of the field generated by the effective

source in the punctured region. Putting a higher cutoff allows us to better capture the

early-time behaviour since the geodesic gets closer and closer to the ISCO located at

rp = 6M as tG → −∞. For rP = 5.99M , the waveforms fail around tG = −1249M , while

for rP = 5.999 they fail around tG = −3944M . In the range −750M < tG < 100M , the

change in the waveform upon changing the cutoff from rP = 5.999M to rP = 5.99M is

of the order of 10−8M and therefore totally negligible. However, the smaller the mass
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Figure 6. Plunge waveforms for the (ℓ,m) = (12, 12) mode with ωcutoff = 4M−1 in gray as

compared with the corresponding waveforms with ωcutoff = 1M−1 (top figure), ωcutoff = 2M−1

(middle figure) and ωcutoff = 3M−1 (lower figure) in dashed red.
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Figure 7. The blue curve depicts the real part of the (ℓ,m) = (2, 2) mode waveform computed

using the cutoff rP = 5.9M . Around tG(rP) ≈ −401M the waveform is not valid due to effects

of the cutoff. In black, the waveform is computed using the cutoff rP = 5.99M which extends the

validity of the waveform to approximately tG(rP) ≈ −1249M (which lies much further to the left

of the diagram).

ratio, the greater the time the particle spends near the ISCO, and for some sufficiently

small mass ratio we might need to place the cutoff even closer to the ISCO. On the other

hand, this is likely a moot point because at 1PLT order we require the first-order field

for all 2M < rp < 6M as input to the second-order source, calling for a more complete

implementation of the puncture scheme.

Next, SPA waveforms are obtained from Eq. (6.2). Here no frequency integral is

required. The waveform amplitudes (the coefficients of e−imϕG(tG)) are tabulated on a grid

of rp values. In practice, tG is more simply expressed as a function of rp than vice versa,

and we plot the waveforms parametrically using tG = tG(rp) and ϕG = ϕG(rp).

Finally, constructing the QNM sum (6.3) requires high-precision QNM frequencies

ωℓn, the excitation factors B
e/o
ℓ , the coefficients C

e/o
ℓm , and A

e/o out
ℓ (ωℓn). We start with the

QNM frequencies from Refs. [91, 98, 99] and further increase the digits of accuracy using

Leaver’s continued fraction method [100]. The results for ℓ = 2, 3, . . . , 7 and n = 0, 1, 2, 3

are presented in Table 2. We take the excitation factors from the tabulated values in

Refs. [93, 98]. The coefficients C
e/o
ℓm are computed from Eq. (5.41) for the fundamental

mode and Eq. (5.53) for the overtones. We have kept the first five terms in Eq. (5.54)

(we have verified that increasing the number of terms to ten leads to a relative difference

of ∼ 10−6 or smaller in C
e/o
ℓm ). We have tabulated all excitation coefficients E

e/o
ℓm (ωℓn) =

B
e/o
ℓ (ωℓn)D

e/o
ℓm (ωℓn) for ℓ = 2 up to the third overtone in Tables 3 and 4. The excitation

coefficients for higher ℓ are provided in the ancillary material [63]. Finally, we compute the

asymptotic amplitudes A
e/o out
ℓ (ωℓn) using the procedure described in Ref. [95].

At this point, we can compare our excitations coefficients with the ones obtained by

Hadar and Kol (HK) in Tables 1 and 2 of Ref. [57], and by Folacci and Ould El Hadj (FO) in
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n = 0 n = 1 n = 2 n = 3

ℓ = 2 0.37367−0.08896i 0.34671−0.27391i 0.30105−0.47828i 0.25150−0.70515i

ℓ = 3 0.59944−0.09270i 0.58264−0.28130i 0.55168−0.47909i 0.51196−0.69034i

ℓ = 4 0.80918−0.09416i 0.79663−0.28433i 0.77271−0.47991i 0.73984−0.68392i

ℓ = 5 1.01230−0.09487i 1.00222−0.28582i 0.98270−0.48033i 0.95500−0.68056i

ℓ = 6 1.21201−0.09527i 1.20357−0.28665i 1.18707−0.48056i 1.16327−0.67859i

ℓ = 7 1.40974−0.09551i 1.40247−0.28716i 1.38818−0.48071i 1.36736−0.67735i

Table 2. Schwarzschild QNM frequencies Mωℓn up to the third overtone for each 2 ≤ ℓ ≤ 7.

n = 0 n = 1 n = 2 n = 3

m = 2
−1.14668× 10−4

+5.72179× 10−5i

−1.12799× 10−12

+4.13842× 10−13i

−8.03493× 10−22

−1.42463× 10−21i

2.52610× 10−31

−1.32057× 10−31i

m = 1
6.53075× 10−5

−1.87158× 10−5i

1.33791× 10−12

+1.37608× 10−13i

−9.43025× 10−22

+2.48916× 10−21i

−3.96283× 10−31

−3.66314× 10−31i

m = 0
2.06438× 10−5

+8.84288× 10−6i

4.91061× 10−13

+5.75437× 10−13i

−2.12623× 10−21

+4.28862× 10−22i

2.36628× 10−31

−4.82273× 10−31i

m = −1
−8.83249× 10−8

−4.89523× 10−6i

8.87604× 10−14

−2.20023× 10−13i

5.31923× 10−22

+7.96482× 10−22i

−2.92157× 10−31

−7.312004× 10−32i

m = −2
6.18182× 10−7

−8.08701× 10−8i

3.95622× 10−14

+5.77111× 10−15i

−1.49044× 10−22

+1.63288× 10−22i

1.01126× 10−32

−8.95405× 10−32i

Table 3. Excitation coefficients E
e/o
ℓm (ωℓn) for ℓ = 2 up to n = 3.

n = 0 n = 1 n = 2 n = 3

m = 2
6.18182× 10−7

+8.08701× 10−8i

3.95622× 10−14

−5.77111× 10−15i

−1.49044× 10−22

−1.63288× 10−22i

1.01126× 10−32

+8.95405× 10−32i

m = 1
8.83249× 10−8

−4.89523× 10−6i

−8.87604× 10−14

−2.20023× 10−13i

−5.31923× 10−22

+7.96482× 10−22i

2.92157× 10−31

−7.31200× 10−32i

m = 0
2.06438× 10−5

−8.84288× 10−6i

4.91061× 10−13

−5.75437× 10−13i

−2.12623× 10−21

−4.28862× 10−22i

2.36628× 10−31

+4.82273× 10−31i

m = −1
−6.53075× 10−5

−1.87158× 10−5i

-1.33791×10−12

+1.37608× 10−13i

9.43025× 10−22

+2.48916× 10−21i

3.96283× 10−31

−3.66314× 10−31i

m = −2
−1.14668× 10−4

−5.72179× 10−5i

−1.12799× 10−12

−4.13842× 10−13i

−8.03493× 10−22

+1.42463× 10−21i

2.52610× 10−31

+1.32057× 10−31i

Table 4. Excitation coefficients E
e/o
ℓm (−ω∗

ℓn) for ℓ = 2 up to n = 3.
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Table II of Ref. [58]. In order to do so we first need to find dictionaries between the different

conventions that are being used. Hadar and Kol fix the constant t0 in Eq. (3.43) such that

tG(2.2M) = 0, which leads to the relation E
e/o
ℓm (ωℓn) = Rnℓm|HK eiωℓntG(2.2M) between the

excitation coefficients. We then find agreement with the results of Ref. [57] up to an overall

minus sign with relative errors of ∼ 10−4 or smaller (and a few isolated cases have relative

errors of 10−3). We suspect the sign disagreement to stem from different conventions used

to construct the Green function in Ref. [57]. It is however of secondary importance for

the aim of building full IMR waveforms: the orbital phase during the plunge is known up

to a constant, which will be determined by the orbital phase at the end of the transition

to plunge. Using the conversion δ′(t − tG) = −
(
ṙ{0}(rp)

)2
δ′(r − rp) + (· · · )δ(r − rp), we

compare the terms proportional to δ′(r−rp) in our sources (5.10) and those in Eqs. (14) and

(15) of Ref. [58]. We find that the sources differ by an overall factor, S
e/o
ℓm = cFO S

e/o
ℓm

∣∣∣
FO

with cFO = 2
√
2π. This leads to E

e/o
ℓm (ωℓn) = cFO

(
−
√
2π C

(e/o)
ℓmn

∣∣∣
FO

)
and E

e/o
ℓm (−ω∗

ℓn) =

cFO

(
−
√
2π D

(e/o)
ℓmn

∣∣∣
FO

)
. Up to an overall factor of 1/

√
2π and an overall minus sign, we

find the first equality to be satisfied with relative errors of ∼ 10−4 or smaller (except for

the ℓ = m = 2 excitation coefficient, where we suspect a typo in the sign of the imaginary

part in Ref. [58]). We also find the equality for the mirror modes to have larger relative

errors especially for ℓ ≥ 4, which originate from disagreements of the same magnitude

already at the level of the QNM frequencies. We have investigated the source of the

disagreement by an overall factor of 1/
√
2π: in Ref. [58] the inverse Fourier transform is

defined in Eqs. (21) and (22) with the symmetric normalization 1/
√
2π. Equations (15) and

(25) in Ref. [58] are however consistent with a forward transform of the form S
(e/o)
ωℓm (r) =∫ +∞

−∞ dt S
(e/o)
ℓm (t, r)eiωt, missing a factor 1/

√
2π. Again, we have not found the source of the

minus sign disagreement.

6.2 Comparison with the stationary-phase approximation and the QNM sum

In this subsection we perform internal consistency checks and compare the 0PG waveforms

computed following the procedure described in Secs. 5.4 and 6.1 with the SPA and the

QNM sum discussed in Secs. 5.5 and 5.6, respectively.

In Fig. 8 we compare the SPA (5.46) (blue curve) with the 0PG waveform (dashed

black curve) for the (ℓ,m) = (2, 2) mode. The waveforms agree very well at early times,

with relative errors below 1% up to four cycles before the peak amplitude. Around merger

the two waveforms start to differ significantly, with the SPA being unable to capture the

late-time QNM behaviour. Indeed, by construction, the SPA is expected to work as long

as the integrand in Eq. (5.42) contains a rapidly oscillating factor, which occurs as the

particle is close to the ISCO and corresponds to the early portion of the waveform. This is

also consistent with the geodesic plunge trajectory displayed in Fig. 3, where the particle

spends a large number of orbits close to the ISCO before falling from r ≈ 5.7M to the

event horizon within ∼ 2 orbital cycles.

As shown by the comparison with the red curve in Fig. 8, at late times the 0PG wave-

form is well described by the QNM sum (5.49). Figure 9 shows the comparison between
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Figure 8. The (ℓ,m) = (2, 2) mode of the 0PG waveform (black dashed curve) compared to the

corresponding SPA (5.46) (blue curve) and QNM (5.49) (red curve) waveforms. The QNM sum

includes overtones through n = 3. We have truncated the SPA and QNM waveforms once they

start to significantly differ from the 0PG waveform. The plot on the right zooms in on the region

around the peak amplitude.

the 0PG waveform for the (ℓ,m) = (2, 2) mode and QNM sums that include a different

number of overtones (up to the first three), while in Fig. 10 we plot the difference between

the waveform and the QNM sums. These plots confirm that the QNM approximation

correctly reproduces the late-time behaviour of the waveform, with increasing accuracy as

higher overtones are included. Although including a larger number of overtones improves

the accuracy of the QNM sum at late times, doing so does not extend its accuracy to

earlier times. Crucially, the regime of validity breaks down well before reaching the wave-

form’s peak amplitude. We can see from the right panel of Fig. 8 that this breakdown

occurs around ≈ 10M after the peak, which is consistent with studies of numerical merger-

ringdown waveforms [59–62]. Those studies found that numerically fitting QNM sums to

NR data becomes stable and robust around 10M–20M after the waveform peak.

We hence conclude that our first-order waveforms are internally consistent and agree

with expectations in the sense that the SPA correctly reproduces the periodic behaviour

at early times, while the QNM sum describes the ringdown at late times. The combination

of the two approximations accurately covers almost the full 0PG waveform, only missing a

few cycles around the peak amplitude.

With these results in mind, we return to the phase-space description of the waveform.

The SPA makes explicit that the waveform is a simple function of phase-space coordinates

until near the waveform’s peak amplitude, while the QNM sum, which involves frequencies

unrelated to the orbit, suggests that the waveform becomes divorced from the phase-space

trajectory after the peak amplitude. However, this intuition is somewhat misleading. Be-

fore generating the waveform as a function of time, we can directly examine its original

form (5.40) as a function of the phase-space coordinates (ϕp, rp). In Fig. 11 we plot the

waveform phase as a function of ϕp and rp. Here we see there is no drama at the waveform

peak, corresponding to rp ≈ 3M . The emitted waveform’s phase is a simple, smooth func-

tion of the particle’s orbital parameters until the particle gets extremely close to the event

horizon; there, at rp ≈ 2.01M , the waveform phase rapidly dissociates from the state of
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Figure 9. 0PG waveforms for the (ℓ,m) = (2, 2) mode (dashed black curves) compared with

the corresponding QNM sums that include the fundamental mode only (n = 0) and an increasing

number of overtones up to n = 3. Note that we are only plotting the QNM waveforms up to a time

where they start to significantly differ from the 0PG waveforms.
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Figure 10. Difference between the 0PG waveform for the (ℓ,m) = (2, 2) mode and the corre-

sponding QNM sums with an increasing number of overtones. Following the color coding of Fig. 9,

the blue curve corresponds to the QNM sum that includes only the fundamental mode, while the

orange, green and red curves correspond to QNM sums truncated at the first, second and third

overtone, respectively. For reference, we have also plotted the 0PG waveform as a dashed black

curve. The y axis is on a logarithmic scale.
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Figure 11. Waveform phase of the (ℓ,m) = (2, 2) mode as a function of the phase-space variables

(ϕp, rp), as defined from Eq. (5.5). The blue dashed curve shows the path through phase space of

the waveform phase at 0PG order, where ϕp = ϕG(rp) is given by Eq. (3.44)

.

the particle’s orbit.

In the figure we also plot the particle’s phase-space trajectory. From that trajectory,

we see that at 0PG order, the waveform phase gradually deviates from mϕp over the

course of the plunge. When the trajectory approaches the horizon, it effectively freezes:

approximately 0.7 radians after the peak, large changes in the waveform phase become

associated with virtually no change in ϕp or rp. It is this marked change in behaviour,

when the particle is far below the light ring, that coincides with the time (≈ 10–15M after

the peak) when the QNM sum begins to approximate the complete waveform.

At higher PG orders, the surface in Fig. 11 will be deformed due to terms h
{2}
22 and

higher in the waveform. The trajectory on the surface will also change due to 1PG and

higher corrections to the orbital motion.

6.3 Comparison with numerical relativity

This subsection contains qualitative comparisons between our 0PG waveforms and NR

simulations from the SXS catalog [101, 102]. All SXS data we work with here are drawn

from the public python package sxs [103].

We start by re-expanding the relevant quantities for our waveform generation in powers

of the symmetric mass ratio ν := Mmp/(M + mp)
2 = ε/(1 + ε)2 at fixed total mass

Mtot := M + mp = M(1 + ε). This yields the most accurate comparisons in the regime

of comparable-mass binaries [21, 51, 55, 104–109]. Inverting the relation between ν and

ε gives ε = (1 − 2ν −
√
1− 4ν)/(2ν), which, in the small-mass-ratio expansion, leads to

ε = ν + 2ν2 + O(ν3). For our first-order waveforms this re-expansion simply amounts to
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substituting ε → ν and M → Mtot. In order to compare the 0PG and NR waveforms,

we align them in time and phase at a given waveform frequency. Referring to Eq. (5.5),

we define the ℓm-mode waveform phase and frequency from hℓm = |Hℓm|e−iΦℓm as Φℓm :=

mϕp − arg(Hℓm) and ωℓm := dΦℓm/dt.

After the above preliminaries, we can begin to assess the accuracy of our 0PG wave-

forms, using SXS waveforms as our benchmark. The top panel of Fig. 12 compares the

(ℓ,m) = (2, 2) mode of our 0PG waveforms with the NR simulations SXS:BBH:1220 [110]

and SXS:BBH:2477 [111]. These are NR waveforms for quasi-circular, non-spinning black

hole binaries with mass ratios q = 4 and q = 15, respectively. For both simulations, the

reference dimensionless spin on each of the two black holes is ∼ 10−5 or smaller, and the

eccentricity is ≲ 10−4. We align the waveforms in time and phase at ω22 = 2Ω{0}(3Mtot),

which corresponds to the peak amplitude |H22| of the plunge waveform. We also shift

the relevant part of the waveforms in time such that t = 0 corresponds to the alignment

time. In the q = 4 case the 0PG waveform is not able to accurately capture the late-time

behaviour of the NR simulation, while the comparison improves drastically for q = 15. The

improvement with increasing q is expected: our 0PG model omits 1PG and higher terms

in the phase and amplitude, leading to relative errors that scale roughly linearly with ε.

Numerous 1PG and higher effects contribute to our model’s error, but the error after

the waveform’s peak appears to be dominated by the fact that our 0PG model does not

account for the final, remnant black hole’s spin. In the the top panel of Fig. 12, the NR

simulations we compare against have small spins on the individual black holes during the

inspiral, but the remnant black holes have substantial dimensionless spins |χ⃗rem| ≈ 0.47 for

SXS:BBH:1220 and |χ⃗rem| ≈ 0.19 for SXS:BBH:2477. The spin of the remnant is largely

determined by the dimensionless angular momentum of the plunging particle, which at 0PG

order is given by its value at the ISCO, 2
√
3ν, equal to ≈ 0.55 for q = 4 and ≈ 0.20 for

q = 15, in rough agreement with the SXS values. This significant final spin leads to QNM

ringdown frequencies that differ significantly from the Schwarzschild ones captured by our

0PG model. In a 1PG model, these shifts in the (ℓ,m) = (2, 2) ringdown frequencies should

be accounted for primarily by the nonlinear source δ2G
{0}
αβ [h

{1}, h{1}], through couplings

between the m = 2 modes of h
{1}
αβ and the (ℓ,m) = (1, 0) mode of h

{1}
αβ ; this is because the

(1, 0) mode encodes the angular momentum content in h
{1}
αβ , and it necessarily asymptotes,

at late times, to a perturbation toward the final, stationary Kerr metric of the remnant.

To investigate whether the remnant spin is really our main source of error in the post-

peak regime, we now consider two alternative NR waveforms that have the same mass

ratios as the ones used above but negligible remnant spin: the quasi-circular binary black

hole simulations SXS:BBH:1931 [112] with q = 4 and SXS:BBH:2471 with q = 15 [113]. In

these simulations the individual black holes are spinning prior to merger, but the remnant

dimensionless spins are very small (|χ⃗rem| ∼ 10−2). We compare these NR simulations

to our 0PG waveforms in the bottom panel of Fig. 12. At late times the agreement has

improved since the Schwarzschild QNM sum is now a better approximation to the remnants’

ringdown. Before the peak amplitude the comparison instead becomes worse since before

merger the NR waveform describes the inspiral of two spinning black holes, which is not the
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Figure 12. Comparison between NR simulations (dashed black curves) and our 0PG wave-

forms. The waveforms are aligned in phase and frequency at t = 0. Top panel: comparison

with SXS:BBH:1220 [110] and SXS:BBH:2477 [111], two quasi-circular, non-spinning black hole

binaries with remnant dimensionless spin of |χ⃗rem| ≈ 0.47 and |χ⃗rem| ≈ 0.19, respectively. Bottom

panel: comparison with SXS:BBH:1931 [112] and SXS:BBH:2471 [113], two quasi-circular, spinning

black hole binaries which coalesce to form a non-spinning remnant (remnant dimensionless spin

|χ⃗rem| ∼ 10−2).

scenario described by our waveforms. In any case, we do not expect the plunge waveform

to be accurate far before the peak amplitude and expect the transition to plunge to take

over before reaching the ISCO.

We can illustrate our accuracy in more detail by separately comparing the 0PG wave-

form phases Φℓm (Figs. 13 and 15) and waveform amplitudes |hℓm| (Figs. 14 and 15) with

NR. For a given mass ratio, we see that for t ≳ 0 the “zero-remnant-spin” waveforms

(SXS:BBH:1931 and SXS:BBH:2471) compare better than “zero-initial-spin” waveforms

(SXS:BBH:1220 and SXS:BBH:2477), while the roles are reversed for t ≲ 0; graphically, in

Fig. 15, the green and red curves respectively lie below the blue and orange ones for t ≳ 0

and vice versa for t ≲ 0. It is also the case that the comparison improves with increasing q:

in Fig. 15, the orange and red curves respectively lie below the blue and green ones for all

t, modulo the parts of the plots dominated be the numerical noise. This also holds when

considering the relative, rather than absolute, difference. In all cases except the one with

large remnant spin, we observe that our 0PG model matches the peak amplitude of the
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Figure 13. Comparison of the (ℓ,m) = (2, 2) waveform phase Φℓm as a function of time between

the 0PG waveforms (colored curves) and the NR simulations (dashed black curves) considered in

Fig. 12. The color coding follows the one of Fig. 12. The phase difference vanishes at the alignment

time t = 0 by construction.

SXS waveform to a high degree of accuracy.

7 Discussion and conclusions

In this paper we have presented a framework for generating merger-ringdown waveforms

within GSF theory. We have treated the final plunge, which gives rise to the merger-

ringdown portion of the GW signal, using a post-geodesic expansion in a phase-space

approach, mirroring our previous treatments of the inspiral and the transition to plunge [43,

51]. The resulting waveform is summarized in Eqs. (2.14)–(2.15), with xi = (r, θ, ϕ) and

r → ∞ in Eq. (2.15). All the ingredients needed for waveform generation—the waveform

amplitudes h
{n},m
αβ (Ja, r → ∞) and the forcing functions F a

{n}(J
b)—are pre-computed as

functions of the binary’s mechanical variables Ja = (Ω, δM±). Evolving through the

binary’s mechanical phase space then yields the time-domain waveforms. This split between

slow offline computations (solving field equations) and fast online ones (solving a very

small number of ordinary differential equations) allows us to maintain the rapid waveform

generation of inspiral and transition-to-plunge self-force models. We have outlined this

framework through second order in ε for the waveform, or equivalently, 1PG order in the
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Figure 14. Comparison of the (ℓ,m) = (2, 2) waveform amplitude |hℓm| as a function of time

between the 0PG waveforms (colored curves) and the NR simulations (dashed black curves) con-

sidered in Fig. 12. The color coding follows the one of Fig. 12.
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Figure 15. Difference in waveform phase (left plot) and amplitude (right plot) between the (ℓ,m) =

(2, 2) modes of the 0PG waveform and the NR simulations SXS:BBH:1220 (q = 4, |χ⃗rem| ≈ 0.47,

blue), SXS:BBH:2477 (q = 15, |χ⃗rem| ≈ 0.19, orange), SXS:BBH:1931 (q = 4, |χ⃗rem| ≈ 4 × 10−2,

green) and SXS:BBH:2471 (q = 15, |χ⃗rem| ≈ 5× 10−2, red). The y axis is on a logarithmic scale.
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orbital dynamics. Similarly, while we have worked with t slicing in our calculations here,

we have also emphasized that hyperboloidal slicing (or null slicing as in Fig. 1) would offer

advantages that become increasingly important at post-geodesic orders.

At early times, close to the ISCO, our plunge expansion asymptotically matches the

late-time transition-to-plunge expansion of Ref. [51]. We have detailed this asymptotic

matching up to 1PG and 7PLT order and shown how it provides critical input for the

plunge solution, both in the orbital dynamics and in the field equations. Without the

asymptotic matching, the plunge expansion is under-determined and involves singularities

at the ISCO. In the field equations, the matching conditions can be rigorously enforced

through a puncture scheme, with an effective source appearing in a punctured region at

early times, near the ISCO. For our implementation in this paper, we have safely neglected

the effective source in the punctured region by focusing on times sufficiently far to the

future of the puncture. However, calculations at 1PG order will likely require a more

thorough treatment of the effective source, as the 0PG field is needed all the way back to

the ISCO as input for the 1PG field equations.

Our framework involves field equations defined directly on the binary phase space,

as opposed to the ordinary time domain, but we have shown how to transform these

equations into a familiar frequency-domain form. Using frequency-domain methods, we

have implemented our formalism at leading (0PG) order, solving Regge-Wheeler-Zerilli

equations to obtain the leading-order plunge waveform. Although this waveform has been

obtained previously from the same frequency-domain equations [58], we have shown that

there is still new information to be mined from it. Specifically, we have utilized it to

illuminate fundamental features of merger and ringdown, and we have begun to assess its

accuracy through comparisons with NR waveforms.

First, to probe the structure of the merger and ringdown, we have focused on two

questions: how well is the waveform described by an “extended inspiral” prior to the

waveform’s peak, as in EOB [33], and how well is it described by a QNM ringdown after

the peak? Our key findings are illustrated in Figs. 8 and 11.

In Fig. 8 we see that the early part of the waveform, until very close to the peak,

is well approximated by a stationary-phase approximation that expresses the waveform

phase and amplitude as instantaneous functions of the orbital phase and radius, akin to

EOB’s extended-inspiral construction. In the future we will explore how much this can be

improved by including higher-order terms in the SPA and whether our approach can be

used to inform EOB’s “non-quasicircular corrections” [35].

Figure 8 also shows that at late times, ≳ 10M after the peak amplitude, the QNM

ringdown becomes a good approximation to the full waveform. However, at earlier times the

QNM sum diverges dramatically. This has bearing on a long line of studies. Many papers

have investigated whether a QNM sum, including a variable number of overtones, is able

to reproduce the GW strain even at the peak [59, 114–126], following earlier evidence that

a QNM model with up to n = 3 overtones can fit the ringdown even at times preceding

the peak [127]. Such investigations are mainly based on fitting NR data using QNM

models built from a sum of damped sinusoids (with QNM frequencies). We have instead

computed the QNM sum directly from first principles (analogous to Ref. [128]’s study for
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a toy source term). Our results show that, at least in the case of a Schwarzschild primary

and including the first three overtones, the QNM sum only becomes accurate significantly

after the waveform’s peak amplitude. Our finding of when it becomes accurate is broadly

consistent with the time at which QNM fits to NR ringdown waveforms become robust [59–

62]. Figure 9 shows that this ringdown-onset time changes only marginally as we vary the

number of overtones up to n = 3, but we note that Ref. [128]’s results suggest that the

effective onset might appear at substantially earlier times if many more overtones were

included.

A natural followup, in addition to including higher overtones, would be to further

dissect the ringdown. We compute our full waveform through an inverse Fourier transform,

involving an integral over all real frequencies. In Sec. 5.6 we have reviewed how this real-

line integral can be equated to the sum of three contributions with complex frequencies:

the QNM sum, which we have computed including the first 3 overtones; an integral around

a branch cut, associated with power-law tails (which are clearly visible after tG ≈ 150M in

our full waveform in Fig. 10); and an integral along a high-frequency arc, associated with

a prompt response. We will explore the branch-cut and high-frequency arc contributions

in future work, complementing recent studies such as Ref. [129].

At least at 0PG order, in Fig. 8 we can identify the genuine “merger” regime as the

brief interval when neither the SPA nor the QNM sum is accurate. However, Fig. 11 shows

that the waveform remains closely tied to the orbital motion in this interval, even though it

occurs after the particle has fallen behind the light ring. It therefore appears plausible that

a higher-order SPA can be pushed to later times, past the waveform’s peak. On the other

hand, the onset of the QNM regime is very sudden in Fig. 11, marking a clear dissociation

of the waveform from the orbit and indicating the difficulty of pushing the QNM sum to

earlier times.

We expect these types of analyses will further sharpen our understanding of the merger

process, particularly when our model is extended to 1PG order, where nonlinear effects

arise. Such analyses might additionally have utility in improving EOB and Phenom IMR

waveform models.

Separate from the broad, fundamental questions about the merger regime, we have

also qualitatively assessed the accuracy of the 0PG waveform, using NR waveforms from

the SXS catalog as a benchmark. For sufficiently small mass ratios, our 0PG waveform’s

error is necessarily dominated by its omission of 1PG terms, corresponding to O(ν2) terms

in the waveform amplitude and O(ν) terms in the phase. Our comparisons with NR are

consistent with that expectation, and they suggest that a complete 1PG model could be

highly accurate at mass ratios ε ≈ 1/10 (and perhaps even closer to ε = 1). We have

also singled out the most significant 1PG corrections: those associated with the nonzero

spin of the final, remnant black hole. Such corrections will appear automatically in our

framework at 1PG order, and they are potentially easier to calculate than the full litany of

1PG effects. Hence, as an intermediate step toward 1PG waveforms, there would be value

in building an incomplete 1PG model, including only the 1PG terms associated with the

remnant spin.

Our next immediate goal, however, is to build an IMR model that enables the pro-
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duction of fast and accurate waveforms for asymmetric binaries. We aim to achieve this

by combining the framework presented in this paper, together with our earlier work on

the transition to plunge [51], with the post-adiabatic inspiral [21, 43]. In work presented

in Refs. [130–132], we have built a fast IMR waveform model using the 1PA inspiral, the

transition to plunge through 2PLT order and the geodesic plunge, with switching points

between the three regimes. That model will be detailed in a followup paper. Future

work will focus on improving the connection between the three regimes and carrying the

transition-to-plunge and plunge expansions to higher order, with the aim of extending the

sub-radian accuracy of post-adiabatic inspiral waveforms through merger and ringdown.

Further future work includes the generalization to plunges (both prograde and retro-

grade) into a Kerr black hole. The general framework described in this paper also applies

when considering a spinning primary. For a particle plunging from the Kerr ISCO [133, 134],

obtaining the first-order plunge waveform would then be achieved using the Teukolsky equa-

tion [135] rather than the RWZ equations employed in this paper. The generalization to

generic equatorial plunging orbits, which are reached when the inspiral admits eccentricity,

is also under investigation.

The offline/online split in our approach also lends itself to modelling mergers beyond

general relativity or including matter effects. Waveform ingredients (beyond-GR or matter

corrections to amplitudes and forcing functions) can be computed offline, in a modular

way, and then added to the online waveform generation, just as has been done in the

inspiral (see, e.g., Refs. [136–138]). We will exploit this fact to explore black hole mergers

in alternative theories of gravity [139] or in the presence of dark matter halos [140].

Finally, we note that, very recently, during the preparation of our paper, Ref. [80]

also presented a fast, leading-order IMR waveform model that includes the same 0PG

waveform we have detailed here. Their IMR model involves stitching the time-domain

0PA inspiral waveform to the time-domain 0PG plunge waveform, skipping the transition

regime in between. Since the transition regime has a frequency width of order ε2/5, omitting

it should have a small effect for sufficiently small mass ratios; however, we expect that

this omission will incur significant errors for moderate mass ratios. Such stitching might

also become impractical beyond leading order, as the post-adiabatic and post-geodesic

expansions become increasingly singular at the ISCO. Since the 0PA and 0PG waveforms

never have a common frequency, stitching them together in this way would additionally

seem to require a discontinuity in the waveform frequency. However, the approach has a

clear advantage in its simplicity, and it should suffice for many systems, such as EMRIs,

where the merger and ringdown carry little SNR.
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A Asymptotic match between transition to plunge and plunge

A.1 Coefficients of the asymptotic late-time transition-to-plunge solutions

Up to 7PLT order, the first coefficients in the late-time solution of the orbital radius (3.27a)

are given by

r
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The first coefficients in the late-time solution of dΩ/dt (3.27a) up to 7PLT order read
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A.2 Coefficients of the asymptotic near-ISCO plunge solutions

Up to 1PG order, the first coefficients in the near-ISCO solutions of the orbital radius

(Eqs. (3.29) and (3.32)) are given by
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The first coefficients in the near-ISCO solutions of the forcing terms (3.29) and (3.33) read
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{1},0 − 37f t
{1},2

))]
,

F
(10,5/2)
{1} = − 1

384M2

[
2f t

{1},7 + 3M1/2
(
23/431/4f r

{1},6 − 4
(√

6M1/2f t
{1},5

− 21/433/4Mf r
{1},4 + 68M3/2f t

{1},3 + 86 23/431/4M2f r
{1},2

−728 21/433/4M3f r
{1},0

))]
.

(A.20)

A.3 Self-force matching conditions

In the transition-to-plunge regime, the self-force admits an expansion in integer powers of λ

at fixed phase-space coordinates ∆Ω and δM±, fµ =
∑∞

n=5 λ
nfµ

[n](∆Ω, δM±). The coeffi-

cients of λn in this expansion can be written as a sum of terms factored into a ∆Ω-dependent

piece and a ∆Ω-independent piece (labeled with capital Latin letters); see Ref. [51]. Using

Eq. (3.27a) to expand the ∆Ω-dependent pieces, we find that the late-time behaviour of

the transition-to-plunge self-force reads

fµ(λ,∆Ω → +∞, δM±) =λ5fµ
[5] + λ7∆Ωfµ

[7]A + λ8
[
F

(3,3/2)
[0] ∆Ω3/2 +O(∆Ω−1)

]
fµ
[8]A

+ λ9

[
∆Ω2fµ

[9]A +
3

2

(
F

(3,3/2)
[0]

)2
∆Ω2fµ

[9]B +O
(
∆Ω−1/2

)]
+O∆Ω(λ

10).

(A.21)

Here we use the symbol O∆Ω to indicate subleading terms in the transition-to-plunge

expansion and the symbol O to indicate subleading terms in the late-time expansion of a

given PLT order.
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The near-ISCO solution of the self-force in the plunge regime follows from Eq. (3.31):

fµ(ε,Ω → Ω∗, δM
±) =λ5fµ

{1},0 + λ7∆Ωfµ
{1},2 + λ8∆Ω3/2fµ

{1},3

+ λ9∆Ω2fµ
{1},4 +O(λ10∆Ω5/2) +OΩ(ε

2).
(A.22)

Here we use the symbol OΩ to indicate subleading terms in the plunge expansion and the

symbol O to indicate subleading terms in the near-ISCO expansion of a given post-geodesic

order.

Equating the coefficients of equal powers of λ and ∆Ω in Eqs. (A.21) and (A.22), we

obtain the following matching conditions for the self-force:

fµ
{1},0 = fµ

[5], (A.23a)

fµ
{1},2 = fµ

[7]A, (A.23b)

fµ
{1},3 = F

(3,3/2)
[0] fµ

[8]A, (A.23c)

fµ
{1},4 = fµ

[9]A +
3

2

(
F

(3,3/2)
[0]

)2
fµ
[9]B. (A.23d)

The subleading terms in the ∆Ω → +∞ expansions at each order in λ in Eq. (A.21) will

match with terms that originate from subleading orders in the post-geodesic expansion in

Eq. (A.22). The coefficients in Eq. (A.23) can be further connected to inspiral quantities

through the asymptotic match between the inspiral and transition-to-plunge regimes [51].

In particular, the terms fµ
{1},0 and fµ

{1},2 are given by the inspiral’s first-order self-force and

its Ω derivative evaluated at the ISCO, respectively.

The asymptotic match presented in Table 1 between transition to plunge (up to

7PLT order) and plunge (up to 1PG order) requires the self-force matching conditions

in Eqs. (A.23) in addition to the higher-order ones listed below:

fµ
{1},5 =

1

324 23/431/4M3/2

[
fµ
[10]B + 3fµ

[10]C + 36M
(√

6fµ
[10]D + 36Mfµ

[10]E

)]
, (A.24)

fµ
{1},6 =

fµ
[11]B

3
+

5

9
fµ
[11]C +

fµ
[11]D

27
√
6M

+
fµ
[11]E

18
√
6M

+ fµ
[11]F , (A.25)

fµ
{1},7 =− 1

648 21/233/4M3/2

[
10368M3fµ

[12]A − 2
√
6fµ

[12]D − 108Mfµ
[12]E

− 36Mfµ
[12]F − 180Mfµ

[12]G − 180Mfµ
[12]H − 216Mfµ

[12]J

−1296
√
6M2fµ

[12]K − 3
√
6fµ

[12]L −
√
6fµ

[12]M

]
.

(A.26)

B Transformation between the fixed-Ω and fixed-rp expansions

In this appendix we derive the transformation between the fixed-Ω formulation presented

in Sec. 3.1 and the fixed-rp formulation presented in Sec. 3.3. As stressed in the body of

the paper, the two formulations are related by a transformation on phase space, which is

an inherent gauge freedom in the phase-space formalism.
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We first recall the expansions of rp (at fixed Ω) and Ω (at fixed rp):

rp = r{0}(Ω) +

∞∑
n=1

εnr{n}(Ω, δM
±), (B.1a)

Ω = Ω{0}(rp) +
∞∑
n=1

εnΩ{n}(rp, δM
±). (B.1b)

Substituting Eq. (B.1a) into Eq. (B.1b) we derive the dictionary between the two expan-

sions.

At zeroth order in ε, we obtain

Ω = Ω{0}(r{0}(Ω)), (B.2)

which is automatically obeyed since Ω{0}(·) and r{0}(·) are inverse functions of one another,
after choosing the correct branches for r{0}; see Sec. 3.1. Taking a first and a second Ω

derivative of Eq. (B.2), we obtain

1 = r′{0}(Ω)Ω
′
{0}(r{0}(Ω)), (B.3a)

0 = r′′{0}(Ω)Ω
′
{0}(r{0}(Ω)) + (r′{0}(Ω))

2Ω′′
{0}(r{0}(Ω)), (B.3b)

where a prime denotes differentiation with respect to the argument.

At order ε, after using Eq. (B.3), we find from Eq. (B.1) that

r{1}(Ω, δM
±) = −r′{0}(Ω)Ω{1}(r{0}(Ω), δM

±). (B.4)

Taking a first and a second Ω derivative of this equation, we furthermore obtain

r′{1}(Ω, δM
±) =− (r′{0}(Ω))

2Ω′
{1}(r{0}(Ω), δM

±)− r′′{0}(Ω{0})Ω{1}(r{0}(Ω), δM
±), (B.5a)

r′′{1}(Ω, δM
±) = − (r′{0}(Ω))

3Ω′′
{1}(r{0}(Ω), δM

±)

− 3r′{0}(Ω)r
′′
{0}(Ω)Ω

′
{1}(r{0}(Ω), δM

±)

− r′′′{0}(Ω{0})Ω{1}(r{0}(Ω), δM
±),

(B.5b)

where a prime denotes differentiation with respect to the first argument.

The self-forces in either formulation are related as

∞∑
n=1

εn fµ
{n}

∣∣∣
fixed Ω

(Ω, δM±) =

∞∑
n=1

εn fµ
{n}

∣∣∣
fixed rp

(rp, δM
±). (B.6)

The relationship between the two self-forces can be obtained by plugging Eq. (B.1) into

Eq. (B.6). We can express the resulting equations in terms of either rp or Ω. We choose

to express all matching equations in terms of the orbital radius rp. At leading order we

simply have

fµ
{1}

∣∣∣
fixed rp

(rp, δM
±) = fµ

{1}

∣∣∣
fixed Ω

(Ω{0}(rp), δM
±). (B.7)
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In order to obtain the dictionary between the evolution equations, we start by con-

sidering the rate of change of the orbital frequency. In the fixed-rp formulation, from

Eqs. (B.1b) and (3.37) we have

dΩ

dt
=

dΩ

drp

drp
dt

=

[
Ω′
{0}(rp) +

∞∑
n=1

εnΩ′
{n}(rp, δM

±)

][
F

rp
{0}(rp) +

∞∑
n=1

εnF
rp
{n}(rp, δM

±)

]
.

(B.8)

We then use Eq. (B.1b) to re-expand the evolution equation (3.8) in the fixed-Ω formulation,

dΩ

dt
= FΩ

{0}(Ω{0}(rp))+ ε
[
FΩ
{1}(Ω{0}(rp), δM

±) + ∂ΩF
Ω
{0}(Ω{0}(rp))Ω{1}(rp, δM

±)
]
+O(ε2).

(B.9)

Comparing Eqs. (B.8) and (B.9) order by order in ε, we obtain, up to 1PG order,

F
rp
{0}(rp) =

FΩ
{0}(Ω{0}(rp))

Ω′
{0}(rp)

, (B.10a)

F
rp
{1}(rp, δM

±) =
1

Ω′
{0}(rp)

[
FΩ
{1}(Ω{0}(rp), δM

±) + ∂ΩF
Ω
{0}(Ω{0}(rp))Ω{1}(rp, δM

±)

−F
rp
{0}(rp)Ω

′
{1}(rp, δM

±)
]
.

(B.10b)

At geodesic order, the two formulations are mathematically equivalent, as can now be

easily verified from Eq. (B.10a) using Eqs. (3.25), (3.40) and (3.41). At 1PG order, the

1PG set of differential equations (3.26) and (3.48) can also be recovered one from the other;

this is easily verified using the relations (B.3), (B.4), (B.5), (B.7) and (B.10).

C Vector and tensor spherical harmonics

We list the components of the vector and tensor spherical harmonics as defined in Ap-

pendix A of Ref. [82]. The even- and odd-parity vector spherical harmonics read

Y ℓm
θ := ∂θY

ℓm, Y ℓm
ϕ := ∂ϕY

ℓm, (C.1)

Xℓm
θ := − 1

sin θ
∂ϕY

ℓm, Xℓm
ϕ := sin θ ∂θY

ℓm, (C.2)

where Y ℓm = Y ℓm(θ, ϕ) are the standard scalar spherical harmonics. The even- and odd-

parity tensor spherical harmonics are given by

Y ℓm
θθ :=

[
∂2
θ +

1

2
ℓ(ℓ+ 1)

]
Y ℓm, (C.3)

Y ℓm
θϕ :=

[
∂θ∂ϕ − cos θ

sin θ
∂ϕ

]
Y ℓm, (C.4)

Y ℓm
ϕϕ :=

[
∂2
ϕ + sin θ cos θ ∂θ +

1

2
ℓ(ℓ+ 1) sin2 θ

]
Y ℓm, (C.5)
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Xℓm
θθ := − 1

sin θ

[
∂θ∂ϕ − cos θ

sin θ
∂ϕ

]
Y ℓm, (C.6)

Xℓm
θϕ :=

1

2

[
sin θ ∂2

θ −
1

sin θ
∂2
ϕ − cos θ ∂θ

]
Y ℓm, (C.7)

Xℓm
ϕϕ := [sin θ ∂θ∂ϕ − cos θ ∂ϕ]Y

ℓm. (C.8)

D First-order Regge-Wheeler-Zerilli equations in generic slicing

In this appendix we extend the main steps in Secs. 5.1–5.4 to generic hyperboloidal slicing

s. Here we require s to approach retarded time u at future null infinity and advanced time

v at the horizon.

We highlight how this slicing leads to well-behaved solutions in our puncture scheme,

and we explain how those solutions can be used to obtain the correct (though singular)

solutions in t slicing.

D.1 Punctured RWZ equations

We start from the RWZ equations on phase space for a generic choice of time slicing s, as

given in Eq. (5.6). Following the same procedure as in the main text we can split the field

R
e/o
ℓm into a puncture R

e/oP
ℓm and a residual field R

e/oR
ℓm as

R
e/o
ℓm (rp, r) = R

e/oR
ℓm (rp, r) +R

e/oP
ℓm (rp, r), (D.1)

where

R
e/oP
ℓm (rp, r) := R

e/o (1)
ℓm (6M, r)θ(rp − rP). (D.2)

The inspiral field R
e/o (1)
ℓm (6M, r), which hereafter we also denote with the short notation

R
e/o (1)
ℓm |∗, satisfies Eq. (5.6) evaluated at rp = 6M :(
∂2
x − V

e/o
ℓ (r)

)
R

e/o (1)
ℓm

∣∣∣
∗
+ im Ω{0}

∣∣
∗
dtp
ds

∣∣∣∣
∗

(
2H∂x +

dH

dx

)
R

e/o (1)
ℓm

∣∣∣
∗

+
(
1−H2

) [
im Ω{0}

∣∣
∗
d2tp
ds2

∣∣∣∣
∗
+m2 Ω2

{0}

∣∣∣
∗

(
dtp
ds

∣∣∣∣
∗

)2
]
R

e/o (1)
ℓm

∣∣∣
∗
= S

e/o
ℓm (6M, r) := S

e/o
ℓm

∣∣∣
∗
.

(D.3)

The residual field then solves an equation structurally analogous to Eq. (5.6),(
∂2
x − V

e/o
ℓ

)
R

e/oR
ℓm − 2H

dtp
ds

(
ṙ{0}∂x∂rp − imΩ{0}∂x

)
R

e/oR
ℓm − dH

dx

dtp
ds

(
ṙ{0}∂rp − imΩ{0}

)
R

e/oR
ℓm

+
(
1−H2

) [
imΩ{0}

d2tp
ds2

+
(
m2Ω2

{0} + im∂rpΩ{0}ṙ{0}

)(dtp
ds

)2

−ṙ{0}
d2tp
ds2

∂rp − ṙ2{0}

(
dtp
ds

)2

∂2
rp −

(
r̈{0} − 2imΩ{0}ṙ{0}

)(dtp
ds

)2

∂rp

]
R

e/oR
ℓm = S

e/o eff
ℓm ,

(D.4)
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where S
e/o eff
ℓm (rp, r) is now the effective source in s slicing. As in the main text, the effective

source can be split into the ordinary point-particle source in the region rp < r−P ,

S
e/o pp
ℓm (rp, r) := S

e/o
ℓm (rp, r)θ(rP − rp), (D.5)

and the following extended source in the region 6M ≥ rp ≥ r−P :

S
e/o ext
ℓm (rp, r) := θ(rp − rP)

[
S
e/o
ℓm (rp, r)− S

e/o
ℓm (6M, r)

]
− θ(rp − rP) im

(
Ω{0}

dtp
ds

− Ω{0}
∣∣
∗
dtp
ds

∣∣∣∣
∗

)(
2H∂x +

dH

dx

)
R

e/o (1)
ℓm

∣∣∣
∗

− θ(rp − rP)
(
1−H2

) [
im

(
Ω{0}

d2tp
ds2

− Ω{0}
∣∣
∗
d2tp
ds2

∣∣∣∣
∗

)

+

(
dtp
ds

)2 (
m2Ω2

{0} + im∂rpΩ{0}ṙ{0}

)
−
(
dtp
ds

∣∣∣∣
∗

)2

m2 Ω{0}
∣∣2
∗

]
R

e/o (1)
ℓm

∣∣∣
∗

+ δ(rp − rP)

[
dtp
ds

∣∣∣∣
P
ṙ{0}

∣∣
P

(
2H∂x +

dH

dx

)
R

e/o (1)
ℓm

∣∣∣
∗

−
(
1−H2

)( d2tp
ds2

∣∣∣∣
P
ṙ{0}

∣∣
P +

(
dtp
ds

∣∣∣∣
P

)2 (
r̈{0}

∣∣
P + 2im Ω{0}

∣∣
P ṙ{0}

∣∣
P

))
R

e/o (1)
ℓm

∣∣∣
∗

]

+ ∂rpδ(rp − rP)
(
1−H2

)( dtp
ds

∣∣∣∣
P

)2

ṙ2{0}

∣∣∣
P
R

e/o (1)
ℓm

∣∣∣
∗
.

(D.6)

D.2 Frequency-domain equations

We next introduce the following forward and inverse transforms:

ĝ(ω, r) =

∫ 6M

2M

drp

ṙ{0}(rp)
dtp
ds (rp)

g(rp, r)e
iωsG(rp)−imϕG(rp), (D.7a)

g(rp, r) = − 1

2π

∫ +∞

−∞
dω ĝ(ω, r)e−iωsG(rp)+imϕG(rp), (D.7b)

where

sG(rp) :=

∫ rp dr′p
ṙ{0}(r′p)

ds

dtp
(r′p) (D.8)

and dtp/ds is given in Eq. (4.8).

The transform of Eq. (D.4) reads(
∂2
x − V

e/o
ℓ

)
R̂

e/oR
ℓm + iω

(
2H∂x +

dH

dx

)
R̂

e/oR
ℓm +

(
1−H2

)
ω2R̂

e/oR
ℓm = Ŝ

e/o eff
ℓm , (D.9)

where, following the same reasoning as in Sec. 5.3, no boundary terms appear. The trans-

formed effective source Ŝ
e/o eff
ℓm = Ŝ

e/o pp
ℓm + Ŝ

e/o ext
ℓm is given by

Ŝ
e/o pp
ℓm :=

∫ rP

2M

drp e
iωsG−imϕG

ṙ{0} dtp/ds
S
e/o
ℓm , (D.10a)
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Ŝ
e/o ext
ℓm :=

∫ 6M

rP

drp e
iωsG−imϕG

ṙ{0} dtp/ds

(
S
e/o
ℓm − S

e/o
ℓm

∣∣∣
∗

)
− I1

m(rP ;ω)

(
2H∂x +

dH

dx

)
R

e/o (1)
ℓm

∣∣∣
∗
−
(
1−H2

)
I2
m(rP ;ω) R

e/o (1)
ℓm

∣∣∣
∗

+

[
2H∂x +

dH

dx
− i
(
1−H2

)(
ω +m Ω{0}

∣∣
P

dtp
ds

∣∣∣∣
P

)]
R

e/o (1)
ℓm

∣∣∣
∗
eiωsG(rP )−imϕG(rP ),

(D.10b)

with

I1
m(rP ;ω) :=

∫ 6M

rP

drp e
iωsG−imϕG

ṙ{0} dtp/ds

[
im

(
Ω{0}

dtp
ds

− Ω{0}
∣∣
∗
dtp
ds

∣∣∣∣
∗

)]
, (D.11a)

I2
m(rP ;ω) :=

∫ 6M

rP

drp e
iωsG−imϕG

ṙ{0} dtp/ds

[
im

(
Ω{0}

d2tp
ds2

− Ω{0}
∣∣
∗
d2tp
ds2

∣∣∣∣
∗

)

+

(
dtp
ds

)2 (
m2Ω2

{0} + im∂rpΩ{0}ṙ{0}

)
−
(
dtp
ds

∣∣∣∣
∗

)2

m2 Ω2
{0}

∣∣∣
∗

]
.

(D.11b)

D.3 Inhomogeneous solutions

The homogeneous solutions to Eq. (D.9) are related to the homogeneous solutions to

Eq. (5.27) simply by an overall factor of e−iωκ(x). Recalling the t-slicing solutions in

Eq. (5.28), we readily obtain the “in” and “up” solutions in s slicing as

R̂
e/o in
ℓ (ω, x) ∼

{
A

e/o in
ℓ (ω)e−2iωx +A

e/o out
ℓ (ω) as r → +∞ (x → +∞),

1 as r → 2M (x → −∞),
(D.12a)

R̂
e/o up
ℓ (ω, x) ∼

{
1 as r → +∞ (x → +∞),

B
e/o in
ℓ (ω) +B

e/o out
ℓ (ω)e+2iωx as r → 2M (x → −∞).

(D.12b)

Using the two independent homogeneous solutions to Eq. (D.9), R̂
e/o in
ℓ and R̂

e/o up
ℓ ,

we construct the following Green function:

Ĝ
e/o
ℓ (ω, x, x′) =

1

Wℓ(ω)

[
θ(x− x′)R̂

e/o in
ℓ (ω, x′)R̂

e/o up
ℓ (ω, x)

+θ(x′ − x)R̂
e/o in
ℓ (ω, x)R̂

e/o up
ℓ (ω, x′)

]
,

(D.13)

with

Wℓ(ω) = e2iωκ(x)
[
R̂

e/o in
ℓ (ω, x)∂xR̂

e/o up
ℓ (ω, x)− R̂

e/o up
ℓ (ω, x)∂xR̂

e/o in
ℓ (ω, x)

]
. (D.14)

The Green function satisfies[(
∂2
x − V

e/o
ℓ

)
+ iω

(
2H∂x +

dH

dx

)
+
(
1−H2

)
ω2

]
Ĝ

e/o
ℓ (ω, x, x′) =

δ(x− x′)

e2iωκ(x)
. (D.15)
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It is straightforward to verify that Wℓ is independent of the field point r, ∂xWℓ = 0, and it

can therefore be computed from the asymptotic solutions (D.12) at r → +∞, leading to

Wℓ(ω) = 2iωAin
ℓ (ω) . (D.16)

The inhomogeneous solution can then be obtained as

R̂
e/oR
ℓm (ω, r) =

∫ +∞

−∞
dx′Ĝ

e/o
ℓ (ω, x, x′)e2iωκ(x

′)Ŝ
e/o eff
ℓm (ω, x′)

=
R̂

e/o up
ℓ

2iωAin
ℓ (ω)

∫ r

2M

dr′

f(r′)
R̂

e/o in
ℓ (ω, r′)e2iωκ(r

′)Ŝ
e/o eff
ℓm (ω, r′)

+
R̂

e/o in
ℓ

2iωAin
ℓ (ω)

∫ +∞

r

dr′

f(r′)
R̂

e/o up
ℓ (ω, r′)e2iωκ(r

′)Ŝ
e/o eff
ℓm (ω, r′).

(D.17)

D.4 Regularity, slicing, and punctures at the boundaries

To assess regularity near the boundaries, we consider s = u (κ = x, H = +1) at large r

and s = v (κ = −x, H = −1) near r = 2M . In either case, the effective source (D.10b) in

a neighbourhood of each boundary reduces to

Ŝ
e/o ext
ℓm = ∓ 2

[
I1
m(rP ;ω)− eiωsG(rP )−imϕG(rP )

]
∂xR

e/o (1)
ℓm

∣∣∣
∗
. (D.18)

At large r, R
e/o (1)
ℓm |∗ behaves as a regular series in 1/r, beginning at r0, such that Ŝ

e/o ext
ℓm =

O(1/r2). At the horizon, R
e/o (1)
ℓm |∗ behaves as a regular series in (r − 2M), beginning at

(r − 2M)0, and ∂x = f∂r, such that Ŝ
e/o ext
ℓm = O(r − 2M). Referring to the asymptotic

behaviour (D.12), we then see that (i) the integrals in Eq. (D.17) converge, (ii) at the

horizon, the solution behaves as the regular homogeneous solution R̂
e/o in
ℓ , and (iii) at

infinity, the solution behaves as the regular homogeneous solution R̂
e/o up
ℓ .

If we were using t slicing rather than hyperboloidal slicing, the integrals in Eq. (D.17)

would not converge, nor would either integral vanish in the limits r → 2M and r → ∞.

With s = t (H = 0), the effective source (D.10b) behaves likeR
e/o (1)
ℓm |∗ at the boundaries. In

t slicing, R
e/o (1)
ℓm |∗ behaves as e±iωx toward the boundaries, and both integrals in Eq. (D.17)

then diverge for any value of r.

Such ill behaviour is familiar from infrared divergences that arise in the inspiral multi-

scale expansion in t slicing [43, 70–72]. As in that case, we can obtain the physically correct

solution by introducing punctures at the boundaries. The physically correct solution in

this case is obtained in hyperboloidal slicing, where the field behaves as a smooth outgoing

wave at future null infinity and a smooth ingoing one at the horizon. To obtain the correct

boundary conditions in t slicing, we can transform the hyperboloidal-slicing solution R̂
e/oR
ℓm

to t slicing, expand it near the horizon and infinity, and treat the results (which will be

singular at the boundaries) as punctures.

To transform the hyperboloidal solution to t slicing, we first transform it back to

phase space, using Eq. (D.7b). At a given point in spacetime, the field in s slicing is then

[s]R
e/o
ℓm (rp(tp(s)), r)e

−imϕp(tp(s)), where we add a left-subscript to indicate the slicing; at the
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same point, the field in t slicing is [t]R
e/o
ℓm (rp(t), r)e

−imϕp(t). Since the field at a given point

must be independent slicing, we can infer

[t]R
e/oR
ℓm (rp(t), r) = [s]R

e/oR
ℓm (rp(tp(s)), r)e

im[ϕp(t)−ϕp(tp(s))]. (D.19)

For this to give us the t-slicing field variable, the right-hand side must be expressed entirely

in terms of the independent variables rp(t) and r. We put it in that form by expanding for

rp(t) near the ISCO; this suffices because we only require the boundary punctures in the

window 6M > rp > rP .

Define ∆t := tp(s)− t. Then

rp(tp(s)) = rp(t) + ṙp(rp(t))∆t+
1

2
r̈p(rp(t))(∆t)2 + . . . (D.20)

ϕp(tp(s)) = ϕp(t) + Ω{0}(rp(t))∆t+
1

2
Ω̇{0}(rp(t))(∆t)2 + . . . (D.21)

Although ∆t need not be small, these expansions are well behaved because successive

terms are smaller in the limit rp → 6M . Concretely, Eqs. (3.15) and (3.16) imply ṙp =

O[(6M − rp)
3/2] = Ω̇{0}, and each additional derivative introduces d/dt = O[(6M − rp)

1/2].

Given that s = t−κ(r), we have tp(s) = s+κ(rp(tp(s))) and so ∆t = κ(rp(tp(s)))−κ(r).

Formally expanding for small time derivatives and appealing to Eq. (D.20) then yields

∆t = ∆t0(rp, r) + ∆t1(rp, r) + . . . , (D.22)

where ∆t0 := [κ(rp)− κ(r)], ∆t1 := κ′(rp)ṙp(rp)∆t0(rp, r), κ
′(rp) = ∂rpκ(rp), and here it is

understood that rp = rp(t). Equation (D.19) then becomes

[t]R
e/oR
ℓm (rp, r) = e−imΩ{0}∆t0

{
[s]R

e/oR
ℓm (rp, r)

+

[
ṙp∆t0∂rp − im

(
Ω{0}∆t1 +

1

2
Ω̇{0}(∆t0)

2

)]
[s]R

e/oR
ℓm (rp, r) + . . .

}
, (D.23)

where again it is understood that rp = rp(t). The first subleading term, in square brackets,

scales as (rp − 6M)3/2, and the ellipses denote terms of order (rp − 6M)2 and smaller.

The transformation (D.23) can be compared to Eq. (161) in Ref. [43], which represents

the analogous result in the inspiral. Like in the inspiral, the t-slicing field [t]R
e/oR
ℓm is

singular at the boundaries. This can be seen from the factors of κ(r) in ∆tn, which reduce

to ±x near the boundaries, diverging logarithmically when r → 2M and linearly when

r → ∞.

Finally, to obtain the behaviour of the frequency-domain, t-slicing solution near the

boundaries, we expand Eq. (D.23) in the limits r → 2M and r → ∞ and then apply

the Fourier transform (5.25a). This defines for us our punctures at the boundaries, which

we move to the right-hand side of the t-slicing field equation (5.27), defining a new ef-

fective source. Such procedures are detailed extensively in Ref. [70]. Since the punctures

are necessarily approximate particular solutions, they cancel the old effective source near

the boundaries. If the near-horizon and large-r expansions of the punctures are carried
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to sufficiently high order, the new effective source will behave sufficiently well toward the

boundaries, the Green-function integrals over r′ will converge, and the sum of the new resid-

ual field plus the new punctures will be precisely equivalent to the hyperboloidal solution,

simply expressed in terms of a Fourier transform based on the singular t coordinate.

E Contribution from the early-time effective source

In this appendix we consider the solution to Eq. (5.19) with the extended source (5.22).

Our aim is to show that its contribution can be neglected if we only require the solution

sufficiently far to the future of the puncture window (i.e., for values of rp not too close to

6M).

We start by obtaining the source’s transform (5.25a):

Ŝ
e/o ext
ℓm (ω, r) =

∫ 6M

rP

drp
ṙ{0}

eiωtG−imϕG

[
S
e/o
ℓm (rp, r)− S

e/o
ℓm (6M, r)

]
−R

e/o (1)
ℓm (6M, r)

∫ 6M

rP

drp
ṙ{0}

eiωtG−imϕG

(
m2Ω2

{0} −m2 Ω2
{0}

∣∣∣
∗
+ im∂rpΩ{0} ṙ{0}

)
− i
(
ω +m Ω{0}

∣∣
P

)
eiωtG(rP )−imϕG(rP )R

e/o (1)
ℓm (6M, r).

(E.1)

We anticipate that we are interested in the limit rP → 6M . In this limit, the rp integrals

in Eq. (E.1) vanish. We therefore only focus on the solution at infinity sourced by the third

term in Eq. (E.1).

Using the same Green-function technique we have adopted in Sec. 5.4, we obtain

R
e/oR
ℓm

∣∣∣
ext∞

(rp) = − 1

2π

∫ +∞

−∞
dω e−iωtG(rp)+imϕG(rp)

× eiωx

2iωAin
ℓ (ω)

∫ ∞

2M

dr′

f(r′)
R̂

e/o in
ℓ (ω, r′)Ŝ

e/o ext
ℓm (ω, r′).

(E.2)

As discussed in Appendix D.4, the radial integral here does not converge if we use the

effective source described in the body of the paper, due to the poor behaviour of the source

in t slicing. We adopt the prescription in Appendix D.4 to avoid that divergence. We can

then write the equation above as

R
e/oR
ℓm

∣∣∣
ext∞

(rp) = − 1

2π

∫ +∞

−∞
dω F

e/o
ℓm (ω; rp, rP)e

iω[tG(rP )−tG(rp)+x], (E.3)

where we have defined

F
e/o
ℓm (ω; rp, rP) :=− eim[ϕG(rp)−ϕG(rP )]

2Ain
ℓ (ω)

(
1 +

m Ω{0}
∣∣
P

ω

)

×
∫ ∞

2M

dr′

f(r′)
R̂

e/o in
ℓ (ω, r′)R

e/o(1)
ℓm (6M, r′).

(E.4)
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The integral (E.3) contains a rapidly oscillating integrand when rP is near 6M (and

rp is not too close to 6M). Integrating by parts N + 1 times, we find

R
e/oR
ℓm

∣∣∣
ext∞

(rp) =
1

2π

N∑
n=0

[
in+1d

nF
e/o
ℓm (ω; rp, rP)

dωn

eiω[tG(rP )−tG(rp)+x]

[tG(rP)− tG(rp) + x]n+1

]+∞

−∞

+O(N+1),

(E.5)

whereO(N+1) denotes the remaining integral, which is proportional to 1/[tG(rP)−tG(rp)+

x]N+1. Assuming the solution (E.3) exists, F
e/o
ℓm must decay to zero as ω → ±∞, implying

its derivatives do likewise. Hence, the sum in Eq. (E.5) vanishes, leaving the O(N + 1)

remainder. If rP is taken toward 6M , then tG(rP) → −∞, causing the O(N+1) remainder

to go to zero. Since N is arbitrary, it follows that R
e/oR
ℓm |ext∞(rp) goes to zero faster than

any power of 1/tG(rP) as rP → 6M (at fixed values of rp and x).

F Regularization procedure for the excitation coefficients

In this appendix we justify the regularization procedure introduced in Sec. 5.6. We start

by considering Eq. (5.40),

R
e/oR
ℓm

∣∣∣
pp∞

(rp)e
−imϕG(rp) = − 1

2π

∫ +∞

−∞
dω e−iω[tG(rp)−x] C

e/o
ℓm (ω)

2iωAin
ℓ (ω)

, (F.1)

where the integration along the real ω axis gives a finite result. The numerator of the

integrand, C
e/o
ℓm (ω), is given by the radial integral (5.41), which we rewrite here for conve-

nience:

C
e/o
ℓm (ω) :=

∫ rP

2M

dr′

ṙ{0}(r′)
eiωtG(r′)−imϕG(r′)K

e/o
ℓm (ω, r′). (F.2)

Now, analogously to the procedure described at the end of Sec. 5.6, we can rewrite C
e/o
ℓm (ω)

by subtracting the near-horizon behaviour q
e/o
ℓm , given in Eq. (5.54), from the integrand and

adding back its antiderivative Q
e/o
ℓm :

C
e/o
ℓm (ω) = C

e/o
ℓm

∣∣∣
reg

(ω)−Q
e/o
ℓm (ω, 2M). (F.3)

Integrating Eq. (5.54) gives Q
e/o
ℓm (ω, r) ∼ (r − 2M)1−4iMω, which vanishes at the horizon.

Therefore, Eq. (5.40) is equivalent to

R
e/oR
ℓm

∣∣∣
pp∞

(rp)e
−imϕG(rp) = − 1

2π

∫ +∞

−∞
dω e−iω[tG(rp)−x]

C
e/o
ℓm

∣∣∣
reg

(ω)

2iωAin
ℓ (ω)

. (F.4)

After closing the contour in the complex plane and using the residue theorem, this then

justifies computing the excitation factors appearing in Eq. (5.49) by using C
e/o
ℓm

∣∣∣
reg

rather

than simply C
e/o
ℓm in Eq. (5.50).
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[48] G. Compère and L. Küchler, “Self-consistent adiabatic inspiral and transition motion,”

Phys. Rev. Lett. 126 (2021), no. 24, 241106, 2102.12747.
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