

1 Experimental Investigation of the Effect of Rake on a Bluff
2 Body Equipped with a Diffuser

3 Paweł Kekus-Kumor^{1,2} and David Angland²

4 ¹Department of Aerodynamics, Lukasiewicz Research Network — Institute of Aviation, al. Krakowska
5 110/114, Warsaw, 02-256, Poland

6 ²Faculty of Engineering and Physical Sciences, University of Southampton, Burgess Road, Southampton,
7 SO16 7QF, United Kingdom

8 **Abstract**

9 This article presents the results of an experimental investigation into the impact of rake,
10 or inclination of the underfloor, on the aerodynamics of a bluff body equipped with an underbody diffuser. An extensive wind tunnel campaign, utilising a remotely-actuated model
11 for faster data acquisition, showed that introducing rake results in a downforce increase at
12 all ride heights and diffuser angles, with the strongest effect occurring at low ride heights.
13 Surface pressure measurements on the underbody revealed this to be caused by three main
14 effects. First, a large increase in loading at the front of the floor, due to the inclination of
15 the floor with rake angle and subsequently an increase in the pressure pumping effect. Sec-
16 ond, a reduction in the suction peak at the throat of the diffuser, which leads to reduced
17 pressure recovery in the diffuser, and less likely separation at high diffuser angles or low ride
18 heights. Third, stronger streamwise vortices along the edges of the underfloor and diffuser,
19 which generate downforce directly due to their low-pressure cores, but also introduce upwash
20 under the model, further inhibiting separation in the diffuser. As the related drag penalty is
21 minimal, aerodynamic efficiency is also improved with increasing rake angle.
22

23 **Keywords:** diffuser, wind tunnel, ground effect, vortices, automotive

25 **1 Introduction**

26 Diffusers, in an automotive context are passive devices located at the rear of a car's underfloor,
27 commonly used in racing cars for generating downforce, and hence improving on-track performance
28 [1, 2]. A simple schematic of an underbody diffuser is presented in Fig. 1. Since diffusers first
29 appeared, a number of academic studies looked into the mechanisms of downforce generation using
30 a flat underfloor equipped with a diffuser, and into how the performance is influenced by various
31 parameters, including ride height, i.e. the separation between the ground and the body, and
32 diffuser angle. It was established through wind tunnel testing that a diffuser-equipped, flat-roofed
33 Ahmed body [3] in ground effect generates downforce through three inter-related mechanisms, two
34 of which are illustrated in Fig. 1 [4]:

- 35 • Surface upsweep, which effectively cambers the body, resulting in a downward force.
- 36 • Ground interaction, where the flow underneath the body is accelerated due to the ground con-
37 straint and its static pressure decreases. The magnitude of the pressure reduction increases
38 with decreasing ground separation, up until a critical ride height, where viscous forces become
39 dominant and the effect is reversed.
- 40 • Diffuser pressure pumping, where the increasing cross-sectional area results in decreasing
41 flow velocity and increasing static pressure. In the case of a bluff body or a car with a fixed
42 base pressure at the diffuser exit, the pressure recovery manifests itself as a suction peak
43 at the diffuser inlet, which propagates upstream, towards the front of the body [4–9]. This
44 phenomenon is illustrated in Fig. 2.

45 A key milestone in the understanding of ground effect diffuser flows was the discovery, aided by
46 flow visualisation, of counter-rotating vortices near the side edges of the diffuser [11]. It was shown
47 that these vortices, shown in Fig. 3, not only help to prevent or delay flow separation at the sharp
48 diffuser inlet edge [7, 9, 11–14], but also directly contribute to downforce generation by inducing
49 low-pressure regions on the sides of the diffuser surface [6, 9, 10, 12]. The vortices were also shown
50 to grow in size while moving inboard and towards the diffuser ramp as they propagate downstream
51 through the diffuser channel, and in some cases to detach from the diffuser surface [8, 14–16].

52 1.1 The Impact of Ride Height and Diffuser Angle

53 Further experiments and CFD simulations confirmed that the effect of reducing the ride height
54 of a diffuser-equipped bluff body in ground effect is an increase in downforce at a growing rate
55 [4, 6–10, 15, 17–19]. This is mainly the result of increased pressure recovery, which results in a
56 stronger suction peak at the diffuser inlet, and stronger vortices [6–10, 12, 18]. However, Cooper
57 et al. and Jowsey and Passmore [4, 18] also observed a sharp change in the streamwise pressure
58 recovery rate in the vicinity of the leading edge of the underfloor. At high ground separations, the
59 pressure recovery rate changed suddenly due to a separation bubble. As ride height was reduced,
60 the favourable pressure gradient under the nose increased, diminishing the localised separation.
61 This resulted in more gradual pressure recovery in that area, and therefore reduced pressure under
62 the front half of the underfloor and increased net downforce.

63 As ride height is reduced further, the increasing adverse pressure gradient in the diffuser causes
64 the flow to separate. However, the counter-rotating vortices prevent separation near the sides of the
65 diffuser, and help to reattach the separated flow in the centre of the diffuser further downstream,
66 resulting in a localised separation bubble. Simultaneously, an onset of vortex breakdown occurs,
67 characterised by increased vortex size, and substantially reduced axial and cross-flow velocities
68 and vorticity [10]. These changes cause a reduction of the downforce enhancement rate, or a small
69 decrease in downforce, jointly referred to as the downforce plateau [6–10, 15, 18].

70 At even lower ride heights, downforce continues to increase despite the presence of the separation
71 bubble, which gradually moves towards the diffuser inlet. At the critical ride height, the separation
72 bubble is swept to one side, causing asymmetric vortex breakdown and flow separation at the
73 inlet over a substantial part of the diffuser width, resulting in a large recirculation region and a
74 significant loss of downforce [6–10, 12, 15]. Ehirim et al. [8, 9, 16] also observed that the direction of
75 the asymmetric stall depends on the relative strength of the vortices prior to breakdown, with the
76 stronger vortex surviving the subsequent stall. Furthermore, Ruhrmann and Zhang, Zhang et al.
77 and Ehirim [7, 10, 20] observed that the process of downforce loss is subject to significant hysteresis
78 at diffuser angles of 15° and above, as the vortices re-form and reattach the flow at higher ride
79 heights than when they break down.

80 Curves of downforce coefficient with respect to non-dimensional ride height, obtained exper-
81 imentally by Howell, Cooper et al., and Ruhrmann and Zhang [4, 7, 21] and computationally by
82 Knight et al. [19], also show that, as the diffuser angle is increased, the initial downforce reduction
83 occurs at progressively higher ride heights. Importantly, ride height and diffuser angle jointly de-
84 termine the diffuser area ratio, which is defined as the ratio of cross-sectional areas of the outlet and
85 the inlet of the diffuser. This non-dimensional parameter directly controls the pressure recovery,
86 and hence the adverse pressure gradient in the diffuser. Therefore, as the diffuser angle is increased,
87 so is the area ratio and the resulting adverse pressure gradient, causing flow separation at a higher
88 ride height [7, 15]. At diffuser angles below 10°, the adverse pressure gradient is small enough that
89 the separation bubble does not form, and downforce keeps increasing until the asymmetric stall.

90 1.2 The Impact of Rake

91 Rake, defined as the angle between the underfloor and the ground, is commonly used in race
92 cars, yet the published body of knowledge regarding the impact of rake on diffuser performance is
93 limited. The majority of existing studies on rake examined its effect by pitching the entire model,
94 rather than just the underfloor. Although this method is analogous to raking an entire race car by
95 modifying suspension geometry, it potentially obscures the changes in aerodynamic performance
96 of the bottom of the model by also inclining the top surface. In the current study, the effect of

97 inclining the whole body is removed as only the underfloor is inclined, allowing this effect of be
98 isolated.

99 George [11] found that the relationship between downforce and rake angle is approximately
100 linear for angles between $\pm 30^\circ$, for a body in the freestream with a 20° diffuser and no end plates.
101 Furthermore, significant changes in the flow behaviour were reported, including the formation of
102 counter-rotating vortices along the entire length of the body at rake angles of 10° and above.
103 However, the high rake angles used in that study are not applicable to racing cars, and no results
104 were presented at rake angles lower than 5° .

105 Cooper et al. [4] varied the ride height of the model at rake angles of 1.60° and 2.75° , and
106 found that the increase in downforce coefficient due to a 1.60° rake grew from 0.1 at a high ground
107 separation to 0.4 near the critical ride height, suggesting that ground effect significantly amplifies
108 the effect of rake. However, the effect of increasing rake to 2.75° was much weaker. Furthermore,
109 the downforce loss phenomenon at low ride heights was eliminated at both rake angles, suggesting
110 that the benefits of rake are two-fold—not only does it generate additional downforce, but it also
111 broadens the diffuser's performance envelope. However, the causes behind this trend were not
112 discussed.

113 The only previous investigation into the impact of inclining the underfloor while keeping the
114 roof parallel to the ground was presented by Kekus and Angland [22], in a work that investigated
115 hardware-in-the-loop optimisation. The authors of that study used a model with actuated ride
116 height, rake angle and diffuser angle to generate performance maps with respect to those three
117 degrees of freedom. However, the study was carried out with a static ground, an atypical model
118 geometry, and a relatively low Reynolds number (0.66×10^6), making comparisons with other
119 studies difficult.

120 A shortcoming of existing studies on rake is the lack of data on performance trends and flow
121 pattern variations when the underfloor is raked in isolation, with the rest of the model parallel to
122 the ground, in order to separate the effects of inclining the different surfaces. In this paper, we
123 present the results from a comprehensive wind tunnel campaign, with more than 3500 test points,
124 where we investigated the effect of varying the ride height, rake and diffuser angles of a flat-roofed
125 Ahmed body suspended above a moving ground. Static pressure on the underside of the body
126 was measured at every data point, with the aim of interpreting the force data and quantifying
127 the role of the vortices in the downforce generation. The paper begins with a description of the
128 experimental methodology. The baseline, zero rake results are presented next, and the trends in
129 downforce, aerodynamic efficiency and centre of pressure are discussed for various diffuser angles,
130 in order to establish regimes of diffuser angles where the behaviour is similar. Then, the effect of
131 rake is discussed relative to the zero-rake baseline for three different diffuser angle regimes.

132 2 Methodology

133 2.1 Wind Tunnel Facility

134 The experiments were performed in a closed-circuit, low-speed wind tunnel at the University of
135 Southampton, the same facility where a number of previous diffuser studies took place [6, 7, 10, 11,
136 15]. The test section has a 2.15 m by 1.57 m cross-section with chamfered corners and a length of
137 4.4 m, and is equipped with a moving ground. The moving ground was run at a speed equal to
138 the freestream velocity during all tests, to ensure correct boundary conditions under the model.
139 This had been shown to be essential, as an additional boundary layer on the ground surface
140 has a significant impact on quantitative diffuser performance [4–7, 11, 12, 20, 21]. The freestream
141 and moving ground velocities were controlled with a precision of ± 0.05 m/s, and the freestream
142 turbulence level was 0.2% [6]. A more detailed description of the wind tunnel and the moving
143 ground assembly was presented by Burgin et al. [23].

144 2.2 Model Design and Setup

145 In order to facilitate rapid data acquisition, linear actuators were incorporated into the design of
146 the model, permitting on-the-fly adjustments not only of the ride height, but also of the rake and
147 diffuser angles, without the need to stop the wind tunnel to manually adjust or replace components.

148 This solution allowed data collection for up to 1400 configurations per day, resulting in greatly
149 increased resolution compared to a conventional system. In order to maintain shape accuracy
150 under aerodynamic loading, the model and its supporting structure were designed for stiffness,
151 with high-strength materials and precise mechanical actuators.

152 The model, shown mounted in the wind tunnel in fig. 4, was a cuboid with a width of $W =$
153 400 mm, a height of $H = 310$ mm, a length of $L_M = 800$ mm, and a 64 mm radius on all four sides
154 of the nose, as shown in fig. 5. These dimensions have similar ratios to the models used by Cooper
155 et al., Breslauer and George, and Desai et al. [4, 13, 17], and are identical to the model of Jowsey
156 and Passmore [18]. The frontal areas of the model ($S = 0.124 \text{ m}^2$) and the supporting structure
157 and struts ($\sim 0.043 \text{ m}^2$) resulted in a total blockage ratio of $\sim 5.1\%$. In order to avoid end plates
158 along the entire length of the underfloor at a positive rake angle, the diffuser end plates themselves
159 had to incline together with the underfloor. To achieve this, a double-sidewall system was used.
160 The main pair of sidewalls, tapered towards the rear of the model, was mounted directly to the
161 roof and nose of the model. The angle of the taper was such that the plane of the underfloor would
162 be below the bottom edge of the sidewalls even at the maximum rake angle. An additional pair
163 of sidewalls was mounted directly to the underfloor, and filled the gap between the underfloor and
164 the main sidewalls, as well as constituted end plates for the diffuser. The two sets of sidewalls,
165 machined out of transparent acrylic, are clearly visible in fig. 5b.

166 The model was suspended from a supporting frame by four Actuonix L16-P-63 linear actuators,
167 which were used to control the ride height, h_1 , defined as the height of the lowest point of the
168 model above the ground. The attainable range of ride heights was between 10 mm and 90 mm
169 above the moving ground, or between $h_1/H = 0.032$ and 0.290 in non-dimensional form; lower ride
170 heights were not used to avoid the model touching the moving ground as it was actuated. h_2 and
171 h_3 in fig. 5a denote the heights above the ground of the diffuser inlet and outlet respectively. The
172 supporting frame was mounted to a force transducer, which was attached to wind tunnel struts.
173 An additional steel plate was mounted between the force transducer and the struts, which was
174 used to anchor the structure to wind tunnel walls, reducing vibrations of the model and allowing
175 precise adjustments of its yaw angle.

176 The bottom of the model was comprised of two carbon fibre plates. The 536 mm-long underfloor
177 was hinged to the nose, and its angle relative to the ground was modified by an Actuonix L16-P-
178 150 linear actuator, mounted between the underfloor and the roof of the model. The 200 mm-long
179 diffuser plate was hinged to the underfloor, their relative angle controlled by an identical actuator,
180 mounted between the two plates. The underfloor was hinged directly to the nose. The maximum
181 rake angle of $\gamma = 5^\circ$ was chosen to cover the range typically used in race cars, and the maximum
182 diffuser angle of $\theta = 40^\circ$ was constrained by the model's roof. Although diffusers were previously
183 examined at angles only up to 30° , the addition of rake was expected to broaden the performance
184 envelope of the diffuser, so data was collected for the entire 40° range.

185 The model had an open tail cavity, i.e. there was no surface connecting the trailing edge of the
186 diffuser plate and the trailing edge of the roof, as seen in fig. 5. This configuration was required
187 to modify the rake and diffuser angles automatically in real-time, and therefore to enable such
188 a large parameter sweep, but is inconsistent with the models used by past investigators, which
189 utilised variable-length diffuser plates that extended to the same streamwise position as the roof,
190 and were joined to the roof with vertical plates. A quantitative comparison between configurations
191 with an open and closed tail cavity was carried out by Kekus [24], and the results showed minor
192 variations of the surface pressure coefficient at the diffuser outlet, but with negligible impact on
193 the performance and flow features observed under the model. Therefore, the results of this study
194 may be compared directly to those using closed-tail models, and the trends of the baseline case
195 without rake are comparable with existing studies.

196 The model was installed with the roof parallel to the ground and the sidewalls parallel to the
197 wind tunnel walls, with uncertainties on pitch, roll and yaw angles of $\pm 0.2^\circ$, $\pm 0.3^\circ$ and $\pm 0.2^\circ$
198 respectively. The uncertainties of ride height, rake and diffuser angles were $\pm 0.7 \text{ mm}$, $\pm 0.1^\circ$ and
199 $\pm 0.9^\circ$ respectively, which includes their deflections due to aerodynamic loading.

200 **2.3 Force and Surface Pressure Measurements**

201 Forces and moments exerted on the model were measured using an ATI Delta 6-component trans-
202 ducer. The directions of positive drag force, side force and downforce are along the x , y and z axes
203 respectively, whereas the directions of the rolling, pitching and yawing moments are around those
204 respective axes according to the right-hand rule, and their origin is at the centre of the frontal
205 plane of the nose, which is also the origin of the coordinate system. The axes and the location of
206 the origin are specified in figure 5a.

207 The underfloor and diffuser plates were pressure-tapped along the centreline of the model in
208 the streamwise direction. In addition, there were two spanwise series of taps, 100 mm upstream
209 and downstream of the diffuser inlet. Metallic tubes embedded in the plates were connected to two
210 64-channel Scanivalve ZOC33 differential pressure scanners with a ± 2500 Pa sensing range and an
211 accuracy of 0.15% of the full-scale. The reference pressure channels were connected to the static
212 pressure channel of a pitot-static tube in the freestream. Both pressure scanners were calibrated
213 at two temperatures, across the entire sensing range, to within ± 5 Pa, which is assumed to be the
214 uncertainty of the pressure measurements.

215 **2.4 Testing Procedure and Data Processing**

216 All tests were carried out at a freestream velocity of 20 m/s, which corresponds to a length-based
217 Reynolds number of $Re = 1.1 \times 10^6$, and was restricted by the mechanical limitations of the
218 actuators and the sensing range of the pressure scanners. Previous studies using similar geometries
219 were performed at $Re = 0.83 \times 10^6$ [4] and 2.2×10^6 [18], and most other diffuser studies used
220 values between $Re = 1.8 \times 10^6$ and 2.7×10^6 [6–9, 15, 16]. In order to reduce potential sensitivity to
221 Reynolds number, transition on the underside of the body was fixed with a 0.35 mm-diameter wire,
222 fixed to the underfloor 16 mm downstream of the leading edge of the underfloor ($x/L_M = 0.1$).

223 Sweeps of ride height were performed for several values of rake and diffuser angles, which were
224 known to be configurations of interest thanks to initial low-fidelity sampling and previously pub-
225 lished results. Likewise, sweeps of rake and diffuser angles were performed for several values of
226 the remaining degrees of freedom. Each sweep was carried out in both directions, i.e. gradually
227 decreasing and increasing ride height, or gradually increasing and decreasing the rake and dif-
228 fuser angles, in order to establish the extent of hysteresis in the system. Full force and pressure
229 measurements were taken at every data point.

230 A datum configuration was tested at the beginning and at the end of each sweep, to track
231 long-term repeatability of the force and moment measurements. The datum was defined as the
232 maximum ride height ($h_1 = 90$ mm) and zero rake and diffuser angles, as this configuration is not
233 susceptible to hysteresis with respect to any of the three degrees of freedom.

234 Wind-off tare measurements with the model installed were taken at a set of ride heights and
235 rake and diffuser angles, in order to take into account the shifting centre of mass of the model.
236 The data was then interpolated and subtracted from each wind-on measurement. Next, this
237 procedure was repeated with the model removed, to establish the aerodynamic loads generated
238 by the supporting frame, for the entire range of ride height actuator extensions. Both total and
239 frame-only aerodynamic loads were then divided by freestream dynamic pressure q_∞ , taken from
240 a pitot-static tube at the time of each measurement, obtaining $C_F S$ and $C_M S L_M$ forms, where
241 C_F and C_M are force and moment coefficients respectively. The frame-only loads were then
242 subtracted from the total loads, and finally divided by $S = 0.124 \text{ m}^2$ and $SL_M = 0.0992 \text{ m}^3$,
243 to obtain aerodynamic force and moment coefficients of the model respectively. The direction
244 of the coefficient of downforce, denoted as C_L , is towards the ground, following an established
245 convention [7, 10, 15, 17, 25].

246 Pressure readings were calibrated using the temperature taken at the time of each measurement,
247 interpolating between the obtained calibration curves, and subsequently non-dimensionalised by
248 q_∞ . Ride height h_1 was non-dimensionalised by model height H , following the convention applied
249 to similar geometries by Cooper et al. and Jowsey and Passmore [4, 18, 26]. However, h_1/d , where
250 d is model half-width, is indicated on a secondary axis where possible, to enable a more convenient
251 comparison with other studies [6–10, 15, 20].

252 3 Results and Discussion

253 A single sweep of ride height consisted of reducing the ride height from the maximum of $h_1/H =$
254 0.290 down to 0.032 (indicated by solid lines), and increasing it back up to 0.290 (indicated by
255 dashed lines). For the rake and diffuser sweeps, the respective angles were increased from 0° to
256 their maximums (solid lines), and then reduced back to 0° (dashed lines).

257 Although the ride height sweeps at zero rake are similar to those presented in previous publications
258 [4, 18], they are discussed below in order to form a baseline for the discussion of the impact
259 of rake on the flow features and performance of a diffuser. Also, the on-surface pressure measure-
260 ments allow some phenomena to be explained in more detail. The changes relative to this baseline
261 introduced with rake are discussed in the next section.

262 3.1 Behaviour at Zero Rake

263 3.1.1 Downforce

264 Figure 6 shows the measurements of downforce at zero rake as a function of ride height. The
265 general trend is an increase in downforce with increasing diffuser angle and decreasing ride height,
266 as expected. The behaviour of the downforce of different diffuser angles with ride height can be
267 grouped into three distinct regimes. The first regime corresponds to diffuser angles of $\theta = 6.2^\circ$ and
268 11.2° , which both show similar behaviour. As the ride height decreases, the downforce and the rate
269 of downforce increase (dC_L/dh_1) both increase. The gradient dC_L/dh_1 reaches a maximum at a
270 particular ride height. Below this ride height, the downforce continues to increase as the gradient
271 decreases, until it reaches a maximum where $dC_L/dh_1 = 0$. Subsequently, at lower ride heights
272 there is a downforce reduction. The higher diffuser angle produces more downforce at all ride
273 heights up to the ride height corresponding to maximum downforce. This trend and behaviour has
274 been reported for both wings and diffusers in ground effect.

275 The behaviour in the second regime is shown at the diffuser angle of $\theta = 16.3^\circ$. The behaviour
276 shows a distinctive reduction and then a plateau in the downforce centred around a ride height of
277 $h_1/H = 0.17$. This results in this diffuser angle producing less downforce than the lower diffuser
278 angle of 11.2° below a particular ride height, as shown in fig. 6. There is then a small increase in
279 downforce up to the maximum downforce $C_{L_{\max}}$, resulting in a characteristic downforce plateau
280 across this ride height range. This behaviour was not observed at lower diffuser angles.

281 The third distinctive type of behaviour is exhibited by the diffuser angle of $\theta = 24.7^\circ$. This
282 diffuser angle produces significantly less downforce than the lower diffuser angles across the entire
283 ride height map.

284 At zero rake, there is no significant hysteresis with decreasing and increasing ride height. The
285 only exception is the second regime (the diffuser angle of $\theta = 16.3^\circ$, which exhibited the plateau),
286 where some hysteresis is present at the ride height corresponding to $C_{L_{\max}}$. For decreasing ride
287 height, the maximum downforce occurs at a slightly lower ride height than for the case where the
288 ride height was increasing.

289 The behaviour in these three different regimes can be explained by examining the pressure
290 distributions at two different ride heights (figs. 7 and 8). The first ride height (shown in fig. 7) is at
291 a relatively large value of $h_1/H = 0.236$. The streamwise pressure distributions are characterised
292 by two low pressure peaks (fig. 7a). There is a strong suction peak at the underfloor leading edge,
293 caused by the relatively sharp curvature of the nose. The second low pressure peak is at the inlet of
294 the diffuser. The suction peak at the diffuser inlet is a result of the discontinuity in the curvature
295 of the diffuser and the subsequent streamwise expansion and the corresponding pressure increase
296 to the exit pressure behind the model.

297 As ride height is reduced at a fixed diffuser angle, the diffuser area ratio h_3/h_2 is increased,
298 leading to more severe pressure recovery, a stronger suction peak at the inlet (seen at $\theta = 6.2^\circ$ and
299 11.2° in fig. 8a), and increased downforce. It can be seen that the exit pressure at the base of the
300 bluff body is approximately constant for all the diffuser angles except for the highest one, where
301 the diffuser is completely stalled and produces little downforce. Through the action of pressure
302 pumping, this pressure recovery in the diffuser results in additional suction under the majority
303 of the underfloor ($x/L_M < 0.75$), as seen in fig. 8a. This is typical behaviour for a bluff body
304 equipped with a diffuser and has been reported previously (see Section 1). At the highest diffuser

305 angle ($\theta = 24.7^\circ$), there is no peak at the inlet of the diffuser or subsequent pressure recovery,
306 demonstrating the flow is separated at the throat of the diffuser.

307 The spanwise pressure distributions in figs. 7 and 8 can be used to determine the strength
308 and influence of the edge vortices. At the relatively large ride height, $h_1/H = 0.236$ (figs. 7b
309 and 7c), the behaviour is consistent except at the diffuser angle of $\theta = 24.7^\circ$, where the flow is
310 separated in the diffuser as discussed above. Upstream of the diffuser inlet ($x/L_M = 0.625$), there
311 is little evidence of strong suction due to edge vortices. However, flow entrainment around the
312 edges of the underfloor causes locally increased C_p , manifested in the spanwise pressure gradients
313 at $x/L_M = 0.625$, hitherto referred to as suction leakage. At the diffuser angles of $\theta = 11.2^\circ$ and
314 16.3° , traces of vortex-induced suction may be observed at the edges of the underfloor, suggesting
315 weak vortices have already started at this ride height. In the diffuser ($x/L_M = 0.875$), there is
316 clear evidence of counter-rotating vortices that increase in strength and size with increasing diffuser
317 angle, further increasing the total downforce. The role of the vortices in producing downforce and
318 in keeping the flow attached has been discussed in Section 1.

319 Corresponding pressure distributions at a low ride height of $h_1/H = 0.046$ are shown in fig. 8.
320 At this ride height, the diffusers where the flow was attached are all producing less than their
321 maximum downforce, although at values that are close to that maximum. The loading on the
322 floor upstream of the diffuser inlet ($x/L_M < 0.75$) is greater than at the higher ride height, as is
323 the suction peak at the diffuser inlet, except at $\theta = 16.3^\circ$. The net result of this is an increase
324 in downforce relative to the higher ride height of $h_1/H = 0.236$. It will be seen later, in plots of
325 centre of pressure, that this change in loading corresponds to a slight shift forward in the centre
326 of pressure.

327 Flow entrainment around the edges of the underfloor again causes suction leakage at $x/L_M =$
328 0.625. There is evidence of strong vortices for the low diffuser angles of 6.2° , as shown in fig. 8c.
329 At the diffuser angle of 11.2° , asymmetric vortex breakdown occurs. This phenomenon has been
330 previously reported by others, e.g. Zhang et al. [10]. At the higher diffuser angles of 16.3° and
331 24.7° there is complete vortex breakdown at the streamwise location of $x/L_M = 0.875$, with no
332 low pressure associated with vortex cores, resulting in a further loss of downforce, as discussed
333 previously. The 24.7° diffuser was fully separated at all ride heights, with no pressure recovery in
334 the diffuser and flat spanwise pressure profiles.

335 The last trend to explain in the baseline downforce data is the plateau at the diffuser angle of
336 16.3° , which is not seen at the other diffuser angles. A streamwise pressure distribution plot at two
337 ride heights is shown in fig. 9. The first ride height corresponds to the maximum of the plateau
338 at $h_1/H = 0.236$ seen previously. This is compared to the lower ride height of $h_1/H = 0.168$,
339 where downforce has decreased, before it subsequently increases again at even lower ride heights.
340 At the higher ride height, the diffuser produces a large suction peak. As ride height decreases,
341 the pressure distribution shows that there is a significant area of separation in the diffuser at 16.3°
342 due to the increased adverse pressure gradient. This changes the pressure recovery in the diffuser
343 and reduces the suction peak at the throat, reducing the diffuser's performance. This also causes
344 a weakening of the edge vortices (data omitted for brevity, but a similar effect can be seen at an
345 even lower ride height in fig. 8). However, this reduction in the diffuser is offset by an increase in
346 the loading over the front of the underfloor at the lower ride height. The balance between these
347 two competing trends leads to the characteristic plateau in the downforce behaviour at this ride
348 height.

349 3.1.2 Aerodynamic Efficiency

350 The trends in aerodynamic efficiency (the ratio of downforce to drag, L/D) are shown in fig. 10b.
351 Drag increases at a much slower rate than downforce with decreasing ride height (fig. 10a). Therefore,
352 the shape of the efficiency curves is strongly correlated to the downforce curves discussed
353 previously. The general trend is an increase in efficiency as ride height is reduced, until it reaches a
354 peak. At lower ride heights, the efficiency decreases as downforce slows down and then decreases,
355 while drag continues to increase. The highest L/D ratio occurs at the diffuser angle of 11.2° .
356 The maximum efficiency value is approximately 2.5 at the non-dimensional ride height h_1/H of
357 0.1. At this diffuser angle, this maximum of aerodynamic efficiency occurs at a higher ride height
358 than the maximum downforce ($h_1/H = 0.07$). This is due to the rate of drag increase (dC_D/dh_1)

359 continuing to increase at lower ride heights, as shown in fig. 10a. As mentioned previously, the
360 diffuser angle of 16.3° was characterised by a plateau in downforce. For this diffuser angle, the
361 maximum efficiency occurred at a higher ride height, before this plateau occurred.

362 3.1.3 Centre of Pressure

363 The centre of pressure is relatively constant as the ride height decreases, as shown in fig. 11. An
364 exception to this was the high diffuser case at an angle of $\theta = 24.7^\circ$. At this diffuser angle the
365 flow was separated, and the large suction peak at the inlet of the diffuser was not present. This
366 lack of suction towards the rear of the body resulted in a shift of the centre of pressure forward
367 of approximately $x/L_M = 30\%$ compared to the other diffuser angles. At the diffuser angle of
368 $\theta = 6.2^\circ$ there was also a slight forward movement of the centre of pressure (8% difference over
369 the ride height range measured) as ride height was reduced. This was due to the strengthening of
370 the suction peaks at the leading edge of the underfloor and at the inlet of the diffuser, as seen in
371 the streamwise pressure distributions in figs. 7 and 8. The reason for the downforce plateau at the
372 diffuser angle of 16.3° was explained by a loss of downforce at the rear of the floor. The centre of
373 pressure data also shows this effect. At a ride height of h_1/H of 0.24, before the plateau occurs,
374 the centre of pressure is slightly rearward compared to the lower ride heights, where the centre of
375 pressure shifts slightly upstream.

376 3.1.4 Summary

377 The downforce behaviour for the zero rake case can be divided into three distinct regimes. At low
378 diffuser angles there is a an increase in downforce and the rate of downforce increase with decreasing
379 ride height, up to a maximum. As ride height is reduced further, the downforce gradient decreases,
380 until a downforce reduction occurs. At a moderate diffuser angle ($\theta = 16.3^\circ$) there was a plateau
381 region where the downforce peaked and reduced slightly, before increasing again. This was caused
382 by a loss of downforce in the diffuser as ride height decreased. This reduction was compensated
383 by an increase in the loading on the underfloor. Finally, at a high diffuser angle ($\theta = 24.7^\circ$), there
384 was a total loss of downforce due to separation off the diffuser throat.

385 The underfloor only showed very weak vortices at certain diffuser angles and experienced sig-
386 nificant suction leakage towards the edges of the bluff body. Strong vortices were observed in the
387 diffuser. Vortex breakdown occurred at low ride heights, and for the diffuser angle of $\theta = 11.2^\circ$
388 this breakdown was asymmetric in the diffuser. Next, the effect of rake on these behaviours will
389 be investigated and quantified.

390 3.2 Effect of Rake

391 3.2.1 Low Diffuser Angles

392 In this section the diffuser angles of 6.2° and 11.4° are discussed, based on data from sweeps of
393 rake angle. As outlined in the previous section, the behaviour with decreasing ride height was
394 representative of the typical behaviour of wings and diffusers in ground effect, with an increase
395 in downforce and the rate of downforce, up to a maximum rate of downforce. As ride height
396 was reduced further, the rate of downforce decreased, until the maximum downforce occurred.
397 Subsequently, there was a force reduction. The rake sweep data is presented as trends in downforce,
398 L/D and centre of pressure as a function of rake angle. The ride height of $h_1/H = 0.129$ and the
399 diffuser angle of 6.2° were chosen for visualisation, as the behaviour of both diffuser angles was
400 similar, as discussed in Section 3.1.

401 Figure 12 shows the effect of rake angle at the ride height of $h_1/H = 0.129$. This behaviour is
402 similar to one seen across the whole ride height range, i.e. $0.0645 < h_1/H < 0.1935$. The general
403 trend is an increase in downforce from $C_L = 0.360$ at zero rake to $C_L = 0.573$ at a rake angle
404 of 4.8° . There is no hysteresis with rake angle for this diffuser angle. The gradient of the change
405 in downforce with rake angle reduces as the rake angle increases. The L/D ratio also increases
406 significantly with rake angle, from 1.39 at zero rake to 2.12 at the rake angle of 4.8° . The ratio of
407 this increase is almost identical to the increase in downforce over this rake angle range. Therefore,
408 drag remains relatively unchanged with changes in rake angle — only a 5.3% increase takes place

409 when increasing rake from zero to the maximum. Therefore, the L/D ratio is driven almost entirely
410 by the increase in downforce. The centre of pressure has the trend of moving upstream as the rake
411 angle increases. There is a forward shift in the balance of approximately 20% upstream from zero
412 rake to the rake angle of 4.8°.

413 The aerodynamic reasons for these changes can be found by examining the pressure distributions
414 at two different rake angles, at the same diffuser angle and ride height, as shown in fig. 13.

415 Introducing rake into the geometry has three main effects on the pressure distributions. The
416 first is a large increase in the loading at the front of the floor due to the inclination of the floor.
417 This enhances the pressure pumping effect, reducing the pressure on the upstream section of the
418 underfloor. This has a significant effect on the overall load generated, and is also responsible for
419 the upstream shift in centre of pressure with increasing rake angle. The second effect is the reduced
420 pressure recovery in the diffuser, resulting in a significantly weaker suction peak at the diffuser
421 inlet. This reduced pressure recovery demand makes the diffuser less likely to stall at lower ride
422 heights. This tendency becomes clearer at the higher diffuser angles, discussed later, where the
423 diffuser was fully stalled for the zero rake case. The third effect can be observed upstream of the
424 diffuser inlet (fig. 13b), where strong streamwise vortices exist at $\gamma = 4.8^\circ$, whereas no evidence
425 of such vortices was present for the zero rake case. These vortices grow stronger with increasing
426 rake angle. They increase loading towards the edges of the underfloor due to their low pressure
427 cores (vortex-induced suction). They also introduce an upwash, reducing the local angle of attack
428 and helping the flow to remain attached. This is similar to the mechanism proposed by Zhang et
429 al. [10] at zero rake. However, this mechanism is enhanced with the introduction of rake due to
430 the stronger vortices.

431 3.2.2 Moderate Diffuser Angles

432 In this section the results at the diffuser angle of 16.3° are discussed. At this diffuser angle,
433 the downforce versus ride height behaviour with zero rake was characterised by a plateau region.
434 Again, the trends with an increase in rake angle were common across the different ride heights and
435 there was no hysteresis with varying rake angle. The effect of changing rake angle is similar to the
436 low diffuser angle, and is shown in fig. 14. The increase in downforce over the rake angle range is
437 greater than at low diffuser angles (78% increase in downforce compare to 59% for the low diffuser
438 angle of 6.2°), which means that the effect of rake becomes more prominent as the diffuser angle
439 is increased. The pressure distribution data presented in fig. 15 shows that this is due to stronger
440 edge vortices generated along the floor and in the diffuser, amplifying the effect discussed for low
441 diffuser angles.

442 The increase in drag was greater with the higher diffuser angle (10% compared to only 5.3%
443 at the low diffuser angle). However, similar to the low diffuser angle, the increase in downforce
444 dominated, and there was an increase in the L/D ratio of 61% over the rake angle range. This
445 is greater than the 51% increase for the low diffuser angle, because in spite of the larger increase
446 in drag with rake angle for this diffuser angle, the increase in downforce is greater. Similar to the
447 low diffuser angle, the increases in downforce and aerodynamic efficiency are not a linear function
448 of the rake angle, with low rake angles giving a greater increase relative to high rake angles. This
449 can most clearly be seen in the L/D behaviour. While the zero rake results showed the downforce
450 versus ride height behaviour was fundamentally different between the low and medium diffuser
451 cases, the effect of rake on the zero rake behaviour was very similar.

452 The centre of pressure shifted forward by 25%, from $x_{CP}/L_M = 0.53$ to 0.39, over the range of
453 rake angles tested. This is greater than the low diffuser angle case and is caused by the increase
454 in loading at the front of the underfloor, as is shown in the pressure distributions in fig. 15.

455 At this diffuser angle, the three main effects of rake previously seen at low diffuser angles are
456 again present, i.e. the increased loading at the front of the floor, the smaller pressure recovery
457 in the diffuser, and the appearance of edge vortices along the edges of the raked underfloor. The
458 suction peak at the inlet of the diffuser is more pronounced than at the lower diffuser angle, but
459 it is still smaller than in the zero rake case, resulting in a smaller pressure recovery demand in the
460 diffuser and a reduced likelihood of stall at low ride heights. A fourth effect can be seen at this
461 medium diffuser angle, which explains why rake becomes more effective at higher diffuser angles.
462 Both at the underfloor and in the diffuser itself, the vortices that existed at the lower diffuser angle

463 are now much stronger. This has two effects. One is to increase the loading towards the spanwise
464 edges of the body, and the second is to reduce the likelihood of separation in the diffuser at low
465 ride heights due to the upwash the vortices induce. Increasing the rake angle makes these vortices
466 and their effect even stronger.

467 3.2.3 High Diffuser Angles

468 In this section the diffuser angle of 24.7° is discussed. The behaviour with rake is different to what
469 was observed earlier for the low and medium diffuser angles, and is presented in fig. 16. At this
470 diffuser angle there is some hysteresis with respect to rake angle between $\gamma = 0.7^\circ$ and 2.6° . Above
471 and below these rake angles, the hysteresis disappears. Similar to the other diffuser angles, the
472 behaviour with rake does not fundamentally change with ride height and so only one ride height
473 is presented. A low ride height of $h_1/H = 0.065$ was chosen, since the largest effects of rake angle
474 are observed at this ride height. At this diffuser angle the diffuser was completely stalled at zero
475 rake, and the downforce produced was negligible, as discussed previously in Section 3.1.1. Since
476 the baseline at zero rake generates so little downforce, there is a large increase with increasing rake
477 angle (600% over the rake angle range investigated). There is a very large initial increase up to
478 a rake angle of 1.3° , where the diffuser becomes unstalled. As the rake angle is increased further,
479 downforce continues to increase, but at a much lower gradient with respect to the rake angle.
480 Similar to the other diffuser angles, drag increases, but a much smaller rate than downforce, and
481 therefore the L/D ratio also increases with an increase in rake angle. The hysteresis is associated
482 with the critical rake angle where the diffuser becomes unstalled. This occurs between rake angles
483 of 0.7° and 1.3° .

484 The centre of pressure when the diffuser is completely stalled at zero rake is far forward, at
485 $x_{CP}/L_M = 0.2$, as previously discussed in Section 3.1.3. Once the diffuser starts producing a
486 pressure recovery, the centre of pressure moves rearward by 20%, up to $x_{CP}/L_M = 0.4$. Higher
487 rake angles produce a similar effect as for the other diffuser angles discussed, where increasing the
488 rake angle produces more loading at the front of the underfloor, and the centre of pressures moves
489 forward by up to 17%.

490 The mechanism by which rake causes the diffuser to produce a pressure recovery, even though
491 it is completely stalled at zero rake, can be seen by inspecting the pressure distributions in fig. 17.

492 At zero rake, the diffuser is completely stalled and there is no pressure recovery. This results
493 in the low downforce levels at this ride height, as seen in Section 3.1.1. As the rake angle is
494 increased, more loading is produced at the front of the underfloor, as previously identified for the
495 other diffuser angles. Increasing the rake angle above a critical angle also causes the diffuser to
496 become unstalled, as was also seen in the force data in fig. 16. At a rake angle of 4.8° , strong
497 pressure recovery is present in the diffuser. A rake angle of 1.3° was not sufficient to obtain a
498 proper pressure recovery in the diffuser, and the exit pressure was lower due to the lack of this
499 pressure recovery. This weakens the mechanism of pressure pumping under the floor, resulting in
500 less downforce. Once the rake angle is high enough to cause a pressure recovery in the diffuser,
501 there is a large increase in downforce, as seen in the force data.

502 The area of hysteresis identified in the force measurements was due to this transition between
503 the diffuser being stalled and being able to generate a pressure recovery. The vortices generated on
504 the underfloor when introducing rake, and the upwash they produce, are responsible for keeping the
505 flow attached at a diffuser angle where the flow was fully stalled at zero rake. These vortices under
506 the floor were too weak to be identified in the measurements at zero rake, but they become stronger
507 with an increase in rake angle. At the rake angle of 1.3° they are of insufficient strength and the
508 diffuser is still stalled. There is a significant asymmetry in the vortices under the floor (fig. 17b),
509 which gets more pronounced as the rake angle is increased. Similar behaviour has previously been
510 identified for diffusers at zero rake close to stall [8, 9]. At the rake angle of 4.8° there is evidence
511 of vortex burst and a significant flow asymmetry in the diffuser. The vortex at $y/W = -0.4$ has
512 completely disappeared (fig. 17c), and the spanwise pressure profile between $y/W = 0.1$ and -0.5
513 is identical to the fully stalled case at zero rake. At the other side of the diffuser ($y/W = 0.40$)
514 a strong vortex still exists, producing significant loading. Again, similar behaviour has previously
515 been identified for diffusers close to stall at zero rake. While the zero rake case was stalled, the
516 introduction of rake was able to reattach the flow due to the upwash produced by the vortices

517 under the rake floor.

518 4 Conclusion

519 The impact of rake, or an inclination of the underfloor, on the performance and flow features of
520 a diffuser-equipped bluff body in ground effect was investigated using a wind tunnel model with
521 variable ride height, rake and diffuser angles. Downforce was measured with respect to changing
522 ride height and rake angle at several diffuser angles, which represent different flow regimes. Fur-
523 thermore, streamwise and cross-flow profiles of surface pressure on the underbody were measured
524 at every data point to allow the flow features responsible for the changes to be identified.

525 The baseline data at zero rake showed similar trends to those previously reported for similar
526 geometries. In the current work, a wider range of diffuser angles was investigated, and it was
527 shown that the diffuser was completely stalled at the highest tested diffuser angle. The baseline
528 data was divided into three different regimes, with similar downforce behaviour with respect to ride
529 height in each regime. The plateau regime at moderate diffuser angles was investigated in more
530 detail using the on-surface pressure distributions to explain why this force plateau occurs. At this
531 diffuser angle, as the ride height is reduced, there is a significant area of separation in the diffuser
532 due to the increased adverse pressure gradient. This changes the pressure recovery in the diffuser
533 and reduces the suction peak at the throat of the diffuser, reducing the overall aerodynamic load
534 generated by the diffuser. This reduction in load from the diffuser is offset by an increase in the
535 loading over the front of the underfloor at the lower ride height due to the ground effect, which
536 increases at lower ride heights. The balance between these two competing trends, at the front and
537 rear of the model, is what results in the characteristic plateau in downforce for this diffuser angle
538 regime. It also explains why the centre of pressure shifts upstream at the ride heights where the
539 downforce plateau occurs.

540 Introducing rake increases the overall level of downforce produced. There are three main
541 mechanisms responsible for this. Firstly, there is a significant increase in loading experienced by
542 the front of the underfloor, which is also responsible for a forward shift in the centre of pressure.
543 This was caused by the inclination of the underfloor and the subsequent pressure recovery along
544 the entire length of the underfloor. Secondly, raking the underfloor reduces the suction peak at
545 the throat of the diffuser. This causes a reduction in the pressure recovery demand in the diffuser
546 for a given diffuser angle and ride height. This delays stall with respect to ride height and diffuser
547 angle, resulting in higher peak downforce. The third effect is that the streamwise counter-rotating
548 vortices that form along the edges of the floor and diffuser are strengthened significantly with
549 the introduction of rake. In addition to generating downforce directly due to their low-pressure
550 cores, these vortices introduce upwash in the diffuser and underfloor, reducing the local angle
551 of attack and inhibiting flow separation on the diffuser and floor. This mechanism is already
552 known for diffusers in ground effect, but it is shown here that it is enhanced significantly with the
553 introduction of rake due to the stronger streamwise vortices.

554 Increasing the rake angle increased the downforce due to those three mechanisms. The down-
555 force increase with rake angle is not a linear function. The gradient of downforce increase with
556 rake angle decreases slightly with increasing rake angle. Therefore, proportionally more gains are
557 achieved at lower rake angles and these gains diminish as the rake angle is increased. Increasing
558 the rake angle also results in slightly increased drag, but at a much smaller rate than the increase
559 in downforce. This results in a significant increase in the aerodynamic efficiency. The centre of
560 pressure was shifted towards the front of the body when rake was increased, for all the tested ride
561 heights and diffuser angles, due to the increased loading at the front of the underfloor. The effect
562 of diffuser angle did not change the effect of rake angle or its mechanism. The effect of rake to
563 delay separation and stall is most clearly seen in the configurations with low ride heights and a
564 high diffuser angle ($\theta = 24.7^\circ$). At zero rake, this configuration was fully stalled, but introducing
565 sufficient rake caused a strong pressure recovery in the diffuser, and as a result, significantly more
566 downforce in both the diffuser and underfloor. For this case, there was clearly identifiable hysteresis
567 with rake angle. For most other diffuser angles tested, there was little or no hysteresis with
568 rake angle for this geometry.

569 **Nomenclature**

570 The following symbols are used in this paper:

C_D = drag coefficient (-);
 C_L = downforce coefficient (-);
 $C_{L_{\max}}$ = maximum downforce coefficient (-);
 C_p = pressure coefficient (-);
 D = drag force (N);
 H = model height (m);
 L = downforce (N);
 L_M = model length (m);
 d = model half-width (m);
 h_1 = ride height (m);
 h_2 = ride height at diffuser inlet (m);
 h_3 = ride height at diffuser exit (m);
 x, y, z = coordinate system axes;
 x_{CP} = axial centre of pressure location (m);
 γ = rake angle ($^{\circ}$);
 θ = diffuser angle ($^{\circ}$).

572 **References**

573 [1] J. Katz, "Aerodynamics of race cars," *Annual Review of Fluid Mechanics*, vol. 38, pp. 27–63,
574 2006.

575 [2] X. Zhang, W. Toet, and J. Zerihan, "Ground effect aerodynamics of race cars," *Applied
576 Mechanics Reviews*, vol. 59, no. 1, pp. 33–49, 2006.

577 [3] S. R. Ahmed, G. Ramm, and G. Faltin, "Some salient features of the time-averaged ground
578 vehicle wake," *SAE Technical Paper 840300*, 1984.

579 [4] K. R. Cooper, T. Bertenyi, G. Dutil, J. Syms, and G. Sovran, "The aerodynamic performance
580 of automotive underbody diffusers," *SAE Technical Paper 980030*, 1998.

581 [5] A. Cogotti, "A parametric study on the ground effect of a simplified car model," *SAE Technical
582 Paper 980031*, 1998.

583 [6] A. E. Senior and X. Zhang, "The force and pressure of a diffuser-equipped bluff body in
584 ground effect," *Journal of Fluids Engineering*, vol. 123, no. 1, pp. 105–111, 2001.

585 [7] A. Ruhrmann and X. Zhang, "Influence of diffuser angle on a bluff body in ground effect,"
586 *Journal of Fluids Engineering*, vol. 125, no. 2, pp. 332–338, 2003.

587 [8] O. Ehirim, K. Knowles, A. Saddington, and M. Finnis, "Passive flow control on a ground-effect
588 diffuser using an inverted wing," *SAE International Journal of Passenger Cars - Mechanical
589 Systems*, vol. 11, no. 4, pp. 273–295, 2018.

590 [9] O. H. Ehirim, K. Knowles, A. J. Saddington, and M. V. Finnis, "Aerodynamics of a convex
591 bump on a ground-effect diffuser," *ASME Journal of Fluids Engineering*, vol. 140, no. 9, 2018.

592 [10] X. Zhang, A. Senior, and A. Ruhrmann, "Vortices behind a bluff body with an upswept aft
593 section in ground effect," *International Journal of Heat and Fluid Flow*, vol. 25, no. 1, pp. 1–9,
594 2004.

595 [11] A. R. George, "Aerodynamic effects of shape, camber, pitch, and ground proximity on idealized
596 ground-vehicle bodies," *Journal of Fluids Engineering*, vol. 103, pp. 631–637, 1981.

597 [12] A. R. George and J. E. Donis, "Flow patterns, pressures, and forces on the underside of
598 idealized ground effect vehicles," in *Aerodynamics of transportation - II: presented at the Joint
599 ASME-CSME Applied Mechanics, and Fluids Engineering Conference*, vol. 7, (New York, NY,
600 USA), pp. 69–79, ASME, 1983.

601 [13] S. S. Desai, C.-M. B. Lo, and A. R. George, “A computational study of idealized bluff bodies,
602 wheels, and vortex structures in ground effect,” *SAE Technical Paper 2008-01-0327*, 2008.

603 [14] L. S. Puglisevich and G. Page, “Large eddy simulation of the flow around a diffuser-equipped
604 bluff body in ground effect,” in *Proceedings of the ASME 2011 International Mechanical
605 Engineering Congress & Exposition*, (Denver, CO, USA), ASME, 2011.

606 [15] S. Mahon, X. Zhang, and C. Gage, “The evolution of edge vortices underneath a diffuser
607 equipped bluff body,” in *12th International Symposium on Applications of Laser Techniques
608 to Fluid Mechanics*, (Lisbon, Portugal), 2004.

609 [16] O. Ehirim, K. Knowles, A. Saddington, M. Finnis, and N. Lawson, “On the near-wake of a
610 ground-effect diffuser with passive flow control,” *International Journal of Automotive Tech-
611 nology*, vol. 20, no. 1, pp. 11–23, 2019.

612 [17] O. J. Breslouer and A. R. George, “Exploratory experimental studies of forces and flow struc-
613 ture on a bluff body with variable diffuser and wheel configurations,” *SAE Technical Paper
614 2008-01-0326*, 2008.

615 [18] L. Jowsey and M. Passmore, “Experimental study of multiple-channel automotive underbody
616 diffusers,” *Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Auto-
617 mobile Engineering*, vol. 224, no. 7, pp. 865–879, 2010.

618 [19] J. Knight, M. Spicak, A. Kuzenko, G. Haritos, and G. Ren, “Investigation of vehicle ride
619 height and diffuser ramp angle on downforce and efficiency,” in *Proceedings of the Institution
620 of Mechanical Engineers, Part D: Journal of Automobile Engineering*, 2018.

621 [20] O. H. Ehirim, *Aerodynamics and Performance Enhancement of a Ground-effect Diffuser*. PhD
622 thesis, Cranfield University, 2017.

623 [21] J. P. Howell, “The influence of ground simulation on the aerodynamics of simple car shapes
624 with an underfloor diffuser,” in *Conference on Vehicle Aerodynamics*, Royal Aerodynamic
625 Society, 1994.

626 [22] P. Kekus and D. Angland, “Automatic wind tunnel-based optimisation of an automotive
627 underbody diffuser,” in *2018 AIAA Science and Technology Forum*, (Kissimmee, FL, USA),
628 American Institute of Aeronautics and Astronautics, 2018.

629 [23] K. Burgin, A. P. C., and B. J. P., “Wind tunnel tests on road vehicle models using a moving
630 belt simulation of ground effect,” *Journal of Wind Engineering and Industrial Aerodynamics*,
631 vol. 22, pp. 227–236, 1986.

632 [24] P. Kekus, *Aerodynamics and Experimental Optimisation of an Automotive Underbody Diffuser
633 in the Presence of Rake*. PhD thesis, University of Southampton, 2021.

634 [25] A. Huminic and G. Huminic, “Aerodynamics of curved underbody diffusers using CFD,”
635 *Journal of Wind Engineering and Industrial Aerodynamics*, vol. 205: 104300, 2020.

636 [26] L. Jowsey, *An Experimental Study of Automotive Underbody Diffusers*. PhD thesis, Lough-
637 borough University, 2013.

638 List of Figures

639 1	Schematic of the functioning of an underbody diffuser (modified from Ref. [4]). 640 The subscript f represents conditions under a flat floor and the subscript d and the 641 subscript d represents conditions under a model equipped with a diffuser. 642
643 2	Surface pressure coefficient along diffuser centreline at a range of non-dimensional 644 ride heights. Diffuser inlet at $x/d = 4.95$ [6].
645 3	Mean cross-flow velocity vectors across a cross-section of the diffuser, measured using 646 laser Doppler anemometry at $x/d = 8.476$ (15mm downstream of the model), at a 647 non-dimensional ride height of $h_r/d = 0.382$ [10].
648 4	The diffuser model in the wind tunnel.
649 5	Details of the variable-geometry model.
650 6	Plots of downforce coefficient against non-dimensional ride height, at zero rake and a 651 range of diffuser angles. Vertical dotted lines mark ride heights displayed in figures 7 652 and 8.
653 7	Plots of static pressure coefficient along the centreline and across the underfloor and 654 the diffuser, at $h_1/H = 0.236$, $\gamma = 0^\circ$, and a range of diffuser angles.
655 8	Plots of static pressure coefficient along the centreline and across the underfloor and 656 the diffuser, at $h_1/H = 0.046$, $\gamma = 0^\circ$, and a range of diffuser angles.
657 9	Streamwise static pressure distributions in the plateau regime for the diffuser angle 658 of $\theta = 16.3^\circ$
659 10	Plots of drag coefficient and aerodynamic efficiency against non-dimensional ride 660 height, at zero rake and a range of diffuser angles.
661 11	Plots of centre of pressure against non-dimensional ride height, at zero rake and a 662 range of diffuser angles.
663 12	Plots of downforce coefficient, centre of pressure and aerodynamic efficiency against 664 rake angle, at $h_1/H = 0.194$ and $\theta = 6.2^\circ$
665 13	Plots of static pressure coefficient along the centreline and across the underfloor and 666 the diffuser, at $h_1/H = 0.129$, $\theta = 6.2^\circ$, and two rake angles.
667 14	Plots of downforce coefficient, centre of pressure and aerodynamic efficiency against 668 rake angle, at $h_1/H = 0.129$ and $\theta = 16.3^\circ$
669 15	Plots of static pressure coefficient along the centreline and across the underfloor and 670 the diffuser, at $h_1/H = 0.129$, $\theta = 16.3^\circ$, and two rake angles.
671 16	Plots of downforce coefficient, centre of pressure and aerodynamic efficiency against 672 rake angle, at $h_1/H = 0.065$ and $\theta = 24.7^\circ$
673 17	Plots of static pressure coefficient along the centreline and across the underfloor and 674 the diffuser, at $h_1/H = 0.065$, $\theta = 24.7^\circ$, and three rake angles.

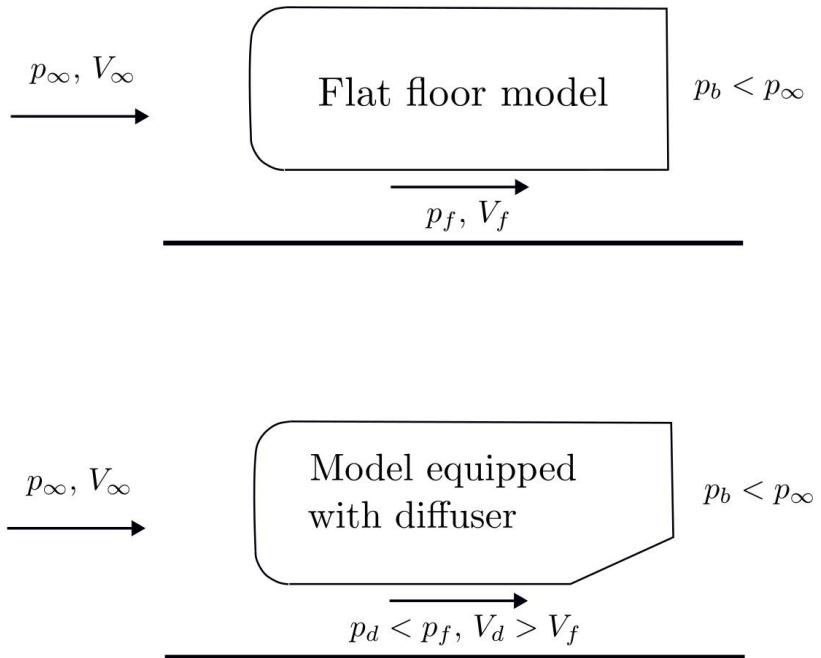


Figure 1: Schematic of the functioning of an underbody diffuser (modified from Ref. [4]). The subscript f represents conditions under a flat floor model and the subscript d represents conditions under a model equipped with a diffuser.

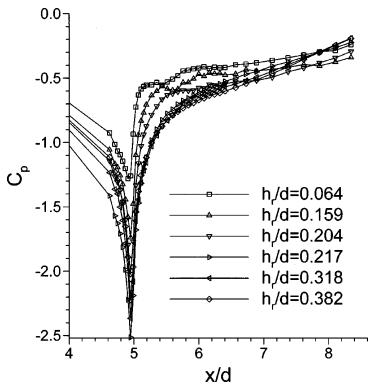


Figure 2: Surface pressure coefficient along diffuser centreline at a range of non-dimensional ride heights. Diffuser inlet at $x/d = 4.95$ [6].

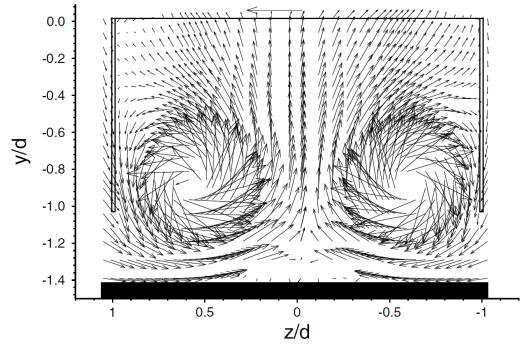


Figure 3: Mean cross-flow velocity vectors across a cross-section of the diffuser, measured using laser Doppler anemometry at $x/d = 8.476$ (15mm downstream of the model), at a non-dimensional ride height of $h_r/d = 0.382$ [10].

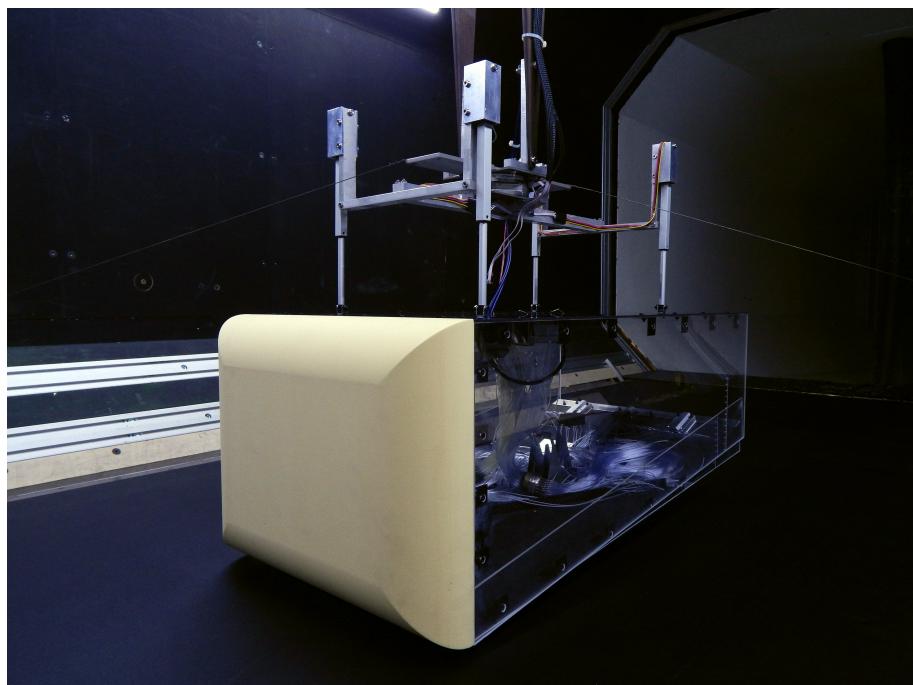
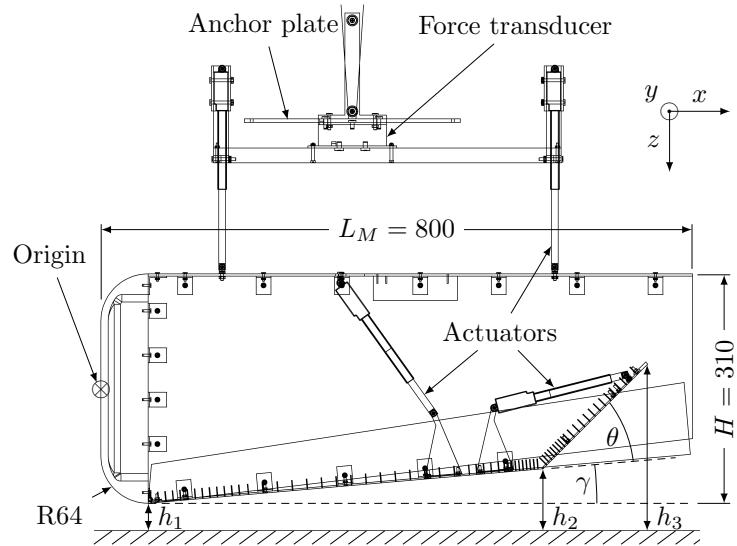
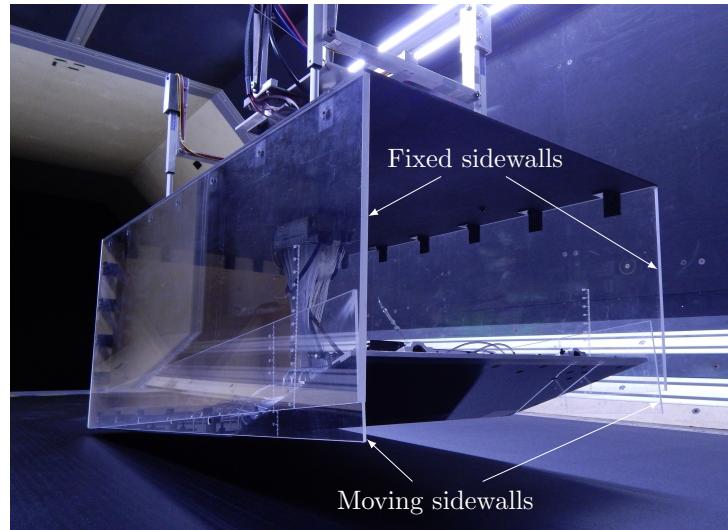




Figure 4: The diffuser model in the wind tunnel.

(a) Side view ($\gamma = 5^\circ$, $\theta = 40^\circ$), showing the definition of dimensions and the coordinate system. Streamwise locations of pressure taps are also shown. All dimensions in mm.

(b) Rear view in the wind tunnel, showing the double-sidewall system used to ensure the diffuser end plates were flush with the plane of the underfloor. Also visible are graduated scales engraved in the sidewalls, used for calibration of the rake and diffuser angles.

Figure 5: Details of the variable-geometry model.

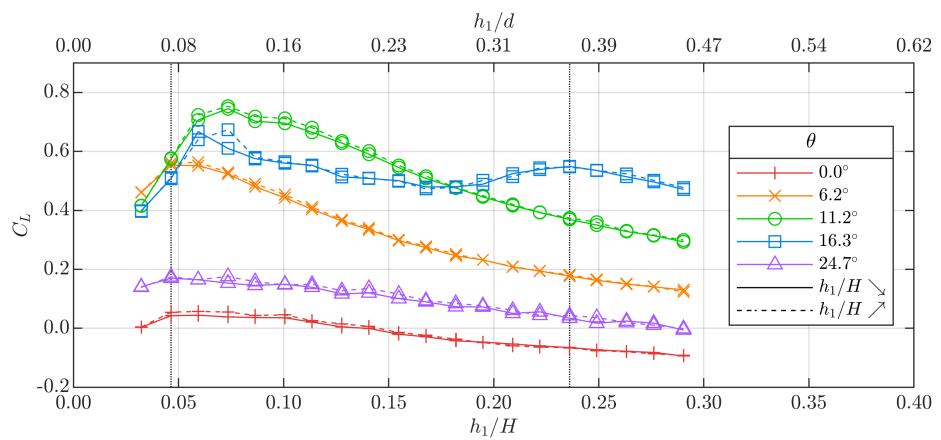


Figure 6: Plots of downforce coefficient against non-dimensional ride height, at zero rake and a range of diffuser angles. Vertical dotted lines mark ride heights displayed in figures 7 and 8.

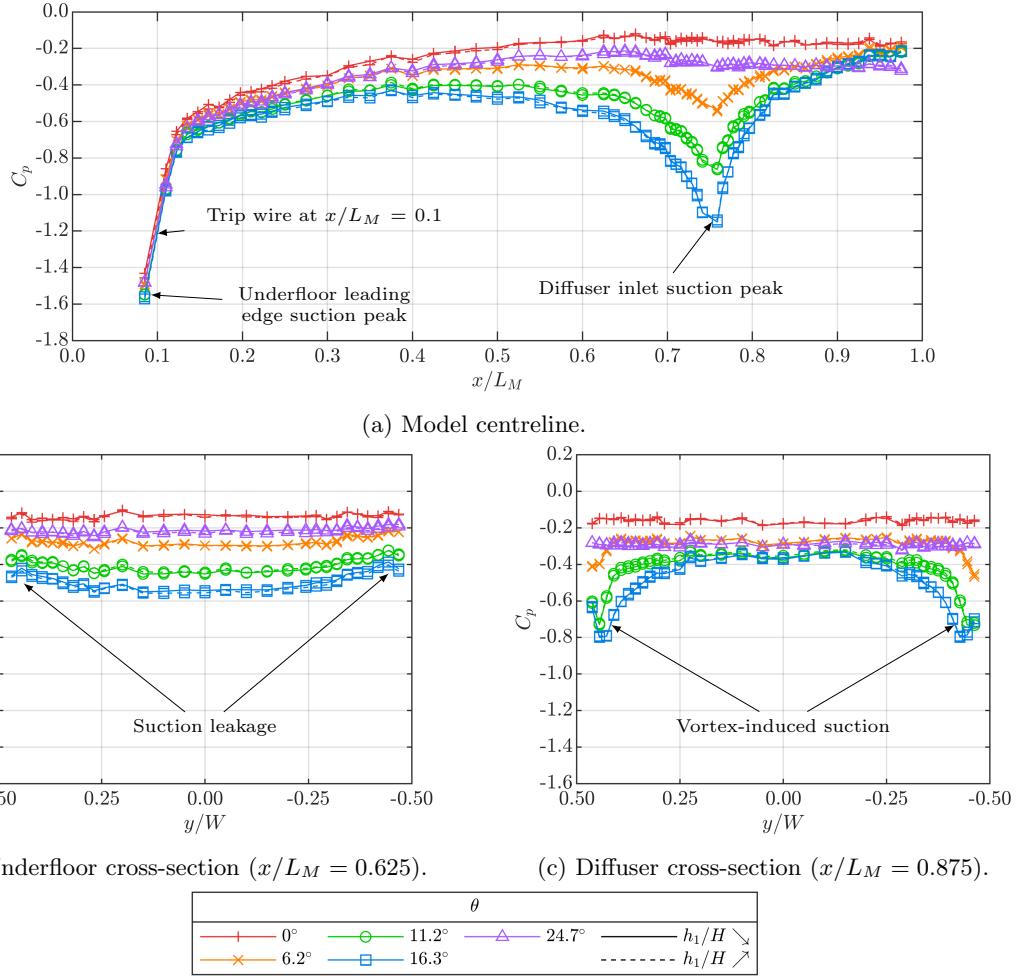


Figure 7: Plots of static pressure coefficient along the centreline and across the underfloor and the diffuser, at $h_1/H = 0.236$, $\gamma = 0^\circ$, and a range of diffuser angles.

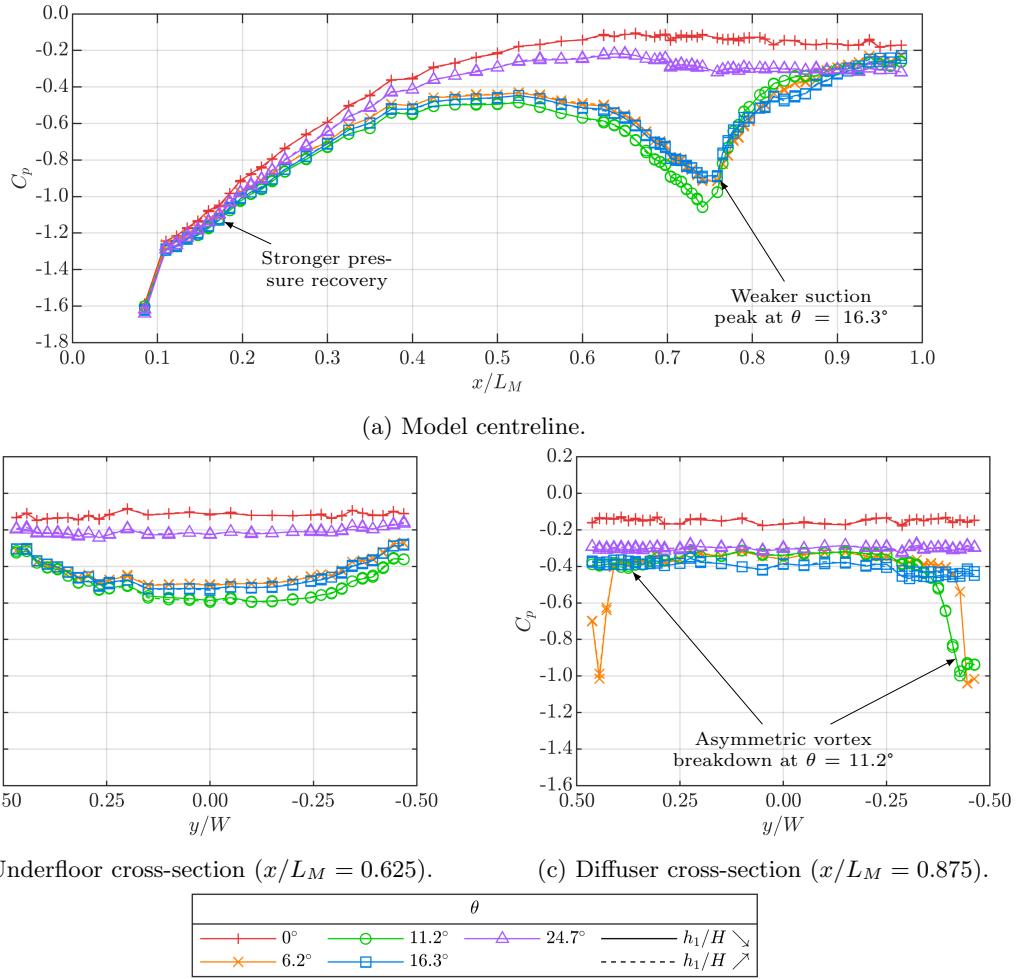


Figure 8: Plots of static pressure coefficient along the centreline and across the underfloor and the diffuser, at $h_1/H = 0.046$, $\gamma = 0^\circ$, and a range of diffuser angles.

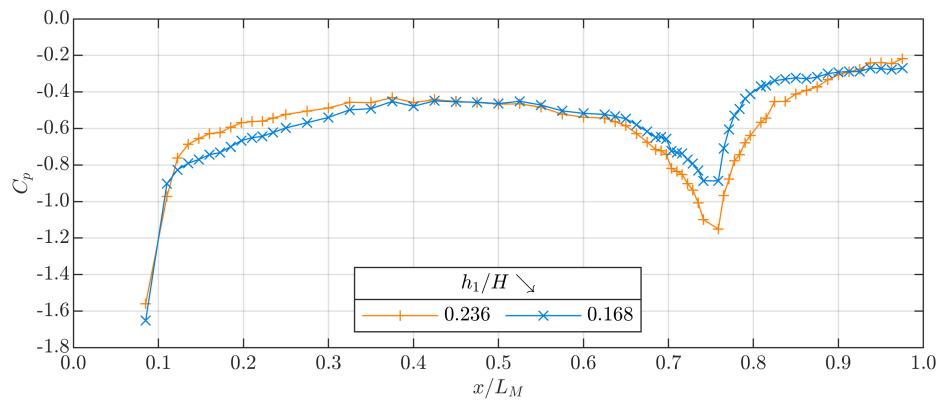


Figure 9: Streamwise static pressure distributions in the plateau regime for the diffuser angle of $\theta = 16.3^\circ$.

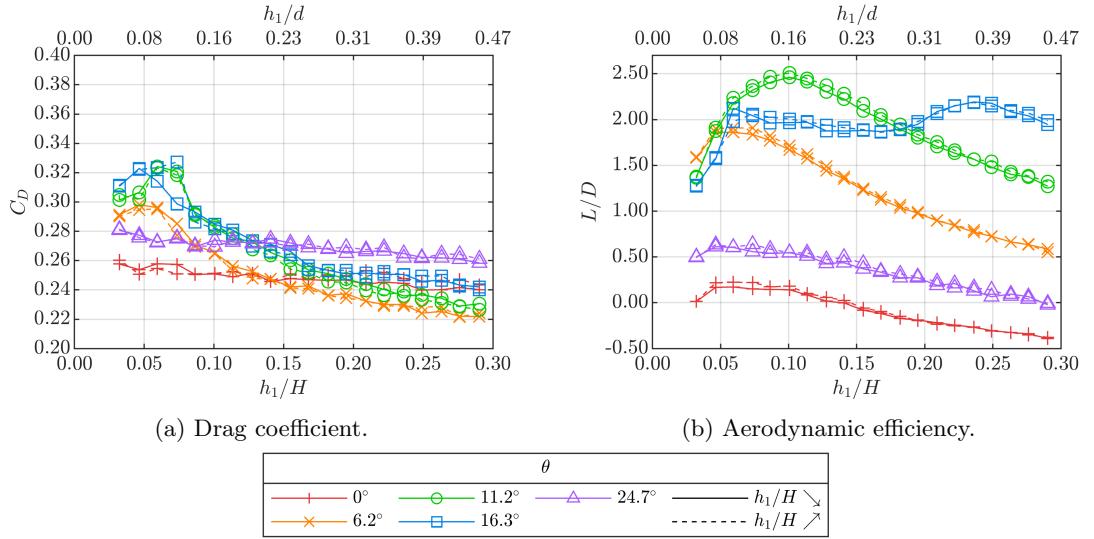


Figure 10: Plots of drag coefficient and aerodynamic efficiency against non-dimensional ride height, at zero rake and a range of diffuser angles.

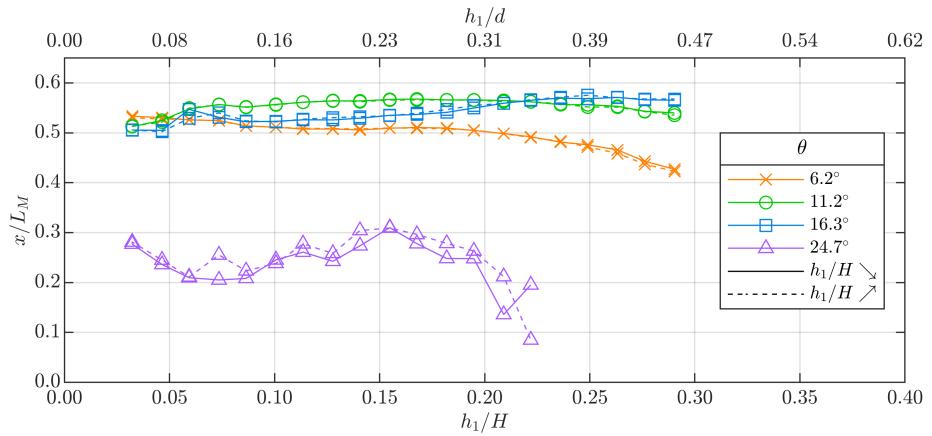
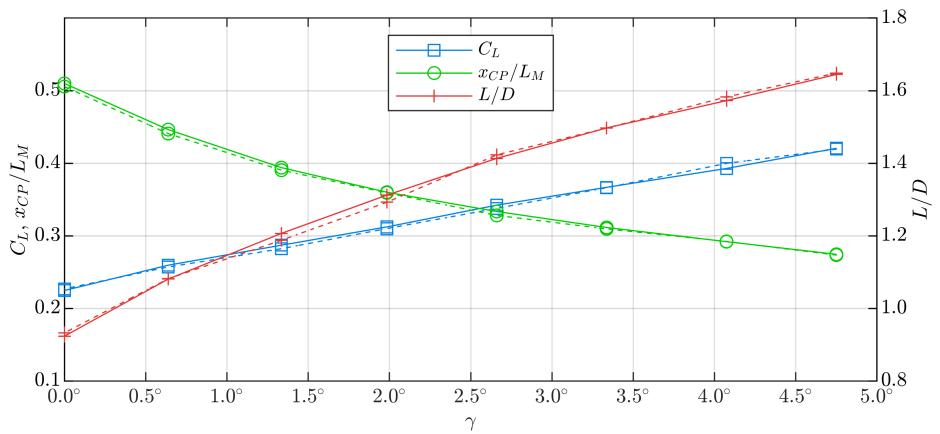
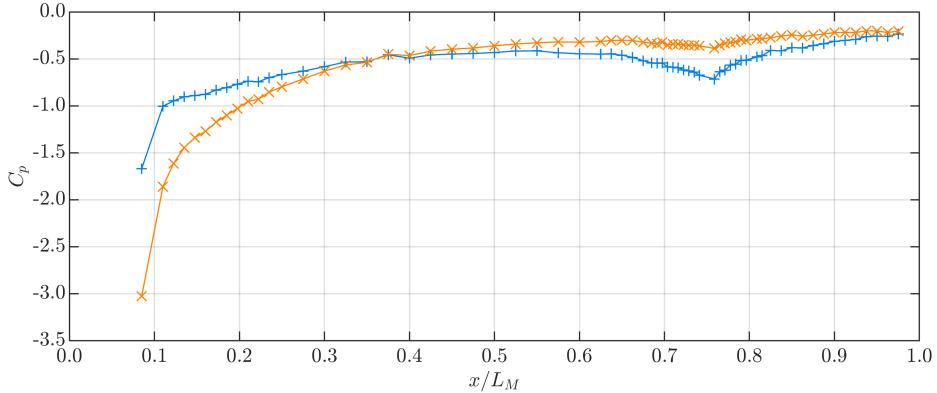
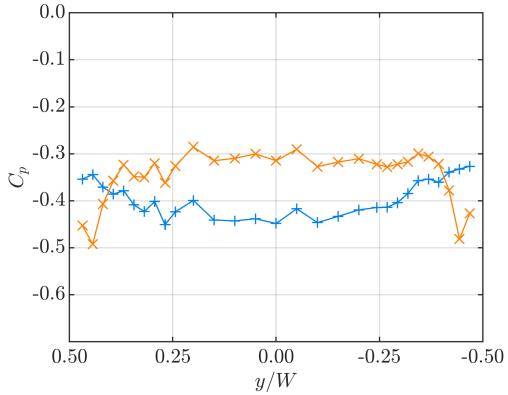
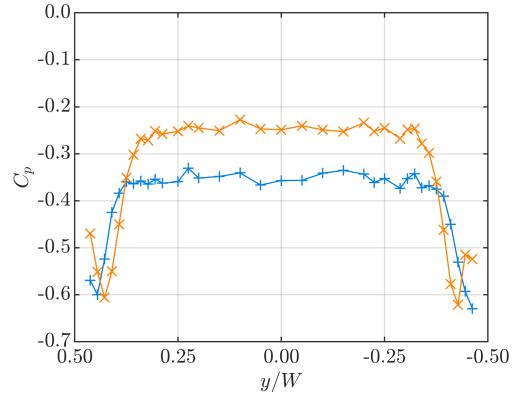


Figure 11: Plots of centre of pressure against non-dimensional ride height, at zero rake and a range of diffuser angles.

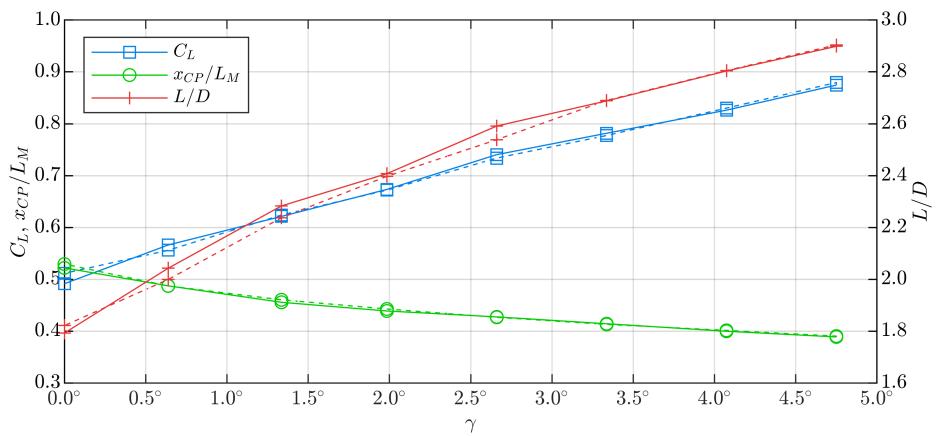
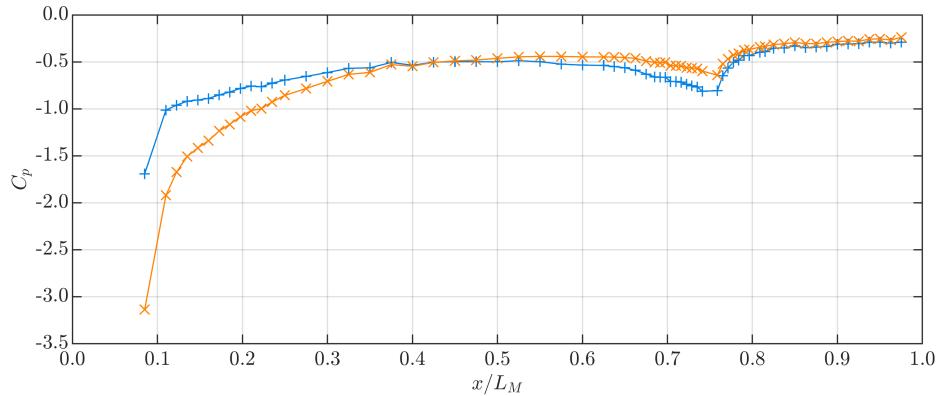
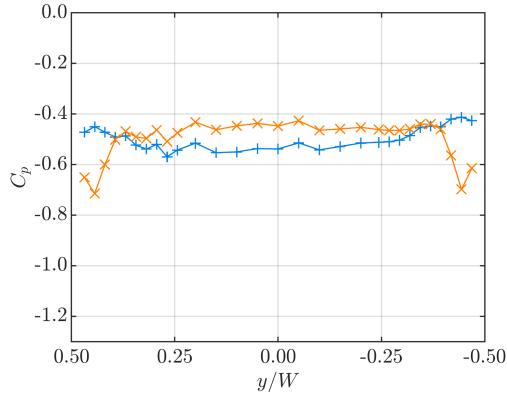

Figure 12: Plots of downforce coefficient, centre of pressure and aerodynamic efficiency against rake angle, at $h_1/H = 0.194$ and $\theta = 6.2^\circ$.

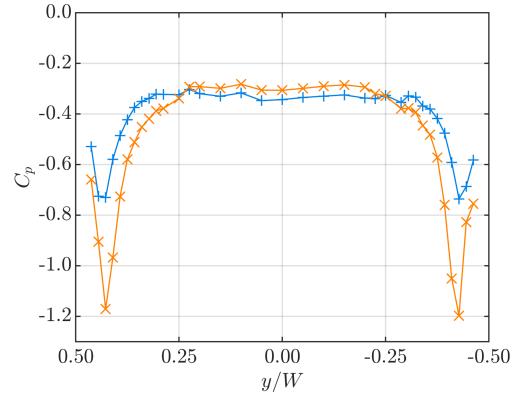
(a) Model centreline.

(b) Underfloor cross-section ($x/L_M = 0.625$).

(c) Diffuser cross-section ($x/L_M = 0.875$).

Figure 13: Plots of static pressure coefficient along the centreline and across the underfloor and the diffuser, at $h_1/H = 0.129$, $\theta = 6.2^\circ$, and two rake angles.


Figure 14: Plots of downforce coefficient, centre of pressure and aerodynamic efficiency against rake angle, at $h_1/H = 0.129$ and $\theta = 16.3^\circ$.

(a) Model centreline.

(b) Underfloor cross-section ($x/L_M = 0.625$).

(c) Diffuser cross-section ($x/L_M = 0.875$).

Figure 15: Plots of static pressure coefficient along the centreline and across the underfloor and the diffuser, at $h_1/H = 0.129$, $\theta = 16.3^\circ$, and two rake angles.

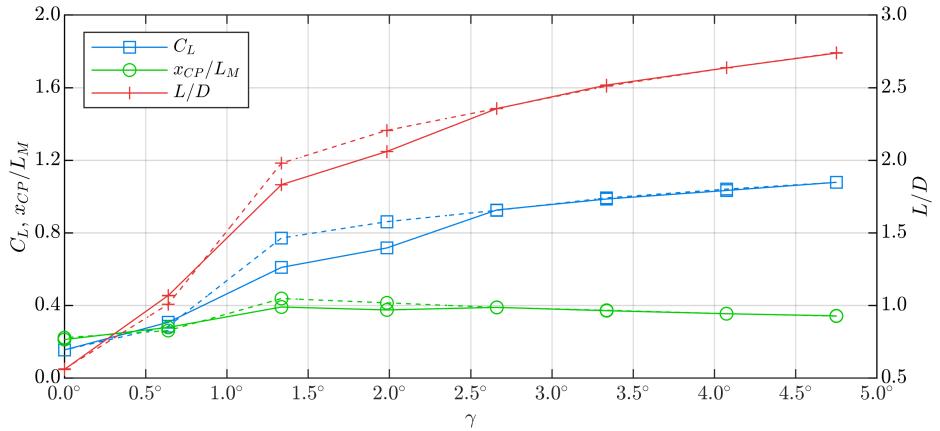
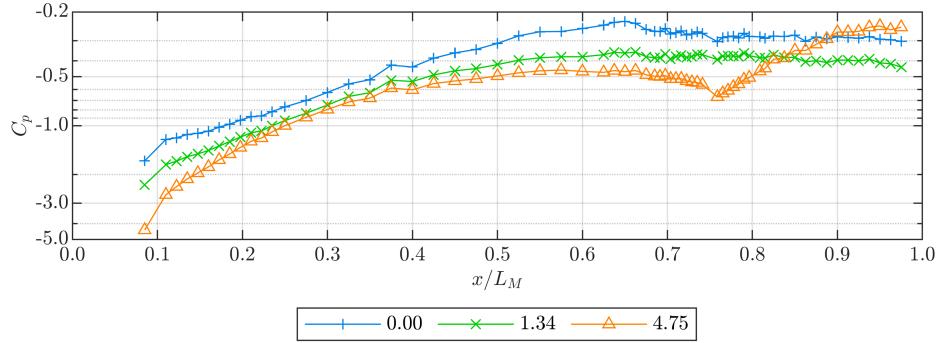
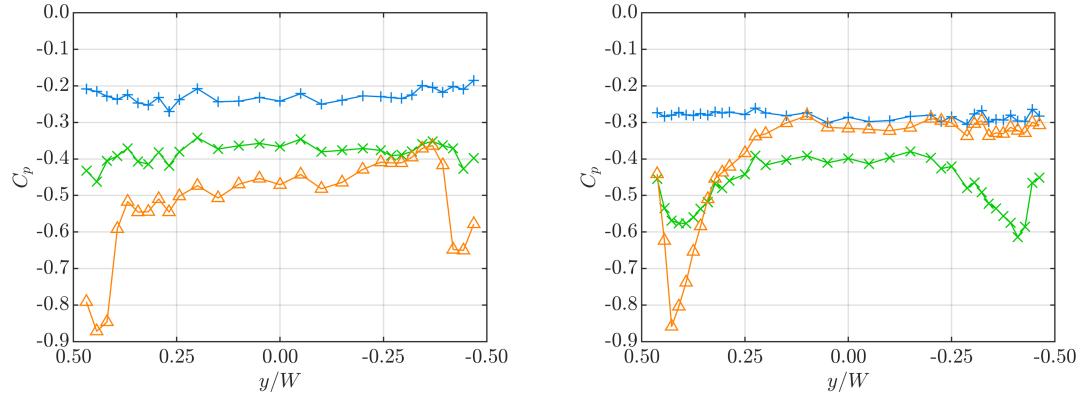




Figure 16: Plots of downforce coefficient, centre of pressure and aerodynamic efficiency against rake angle, at $h_1/H = 0.065$ and $\theta = 24.7^\circ$.

(a) Model centreline.

(b) Underfloor cross-section ($x/L_M = 0.625$).

(c) Diffuser cross-section ($x/L_M = 0.875$).

Figure 17: Plots of static pressure coefficient along the centreline and across the underfloor and the diffuser, at $h_1/H = 0.065$, $\theta = 24.7^\circ$, and three rake angles.