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Abstract—Automated camera-based sensors are widely used in
vessel-based research to monitor plankton and marine particles.
However, current methods suffer from the costly and time-
consuming requirement of annotating data for fully supervised
learning, especially in plankton grouping tasks characterized
by long-tailed datasets. In response, we propose a novel self-
supervised learning (SSL) framework that significantly reduces
reliance on expensive human annotations by leveraging crucial
metadata such as water depth and location. The method com-
prises three major steps: self-supervised training, innovative sam-
pling, and final classification. It identifies key sample subsets from
an unlabelled dataset using hierarchical clustering approach and
incorporates an innovative balancing representative subsampling
strategy that addresses the challenge of dataset imbalance and
enhances generalisability across diverse plankton classes. Our
approach prioritises discerning representation features observed
in images that exhibit correlations with the patterns found in
their associated metadata. Furthermore, our method introduce
a novel grouping based on visual perspective selection method,
enabling the identification of balanced subset views that depart
from traditional class-based categorisation. Our experimental
results showcase a significant enhancement in image classification
accuracy, with a 23% improvement over methods that do not
utilise metadata, and attains a macro F1-score of 54% for
10 populated species from a severely long-tailed dataset. This
is achieved with a mere 0.3% of the entire dataset used for
annotation.

Index Terms—self-supervised learning, representation learn-
ing, convolutional neural network, plankton, marine imaging.

I. INTRODUCTION

THE critical role of plankton as the foundation of aquatic
food webs underscores the necessity of their monitoring

[1], [2]. Traditionally (and still prevalent today), monitoring
involves manual sampling with plankton nets and subsequent
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Fig. 1. Visual examples of plankton classes: Copepoda, Tuff-like, and Fiber-
like. Given the low image quality, distinguishing across classes will be
difficult.

microscopic analysis, which is time-consuming and labour-
intensive. These methods often result in years between sample
collection and data availability, and sampling itself can be
limited by weather conditions and access to sampling sites. To
overcome these limitations and to make plankton monitoring
more efficient and effective, significant efforts have been dedi-
cated to developing automated quantitative imaging equipment
(see references in [3] and [4]) like the Underwater Vision
Profiler (UVP) [5], which provides detailed optical information
on individual plankton, enhancing the efficiency and scope of
monitoring efforts.

Despite these technological advances, the processing and
interpretation of data from imaging systems are fraught with
challenges, as illustrated in Fig1, where the ambiguity in many
images demonstrates the difficulty of plankton classification.
Plankton images are frequently of poor quality due to the
microscopic size of the organisms, optical water distortions,
and movement from both the camera and the plankton, result-
ing in unclear images difficult for even skilled taxonomists to
classify. Moreover, the presence of numerous non-plankton ob-
jects like ’marine snow’ (detritus particles) creates a significant
imbalance, with dominant classes overshadowing rare species
that may be critical for ecosystem assessment. To efficiently
handle the rapidly growing volumes of plankton imagery, there
is an increasing reliance on computer-aided workflows that
streamline the annotation process, enhancing the accuracy of
plankton identification [6], [7].

This paper introduces a novel learning framework em-
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ploying self-supervised learning (SSL) techniques to enhance
understanding of plankton data by leveraging crucial metadata
such as water depth and location. The framework is designed
to minimise human annotation reliance, integrating advanced
machine learning strategies specifically tailored for plankton
image recognition. By incorporating metadata directly into the
learning process, the model significantly improves its ability to
generate low-dimensional latent representations, aiding in the
semantic interpretation of marine biodiversity. This approach
not only ensures sensitivity to ecological variations across
different marine environments but also facilitates a deeper and
more robust classification of diverse and rare plankton species.

Our model addresses the challenge of imbalanced datasets
by employing a novel balancing representative subsampling
approach, which minimises the need for extensive manual an-
notations. It utilises a semi-supervised workflow that leverages
both labelled and unlabeled data, with the latter being aug-
mented by pseudo-labels generated through the model’s self-
learning capabilities. Through the strategic use of metadata and
innovative hierarchical techniques, our framework establishes
a new standard for automated plankton classification, offering
substantial improvements in efficiency and accuracy while
effectively tackling the challenges posed by the vast diversity
and imbalance found in marine species datasets.

Here, the concept of ’views’—different visual perspectives
or characteristics within the same category—is pivotal. By
strategically selecting representative subsamples from each
view, the model enhances its ability to generalise across
the vast and heterogeneous plankton classes more effectively
than traditional methods. This is particularly critical given
the high degree of intra-class variability and the presence
of rare species, which often complicate classification tasks.
In summary, our proposed method makes the following key
contributions.

• Enhanced SSL with Metadata Regularisation: We ex-
plore the effectiveness of SSL metadata regularisation
in learning meaningful representations of plankton im-
ages. This process involves reconstructing images while
embedding prior information to group visually similar
patterns together, thus enhancing the robustness of the
learned features.

• Semantic Mapping and Retrieval Applications: The
learned features are utilised in semantic mapping ap-
plications, including hierarchical clustering and content-
based image retrieval. This approach provides a richer
contextual understanding of the images, enabling more
nuanced interpretations and classifications.

• Innovative Representative Sampling for Imbalance Man-
agement: We introduce a novel representative sampling
selection strategy designed to address significant imbal-
ances in the data. This method prioritises discerning
representation without extensive human-supervised la-
belling, substantially streamlining the annotation process
and reducing the workload on human taxonomists.

• Handling Rare and Diverse Species: Our framework
excels in identifying rare species and managing the sub-
stantial diversity and feature overlap inherent in plankton
images.

• Visual Perspective Selection for Improved Classification:
We leverage novel grouping based on visual perspective
selection by introducing the concept of ’view’ to achieve
more accurate classification performance.

II. BACKGROUND

A. Conventional methods

Traditional research in automatic plankton and particle clas-
sification has predominantly employed handcrafted methods
that focus on low-level visual attributes like size, morphology,
SIFT, and LBP, assuming these are key for distinguishing
classes [8]–[15]. The rise of deep learning (DL) has, however,
questioned the efficiency of these methods by introducing
algorithms that transform raw data into feature vectors, captur-
ing essential invariances that handcrafted features often miss
[16]–[18]. DL’s ability to learn abstract representations and
adapt across diverse datasets without domain-specific expertise
marks a significant shift towards more flexible and generalis-
able methods [19]. Supervised DL methods are particularly fa-
vored for their robust capacity to learn and distinguish complex
visual features. These methods streamline the classification
process by integrating data representation and classification
into a single end-to-end workflow, thus bypassing the need
for extensive feature engineering and parameter tuning [18],
[20]–[25]. [20] applied ResNet-32 to improve throughput and
efficiency in plankton image classification. Meanwhile, [21]
conducted an extensive exploration of various CNN configura-
tions, integrating an inception layer designed to handle multi-
size input images. [22] proposed ZooplanktoNet, testing the
effects of data augmentation and the number of convolutional
layers. [23] introduced a model using multiple image views,
combining the original image with versions processed through
Gaussian filters to slightly improve accuracy.

However, supervised ML models demonstrate poor perfor-
mance, generalisation failures, and biases to the extremely
imbalanced dataset [26]. Many efforts, such as augmentation
strategies, try to alleviate some of the problems but still,
highly correlated data lead to unacceptable model performance
[24]. Addressing class imbalance, [24] used a simplified CNN
derived from AlexNet, pre-training with class-normalized sam-
ples to boost performance. Additionally, CGAN-like archi-
tectures [27] were employed to augment under-represented
classes, and a two-stage training process was used where a
CNN pre-trained on the least represented categories was later
integrated into a full dataset training setup [25]. [28] used a
method called background resampling, which involves hard
negative mining to downsample background data, creating a
more balanced dataset for training.

Despite advances in supervised learning, its application in
plankton research faces significant challenges. A primary chal-
lenge is the lack of extensive annotated datasets. Researchers
typically work in isolation, on relatively small datasets col-
lected with different instruments or instrument settings, and
following different taxonomic choices (e.g. differing taxo-
nomic resolution or naming conventions). Key species can
furthermore be rare [29], resulting in low numbers of training
data for these critical groups. Moreover, in many real-world
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scenarios, it is impractical to create extensive labelled training
datasets because of the vast diversity and unpredictability of
marine environments. To address the constraints on human re-
sources, incorporating unlabeled data into the training process
has become a common strategy.

Overall, these challenges— severe imbalanced data, con-
straints on human resources, and the complexities of dynamic
marine environments— underscore the necessity for innovative
approaches that can more effectively utilise existing data and
enhance generalisation across diverse conditions and datasets.

B. Innovative methods for reducing annotation

Research into learning representations using unlabeled and
’few labelled’ data has led to the development of several
research fields, including unsupervised, semi-supervised, and
self-supervised [30]. These fields aim to bypass the laborious
task of data annotation by developing representations that
can generalise across different learning tasks [31]. Particu-
larly, self-supervised learning (SSL) leverages pre-existing or
inherently available labels, eliminating the need for explicit
human annotations. In SSL, features are acquired through
a simple pretext or proxy task defined for the network to
solve during training [32]. Typically, models like CNNs or
increasingly Vision Transformers (ViTs) [33] are trained on a
large corpus of unlabeled data by optimizing a self-generated
objective. This process allows the model to capture high-level
data representations without manual labels, which are then
adaptable for supervised tasks in practical applications. [34]
categorizes SSL approaches into three main types: generative,
context-based, and contrastive methods.

Generative methods, including autoencoders [35] and gen-
erative adversarial networks (GANs) [27], focus on recreating
or generating the input data, and have been applied to various
data types such as multispectral and hyperspectral images [36],
[37]. Context-based methods leverage the contextual features
within images, with techniques designed to exploit aspects like
context similarity [38] and spatial structure [39]. A pioneering
method in this category involved predicting the relative posi-
tions of image patches to understand their spatial relationships
[40]. Foundation models such as SpectralGPT [41], which are
crafted for processing spectral data, can combine features of
both generative and context-based methods within the SSL
framework [42].

Contrastive methods improve a model’s ability to identify
similarities among semantically related inputs without relying
on specific single pretext tasks. These methods train models
by comparing semantically identical inputs, such as two aug-
mented views of the same image, and encouraging similar
representation in the embedding space. A notable advance
in this field is the development of SimCLR [43], a simple
framework for contrastive learning of visual representations,
which has shown promising results in hyperspectral image
classification with minimal labels [44].

Additionally, clustering-based SSL methods group similar
features together in the embedding space using clustering
algorithms like K-means, as demonstrated in DeepCluster [45].
This approach generates pseudolabels that help in training

models to predict these labels effectively. Techniques such
as training autoencoders with additional loss functions to en-
hance clustering in the latent space have also been developed,
showcasing their utility in applications like seafloor imaging
[46]–[48].

Metadata can offer contextual information that enhances
data categorization by emphasizing relevant features and pat-
terns [49]. For example, in conventional microscopy-based tax-
onomy, details such as the water depth and collection location
of an organism assist in its classification. In the study by [46],
the researchers introduced a Location Guided Autoencoder
(LGA) that utilises horizontal location information to regulate
learning.

Some researchers remain unclear whether the high-level
representations shaped by category-level influences are com-
parable to those our visual system uses to recognise and
distinguish the myriad of objects we encounter daily [50]. The
specific knowledge governing these visual representations in
the human brain is still not fully understood [51]–[53], leading
some to question the suitability of category-level forces as
proxies in understanding these representations and to consider
alternative theories. Our analysis of plankton data supports this
perspective, which reveals greater similarities between images
of plankton and marine particles across different classes than
within the same class. Consequently, we explore whether self-
supervised grouping of a representative subset of images could
improve classification accuracy. Throughout this paper, we
refer to these groups as ’views’ within each class, where ’view’
in computer vision usually refers to the visual perspective
or angle of image capture. This terminology is vital for our
research as it aids in categorizing images by their visual
presentation. Our model’s hierarchical structure is devised to
focus on distinguishing features within each plankton view,
rather than forcing it to recognize features across all classes
[54], [55].

III. METHODOLOGY

We developed a metadata-driven representation learning
workflow using SSL to pinpoint key samples for understanding
category distinctions of interest and apply this to plankton
image classification problems, as illustrated in (Fig2). Initially,
inputs are passed through an encoder-decoder network, lever-
aging a convolutional backbone to learn the representations,
detailed in Section A. Next, a data sampling technique is
employed on these latent representations to refine the number
of dominant classes into a manageable number of repre-
sentative samples, ensuring diverse coverage that includes a
variety of types, particularly infrequent species, as described
in Section B. These features are then organised into clusters
to distinguish among various class views. An unsupervised
clustering algorithm selects m key samples from these clusters,
where m ∈ (1...Nc) and Nc represents the total number
of samples per cluster. We demonstrate that this approach
can yield effective results even with smaller sample sizes.
Subsequently, based on these key samples, pseudo-labels are
assigned. These annotations are then used in the final phase
of the downstream task, as outlined in Section C.
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Fig. 2. An overview of the study design. (a) Following data collection, our augmented data was processed through an encoder-decoder network, enabling
regularisation with the metadata. The KL divergence was assessed by evaluating the mutual information between the latent space’s similarity distribution
and the metadata space. (b) Here, the data distribution is depicted. This step categorises the representation into three groups, reducing the impact of the
predominant detritus class, which constitutes 80% of the data. One group is entirely non-detritus, another is a borderline samples that is difficult to discern,
and the third is composed solely of detritus samples. (c) Select representative samples were annotated by human experts, and pseudo-labels were assigned to
all unlabeled samples. (d) These annotations and pseudo-labels were then incorporated into the CNN architecture for fine-tuning.

A. Self-supervision using metadata-guided autoencoder

The concept of autoencoders was initially presented in [35]
as a neural network designed to learn the reconstruction of
its input. The primary mechanism of an autoencoder involves
two key processes: encoding and decoding. In the encoding
phase, the network transforms the input data into a compressed
latent space representation, and in the decoding phase, it
attempts to reconstruct the input data from this compressed
representation. The ultimate goal of an autoencoder is to
minimise the reconstruction error, making the output as close
as possible to the original input. Formally, as described in [56],
the objective of an autoencoder can be encapsulated by the
functions A : Rn → Gp and B : Gp → Rn, where A is the

encoder and B is the decoder. Here, R and G represent the sets
from which the data vectors and their encoded representations
are drawn, respectively, with n and p being positive integers
such that 0 < p < n. The effectiveness of these functions
is measured through the minimisation of the expected value
of a dissimilarity function ∆, which quantifies the difference
between the original input and its reconstruction:

arg min E
A,B

[∆(B ◦A(x), x)] (1)

In this equation, x represents the input data, h = A(x) is the
encoded latent representation and xrec = B(h) is the recon-
structed data. The function E denotes the expectation over the
distribution of x, and ∆ is the dissimilarity function, typically
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a loss function like mean squared error, that measures how
well the autoencoder is performing in terms of reconstructing
the original input from the encoded representation. While
autoencoders primarily focus on accurate input reconstruction,
it is equally crucial for the low-dimensional representation to
encompass meaningful and generalisable features. Utilizing an
auxiliary data-driven target function in the SSL context can
accelerates the learning process within the embedding space
[57]. For instance, in environmental monitoring, integrating
geo-referenced information into the loss function acts as an
effective regularisation strategy, enhancing model performance
[46]. The overall loss function in such a scenario is designed
to minimise both the reconstruction loss and a regularisation
term. Specifically, it is defined as follows:

Lall = Lrec + λKL(P ∥ Q) (2)

Here, Lrec represents the reconstruction loss, and the term
involving the Kullback-Leibler (KL) divergence functions as
the regularisation component. The KL divergence measures
the discrepancy between two probability distributions, P and
Q, derived from the encoded latent space and the associated
metadata, respectively. This regulariser aims to align the dis-
tribution P , characterizing the similarity between data points
in the latent space, with the distribution Q, which is informed
by external metadata.

Here, Lrec represents the reconstruction loss, and the term
involving the KL divergence functions as the regularisation
component. The KL divergence measures the discrepancy be-
tween two probability distributions, P and Q, derived from the
encoded latent space and the associated metadata, respectively.
This regulariser aims to align the distribution P , characterizing
the similarity between data points in the latent space, with
the distribution Q, which is informed by external metadata.
An effective feature learner aims to minimise the distance
between similar data points’ embeddings, denoted as hi and
hj , within the latent representation space. This means that if
the original data, xi and xj , are similar, their corresponding
embeddings should be positioned closer together. However,
considering the similarity of just xi and xj might not fully
represent their relationship; the associated metadata yi and yj
also play a crucial role. Therefore, it is common to employ
the Student’s t distribution [58] as a kernel for quantifying
the affinity or similarity between data points in a transformed,
lower-dimensional space. This kernel helps ensure that points
closer in the original space are also proximate in the embedded
space, thus maintaining topological fidelity. The probability
distribution Pij , representing the relationship between embed-
dings of samples i and j, can be formally expressed as follows:

Pij =
(1 + ∥hi − hj∥2/α)−

α+1
2∑

i′
∑

j′(1 + ∥hi′ − hj′∥2/α)−
α+1
2

(3)

For the metadata-driven distribution Qij , the following
formulation is used to capture the similarity between metadata
samples i and j:

Qij =
(1 + sim(yi, yj)

2
/α)−

α+1
2∑

i′
∑

j′(1 + sim(yi, yj′)
2
/α)−

α+1
2

(4)

In this setup, α is fixed at 1, and sim(yi, yj) represents the
similarity measure between metadata samples, computed here
using Euclidean distance [59] due to its simplicity and inter-
pretability, aligning well with the type of metadata available.

The autoencoder described is designed to compress the
visual appearance of images while also regularising patterns
based on associated metadata. This process is guided by
minimising a specific loss function, referred to as Equation
2. Once trained, the encoder component of the autoencoder
functions as a robust feature extractor. To combat the risk
of overfitting, a strategic sampling method is employed.
Specifically, a 1:1 sampling ratio is used to balance between
images that meet certain user-defined metadata criteria and
those that are randomly selected from the entire dataset. For
example, within the scope of user-defined criteria, similarity
among images is measured using Euclidean distance. Let’s
consider a scenario where the metadata criterion is depth,
and the maximum allowable similarity distance is set at 10
meters. In practical terms, this means selecting the first image
randomly, then choosing 50% of subsequent samples from
within a 10-meter distance of first image, and the remaining
50% from across the entire dataset. This sampling strategy
ensures a divers range of samples in the affinity matrices P ,
effectively preventing excessive regularisation due to skewed
sample distributions. It also allows for equal consideration of
both similar and dissimilar images during each batch iteration.
By maintaining this balance, the model can learn from a varied
set of examples, improving its ability to generalise and avoid
biased representations.

B. Reduction of large class imbalance
In this part, we utilise latent representations derived from

the previous encoder-decoder network, forming the foundation
for our clustering and sampling strategies. These strategies
are essential for creating a balanced dataset crucial for the
subsequent analysis phases and the success of the supervised
taxonomist-led training phase (Section C). A balanced dataset
is crucial to mitigate overfitting and to ensure that the learning
process is not skewed by the over-representation of any single
class. In our study, the dataset is predominantly composed
of the detritus class, which accounts for 80% of the im-
ages. This imbalance can adversely affect the performance
of clustering algorithms, leading them to disproportionately
select representative samples from the detritus class. Such a
scenario often results in the misclassification of the majority
class instances as minority classes, creating clusters of uniform
size rather than clusters that reflect the true distribution of the
data. This issue is known as the ”uniform effect” in k-means
clustering [60], presenting significant challenges in adequately
representating rarer classes, such as specific types of plankton
which are of particular interest in our study. To tackle this
imbalance, we have developed a customized data sampling
strategy. Considering the shape heterogeneity and the overlap
between the detritus class and other plankton classes [61], [62],
our approach employs an innovative undersampling method.
This method strategically eliminates noisy and less informative
examples from the detritus class. Our methodology comprises
several steps (illustrated in Figure 2-b):
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1) Unsupervised Clustering: We apply hierarchical k-means
clustering (H-kmeans) to the latent data generated in
section A to group similar images based on their visual
and metadata characteristics. We set the number of
clusters (k) to twice the number of expected classes
(k = 46), as this has shown to enhance the clustering
algorithm’s sensitivity to nuanced patterns within each
class based on preliminary tests (see section IV-B2).

2) Expert Annotation: The most representative image from
each sub-cluster is selected for annotation by expert
taxonomists. This step is crucial for accurately depicting
the variability within each cluster, especially when the
clustering resolution is challenged by ambiguous class
boundaries. This process further divides each of the k
clusters into smaller sub-clusters using a hierarchical
approach, calculated by the ratio [M1/k] where M1

equals 500, the total number of images designated for
annotation. From these, the most central image in each
sub-cluster is selected for detailed examination by expert
taxonomists, ensuring representative samples are used,
especially in cases with ambiguous class boundaries.

3) Reduction of Dominant Class Samples: To refine the
representation of non-detritus classes, we reduce the
number of detritus images by retaining only a small
proportion (10% as determined in our tests) of images
from near the center of each detritus-dominated sub-
cluster.

Subsequently, each of the k clusters is categorized into one
of three groups based on the composition of the images they
contain:

• Group A (Detritus): Clusters composed exclusively of
detritus class samples.

• Group B (Ambiguous): Clusters containing a mix of
detritus and non-detritus samples, reflecting transitional
characteristics that may blur the distinction between de-
tritus and plankton, especially when image quality affects
the clarity of class features.

• Group C (Non-Detritus): Clusters distinctly separate from
the detritus class, exclusively containing non-detritus
(plankton) samples.

This categorisation strategy effectively addresses the over-
whelming presence of detritus in our dataset. Initially, most
clusters fall into Group A, which is heavily dominated by
detritus. This dominance restricts the adequate representation
of Groups B and C. To manage this, we adopt a targeted
undersampling strategy for Group A, retaining only a small
portion of images from the central region of each heavily
detritus-laden sub-cluster. By increasing the number of clusters
and selectively reducing detritus samples, we improve the
resolution of non-detritus classes, enabling the clustering algo-
rithm to better distinguish previously overlooked non-detritus
groups.

C. Human-led annotation for pseudo-labelling and final clas-
sification

In the latter stages of our methodology, after mitigating the
dominance of the detritus class, we recalibrate and select a

fresh set of M2 representative images. The number of images
is set to M2 = 2000 based on experiments (see section IV-B3
). Expert taxonomists annotate these images to provide key
insights that are crucial for reorganisation of the dataset.
For images that remain unannotated, we implement a nearest
neighbor technique to assign pseudo-labels by matching them
with the most similar annotated samples.

Next, we introduce a structured framework of ’views’ within
our methodology. Every cluster, redefined post-annotation, is
regarded as a unique ’view’. This structure helps address chal-
lenges such as class imbalance and the presence of subclasses
with subtle visual differences. The ’multi-views’ strategy re-
organizes the data, aligning it according to visual similarities
and dissimilarities, both within and between classes. This is
particularly important when some views in a class visually
resemble other classes more than their own, necessitating a
model that prioritises distinction over broad categorisation.
This nuanced approach not only helps in identifying subtle
features but also significantly boosts classification accuracy.
While the ’multi-view’ setup is advantageous, it necessitates
careful management to avoid overfitting. The number of views
is determined through empirical testing and ongoing evaluation
of the model’s performance during the fine-tuning phase. This
carefully structured approach informs our final step of model
training. We proceed to train a CNN classifier on this pseudo-
labelled dataset using five classifiers for comparison: Random
Forest, Decision Tree, Support Vector Machine, XGBoost and
CNN (see section IV-B4.

IV. EXPERIMENTS

In this section, we conduct a series of comprehensive com-
parative experiments using a benchmark dataset of plankton
images collected by the UVP (Irisson et al., in prep.). After
describing the dataset, we present a detailed analysis of the
performance of our proposed workflow across various experi-
mental parameter settings, aiming to establish the effectiveness
of our approach. Each configuration was evaluated individually
to assess its efficacy. We then briefly delve into a discussion
of the obtained results, exploring the connections between our
findings and the field of ocean ecology. This analysis will
shed light on the insights gained from our research and their
implications. Finally, we will identify potential avenues for
further research and exploration in this domain.

A. Dataset

A large image data set collected using the UVP6 camera
system [5] was used to develop and test the suggested method.
The UVP6 system utilises a 5 Megapixel CMOS monochrome
image camera sensor (Sony IMX264) where objects are il-
luminated by a collimated light beam positioned in front of
the lens. To ensure accurate object detection, the processing
unit software incorporates a zone-specific gain correction
method that adjusts the gain settings of different image regions
based on their specific lighting conditions. Subsequently, an
automatic background subtraction and thresholding-cropping
technique is applied. The camera system has been specially
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Fig. 3. Charting locations and analyzing depth-size distributions. (a) Global heatmap revealing dive locations across the globe. (b) Exploring the relationship
between Depth and Scaling Factor with a bivariate and histogram analysis.

designed to cover a broad variety of particle sizes, ranging
from about 100 µm to around 50 mm in diameter.

The geographical locations of our data set cover a broad
range of oceanic regions, including the Mediterranean Sea,
equatorial Atlantic Ocean, equatorial Pacific Ocean and polar
regions (Fig. 3(a)). The data set comprises images from 980
dives between 0 and 5000 m depth (Fig. 3(b)), with the highest
data density within the upper 1000 m of depth. A total of
451,379 images were recorded.

In order to examine the size distribution of the imaged
particles and accurately categorize them, we employed a
scaling factor calculation for each individual object as part of
the metadata. This scaling factor is determined by comparing
the original size of the specimen, measured in millimetres per
pixel, to a standardized value such as a fixed patch size of
the image (i.e. 227 pixels). This calculation plays a crucial
role in differentiating between small and large plankton, which
would otherwise be grouped together based solely on visual
observations. We can calculate the size of each item by
including the scaling factor; bigger plankton are indicated by
greater scaling factor values. Scaling factors range from 0.1
to 17.5, indicating that we imaged plankton that spans two
orders of magnitude in size (Fig. 3(b)).

Expert plankton taxonomists annotated all images in the
dataset across 55 classes, with varying image counts per class
ranging from 46 to 509k. To streamline the computer-led
classification, we condensed the number of human-annotated
classes to 23 by merging closely related and/or underrepre-
sented classes (e.g. combining the visually almost identical
order of Collodaria and family of Aulosphaeridae to clade
level, Rhizaria). It is noteworthy that these annotations may
contain a degree of human error in the classification (see
discussion by [63], [64]).

B. Experimental Settings Description

For the self-supervised model, the autoencoder is structured
using the Alexnet [65] architecture modified to incorporate

batch normalization (BN) at each layer, serving as the encoder.
The traditional AlexNet is adapted by altering the final fully
connected layer to output a compressed 64-dimensional latent
representation the input image, which measures 227 × 227
pixels. The decoder, designed as the inverse of the encoder,
employs transposed convolutional layers to reconstruct the
original image from its latent representation, effectively mir-
roring the encoding process. The training of this autoencoder
model leverages the Adam optimizer [66], chosen for its
efficiency with sparse gradients and adaptability to different
data distributions. To ensure stability and precision in the
learning process, a low learning rate of 1e-5 is used alongside a
batch size of 256. The self-supervised model is trained for 200
epochs when weights are initialised with the value of AlexNet
pre-trained on the ImageNet dataset. Each image in the dataset
has been carefully cropped to feature only a single object
against a dark background, enhancing the object’s visibility.
The images are stored with an 8-bit depth in two channels,
providing a simplified yet effective data structure. To filter
out irrelevant data, images captured before the device reaches
the sea surface, which often contain artifacts and negative
depth values, are automatically removed from the dataset.
Additionally, conventional data transformation methods, such
as rotating, flipping, and shifting are used as well as random
image cropping and Gaussian noise. For example, the image
is randomly flipped up and down, left and right, and then
randomly, a zero-mean Gaussian noise is added to the actual
ROI. During the training phase, further refinement of the input
data includes the normalization of all metadata, with location
data converted into the Universal Transverse Mercator (UTM)
coordinate system to facilitate uniformity and precision in
spatial computations. This normalization is crucial for the
subsequent calculation of Euclidean distances between data
points. A strategic approach to sampling is adopted to enhance
the model’s learning efficacy; half of the images in each
training batch are selected based on their proximity in the
metadata-defined space to a randomly chosen sample. This
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selection is governed by a Gaussian distribution with varying
sigma values, ensuring a diverse yet representative sample
pool. The remaining images are selected randomly from across
the entire dataset. Since classification performance is affected
when dealing with a severely skewed dataset, we adopted an
enhanced F1-measure evaluation for multi-class classification
tasks, following the methodology of [67]. Specifically, we
calculate F1-scores for each category using a one-vs-rest
(OvR) approach [68], culminating in a macro-average that
does not weigh classes by their sample size. This approach
ensures that no class is deemed more significant than another
regardless of its frequency in the dataset, promoting fairness
in model evaluation. To rigorously test the generalisability
of our model, we employed stratified 5-fold cross-validation
(CV). This method maintains the relative distribution of each
class across all folds, ensuring that our model is tested under
varied conditions that closely mimic real-world distributions.
Further, our experimental setup includes a comprehensive
exploration of key parameters likely to affect feature learning
and classification performance. We systematically varied:

1) The regulariser, defined by user-selected metadata cri-
teria such as collection location, depth, or object size,
each at four distinct levels.

2) The clustering algorithm, choosing between k-means, hi-
erarchical k-means (H-kmeans), or a random assignment
approach.

3) The number of annotations for generating pseudo-labels,
tested at three different scales (500, 1000, and 2000) to
evaluate robustness against varying amounts of training
data.

4) The classifier type, where we tested several robust mod-
els including Support Vector Machine (SVM), Decision
Tree, Random Forest, XGBoost, and CNN, to identify
which performs best across diverse scenarios.

These steps ensure that our findings are not only statistically
valid but also broadly applicable, enhancing the credibility of
our results in real-world applications. Through this meticulous
experimental design, we aim to demonstrate the robustness and
scalability of our proposed solution in the face of varying data
characteristics and analytical conditions.

1) Regulariser: In the feature extraction phase, each sample
is passed through a deep CNN backbone and projected into a
64-dimensional latent point, incorporating regularisation with
metadata information. The representation learning objective
involves two key components. First, we enhance the similarity
between these embedded points by adjusting them in the
direction of the average representation among them. Simul-
taneously, we give more weight to data points with more
confident assignments through an auxiliary target distribu-
tion (i.e. the metadata). To examine whether this auxiliary
information reveals any critical structural similarity in latent
space, we quantify how much the loss regulariser function
contributes to classification success. The results are compared
with those from an identical network architecture without the
regulariser. We set different experiments with user-defined
metadata criteria as follows: location distances as l = 10m,
100m, 1km, 10km, different depths as d = 1m, 5m, 10m,

100m, and different scale parameters as s = 0.2, 0.4, 0.6,
0.8. We only used one user-defined metadata criteria at a
time as preliminary results on a smaller subset of the data
suggested no improvement or even worsening of the results
when multiple criteria are combined (data not shown), because
of time limitations, and because discussion of the results
is more straightforward. The score value results with these
parameters for all experimental settings (including choice of
clustering algorithm, number of annotations and classifier) are
reported in Table I and Table II.

Based on our observation, incorporating the metadata aux-
iliary distribution as a regulariser in our deep autoencoder can
generally enhance the learning process, resulting in accelerated
classification performance compared to the absence of this
regulariser (Table I). In terms of classification performance,
the depth regulariser exhibited superior results compared to
the location, scale, and no regulariser approaches. Specifically,
in one equal configuration G3, C3, K3, and M3, the depth
regulariser achieved an impressive accuracy of 46.9%. In
contrast, the location, scale, and no regulariser approaches
achieved accuracies of 32.1%, 31.2%, and 30.0% respectively.
The impact of the regulariser across different metadata vari-
ations is depicted in Fig8-a through a box plot. The average
F1-score for varying depth values consistently surpassed the
performance of other regularisers. Notably, when the depth
was specifically configured to 10m, it achieved the highest
average F1-score of 50.5%. In terms of location, the perfor-
mance demonstrated improvement as the distance increased.
The highest efficiency was achieved with a distance of one
kilometre, resulting in a 35.9% F1-score. However, the overall
mean for scale parameters negatively affected performance
across most configurations when compared to not using scale
regularisation. The highest F1-scores achieved with scale
regularisation were 36.2% and 32.0% respectively. Overall,
these findings highlight the advantageous impact of the depth
regulariser, while also showcasing the potential benefits of
considering location in optimizing the model’s performance.
However, caution should be exercised when utilising scale
parameters, as their inclusion often results in diminished
performance.

Based on our observations, incorporating the metadata aux-
iliary distribution as a regulariser in our deep autoencoder
resulted in a mixed response in classification performance
depending on the criteria, level and classifier used. For the
following reported values are based on the H-kmeans algo-
rithm and an annotation number of M2 = 2000. The depth
regulariser enhanced classification performance at any level (1,
5, 10 and 100m) and all classifiers, with an average F1-score
increase of 11.6 units (range: 2.8 - 20.3 %pt). On average,
level 10 m resulted in the best classification results (score
increase of 15.9±2.8 units). Specifically, for the non-deep-
learning classifiers, it achieved the highest average F1-score
(50.5%) when configured to 10 m. For the CNN classifier, it
also achieved the highest average F1-score (54.4%) albeit for a
configuration with d = 1 m. For the location regulariser, there
was generally a positive trend between location distance level
and F1-score improvement, though consistent F1-score im-
provements across all classifiers were only achieved for levels
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TABLE I
PERFORMANCE OF VARIOUS

Non-deep Learning Methods on the UVP6 Benchmark Dataset: F1-Scores, Standard Deviations (%), and Best Performer for Each Metadata is Highlighted
in Bold. All Results are Based on Multiview Grouping Technique. DT represents Decision Tree, RF for Random Forest, SVM for Support Vector Machines,
and XG for XGBoost.

config regularisation classifier random k-means H-kmeans
500 1000 2000 500 1000 2000 500 1000 2000

A1 Location: DT 16.5±5.5 17.5±4.1 17.2±3.9 20.1±2.6 21.7±5.1 22.3±6.1 21.6±4.4 21.5±4.9 23.1±2.3
A2 10m RF 19.4±4.1 20.6±3.8 20.1±4.1 22.4±7.7 24.2±4.9 25.2±2.4 20.4±5.3 22.3±3.2 22.1±4.1
A3 SVM 21.4±5.2 21.6±5.4 22.7±4.3 25.5±6.1 26.6±7.5 28.2±2.0 27.4±3.3 30.2±4.1 32.4±1.7
A4 XG 20.9±4.6 21.3±3.4 21.8±3.1 24.1±4.2 25.4±5.7 27.3±1.5 25.1±5.2 26.9±2.8 29.1±3.3
B1 Location: DT 18.7±2.8 19.2±3.2 19.0±5.2 21.9±6.7 20.4±6.2 20.9±3.8 23.2±7.2 26.3±4.5 26.1±2.3
B2 100m RF 18.1±3.0 18.5±3.8 19.1±4.4 21.3±5.3 21.4±4.1 21.1±4.5 25.7±3.9 26.8±6.2 28.8±4.5
B3 SVM 26.6±3.7 27.1±3.5 27.5±5.7 30.3±7.3 32.1±1.7 32.6±3.8 29.5±2.4 30.6±6.0 35.5±3.6
B4 XG 27.5±4.4 27.8±4.7 28.3±4.2 31.2±4.1 32.5±2.7 33.2±1.9 27.6±5.2 28.2±5.1 28.1±3.7
C1 Location: DT 19.2±5.1 19.9±2.7 20.2±2.4 23.3±2.7 23.6±4.1 27.2±3.3 28.8±7.1 30.2±5.8 31.6±1.0
C2 1km RF 18.5±4.5 19.8±3.4 19.4±2.2 22.4±5.2 26.5±6.2 26.6±4.6 24.7±6.1 25.9±6.5 27.2±3.4
C3 SVM 25.0±3.1 26.1±4.1 25.7±3.3 28.5±2.9 31.2±3.5 33.8±1.9 32.1±2.9 34.2±3.2 35.9±2.5
C4 XG 25.2±5.2 25.9±3.2 25.4±3.7 29.1±6.8 33.2±4.0 33.7±4.1 33.8±3.5 35.1±3.8 36.2±1.6
D1 Location: DT 19.5±3.6 20.6±3.5 21.0±4.2 22.6±2.5 26.5±5.7 29.4±4.0 27.8±3.5 29.1±2.8 31.2±0.5
D2 10km RF 17.3±3.7 18.9±3.4 18.6±2.7 21.2±1.4 23.6±3.2 23.9±1.7 25.3±2.6 25.9±4.7 28.8±2.2
D3 SVM 24.5±2.9 24.7±3.1 25.7±3.6 28.1±6.2 30.1±5.3 31.2±2.7 31.8±4.4 31.8±1.5 32.1±4.1
D4 XG 24.1±4.1 24.2±2.8 23.4±2.8 26.3±5.7 26.8±4.0 28.1±3.8 32.2±1.2 33.8±5.0 34.1±2.7
E1 Depth: DT 23.1±4.8 24.2±2.8 23.4±2.8 28.2±1.3 29.5±2.4 32.1±1.6 30.3±4.1 36.5±1.2 39.3±0.8
E2 1m RF 23.8±3.9 24.4±2.8 25.2±2.2 26.8±2.5 28.4±4.1 30.4±1.2 25.6±3.1 29.1±1.3 31.8±1.5
E3 SVM 33.1±4.4 34.5±1.9 34.6±2.1 36.5±5.9 40.7±1.9 41.4±1.3 44.1±2.6 46.3±2.8 49.5±2.6
E4 XG 32.4±5.1 33.5±2.6 33.2±3.1 35.4±4.7 38.1±2.8 39.7±1.9 39.6±1.7 40.1±5.1 42.8±0.2
F1 Depth: DT 24.9±3.6 26.3±3.1 25.8±2.9 28.4±2.4 28.2±5.0 30.7±2.9 32.8±3.9 34.7±2.2 36.8±1.9
F2 5m RF 26.3±4.2 27.4±2.7 27.0±3.2 29.5±3.3 30.2±2.1 33.9±0.2 28.3±3.2 28.5±3.8 29.6±2.7
F3 SVM 30.2±3.8 30.6±3.0 30.7±2.7 33.2±6.0 36.1±4.2 37.6±4.4 36.5±6.9 39.1±7.1 42.2±3.9
F4 XG 30.6±2.5 31.7±2.6 32.0±2.5 34.2±5.1 35.2±1.7 35.6±5.3 35.1±5.1 38.2±3.0 42.3±1.1
G1 Depth: DT 29.3±2.8 30.1±2.4 30.4±2.6 33.4±5.4 38.2±2.7 39.1±0.4 39.8±5.4 41.9±3.3 43.2±1.7
G2 10m RF 27.4±3.4 28.4±3.8 29.2±3.4 30.5±5.1 33.8±4.2 34.2±1.5 34.6±4.2 36.2±3.6 39.9±2.1
G3 SVM 38.4±2.8 38.8±4.1 39.5±2.6 41.5±2.4 44.4±3.4 45.2±2.0 46.9±3.2 47.2±2.0 50.5±1.8
G4 XG 36.9±1.7 38.6±2.8 38.0±1.1 40.2±5.1 41.1±1.1 42.0±0.4 45.6±4.5 46.2±1.5 47.1±2.5
H1 Depth: DT 26.5±4.3 27.3±3.7 28.1±3.1 30.1±2.5 32.0±1.9 32.1±2.2 37.1±4.7 38.2±3.6 38.2±1.2
H2 100m RF 29.1±2.8 29.8±2.6 30.7±2.9 32.5±3.1 33.5±2.0 34.1±2.6 35.4±3.6 36.2±2.9 37.1±2.2
H3 SVM 29.3±4.6 31.1±3.6 29.9±3.5 32.8±6.2 35.2±5.1 36.5±2.3 37.1±6.2 39.2±5.2 41.8±4.3
H4 XG 26.3±2.8 27.0±2.4 27.4±3.2 30.1±7.1 31.8±4.9 33.7±3.9 38.9±4.3 39.3±2.8 40.1±2.4
I1 Scale: DT 15.8±2.9 16.9±2.8 16.3±4.2 18.3±2.4 17.7±5.1 18.5±2.8 20.1±3.1 23.6±2.4 24.6±1.5
I2 0.2 RF 12.8±3.5 13.6±3.8 13.4±3.4 16.2±6.8 18.9±3.0 19.4±1.7 18.3±2.0 20.9±2.5 22.4±0.7
I3 SVM 19.8±4.2 21.2±2.8 20.3±2.8 23.2±4.6 24.1±1.6 25.2±1.8 24.4±5.1 25.8±2.9 25.5±3.1
I4 XG 17.2±3.5 18.2±5.2 18.0±4.3 21.8±1.5 21.5±2.0 22.0±1.7 25.5±6.2 25.1±4.1 26.6±3.3
J1 Scale: DT 15.5±2.7 16.8±2.1 17.1±3.6 18.3±3.2 20.7±1.2 20.5±1.3 19.4±2.9 19.6±1.1 20.0±1.2
J2 0.4 RF 12.7±4.1 13.8±4.1 13.9±2.7 16.6±2.3 18.6±2.4 20.8±1.6 16.2±1.4 17.9±1.5 19.6±0.9
J3 SVM 18.6±2.8 19.2±2.8 20.9±3.9 21.4±5.6 22.3±2.6 22.2±2.4 23.1±2.5 25.1±3.1 25.7±2.7
J4 XG 20.6±2.9 21.5±3.1 21.3±3.3 22.4±1.1 23.1±3.0 24.8±2.5 20.2±5.1 21.3±3.5 22.5±0.9
K1 Scale: DT 19.8±2.2 21.7±2.6 20.9±2.9 22.5±1.7 26.5±1.1 26.2±0.5 24.5±2.3 26.8±2.2 28.0±1.6
K2 0.6 RF 19.8±3.7 21.1±1.9 21.0±3.3 23.2±2.8 25.2±2.3 28.9±2.2 26.1±2.8 29.2±4.2 30.4±1.4
K3 SVM 27.6±5.2 29.1±3.5 29.7±2.5 30.2±5.2 31.3±4.5 32.8±0.8 31.2±7.8 33.2±6.1 36.2±2.1
K4 XG 21.9±2.7 24.4±4.4 25.5±4.0 26.2±2.3 26.6±3.4 29.2±2.1 28.6±1.8 30.5±2.1 31.5±3.2
L1 Scale: DT 20.5±4.2 21.0±3.9 21.6±2.6 23.2±2.9 25.3±1.1 26.5±1.3 22.6±3.9 26.3±1.8 29.7±2.4
L2 0.8 RF 19.5±2.6 21.0±2.7 19.9±3.7 21.6±3.4 22.9±3.1 24.6±2.2 22.3±1.5 24.7±1.2 26.1±1.3
L3 SVM 23.4±1.3 24.4±2.6 25.5±3.5 25.7±6.0 27.1±3.4 29.1±1.6 24.4±3.5 26.7±5.2 26.1±2.6
L4 XG 23.4±2.8 26.1±3.8 25.2±2.4 25.5±5.2 26.8±3.1 28.2±0.2 25.9±6.3 28.5±3.5 30.2±1.9
M1 No DT 22.2±4.3 23.1±3.8 22.7±3.6 26.1±3.0 26.9±2.2 27.2±2.1 27.2±2.5 26.7±2.7 30.3±0.8
M2 regularisation RF 20.0±3.5 20.3±4.2 20.5±3.1 24.1±2.8 24.8±2.3 25.8±2.5 25.2±2.9 25.5±2.1 26.8±1.6
M3 SVM 22.7±4.2 23.7±3.6 23.5±2.6 26.9±3.5 28.4±4.1 29.5±2.6 30.0±6.2 31.7±3.2 32.0±1.6
M4 XG 23.9±3.8 24.8±2.7 24.9±3.2 26.2±3.9 26.5±4.3 27.0±0.2 29.0±3.3 29.4±4.7 31.0±3.0

1 km and 10 km (average 3.4±2.5 and 2.7±2.9 units improve-
ment, respectively). The scale regulariser generally worsened
classification performance with a mean F1-score difference
of -3.15 units (range -10.3 to 6.0 %pt). The impact of the
regulariser across different metadata variations is depicted in
Fig8-a through a box plot. Overall, these findings highlight the
advantageous impact of the use of metadata-based regularisers
in optimising the model’s classification performance. However,
caution should be exercised when choosing the metadata
parameters as they can also - as shown by the scale criteria

- result in diminished classification performance. Potential
ecological reasons for the observed change in classification
performance when using the different criteria are discussed
below (Section V).

2) Clustering algorithm: We undertook a comprehensive
comparison of different methods for selecting representative
samples from our dataset. Specifically, we explored the ef-
fectiveness of k-means clustering, H-kmeans clustering, and
random selection. Our primary objective was to identify a
specific data group suitable for fine-tuning while ensuring that
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Fig. 4. Evaluation of classification performance based on the regularisation.
Difference in F1-score of the different regulariser configurations (using
H-kmeans and M2 = 2000) compared to no regularisation. Panels show
regularisation criteria: location (l), depth (d), and scale (s). Colours indicate
classifier as shown in the legend.

all classes present in the entire dataset were included. To do
that, we took into account the taxonomy tree of plankton and
focused on 23 coarse classes that represented the entire dataset.
Instead of performing a computationally expensive grid search
considering all possible values, we opted for a fixed number
of 46 clusters (twice the number of classes) to provide the
algorithm with enough flexibility to consider smaller subsets.

For the reduction technique aimed at decreasing the number
of majority-class samples (i.e. detritus images), we determine
the number of images to retain from each majority-class cluster
(group A) by testing a range (10 values between 1 and 50%)
of different ratios between the number of samples belonging
to group A (SizeA) and the combined size of groups B and
group C (SizeBC):

Ri = SizeiA/Size
i
BC (5)

where i denotes the iteration. A larger value of Ri indicates
a cluster with more samples from group A and fewer from
group BC, aligning it with the majority class. Conversely,
a smaller Ri suggests a cluster with more Group-BC class
samples, deviating from majority class characteristics. Our
goal is to identify a trade-off value for Ri that balances
these considerations [69]. To quantify the trade-off, we con-
tinue reducing until all our 10 target classes are found in
representative samples. The selected reduction value of 90%
was determined through experimentation and yielded the best
trade-off based on the number of non-detritus samples found
in representative samples selected by H-kmeans. This 90%
reduction value is consistently applied across all configurations
in cross-validation tests to ensure a fair comparison.

To ensure fairness and draw conclusive comparisons about
which clustering algorithm performs best, we maintained
consistent configurations for our data selection algorithms.
For instance, we utilised the same set of 64-dimensional
features extracted from a pre-trained deep autoencoder across
all approaches. In the case of k-means, both the hierarchical
and non-hierarchical variants, we applied identical parameter
settings. To account for the potential impact of initialization,
we executed each algorithm ten times, employing different
centroid seeds in each run. Additionally, we took into consider-
ation the class frequencies of the inputs to balance the weight-
ing for clustering. By adhering to consistent configurations,
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Fig. 5. Evaluation of classification performance based on the clustering
algorithm. Difference in F1-score of the non-deep-learning classifiers with
either depth-regularisation or no regularisation (M2 = 2000) compared to the
random control (same regularisation and number of annotated images). Panels
show classifiers: Decisiton Tree (DT), Random Forest (RF), Support Vector
Machine (SVM) and XGBoost (XG). Colours indicate regularisation level as
shown in the legend.

running multiple trials, and accounting for class frequencies,
we aimed to minimise any potential sources of bias and obtain
reliable and conclusive comparisons between the different data
selection algorithms.

Both clustering algorithms, k-means and H-kmeans, im-
proved classification accuracy compared to the random selec-
tion with an average improvement of 5.1±1.9 %pt and 8.0±3.4
%pt, respectively (all configurations, n = 52). H-kmeans
yielded better classification performance in 45 out of the 52
tested configurations, with an average performance difference
of 2.8±2.9 %pt. The highest classification performance gains
were observed for the regularisation with depth (4.6±2.9 %pt
compared to k-means and 10.4±3.3 %pt compared to random,
all levels), specifically for the level d = 1m for the classifiers
SVM and DT (respectively +8.1 %pt and +7.2 %pt compared
to k-means) (Fig 5). The gains for the other regularisers,
compared respectively to random and k-means, were 7.8±3.2
%pt and 2.3±3.2 %pt for location, 5.9±2.6 %pt and 1.6±2.5
%pt for scale, and 7.1±1.1 %pt and 2.6±1.3 %pt for no
regularisation.

3) Number of Annotated Samples: Before running predic-
tions on the unlabeled data, manual human-led annotations
were performed on a subset of representative sample views,
referred to as M2-selected samples. F1-scores are reported
for different numbers of annotated samples, specifically M2

= 500, 1000, 2000 (Tables I and II). Increasing the number
of annotated samples generally results in higher scores: a
change from 500 to 2000 samples (H-kmeans and all model
configurations) resulted in an average increase of 3.7 %pt
(range 0.3 - 16.1 %pt; Tables I and II). However, for some
model configurations the additional 1000 images from M2 =
1000 to M2 = 2000, which effectively doubles the workload
for the human expert taxonomist, starts to have a diminishing
return (e.g., for ”No regularisation”, ”d = 5m”, ”l = 10m”,
and ”s = 0.8” using the CNN classifier; Fig6-a). For the
best model configuration with the CNN classifier (d = 1
m and 10 m), more annotation would likely be a good
investment of time as there is no tailing off yet, indicating
that further annotation could improve classification accuracy.
Nevertheless, our ultimate objective is to achieve satisfactory
performance while minimising the number of annotations
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TABLE II
RESULTS OF THE CNN METHOD USING SINGLE OR MULTIPLE VIEWS PER CLASS WITH HIERARCHICAL K-MEANS DATA SELECTION ON THE UVP6

BENCHMARK DATASET: F1-SCORES AND STANDARD DEVIATIONS (%). BEST PERFORMING METRICS ARE HIGHLIGHTED IN BOLD.

config regularisation classifier Single view Multi-view
500 1000 2000 500 1000 2000

N1 Location: 10m CNN 29.7±1.8 33.6±3.8 36.0±0.6 31.7±2.2 36.5±1.3 38.3±2.4
N2 Location: 100m CNN 30.8±2.1 33.4±2.6 36.4±1.2 32.6±1.2 35.7±2.2 39.1±2.3
N3 Location: 1km CNN 33.5±1.1 35.6±1.5 38.4±0.3 35.3±2.7 37.6±2.6 40.3±2.4
N4 Location: 10km CNN 34.9±2.6 35.1±1.1 39.0±0.1 36.4±2.4 37.3±2.5 41.6±1.2
O1 Depth: 1m CNN 45.6±1.2 46.3±2.2 52.9±1.4 48.3±2.3 49.2±1.1 54.4±0.5
O2 Depth: 5m CNN 34.9±1.4 39.5±1.3 39.3±0.2 37.3±0.5 41.6±2.4 42.3±2.1
O3 Depth: 10m CNN 46.8±1.4 47.0±1.6 50.7±0.8 49.3±1.5 49.5±1.7 53.9±1.6
O4 Depth: 100m CNN 36.3±3.2 40.0±2.1 44.4±0.6 39.2±2.6 42.3±1.8 46.6±1.5
P1 Scale: 0.2 CNN 26.4±2.2 27.5±3.4 29.1±1.5 28.7±3.5 29.3±2.2 30.3±0.2
P2 Scale: 0.4 CNN 25.2±2.3 25.0±0.2 25.9±0.8 25.2±2.1 26.7±1.3 28.7±1.2
P3 Scale: 0.6 CNN 30.3±3.4 34.8±2.3 38.8±1.2 34.5±1.5 37.2±2.5 40.1±2.3
P4 Scale: 0.8 CNN 24.3±1.2 27.6±1.2 27.7±1.4 26.4±2.1 30.1±2.6 29.7±1.5
Q1 No regularisation CNN 30.9±2.4 32.4±1.7 33.3±1.5 31.9±2.5 33.4±1.4 34.1±1.6
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Fig. 6. Evaluation of classification performance based on the number of
manually annotated images (M2). (a) Difference in F1-score of all CNN
+ H-kmeans configurations compared to the CNN + H-kmeans control (no
regularisation, 500 annotated images). Panels show regularisation criteria
depth (d), location (l), no regularisation (N) and scale (s). Colours indicate
regularisation level as shown in the legend. (b) Top performing model
configurations in terms of overall F1-score. Colours indicate number of
annotated samples as red = 500, yellow = 1000 and blue = 2000. Configuration
details are stated on the y-axis. Error bars show the standard deviation of
model re-runs.

required. While employing 2000 annotations yields a high
score, certain configurations outperform others even with a
smaller number of annotations. For example, in the top 10
configurations in terms of classification performance (out of
585 tested configurations), two configurations used only 500
manual annotations (CNN + hierarchical + d = 10m and SVM
hierarchical + d = 10m; Fig6-b), hence outperforming the
majority of configurations with M2 = 2000. These findings
underscore that, with an optimized configuration, even with
very limited input from human expert taxonomists, our semi-
supervised metadata-guided model achieves high classification
performance.

4) Classifier: We conducted a comparative study involv-
ing various well-known classic machine learning techniques,

which are commonly employed to advance machine learning
models. These methods can be broadly categorized into two
distinct groups:

Group 1: The first group encompasses commonly used
methods that operate directly on latent space vectors. We
utilised Support Vector Machine (SVM), a popular algorithm
that learns a non-linear model using the kernel trick [70].
To ensure effective classification boundaries, we specifically
chose the Radial Basis Function (RBF) kernel with a large
degree. We incorporated Decision Trees (DT), which make
predictions by traversing from the root node to a leaf node
based on feature conditions [71]. DTs are known for their
interpretability and can capture complex decision boundaries.
Another approach employed in our study is Random Forest
(RF), which involves constructing an ensemble of decision
trees that are randomly generated [72]. This randomness and
aggregation of multiple trees often lead to improved predictive
accuracy compared to a single decision Lastly, we employed
a gradient-boosting algorithm called XGBoost (XG). This
powerful classification model combines the predictions of
multiple base estimators to enhance overall robustness and
performance [73]. XG leverages the greedy boosting strategy
to iteratively refine the model’s predictions.

Overall, we observed a trend where the two SVM and
XG classifiers tended to outperform the two DT and RF
classifiers(Fig3 in Appendix). For the specific configuration
with a depth-regularisation of d = 1 m (E configuration),
hierarchical clustering, and M2 = 500 samples, we observed
notable variations in performance among the classifiers. In this
setup, SVM outperformed the other three approaches, achiev-
ing an F1-score of 44.1%. In comparison, the DT obtained an
F1-score of 30.3%, RF scored 25.6%, and XG achieved a score
of 39.6% (Table I). In the comparison between SVM and XG,
SVM consistently demonstrated slightly superior performance
compared to XG. However, there were specific setups where
XG exhibited an average advantage of approximately 1%pt
in mean scores. For instance, when considering the specified
configuration for clustering and the number of samples, SVM
outperformed 8 out of 13 samples across all metadata varia-
tions. An example of the superiority of XG can be observed in
the C configuration (location regularisation l = 1 km), where
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(l; red), no regularisation (N; grey) and scale (s; yellow).

XGBoost achieved an F1-score of 33.8%, while SVM obtained
a slightly lower F1-score of 32.1% (see Table I and Fig8(b)
for detailed results).

Group 2: The second group comprises methods that are
based on deep convolutional networks. In our study, we
employed the ResNet18 architecture for fine-tuning our model.
This architecture introduces skip connections to preserve the
gradient flow, leading to a significant performance boost [74].
By comparing the single and multi-view suggested approaches,
we showcased the classification performance of various con-
figurations utilising the CNN model within the N - Q setup.
Overall, the most remarkable performances are observed in
configurations O1 and O3, corresponding to a CNN configura-
tion with depths of 1m (with an F1-score of 54.4± 0.5% ) and
10m (with an F1-score of 53.9± 1.6%), respectively. Notably,
the performance difference between these configurations is
minimal and within the standard errors.

Finally, we investigated the effect of multiple views com-
pared to a single-view setting for the CNN classifier (using
H-kmeans). Across all settings with various regularisers and
numbers of annotated images, multi-view outperformed single-
view by an average of 2.1± 0.8 %pt (range: 0 - 4.2 %pt; Fig 7).
Additionally, we demonstrated the benefits of utilising multiple
views for specific classes by examining the performance per
class (Fig1 in Appendix). Notably, the utilisation of multi-
view data has resulted in improved average scores for the
detritus and Rhizaria classes, which exhibit a wide range of
variability. As a result, the overall average score has seen an
increase of approximately 2-3 %pt. This finding highlights the
advantage of incorporating multiple views in the classification
process, particularly for classes that exhibit greater variation
within their samples.

V. DISCUSSION

1) Use of metadata to help classification: For traditional
microscope-based zooplankton identification, metadata pro-
vides the taxonomist with vital information that aids the
correct species identification, such as the size of the organism
and the location and water depth where it was found. In
contrast, however, the usefulness of metadata for our unsuper-
vised classification framework was mixed (Fig 4). We suspect
that size was not useful information as our classification
categories are too broad, leading to a considerable overlap

in the sizes of different categories. For example, copepods
range in size from <0.1 to 18 mm, hence spanning 4 orders
of magnitude, while the size range of amorphous detritus is
even larger, practically spanning from microscopic to several
cm. Hence, at broad classification levels like ours, size appears
to hinder rather than help the classification. In settings with
higher taxonomic resolution that include classes with distinct
size ranges (e.g. species level), however, we expect size to
increase classification accuracy. Location appeared to be more
useful at larger search distances (>1 km radius), possibly
reflecting the patchiness of plankton in the ocean in terms of
geographical distribution. Different to traditional taxonomy,
we did not use absolute location (e.g. equatorial Pacific vs
North Atlantic) to aid classification but rather the relative
location of two objects to each other. Such an approach should
be sufficiently sensitive to capture geographical changes in
plankton distribution caused by, e.g., climate change [75], [76],
without enforcing strict location constraints that could con-
ceal distribution changes. Finally, depth information greatly
improved classification accuracy likely because plankton of
the same species often swarm, co-locating in relatively narrow
depth bands of just a few meters (e.g. [77]–[79]). A class-based
analysis shows that depth information is particularly useful for
aiding the classification of copepods and foraminifera (Fig9),
both of which are often found in distinct depth layers [79],
[80]. For detrital particles, their shape and type typically also
change with depth (e.g. [81], [82]) as particles are reworked
and become more refractory the further they are away from the
surface ocean, from where they originate. An interesting future
addition in metadata would be the combination of the sampling
depth and the time of day when sampling occurred (relative
to sunset/sunrise) as many zooplankton species undergo diel
vertical migration, feeding near the surface during night and
resting at depth (often >500 m depth) during the day. Yet, as
shown by size, any metadata criteria used for regularisation has
to be chosen with care and checked for ecological meaning.

2) Reduced need for human expert annotation: Our model
framework dramatically reduced the work for human expert
annotation to 1̃000 images (M1 + M2 = 500 + [500, 1000,
2000]) for a dataset of 4̃50,000 images. The question is
whether the resulting classification is useful for ecological
purposes. In all configurations, our self-supervised model al-
gorithms detected 10 common classes (detritus, fibre/filaments,
copepoda, artefact, puff, rhizaria, eumalacostrata, chaetog-
natha, foraminifera and salipda). These common classes are
among the 13 most abundant classes in our dataset. Certain
rare classes, such as ostracoda, actinopterygii (ray-finned
fish), or appendicularia (which were only represented by 28
samples), were also detected in specific configurations. Our
best-performing configuration (O1) found 16 of the 24 classes
(it also found larvacean houses, aulacanthidae, ostracoda,
Creseis acicula, actinopterygii, and Aulatractus). Hence, the
SSL appears adept in recognising the main structure of the
plankton community across our dataset. The F1-scores for
individual classes varied widely between model configurations
and classes (Fig9-k). Notably, the class ’artefact’, attained
the highest average F1-score of 75%, underscoring its utility
in data quality control and in scenarios where the data is
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Fig. 8. Effect of the input parameters in box plots where the first quartile is at the bottom, and the third quartile is at the top: Box plots of the f1-score for
various input regularisers, classifiers, and data selection methods are shown in Figures (a), (b), and (c), respectively.

employed for class-independent analyses, such as community
size spectra [83].

To demonstrate how well our model configurations perform,
we calculated the F1-score for two classification options: (1)
the classifier assigns a label at random with an equal chance for
all classes, or (2) the classifier assigns detritus to all images.
For the random labelling, the F1-score ranges from 0.01 - 8.3%
per class with a mean of 1.2%. For the all-detritus, though
the F1-score for the detritus class is 90.8%, the mean score
is 3.9%. Hence, both models perform much worse than our
best-performing configuration, O1 (mean 54.4%; albeit having
a mean of 3̃4.7% if we consider the F1-score for undetected
classes as 0%).

The ability to detect classes and the overall classification
performance are dependent on the number of images for each
class in the representative samples for human expert annotation
(M1 and M2). M1 and M2 are selected by H-kmeans, whereby
the algorithm tries to find key features for detecting and
distinguishing classes, and their composition is hence less
linked to the relative abundance of the individual classes in
the entire dataset. As a result, many of the configurations
showed the beginning of ’levelling off’ as M2 increases, e.g.,
the control configuration (no regularisation; Fig 6). For our
best-performing model configuration (O1 with M2 = 2000), we

found a weak relationship between the overall abundance and
F1-score for each class in the entire dataset (linear regression:
R2 = 0.35, p = 0.055, n = 9, when not including detritus),
indicating the importance of selecting representative samples
that capture the diversity of features across classes. When
M2 was increased further, from 2000 to 3000, the F1-score
only slightly improved (data not reported), hence showing
the ’levelling off’ associated with the model finding more of
the relevant representative samples. Overall, we demonstrate
that SSL is effective at learning the key features relevant for
plankton classification and can hence dramatically reduce the
required input from human expert taxonomists.

In the rapidly evolving domain of automated annotation, the
effectiveness of different methodologies can be quantitatively
compared by their ability to save human-time and enhance
throughput. Traditional manual annotation techniques typically
process between 300 and 1000 objects per hour (pers. comm.
and [7]). Although supervised platforms like EcoTaxa [6] im-
prove on this by allowing for a sorting speed ranging from 300
to 15,000 objects per hour, depending on the level of automa-
tion and manual validation involved [7], these numbers are
still modest when compared to more sophisticated methods.
For instance, the interactive semi-supervised approach used
by MorphoCluster [7] markedly increases efficiency, reaching
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Fig. 9. Boxplots showing the F1-score from all model configurations for the 10 classes. Boxplots indicate median (line), upper and lower quantile (box),
minimum and maximum (error bars). and individual data points (solid dots). (a-j) Comparison of F1-score with regularisation for location, depth, scale and
no regularisation. Note the difference in the y-axis scale. The F1-scores for the best model, under the O1 configuration, are as follows: Detritus = 75.2, Puff
= 73.1, Rhizaria = 48.5, FI (Fiber-Filament) = 77.6, Copepoda = 46.6, Artefact = 92.5, Eumalacostraca = 27.2, Chaetognatha = 29.3, Foraminifera = 36.1,
and Salpida = 37.8. (k) Comparison of the F1-score of all classes using all model configurations.

speeds of approximately 17,000 objects per hour of human
annotation. Our method, however, represents a significant leap
forward, demonstrating the ability to process around 200,000
to 450,000 objects per hour of human annotation, as illustrated
in Fig10. In terms of class management, large number of
classes (e.g. see MorphoCluster [7]) often include the same
class in different orientations, or mixed classes (in between
two pure classes, like copepods and detritus), which are often
subsequently merged by the plankton researcher for their
analysis. In our approach, such ’pseudo-classes’ would be
merged, which is not only computationally efficient but also
aligns closely with the needs of final ecological interpretation,
where such distinctions are often unnecessary and combined
for broader ecological insights.

The methodology aims to diminish the reliance on extensive
human annotation, which is particularly beneficial for large-

scale monitoring projects where manual annotation of vast
amounts of data is impractical. By automating this process,
resources can be reallocated to other critical tasks within
marine research. The model is well-suited for deployment
on edge devices commonly used in marine environments,
such as AUVs, floats, or gliders. These devices benefit from
the model’s real-time processing capabilities, which reduce
the need for extensive data transmission back to shore-based
systems, allowing for immediate decision-making directly in
the field. However, it is critical to recognize that the model’s
operational efficiency comes with a trade-off in the granularity
of data classification. Operating with a minimal amount of data
embedding—while advantageous for conserving bandwidth
and reducing data transmission over satellite—inevitably leads
to a reduction in the resolution of data classification. This
resolution reduction predominantly affects the classification of
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Fig. 10. Comparison of object processing speeds across different annota-
tion methods. This plot illustrates the processing speeds of human manual
classification, AI-assisted manual classification (Ecotaxa [6]), semi-supervised
(MorphoCluster [7]) and our proposed method, showcasing the average
number of objects processed per human-hour and the range for each method.
Error bars indicate the minimum and maximum throughput.

less common species, which could be a significant limitation
for ecologists requiring detailed taxonomic analysis across a
diverse range of plankton types. However, the use of more
powerful platforms that can afford higher computational re-
sources and energy, could be considered. Such devices would
enable the use of more complex models without the constraints
of lesser-equipped platforms, thereby enhancing both the depth
and breadth of marine ecological studies.

In our study, variability in plankton image classification
primarily stems from fluctuations in environmental conditions
such as lighting, water clarity, or sensor discrepancies, sim-
ilar to spectral variability observed in many remote sensing
scenarios [84]. Such variability significantly impacts the per-
formance of traditional image classification models by altering
the visual appearance of plankton, leading to inconsistencies
and inaccuracies in species identification and quantification.
To address this, our approach integrates metadata to enhance
representation learning, enabling the model to contextualize
each image and adapt its classification decisions to spe-
cific environmental conditions. This methodology not only
increases the model’s resilience against variable conditions
but also ensures effectiveness under diverse and challenging
scenarios. Applied to datasets characterized by high levels of
variability, we anticipate that the model would demonstrate
superior resilience compared to traditional methods, as the use
of environmental metadata facilitates effective normalization
of imaging differences. Looking forward, investigating the
impacts of additional environmental variables such as water
temperature, salinity, and light intensity on classification accu-
racy presents a promising avenue for future research. Further,
developing adaptive algorithms that dynamically adjust to real-
time environmental changes could significantly advance the
field of aquatic bio-imaging, providing robust solutions for
accurate plankton classification under varying conditions.

VI. CONCLUSION

In this paper, we present a novel representation learning
model designed for plankton image classification, taking in-
spiration from metadata information that serves as valuable
guidance for class grouping. Our approach involves multiple
stages to achieve efficient representation learning and improve
classification performance. Firstly, we employ an encoder-
decoder network that optimizes the reconstruction loss and
employs a regularised loss function integrated with location,
depth, and scale information. This fusion of metadata infor-
mation helps in effectively grouping species, enhancing the
model’s understanding of the underlying patterns. Secondly,
we focus on data reduction for the majority class and select
representative samples from the latent space data. These se-
lected representative samples are then labelled and grouped
based on different class views, as suggested by our encoder-
decoder architecture. This approach enables us to handle data
with class imbalances and efficiently leverage the labelled
samples for training. Lastly, we utilise a CNN network to fine-
tune the model for the downstream classification task, lever-
aging the representative annotated samples. This fine-tuning
step further refines the model’s capabilities and enhances its
classification performance.
While our suggested framework demonstrates promising re-
sults, there is substantial scope for advancing its performance
through more sophisticated representation learning techniques.
A notable direction involves integrating stronger constraints,
such as cosine similarity in contrastive learning, could enhance
the network’s capability to fully utilise metadata information
without relying heavily on human annotations. The scalability
and efficiency of this approach are particularly valuable for
deployment in real-time systems on autonomous vehicles and
remote sensing platforms, where rapid and reliable image
analysis is critical. These methods could potentially reduce
the risk of overfitting, particularly when the data includes
noise or extraneous details. As a result, the model becomes
more adaptable to various scenarios. Furthermore, they are
efficient in environments needing quick similarity computa-
tions, like real-time recommendation engines or interactive
systems. Future studies could explore these aspects, potentially
transforming the way we process and utilise marine imagery
in dynamic, resource-constrained environments. By advancing
these techniques, we aim to minimise reliance on extensive
human annotations, further automating and enhancing the
accuracy of ecological monitoring and conservation efforts.
Additionally, it’s important to acknowledge that our current
dataset is limited to a specific instrument and exhibits narrow
variability (i.e. primarily concentrated near the coast). This
constraint hinders our model’s ability to uncover broader
patterns and insights about the data. To overcome this lim-
itation, future investigations could focus on datasets with
greater variability, providing the model with more diverse
and comprehensive data for learning. Comprehensive testing
on newer version camera systems could also be considered
to assess performance across diverse datasets. Through these
endeavors, future studies aim to verify whether the model
remains effective and agnostic to different systems, sustaining
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its effectiveness in plankton image classification tasks across
various setups.
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Hautes Études in Perpignan (France) as well as for
his post-doc at the University of Miami. Since 2009,
he is an associate professor at Sorbonne Université,
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