Exhaled volatile organic compounds for asthma control classification in children with moderate to severe asthma: results from the SysPharmPediA study
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Abstract
Rationale: The early identification of children with poorly controlled asthma is imperative for optimizing treatment strategies. An emerging technology in prognostic biomarkers for asthma in both adults and children is the analysis of volatile organic compounds (VOCs) in exhaled breath.

Objectives: To differentiate between pediatric patients with controlled and uncontrolled asthma using gas chromatography-mass spectrometry based exhaled metabolite analysis.
Methods: This study was conducted in two phases. During the discovery phase, exhaled VOCs were identified that enable asthma control classification among patients of the SysPharmPediA study. During the validation phase, these outcomes were validated in two independent cohorts (U-BIOPRED and PANDA). Enrolled patients were classified as controlled and uncontrolled, based on number of exacerbations and (childhood) Asthma Control Test score.

Measurements and Main Results:  Complete data were available for 198 patients (SysPharmPediA=100, U-BIOPRED=49, PANDA=49). After splitting the data into a training (n=51) and test set (n=49), three compounds (acetophenone, ethylbenzene and styrene) showed discriminative capacity between uncontrolled and controlled asthmatics within the SysPharmPediA study population. Multivariate models utilizing these VOCs yielded an area under the receiver operating characteristic curve (AUROCC) of 0.83 (95% CI 0.65-1.00) for the training set, and 0.77 (95% CI 0.58-0.96) for the test set. Combinations of these three VOCs yielded AUROCCs of 0.70 (95% CI 0.51-0.89) for the U-BIOPRED cohort and 0.67 (95% CI 0.53-0.82) for the PANDA population.
Conclusions: Our data suggest that exhaled metabolites could be used for asthma control classification in children and substantiate further development of exhaled metabolites-based point-of-care tests in asthma.
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Introduction
Asthma is a chronic respiratory disease characterized by often episodic symptoms, including shortness of breath, wheezing, chest tightness, and coughing (1-3). It is a heterogeneous, multifaceted disease with complex pathogenesis, variable severity, and therapeutic responses. Asthma affects children’s health worldwide; it is one of the most prevalent chronic pediatric diseases (4). Most asthmatic children respond well to standard therapy; however, some still struggle with poor disease control despite receiving high doses of medication (5). That increases the risk of adverse effects, suffering from severe symptoms, number of exacerbations, and affects the quality of life (5). Consequently, patients, their families, and the healthcare community are all subject to significant physical, monetary, and psychological burdens due to this severe form of asthma (5, 6). 
Childhood asthma encompasses diverse phenotypes (7). Identifying biomarkers is essential to unravel underlying biological mechanisms and to provide support on therapy selection and appropriate monitoring of treatment response. However, current clinical markers have limited success in distinguishing between different phenotypes (8).
An emerging technology in prognostic and diagnostic biomarkers for asthma in both adults and children is the analysis of volatile organic compounds (VOCs) in exhaled breath. Hundreds of VOCs, are found in exhaled breath that reflect metabolic and pathological processes occurring within the body (9). As the breath has intensive contact with the respiratory tract, breath analysis is particularly interesting in respiratory diseases such as asthma. Moreover, due to the ease and non-invasiveness of the collection, it is appealing to use in children. 
Previous studies demonstrated that exhaled VOCs are able to discriminate between asthmatic children and healthy controls (10-13), it was also shown that VOC profiling enabled predicting of asthma exacerbations in children (14, 15). These findings highlight the potential of exhaled VOC analysis as a valuable tool for understanding and managing asthma in pediatric patients.
In this study, we hypothesized that exhaled VOCs could be a surrogate marker for disease control in pediatric asthmatic patients. The primary aim of the study was to identify VOCs that enable the distinction between uncontrolled and controlled pediatric asthma patients defined by the SysPharmPediA study (discovery phase) (16). The secondary aim was to validate the VOCs identified in the discovery phase in external validation cohorts. 


Methods
Study design
This study was conducted in two phases. The first phase, the discovery phase, involved identifying VOCs that enable asthma control classification in the SysPharmPediA patients. Subsequently, the results obtained from the discovery phase were evaluated in independent validation cohorts, which constituted the second phase, the validation phase. To be enrolled in this study, participants had to meet the following eligibility criteria: they needed to be between 6 and 17 years old and have a confirmed diagnosis of asthma by a physician.
SysPharmPediA is a multicenter, prospective, European study aiming to identify biomarkers for classifying phenotypes of uncontrolled pediatric asthma to develop markers of therapy response in pediatric uncontrolled asthma. The study included 145 asthmatic children and adolescents from four tertiary care centers in Europe (the Netherlands, Germany, Spain, and Slovenia). The study population and design have previously been described in the SysPharmPedia baseline paper (16). 
The validation phase consisted of two independent cohorts, the pediatric U-BIOPRED cohort (17), and the PANDA cohort [REF Yoni’s abstract in ERS]; these cohorts resembled SysPharmPediA regarding study design and population. U-BIOPRED is a multicenter, prospective, observational, European Union consortium aiming to characterize asthma in children and adults using systems biology approaches, full cohort descriptions for the pediatric study population, and inclusion and exclusion criteria were described in the paper by Fleming et al. (17). PANDA is a multicenter, observational real-life cohort study of children aged 6 to 17 with moderate to severe asthma aiming to identify different phenotypes of severe asthma by using clinical characteristics and non-invasive biomarkers. The detailed description is available in the supplementary material.
All centers obtained approval from the local medical ethics committee, and written informed consents were provided by the parents/caretakers and/or the recruited children themselves. This study was designed and performed in accordance with transparent reporting of a multivariable prediction model for individual prognosis or diagnosis (TRIPOD) recommendations (18).

Participants
All children from three cohorts were classified as having controlled or uncontrolled asthma. Uncontrolled asthma was defined as: 
Having had at least one exacerbation requiring OCS, and/or emergency room visits, and/or hospitalizations in the preceding 12 months and/or  obtaining a score ≤ 19 on the (childhood) Asthma Control Test (ACT/cACT) (19, 20). 

Exhaled breath collection and analysis
Exhaled breath was collected by means of a previously described method (21). In summary, subjects breathed through a two-way non-re-breathing valve for five minutes at tidal volume and an organic compound filter (A2; North Safety, Middelburg, The Netherlands). In the next step, each patient exhaled a single vital capacity volume or if maximum inspiration was not feasible 20-30 tidal breathing into a sampling bag (10-liter Tedlar bag (SKC, Eighty Four, PA, USA) in U-BIOPRED and SysPharmPediA, and 15-liter nalophan bag in PANDA). The VOCs were then trapped on sorbent tubes comprising Tenax (Tenax GR 60/80, Camsco, Houston, Texas, USA) in SysPharmPediA and Panda, Tenax GR SS 6 mm× 177 mm, (Gerstel, Mülheim an der Ruhr, Germany in U-BIOPRED) by pulling the exhaled air through the tube by means of an air sampling pump (Gastec, Kanagawa, Japan) at a flow rate of 250 mL·min−1. Subsequently, Tenax tubes were stored at 4°C until analysis through Thermal-Desorption-Gas-Chromatography-Mass-Spectrometry (TD-GC-MS) in SysPharmPediA and Panda and Thermal-Desorption-Gas-Chromatography-Time of Flight-Mass Spectrometry (TD-GC-ToF-MS) in U-BIOPRED as previously described (22, 23). 
Data processing and statistical analysis
The raw GC-MS spectra were processed using the R package XCMS (24) as previously reported (25) The pre-processing steps included de-noising, peak detection, and alignment, resulting in a final data matrix that contained sample metadata, retention time (rt), and mass-to-charge ratio (m/z). Initially, datasets were normalized by adjusting the average and standard deviation of each individual fragment to have a mean value of zero and a standard deviation of one. Major potential influential factors such as recruitment centres, and date of tubes analysis, were assessed by principal component analysis (PCA) and data visualisation. Silanes and siloxanes, determined as instrument artefacts (26), and compounds associated with Tedlar bags (27) were considered as contaminants and were omitted.
In the discovery phase, an untargeted analysis approach was employed. PCA analysis was conducted to test for variance in outcomes based on the date of analysis; by utilizing R package sva (function: combat), this effect was corrected (28). Afterward, the data were split into training and test sets, with each set comprising 50% of the data. In order to distinct between controlled and uncontrolled pediatric asthma, sparse partial least square discriminant analysis (sPLS-DA) (29) was used to develop a VOC model consisting of the most relevant ion fragments. The prognostic performance of the model was tested by calculation of the area under the receiver operating characteristic curves (AUROCCs) and their corresponding 95% confidence intervals.
Identification of VOCs was performed by comparing the mass spectra with data from the National Institute of Standards and Technology (NIST) library (version 2.3). The analysis was carried out using the R Studio (version 2022.02.3+492) with R software (version 4.2.1), with the help of the following R packages: XCMS, pROC, caret, mixomics and sva. 
The identification and matching of VOCs of interest during the discovery phase in the U-BIOPRED and PANDA cohorts was accomplished using the Automated Mass Spectral Deconvolution and Identification System (AMDIS) (version 2.73). The three highest mass intensities and molecular weight of targeted VOCs were selected and subsequently compared and matched to the references using NIST library to identify corresponding retention times in independent cohorts. VOCs (table 2) were extracted and the resulting peak intensities were subjected to sPLS-DA to distinct between controlled and uncontrolled pediatric asthmatics.

Results
Patient characteristics
A flowchart on patient enrolment in each phase is depicted in Figure 1. In summary, 100 patients from the SysPharmPediA cohort were included in the discovery phase. The validation phase consisted of 98 participants, including 49 from U-BIOPRED and 49 from PANDA. Patients’ characteristics are summarized in Table 1. 
[image: ]
Figure 1. Flowchart of the patients enrolled in the study
Table 1. Demographic data and baseline characteristics of the study population
	
	SysPharmPediA
	U-BIOPRED
	PANDA

	
	Uncontrolled Asthmatics 
(N = 65)
	Controlled Asthmatics 
(N = 35)
	Uncontrolled Asthmatics 
(N = 38)
	Controlled Asthmatics 
(N = 11)
	Uncontrolled Asthmatics 
(N = 38)
	Controlled Asthmatics 
(N = 11)

	Age in years

	  
	  
	
	
	
	

	   median (IQR)
	11.2 (9.7, 13.4)
	12.9 (10.9, 14.2)
	13.0 (10.0, 14.0)
	12.0 (9.0, 15.5)
	11.0 (9.2, 13.0)
	13 (10.0, 15.0)

	   min
	6.0
	7.2
	6.0
	6.0
	6.0
	7.0

	   max
	17.0
	17.4
	16.0
	17.0
	17.0
	17.0

	Gender


	  
	  
	  
	  
	  
	  

	   Male
	39 (60.0%)
	22 (62.9%)
	27 (71.1%)
	6 (54.5%)
	26 (68.4%)
	6 (54.5%)

	   Female
	26 (40.0%)
	13 (37.1%)
	11 (28.9%)
	5 (45.5%)
	12 (31.6%)
	5 (45.5%)

	Population group
  
	  
	
	  
	  
	  

	   Caucasian
	41 (63.1%)
	32 (91.4%)
	0 (0.0%)
	0 (0.0%)
	15/37 (40.5%)
	6/10 (60.0%)

	   Non-caucasian
	24 (36.9%)
	3 (8.6%)
	10 (26.3%)
	3 (27.3%)
	22/37 (59.5%)
	4/10 (40.0%)

	Country of inclusion
  
	  
	
	
	
	

	   Netherlands
	22 (33.8%)
	7 (20.0%)
	16 (42.1%)
	7 (63.6%)
	38 (100.0%)
	11 (100.0%)

	   Slovenia
	10 (15.4%)
	13 (37.1%)
	-
	-
	-
	-

	   Spain
	33 (50.8%)
	15 (42.9%)
	-
	-
	-
	-

	   United Kingdom
	-
	-
	22 (57.9%)
	4 (36.4%)
	-
	-

	(Childhood) Asthma control test, median (IQR)
	  
	
	
	
	

	   
	n=63; 
21 (18.0, 23.0)
	n=34; 
25.0 (23.2, 25.0)
	15.5 (11.0, 18.0)
	21.0 (20.0, 23.0)
	16.5 (14.2, 21.0)
	22 (21.0, 23.0)

	Allergy characteristics
  
	  
	
	
	
	

	   Allergic rhinitis
	49/62 (79.0%)
	26/33 (78.8%)
	25 (65.8%)
	9 (81.8%)
	21 (55.3%)
	7 (63.6%)

	   Atopy
	56/61 (91.8%)
	29/34 (85.3%)
	31 (81.6%)
	10 (90.9%)
	17 (44.7%)
	7 (63.6%)

	   Eosinophil %
	n=61;
 6.2 (3.1, 9.0)
	n=33;
 5.6 (3.0, 7.5)
	-
	-
	n=30; 
3.4 (1.0, 7.0)
	n=8; 
4.5 (2.1, 6.8)

	Current asthma medication
  
	  
	
	
	
	

	   ICS
	65 (100.0%)
	35 (100.0%)
	38 (100.0 %)
	11 (100.0 %)
	37 (97.4%)
	11 (100.0%)

	   SABA
	60/63 (95.2%)
	29/34 (85.3%)
	38 (100.0%)
	11 (100.0%)
	37/37 (100.0%)
	11 (100.0%)

	   LABA
	61/64 (95.3%)
	32/34 (94.1%)
	34 (89.5%)
	9 (81.8%)
	29 (76.3%)
	10 (90.9%)

	   OCS (maintenance)
	2 (3.1%)
	0 (0)
	2 (0.0%)
	2 (18.2%)
	2 (5.3%)
	0 (0.0%)

	   LTRA
	15/60 (25.0%)
	4/28 (14.3%)
	26 (68.4%)
	3 (27.3%)
	9 (23.7%)
	2 (18.2%)

	   Biologics
	5/60 (8.3%)
	1/34 (2.9%)
	3 (7.9%)
	1 (9.1%)
	7 (18.4%)
	2 (18.2%)

	Spirometry % predicted, median (IQR)
  
	  
	
	
	
	

	   FEV1 pre-bronchodilator
	n=64; 
96.5 (82.8, 104.7)
	n=34; 
96.7 (86.3, 103.8)
	n=34; 
95.9 (82.8, 109.3)
	
92.4 (84.8, 95.6)
	n=32; 
92.5 (78.9, 107.9)
	n=10; 
100.0 (88.2, 107.8)

	   FEV1 post- bronchodilator
	n=63;
 102.3 (95.2, 110.8)
	n=34;
 99.4 (89.6, 109.2)
	104.7 (93.2, 116.4)
	96.6 (84.8, 103.3)
	n=31; 
103.0 (91.2, 113.5)
	n=10; 
100.0 (90.8, 111.8)



VOC prediction model
A total of 100 individual breath samples were collected in SysPharmPediA. This resulted in 2845 ion fragments, following the removal of fragments originating from contaminants, a total number of 2223 ion fragments remained. sPLS-DA analysis selected 5 ion fragments related to three VOCs that discriminated uncontrolled and controlled asthmatics within the discovery phase. sPLS-DA models resulted in an AUROCC of 0.83 (95% CI 0.65-1.00) for the training set, an AUROCC of 0.77 (95% CI 0.58-0.96) was obtained with an accuracy of 0.88, a sensitivity of 0.90, and a specificity of 0.82 for the test set. (table 2, figure 2)
[image: ]
Figure 2. Receiver operating characteristic (ROC) curves for asthma control classification in the discovery phase, training set on the left side, and test set on the right side. AUC=area under the curve

Identification of compounds
Using the NIST library, the VOCs included in the sPLS-DA models were identified as acetophenone, ethylbenzene and styrene. 



Table 2. Gas chromatography-mass spectrometry features based on sPLS-DA model in the discovery phase
	Compound name*
	Fragment retention time (s)

	Acetophenone 
	963

	Ethylbenzene
	685, 686

	Styrene
	732


* Most probable compound based on National Institute of Standards and Technology library matching

Model performance in validation 
In the U-BIOPRED cohort, sPLS-DA based modeling using these three VOCs resulted in AUROCC of (0.70 95% CI 0.51-0.89) – (accuracy=0.75, sensitivity=0.64, specificity=0.79 ). Two VOCs of interest were identified in the PANDA cohort, styrene and ethylbenzene, and sPLS-DA modeling resulted in AUROCC of (0.67 95% CI 0.53-0.82) (accuracy=0.65, sensitivity=0.9,  specificity=0.58) (figure 3) 
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Figure 3. Receiver operating characteristic (ROC) curves for asthma control classification in the validation phase, U-BIOPRED on the left side and PANDA on the right side. AUC=area under the curve.

Discussion
In the present study, we analyzed exhaled breath of asthmatic children within the SysPharmPedia cohort to identify VOCs that can effectively differentiate between controlled and uncontrolled asthma. Through the initial discovery study, we were able to identify three relevant VOCs. Subsequently, these VOCs underwent validation in two independent cohorts, presenting promising prospects for improved asthma management and personalized treatment approaches. The discriminative VOCs were identified as acetophenone, ethylbenzene and styrene. 
In recent years, there has been a growing recognition and evidence regarding the diagnostic, phenotypic, and monitoring capabilities of exhaled VOCs in asthma (12, 30-32). Only a small number of studies have explored the application of exhaled VOCs in pediatric asthma, with the majority of research focused on diagnosis (11, 12, 31). Robroeks et al. (15) predicted exacerbations in 16 children in a 1-year follow-up study with a model including six VOCs. van Vliet et al. predicted exacerbations occurring within 14 days after sampling in 94 children using seven VOCs (14). While both studies indicate hydrocarbons as predictive VOCs for asthma exacerbations, there is a discrepancy in the specific compounds identified.
The VOCs identified in our study overlap with findings from previous research, such as the presence of ethylbenzene, which has been linked to respiratory tract infections (33, 34), which was also detected in exhaled breath samples of children with asthma (3, 11). Moreover, styrene was identified in breath samples of asthmatic children (10, 35, 36), exhibited discriminative capabilities with four other VOCs between lung cancer patients and healthy controls (37) and was present in cells infected with respiratory syncytial virus (RSV). Likewise, acetophenone was detected in breath samples obtained from asthmatic children (10, 36); when combined with other VOCs, it demonstrated the potential to effectively distinguish between preschool children with and without recurrent wheezing (3).  Furthermore, exhaled acetophenone has been associated with lung cancer and malignant pleural mesothelioma (38, 39). Elevated levels of acetophenone have also been observed in the headspace of lung cancer cells (40).
Enhanced production of reactive oxygen species (ROS) is frequently associated with increased oxidative stress (41), which plays a crucial role in airway inflammation (42). These changes may potentially alter production of VOCs detected in human breath (43). Moreover, altered VOC catabolism induced by conditions like asthma might contribute to fluctuations of VOC concentrations within the body, ultimately influencing their concentration in exhaled air (44). Furthermore, it is worth noting that acetophenone and styrene serve as intermediaries in the metabolic pathway of ethylbenzene degradation. The composition and metabolic capacity of the microbiota also influence VOCs in the body (45, 46). To exemplify, changes in ethylbenzene and styrene degradation by anaerobic bacteria, such as Veillonella (47), a marker of controlled status in SysPharmPediA population (48), may have influenced the VOCs found in this study (KEGG 00642 and  00643)(49) .  Consequently, these factors collectively contribute to the complexity of observed changes in VOC levels in exhaled breath. It is important to note that further research is needed to fully elucidate these intricate relationships.
Strengths 
This study possesses several strengths; one notable strength is its European scope, encompassing the SysPharmPediA and U-BIOPRED cohorts from in total four different countries. By including patients from multiple countries, the study's findings can be more easily generalized. This broader inclusion is particularly relevant when analyzing breath-related factors, which can be influenced by environmental conditions (50). Despite the inherent challenges associated with a multicenter and cross-border study, the researchers implemented robust measures to mitigate potential variations within the data. The study utilized well-documented standardized operating procedures and a rigorously validated method for collecting breath samples, guaranteeing uniform and dependable data across the various study sites. Additionally, the study took an important step to enhance the scientific rigor by externally validating the results in independent cohorts. Finally, we followed the latest recommendations for metabolomics and TRIPOD guidelines to ensure standardized methodologies, increased data quality, transparency and clarity in our study (18, 51, 52).
Limitations
Nevertheless, several limitations should also be noted. Given the observational nature of this study, there is uncertainty as it concerns hydration and nutrition among participants. However, strict standard sampling procedures and protocols were implemented to mitigate the influence of daily diet on breath VOC profiles. The fact that the results were validated further reassures that this did not influence the results, which is promising for future clinical implementation
Consistent with expectations, the validation phase demonstrated lower AUROCCs compared to the discovery.  This can be attributed to the limitations inherent in the validation process. In the discovery study, the statistical model was constructed by considering all the compounds identified in the breath of asthma patients to effectively distinguish between controlled and uncontrolled patients. This inclusive approach resulted in higher AUROCC values, as the SPLSDA algorithm employs a partial least squares method that allows it to explore the entire set of compounds and capture complex relationships that contribute to patient stratification (53). However, during the external validation, the model was constrained to only consider the predetermined compounds, which meant that the model was not able to learn as effectively, which naturally led to a decrease in AUROCCs. Additionally, it is noteworthy that this study employed a different analytical platform in the U-BIOPED cohort (GC-ToF-MS). Furthermore, a distinct method of breath collection was utilized in the PANDA cohort; this particular methodology could potentially account for the observed inability to detect acetophenone. These differences introduce additional complexities and potential variations that could influence the results. However, when subjected to external validations, the model demonstrated moderate to good AUROCCs, approximately around 70%. The overall average performance showed a commendable level of accuracy (0.70), along with a sensitivity of 0.77 and specificity of 0.68. The model's consistent and dependable aptitude in discriminating between controlled and uncontrolled patients further solidified its proficiency. Such proficiency holds the potential to enhance prognostic accuracy and aid in informed clinical decision-making, thereby contributing to improved patient care and outcomes.
Clinical implications
Early and accurate identification of uncontrolled asthma plays a critical role in ensuring timely intervention and effective management. This proactive approach gives the opportunity to adjust treatment and thereby not only reduces the burden of symptoms and the risk of exacerbations but also improves overall outcomes and potentially prevents long-term complications associated with uncontrolled asthma. Encouragingly, these findings not only contribute to scientific knowledge but also hold tangible implications for clinical translation and could pave the way for developing exhaled metabolites-based monitoring strategies. The non-invasive nature of VOC data collection offers a convenient and comfortable experience for pediatric patients. Such methods can seamlessly integrate with (bedside) clinical practices and enabling real-time analysis and improved clinical decision-making. 
Future
Further research is warranted to investigate the nature of VOCs and explore their integration and potential correlations with various omics layers. Such research endeavors would facilitate unraveling the complex interplay between VOCs and the various molecular components and pathways involved in biological systems. 
Conclusion
Our data suggest that exhaled VOCs could be used for asthma control classification in children and substantiate further development of exhaled metabolites-based point-of-care tests in asthma.
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