

1
2
3
4
5 **Traditional Methods, Consumers' Stereotyping of Farmers and the Compensatory**
6
7 **Effects of Ethical Food Cues**
8
9
10
11

12 **ABSTRACT**
13
14

15 **Purpose** – Attesting to the growing interest in ethical food, scholarship has examined how
16 consumers respond to different cues associated with food ethicality. However, the
17 psychological mechanisms through which ethical food cues shape consumer preferences have
18 been overlooked. Focusing on an underexamined cue (traditional production methods) and
19 drawing from the Stereotype Content Model, this study examines whether a warmth
20 stereotyping of farmers may explain the influence of this cue on consumer preferences.
21 Moreover, the paper also explores how the interaction of cues of localness and traditionality
22 affect consumers' perceptions of farmers. The paper documents compensatory effects between
23 traditional methods and localness in specific circumstances.
24
25

26 **Design/methodology/approach** – Two online experiments (Study 1 N = 291; Study 2 N =
27 183) were conducted to test the hypotheses. We manipulate farming methods and localness and
28 measure perceptions of warmth and consumer responses to the profile of a fictitious farm. A
29 model of moderated mediation is examined which identifies compensatory effects between
30 traditional farming methods and perceptions of localness.
31
32

33 **Findings** – A warm stereotype of farmers explains the positive effect of traditional farming
34 methods and localness on consumers' food attitudes and preferences. Furthermore, different
35 ethical cues can have a compensatory effect on consumers' perceptions of warmth.
36 Specifically, for consumers with strong opposition to long supply chains, the adoption of
37 traditional farming methods compensates for the perceived warmth of geographically distant
38 farmers. Thus, consumers who would usually dislike distant farmers retain a positive
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

1
2
3 impression of them if these farmers can boast traditional farming cues. Furthermore, we find
4
5 no evidence of an additive effect between traditional farming methods and localness on
6
7 warmth: the addition of the two cues does not significantly increase perceptions of warmth.
8
9

10 **Research limitations/implications** – The study demonstrates that the social perception of
11 farmers plays a key role in food preferences and the perception of ethical cues in food
12 consumption. Moreover, it shows how different cues may influence perceptions of warmth
13 depending on consumers' involvement.
14
15

16 **Practical implications** – For the promotion of ethical food systems, farmers could increase
17 favorable consumer attitudes by foregrounding the ethical cues of localness and traditional
18 farming methods.
19
20

21 **Originality/value** – The results extend our understanding of the mechanisms underpinning
22 preferences for ethical food and explicate how multiple ethical cues influence ethical food
23 consumption.
24
25

26 **Keywords** ethical food, locavorism, traditional production, experiments, stereotype content
27 model, persuasion.
28
29

30 **Paper type** Research paper
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

1 2 3 4 5 Introduction

6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
Ethical food consumption has gained attention in recent years, in view of the environmental and social problems associated with food production (Young, 2022). Past work has examined consumers' preferences for different forms of ethical food production, such as locally-produced food (Brcić *et al.*, 2021), organic food (Mäkinen *et al.*, 2011), fair trade food (Yamoah *et al.*, 2016) or food that protects animal welfare (Risi and Hamm, 2018). The perceived size of the farm is also likely to correlate with such dimensions and influence consumer preferences (Freund *et al.*, 2024). Although the actual ethicality of these production methods is debated (see, for instance, Young, 2022), research shows that they are used as "ethical cues" by consumers to discern the "sustainability" or "ethicality" of food (Scheibehenne *et al.*, 2007). Yet, two aspects have been overlooked in previous research: the psychological mechanisms explaining the effects of such cues and how their interactions influence consumer preferences.

31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
We seek to address the first gap by examining whether consumers' stereotyping of farmers as warm might explain the relationship between ethical cues and consumer attitudes and choices. This mechanism is plausible given that consumers associate ethical food cues with honest, caring, and trustworthy farmers (Autio *et al.*, 2013; Ostrom, 2006; Zepeda and Leviten-Reid, 2004). Drawing on the Stereotype Content Model (Fiske *et al.*, 2002) and its application to brand and producer perceptions (Kervyn *et al.*, 2022), this study proposes that a warmth stereotyping of farmers explains consumers' positive attitudes and intentions toward ethical food cues. Specifically, this research focuses on an understudied ethical cue: traditional (as opposed to industrial or modern) farming methods (Richetin *et al.*, 2021) and the relationship between cues of traditionality and cues of localness. Traditional agricultural production is frequently mentioned by ethical food movements as a requirement for more just and sustainable food (Lang, 2010; Young, 2022). Usually defined as those that existed before the Second World War (Trichopoulou *et al.*, 2007), the notion of "traditional" farming methods is a fluid concept,

1
2
3 subject to different definitions by consumers (Charmpi *et al.*, 2021; Guerrero *et al.*, 2009) and
4 often treated as a synonym of craft or artisanal production methods (Rivaroli *et al.*, 2021)^[1].
5
6 For consumers, traditional methods are akin to “appropriate techniques, methods and
7 ingredients” for producing food (Carroll and Wheaton, 2009). Although claims of traditionality
8 are increasingly used by brands to meet consumer expectations (Charmpi *et al.*, 2021), this cue
9 has received scant attention compared to others, namely organic or fair-trade production labels.
10
11
12
13
14

15 Furthermore, this is the first investigation to examine the interactions between multiple
16 ethical cues (such as food localness) that are often communicated at the same time. There is
17 evidence that consumers often confuse or conflate multiple cues (Banerjee and Quinn, 2022;
18 Hoskins *et al.*, 2021). Specifically, when consumers are allowed to freely define local food,
19 they repeatedly mention other attributes such as “produced by small farms” or “produced with
20 traditional methods” as defining features of local food (Autio *et al.*, 2013; Ostrom, 2006). This
21 evidence suggests that it is important to establish whether, how, and to what extent the
22 interactions of multiple cues of food ethicality may influence consumers’ perceptions.
23
24 Although cues may have an additive effect, thus reinforcing the perception of ethical food, they
25 can also compensate for each other. The potential compensatory effect of different ethical cues
26 has important implications for ethical food marketing and consumer preferences. If ethical cues
27 are interchangeable consumers might be unable to discriminate effectively between
28 alternatives.
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

The study makes three novel contributions to the literature. First, extending the literature on
consumers’ preferences for ethical food consumption (Banerjee and Quinn, 2022; van Bussel
et al., 2022), it demonstrates that the stereotyping of farmers is a key mechanism explaining
support for traditional farming methods. A warmth stereotyping of farmers influences
consumers’ attitudes and behavior. Second, it shows the compensatory effects of traditionality
for consumers who have a strong opposition to long-distance food systems (Reich *et al.*, 2018):

1 consumers who are usually distrustful of long supply chains stereotype distant food producers
2 as warm, as long as they can boast traditional farming methods (even if they are not local).
3 Finally, the paper expands the notion of “perceived ethical food” by demonstrating the
4 importance of the attribute “farming methods” and its systematic effects on other ethical food
5 signals, such as farm size perceptions (Freund *et al.*, 2024; Scenik and Krishna, 2021) and
6 localness (Guerrero *et al.*, 2009). The results are consistent with the argument that the ethical
7 food movement, and particularly locavorism, is a movement against *industrialized* and *large-*
8 *scale* food supply chains (Lang, 2010; Young, 2022) and that artisan food enterprises are
9 considered a central actor in the relocalization of food (McKitterick *et al.*, 2016). Finally, this
10 study also raises concerns about the potential for “tradition-washing”: to bias consumer
11 perceptions, brands can use superficial or false traditionality cues, with semantic (e.g.,
12 “traditional style”) or visual markers (e.g., endorsers dressed in traditional garments) even
13 when their production methods are not necessarily traditional.

35 **Conceptual Development and Hypotheses**

36 *Ethical food and traditional farming methods*

37 Past research agrees that consumer perceptions of ethicality depend on the use of certain
38 farming methods that result in food being more environmentally friendly and socially just
39 (Lang, 2010). These forms of production are not only perceived as beneficial for the
40 environment and communities, but they are also considered to be of superior quality. Notably,
41 organic (Mäkiniemi *et al.*, 2011), local (Memery *et al.*, 2015), fair-trade (Andorfer and Liebe,
42 2012), animal welfare production practices (Risius and Hamm, 2018) have been consistently
43 perceived as producing more natural, tastier, and healthier food. Thus, contrary to other product
44 categories where ethical production may be considered a liability insofar as consumers perceive
45 that it impairs other functional or hedonic properties (Herédia-Colaço and Coelho do Vale,
46

1
2
3 2018; Luchs *et al.*, 2010), ethical food is also perceived as high-quality food (Banerjee and
4 Quinn, 2022; Yamoah *et al.*, 2016). Although not specifically a form of production, firm size
5 is also associated with perceived ethicality (Freund *et al.*, 2024) and food produced by smaller
6 firms is deemed more natural (Scekic and Krishna, 2021) and healthier (Bonetti *et al.*, 2024).
7
8

9
10 The communication of a traditional farming method represents an understudied food ethical
11 cue, despite evidence suggesting that consumers prefer food produced according to traditional
12 methods (Rivaroli *et al.*, 2021; Caporale and Monteleone, 2004). Not only is food produced
13 using traditional methods perceived as more natural and safer (Abouab and Gomez, 2015;
14 Richetin *et al.*, 2021; Rivaroli *et al.*, 2020) but is also associated with localness and
15 sustainability (Rivaroli *et al.*, 2020). It is also possible that traditionally produced food might
16 be perceived as coming from smaller farms (Judge *et al.*, 2020a; 2020b), and this perception
17 could increase perceived warmth (Yang and Aggarwal, 2019). Conversely, food produced
18 using modern production methods is disliked (Guerrero *et al.*, 2009) and perceived as risky and
19 unsafe (Richetin *et al.*, 2021). Although there is not a valid rational explanation for this
20 assessment, it is plausible to assume that consumers attribute greater risk to industrial farming
21 methods and novel food technologies (Banerjee and Quinn, 2022) and have therefore worse
22 attitudes towards food produced using modern methods. These consumer perceptions of
23 traditional production methods may explain why brands use cues of traditionality to meet
24 consumer expectations (Charmpi *et al.*, 2021).
25
26

27 28 48 *The Stereotype Content Model and food consumption*

29
30
31 There is evidence that perceptions of producers are relevant to consumer choice. Recent
32 research shows that evidence that producers enjoy the production process enhances consumers'
33 preferences (Paley *et al.*, 2024). We specifically focus on how consumers stereotype producers.
34 A rich scholarship on stereotyping of brands has developed from the application of the
35 Stereotype Content Model (Cuddy *et al.*, 2009; Fiske, 2018). Consumers stereotype producers
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

1
2
3 using two main dimensions: warmth and competence (Halkias and Diamantopoulos, 2020;
4
5 Kervyn *et al.*, 2022). Warmth is an evaluation of the extent to which brands have a positive
6 intent towards oneself. Competence beliefs are based on how effectively brands can pursue
7 their intentions (Fiske, 2018). Warmth reflects beliefs of kindness, honesty, and
8 trustworthiness, whereas competence reflects beliefs of capability, efficiency, and skillfulness
9 (Aaker *et al.*, 2010; Kolbl *et al.*, 2020). Scholars tend to agree on the primacy of warmth
10 evaluations, as people are primarily concerned with knowing whether a brand (or any other
11 social agent) is well-intentioned towards them (Fiske, 2018). In turn, perceptions of warmth
12 and competence elicit distinct affective and behavioral responses (Halkias *et al.*, 2016), insofar
13 as stereotyping serves as a cue to assess and respond to stimuli (Kolbl *et al.*, 2020). In
14 particular, consumers' perceptions of warmth and competence influence attitudes towards
15 producers and purchase intentions (Kervyn *et al.*, 2022), company-consumer identification
16 (Güntürkün *et al.*, 2020), and perceptions of value (Kolbl *et al.*, 2020).

17
18 Warmth and competence judgments are shaped by different attributes of producers and
19 products (Kervyn *et al.*, 2022). A traditional production method is expected to increase
20 perceptions of farmers as warm. Research on implicit theories about production methods
21 (Fuchs *et al.*, 2015; Judge *et al.*, 2020a) supports the mediating role of warmth. In craft or
22 traditional production, consumers perceive a transmission of positive emotional residue to
23 objects, so that craft products contain the producers' "love", a transmission that does not occur
24 in industrial methods (Judge *et al.*, 2020a; 2020b) or machine-made goods and that elicit
25 perceptions of product attractiveness (Fuchs *et al.*, 2015). Because these social traces of the
26 producer are thought to be embedded in the product (Judge *et al.*, 2020b), traditional production
27 is perceived as "humanized", whereas industrial or modern production is considered
28 "mechanistic". This may explain why traditionally produced food products elicit impressions
29 of having an "intimate relationship" with producers (Rivaroli *et al.*, 2020) or of "human
30

“contact” (Abouab and Gomez, 2015). Also, because of these “love residues”, traditionally produced products are thought to be of better quality, eco-friendlier, and more valued than manufactured products (Abouab and Gomez, 2015; Judge *et al.*, 2020b). In contrast, producers using modern methods are viewed as mechanised (Judge *et al.*, 2020a; 2020b) and therefore should be perceived as lower in warmth. Thus, it is plausible to propose that farmers using traditional (*versus* modern) methods will be perceived as relatively higher (lower) in warmth.

A warmth stereotyping drives consumers’ preferences for food. Regarding the primacy of warmth, recent studies on local (*vs.* global brands) have shown that perceptions of warmth are fundamental in forming consumer preferences (Davvetas and Halkias, 2019), because, in this context, brand warmth positively influences perceptions of functional and emotional value, so that brands deemed high in warmth are believed to offer better quality products (Kolbl *et al.*, 2020). In this respect, the effects of warmth (competence) have been found to differ depending on the outcome under examination (Güntürkün *et al.*, 2020): for marketing outcomes reflecting relational bonds, warmth takes primacy; for transactional outcomes competence takes precedence. This asymmetrical effect is attributed to the diagnosticity of each dimension: for relational outcomes, perceptions of warmth are more diagnostic for consumers, whereas perceptions of competence are more diagnostic for transactional outcomes. Consistent with this, in the context of food, and especially fresh food, warmth perceptions will be more diagnostic for consumers as they signal that food has been produced using “appropriate” techniques (Carroll and Wheaton, 2009), that is, low-risk, value-enhancing and ethical methods (Aboub and Gómez, 2015; Rivaroli *et al.*, 2020).

Based on this rationale warmth beliefs are expected to influence positively consumers’ responses to farms. Specifically, the present research considers attitudes towards the farm and intentions to support the farm as two different dependent variables both capturing a perception of superior quality attributed to food produced with traditional methods (Richetin *et al.*, 2021;

Rivaroli *et al.*, 2020). Attitudes concern the general (positive or negative) impression of the farm; in contrast, intentions to support the farm capture a behavioral intention to seek more information about the farm, buy from the farm, and support its business through positive word-of-mouth. It is expected therefore that warmth mediates the effect of traditional farming methods on attitudes towards the producer and intentions to support the farm. Formally:

H1a: Traditional (*versus* Modern) farming methods have a positive effect on consumers' 1) attitudes towards the farm and 2) intentions to support the farm.

H1b: Warmth mediates the effect of traditional farming methods on consumers' 1) attitudes towards the farm and 2) intentions to support the farm.

The increased perception of warmth will have implications also for producers' evaluation in terms of competence. There is an extensive debate on the nature of the relationship between warmth and competence. In some circumstances the two evaluations are inversely related, that is when warmth increases competence might decrease (Kervyn *et al.*, 2010; Kervyn *et al.*, 2009). This could be problematic, given that competence is a key antecedent of the formation of consumers' preferences (Aaker *et al.*, 2010; Aaker *et al.*, 2012; Güntürkün *et al.*, 2020). Other studies, however, have demonstrated that higher warmth can lead to higher competence in situations where being caring is important for the overall competence of the organization (Antonetti *et al.*, 2021; Shea and Hawn, 2019). For example, for service organizations being caring is an important element of customer service and therefore judgements of warmth correlate with judgements of competence (Aaker *et al.*, 2012).

Similar relationships between warmth and competence are expected in the case of ethical food. Consumers' perceptions of farmers as honest, friendly, and fair are also associated with perceptions of food safety (Tellingman *et al.*, 2017; Yu *et al.*, 2017). Furthermore, food produced by warm farmers should also be expected to be more natural (Rozin, 2005), and perceptions of naturalness are appreciated in the context of food consumption (Hagen, 2021).

1
2
3 Also, farmers perceived as more honest and caring are considered more skillful and competent
4 (Hoskins *et al.*, 2021). In the context of this research, warmth is expected to be a more
5 important dimension in explaining consumers' responses. Nonetheless, competence is retained
6 and tested as a potential alternative mediator.
7
8

9
10 Because consumers hold implicit automatic associations between production methods and
11 firm size, we control for firm size. Use of automatized, machine-enabled production is
12 associated with larger firms (Scekic and Krishna, 2021). Conversely, traditional methods might
13 be perceived as indicative of a small size (Rivaroli *et al.*, 2021). By controlling for perceived
14 firm size, we isolate the effect that production methods have on stereotypical perceptions.
15
16

24 Study 1

25

26 *Method*

27
28 *Stimuli.* An online experiment was conducted. Participants reviewed one of two fictitious
29 descriptions (traditional vs. modern farming methods) about a farm (called “Excellence
30 Farm”), which “grows a range of fruit and vegetables” and answered a set of questions about
31 them. The online survey software (Qualtrics) allocated participants randomly to one of the two
32 stimuli (full stimuli are presented in Web Appendix, Part A). The fictitious stimuli included
33 pictures of strawberries and carrots with the following description:
34
35

36 “Excellence Farm is a farming business that grows a range of fruit and
37 vegetables. The farm specialises in farming strawberries, apples, carrots,
38 and onions. The farm relies on traditional (modern) farming methods. They
39 use traditional (modern) remedies to protect crops from pests. The planting
40 and harvesting of fruits and vegetables is done according to long-
41 established (contemporary) work practices.”
42
43

44 Three items were used as manipulation checks measuring participants' perceptions about
45 the farming method deployed by the company (e.g., “This farm uses traditional remedies to
46

protect crops from pests" from 1 completely disagree to 7 completely agree; $\alpha = .84$). Mean differences on the average of the three items demonstrate that the manipulations were effective ($M_{\text{traditional}} = 5.36$, $M_{\text{modern}} = 2.24$; $t(289) = 22.47$, $p < .001$).

Participants. Two hundred and ninety-one participants were recruited from Prolific in exchange for monetary compensation. One attention check question was positioned towards the end of the questionnaire. None of the participants failed the attention check. All participants were UK residents above the age of 18, and 52.2% of the participants were female. In terms of age groups, 31.3% of participants were between 25 and 34 years old, 29.6% between 35 and 44 years old, 17.9% between 18 and 24 years old, 12.7% between 45 and 54 years old, 6.5% between 55 and 64 years old, and 1.7% above 65. There was no significant difference in terms of gender ($p = .72$) and age groups ($p = .67$) across the two stimuli.

Measures. All measures were based on scales adapted from prior literature. Moreover, a pre-test ($N = 50$) examined the psychometric properties of the items. An overview of item loadings, reliability and validity indicators can be found in Web Appendix, Part B, while descriptive statistics and correlations can be found in Table 1. Farm perceptions were measured on the stereotype content scales by Halkias and Diamantopoulos (2020), where warmth (friendly, kind, likable, nice, warm) and competence (capable, competent, efficient, skillful, industrious, intelligent) were measured on 7-point Likert scales (1= strongly disagree, 7= strongly agree). One item measured perceptions of the size of the farm presented (1= very small, 7= very large). Attitudes towards the farm were measured with two semantic differential scales (unpleasant/pleasant, disliked/liked) adapted from Batra *et al.* (2012), while intentions to support the farm with three 7-point Likert scale items focusing on "seeking more information about this farm", "talk to other about this farm", and "purchase products from this farm" (Batra *et al.*, 2012). Demographic data on participants' gender, age, and education level were also collected.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
INSERT HERE TABLE 1*Results*

Participants have more favorable attitudes towards farms using traditional farming methods ($M_{\text{traditional}} = 6.19$, $M_{\text{modern}} = 5.57$, $t(289) = 5.17$, $p < .01$; $d = 1.02$), and higher intentions to support them ($M_{\text{traditional}} = 3.97$, $M_{\text{modern}} = 3.62$, $t(289) = 2.77$, $p < .01$; $d = 1.09$) compared to farms using modern methods. A significant difference is found in terms of warmth perceptions, with traditional farms judged higher in terms of warmth ($M_{\text{traditional}} = 5.75$, $M_{\text{modern}} = 5.27$, $t(289) = 3.99$, $p < .001$; $d = 1.05$), while as expected, there are no differences across conditions on competence ($M_{\text{traditional}} = 5.59$, $M_{\text{modern}} = 5.73$, $t(289) = -1.32$, $p < .01$; $d = .88$). As expected, traditional farms are also perceived on average as smaller ($M_{\text{traditional}} = 3.62$, $M_{\text{modern}} = 4.07$, $t(289) = -3.59$, $p < .01$; $d = .42$). Furthermore, as highlighted in Table 1, size is associated with warmth but does not influence competence.

A mediation analysis using PROCESS (Hayes, 2022; Model 4) was run with farming methods as the independent variable and warmth as the mediator. Competence was also used as an additional independent mediator to check its potential role. The model was estimated twice, considering attitudes and intentions to support the farm as separate dependent variables. Age, gender, and education were used as covariates^[2] in the analysis. The independent variable was coded 0 for modern and 1 for traditional farming methods. As recommended in the literature, 10,000 bootstrap estimation resamples were used and unstandardized coefficients are reported (Hayes, 2022). Results show that when traditional farming methods are used, farmers are perceived as warmer ($b = .51$; 95% CI from .27 to .74), while there is no significant effect on competence ($b = -.12$; 95% CI from -.33 to .07). Moreover, warmth explains both attitudes ($b = .53$; 95% CI from .39 to .66) and intentions to support the farm ($b = .61$; 95% CI from .51 to .71). Competence however has a significant influence on attitudes ($b = .21$; 95% CI from .09 to .32) but not on intentions to support the farm ($b = .11$; 95% CI from -.05 to .26).

1
2
3 Warmth mediates the effect of traditional farming methods on intentions to support the farm
4 (indirect effect $b = .27$; 95% CI from .13 to .43) and attitudes (indirect effect $b = .29$; 95% CI
5 from .15 to .44). The mediation of competence is instead not supported neither for attitudes
6 (indirect effect $b = -.03$; 95% CI from -.08 to .01) nor for intentions to support the farm (indirect
7 effect $b = -.01$; 95% CI from -.06 to .01). Among the covariates, males expressed lower warmth
8 than females ($b = -.15$, $p < .05$) and higher education attainment was associated with lower
9 warmth ($b = -.11$, $p < .05$) and lower competence ($b = -.10$, $p < .05$). All the other effects for
10 the covariates were not statistically significant.
11
12

13 A further analysis was conducted to probe our model and rule out the possibility that the
14 effect of farming methods on warmth was fully mediated by perceived size. A mediation model
15 was estimated with farming methods as the independent variable, perceived size as mediator,
16 and perception of warmth as the dependent variable. The results show that, while the mediation
17 of size perceptions is supported (indirect effect $b = .08$; 95% CI from .02 to .16), there remains
18 a positive effect of farming methods on warmth even after accounting for the role of size ($b =$
19 $.41$; 95% CI from .16 to .65) and a significant indirect effect on attitudes (indirect effect $b =$
20 $.29$; 95% CI from .12 to .48) and intentions to support the farm (indirect effect $b = .24$; 95% CI
21 from .09 to .39) through the mediation of warmth. These results demonstrate the unique role
22 of farming methods in activating perceptions of warmth, offering support for H1a and H1b^[3].
23
24

25 **The compensation between farming methods and localness**

26 Study 1 focuses exclusively on farming methods. However, this cue will be typically
27 processed by consumers contextually to a range of other factors, and it might be expected to
28 have a differential effect on consumers' perceptions depending on the characteristics and
29 preferences of the consumer. The results of Study 1 seem to support that farming methods are
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

1
2
3 associated with perceptions of size; traditional farmers are stereotyped as smaller because of
4
5 their artisanal nature (Rivaroli *et al.*, 2021).
6
7

8 To develop further our understanding of how consumers assess ethical cues, the role of two
9 potential moderators is considered: the localness of the farmer and the individual level of
10 opposition to long food supply chains. The first variable concerns the relative localness of the
11 food produced (Davvetas and Halkias, 2019), a perception that is different but often related to
12 perceptions of farming methods (Autio *et al.*, 2013). The second variable relates to individual
13 beliefs in support of an ideology that favours local food consumption and rejects long food
14 supply chains (Reich *et al.*, 2018). Both dimensions are examined, in turn, to consider how
15 they might interact with perceptions of farming methods.
16
17

18 As an ethical cue, localness drives perceptions of warmth (Davvetas and Halkias, 2019),
19 since localness is associated with a perception of honest, caring, and trustworthy farmers (Autio
20 *et al.*, 2013; Ostrom, 2006). Moreover, qualitative studies have shown that consumers tend to
21 conflate “traditional” and “local” (Autio *et al.*, 2013; Zepeda and Leviten-Reid, 2004). This
22 confusion among production cues seems contingent on consumers’ perceptions of farmers:
23 traditional and local production are both associated with a warm view of farmers (Autio *et al.*,
24 2013; Zepeda and Leviten-Reid, 2004).
25
26

27 In view of this evidence, it is expected that farming methods and localness should increase
28 perceptions of warmth. However, when both cues are present it is unclear whether they produce
29 an additive effect (i.e., warmth should be even higher when both cues are present) or not.
30 Indeed, research that has applied the Stereotype Content Model to the stereotyping of social
31 groups has documented both additive effects and non-additive effects, where only one cue
32 dominates responses (Ball *et al.*, 2022; Strinić *et al.*, 2021). A critical moderating variable
33 might be the level of interest consumers have in the cues considered. When consumers are
34 highly involved in a topic or subject, they are likely to process the information more attentively
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

1
2
3 and the message might have stronger effects on attitudes and behaviours (Petty and Cacioppo,
4 1986; Wagner and Petty, 2011). With this insight from persuasion research in mind, consumers
5 very interested in the origin of their food are expected to respond differently to information
6 about the farming methods and the localness of produce.
7
8

9
10 To explore a cogent variable assessing individual differences relevant to food origin and
11 production, locavorism was considered. Locavorism is defined as an ideology about the
12 superiority of local food (Reich *et al.*, 2018). In Reich *et al.*'s (2018) L–O–C framework,
13 Lionisation (L) is a core belief that local (vs. nonlocal) food possesses superior taste and
14 quality; Opposition (O) refers to a rejection of conventional, distant foods; Communalization
15 (C) pertains to building and supporting one's own community or local communities more
16 generally. This study focused specifically on opposition to long supply chains as the critical set
17 of beliefs, because this dimension more closely expresses an ideological rejection of long food
18 systems (Reich *et al.*, 2018). As Reich *et al.* (2018) highlight, Opposition captures prescriptive
19 views, which are normative beliefs about practices that should be avoided and condemned.
20 Consequently, opposition should uniquely motivate consumers' rejection of distant farms.
21 Communalization and Lionization might differentiate less participants' responses to our stimuli
22 because, while individuals might reward local farms, these dimensions do not necessarily
23 include a desire to punish distant producers. Therefore, the moderating role of opposition to
24 long supply chains is examined, while retaining Lionization and Communalization as controls.
25
26

27 Considering together these three constructs – traditional farming methods, localness and
28 opposition to long supply chains – a three-way interaction is proposed based on the
29 differentiation between how consumers with high and low opposition to long supply chains are
30 likely to process cues about the ethicality of produce. In other words, we expect that the
31 interaction between farming methods and localness further depends on the relative level of
32
33

1
2
3 opposition to long supply chains that individuals hold. Consequently we hypothesize as
4 follows:
5
6

7
8 H2: The level of individual opposition to long supply chains moderates the interaction
9 between farming methods and localness on perceptions of warmth.
10
11
12
13
14

15 The specific sub-hypotheses predicted are summarized in Table 2 below. Specifically, Table
16 2 explains how traditional farming methods influence consumer perceptions in different
17 conditions of localness and opposition to long supply chain systems. We start by considering,
18 in H2a, the effect of farming methods for distant food and individuals with low opposition to
19 long supply chains. We suggest that this group of people would be relatively unconcerned with
20 the provenance of their food. Consequently, and different from the findings reported in Study
21 1, traditional farming would not improve the perception of distant food for them. They might
22 not pay enough attention to this single cue of ethicality, leading to a negligible impact of
23 traditional farming methods on consumer attitudes and purchase intentions (H2a: no effect).
24
25 Next, we consider in H2b the pairing of farming methods and localness for low opposition
26 individuals. When traditional methods are paired with localness, we propose an additive effect
27 between the two cues. Consumers with low opposition to long supply chains might still notice
28 the pairing of two cues of ethicality, leading to a positive overall effect (H2b: additive effect).
29
30

31 The pattern of effect is expected to be very different for individuals with high opposition to
32 long supply chains. These consumers care deeply about the origin of their food and therefore
33 are likely to process very carefully cues of ethicality (Petty and Cacioppo, 1986; Wagner and
34 Petty, 2011). Thus, we propose in H2c that traditional farming methods might be sufficient to
35 increase perceptions of warmth even for distant foods. This would suggest a compensatory
36 effect dictated by consumers' keen interest for such cues. In other words, consumers are so
37 keen for ethical cues that even one cue (traditional methods) might be sufficient to improve
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

1
2
3 consumers responses. When evaluating a distant farmer, therefore, traditional farming methods
4 might have a compensatory effect: a positive effect on warmth and, through this variable, on
5 consumer attitudes and purchase intentions is hypothesized (H2c: compensatory effect). At the
6 same time, however, in H2d when both cues are present additive effects are unlikely because
7 the dominant cue should be the one more aligned to the core of consumers' concern which is
8 food localness. When both cues are present, the cue that aligns better with the interests of
9 consumers should be dominant and be processed with more attention. Research studying the
10 stereotyping effects of multiple social perception cues provides significant evidence in favour
11 of a dominant effect for the dimension that is processed more attentively (Ball *et al.*, 2022;
12 Strinić *et al.*, 2021). Also, persuasion research has shown that consumers process more
13 intensely the information that is more closely aligned with their core interests (Brannon and
14 Brock, 1994) or their "cognitive structures" (Petty *et al.*, 2000). In this context, localness should
15 be dominant over farming methods when both are present (H2d: null effect).
16
17

18 Figure 1 below shows the model of moderated mediation tested in Study 2. While our
19 theoretical arguments focus on farming methods and localness, Study 1 has shown that
20 perceived size is a partial mediator of the effect of farming methods on warmth. Consequently,
21 our analysis also includes size perceptions as a possible sequential mediator. The model tests
22 the possibility that the interaction of farming methods, localness and opposition to long supply
23 chains might also influence the dependent variable through the effect of perceived size on
24 warmth.
25
26

27 INSERT HERE TABLE 2
28
29

30 INSERT HERE FIGURE 1
31
32

1
2
3
4

Study 2

5
6

Method

7
8
9 *Stimuli.* A stimuli-driven online survey was adopted for Study 2 with UK participants living
10 in the Southwest of England only (based on postcodes). The survey software (Qualtrics)
11 allocated participants randomly to one of four experimental conditions [2 (traditional vs.
12 modern farming methods) x 2 (within one's local area/in the Southeast of England vs. distant
13 from one's local area/in the Northwest of England)], who reviewed content about "Excellence
14 Farm". Localness was manipulated through geographical proximity between the farm and the
15 participants (Hoskins *et al.*, 2021). Consequently, the farm was described as either based in the
16 Southeast of England (local) vs. in the Northwest of England (far from the local area). As in
17 Study 1, the stimuli (see Web Appendix, Part A for full details) included images of produce
18 with the following description:
19
20
21
22
23
24
25
26
27
28
29
3031
32 "Excellence Farm is a farming business that grows a range of fruit and
33 vegetables in the Southeast of England (Northwest of England). The farm
34 specialises in farming strawberries, apples, carrots, and onions. The farm
35 relies on traditional (modern) farming methods. They use traditional
36 (modern) remedies to protect crops from pests. The planting and harvesting
37 of fruits and vegetables are done according to long-established
38 (contemporary) work practices."39
40
41
42
43
44
45
46
47
48 The same items from Study 1 were used to assess the effectiveness of the farming methods
49 manipulation. Mean differences on the average of the three items ($\alpha = .86$) demonstrate that
50 the manipulations were effective ($M_{\text{traditional}} = 5.49$, $M_{\text{modern}} = 2.04$; $t(181) = 22.02$, $p < .001$).
51
52 Participants also evaluated the relative localness of the business by answering two items on
53 whether the farm can be considered "local" (e.g., "I would consider this as a local farm
54 considering where I live" from 1 completely disagree to 7 completely agree; $r = .88$). The
55
56
57
58
59
60

1
2
3 manipulation check was consistent with expectations ($M_{\text{local}} = 5.50$, $M_{\text{distant}} = 1.74$; $t(181) =$
4
5 18.72 , $p < .001$).
6
7

8 *Participants.* An independent sample of one hundred and eighty-three participants was
9 recruited from Prolific in exchange for monetary compensation. One attention check question
10 was positioned towards the end of the questionnaire. None of the participants failed the
11 attention check. All participants were UK residents living in the Southeast of England (based
12 on selected postcodes) and above the age of 18. Among them, 55.7% were female. In terms of
13 age groups, 25.7% of participants were between 25 and 34 years old, 21.9% between 35 and
14 44 years old, 19.7% between 45 and 54 years old, 13.7% between 18 and 24 years old, 12%
15 between 55 and 64 years old, and 7.1% above 65.
16
17

18 *Measures.* Measures of warmth ($\alpha = .97$), competence ($\alpha = .93$), attitudes towards the farm
19 ($\alpha = .93$), and intentions to support the farm ($\alpha = .83$), were the same as in Study 1. Study 2
20 also included an item measuring perceived farm size. Locavorism was measured via three
21 dimensions: Lionization (“Locally produced foods just taste better”; “Locally produced foods
22 are more nutritious than foods that have been shipped from somewhere else”, $\alpha = .71$);
23 Opposition (“I don’t trust foods that have been produced by large, multinational corporations”;
24 “Large, global food systems are destined to fail”; “I would go out of my way to avoid buying
25 food from a large retail grocery chain”; “I feel uneasy eating something unless I know exactly
26 where it was produced”; $\alpha = .87$); and Communalization (“Buying locally produced foods
27 supports sustainable farming practices”; “Buying local foods helps build a more prosperous
28 community”; “I like to support local farmers whenever possible”; “Supporting the local food
29 economy is important to me”; $\alpha = .95$) based on Reich *et al.* (2018) on 7-point Likert scales (1
30 = strongly disagree, 7 = strongly agree). Given that this study introduced the moderation effect
31 of local production, Ethnocentrism was also controlled for (Fernández-Ferrín *et al.*, 2015),
32 measured via 11 items taken from the CETSCALE scale of Shimp and Sharma (1987), again
33

1
2
3 on a 7-point Likert scale ($\alpha = .95$). All the other procedures are consistent with Study 1. Item
4 loadings, reliability, and validity checks are available in Web Appendix, Part B; descriptive
5 statistics and correlations are reported in Table 3.
6
7
8
9

10 INSERT HERE TABLE 3
11
12

13 *Results*
14

15 A 2X2 ANOVA with farming methods (traditional, modern) and localness (distant, local)
16 as between-subject factors indicated a main effect of farming methods on warmth ($M_{\text{traditional}} =$
17 5.65 , $M_{\text{modern}} = 5.07$; $F(1, 179) = 9.77, p < .001$), attitudes towards the farm ($M_{\text{traditional}} = 6.18$,
18 $M_{\text{modern}} = 5.58$; $F(1, 179) = 12.55, p < .001$), intentions to support the farm ($M_{\text{traditional}} = 4.81$,
19 $M_{\text{modern}} = 4.37$; $F(1, 179) = 4.58, p = .03$), and perceptions of size ($M_{\text{traditional}} = 3.63$, $M_{\text{modern}} =$
20 4.32 ; $F(1, 179) = 17.80, p < .001$). Furthermore, localness has a significant main effect on
21 warmth ($M_{\text{local}} = 5.60$, $M_{\text{distant}} = 5.14$; $F(1, 179) = 6.37, p = .012$) and attitudes toward the farm
22 ($M_{\text{local}} = 6.08$, $M_{\text{distant}} = 5.69$; $F(1, 179) = 5.25, p = .023$). All other effects are not statistically
23 significant. As Table 3 highlights, localness is not correlated with perceived size and
24 competence.
25
26

27 To test the hypotheses proposed, a conditional process analysis was run using PROCESS.
28 We estimated a custom model (Hayes, 2022) with farming methods as the independent variable,
29 perceived size and warmth as sequential mediators, and farming localness and the level of
30 opposition to long supply chains as two moderators^[4]. The syntax of the custom model used
31 (consistent with Figure 1) is provided in Web Appendix, Part D together with the full results
32 of the model estimated. The model was run twice to consider attitudes and intentions to support
33 the farm as separate dependent variables. Gender, age, education, ethnocentrism, and the other
34 two dimensions of the locavorism scale (lionization and communalization) were included as
35 controls^[5]. All the other procedures are consistent with Study 1.
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

1
2
3 Consistent with the hypotheses, there is a significant three-way interaction of farming
4 methods, localness, and opposition to long supply chains on warmth ($b = -.63$; 95% CI from -
5 1.14 to -.12). The same three-way interaction on perceived size is not significant ($b = .12$; 95%
6 CI from -.35 to .59) although perceived size has a significant effect on warmth ($b = -.21$; 95%
7 CI from -.37 to -.04). Table 4 presents the conditional effect analysis and the hypotheses
8 proposed. When considering responses of consumers with low opposition to long supply chains
9 and the evaluation of a distant farm, results show that traditional farming methods do not have
10 a significant effect on warmth ($b = .09$; 95% CI from -.61 to .79). This finding is consistent
11 with H2a. In the case of a local farm and consumers with low opposition to long supply chains,
12 farming methods also do not appear to have a significant effect ($b = .55$; 95% CI from -.21 to
13 1.31). This result contradicts H2b. When consumers have a high level of opposition to long
14 food supply chains and the farm is not local, traditional farming methods significantly increase
15 perceptions of warmth ($b = 1.30$; 95% CI from .61 to 1.99). This compensatory effect supports
16 H2c. Finally, in the case of a distant farm and consumers with a high level of opposition to
17 long food supply chains, farming methods do not significantly increase warmth ($b = -.13$; 95%
18 CI from -.89 to .64). This finding supports H2d.

19
20
21 As summarized in Table 4, the mediation of warmth is reflected in the indirect effects and
22 therefore the influence that farming methods have on attitudes and intentions to support the
23 farm. There is significant evidence of a compensatory effect consistent with H2c on both
24 attitudes toward the farm ($b = .77$; 95% CI from CI: .29 to 1.27) and intentions to support it (b
25 = .84; 95% CI from CI: .31 to 1.36). Furthermore, the evidence contradicts H2b as we find no
26 evidence of an additive effect on neither attitude ($b = .33$; 95% CI from -.09 to .75) nor
27 intentions ($b = .36$; 95% CI from -.10 to .83). As shown in Table 4, and consistent with H2a
28 and H2d, the remaining indirect effects are not significant. Evidence of moderated mediation
29 is also provided by the index of moderated moderated mediation (Hayes, 2022), which is
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

significant both in the case of attitudes towards the farm ($b = -.40$; 95% CI from $-.78$ to $-.05$) and intentions to support the farm ($b = -.37$; 95% CI from $-.71$ to $-.05$).

Figure 2 plots the three-way interaction graphically and illustrates how the pattern of results relates to the hypotheses proposed. We used a median split to differentiate between levels of opposition. This analysis has purely illustrative purposes as it helps to clarify the pattern of results formally tested above. Considering first the panel focusing on consumers with low opposition to supply chains, average values clearly show no effect of farming methods or localness on warmth, lending support to H2a. While the mean differences suggest an additive effect of farming methods in the case of a local farm (5.97 vs 5.3), such an effect is not statistically significant and consequently H2b is rejected. Considering the panel focusing on consumers with high opposition to long supply chains, average values clearly show a strong compensatory effect in line with H2c. Finally, H2d is also supported as the local farm is perceived as warmer than the distant one on average; although there is no increase in warmth when the farm also uses traditional methods. The results of Study 2 overall support the idea that multiple cues of ethicality can have compensatory effects and therefore alert to the risks of “tradition-washing” in food marketing.

INSERT HERE FIGURE 2

INSERT HERE TABLE 4

Discussion

The study extends the growing literature on ethical food consumption by examining the psychological mechanisms explaining consumer preferences for ethical food. Specifically, it focuses on farming methods; a cue of food ethicality that has been overlooked in past research. Two experiments show that perceived warmth explains consumers' preference for food produced with traditional methods. Furthermore, when information about localness is not present, farming methods has a compensatory effect for consumers with strong opposition to

1
2
3 long supply chains. The theoretical and managerial contributions raised by these findings are
4
5 discussed next.
6
7
8

9 *Theoretical implications*
10

11 This paper makes three contributions to the literature. First, whereas past work has
12 dominantly explained preferences for ethical food as a result of consumers' characteristics
13 (e.g., Feldman and Hamm, 2015) or as contingent on the benefits attributed to these ethical
14 cues (e.g., Richetin *et al.*, 2021), this study shows that warmth stereotyping is a fundamental
15 psychological mechanism underlying consumers' preferences for ethical food. Previous
16 research had provided evidence of this general effect of ethical cues without elucidating the
17 potential explanatory mechanism underpinning it. Examining an under-researched cue of
18 ethicality (traditional farming methods), the study demonstrates that stereotyping farmers as
19 warm mediates the relationship between ethical cues and consumers' attitudes and intentions
20 to support the farm. This evidence also contributes to emerging research on the social
21 perception of producers more broadly (Paley *et al.*, 2024). In food production, even though
22 consumers do not interact with producers, we nonetheless find that perceptions of producers'
23 warmth influence consumer preferences positively.
24
25

26 Second, this study contributes to the literature on brand stereotyping by showing that in the
27 case of fresh food, warm perceptions are much more important than perceptions of competence
28 in driving consumer preferences. This finding extends and complements extant analysis that
29 suggests a crucial role of competence in transactional consumer decisions (Güntürkün *et al.*,
30 2020). Furthermore, our evidence shows that warmth and competence are not independent in
31 the context of fresh food evaluation. Past research shows that often warmth and competence
32 are inversely associated so that higher warmth can lower perceptions of competence (Kervyn
33 *et al.*, 2010; Kervyn *et al.*, 2009). This type of compensation between the two evaluations might
34 be expected in the use of production methods because an organization using more traditional
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

1
2
3 methods might be seen as less competent. Our study contradicts this expectation because we
4
5 find a dominance of warmth in food consumption. Tables 2 and 4 show that warmth and
6
7 competence are positively correlated. This evidence contributes to the debates on the
8
9 relationships between these two fundamental dimensions of social cognition and complements
10
11 extant accounts that had more explicitly considered the two dimensions as independent
12
13 evaluations (Davvetas and Halkias, 2019). In the domain of fresh food, being caring is
14
15 considered an integral part of the competence of the organization to produce quality food.
16
17

18
19 Third, this study advances our understanding of how the presence of two ethical food cues
20
21 affects consumers' preferences. Moreover, it underlies that these cues are processed differently
22
23 depending on the consumers' ideology of opposition to long supply chains. For high-opposition
24
25 consumers, compensatory effects are observed among localness and traditional methods, so
26
27 that when localness is absent, the cue traditional farming methods seems to compensate as it
28
29 signals similar perceptions of local farmers. In contrast, the co-occurrence of the two cues does
30
31 not produce additive effects. These findings offer some support to those claiming that locavores
32
33 are not only interested in proximally produced food but in sustainable farming more broadly
34
35 (Young, 2022). Indeed, these results evidence that for consumers, artisan food farmers play a
36
37 central role in sustainable food systems (McKitterick *et al.*, 2016), irrespective of their
38
39 geographic provenance. Moreover, while past research has demonstrated how opposition to
40
41 long-supply chains is integral to support for local food producers (Reich *et al.*, 2018), relatively
42
43 little is known about the broader implications of locavorism for consumers' respond to market
44
45 stimuli. Our research extends our understanding of the implications of espousing locavorism-
46
47 related beliefs for downstream consumer preferences.
48
49

50
51
52
53
54
55 *Practical implications*

56
57 The study also has practical implications, notably for the promotion of ethical food systems.
58
59 Some food systems such as Community Supported Agriculture (Thompson and Coskuner-
60

1
2
3 Balli, 2007) or farmers' markets (Feldman and Hamm, 2015) enable direct contact between
4 consumers and farmers that can contribute to nurturing warmth perceptions. However, this
5 direct contact is not possible for all consumers, and it is not envisaged in other distribution
6 schemes such as co-ops (Thompson and Coskuner-Balli, 2007). In contexts where direct
7 contact between consumers and farmers is not feasible, farmers can create favourable
8 judgements among potential consumers by foregrounding traditional farming methods or
9 localness in their communications. This creates opportunities for the diffusion of ethical food
10 purchasing, as it does not seem necessary to personally interact with farmers to develop
11 perceptions of warmth.
12
13

14 Moreover, this study provides evidence that ethical cues should be combined differently
15 depending on the ideology of the target audience. Specifically, for high-opposition consumers,
16 the inclusion of additional cues to localness does not seem to enhance their preferences.
17 Consistent with this, retailers such as farmers markets or organic food chains aiming to attract
18 high-opposition consumers typically emphasize closeness with messages such as "Produced by
19 local farmers" or imagery representing such farmers. These communication strategies directly
20 appeal to the core concerns of high-opposition consumers. Nonetheless, when local food
21 production cannot be available, producers should pitch instead the use of traditional methods,
22 as this cue seems to compensate for the limited localness of food production for these
23 consumers. For instances, advertising messages may add "using traditional methods" or
24 "following traditional practices".
25
26

27 This work also raises a word of caution about the potential to use traditional production cues
28 to deceive consumers. The findings show that using this cue elicits perceptions of warmth, even
29 in the absence of other cues. Since there is significant ambiguity around what "traditionality"
30 actually entails, marketers can use it superficially and mislead consumers (Charmpi *et al.*,
31 2021). Indeed, food brands often use uncostly semantic (e.g. "homemade recipe") or visuals
32
33

1
2
3 markers of traditionality even when their production methods are not necessarily traditional.
4
5 Our study shows that the use of traditionality may bias consumers' perceptions of other
6 attributes such as localness. Other work has shown that traditionality cues can also skew
7 consumer perceptions of healthiness and tastiness (Richetin *et al.*, 2021). Thus, communication
8 of traditionality when production methods are not traditional may constitute a form of
9 "tradition-washing". Managers that want to communicate ethically should ensure that the
10 inclusion of semantic or visual markers of traditionality is backed up by actual practices. Pre-
11 testing marketing communication materials could also help anticipate whether consumers are
12 misinterpreting them and inferring unintended meanings associated with traditionality. Our
13 findings raise potential implications for industry and governmental institutions that regulate
14 marketing communications. Such bodies should add tradition-washing to the list of potential
15 misleading practices and develop guidelines for practitioners to avoid such a practice.
16 Similarly, in the same way as regulations are being considered for greenwashing (Fournaris,
17 2024), governments could consider enforcing laws that restrict or control tradition-washing.
18

35 *Limitations and future research*

36
37 This study has offered evidence of the stereotyping of farmers as the mechanism explaining
38 consumers' preferences towards local and traditionally farmed food. Notwithstanding, this
39 mechanism may also explain preferences for other ethical cues such as organic farming or
40 animal welfare, as these production forms have been also associated with likable and caring
41 farmers (Telligman *et al.*, 2017). Future work could replicate this study with other food ethical
42 cues to establish the generalizability of stereotyping as a mediating mechanism and to expand
43 this conceptualization regarding the different consumers' perceptions of combinations of
44 ethical cues.
45

46 In this respect, one notable finding from the two experiments is the strong association
47 between farming methods and perceptions of farm size. Both studies find that traditional farms
48

1
2
3 are perceived as smaller, even though the effect of traditional cues on warmth is not fully
4 explained by perceptions of size. These findings indicate that size is another important cue that
5 marketers could leverage when communicating about food producers and their features
6 (Bonetti *et al.*, 2023; Yang and Aggarwal, 2019). A pertinent question for future research
7 concerns whether size and localness might also have a similar pattern of interaction as the one
8 examined in this study. Furthermore, it would be interesting to explore whether manipulating
9 size is sufficient to also lead to inferences of traditionality or if cues of traditionality elicit
10 similar perceptions for small or large brands.
11
12

13 Past work has shown that taste-based experiments may change perceptions of ethical cues
14 (Caporale and Monteleone, 2004). Given that only visual stimuli were used, it cannot be
15 established whether a greater sensory involvement with fresh produce may enhance the
16 stereotyping of farmers. Future work could use taste experiments to establish whether the
17 mechanisms hold with greater sensory involvement. Stereotyping may also operate in
18 conjunction with authenticity, another mechanism shown to mediate the relationship between
19 localness and consumers' preferences (Hoskins *et al.*, 2021); this relationship between
20 stereotyping and authenticity should be examined further. Similarly, the relationship between
21 the two dimensions of the stereotype content model and their effects on shaping consumers'
22 attitudes and purchase intentions may be worth exploring further. Lastly, the experiments
23 conducted used two different operationalisations of localness and were conducted in the UK.
24 Further research could explore differences across countries since localness (and its
25 operationalisation) can be affected by cultural differences (Ostrom, 2006).
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

1 2 3 Endnotes 4 5

6 [1] The notion of “traditional production methods” is different from the idea of “traditional
7 food” or those food products “in the community market for a time period showing transmission
8 between generations; this time period should be the one generally ascribed as one human
9 generation, at least 30 years” (Regulation (EU) No 1151/2012 of the European Parliament and
10 of the Council of 21 November 2012 on quality schemes for agricultural products and
11 foodstuffs). It should be differentiated also from “traditional food recipes” (Trichopoulou *et*
12 *al.*, 2007) or foods (e.g., beer or cheese) prepared following ancient techniques (Guerrero *et*
13 *al.*, 2009).

14 [2] Another covariate considered in this paper (both Study 1 and Study 2) is the frequency with
15 which participants consume fruit and vegetables (two separate items). Both studies find that
16 this factor plays no role in consumers’ responses to any of the manipulations considered.

17 [3] Both Studies 1 and 2 also tested mediation models considering size as a potential covariate
18 or as a potential additional mediator (in parallel with warmth and competence). The results are
19 not qualitatively affected by the different ways of incorporating perceived size into the
20 analyses. In Web Appendix, Part C we report these additional mediation models for Study 1.

21 [4] Since Study 1 showed that competence was not relevant in consumers’ evaluations, we
22 dropped this variable from the analysis. However, we have also run the model including
23 competence as an additional independent mediator and the results are not influenced by the
24 inclusion of this construct in the analysis.

25 [5] We also run the model without the controls and confirmed that the results are not affected
26 by the inclusion of these variables.

References

Aaker, J. L., Garbinsky, E. N., & Vohs, K. D. (2012), "Cultivating admiration in brands: Warmth, competence, and landing in the "golden quadrant""", *Journal of Consumer Psychology*, Vol. 22 No. 2, pp. 191-194.

Aaker, J., Vohs, K. D., & Mogilner, C. (2010), "Nonprofits are seen as warm and for-profits as competent: Firm stereotypes matter", *Journal of Consumer Research*, Vol. 37 No. 2, pp. 224-237.

Abouab, N., & Gomez, P. (2015), "Human contact imagined during the production process increases food naturalness perceptions", *Appetite*, Vol. 91, pp. 273-277.

Andorfer, V. A., & Liebe, U. (2012), "Research on fair trade consumption—A review", *Journal of Business Ethics*, Vol. 106 No. 4, pp. 415-435.

Antonetti, P., Crisafulli, B., & Maklan, S. (2021), "When doing good will not save us: Revisiting the buffering effect of CSR following service failures", *Psychology & Marketing*, Vol. 38 No. 9, pp. 1608-1627.

Autio, M., Collins, R., Wahlen, S., & Anttila, M. (2013), "Consuming nostalgia? The appreciation of authenticity in local food production", *International Journal of Consumer Studies*, Vol. 37 No. 5, pp. 564-568.

Ball, E., Steffens, M. C., & Niedlich, C. (2022), "Racism in Europe: Characteristics and Intersections with Other Social Categories", *Frontiers in Psychology*, Vol. 13, Article 789661.

Banerjee, R., & Quinn, B. (2022), "Exploring consumer constructions of local food: meanings and influences", *European Journal of Marketing*, Vol. 56 No. 5, pp. 1269-1300.

Batra, R., Ahuvia, A., & Bagozzi, R. P. (2012), "Brand Love", *Journal of Marketing*, Vol. 76 No. 2, pp. 1-16.

1 Bonetti, B. L., Goenka, S., & May, F. (2023), "The effect of firm size on perceived product
2 healthiness", *Marketing Letters*, online first, 1-14.

3 Brannon, L. A., & Brock, T. C. (1994), "Test of schema correspondence theory of persuasion:
4 Effects of matching an appeal to actual, ideal, and product "selves."", in Clark, E. M.;
5 Brock, T. C. & Stewart, D. W. (eds.), *Attention, attitude, and affect in response to*
6 *advertising*, Lawrence Erlbaum Associates, Inc, London, pp. 169-188.

7 Brečić, R., Čorić, D. S., Lučić, A., Gorton, M., & Filipović, J. (2021), "Local food sales and
8 point of sale priming: evidence from a supermarket field experiment", *European*
9 *Journal of Marketing*, Vol. 55 No. 13, pp. 41-62.

10 Caporale, G., & Monteleone, E. (2004), "Influence of information about manufacturing process
11 on beer acceptability", *Food Quality and Preference*, Vol. 15 No. 3, pp. 271-278.

12 Carroll, G. R., & Wheaton, D. R. (2009), "The organizational construction of authenticity: An
13 examination of contemporary food and dining in the U.S.", *Research in Organizational*
14 *Behavior*, Vol. 29, pp. 255-282.

15 Charmpí, C., Vervaet, T., Van Reckem, E., Geeraerts, W., Van der Veken, D., Ryckbosch, W.,
16 Leroy, F. & Brengman, M. (2021), "Assessing levels of traditionality and naturalness
17 depicted on labels of fermented meat products in the retail: Exploring relations with
18 price, quality and branding strategy", *Meat Science*, Vol. 181, Article 108607.

19 Cuddy, A. J. C., Fiske, S. T., Kwan, V. S. Y., Glick, P., Demoulin, S., Leyens, J.-P., et al.
20 (2009), "Stereotype content model across cultures: Towards universal similarities and
21 some differences", *British Journal of Social Psychology*, Vol. 48 No. 1, pp. 1-33.

22 Davvetas, V., & Halkias, G. (2019), "Global and local brand stereotypes: formation, content
23 transfer, and impact", *International Marketing Review*, Vol. 36 No. 5, pp. 675-701.

1 Fernández-Ferrín, P., Bande-Vilela, B., Klein, J. G., & del Río-Araújo, M. L. (2015),
2
3 “Consumer ethnocentrism and consumer animosity: antecedents and consequences”,
4
5 *International Journal of Emerging Markets*, Vol. 10 No. 1, pp. 73-88.
6
7

8 Fiske, S. T. (2018), “Stereotype content: Warmth and competence endure”, *Current Directions*
9
10 in *Psychological Science*, Vol. 27 No. 2, pp. 67-73.
11
12

13 Fiske, S. T., Cuddy, A. J. C., Glick, P., & Xu, J. (2002), “A model of stereotype content as
14 often mixed: Separate dimensions of competence and warmth respectively follow from
15 status and competition”, *Journal of Personality and Social Psychology*. Vol. 82 No. 6,
16
17 pp. 878-902.
18
19

20 Fornell, C., & Larcker, D. F. (1981). “Evaluating structural equation models with unobservable
21 variables and measurement error”, *Journal of Marketing Research*, Vol. 18 No. 1,
22 pp.39-50.
23
24

25 Fournieris, C. (2024), “How is the European Union combating greenwashing?”, *Euronews*, 25
26 June 2024, <https://www.euronews.com/green/2024/06/25/how-is-the-european-union-combating-greenwashing>, Accessed on 7 February 2025.
27
28

29 Freund, A., Flynn, F., & O'Connor, K. (2024), “Big is bad: Stereotypes about organizational
30 size, profit-seeking, and corporate ethicality”, *Personality and Social Psychology*
31
32 *Bulletin*, Vol 50 No 6, pp. 924-941.
33
34

35 Fusch, C.; Schreier, M. & van Osselaer, S. M.J. (2015), “The Handmade Effect: What's Love
36 Got to Do with It?”, *Journal of Marketing*, Vol. 79 No. 1, pp. 98-110
37
38

39 Guerrero, L., Guàrdia, M. D., Xicola, J., Verbeke, W., Vanhonacker, F., Zakowska-Biemans,
40 S., Sajdakowska, M.; Sulmont-Rossé, C.; Issanchou, S.; Contel, M.; Scalvedi, M.L.;
41 Signe Granli, B. & Hersleth, M. (2009), “Consumer-driven definition of traditional food
42 products and innovation in traditional foods. A qualitative cross-cultural
43 study”, *Appetite*, Vol. 52 No. 2, pp. 345-354.
44
45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

1
2
3 Güntürkün, P., Haumann, T., & Mikolon, S. (2020), "Disentangling the differential roles of
4 warmth and competence judgments in customer-service provider
5 relationships", *Journal of Service Research*, Vol. 23 No. 4, pp. 476-503.
6
7
8
9
10 Hagen, L. (2021), "Pretty healthy food: How and when aesthetics enhance perceived
11 healthiness", *Journal of Marketing*, Vol. 85 No. 2, pp. 129-145.
12
13
14 Halkias, G., Davvetas, V., & Diamantopoulos, A. (2016), "The interplay between country
15 stereotypes and perceived brand globalness/localness as drivers of brand
16 preference", *Journal of Business Research*, Vol. 69 No. 9, pp. 3621-3628.
17
18
19
20
21 Halkias, G., & Diamantopoulos, A. (2020), "Universal dimensions of individuals' perception:
22 Revisiting the operationalization of warmth and competence with a mixed-method
23 approach", *International Journal of Research in Marketing*, Vol. 37 No. 4, pp. 714-
24
25
26
27
28
29
30
31 Hayes, A. F. (2022), *Introduction to Mediation, Moderation, and Conditional Process*
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
Analysis: A Regression-Based Approach (Methodology in the Social Sciences) (3rd
ed.). The Guilford Press, New York, NY.
Herédia-Colaço, V., & Coelho do Vale, R. (2018), "Seize the day or save the world? The
importance of ethical claims and product nature congruity", *Journal of Business
Ethics*, Vol. 152 No.3, pp. 783-801.
Hoskins, J., Verhaal, J. C., & Griffin, A. (2021), "How within-country consumer product (or
brand) localness and supporting marketing tactics influence sales
performance", *European Journal of Marketing*, Vol. 55 No. 2, pp. 565-592.
Judge, M., Fernando, J. W., Paladino, A., & Kashima, Y. (2020a), "Folk theories of artifact
creation: How intuitions about human labor influence the value of
artifacts", *Personality and Social Psychology Review*, Vol. 24 No. 3, pp. 195-211.

Judge, M., Fernando, J. W., Paladino, A., Mikolajczak, G., & Kashima, Y. (2020b), "Lay concepts of art, craft, and manufacture and the implications for sustainable consumption", *Journal of Social Issues*, Vol. 76 No. 1, pp. 19-34.

Kervyn, N., Fiske, S. T., & Malone, C. (2022), "Social perception of brands: Warmth and competence define images of both brands and social groups", *Consumer Psychology Review*, Vol. 5 No. 1, pp. 51-68.

Kervyn, N., Yzerbyt, V., & Judd, C. M. (2010), "Compensation between warmth and competence: Antecedents and consequences of a negative relation between the two fundamental dimensions of social perception", *European Review of Social Psychology*, Vol. 21 No. 1, pp. 155-187.

Kervyn, N., Yzerbyt, V. Y., Judd, C. M., & Nunes, A. (2009), "A question of compensation: the social life of the fundamental dimensions of social perception", *Journal of Personality and Social Psychology*, Vol. 96 No. 4, pp. 828-842.

Kolbl, Ž., Diamantopoulos, A., Arslanagic-Kalajdzic, M., & Zabkar, V. (2020), "Do brand warmth and brand competence add value to consumers? A stereotyping perspective", *Journal of Business Research*, Vol. 118, pp. 346-362.

Lang, T. (2010), "From 'value-for-money' to 'values-for-money'? Ethical food and policy in Europe", *Environment and Planning A: Economy and Space*, Vol. 42 No. 8, pp. 1814-1832.

Luchs, M. G., Naylor, R. W., Irwin, J. R., & Raghunathan, R. (2010), "The sustainability liability: Potential negative effects of ethicality on product preference", *Journal of Marketing*, Vol. 74 No. 5, pp. 18-31.

Mäkiniemi, J. P., Pirttilä-Backman, A. M., & Pieri, M. (2011), "Ethical and unethical food. Social representations among Finnish, Danish and Italian students", *Appetite*, Vol. 56 No. 2, pp. 495-502.

1
2
3 McKitterick, L., Quinn, B., McAdam, R., & Dunn, A. (2016), "Innovation networks and the
4 institutional actor-producer relationship in rural areas: The context of artisan food
5 production", *Journal of Rural Studies*, Vol. 48, pp. 41-52.
6
7
8
9
10 Memery, J., Angell, R., Megicks, P., & Lindgreen, A. (2015), "Unpicking motives to purchase
11 locally-produced food: analysis of direct and moderation effects", *European Journal of
12 Marketing*, Vol. 49 No.7/8, pp. 1207-1233.
13
14
15 Oke, A., Ladas, J., & Bailey, M. (2020), "Ethical consumers: an exploratory investigation of
16 the ethical food consumption behaviour of young adults in the North East of
17 Scotland", *British Food Journal*, Vol. 122 No. 11, pp. 3623-3638.
18
19
20
21
22
23
24 Ostrom, M. (2006), "Everyday meanings of "local food": Views from home and
25 field", *Community Development*, Vol. 37 No. 1, pp. 65-78.
26
27
28 Paley, A., Smith, R. W., Teeny, J. D., & Zane, D. M. (2024). Production Enjoyment
29 Asymmetrically Impacts Buyers' Willingness to Pay and Sellers' Willingness to Charge.
30
31
32
33 *Journal of Marketing*, 88(6), 85-102.
34
35
36 Petty, R. & Cacioppo, J. (1986), "The elaboration likelihood model of persuasion", *Advances
37 in Experimental Social Psychology*, Vol. 19, pp. 123-205.
38
39
40 Petty, R. E., Wheeler, S.C., & Bizer, G. (2000), "Matching effects in persuasion: An
41 elaboration likelihood analysis", Maio, G. & Olson, J. (eds.), *Why we evaluate:
42 Functions of attitudes*. Erlbaum, Mahwah, NJ, pp. 133-162.
43
44
45
46
47 Regulation (EU) No 1151/2012 of the European Parliament and of the Council of 21 November
48 2012 on quality schemes for agricultural products and foodstuffs,
49
50 Document 02012R1151-20220608, <http://data.europa.eu/eli/reg/2012/1151/2022-06-08>,
51 accessed on 1 January 2024.
52
53
54
55 Reich, B. J., Beck, J. T., & Price, J. (2018), "Food as Ideology: Measurement and Validation
56 of Locavorism", *Journal of Consumer Research*, Vol. 45 No. 4, pp. 849-868.
57
58
59
60

1 Richetin, J., Demartini, E., Gaviglio, A., Ricci, E. C., Stranieri, S., Banterle, A., & Perugini,
2 M. (2021), "The biasing effect of evocative attributes at the implicit and explicit level:
3 The tradition halo and the industrial horn in food products evaluations", *Journal of*
4 *Retailing and Consumer Services*, Vol. 61, Article 101890.

5 Risius, A., & Hamm, U. (2018), "Exploring influences of different communication approaches
6 on consumer target groups for ethically produced beef", *Journal of Agricultural and*
7 *Environmental Ethics*, Vol. 31 No.3, pp. 325-340.

8 Rivaroli, S., Baldi, B., & Spadoni, R. (2020), "Consumers' perception of food product
9 craftsmanship: A review of evidence", *Food Quality and Preference*, Vol. 79, Article
10 103796.

11 Rivaroli, S., Lindenmeier, J., Hingley, M., & Spadoni, R. (2021), "Social representations of
12 craft food products in three European countries", *Food Quality and Preference*, Vol.
13 93, Article 104253.

14 Rozin, P. (2005), "The meaning of "natural" process more important than content",
15 *Psychological science*, Vol. 16, No. 8, pp. 652-658.

16 Scekic, A., & Krishna, A. (2021), "Do firm cues impact product perceptions? When small is
17 natural", *Journal of Consumer Psychology*, Vol. 31 No 2, pp. 350-359.

18 Scheibehenne, B., Miesler, L., & Todd, P. M. (2007), "Fast and frugal food choices:
19 Uncovering individual decision heuristics", *Appetite*, Vol. 49 No. 3, pp. 578-589.

20 Shea, C. T., & Hawn, O. V. (2019), "Microfoundations of corporate social responsibility and
21 irresponsibility", *Academy of Management Journal*, Vol. 62 No. 5, pp. 1609-1642.

22 Shimp, T. A., & Sharma, S. (1987), "Consumer Ethnocentrism: Construction and Validation
23 of the CETSCALE", *Journal of Marketing Research*, Vol. 24 No. 3, pp. 280-289.

1
2
3 Strinić, A., Carlsson, M., & Agerström, J. (2021), "Multiple-group membership: warmth and
4 competence perceptions in the workplace", *Journal of Business and Psychology*, Vol.
5
6 36 No. 2, pp. 903-920.
7
8
9
10 Telligman, A. L., Worosz, M. R., & Bratcher, C. L. (2017), "A qualitative study of Southern
11 US consumers' top of the mind beliefs about the safety of local beef", *Appetite*, Vol.
12
13 109, pp. 1-10.
14
15
16 Thompson, C. J., & Coskuner-Balli, G. (2007), "Countervailing market responses to corporate
17 co-optation and the ideological recruitment of consumption communities", *Journal of
18 Consumer Research*, Vol. 34 No. 2, pp. 135-152.
19
20
21
22
23 Trichopoulou, A., Soukara, S., & Vasilopoulou, E. (2007), "Traditional foods: a science and
24 society perspective", *Trends in Food Science & Technology*, Vol. 18 No. 8, pp. 420-
25
26 427.
27
28
29
30 van Bussel, L. M., Kuijsten, A., Mars, M., & van't Veer, P. (2022), "Consumers' perceptions
31 on food-related sustainability: A systematic review", *Journal of Cleaner Production*,
32
33 Vol. 341, Article 130904.
34
35
36 Wagner, B. C., & Petty, R. E. (2011), "The elaboration likelihood model of persuasion:
37 Thoughtful and non-thoughtful social influence", Chadee, D., *Theories in social
38 psychology*, Wiley Blackwell, West Sussex, pp. 96-116.
39
40
41
42
43 Yamoah, F. A., Duffy, R., Petrovici, D., & Fearne, A. (2016), "Towards a framework for
44 understanding fairtrade purchase intention in the mainstream environment of
45 supermarkets", *Journal of Business Ethics*, Vol. 136 No.1, pp. 181-197.
46
47
48
49
50 Yang, L. W., & Aggarwal, P. (2019), "No small matter: How company size affects consumer
51 expectations and evaluations", *Journal of Consumer Research*, Vol. 45 No. 6, pp. 1369-
52
53 1384.
54
55
56
57
58
59
60

1
2
3 Young, C. (2022), "Should You Buy Local?", *Journal of Business Ethics*, Vol. 176 No.2, pp.
4
5 265-281.
6
7

8 Yu, H., Gibson, K. E., Wright, K. G., Neal, J. A., & Sirsat, S. A. (2017), "Food safety and food
9
10 quality perceptions of farmers' market consumers in the United States", *Food
11 Control*, Vol. 79, pp. 266-271.
12
13

14 Zepeda, L., & Leviten-Reid, C. (2004), "Consumers' views on local food", *Journal of food
15
16 Distribution Research*, Vol. 35 No. 3, pp. 1-6.
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

Table 1: Descriptive Statistics, Correlations & Fornell and Larcker Criterion (Study 1)

Variables	M (SD)			Correlations & Fornell and Larcker (1981) Criterion					
	Total sample	Traditional farming methods	Modern farming methods	Farming methods	Warmth	Competence	Attitudes	Intentions	
Farming methods				1					
Warmth	5.51 (1.07)	5.75 (.94)	5.26 (1.13)	.23*	.88				
Competence	5.66 (.88)	5.59 (.91)	5.73 (.85)	-.08	.60*	.75			
Attitudes	5.88 (1.07)	6.19 (.88)	5.57 (1.15)	.29*	.76*	.54*	.90		
Intentions	3.80 (1.10)	3.98 (1.08)	3.62 (1.10)	.16*	.57*	.39*	.51*	.84	
Perceived size	3.85 (1.09)	3.62 (.97)	4.07 (1.16)	-.21*	-.22*	.08	-.22*	-.15*	1

* $p < .01$. Warmth: $t(289) = -3.99$, $p < .01$; Competence: $t(289) = 1.31$, $p > .05$; Attitudes: $t(289) = -5.17$, $p < .01$; Intentions: $t(289) = -2.77$, $p < .01$; Perceived size: $t(289) = -3.59$, $p < .01$.

1
 2
 3 **Table 2.** Three-way interaction between farming method, localness and opposition to long
 4 supply chain systems (Study 2)
 5

	Low opposition	High opposition
Distant farming	H2a: Traditional farming methods have a null effect on warmth, consumer attitudes and intentions to support the farm. <i>H2a: No effect</i>	H2c: Traditional farming methods improve consumer attitudes and intentions to support the farm through the mediation of warmth. <i>H2c: Compensatory effect</i>
Local farming	H2b: Traditional farming methods improve consumer attitudes and intentions to support the farm through the mediation of warmth. <i>H2b: Additive effect</i>	H2d: Traditional farming methods have a null effect on warmth, consumer attitudes, and intentions to support the farm. <i>H2d: Local effect only</i>

Table 3: Descriptive Statistics, Correlations & Fornell and Larcker Criterion (Study 2)

Variables	M (SD)				Correlations & Fornell and Larcker (1981) Criterion										
	Traditional farming methods	Modern farming methods	Local	Distant	X1	X2	X3	X4	X5	X6	X7	X8	X9	X10	X11
Farming methods (X1)					1										
Warmth (X2)	5.65 (1.05)	5.07 (1.31)	5.60 (1.13)	5.14 (1.27)	.23**	.94									
Competence (X3)	5.72 (.95)	5.72 (1.02)	5.86 (.83)	5.60 (1.10)	-.01	.59**	.82								
Attitudes (X4)	6.18 (.93)	5.59 (1.29)	6.08 (1.13)	5.69 (1.17)	.25**	.65**	.46*	.93							
Intentions (X5)	4.82 (1.26)	4.37 (1.44)	4.73 (1.35)	4.45 (1.37)	.16*	.56**	.36*	.39*	.80						
Localness (X6)					.01	.19*	.13	.17*	.10	1					
Lionization (X7)	4.19 (1.19)	4.42 (1.50)	4.27 (1.36)	4.35 (1.36)	-.08	-.01	.09	.04	.01	-.03	.75				
Opposition (X8)	3.45 (1.41)	3.69 (1.52)	3.49 (1.42)	3.64 (1.50)	-.08	-.19*	-.09	-.15*	-.16*	-.05	.25**	.80			
Communalization (X9)	3.18 (1.74)	3.04 (1.74)	3.28 (1.87)	2.96 (1.61)	.04	.01	-.08	-.06	-.08	.09	-.31**	.01	.90		
Ethnocentrism (X10)	3.01 (1.50)	3.60 (1.62)	3.56 (1.58)	3.12 (1.58)	-.18*	.04	.01	-.01	.07	.14	.07	.33	.05	.71	
Perceived size (X11)	3.63 (.90)	4.29 (1.15)	3.87 (1.06)	4.07 (1.10)	-.31**	-.29**	.07	-.25**	-.14	-.09	.04	.15	-.08	.03	1

** p<.01, *p<.05

Farming Methods Sig. Differences: Warmth: $t(181)=-3.25, p<.01$; Attitudes: $t(181)=-3.54, p<.01$; Intentions: $t(181)=-2.23, p<.05$; Ethnocentrism $t(181)=2.88, p<.01$; Perceived size $t(181)=4.28, p<.01$.

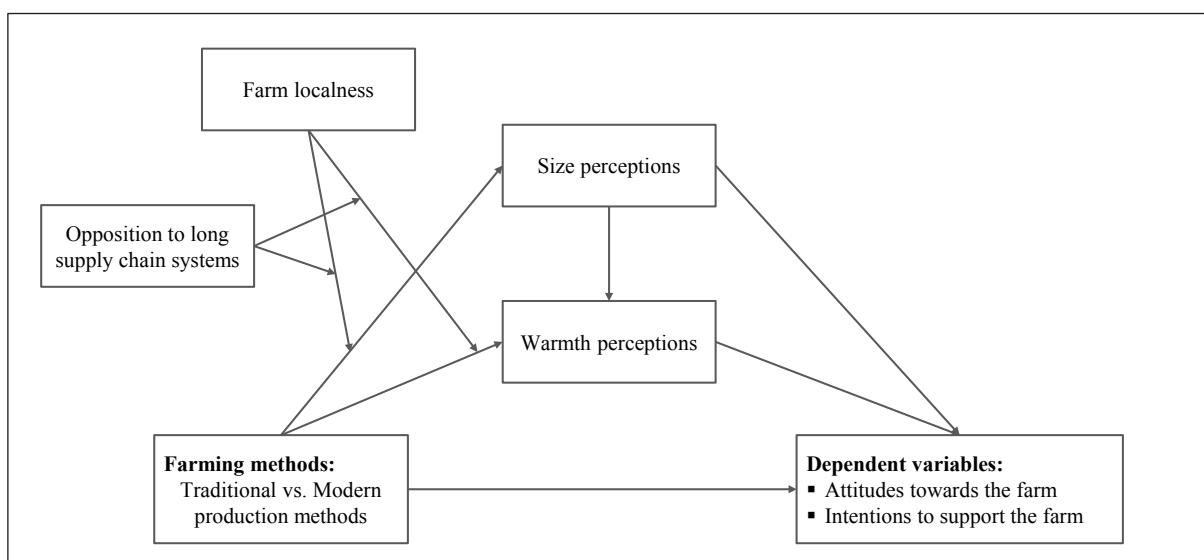
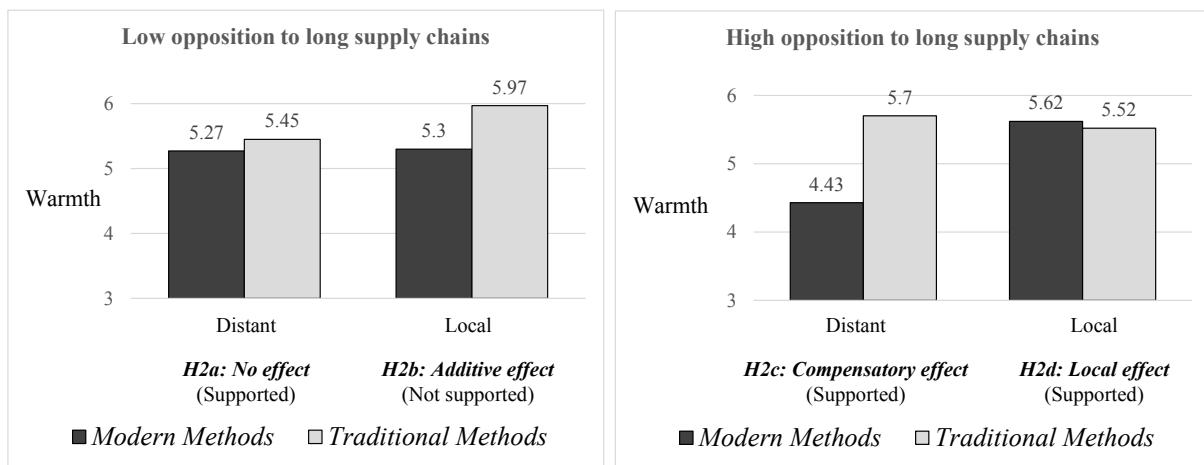

Localness Sig. Differences: Warmth: $t(181)=-2.56, p<.01$; Attitudes: $t(181)=-2.26, p<.05$.

Table 4: Conditional effects estimated (Study 2)

Hypothesis tested	Localness	Opposition	Effect estimated	<i>b</i> , 95% CI
H2a: no effect (Supported)	Distant	Low	Methods → Warmth	.09; CI: -.61 to .79
			Methods → Warmth → Attitudes	.05; CI: -.38 to .45
			Methods → Warmth → Intentions	.05; CI: -.41 to .49
H2b: additive effect (Not supported)	Local	Low	Methods → Warmth	.55; CI: -.21 to 1.31
			Methods → Warmth → Attitudes	.33; CI: -.09 to .75
			Methods → Warmth → Intentions	.36; CI: -.10 to .83
H2c: compensatory effect (Supported)	Distant	High	Methods → Warmth	1.30; CI: .61 to 1.99
			Methods → Warmth → Attitudes	.77; CI: .29 to 1.27
			Methods → Warmth → Intentions	.84; CI: .31 to 1.36
H2d: local effect (Supported)	Local	High	Methods → Warmth	-.13; CI: -.89 to .64
			Methods → Warmth → Attitudes	-.07; CI: -.51 to .44
			Methods → Warmth → Intentions	-.08; CI: -.58 to .44

NOTE: Bold font indicates a statistically significant estimate.


1
2
3 **Figure 1.** Conceptual model (Study 2)
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22

Journal of Marketing

1
2
3 **Figure 2.** Illustration of the interaction of farming methods, localness and opposition on
4 warmth
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

Figure 2. Illustration of the interaction of farming methods, localness and opposition on warmth

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

Web Appendix

Traditional methods, the stereotyping of farmers and the compensatory effects of ethical food cues

- Part A: Stimuli used in the experiments
- Part B: Variables, Item Loadings, Reliability and Validity Checks (Study 1 and 2)
- Part C: Additional mediation analyses (Study 1)
- Part D: Moderated Mediation Model Syntax and Full Results (Study 2)

1
2
3 **Part A. Stimuli used in the experiments**
4
5


6 *Figure A1. Traditional farm (Study 1)*
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

Excellence Farm is a farming business that grows a range of fruit and vegetables.

The farm specializes in farming strawberries, apples, carrots and onions.

The farm relies on traditional farming methods. They use traditional remedies to protect crops from pests. The planting and harvesting of fruits and vegetables is done according to long-established work practices.

Marketing

1
2
3 *Figure A2. Traditional and local farm (Study 2)*
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

A close-up photograph of three ripe strawberries growing on a green vine. The strawberries are red with a textured surface and small green leaves.

A close-up photograph of several fresh carrots with their green leafy tops still attached. The carrots are a vibrant orange color.

A circular logo for 'Excellence Farm'. It features a green house in the center, surrounded by three green trees. Below the house is a stylized green and orange field.

Excellence Farm is a farming business that grows a range of fruit and vegetables in the South East of England. The farm specializes in farming strawberries, apples, carrots and onions.

The farm relies on traditional farming methods. They use traditional remedies to protect crops from pests. The planting and harvesting of fruits and vegetables is done according to long-established work practices.

1
2
3 *Figure A3. Modern farming methods and local farm (Study 2)*
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37

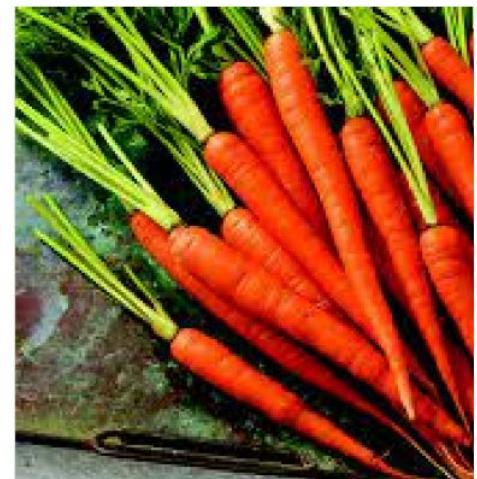
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

Excellence Farm is a farming business that grows a range of fruit and vegetables in the South East of England. The farm specializes in farming strawberries, apples, carrots and onions.

The farm relies on modern farming methods. They use modern remedies to protect crops from pests. The planting and harvesting of fruits and vegetables is done according to contemporary work practices.

1
2
3 *Figure A4. Traditional farming methods and distant farm (Study 2)*
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

A close-up photograph of three ripe strawberries growing on a vine. The strawberries are bright red with green stems and small white seeds visible on their surface. The background is a soft-focus green, suggesting a garden or field.


A close-up photograph of several fresh carrots. The carrots are bright orange with green leafy tops still attached. They are arranged in a cluster, showing their smooth, tapered shapes and vibrant color.

Excellence Farm is a farming business that grows a range of fruit and vegetables in the North West of England. The farm specializes in farming strawberries, apples, carrots and onions.

The farm relies on traditional farming methods. They use traditional remedies to protect crops from pests. The planting and harvesting of fruits and vegetables is done according to long-established work practices.

1
2
3 *Figure A5. Modern farming methods and distant farm (Study 2)*
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

Excellence Farm is a farming business that grows a range of fruit and vegetables in the North West of England. The farm specializes in farming strawberries, apples, carrots and onions.

The farm relies on modern farming methods. They use modern remedies to protect crops from pests. The planting and harvesting of fruits and vegetables is done according to contemporary work practices.

Part B.

Table B1: Variables, Item Loadings, Reliability and Validity Checks

VARIABLES	ITEMS	Loadings	Cronbach's Alpha, CR &AVE	STUDY 1 Loadings	STUDY 2 Cronbach's Alpha, CR &AVE
Farmers' Perceptions					
<i>Warmth</i>					
Given what you have read, to what extent do you believe this farm is:	Friendly Kind Likeable Nice Warm	.94 .94 .92 .95 .93	$\alpha=.96$ CR=.96 AVE=.77	.94 .95 .95 .96 .94	$\alpha=.97$ CR=.97 AVE=.88
<i>Competence</i>					
Given what you have read, to what extent do you believe this farm is:	Capable Competent Efficient Skillful Industrious Intelligent	.87 .85 .76 .85 .54 	$\alpha=.88$ CR=.87 AVE=.57	.90 .91 .85 .89 .72 .86	$\alpha=.93$ CR=.92 AVE=.68

Attitudes towards the farm						
Given what you have read, you would say this farm is _____.	Unpleasant/pleasant Disliked/liked		.95 .95	$\alpha=.89$ CR=.89 AVE=.81	.96 .96	$\alpha=.93$ CR=.92 AVE=.86
Intentions to support the farm						
Imagine you had the opportunity to purchase fruits and vegetables from this farm.	How likely would you be to seek out more information about the farm? How likely would you be to talk to others about this farm? How likely would you be to purchase products from this farm?		.90 .91 .87	$\alpha=.88$ CR=.88 AVE=.70	.83 .90 .87	$\alpha=.83$ CR=.84 AVE=.64
Locavorism						
Please indicate the extent to which you agree with the following statements.						
Lionization	Locally produced foods just taste better. Locally produced foods are more nutritious than foods that have been shipped from somewhere else.	NA	NA		.88 .88	$\alpha=.71$ CR=.72 AVE=.57
Opposition	I don't trust foods that have been produced by large, multinational corporations. Large, global food systems are destined to fail.	NA	NA		.86 .82	$\alpha=.87$ CR=.87 AVE=.64

	I would go out of my way to avoid buying food from a large retail grocery chain. I feel uneasy eating something unless I know exactly where it was produced.			.86	
Communalization	Buying locally produced foods supports sustainable farming practices. Buying local foods helps build a more prosperous community. I like to support local farmers whenever possible. Supporting the local food economy is important to me.	NA	NA	.92 .95 .95 .90	$\alpha=.95$ $CR=.95$ $AVE=.82$
Ethnocentrism	Purchasing foreign-made products is un-British. It is not right to purchase foreign products, because it puts the UK out of jobs. A real British should always buy British-made products. We should purchase products manufactured in the UK instead of letting other countries get rich off us. There should be very little trading or purchasing of goods from other countries unless out of necessity. British should not buy foreign products, because this hurts UK business and causes unemployment. Curbs should be put on all imports. Foreigners should not be allowed to put their products on our markets. Foreign products should be taxed heavily to reduce their entry into the UK. We should buy from foreign countries only those products that we cannot obtain within our own country. British consumers who purchase products made in other countries are responsible for putting their fellow Britons out of work.	NA	NA	.88 .89 .90 .78 .87 .93 .89 .86 .85 .69 .86	$\alpha=.96$ $CR=.93$ $AVE=.50$

AVE = Average Variance Extracted; CR = Composite Reliability

Part C.

Additional mediation analyses (Study 1)

Model estimated: PROCESS Model 6 Farming methods → Size → Stereotype contents (warmth and competence) → Attitude / Intention to support, where age, gender, and education serve as covariates.

Table C1. Regression model results

Path estimated	DV: Attitude towards the farm			DV: Intention to support the farm		
	<i>b</i>	95% CI Lower	95% CI Upper	<i>b</i>	95% CI Lower	95% CI Upper
Farming method → Attitude	.303	.149	.457	----	----	----
Farming method → Intention	----	----	----	.102	-.124	.327
Farming method → Size	-.453	-.699	-.206	-.453	-.699	-.206
Size → Warmth	-.171	-.282	-.060	-.171	-.282	-.060
Warmth → Competence	.561	.484	.637	.561	.484	.637
Size → Competence	.149	.075	.223	.149	.075	.223
Size → Attitude	-.071	-.142	-.001	----	----	----
Warmth → Attitude	.576	.482	.670	----	----	----
Competence → Attitude	.225	.116	.334	----	----	----
Farming Methods → Farm size → Attitude	.032	.002	.075	----	----	----
Farming Methods → Warmth → Attitude	.247	.107	.409	----	----	----
Farming Methods → Competence → Attitude	-.077	-.147	-.025	----	----	----
Farming Methods → Farm size → Warmth → Attitude	.045	.010	.095	----	----	----
Farming Methods → Farm size → Competence → Attitude	-.015	-.035	-.003	----	----	----
Farming Methods → Warmth → Competence → Attitude	.054	.016	.105	----	----	----
Farming Methods → Farm size → Warmth → Competence → Attitude	.010	.002	.024	----	----	----
Size → Intention	----	----	----	-.040	-.143	.064
Warmth → Intention	----	----	----	.515	.378	.652
Competence → Intention	----	----	----	.123	-.036	.283

1	Farming Methods → Farm size → Intention	----	----	----	.018	-.032	.070
2	Farming Methods → Warmth → Intention	----	----	----	.221	.088	.372
3	Farming Methods → Competence → Intention	----	----	----	-.042	-.109	.016
4	Farming Methods → Farm size → Warmth → Intention	----	----	----	.040	.008	.088
5	Farming Methods → Farm size → Competence → Intention	----	----	----	-.008	-.025	.003
6	Farming Methods → Farm size → Warmth → Competence → Intention	----	----	----	.030	-.011	.079
7	Farming Methods → Farm size → Warmth → Competence → Attitude	----	----	----	.005	-.002	.017

27 Covariates with significant effects: Sex → Warmth = -.13, -.25 to -.01; Education → Warmth = -.12, -.20 to -.03; Age → Intentions = .08, .003 to .18; Education → Attitude = -.05, -.10 to -.001.

1
2
3 **Additional mediation analyses (Study 1)**
4
5

6 Model estimated: PROCESS Model 4 Farming methods → Stereotype contents (warmth and
7 competence) → Attitude / Intention to support, where age, gender, education and farm size serve as
8 covariates.

9 *Table C2. Regression model results*
10

11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60	DV: Attitude towards the farm			DV: Intention to support the farm		
	b	95% CI Lower	95% CI Upper	b	95% CI Lower	95% CI Upper
Size → Warmth	-.171	-.282	-.060	-.171	-.282	-.060
Size → Competence	.053	-.043	.149	.053	-.043	.149
Size → Attitude	-.071	-.142	-.001	----	----	----
Warmth → Attitude	.576	.482	.670	----	----	----
Competence → Attitude	.225	.116	.334	----	----	----
Methods → Warmth → Attitude	.247	.103	.409	----	----	----
Methods → Competence → Attitude	-.023	-.082	.023	----	----	----
Size → Intention	----	----	----	-.040	-.143	.064
Warmth → Intention	----	----	----	.515	.378	.652
Competence → Intention	----	----	----	.123	-.036	.283
Methods → Warmth → Intention	----	----	----	.221	.088	.378
Methods → Competence → Intention	----	----	----	-.012	-.056	.017

Covariates with significant effects: Sex → Warmth = -.13, -.25 to -.01; Education → Warmth = -.12, -.20 to -.03; Education → Competence = -.10, -.17 to -.03; Age → Intentions = .08, .003 to .18; Education → Attitude = -.05, -.10 to -.001.

1
2
3
4
5
6
Part D.7
Moderated Mediation Model Syntax and Full Results (Study 2)
89
Custom model Syntax: process y=intentions to support the farm OR attitudes toward the
10 farm/m=perceived size perceived warmth/x=Farming method/w=Localness/z=Locavorism:
11 Opposition to long supply chains/boot=10000/COV= Age Education Gender Ethnocentrism
12 Locavorism: Lionization Locavorism: Communalization/
1314
15 bmatrix=1,1,1,1,1,1/wmatrix=1,1,0,0,0,0/zmatrix=1,1,0,0,0,0/wzmatrix=1,1,0,0,0,0/
16
1718
19 *The model was run twice. Once for intentions to support the farm and once for attitudes*
20 *toward the farm.*21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

Table D1. Regression model results

	Farm Size (Mediator 1)				Warmth (Mediator 2)			
	Beta	p	95% CI Lower	95% CI Upper	Beta	p	95% CI Lower	95% CI Upper
Farming method (X)	-.832	.166	-2.01	.348	-.718	.275	-2.011	.576
Size	--	--	--	--	-.209	.014	-.375	-.044
Localness (Moderator 1)	.785	.218	-.468	2.039	-.814	.244	-2.186	.559
Opposition (Moderator 2)	.158	.069	-.013	.329	.302	.002	-.489	-.114
Farming method x Localness	-.435	.626	-2.194	1.324	1.721	.078	-.197	3.639
Farming method x Opposition	.051	.749	-.262	.364	.404	.021	.063	.746
Localness x Opposition	-.268	.112	-.598	.063	.385	.038	.022	.748
Farming method x Localness x Opposition	.124	.604	-.347	.595	-.630	.017	-1.144	-.117
Age	.013	.813	-.097	.124	-.134	.030	-.255	-.014
Education	.010	.868	-.104	.123	.014	.827	-.110	.137
Gender	.201	.012	.045	.358	-.021	.808	-.195	.152
Ethnocentrism	-.043	.431	-.151	.065	.108	.072	-.010	.225
Locavorism: Lionization	-.091	.372	-.291	.110	.131	.238	-.088	.350
Locavorism: Communalization	-.061	.202	-.154	.033	-.019	.711	-.121	.083
Constant	4.021	.000	2.775	5.268	6.497	.000	4.984	8.009
Model fit	$R = .413, R^2 = .171, F = 2.677; p = .002$				$R = .481; R^2 = .231; F = 3.607; p = .000$			

1
2
3 *Table D2. Conditional effects of Farming methods at values of the moderators (Localness and*
4 *Opposition) (Study 2)*

Localness	Opposition	Focal Predictor: Farming Method				
		Beta	p	95% CI Lower		95% CI Upper
0	2.0	.091	.799	-.613		.795
0	3.5	.698	.004	.223		1.172
0	5.0	1.304	.000	.612		1.997
1	2.0	.552	.153	-.208		1.311
1	3.5	.213	.406	-.291		.717
1	5.0	-.126	.745	-.887		.635

24 *Table D3. Direct effects (Study 2)*

	DV: Attitudes toward the farm				DV: Intentions to support the farm			
	Beta	p	95% CI Lower	95% CI Upper	Beta	p	95% CI Lower	95% CI Upper
Farming method (X)	.239	.099	-.045	.524	.129	.485	-.234	.491
Size (Mediator 1)	-.049	.462	-.180	.082	.018	.835	-.149	.184
Warmth (Mediator 2)	.590	.000	.477	.704	.641	.000	.497	.786
Age	.003	.943	-.091	.098	.140	.023	.020	.261
Education	-.036	.459	-.131	.059	.097	.117	-.024	.217
Gender	.008	.914	-.128	.143	.102	.245	-.071	.276
Ethnocentrism	-.022	.617	-.109	.065	.039	.489	-.072	.149
Locavorism: Lionization	.181	.030	.018	.344	-.052	.623	-.259	.156
Locavorism: Communalization	-.028	.491	-.107	.052	-.074	.148	-.176	.027
Constant	2.339	.001	1.003	3.674	.135	.876	-1.567	1.837
Model fit	<i>R = .678; R² = .460; F = 16.372;</i> <i>p = .000</i>				<i>R = .600; R² = .361; F = 10.835;</i> <i>p = .000</i>			