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Abstract—Josephson junctions, as pivotal components of mod-
ern technologies such as superconducting quantum computing,
owe their prominence to their unique nonlinear properties at low
temperatures. Despite their extensive use in static configurations,
the study of dynamic Josephson junctions, under space-time (ST)
modulation, remains largely unexplored. This study investigates
the interaction and transmission of light through arrays of space-
time-modulated (STM) Josephson junctions. A comprehensive
mathematical framework is presented to model the propaga-
tion of electric and magnetic fields within and beyond these
structures. We demonstrate how such dynamic arrays enable
unique four-dimensional light manipulation, leading to angular-
frequency beam multiplexing through a seamless integration of
frequency conversion and beam-splitting functionalities. These
advancements open new horizons for electromagnetic field en-
gineering, with far-reaching implications for superconducting
quantum technologies, next-generation wireless communications,
biomedical sensing, and radar systems.

Index Terms—Josephson junctions, superconducting time mod-
ulation, quantum technologies, Maxwell’s equations, beam mul-
tiplexing.

I. INTRODUCTION

Osephson junctions, comprising an insulator between two
J superconducting layers, are essential in superconducting
electronics [1], [2]. These nonlinear devices enable supercur-
rent via Cooper pair tunneling, allowing resistance-free current
flow. Their quantum-level electromagnetic wave manipulation
has enabled applications from classical electronics to quan-
tum technologies. In quantum computing, they form qubits
for high-coherence state manipulation and are used in para-
metric amplifiers, quantum-limited detectors, and frequency
converters. They also underpin precision metrology, enabling
voltage standards and accurate microwave generation. Beyond
this, they are explored for quantum sensors in astrophysics,
quantum communication systems, and scalable superconduct-
ing circuits. Despite their established applications, Josephson
junctions in space-time-modulated (STM) systems remain
largely unexplored [3]-[5]. Our work pioneers the study of
electromagnetic wave interactions with STM Josephson junc-
tion arrays, enabling nonreciprocal light propagation, tunable
frequency conversion, and tailored photon interactions. These
advances hold transformative potential for quantum com-
munication, photon-based information processing, and other
quantum technologies.
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Linear STM structures have gained attention for applications
in wireless communication, photonics, and radar technolo-
gies [6]-[19]. These systems modulate electrical permittivity
in space and time [20]-[25], enabling linear STM metasur-
faces at microwave [26]-[28] and optical frequencies [29]-
[31]. They support functionalities like nonreciprocal trans-
mission [14], [32], target recognition [33], isolators [34]-
[36], temporal aiming [37], frequency conversion [38], [39],
circulators [40], [41], nonreciprocal antennas [42], parametric
amplification [43], [44], and multifunctional operations [45],
[46]. However, conventional time-modulated devices, relying
on varactors, transistors, and diodes, are unsuitable for mil-
likelvin environments due to noise and operational constraints.
In contrast, STM Josephson junction arrays excel in such
conditions, leveraging strong harmonic coupling for efficient
frequency conversion, even at high modulation-to-signal ra-
tios. Their compactness, efficiency, and precision make them
ideal for superconducting quantum technologies, overcoming
limitations of linear STM systems like phase matching and
dispersion.

This paper demonstrates angular-frequency beam multiplex-
ing using an array of dynamic Josephson junctions, enabling
frequency conversion and beam-splitting—key functionalities
for quantum technologies and wireless communications. In
quantum computing, frequency converters mediate interactions
between qubits at different frequencies, reducing crosstalk
and enhancing fidelity, which is critical for quantum error
correction [47], [48]. They also enable quantum state trans-
duction between microwave and optical photons, essential for
long-distance quantum communication and hybrid quantum
systems [49]. In quantum sensing, ultra-low-noise frequency
converters at millikelvin temperatures enhance sensitivity for
applications like dark matter detection and gravitational wave
sensing [50], [51]. In wireless communications, frequency con-
version bridges different frequency bands, optimizing band-
width in multiband networks like 5G, while beam-splitting
enhances spectral efficiency and reliability in massive MIMO
systems [52]. These operations are also critical for satel-
lite and airborne communication systems, ensuring stable,
high-speed links. While the proposed Josephson array and
mathematical model encompass general light interaction with
STM systems, this work focuses on angular-frequency beam
multiplexing. The cryogenic-compatible array is applicable to
wireless communications and holds significant potential for su-
perconducting quantum computing, where photon interactions
with Josephson junctions are pivotal.
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Fig. 1. Light interaction with an array of STM Josephson junctions leading
to angular-frequency beam multiplexing.

This paper is organized as follows. Section II presents the
theoretical framework and mathematical modeling of light
interaction with STM Josephson junction arrays. Section II-C
analyzes light incidence and transmission through these arrays,
detailing the underlying mechanisms. Section III proposes a
practical implementation of the array and demonstrates its
frequency-angular beam multiplexing capabilities through full-
wave numerical simulations and conversion efficiency analy-
sis. Finally, Section V summarizes the findings and concludes
the paper.

II. THEORETICAL IMPLICATIONS
A. Array of STM Josephson junctions

The structure under study, shown in Fig. 1, consists of
an array of STM Josephson junctions. A space-time (ST)-
varying voltage is passing through the array and modulating
the array inclusions. The voltage is given by V(z,t) =
Vie + Viesin[ksz — wst + ¢]. Here, Vg is the dc voltage
component, representing a constant bias applied to the system,
Vit is the amplitude of the 1f (radio frequency) voltage com-
ponent, representing the time-varying modulation, kg is the
spatial wavenumber of the modulation, describing the spatial
periodicity of the applied voltage, wy is the angular frequency
of the modulation, describing the temporal periodicity of the
applied voltage, and ¢ is the phase offset of the modulation,
accounting for any initial phase difference in the applied
signal. The phase velocity of the ST modulation reads

Vs Ws

v=—= )
(% VpKRs

(D

which may either exceed or fall below the phase velocity of
the background medium, denoted as v, = ¢/ /Hr€r, Where
c = 1/\/jo€o is the speed of light in vacuum, and €. and s,
representing, respectively, the relative electric permittivity and

relative magnetic permeability of the background medium. The
space-time velocity ratio. Eq. (1) characterizes the relationship
between the modulation and background phase velocities. In
the limiting cases, v = 0 corresponds to a purely space-
modulated medium, while v — oo describes a purely time-
modulated medium [53].

The current density of the superconducting array reads

Js(z,t) = Iosin[p(z,t)], (2a)

where [j is the critical current and
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where @ is the magnetic flux quantum and ®(z,t) is the ST-
dependent magnetic flux. The time derivative of the current
density, which is directly related to the voltage V'(z, t), is given
by
dJ(z,t)  2mlycos[p(z,t)]
a @,

which gives V(z,t) = Ls(z,t)dJ(z,t)/dt. Consequently, the
effective STM magnetic permeability of the array is expressed
as

Vi(z,t), (2¢)

ILg(z,t) 1
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where G, = 2mpuoloA/(Pol), where | and A are the
length and area of the STM array, respectively. Here, ®g. =
2Py /Py and Py = 27D,/ Dy are the dc and rf fluxes,
respectively, representing the static and dynamic modulation
amplitudes. Since the array is periodic in both space and time,
the magnetic permeability of the array may be decomposed
into ST Floquet-Bloch harmonics, as

B 1
ps(25t)

To find the unknown coefficients g,,s we first define ) =
Kz — wst + ¢, and then expand the cosine term in Eq. (3), as

cos (&Ddc + (Srf sin 1/)) = cos (&)dc) cos (&)rf sin z/})
_sin (cidc) sin (cirf sin 1/)) . (4b)

where the cosine and sine terms can be further expanded using
the Taylor’s series expansion. Therefore, the g,,s in Eq. (4a)
read
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Fig. 2. Wave scattering from a STM superconducting surface.

g3 = —g-3= ijé (Ei;?f ‘fgf i;) sin @y, (41)
s =g-a= ?%:1 <(T)f—lf - % + j;) cos By, (4g)
g5 =—g-5= j?,C;ZO <(i)r5f - %) sin ®g, (4h)

96 =96 = 46%‘;0 (52 f;) cos g, (4)

g7 =—9g-7= m‘ﬁf sin @, “4)

g8 = g8 = m@ﬁ cos Pye. (4k)

B. Floquet-Bloch ST Harmonics

Figure 2 illustrates the transmission and reflection of light
from an array of STM Josephson junctions, characterized
by the STM permeability described in Eq. (3). Taking into
account the ST periodicity of the STM array, the electric and
magnetic fields within the slab can be decomposed into a
series of Floquet-Bloch harmonics, capturing the contributions
of both spatial and temporal modulations. This expansion
provides a comprehensive framework to describe wave in-
teractions in periodic structures. Consequently, the transverse
magnetic (TM) wave propagation within the slab can be
expressed in terms of these harmonics, where each harmonic
corresponds to a distinct combination of spatial and temporal
frequencies. Consequently, the TM wave propagation within
the slab can be expressed as

HS(.%‘, z, t) =3 Z Hne_j[kw$+HnZ—UJ7Lt]’ (5a)
Es(x7 Zat) = -T2 |:Rs X Hs(xv Z7t):|
=12 Z (%sin(6,,) — z cos(6;)) Hye ™’ (ko inz—wont] ,
n (5b)
where 7, is the characteristic impedance of the background
medium of the array, and ky = %Xcos(6;) + Zk,/k, is the

wavevector of the light in the array. Here, 6; is the angle of
incidence between the incident wave and the array boundary,
Kn = Ko+ nks is the z-component of the wavenumber for the
nth ST harmonic inside the array, and k,, = ko +nws /vy is the
total wavenumber of the nth harmonic. In these expressions,
ko = wp/c is the wavenumber of the incident light, wy is the
angular frequency of the incident light, and ws is the angular
frequency of the ST modulation. In addition, the z-component
of the wavenumber is given by k, = ko cos(6;), and the angle
0,, for the nth ST harmonic satisfies sin(0,,) = &, /k,. The
source-free wave equation for the system is

1 0% [us(z, ) Hy(z, 2, 1))
c2 o2

Substituting the magnetic field expression from Eq. (5a) into
the wave equation (6a) yields

Z(k2 +I€ )H e*][k THKnz—wnt]

n

V?H,(z, 2, t) — =0.

(6a)
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which may be c;lst as
H, % {k”” ] Z“m J2— (6¢)
where fi,,, = 1/gy,. Truncating to 2N + 1 terms yields
v [H] = o. (7a)

The matrix [U] is a square matrix of size (2N+1)x(2N+1),
with elements defined as

kZ+k2
Unn - k‘2 — Mo,
Upnm = —fimin, forn#m, (7b)
where
U] =
C_N I fi2 . fyvi—2 AM-1 M
f—1 C_N41 1 Byvi—3  AM—2  fav—1
fioami1 A-me fones o fe1 en—1 o MO
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where ¢, = fig — (k2 + k2)/k2. The vector of unknowns [ﬁ]
in Eq. (7a) is a (2N +1) x 1 vector containing the H,, values.
For non-trivial solutions (i.e., [H] # 0), the matrix [U] must
be singular, meaning its determinant is zero, that is,

det [U] = 0. (7d)

The condition outlined in Eq. (7d) determines when the
system permits wave propagation, offering the dispersion
relationship typically expressed as w(k) or k(w). The matrix
[U] encapsulates material properties, such as permittivity,
permeability, and conductivity, which collectively influence
wave behavior. Its components depend on the wavevector (x,,)
and frequency (w,), creating a direct relationship between
the two. By enforcing det [U] = 0, the propagation criteria
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are established, revealing how frequency and wavevector are
interconnected. This relationship, expressed as wy (k) or
Kn(wy), provides insight into the system’s allowed frequen-
cies, wavevectors, group velocity, phase velocity, and band
structure. Thus, Eq. (7d) serves as a critical criterion for wave
propagation, and solving it yields the dispersion relation that
defines wave dynamics within the medium.

The matrix [U], along with the truncated set of g, co-
efficients, illustrates the effects of nonlinearity. In nonlinear
systems, energy from the primary harmonic modes (U,,) is
redistributed across an infinite series of other harmonic modes
(Upm, where n # m, —oo < n,m < +o0). This contrasts
with linear STM media [8], where energy is redistributed
among all, in contrast to linear STM arrays where energy is
redistributed only among the nearest neighboring harmonic
modes harmonic modes (U,,,—1 and U, ,+1). Nonlinear
interactions enable energy transfer across a wider range of
harmonic frequencies, allowing the incident wave to excite
higher-order harmonics efficiently. This is due to the ability
of nonlinear systems to sustain the high-frequency modulation
necessary for such energy redistribution.

C. Wave Incidence and Transmission

The TM incident magnetic and electric fields read

HI(1'7 2, t) _ yhoe(ngt) . efj[kl.:r+k:0 sin(6;)z] (82)

Ei(z,z,t) = —m {IA(I X Hl(ac,z,t)}

= [&sin(6;) — Zcos(6;)] - hge?“ot - eI kaxthosin(0)z]
(8b)

where 171 = +/uop1/(€per). The reflected and transmitted
electric fields outside of the slab may be defined as

HR({II7 2, t) _ y Z Rnefj[kxa:fkon sin(@i)sznt]7 (93)

n=—oo
Er(z,z,t) = —m [ER x Hg(z, z,t)]

= —ny [&sin(0)) + 2 cos(6;)] - Rne_j[k”_k“" Sin(ei)z‘“’"t],
(9b)

HT(.’IJ, 2, t) _ y Z Tnefj[krmerkon sin(@l)sznt]’ (90)
n

Er(x,z,t) = —773[1§T x Hr(z, z,t)]

=y Y [&sin(6]) — 2cos(6y)] - Tesherthonsin(@h)men]
n (9d)

where 13 = +/pops/(€o€es). continuity of the tangential
components of the electromagnetic fields at z =0 and z = d

to find the unknown field amplitudes Hy, R, and T,. The
electric and magnetic fields continuity conditions between
regions 1 and 2 at z = 0, Hyy(x,0,t) = Hoy(x,0,t) and
E14(2,0,t) = Eay(2,0,t) read

Onoho + Ry, = (10a)

ns

m sin(8;)6,0ho — 1 sin(OX)R,, = o sin(0,)H,.  (10b)

)

By solving the above two equations simultaneously, we
achieve

27’]1 ho sin(@i)
Hy = , 10
0 m sin(@i) + 2 sin(@o) ( C)
R, = H,, — époho. (10d)

The continuity condition of electric and magnetic fields
between regions 2 and 3 at z = d, Hyy(z,d,t) = Hsy(z,d,t)
and Fo,(x,d,t) = E3.(x,d,t), reduces to

Hne—j){,nd _ Tne—jkon Sin(@}‘b)d, (lla)

N2 sin(0,) Hye ™ 7%n4 = ng sin(67)T,e 3% sin@)d - (11b)
which gives
_ M sin(6,)
" msin(df) "
The scattering angles of the transmitted ST harmonics,
denoted as 92, can be derived from the Helmholtz relations.
These relations ensure that the wavevector components satisfy

the dispersion constraints within the STM medium. Mathemat-
ically, this is expressed as [kq cos(6;)]? + [k, sin(6,,)]? = k2.

—jlEn—Fkn sin(eﬁ)]d. (11C)

III. FREQUENCY-ANGULAR BEAM MULTIPLEXING

Figure 3 illustrates the experimental prototype design of a
STM Josephson junction array. Each Josephson junction is
formed by a thin dielectric tunnel barrier sandwiched between
two superconducting layers. The superconducting layers are
fabricated using materials such as aluminum (Al) or niobium
(Nb), chosen for their high critical current densities, low
microwave losses, and compatibility with cryogenic envi-
ronments essential for quantum applications. The Josephson
junctions are patterned on a high-quality substrate, commonly
silicon (Si) or sapphire (Al3O3), both known for their excellent
thermal conductivity and low dielectric loss at cryogenic
temperatures. The substrate provides mechanical stability and
reduces parasitic effects like crosstalk and substrate-induced
losses, essential for high-frequency, high-fidelity operation.
For ST modulation, a modulation signal is applied to the
Josephson junctions via a power divider on the right, ensuring
uniform signal distribution across the array for precise control
over ST-dependent electromagnetic properties. High-quality
coaxial cables or superconducting transmission lines deliver
the signal with minimal attenuation and phase noise. On the
left, another power divider directs the signal to a matched
load to prevent reflections. The entire setup operates in a
cryogenic environment, typically a dilution refrigerator, to
maintain superconductivity and suppress thermal noise, with
electromagnetic shielding added to minimize external interfer-
ence and ensure stable ST modulation.

According to the dispersion relation in Eq. (7d), a three-
dimensional dispersion diagram can be constructed to visualize
the wave dynamics in the STM array. Figure 4(a) qualitatively
depicts this three-dimensional dispersion diagram, illustrating
the interdependence of the frequency (w,,), the z-component
of the wavevector (k,), the x-component of the wavevector
(kz), and the modulation frequency (ws). The z-component of



IEEE TRANSACTION ON ANTENNAS AND PROPAGATION, VOL. *, NO. *, #¥% 2025 5

Fig. 3. Experimental prototype design of a STM Josephson junction array.

the wavevector, k,, is particularly significant as it represents
the angle of incidence (¢; = cos™!(k,/ko)). The dispersion
diagram features a series of double semi-cones aligned along
the w,, axis, each corresponding to a specific ST harmonic.
The positive-slope regions of the semi-cones, with respect to
the (wp,ky,) plane, represent a positive group delay corre-
sponding to forward-propagating waves, while the negative-
slope regions indicate negative group delay corresponding
to backward-propagating waves. The steepness of the semi-
cones is determined by the ST modulation parameter, ®qc,
such that increasing ®4. results in a greater slope, reflect-
ing enhanced modulation strength. At the center of each
double semi-cone lies an electromagnetic bandgap, which
is influenced by ®4..As P4 increases, the bandgap widens,
signifying enhanced coupling between harmonics and more
efficient energy redistribution across them. The slope of the
higher-order ST harmonic cones is directly proportional to the
ST modulation amplitude ®;. When & — 0, the higher-
order harmonic cones vanish entirely, reflecting the absence of
dynamic modulation and reducing the system to a purely static
problem. This intricate interplay between the modulation pa-
rameters, ®q. and D¢, highlights the tunability of the system’s
dispersion characteristics and provides valuable insights into
the propagation and manipulation of waves in STM Josephson
junctions.

Figures 4(b) through 4(g) present the analytical two-
dimensional dispersion diagrams (w,, versus k,) for various
operational regimes of the STM Josephson junction array,
calculated using Eq. (7d). These diagrams illustrate the in-
fluence of the ST modulation parameters, ®4. and P, on the
system’s dispersion characteristics. Figure 4(b) shows the case
where 3. — 0 and &, — 0, resulting in a conventional
dispersion diagram without bandgaps or harmonic coupling.
Figure 4(c) depicts ®4. = 0.7 and &+ — 0, where static
modulation tilts the n = 0 dispersion curve and introduces
a bandgap at the center of the n = 0 double semi-cone.
Figure 4(d) demonstrates weak dynamic modulation (®; =
0.1) superimposed on static modulation (®4. = 0.7), weakly
exciting the n = 1 harmonic and creating narrow bandgaps at
harmonic intersections. Figure 4(e) illustrates ®¢. = 0.7 and
@,y = 0.35, where increased dynamic modulation steepens the
n = 1 harmonic slope, enhancing coupling between n = 0
and n = 1 harmonics. Figure 4(f) shows ®4. = 0.7 and
®,¢ = 0.7, with stronger ST modulation effects, including the
excitation of higher-order harmonics (n = 2) and significant
energy redistribution between n = 0 and n = 1 harmonics.
This regime highlights nonreciprocal wave propagation due to

asymmetric harmonic coupling, enabling directional control
over wave behavior. Figure 4(g) corresponds to ®; = 0.9,
where stronger dynamic modulation further increases the slope
of higher-order harmonics and enhances asymmetric coupling,
enabling efficient energy transfer to higher harmonics.

Figures 4(h) to 4(j) present the analytical isofrequency dia-
grams for different operational regimes of the STM Josephson
junction array, computed using Eq. (7d) at wp/ws = 3/9.
Figure 4(h) shows the case where ®4. = 0.7 and &y — 0.
Here, the n = 0 isofrequency contour exhibits a conventional
shape, with no significant deformation, as higher-order ST
harmonics remain unexcited. This indicates minimal dynamic
coupling and linear behavior, akin to non-modulated systems.
Figure 4(i) depicts ®4. = 0.7 and @, = 0.35, where dynamic
modulation introduces pronounced curvature in the isofre-
quency contours. This reflects stronger interactions between
the n = 0 and n» = 1 harmonics. Figure 4(j) illustrates
®4. = 0.7 and &+ = 0.7, where increased dynamic modulation
further distorts the isofrequency contours. The n = 1 contour
approaches the n = 0 contour, indicating stronger coupling
and energy exchange between harmonics. Collectively, these
diagrams demonstrate the tunable dispersion characteristics of
STM Josephson junction arrays, where modulation parameters
control harmonic coupling, nonreciprocity, and bandgap width.

Figures 5(a) to 5(e) present FDTD numerical simulations
of the time-domain H, field distribution and the frequency-
domain power spectrum for the incident and transmitted beams
under different modulation parameters: ws = wy, 7, 6, and
d. These results demonstrate diverse angular-frequency beam
multiplexing, where an incident beam at wy interacts with the
STM Josephson structure, transmitting partially at wy while
generating an up-converted beam at wg +ws. The up-converted
beam emerges at a distinct angle due to energy and momentum
conservation. Comparing Fig. 5(b) with Fig. 5(a) reveals that
increasing the modulation frequency from w, = 1.266wy
to ws = 3wp enhances the temporal frequency w; and
transmission angle 67 of the transmitted beam. Additionally,
Figs. 5(c) and 5(d) illustrate the impact of varying ~ from
v =1to~y = —1 (Fig. 5(c)) and v = —0.6 (Fig. 5(d)) on
the amplitude and transmission angle of the transmitted ST
harmonics. Figure 5(e) demonstrates strong suppression of the
transmitted fundamental harmonic, with energy redirected to
higher-order harmonics, highlighting the metasurface’s ability
to independently control both center frequency and harmonic
generation. These findings underscore the flexibility and recon-
figurability of the STM Josephson metasurface, where modula-
tion parameters dynamically control the frequency, amplitude,
and transmission angles of the output beams, highlighting
its potential for advanced wavefront shaping and frequency-
multiplexing applications.

IV. FREQUENCY CONVERSION EFFICIENCY

The proposed conversion efficiency metric evaluates har-
monic generation performance in a multi-output system, where
energy is dynamically partitioned among frequencies and
angles via modulation. This differs fundamentally from single-
output mixers, as our design targets simultaneous control over
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ws = 1.333wp, v = —1, d = 0.3Xg. (d) 6; = 65°, ws = 1.333wp, v = —0.6,

multiple beams, each with tailored frequency and direction.
To derive a closed form solution for conversion efficiency,
we consider an approximate solution by considering only two
output beams at wy and wy + ws, where the higher order
ST harmonics are negligible. Then, the wave amplitudes H,,
in (7a) reduces to

coHo+ f11Hy =0 (12a)
fii1Ho +c1Hy =0 (12b)
which has non-trivial solution only if cgc; — fi—1ft1 = 0,
representing the reduced dispersion relation, i.e.,
~ k?[ﬁ + H(2) ~ kg + (fig + H§)2 ~ ~
_ 2z T ™0 _Zz TAMO T S) ) s -0
(/,LO wg/vg Ko (WO ¥ ws)z/vg H—1H1
(13)
Solving Egs. (12a) and (12b) together give
H, = _ Gt pa H, (14)

c1 + [

d = 0.2Xp. (b) 6; = 90°, ws = 3wp, v = 1, d = 0.2Xg. (c) 6; = 65°,
d = 0.3Xg. (e) §; = —10°, ws = 0.533wp, v = 1, and d = 0.5X¢.

and the power conversion gain reads then

k2 + K3 ?
2 ﬂo—%—ﬂ—l
Po | Hua|” wg /vy (15)
P H k24 (ko +Ks)2 .
’ ’ o+ (o + ) — fio + fia

(00 + w207

The power conversion gain of the STM Josephson array
in Eq. (15) exhibits a form that is conceptually aligned with
the energy conservation principles described by the Manley-
Rowe relations [54]. This suggests that the system adheres
to fundamental energy constraints, consistent with parametric
processes in nonlinear systems. Figures 6(a) to 6(c) plot the
conversion efficiency, calculated using Eq. (15), for varying
values of the normalized rf flux ®,¢, where Iy = 50 nA, and
Py = 2.068x 107> Wb. The efficiency is plotted as a function
of the normalized DC flux ®4., the normalized modulation
frequency ws/wo, and the incident angle 6;, respectively. These
figures demonstrate the high conversion efficiency of the
proposed STM Josephson metasurface, as well as its strong
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Fig. 6. Conversion efficiency for different values of the normalized rf flux
®,r computed using (15), as a function of (a) the normalized DC flux <I>dc,
(b) the normalized modulation frequency ws/wo, and (c) the incident angle
;.

reconfigurability and flexibility. The conversion efficiency can
exceed unity due to energy injection from the active space-time
modulation. This amplification effect aligns with parametric
systems where external pumping enhances sideband power
beyond the input carrier level. The metasurface function can
be controlled through the DC and RF amplitudes of the
modulation (<I>dC and @), the modulation temporal and spatial
frequencies (ws and k), and the angle of incidence (6;).

V. CONCLUSION

This study explores dynamic Josephson junctions—a largely
uncharted domain—by analyzing their interaction with elec-
tromagnetic waves under space-time modulation. Using a
rigorous theoretical framework, we model field propagation
in these systems, uncovering unique modulation-induced phe-
nomena. Our results demonstrate advanced four-dimensional
light manipulation, including angular-frequency beam multi-
plexing that merges frequency conversion and beam-splitting.
These findings open new possibilities for quantum technolo-
gies and wireless communications. By bridging critical gaps
in understanding dynamic Josephson junctions, this work
paves the way for future research on active superconducting
metamaterials and their applications.

VI. APPENDIX
CONDITION FOR THE FLOQUET-BLOCH EXPANSION

We first expand the wave equation in Eq. (6a), as

26‘2Hs L 9?H; _ 0? [ps (2, t)Hg]
0x2 0z2 ot?
02 1is(2,t) 0’H, Ous(z,t) OH;
S Rl AL P (16
oz T g H 2 (16)
where Hy = H(z, z,t). Next, we apply the moving medium
coordinate transformation 2’ = z, © = —Kez + wst, and t’' =

t, and then express the partial derivatives in (16) in terms
of the new variable, i.e. 9/0x = 9/0x', 8/0z = —k0/0u,
0?/02* = K202 /0u?, /0t = /0t +wsd/du, and §?/Ot* =
0?0t + w?20? /Ou? + 2w,0* /Oudt’. Then the wave equation
in terms of x’,u,t' and fi,, reads

. 0’H’
2.2 2 ~ jmu S
(C Ry Wy E MU € ) 311,2
m

~ Jmu
—_ E L e’
m

82H/ mu 82H/ mu
Y 2wSZumej " Sudl 2jw52m,u el
m#0
OH/ 8H o(x, 2, t o ima
(T + T ) et 3 R =

20 (17)

where H'g = H(a/,u,t’). For this equation to really rep-
resent the wave equation, it must maintain all of its or-
der derivatives. This is generally the case, except when the
coefficient of the first term vanishes, ie. ¢*k? — w2jip —

w2 > fime’™* = 0. Then, assuming a real permeability
m#0 , ,
and hence S{>_ fie’™"} = 0, we have > gpe 9™% =
m m#0
~? /e — go, where (2), (3) and (4) have been used. Assuming
that the permeability variation is bounded between unity and

infinity, i.e.,

> gme_jm“‘ < G,. Considering that u is real,
m#Q0

the condition reduces to |fy2 /e — go| < G,. This indicates
that the solution for Hy using the Floquet-Bloch expansion is

not valid for the region

pe(go — Gp) < v < /(g0 + Gp)

This interval is analogous to the sonic regime interval in
aerodynamics, where the speed of an airplane matches or
exceeds the velocity of sound, corresponding to the transonic
and supersonic regimes, respectively. In this sonic interval, the
standard space-time Floquet-Bloch decomposition fails to con-
verge due to the unique interplay between wave propagation
and the dynamic modulation of the medium. This breakdown
arises because the energy and momentum conservation laws
inherent to Floquet-Bloch theory are disrupted by the strong
coupling between harmonics induced by the near-sonic mod-
ulation velocities.

(18)
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