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ABSTRACT: The prospect of observing asymmetric compact binaries with next-generation
gravitational-wave detectors has motivated the development of fast and accurate waveform
models in gravitational self-force theory. These models are based on a two-stage process:
in a (slow) offline stage, waveform ingredients are pre-computed as functions on the orbital
phase space; in a (fast) online stage, the waveform is generated by evolving through the
phase space. While this framework has traditionally been restricted to the inspiral stage of
a binary, we recently extended it across the transition to plunge, where the small companion
crosses the innermost stable circular orbit around the primary black hole. In this paper,
for the special case of quasicircular, nonspinning binaries, we show how the “offline/online”
phase-space paradigm also extends through the final plunge, which generates the binary’s
merger-ringdown signal. We implement the method at leading, geodesic order in the plunge.
The resulting plunge waveform agrees well with a stationary-phase approximation at early
times and with a (self-consistently calculated) quasinormal mode sum at late times, but
we highlight that neither of the two approximations reaches the peak of the full plunge
waveform. Finally, we compare the plunge waveform to numerical relativity simulations.
Our framework offers the prospect of fast, accurate inspiral-merger-ringdown waveform
models for asymmetric binaries.
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1 Introduction

Since the first detection of a binary black hole merger in 2015 [1], three observing runs
of the LIGO-Virgo-KAGRA Collaboration have seen close to a hundred events [2-4]. The
majority of the observed signals originated from the merger of compact binaries with mass
ratios typically close to 1, but several binaries have been detected with much more disparate
masses. This includes one signal thought to have originated from the merger of a binary
with mass ratio ~ 1:26 (GW191219_16312), outside the range in which current waveform
models have been validated [4]. Future observing runs and next-generation ground-based
detectors such as the Einstein Telescope [5] and Cosmic Explorer [6] promise an increase
in the number of detections [7, 8] and likely also in the number of events with smaller mass
ratios. Space-based gravitational-wave (GW) detectors such as the Laser Interferometer
Space Antenna (LISA) [9] will be able to detect GWs in the mHz frequency band, allow-
ing us to access a greater variety of sources such as intermediate- and extreme-mass-ratio
inspirals (I/EMRIs) [10, 11]. In addition, LISA will also detect the coalescence of massive
black hole binaries, which could exhibit a long tail in their distribution of mass ratios ex-
tending to around 1:10% [12-14]. Intermediate-mass-ratio binaries are also possible sources
of multiband signals detectable with both space- and ground-based detectors [15]. The
prospect of these future observations motivates the production of fast, accurate inspiral-
merger-ringdown (IMR) models for asymmetric binaries, in which the secondary of mass

[1yoek]

my (labeled with “p” because we treat it as a particle) is significantly lighter than the
primary of mass M.

Gravitational self-force (GSF) theory is recognized as the primary method of modelling
I/EMRISs [16] and has been used to inform effective models that cover the full binary param-
eter space [17-20]. Although originally designed for EMRIs, second-order GSF waveforms
have proven to be very accurate even at mass ratios ~1:10, with sub-radian dephasing com-
pared to fully nonlinear numerical relativity (NR) simulations [21, 22]. GSF waveforms can
also now be generated on a timescale of milliseconds, fast enough for data analysis [23].

However, the methods leading to these GSF waveforms are specialized to slow evolutions;



they cannot capture the rapid final stages of a binary merger. Although these final stages
contribute negligible signal-to-noise ratio for EMRIs [24], they are critical for more moder-
ate mass ratios and for ground-based detectors (which are most sensitive to the end stages
of an asymmetric binary due to their low-frequency floor [25]).

The basic anatomy of a binary evolution consists of three stages: the inspiral, which is
well modeled by post-Newtonian (PN) theory [26] (for comparable-mass binaries) or GSF
theory [27, 28] (for asymmetric binaries); the merger, which has historically been the realm
of fully nonlinear NR simulations [29]; and the post-merger ringdown, which is accurately
described by vacuum black hole perturbation theory [30, 31].

Effective-one-body theory (EOB) [32, 33] offered the simplest semi-analytical under-
standing of this evolution. Rather than a three-stage process, EOB proposed that there
are only two stages: an extended inspiral that persists all the way to the light ring of the
effective-one-body black-hole metric, followed by a ringdown. This description stems from
the reduction of the two-body problem to a (reduced-mass) secondary object orbiting in
an effective-one-body black hole spacetime. In that reduced problem, we can apply the
following physical intuition. Before the secondary object crosses the effective spacetime’s
light ring, the waveform is dominated by radiation propagating directly from the orbit-
ing secondary, and the amplitude of the radiation grows steadily as the secondary moves
deeper into the strong-field, relativistic regime. After it crosses the light ring, any radi-
ation the secondary emits falls into the black hole. The waveform is then dominated by
radiation that was trapped on the light ring, which then leaks out to future null infinity as
quasinormal modes.

To meet accuracy requirements for GW science, this simple description has had to
be corrected by non-quasicircular corrections (NQCs) [34-38] and other phenomenologi-
cal adaptations calibrated to NR waveforms. However, the core idea proved remarkably
accurate.

Complementary to EOB, the Phenom family of IMR models [39-42] takes advantage
of another feature of the merger. The amplitude and phase of the waveform through
merger are surprisingly simple and can be very well approximated by elementary functions.
Directly approximating the amplitude and phase observed in NR allows Phenom models to
avoid stitching together an inspiral to a ringdown. Instead, an inspiral waveform based on
PN and tuned to EOB is effectively stitched (in an NR-calibrated way) to an NR-informed
merger-ringdown waveform.

Both these models leverage the fact that during the inspiral, the waveform can be
written as a function of the two-body, mechanical phase-space variables—the bodies’ rel-
ative positions and momenta, for example. GSF waveform models double down on this,
using it to formulate a multiscale expansion of the Einstein field equations that puts the
field equations in a practical form and simultaneously enables rapid waveform genera-
tion [28, 43, 44]. In the multiscale expansion, waveform generation is divided into offline
and online calculations. The offline calculations consist of solving the field equations to
precompute waveform ingredients as functions on the binary’s mechanical phase space.
The online stage then consists of a rapid, inexpensive evolution through the phase space,
together with a summation of waveform modes [23].



This GSF framework for modeling the inspiral has traditionally relied on a separation
of time scales: the system’s parameters (e.g., its fundamental frequencies) evolve on a
radiation-reaction time scale that is large compared to the periods of orbital motion. Dur-
ing the inspiral, the radiation-reaction time scale is of order M? /mp, and the multiscale
expansion takes the form of a post-adiabatic expansion [28, 43-45]. This scaling breaks
down as the secondary approaches the innermost stable circular orbit (ISCO), or more
generally the separatrix between stable and plunging orbits [46], where the post-adiabatic
expansion becomes singular. However, there is still a separation of time scales, as the
ISCO-crossing time is long, of order M (M /m,,)'/?, compared to the orbital period [33, 47].
In Refs. [48-51], we exploited this fact to develop a multiscale expansion adapted to the
transition across the ISCO. In Ref. [51], in particular, we showed how the phase-space
paradigm persists in this regime and how it continues to facilitate an offline-online split
of the field equations, ultimately enabling rapid waveform generation. (EOB models, in
contrast, do not fully exploit the separation of scales, which allows them to smoothly evolve
across the ISCO but prevents a complete offline-online split.)

In this paper, we continue this development by building a merger-ringdown GSF frame-
work within the phase-space paradigm, restricting to the case of quasicircular, nonspinning
binaries (as we also did for the transition to plunge). There is no separation of time scales
during the final plunge, when the secondary falls from the ISCO down to the black hole
horizon. Nevertheless, we show that one can continue to treat the waveform as a function
on the binary’s mechanical phase space, linking the waveform to the orbital dynamics all
the way into the infinite future. Unlike in EOB, where the connection to the orbit is lost at
the light ring, we obtain the entire merger-ringdown waveform without having to switch to
a separate ringdown approximation. Like in the inspiral and transition to plunge, this en-
ables an offline-online split in which we can pre-compute waveform ingredients as functions
on the orbital phase space.

Our phase-space formulation differs in two ways from previous approaches to mod-
elling the merger-ringdown at leading order within GSF theory [52-56]: first, our approach
maintains the rapid waveform generation framework of the inspiral; second, it can be sys-
tematically applied beyond leading order. We ultimately aim to combine our treatment of
the plunge with the treatments of the inspiral and transition to plunge in order to construct
a model that can seamlessly and rapidly generate complete IMR waveforms for asymmet-
ric binaries. In the present paper, we limit our ambitions to three goals: (i) developing
an appropriate “post-geodesic” expansion of the motion and field equations in the plunge
regime; (ii) implementing the method to generate plunge waveforms at leading, geodesic
order; (iii) exploring this leading-order waveform’s features and accuracy.

For our formulation of the post-geodesic expansion in the plunge, we emphasize how the
early-time behaviour of this expansion, when the secondary is near the ISCO, appropriately
matches the late-time behaviour of our transition-to-plunge expansion. We then make
use of this matching in our implementation of the leading, geodesic-order plunge. We
compute plunge waveforms at that order using a Fourier transform adapted to the phase-
space representation of the problem. Our calculations then closely follow earlier ones
in Refs. [57, 58]. However, we go beyond those calculations by placing them within a



framework that can be applied at higher orders and by using the matching to the transition
to plunge to more rigorously justify various steps.

With the geodesic plunge waveform in hand, we then explore how well it can be
separated into two distinct segments: an extended inspiral and a ringdown, as in EOB.
Our final waveform is given by an inverse Fourier transform, which presents two clear
approximations. Before the waveform’s peak amplitude, we can approximate the inverse
Fourier transform by a stationary-phase approximation (SPA), in which the waveform
frequency becomes equal to an integer multiple of the orbital frequency; this is in the spirit
of EOB’s waveform generation in its extended inspiral. The inverse Fourier transform
can also be written in terms of a sum of quasinormal modes (QNMs), power-law tails,
and prompt response, and we are able to internally compute the excitation coefficients of
the QNMs. In line with EOB’s basic description of merger, we find that the SPA works
remarkably well until near the waveform’s peak, and we find good agreement with the
QNM sum after the peak. However, neither approximation is accurate at the waveform’s
peak, and stitching the two together does not reproduce the full plunge waveform. It is
possible that inclusion of higher-order terms in the SPA will bring it closer to the peak. On
the other hand, the QNM sum clearly breaks down near the peak and can only be sensibly
used at times = 10M after the peak, consistent with studies of numerical fits to numerical
merger-ringdown waveforms [59-62].

The paper is structured as follows. Section 2 contains the phase-space description
of our merger-ringdown model. In Sec. 3 we present the post-geodesic expansion of the
orbital motion and asymptotically match it with the late-time transition-to-plunge solution
of Ref. [51]. We present the plunge field equations through second order in the mass ratio in
Sec. 4. We then proceed to solve the Regge-Wheeler-Zerilli equations to obtain first-order
plunge waveforms in Sec. 5. This section also explains the stationary-phase approximation
to the plunge waveform and the construction of the QNM sum. In Sec. 6 we present our
numerical implementation, perform internal consistency checks and compare our first-order
waveforms to NR simulations. Finally, we discuss our results and future directions in Sec. 7.

We work in geometric units where the gravitational constant G and the speed of light
c are set to unity, G = ¢ = 1. The small mass ratio is defined as ¢ := m,/M. It will also

be useful to introduce the large mass ratio g := 1/e.

Data availability. For the ease of reproducibility of our results, we provide several Math-
ematica notebooks in ancillary files [63].

2 Merger-ringdown in a phase-space description

Before detailing our method, in this section we explain how the merger-ringdown regime
can be described within the same phase-space paradigm as the inspiral and transition to
plunge. For concreteness, we specialize immediately to the case of a nonspinning particle
orbiting a slowly spinning primary black hole.



2.1 Self-force primer

We start from the equations of second-order self-force theory in the self-consistent ap-
proach [64—67], which are valid on all timescales. These equations will then be expanded
on the relevant timescales of the inspiral, transition to plunge, and plunge.

The spacetime metric is split into a background plus a perturbation, g,g + hag, where
Jap is the Schwarzschild metric of the primary black hole as if it were isolated, with constant
mass M. The perturbation h,g ~ €, due to the presence of the orbiting secondary, encodes
all corrections sourced by the secondary as well as all nonlinear effects of the two bodies’
gravitational interaction, such as the primary’s slow accumulation of mass and spin due to
absorption of radiation. h,g will be expanded in a series for small €, but the form of that
series will depend on the stage of the binary’s evolution.

Without specifying the form of that expansion, we can write the Einstein equations
perturbatively in h,g as

6Gaplh] + 62Goplh, h] + O(e3) = 87T, (2.1)

where 0G5 is the linearized Einstein tensor on the background gz, 52Ga5 is quadratic in
hag,l and so on. On the right-hand side, the secondary is represented by the point-particle
Detweiler stress-energy tensor [67, 68],

(@ — ()

where z#(7) is the particle’s orbital trajectory. gag = gag + h§5 is a certain effective
metric, which is regular at the particle’s position, and in which the particle moves as a test
mass. Here we have split the metric perturbation into h.g = hZB + h§ﬁ7 where hapﬂ is an
analytically known “puncture”, which is singular at the particle’s position, and hsﬁ is the
regular residual field, as defined in Ref. [69]. The parameter 7 is proper time in g,g, and
the particle’s 4-velocity is 4 := dz®/d7 (with @g = Jasi’).

While the particle obeys the geodesic equation in the effective metric gz, its motion
is accelerated in the background metric g,g, such that

D2+
dr?

- (2.3)

Here 7 is proper time in g,3 and D/dr = u®V,, with the 4-velocity u® = dz*/dr and
covariant derivative V, compatible with g,5. Explicitly, the self-force (per unit mass)
acting on the secondary is given by [64, 66]

1
fir= =5 Pr(e] - W) (2Vahl, — VhRuu’ + O(e?), PP = g™ +utu”. (2.4)

Just as the particle’s orbit evolves self-consistently in response to the metric pertur-
bation, the primary’s mass and spin evolve due to the GW fluxes of energy and angular

'Due to its strong singularity at the particle, 2Gap is not uniquely defined on a domain that includes
the particle’s worldline. We assign it the distributional definition of Ref. [67], which is consistent with our
use of the Detweiler stress-energy tensor.



momentum through its horizon. In order to build a consistent perturbative expansion, we
need to take into account this dynamical change. We write the black hole’s total mass as
M +e0M and total spin as € §J, where M is the constant mass of the Schwarzschild back-
ground and dM (v,e) and dJ (v, €) are the evolving corrections (normalized by €), which are
functions of advanced time v along the horizon. These perturbations appear in h,g, rather
than in the background, following the self-consistent prescription of Refs. [437 |. Adopting
the conventions of Ref. [51], we define 6M = dM™ and §.J := 6M~ and collectively denote
them as 6M™.

To describe the three stages of binary evolution, we now foliate the spacetime with
surfaces of constant time s. As explained in detail in Refs. [43, 70], s is most conveniently
chosen to be a hyperboloidal time (or quasi-hyperboloidal, allowing null segments), such
that each s = constant slice extends from the black hole’s future horizon 77" to future
null infinity .#T; this avoids some of the spurious divergences that arise at subleading
orders in ¢ if using Schwarzschild time ¢ [71, 72]. Here we leave the choice of time generic,
only restricting it to the form s = ¢ — x(x), where ¢ is Schwarzschild time and x is the
tortoise coordinate. In the present section, for simplicity we also assume s = t at the
particle’s worldline, but in Secs. 4 and 5.1 we will allow for more general choices. Figure 1
illustrates the two most extreme examples: “sharp” slicing in which s = v to the left of the
particle and s = u to the right; and “flat” slicing s = t everywhere. On each slice, we use
Schwarzschild coordinates z° = (r,0,$). We can then conveniently use ¢ as a parameter
along the particle’s worldline, such that z#(t,e) = (t,z}(t,)), with the spatial trajectory

2 (t,2) = (rp(t,2),7/2, (8, ). (2.5)

We refer to the space spanned by (x;,dvé,éM *) as the binary’s phase space, where
an overdot denotes d/dt. A particular binary system evolves through this space, and, via
the Einstein field equations, the phase-space evolution is linked to the metric’s evolution
on spacetime. The particular form of the evolution, and the congruous form of the metric
perturbation, depends on the regime: inspiral, transition to plunge, or plunge.

2.2 Inspiral

During the binary’s quasicircular inspiral stage, the particle’s orbit is characterized by a
single slowly evolving orbital frequency,

ddy

=0 2.
=0, (2.)

and a slowly evolving orbital radius. The mechanical variables describing the binary are
then the constants M and m,, the orbital phase ¢,, which varies on a “fast” orbital
time scale ~ 27/Q ~ M, and the evolving parameters J% = (Q,6M¥), which evolve on
the “slow” radiation-reaction time scale ~ M/e. The orbital radius, rather than being
independent, is expressed in terms of the other variables through an expansion of the form



Figure 1. Plunging geodesic (blue curve) in the Schwarzschild exterior, using the standard arctan
compactification [73]. Here the constant to in Eq. (3.43) is chosen such that the geodesic passes
through » = 3M at t = 0. The waveform at #% is expressed as a function on the two-body phase
space by foliating the spacetime with slices that connect .#T to the particle, covering all of ¥+
before the particle passes behind the horizon. Left: surfaces of constant s (orange curves) with
sharp v-u slicing. Right: surfaces of constant s in ¢ slicing.

rp = 70)(Q)+ery(J*)+0(e?),> where r()(Q) = M (M) ~2/3 is the geodesic relationship,
and the correction r(j) is due to the radial self-force.

We define the mechanical variables (¢,, /%) as functions on spacetime by making them
constant on slices of constant global time s, recalling that s =t on the particle’s worldline.

Their evolution from slice to slice is then governed by simple differential equations of the
form [43, 70]

do,

2 — Q, (2.7a)
ds)
== [F(%)(Q) +e P (Ja) + 0<52)] : (2.7b)
d
%5Mi = gF(f)(Q) + O(%). (2.7¢)

Here numeric labels (n) denote the post-adiabatic order (nPA) at which a term contributes
to the orbital phase. The forcing terms F(SZZ) are obtained from the self-force using the
equation of motion (2.3), while F (j;) are determined from the fluxes of energy and angular
momentum through the horizon.

The fundamental assumption in our phase-space approach is that the metric pertur-
bation only depends on s through a dependence on the evolving mechanical variables, such

2Note that here and throughout this paper, we suppress functional dependence on the background
mass M.



that
haﬁ(sa xi7 5) = haﬁ(¢p(87 ‘5)7 Ja(sa 5)7 -xiv ‘5)' (28)

We can then treat the perturbation as a function on phase space, hag(¢p, J%, 2%, ). In the
inspiral regime, we expand this function at fixed values of the phase-space coordinates,
such that
hap(dp, % 7' e) = Y e"h) (¢, I, 2). (2.9)
n>1
Moreover, since ¢, is a 2m-periodic variable, assuming continuity on phase space allows us
to expand the metric perturbations in discrete Fourier series:

haﬁ(¢puja7xi E ZE Z h(n m(J ,$i)€7im¢p. (210)

n>1 m=—o00

For the metric perturbations, a label (n) indicates their absolute order in e.

Concrete calculations are performed by rewriting the Einstein equations as equations
on phase space, as we review in Sec. 4 below. The leading-order field equations, for h((j[g’m,
are identical to traditional frequency-domain field equations for a particle on a precisely
circular geodesic of frequency €2, even though ¢, and J* are never ascribed the time de-

pendence they would have for a geodesic. The forcing functions F(a) (F(n),F(i)) i

Egs. (2.7b) and (2.7c) are then calculated from the amplitudes h(n)’

In this approach, the asymptotic waveform is obtained as a functlon on phase space
simply by taking the r — oo limit of Eq. (2.10). Rapid waveform generation is made possi-
ble by the fact that the waveform’s inputs (the amplitudes h(n) " and forcing functions F(SZl )
and F(i)) are all pre-computed in advance as functions on phase space, prior to specifying
the value of € or any particular trajectory through phase space. Given the pre-computed
inputs, waveforms are then generated by solving the ordinary differential equations (2.7)
to determine the waveform’s time dependence.

2.3 Transition to plunge

When the particle approaches the ISCO, which lies at a radius r, = 6M or frequency
Q. == 1/(6%/2M),? the frequency begins to evolve more rapidly, and the assumption that
dQ)/dt ~ e breaks down. The particle then transitions across the ISCO, on a time scale
~ M/sl/5 and over a frequency band of size ~ £2/5.
We describe this transition to plunge in essentially the same way as we did the inspiral.
In place of 2, we adopt a scaled frequency
Q—Q,
which is of order unity in the transition regime. We then work with mechanical variables ¢,
and AJ® = (AQ,§M¥), and Egs. (2.7) are replaced by evolution equations of the form [51]

3Note that we chose to use z rather than * to denote the tortoise coordinate in order to avoid confusion
with the numerical constant r..



do,

P =, +2PAQ 2.12
ds e ’ ( K
DO o [3a0) + 2P EA(A0) + PR A) + O], (2.120)
%(5Mi _ €F[:?5 (AQ) + 0(86/5). (212C)

We use numeric labels [n], rather than (n), to denote the post-leading-transition order
(nPLT) at which a term contributes to the orbital phase*. Here, functions on phase space

admit series expansions in powers of the small parameter e!/®

rather than in powers of €.
This behaviour, as well as the €2/° scaling of AQ in Eq. (2.11), is readily derived from the
requirement that the transition-to-plunge expansion asymptotically matches the expansions
in the inspiral and plunge.

Although the frequency Q now evolves at a rate dQ/ds = £2/5(dAQ/ds) ~ £3/°, the
rate of change of §M™* remains O(g). This is true in all regimes, including even the plunge,
because the fluxes of energy and angular momentum across the horizon are always O(g?),
as they are proportional to the square of the time derivative of the metric perturbation
(and we recall that §M¥ are normalized by ¢).

Just as for the inspiral, we expand the metric perturbation for small € at fixed values
of our phase-space variables:

oo
hag = Y [R5 (AT @)+ TP (AT ) 4+ SRS (AT ) + OE) [ e,
m=—o00
(2.13)
Similarly to the inspiral, for the metric perturbations a label [n] indicates the absolute

order of /5. Here the dependence on £/5

is inherited from the orbital evolution through
the field equations. Like in the inspiral, we express the field equations as equations on
phase space, allowing us to directly compute the metric amplitudes h%’m(AJ”,xi) and
forcing functions F® (AJ®) as functions of AJ?. Again, we review this method in Sec. 4;
and again, the forcing functions F [‘;L}(AJ b) can be computed from the amplitudes h%m
Since we are able to precompute all the waveform ingredients, we maintain the rapid
waveform-generation framework of the inspiral. Given the waveform amplitudes and forcing

functions, we rapidly generate waveforms by solving the orbital evolution equations (2.12).

2.4 Plunge

Once the particle has fallen sufficiently far below the ISCO, after a time = M /51/ 5 the
transition-to-plunge approximation breaks down and the orbital frequency begins to evolve
on a time scale ~ M. This occurs as the steepness of the radial potential begins to drive
the inward motion, dominating over radiation-reaction effects. The secondary then plunges
following a nearly geodesic orbit in the primary’s geometry with almost constant orbital
energy and angular momentum [47].

“The quantity F[ff]wi defined in Ref. [74] is now denoted as F[i+3].



One might intuitively doubt that the phase-space picture can be extended to this
final plunge regime. That intuition stems from thinking that the ringdown portion of the
waveform occurs in some sense “after” the particle has fallen behind the black hole horizon.
However, the meaning of “after” entirely depends on one’s choice of spacetime foliation.
From the perspective of an asymptotic observer, the particle never falls behind the horizon.
Using either our sharp or flat slicings, we can foliate the entire black hole exterior with
constant-s slices, and the particle’s trajectory intersects every such slice, never crossing the
horizon at any time s < co. See again Fig. 1 for an illustration of this. As a consequence,
the entire merger and ringdown can be parameterized by the binary’s trajectory through
phase space.

In the bulk of the paper, we show how to apply this idea to develop an appropriate
expansion for the plunge. The fundamental difference between the plunge and the other
regimes is that the orbital frequency now evolves on the same time scale ~ M as the
orbital phase. Hence, instead of equations of the form (2.7) or (2.12), in the plunge we
have equations of the form

% =Q, (2.14a)
dQ2 Q Q a 2

d

E(SMi = Fjy () + 0(e%), (2.14c)

where we have reverted to phase-space coordinates J% = (Q,0M*), and we use labels {n}
to denote post-geodesic orders (nPG). The metric perturbation, still treated as a function
on phase space, has a corresponding expansion
o0
hog = Z {5 hilﬁ}’m(J“, xz) + 52hi25}’m(,]a,:ci) + 0(53) e~ MPp (2.15)
m=—o00
The label {n} indicates the metric perturbation’s absolute order in . Just as for the
inspiral and transition to plunge, we will rewrite the field equations as equations for the
functions hi%}’m(J“, 7).

This formulation of merger and ringdown markedly contrasts with EOB’s. As alluded
to in the Introduction, in the EOB description, the waveform’s link to the binary phase
space is broken when the effective particle passes the light ring of the effective-one-body
metric; after that point, a phenomenological ringdown waveform is attached. By main-
taining the waveform’s link to the phase-space trajectory, we maintain the structure that
enables fast waveform generation: all waveform ingredients are pre-computed by solving
field equations on phase space, and waveforms are then rapidly generated by solving the
evolution equations (2.14).

We also emphasize that our treatment of the plunge fundamentally differs from an
expansion around a geodesic solution, even though we refer to our expansion as “post-
geodesic” for lack of a better name. An expansion around a geodesic solution would involve
an expansion of the phase-space trajectory itself, as in ¢,(t,e) = ¢o(t) + € ¢1(t) + O(e?),
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Qt, ) = Qo(t) + e Qu(t) + O(e?), and SM*(t,e) = SMFE(t) + O(e), where a subscript 0
denotes a geodesic solution. Correspondingly, the metric perturbation would be expanded
as hog =€ hilﬁ}(s, z') + €2h§3}(s, z') + O(g3), where hijg} would be sourced by the particle
on the geodesic trajectory. This would be a “Gralla-Wald” formulation [75, 76], which is an
expansion in powers of € at fixed spacetime coordinates (s, z?); in our approach, we instead
expand all quantities, including © and dM=, at fixed values of (¢p, J, x%). Our leading
perturbation hily} is a function of (¢, 2,0 M +), which becomes a function of time when
evaluated along phase-space trajectories obtained by solving Egs. (2.14). Those phase-
space trajectories are only geodesic trajectories when F’ ?1} and higher terms are omitted.

Historically, a Gralla-Wald expansion has not been used in the inspiral because it
is only valid on time scales much shorter than the dephasing time ~ M /\/e over which
the accelerated trajectory dephases significantly from the geodesic trajectory [71]. This
restriction would not in itself be problematic in the transition or plunge, which occur on

the time scales ~ M/zsl/5

and ~ M, respectively. However, a Gralla-Wald expansion
would not allow us to assemble the inspiral, transition to plunge and plunge in an efficient
asymptotically matched expansion scheme.

By treating all three regimes in the same manner, we put the problem in a uniform
offline/online format. Ultimately, one can hybridize the waveforms between the inspiral,
transition-to-plunge, and plunge regimes at the level of the precomputed forcing functions
F(C;L ) F[‘:L], and F{“n and the amplitudes hg’g’m, h([;g’m, hi%}’m (with » — 00), such that the
full IMR waveform can be generated from pre-computed ingredients by solving a single set
of three ordinary differential equations for ¢,(s, <), Q(s,e), and IM*(s,€).

In this paper, we defer the presentation of such a hybridization, focusing on the plunge

regime and its asymptotic matching to the transition-to-plunge regime.

3 Plunge: orbital motion

We now develop the equations (2.14a) and (2.14b) describing the plunging orbit. We work
in Schwarzschild coordinates (t,r,0, ¢), such that the background metric reads

dr? 2 (702 4 «in2 2 o 2M
m+r (d6* + sin® 0 dp”) flr) .—1—77 (3.1)

and the particle’s spatial trajectory xé(t, ¢) is as in Eq. (2.5).

ds® = — f(r)dt* +

We present two different formulations of the plunge expansion, based on two different
choices of phase-space coordinates (¢, J%). In Sec. 3.1, we choose J* = (,6M*) as
in Sec. 2.4. This choice exhibits potentially problematic features because {2 does not
provide a single coordinate chart over the whole plunge; it increases to a maximum at
the light ring and then decreases to zero at the horizon, such that (¢,,$,0M +) actually
represents two distinct coordinate patches (completely analogous to the “isofrequency”
orbits described in Ref. [77]). In Sec. 3.3 instead we make a choice that avoids this issue:
J* = (rp,0M +), where rp is the orbital radius. Since the two formulations only differ in
their choice of phase-space coordinates, they are formally equivalent. In Appendix B we
derive the transformation between them.
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In either approach, the variables J¢ satisfy evolution equations of the form
dJe

= FU(J?,€) = Fin (J") + e F1,(J°) + O(£?). (3.2)
If J% = (Q,5M%), then the functions Fg,, are the only needed orbital input in the online
waveform generation described in the previous section. If J¢ = (r,,6M¥), then Q in

Eq. (2.14a) becomes Q(rp,e) = Qoy(rp) + € Qy(J*) + O(e?), and the functions g,y
become necessary inputs in the waveform generation.

To derive the forcing functions an} and the frequency corrections €(,;, we rewrite
the orbital equation of motion (2.3) in terms of ¢. Defining the redshift U = dt/dr, we can
write the four-velocity u# := dz*/dr as

d
u“(J“,s)::L7<1,(;f,O,Q> : (3.3)
If we choose J* = (Q, 6 M¥), then drp/dt here is expressed in terms of an} by applying the
chain rule to ry(t,e) = rp(J%(t,€),e). The normalization of the four-velocity for timelike

curves, g, uu” = —1, leads to an equation for the redshift,
dz* dz¥
U= —gu———. 3.4
Rewritten in terms of the parameter ¢, the equation of motion (2.3) becomes
d?z+ 1dU dz# dz¥ dz°
— T b — =y 3.5
az " adi v U (8:5)

where I'y, are the background Schwarzschild Christoffel symbols. The self-force f* has
only two independent components because f? = 0 on equatorial orbits and because the
normalization g, uu” = —1 implies u* f,, = 0.

Obtaining the forcing functions F{%} will additionally require information from the
transition-to-plunge regime. This is because the PG expansion is not self-contained; with-
out information from the transition to plunge, we would have no way of determining which
geodesic is the correct one to expand around, for example. Picking out the correct PG
dynamics requires asymptotic matching conditions between the PG and PLT expansions.
These conditions come from the requirement that the PG and PLT expansions commute.
If we expand a function for small € at fixed 2 (a PG expansion) and then re-expand for
small € at fixed AQ (a PLT expansion), we must obtain the same result as we do by first
expanding for small € at fixed A and then re-expanding for small € at fixed €. In both
cases, we obtain a double series in € and (2 — 2,), and the two double series must agree
term by term. Equivalently, we can say that a late-time expansion (for MAQ > 1) of the
PLT dynamics must match, term by term, an early-time expansion (M(Q2 — Q,) < 1) of
the PG dynamics.

3.1 Expansion at fixed orbital frequency

We start by expanding the orbital radius 7, and the redshift U in powers of the mass ratio
¢ at fixed phase-space coordinates Q and dM*:

TP(Q7 5M:ta g) = {0} Q) + Z Enr{n} (€, 5M:t)7 (3.6)

n=1
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U(Q,0M*, ) = Ugy(Q) + Y _ " Uy (Q,6MF). (3.7)
n=1

Note that these quantities are independent of ¢,: as a consequence of the background’s
axisymmetry, the metric perturbation only ever depends on ¢, in the combination (¢ —
¢p) [28], such that it is independent of ¢, when evaluated on the particle at ¢ = ¢,; this
implies the self-force and other dynamical quantities derived from it (such as r,;) are
likewise independent of ¢,,.

Since all functions are expanded at fixed phase-space coordinates, we also expand the
coordinates’ rates of change (with respect to t) as

Q,0M*,e) = F{i () + Y "F{1,(Q,0M*), (3.8)
n=1
SM*(Q,6M*,¢) = Zg”F{in (92, 60M7). (3.9)
n=1

Finally, the self-force can be similarly expanded as

FUQ0MF e) = Y e ff (2, 6MF). (3.10a)

n=1

We now substitute the post-geodesic expansion of the worldline (2.5) and the four-
velocity (3.3) into the equation of motion (3.5) and the normalization condition (3.4). This
leads straightforwardly to a sequence of equations for 7,1, Uy}, and F{an}, describing the
plunging motion at each nPG order. Those equations are then completed using information
from the transition-to-plunge regime.

3.1.1 Leading-order match with the late-time transition-to-plunge solution

Our derivation of the 0PG dynamics in the next section will crucially rely on information
from the asymptotic match with the transition to plunge close to the ISCO. Here we give
a brief overview of how this matching works, focusing on the OPG information it implies;
we defer a more detailed analysis to Sec. 3.2.

The transition-to-plunge expansions to 2PLT order for the orbital radius and the rate
of change of the orbital frequency read [51]

rp = 6M + 2/ {r[o](m) + 2Py (AQ) + 0(53/5)} , (3.11)
ds)
= =& {F@Q(AQ) + 2PFSY(AQ) + 0(53/5)} . (3.12)

The terms rp, are algebraically determined, while F[%]Q solve sourced linearized Painlevé
transcendental equations of the first kind [51]. In the late-time limit AQ — +oo (where
the transition to plunge asymptotically matches with the plunge) we have

> 4, _
g =g VAQ, g =P AG? + O(AQT), (3.13)
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and

o = Fg¥Pa0t roa),  Fpt = RRPA0 o0l (319)

[
where r[((?}’l), r[(24}’2), F[E)?]”?’/Z) and F[(ZE])’5/2) are numerical constants given in Appendix A.l.

Plugging these solutions into Eqs. (3.11) and (3.12) and re-expressing AQ as (Q —Q,)/2/°
yields

rp= [6M +rig (@ - )+ Y- )2+ o[@ - Q*)3H +O(), (3.15)

= [F@ -2+ FEPP @ -0 ? ro -0y + o). (316)

The O(e) terms come from the subleading terms in the late-time expansion of the PLT
orders, e.g., the O(AQ™1) term in F| [ﬁlg' Subleading terms in the square brackets originate
from the leading-order terms in the late-time expansion of higher PLT orders.

As explained above, the " terms in Egs. (3.15) and (3.12) must match, term by term,
with the near-ISCO expansion of 0PG quantities in the plunge. Hence, we can infer that,

in the near-ISCO limit Q — .,

roy = 6M + 70V (Q - ) + P Q- Q)2+ 0 [(Q- Q)Y (3.17)
Fy = BP0 - 00 + B§YP @ -0) 2 1o [@-)]. @3y

From this, we see that the OPG plunge trajectory must asymptote to a circular orbit with
T10y — 6M and Q) — 0—i.e., a circular geodesic infinitesimally below the geodesic ISCO.
3.1.2 Geodesic order
At leading order, we can use the ¢t component of the equation of motion (3.5) to solve for
8?27“{0}:
3M(aQ7“{0})2 aﬂF{%}aﬂr{o}

rioy(rioy — 2M) F{%}

2M? — 1o (T%O}Qz(r{o} —4AM)+ M) — T?O}Q(T{O} —2M)/daroy
+ 73 (FQ )2 :

{0} {0}

Plugging this result into the radial component of the equation of motion allows us the

drioy =
(3.19)

obtain the following simple expression for doroy:

{0y (T{o} —2M)

897“{0} = QQ(T{O} — SM) . (3.20)
We can use this to simplify Uyoy, which we obtain from Eq. (3.4) at order O(£Y),
2072 (r oy — 3M)
0} \"{0}
Upoy = i (3.21)

\/492(7“{0} — 3M)2<7"{0} — 2M — T?O}QQ) — (7“{0} — 2M)7‘?0}(F{%})2
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The geodesic orbital energy and angular momentum per unit mass of the plunging
particle, Eqgy and Ly, are given by

{0}

By = —u; = —gu(rop)Ugo = f(r{o3)Uoy (3.22a)
Lioy = ul? = gop(r(0}, 7/2)Q U0y = 13, QUL (3.22b)

Since u; and ug are constant along any geodesic of Schwarzschild, Fygy and Ly must be
constant “on shell”, when Q satisfies 2 = F{%}. Moreover, making use of Eq. (3.19), it is
straightforward to verify that they are constants even if Q satisfies Q = F?(Q, ) because
dEgoy/dQ = dLp/dQ = 0. The values of these constants are fixed by the requirement for
the plunge to asymptotically match the transition to plunge close to the ISCO. We can
take the limit as Q — Q. of Eqgs. (3.22) keeping in mind that the geodesic radius reduces

to the ISCO radius while F, {%} vanishes as prescribed by Egs. (3.17) and (3.18). We get

2v2
E{O} = E* = T,

Loy = Ly = 2v/3M, (3.23)
which correspond to the (specific) energy and angular momentum of a test particle on the
ISCO. The plunging geodesics with these values of F and L are the “universal” geodesics
studied in the past [57, 58, 78-80]; at 0PG order, all quasicircular inspirals transition onto
one of these geodesics, with the only difference between them being a constant shift in ¢,,.

By imposing Eyoy /Loy = Ex/L«, where Egy and Lygy are given in Eq. (3.22) and the
constants E, and L, are defined in Eq. (3.23), we obtain a cubic master equation for the
orbital radius in terms of the orbital frequency,

\/iQr?O} — 3\/§M7“{0} +6v3M?% = 0. (3.24)

The solution has two branches, as shown in Fig. 2: on the first branch, T%O}(Q), the orbital

frequency increases monotonically from Q = Q, = 1/ (6\/6M ) at the ISCO to its light
ring value Q = Qrg = 1/ (3v/6M). On the second branch, r%o}(ﬂ), the orbital frequency
monotonically decreases to {2 = 0 at the horizon-crossing.

The condition (E{O})2 = (E,)?, together with Eqgs. (3.21) and (3.22), also yields the
expression for the geodesic forcing term,

1/2
Q(rgoy — 3M) (36M2 — 20Mr gy + 7%0} + 8927”?0})

Vargy (2M —rg))

Fily = (3.25)

Above the light ring, the frequency increases with ¢ (F{%}(r{o}) > 0 for 3M < 7oy < 6M),
while it decreases between the light ring and the horizon (F{%} (r10y) <0 for 2M < 1y <
3M), consistently with Fig. 2.
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Figure 2. Geodesic orbital radius r{}(£2) on the two branches obtained by solving Eq. (3.24): the
early solution 7"41;0} (Q) (dashed curve) from the ISCO to the light-ring frequency, and the late solution
7'%0} (€2) (solid curve) up to the horizon-crossing. The horizontal dashed lines at rygy = 2M, 3M, 6 M
indicate the horizon, the light ring and the ISCO, respectively.

3.1.3 First post-geodesic order

At first post-geodesic order, the ¢ and r components of the equation of motion (3.5) lead
to hierarchical differential equations for r¢y and F{Ql}7

1oy — 6Mrio) + 607 1

2oy — 3M)2 T 3278 gy — 3M)

- 18ﬂ7’%?(2M - T{O})7/2 (T?O}Q2 =1y + 2M> y
(36M2 — 20Mr o) + 1, + 8Q2r{y))1/2 {1

dorqiy + 3 [9’"?0}(7“{0} —2M)*f{yy

{0
(3.26a)
2 2.4 2.3 4 Q 9)
ol T 1 ()2 {1}
"oy Floy)
1
= 803t —2M — 3M)3(F%)302
4927“?0} (T{O} — 3M)2(7“{0} — 2M)2(F{%})2 T{O} (T{O} )(T{O} ) ( {0}) Qr{l}

— 807, (rioy — 3M)F{, [494(7'{0} —3M)? = 3Mr gy (rioy — 2M)(Fiy)?
_QT{O}(T{O} - BM)(T{O} - QM)F{%}aQF%}} 8Qr{1}

—492(r0y — BM)F{yy |20°(r(oy —3M)* (12M° 4 307y + 2Mr () (62°rfy) —5)
(3.26b)
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—M (149, — 2r’fo})) — 38Mrg, (3 — 3Mr g + 2M2)(Fi)?| ryy

2
+ (rgoy — 2M) [4@2(r{0} — 3M)2(Qryy — oy + 2M) + 1y (1) — zM)(F{%}ﬂ ffl}] :

(3.26¢)

Contrary to the 0PG equations, which describe a geodesic in the background spacetime, the
motion at 1PG order is driven by both the ¢ and r» components of the first-order self-force,
Ty and £,y

We notice that the post-geodesic expansion derived in this section breaks down at the
light ring, where the evolution equations (3.26) encounter a pole. This is a consequence of
the fact that the frequency does not provide a global coordinate for the whole plunge, as
mentioned previously. It motivates an alternative choice of coordinates, which we develop
in Sec. 3.3.

Like the OPG dynamics, the 1IPG dynamics is not fully specified by the orbital equations
of motion (3.26). Since those equations are first-order differential equations, they only
determine F’ {%} up to a constant. Fixing that constant requires additional input from the
transition-to-plunge regime. Moreover, we note that Eq. (3.26) becomes singular at the
ISCO as F| {%} vanishes there. In general, we expect the post-geodesic expansion to become
increasingly singular at the ISCO at higher PG orders. Matching to the transition-to-
plunge solution then becomes increasingly important.

3.2 Asymptotic match with the transition to plunge

In this section, following Ref. [74], we derive the asymptotic match with the late-time
transition-to-plunge motion of Ref. [51]. Specifically, we generalize the brief description in
the previous section to 1PG order and high PLT orders. This will allow us to determine
how the transition to plunge selects the correct solution to the 1PG equations (3.26),
analogously to what we have done at geodesic order in Sec. 3.1.2.

To explain the structure of the asymptotic matching, we consider a function g(e, J®
that admits both a transition-to-plunge expansion (a regular expansion in powers of \ :=
el/5 at fixed AJ @) and a plunge expansion (a regular expansion in powers of € at fixed J¢).
We write the PLT expansion as g(A, AJ%) = g, + AP ano A" (AJ); for examples, see
Egs. (3.11) and (3.12) for 7, and d€2/dt. At late times, where AQ2 — 400, we can expand
in half-integer powers of AQ. Since AQ = (Q — ,)/e%/5, re-expanding g for large AQ is
equivalent to re-expanding for small ¢ at fixed Q2 > €,:

GATY) = g+ 303 R AQT g (501 %) (3.27a)
n>0 m

=g+ Yy eI — )2l (501, (3.27b)
n>0 m

In principle, there is no restriction on the integers m. However, the range of m is restricted
by the requirement of asymptotically matching the early-time behaviour of the plunge
expansion, which contains only integer powers of the mass ratio, ¢’ with i =0,1,2,...; see
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Sec. 3.1. This restricts the powers of A that can appear in the late-time expansion of a
given nPLT order:

m =p+n — bi, n,i > 0. (3.28)

As an example, if we consider the OPLT forcing term F[ﬁ]ﬂ we have the following: as
anticipated in Sec. 3.1.1, since p = 3 and n = 0, the late-time expansion is given by
a series expansion with powers AQB—5)/2 We obtain the coefficients r[(g fL nm/2) for Tp

and F(P+n7m/2)

in] for 2 by substituting expansions of the form (3.27a) into the transition-

regime equations for r(,; and F[%Q (see Ref. [51]). These coefficients are given explicitly in
Appendix A.1.

We can follow the analogous procedure for the plunge. The plunge expansion of a
function g is given by g(e, J*) = > ;50 5ig{i}(<]a). Re-expanding close to the ISCO and
substituting (2 — Q,) = A2AQ we obtain

9(, %) = g+ D 3 A AQI2 I (50r), (3:29)
i>0 j

We can restrict the range of j by requiring the powers of A in the near-ISCO plunge
solution to match those in the late-time transition-to-plunge solution (3.27a). This yields
the condition

j=p+n-—>bi, n,i > 0. (3.30)

At geodesic order (i = 0), we plug the asymptotic expansions (3.29) into Egs. (3.24) and
(3.25) and solve for the coefficients g%’f/ 2 with j>p+nand n > 0. These coefficients
are given explicitly in Appendix A.2.

At first post-geodesic order, we need to know the near-ISCO structure of the self-
force. The first-order field equations in the plunge regime yield a metric perturbation
that contains pieces which are smooth at the ISCO and pieces ~ F{%} ~ (2 — Q)%? due
to the presence of time derivatives (see Sec. 5.1, where the first-order field equations are
presented in a slightly different expansion scheme, but the general statement made here
remains unchanged). The self-force inherits this structure through Eq. (2.4), where at most
one time derivative acts on the metric perturbations and gives rise to half-integer powers
> 3/2 of (2 — ) in the near-ISCO limit. We can therefore write the first-order plunge

self-force as

Fiy(Q = Qu, 6MF) = fr, ((OM7F) + > iy (GMF) (2 — Q)2 (3.31)
n=2

where ff1},n and fg’l}m are independent of §M¥ for n = 0,2.5

SFor p = t, ¢, linear-in-6 M+ perturbations towards Kerr appear at first order in Eq. (2.4) always
accompanied by a factor u" = 8QT{O}F{%}U{O}. Close to the ISCO, u" is O [(Q - Q*)3/2] or higher, as
follows from Egs. (3.17) and (3.18). The coefficients in Eq. (3.31) therefore start to depend on §M* from
n = 3. This is consistent with the results of Ref. [51] (i.e., that f[‘;] and f[‘;]A in that paper do not depend
on §M* for 1 = t, ¢), which becomes manifest from the match of the self-force in Eq. (A.23) below.
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Knowing the structure of the self-force, we can solve Eq. (3.26) in the near-ISCO limit.
From Egs. (3.29) and (3.30) we get

ery(2 = Qu, oMF) = N S PN A2, (3.32)

Jj=-3

545,3/2)\ 7 A (3]

e Fy(Q = 0., 0M*) =37 Y FEH A0, (3.33)

j>—2
From the transition to plunge we have that rf(%’_g/Q) = 0 and 7“[(%’_1) = 0; see Ap-
pendix A.1. Through the asymptotic match this also implies that rg’}_S/ 2 — rg’}_l) =0,
and the series in Eq. (3.32) therefore starts at AQ~Y/2. Solving Eq. (3.26) iteratively

in the limit Q@ — (), determines all these coefficients, with the exception of rﬁ}o) in

Eq. (3.32). We fix this coefficient by enforcing the match with the transition-to-plunge
S’}O) = r[(35]’0) = —54M? f}:l}p. The coefficients appearing in the near-ISCO so-
lutions (3.32) and (3.33) are given explicitly in Appendix A.2. The asymptotic solu-
tions (3.32) and (3.33) can then be used to obtain initial conditions to solve Eq. (3.26)

(once the plunge self-force has been computed) and obtain 1PG solutions that asymptoti-

solution: 7

cally match with the transition to plunge close to the ISCO.
In summary, the asymptotic matching has (i) restricted the form of the plunge expan-
sion by restricting the powers of (2 — €2,) in the plunge’s near-ISCO behaviour, and (ii)

fixed the value of a single near-ISCO coefficient, r%?’f)

. This minimal information from the
matching (together with the orbital equations of motion, field equations, and boundary
conditions) serves to completely fix the plunge solution.

Although the plunge solution requires only a small amount of information from the
transition regime, we can use the other term-by-term matching conditions as consistency
checks. The conditions for Egs. (3.27) and (3.29) to match term by term are obtained by

equating the powers of A and AQ:
p+n=>5+j, m = j. (3.34)
Therefore,

e the near-ISCO expansion of the OPG forcing term F{QO} (p = 3, ¢ = 0) is matched

by the terms with m = 3 + n in Eq. (3.27), that is, a term ~ AQ%? from OPLT, a
(vanishing) term ~ AQ? from 1PLT, a term ~ AQ%/? from 2PLT, ...

e the near-ISCO expansion of the OPG forcing term F{%} (p =3, i=1) is matched by
the terms with m = —2 + n in Eq. (3.27), that is, a term ~ AQ~! from OPLT, a
(vanishing) term ~ AQ~Y2 from 1PLT, a constant term ~ AQC from 2PLT, ...

and analogously for the orbital radius. This structure of the asymptotic match between
the transition-to-plunge and plunge orbital motions is summarized in Table 1.

We have explicitly verified the matching conditions in Table 1 for all terms involved in
the match between the transition to plunge to TPLT order and the plunge to 1PG order,
using the coefficients listed in Appendices A.1 and A.2. In order to do so successfully, we
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OPLT oo
(3,3/2) _ 1(3,3/2) (3,-1) (3,-1)
Fooy '™ = Fy Fay 7 =T
1PLT — —
(4.2) _ (4.2) (4,-1/2) _  (4,-1/2)
9PLT "t} T2 "y T )
F(5.5/2) _ p(5:5/2) (5.0 _ p(5.0)
{0y =Y ar =
(5.0) _ (5,0)
T =r
_ {1} (3]
SPLT F(6.1/2) _ p(6,1/2)
ar =
(6,3) _ (6,3) (6,1/2) _ _(6,1/2)
APLT "foy T "y T
FOT/2) _ p(17/2) FOY _ (71
{0} [4] {1} 4]
(1) _ (7.1)
T =r
_ {1} (5]
SPLT F(83/2) _ p(3.3/2)
{1} (5]
(84) _ .(8,4) (83/2) _ .(8,3/2)
6PLT "oy = ") Ty T T
(9,9/2) _ 1(9,9/2) (9.2) _ (9,2)
Frop '~ = Hg Fay’ = Fg
(9,2) (9,2)
T =r
7PLT -~ b
(10,5/2) __ (10,5/2)
Fey o =1y

Table 1. Matching conditions between plunge and transition to plunge for the asymptotic coef-

ficients (rgf;f), r[(s]’Q), F{(Z’}Q), and F[(:]’q)) of AP(AQ)? in the solutions for the orbital radius r, and

the rate of change dQ/dt. The coefficients are labeled with their PLT ([n]) or PG order ({n}) in
addition to the powers of A = /5 and of AQ = (Q — ©,)/\? in the asymptotic expansions (3.27)
and (3.29). Here we only show nonzero coefficients.

required the match of the self-force. In practice, one proceeds order by order, obtaining
matching conditions for both the orbital motion and the self-force. The matching conditions
for the self-force are presented in Appendix A.3.

3.3 Expansion at fixed orbital radius

In this section we derive an alternative to the formulation of Sec. 3.1. Instead of parametriz-
ing the orbit using the orbital frequency ), we can recast the equations describing the
plunge in terms of the orbital radius r,, which is monotonically decreasing during the
plunge—in contrast to £, which encounters a maximum at the light ring (see Fig. 2). We
refer to the two approaches as the fixed-{) and the fixed-r, formulation, respectively. In
Appendix B we show how to transform between the formulations. Numerous other quanti-
ties would serve equally well as global coordinates for the plunge; an example is the orbital
frequency with respect to advanced time, Q, = d¢,/dv. However, we find the plunge
dynamics is particularly simple when written in terms of 7.
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If using r, as a phase-space coordinate, we expand all orbital quantities in powers of
¢ holding the coordinates (¢y, 7, dM +) fixed. The orbital frequency 2 and the redshift U
are therefore expanded as

Q(rp, M, €) = Qoy(rp) + > "y (rp, 6M7), (3.35)
n=1

Ul(ryp, 6M*, ) = Upgy(rp) + Y €Uty (rp, 6MF). (3.36)
n=1

The expansion of the rate of change of the orbital radius is given by
p(rp, OM™, ) = Fyln (rp) + Zs F{2y (rp, SM™), (3.37)
while the corrections to the background mass and spin evolve as
SM*E(rp, OM* e Z e Fjyy (rp, SM™). (3.38)
The expansion of the self-force finally reads
FH(rp, OM* ¢) = i " foy (s M), (3.39)

As we have done for the fixed-) formulation, we now perform the post-geodesic expansion
of the equation of motion (3.5) and the normalization of the four-velocity (3.4), and obtain
equations describing the plunging motion at each nPG order.

3.3.1 Geodesic order

We follow a procedure analogous to the one used for the fixed-Q) formulation. At leading
order, we then find the geodesic quantities

33M 2v/2
Q = A4
ol = /32 S0 V() = g (3.40)
The leading-order rate of change of the orbital radius, 7 g}, is defined as
1
{0} (rp) = {0} (rp) = 932 (6M/rp — S/Qf( ) (3.41)

and the leading-order radial acceleration, (¢, is then given by

. . . M (30M /r, — 11)(6M /r, — 1)?
7’{0} (’I“p) = r{o}&,pr{o} = ( / P 87“2)( / P ) f(’l“p). (3.42)
p

We also obtain expressions for the coordinate time and the azimuthal angle at geodesic

order:

v dr) 2v/2(r, — 24M)
t = P = . — 44V/2M arct M/r, —1)"?
al'z) / oy () (6M/ry —1)172 VEM arctan | (6)/ry 1)

1 (3.43)
+ 4Marctanh | —(6M /r), — 1)1/2] + to,

V2
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x [M]

Figure 3. The trajectory of the geodesic plunge obtained from Eq. (3.47) (blue curve). In this plot
we set ¢g = 0. The red lines at r = 2M, 3M, 6 M mark the event horizon, light ring and ISCO,
respectively.

p / dr! 2\/3
¢a(r) = / Q’{()}(T”)7'“{0}(];;’0) = oM, -y T (3.44)

where tg and ¢( are integration constants. The asymptotic behaviours close to the horizon
and to the ISCO are given by

te(ry — 2M) = —2M log (;—& - 1) + O [(r, — 2M)7], (3.45)
ta(ry — 6M) = —72V/3M32(6M — 1,)"/2 + O [(GM - rp)l/ﬂ . (3.46)

By inverting Eq. (3.44), we obtain a simple relationship for the plunging trajectory at

geodesic order:
6M

rp(¢c) = 512/ (66 — 907" (3.47)

This is a known result at least since Ref. [81]. The plunging trajectory is displayed in

Fig. 3. Our expressions at geodesic order match those in Refs. [57, 58].

3.3.2 First post-geodesic order

At first post-geodesic order we obtain the following nested differential equations for (24,
and Fﬁ’} from the time and radial components of Eq. (3.5):

o Qs 2 =3 o V6,  VB(rp — 2M)(2r) — 27TM?r, + 54M°)
P T, —2an) T TR AMT/H(6M = 1)

ffl}v

(3.48a)
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M (57, + 6M) vy 12¢/3M(r, — 2M) 9(r, — 2M)?

W - -
P T 2O ) T T gy e T w W)

1/2
9\[7" / (rp—2M)fT
A(6M — 1,)3/2 {1}

(3.48b)

We notice that these equations are simpler and more compact than the ones in Eq. (3.26)
obtained from the fixed-Q2 formulation. More importantly, Eq. (3.48) admits a smooth
evolution across the light ring.

Solving Eq. (3.48) requires initial conditions close to the ISCO. We start by considering
the near-ISCO behaviour of the plunge self-force:

o0
iy (rp = 6M,6MF) = ffiy (M®) + Y fi}y  (SMF)(6M —rp)"2. (3.49)
n=2
This follows from Eq. (2.4) and the field equations (5.7) below: the first-order field contains
a piece that is a smooth function of 7, at the ISCO and a piece that is not smooth ~
oy ~ (6M — rp)%/2. Equation (2.4) does not alter this structure since it introduces at
most one time derivative, which yields terms of the form ~ 7oy ~ (6M — rp)%/? and with
higher half-integer powers. The coefficients in Eq. (3.49) can be obtained via asymptotic
matching with the transition-to-plunge regime in an analogous manner to what is shown in
Appendix A.3. Using Eq. (3.49), we then get the following asymptotic solutions from the
near-ISCO limit of Eq. (3.48) (these solutions are obtained by enforcing the match with
the late-time transition to plunge, similarly to the procedure described in Sec. (3.2)):

ngl Qf
Q13 (rp — 6M, SME) = G {11/}20 B \/>f{1} L OGM — 1 V2, (3.50)
864M2 ft
r {1}.0
Fify(rp = 6M,60M%) = ——or =00 4 240 (Fhiyo+12MFlyy ) +OOM — )2
(3.51)

These solutions can be used to obtain initial conditions to solve Eq. (3.48) once the plunge
self-force has been computed.

4 Plunge: field equations at first and second order

We now turn to deriving the field equations for the metric perturbation (2.15). We first con-
sider the simple case in which the global time s reduces to t along the particle’s trajectory,
as assumed in Sec. 2. We then describe how to lift that restriction.

The essential idea, regardless of which regime we consider and which choice of s we
make, is to convert derivatives with respect to time into differential operators on phase
space. When acting on a function of (¢, (s, ), J%(s,€), '), assuming s = ¢ on the trajectory,
we apply the chain rule together with d¢,/ds = Q and dJ*/ds = F(J &):

0 0

0
9 _0f \pe
55 = Yag, T g5

(4.1)
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We then expand this in the form appropriate to each regime. In the inspiral,

o 0 o 0 + 0 2
F aJa —E(F( )89 +F( )85Mi> +O(€ ), (42)

where F(ﬂ;)a(; ME = F(‘*l')&; v+ + F(;)65 - In the transition to plunge, with an obvious
change of notation,

o 0O 15 (paQ | 2/5 35 pAQ L _4/5 9
Forga=¢ (Fm Foit + &P Rt + PRy )am
)
+eFgamT Ve O(9/). (4.3)

Finally, in the plunge,

a a Q a Q 8 + 8 9
Focusing on the plunge, we can then write time derivatives as
0 0 0 9
9 =~ g + o Fiyy(J° 2 4.
ds Oy + Fioy (@ )OQ +eFy(J )8Ja O(e?), (4.5)

assuming we work in phase-space coordinates (¢, (2, 6M*). If instead we work with
(Pp,Tp, OM +), then € is expanded, and time derivatives become

9 o .. 0 9 9
% = Q{O}(rp) a(lﬁ F{O}(Tp)ar +¢€ Q{l}(J )8¢) + F{l}(Jb)aJa + 0(82), (46)

When acting on a perturbation of the form (2.15), which has been expanded in discrete
Fourier modes, we also use

9
0y

If s does not reduce to t along the particle’s trajectory, then the above treatment

must be generalized. T'wo options present themselves. First, one can formulate the orbital
equations of motion directly in terms of s, defining an orbital frequency €2 := d¢,/ds and
deriving equations for the forcing functions appearing in dJ%/ds. Alternatively, one can
continue to use t as the parameter along the trajectory and account for how ¢ changes with
s when applying the chain rule for 9/9s. In the next section, we take the latter approach.
We define t,(s) as the value of ¢ on the particle at global time s (i.e., at the point where
the slice of constant s intersects the trajectory). The definition s = ¢ — k(z) then implies
tp(s) = s+ Kk(zp(ty(s))). Differentiating with respect to s and rearranging, we obtain

dt, 1
4 T O o
with H = dk/dz, rp = rp(ty(s)), and 7, = 7,(tp(s)). Equation (4.1) then becomes
g _dty 3} 0
T _%rg % ypa 4.
25 = ds |Yag, T g5 (4.9)
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This formula holds in all regimes. Equation (4.8) is additionally expanded for small ¢,
using the expansion appropriate to the regime (inspiral, transition to plunge, or plunge)
and to the choice of phase-space coordinates (£ or rp).

This treatment of time derivatives implies an expansion

0Gaplh'™] = 8GN 1] + e 6GLU (1) + 2663 ™ + O(e?). (4.10)
Here hi%} = hi%}’m(Ja,xi)e_im‘bP, and the expansion in powers of ¢ is at fixed

(¢p, J%, 2%). The leading term, 5Gioﬁ} [R{"}] comes from omitting all order-¢ and higher
terms in 9/0s. Subleading terms arise from the subleading terms in 9/0s. Analogously,

0 1
62Gaplh™, a1V = G0} (Y, hV] e 6261 (1Y a1 1 0(2). (4.11)
The stress-energy tensor (2.2) is likewise expanded at fixed phase-space coordinates:

lgtig 0° (2" — 2 (dp, J, €))

Tog = my =eT ) + 2T + 0. (4.12)

Here Tig} is a function of (¢, J%,x%), given at lowest order by

5(7“ — T{O})

{1}
TV —
2
{0}

N8 = May 9p0 70,370 Utoy 5(8 —1/2)3(6 — p), (4.13)

with :i‘?o} = (1, %F{%},O, Q) in a fixed-{2 expansion or by :1'3?0} = (1,F{Tg}, 0, Q{O}) in a
fixed-r, expansion.

Once we have converted time derivatives to phase-space operators in this way, and
suitably expanded the stress-energy tensor, we can then equate coefficients of powers of € in
the expansion of the Einstein equation (2.1), treating (¢p, J¢, 2%) as independent variables.

This leads to a sequence of field equations for each h({)%},

5Gi%} (] = 87TTO¢{;}7 (4.14a)
5Gi05} h(2)] = SFTCEZ} _ 52G({)06} ({1, 1) - 5G§;} [pi]. (4.14b)

These are equations on a seven-dimensional product manifold made up of phase space
(with coordinates ¢, and J%) and space (with coordinates z*). However, the dimension-
ality is quickly reduced. By virtue of the background’s stationarity, the Fourier basis
functions e =% are eigenfunctions of 5Gi0}, meaning the discrete Fourier modes decouple

in 5Gi%} [h{7}], reducing the problem to six-dimensional partial differential equations for

each of the mode coefficients hi%}’m. Moreover, by virtue of the background’s spherical
symmetry, the angular dependence can be separated by expanding the metric perturba-
tions in a basis of tensor or spin-weighted spherical harmonics [82, 83]. This reduces the
equations to four-dimensional partial differential equations in J* and r for each ¢m mode
coefficient. Finally, we note that derivatives with respect to §M* do not appear on the
left-hand side of the field equations because they are suppressed by a power of € in the
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chain rule (4.5). This means they only enter Eq. (4.14) in the source term 6G£33} [h{1}].
Hence, the field equations are reduced to two-dimensional partial differential equations in
Q (or rp) and r.

In the next section, we work through a concrete example of deriving mode-expanded
phase-space field equations. We also describe how to recast them in the more familiar form
of frequency-domain Regge-Wheeler-Zerilli (RWZ) equations.

5 First-order Regge-Wheeler-Zerilli waveforms

We restrict our attention to the first-order field equations for ht{xlﬂ}. Rather than working
directly with the Einstein equation (4.14a), we develop the associated RWZ equations for
even- and odd-parity master functions. We first present the equations in a generic hyper-
boloidal slicing s and then restrict the analysis to our frequency-domain implementation in
t slicing, obtained from transforming the phase-space equations to the frequency domain.

Our analysis in the remainder of the paper is restricted to OPG order. For simplicity, we
omit labels {n} on the field variables, sources, and linear operators, with the understanding
that all quantities and operations are restricted to leading order.

5.1 RWZ equations and sources

We consider the RWZ equations describing the odd- and even-parity perturbations in
Schwarzschild spacetime [84, 85],

(02— 07 = Vo)) Wil () = S04, (5.1)
Following Ref. [86], in the odd-parity sector, we use the Cunningham-Price-Moncrief master
function [87], while in the even-parity sector we use the Zerilli-Moncrief master function [88,
89]. The even- and odd-parity potentials are given by [86]

VE(r) = L(X% {273 <w +1+4 ?’iw> + 18;\242 (w + ]\fﬂ : (5.2a)
Ve(r) = fg) [e(u 1) - 61‘4} , (5.2b)

where vy := (( +2)(¢ — 1)/2 and Ay(r) := v¢ + 3M/r. We write the master functions and
the sources as

WOt r) = REL(rp(ty(s)), r)e o) 580 ) = S70(ry (1 (s)), 7)e M or(tn(e))
(5.3)

where we recall that ¢, is the value of ¢ where the slice of constant s intersects the worldline,
tp = s + k(x(rp(s))). The master functions are related to the tensor spherical-harmonic
modes of hilﬂ} through a linear operation, in which we neglect subleading terms in the chain
rules (4.5) and (4.9); likewise, the sources are constructed through a linear operation on
Taé , again neglecting subleading terms in the chain rule.
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Our primary goal in this paper is to calculate the GW strain, which is expressed in
terms of the two GW polarizations as the limit  — oo of the expression

(9] 14
r(hy —ihy) = rhym'm” = Z Z rhi Yo (0, ¢). (5.4)
{=2 m=—{

Here m = ﬁ(O, 0,1, —icscl) and _9Yy, is a spin-weighted spherical harmonic. The limit
is taken at fixed (¢p,.J*), assuming slices of global time s smoothly connect to future
null infinity. We define hy,, = lim, o0 (7 hfg}h) and write the asymptotic £m mode of the
waveform as [28]

VD,
2

VD
2

(0§, —ivp,) =« (R, — iR,,) €™ = Hype ™% = | Hypyle ™" P0m,

(5.5)

where Dy == (¢ — 1)¢(¢ + 1)(¢ + 2) and Py, = me, — arg(Hyy,). Only m > 0 modes

need to be computed as the m < 0 modes are deduced from the usual symmetry relation
hZ,—m = (_1)€hzm'

We allow a generic choice of time s, which might not reduce to ¢ on the particle

hgmzs

trajectory. By plugging Eq. (5.3) into Eq. (5.1) and applying the chain rule (4.9), we put
the RWZ equations in the following form:

(92— ve°) ryly — 21 % ((0)0rr, — im0y D) Ry — %% (10 0r, — imQoy) Ry,
d*t dt,\?
+ (1 —H ) ZmQ{O}KQP + (m Q{O} + Zm&«pQ{O}T{O}> <d§>
. d*t . dt 2 .. . . dt 2 e/o e/o
—F{0y 722 O — 0} <d§> Oy, = (Floy — 2imQqoyroy) (d;> Ory | Ry = St -

(5.6)

The quantities dt,/ds and d*t,/ds* are functions of r,, as given in Eq. (4.8) (and the s
derivative thereof). The geodesic quantities Qoy(r;), 70} (rp) and 7oy (rp) are given in
Egs. (3.40), (3.41) and (3.42), respectively.

While the original, time-domain RWZ equations are hyperbolic, our phase-space equa-
tions (5.6) have an unusual character. They are hyperbolic for all 2M < r, < 6M, as is

easily confirmed by calculating the discriminant, which is proportional to (7’“{0}%>2 >0
for any H. However, this discriminant vanishes in the limit to r, = 6M, since 7o, van-
ishes in that limit. One might conclude that the equations are consequently parabolic at
rp = 6M, but 7o (6M) = 0 implies they actually reduce to radial ordinary differential
equations there. Fundamentally, this singular behaviour is a consequence of the fact that
the plunging geodesic asymptotes to r, = 6M in the infinite past but never actually reaches
6 ; the physical domain for the plunge solution is the open region 2M < r, < 6M. To
obtain the physically correct solution in that domain, one must ensure that the solution
appropriately matches to the transition-to-plunge solution; we discuss this further in the
next section.
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In the remainder of this section and the practical implementation of first-order wave-
forms in this paper, we will consider ¢ slicing, k(x) = H(z) = 0. Appendix D provides
the parallel development of the field equations in generic slicing, which are important in
establishing the validity of our approach. With ¢ slicing, the RWZ equations become

2 2002 : - 2 a2
{8x + (m Q{O} +m f)rpQ{O} T{O}) — T{O}arp
— (Froy — 2imQoyigoy) O, — VIO ()| RSO (rpy 1) = S0 (rpy 1), (5.7)
The source appearing on the right-hand side of this equation is that of the plunging point-

particle. We construct this source in the even and odd sectors using the formalism described
in Appendix C of Ref. [86]. We write

Siult:r) = oy [ (PO Qf = Q) + 7 (e = 1)l + 7108,
12 of f (5.8a)
_@ (ye(ye = Dr® + (4ye — 9)Mr + 15M7) Q, } A, @im — *ng,
with
o 16772 ok )
P (t,7) = WD / TER (t,r,0,) X5 (0, ¢) sin 0 dOdg, (5.9a)
“ 16772 . )
Q4 (t,r) = ) / TES (t, 7,0, 6)YE™ (6, ¢) sin 0 dfdg, (5.9b)
ab (¢ p) = 8 / T (¢, 7,0, 6)Y ™ (6, 6) sin 0.0, (5.9¢)
Qb (t1) = 8mr? / AB (2,7, 0, 6)2apY ™ (6, ¢) sin § d9do, (5.9d)
(¢ —2)!

Qr (t,r) = 32mr* / THY (t,7,0,0) YA (0, ¢) sin 0 dfdg. (5.9¢)

(£+2)!

In these expressions, lowercase Latin letters stand for the coordinates {t, r}, while uppercase
Latin letters indicate the coordinates {6, ¢}. The scalar (Y*™), vector (Y™ and X4™)
and tensor (Yf{g and Xf{g,) spherical harmonics are defined in Appendix C, and Qap =
diag(1,sin? ) is the metric on the unit 2-sphere.

We evaluate the integrals in Eq. (5.9) using the point-particle stress-energy tensor (4.13).
The differential operator 0y in Eq. (5.8) should therefore be understood as the operator
7{01Or, + 40304, Recalling Eq. (5.3), we can then write the sources (5.8) as

S0y 7Y = AL (r))5(r — 1) + B (rp)0,6(r — 1), (5.10)

Im
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where

221 M (1, — 2M)?
AS = £ 24M* + 36 M3 M?*(1 + 47)r2
ém(rp) ( ve + 1)T7AZ(Tp)2 |:3 + 36 (3 + 8’7@)7}7 +9 ( + 7€)rp
+2M (14 99)73 + 3ye(1 + y0)rs | Y7 (/2,0)
1 M2(r, — 2M)2(6M — 1,,)3/2 (5.11a)
_ 6\/671- (Tp 11/2) (6 Tp) qum*(ﬂ'/Q,O)
L+ 1)rp " Ap(rp)
2882 M3 (£ — 2)!(rp — 2M)2 _,. .
- L Y7 (7/2,0),
(€ +2)!rp
43 M2 (1, — 2M)?
AS () = — VAT (1 - ) [756M3 — 6V3iMm Y2 (6M — r,)>?
C(l+ V)yer) (5.11b)
— 216 M1, + 45M72 + 77“2} X5 (7/2,0),
6v2rM (rp, — 2M)* (r2 + 12M2)
B{ (rp) = P Yim(x/2,0), 5.11c
Y4 ( P) (7@+1)T2Ag<rp) ( / ) ( )
3637 M2 (r, — 2M)* (12 + 12M?)
By, = L X5 (w/2,0). 5.11d
mx N m m 4 m
Here Y™ (r/2,0) = —imY"™(x/2,0) and Y (r/2,0) = ( 24 U *”) Yim (x/2,0).
The even- and odd-parity sectors are sourced by respectively even and odd ¢ 4+ m modes
since
Se(rp,7) =0 for £ +m odd, (5.12a)
S (rp,r) =0 for £ +m even. (5.12b)

5.2 Punctured RWZ equations

As highlighted above, the plunge field equations become singular at r, = 6. Our physical
boundary condition is that at early times, in a neighbourhood of the singular surface
rp = 60, our plunge solution must asymptotically match the transition-to-plunge solution.

This asymptotic matching was discussed at the level of the orbital dynamics in Sec. 3.2.
For the metric perturbations (2.13) and (2.15), the matching condition applies at the
{n ™ At OPG order, the condition is that if

(i) hi)"™(Q,a%) is expanded for small (Q —Q,), and (i) A" (AQ,27) = ALY (@~
Q.) /%%, 2%) is expanded for small ¢ at fixed Q, then (iii) the small-(Q — 2,) expansion of
{

level of Fourier coeflicients h[ njm and h

eh O}ﬁ}’m(ﬂ, x%) must agree, term by term, with the linear-in-¢ terms in the re-expansion of

Yool e/ 5h2%’m. Here and in many expressions below, we suppress dependence on §M*
for simplicity.
From Eq. (2.13), we see that the re-expansion of the transition-to-plunge metric takes

the form
k/5

Z Z Z e )k/Qthﬂ’“] (6M*,zl)emmor, (5.13)

m=—o00 n=>5k=5-n
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For Q > ., this re-expansion for small ¢ at fixed §2 is equivalent to an expansion in the
limit AQ — +oo (i.e., the “late transition to plunge”). The expansion contains a power
series in AQY?2 (or, equivalently, (Q — Q,)'/2/£'/5) rather than AQ due to the structure
of the orbital forcing functions in the transition to plunge.® Here we have restricted the
range of k using the fact that this must match the plunge expansion, which begins at linear
order in €; hence, (k +n)/5 > 1. Moreover, (k4 n)/5 must be an integer, equal to the

order {n} in the plunge metric, implying hZ};M "

vanishes except when k = (5{n} —n) for
integers {n} > 1. Hence, the terms that must match the near-ISCO expansion of hilﬁ} are
1/(Q—Q,)0=™/2: a constant term o< (2 — 2,)° from hf]ﬁ’m, a linear term o< (2 — ) from
hg};m, a term o< (Q — Q,)%/2 from hfgm, and so on.

From the above analysis, we see that the leading term in the near-ISCO expansion of
hilﬁ}’m [5 Okm p fact, the analysis in Ref. [51] shows that the

first two terms in the transition-to- plunge regime are exactly equal to the first two terms

must be a constant, equal to h,

in the near-ISCO expansion of the first-order inspiral solution:

e 4 PR = e )™ (@, 2f) + (2 - 2)0an) ™ (2, xi)} . (5.14)
The first two terms in the near-ISCO expansion of hilﬁ}’m must agree with these two terms

from the inspiral solution. This immediately extends to the RWZ master variables as
functions of r:

RY°(ry, 1) = RSPV (6M, 1) + (rp — 6M)0,, ROV (6M,7) + O[(ry — 6M)?],  (5.15)

‘m

where R%f (1)(7“p, r) are the first-order master functions in the inspiral.

To enforce this near-ISCO matching to the transition-to-plunge solution, we adopt a
puncture scheme [70]. In a region near the ISCO, we write the physical field as the sum of
two terms,

R°(rp,7) = R R (rp,r) + BT (ry 7). (5.16)

tm

The residual field Re/ °R has vanishing boundary conditions at the ISCO, Re/ OR(GM ,T) =
0. The puncture field RZT/n consists of the near-ISCO solution (5.15) truncated at some
order in (r, —6M), and it “lives” until an orbital radius 7p such that 2M < rp < 6M. As
an example, here we truncate at leading order, meaning

Re/OP(TZwT) — Re/o( )(GM 7.)0( _ 7*73)' (517)

Im

The inspiral field Re/ o1 )(6M ,7) satisfies Eq. (5.7) evaluated at r, = 6M. To understand
this, recall that 7 (6M) = 0= 0,710} (6M) (from Eq. (3.41)), implying that the limit of

5The reason for this can be understood as follows: in the transition-to-plunge expansion, the Fourier
coefficients hgg’m can always be written as a sum of terms that are factored into a AQ2-dependent and a AS)-
independent piece [51]. The AQ-dependent factors consist in integer powers of AQ itself, the forcing terms
F; [ﬁ]” and their AQ derivatives. For example, in the notation of Ref. [51], the 4PLT metric perturbation

is given by hf};’m(AQ,xi) = AQQhL%A’m(xi) + F[ﬁlﬂaAnF[ﬁ]thgB’m (z*). In the large-AQ limit, the forcing
terms F[ﬁ]ﬁ admit asymptotic solutions in half-integer powers of A, as can be seen from Eq. (3.27) or
Table 1.
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Eq. (5.7) to rp = 6M is simply the RWZ equation for a particle on a circular orbit at the
ISCO:

(02 m? 03| = V7o) By D (6M,r) = 87060, ), (5.18)
where |, indicates evaluation at r, = 6. We now plug Eq. (5.16) into Eq. (5.7), move

the puncture fields to the right-hand side and use Eq. (5.18). We then obtain the following
equation for the residual field:

[a}; + (mQQ%O} +im 0, Q) 7'«{0}) #2007,
— (T{O} — QimQ{O}f"{O}) 8rp - V;/O(T)] RZQ)R(TP, T) = SZ/; eff(?"p, 7’). (519)

The effective source, SZ/; eﬁ, can be split into two pieces: the ordinary point particle
source in the region 7, < r; and a more complicated, extended source in the punctured
region 6M > r, > rp, where we use the notation r; = rp — 0T to indicate that the interval
[r5,6M] encloses the point r, = rp. Explicitly, we write

SZ/; eﬁ(rp, r) = SZS PP (rp, 1) + SZ{IO eXt(rp,r), (5.20)
where SZ/,S PP is the source outside the punctured region,

S " (1) 1= Sy (1 )0 = 1), (5.21)

Im

t . L .
and S’Z/rf “* is the source inside the punctured region,

Se/o ext(rp’ 7") — Q(TP _ 7"73') [SZ/;(TP, T‘) — SZ/:(6M, 7")]

Im

—0(rp —1p) <m29%0} —m? Q%O} L + imdy, 2oy 7'“{0}> RZ;)(I)(GM, r)
—0(rp —rp) f‘{o}}P <2z’m Q{0}|,p + 0y, {0} ‘P) RZr/;;)(l)(ﬁM’ T)

+ 0r,6(rp — 1p) 7"%0}‘7) RZ?(I)(GM’ T).
(5.22)

We use |p to indicate quantities evaluated at r, = rp. In arriving at this result we have
used ffo}(rp)&«pé(rp —rp) = 7‘1%0} (rp)0r,6(rp —1P) — 8%7‘"%0} (rp)d(rp —rp).

The essential feature of the extended source is that it vanishes as r, — 6M (i.e., in the
infinite past), consistent with our initial condition that the residual field vanishes there;
the total solution (residual field plus puncture) then reduces to the transition-to-plunge
solution, as desired. We also explain in the next section how this behaviour of the effective
source eliminates ill-defined integrals that would otherwise appear.

Since the puncture vanishes for r, < rp, the residual field reduces to the physical field
in that region:

RZSR(T;D’T) = RZ/;(T]M r) for Tp < TPp. (5.23)
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We also note that the Dirac 6 and §' terms in Eq. (5.22) can be discarded and replaced
with the junction condition that
lim R (rp,7) = T [Re ™ (rp,r) + Ry (rpm)| (5.24)
Tp—Tp Tp—TL
Moreover, although we said that the punctured region [r,6M] is “near the ISCO”, the
physical solution (5.16) must be independent of rp, so long as 2M < rp < 6M. This
independence follows from the same type of arguments as in Ref. [70]. Finally, we comment
that we have only worked with a leading-order puncture in this section, but a higher-order
(in (rp —6M)) puncture could be required. It is possible for the puncture to be sufficiently
high order to obtain a convergent solution for the residual field, without being high enough
order to obtain the correct solution; see again Ref. [70]. We leave investigation of this, and
derivation of the required order of the puncture, to future work.

5.3 Frequency-domain equations

In order to solve Eq. (5.19) for the residual field we work in the frequency domain. This
allows us to use well-known Green-function techniques to solve the problem.
We start by defining the following forward and inverse transforms:

6M dr ) '
m%wz/‘. Do, r)eietal)—iméc(ry) (5.25a)
2M 7“{0}(7"10)
1 [t . .
9(rp, 1) = — o5 dw §(w, r)e~Wtare)+imoG (rp) (5.25b)
™ —0o0

with ¢ and ¢ defined in Eqgs. (3.43) and (3.44), respectively. For simplicity we have set
to = ¢og = 0, noting that tg and ¢y cancel between the forward and inverse transforms. We
can verify that the above transforms are self-consistent in the range of interest 2M < rj, <
6M:

1 +oo ) ) 6M  dy! ) . ,
dwe—zwtc;(rp)—i-zm(bc(rp)/ P g(r' r)ezwtg(rp)—zmqﬁg(rp)

2M 7'“{0}(7"1/0) v

g(?“p,T') = - % -

6 M / +o00
1/ d""p”g(rf r)eim(¢c(ra)=6a(ry)) / dw e(lp) =t ) (5.26)

C 2w Jour ligoy(rp)lT P

—00

= [ T gtat me e D) sy ()l 1) = o)

an oy (rp)l 77 e o

where we have used 7(gy = —|r"10}| since 7(5y; < 0 between the ISCO and the event horizon.
We now take the transform of Eq. (5.19). This transform is delicate because we arrive

at ill-defined boundary terms if we apply the transform naively and integrate by parts to

move derivatives onto the exponential. If we naively discard those boundary terms, we

obtain
(82 +w? = V7o) R w,r) = 5510w, m) (5.27)
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aefo eff . e/o eff

where S, " is the transform of S,/ "~ . To properly justify this equation, we treat each
side of Eq. (5.19) as a tempered dlstrlbution and adopt the standard definition (¢, F[f]) =
(Flel, f), where f is any tempered distribution, F is our forward transform, ¢ is any
element of the Schwartz space, and (¢, f) is the integral over the real line (for integrable
f) or the action of f on ¢ (for distributional f). Writing Eq. (5. 19) schematically as
(02 + D)Ryy, = Sem, we apply the forward transform to obtain <.7-" , (02 + D) Rgm> =
{p, FISSHT). On the left, we apply the standard definition (¢, Df) := <DTcp,f> for any
linear operator D, where D' is the adjoint of D. Defining the frequency—domain operator
DI, via DI Flp] = F[DL], we obtain (F[g], DRy = (FIDL¢], Rem) = (DL, F[Rem]) =
(¢, DyF[Rem)). Therefore, (02 + D) F[Rem) = F[S5] as a distribution, which is simply
Eq. (5.27).

Equation (5.27) has the standard form of the frequency-domain RWZ equation. Our
method of reaching this form applies equally well at higher PG orders. At all orders, we
use tg and ¢q in the transforms, rather than ¢, and ¢,, since we require known functions
of rp; t, and ¢, are never determined until the online waveform-generation stage.

5.4 Inhomogeneous solutions

We solve Eq. (5.27) using the standard Green-function method (or equivalently, variation
of parameters), building a retarded Green function from a basis of homogeneous solutions.

In the limits » — 400 and r — 2M (or, equivalently, x — +00), the homogeneous
solutions to Eq. (5.27) are complex exponentials of the form e*“%. We consider two
independent homogeneous solutions to Eq. (5.27), the so-called “in” and “up” solutions,

with the following asymptotic behaviours:

R . e/o in —iwx e/o out +iwzx
RZ/O () ~ Afiw (w)e + A4, (w)e as r — 400 (x — 400), (5.282)
e as r — 2M (xr — —00),
., we — +00 (z — +00)
RO ()~ , T ' (5.28b
¢ (w,2) BZ/O Pw)emwr BE/O (W)t as r — 2M (z — —00). ( )

Here and below we freely write functions of r as functions of z(r). According to the
Chandrasekhar-Detweiler transformation between the Regge-Wheeler and Zerilli-Moncrief
solutions [90], the homogeneous even and odd “in” solution are related by

72M2f(r) 1o 2| R 2). (5.29)

Dy — 12¢M ¢ in =1|D
(De iMw) R ™, 2) [ £+(€—1)(€+2)7"2—|—6Mr ox

As a consequence, the coefficients Ae/ © ln( ) and AZ/ ° () obey the relations

Dg + 12tMw

Ae 11’1( ) AOII’I( )’ Aeout( ) DZ—lQZMw

A9 0 (1), (5.30)

oM (w)

From here on we will therefore omit the label e / oon 4, . As a consequence of the

RWZ equation we have Re/ oMyt x) = RZ/ o in* (w,z). This implies

AP(—w) = A (w), AV (—w) = AV (). (5.31)
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Using the two independent homogeneous solutions (5.28) we can construct the following
Green function:

~ 1 ~ ; A
Gee w,z,x) = 0(x — /)R ™ w,x’ Re/ovp w, T
0w, ) m(w)[( VR (w, 2 ) RYO P (w, ) )
+0(z' — x)f%;/o in(w, x)}i’;/o Plw, x')] ,
where Wy is the Wronskian
Wi(w) = R ™ (w, 1), R "™(w, ) — R "(w, 2)0, RB° ™ (w, z), (5.33)

which we anticipate is identical for the even and odd sector. This Green function satisfies
(ag tw? - V;/O> G/ (w, z,7) = 8(x — o). (5.34)

It is straightforward to verify that W) is independent of the field point where it is computed
(since 0,W; = 0). We can therefore compute it in the limit » — 400 using the asymptotic
solutions (5.28), yielding

Wo(w) = 2iwAl (w). (5.35)
This justifies W, having no e/o label. Evaluating the Wronskian in the limit » — 2M,
we deduce Be/ oM () = A" (w). The inhomogeneous solution to Eq. (5.27) can then be
obtained as
A +m
R;{;R(w,r) = / dx’ G e/o (w,z, )Se/o eﬁ(w,x')
B Rz/o up(w’r) /7“ dr’ Re/o in(w T/)Se/o eﬁ(w 7“,) (5 36)
 Wiw) ong F(7)° T ’ .
Ae/o in +oo /
Rg (Wa T) dr e/o up " ae/o eff /
—_- ——R S .
e qet e s e

As written, the integrals over the (transform of the) extended effective source (5.21) fail
to converge due to the source’s behaviour at r = 2M and r — oo; this is an artifact of ¢
slicing, which we address in Appendix D.

The goal of our implementation in this paper is to construct the 0PG asymptotic
waveform. Moreover, since we are interested in the merger and ringdown and not in very
early times when the particle is near the ISCO, we restrict our attention to the region
rp < rp, outside the puncture window. In this region the physical and residual fields are
identical, and we can omit the superscript R on the field; see Eq. (5.23). To obtain the
waveform for r, < rp, we now focus on the only source in that region: the point-particle

portion of the effective source, S;T/,f PP At large distances the field generated by this source,

RZ/: (w) = R%f (w,r — 00), is given by
Pp oo pp
~e/o . e /OO dr’ ~e/o in &e/o pp /
R W)= —— —— R, r')S w,r
fm ppoo( ) We(w) Jonr () ° (1) S 1)
el o dr! . Joi TP dr ) )
_ Re/oin w,r’ / : p ezwt(;(rp)flm¢c(rp)se/0 PP (. 77,/ )
T o 707 [ e )

(5.37)
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Here we have used the asymptotic behaviour of the “up” solution (5.28). We evaluate the
rp integral using the properties of the Dirac delta function, recalling that &' (v’ — rp) =
—0r,0(r" — 7). We are then left with

N - / A ta)—iméa () peeloq,,
R = - - G K , T, 5.38
m | pp oo @) 2iw A (w) Jomr 7“{0}(7”)6 (.r) (5.38)

where

K&°(w,r) = 2 — BY°(r)— 0 (5.39)

AR ™M w,r) oo, d (RS (w,r)
f(r) om 3 g '

The solution on phase space is obtained after taking the inverse transform (5.25b):

‘1’27/73 (¢Pa Tp) = RZ/,S (rp)e_imd)p
Pp o0 pp oo

+oo e/o (5.40)

__t / duw e=wltcm—al_Cem @) | imfsa(r,)—s,)

21 | ) 2iw AP (w) '

where —

Clo(w) = / T italr)—imoa(r) (€10 (o 41, 5.41
e = [ o) (.41

This becomes a time-domain waveform when we substitute the solutions ¢,(t) and ry(t)

Z/; (t) = \I/%f (pp(t),mp(t)). At geodesic
oo pp o©

order, the difference ¢g(rp(t)) — ¢p(t) is a constant. At 1PG and higher orders, Eq. (5.40)
still represents the leading-order waveform, but ¢,(t) and 7,(t) become ¢ dependent, and

to the orbital equations of motion, W

¢p(t) no longer cancels ¢¢(7p(t)); this incomplete cancellation will be true even at leading,
OPG order if ¢,(t) is obtained from an equation of motion that is hybridized with the
transition-to-plunge dynamics.

We can now point to the singular behaviour cured by the puncture. If there were no
puncture, the integral (5.41) would run from 2M to 6M. That integral would not converge,
due to the fact that 7oy (r') ~ (6M — 7)3/2 near the ISCO. Obtaining the final physical

solution requires adding the piece of the field sourced by the effective source (5.22) in the
e/oR

puncture region, call it R, .

However, as shown in Appendix E, a large part of
ext

Re/oR

‘m

ext
to the final waveform for values of 7, sufficiently far below rp; this is to be expected

vanishes in the limit rp — 6M, and the remainder makes a small contribution

because any small interval of r, near 6 corresponds to an asymptotically large interval

of coordinate time. As a first approximation, we therefore place rp very near the ISCO,

at rp = 5.999M, and we neglect R%? R‘ . We expect that a complete implementation of

the puncture scheme will become more Ei)gportant at higher PG orders, as the early-time
behaviour becomes more singular at each successive order.

As a final remark in this section, we highlight that Eq. (5.40) does not precisely yield
the waveform at future null infinity. This is because we work with ¢ as our time coordinate.

Our waveform therefore represents the coefficient of 1/r in a large-r expansion of h;{ﬁl,];l as a
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function of ¢ along a timelike surface at large r. A consequence is the explicit appearance
of the tortoise coordinate z in Eq. (5.40), which makes our waveform phase depend on
the value of r at which the waveform is extracted. Such a dependence is degenerate with
a choice of initial time, meaning it has no physical consequence in the present paper. A
more complete treatment will use hyperboloidal slicing or the sharp null slicing displayed
in Fig. 1 to unambiguously obtain the waveform at future null infinity.

5.5 Stationary-phase approximation

We can immediately extract qualitative information from the overall structure of the wave-
form (5.40). The waveform comes with a total phase factor =™t (rp)+timéa(rp)=imey — Ag
early times, the particle is near the ISCO on a very nearly circular orbit. We therefore
expect the waveform to be strongly peaked around the orbital frequency w = mf2 at these
early times, such that the first two terms in the exponential cancel, leaving an overall
phase factor e~"™?»; in words, the waveform phase closely mimics the orbital phase. On
the other hand, at very late times, when the particle has plunged deep behind the effective
potential and is near the black hole horizon, we expect the waveform to be dominated by
QNM ringdown frequencies. In that case, wtg(rp) is unrelated to ¢¢(rp); instead, the final
two terms in the exponential cancel, leaving e~ @G (mp)

In this section we apply a stationary-phase approximation that makes the above reason-
ing about the early-time behaviour more precise. We develop the complementary late-time
approximation in the next section.

We can rewrite the 7,-domain solution (the coefficient of e=™% in Eq. (5.40)) as

+00 rp ) ,
R/° o oc (rp) = / dw /2M dr'g(w, r')e @) (5.42)

Im

where we have defined

1 Ke/o(w,r’)

w,r') = — fm 2 .
glw,r) = —52 Froy () 2iw AP (w) (5.43)
o(w,r',1p) = w [tg(r') - tg(T‘p)] -m [qﬁg(r’) — qﬁG(rp)] . (5.44)

For simplicity, here we have set x = 0. We notice that Eq. (5.42) has the form of a two-
dimensional integral against a rapidly oscillating complex exponential, especially as the
particle is close to the ISCO; recall that tg(r, — 6M) — —oco. We can therefore evaluate
the integral using a leading-order SPA,
Re/o (Tp) _ 271'9(&), ’I"/)

~ io(w,r’rp)+ino /4
m [ ppoo |det (Hess(p)) [/

, (5.45)

(w,r’")=stationary point

where the stationary point (w,r’) = (mQqp(rp),7p) is obtained from the condition Vi =
(Oup, Orrp) = 0. Hess(ip) is the Hessian of ¢. Its signature, o, vanishes, and its determinant
evaluates to |det (Hess(y)) [V/? = /|70y (rp)| = —1/740y(rp) since 74y is negative; see
Eq. (3.41). The leading-order SPA to Eq. (5.42) then gives the final solution

Ke/o(w, ')

Im

Wl (Gpmy) | S
prp 20w AP (w)

Im
ppoo

e~tmop, (5.46)

] w=mQy}(rp),r'=Tp
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Figure 4. Integration contour for Eq. (5.40) leading to Eq. (5.47). The branch cut is indicated
by the hatched area, while the zeros of the Wronskian (5.35) are depicted as full (regular QNM
frequencies) and empty (mirror QNM frequencies) circles.

Equation (5.46) is an “instantaneous” representation of the waveform, in which the
state of the binary system is instantaneously transmitted to infinity. It relies on the wave-
form frequency and amplitude changing slowly relative to the waveform phase, just as in
the inspiral and transition-to-plunge regimes. In Sec. 6.2 we show that the SPA is a good
approximation almost up to merger.

5.6 Quasinormal mode sum

At late times, we expect our OPG solution to be well described by a sum of QNM modes.
In this section we describe how to uniquely extract the amplitudes of these modes.

We can evaluate the real-line w integral in Eq. (5.40) by expressing it in terms of
residues at poles in the complex w plane. Figure 4 shows the analyticity properties of the
Green function, which has a branch cut along the negative imaginary axis and poles in
the lower half plane; the poles, at zeros of the Wronskian (5.35), correspond to the QNM
frequencies. Following the standard procedure [91], we define a contour that runs along
the real axis and closes in the lower half plane, with a detour around the branch cut. By
virtue of the residue theorem, the integral along the real line in Eq. (5.40) is equal to the
sum of residues of the enclosed poles, minus the integral along the high-frequency arc and
the integral around the branch cut:

. \Ije/o

_ \Ile/o
QNM Im

Im

\I]e/o

Im

/
— Vi

(5.47)

bc arc

Here we focus on the QNM contribution and leave assessing the impact of the branch-cut
and arc pieces on the waveform to future work. Using the residue theorem, we then obtain

9] e/o
e/o . Cfm (w) —iw[t (T‘ )—%] Zm[¢ (T )_¢ ]
U — R _—tm AT G\Tp G\Tp pl, 5.48
D S P ot K (5.45)
n= W=Wpen,—Wy,,

A minus sign due to the clockwise orientation of the contour cancels the overall minus sign
in Eq. (5.40). wg, with n =0,1,2,... are the QNM frequencies, for which Aizn(wm) =0.
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The fundamental mode is indicated by n = 0, while n > 1 label the nth overtone. Note that
for all “regular” frequencies wy, (living in the quadrant where Re(wg,) > 0), we also need
to include “mirror” frequencies —wj , since the QNM frequency spectrum is symmetric
with respect to the imaginary axis.

e/o out(

Computing the residues explicitly and multiplying and dividing by A, Wen), We

can write

e/o

e/o —zw(tg(r‘p)—x) eimWG(’“p)_‘z’p]’ (5.49)

QNM_ZO

where E%f(wgn) = Bg/ O(wgn)DZ: (wen) are the so-called quasinormal excitation coeffi-

_ *
W=Wpn,— Wy,

cients, given by the product of the quasinormal excitation factors Bg/ *(wen) [92-94] and
the coefficients D%f (wen) defined as

oo 1 Ae/o out . e Ce/o .
Bg/ (wfn) = 9 l;lAin (we )7 Zr/n (wfn) = e/oT(:}Z)' (550)
Wen g (wen) A, (wen)

While the excitation factors only depend on the Schwarzschild geometry, the coefficients

DZ/;) (wen) depend on the nature of the perturbation, that is, in our case, on the plunging

point-particle source. As a consequence of Eq. (5.30), the even and odd excitation factors

are related by
Dy + 12iMwg,

BS(wypy,) = LT 20 pog, Y. 5.51
7 (wen) Dy — 12i My, 7 (wen) ( )

Furthermore, the properties (5.31) imply that
BY°(~wi) = B (wim)] (5.52)

The integrand in C’Z/no(wgn) (5.41) is exponentially convergent at the upper limit when
rp ~ 6M, while at the horizon it behaves as (7' — 2M) %M« The integral therefore con-
verges when Im(wy,) > —1/(4M), which only holds for the fundamental QNM frequencies.
In order to compute the excitation coefficients for the overtones we consider the following
regularization procedure [57, 95]:

e/o P , eZWtG(T/)i,Lm(bG(T/) e/o ’ e/o ’
Cile], @)= [ | K ) — o) | + Q). (559
reg 2M 7"{0}(7“ )
Here we have introduced an auxiliary function q/ (w,r"),

45y (w,1’) = (o = 2M) M (80 4 g0 (@) = 2M) + g5l (@) (7 = 2M)% + .

(5.54)
where the coefficients qu/rz with ¢ = 0,1,2,... are obtained from the near-horizon expan-
sion of the integrand in Eq. (5.41). Subtracting q%j from the integrand ensures that the
r’ integral is finite. This regularized integral is then added to the antiderivative of q%f ,
Qe/ © f dr’ qz/no (w,r’) (neglecting any constant arising from the integration), evalu-
ated at the integral’s upper boundary, r = rp. We justify this regularization procedure in
Appendix F.

Like for the SPA, we explore the accuracy of the QNM sum in Sec. 6.2.
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6 Numerical implementation and comparisons

In this section we present our numerical implementation to obtain first-order plunge wave-
forms from the formalism presented in Sec. 5.4, discussing and validating our implementa-
tion choices. We also outline the procedure to obtain SPA and QNM waveforms following
Secs. 5.5 and 5.6, and assess how well they approximate the full waveform in their respec-
tive regimes of validity. Finally, we compare the 0PG waveforms to NR simulations. Our
numerical implementation is freely accessible in the ancillary material [63].

6.1 Implementation and validation

We start by describing our numerical implementation to obtain first-order (0PG) waveforms
from Eq. (5.40), with rp = 5.999M . Computing the waveforms consists in two major steps:
we first tabulate the quantity C’Z/no(w) (5.41) on a grid of w values. The final waveform is
then obtained as a function of tg(r,) — = by evaluating Eq. (5.40) using a discrete Fourier
transform (DFT). We almost exclusively present the time-domain waveform obtained using
the geodesic orbital dynamics, r(t) = 7(0)(t) and ¢p(t) = dg(rp(t)). In this case, using
the freedom to absorb x into a choice of initial time, we are able to rename “tg(rp) — x”
simply as “geodesic time” tg. Our complete time-domain waveform (5.40) is then

1 [+ ()
ge/e to) = —— dw e~wte _~tm ) 6.1
tm ppoo( G) 2 —c0 we 22'0.;14‘@“(0.1) ( )
our early-time SPA waveform (5.46) is
Ky (@.710) () _im
Vi oo (16) [ E 2iwA“{1(iu) eTmiete) (6.2)
¢ w=mQyp} (tc)

and our late-time QNM waveform (5.49) is

g 000 = 3 [0 63)
n=0

_ *
W=Wen,—Wy,

All numerical results are obtained setting M = 1.

We first construct the odd-parity “in” solution, which goes into CZT/);J (w) (as defined
in Eq. (5.41)) through the function Kj . We use Mathematica’s built-in HeunC function
(available in Mathematica version 12.1 or higher) as

A 2M .
Rz) m(w’r) _ 76—1(4M—r)w ( r

1 —2iMw
oM )

HeunC [z + 02 -2 = 8iMw — 16M>w?,
(6.4)
r
—4AMw(dMw —1),1 —4eMw, -3, —4iMw,1 — — .
w(dMw — 1), iMw, -3, —4iMw, 2M]
The even-parity “in” solution is then obtained from the odd-parity one using the rela-
tion (5.29). We have numerically checked that the definition (6.4) matches with the current

3

implementations of the “in” solution in the ReggeWheeler package within the Black Hole
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Perturbation Toolkit [96] (ReggeWheelerRadial[2,/,w,Method -> "HeunC"] ["In"] [r]).
Our “in” solution differs from the one defined in Ref. [95] by an overall factor, ﬁf‘l? (W, r) =

e~ 2iMw RZJ (W, r) Lenver” We get high-precision values for A(w) in the denominator of
Eq. (6.1) using the ReggeWheeler package.

Most of the computation time is spent in the radial numerical integration at a given
value of w, which defines CZQO(w). Through trial and error, we settled on the following

integration strategy:

5.999 2.1 3 4 5 5.999
/ - / ‘GK + / ’GK + / ’Levin + / ’Levin + / ‘Levin~ (65)
2 2 2.1 3 4 5

The individual integrals are performed either using the Gauss-Kronrod rule (GK) with 50
points or the Levin rule (Levin) with 50 points as options for Mathematica’s NIntegrate.
We set a timeout of 5000 seconds for each such integral. We found that for all 2 < £ < 12,
—{ <m < /{(m #0), and w in the range [—4, 4] these integrals were performed successfully.

We tabulate C'Z,/f (w) on an evenly spaced grid of w values with spacing Aw = 1073M 1
in the range w € [—weutoft; Weutoff] With weutoft = 4M ~L. In order to attenuate the effects
of the frequency cutoff on the Fourier transform, we used the low-pass filter described in
Eq. (16) of Ref. [97] with parameters (zo,w,q,s) = (—4,0.2,—-3.9,1) in the negative w
range, and a symmetrically defined low-pass filter in the positive w range. With this filter,
there are only marginally small high-frequency residual oscillations that remain visible in
the deep QNM regime; see Fig. 10. As a benchmark of the implementation, the maximal
value for Re ‘I/Z/v?(tG) is reached for the (¢,m) = (2,2) mode at tpeax =~ —104.1M where
WS (tpeak) ~ (0.5877 4 0.0137i) M.

We have investigated how the choice of Aw impacts the waveforms. We found that
using a spacing Aw = 1/(500M) leads to qualitatively incorrect waveforms because the
peak of the (£,m) = (2,2) mode is not captured. In order to test the accuracy of the
waveforms with our choice of Aw = 1/(1000M ), we have computed the relative numerical
difference between waveforms with different sampling intervals and a benchmark waveform
with sampling interval Aw = 1/(8000M ). The result is displayed in Fig. 5 for the (¢, m) =
(2,2) mode: the waveform with Aw = 1/(1000M) has a relative precision of 10~7 with
respect to the waveform with Aw = 1/(8000M). The precision scales globally according
Aw: shortening the interval by a factor 2 increases the accuracy by a factor 10.

In order to study the frequency-cutoff dependence, we computed the relative error of
the real amplitude as a function of weytofr as

1
ReUs$,(tq) ‘Wcutoff:4/M

gfm(wéutoﬁ) = maXigq (Re‘I’Z/fL) (tG)’WcutoH:“’éumﬁ o Re\I/Z{; (tG)"’qutoff:‘l/M) :

(6.6)
We numerically obtained that gy (Weutof = 2M 1) < 1074 for all 2 < £ < 12 and —¢ <
m < £, m # 0 modes except (¢,m) = (11,11) where £111(2) =~ 2.1 X 10~%. In that
sense, it is barely sufficient to set the frequency cutoff to weuto = 2M ~! in order to obtain
accurate waveforms with a 10~ precision. The cutoff weuor = 1M ™! only allows us to
have waveform with a precision of 1072: the maximal value of &, (1) is reached for the
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Figure 5. Relative difference between the absolute value of the real part of the waveforms
IReWS, | pp oo |[Awbest) for the (6,m) = (2,2) mode with weutor = 4M ' and sampling interval
Aw = Awpest = 1/(8000M) as compared with the corresponding waveform |ReWU$,|ppoo|[Aw;]
with sampling Aw; = 1/(1000M) (light gray), Aws = 1/(2000M) (gray) and Aws = 1/(4000M)
(dark gray).

(¢,m) = (5,5) mode with &5(1) ~ 6.3 x 1072, The analysis of the error at the cutoff
Weutoff = 3M ! allows us to provide an estimate of the accuracy of our waveforms which
are defined for weytor = 4M 1. We find Epp(Weutor = 3M 1) < 1076 for all 2 < £ < 12
and —¢ < m < £, m # 0 modes except (¢,m) = (4,4) where £44(3) ~ 1.1 x 1076, In
that sense, setting the cutoff to 4M~! leads to a loss of precision less than 1076. The
higher the value of ¢, the higher the cutoff should be in order to qualitatively capture the
peak of the waveform. This is illustrated in Fig. 6. Setting the cutoffs at 1M ~! or 2~}
does not allow us to correctly capture the (¢, m) = (12,12) waveform, while it is correctly
captured using a cutoff at 3M ~!. We learn that even if the precision is 10™* at cutoff value
2M~1, we need a larger cutoff frequency in order to qualitatively capture the peak of the
waveforms at high £. After this analysis we conclude that our waveforms are qualitatively
and quantitatively accurate upon setting weuto = 4M 1.

We also investigated the effects of changing the radial cutoff rp. In Fig. 7 we plot the
waveform corresponding to rp = 5.9M and rp = 5.99M. In the case rp = 5.9M, we observe
that the waveform fails to capture the correct behaviour around the time corresponding
to the cutoff tg(rp) & —401M, due to our omission of the field generated by the effective
source in the punctured region. Putting a higher cutoff allows us to better capture the
early-time behaviour since the geodesic gets closer and closer to the ISCO located at
rp = 6M as tqg — —o0. For rp = 5.99M, the waveforms fail around tg = —1249M, while
for rp = 5.999 they fail around tg = —3944M. In the range —750M < tg < 100M, the
change in the waveform upon changing the cutoff from rp = 5.999M to rp = 5.99M is
of the order of 1078M and therefore totally negligible. However, the smaller the mass
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(middle figure) and weytof = 3M ~1 (lower figure) in dashed red.

_ 49 —



0.6/

0.2

0.0k ! 1

|
e
o

Re [V, |pp o] [M]

—04

—500 —400 —300 —200 ~100 0
ta []\/f }

Figure 7. The blue curve depicts the real part of the (¢,m) = (2,2) mode waveform computed
using the cutoff rp = 5.9M. Around tg(rp) = —401M the waveform is not valid due to effects
of the cutoff. In black, the waveform is computed using the cutoff rp = 5.99M which extends the
validity of the waveform to approximately tg(rp) ~ —1249M (which lies much further to the left
of the diagram).

ratio, the greater the time the particle spends near the ISCO, and for some sufficiently
small mass ratio we might need to place the cutoff even closer to the ISCO. On the other
hand, this is likely a moot point because at 1PLT order we require the first-order field
for all 2M < 7, < 6M as input to the second-order source, calling for a more complete
implementation of the puncture scheme.

Next, SPA waveforms are obtained from Eq. (6.2). Here no frequency integral is
required. The waveform amplitudes (the coefficients of e=#"¢c(6)) are tabulated on a grid
of r, values. In practice, tg is more simply expressed as a function of r;, than vice versa,
and we plot the waveforms parametrically using tq = tq(rp) and ¢ = ¢a(rp)-

Finally, constructing the QNM sum (6.3) requires high-precision QNM frequencies
wyen, the excitation factors BE/ °. the coefficients C’Ken/f, and AZ/ © out (wen). We start with the
QNM frequencies from Refs. [91, 98, 99] and further increase the digits of accuracy using
Leaver’s continued fraction method [100]. The results for £ = 2,3,...,7and n = 0,1,2,3
are presented in Table 2. We take the excitation factors from the tabulated values in
Refs. [93, 98]. The coefficients CZ{IO are computed from Eq. (5.41) for the fundamental
mode and Eq. (5.53) for the overtones. We have kept the first five terms in Eq. (5.54)
(we have verified that increasing the number of terms to ten leads to a relative difference
of ~ 1076 or smaller in C’Z/no). We have tabulated all excitation coefficients EZQO (wen) =
Bj/ O(wgn)De/ °(wen) for £ = 2 up to the third overtone in Tables 3 and 4. The excitation

Im
coefficients for higher ¢ are provided in the ancillary material [63]. Finally, we compute the
asymptotic amplitudes AE/ © Om(wgn) using the procedure described in Ref. [95].
At this point, we can compare our excitations coefficients with the ones obtained by

Hadar and Kol (HK) in Tables 1 and 2 of Ref. [57], and by Folacci and Ould El Hadj (FO) in
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=2
=3
=4
=5
=6
(=17

n=2~0

n=1

n =2

n=3

0.37367—0.08896%
0.59944 —0.09270¢
0.80918 —0.09416%
1.01230 —0.094877
1.21201 —0.095277
1.40974 —0.09551:

0.34671 —0.273911
0.58264 —0.281301
0.79663 —0.284331
1.00222 —0.285821
1.20357 —0.28665¢
1.40247—0.287163

0.30105—0.47828q¢
0.55168 —0.47909¢
0.77271—-0.47991¢
0.98270—0.48033¢
1.18707 —0.48056¢
1.38818 —0.48071¢

0.25150—0.705151%
0.51196 — 0.690341
0.73984 — 0.683921¢
0.95500 — 0.680561
1.16327 —0.67859¢
1.36736 —0.67735¢

Table 2. Schwarzschild QNM frequencies Mwy,, up to the third overtone for each 2 < ¢ < 7.

n=>0 n=1 n =2 n=3
5 —1.14668 x 10~* —1.12799 x 1072 —8.03493 x 10722 2.52610 x 1073!
m =
+5.72179 x 1074 +4.13842 x 107135 —1.42463 x 10724 —1.32057 x 107344
. 6.53075 x 107° 1.33791 x 10712 —9.43025 x 1022 —3.96283 x 103
m =
—1.87158 x 10754 +1.37608 x 107135 +2.48916 x 10724 —3.66314 x 10734
0 2.06438 x 107° 4.91061 x 1073 —2.12623 x 10™% 2.36628 x 1073!
m =
+8.84288 x 107} +5.75437 x 107135 +4.28862 x 107224 —4.82273 x 107344
) —8.83249 x 1078 8.87604 x 10~ 14 5.31923 x 10722 —2.92157 x 107!
m=—
—4.89523 x 107%; —2.20023 x 107134 +7.96482 x 107224 —7.312004 x 10732
5 6.18182 x 10~ 7 3.95622 x 10714 —1.49044 x 10™22 1.01126 x 10732
m= —
—8.08701 x 107%; +5.77111 x 10715 +1.63288 x 107224 —8.95405 x 10732
Table 3. Excitation coefficients E%f (wpr) for £ =2 up to n = 3.
n=20 n=1 n=2 n=3
2 6.18182 x 10~ " 3.95622 x 10714 —1.49044 x 1022 1.01126 x 10732
m pr
+8.08701 x 10~%; —5.77111 x 107'%; —1.63288 x 10~2%; +8.95405 x 1073%;
1 8.83249 x 1078 —8.87604 x 10714 —5.31923 x 10722 2.92157 x 107!
m =
—4.89523 x 1075 —2.20023 x 107135 +7.96482 x 107224 —7.31200 x 10732
0 2.06438 x 1075 4.91061 x 10713 —2.12623 x 10~ 2.36628 x 10731
m = .
—8.84288 x 1075 —5.75437 x 107135 —4.28862 x 10722 +4.82273 x 1073Y4
. —6.53075 x 107° -1.33791x 10712 9.43025 x 10722 3.96283 x 103!
m=—
—1.87158 x 1075 +1.37608 x 107135 +2.48916 x 10724 —3.66314 x 107314
5 —1.14668 x 10~* —1.12799 x 1072 —8.03493 x 10722 2.52610 x 1073!
m= —

—5.72179 x 107%%

—4.13842 x 107135

+1.42463 x 107244

+1.32057 x 1073%4

Table 4. Excitation coeflicients Ee/0

m
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Table IT of Ref. [58]. In order to do so we first need to find dictionaries between the different
conventions that are being used. Hadar and Kol fix the constant ¢y in Eq. (3.43) such that
tq(2.2M) = 0, which leads to the relation EZ{f(wZn) = Rptm|yy €9t¢22M) between the
excitation coefficients. We then find agreement with the results of Ref. [57] up to an overall
minus sign with relative errors of ~ 10~% or smaller (and a few isolated cases have relative
errors of 1073). We suspect the sign disagreement to stem from different conventions used
to construct the Green function in Ref. [57]. It is however of secondary importance for
the aim of building full IMR waveforms: the orbital phase during the plunge is known up
to a constant, which will be determined by the orbital phase at the end of the transition
to plunge. Using the conversion ¢'(t — tg) = — (f’{o}(rp))2 8 (r—rp)+ (- )o(r —rp), we
compare the terms proportional to ¢’ (r—r,) in our sources (5.10) and those in Egs. (14) and
(15) of Ref. [58]. We find that the sources differ by an overall factor, SZ/; = Ccro SZ/;

with cpo = 2v/2w. This leads to E?T/,f(wen) = CFO ( V2T C’éfr{Z
CFO < V2T DE%Z

find the first equahty to be satisfied with relative errors of ~ 10™* or smaller (except for

FO
L) and B (—w,) =

). Up to an overall factor of 1/4/27 and an overall minus sign, we

the £ = m = 2 excitation coefficient, where we suspect a typo in the sign of the imaginary
part in Ref. [58]). We also find the equality for the mirror modes to have larger relative
errors especially for £ > 4, which originate from disagreements of the same magnitude
already at the level of the QNM frequencies. We have investigated the source of the
disagreement by an overall factor of 1/v/2m: in Ref. [58] the inverse Fourier transform is
defined in Egs. (21) and (22) with the symmetric normalization 1/v/27. Equations (15) and
(25) in Ref. [58] are however consistent with a forward transform of the form Sigin )(r) =
fjoooo dt Séi{o) (t,r)e™! missing a factor 1/v/27. Again, we have not found the source of the
minus sign disagreement.

6.2 Comparison with the stationary-phase approximation and the QNNM sum

In this subsection we perform internal consistency checks and compare the OPG waveforms
computed following the procedure described in Secs. 5.4 and 6.1 with the SPA and the
QNM sum discussed in Secs. 5.5 and 5.6, respectively.

In Fig. 8 we compare the SPA (5.46) (blue curve) with the OPG waveform (dashed
black curve) for the (¢, m) = (2,2) mode. The waveforms agree very well at early times,
with relative errors below 1% up to four cycles before the peak amplitude. Around merger
the two waveforms start to differ significantly, with the SPA being unable to capture the
late-time QNM behaviour. Indeed, by construction, the SPA is expected to work as long
as the integrand in Eq. (5.42) contains a rapidly oscillating factor, which occurs as the
particle is close to the ISCO and corresponds to the early portion of the waveform. This is
also consistent with the geodesic plunge trajectory displayed in Fig. 3, where the particle
spends a large number of orbits close to the ISCO before falling from r ~ 5.7M to the
event horizon within ~ 2 orbital cycles.

As shown by the comparison with the red curve in Fig. 8, at late times the 0PG wave-
form is well described by the QNM sum (5.49). Figure 9 shows the comparison between
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Figure 8. The (¢,m) = (2,2) mode of the 0OPG waveform (black dashed curve) compared to the
corresponding SPA (5.46) (blue curve) and QNM (5.49) (red curve) waveforms. The QNM sum
includes overtones through n = 3. We have truncated the SPA and QNM waveforms once they
start to significantly differ from the 0PG waveform. The plot on the right zooms in on the region
around the peak amplitude.

the OPG waveform for the (¢,m) = (2,2) mode and QNM sums that include a different
number of overtones (up to the first three), while in Fig. 10 we plot the difference between
the waveform and the QNM sums. These plots confirm that the QNM approximation
correctly reproduces the late-time behaviour of the waveform, with increasing accuracy as
higher overtones are included. Although including a larger number of overtones improves
the accuracy of the QNM sum at late times, doing so does not extend its accuracy to
earlier times. Crucially, the regime of validity breaks down well before reaching the wave-
form’s peak amplitude. We can see from the right panel of Fig. 8 that this breakdown
occurs around ~ 10M after the peak, which is consistent with studies of numerical merger-
ringdown waveforms [59-62]. Those studies found that numerically fitting QNM sums to
NR data becomes stable and robust around 10M—20M after the waveform peak.

We hence conclude that our first-order waveforms are internally consistent and agree
with expectations in the sense that the SPA correctly reproduces the periodic behaviour
at early times, while the QNM sum describes the ringdown at late times. The combination
of the two approximations accurately covers almost the full 0OPG waveform, only missing a
few cycles around the peak amplitude.

With these results in mind, we return to the phase-space description of the waveform.
The SPA makes explicit that the waveform is a simple function of phase-space coordinates
until near the waveform’s peak amplitude, while the QNM sum, which involves frequencies
unrelated to the orbit, suggests that the waveform becomes divorced from the phase-space
trajectory after the peak amplitude. However, this intuition is somewhat misleading. Be-
fore generating the waveform as a function of time, we can directly examine its original
form (5.40) as a function of the phase-space coordinates (¢p,rp). In Fig. 11 we plot the
waveform phase as a function of ¢, and r,. Here we see there is no drama at the waveform
peak, corresponding to 7, ~ 3M. The emitted waveform’s phase is a simple, smooth func-
tion of the particle’s orbital parameters until the particle gets extremely close to the event
horizon; there, at 7, ~ 2.01M, the waveform phase rapidly dissociates from the state of
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Figure 9. OPG waveforms for the (¢,m) = (2,2) mode (dashed black curves) compared with

the corresponding QNM sums that include the fundamental mode only (n = 0) and an increasing
number of overtones up to n = 3. Note that we are only plotting the QNM waveforms up to a time
where they start to significantly differ from the OPG waveforms.

0.001

Figure 10. Difference between the O0PG waveform for the (¢,m) = (2,2) mode and the corre-
sponding QNM sums with an increasing number of overtones. Following the color coding of Fig. 9,
the blue curve corresponds to the QNM sum that includes only the fundamental mode, while the
orange, green and red curves correspond to QNM sums truncated at the first, second and third
overtone, respectively. For reference, we have also plotted the 0PG waveform as a dashed black

curve. The y axis is on a logarithmic scale.
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Figure 11. Waveform phase of the (¢, m) = (2,2) mode as a function of the phase-space variables
(¢p,7p), as defined from Eq. (5.5). The blue dashed curve shows the path through phase space of
the waveform phase at OPG order, where ¢, = ¢g(r,) is given by Eq. (3.44)

the particle’s orbit.

In the figure we also plot the particle’s phase-space trajectory. From that trajectory,
we see that at OPG order, the waveform phase gradually deviates from me¢, over the
course of the plunge. When the trajectory approaches the horizon, it effectively freezes:
approximately 0.7 radians after the peak, large changes in the waveform phase become
associated with virtually no change in ¢, or r,. It is this marked change in behaviour,
when the particle is far below the light ring, that coincides with the time (~ 10-15M after
the peak) when the QNM sum begins to approximate the complete waveform.

At higher PG orders, the surface in Fig. 11 will be deformed due to terms hg} and
higher in the waveform. The trajectory on the surface will also change due to 1PG and
higher corrections to the orbital motion.

6.3 Comparison with numerical relativity

This subsection contains qualitative comparisons between our OPG waveforms and NR
simulations from the SXS catalog [101, 102]. All SXS data we work with here are drawn
from the public python package sxs [103].

We start by re-expanding the relevant quantities for our waveform generation in powers
of the symmetric mass ratio v = Mm,/(M + m,)*> = /(1 + €)? at fixed total mass
Mot = M +m, = M(1+ ¢). This yields the most accurate comparisons in the regime
of comparable-mass binaries [21, 51, 55, 104-109]. Inverting the relation between v and
e gives € = (1 — 2v — /1 — 4v)/(2v), which, in the small-mass-ratio expansion, leads to
e = v+ 202 + O(v3). For our first-order waveforms this re-expansion simply amounts to

48 —



substituting e — v and M — M;s. In order to compare the 0PG and NR waveforms,
we align them in time and phase at a given waveform frequency. Referring to Eq. (5.5),
we define the #m-mode waveform phase and frequency from hy, = |Hpy|e % as @y, ==
mep — arg(Hey,) and wey, = dP®y, /dt.

After the above preliminaries, we can begin to assess the accuracy of our 0PG wave-
forms, using SXS waveforms as our benchmark. The top panel of Fig. 12 compares the
(¢,m) = (2,2) mode of our OPG waveforms with the NR simulations SXS:BBH:1220 [110)]
and SXS:BBH:2477 [111]. These are NR waveforms for quasi-circular, non-spinning black
hole binaries with mass ratios ¢ = 4 and g = 15, respectively. For both simulations, the
reference dimensionless spin on each of the two black holes is ~ 1075 or smaller, and the
eccentricity is < 10~ We align the waveforms in time and phase at wso = 29{0}(3Mmt),
which corresponds to the peak amplitude |Haz| of the plunge waveform. We also shift
the relevant part of the waveforms in time such that ¢ = 0 corresponds to the alignment
time. In the ¢ = 4 case the 0PG waveform is not able to accurately capture the late-time
behaviour of the NR simulation, while the comparison improves drastically for ¢ = 15. The
improvement with increasing q is expected: our 0PG model omits 1PG and higher terms
in the phase and amplitude, leading to relative errors that scale roughly linearly with e.

Numerous 1PG and higher effects contribute to our model’s error, but the error after
the waveform’s peak appears to be dominated by the fact that our 0PG model does not
account for the final, remnant black hole’s spin. In the the top panel of Fig. 12, the NR
simulations we compare against have small spins on the individual black holes during the
inspiral, but the remnant black holes have substantial dimensionless spins |Xyem| &~ 0.47 for
SXS:BBH:1220 and |¥Xyem| =~ 0.19 for SXS:BBH:2477. The spin of the remnant is largely
determined by the dimensionless angular momentum of the plunging particle, which at 0PG
order is given by its value at the ISCO, 2v/3v, equal to ~ 0.55 for ¢ = 4 and ~ 0.20 for
q = 15, in rough agreement with the SXS values. This significant final spin leads to QNM
ringdown frequencies that differ significantly from the Schwarzschild ones captured by our
OPG model. In a 1PG model, these shifts in the (¢,m) = (2, 2) ringdown frequencies should
be accounted for primarily by the nonlinear source 62Gi%} [h{l}, h{l}], through couplings

between the m = 2 modes of hilﬁ} and the (¢,m) = (1,0) mode of h({;ﬁ}; this is because the

(1,0) mode encodes the angular momentum content in hil}, and it necessarily asymptotes,
at late times, to a perturbation toward the final, stationary Kerr metric of the remnant.

To investigate whether the remnant spin is really our main source of error in the post-
peak regime, we now consider two alternative NR waveforms that have the same mass
ratios as the ones used above but negligible remnant spin: the quasi-circular binary black
hole simulations SXS:BBH:1931 [112] with ¢ = 4 and SXS:BBH:2471 with ¢ = 15 [113]. In
these simulations the individual black holes are spinning prior to merger, but the remnant
dimensionless spins are very small (|Xrem| ~ 1072). We compare these NR simulations
to our OPG waveforms in the bottom panel of Fig. 12. At late times the agreement has
improved since the Schwarzschild QNM sum is now a better approximation to the remnants’
ringdown. Before the peak amplitude the comparison instead becomes worse since before
merger the NR waveform describes the inspiral of two spinning black holes, which is not the

— 49 —



SXS:BBH:1220, q =4, |Yem| ~ 0.47 SXSBBH:2477, ¢ =15, |Xsem| & 0.19

02+ 4 i 1
i 005 I, R AN ]
— 01 ,'" = Ik ‘ ]
S ' S
= B A ] =
= 00f% R e 000
£ W/ 2
<1) . " )
= ooaf v\ ¥ ~ g AW ' ]
-0.05" W\ 4 1 —
-02+
—-100 -50 0 50 100 - 100 -50 0 50 100
t [ M) t [ Mior]
SXS:BBH:1931, ¢ =4, |Xem|=~4x1072 SXS:BBH:2471, ¢ =15, |Xeem| =5 x 1072
0.2 ]
s A ] 005k 1
01 S d 1 —
= <
= 5 \ HEEREEE = Y
— 00 ; - B TR — 0000 Por
E 2 Y
< <
/= -0.1 B o=t
-0.05+ g
—02f \/ p
—-100 -50 0 50 100 -100 -50 0 50 100
t [Mior) t [Mior]

Figure 12. Comparison between NR simulations (dashed black curves) and our 0PG wave-
forms. The waveforms are aligned in phase and frequency at ¢ = 0. Top panel: comparison
with SXS:BBH:1220 [110] and SXS:BBH:2477 [111], two quasi-circular, non-spinning black hole
binaries with remnant dimensionless spin of |Xrem| & 0.47 and |Xrem| = 0.19, respectively. Bottom
panel: comparison with SXS:BBH:1931 [112] and SXS:BBH:2471 [113], two quasi-circular, spinning
black hole binaries which coalesce to form a non-spinning remnant (remnant dimensionless spin

|>Zrcm| ~ 1072)'

scenario described by our waveforms. In any case, we do not expect the plunge waveform
to be accurate far before the peak amplitude and expect the transition to plunge to take
over before reaching the ISCO.

We can illustrate our accuracy in more detail by separately comparing the 0PG wave-
form phases @y, (Figs. 13 and 15) and waveform amplitudes |hsy,| (Figs. 14 and 15) with
NR. For a given mass ratio, we see that for ¢ = 0 the “zero-remnant-spin” waveforms
(SXS:BBH:1931 and SXS:BBH:2471) compare better than “zero-initial-spin” waveforms
(SXS:BBH:1220 and SXS:BBH:2477), while the roles are reversed for ¢t < 0; graphically, in
Fig. 15, the green and red curves respectively lie below the blue and orange ones for ¢ 2 0
and vice versa for t < 0. It is also the case that the comparison improves with increasing ¢:
in Fig. 15, the orange and red curves respectively lie below the blue and green ones for all
t, modulo the parts of the plots dominated be the numerical noise. This also holds when
considering the relative, rather than absolute, difference. In all cases except the one with
large remnant spin, we observe that our OPG model matches the peak amplitude of the
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Figure 13. Comparison of the (¢,m) = (2,2) waveform phase ®, as a function of time between
the OPG waveforms (colored curves) and the NR simulations (dashed black curves) considered in
Fig. 12. The color coding follows the one of Fig. 12. The phase difference vanishes at the alignment
time ¢ = 0 by construction.

SXS waveform to a high degree of accuracy.

7 Discussion and conclusions

In this paper we have presented a framework for generating merger-ringdown waveforms
within GSF theory. We have treated the final plunge, which gives rise to the merger-
ringdown portion of the GW signal, using a post-geodesic expansion in a phase-space
approach, mirroring our previous treatments of the inspiral and the transition to plunge [43,
51]. The resulting waveform is summarized in Eqgs. (2.14)-(2.15), with 2° = (r,6, ¢) and
r — oo in Eq. (2.15). All the ingredients needed for waveform generation—the waveform
amplitudes hi%}’m(J @ r — oo) and the forcing functions F{an}(J b)—are pre-computed as
functions of the binary’s mechanical variables J* = (©,6M¥). Evolving through the
binary’s mechanical phase space then yields the time-domain waveforms. This split between
slow offline computations (solving field equations) and fast online ones (solving a very
small number of ordinary differential equations) allows us to maintain the rapid waveform
generation of inspiral and transition-to-plunge self-force models. We have outlined this
framework through second order in € for the waveform, or equivalently, 1PG order in the
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Figure 14. Comparison of the (¢,m) = (2,2) waveform amplitude |hs,| as a function of time
between the OPG waveforms (colored curves) and the NR simulations (dashed black curves) con-
sidered in Fig. 12. The color coding follows the one of Fig. 12.
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Figure 15. Difference in waveform phase (left plot) and amplitude (right plot) between the (¢, m) =
(2,2) modes of the OPG waveform and the NR simulations SXS:BBH:1220 (¢ = 4, |Xrem| =~ 0.47,
blue), SXS:BBH:2477 (¢ = 15, |Xrem| ~ 0.19, orange), SXS:BBH:1931 (¢ = 4, |Xrem| =~ 4 x 1072,
green) and SXS:BBH:2471 (q = 15, |Xrem| & 5 x 1072, red). The y axis is on a logarithmic scale.
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orbital dynamics. Similarly, while we have worked with ¢ slicing in our calculations here,
we have also emphasized that hyperboloidal slicing (or null slicing as in Fig. 1) would offer
advantages that become increasingly important at post-geodesic orders.

At early times, close to the ISCO, our plunge expansion asymptotically matches the
late-time transition-to-plunge expansion of Ref. [51]. We have detailed this asymptotic
matching up to 1PG and 7PLT order and shown how it provides critical input for the
plunge solution, both in the orbital dynamics and in the field equations. Without the
asymptotic matching, the plunge expansion is under-determined and involves singularities
at the ISCO. In the field equations, the matching conditions can be rigorously enforced
through a puncture scheme, with an effective source appearing in a punctured region at
early times, near the ISCO. For our implementation in this paper, we have safely neglected
the effective source in the punctured region by focusing on times sufficiently far to the
future of the puncture. However, calculations at 1PG order will likely require a more
thorough treatment of the effective source, as the OPG field is needed all the way back to
the ISCO as input for the 1PG field equations.

Our framework involves field equations defined directly on the binary phase space,
as opposed to the ordinary time domain, but we have shown how to transform these
equations into a familiar frequency-domain form. Using frequency-domain methods, we
have implemented our formalism at leading (OPG) order, solving Regge-Wheeler-Zerilli
equations to obtain the leading-order plunge waveform. Although this waveform has been
obtained previously from the same frequency-domain equations [58], we have shown that
there is still new information to be mined from it. Specifically, we have utilized it to
illuminate fundamental features of merger and ringdown, and we have begun to assess its
accuracy through comparisons with NR waveforms.

First, to probe the structure of the merger and ringdown, we have focused on two
questions: how well is the waveform described by an “extended inspiral” prior to the
waveform’s peak, as in EOB [33], and how well is it described by a QNM ringdown after
the peak? Our key findings are illustrated in Figs. 8 and 11.

In Fig. 8 we see that the early part of the waveform, until very close to the peak,
is well approximated by a stationary-phase approximation that expresses the waveform
phase and amplitude as instantaneous functions of the orbital phase and radius, akin to
EOB’s extended-inspiral construction. In the future we will explore how much this can be
improved by including higher-order terms in the SPA and whether our approach can be
used to inform EOB’s “non-quasicircular corrections” [35].

Figure 8 also shows that at late times, = 10M after the peak amplitude, the QNM
ringdown becomes a good approximation to the full waveform. However, at earlier times the
QNM sum diverges dramatically. This has bearing on a long line of studies. Many papers
have investigated whether a QNM sum, including a variable number of overtones, is able
to reproduce the GW strain even at the peak [59, 114-126], following earlier evidence that
a QNM model with up to n = 3 overtones can fit the ringdown even at times preceding
the peak [127]. Such investigations are mainly based on fitting NR data using QNM
models built from a sum of damped sinusoids (with QNM frequencies). We have instead
computed the QNM sum directly from first principles (analogous to Ref. [128]’s study for
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a toy source term). Our results show that, at least in the case of a Schwarzschild primary
and including the first three overtones, the QNM sum only becomes accurate significantly
after the waveform’s peak amplitude. Our finding of when it becomes accurate is broadly
consistent with the time at which QNM fits to NR ringdown waveforms become robust [59—
62]. Figure 9 shows that this ringdown-onset time changes only marginally as we vary the
number of overtones up to n = 3, but we note that Ref. [128]’s results suggest that the
effective onset might appear at substantially earlier times if many more overtones were
included.

A natural followup, in addition to including higher overtones, would be to further
dissect the ringdown. We compute our full waveform through an inverse Fourier transform,
involving an integral over all real frequencies. In Sec. 5.6 we have reviewed how this real-
line integral can be equated to the sum of three contributions with complex frequencies:
the QNM sum, which we have computed including the first 3 overtones; an integral around
a branch cut, associated with power-law tails (which are clearly visible after ¢ ~ 150M in
our full waveform in Fig. 10); and an integral along a high-frequency arc, associated with
a prompt response. We will explore the branch-cut and high-frequency arc contributions
in future work, complementing recent studies such as Ref. [129].

At least at OPG order, in Fig. 8 we can identify the genuine “merger” regime as the
brief interval when neither the SPA nor the QNM sum is accurate. However, Fig. 11 shows
that the waveform remains closely tied to the orbital motion in this interval, even though it
occurs after the particle has fallen behind the light ring. It therefore appears plausible that
a higher-order SPA can be pushed to later times, past the waveform’s peak. On the other
hand, the onset of the QNM regime is very sudden in Fig. 11, marking a clear dissociation
of the waveform from the orbit and indicating the difficulty of pushing the QNM sum to
earlier times.

We expect these types of analyses will further sharpen our understanding of the merger
process, particularly when our model is extended to 1PG order, where nonlinear effects
arise. Such analyses might additionally have utility in improving EOB and Phenom IMR
waveform models.

Separate from the broad, fundamental questions about the merger regime, we have
also qualitatively assessed the accuracy of the 0PG waveform, using NR waveforms from
the SXS catalog as a benchmark. For sufficiently small mass ratios, our 0PG waveform’s
error is necessarily dominated by its omission of 1PG terms, corresponding to O(v?) terms
in the waveform amplitude and O(v) terms in the phase. Our comparisons with NR are
consistent with that expectation, and they suggest that a complete 1PG model could be
highly accurate at mass ratios ¢ &~ 1/10 (and perhaps even closer to ¢ = 1). We have
also singled out the most significant 1PG corrections: those associated with the nonzero
spin of the final, remnant black hole. Such corrections will appear automatically in our
framework at 1PG order, and they are potentially easier to calculate than the full litany of
1PG effects. Hence, as an intermediate step toward 1PG waveforms, there would be value
in building an incomplete 1PG model, including only the 1PG terms associated with the
remnant spin.

Our next immediate goal, however, is to build an IMR model that enables the pro-
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duction of fast and accurate waveforms for asymmetric binaries. We aim to achieve this
by combining the framework presented in this paper, together with our earlier work on
the transition to plunge [51], with the post-adiabatic inspiral [21, 43]. In work presented
in Refs. [130-132], we have built a fast IMR waveform model using the 1PA inspiral, the
transition to plunge through 2PLT order and the geodesic plunge, with switching points
between the three regimes. That model will be detailed in a followup paper. Future
work will focus on improving the connection between the three regimes and carrying the
transition-to-plunge and plunge expansions to higher order, with the aim of extending the
sub-radian accuracy of post-adiabatic inspiral waveforms through merger and ringdown.

Further future work includes the generalization to plunges (both prograde and retro-
grade) into a Kerr black hole. The general framework described in this paper also applies
when considering a spinning primary. For a particle plunging from the Kerr ISCO [133, 134],
obtaining the first-order plunge waveform would then be achieved using the Teukolsky equa-
tion [135] rather than the RWZ equations employed in this paper. The generalization to
generic equatorial plunging orbits, which are reached when the inspiral admits eccentricity,
is also under investigation.

The offline/online split in our approach also lends itself to modelling mergers beyond
general relativity or including matter effects. Waveform ingredients (beyond-GR or matter
corrections to amplitudes and forcing functions) can be computed offline, in a modular
way, and then added to the online waveform generation, just as has been done in the
inspiral (see, e.g., Refs. [136-138]). We will exploit this fact to explore black hole mergers
in alternative theories of gravity [139] or in the presence of dark matter halos [140].

Finally, we note that, very recently, during the preparation of our paper, Ref. [80]
also presented a fast, leading-order IMR waveform model that includes the same 0PG
waveform we have detailed here. Their IMR model involves stitching the time-domain
OPA inspiral waveform to the time-domain OPG plunge waveform, skipping the transition

regime in between. Since the transition regime has a frequency width of order g2/5

, omitting
it should have a small effect for sufficiently small mass ratios; however, we expect that
this omission will incur significant errors for moderate mass ratios. Such stitching might
also become impractical beyond leading order, as the post-adiabatic and post-geodesic
expansions become increasingly singular at the ISCO. Since the OPA and 0PG waveforms
never have a common frequency, stitching them together in this way would additionally
seem to require a discontinuity in the waveform frequency. However, the approach has a
clear advantage in its simplicity, and it should suffice for many systems, such as EMRIs,

where the merger and ringdown carry little SNR.
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A Asymptotic match between transition to plunge and plunge

A.1 Coefficients of the asymptotic late-time transition-to-plunge solutions

Up to 7PLT order, the first coefficients in the late-time solution of the orbital radius (3.27a)
are given by

gt =—2av6M?, TP =0, vi> 1, (A1)
r? T =0, vix o, (A.2)
(42) _ 3 (4,-1/2) _ 1/493/4 7 r3/2
) =5T6M°, gy = —362'/433 M2 fl), (A.3)
(5,5/2) (5,0) 2 o1 (5,—5i/2) .

T3 =0 TE = —54M f[5], T3 =0, Vi>1, (A4)
rig? =—s0m2v6M?, 5P = 36614 M52 (48\f2M Iy — V3£l A) , (A.5)
(1,7/2) _ (7,1) _ 2 4

P =0, ri = 6M (g + 90VEMES) (A.6)
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The first coefficients in the late-time solution of d€2/dt (3.27a) up to 7PLT order read

t
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F[l} =0, Vi>0, (A.10)

1/4
(5:5/2) _ o (2 1/2 (o) _ 1 E gt
FSo? =2 (3) M2 Y = s (36VEMfy — fha) (A.11)
(63) _
FgY =0,
o1 . (A.12)
) _ r T t
Foy ' = e 93 (8VBMfy = V2ffya) = Vi)

3/4
PO _ g <§> M2,

- y t t (A.13)
oy~ V7]
(84) _
By =0
(83/2) _ 1 ¢ t
e TR Y VilE [\/gf )5 +3V3j0jc (A.14)

+36M (V3 +3V2 hop + 6M (9254 + 43y
+6\/§f[t1o]E + 72\/§Mf[T7]A - 1512\[2M2f[%])>} ’

F(979/2) =_392 21/433/4]\45/27

(9.2) = — # s T t t
B =~ 18121000 [5f o + 15flgc + 8V6f{1p +12V6 {1k

+36M (5\/6]“[7"10][) —4 (f[tg}B — 3f{11]B — 5f{11]c — 9ffu]p — 21M figy 4

—A5M flopp + 18VOM fly 4 + 932402, — 379008VEM? 11y) )]

(A.15)
(10,5) _
Fm =0,
FOO9 = - - 2V3fhop +3V3 g + V3f 36v/3M [,
[7] T 62208 63/4)7/2 [12]D [12]L (2jm t f[ll}D

+ 54VBM fliy 5 — 18V2M flyy 5 — BAVEIM fyg0 + 54V2M ffy 5
+ 18\@Mf[t12}p + 90\/§Mf612](; + 90\/§Mff12]H + 108\/5]\[70[132]1]
+ 324V2M° fiyy 5 + 9T2V2MP fly p + 1620V2M 10
+2916V2M> fly o — 1296V3M? flig ) + 1296V3M> fi
+11664v/3M° fy 4 — 44064v/2M3 fly 4 — 23328V2M £l
—5184v/2M° ff) 5 , — 1003104v/2M* f1,, 4 + 8491392v/3M° 15 | .
(A.16)

— 57 —



A.2 Coefficients of the asymptotic near-ISCO plunge solutions

Up to 1PG order, the first coefficients in the near-ISCO solutions of the orbital radius
(Egs. (3.29) and (3.32)) are given by
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The first coefficients in the near-ISCO solutions of the forcing terms (3.29) and (3.33) read
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A.3 Self-force matching conditions

In the transition-to-plunge regime, the self-force admits an expansion in integer powers of A
at fixed phase-space coordinates AQ and §M*, f# =3 )\”f[i} (AQ,§M™T). The coeffi-
cients of A" in this expansion can be written as a sum of terms factored into a AQ)-dependent
piece and a AQ-independent piece (labeled with capital Latin letters); see Ref. [51]. Using
Eq. (3.27a) to expand the AQ-dependent pieces, we find that the late-time behaviour of
the transition-to-plunge self-force reads

B0 420,80 =Xl £ AR ¥[808R 4 008070 g,

3 2
9 2 o 2 (3,3/2) 2 o —1/2
+ A [AQ f[g]A + 5 (F[o] ) AQ f[g]B +0 (AQ )]

+ OAQ()\lO).
(A.21)

Here we use the symbol Oaq to indicate subleading terms in the transition-to-plunge
expansion and the symbol O to indicate subleading terms in the late-time expansion of a
given PLT order.
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The near-ISCO solution of the self-force in the plunge regime follows from Eq. (3.31):

(2,2 = Q0 OMF) =Nl o+ ATAQSL  + XAV (A.22)
+AAQP S, + O(APAQY2) + Og(e?). '

Here we use the symbol Oq to indicate subleading terms in the plunge expansion and the
symbol O to indicate subleading terms in the near-ISCO expansion of a given post-geodesic
order.

Equating the coefficients of equal powers of A and AQ in Egs. (A.21) and (A.22), we
obtain the following matching conditions for the self-force:

Fiyo =15 (A.23a)
Foye = fa (A.23b)
fye =Fo ™" fya (A.23¢)
fina=figats ’ ( [0?]’ 32 ) fors- (A.23d)

The subleading terms in the AQ — 400 expansions at each order in A in Eq. (A.21) will
match with terms that originate from subleading orders in the post-geodesic expansion in
Eq. (A.22). The coefficients in Eq. (A.23) can be further connected to inspiral quantities
through the asymptotic match between the inspiral and transition-to-plunge regimes [51].
In particular, the terms ffl},o and fﬁ}z are given by the inspiral’s first-order self-force and
its € derivative evaluated at the ISCO, respectively.

The asymptotic match presented in Table 1 between transition to plunge (up to
7PLT order) and plunge (up to 1PG order) requires the self-force matching conditions
in Egs. (A.23) in addition to the higher-order ones listed below:

1
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1 3
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B Transformation between the fixed-() and fixed-r, expansions

In this appendix we derive the transformation between the fixed-Q2 formulation presented
in Sec. 3.1 and the fixed-r, formulation presented in Sec. 3.3. As stressed in the body of
the paper, the two formulations are related by a transformation on phase space, which is
an inherent gauge freedom in the phase-space formalism.

— 60 —



We first recall the expansions of 7, (at fixed 2) and 2 (at fixed r}):

Tp = 710}(2) + Z "y (Y SM*), (B.1a)
n=1
Q= Quoy(rp) + > "y (rp, M), (B.1b)
n=1

Substituting Eq. (B.1a) into Eq. (B.1b) we derive the dictionary between the two expan-
sions.

At zeroth order in &, we obtain

Q = Qqoy (110} (2)), (B.2)

which is automatically obeyed since Qypy(-) and 7oy (-) are inverse functions of one another,
after choosing the correct branches for r(gy; see Sec. 3.1. Taking a first and a second
derivative of Eq. (B.2), we obtain

L= 1l (@) (r(0} (), (B.3a)
0 = {0y (D) (roy () + ({6 (2))°Qy (03 (), (B.3b)

where a prime denotes differentiation with respect to the argument.
At order ¢, after using Eq. (B.3), we find from Eq. (B.1) that

iy (92, 6M %) = =y (2)Q1 (r(oy (R), IM ™). (B.4)
Taking a first and a second () derivative of this equation, we furthermore obtain
iy (Q,0MF) = — () () (ri0y (2), 6MF) — 175y (40y) 213 (1103 (), IM ), (B.5a)
g (Q,6MF) = — (r(5, (2)°Q] (r(0) (), SMF)

- 37'/{0}(9)7’{{/0}(9) %1}(7"{0}(9), 5Mi) (B.5b)
— 70y (01 1y (rgoy (2), 6M ),

where a prime denotes differentiation with respect to the first argument.
The self-forces in either formulation are related as

> "
n=1

The relationship between the two self-forces can be obtained by plugging Eq. (B.1) into

(rp, SM™). (B.6)

fixed 7p

+\ n gl
ﬁxedQ(Q’(sM )_nz:lg f{”}

Eq. (B.6). We can express the resulting equations in terms of either r, or Q. We choose
to express all matching equations in terms of the orbital radius 7,. At leading order we
simply have

(Tpa‘SMi) = fﬁ} (Q{O}(Tp)a(SMi)- (B.7)

e
{1} fixed Tp fixed Q
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In order to obtain the dictionary between the evolution equations, we start by con-
sidering the rate of change of the orbital frequency. In the fixed-r, formulation, from
Egs. (B.1b) and (3.37) we have

a2 _ dQdry _
dt_drp dt

{{0} (rp) + Z 8nQ/{n} (rp, 6M™)

n=1

F{rg} (rp) + z_:l 8nF{T;;} (T, 5Mi)
(B.8)
We then use Eq. (B.1b) to re-expand the evolution equation (3.8) in the fixed-€2 formulation,

dQ)
= = Fify(Qoy(rp) +2 [Fg}(g{o}(rp), SM*) + 00 F Gy (o) (1)) Q1) (s 5Mi)} +O®2),
(B.9)
Comparing Egs. (B.8) and (B.9) order by order in €, we obtain, up to 1PG order,
Fi (Q40y (rp))
r {0} \FH{0}\"p
F'? (p ) = , B.10a
{0}( p) Q/{O}(Tp) ( )
i 1
F{p)(rp, 6M*) = T ) FE (Qoy(rp), 6M*) + 8o F{ly (oy (rp))Qy (rp, 6M)
—ng}(rp)Qh}(rp, 5Mi) :
(B.10Db)

At geodesic order, the two formulations are mathematically equivalent, as can now be
easily verified from Eq. (B.10a) using Eqgs. (3.25), (3.40) and (3.41). At 1PG order, the
1PG set of differential equations (3.26) and (3.48) can also be recovered one from the other;
this is easily verified using the relations (B.3), (B.4), (B.5), (B.7) and (B.10).

C Vector and tensor spherical harmonics

We list the components of the vector and tensor spherical harmonics as defined in Ap-
pendix A of Ref. [82]. The even- and odd-parity vector spherical harmonics read

Y= 0pY ", Y™ = 0,7, (C.1)
1
Im .__ l m . : 12
Xg™ =m0V, X = sin g gV, (C.2)

where Y = Y™ (0, ¢) are the standard scalar spherical harmonics. The even- and odd-
parity tensor spherical harmonics are given by

[ 1
Y = ag+2£(£+1)] y‘m, (C.3)
yim o [g,0, — 00,] yom (C.4)
9¢'__0¢ sinf ¢ ’ :
yim .= -82 in0cosfdp+ ~0(0+ 1)sin2 0] Y™ C.5
b6 = |0y +sind cos 9—1—5( + 1) sin , (C.5)
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1 cosd
00 sin 6 [ 9%¢ sin98¢] ’ (C.6)
Xpm = 1 sin@ 97 — ! 92 —cosfdy| Y (C.7)
% " 3 O sing ¢ e '
X0 = [sin 0 9p0y — cos 0 9] Y. (C.8)

D First-order Regge-Wheeler-Zerilli equations in generic slicing

In this appendix we extend the main steps in Secs. 5.1-5.4 to generic hyperboloidal slicing
s. Here we require s to approach retarded time u at future null infinity and advanced time
v at the horizon.

We highlight how this slicing leads to well-behaved solutions in our puncture scheme,
and we explain how those solutions can be used to obtain the correct (though singular)
solutions in ¢ slicing.

D.1 Punctured RWZ equations

We start from the RWZ equations on phase space for a generic choice of time slicing s, as
given in Eq. (5.6). Following the same procedure as in the main text we can split the field
R’ into a puncture R%? 7 and a residual field RZ/,? R as

m
e/o e/oR e/oP
R°(rp,7) = R R (ryr) + BT (ry, 1), (D.1)
where
RO (rp, ) = RELO O (6M,7)0(r, — ). (D.2)

The inspiral field R O(1)(6M ,7), which hereafter we also denote with the short notation

‘m

RZT/,S(D\*, satisfies Eq. (5.6) evaluated at 7, = 6M:

H
(ag - V;/O(r)) R;’{,‘j(”(* +im Q) % <2H&E L4 > RyloW

da

*

d?t dt,| \?
—|—(1—H2) m Q{o}‘* gf —|—m2 Q%o}’ (d; ) R;{s(l)‘*zsgx(ﬁM7r) = SZ/:*
(D.3)
The residual field then solves an equation structurally analogous to Eq. (5.6),
e/o e/oR dt , . e/oR dH dt . . e/oR
(2 = Vil°) BT = 2B (5roy0s0y, — imQuoyd:) Rely ™ = 22 E (ko0 — imQop) By

+(1-H?

. d*t , , dt,\?
’LmQ{O}ﬁ + (mZQ%O} + ZmarpQ{O}T‘{o}) <d§>

. d*t .2 dt 2 2 .. . . dt 2 e/oR e/o eff
—t10) 752 O ~ o} <d§> O, = (Froy = 2imQoyt(oy) <d§> Ory | B~ = St

‘m
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e/o eff (

where S,/ "™ (rp, ) is now the effective source in s slicing. As in the main text, the effective

source can be split into the ordinary point-particle source in the region r, < rp,

5e/° PP(py ) = S;n/f(rp, r)0(rp —1p), (D.5)

Im

and the following extended source in the region 6M > 1, > rp:

Se/o ext(rp7 7’) — H(Tp _ 7-7;.) [SZ/;(TP, T‘) — SZQ)(E}M’ 7")]

Im

. dt,
— Q(T’p — 7’7)) m (Q{O} ds Q{O}’

| ) (omo. + 2 o0

)

2 2
> m? Qe

*

dt, dt,
im | oy 75 — ol 72

dt,\> [ 90 . , dt
+ <d§> <m oy Hm@rpﬂ{ov“m}) - (dﬁ
dt, dH

+5(7"p—7“73)[ds‘ T{O}‘P <2H8 +d> R;x(l)’*

, dt 2. . . e
ol <d§ P) (F1oplp +2im 40y 7“{0}\7»>>R/

—0(rp —rp) (1— H2)

i

*

d?t
_(1— g2 [ &
(1-H?) ( T2

2 dt ? e/o 1)
0,00y =) (1= %) ( 2| i), B
(D.6)
D.2 Frequency-domain equations
We next introduce the following forward and inverse transforms:
6M dr . .
g(w’ T) — / +g(rp’ ,’")ezwsc(rp)—zmqﬁc(rp)’ (D.7a)
2M 7“{0} (T'p) dfﬁ(?";,,)
1 +oo ) )
9rpr) = —5 dw §(w, r)e" e rp)timociry), (D.7b)
77
where o
p r, ds
sa(ry) = - —(r D.g
o) = [t g (D.5)

and dt,/ds is given in Eq. (4.8).
The transform of Eq. (D.4) reads

(62 Ve/°> RIOR 4w <2Ha + C;H> RIOR 4 (1— HY) W?RYOR = 5o (D)

where, following the same reasoning as in Sec. 5.3, no boundary terms appear. The trans-

ae/o eff _ Se/o PP + Se/o ext

formed effective source S,/ is given by

TP dr ezwsg—zmqﬁg
Ge/oPp / Sl AS—— /L D.10a
Im Y T{O} dtp/ds m ( )
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S,e/o ext — /6M drp eiWSG7im¢G (Se/o - Se/o
tm r 7'"{0} dtp/ds tm

. )

—I%l(rp;w) <2H8 + d> Re/o(l)

¥ — (1 — H2) Ifn(rp;w) RZ/;(I)

*

*

dH ; 2 dtp e/o (1) wsg(rp)—imog(r
+|:2H8I+dw—Z(I—H)<w+m9{0}‘7)dSP>:| Rém ‘*6 G(rp) el P),

(D.10D)

b
)

with

6M iwsg—imog
dry, 56— dt dt
Il ; Q-2 — QO -'p
(rpsw / oy dtp/ds [zm ( 0} s ol ds

P

6M d?" ezwsG imea
Arpiw) = [

7"{0} dtp/dS

&t &t
im (9{0} =~ ol g2

P
. | . dt
+ (dﬁ> (m?Qo) +imar, oyt ) - (dﬁD

D.3 Inhomogeneous solutions

(D.11b)

The homogeneous solutions to Eq. (D.9) are related to the homogeneous solutions to
—iwk(x)

Eq. (5.27) simply by an overall factor of e Recalling the t-slicing solutions in

Eq. (5.28), we readily obtain the “in” and “up” solutions in s slicing as

e/o in —iwx e/o out
BP0 ) AP w)e 2 4 A M () as 7 — 400 (@ — +00), (D.12a)
¢ ’ as r — 2M (z — —0),
~o/o up 1 as r — 400 (r — 400),
R 5 ~ e/o in e/o ou ; D.12b
‘ ) { Bg/ (w) + Be/ “(w)e T ag r — 2M (z — —00), ( :

Using the two independent homogeneous solutions to Eq. (D.9), Re/ oI and RZ/ oup

we construct the following Green function:

1
Wi(w)

~

G’Z/O(w, r, 7)) = [9(:1: — x/)Rz/o in(w, x/)RZ/o Pw, x)

o A (D.13)
+0(z — x)Rz/o w, x)RZ/O Plw, x')] ,

with
Wilw) = 2iwn(@) [fzj/ ° I (0, 2)0, RY° ™ (w, ) — R "P(w, 2)0, B ™ (w, x)} . (D.14)
The Green function satisfies

.
I:(ag B Ve/o> +iw <2H61 4 Cfg) + (1 — H2) w2:| G’Z/%w,:ﬁ',x’) _ M (D.15)

e2iwk ()
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It is straightforward to verify that W, is independent of the field point r, 0, W, = 0, and it
can therefore be computed from the asymptotic solutions (D.12) at r — 400, leading to

Wo(w) = 2iwA" (w). (D.16)

The inhomogeneous solution can then be obtained as

» e a i " &efo e

RZ/;L)R(LL),T) — / dx/GZ/O(w’x’x/)emwﬁ(m )Sg;’ H(UJ,CU/)
B EZ/O . /T s RO (w, ) e2iwn(r) Gol0 ey 1) (D.17)
B 2iw AP (w) Jops f(r) ¢ ’ tm ’

Ae/o in 0o
ey L
2iw A (W) Jy f@r") ¢

D.4 Regularity, slicing, and punctures at the boundaries

(@, )Gy o, 1),

To assess regularity near the boundaries, we consider s = u (k = x, H = +1) at large r
and s =v (k = —z, H = —1) near r = 2M. In either case, the effective source (D.10b) in
a neighbourhood of each boundary reduces to

(D.18)

Im

S,e/o ext —F 9 [Irln(r% w) o eiwsg(rp)—im¢c(r7>)] 8$Rz£;) (1)

*

At large r, RZ/T? @ |« behaves as a regular series in 1/r, beginning at r%, such that 5’2/: et
O(1/r?). At the horizon, RZS(I)\* behaves as a regular series in (r — 2M), beginning at
(r —2M)°, and 8, = fO,, such that S’Zj ' — O(r — 2M). Referring to the asymptotic
behaviour (D.12), we then see that (i) the integrals in Eq. (D.17) converge, (ii) at the

horizon, the solution behaves as the regular homogeneous solution RZ °™ and (iii) at

infinity, the solution behaves as the regular homogeneous solution Rz/ oup,

If we were using t slicing rather than hyperboloidal slicing, the integrals in Eq. (D.17)
would not converge, nor would either integral vanish in the limits » — 2M and r — oo.
With s =t (H = 0), the effective source (D.10b) behaves like RZ/,S (1)|,k at the boundaries. In
t slicing, RZ? @ |. behaves as e*™* toward the boundaries, and both integrals in Eq. (D.17)
then diverge for any value of r.

Such ill behaviour is familiar from infrared divergences that arise in the inspiral multi-
scale expansion in ¢ slicing [43, 70-72]. As in that case, we can obtain the physically correct
solution by introducing punctures at the boundaries. The physically correct solution in
this case is obtained in hyperboloidal slicing, where the field behaves as a smooth outgoing
wave at future null infinity and a smooth ingoing one at the horizon. To obtain the correct
boundary conditions in ¢ slicing, we can transform the hyperboloidal-slicing solution RZ/: R
to t slicing, expand it near the horizon and infinity, and treat the results (which will be
singular at the boundaries) as punctures.

To transform the hyperboloidal solution to t slicing, we first transform it back to
phase space, using Eq. (D.7b). At a given point in spacetime, the field in s slicing is then
[s] RZT/,S (rp(tp(s)), r)e"P»(e(5)  swhere we add a left-subscript to indicate the slicing; at the
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same point, the field in ¢ slicing is R(Zs (rp(t), r)e~"%p(t)  Since the field at a given point
must be independent slicing, we can infer

e/oR e/oR im — s
[t]Rh/n (rp(t),r) = [s]R/ (rp(tp(s)),m)e [p(6)=p(tp()], (D.19)

‘m

For this to give us the t-slicing field variable, the right-hand side must be expressed entirely
in terms of the independent variables r,(¢) and . We put it in that form by expanding for
rp(t) near the ISCO; this suffices because we only require the boundary punctures in the
window 6M > 1, > rp.

Define At :=t,(s) —t. Then

rp(tp(s)) = rp(t) + rp(rp(t)) At + %7’“}0(7“10(t))(At)2 +... (D.20)
<Z5p(tp(3)) = ¢p(t) + Q{O}(Tp(t))At + %Q{O}(Tp(t))(At)2 +... (D.21)

Although At need not be small, these expansions are well behaved because successive
terms are smaller in the limit r, — 6M. Concretely, Eqgs. (3.15) and (3.16) imply 7, =
O[(6M —1,)%/?] = Q{O}, and each additional derivative introduces d/dt = O[(6M —r,)'/?].
Given that s = t—k(r), we have t,(s) = s+k(rp(tp(s))) and so At = k(rp(tp(s))) —k(r).
Formally expanding for small time derivatives and appealing to Eq. (D.20) then yields

At = Ato(rp, ) + At1(rp,7) + ..., (D.22)

where Aty = [k(rp) — K(r)], Aty = &' (1rp)7p(rp) Ato(rp, 1), K'(rp) = Op,k(rp), and here it is
understood that r, = ry(t). Equation (D.19) then becomes

[t] Re/OR(rIM ’l“) = e_imQ{O}AtO {[ ]Re/OR(Tpv T)

Im s|=Ym
. . 1. e/o
+ [TpAtoarp —m (Q{O}Atl + 29{0}(At0)2):| [S}R&/n R(’r‘p, T) + .. .}, (D.23)

where again it is understood that 7, = 7,(t). The first subleading term, in square brackets,
scales as (r, — 6M)3/2, and the ellipses denote terms of order (r, — 6M)? and smaller.

The transformation (D.23) can be compared to Eq. (161) in Ref. [43], which represents
the analogous result in the inspiral. Like in the inspiral, the ¢-slicing field [t]RZ/r? R s
singular at the boundaries. This can be seen from the factors of x(r) in At,,, which reduce
to +x near the boundaries, diverging logarithmically when r — 2M and linearly when
r — 00.

Finally, to obtain the behaviour of the frequency-domain, t-slicing solution near the
boundaries, we expand Eq. (D.23) in the limits » — 2M and r — oo and then apply
the Fourier transform (5.25a). This defines for us our punctures at the boundaries, which
we move to the right-hand side of the ¢-slicing field equation (5.27), defining a new ef-
fective source. Such procedures are detailed extensively in Ref. [70]. Since the punctures
are necessarily approximate particular solutions, they cancel the old effective source near
the boundaries. If the near-horizon and large-r expansions of the punctures are carried
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to sufficiently high order, the new effective source will behave sufficiently well toward the
boundaries, the Green-function integrals over ' will converge, and the sum of the new resid-
ual field plus the new punctures will be precisely equivalent to the hyperboloidal solution,
simply expressed in terms of a Fourier transform based on the singular ¢ coordinate.

E Contribution from the early-time effective source

In this appendix we consider the solution to Eq. (5.19) with the extended source (5.22).
Our aim is to show that its contribution can be neglected if we only require the solution
sufficiently far to the future of the puncture window (i.e., for values of r;, not too close to
6M).

We start by obtaining the source’s transform (5.25a):

6M

~E/O ex d 1 —1 e/o e/o

So ) = [ ST ctamime [53le(r,, p) — S¢12(6M, )]
rp {0}

6M . .
— R;T/r(;(l)(ﬁM, ?”) / fﬁezwtg—zmqﬁg (mQQ%O} —m? Q%O}} + imarpQ{O} 7."{0})
rp {0} *

—1 (w +m Qo) ‘73) eMG(TP)_im‘bG(TP)R%f(1)(6M, T).
(E.1)

We anticipate that we are interested in the limit rp — 6. In this limit, the r, integrals
in Eq. (E.1) vanish. We therefore only focus on the solution at infinity sourced by the third
term in Eq. (E.1).
Using the same Green-function technique we have adopted in Sec. 5.4, we obtain
1 +oo ) )
Re/oR o dw e*’LUJtG(Tp)JF’Lm(z)G(T‘p)
tm ext oo ( p) 2w

(E.2)

e < dr’ ~e/o in aefo ext /
X —— R, )Sm, w,T").
e m A LA

As discussed in Appendix D.4, the radial integral here does not converge if we use the
effective source described in the body of the paper, due to the poor behaviour of the source
in t slicing. We adopt the prescription in Appendix D.4 to avoid that divergence. We can
then write the equation above as

RPR| ()= L *”dwF (w: 1y, 7 )il (rR)—t(rp) ] B3
‘m p - p) 'P)€ ’ ( ’ )

ext oo

where we have defined

” s (ry)=6a(rp) (1 L "0l )

T ¢ €

x / dr’ R ™(w, ) R°M (60, 1),
anr (')
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The integral (E.3) contains a rapidly oscillating integrand when rp is near 6 M (and
7p is not too close to 6M). Integrating by parts N + 1 times, we find

+o0

ewlta(rp)—ta(rp)+al
+O(N+1),

2m dw™ [ta(rp) — ta(rp) + x]nt!

(E.5)
where O(N+1) denotes the remaining integral, which is proportional to 1/[t¢(rp)—ta(rp)+
z]N*1. Assuming the solution (E.3) exists, FZ?/IO must decay to zero as w — Fo00, implying
its derivatives do likewise. Hence, the sum in Eq. (E.5) vanishes, leaving the O(N + 1)
remainder. If rp is taken toward 6 M, then tg(rp) — —oo, causing the O(N +1) remainder
to go to zero. Since N is arbitrary, it follows that RZ;L) R!extoo(rp) goes to zero faster than

any power of 1/tq(rp) as rp — 6M (at fixed values of r, and z).

F Regularization procedure for the excitation coefficients

In this appendix we justify the regularization procedure introduced in Sec. 5.6. We start
by considering Eq. (5.40),

‘ 1 [t ‘ C/°(w)
Re/oR —iméa(ry) — _ © dw e~ lta(rp)—a] _Ztm F.1
tm pPp oo (Tp)@ 2T —00 we 2iwAlen (w) ’ ( )

where the integration along the real w axis gives a finite result. The numerator of the
integrand, C’Z/no(w), is given by the radial integral (5.41), which we rewrite here for conve-
nience:

TP / . ’ . /
/o () = / A et () —iméa ) K2 (w, ). (F.2)
m anr oy (1) "

Now, analogously to the procedure described at the end of Sec. 5.6, we can rewrite CZ/nO (w)

e/

by subtracting the near-horizon behaviour g, ° given in Eq. (5.54), from the integrand and

m
adding back its antiderivative QZQ :

Cow) = C° (W) — QY/°(w,2M). (F.3)

Im Im
reg

Integrating Eq. (5.54) gives Q;{;(w, r) ~ (r — 2M)*~4Mw which vanishes at the horizon.
Therefore, Eq. (5.40) is equivalent to

+ e (w)
e/oR —im T 1 > —iw Tp)—T M Ire
RR|(emeet) = o [ ettt iy Y

After closing the contour in the complex plane and using the residue theorem, this then
justifies computing the excitation factors appearing in Eq. (5.49) by using C’Z/n()’ rather

reg

than simply C’Z/no in Eq. (5.50).
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