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ACOUSTIC MODELS OF CONSONANT RECOGNITION BY COCHLEAR 
IMPLANT USERS 

by Carl Verschuur 

Normal-hearing adults have no difficulty in recognising consonants accurately, even 
in moderately adverse listening conditions. By contrast, users of multichannel 
cochlear implants have difficulty with the accurate perception of consonants, even in 
good listening conditions. Cochlear implant users are known to show systematic 
deficits in recognition of consonant features, with perception of the place feature, 
which relies on spectral information, being worst. These deficits may be attributed 
both to signal distortions introduced by the processing of the implants and to other 
factors, in particular the spectrotemporal distortions which occur at the interface 
between electrode array and auditory nervous system, including cross-channel 
interaction. The objective of the work reported here was to attempt to partial out the 
relative contribution of these different factors to consonant recognition. This was 
achieved by comparing cochlear implant users’ perceptual errors, analysed in terms of 
information transmission, with errors made by normal-hearing subjects listening to 
acoustic models of implant processing, in various conditions. 
 
Two initial experiments were undertaken to develop and refine an acoustic model of 
the Nucleus 24 cochlear implant.  Findings from these two experiments informed the 
design of the main acoustic model experiment, which was undertaken in parallel with 
a further experiment involving users of the Nucleus 24 device.  In both experiments, 
subjects listened to nonsense syllables with and without the addition of stationary 
background noise, in three different configurations of implant processing parameters.  
Additionally, in the acoustic model experiment, a simulation of cross-channel spread 
of excitation, or “channel interaction”, was varied. Results showed that acoustic 
model experiments were predictive of the pattern of consonant feature transmission in 
cochlear implant users with better baseline consonant recognition scores.  Deficits in 
consonant recognition in this subgroup could be explained by the loss of 
phonemically relevant acoustic information in speech due to the nature of cochlear 
implant processing, while channel interaction appeared to play a smaller role in 
accounting for problems in consonant recognition. The work also evaluated the effect 
of changes in channel number and stimulation rate and failed to find any changes in 
consonant recognition as these parameters were varied. The lack of a stimulation rate 
effect was consistent with acoustic measurements of the temporal modulation transfer 
function of the processor, which showed almost no change across stimulation rates. 
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Chapter 1. Introduction 
A cochlear implant (CI) is a surgically implanted auditory prosthesis that bypasses an 

impaired peripheral auditory system by means of direct stimulation of the residual 

neural elements in the auditory system. Cochlear implantation has become widely 

accepted as a cost-effective and beneficial treatment for profound sensorineural 

deafness (UK Cochlear Implant Study Group, 2004).  Improvement in speech 

perception is arguably the most important single outcome of cochlear implantation 

and is linked to broader outcomes in linguistic, social and educational functioning. 

Speech perception outcomes from cochlear implantation have improved markedly 

with improved design of hardware and signal processing (Wilson, 1997; Zeng, 2004) 

and the majority of current CI users can expect significant benefit to open set speech 

recognition (Meyer et al., 2003). Nevertheless, even the most successful CI users are 

still poorer than normal hearing (NH) listeners at speech discrimination, particularly 

in adverse listening conditions. Moreover, there are large differences between 

individual CI users that are not fully understood.  

 

One likely reason that even the best performing CI users do not achieve normal levels 

of speech perception, particularly in background noise, is that CI signal processing 

does not replicate the complex nonlinear processes involved in the normal peripheral 

auditory system.  Instead, CI processing resembles the channel vocoder, a processing 

system which minimises electronic bit rate by coding the spectral envelope of a 

speech signal only (Dudley, 1939). Consequently, the information provided by CI 

processing to the auditory nervous system is somewhat impoverished compared to 

information provided by the normally functioning peripheral auditory system (Cohen 

et al., 2003; Loizou, 1999). It is therefore useful to understand the signal received by 

the CI user in terms of the various forms of information loss it has undergone 

compared to the equivalent signal that would be received by a NH listener. To aid in 

the analysis of information loss, figure 1.1 illustrates a simple communication chain 

describing the main stages of CI information processing.    
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Figure 1.1 Stages of information processing in CI users 

 

According to this figure, the first stage of the chain is the acoustic signal itself. The 

second stage is the processing of that signal by the CI. It is clear that the signal 

delivered by the CI to the electrode array is reduced in detail compared to the signal 

delivered by a healthy auditory system to the auditory nerve. The third stage is the 

interface between the CI electrode array and the auditory nervous system, referred to 

here as the electrical/neural interface. The fourth and final stage is the processing of 

the neural signal by the central nervous system. At each stage of the chain there may 

be loss of information necessary for accurate consonant recognition.  At each stage, 

the degree of information loss (as opposed to simply signal loss) depends on what 

type of acoustic information is important for signalling a particular consonant or 

consonant contrast and also on the presence of any background noise or other 

environmental signal distortion.  Thus the question at each processing stage is not 

simply, how does the signal differ from a signal processed by the healthy auditory 

system, but rather, how does the signal differ in terms of its information-bearing 

properties.  

 

Although speech perception in CI users is a result of the interaction of the different 

domains outlined in figure 1.1, it is crucially important to understand where in the 
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processing chain information is lost, in order to know how best to modify processing 

or hardware to design to optimise listener performance.  An assumption in this study 

is that explaining deficits in CI users’ consonant recognition should start with 

understanding stage 1, e.g. the effect of CI signal processing on the signal. If the 

explanation does not lie in this domain, e.g. stage 1 of the simple conceptual model, 

then stage 2, the electrical/neural interface, should be determined. If this is ruled out 

as the possible explanation for the perceptual deficit, only then should deficits in stage 

3, central auditory function, be assumed.  For most adult CI users, deafness has 

occurred after a lengthy period of normal hearing or at least a good level of auditory 

function with hearing aids, prior to the onset of severe/profound deafness. It seems 

reasonable to assume that, in most cases, the potential for normal or near-normal 

central auditory processing abilities remains (assuming that adequate re-

acclimatisation to the CI signal has taken place).  

 

In this thesis information loss is considered exclusively in the specific context of 

consonant recognition. There are a number of reasons for focusing on this one method 

of assessing speech perception. First, most information in speech is conveyed by 

consonants rather than vowels (Owens et al., 1968). Second, analysis of consonant 

recognition can be linked to underlying psychoacoustic abilities such as frequency or 

temporal resolution. This is because consonant recognition can be unpacked into 

perception of a number of features, each of which has acoustic, and therefore 

psychoacoustic, correlates. There is an existing framework for understanding 

consonant information transmission through the analysis of consonant confusion 

matrices and feature-specific information transmission. Third, such an approach can 

make use of the strong evidence base from NH listeners and the scientific disciplines 

of acoustic phonetics and phonology to understand the factors affecting consonant 

recognition. This approach is not meant to imply that understanding consonant 

(feature) recognition can provide a complete account of speech perception. There are 

a number of perceptual tasks involved in ongoing speech perception, including 

phonemic segmentation, whole-word recognition and the use of non-auditory cues 

(Liberman et al., 1967).  Nevertheless, the analysis of transmission of specific 

consonant features provides a useful means of analysing efficiency of information 

transmission through a CI system.  
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This thesis describes a study whose main aims were, first, to investigate the factors 

affecting consonant recognition in CI users and, second, to compare different acoustic 

models (AM) of CI processing in terms of their ability to predict consonant 

recognition performance. The overriding question motivating the research was: “to 

what extent can deficits in consonant recognition by CI users be explained by 

information loss in CI signal processing as opposed to information loss at the 

electrical/neural interface?” The work described in the thesis contributes to the 

existing literature in a number of ways. It adds to the knowledge base on AM 

methodology by demonstrating that noise band carriers provide a better model of 

consonant recognition than sine wave carriers, and by showing that useful perceptual 

data can be gathered from NH subjects listening to AM stimuli within a time-efficient 

approach to testing, even where the AM stimuli include large spectral distortions. 

Moreover, the work shows the usefulness of using an AM which is based in detail on 

the processing of a specific device, and where a comparison is made directly between 

AM and CI data that are truly “equivalent” in processing terms.   

 

The work also adds to the literature by showing that deficits in consonant recognition 

in (at least better performing) CI users can be attributed mainly to information loss 

associated with CI processing The argument for this is supported at various points in 

the text by acoustic analyses which demonstrate the limitations imposed on consonant 

information by CI processing and on the temporal response of the CI system in 

particular. This includes original measurements of temporal modulation transfer 

functions in order to describe the temporal response of the Nucleus 24 CI processor. 

The work adds to the existing literature on the effects of processing parameters on 

speech perception. The work also contributes to the understanding of speech 

perception in noise by CI users by showing the pattern of consonant feature 

recognition deficits in background noise and suggesting some reasons for the pattern 

of noise effects. Findings from the study also suggest some possible explanations for 

inter-user variation in speech perception, and in particular support the idea that 

channel interaction may not be the main reason for variation in performance between 

CI users. Two papers based on the original work in this thesis are currently being 

prepared for publication with further papers also likely. 
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Chapter 2 provides an overview of evidence and arguments relevant to the question 

“to what extent can deficits in consonant recognition by CI users be explained by 

information loss in CI signal processing as opposed to information loss at the 

electrical/neural interface?” This includes an overview of consonant recognition in CI 

users (2.1), CI signal processing (2.2), evidence regarding effects of signal processing 

(2.3), effects of electrical/neural interface signal distortions (2.4), use of AMs in CI 

research (2.5) and the likely relationship between CI processing in particular and 

transmission of particular consonant features (2.6). Chapters 3 to 5 are concerned with 

describing the original experimental work. Chapter 3 provides an overview of 

experimental methodology. Chapter 4 describes experimental work concerned with 

determining the most appropriate parametric choices for AM studies, and attempts to 

validate a particular AM of the Nucleus 24 device. Chapter 5 goes on to describe a 

“matched pair” of AM and CI experiments which form the main experimental work in 

the study. Chapter 6 provides an overview of results across experiments with 

reference to transmission of specific consonant features, while chapter 7 provides a 

more general discussion of results and their scientific and clinical implications. 

Chapter 8 briefly summarises the main conclusions of the study. 
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Chapter 2. Background 

2.1. Overview of consonant recognition in CI users 

2.1.1 Theoretical background to consonant recognition analysis 

The ability to recognise speech relies on a number of underlying perceptual abilities.  

One of these is the ability to determine which phoneme has been uttered, out of the 

possible phoneme inventory of a particular language.  Disregarding issues of context 

and semantics, the listener must make a decision based on available acoustic 

evidence, by decoding the acoustic patterns, or cues, which distinguish one phoneme 

from another.  One way to understand this process is to analyse the errors made by a 

listener when attempting to determine which phoneme s/he has heard.  The errors 

shed light on the perception of different consonant features. The categorisation of 

speech features into a priori categories is motivated by knowledge of the important 

variations in speech production, which have reasonably well-understood 

consequences in terms of acoustics and therefore perception.   

 

The main theory underlying our basic understanding of speech production and its 

implications for speech acoustics is the “source-filter theory of speech production” 

which was first described by Fant (1970). The theory posits that the link between 

speech production and the resulting speech waveform can be described as the sum of 

two independent processes. First, the source of speech energy is generated via the 

vibration of the vocal folds (voicing) or, if the vocal folds remain open, via turbulence 

or friction generated by partial or complete occlusion in the upper vocal tract. Vocal 

fold vibration generates a quasi-periodic signal which can be characterised in the 

frequency domain as consisting of a fundamental frequency with multiple harmonics 

that decrease in amplitude as a function of frequency, as in figure 2.1.  The source 

energy for unvoiced speech is aperiodic and is therefore associated with a wider and 

diffuse, spectrum, which may have more energy in higher frequencies.  Second, the 

upper vocal tract acts as a dynamic filter which transforms the source spectrum into a 

more complex and varying waveform.  Depending on the location within the upper 

vocal tract where maximum constriction occurs (place of articulation) and how the 

vocal tract is occluded (manner of articulation), different transfer functions will result.  
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The resulting acoustic waveform can be characterised as a convolution of the source 

spectrum and the filter effect of the upper vocal tract as in figure 2.1.  Where source 

harmonics coincide with filter maxima, greater energy is produced than where these 

do not coincide.  A NH listener can resolve both source harmonics and formant 

structure and therefore determine information about speaker voice characteristics, 

which are determined by characteristics of the underlying source, and also determine 

segmental contrasts, e.g. phoneme differences, which rely primarily on the differences 

in formant structure and changes to formant structure over time. It should be noted 

that the frequency resolution required by a listener to resolve the harmonics of the 

source spectrum is considerably greater than that required to resolve the formants 

introduced by the filter. (It is shown in 2.6.1 that Nucleus 24 processing restricts F0 

information.) 

 

 
Figure 2.1. Interaction between source spectrum and filter function to produce speech waveform. 

Adapted from Lieberman and Blumstein, 1988. 
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Although the assumption of independence or source and filter has been questioned by 

some authors (Titze, 2004; Childers and Wong, 1994), the basic principles of the 

source-filter theory provide the underpinning for the classification of speech sounds. 

The classification of English consonants in terms of phonological features has 

developed with changes in phonetic science.  In practice, there is no single accepted 

classification scheme. Chomsky and Halle (1968) described a range of binary features 

to describe English consonants.  However, studies of CI users’ consonant and vowel 

recognition has tended to use the tripartite distinction of voicing, place and manner, at 

least for non-tone languages such as English.   

 

Voicing refers to the presence or absence of vocal fold vibration during production of 

a particular speech sound. Consequently, it is a binary category, at least in English.  

Manner of articulation refers to the way in which the vocal tract is occluded and for 

English consonants a convenient categorisation recognises four main manner 

categories: nasal, stop, fricative and approximant (the latter category can further be 

broken into liquids and semivowels/glides). Place of articulation refers to the locus of 

maximum occlusion within the vocal tract. For English consonants place 

classification can vary in terms of number of categories depending on how specific an 

analysis is required. Figure 2.2 shows the International Phonetic Association’s 

detailed classification of consonants in terms of voicing, place and manner.  
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Figure 2.2. International phonetic alphabet classification of consonants by voice, place and 

manner. Voiceless cognates are indicated on left, voiced on right. Manner categories are on the y-

axis and place categories are on the x-axis.  Reproduced with permission from the International 

Phonetic Association. Copyright 2005 by International Phonetic Association 

(http://www.arts.gla.ac.uk/IPA/ipa.html). 

 

Changes in feature values produce specific acoustic consequences, depending on the 

different acoustic patterns or cues consequent to each feature variation. Changes to 

place of articulation cause spectral changes as the residual volume of the unoccluded 

vocal tract changes. Changes in the manner of vocal tract occlusion tend to lead to 

differences in temporal information; for example, a stop consonant is associated with 

a sudden and short duration release burst whereas a fricative is associated with 

turbulent energy of longer duration.  Finally, distinctions between voiced and 

unvoiced consonants tend to reflect timing differences, although there are also 

spectral consequences of voicing distinctions. More detail is given on the acoustic 

cues signalling consonant features in section 2.6.  

 

Measures of feature-specific information transmission are obtained by using a closed 

set consonant recognition task from which a consonant confusion matrix can be 

obtained. An example confusion matrix is shown in table 2.1.  Here stimuli are on the 

vertical axis along the left while responses are on the horizontal axis along the top. 
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Responses are given as total out of 100. Deviations from the diagonal line (given in 

bold) represent errors. It is possible to derive an analysis of perceptual errors in terms 

of phonological feature and from this to infer how different acoustic speech cues are 

being processed.  To take an example, when the phoneme /b/ is presented (seen on the 

y-axis), 96% of responses are correct whereas 4% of responses are incorrect, namely 

the phoneme /d/.  This represents a place of articulation error, but not a voicing or 

manner error (both /d/ and /b/ are voiced stops, the only difference is that  /d/ is 

alveolar in place whereas /b/ is bilabial).  The simplest feature-specific measure that 

can be used is therefore percentage correct. In this case, if all other phoneme response 

replicated the same error pattern then the result would be 100% correct for voicing 

and manner but 96% correct for place.  

 

Table 2.1. Example consonant confusion matrix with 15 consonant alternatives.  

 b d g w j ɹ l v z ʤ m n p t k 
b 96 4 0 0 0 0 0 0 0 0 0 0 0 0 0 
d 0 89 4 0 0 0 0 0 4 0 0 0 0 4 0 
g 7 74 4 0 0 0 0 0 0 0 0 0 4 7 4 
w 0 0 0 19 0 56 19 0 0 0 7 0 0 0 0 
j 0 4 0 0 15 0 37 11 0 7 7 0 0 0 0 
ɹ 0 0 0 7 0 70 22 0 0 0 0 0 0 0 0 
l 0 0 0 7 0 11 56 7 0 0 11 0 0 0 7 
v 0 0 7 0 0 0 0 67 0 0 0 0 19 0 7 
z 0 4 0 0 0 0 0 33 33 0 0 0 0 0 0 
ʤ 0 4 48 0 4 0 0 0 0 41 0 0 0 4 0 
m 0 0 0 0 0 4 22 0 0 0 74 0 0 0 0 
n 0 0 0 0 0 0 19 4 0 0 70 7 0 0 0 
p 0 0 0 0 0 0 0 0 0 0 0 0 96 0 4 
t 0 0 4 0 0 0 0 0 0 4 0 0 0 70 4 
k 0 4 0 0 0 0 0 0 0 0 0 0 15 33 48 
 

Because different features have different chance correct scores, the use of the 

percentage correct by feature is problematic if the intention of the researcher is to 

compare perception of different features. For example, in English, consonants are 

either voiced or unvoiced, and therefore this feature has two levels. By contrast, 

different categorisation schemes for manner can yield between four and seven manner 

categories.  Therefore, the same proportion of errors for these two features must be 

interpreted differently and if proportion correct for each feature is used, the 
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interpretation of results is cumbersome. A more sophisticated approach, which is used 

as a standard measure in consonant recognition analysis in CI users, is information 

transmission by feature. This measure allows for differences in the chance level 

across feature and thereby facilitates a more appropriate comparison of perception 

across features. The approach was first proposed by Miller and Nicely (1955). In the 

study 16 consonants in the /aCa/ vowel environment, presented by a female speaker,  

were presented to NH listeners at varying signal-to-noise ratios (SNRs).  They 

analysed the pattern of consonant confusions by listening condition using five a priori 

consonant features, namely voicing, nasality, affrication, duration and place of 

articulation.  The authors found marked differences in information transmission 

across the five features as a function of SNR, with place being most susceptible to 

noise interference. 

 

Miller and Nicely’s approach to consonant recognition testing and consonant 

confusion data analysis remains highly influential: both their calculation of 

information transmission and the use of a VCV consonant confusion task with the 

/aCa/ vowel environment have been used in almost all studies of consonant feature 

recognition in CI users or AMs. Wang and Bilger (1973) proposed a refinement of the 

original method, called SINFA (sequential information transfer) analysis, a statistical 

technique similar to multiple regression which allows analysis of confusion patterns. 

The authors proposed a recursive method for partialling out the independent 

contributions of different phonological features. This constituted a series of 

“iterations”. The first iteration derives the unconditional transmitted information 

estimated for each feature in the proposed feature system. This normalizes the 

features for inequalities in stimulus feature information and is equivalent to the 

information transmission measure proposed by Miller and Nicely (1955). Generally, 

this has been the approach used in CI and AM consonant feature transmission studies, 

although Xu et al. (2005) did make use of multiple iterations of SINFA analysis. 

However, interpretation of consonant confusion data analyses in this way can be 

difficult, as the same feature may be optimally transmitted with different numbers of 

iterations in different conditions.  
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Each of these three approaches to analysis of consonant confusion data (simple 

percentage correct, information transmission, or multiple-iteration SINFA analysis) 

has potential advantages: A simple measure of percentage correct could provide lower 

variability with small subject numbers, while use of a multiple-iteration SINFA 

approach can reduce the effect of correlation between features. However, the 

approach in the relevant literature has been to use the information transmission 

measure (e.g. a single iteration of SINFA), as defined by Miller and Nicely (1955). 

This approach is taken in the present work, to optimise comparison against other 

relevant studies, although this does not contradict the possible benefits of alternative 

approaches: 

2.1.2 Consonant recognition in quiet 

To understand consonant recognition in CI users, it is first necessary to be able to 

describe how it differs from NH listeners.  By “how” is meant “what pattern of feature 

error pattern?”  Hence two questions can be addressed: 

 

• How does consonant recognition differ between CI users and normal-hearing 

listeners? 

• What effect does noise have on consonant recognition in CI users? 

 

Additionally, the relative importance of spectral and temporal resolution was raised in 

relation to CI users’ consonant recognition: Hence: 

 

• Are deficits in consonant recognition in CI users due primarily to interference 

with temporal processing, with spectral processing, or equally with both? 

 

More broadly, it is not adequate to simply characterise abnormalities in CI users’ 

consonant recognition in quiet and noise without then defining: 

 

• What factors affect consonant recognition in CI users?  

 

With regard to the first question, the relevant literature shows that, first of all, 

consonant recognition in CI users is markedly worse than in NH listeners (even in 

quiet and even in “better listeners”) and, second, that place of articulation perception 
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in consonants in CI users is significantly worse than manner or voicing perception, to 

a far greater extent than is the case with NH listeners. Every study that has evaluated 

CI users’ consonant feature information transmission has found that perception of 

place of articulation is poorer than manner and voicing in quiet (Donaldson and 

Nelson, 2000; Dorman et al., 1991; Van Tasell et al., 1992; Dorman et al., 1990; 

Dorman et al., 1991; Dorman, 1995). Figure 2.3 shows performance across a number 

of studies for voicing, place and manner in quiet. (Studies included in the chart are 

restricted to those studies in which CI users’ consonant recognition abilities were 

tested and analysed in terms of information transmission of consonant features.) The 

figure also includes data collated by the author for over 60 adult CI users from the 

South of England Cochlear Implant Centre (SOECIC). Two further details of these 

studies should be noted: first, all the studies used performance in quiet and, second, 

with the exception of Geurts and Wouters (1999), all studies undertook consonant 

recognition measures using VCV nonsense syllables of the form /aCa/, e.g. where the 

vowel /a/ precedes and follows the target consonant.  Data are presented for the “best” 

performance conditions for those studies where comparisons of different listening or 

processing parameter conditions were undertaken. 
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Figure 2.3. Consonant voicing, place and manner transmission from studies of CI user 

performance 
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The accompanying table 2.2 shows further details of the studies, although the table is 

not fully comprehensive in terms of the many variations across studies, which differed 

in other aspects of consonant confusion analysis, e.g. choice and number of stimuli, 

number of repetitions per stimulus, male vs. female vs. mixed speaker and number of 

tokens per speakers (although it is important to note almost all studies cited used 

consonant recognition in the /aCa/ vowel environment). Moreover, studies varied by 

subject parameters, e.g. CI devices, processing strategies and baseline speech 

perception abilities. Given the heterogeneity of both stimulus and subject 

characteristics across studies, it is interesting that the “worse place performance” 

pattern of results is so consistent. Although absolute levels of transmission vary 

between the studies, relative transmission across features is less variable. Moreover, it 

should be noted that NH listeners show transmission levels approximating 100% for 

equivalent stimuli in quiet and therefore none of the features can be said to be 

transmitted “normally”, at least when averaged across a group of CI users. 

 
Table 2.2. Parameters for data sets in figure 2.3. (Further details of implant types are given in 
2.3) 
Study Parameters Method Implant 
Fu and 
Shannon 2000 

500 pps/ch x 4 
CIS 

16AFC,aCa, 2 tokens x 2 reps, 
mixed gender N22 

Loizou and 
Poroy 2000 

2100 pps/ch x 6 
CIS 

20 AFC, averaged across aCa, iCi, 
uCu, female MED-EL 

Geurts and 
Wouters 1999 CIS 

averaged across aCa, iCi, uCu,initial 
consonants, mixed gender LAURA 

Munson et al 
2003, better 
performers mixed 19AFC, aCa, mixed gender N22, Clarion 
Munson et al 
2003, worse 
performers mixed 19AFC, aCa, mixed gender N22, Clarion 

Verschuur 2005 
>1500pps/ch, 12 
channels 20AFC, aCa, female MED-EL 

SOECIC mixed 20 AFC, aCa, female N24, N22, MED-El 
 

Several authors have suggested that this discrepancy between place and 

manner/voicing perception can be explained by the fact that CI users' spectral 

resolution is relatively poor compared to that of NH listeners (Dawson et al., 2000; 

Dorman and Loizou, 1997; Dorman et al., 2000; Loizou et al., 1999; Loizou et al., 

2000b), whereas temporal processing is less impaired when compared to NH 

listeners’ abilities (Busby et al.; 1993;Hescot et al.; 2000;Shannon, 1992).  However, 

a distinction should be made between underlying psychophysical capacity as against 
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information loss associated with CI processing. Both CI processing and 

electrical/neural interface factors may be implicated in poor place of articulation 

transmission.  Spectral resolution is reduced by the way in which the CI transforms 

the signal into a relatively small number of envelope values (up to 22 depending on 

device), but spectral information could also be further affected by spread of excitation 

in the electrical/neural interface (these factors are discussed in 2.3.2 and 2.4.1). 

 

Although the research literature has emphasised poor place performance, it is still 

worth noting that voicing and manner are still poor compared to normal performance. 

NH listeners obtain near to 100% in the listening conditions of the tests (e.g. in quiet 

at 60 dB SPL or greater). Therefore, if manner and voicing do rely on temporal 

envelope information then it follows that temporal envelope perception must also be 

impaired in CI users compared to NH listeners, whether because of information loss 

due to CI processing, the electrical/neural interface or the central auditory nervous 

system.  

2.1.3 Consonant recognition in noise 

For CI users, background noise has a deleterious effect on speech perception (Dorman 

et al., 1998a; Fetterman and Domico, 2002) although the same is true for NH listeners 

or hearing aid users, albeit to a lesser extent.  For hearing aid users and NH listeners, 

upward spread of masking plays a particularly important role in reducing speech 

intelligibility in background noise, although other factors such as reduced frequency 

resolution may also play a role (Moore, 1996).  CI users generally start to become 

worse at sentence recognition with SNRs of +10 or +15, whereas for NH listeners or 

even hearing aid users speech perception is robust up to negative SNRs. There is 

some evidence regarding difference in interference with different noise types, 

although these studies do not provide data about specific consonant features: Nelson 

et al. (2003) found that CI users’ sentence perception was worse with modulated 

speech-like background noise compared to stationary noise, whereas the reverse is the 

case for NH listeners. This was hypothesised to be due to CI users’ inability to use 

temporal modulations to achieve release from masking. Fu and Nogaki (2005) also 

found that CI users did not show the same release from masking with modulated noise 

as is shown in NH listeners. 
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A crucial question is the extent to which impaired spectral, or impaired temporal, 

processing is to blame in the deterioration of performance in noise by CI users. 

Spectral resolution for CI users effectively means comparison of stimulation levels 

between different channels (Loizou and Poroy, 2001). Ability to make these 

comparisons might be affected because between-channel differences would be 

somewhat blurred by noise. Moreover, the picture is complicated by the fact that 

many spectral cues to consonant recognition are dynamic, that is they represent 

spectral changes over time. Dorman et al. (1998b) found that a larger number of 

channels (12 channels) were required to obtain maximum performance on sentence 

recognition in noise than was required for the equivalent task in quiet (5 channels), 

although it should be noted that these data were obtained from NH subjects listening 

to an AM. Fu et al. (1998) and Fu and Nogaki (2005) suggested that noise interfered 

with spectral processing in CI users. However, it is also possible that within-channel 

temporal processing is also implicated and that the reduced temporal cues mean that 

reliance on spectral resolution is increased.   Analysis of consonant feature 

transmission provides a method for determining the relative importance of temporal 

and spectral resolution in limiting CI users’ speech perception in noise. There is 

almost no evidence on CI users’ consonant feature recognition in background noise, 

despite the fact that this type of evidence could be helpful in understanding the 

mechanism of noise interference in CI users. In NH listeners, consonant recognition in 

noise is robust down to quite negative SNRs. Moreover, place of articulation 

perception is more easily impaired by noise interference than voicing or manner 

perception: For example, Parikh and Loizou (2005) found few voicing errors at –5 dB 

SNR with either speech-shaped or babble noise in NH listeners, although there were a 

number of place errors.  They showed that the place errors were due largely to a 

perceived shift in the burst frequency of stop consonants with the addition of noise, 

which had the effect of masking the location of the burst. By contrast, Friesen et al. 

(2001) showed a similar effect for noise interference with voicing transmission 

compared to place or manner in a group of CI users, although this varied with channel 

number: at lower channel numbers place was more susceptible to noise interference 

while with a larger number of channels voicing appeared to be more susceptible to 

noise interference. This was the only study identified to look at noise interference for 

different consonant features in CI users, but data were not included in figure 2.3 

because the authors only reported % correct rather than information transmission 
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values (it is also worth noting that the main focus of the study was channel number). 

This suggests a different pattern of noise effects, and therefore a difference in the 

mechanism of noise interference, between NH listeners and CI users.   

2.1.4 Types of information loss and consonant recognition abilities in CI users 
The important question for the present study is how other authors have attempted to 

explain deficits to consonant recognition. Some authors have suggested that deficits in 

consonant recognition can be explained by electrical/neural interface information loss. 

Valimaa et al. (2002a and 2002b) analysed patterns of phoneme errors for vowel and 

consonants taken from an inventory of the Finnish language (because of language 

differences this study is not included in figure 2.3 and table 2.2; in any case the 

authors did not analyse data by information transmission because they used an open 

set task).  They found that Finnish CI users found manner of articulation easier to 

perceive than place.  They also found that alveolar and velar consonants were 

identified more accurately than bilabial consonants, and noted a tendency to confuse 

consonants with the closest consonant with a higher F2 transition onset frequency.  A 

potential explanation of this might be the upward shift in perceived frequency as a 

result of the relatively shallow insertion depth of the electrode array (Ketten et al., 

1998), although another explanation might be that electrical channel interaction shows 

a characteristic of creating greater unwanted spread of excitation in the basal direction 

(see section 2.4). 

 

Some researchers have explicitly supported the idea that consonant recognition by 

better CI users can be explained by CI information loss. Summerfield et al. (2002) 

suggested that impairments to fricative place of articulation identification in children 

using the Nucleus 22 device could be explained by the reduction of formant transition 

information consequent to CI processing. Importantly, the authors supported this 

hypothesis by showing that performance (in a phoneme recognition task- 

discrimination of /s/ vs. /ʃ /) for the best CI users equated to the level of performance 

obtained with an AM. Put in the language of the conceptual model in chapter 1, the 

authors suggested that deficits of place of articulation perception , for fricatives at 

least, could be explained by CI processing rather than electrical/neural interface 

factors but that the latter factor (along with possibly central factors) played a role for 

worse-performing CI users.  
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Teoh et al. (2003) attempted to link performance with acoustic phonetic analysis of CI 

output, using the SCI-LAB programme (Lai et al., 2003).  The most notable finding 

from this study was that CI users could not make use of formant transition 

information and the authors hypothesised that this was due to loss of information 

introduced by SPEAK speech processing. Munson et al. (2003) investigated the 

relationship between overall performance in a group of 30 CI users and consonant 

feature transmission.  Of the 30 CI users, 12 were users of the Nucleus 22 device 

implementing the SPEAK processing strategy and 18 were users of the Clarion device 

implementing a range of strategies (13 used CIS, four used PPS and one used SAS- 

see 2.3 for a description of speech processing strategies). The authors suggested that 

the relative performance for different consonant features did not differ between better 

and worse performers (overall performance being defined by total percent correct 

score on the consonant recognition task), i.e. the same pattern applied to both better 

and worse performers with percentage information transmitted being better for 

voicing and manner than place. The authors suggested, on the basis of this, that it is 

more likely that CI processing information loss may explain the relative transmission 

of features, while individual differences related to absolute performance levels. 

However, the authors’ findings do not exclude the possibility that better performers’ 

perceptual limitations were due to both processing loss and electrical/neural interface 

information loss.  

 

In order to be able to differentiate the effects of processing and the electrical/neural 

interface, it is useful to distinguish between the performance of “better” CI users and, 

second, variations in CI user performance.  If a group of CI users all use the same CI 

signal processing but there are variations in performance, it follows that these 

variations must be accounted for by variations in the later stages of information 

processing in figure 1.1 and not in the processing itself. There is a modest amount of 

evidence that variations at the electrical/neural interface could explain differences in 

performance between individuals (these factors are outlined in section 2.5). However, 

for the best users (i.e. those obtaining the highest level of auditory-only speech 

perception skills) the question arises as to whether performance limitations are due 

entirely, or only in part, to CI signal processing, as opposed to later stages of the 

chain. Given that different consonant features rely on different underlying perceptual 
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processes, it may be that the relative importance of CI processing and electrical/neural 

interface information loss will not be the same for each consonant feature. 

 

2.1.5. Overview of state of knowledge and knowledge gaps 

The general state of evidence about consonant feature transmission in CI users can be 

summarised as follows: 

• CI users show worse place transmission than voicing or manner transmission 

in quiet when tested using the /aCa/ vowel environment. This finding is robust 

across a number of studies that have looked at different CI devices and test 

paradigms. 

• However, voicing and manner transmission in quiet by CI users are still not at 

levels achieved by NH listeners (e.g. approaching 100%), at least as shown in 

the large majority of studies. 

• Poorer place performance is thought to be because spectral resolution is 

impaired relative to temporal/envelope resolution, at least with respect to the 

psychoacoustic processing needed for accurate consonant recognition in quiet 

by CI users. However, the relative contribution of information loss from CI 

processing vs. electrical/neural interface is unclear. 

• Studies looking at consonant feature recognition in CI users have tended to 

conflate users of different devices, making it difficult to derive conclusions 

which are specific to a particular set of processing characteristics. 

• There is very little evidence as to the pattern of consonant feature transmission 

for features other than voicing, place and manner. 

• There is very little evidence as to the pattern of noise effect across features. 

• There are marked variations in CI user performance but the reasons for this are 

not fully understood. According to the one study evaluating variations in 

consonant feature perception across users, variation between users is the same 

for the categories voicing, place and manner in quiet (e.g. worse users are 

equally worse than better users across these different features). The corollary 

of this is that no specific mechanism, e.g. spectral or temporal, can be 

identified to explain between-user variation. 
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It is clear from this overview of the available evidence on relative consonant feature 

transmission in CI users that there is a need for further detailed evidence of 

transmission of consonant features, particularly in background noise also, and 

probably using alternative vowel environments to /aCa/ to ensure that findings are not 

limited to a specific vowel context.  Additionally, there is the need for further research 

to clearly identify the extent to which CI processing, as opposed to the 

electrical/neural interface, can explain performance limitations, and to do in such a 

way that is specific for each consonant feature (given that different features can be 

related to somewhat different underlying perceptual processes-see 2.6). The 

remaining question “what factors affect consonant recognition in CI users?” is 

answered in sections 2.2 to 2.4.  

2.2. CI signal processing 

This section describes the broad principles of CI signal processing in current CI 

devices. Because the original experimental work in this thesis relates exclusively to a 

single CI device, the Nucleus 24, the description of CI function focuses primarily on 

the details of this device. However, where appropriate, a discussion of alternatives 

provided by other devices is given. Details of processing in the Nucleus 24 device are 

obtained from Cochlear (2004). This section is necessary as background to the 

subsequent section on empirical evidence about effects of signal processing on 

perception and to the experimental work reported in subsequent chapters. 

 

All CIs comprise a standard set of hardware components (the description here is 

relevant to all CIs manufactured since 1996). The first component is the microphone, 

which may or may not be coupled to a speech processor. The speech processor 

converts microphone output to an electrical signal which can be processed in 

electrode array by analysing incoming signal into frequency domain and extracting 

the envelope of each frequency component (of which more details below). The signal 

from the speech processor is transmitted by a transmitting coil which converts signal 

into a radio frequency signal for transcutaneous transmission. The receiver-stimulator 

converts the incoming RF to an electrical signal for the electrode array, which in the 

case of the Nucleus 24 devices, comprises 22 intracochlear electrodes.  Additionally, 

current CI devices have one or two extracochlear electrodes which act as reference 

electrodes. In the case of the Nucleus 24, one extracochlear is part of the receiver-
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stimulator while the other one provides an alternative path and is lodged in the 

mastoid bone.  The majority of CI users have devices from one of three 

manufacturers: Cochlear (who manufacture the Nucleus 22 and Nucleus 24 devices), 

MED-EL (who manufacture the COMBI-40+ and PULSAR devices) and Advanced 

Bionics (who manufacture the Clarion device). 

 

Figure 2.4 shows the signal processing stages in a multi-channel device such as the 

Nucleus 24. Once the signal is picked up by the microphone, the first processing stage 

is the input stage, or front end. The measured acoustic signal is converted to a digital 

signal. High-frequency emphasis may be added before or after analogue-to-digital 

conversion (ADC). 
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In the Nucleus 24 device, the incoming signal is picked up by a microphone which 

has a characteristic pre-emphasis frequency response (Appendix A gives a description 

of how the characteristics of the Nucleus 24 Sprint microphone were measured and 

gives the frequency response in figure A1). An anti-aliasing filter is set to 8,000 Hz 

and the signal is digitized at a sampling rate of 16,000 Hz with a resolution of 8 bits. 

The main consequences of ADC are therefore the loss of most information above 

8,000 Hz and the noise introduced by quantization. The maximum possible 

quantization error can be calculated as 0.29* number of steps (256 for 8 bits), e.g. 

1/900 the size of the signal and therefore can be ignored as it is so small. 

 

The subsequent stage of CI processing is frequency analysis and envelope extraction. 

This can be done via a bank of band-pass filters (Lawson et al., 1993), in which case 

envelope information is extracted by rectification and smoothing of the filter bank 

output.  Envelope information can also be derived by implementing the Hilbert 

transform (Anderson et al., 2002).  However, the Nucleus 24M uses a Fast Fourier 

Transform (FFT) approach whereby envelopes are derived by recombining and 

weighting FFT bins in accordance with the desired number of channel outputs.  The 

Nucleus filter bank employs a fixed 128-point FFT.  This yields bin centre 

frequencies that are linearly spaced at multiples of 125 Hz. A Hann window is applied 

and gives each bin a 6 dB bandwidth of 250 Hz.  Because the resulting number of bins 

(64) exceeds the desired number of channels (up to a maximum of 22), the bins are 

combined by summing powers to provide a set of frequency bands (maximum 22) as 

per figure 2.5.  The envelope of each filter is calculated as the weighted sum of the 

corresponding FFT bin powers where the weights determined the frequency 

boundaries of the bands. Each bin appears in only one band, and the number of bins 

combined to form each band is determined by the total number of channels.  The 

resulting filter bank is shown in figure 2.5. Bands are spaced linearly for low 

frequency/apical channels and logarithmically for high frequency/basal channels.  
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Figure 2.5. FFT filterbank used for Nucleus 24 processing with ACE or CIS speech processing 

strategy. Reproduced with perimission from Laneau et al. (2006) 

The two main approaches to filtering, i.e. FFT vs. time-domain band-pass filter banks, 

differ in some respects, although both approaches yield similar outputs, e.g. a 

relatively small number of channels as compared with the normal hearing mechanism, 

in which envelope information is coded but temporal fine structure is discarded. 

However, the two approaches may differ in terms of their implications for temporal 

coding of the signal.  With the IIR filterbank approach, envelopes are derived by 

rectifying and smoothing the outputs of each filter.  This means that the temporal 

information coded from the incoming signal is effectively limited by the temporal 

response of the smoothing filter. The nominal low-pass cut-off of the smoothing filter 

is referred to as the “envelope cut-off frequency”. With the FFT approach, as 

implemented in the Nucleus 24 system, increases in stimulation rate yield increasing 

overlap between FFT analyses. A consequence of both filter bank approaches is that 

the information provided within each channel is envelope information only.  

Variations in level are coded via a series of pulses which are fixed in presentation rate 

within each channel. Consequently, different frequency components that fall within 

one channel cannot be accurately resolved.  
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Each processing channel output is coded to a corresponding electrode channel at the 

channel mapping stage. However, a further consideration is the approach to sampling 

and selection of these outputs. The general approach can be distinguished by different 

“speech processing strategies”: with fixed channel strategies, all filter output samples 

are selected, and corresponding channels stimulated in an interleaved fashion (the 

interleaving is used to minimise proximity between stimulated electrodes and 

therefore channel interaction (see Boex et al. (1996)). With peak-picking strategies, 

only a subset of channels with the greatest amplitudes are selected; this means that a 

different subset set of channels may be stimulated with each run (Dorman et al., 

2002).  Each envelope is then coded to the corresponding electrode channel. The 

Nucleus 24 currently implements two peak-picking strategies, the Advanced 

Combination Encoder (ACE) and Spectral Peak (SPEAK) strategies (Skinner et al., 

2002; Dillier et al.,1995). Additionally, the Nucleus 24 implements the fixed-channel 

Continuous Interleaved Sampling (CIS) strategy, although the specific 

implementation is somewhat different from equivalent implementation in the MED-

EL device or as originally envisaged by Wilson et al. (1991) given the use of a 

different filterbank approach. 

 

Once sampling and selection of filter outputs (envelopes) has taken place, envelope 

fluctuations are coded as variations in stimulus level (current * duration).  Minimum 

and maximum permissible electrical stimulation levels are pre-determined by 

psychophysical measurements, in order to determine the lowest audible current level 

and the highest comfortable current level, for each channel.  A “channel” means a 

particular current path, from one of the intracochlear electrodes to a reference 

electrode.  The current path may be from the active electrode to an extracochlear 

electrode (monopolar), to another intracochlear electrode (bipolar) or to all other 

intracochlear electrodes (common ground). The dynamic range of envelope signal is 

compressed in order to map into the available electrical dynamic range.  It should be 

noted that the term “MAP”, is used to describe a unique set of processing parameter 

values used by an individual CI user, including values of minimum permissible 

current levels for each electrode (known as “T-levels”, or electrical threshold levels) 

and maximum permissible current levels (known as “C-levels”, or electrical 

maximum comfort levels. The terminology of MAPs, T-levels and C-levels adopted 
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has tended to be used specifically by Cochlear Corporation, who manufacture the 

Nucleus 24 device, and is adopted here for convenience. 

2.3. Effect of CI signal processing characteristics on speech 

perception 

This sections details the likely sources of information loss associated with different 

aspects of CI processing and outlines the main research evidence in connection with 

these different areas. Again, the focus is on consonant feature recognition and the 

Nucleus 24 device, where possible. 

2.3.1 Input stage characteristics 
As noted, the main transformations that occur at the input stage of processing are the 

removal of higher frequencies due to the anti-aliasing filter necessary before ADC, 

emphasis to higher frequency components (and relative reduction in low-frequency 

components) due to pre-emphasis, and a reduction in amplitude information due to 

signal compression and limited dynamic range. The anti-aliasing filter used prior to 

ADC determines the absolute frequency range provided by the implant, which is 

limited to half the sampling frequency. There is relatively little evidence to determine 

whether total frequency range has a bearing on performance, although Loizou et al. 

(2000b) found that changes in upper frequency range from 6700 to 9900 Hz had no 

effect on phoneme recognition. From the point of view of the present work the 

important point to note is that devices vary in terms of total bandwidth provided and 

that AM studies (discussed in 2.5) vary widely in terms of the frequency range of the 

signal.  It is therefore important to consider variations in other parameters in the 

context of a particular frequency range, although no further consideration is given to 

whether overall range is an important factor in itself.  

 

Amplitude resolution and dynamic range are related factors that are related to input 

stage processing and could impact on performance.  Some form of signal compression 

is needed to map the input acoustic dynamic range onto the available electrical 

dynamic range, which is in the order of 10-15 dB. However, this parameter is limited 

in part by the listener’s available dynamic range (an aspect of the electrical/neural 

interface rather than CI processing); the larger the individual’s dynamic range, the 

less compression that will be required. However, Nelson et al. (1995) have suggested 
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that the main limitation to amplitude coding is to do with the number of discriminable 

amplitude steps rather than the absolute range. The best CI users can discriminate 40 

to 50 amplitude steps (Nelson et al., 1995) whereas the number of steps defined by 8-

bit quantization, as implemented in Nucleus 24 processing, is 256.  This suggests that 

bit rate and concomitant quantization is unlikely to be a significant limiting factor in 

determining CI users’ performance. A more important variable is likely to be the 

amplitude range coded by the CI and the consequent degree of audibility for quiet 

components in speech. The Nucleus device implements a fixed 30dB input dynamic 

range although this is modified by a number of more complex approaches to AGC, 

designed to optimize dynamic range across frequencies such as Adaptive Dynamic 

Range Optimization (ADRO)(Blamey, 2005). In the present study the standard fixed 

input dynamic range was used. 

 

A further important aspect of input stage processing is pre-emphasis, e.g. the relative 

amplification of higher frequencies in the input signal. Pre-emphasis is likely to have 

a bearing on information transmission because of the increase in relative audibility of 

higher frequency spectral components.  An unpublished MSc project supervised by 

the author of the present study did show that the addition of pre-emphasis with 6 dB 

per octave roll-off characteristics improved NH listeners’ VCV performance using an 

AM. The researcher found a small but significant improvement in both place and 

manner transmission in the /aCa/ vowel environment with the addition of pre-

emphasis. It should be noted that the study used the same 8-channel CIS AM as was 

used in experiments 1 and 2, reported in chapter 4. 

2.3.2 Filter bank spectral characteristics 

A number of variables in filter bank design and implementation have been evaluated 

in CI users.  Total spectral bandwidth, which could be considered an aspect of 

filterbank as well as input stage design, has been considered in the previous section.  

In the same study (Loizou et al., 2000b) no effect was found no effect on consonant 

recognition with variations in the order of the Butterworth filters. They used a 4th, 8th 

and 10th order filter (with corresponding overlaps of between –20 dB, -45 and –60 dB) 

in users of the Med-EL CIS strategy.  No differences in word or consonant 

recognition were found with the different filter slopes/orders.  
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A related consideration is the relative allocation of different frequencies to different 

electrode channels.  In practice, the majority of implant devices are based, loosely, on 

what is known about critical bands in NH listeners and therefore tend to map narrow 

frequency ranges to apical (low-frequency) electrodes and wider frequencies, often 

with logarithmic increase, to basal (high-frequency) electrodes. It is important to 

distinguish studies in which total spectral bandwidth is altered from those in which 

the relative allocation of different frequency bands is altered (within a fixed total 

bandwidth). An example of the latter study is Friesen et al. (1999), who found that a 

range of frequency allocations led to similar consonant recognition patterns in a group 

of Nucleus 22 users. However, Fu and Shannon (2002) altered MAPs for three 

Nucleus 22 users by shifting frequency allocations and found significantly reduced 

performance on a number of speech recognition measures, including place 

transmission and vowel recognition. However, it should be noted that this study 

altered total signal bandwidth rather than keeping this variable fixed and altering 

relative allocation of bands across electrodes.  In more general terms, Laneau et al. 

(2004) suggested that current filterbank design is a limiting factor on performance and 

that CI user performance could be improved by alternative approaches. The authors 

examined the effect of filter bank design on perception of voice fundamental 

frequency (F0) and found that the current ACE filter bank provided very poor spectral 

cues to F0 discrimination but that it was possible to improve spectral representation of 

F0 via filterbanks with a narrower bandwidth at lower frequencies.  

 

A critical consideration is the number of frequency channels provided by the CI 

processor. A number of studies into the effect of CI channel number have shown that, 

as channel number is increased to the maximum number available (e.g. 22 with a 

Nucleus 24 device).Interestingly, there is a convergence of evidence from CI user and 

AM studies indicating that the performance asymptote obtained with CI users, who do 

not generally improve on any speech perception measure beyond about 8 channels, is 

matched by AM studies in some cases.  Evidence of the performance asymptote 

comes from a number of studies showing that CI users' performance does not improve 

beyond the level of performance obtained with between 6 and 10 active channels. (; 

Dorman and Loizou, 1997; Dorman and Loizou, 1998; Friesen et al., 2001; Loizou et 

al., 1999). For example, Friesen et al. (2001) found that, with users of the Nucleus 22 

and 24 devices, with 20 and 22 active channels respectively, no significant 
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improvements were identified beyond the range 6-10 channels.  However, this effect 

varies with which performance measure is used. Dorman and Loizou (1997) found a 

higher asymptote for vowels compared to consonants, for phonemes compared to 

sentences and for stimuli in noise compared to in quiet.  This disparity between 

different measures must relate to the degree of information redundancy available, e.g. 

with context-rich information such as sentences than any form of information 

reduction will have a smaller effect than on nonsense syllables and also the 

importance of spectral resolution. Vowel perception is reliant on spectral resolution to 

resolve the formant pattern that distinguishes between vowels whereas consonants 

rely more on temporal cues, particularly to manner distinctions.  Other studies have 

used AM stimuli to determine whether the performance asymptote occurs dues to 

signal processing limitations (Dorman et al., 1997b; Dorman et al., 1998b; Faulkner et 

al., 2001; Dorman et al., 2000).  These studies have generally found equivalence in 

performance between data obtained with AMs using around 6 to 8 channels and data 

obtained from CI users. 

 

The results of the various studies, both with real CI users and with AMs, have been 

consistent across devices with rather differing characteristics. It appears that there is 

little benefit to increasing the number of electrode channels above about 8 for CI 

users. This limitation in spectral resolution achieved by CI users is thought to be due 

to cross-channel current spread, known as channel interaction (Throckmorton and 

Collins, 2002) (see 2.5.1 and 2.6.4). However, there are knowledge gaps from the 

literature on channel number. First, the majority of studies have used fixed-channel 

strategies, and there is little evidence about the performance asymptote for peak-

picking strategies (a point relevant to the present study as the majority of Nucleus 24 

users use peak-picking strategies). More crucially, the assumption that the 

performance asymptote is due to spectral channel interaction is based on a comparison 

between CI user performance and AM performance using varying numbers of 

channels.  However, a larger number of channels with greater overlap between 

channels might not have the same perceptual consequences as a smaller number of 

channels without overlap.  It should be possible to use an AM in which the envelope 

outputs are kept fixed but channel overlap is varied, to determine if this is the crucial 

variable determining the channel number asymptote.  This issue is discussed further in 

the context of AMs in section 2.6.4. 
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2.3.3 Filter bank temporal characteristics 
A number of CI processing factors come under the broad heading of “temporal”, but 

what they have in common is the notion of information being carried within a single 

channel and the associated ability of the CI to represent these changes accurately 

within the signals carried by individual electrodes. Until very recent innovations in CI 

processing, the majority of CIs have used envelope extraction. Envelope extraction 

strategies use a fixed rate of pulsatile stimulation in which within-channel energy 

changes are not coded as changes in pulse timing, but in variations in pulse level 

(corresponding to envelope fluctuations from the filter outputs, as described above). 

These strategies do not code the fine temporal structure of the band-specific signals. 

Recent work has attempted to utilise variations in pulse timing to represent fine 

temporal information (Nie at al., 2005), although one of the problems intrinsic to 

using variable pulse stimulation rate is the (avoidance of) simultaneous pulse 

presentation across channels, which is known to be associated with greater channel 

interaction (Boex et al., 2003).  In this study only envelope extraction strategies 

(specifically ACE and SPEAK as implemented in the Nucleus 24) are considered.  

 

It is important to determine whether the temporal information that is available via CI 

processing is adequate for speech perception and also whether temporal parameter 

changes, particularly stimulation rate, have an impact on speech perception in CI 

users.  The first question is therefore, how much temporal detail is required in the 

signal to lead to good speech perception? Steeneken and Houtgast (1980) suggested 

that low modulation frequencies carry the highest information load in speech.  

However, Rosen (1992) argued that higher-frequency temporal information is 

important for various critical aspects of speech perception. According to Rosen, 

temporal information in speech can be divided into three separate information sources 

varying by modulation frequency.  First, low-rate temporal information (below about 

50 Hz), termed envelope information, conveys basic amplitude variation in speech, 

and is important in signalling manner of articulation, voicing, vowel identity and 

suprasegmental information.  Second, temporal information between 50 and 500 Hz 

conveys periodicity information, e.g. information within this modulation range 

conveys whether the signal is aperiodic (normally unvoiced) or periodic (voiced), 

contributing to voicing, manner and suprasegmental information.  Third, higher-
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frequency information (600-10,000 Hz) is termed fine structure by Rosen, and the 

main contribution to speech intelligibility is to perception of place of articulation and 

also vowel quality. A proviso to this account is that, in practice, NH listeners cannot 

code temporal information beyond about 5 kHz and therefore it is likely that 

information higher than this frequency must be coded as spectral rather than temporal 

information (e.g. must be coded via the place rather than the volley mechanism). 

 

The question of how much temporal information CI users have access to has been 

addressed in some studies of temporal modulation transfer functions (TMTF) by CI 

users. Steeneken and Houtgast (1980) introduced the concept of the TMTF as a way 

of determining the temporal response of an acoustic system. The concept can be 

applied in both the physical and psychophysical domains. The original work by 

Steeneken and Houtgast (1980) defined the TMTF as a physical measure of 

modulation depth as a function of modulation rate, but the term is also applied to the 

measurement of modulation detection thresholds as a function of modulation rate as in 

Galvin and Fu (2005). Shannon (1992) measured TMTFs in CI users in three ways: 

detection of amplitude modulation, detection of low-frequency sine waves and 

detection of beats in two-tone complexes. For each of the three tasks the TMTF was 

derived.  The response pattern of the TMTF was similar irrespective of which of the 

three tasks was used.  The CI users showed TMTFs with a mean cut-off frequency of 

140 Hz with a very sharper fall-off above the cut-off frequency. The TMTF varied as 

a function of stimulus level.  With NH listeners modulation detection is independent 

of stimulus level across the majority of the dynamic range (Moore and Glasberg, 

2001).  By contrast, the subjects in Shannon's study had worse temporal modulation 

detection thresholds the lower the stimulus level. 

 

The problem that should be noted in the context of the present study is that it cannot 

be inferred from a psychophysically measured TMTF (as with any other perceptual 

measure) whether restrictions in temporal information are due to CI processing 

information loss or electrical/neural interface information loss. The fact that there was 

such variability in TMTFs across CI users suggest that the electrical/neural interface 

may play a part in accounting for temporal information loss. A crucial question for 
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this study is the amount of temporal information available to the CI user as a 

consequence of CI processing (as opposed to the subsequent information loss possibly 

associated with the electrical/neural interface- see 2.4.3). A particular focus of the 

literature has been the perceptual effect of changing stimulation rate and therefore it is 

important to determine extent to which temporal information changes with stimulation 

rate, e.g. total number of pulses provided by the CI per second. In the present study 

the question is addressed with specific reference to the Nucleus 24 device. Therefore, 

a more detailed consideration of the temporal processing of the Nucleus 24 device is 

needed.  

 

Because the Nucleus 24 implements an audio sampling rate of 16 kHz and a fixed 

FFT length of 128 points, it undertakes 125 (=16,000/128) FFT analyses per second. 

The temporal response of the filter can therefore be approximated by a low-pass 

smoothing filter with a cut off at 125 Hz, with little information in the envelope 

available above this frequency (David Simpson, personal communication).  However, 

the Nucleus 24M is able to implement channel stimulation rates ranging from 250 

pulses per second per channel (pps/ch) to 1200 pps/ch (although note that the more 

recent device, the Nucleus Freedom, can implement channel stimulation rates up to 

3,500 pps/ch). However, the extent to which increases in stimulation rate within the 

available range genuinely increase the temporal envelope information available is 

unclear, as temporal information can only be increased by increasing the degree of 

overlap between subsequent FFT analyses (of the same sampled signal). Stimulation 

rate increases are achieved by increasing the overlap between subsequent FFT 

analyses such that the number of (overlapping) analyses is equal to the stimulation 

rate (Cochlear, 2002). Let us consider the example of changing from 250 pps/ch to 

500 pps/ch. For 250 pps/ch, the first stimulation frame analyses the first 128 samples, 

the second frame analyses points 65 to 194, and so on (e.g. there is an overlap of half 

the data points with each analysis). For 500 pps/ch, the second analysis uses points 33 

to 160, and so on (an overlap of 3/4 the data points from each analysis). Increases in 

analysis rate above 125 Hz without increases in auditory sampling rate (i.e. shorter 

analysis windows) or a decrease in FFT length means that there is little benefit in 

temporal detail for the envelope.  This suggests that the envelope bandwidth is 

effectively limited to 125 Hz, irrespective of analysis/stimulation rate, although a 
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small amount of increased temporal information may be consequent to higher degrees 

of overlap between FFT analyses. In order to determine this empirically, a series of 

objective temporal modulation transfer functions (TMTFs) were undertaken. 

Sinusoidally amplitude modulated (SAM) sinusoids of 250 Hz and 2000 Hz were 

used as input stimuli for signal processing using the NIC-STREAM Nucleus 

MATLAB toolbox simulation of Nucleus 24 processing. The choice of these two 

frequencies was motivated by the importance of the two frequency regions for 

different aspects of consonant recognition. Information for voicing, nasality and 

fundamental frequency for higher-pitch female or children’s voices occur is around 

250 Hz or lower while the important second formant for most vowels occurs (and 

associated second formant transitions for adjacent consonants) occurs near to 2000 

Hz.  

 

The two sine waves were sinusoidally modulated at 100% modulation depth at 

modulation rates from 25 to 250 Hz, in 25 Hz steps.  Modulation depth was measured 

for processed stimuli for three different stimulation rates (250 pps/ch, 900 pps/ch and 

2000 pps/ch). Stimuli were processed through a single-channel CIS strategy as 

implemented in the Nucleus 24 CI (described in detail in 3.3.2).  Figures 2.6 and 2.7 

show two examples of visual representations of electrode output. The difference 

between the two figures is the modulation rate- in both cases, the output of a single 

electrode channel is given for a  SAM 250Hz tone with a modulation depth of 100%. 

It can be clearly seen that, while for the SAM tone modulated at a rate of 25 Hz, the 

modulation depth approaches 100%, for the same stimulus modulated at a rate of 250 

Hz, the modulation depth is markedly affected at only 9% (modulation depth for a 

SAM pure tone can be simply defined as the ratio of maximum to minimum signal 

values, expressed as a percentage).  
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Figure 2.6. Electrode output for a pure tone modulated at 25 Hz through single channel CIS 

processing with a stimulation rate of 2000 pps. The input stimulus was a SAM tone with a carrier 

frequency of 2000 Hz, a modulation rate of 25 Hz and a modulation depth of 100%.  
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Figure 2.7. Electrode output for a pure tone modulated at 250 Hz through a single channel CIS 

processing with a stimulation rate of 2000 pps The input stimulus was a SAM tone with a carrier 

frequency of 2000 Hz, a modulation rate of 250 Hz and a modulation depth of 100%.  

 

Figures 2.8 to 2.10 show the full range of TMTFs measured for the three stimulation 

rates. 
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Figure 2.8. Temporal modulation transfer functions for two different carriers with single-channel 

CIS processing at a stimulation rate of 250 pps/ch with the Nucleus 24 processor. The original 

unprocessed signal was modulated at 100% modulation depth. 
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Figure 2.9. Temporal modulation transfer functions for two different carriers with single-channel 

CIS processing at a stimulation rate of 900 pps/ch with the Nucleus 24 processor. The original 

unprocessed signal was modulated at 100% modulation depth. 
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Figure 2.10. Temporal modulation transfer functions for two different carriers with single-

channel CIS processing at a stimulation rate of 2000 pps/ch with the Nucleus 24 processor. The 

original unprocessed signal was modulated at 100% modulation depth. 

 

It can be seen that modulation depth drops off markedly as a function of modulation 

rate, and that the pattern is very similar across stimulation rates and carrier 

frequencies. The pattern of TMTF data, showing a gradual decrease in modulation 

depth and a modulation depth around 70% at 125 Hz, is consistent with the hypothesis 

that, for a processor with a fixed FFT length and number of samples, the envelope 

bandwidth does not vary significantly with increased FFT overlap. For modulation 

rates less than 200 Hz, there appears to be a modest advantage for 900 pps/ch and 

2000 pps/ch over 250 pps/ch. However, for higher modulation rates even this small 

advantage disappears, at least up until the modulation rate is equal to the stimulation 

rate as in figure 2.10.  

 

The data, provided in figures 2.8 to 2.10 suggest that benefits to changing from lower 

to higher stimulation rates should be modest if present at all for the Nucleus 24 

processing system. It is therefore of interest to relate this finding to empirical 

evidence regarding the effect of stimulation rate, particularly in users of the Nucleus 

24 device. Vandali et al. (2000) evaluated sentence recognition in in  a group of 
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Nucleus 24 CI users. In this study, six users of the Nucleus 24M CI were tested in 

three different stimulation rate conditions: 250, 807 and 1615 pps/ch.  Users had take-

home experience with the different rate conditions within a cross-over design, with 

order of presentation of the three rate conditions randomised across subjects.  Other 

parameters used by the subjects were those normally used and outcome measures 

were tests of word and sentence recognition. The study failed to show a significant 

effect of stimulation rate and for some listeners even found deterioration in sentence 

recognition at higher rates. However, Holden et al. (2002) found that some Nucleus 

24 users obtained better performance with 1800 pps/ch compared to 720 pps/ch, albeit 

only at 50 dB SPL but not at 60 or 70 dB SPL, and only for two of the six subjects.  

Interestingly, Galvin and Fu (2005) found an improvement to modulation detection at 

low stimulus levels when using a lower stimulation rate (250 pps/ch compared to 

2000 pps/ch) in Nucleus 24 and Nucleus 22 users, although it should be noted that 

these differences were obtained via direct stimulation using a modulated pulse train, 

rather than for stimuli processed via the CI processor itself.  Taken together, these 

findings suggest that there is very little evidence of performance benefit with higher 

rates in the Nucleus 22 and 24 devices and even some evidence of performance 

reductions. The measurements reported above suggest that the reason for this is the 

absence of appreciable changes to temporal envelope sampling with increases in 

stimulation rate in the Nucleus device, due to the inherent limitations of combining a 

fixed FFT length with a fixed sampling rate. 

 

Systems other than the Nucleus CI implement IIR filterbanks followed by 

rectification and smoothing as with the CIS strategy in the MED-EL COMBI 40+ and 

CIS-PRO body-worn processor. In this case, it is possible to alter stimulation rate and 

envelope cut-off frequency (e.g. the low-pass cut-off of the smoothing filter) 

independently. It may be that the ability to increase the cut-off of the smoothing filter 

could lead to comparatively greater changes in temporal information transmission 

than is the case with devices such as the Nucleus 24 which use a fixed-size FFT 

approach. Recent literature suggests that both rate of pulsatile stimulation and 

envelope cut-off frequency may have an impact on consonant recognition, although 

these effects are highly variable between studies. Verschuur (2005) showed that there 

was little benefit to changing stimulation rate without changing envelope cut-off 
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frequency. In that study three different stimulation rates were used (400, 800 and 

>1500 pps/ch) but envelope cut-off was maintained at 400 Hz.  There were no 

differences in performance with consonant recognition measures, although there were 

improvements at the higher rates for sentence recognition, albeit only for 2 out of 6 

subjects.  

 

Fu and Shannon (2000) evaluated the effect of both stimulation rate and envelope cut-

off frequency on consonant and vowel recognition in users of a 4-channel CIS 

strategy with the Nucleus 22 device. The authors used an experimental processor 

which implemented an IIR filterbank approach and was therefore able to separately 

manipulate envelope cut-off frequency and stimulation rate. The authors found 

improvements in performance as stimulation rate was increased from 50 to 150 

pps/ch.  However, they found no further significant improvement with increases in 

rate from 150 to 500 pps/ch, the highest rate used.  They also found no improvement 

in consonant recognition with envelope cut-off frequencies above 20 Hz, although 

performance deteriorated below this frequency down to the lowest cut-off frequency 

used (2 Hz). This is an interesting finding, because it suggests that only very low 

frequency modulation rates contributed to speech perception, or at least that 

increasing the envelope cut-off filter above this rate did not provide more temporal 

information.  

 

A final point to note is the concept of “trade-off” between stimulation rate and 

channel number. Brill et al. (1997) showed that different individuals performed better 

at higher rates and lower channel numbers while for others performance was optimal 

for relatively lower rates and higher channel numbers. Nie et al. (2006) found that 

changes in stimulation rate and channel number could be “traded off” against one 

another to produce similar outcomes in consonant recognition in quiet, again in a 

group of users of the MED-EL device. Clearly, the degree to which these two 

parameters can be traded off against each other must depend on the relative change in 

information. For the Nucleus 24 device, as indicated in 2.4.3, a doubling of 

stimulation rate means considerably less than doubling of temporal information.  

Theoretically, an increase in channel number (or number of peaks coded in a peak-

picking strategy) should mean a corresponding increase in spectral detail, although 
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this of course depends on electrical/neural interface limitations.  Moreover, the trade-

off would presumably be different for different consonant features, depending on the 

relative importance of spectral and temporal resolution for coding of the feature.  The 

possibility of “trading off” channel number and stimulation rate was included in the 

design of the experimental work reported in chapter 5, although it was not anticipated 

that this phenomenon would be observed for users of the Nucleus 24 device given the 

absence of changes in temporal sampling with increased stimulation rates. 

2.3.4 Sampling and selection approaches (processing strategies) 
Variation in overall approach to sampling and selection is referred to as the “speech 

processing strategy” type. The main division in terms of CI speech processing 

strategies is between those strategies where information in all analysis bands is coded 

to the CI (“fixed-channel” strategies) and those where only certain analysis bands are 

coded (“peak-picking” strategies). In practice, there is little evidence to suggest that 

there are differences between these two classes of strategy and in any event there are a 

number of confounding variables affecting comparisons between strategy types 

(Dorman et al., 2002). They compared simulations of peak-picking and fixed-channel 

strategies and found no significant difference overall, and no improvement above 8 

channels with a fixed-channel strategy simulation or 9-of-20 with a peak-picking 

strategy simulation. This suggests equivalence between the number of channels in a 

fixed channel strategy and the number of peaks, rather than total number of channels 

in a peak-picking strategy. 

2.3.5 Overview of state of knowledge and knowledge gaps 
 

• CI users achieve maximum speech perception scores with 8 to 10 channels 

with current approaches to processing and stimulation.  Place of articulation 

coding requires a higher number of channels to achieve asymptote 

performance than manner or voicing (in quiet), presumably because of the 

greater reliance of place on spectral resolution. A higher asymptote is obtained 

with AM studies than with CI users studies, but even with AM studies using a 

relatively large number of channels,  place transmission does not approach 

normal levels; taken together, these general findings suggest that both 

electrical/neural interface and CI processing are limiting factors on place 
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transmission, but that place transmission is limited by CI processing even with 

20 separate frequency channels. 

• The performance asymptote with channel number 8 to 10 is probably 

associated with spectral channel interaction.  However, this is inferred from 

equivalence between AM studies using varying numbers of channels of 

envelope information and not from AM studies using the actual number of 

channels used by CI users with varying degrees of simulated channel overlap. 

The issue is discussed further in 2.6.3 in the context of AM studies of channel 

number. 

• Channel stimulation rate effects are highly variable between devices, 

individual users and stimuli.  It is likely that variations between devices could 

be explained by differences in signal processing, whereas differences between 

individuals could be explained by differences in channel interaction (though 

these are speculative hypotheses).  Most studies showing benefit for 

stimulation rates above 200 pps/ch used CI processing with IIR filterbanks 

rather than the approach used in the Nucleus 24. This may be due to the 

inability to improve temporal response by increasing overlap between fixed-

length FFT analyses.  This hypothesis is supported by objective TMTF data 

collected here and behavioural TMTFs from other authors. 

• Some studies of users of the MED-EL device (which uses a linear IIR filter 

bank and fixed channel strategy) have suggested a possible “trade-off” 

between channel number and channel stimulation rate. 

 

2.4. Electrical/neural interface factors 

Although it is possible to characterise the signal produced by the CI signal processing 

perfectly, the same is not true of the “neural” signal which leads to the auditory 

percept in the CI user. This is because the way in which the signal is delivered by the 

electrode array to the auditory nervous system is not fully understood.  The electrode 

array is assumed to stimulate both surviving spiral ganglion cells within the cochlea 

and also other peripheral elements.  Researchers have identified a number of ways in 

which the link between the electrode array and the auditory nerve might lead to 

further signal distortion and therefore information loss over and above that associated 

with CI processing.  The main areas are: interaction between electrode and neural 
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channels; other frequency distortions, particularly the perceived upward shift in pitch 

experienced by CI users and the fact that only mid to high frequencies in the auditory 

nerve are stimulated; abnormalities in temporal coding in the auditory nerve when 

stimulated by a CI compared to NH. 

2.4.1 Channel interaction 
An important potential source of information loss associated with the electrical/neural 

interface is “channel interaction”. The term refers to any effect that the stimulation of 

one electrode channel has on the activation of a spatially separated channel (Cohen et 

al., 2003). An important aspect of channel interaction is that simultaneous 

presentation on a group of electrodes results in distorted perception because greater 

cross-channel electrical interaction occurs with simultaneous presentation compared 

to non-simultaneous presentation (Favre and Pelizzone, 1993).  The majority of 

current CI processing strategies, including Nucleus 24 ACE or CIS, employ non-

simultaneous pulse presentation to minimize channel interaction. However, it is also 

clear that channel interaction does occur despite the use of non-simultaneous pulse 

presentation as it has been measured in users of various strategies which use non-

simulataneous pulse presentation.  

 

Channel interaction has potential consequences for consonant recognition because of 

both spectral and temporal information. Related to this is the idea that channel 

interaction has a “spatial”, or spectral, aspect, in that stimulation of an individual 

electrode affects adjacent frequency channels and also a “temporal” aspect in that the 

neural response is affected for some time after stimulation (Chatterjee and Shannon, 

1998; Throckmorton and Collins, 1999). The spatial aspect has been described by a 

space constant of exponential decay. Stimulation of different electrodes produces 

overlapping electrical fields and, as a consequence, the same neurons can be activated 

with stimulation of different electrodes. A number of studies have attempted to 

quantify the decay of electrical potential within the scala tympani beyond the site of 

the stimulation electrode as two decaying exponentials (e.g. one either side of the 

stimulation electrode). Wilson et al (1994) described a model of population responses 

of the auditory neurons by linking a description of the electrical field patterns in the 

cochlea with descriptions of individual neural responses derived from the large body 

of work on single-neurone responses to auditory stimulation. They suggested a space 
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constant (of exponential decay of neural excitation) for monopolar stimulation of 3.6 

mm.  This approximate space constant was supported by a modeling study by Kral et 

al. (1998)   

 

Black and Clark (1980) developed a three-dimensional discrete resistance model of 

the cochlea which indicated that current spread from monopolar stimulation was 

1dB/mm as measured in the scala tympani.  The length constant λ was defined as the 

inverse of the natural logarithm of the voltage 1mm from the recording site, divided 

by the voltage at the site. 
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Equation 2.1. Current decay in the scala tympani, according to Black and Clark, 1980. 

 

This space constant of exponential decay was used in the AM study by Laneau et al. 

(2006), which is discussed further in 2.6.4.  One of the aims of the present study was 

to determine if this model could be used to explain some of the variance in consonant 

recognition in CI users.  

 

Channel interaction can also be described in its temporal characteristics, which have 

both a “physical” and “physiological” aspect. The “physical” aspect refers to the 

residual charge stored in neural tissue and membrane capacitances after pulse 

presentation. This aspect of channel interaction is thought to be largely dealt with by 

use of biphasic pulses as the second phase of a stimulation pulse should remove most 

of the charge delivered in the first phase. However, some residual charge could still be 

present and therefore one recent line of work has evaluated the use of triphasic pulses 

(with zero net charge) to further reduce the possibility of residual charge (Bonnet et 

al., 2004).  However, temporal channel interaction also has a more “physiological” 

aspect because of the refractory property of auditory neurons. Recent work has shown 

that much of the channel interaction, particularly the temporal aspect occurs at the 

neural level e.g. stimulation of one electrode does not produce as focused a neural 

response as might be expected given equivalent processing in the healthy cochlea 

(Boex et al., 2003a; Boex et al., 2003b; de Balthasar et al., 2003). However, the 
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distribution of current with a specific electrode will depend on a number of factors, 

many of which are highly variable between individuals.   

 

A number of possible methods are available to measure channel interaction.  Pitch 

ranking, pitch scaling and electrode discrimination all provide indirect psychophysical 

measures of spatial channel interaction (Busby et al., 1994; Busby and Clark, 1997; 

Zwolan et al., 1997). Gap detection and forward masking have been used as 

psychophysical estimates of temporal channel interaction (Chatterjee and Shannon, 

1998; Blamey and Dooley, 1993), although Throckmorton and Collins (1999) argued 

that these “temporal” measures also reflect spectral aspects of channel interaction as 

they are also affected by degree of neural population overlap. The most common 

method of measuring channel interaction is to measure masked thresholds in which 

the masker and probe electrodes vary in distance.  A masking function obtained in this 

way will show the greatest masking effect when masker and probe coincide, but by 

increasing the distance between masker and probe electrodes, it is possible to 

determine the spread of excitation. Lim (1989) found that the spread of excitation 

decayed more gradually in the basal direction than the apical direction, and this 

finding has been supported in other studies, including Cohen et al. (2003), although 

the pattern, along with degree, vary quite markedly between individual CI users. The 

same approach to separating masker and probe electrodes has been used with the 

electrically evoked compound action potential; this can be measured in the Nucleus 

24 system by using intracochlear electrodes as recording electrodes (Cohen et al., 

2003; Cohen et al., 2004; Cohen et al. 2005). Interestingly, Cohen et al. (2004) found 

a good correlation between psychophysical measurements of forward masking and 

spatial spread of excitation as estimated using the electrically evoked compound 

action potential measurements. The convergence of these different types of measure 

suggests that the measurements of channel interaction are valid. An additional finding 

common to both psychophysical and electrical approaches to the masking paradigm is 

that channel interaction increases with current level (Abbas et al., 2004). 

 

An important implication of recent research into channel interaction (Boex et al., 

2003a; Boex et al., 2003b) is that the degree, direction, time course and spread of 

neural excitation may be a critical factor in explaining individual differences in CI 
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user ability, although the evidence base for this idea is not especially strong. Zwolan 

et al. (1997) evaluated speech recognition for Nucleus 22 users using two different 

electrode configurations. In one condition, the subjects used MAPs in which only 

discriminable electrodes were included; in the second condition, the same users used 

MAPs that included all possible active electrodes.  They found an overall 

improvement in speech perception with the first condition. Moreover, there were 

marked differences in electrode discriminability (presumably an indirect measure of 

channel interaction) across the CI users. This was given as indirect evidence that 

performance improves as channel interaction is reduced, although it is not in itself a 

direct measure of the correlation between channel interaction and speech perception. 

Loizou et al. (2003) found better recognition of consonants, in particular place and 

voicing transmission, in users of the Clarion device with users of pulsatile non-

analogue strategies which were thought to produce less channel interaction, as 

compared with users of an analogue strategy which was thought to produce greater 

channel interaction. Stickney et al. (2006) measured channel interaction by measuring 

masked thresholds with varying probe to masker separations and then also measured  

vowel consonant and sentence recognition. The authors found a high degree of 

correlation between speech recognition and channel interaction when a simulataneous 

pulse presentation strategy was used, but there was no correlation between speech 

perception and channel interaction for users of an interleaved pulsatile strategy.  

 

It is not wholly clear from the literature to what extent individual differences in 

performance are related to channel interaction and, more specifically, how consonant 

recognition in quiet and noise relates to channel interaction. It has been hypothesized 

in a number of studies looking at channel number that the reason that CI user 

performance does not increase beyond levels achieved with around 6-10 channels is 

due to spectral channel interaction (see 2.4.2). A related hypothesis is that 

performance in “worse” CI users can be effectively modeled by AMs with smaller 

numbers of channels. That is, it is hypothesized that individual variations in channel 

interaction place an upper limit on the number of perceptually distinct channels 

available to that individual CI user and that, moreover, this is an important limiting 

factor determining speech perception abilities. This could be tested by comparing the 

channel number corresponding to performance asymptote with the degree of channel 
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interaction. Another way to approach this question, along with the more general 

hypothesis that variations in channel interaction determine variations in overall speech 

perception ability, would be to compare CI user performance with AMs that vary in 

terms of channel interaction characteristics. To date, no study of consonant 

recognition has used this approach although Laneau et al. (2006) applied the principle 

to measures of F0 perception and Fu and Nogaki (2005) applied this approach to 

measures of sentence recognition. These and other AM studies relating to channel 

interaction are discussion in 2.5.  

2.4.2 Pitch mismatch and insertion depth 
Another aspect of the electrical/neural interface is the “pitch mismatch” associated 

with CI use, whereby the subjective pitch sensation produced by the CI is higher than 

that generated by the normal auditory system. This is because existing cochlear 

implant systems are not inserted fully into the cochlea.  Electrode arrays would be 

typically inserted through the round window into the scala tympani to a length no 

greater than 25 mm.  Therefore, as the electrode array conveys a range of stimulus 

frequencies from the environment with a typical band pass characteristic of about 

150-8000 Hz, these input frequencies are mapped onto neural elements within the 

vestibulocochlear nerve that, in NH listeners, would code relatively higher 

frequencies, e.g. above about 1000 Hz. Shannon et al. (1998) suggested that this 

equates to a basal basilar membrane shift of approximately 3 mm. Ketten et al. (1998) 

showed that variation between individuals electrode array insertions was substantial 

and suggested this could be measured using in vivo measurement methods.  The 

majority of studies evaluating the effect of insertion depth on performance have made 

use of AMs and are described in 2.5. 

2.4.3 Temporal coding  

It is possible that the electrical/neural interface may introduce loss of temporal 

information as well as loss of spectral information. Section 2.4.3 implied that TMTFs 

were uniform across CI users; however, a number of earlier studies showed that there 

was considerable variation in TMTFs between individual CI users, and in one study, 

this was shown to be correlated with consonant recognition, suggesting that temporal 

aspects of electrical/neural interface information loss may be as or more important 

than spectral aspects in determining individual variations in consonant recognition. 
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Busby et al. (1993) measured perception of temporal modulations in a group of adult 

CI users.  They found that the shape of the TMTF also approximated a low pass filter 

with a cut-off frequency between 50 and 100 Hz, slightly lower than was the case for 

the Shannon (1992) study. What is interesting in the context of a discussion of the 

electrical/neural interface is that Busby et al. (1993) attempted to match temporal 

processing characteristics with patient characteristics, in particular duration of 

deafness.  They found that four postlingually deafened subjects were better able to 

perceive temporal information than three prelingually deafened subjects. It is not 

possible to determine whether these variations were to do with neural or central 

function, but they do suggest that temporal processing varies across CI users. 

 

Other studies have also looked at the relationship between CI users’ basic temporal 

psychophysical abilities and the level of speech perception they obtain.  Cazals et al. 

(1991) measured perception of a silent gap in noise and interval between two clicks in 

five users of the Ineraid CI.  They found that there was a relationship between 

perception of click interval at the most basal CI used and perception of consonant 

place of articulation. The most striking evidence of such a relationship is given by Fu 

(2002), who found a strong correlation between consonant recognition scores and 

mean modulation detection thresholds across users’ electrical dynamic range.  

Subjects were nine users of the Nucleus 22 CI system using the SPEAK speech 

processing strategy.  Whereas previous studies had linked speech perception abilities 

to TMTF performance at high input levels, Fu (2002) measured the TMTF across a 

range of stimulus levels and found that the mean score averaged across input levels 

was a significant predictor of both consonant and vowel intelligibility.   

 

In order to convey temporal information to the CI user, the neural discharge pattern in 

response to CI stimulation must convey the temporal detail in the input signal. An 

important difference in temporal coding between acoustic and electrical hearing lies 

in the stochastic relationship between acoustic input and the response of the auditory 

nerve to stimulation.  This enables high rates of temporal coding in the auditory 

system, up to around 4 kHz, because of the summation of neural responses across 

neural populations, rates which cannot be supported by individual neurons.  Without 

stochastic resonance, phase-locking of individual nerve fibres would prevent coding 

of high-frequency temporal information, or temporal fine structure.  Because the 
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mechanism of stochastic resonance is thought to be cochlear in origin, it can be 

presumed that this does not occur with CI systems.  Therefore, electrical hearing may 

be at some disadvantage with respect to coding of high frequency temporal 

information. A number of papers using physiological outcome measures have 

suggested that the use of very high rates and also the use of conditioning noise stimuli 

may improve the temporal representation and accuracy within the auditory nerve, e.g. 

Matsuoka et al. (2001).  

 

There is also a question as to whether higher stimulation rates may lead to greater 

increased channel interaction. Brill et al. (1997) found individual variations in trade-

off between channel number and stimulation rate in a group of users of the MED-EL 

device.  It seems plausible that individual differences in this trade-off may be 

mediated by the degree and nature of channel interaction. McKay et al. (2005) found 

that sensitivity to spectral shape was less at higher rates, given a particular number of 

channels.  Their explanation for this was that forward masking of one pulse over a 

successive pulse serves to blur between-channel amplitude differences.  This may 

help to explain why there is so much individual difference in benefits with higher 

stimulation rate: it is possible that individual CI users who have greater channel 

interaction could experience increased forward masking at higher stimulation rates 

compared to those with lower channel interaction. 

 

Despite these considerations, it is appears that the focus in the present study should be 

on information loss associated with CI processing rather than the electrical/neural 

interface. It appears from the evidence presented in 2.4.2 that Nucleus 24 processing 

preserves temporal modulations with decreasing accuracy as modulation rates 

increase. Moreover, it also appeared that differences in TMTF with stimulation rate 

were small. Consequently, it can be hypothesised that Nucleus 24 users have little 

access to mid-frequency modulation frequencies (those denoting periodicity according 

to Rosen (1992)), no access to higher frequency modulations and that stimulation rate 

should make only very small differences to consonant recognition. 

2.4.4 Overview of state of knowledge and knowledge gaps 
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• Cross-channel spread of excitation has been measured in CI users using 

various techniques. 

• Channel interaction has both a spectral and temporal aspect, although 

Chatterjee and Oba (2004) showed that spectral channel interaction has a 

stronger implication for speech perception outcomes in CI users. 

• Variations in channel interaction could help to explain variations in CI 

user performance but the evidence base for this is limited. 

• Electrode insertion is associated with an upward frequency transposition 

because of the alignment of the electrode array in relation to the remaining 

auditory elements. 

• Although there is evidence that partial insertion limits performance, it is 

not thought that a normal insertion depth (e.g. more than 22 mm) is an 

important factor in limiting consonant recognition. 

• There is evidence that CI users show abnormal temporal resolution, 

particularly at lower intensities, although the account in 2.4 suggests that 

some of this must be due to information loss from CI processing rather 

than the electrical/neural interface. 

• There is also evidence of a link between temporal processing abilities and 

overall consonant recognition. 

 

 

2.5. Acoustic models of CI function 

2.5.1 Validity of acoustic models 

A signal which has been processed using the same, or similar, signal processing 

techniques as are used in CI speech processors and which is used to generate an 

acoustic signal to elicit a response in NH listeners can be termed an “acoustic model “ 

(AM) of CI processing (Throckmorton and Collins, 2002). Because current CI signal 

processing techniques are very similar to channel vocoders, AMs are also sometimes 

referred to as “vocoded” signals (Faulkner et al., 2000; Loizou, 2006). The aim of 

developing an AM is to reproduce the information content of the implant output in an 

acoustic form, rather than necessarily reproducing the subjective auditory sensation 



 49

experienced by the implant user, as the term “simulation” might imply. Therefore, the 

term “AM” is preferred here. 

 

AMs have a number of potential benefits to research.  The most important point for 

this thesis is they can help distinguish between the effects of CI processing per se and 

electrical/neural interface factors contributing to CI user performance. AMs also 

allow the researcher to develop and refine hypotheses so that the design of CI 

performance experiments maximise CI user time. It can also be argued that studies 

using AMs of CI processing are of intrinsic interest even without direct reference to 

CI research, as they provide evidence about normal speech perception under 

conditions of reduced acoustic information (Shannon et al., 1995).  

 

A typical AM was described by Loizou et al. (2000a).  First, the signal was processed 

through a pre-emphasis filter and then band passed into N frequency bands using 

sixth-order Butterworth filters.  In order to create an AM, sine wave or narrow bands 

of noise with the centre frequencies of the corresponding electrode channels were 

generated with amplitudes equal to the RMS energy of the envelopes and frequencies 

equal to the centre frequencies of the band pass filter.  The sine wave or noise bands 

were recombined to generate the final waveform.  The RMS value was then adjusted 

to be equal to the original signal.  The difference between generating a CI signal and 

an AM is the final output stage: in the first case, level variations within each channel 

are used to vary current level among corresponding electrode channels, while in the 

second case, they serve to vary amplitude among a set of carrier stimuli which are 

recombined to generate an acoustic waveform. It is also worth noting that this 

approach, similar to that of the majority of AM studies, is based on the multiple IIR 

filterbank rather than FFT analysis. 

 

The validity of a CI AM, that is, its ability to predict and model CI user performance, 

is determined by a number of factors. A key question is the degree of similarity 

between the signal perceived by the CI user and the signal perceived by a NH listener 

with an equivalent AM. There are two aspects to this: first, whether or not identical 

signal processing methods have been used in AM listeners and equivalent CI subjects 

and, second, the degree to which processing in the normal auditory system transforms 

the signal. While the signal received by the CI user has been processed by the CI 
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itself, the signal perceived by the NH listener has been processed not only via the AM 

itself but also via the external, middle and inner ear of the listener. The external ear 

can be characterised by a frequency response which includes both pinna and external 

ear canal components. For the purposes of the study here, an insert earphone was used 

to minimise the amplification characteristics of the pinna. The question of processing 

is dealt with in the present study by ensuring that the same signal processing 

techniques apply to both CI users and NH subjects listening to the AM stimuli (see 

3.2). 

 

Auditory acclimatisation is another factor that may impact on the validity of AMs.  A 

CI user will normally have had a good deal of auditory experience with the CI signal 

when being tested, whereas a NH listener listening to an AM may have had only a 

few minutes acclimatisation. Faulkner et al. (2006) showed that considerable time was 

needed to acclimatise to the model. Their study used running speech with a 

conversational discourse tracking technique in which word rate was used.  The 

authors found that many hours of acclimatisation was needed to optimise performance 

with pitch-shifted speech materials.  However, Davis et al. (2003) suggested that 

initial acclimatisation to AM stimuli occurs within a few minutes, so long as the 

listener is given the original unaltered stimulus for comparison. It appears that there 

NH listeners are able to acclimatise relatively quickly to AM stimuli without 

significant spectral shifts, but that considerably longer time is needed to achieve 

optimal performance with pitch-shifted stimuli (see Rosen et al, 1999).  In the current 

study, it was proposed to include a degree of pitch shift in the AMs which would 

reflect the degree of upward frequency transposition associated with a normal 

insertion of the Nucleus 24 electrode array. As noted in 3.3.2, this degree of pitch 

shift was somewhat less than that noted as causing significant acclimatisation 

problems in Rosen et al (1999) and Faulkner et al (2006).  Therefore,  In order to 

determine if rapid acclimatisation to this more modest degree of pitch shift was 

possible, a pilot study was undertaken to see if a minimal acclimatisation procedure 

could yield valid results (see 3.1.2.). 

2.5.2. Methodological parameters of acoustic models 

The majority of papers using CI AMs have used either noise band (Friesen et al., 

2001; Shannon et al., 1995; Henry and Turner, 2003; Blamey et al., 1985; Qin and 
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Oxenham, 2003; Nelson et al., 2003) or sine wave carriers (Dorman et al., 1998b; 

Loizou and Poroy, 2001; Throckmorton and Collins, 2002; Loizou et al., 1999), 

although a few have used filtered harmonic complexes (Deeks and Carlyon, 2004) or 

pulse trains (Faulkner et al., 2000). Only a few have compared performance with 

different carrier stimuli (Faulkner et al., 2000;Dorman et al., 1997b).  An important 

question is therefore: what, if any, are the differences in performance between 

simulations using different carrier stimuli, and why might these occur? Both 

published CI AM studies to have compared noise band with sine wave carriers found 

significant effects of carrier type on perception of speech information requiring good 

spectral resolution: Dorman et al. (1997b) found significantly better performance with 

multitalker vowel recognition with a sine wave AM but significantly better 

performance with place of articulation in consonants with the noise band model. 

Gonzalez and Oliver (2005) found significantly better speaker identification with a 

sine wave carrier compared to the noise band carrier. They also found that the noise 

band stimulation was more sensitive to number of channels than the sine wave 

simulation e.g. performance reached maximum levels with a higher number of 

channels with noise band simulation and ceiling effects were obtained with sine wave 

carriers. However, the envelope smoothing filter was higher for the sine wave model 

than the noise band model, undermining the validity of the comparison from their 

study.  

 

Differences in results could be explained by the different physical consequences of 

modulating sine waves and noise bands.  Sine wave simulation would provide better 

frequency resolution than noise band simulation. In particular, higher envelope 

modulation rates with a sine wave carrier would lead to much stronger periodicity 

cues than would be obtained with a noise band carrier. However, modulation of either 

type of stimulus produces spectral side bands whose spectral distance from the carrier 

is equal to the modulation rate (Kohlrausch et al., 2000). However, with noise band 

modulation, spectral side bands are masked by adjacent noise bands. Gonzalez and 

Oliver (2005) suggested that the additional information about modulation that would 

be provided by the side bands with sine wave carriers might be advantageous to some 

perceptual tasks.  A relevant point is that NH listeners find it harder to detect 

amplitude modulation in signals with a noise carrier compared to a sine wave carrier. 

Viemeister (1979) found amplitude modulation detection in the region of 5 to 10% 
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with noise band carriers whereas Kohlrausch et al. (2000) found modulation detection 

as good as 1% with a sine wave carrier. This difference might be explained by the fact 

that noise band carriers have a randomly fluctuating envelope that distorts the 

modulations in the envelope of the incoming signal whereas sine waves have a fixed 

amplitude envelope (Gonzalez and Oliver, 2005). The expected corollary of this in 

terms of consonant recognition would be better perception of manner or voicing in 

consonants with a sine wave carrier, given that these contrasts rely primarily on 

temporal cues requiring accurate detection of amplitude variations in the envelope. 

This was not supported by Dorman et al. (1997b). However, this may have been 

because their study found ceiling effects for perception of these features. 

 

It is not clear from the preceding discussion which of these two carrier stimulus types 

is likely to lead to a more a “valid” model of CI performance, and from this 

perspective each type of stimulus has potential advantages and disadvantages. An AM 

using a noise band carrier would seem to be more appropriate as a model of the effect 

of channel number, as indicated by Gonzalez and Oliver (2005), whereas the same 

paper suggested that sine wave carriers provide a more valid model of F0 perception 

because of the greater salience of harmonic cues. It would also seem reasonable to 

assume that noise band carriers would lead to better perception of consonant contrasts 

requiring perception of aperiodic/noisy speech components, e.g. identification of 

whether a sound is a fricative or a plosive. 

 

A further consideration is choice of input stage characteristics. The initial stage of 

sound processing with current implant devices includes high frequency pre-emphasis 

and compression. The idea of emphasising higher frequencies has a theoretical benefit 

by boosting less audible high frequency speech cues such as those associated with 

voiceless consonants or sibilant sounds. Existing CI AMs studies vary as to the 

inclusion of pre-emphasis or input stage characteristics in the AM. For example, 

Loizou et al. (1999) applied a 3 dB per octave pre-emphasis whereas Dorman et al. 

(1997b) applied 6 dB per octave pre-emphasis, while many other studies fail to 

mention whether or not pre-emphasis is added to the signal prior to processing. There 

is no published evidence regarding the effect of manipulating pre-emphasis 
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characteristics either with an AM or with CI users. As noted in 2.3.1., there is some 

unpublished data suggesting that the inclusion of pre-emphasis affects AM results. 

Given the possibility that pre-emphasis might affect performance, it seems logical to 

incorporate this into the AM (while at the same time minimising the normal 

pinna/external ear canals resonance in the NH listeners which itself amplifies mid to 

high frequencies). 

2.5.3 Acoustic modelling of CI processing and electrical/neural interface 

variables 

The main processing parameter which has received attention in AM studies is channel 

number.  A number of the studies cited in 2.4.2 used AM results exclusively or 

compared AM results with equivalent CI user data. To date there have been no studies 

of changes in CI temporal processing characteristics using AMs.  One of the possible 

problems with such studies is the spectral distortion caused by changes in modulation 

rate with sine wave carriers, as noted in 2.5.1. It is unclear whether or not AMs using 

noise band or sine wave carriers can provide appropriate models of changes occurring 

to temporal information with higher stimulation rates. One of the aims of the work 

reported in chapter 5 was to evaluate changes in stimulation rate using an AM in 

parallel with CI users, in order to determine whether the model provides an accurate 

representation of the changes in temporal information (or the absence of such 

changes) associated with stimulation rate. However, it should be made clear that such 

a model is only able to deal with one of two distinct aspects of stimulation rate. These 

two aspects are i) changes in neural response associated with increased number of 

pulses presented and ii) changes in temporal sampling associated with changes in 

stimulation rate.  A model of the first aspect is beyond the scope of the present study, 

and would require a more sophisticated estimate of the physiological response and an 

understanding of what stimuli would be necessary to engender an analogous response 

in a NH listener. Rather, the purpose of using an AM in the context of stimulation rate 

is to replicate the changes in analysis filterbank output that occur with changes in 

stimulation rate. For CI systems which implement an IIR filterbank, analogous AM 

data have been obtained by looking at changes in envelope cut-off frequency which 

would be set at some value less than half the stimulation rate (see 2.3.3 for a brief 

discussion of some papers looking at variations in envelope cut-off frequency).  

However, with the Nucleus 24 system, the purpose of an AM is to represent the 
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changes in envelope bandwidth that occur as a function of changing overlap between 

FFT analyses, as this is the parameter which varies in accordance with stimulation 

rate changes (as described in 2.3.3).  The AMs used in the experimental work reported 

in chapters 4 and 5 used modulated carrier stimuli at whatever rate was determined by 

the output of the analysis filterbank; therefore, if the analysis filterbank were able to 

convey increases in envelope modulations with increased FFT overlap (the parameter 

associated with increased stimulation rate), this increase in envelope bandwidth would 

be represented accordingly in the carrier stimuli.  In practice, as noted in 2.3.3, the 

effective envelope bandwidth of the fixed FFT length Nucleus 24 processor appears to 

be limited by the maximum non-overlapping FFT analysis rate (125 Hz), irrespective 

of stimulation rate, and this suggests that variations in envelope bandwidth across 

stimulation rates are minimal. However, the AM provides a faithful reflection of the 

changes in filter output as a consequence of increased stimulation rate. A caveat 

should therefore perhaps apply that the term “stimulation rate”, as applied to the 

Nucleus 24 AM stimuli, really means “envelope bandwidth as a function of FFT 

analysis overlap concomitant with stimulation rate changes”. This does not mean that 

the AM can be a good model of neural changes occurring as a consequence of 

stimulation rate which are independent of changes in temporal sampling (if these 

occur, this would be shown by increased performance in CI users with higher rates 

but not associated increase in performance with the AM). 

 

It is worth noting some of the limitations of the evidence base from AM studies. The 

first relevant point is the majority of AM studies have used fixed-channel IIR filter 

processing (although Dorman et al. (2002) is an exception to this) and therefore 

cannot strictly be considered as appropriate models of signal processing using a peak-

picking strategy such as ACE, or, in any case, of processors which implement a FFT 

filterbank. A more general limitation of AM studies to date is that those studies which 

have compared AM performance with CI user performance directly have used CI 

users with varied processing parameters and devices, making direct comparison with a 

specific set of processing parameters impossible. For example, Fu and Nogaki (2005) 

compared 10 CI subjects with 6 NH subjects listening to an AM.  The CI users were a 

varied group: 4 were users of the Nucleus 22 device, one was a user of the MED-EL 

device, one a user of the Clarion 1 device, while 4 were users of the Clarion CII 

device.  This meant that parameters such as total spectral bandwidth, strategy type, 
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channel number and stimulation rate all varied across CI subjects.  The AM used was 

a noise band model with a frequency range of 200 to 7000 Hz and 16 channels.  The 

lack of close correspondence between processing parameters used in an AM and those 

used in a matched group of CI users means that the importance of the specific 

parameters is unclear. 

 

As discussed in 2.4.2, one of the perceptual consequences of cochlear implantation is 

an effective upward shift in perceived frequency compared to NH.  A few studies 

have attempted to incorporate these pitch shift characteristics of CI stimulation into an 

AM by using a mapping between analysis and carrier frequencies derived from 

Greenwood's work (Greenwood, 1990). Some studies have sought to compare AM 

performance with and without pitch-mismatch. Shannon et al. (1998) found a 

significant degradation in speech perception with simulated pitch shift in a four-

channel AM. Dorman et al. (1997a) found that, with simulations equated to insertion 

depths of 22 or 23 mm, NH listeners showed reduced performance in vowel, 

consonant and sentence recognition. However, Rosen et al. (1999) found that the 

reduction in performance associated with the upward frequency transposition could be 

reduced by lengthy exposure to simulations. The authors found marked effect of pitch 

shift on AM performance in word and sentence recognition. However, the study used 

a four-channel implant which makes generalisation to higher number of channels used 

in the present study problematic.  

 

Throckmorton and Collins (2002) described an AM of channel interaction and also 

other spectral anomalies that are associated with CI use, such as pitch reversals. The 

authors developed AMs of different aspects of electrical/neural interface signal 

distortions, including pitch reversals, indiscriminable electrodes and forward masking.  

They compared sentence and consonant recognition abilities between the different 

AMs to determine which might have the greatest impact on speech perception 

abilities. The authors found that models of spectral channel interaction had the 

greatest detrimental effect on consonant recognition.  

 

Other authors have evaluated performance with different degrees of spectral 

smearing, which can be taken as a method of modelling channel interaction, at least in 

its spectral aspect. Shannon et al. (1998) used a simulation with overlap of filter skirts 
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of the noise bands, thus creating an effective spectral smearing effect. They found that 

channel overlap made little difference to speech recognition. However, it is worth 

noting that the AM they used had only four spectral channels, which means that 

spectral information was highly limited even without overlap.  

 

Two identified studies to date have attempted to compare different AMs against CI 

user performance directly. Fu and Nogaki (2005) compared number of channels with 

changes in spectral resolution using spectral smearing.  The outcome measure used 

was release from masking as shown by sentence recognition in noise.  The 10 CI 

subjects used a variety of CI devices. AMs were based on a fixed-channel strategy 

using IIR filterbanks (as usual in AM studies) and varied by channel number (16, 8 

and 4) and spectral overlap between channels (24 dB/octave or 6 dB/octave 

slope).The authors found that release from masking in sentence recognition was 

modelled best by AMs in noise with broadly overlapping filters (6 dB/octave slope), 

although better CI users’ performance was approximated with either an 8-channel or 

16-channel AM and, worse users, by a 4-channel AM.  However, it should be noted 

that the CI users were a heterogenous group from the point of view of CI processing 

used and, also, that the AMs used were not based on the specific processing details of 

a particular device.  

 

Laneau et al. (2006) undertook a series of experiments in which spectral overlap 

between adjacent channels was systematically varied.  The authors were interested in 

perception of fundamental frequency (F0) rather than consonant recognition, but the 

paper is of particular interest in its use of an AM based in detail on a specific device, 

the Nucleus 24, implementing a specific processing strategy, ACE, and where a 

comparison between AM and equivalent CI user performance was made. The authors 

used an AM with noise band carrier stimuli. They compared pitch discrimination 

abilities as a function of degree of carrier overlap varying from no overlap to overlap 

equivalent to 10mm spread of excitation. The precise pattern of filter overlap was 

based on the model of channel interaction of Black and Clark (1980) and assumed 

asymmetric spread of excitation as noted in 2.4.1. Two separate experiments showed 

a close match between Nucleus 24 users and AMs with 1mm spread of excitation. A 

further noteworthy characteristic of this study was that the AM used the same 

filterbank as was used in the group of Nucleus 24 users against which performance 
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was compared (Laneau et al., 2004). This made the comparison between AM and CI 

data much more powerful than with other studies where a precise match between 

characteristics was not obtained, where hetereogenous groups of CI users were used, 

and where attempts to model electrical/neural interface factors did not have a specific 

physiological basis. 

2.5.4. Overview of state of knowledge and knowledge gaps 
 

• AMs have been found to be highly predictive of performance trends in channel 

number, although not absolute magnitude of performance levels. 

• Choice of carrier stimulus probably does have some effect on AM results 

although it is unclear which carrier stimulus type would provide the best 

match/predictor of CI user performance. 

• It is probable that a sine wave AM should over-predict frequency and 

periodicity resolution abilities in CI users, as compared to a noise band model. 

• The majority of AM studies have sought to mimic general processing 

principles, rather than the fine details of processing in a specific device.  Most 

studies have developed models based on fixed-channel processing with a IIR 

filter approach. This means that there is little data of direct relevance to users 

of the Nucleus 24 device given that this device uses an FFT filterbank and the 

majority of users access a peak-picking processing strategy. 

• One study to date (Laneau et al., 2006) has attempted to mimic specific 

processing of a particular device AND aspects of the electrical/neural 

interface, although the study looked at F0 discrimination in vowels rather than 

consonant recognition. The authors found that CI user performance was well 

approximated by an AM in which channel overlap was equivalent to 1 mm 

spread of excitation. 

 

2.6. Consonant feature transmission 

This section outlines the hypothesised effects of factors identified in sections 2.3 to 

2.6 on transmission of specific consonant features.  Section 2.2 has detailed what is 

known about consonant recognition in CI users.  However, as noted, there are many 

knowledge gaps from this literature. In order to capture information content at the 
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electrical/neural interface stage, the ideal representation would be some sort of neural 

activation pattern map.  However, the current state of knowledge of the 

electrical/neural interface precludes an accurate representation of this kind. In order to 

represent the information provided by CI processing, activation patterns across 

electrodes can be represented with an “electrodogram” in which electrode number is 

given on the y-axis (with apical electrodes, coding low-frequency information, at the 

bottom and the most basal electrode, coding the highest frequency information, at the 

top), time on the x-axis and, here, amplitude (representing current level) also 

indicated on the y-axis within each electrode channel.  A number of authors have 

shown that a typical CI user, even if they are using a processor with a larger number 

of channels, only has access to around 8 perceptually distinct channels.  Given this, 

the majority of electrodograms in the subsequent section use an 8-channel CIS 

representation (equating to the parameters used in experiments 1 and 2), although a 

20-channel (12 maxima) ACE electrodogram is also included in one case.  In all cases 

electrodograms represent output from the NIC-STREAM MATLAB platform (see 

3.3.2) and therefore should represent precisely the information delivered by the 

processing of the Nucleus 24 device, although it should be highlighted these 

representations do not include further transformations in the electrical/neural 

interface. 

2.6.1 Voicing 
Available data show voicing transmission around 70% in CI users (in quiet with the 

/aCa/ vowel enviroment), compared to nearly 100% in NH listeners. It follows that 

there is information loss relevant to coding of voicing information, even in quiet, 

although this information loss would appear to be less than for place.   To consider the 

reasons for information loss at the CI processing and electrical/neural interface stages, 

the acoustic cues to voicing must first be considered. The main acoustic cues to 

voicing are temporal.  These are: voice onset time (Holden-Pitt et al., 1995), the 

relative onset of the voiced and voiceless components of the speech sound; relative 

amplitude of aspiration (Repp, 1979), silence duration and cutback of the first 

formant. However, the spectral cue of F1 onset frequency is also important, 

particularly in background noise (Stevens et al., 1992; Gonzalez and Oliver, 2005). 

 



 59

Figure 2.11 shows wide-band spectrograms of the stimuli /ibi/ and /idi/, along with 

corresponding frequency time matrices produced by Nucleus 24 processing.  In this 

case the ACE strategy with 500 pps/ch “stimulation rate” (really FFT analysis rate, as 

noted in 2.5.2),  was used.  The best-preserved cues to voicing appear to be voice 

onset time and (related) closure/silence duration. The gap between onset of voiceless 

speech components (the “burst) and the onset of the low-frequency periodic voicing is 

referred to as “voice onset time”, and is characteristically shorter for voiced 

consonants in consonant-vowel sequence. In /ibi/, the onset of the low-frequency 

voiced component occur at approximately the same time as mid to high-frequency 

activation, while for /ipi/ onset of the burst precedes voicing onset by around 100ms. 

In the corresponding electrodograms, the voice onset time can be seen as the 

difference in relative onset of activation of channel 7 as against 19 and 22 (the 

difference is 100 ms).   

 

 
Figure 2.11./ibi/ (left) and /ipi/ (right)  in quiet; unprocessed stimuli above, stimuli transformed 

via 12/20 ACE processing below.  

 

However, the same two stimuli with background stationary noise added at +10 dB 

SNR, as in figure 2.12, show a different pattern given the introduction of noise.  Here 

Onset of voicing 
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the noise interference has markedly reduced the salience of both the burst in the basal 

channels and the envelope fluctuations in apical channels that signal the voice bar (or 

its absence). 

 

 
Figure 2.12. /ibi/ (above) and /ipi/ (below) in background noise at +5 dB SNR, 12/20 ACE 

processing; on the right are close-ups of basal channels 

 

As noted, this representation of the electrodogram may be misleading because it 

overestimates the number of perceptually distinct frequency channels.  Figure 2.13 

shows the equivalent electrodograms, but here for an 8-channel CIS processor.  

Interestingly, these do not indicate a particularly different pattern of cue salience than 

for the 12-of-20 processor electrodograms. 
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Figure 2.13.  /ibi/ (above) and /ipi/ (below) in quiet, 8 channel CIS  processing; on the right are 

close-ups of basal channels 

 
Electrodographic analysis suggests that voice onset time is represented by the relative 

onset of activation of different electrodes. However, noise interference would 

introduce distortions to envelope fluctuations within the important low-frequency 

channels and therefore the voicing cues would be affected adversely.  Given the 

possible importance of the secondary spectral cues to voicing, it might also be 

anticipated that parameters important to spectral coding, e.g. channel number or 

channel overlap/interaction, might have a greater bearing on voicing than manner (but 

less than place).   

 

A further issue that is of particular relevance to voicing transmission, is the coding of 

fundamental frequency (F0).  Figure 2.1 showed the spectrum of the source of energy 

for voiced speech sounds.  The important characteristic of voicing, which is therefore 

of relevance to coding the voiced/voiceless contrast (and also some manner contrasts- 

see 2.6.2) is the quasi-periodic signal which has a fundamental and multiple 

Burst 

Onset of voicing 
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harmonics.  Given the evidence regarding limited frequency resolution in CI 

processing, including the Nucleus 24, it is difficult to see how this would be coded in 

the spectral domain, e.g. by activation across electrodes.  Figure 2.14 shows a close-

up of the two most apical electrodes in an electrodogram (ACE, 900 pps/ch, 12 

maxima of 20 channels) during activation of the vowel /i/, as this gives a clearer 

picture of the representation of F0.  The female speaker has a fundamental frequency 

of 200 Hz.  It can be seen that F0 is discernible in the peak every 5 ms, although 

modulation depth is reduced by processing (as already shown by the TMTFs in 2.3.3.) 

However, figure 2.15 shows activation of more basal electrodes; here no clear 

periodic information is discernible. 
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Figure 2.14.  Close-up of electrodes 21 and 22. for the vowel  /i/, produced by a female speaker 

with F0 around 200 Hz. 
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Figure 2.15. Basal electrodes during the same stimulus as figure 2.14. The stimulus is the vowel   

/i/, produced by a female speaker with F0 around 200 Hz. 

 
These figures suggest that higher harmonics of F0 are poorly represented in the output 

of the analysis filterbank, while F0 itself is discernible in the modulation patterns of 

apical electrodes, albeit modulation depth is around 20-30% rather than 100%. 

Although the presence/absence of periodicity in itself is not the only acoustic cue to 

voicing, it is the main within-channel cue and therefore has an implication for voicing 

and other features requiring perception of periodicity in the waveform given that that 

F0 is present in the apical channels but there are no cues to higher harmonics; 

moreover, the reduction in modulation depth caused by processing means that, even in 

the apical channels the cue is not coded ideally through CI processing. Some authors 

have examined ways of making the F0 cue more salient: Green et al. (2005) noted that 

a form of modified CI processing, which enhanced F0, produced benefits to 

perception of F0, and this was thought to be, at least in part, due to improvements to 

modulation depth; however, the same strategy also led to reductions in perception of 

vowel recognition and formant frequency discrimination in the CI users accessing the 

modified strategy. Faulkner et al. (2000) found an improvement to voicing 

transmission for NH subjects listening to a variety of AMs which encoded periodicity, 
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including one which explicitly preserved F0 information by producing a pulse 

sequence in time with F0.  

2.6.2 Manner and manner subcategories 
Manner of articulation refers to the way in which the upper vocal tract is occluded. In 

general, distinctions between different manner categories are considered in the 

literature to be signalled by temporal differences, with spectral resolution being less 

important than for voicing. However, this represents an over-simplification, as 

different manner distinctions are signalled by a variety of acoustic cues.  It can be 

argued that the category itself is too general to be usefully linked to specific sets of 

acoustic characteristics, although the literature on consonant feature recognition in CI 

users generally uses this category in conjunction with voicing and place. While it 

could be argued that manner does reflect temporal/envelope information more than 

spectral information, it can be seen from the following acoustic analyses that the 

extent to which this is true depends on which specific manner distinction is being 

considered. 

 

Although it is possible to subdivide consonants into manner categories in a number of 

different ways, here a four-way distinction is used, between stops (also known as 

plosives), nasals, liquids/glides and fricatives.  Stops are produced by a rapid release 

of a complete closure of the vocal tract. The presence of a short duration (<100 ms) 

release burst (of aperiodic unvoiced sound) distinguishes stops from other manner 

categories, as does the presence of a short duration (<100 ms) formant transition 

(Liberman et al., 1956). Nasals are similar to stop consonants in that complete closure 

of the oral cavity is sustained. However, with nasals, the velum remains open, with 

various acoustic consequences (Malecot, 1956).  There is a characteristic nasal 

“murmur” prior to closure release, with a characteristic low frequency prominence 

around 250 Hz with higher-frequency harmonics at very low amplitude.  Additionally, 

nasals are characterised by antiformants, or zeros in the spectrum; these are unlikely 

to be realised by CI processing.  Liquids and glides (also known as approximants) are 

produced with partial constriction of the vocal tract and can be distinguished by the 

presence of longer duration (>100 ms) formant transitions (O’Connor et al., 1957).  

Finally, fricatives (sometimes distinguished between high-frequency sibilants such as 

/s/ and broadband fricatives such as /f/) are also produced by incomplete closure of 
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the upper vocal tract, but, unlike liquids and glides, they are associated with the 

generation of friction, producing a turbulent aperiodic signal of generally >100 ms 

duration (Raphael and Dorman, 1980).   

 

In summary, stops can be distinguished from nasals as the latter have a much weaker 

formant structure and a slightly greater duration, from liquids and glides by formant 

transition duration and from fricatives by noise duration. Fricatives/stops can be 

distinguished from nasals and liquids/glides by the presence of noise in the spectrum. 

In order to illustrate this, figure 2.16 shows wide-band spectrograms of the 

unprocessed stimuli idi/, /izi/, /ini/ and /ili/.  

 

 
Figure 2.16. /idi/,(upper left) /izi/ (upper right) /ili/ (below left) and  /ini/ (below right) in quiet. The 

continuant and nasal, below, can be distinguished from the stop and fricative, above, by the 

absence of  high-frequency burst/frication energy and a period of silence or very low amplitude 

in low frequencies.   

 

Figure 2.17 shows 8-channel CIS electrodograms of /idi/, /izi/, /ini/ and /ili/; these 

represent the four main English manner categories and all have the same voicing 

value and similar place values (although it should be noted that “voicing” is a 

confounding factor in that all nasals and approximants in English are voiced whereas 

this is not the case with stops or fricatives). The main acoustic cues distinguishing 
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these four categories for NH listeners are: presence of noise (present in stops and 

fricatives but absent in nasals and liquids), duration of noise (distinguishing stops 

from fricatives), The nasal/approximant can be distinguished from the 

plosive/fricative via the continuous high level of activation in the most apical 

electrode. The difference between the nasal and the approximant lies primarily in the 

differences in activation in the slightly less apical electrodes.  Here the difference 

between the stop and fricative lies primarily in the difference in activation in more 

basal electrodes.  

 

 
Figure 2.17. /idi/,(upper left) /izi/ (upper right) /ili/ (below left) and  /ini/ (below right) in quiet, 8 

channel CIS processing. The continuant and nasal, below, can be distinguished from the stop and 

fricative, above, by a more consistent pattern of activation in electrode 22 (e.g. there is no silence) 

whereas  /idi/ and /izi/ have a period of low activation in electrode 22 and 19 between 400 and 600 

ms.   

 

The distinction between the stop /idi/ and the fricative /izi/ is in terms of activation  

between 400 and 600 ms in the basal electrodes.  The nasal /ini/ can be distinguished 
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from the three other manner tokens by the modulated pattern of activation in the 

apical channels- it can be seen that this could be easily masked by noise with greater 

energy in low frequencies. The liquid /ili/ can be distinguished from other stimuli 

primarily because of its consistent activation in the most apical channel. The temporal 

resolution of the Nucleus 24 device, as indicated in the TMTFs shown in figures 2.10 

to 2.12, should allow the distinctions between the four manner categories to be coded.  

However, there are a number of complicating factors. First, how well does CI 

processing represent noise, e.g. the distinguishing characteristic of stops and 

fricatives, as opposed to quasi-periodic voiced components of speech, the 

distinguishing characteristics of voiced speech sounds in general and nasals in 

particular? Second, how well does CI processing represent nasals, which have a 

particularly weak formant structure and might be particularly susceptible to masking 

given the low amplitude of the component formants?  The electrodograms in figure 

2.17 suggest that it would be difficult to distinguish nasals from other categories, in 

particular from liquids/glides. Because manner categories are distinguished largely by 

the variance in activation pattern over time within electrodes (assuming a fairly crude 

high/low frequency resolution), it also seems likely that noise interference would 

serve to reduce the clear differentiation in level within electrodes over time.   
 

The previous analyses suggest that the broad consensus in the literature , that manner 

is more reliant on temporal/envelope processing than spectral processing, can be 

supported and, consequently, that this feature should be transmitted better than place 

and possibly better than voicing. However, the addition of background noise could 

have a larger effect than for place because of temporal envelope fluctuations being 

important. However, it would be useful to assess transmission of specific manner 

subcategories in assessing CI user and AM performance rather than looking at 

“manner” as an overall category exclusively. This is because each of the four manner 

subcategories has distinct acoustic correlates which could be informative about the 

effects of CI processing and electrical/neural interface factors identified in 2.3 and 

2.4.  

 

Because of the formant structure of nasals, the potential for noise interference in 

perception of nasality should be greater than for voicing. How cues to nasality are 

represented by CI processing will depend on degree of pre-emphasis (this is critical 
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given low-intensity cues being primarily in low frequencies) and factors affecting 

envelope fluctuations. Nasality should show greater susceptibility to noise than other 

temporal cues such as voicing or overall manner, or fricative, simply because the cues 

involved are of lower amplitude than equivalent cues to voicing.  These relatively low 

amplitudes do not pose a problem for NH listeners when determining nasality in 

noise, but the limited amplitude resolution/dynamic range of CI users could have an 

impact in this regard.  Also, we might expect some susceptibility to stimulation rate 

effects and in particular errors between nasals and approximants should be common at 

lower rates. 

 

Identification of a consonant as a fricative rather than a different manner type requires 

identification of the presence of noise (to distinguish it from nasals or liquids) of 

durations greater than 100 ms (to distinguish it from plosives). Consequently, both 

spectral and temporal cues are available for fricative identification. The frication noise 

which characterises fricatives (and plosives, albeit of much shorter duration) is of 

greater amplitude and higher frequency than the quasi-periodic cues that distinguish 

nasals or approximants; consequentl y, it could be hypothesised that the fricative 

feature would be less susceptible to noise interference at positive SNRs.  It can also be 

hypothesised that fricative identification is more reliant on spectral resolution than 

identification of nasals or liquids, hence it should be more affected by channel number 

of spectral channel interaction than nasality transmission, but less so than place 

transmission. 

2.6.3 Place of articulation 
The two most important cues to place of articulation, (for any of the four manner 

categories and for voiced or unvoiced consonants) are formant transition, particularly 

the second and third formant transition onset frequency, and the spectrum of the burst 

or frication (e.g. for stops and fricatives, respectively). In all the research literature 

this feature is the most poorly coded in CI users (see figure 2.4 and table 2.2). A likely 

reason for this is the very poor representation of formant transition information in the 

output of CI processing (Teoh et al., 2003).  In order to illustrate this, figure 2.18 

shows spectrograms of the original /ibi/ and /idi/ stimuli while figure  2.19 shows 

ACE 12/20 and CIS 8 channel electrodograms for the stimuli /ibi/ and /idi/ (pulse rate 

500 pps/ch). 
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Figure 2.18. Spectrograms of /ibi/  and /idi/. The labiodental plosive /idi/ can be distinguished 

from the bilabial plosive /ibi/ by the presence of a higher-frequency (and longer duration) burst, 

in addition to a second formant frequency with higher frequency onset. 

 

 

 

 
Figure 2.19. /ibi/  and /idi/; upper figures are CIS 8 x 900 , lower figures are ACE 12/20 x 900. The 

wider spectrum of the burst cue can be seen in /idi/ compared to /ibi/  but the difference in 

formant transition is not apparent, apart from a difference in degree of activation of electrode 19 

from around 580 ms. 
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In the ACE electrodograms, the residual information coding formant transition is the 

relative amplitude of channel 17 compared to adjacent channels. However, for the 8 

channel CIS electrodograms, even this information is lost.  The richness of formant 

transition information is absent due to the relatively small number of channels used. 

The difference in second formant transition onset frequency between the /b/ in /ibi/  

and the /d/ in /idi/ in the original stimulus is in the order of 400 Hz over a duration of 

<100 ms. Within-channel information would not be of use as formants ( e.g. second 

formants are typically around 2000 Hz) would not be coded in the time pattern of 

individual channel envelope variations as these are beyond the temporal resolution of 

the CI system (see 2.3.3). By contrast, the figures for /ibi/  vs. /idi/’ show a clear 

distinction in basal channels between stimuli- the high-frequency burst is coded as a 

local activation pattern at 600 milliseconds which extends to more basal electrodes for 

/idi/ than for /ibi/   The same argument applies to coding of fricative place.  Figures 

2.20 show spectrograms of unprocessed stimuli and 8-channel CIS electrodograms of 

/isi/ and /iʃi/.  Here the difference is more pronounced, as might be expected given the 

wide bandwidth of the relevant cue. 



 71

 

 
 

 
Figure 2.20. /isi/ and /iʃi/,; unprocessed stimuli above, stimuli transformed via 8 channel CIS 

processing below.  For /isi/ there is greater activation of electrode 1 between 400 and 600 ms while 

for /iʃi/ there is greater activation of electrodes 4 and 7 over approximately the same time frame. 

 

The relative salience of the burst/frication and the relative impoverishment of the 

formant transition cues lead to a number of hypotheses. First, place and manner 

coding for nasals or liquids should be more difficult for CI users than coding of 

fricatives or plosives as these distinctions require exclusively on formant transitions.  

Second, performance with place for fricatives and plosives should be sensitive to any 

parameters which might affect burst/frication coding, i.e. pre-emphasis, vowel 

environment, noise, stimulation rate and channel number.  

 

The poor coding of formant transitions, which cue place in all manner categories, is 

implicated in the general finding that place of articulation is perceived less well than 
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manner and voicing by CI users.  The relative preservation of the burst must therefore 

become a more critical factor.  The electrodograms in figure 2.19 show the high 

amplitude of the burst compared to activation across other channels. By the same 

token, the electrodograms in 2.20 show that frication energy coded in electrodes 1, 4 

and 7, whose spectrum defines fricative place, is also higher in amplitude than 

activation in other electrodes. If place perception in quiet depends primarily on burst 

perception in CI users then noise interference should have only a small effect on 

performance up to relatively unfavourable SNRs. Another consequence of the reliance 

on the burst would be that place coding for nasals and liquids should be poorer than 

for stops or plosives, and also that place transmission in general should be better for 

the iCi than aCa environment (because in NH listeners the burst is more salient in 

iCi).  Finally, the importance of the electrical/neural interface on place transmission 

must depend on the degree to which worse spectral resolution (e.g. associated with 

channel interaction) will reduce available place cues.  In fact, if burst frequency is the 

primary cue, it is difficult to see that further channel overlap will have a worse effect 

on performance, as the resolution of burst spectrum can probably be achieved with 8 

channels (thought to be equivalent to spectral resolution abilities in better CI users, as 

indicated in 2.4.2). 

2.6.4 Auditory phonological categories 
The previously defined categorisation scheme is based on the mechanism of speech 

production, albeit mechanisms which have corresponding acoustic and therefore 

auditory consequences.  However, other further phonological categories based on 

purely acoustic or auditory distinctions have been used in the general speech 

perception literature. The category “sibilant” refers to a specific subset of fricatives 

with high-frequency energy loci. Another category “envelope” is of particular interest 

here. Blamey et al. (1985) first suggested a classification of consonants into four 

categories, each of which can be distinguished by gross shape when processed via a 

CI: unvoiced plosives, unvoiced fricatives, voiced plosives and fricatives, and 

nasals/liquids.  Dorman et al. (1990) found a correlation between overall speech 

perception and transmission of the envelope feature (although note that the devices 

used in that study had less spectral and temporal resolution than those of more recent 

interest).  In order to illustrate this, figures 2.21 shows electrodograms of tokens of 
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each of the four different groups, simulated with a 1-channel CIS model and an 

update rate of 250 pps/ch:   
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Figure 2.21. Electrodograms /iti/ and /isi/ above left and right; /idi/ and /ili/ below left and right, 

processed through a 1-channel CIS strategy with 250 pps/ch stimulation rate.  

 

 

Here we can see that gross overall shape is distinct between different groupings.  This 

would suggest that transmission of this feature would be the most “robust” of all the 

consonant features, e.g. should show the least effect for parameters such as channel 

number, stimulation rate and channel interaction.  

2.7 Overview 
The previous discussion covered a range of issues relating to the information 

processing stages involved in speech perception by CI users and how these processes 

could be evaluated using AMs. The possible link between specific stages and 

recognition of some consonant features has also been outlined. Figure 2.22 suggests a 
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more detailed picture of information flow for users of the Nucleus 24 device. Input 

stage processing is distinguished from frequency analysis and envelope extraction as 

the main two stages of CI processing. The subsequent stage of the electrical/neural 

interface is given as a distinct stage as is processing in the central nervous system. For 

a set of CI users using the same signal processing characteristics, differences in 

individual CI user performance can be attributed to the latter two stages. At each stage 

of processing different sources of information loss are proposed, in line with the 

discussion outlined in previous sections of this chapter. For the work reported in 

chapter 4, the same set of processing characteristics applied to both CI users and AM 

listeners. Consequently, differences between AM listeners and CI users could be 

attributed to different processes involved in the interface with the auditory system. 

 

 
Figure 2.22. Proposed overall conceptual map of information loss and information flow in the 

Nucleus 24 cochlear implant, including reference to equivalent acoustic models 
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Chapter 3. Methods 

3.1 Research questions and hypotheses 

The focus in this thesis is on the relative contribution of CI signal processing 

information loss as against electrical/neural interface information loss in determining 

the pattern of consonant feature transmission in CI users.  The overriding question 

motivating the research was: “to what extent can deficits in consonant recognition by 

CI users be explained by information loss in CI signal processing as opposed to 

information loss at the electrical/neural interface?” This question is not directly 

answerable but must be translated into experimentally tractable hypotheses. The main 

problem in determining the relative contribution of electrical/neural interface factors 

such as channel interaction is the difficulty in controlling variations in these factors 

between individual CI users. While there is good evidence that individual CI users 

may vary in terms of the degree of spectral and/or temporal channel interaction and in 

other electrical/neural interface factors, it is unclear to what extent variations in these 

underlying abilities contribute to individual performance (Throckmorton and Collins, 

1999).  Moreover, there is no consensus as to how to measure these individual 

differences, whether through psychophysical or objective means.   

 

It is therefore argued that, in order to differentiate effects of CI signal processing from 

other factors, it is highly useful to compare results between normal (NH) subjects 

listening to AMs of CI processing with results obtained from CI users using 

equivalent signal processing.  This approach has been justified by Throckmorton and 

Collins (2002) and Laneau et al. (2006), among others. The rationale is as follows: 

where CI performance and AM performance match, explanations for CI performance 

can be related directly to model design. More specifically, if an AM which only takes 

into account CI processing characteristics can predict CI performance, then it follows 

that CI processing information loss can explain CI user performance. If, however, the 

model works better if it also incorporates some aspects of the electrical/neural 

interface, then it follows that the information loss at the electrical/neural interface 

must also contribute to the CI performance.   
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An assumption behind much work in AM research is that a range of different AMs 

may account for CI user performance so long as those models have the general 

properties of CI processing that are perceptually important, e.g. the relatively small 

number of channels and the absence of temporal fine structure within channels. 

Almost all AM studies to date have used fixed-channel models and envelope 

extraction has been via a set of linear IIR filters followed by rectification and 

smoothing. However, only some CI systems implement this type of processing while 

others, notably the Nucleus 24 which is the focus of the present study, use an FFT 

filterbank and, also, most users use peak-picking strategies such as ACE rather than 

fixed channel strategies. There is an identifiable need to consider the extent to which 

the results obtained can be attributed to the specific set of CI processing parameters, 

(e.g. pre-emphasis, strategy type, FFT parameters, channel number and channel 

stimulation rate). Additionally, consideration must be made, specific to AMs 

themselves, as to the effects of specific choices of waveform output parameters, (e.g. 

carrier stimulus) and stimulus parameters, (vowel environment and noise type).  It 

should be noted that each of these specific choices is evaluated in experimental work 

in the study by comparison with alternatives, with the exception of noise type and 

input stage processing. 

 

The assessment of consonant feature information transmission provides an 

opportunity to determine if an AM is predictive of CI user performance. This is 

because transmission of different consonant features relies on different underlying 

psychoacoustic abilities and therefore relates to different aspects of signal acoustics. 

Therefore, it is useful to compare AM performance against CI user performance in a 

number of ways. First, the pattern of information transmission across consonant 

features; second, the pattern of effects of background noise across consonant features; 

third, the pattern of effects of CI processing parameters across features; fourth, the 

pattern of effects of electrical/neural interface factors across features. If an AM can 

predict the magnitude and/or pattern of consonant feature transmission as a function 

of any or all of these variables, then it can be said to have explanatory power in 

predicting CI performance.   

 

A number of knowledge gaps were identified in chapter 2. This leads to a series of 

research questions concerning CI users’ consonant recognition.  Almost all the more 
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specific research questions can be framed in the context of this more general 

knowledge gap, e.g. the lack of knowledge about the relative importance of 

processing and electrical/neural interface information loss to consonant recognition. 

 

For CI consonant recognition, a consistent finding has been worse place of 

articulation perception than manner or voicing perception.  However, there were 

identified knowledge gaps in the following areas:  

 

1. Is the pattern of consonant feature transmission in CI users the same in quiet 

and noise? 

2. Is the pattern of consonant feature transmission in CI users the same in vowel 

environments other than /aCa/? 

3. What is the pattern of consonant feature transmission in users of the Nucleus 

24 device? 

 

The remaining questions relate to the ability of an AM to predict consonant 

recognition abilities in CI users: 

 

4. Can an AM accurately predict the pattern of relative consonant feature 

transmission (in quiet or noise)? 

5. Can CI consonant recognition be predicted better by an AM with or without 

the characteristic shift in perceived pitch associated with CI insertion (referred 

to as “pitch mismatch”)? 

6. Can CI consonant recognition be predicted better by a model incorporating 

channel interaction and, if so, how much channel interaction is required to 

optimally match CI user performance? 

7. Can variations in channel interaction model variations in CI user performance? 

8. Which version of an AM can best predict changes to CI user performance with 

changes in channel number? 

9. Which version of an AM can best predict changes to CI user performance with 

changes in stimulation rate? 

10. Does choice of AM carrier stimulus have a bearing on the prediction of CI 

user performance? 
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Although Laneau et al. (2006) compared performance with a specific device with 

performance using an AM which incorporated electrical/neural interface features 

(channel interaction/e.g. spectral channel interaction), the authors assessed different 

aspects of speech perception than those addressed here. The authors found a 

correlation in performance between AM and CI user findings with spectral channel 

interaction equivalent to 1 mm in the model.  It can therefore be hypothesised that 

consonant recognition in Nucleus 24 users will be best approximated with a model in 

which channel interaction is equivalent to 1 mm spectral spread. 

 

Experimental hypotheses can either be couched as overall hypotheses or as feature-

specific hypotheses. Section 3.3.6 gives a justification for choosing six specific 

consonant features voicing, place, manner, nasality, fricative and envelope. Ideally, 

each of the consonant features would have a corresponding hypothesis for each 

variable in each experiment. A number of feature-specific hypotheses have been put 

forward in 2.6. More specific hypotheses, including those relevant to processing 

parameter variables and to specific features, are stated within the context of each 

experiment in chapters 3 and 4. 

3.2 Aims 

There are a number of questions and aims in 3.1 that are specific to AMs and to test 

methodology as opposed to the relationship between AMs and CI user performance.  

Therefore the initial experimental work, reported in chapter 4, was concerned with 

these areas. Because the potential complexity of further planned experiments, it was 

important to determine two more purely methodological questions in experiment 1.  

These two methodological questions were motivated by the need to keep the number 

of distinct variables as low as possible for further experimental work in order to 

minimise subject fatigue effects and provide a practical experiment. First, would a 

relatively small number of repetitions of each consonant give “valid” results?  The 

second was, what was likely to be an optimally sensitive SNR for use with further 

experiments of consonant recognition in noise?  

 

The experimental work had two distinguishable sets of aims, the first relating to AMs 

specifically, and the second relating to the ability of AMs to predict CI user 



 79

performance. The first set of aims were addressed in the experimental work reported 

in chapter 3 and can be summarised as follows: 

 

1. Develop an AM of a specific CI device in order to achieve the following aims: 

2. Determine the relative transmission of different consonant features. 

3. Determine the relative effect of noise at different SNRs on consonant features. 

4. Determine the effect of carrier stimulus on consonant feature transmission. 

5. Determine the effect of including pitch shift on consonant feature 

transmission. 

6. Determine the effect of vowel environment on consonant feature transmission. 

7. Decide on the “optimal” combination of model and stimulus parameters for an 

AM to compare directly with equivalent CI user data. 

 

The second set of aims were addressed in experimental work reported in chapter 4 and 

related to the comparison between CI user and AM performance: 

 

1. Ensure that the processing and stimulus variables in the model and CI users 

were, as far as possible, equivalent. 

2. Determine the effects of changing channel/maxima number on consonant 

feature transmission in the model and in the CI users. 

3. Determine the effects of changing channel stimulation rate on consonant 

feature transmission in the model and in the CI users. 

4. Determine the effect of altering carrier stimulus overlap as undertaken in 

Laneau et al. (2006) (as a means of mimicking spectral channel interaction) on 

feature transmission in the model. 

5. Determine whether the inclusion of channel interaction improved the fit 

between model and CI user data. 

6. Determine whether variance among CI users could be modelled by variations 

in channel interaction in the model. 
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3.3 Methodology 

3.3.1 Overall approach to test methodology 
The approach taken in this study was to evaluate two aspects of the electrical/neural 

interface through AMs.  In experiment two, AMs were generated with and without the 

characteristic “pitch mismatch” associated with electrode insertion. For the third 

experiment, pitch mismatch was included in all listening conditions (having been 

found to make only modest differences to AM performance in the second experiment) 

but the presence and degree of channel interaction, a proxy for assumed spectral 

channel interaction, was systematically varied.  The rationale here was to see whether 

variations in performance across channel interaction conditions could mimic 

variations in performance across individual CI users and, more generally, whether the 

inclusion of channel interaction improved the “fit” between AM and CI user data. 

 

The remainder of this section describes the methodology used for experimental work 

in chapters 4 and 5.  Where specific experiments deviated from this methodology, 

details are given in the relevant chapter. The following principles were adhered to 

across the four experiments: 

 

(1) The same approach to consonant feature analysis, and set of six consonant 

features, was used throughout (see 3.3.6 for a justification for choice of 

features). 

(2) The same experimental paradigm was used throughout (this was established as 

being workable during the conduct of experiment 1 and its pilot study). 

(3) The same noise type and noise addition method were used throughout. 

(4) All three AM experiments used the NIC-STREAM (Cochlear, 2002) and 

AMO MATLAB platforms (Laneau et al., 2006). These implement the same 

processing as the Nucleus 24 CI system. Additionally, all stimuli were filtered 

using a pre-emphasis filter prior to AM processing proper. 

(5) For the CI user experiment, the standard programming platform for the 

Nucleus 24 device was used. 

In all experimental work, a 20-alternative forced-choice nonsense syllable recognition 

task was undertaken.  Nonsense syllables took the form iCi, where the vowel /i/ is 

followed by one of twenty English consonants and then followed by a second token of 
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the same vowel. The rationale for choosing such a large consonant inventory is that 

this allows the fullest possible analysis of different consonant features. The stimulus 

set represents 20 out of the 24 English consonants although it excludes /h/ which can 

be considered a glottal vowel, and /δ/, /η/ and /ʒ/ which do not have a unique spelling 

indicator. Moreover, the specific stimulus set has been validated in CI users as part of 

a large study of adult CI outcomes (UK Cochlear Implant Study Group, 2004). 

Although the majority of both normal hearing and CI studies evaluating consonant 

recognition have used the /aCa/ vowel environment, there are a number of reasons for 

choosing the /iCi/ vowel environment instead. In a recent study of stop consonant 

recognition in noise by four normal hearing listeners (Jiang et al., 2006) the /iCi/ 

vowel environment yielded a larger effect of background stationary noise than /aCa/.  

The authors showed, through acoustic analysis, that voicing perception was 

determined more by F1 onset frequency than voice onset time at unfavourable SNRs 

but that F1 onset frequency is more salient in the /aCa/ environment. Loizou et al. 

(2000b) showed that consonant recognition in the /iCi/ vowel environment was more 

sensitive to stimulation rate in CI users than with the /aCa/ vowel environment and, 

more generally, performance was poorer than for /aCa/ where ceiling effects were 

obtained in some conditions. Although these findings are not directly relevant to the 

study carried out here, they do suggest that consonant recognition in the /iCi/ vowel 

environment may be more sensitive to small parameter changes and less likely to 

yield ceiling effects.  

 

In summary, the methodology used was as follows: 

• Vowel environment: /iCi/ or /aCa/ 

• Choice of stimuli: 20 English consonants  

• Total number of stimuli: 20 

• Number of presentations per stimulus: 3 

• Single or multiple speakers: Single 

• Speaker gender: male, female or mixed: Female 

• Number of iterations of SINFA analysis: 1 

• Provision of feedback: none 

• Amount of acclimatisation to the model: Self-directed (as describe in 3.1.2), 

typically 5-10 minutes per subject. 
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Most of the studies on consonant feature recognition in CI users have used relatively 

heterogeneous groups of CI users, e.g. the CI participants in the studies used varying 

signal processing parameters.  To control for variations in signal processing, all the 

work reported in this dissertation used one device, the Nucleus 24.  For the main 

experiments (reported in chapter 5), all the CI subjects the same signal processing 

parameters and in most cases were most highly acclimatised to using the particular set 

of parameters.  The corresponding AM experiment also used precisely the same 

parameters.  

3.3.2 Stimulus processing 
All stimuli used as input to the processing were recorded nonsense syllables using a 

female speaker, kept as digitised Microsoft sound (.wav) files with a sampling rate of 

22,050 and a resolution of 16 bits. An additional stimulus was “speech-shaped noise”- 

this was white noise filtered to have the same long-term average spectrum as the BKB 

sentences (Bench et al., 1979) spoken by an adult female speaker. A randomly 

extracted sample (of the appropriate length) was mixed with the speech stimuli at the 

appropriate SNR for noise-contaminated listening conditions. Two possibilities exist 

with respect to how to achieve a defined SNR for VCV nonsense syllables: either the 

signal RMS level could be averaged across the entire signal duration or, alternatively, 

the signal RMS could be computed across the duration of the nominal consonant 

portion of the stimulus.  There are disadvantages of each method: with the first option, 

the effective SNR with respect to the consonant itself will vary according the 

consonant to vowel amplitude ratio while with the second option the overall level of 

the signal will vary and lack of a clear definition of start and end times of the 

consonant portion makes the task more subjective than is ideal.  For this study the first 

approach was used (across all experiments).  In order to this, the software package 

Adobe Audition was used to determine the RMS level of each stimulus.  For each 

stimulus conditions, the average RMS level of all 20 stimuli was first determined.  A 

randomly chosen portion was copied from the sound file containing the speech-

shaped noise was adjusted so that its mean RMS was at the appropriate level for 

whichever SNR was to be used.  This was then mixed with the target stimuli at the 

appropriate SNR.  It should also be noted that all sound files containing the target 

stimuli had 1 second of silence before and after the stimulus and for noise-
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contaminated stimuli noise also began 1 second before stimulus onset and one second 

after stimulus end.  A final processing stage prior to AMling was down-sampling of 

the sound files to 16,000 samples per second as the recordings had been made using a 

22,050 sampling rate whereas the input to the NIC-STREAM/AMO processing 

needed to be 16,000 Hz to mimic the Nucleus 24 audio sampling rate.  Stimuli were 

also decimated to an 8-bit rate as this is the quantization used by the Nucleus 24 

processor. 

 

The remainder of this section describes the signal processing principles used to 

produce the AMs (e.g. simulated stimuli for presentation to normal hearing listeners), 

although some further details are given to specific to each experiment. Stimuli were 

processed using NIC-STREAM, a MATLAB software toolbox created for processing 

of cochlear implant signals with the Nucleus 24 cochlear implant system, designed by 

Brett Swanson of Cochlear Corporation to mimic the processing of the Nucleus 24 

device.  The platform is much more flexible than the standard clinical programming 

software and is designed for research use.  Its advantage for this work was the fact 

that it implements the same filterbank, envelope extraction and channel mapping 

processes as are implemented in the Nucleus 24 device and therefore allowed a valid 

comparison between AM and CI user data. NIC-STREAM comprises a MATLAB 

toolbox for generation of pulse sequences in addition to a set of functions for direct 

stimulation of a CI (the latter were not used in this study). 

 

Figure 3.1 shows the conceptual stages of processing, both for the Nucleus 24 device 

and for the NIC-STREAM stimulus processing. For the purposes of this work, only 

those MATLAB functions necessary to generate a channel magnitude sequence were 

used. At the time of initial experimental work, the MATLAB toolbox did not 

implement front end processing. Consequently, this aspect of processing was dealt 

with separately (see below) and the input to NIC-STREAM was at the filterbank 

stage. Consequently, the Nucleus MATLAB toolbox was used for filterbank and 

sampling and selection stages of stimulus processing. Audio input to the filterbank 

stage generates a 2-dimensional matrix known as a “frequency-time matrix” which 

represents variations in output for each filter (in the case of experiments 2, the 

filterbank was configured as having 8 filter outputs). The subsequent stage of 

sampling and selection was used to generate a channel magnitude sequence for ACE 
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processing as used in experiment 3, but for CIS the frequency-time matrix and 

channel-magnitude sequence were effectively identical as with the CIS strategy all 

filter outputs are chosen. The channel magnitude sequence was used to generate 

acoustic stimuli for the AM experiments and also to generate visual representations of 

nominal electrode output (“electrodograms”) used in chapters 2 and 6. 

 

Front End Filterbank Channel
Mapping

Sampling &
Selection

Microphone

Audio Audio Frequency-
Time
Matrix

Channel-
Magnitude
Sequence

Pulse
Sequence

Figure 3.1. Signal flow in the ACE and CIS speech processing strategies. Reproduced with 

permission of Brett Swanson, Cochlear Corporation. 
 

Additional MATLAB M-files were developed by Johan Laneau and colleagues 

(Laneau et al., 2006) for generation of AMs and were used for experiments 2 and 4.  

These additional functions allowed the inclusion of a channel interaction model that 

was implemented by altering the filter characteristics used to generate the noise bands 

used as carrier stimuli. The AM was developed and validated in a study of pitch 

perception (Laneau et al., 2006) and was based on the mathematical model of current 

spread of Black and Clark (1980), described in 2.4.1.  As the unique aspects of this 

model were only used for generation of stimuli in experiment 4, further details are 

given in section 5.2. The remaining details of processing given here apply across all 

three AM experiments. 

 

At the beginning of the experimental work, front end processing was not included in 

NIC-STREAM. Therefore, the first stage of stimulus processing was the 

implementation of a pre-emphasis filter to mimic the normal high frequency boost 

used by the Sprint and Esprit speech processors.  The frequency response of the Sprint 

microphone was determined empirically and the measurements use to determine this 

are described in Appendix A. This was defined as having the following 

characteristics: up to 1800 Hz, 6 dB per octave was added; between 1800 and 5000 

Hz there was a flat frequency response; from 5000 to 10,000 Hz a 24 dB per octave 

decrease was implemented.  The pre-emphasis was implemented in Adobe Audition 

using an FFT filter with a Hamming window and an FFT size of 8192.  In some cases 
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implementation of the pre-emphasis led to clipping and therefore the filter was 

implemented with an overall gain reduction as necessary to reduce clipping.  

However, prior to subsequent processing, all stimuli were re-scaled to the same 

relative levels (to one another) as obtained prior to the addition of pre-emphasis. With 

the Nucleus 24 device, the pre-emphasis is inbuilt in the microphone and therefore the 

subsequent stage of processing would be ADC.  However, the stimuli here had 

already been down-sampled to 16,000 Hz with an 8-bit resolution (e.g. the 

characteristics of the ADC stage within the Nucleus device) so no further processing 

was necessary to mimic the Nucleus device in this respect.  

 

The next stage of processing was to band-pass filter the signal using the NIC-

STREAM/Nucleus FFT filter bank.  It should be noted that the same filterbank is used 

for both ACE and CIS processing strategies therefore this is identical across AM 

experiments. The input waveform was analysed at the same rate as the nominal 

“stimulation rate”, e.g. 500 Hz for experiments 1 and 2 and 900 or 250 Hz for 

experiment 3. As with the Nucleus device itself, a 128-point FFT was performed. This 

yielded bin centre frequencies that were linearly spaced at multiples of 125 Hz and 

which had a 6dB bandwidth of 250 Hz.  These bins were combined by summing 

powers to provide eight frequency bands as per figure 3.2. For experiments 1 and 2, 

an 8-channel CIS implementation was used: the upper and lower frequency 

boundaries of the 8 analysis filters are shown in figure 3.2. For experiment 4, an ACE 

implementation was used (in order to match the clinical parameters actually used by 

the CI users) and details of the corresponding analysis filters are given in chapter 5. 
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Figure 3.2. Frequency allocation for the 8-channel CIS implementation used in experiments 1 

and 2. 

 

The envelope of each filter was calculated as a weighted sum of the corresponding 

FFT bin powers where the weights determined the frequency boundaries of the bands. 

Carrier stimuli were modulated according to the fluctuations in the envelopes of the 

corresponding band-pass filters. The nature of the carrier stimuli varied across 

experiments in terms of: carrier stimulus type, choice of (centre) frequency and (in the 

case of noise bands for experiment 4 only) overlap between carriers.. For experiment 

1, sine waves were used, whose frequencies corresponded to the centre frequencies of 

the 8 FFT filter outputs shown in figure 3.2. For experiment 2, noise bands and sine 

waves were used in different models for comparison purposes.  For half of the models 

used in experiment 2, centre frequencies of the carriers corresponded to the centre 

frequencies of the FFT filter outputs as shown in figure 3.2, as in experiment 1. 

However, for half of the acoustic models in experiments 2, and all of the models in 

experiment 4, the centre frequencies of the carrier stimuli were shifted upwards in 

frequency so that they so that they corresponded to the assumed place of excitation 

along the basilar membrane (F in equation 3.1) for the corresponding intracochlear 

electrode (assuming the standard Nucleus 24 electrode array inserted 25 mm into the 

cochlea).  This frequency transformation was determined according to Greenwood 

(1990).Consequently, the centre frequencies of the channels used in the CI processing 
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were shifted upwards in frequency based upon the assumed frequency along the 

basilar membrane for an electrode array with 22 electrodes placed 25 mm into a 

cochlear with a length of 33 mm. To determine the appropriate frequencies, 

Greenwood’s formula, given here as equation 3.1, was used. 

 

( )kAF ax −= 10  

where  
F=centre frequency in Hz 

A=165.4  

a= 0.06 

x=distance along basilar membrane in mm. 

k=1 

Equation 3.1. Determination of centre frequency corresponding to place along the basilar 

membrane according to Greenwood, 1990. 

 

To take an example, the filter output for (virtual) electrode 13 in the 8-channel CIS 

model shown in figure 3.2 yielded a centre frequency of 1313Hz.  The corresponding 

electrode along a 22 electrode array of 25 mm length along a 33mm basilar membrane 

was assumed to be 17.8 mm from the apex. This resulted in an assumed characteristic 

frequency of 1768 Hz according to Greenwood’s formula. Consequently, the 

frequency of the carrier (sine wave frequency, or noise band centre frequency), was 

shifted upwards by 455 Hz.  The formula, combined with information about electrode 

array characteristics and typical insertion depth, yielded upwards shifts in frequency 

which ranged from 1.2 for apical/low-frequency channels to 1.45 at basal/high 

frequency channels. The same shift was used to determine the frequency of the sine 

wave carriers (for experiment 2) and the centre frequency of the noise band carriers 

(in experiments 2 and 4). Because of the finding from experiment 2 that this degree of 

“pitch shift” had only a very modest effect on performance, the transform was applied 

to all models used in experiment 4. It should be noted that the filter bank frequency 

bands reported in figure 3.2, 5.1 and 5.2 reflect analysis filter bank characteristics 

(common to AM and CI processing), not necessarily AM output carrier frequencies, 

given that these were transformed systematically as described above. 
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For experiment 4, noise band carriers with centre frequencies chosen to reflect 

corresponding cochlear locations according to Greenwood (1990) were used as in 

experiment 2.  Additionally, in order to model spectral channel interaction the 

frequency response of the filters used to generate the noise-band carriers was altered, 

according to the Laneau et al. (2006) model. The frequency response of the filter was 

designed to simulate the exponential decay of current density along the basilar 

membrane (Black and Clark, 1980) and is defined by: 

 

⎟
⎠
⎞

⎜
⎝
⎛ −−

=
λ

))((exp))(( fxxelectrodeabsfxF  

where 

λ  = distance along cochlear in mm (the conversion of distance on a cochlear into the frequency 

domain assumed the Greenwood formula) 

xelectrode = the position of the simulated electrode 

x(f) implements the conversion to distance along the cochlea from frequency according to 

Greenwood, 1990 

Equation 3.2. Filter transfer function used to model spectral channel intertaction from Laneau et 

al., 2006  

 

The desired frequency response was obtained by implementing a linear phase FIR 

filter in MATLAB.  The model assumed a 35 mm cochlear length and 25 mm 

electrode array insertion. Laneau et al. (2006), applying the same model, found 

equivalent performance between Nucleus 24 users and AM listeners when a channel 

overlap term equivalent to 1 mm spectral spread of excitation was used.  However, 

those papers evaluated pitch perception rather than segmental perception, e.g. 

consonant identification.  It was therefore chosen to take three channel overlap 

conditions: first, no overlap between noise band carriers, second, overlap equivalent 

to 1 mm spectral spread, and, finally, overlap equivalent to 3.3 mm spectral spread, 

similar to the value suggested by Black and Clark (1980). Therefore, the three models 

were identical except for the definition of λ  which varied across three values. Figure 

4.3 shows the effect of varying λ .  The figure shows wide-band  spectrograms of a 

2000 Hz pure tone which was sinusoidally amplitude modulated at 50 Hz with a 

modulation depth of 100% and processed through an AM of the ACE speech 

processing strategy (12 maxima out of 20 channels) and a 900 pps/ch stimulation rate. 

It can be seen that the spectral spread associated with the 3.3 mm channel interaction 
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condition is very marked.  It should also be noted that the effect of any given degree 

of channel interaction in a peak-picking strategy will be stimulus dependent, as with a 

wider band stimulus it is possible that the peaks will be wider apart, whereas for a 

narrow band stimulus the peaks will be closer together. Therefore, for a given degree 

of spectral spread, the consequences will differ according to the location and spacing 

of the peaks chosen in a particular frame.  For a stimulus where peaks are selected in 

the same frequency region, a small amount of channel interaction (e.g. 1mm, which 

represents a filter bandwidth just over 1 electrode wide either side of the stimulation 

electrode) will cause a larger amount of channel overlap than for a stimulus which 

produces widely spaced peaks. 
 

 

 
Figure 3.3. Wide-band spectrograms of AMs of a 2000 Hz pure tone modulated at 50 Hz with no 
channel interaction  (top) with λ = 1 mm  (middle) and 3.3 mm (below) 
 

In all three AM experiments, carrier stimuli, either sine waves or noise bands, were 

added together and the RMS level of the resulting signal was adjusted to be equal to 

the original signal. Presentation level for the AM experiments was at a nominal level 

of 65 dB(A) as measured in a 2cc acoustic coupler, equivalent to approximately 60 

dB(A) at the tympanic membrane. For the CI user experiment, stimuli were presented 



 90

in the sound field at a level of 70 dB(A) as measured at the location of the subjects’ 

speech processor microphone.  

3.3.3 Stimulus presentation and calibration  
For all experiments, the experimenter stayed in an observation booth while the 

subjects were in a sound-treated booth. For all experiments, subjects sat immediately 

in front of a touch screen. All equipment, e.g. PC, mixer and amplifier were in the 

observation room and were linked via wall plugs to the soundproof booth. The 

experimenter could see the subject through a one-way mirror and could also hear the 

subject via intercom. Stimulus generation was via a PC with a SoundBlaster sound 

card. The Praat speech analysis and software testing package (Boersma and Weenink, 

2005) was used for stimulus presentation and response recording.  For AM 

experiments 1,2 and 4, stimuli were routed through an INKEL MX-880E stereo mixer 

which delivered a mono signal to an insert earphone worn by the subjects. For the CI 

user experiment (no. 3), stimuli were routed through the stereo mixer and then 

through an INERN L140 amplifier which fed the amplified signal to a loudspeaker 

located in the soundproof booth.  

 

The aim of calibration for the AM experiments was to ensure that the level of the 

sounds presented via the insert earphone was around 65 dB(A) at the tympanic 

membrane (TM) of the subjects.  To do this, a real-ear-to-coupler difference (RECD) 

was determined for the first subject. Given the relatively small variation in level of 

RECD (averaged across frequency) across adults, this was used to determine the 

required coupler level that would give 65 dB(A) at the tympanic membrane. The first 

step was to create a sound file with the same mean RMS and power spectrum as the 

speech tokens.  This was done by taking a ten second sample of the stationary speech-

shaped noise and altering the level to equate to the average level of the sound files 

used for the experiment.  This was defined as the calibration stimulus.  The RECD for 

subject 1 was determined as follows: a probe microphone was placed in his right ear 

and the insert phone connected to the experimental rig was then inserted in the same 

ear.  An AudioScan hearing aid measurement system was used as a sound level meter 

to measure the level at the eardrum by using the “manual” mode of operation of the 

test box, and setting the measurement scale to A-weighting.  The output of the insert 

earphone was then measured in a 2 cc coupler, and output at the TM was found to be -
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3.7 dB relative to the coupler output; consequently the RECD was –3.7 dB. Volume 

settings on the software were altered until the calibration stimulus was equal to 65 

dB(A) at the TM and these settings of the software volume controls were noted.  This 

allowed for a daily check at the beginning of each experiment to ensure that the 

stimulus delivered from the insert phone was at a level of 59.3 dB(A) +/- 0.5 dB in the 

coupler, equivalent to 65 dB(A) at the eardrum of the first subject.  Given a typical 

head-related transfer function, the difference between the sound pressure level 

reaching the CI users’ speech processor microphone and the sound pressure level 

reaching the eardrum of the NH listeners was estimated to be approximately 4 dB 

across frequencies 250-8000Hz, e.g. equivalent to approximately 61 dB(A) in the 

sound field.  

 

Calibration for the CI user experiment was undertaken to ensure that the level of the 

stimuli presented in the sound field was 70 dB(A) at the microphone of the subjects’ 

speech processors.  A similar technique was applied, e.g. a proxy speech-shaped noise 

stimulus with the same RMS level was used for presentation in the sound field and 

volume controls were adjusted to ensure that the 70 dB(A) mean level for each 

stimulus presentation was maintained. 

3.3.4 Subjects 

For all three AM experiments NH listeners in the age range 18-35 years were used.  

Screening audiometry was undertaken to check that hearing levels were at 20 dB HL 

or better for all subjects. Otoscopy was also performed to check for any abnormalities 

of the external or middle ear.  Details of CI subjects used in experiment 3 are given in 

5.2. 

3.3.5 Testing regime 

For all experiments, subjects were seated in a double-walled soundproof booth. 

Stimuli in the AM experiments were presented monaurally to the subjects via an ER-3 

insert earphone connected to a PC with a Sound Blaster sound card or via the sound 

field for the CI user experiment.  Insert earphone presentation was used for AM 

experiments in order to minimise the effect of the pinna/outer ear transfer function on 

the stimuli. Monaural presentation was used as this mimics the normal listening 

condition for the majority of CI users. Stimuli were presented to subjects via routing 
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of the signal into an adjacent soundproof booth. A touch screen was used for visual 

presentation of response options and to code subjects’ responses. The ear to which the 

sounds were presented was alternated between subjects.  

 

Testing was undertaken using the Praat (version 4.1) speech analysis and testing 

software, developed by Paul Boersma and David Weenink of the Institute of Phonetic 

Sciences at the University of Amsterdam (www.fon.hum.uva.nl/praat/). Stimulus 

presentation was controlled using scripts developed from the Praat (v 4.1) speech 

analysis toolkit. The software was designed to enable speech analysis but also enabled 

code to be generated to run and score speech perception experiments. The Praat code, 

or programme, randomised presentation of stimuli kept in the same source folder as 

the Praat script. The script also generated a graphical-user interface that was used on a 

touch screen to record subject responses. Each stimulus presentation required the 

subject to click on an icon on the screen before the next stimulus was presented.  The 

same set-up was used in all subsequent experimental work reported in this thesis. The 

only difference between the three AM experiments and the CI user experiment was 

stimulus presentation and level: for the AM experiments, stimuli were presented by 

monaural insert earphone, whereas for the CI user experiment, stimuli were presented 

via sound field presentation as described in 5. 

 

An important aspect of the experimental approach used was the nature of  

acclimatisation to stimuli. Davis (2004) noted that relatively brief familiarisation with 

noise-vocoded speech, e.g. of 20 minute or less, led to improved performance with 

sentence recognition. Some authors have noted that there is an intial “pop-out” effect 

of vocoded speech, e.g. when a stimulus is defined (e.g. the listener is exposed to the 

AM stimuli, then told what the word or speech sound is, the salience of the stimulus 

“pops out”).  However, other authors, notably Rosen et al. (1999) have noted that 

considerable acclimatisation time is needed to achieve optimal performance for NH 

subjects listening to AMs. One of the questions for this study is whether sufficient 

acclimatisation would occur over a relatively short time period to yield valid results.  

The approach taken in the first experiment was to present all 20 stimuli on the touch-

screen, each labelled (for example, /idi/ was labelled as “d”) and allow the subject to 

listen to each stimulus as many times as s/he wished prior to testing proper.  For 
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experiments 2 and 4, there were a large number of AM conditions; consequently, it 

was impractical to allow this task prior to every listening condition. Therefore, the 

self-directed acclimatisation process took place for only one AM condition in quiet, 

and then one AM condition in noise, randomised across the subjects in each 

experiment. In practice, the self-directed acclimatisation process took between 5 and 

10 minutes. A check of identification of four of the tokens was undertaken at this 

point to determine whether subjects had acclimatised sufficiently to AM stimuli A 

striking finding was that subjects stated that the stimuli were much clearer after only 

this short acclimatisation period. The results (see chapters 3 and 4) also indicated that 

this approach to AM acclimatisation yielded valid results. 

 

For all 4 experiments, quiet listening conditions preceded noise-contaminated 

listening conditions, e.g. the design of the experiments was not randomised across the 

quiet vs. noise contrast. The rationale for adhering to this was the desire to provide 

further acclimatisation to the model when undertaking noise-contaminated listening 

conditions via testing in the quiet listening conditions (given the modest amount of 

acclimatisation time given in the first place).  This meant that the effect of noise may 

have been diluted by consistent exposure to quiet AMs prior to noise-contaminated 

AMs and that, as a consequence, the possibility of a type II error (with respect to the 

noise variable) was increased. However, it also meant that the possibility of a type I 

error for the noise variable was minimised and, where significant effects of noise were 

obtained, these were more robust.  

 

For experiment 1, stimuli were first presented in the “unaltered” condition, then “quiet 

AM”, then “AM +10 dB SNR”, then “AM+5 dB SNR” then “AM 0 dB SNR”. For 

experiment 2, the 8 listening conditions (2 vowel environments * 2 pitch shift 

conditions * 2 carrier stimulus types-see 4.1.2 for further details) were randomised 

across subjects and in each case quiet then noise variant of the listening condition was 

presented. For the CI user experiment, the three MAP conditions were randomised 

across the 9 subjects, but again within each of these the quiet presentation was 

undertaken first, followed by the noise-contaminated condition . For experiment  4, 

testing was first undertaken in the “unaltered” condition. Following this, the three 

channel interaction conditions were randomised, then the three MAP conditions 

within each channel interaction, but, again, first the quiet then the noise-contaminated 
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version of each listening condition were presented. Randomisation was achieved via 

coding of each listening condition and using a random number generator implemented 

in Microsoft Excel. 

3.3.6 Analysis 

For each subject/listening condition, a test run comprised randomised presentation of 

3 instances of each of the 20 consonants. As noted below, each test run generated a 

series of responses which were coded as a confusion matrix. Subsequent data analysis 

could be divided into two main stages: first, the derivation of consonant feature 

transmission values and, second, descriptive and inferential statistical analyses. These 

stages are described below. 

  

Before undertaking the first data analysis stage, it was necessary to decide on a set of 

features for information transfer analysis.  As noted, consonant confusion data can be 

analysed with various levels of phonological detail: simple total correct values can be 

computed, as in the majority of studies using consonant recognition in CI users. 

Alternatively, a tripartite division into voicing, place and manner can be used; this is 

the approach that has been used in all more detailed studies, as in 2.1.2.  At a greater 

level of detail, Chomsky and Halle (1968) described a large number of binary 

phonological features; it would be possible to use all of these features to analyse CI 

confusion data.  However, such a detailed phonological analysis would be 

cumbersome when exploring a large number of independent variables and, moreover, 

it is important that data analysis methods have a clear rationale. It was clear that the 

three categories of voicing, place and manner needed to be included in phonological 

analysis, for the purposes of comparison with the existing literature and because of the 

fairly clear distinction in perceptual terms between these categories. However, there 

was also some justification for expanding on these three categories. As with some 

other studies, the “envelope” feature was included as this was based on perceptual 

abilities of CI users. It was hypothesised that this feature would be more robust than 

other features, and was arguably more purely “temporal” (e.g. effectively reliant on 

within-channel information) than the other features, e.g. even as compared with 

voicing (see the discussion in 2.6.4).  It was also of interest to assess the perception of 

nasality, as this feature is similar to voicing in its reliance on low-frequency 

periodicity cues but distinctive in its reliance on low frequency (weak) formant 
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structure. Finally, the fricative vs. non-fricative distinction was also used as a way of 

determining how well CI users can code noise information- given the long duration of 

the noise spectrum in fricatives the ability to resolve the noise in the time domain 

should not be a confounding variable. Moreover, this feature provided a larger 

reliance on spectral processing than other features apart from place. 

 

Based on these choices, each confusion matrix yielded seven dependent variables: 

percentage total correct, and percentage information transmission for the consonant 

features voicing, place, manner, nasality, fricative and envelope. The following steps 

were taken to derive feature-specific information transmission values for all four 

experiments.  Responses for each subject/test run generated by the Praat programme 

were tabulated and then converted to an Excel file.  A macro transformed the data into 

a format usable for further analysis.  Two further pieces of speech analysis software 

were used for consonant confusion analysis, namely FIX and SCORE, developed by 

the Department of Phonetics and Linguistics at University College London 

(www.phon.ucl.ac.uk/resource/software.html). The SCORE programme combined a 

defined stimulus and response data for each subject in each listening condition and 

generated a confusion matrix. Table 3.1 showed a typical confusion matrix in which 

stimuli are along the y-axis and responses indicated along the x-axis. For each 

confusion matrix, the FIX programme computed percent information transmission for 

the six features voicing, place, manner, fricative, nasality and envelope feature 

according to the feature transmission matrix in table 3.1 (although feature matrices are 

normally presented with features on the y-axis, the large number of stimuli 

necessitates the alternative presentation in this case).  All percentage transmission 

values were computed from a single-iteration of SINFA analysis (see 2.1.1 for a 

discussion of this issue). Resulting total correct and information transmission values 

were entered into SPSS files. Subsequent data analysis was undertaken on the 

resulting feature transmission and total correct values.  
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  voicing fricative nasal place manner envelope 
b yes no no bil plo vpf 

d yes no no alv plo vpf 

g yes no no vel plo vpf 

w yes no no bil con ng 

j yes no no alv con ng 

ɹ yes no no ret con ng 

l yes no no alv con ng 

v yes no no lad fri vpf 

z yes yes no alv fri vpf 

ʤ yes yes no ret aff vpf 

m yes no yes bil nas ng 

n yes no yes alv nas ng 

p no no no bil plo vlp 

t no no no alv plo vlp 

k no no no vel plo vlp 

f no yes no lad fri vlf 

ɵ no yes no den fri vlf 

s no yes no alv fri vlf 

ʃ no yes no ret fri vlf 

ʧ no yes no ret aff vlp 
 
Table 3.1. Feature transmission matrix used for phonological feature analysis  

 

The aim of inferential statistical analysis for each of the four experiments reported in 

subsequent chapters was to determine the effect of one or more independent variables, 

and their interactions, on the seven dependent measures derived from the confusion 

matrices.  The independent variables were either categorical (as in experiment 2 or 3 

and all variables apart from channel interaction in experiment 4) or had a small 

number of possible values (5 in experiment 1, 3 for channel interaction in experiment 

4). Given that each listening condition generated a number of dependent variables, the 

appropriate statistical technique was considered to be multivariate analysis of variance 

(MANOVA).  

 

For experiment 1, it was also important to test the hypothesis that voicing and manner 

would exceed place. This hypothesis required a direct comparison between feature 

transmission values, and therefore a single factor repeated measures ANOVA was 

used in this case, in which consonant feature was the only factor.  However, this was 

the only use of this approach as the direct comparison between consonant features 
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was considered of less importance than the assessment of the effect of the various 

independent variables on transmission of specific features.  As the different feature 

transmission values represented multiple dependent variables, it was deemed 

appropriate to use MANOVA rather than a series of separate ANOVAs on each 

feature (it should be noted that the latter approach would have increased the 

possibility of type I errors).  Because of the larger number of independent variables in 

experiments 2 and 4, the resulting number of degrees of freedom for many of the 

MANOVAs was low (1 or 2), which would also increase the possibility of type II 

errors. In general, the approach taken in various aspects of the design of the 

experimental work was to err on the side of minimising type I errors with a 

consequent increase in the possibility of increasing type II errors. This meant that the 

interpretation of statistically significant results could be more conclusive than might 

be the case otherwise. 

 

ANOVA and MANOVA, as with other parametric statistical tests, are based on the 

assumption that data were normally distributed.  For each experiment this was 

considered by applying the Kolgomornov-Smirnoff (K-S) test to each variable. The 

K-S test assesses the hypothesis that the distribution of a variable deviates 

significantly from the normal distribution. As noted in the relevant sections, the great 

majority of the variables in each of the 4 experiments were not found to be significant 

using this test, e.g. were consistent with a normal distribution. In a few cases (noted in 

relevant sections), distributions were skewed where the mean approached 100%, e.g. 

ceiling effects. However, it is considered that the F test used in MANOVA is robust to 

the problem of skewed distribution (Howell, 2003) (whereas it is not to outliers, a 

problem that did not occur) and, in any case, this only occurred for a small number of 

variables; consequently, it was assumed that MANOVA was appropriate from this 

point of view.  
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Chapter 4. Development of 

experimental methodology using fixed-

channel AMs 
Prior to undertaking experimental work comparing AMs and CI user data, it was 

important to determine whether an AM based on a set of device-specific processing 

characteristics could be used to determine consonant feature transmission. It was also 

important to determine what AM parameters were likely to affect performance and, in 

particular, how choice of these parameters would affect the correspondence between 

AM and CI user performance. It was also important to establish a time-efficient test 

methodology that could be applied to further experimental work involving both AMs 

and CI users where a larger number of variables would need to be compared. This 

meant that there was a need for preparatory experimental work with AMs of 

consonant recognition. This work, which comprised two experiments, is described in 

this chapter. Both experiments used 8-channel models of the Continuous Interleaved 

Sampling (CIS) processing strategy as implemented with the Nucleus 24 device. The 

first experiment applied a single model to determine patterns of consonant feature 

transmission with background stationary speech-shaped noise added at varying SNRs. 

The second experiment varied model parameters to determine their effects on 

consonant feature transmission. 

4.1. Consonant recognition in quiet and at different SNRs with an 8-

channel CIS model 

4.1.1 Research questions, aims and hypotheses 

The objectives of the experiment reported in this section were, first, to assess the 

effect of CI signal processing on consonant feature recognition by using an acoustic 

CI model based on a specific CI device, the Cochlear Nucleus 24M and, second, to 

determine the effect of noise at different SNRs on consonant feature recognition using 

the same model. Previous work in CI users, outlined in 2.1.2, established a consistent 

pattern of consonant feature identification in quiet, a pattern which suggested that 
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temporal envelope cues necessary for speech are relatively better represented than 

spectral cues, at least in quiet.  The little evidence that is available for consonant 

recognition in noise in CI users would also suggest that, conversely, noise interference 

may be correspondingly greater for temporal cues in speech. The experiment aimed to 

determine if this expected pattern of results could be replicated using an AM, 

although it should be noted that there is little evidence for transmission of features 

beyond voicing, place and manner, or for feature transmission in noise, against which 

to compare results. 

 

Two specific hypotheses were tested in the experiment, although in broader terms the 

aim of the experiment was to enable further hypothesis formation with regard to 

further experimental work. First, it was hypothesised that information transmission for 

consonant features which rely primarily on temporal envelope resolution would be 

significantly better than equivalent transmission for features relying primarily on 

spectral cues. This hypothesis is based on the consistent observations described in 3.3 

of better transmission of voicing and manner than place of articulation in CI users 

from a range of studies as shown in 2.1.2. On the basis of the six features discussed in 

3.3.6, this should translate into the following pattern: nasality, envelope, voicing, and 

manner should be significantly greater than place of fricative.  However, it might also 

be anticipated that the relative contribution of temporal envelope and spectral 

information within each feature will determine results. Given the likely contribution 

of spectral and temporal processing to the six features used, this would mean that  the 

envelope feature would be transmitted best (as this is  reliant almost entirely on 

temporal coding) whereas voicing and manner require some degree of spectral 

analysis and would be slightly less well transmitted. Moreover, fricative should be 

transmitted better than place given the greater importance of temporal cues to 

distinguishing fricatives from some other manner categories (whereas this is not the 

case for place transmission). It was also hypothesised that noise would have a 

significantly greater effect on those features relying on temporal information 

compared to those relying on spectral information. Friesen et al. (2001) found that 

noise had a greater effect on voicing than place transmission and hypothesised that the 

main mechanism of noise interference was the reduction in the salience of within-

channel temporal fluctuations and hence an increased reliance on spectral cues. 
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Because the aim of this experiment was not to compare different processing or 

stimulus variables within the model, such as those identified in chapter 2, it was 

necessary to make a choice regarding these variables. It was decided to use a fixed 

channel rather than peak-picking strategy as it is simpler to interpret a fixed-channel 

model, e.g. in terms of number of channels information conveyed. Processing 

parameters were chosen to equate to the likely information transmission for a “good 

performer” using this device as it had been shown from the existing literature that a 

typical good performer’s speech perception performance is approximated best by an 

AM of around 8 channels (see 2.3.2). Consequently, the model coded 8 channels of 

information in the Nucleus CIS fixed-channel processing strategy.  A stimulation rate 

of 500 Hz was chosen (this meant that envelope bandwidth of the carrier stimuli was 

equivalent to that derived from the output of the FFT filterbank undertaking 500 FFT 

analyses per second, precisely as would occur in the real Nucleus 24 processor-see 

2.3.3. for a discussion of the temporal characteristics of the Nucleus 24 filterbank). A 

sine wave carrier was chosen (the possible perceptual implications of choosing a sine 

wave carrier over a noise band carrier are discussed in 2.5.2). In this study the /i/ 

vowel environment for medial consonants was chosen.  

 

The overall aims of the first experiment were therefore to: 

• Use an AM of CI processing to represent the information available to a good 

CI performer using a specific device (Nucleus CI 24) and processing strategy 

(CIS, 8 channels with 500 pps/ch stimulation rate). 

• Apply the model to evaluate consonant recognition in quiet and steady 

background noise at three different SNRs using information transmission 

analysis. 

• Interpret the pattern of feature transmission in quiet and noise in the context of 

the feature-specific hypotheses formulated above. 

• Determine, on the basis of results, which SNR should be used in subsequent 

experimental work (given the need to minimise the number of different SNR 

conditions with further work in which a number of other variables were to be 

compared) 
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• Assess the ability of a specific experimental approach (e.g. amount of 

familiarisation with stimuli, number of repetitions of stimulus) to answer 

research questions. 
 

4.1.2 Pilot study and overall test methodology 

Prior to the main experiment, a small pilot study with five normal hearing subjects 

was undertaken in order to determine, in a qualitative way, the following points: (a) 

the amount of acclimatisation required for the listeners to become adequately used to 

the stimuli, (b) the number of repetitions required to achieve stable results, (c) the 

amount of time taken to undertake the experiment.  In addition, it enabled a 

determination of the likely effect size for sample size calculation.  The stimulus 

processing and test methodology were identical to those for experiment 1 as described 

in 3.3. Figure 4.1 shows the mean results for the three features voicing, place and 

manner in the three noise conditions: 
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Figure 4.1. Mean feature transmission across three listening conditions from the pilot study. Data 

were obtained from 5 listeners using an 8-channel CIS AM  

 

These findings suggested the following: first, the experiment should not yield floor or 

ceiling effects. Second, it was worthwhile to attempt three different SNRs, including 

one not included in the pilot study, given the absence of noise effects for place and 
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manner down to +5 dB SNR (0, +5 and+10).  Third, the approach to AM 

acclimatisation used in the pilot study,  whereby subjects were able, prior to testing 

proper, to listen to each token as many times as they wished (with the identity of the 

token made evident) appeared to yield sensible results. Four,  a testing regime with 

just three repetitions of each stimulus should give valid results (the need to minimise 

presentations was motivated by the possibility of further experimental work in which 

a large number of different variables, and hence listening conditions, were to 

compared, and fatigue effects also needed to be minimised).  It was anticipated that 

total testing time for the main experiment would be around 80 minutes, which would 

be feasible without substantial fatigue effects and with some breaks provided. A 

further outcome of the pilot study was the availability of relevant data for sample size 

calculation. 

 

For the main experiment 1, a VCV consonant recognition task was undertaken in each 

of five listening conditions: unaltered (e.g. original, unprocessed) stimuli and stimuli 

processed through an AM with four noise conditions (quiet, with background noise at 

+10 dB SNR, +5 dB SNR and 0 dB SNR). Further details of test methodology are 

described in 3.3. 

4.1.3 Subjects and sample size calculation 

The sample size calculation used to determine subject numbers was based on the 

difference in performance with voicing in quiet vs. the +10 dB SNR condition 

obtained from the pilot study. Based on the mean, standard deviation and cross-

correlation between these two variables in the pilot study, the required sample size to 

obtain a power of 80% was 19. Consequently, 19 normal-hearing subjects (12 

females, 7 males, mean age 25 years) were recruited to the study following local 

safety and ethics committee approval. Subject inclusion criteria were: age 18-35; 

thresholds better than 20 dB HL across the octave frequencies 250 Hz- 8000 Hz; 

English as native language; willingness to participate.  It should be noted that the 

same inclusion criteria for NH subjects applied to all other AM experiments reported 

in this dissertation. Subjects were not paid to participate and had provide fully 

informed consent based on the safety and ethics application in order to participate. 
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4.1.4 Results 

For each of the five listening conditions (unaltered, AM in quiet, AM in noise at +10 

dB SNR, AM in noise at +5 dB SNR and AM in noise at 0 dB SNR) information 

transmission values were derived for the six consonant features outlined in 3.3 and for 

total percent correct. This yielded 7 measures * 5 listening conditions, therefore 35 

dependent measures in total for each of the 19 subjects. The 7 measures are shown in 

Figure 4.2 across listening conditions (It should be noted that, in the case of the “total 

correct measure”, the variable is simple percentage rather than percent information 

transmission). Where mean + standard deviation is greater than 100%, a 120% scale is 

used (the same applies across all subsequent figures in this and remaining chapters). 
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Figure 4.2. Mean (+1 SD) feature transmission, in addition to total percentage correct, as a 

function of listening condition.  

 

Of the 35 resulting variables, all but two were not found to be significant at the 5% 

level using the Kolmogornov-Smirnoff test. Consequently, parametric statistical tests 

were appropriate for inferential statistical analysis. A multivariate analysis of variance 

(MANOVA) was undertaken in which listening condition (with five levels as noted 

above) was the only factor and the six feature transmission values and total 

percentage correct were the 7 dependent variables. The analysis showed a significant 
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effect of listening condition on all six features and on total correct (p<0.001 in all 

cases). Further details of the MANOVA are given in Appendix B. Post-hoc t-tests 

were undertaken for each feature for each of a possible ten comparisons between the 

five listening conditions.  Table 4.1 shows mean differences between listening 

conditions for each of the seven dependent variables and indicates which t-test 

comparisons were significant at the 0.005 level (0.05/10, the number of comparisons 

made) via bold script.  For clarity of interpretation, comparisons between the 

unaltered condition and noise-contaminated AM conditions are not included in the 

table as these are not particularly meaningful in the context of the research (in any 

case, all of these were significant at the Bonferroni-adjusted significance level for all 

dependent variables).  Values given in the table are mean differences for the 

comparisons indicated on the left of the table. 

 
Table 4.1. Mean differences in feature transmission (or total correct) between listening conditions 

for the seven dependent variables. Differences reaching the Bonferroni-corrected significance 

level (p<0.005) are given in bold. 

Dependent 

measure/ 

Mean difference  

Total 

correct 

Voicing 

transmission 

Place 

transmission 

Manner 

transmission 

Fricative 

transmission 

Nasality 

transmission 

Envelope 

transmission 

Unaltered - quiet 

AM 

 

 

 

        27 3 30 17 40 0 17 

Quiet AM - AM at 

+10 dB SNR 5 11 3 8 -2 30 10 

Quiet AM - AM at 

+5 dB SNR 11 31 5 10 -7 33 17 

Quiet AM - AM at 

0 dB SNR 37 77 22 42 11 84 56 

AM at +10 dB SNR 

- AM at +5 dB SNR 6 20 2 2 -5 4 7 

AM at +10 dB SNR 

- AM at 0 dB SNR 32 66 19 33 13 55 46 

AM at +5 dB SNR - 

AM at 0 dB SNR 26 46 17 31 18 51 39 
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Results of post-hoc t-tests can be summarised briefly as follows. As noted (but not 

given in the table) all comparisons between unaltered and noise-contaminated AM 

conditions were significant. For voicing transmission, there was no significant 

difference between unaltered stimuli and AMs in quiet whereas all other possible 

comparisons were significant.  However, for both place and fricative perception there 

was a significant difference between the unaltered and quiet AM conditions but no 

significant differences between AM conditions if the 0 dB SNR condition is excluded, 

although all comparisons between the 0 dB SNR and other conditions were 

significant.  For manner and envelope, all comparisons were significant except for the 

comparison between the +5 and +10 dB SNR AM conditions.  For nasality, the 

comparison between the unaltered and quiet AM condition was not significant, and all 

comparisons between AM conditions were significant except for the comparison 

between the +5 and +10 dB SNR AM conditions. 

 

An additional consideration was the need to compare performance across features 

directly.  This was needed to test the hypothesis that feature transmission in quiet 

would depend on the degree of importance of spectral resolution in coding the feature.  

In order to facilitate interpretation, the data for the six feature transmission value 

given in figure 4.2 are repeated in figure 4.3. It appears from this figure that nasality 

transmission was greatest, followed by voicing, followed by manner and envelope, 

which are approximately equal.  Fricative transmission was lowest with place slightly  

higher, but both of these feature transmission values were markedly lower than the 

other four features. In order to determine differences statistically, a repeated measures 

ANOVA was undertaken in which there was a single factor of feature with six levels 

(the six consonant features) using the results of the quiet AM condition only. This 

factor was highly significant (p<0.001) and full ANOVA results are given in 

Appendix B.  Table 4.2 lists the mean differences between each possible pair of 

features. Differences which were statistically significant (post-hoc t-test assuming the 

Bonferroni corrected significance level of 0.003) are indicated in bold.  
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Table 4.2. Comparison between feature transmission values in the “quiet AM” listening 

condition. Values given are percent transmission for features indicated on the left – percent 

transmission for features indicated on the top.  Values in bold indicate that the post-hoc 

comparison was statistically significant (p<0.003). 

Feature voicing place manner fricative nasality envelope 
voicing  22 13 46 -9 11 
place   -22 11 -44 -24 
manner    34 -21 -2 
fricative     -56 -35 
nasality      20 
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Figure 4.3. Mean (+1 SD) feature transmission by feature for the “quiet AM” listening condition 

only. 

 

The pattern of post-hoc comparisons supports the impression from figure 4.3: for the 

quiet AM listening condition, nasality transmission was significantly greater than all 

other features except voicing. In turn, voicing transmission was greater than manner, 

envelope, fricative or place. Place of articulation was significantly worse than manner, 

nasality, envelope and voicing but significantly better than fricative transmission. 

Manner was significantly worse than voicing or nasality but significantly better than 

the remaining features. Fricative was significantly worse than all other features.  

Envelope was not different from manner. Envelope transmission was significantly 

worse than nasality but significantly better than fricative and place. In order to 

illustrate the error patterns directly, table 4.3 shows the confusion matrix for the quiet 
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AM condition.  Error rates are converted to a percentage score for ease of 

interpretation. 

 
Table 4.3. The consonant confusion matrix for the quiet AM condition. Data were obtained from 

57 total presentations (3 presentations x 19 subjects) per stimulus but are presented as  

percentage responses e.g. for the stimulus/g/ the response /g/ is given 37% of the time. 

 
b d g w j ɹ l v z ʤ m n p t k f ɵ s ʃ ʧ 

b 91 2 0 0 0 0 0 0 0 0 0 0 7 0 0 0 0 0 0 0 
d 0 100 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
g 0 51 37 0 0 0 0 0 0 0 0 0 0 7 0 0 0 0 0 5 
w 0 0 0 74 0 26 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
j 0 0 0 4 77 2 11 5 0 0 2 0 0 0 0 0 0 0 0 0 
ɹ 0 0 0 14 0 86 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
l 0 0 0 0 0 0 100 0 0 0 0 0 0 0 0 0 0 0 0 0 
v 0 0 0 0 0 5 0 95 0 0 0 0 0 0 0 0 0 0 0 0 
z 0 0 0 0 0 0 0 7 91 0 0 0 0 0 0 0 0 2 0 0 
ʤ 0 0 28 0 0 0 0 0 0 67 0 0 0 0 0 0 0 0 0 5 
m 0 0 0 0 0 0 0 0 0 0 100 0 0 0 0 0 0 0 0 0 
n 0 0 0 0 0 0 0 0 0 0 68 32 0 0 0 0 0 0 0 0 
p 0 0 0 0 0 0 0 0 0 0 0 0 100 0 0 0 0 0 0 0 
t 0 0 0 0 0 0 0 0 2 0 2 0 0 0 0 23 18 56 0 0 
k 0 0 2 0 0 0 0 0 0 0 0 0 0 56 37 0 0 0 0 5 
f 0 0 0 0 0 0 0 2 2 0 0 0 0 0 0 72 21 4 0 0 
ɵ 0 0 2 0 0 0 0 0 0 0 0 0 0 98 0 0 0 0 0 0 
s 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 2 5 88 2 
ʃ 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 4 5 89 0 0 
ʧ 0 0 9 0 0 0 0 0 0 0 0 0 0 4 0 0 0 0 0 88 
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A detailed analysis of specific confusion patterns is left for the experimental work 

reported in chapter 4. However, a notable confusion that occurs in table 4.3 is the 

confusion of /ʤ/ for /g/. This confusion would have an effect on fricative, place and 

manner transmission. A possible methodological reason for this confusion was the 

confusion in orthographic representation of the phonemes concerned as the letter “g” 

is pronounced /ʤi/ in English. Examination of individual confusion matrices showed 

that a subset of the subjects consistently made this confusion (e.g. across the three 

repetitions in most cases) but the remaining did not make the confusion at all. 

Moreover, a similar error pattern was found in the unprocessed speech. These findings 

support the possibility that the confusion arose from not adequately instructing 

subjects to ensure that the sound /ʤ/ was given as the letter “j” on the screen, and not 

the letter “g”.  Instructions for all three further experiments were modified in order to 

reduce this possibility further. 

4.1.5 Discussion 

The main aim of the experiment was to assess the effect of CI signal processing on 

consonant feature recognition by using an acoustic CI model based on the Nucleus 24 

processing. In order to determine the likely validity of the model, it was important to 

establish if the pattern of feature transmission in quiet was broadly in line with what is 

known of CI user performance, and also whether the patterns of noise effects on 

feature transmission were in line with experimental hypotheses.  It was hypothesised 

that information transmission for consonant features relying more on temporal 

envelope resolution (manner, voicing, envelope, nasal) would be significantly better 

than equivalent transmission for features relying primarily on spectral cues (place and 

fricative), in quiet and therefore that an AM which represents the information content 

of CI processing accurately would yield this expected pattern of feature transmission.  

This was clearly supported by the findings of the AM in the quiet listening condition: 

place and fricative transmission were much worse than manner, nasality, envelope 

and voicing.  

 

The pattern across studies of CI users’ relative feature transmission, cited in 2.1.2, 

namely worse place transmission than manner/voicing holds very well in the present 

AM. However, it is worth noting that in the present experiment voicing transmission 
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was around 90% both in the unaltered condition and with the AM in quiet. This 

exceeds manner transmission and appears to be inconsistent with the studies cited in 

2.1.2. The likely explanation is that the sine wave carriers over-estimated the amount 

of voicing information available to CI users. Gonzalez and Oliver (2005b) and 

Dorman et al. (1998) suggested that random envelope fluctuations in the noise band 

carrier would lead to reduced performance compared to sine wave carriers and 

therefore that voicing would be one of the features where carrier stimulus might be a 

crucial factor.  This underlines the importance of the choice of carrier stimulus, an 

issue addressed in the subsequent experiment reported in 4.2.  Similarly, nasality 

transmission approached 100% in the AM in quiet and was not different from 

transmission in the unaltered condition.  The discussion in 2.6.2 suggesting that cues 

to this feature could be compromised by CI processing and therefore the high (indeed 

normal) levels of feature transmission could be anomalous. Again, the choice of 

carrier stimulus may be crucial in explaining this result and needs to be evaluated in a 

further experiment. 

 

As noted, there is very little evidence as to the specific effects of noise on consonant 

feature transmission in CI users or using AM studies. It was hypothesised that noise 

would have a significantly greater effect on those features which had a stronger 

reliance on temporal/envelope resolution rather than spectral resolution. The pattern 

of t-test results shown in table 4.2 supports this hypothesis, at least if the 0 dB SNR 

listening condition is excluded from the analysis. Comparisons between the quiet AM 

and AMs with noise at +5 or +10dB SNR show that noise had a significant effect on 

voicing, nasality, envelope and manner but not place or fricative. The question then 

arises as to what is the mechanism of the noise effect, given the pattern of results 

obtained above.  It has been hypothesised that random fluctuations in the envelope of 

the noise reduces the salience of envelope fluctuations (here sine wave modulations) 

and consequently would have the greatest effect on temporal speech cues because of 

the importance of within-channel information to the latter.  However, it is also worth 

noting that the two features with the smallest noise effects, e.g. place and fricative, 

achieved relatively poor performance in the quiet condition and therefore the relative 

lack of noise effect on these features could be interpreted as being due to floor effects 

(that is, if something is already bad, it is harder for it to get worse).  Given the strong 
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possibility that the absence of place and fricative noise effects was due to floor 

effects, further evidence would be needed to corroborate the hypothesis that noise 

interference relates more to within-channel processing. 

 

Given that the main rationale for the experimental work reported in this chapter was 

“methodological”, e.g. in preparation for the work reported in chapter 4, it is of 

particular interest to consider the data in order to determine what might constitute the 

most “sensitive” SNR or SNRs for further experimental work. The pattern of feature 

transmission as a function of noise shows quite clearly that performance at +5 and 

+10dB SNR was broadly similar, whereas performance at 0dB SNR was notably 

different in that almost all features showed noise effects.  This would suggest that 0dB 

SNR yields floor effects when using the AM and therefore either +5 or +10dB SNR 

should be chosen for further experimental work. 

 

It is also appropriate to consider the way in which testing was undertaken and whether 

it represents a valid method to assess consonant recognition. There are two particular 

issues of interest: first, the nature of acclimatisation used prior to testing proper; 

second, the number of stimulus tokens presented.  The approach taken here was to 

allow the listener to familiarise him/herself with stimuli as much as s/he wanted prior 

to testing proper.  However, the number of tokens of each presentation was relatively 

small (3 per stimulus).  It seems likely, given the rich and varied pattern of 

phonological feature transmission which was broadly consistent with experimental 

hypotheses that this approach is valid and can be applied to further experimental 

work, where it is even more critical to trade off number of presentations with the 

larger number of variables and corresponding listening conditions to be tested.   

 

In summary, the experiment showed that use of an AM based on the Nucleus 24 

device with a fixed-channel strategy could be used to estimate consonant feature 

transmission and that this could be undertaken with a small number of repetitions per 

stimulus and with self-directed acclimatisation process.  In general, the feature 

transmission patterns reflected what would be expected of CI users within the 

constraints of the available evidence base. However, some notable anomalies, 

emerged, particularly the high rate of voicing and nasality transmission.  It was 
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possible that the sine wave carrier over-estimated voicing and nasality transmission in 

quiet.  It was also possible that the model over-estimated performance because it 

failed to incorporate aspects of the electrical/neural interface, or because a different 

vowel environment was used to the majority of other studies against which data were 

compared.  It was therefore necessary to further explore the possible effect of specific 

methodological choices on AM performance before proceeding to the main 

experimental work reported in chapter 5. 

 

4.2 A comparison between AM parameters 

4.2.1 Research questions, aims and hypotheses 

The experiment reported in the previous section showed that a model of the Nucleus 

24 CIS strategy yielded, broadly, the expected pattern of feature transmission, 

although it appeared that voicing transmission in particular may have been over-

estimated in the model. Results also indicated that the addition of stationary 

background noise at either +5 or +10 dB SNR could be used to determine noise 

effects for subsequent AM experiments.  However, the experiment was based on a 

particular choice of simulation and stimulus parameters (sine wave carrier, no attempt 

to mimic any of the distortions associated with the electrical/neural interface, and 

choice of vowel environment) and it was not clear whether these particular 

methodological choices would be important in determining the validity of the model, 

e.g. how well the model results would predict CI user performance. Because the main 

experimental work planned in the thesis (reported in chapter 5) aimed to compare AM 

and CI user data directly, it was important to establish which of these AM or stimulus 

parameters would affect performance.   

 

The experimental findings raised the possibility that the sine wave could be an 

inappropriate choice of carrier stimulus as the model may have over-estimated 

transmission of some consonant features. Moreover, the nature of the carrier stimuli 

meant that the model made no attempt to mimic any of the distortions associated with 

the electrical/neural interface discussed in 2.4. The question of channel interaction 

was of particular interest for subsequent experimental work, as it was hypothesised 

that the inclusion of spectral channel interaction in the model would improve the fit 
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between model and CI user performance. However, before this issue was considered 

(in the AM experiment reported in chapter 4) it was important to determine whether 

the subjective pitch shift associated with CI insertion, discussed in 2.4.2, would have 

a bearing on consonant feature transmission. Finally, it was also of interest to 

determine the likely effect of vowel environment choice, as the experiment reported 

in section 4.1 used a different vowel environment (/iCi/) for the consonant confusion 

task to that used in the great majority of other studies of this nature, for reasons 

outlined in 3.3.1.  

 

The aim of the experiment reported in this section was to therefore determine whether 

any of these variables had an effect on consonant feature transmission (in quiet and 

one SNR) in the AM.  The research questions for experiment were: 

 

• Does choice of carrier stimulus (noise band vs. sine wave) have a significant 

effect on AM results? 

• Does the inclusion of “Greenwood pitch shift” have a significant effect on AM 

results? 

• Does the choice of vowel environment have a significant effect on AM 

results? 

 

Based on Gonzalez and Oliver (2005) it was hypothesised that the noise band carrier 

would lead to worse transmission across all features.  There is some evidence about 

the effect of the Greenwood shift on place transmission (Rosen et al., 1997; Dorman 

et al., 1999); consequently, it was also hypothesised that this would adversely affect 

performance across features, particularly those more reliant on spectral processing, 

e.g. place and fricative.  As for the previous experiment, it was hypothesised that 

noise would have a greater effect on voicing, manner, nasality and envelope than 

place or fricative.  It was also hypothesised that feature transmission values would be 

less for /iCi/ stimuli than /aCa/ stimuli, particularly for place.  
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4.2.2 Differences in methods from experiment 1 

In order to address the questions raised in 4.2.1, the second experiment was set up in 

such a way as to allow comparison of the noise vs. quiet, noise band vs. sine wave 

carrier, analysis filter vs. Greenwood filter and /aCa/ vs/ /iCi/ vowel environments for 

the VCV test. The same 20-alternative VCV consonant recognition test as undertaken 

in experiment reported in 4.1 was presented in quiet and in background speech-shaped 

noise, in each of the two vowel environments /iCi/ and /aCa/ at +5 dB SNR. Stimuli 

were processed through an AM with four different configurations: using a sine wave 

carrier with no pitch shift, a noise band carrier with no pitch shift, a sine wave carrier 

using the Greenwood pitch-mismatch formula and a noise band carrier using the 

Greenwood pitch-mismatch formula.  Therefore, in total, each of the two versions of 

the VCV test (iCi or aCa vowel environment) was presented in 8 listening conditions, 

e.g. 2 noise conditions (quiet or background noise) * 4 AM conditions, yielding a total 

number of 16 listening conditions. As with other experiments, each listening 

condition yielded a confusion matrix from which 7 dependent variables were derived. 

The sample size calculation was based on data from experiment 1, specifically the 

difference between voicing transmission in quiet and noise at +5dB SNR. This 

yielded a required sample size of 5 to achieve 80% power. Consequently, 5 normal 

hearing subjects were recruited to the study. 

4.3.3 Results 

Information transmission analysis was undertaken for each listening condition as 

described in 2.3.6. Figures 4.4 to 4.9 show information transmission across listening 

conditions for each of the six features while figure 4.10 shows total correct across 

listening conditions. 
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Figure 4.4. Mean (+1 SD) voicing transmission across listening conditions, in quiet and with 

background stationary noise at +5 dB. Data label key: aCa vs. iCi refers to vowel environment; 

NB = noise band carrier; PT= sine wave carrier; AF = analysis frequencies (no pitch shift); GW = 

Greenwood pitch shift. Error bars indicate +1 standard deviation. 
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Figure 4.5. Mean (+1 SD) place transmission across listening conditions, in quiet and with 

background stationary noise at +5 dB. See figure 4.4 for key to data labels. 
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Figure 4.6. Mean (+ 1 SD) manner transmission across listening conditions, in quiet and with 

background stationary noise at +5 dB. See figure 4.4 for key to data labels. 
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Figure 4.7. Mean (+ 1 SD) fricative transmission across listening conditions, in quiet and with 

background stationary noise at +5 dB. See figure 4.4 for key to data labels. 
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Figure 4.8. Mean (+ 1 SD) nasality transmission across listening conditions, in quiet and with 

background stationary noise at +5 dB. See figure 4.4 for key to data labels. 
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Figure 4.9. Mean (+ 1 SD) envelope transmission across listening conditions, in quiet and with 

background stationary noise at +5 dB. See figure 4.4 for key to data labels. 
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Figure 4.10. Mean (+ 1 SD) total correct across listening conditions, in quiet and with 

background stationary noise at +5 dB. See figure 4.4 for key to data labels. 

 

Each of the 7*16 (112) variables was checked for normality of distribution using the 

Kolmogornov-Smirnoff (K-S) test. Of the 112 variables, only 5 were found to be 

significantly different (at 5% level) from the normal distribution.  These were each 

cases of 100% mean scores. In each case, paired-sample K-S test comparisons with 

over variables were found to be non-significant using the K-S test. A MANOVA was 

therefore undertaken with seven dependent variables (each of the six consonant 

feature and total correct) and four binary categorical predictor variables: noise 

(presence/absence at +5 dB SNR), Greenwood pitch shift (presence/absence), carrier 

stimulus (narrow band noise vs. sine wave) and vowel environment (aCa vs. iCi). For 

each dependent variable this yielded F and significance values for each of the four 
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factors and 11 possible interactions. For the sake of brevity, only factors and 

interactions which were significant at the 0.05 level are reported here (full MANOVA 

results are given in Appendix B). 

 

The carrier stimulus factor had a significant effect on voicing, place, manner and 

fricative information transmission and on total correct. In all cases, better 

performance was obtained with the sine wave carrier as compared to the noise band 

carrier. However, the pitch shift factor only had a significant effect on nasality 

transmission but was not a significant predictor of variance for any other feature or 

total correct. Vowel environment had a significant effect on place and nasality 

transmission and also on total correct. The direction of this effect differed between the 

three dependent variables: nasality was transmitted better within the iCi vowel 

environment but place transmission and total correct were better with the aCa vowel 

environment. Noise had a significant effect on total correct and for all the consonant 

features except envelope The direction of the effect was as anticipated, i.e. the 

addition of stationary noise at +5 dB SNR was associated with lower transmission 

scores.  

 

There were no significant factor interactions for voicing, envelope or fricative.  For 

total correct there was a significant interaction between carrier stimulus and noise. For 

place transmission there were significant two-way interactions between carrier and 

noise and between vowel and noise. For manner transmission there was a significant 

two-way interaction between carrier and vowel. For nasality, there were two-way 

interactions between carrier and pitch shift, between carrier and vowel and between 

pitch shift and vowel. For nasality there was also a significant three-way interaction 

between carrier, vowel and noise.  

 

The interaction between carrier and noise for total correct and for place of articulation 

transmission can be explained in the same way. Figures 4.11 and 4.12 show data 

averaged into four categories of 2 carrier types * 2 noise conditions, for total correct 

and place of articulation, respectively. For both measures there was a smaller 

difference between quiet and noise conditions for the sine wave carrier conditions 

compared to the noise band conditions. This is shown by the pattern of post-hoc t-

tests given in tables 4.4 and 4.5: there was a significant difference between carriers in 
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noise but not in quiet. It can also be seen that the effect of introducing noise was less 

for the sine wave carrier. 
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Figure 4.11. Mean (+ 1 SD) total correct  by carrier type and noise condition. 
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Figure 4.12. Mean (+ 1 SD) place transmission by carrier type and noise condition. 
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Table 4.4. Post-hoc t-tests comparing total percentage correct in different listening conditions in 

order to explore the interaction between carrier stimulus and noise. 
Comparison 

conditions 

Mean difference  T value Significance level  

Narrow band, quiet 

Sine wave, quiet -1.56 -0.72 0.51 

Narrow band, noise 

Sine wave, noise -11.74 -6.61 0.00 

Narrow band, quiet 

Narrow band, noise 21.19 19.25 0.00 

Sine wave, quiet 

Sine wave, noise 11.01 5.16 0.01 

 
Table 4.5. Post-hoc t-tests comparing place of articulation transmission in different listening 

conditions in order to explore the interaction between carrier stimulus and noise. 
Comparison 

conditions 

Mean difference T value Significance level  

Narrow band, quiet 

Sine wave, quiet -0.81 -0.27 0.80 

Narrow band, noise 

Sine wave, noise 10.30 4.24 0.01 

Narrow band, quiet 

Narrow band, noise 9.40 2.59 0.06 

Sine wave, quiet 

Sine wave, noise 20.51 11.98 0.00 

 

The interaction between noise and vowel type for place transmission is illustrated in  

figure 4.13 and can be explained by the larger effect of noise in the /aCa/ vowel 

environment compared to /iCi/ or to the smaller difference between vowel 

environments for noise compared to quiet. Another way of looking at the same data is 

to say that quiet performance was better for /aCa/ than /iCi/ whereas the difference 

between the vowel environments was much less for performance in noise. 
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Figure 4.13. Mean (+ 1 SD)  place transmission by vowel environment and noise condition. 

 
Table 4.6. Post-hoc t-tests comparing place of articulation transmission in different listening 

conditions in order to explore the interaction between vowel environment and noise. 

Comparison 

conditions 

Mean difference T value Significance level 

/aCa/, quiet 

/iCi/, quiet 18.15 4.98 0.01 

/aCa/, noise 

/iCi/, noise 6.32 1.75 0.16 

/aCa/, quiet 

/aCa/, noise 21.26 4.82 0.01 

/iCi/, quiet 

/iCi/, noise 9.44 3.99 0.02 

 

The interaction between carrier and vowel environment for manner is illustrated in 

figure 4.14.  The difference between carriers is greater for /iCi/ than /aCa/. 

 



 121

0

10

20

30

40

50

60

70

80

90

100

sine wave carrier  noise band carrier

%
 in

fo
rm

at
io

n 
tr

an
sm

is
si

on

/aCa
/iCi/

 
Figure 4.14. Mean (+ 1 SD) manner transmission by carrier type and  vowel environment. 

 

Table 4.7. Post-hoc t-tests comparing manner transmission in different listening conditions in 

order to explore the interaction between vowel environment and carrier. 
Comparison 

conditions 

Mean difference T value 
Significance level  

Sine wave, /iCi/ 

Narrow band, /iCi/ 8.78 5.57 0.01 

Sine wave, /aCa/ 

Narrow band, /aCa/ 3.11 1.11 0.33 

Sine wave, /aCa/ 

Sine wave, /iCi/ -1.42 0.64 0.56 

Narrow band, /aCa/ 

Narrow band, /iCi/ 4.25 -1.08 0.34 
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Figure 4.15. Mean (+ 1 SD) nasality transmission by carrier type and presence/absence of 

Greenwood pitch shift. 

 

Table 4.8. Post-hoc t-tests comparing nasality transmission in different listening conditions in 

order to explore the interaction between carrier and inclusion of Greenwood pitch shift. 

Comparison Mean difference T value Significance level 

(2-tail) 

Sine wave, no pitch shift 

Sine wave, pitch shift 23.50 4.54 0.01 

Narrow band, no pitch shift 

Narrow band, pitch shift 5.59 0.66 0.55 

Sine wave, no pitch shift 

Narrow band, no pitch shift 9.36 1.34 0.25 

Sine wave, pitch shift 

Narrow band, pitch shift -8.54 -0.98 0.38 

 

 

The interaction between carrier and pitch shift for nasality is illustrated in figure 4.15.  

The difference in nasality transmission with the inclusion of pitch shift is much 

greater for the sine wave carrier than the noise band carrier. 
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Figure 4.16. Mean (+ 1 SD) nasality transmission by carrier type and vowel environment. 

 

Table 4.9. Post-hoc t-tests comparing nasality transmission in different listening conditions in 

order to explore the interaction between carrier and vowel environment. 

Comparison Mean difference T value Significance level (2-

tail) 

Sine wave, /iCi/ 

Narrow band, /iCi/ -35.44 -4.78 0.01 

Sine wave, /aCa/ 

Narrow band, /aCa/ 5.15 0.60 0.58 

Sine wave, /aCa/ 

Sine wave, /iCi/ -20.43 -2.20 0.09 

Narrow band, /aCa/ 

Narrow band, /iCi/ 20.16 3.05 0.04 

 

The interaction between carrier and vowel for nasality is illustrated in figure 4.16.  

Here the reason for the interaction can be seen in that there is a large difference in 

nasality transmission for the sine wave carrier but no the narrow band noise carrier. 
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Figure 4.17. Mean (+ 1 SD) nasality transmission by vowel environment and presence/absence of 

Greenwood pitch shift. 

 
Table 4.10. Post-hoc t-tests comparing nasality transmission in different listening conditions in 

order to explore the interaction between vowel environment and inclusion of Greenwood pitch 

shift. 
Comparison Mean difference T value Significance level (2-

tail) 

No pitch shift, /aCa/ 

No pitch shift, /iCi/ -1.55 -0.16 0.88 

Pitch shift, /aCa/ 

Pitch shift, /iCi/ -30.87 -4.91 0.01 

No pitch shift, /aCa/ 

Pitch shift, /aCa/ 29.73 3.03 0.04 

No pitch shift, /iCi/ 

Pitch shift, /iCi/ 0.41 0.08 0.94 

 

Figure 4.17 shows the interaction between pitch shift and vowel environment.  It is 

evident that there is a large reduction in nasality transmission with the inclusion of the 

Greenwood pitch shift for the /aCa/ vowel environment but not for the /iCi/ vowel 

environment. 
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Figure 4.18. Mean (+ 1 SD) nasality transmission by vowel environment, carrier stimulus and 

noise condition. 

 

Table 4.18 illustrates the three-way interaction of vowel environment, carrier stimulus 

and noise condition in relation to nasality transmission.  Here the difference between 

carrier stimulus conditions depends on both noise conditions and vowel environment.  

For both carrier stimulus conditions in quiet there is an improvement in nasality 

transmission with /iCi/ compared to /aCa/, whereas in noise there is better 

performance with /iCi/ with the sine wave carrier but the opposite pattern with the 

noise band carrier. 
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Table 4.11. Post-hoc t-tests illustrating three way interaction on nasality transmission (vowel 

environment, carrier stimulus and noise condition). 

Comparison Mean difference T value Significance level 

(2-tail) 

Sine wave, /aCa/, quiet 

Sine wave, /iCi/, quiet -32.24 -4.51 0.01 

Narrow band, /aCa/, quiet 

Narrow band, /iCi/, quiet -8.95 -1.10 0.33 

Sine wave, /aCa/, noise 

Sine wave, /iCi/, noise -38.64 -3.51 0.02 

Narrow band, /aCa/, noise 

Narrow band, /iCi/, noise 24.59 1.66 0.17 

Sine wave, /aCa/, quiet  

Narrow band, /aCa/, quiet -18.17 -1.86 0.14 

Sine wave, /aCa/, noise 

Narrow band, /aCa/, noise -28.03 -2.11 0.10 

Sine wave, /iCi/, quiet  

Narrow band, /iCi/, quiet 5.12 1.63 0.18 

Sine wave, /iCi/, noise 

Narrow band, /iCi/, noise 35.20 3.20 0.03 

Sine wave, /aCa/, quiet 

Sine wave, /aCa/, noise 44.49 4.95 0.01 

Sine wave, /iCi/, quiet 

Sine wave, /iCi/, noise 38.09 4.87 0.01 

Narrow band, /aCa/, quiet 

Narrow band, /aCa/, noise 34.63 2.32 0.08 

Narrow band, /iCi/, quiet 

Narrow band, /iCi/, noise 68.17 8.69 0.00 

 

4.3.4 Discussion 

The experiment reported in this section was motivated by the need to determine the 

best choice of parameters for the main AM experiment 4, the aim of which was to 

reproduce the information content of CI processing as accurately as possible to 

facilitate direct comparison with CI user data.  Four independent variables were 

considered: Greenwood pitch shift, vowel environment, noise, and carrier stimulus 

type. The main issue of interest was the extent to which combination of variables led 

to model performance being close to what has been observed, or could be anticipated, 
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in CI users, and also which versions of the AM were likely to be most sensitive to 

differences in processing or electrical/neural interface variables. Each of the variables, 

and their interactions, are considered in turn. Because of the need to focus on 

methodological preliminaries to the experimental work reported in chapter 4, a 

detailed discussion of some of the more complex effects for specific feature 

transmission, particularly nasality, are left for chapter 5 in which patterns of 

transmission for each feature are considered in more detail. 

 

The first, and arguably most important, consideration for this experiment was choice 

of carrier stimulus. The sine wave carrier was significantly associated with better 

transmission of the features voicing, place, manner and fricative and total correct as 

compared to the noise band carrier.  Although these differences were not very large 

(generally less than 10% difference in transmission), they were statistically significant 

and it can therefore be concluded that choice of carrier stimulus was a significant 

factor in determining AM performance.  Given the tendency of the model to over-

estimate absolute transmission values, it seems reasonable to assume, on purely 

empirical grounds, that a noise band model which leads to lower transmission values 

is more appropriate than a sine wave model for representing the information for 

consonant recognition available to CI users. However, this does chime with 

theoretical arguments, set out in 2.5.2, that both frequency resolution and within-

channel periodicity information are coded better with the sine wave carrier and that 

this over-estimates the information available to CI users. The results suggest that the 

very high levels of voicing transmission in quiet obtained in experiment 1 were 

probably due, at least in part, to the choice of carrier stimulus. This provides indirect 

support for the notion that a noise band carrier is a more appropriate model as it does 

not provide periodicity information nor can frequency resolution be enhanced through 

the use of spectral side bands. 

 

It is also of interest to note the interaction between choice of carrier stimulus and 

inclusion of noise, as indicated in figures 4.11 and 4.12.  For both total correct and 

place transmission, there was a larger noise effect for the noise band carrier than the 

sine wave carrier. Although there is little data available on specific feature 

transmission values in noise in CI users or CI AMs, the effect on total correct with the 

addition of +5 dB SNR can be compared with available data. This again suggests that 
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the noise band carrier is more appropriate as a model of consonant information. In 

general, the finding that noise band carrier AMs yielded poorer results for many 

features, but at a level that is nearer to levels of transmission to be expected with CI 

users, and that some of the sine wave carrier stimuli were nearer to achieving ceiling 

effects, suggests that noise bands are a more appropriate carrier stimulus for 

consonant models. 

 

A further consideration is the noise variable. One of the aims of the two AM 

experiments reported in this chapter was to determine the most sensitive SNR to show 

differences in patterns of feature transmission, given the anticipated need to choose a 

single SNR for comparison with quiet to avoid multiplication of conditions given the 

inclusion of a number of other variables in the experimental work reported in chapter 

4. The AM experiment in 4.1 gave reasonably similar results at +5 and +10dB SNR 

and experiment 2 only +5dB SNR was used. However, the findings of experiment 2 

showed that reductions in performance with the addition of stationary background 

noise +5dB SNR were large across most features, for some features/listening 

conditions in excess of 30% reduction. Moreover, statistical analyses showed that the 

addition of noise at +5dB SNR had a significant effect on all consonant features 

except for envelope. This would suggest that an SNR of +10dB SNR might be more 

appropriate to tease out differences in transmission across different features and also 

to cater for the possibility that CI users would perform worse in background noise 

than AM listeners.  

 

A further model variable was included, namely the alteration of carrier frequencies to 

mimic the assumed subjective pitch shift (using data from Greenwood (1990). 

Interestingly, the presence vs. absence of Greenwood pitch shift in the model had no 

effect on transmission of any feature except for nasality. The important question here 

was whether subjects could adequately acclimatise to pitch-shifted stimuli. Previous 

work on pitch-shifted AMs suggests that considerable acclimatisation time is 

necessary for optimal performance; however, this depends on the degree of shift.  The 

shift undertaken in experiment 2 (described in 3.3.2) represents a mean upward 

transposition of between 1.2 and 1.45 depending on frequency channel, which is 

markedly less than values obtained from some previous studies e.g. Dorman et al 

(1997a), and moreover using AMs with a larger number of channels which might 
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offset the effect of any pitch shift. The likely absence of a strong pitch shift effect can 

be assumed to relate to the relatively small shift used. Given that the inclusion of this 

increases AM validity, in the sense that an additional variable is included which 

reflects one aspect of the electrical/neural interface, and given that the generally small 

or non-existent effects of this variable, it seemed appropriate to include it in models 

which attempt to go further in mimicking electrical/neural interface factors e.g. 

channel interaction. 

 

A final consideration related to a potentially important variable in test methodology, 

namely vowel environment. As noted in chapter 2, almost all work on consonant 

confusion analysis in CI users has used the /aCa/ vowel environment. In this 

experiment vowel environment had an effect on features place and nasality and on 

total correct, albeit the effects had differing directions. Place of articulation 

transmission was better for the /aCa/ vowel environment than /iCi/, though the 

interaction illustrated in figure 4.13 shows this to be due specifically to better 

transmission in quiet with the /aCa/ vowel environment. It was suggested by Loizou et 

al. (2000b) that place is coded more via the burst than the formant transition in a front 

vowel (/a/) context but more by formant transition in a back vowel context (/i/)..  It 

was observed in 1.7.3 that formant transition is coded very poorly through CI 

processing whereas the burst spectrum is better preserved. The finding of better place 

transmission with the /aCa/ vowel environment therefore supports this hypothesis. 

However, it is notable that the absolute levels of place transmission for /aCa/ from 

this experiment somewhat exceed those obtained in the literature and do not fit with 

the pattern of worse place transmission compared to manner and voicing transmission 

as indicated in 1.4. Given that the performance in the model for /iCi/ where the burst 

is thought to be less prominent is nearer to observed transmission levels than for /aCa/ 

where the burst is more prominent, findings suggest that the models used in 

experiment 2 may over-estimate the representation of the burst for some reason. This 

issue is addressed further in the specific discussion of place transmission in Chapter 5. 

Most of the interactions involving a nasality transmission also related to choice of 

vowel environment. The specific reasons for the interactions shown with nasality are 

discussed in 5.6. 
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The two anomalous results from experiment 1 have been addressed by experiment 2. 

In this experiment, much more stringent efforts were made to avoid the frequent /iʤi/-

/igi/ confusion due to the orthographic representation of the two sounds in English, 

Probably as a consequence, transmission of fricative was at a much higher level in 

experiment 2 compared to experiment 1. Also, voicing transmission values were 

around 80% in experiment 2, (although only if Greenwood-shifted noise bands were 

used as carriers). This contrasts with voicing transmission values around 90% in 

experiment 1. 

 

The overall significance of the two experiments taken together can be stated as 

follows. First, it is possible to obtain meaningful results using a consonant confusion 

measure with normal hearing subjects listening to an AM, without a large number of 

repetitions or extended acclimatisation time being necessary. Second, it is likely that 

important differences across feature transmission as a function of noise can be 

captured by using only two listening conditions: quiet, and one of either +5 or +10 dB 

SNR stationary noise. For reasons stated above, a choice of +10 dB SNR was deemed 

preferable and was therefore used for the AM experiment reported in the next chapter. 

This meant that it was possible to construct an AM experiment for comparison with 

equivalent CI user performance in a way that allowed a number of variables to be 

compared over a single test session without strong fatigue effects. Third, noise bands 

should be used as carrier stimuli rather than sine waves as it seems likely that the sine 

wave carrier may over-estimate spectral and periodicity information available to CI 

users. Fourth, similar results are obtained if noise band centre frequencies are aligned 

to assumed pitch-shifted values rather than analysis frequencies, despite evidence to 

the contrary reported in 1.6.4. Given the desire to mimic aspects of the 

electrical/neural interface as accurately as possible, it therefore seemed appropriate to 

include the Greenwood pitch shift in any model used for comparison with CI users. 

Fifth, the vowel environment /iCi/ led to slightly worse performance, particularly for 

place transmission, than /aCa/, as hypothesised.  Given the rationale, proposed by 

Loizou et al. (2000b), that this vowel environment might be more sensitive to 

parametric variations such as stimulation rate than the more commonly used /aCa/, it 

was therefore deemed appropriate for use in the experimental work in chapter 4. 
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Chapter 5. A comparison between AMs 

and CI users 

5.1 Research questions, aims and hypotheses (both experiments) 

This chapter describes two parallel experiments, one with Nucleus 24 users and one 

with normal hearing subjects listening to three different versions of an AM of the 

Nucleus 24 device.  The two experiments were matched in terms of CI processing 

characteristics and test methodology. The primary aim was to determine whether a 

carefully matched AM could predict consonant feature recognition in a group of CI 

users and whether the inclusion (and degree) of spectral channel interaction had a 

bearing on the model’s predictive power. However, the aim was achieved not merely 

by determining consonant feature recognition in a single listening condition but by 

looking at variations in feature transmission patterns with the addition of noise and 

with changes to the processing parameters of channel number and stimulation rate.  

This meant that the experimental work also had a set of secondary aims, namely to 

determine i) whether there is a trade-off between channel number and stimulation rate 

for consonant recognition, ii) whether these parameters have effects on particular 

consonant features and iii) whether they interact with noise. It should be noted that all 

of these questions are framed within the context of a specific CI device and 

processing strategy. 

 

The most important research questions were therefore:  

 

• Is the pattern of consonant feature recognition between the AM and CI users 

the same? 

• Does this correspondence depend on the inclusion of spectral channel 

interaction in the AM? 

• Does this correspondence vary across individual CI users or between 

subgroups of CI users, in particular is the correspondence greater for better-

performing or worse-performing CI users? 
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• Are variations in consonant recognition among CI users the same as 

differences between AMs with and without channel interaction? 

 

Further questions can be addressed to specific feature categories: 

• Is the effect of noise the same between the AM and CI users? 

• Is the effect of channel number the same between the AM and CI users? 

• Is the effect of changing envelope information as a consequence of changes to 

stimulation rate the same between the AM and CI users? 

• Is the interaction between any of these factors the same between the AM and 

CI users? 

 

Some additional questions can be framed specifically for the CI user experiment, in 

connection with the question of variance between users.  If, as Munson (2004) has 

suggested, variation between better and worse performers is quantitative not 

qualitative, e.g. is generic across psychophysical abilities and not specific to a specific 

subset of abilities, such as spectral resolution, then the pattern of phoneme errors 

should be similar in better and worse CI users. If, however, there are differences in the 

relative transmission of spectral features, then it can be hypothesised that differences 

between better and worse performing CI users would be mirrored by the difference 

between higher and lower levels of channel interaction in the AM. Alternatively, if 

individual differences are more to do with differences in temporal/amplitude coding at 

the electrical/neural interface, then spectral channel interaction might not show 

equivalent variations, but it would be anticipated that there would be larger between-

individual variation in temporal features. 

5.2 Methods 
The general methods have been described in chapter 2. However, a number of more 

detailed considerations are outlined in this section. First, the choice of CI users and 

the associated choice of processing parameters is considered. The clinical population 

available to the author at the South of England Cochlear Implant Centre were users of 

the Nucleus implant, and work reported in chapter 3 used an AM of the Nucleus 24 

implant with the CIS processing strategy. However, the great majority of Nucleus 24 

users use the ACE or SPEAK processing strategy. Therefore, to continue to use a 

fixed channel (CIS) AM would introduce an additional confounding variable when 
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comparing AM and CI user results. Therefore, it was decided it to undertake the AM 

experiment using the Nucleus 24 ACE speech processing strategy. In this way, all 

processing variables could be matched between the AM and CI user experiments. 

 

A further consideration was the choice of channel number and channel stimulation 

rate values. It was decided to reduce channel number and stimulation rate selectively 

from "typically used" values. In order to match the two experiments as closely as 

possible, the default parameters were those most commonly used by the clinical 

population accessed for the CI user experiment. The most common parameter settings 

for adult users of the Nucleus 24 implant in the available clinical population (adult 

Nucleus 24 users in the South of England Cochlear Implant Centre) were: 900 pps/ch 

stimulation rate, 12 maxima out of 20 channels with the Advanced Combination 

Encoder (ACE) speech processing strategy.  This was therefore chosen as the default 

"high rate high channel number" condition for both experiments. The low stimulation 

rate condition was chosen as 250 pps/ch as this was the minimum permissible 

stimulation rate allowed by clinical software and also corresponds to the stimulation 

rate used with the SPEAK speech processing strategy. However, the TMTF 

measurements shown in 1.4.3 showed that differences in temporal envelope coding 

between these two rates are modest at low modulation rates and non-existent at higher 

modulation rates. Moreover, the differences in envelope coding, e.g. effective 

envelope bandwidth, varied in the noise band AM to the same extent as in the CI 

processor. Consequently, if the temporal information provided by the implant is the 

key factor in determining perceptual abilities (as opposed to some physiological 

mechanism associated with higher pulse rates), little if any change between rates 

would be anticipated. Nevertheless, the design of the consonant recognition task, e.g. 

using the /iCi/ vowel environment which (suggested by Loizou et al. (2000b)) should 

be more sensitive to rate changes and the inclusion of a background noise condition 

should be such that any perceptual effects would be evident. The majority of the CI 

users had ACE maps with a channel stimulation rate of 900 pps/ch.  For all conditions 

which did not use the CI subject’s standard stimulation rate (e.g. all 250 pps/ch 

conditions), re-mapping was undertaken by globally adjusting T-levels and C-levels 

along all 20 active electrode channels.  Re-mapping was undertaken in order to 

account for the change in loudness (which is a function of stimulation rate, so long as 

pulse duration remains unchanged).  Only small changes in overall electrical dynamic 
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range were observed in the altered low-rate MAPs, of  the order of 2-3% reduction in 

dynamic range overall compared to the 900 pps/ch MAPs. 

 

The decision about reducing channel number was less straightforward, given the 

choice of the peak-picking strategy ACE. The question was raised previously as to 

whether channel number is perceptually equivalent to the number of spectral peaks 

selected, or equivalent to the number of channels available, or to something in 

between the two. Dorman et al. (2002) found that performance was equivalent 

between fixed channel and peak-picking models where peak number in a peak-

picking strategy was around the same as channel number in a fixed-channel strategy. 

In the present study the decision was taken to reduce both of these correspondingly to 

a level where channel number effects have been determined in previous work- thus 

the normal 12/20 condition was changed to 4/7, e.g. both channel number and peak 

(maxima) number were altered threefold.  The 900*4/7 condition used channels 

3,6,9,12,15,18 and 21. Figure 5.1 shows the frequency weighting and boundaries for 

the 20-channel MAPs while figure 5.2 shows frequency boundaries for the 7-channel 

MAP. Table 5.1 summarises the parameter values for the three MAP conditions. (The 

term “MAP”, coined by Cochlear Corporation, is used here to describe the particular 

set of parameter configurations, and their implementation, used for a particular CI 

user in a particular listening condition.) 
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Figure 5.1. Upper and lower frequency boundaries for 12*20 channel MAPs. 
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Figure 5.2. Upper and lower frequency boundaries for 4*7 channel MAP. 

 
Table 5.1. Summary of three MAP conditions. 

Map Stimulation rate Channel/maxima number 

Default 900 pps/ch 12 maxima/20 channels 

Reduced stimulation rate 250 pps/ch 12 maxima/20 channels 

Reduced channel number 900 pps/ch 4 maxima/7 channels 
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An additional advantage of this design was that equally “unfamiliar” MAP conditions 

could be compared in order to reduce the effect of familiarity. Where the default MAP 

was the one normally used, deterioration in performance in the other MAPs could be 

taken as a results of inadequate acclimatisation to the MAP, given that exposure was 

relatively limited. However, the possibility of comparing two equally unfamiliar 

MAPs, one with a reduced rate and one with a reduced channel number, would allow 

at least one comparison that was unaffected by the familiarity/acclimatisation issue 

and would also allow a direct comparison between lowering rate and lowering 

channel number from the normally used MAP condition. Finally, it was the possibility 

that there was a linear equivalence in performance when trading off channel number 

and stimulation rate was raised in 2.3.4. It should be noted that there is no theoretical 

basis as such for assuming a direct comparison between linear reductions in channel 

number and stimulation rate for the Nucleus 24 device. Nevertheless, it was of interest 

to explore the possibility of “trade-off” between stimulation rate and channel number 

and therefore that the two “reduced” MAP conditions were roughly equivalent e.g. 

stimulation rate was reduced to slightly less than a third, as was channel resolution. 

 

It was considered that, for the purposes of sample size calculation, the most important 

effect was the effect of noise on feature transmission values. Friesen et al. (2001) 

found that, for Nucleus users, consonant recognition was reduced by 10% with the 

addition of stationary background noise at +10 dB SNR, the same noise type and SNR 

used in this experiment. In the Friesen study standard deviation was also around 10.  

A sample size calculation based on these values (even assuming a highly conservative 

value for correlation in scores of over 50%) yielded a desired sample size of 11. 

Eleven NH subjects were recruited to experiment 4. In the event recruitment problems 

in the study meant that data were collected on 9 CI users. It should be noted that the 

sample size calculation was appropriate for within-subject comparisons but not for 

between-group comparisons; it was considered that the more important objective of 

the research was to determine differences in feature transmission as a function of 

processing and other variables within subjects, while the comparison between better 

and worse CI users, which is presented in 5.3, was of secondary importance to the 

overall design of the study. 
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The aim of the corresponding CI user experiment was to duplicate the AM processing 

and stimulus parameters just described with a group of adult users of the Nucleus 24 

CI. Subjects were recruited from the South of England Cochlear Implant Centre and 

were all experienced users of the Nucleus CI24M or Nucleus CI24R Contour.  Subject 

criteria were:  

 

• Post-lingually deafened adult cochlear implant users aged 18 or over.  

• Users of the Nucleus 24 device.  

• Normally users of the ACE strategy 

• Implant users for at least nine months.  

• Score of at least 60% in the BKB sentences test in quiet at last review session.  

• English as their first language. 

 

No formal attempt was made to choose “better” and “worse” performers a priori. Due 

to difficulties in recruiting an adequate sample, the inclusion criteria were expanded 

to include two subjects who normally used the SPEAK processing strategy in the 

bilateral condition.  Both of these subjects had had experience using the ACE strategy 

since receiving their implants. Subject 5 had achieved a score of only 57% in the 

Bamford-Kowal-Bench, known as BKB sentence test (Bench et al.,1979) at his most 

recent review but had achieved scores above 60% on all previous occasions. Three of 

the subjects had bilateral implants but performed the tests using only the implant 

which they had had the longest. Subjects who used a hearing aid on their non-

implanted ear used their implant on its own for these tests. The subjects’ ages ranged 

from 25 to 85 with a mean age of 61. There were six males and three females. Subject 

details are given in table 5.2. It should be noted that the post hoc separation into 

“worse” and “better” CI users, described in 5.3, did not co-vary with distinctions 

between those who normally used the ACE 900 pps/ch strategy vs. those who did not, 

nor did it co-vary with those who normally used bilateral CIs vs. those who did not. 

Consequently, it was thought that the relaxation of the inclusion criteria did not 

adversely affect results. 
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Table 5.2. Subject details for CI user experiment. 

Subject 
number 

Sex Age BKB 
score 

Duration of 
implant use 

Implant 
type 

Normal 
strategy 

Other 
info 

1 M 25 81 1yr 5m CI24R ACE 900 
pps 
12 of 20 

 

2 M 70 92 2 ½ yr CI24R ACE 900 
pps 12 of 
20 

 

3 M 65 90 1 yr  CI24R ACE 900 
pps 
12 of 20 

 

4 F 73 94 L – 6yr  
R – 4 yr 

CI24M SPEAK 
250 pps 
8 of 20 

Bilateral 
implants 

5 M 85 57 R – 7 yr 
L – 3 ½ yr 

CI24M ACE 
720 pps 
8 of 20 

Bilateral 
implants 

6 F 62 80 2 yr CI24R ACE  
900 pps 
12 of 20 

 

7 M 49 98 2 yr CI24R ACE 
900 pps 
12 of 19 

 

8 M 72 94 L – 6 yr 
R – 3 yr 

CI24M SPEAK 
250 pps 
8 of 20 

Bilateral 
implants 

9 F 48 100 1 yr CI24R ACE 
900 pps 
12 of 20 

 

 

Each subject was tested using three different MAPs, e.g. 900*12/20 ACE, 250*12/20 

ACE and 900*4/7 ACE.  Mapping was undertaken using the Cochlear Custom Sound 

programming software by the researcher. Order of MAP condition was randomised 

and testing was conducted first in quiet then in noise for each MAP condition. A spare 

Esprit 3G processor was used to provide alternative MAPs. For most listeners, they 

could use their normal MAP as this was already 900*12/20 ACE.  For the reduced 

channel condition a new MAP was created using the same seven channels as in 

experiment 3 (see figure 5.2).  For the lower stimulation rate MAP, it was necessary 

to adjust T-levels and C-levels (minimal audible and maximum comfortable current 

levels) because of the change in loudness associated with changes in stimulation rate. 

Subjects were given as much time as needed to acclimatise to the new MAPs; in 

practice, this was not more than 15 minutes. 
 

In summary, two parallel experiments were undertaken, one with 11 normal hearing 

listeners listening to an AM and the other with 9 users of the Nucleus 24 CI device. In 

each experiment the VCV test (as described in chapter 2) was undertaken in two noise 
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conditions (with and without stationary background noise at +10 dB SNR) * 3 MAP 

conditions. Additionally, for the AM experiment, all testing was undertaken with 

three different AMs, varying by the degree of the term λ  from equation 3.2 from 0 to 

1 to 3.3. This meant that there were a total of 2*3 listening conditions for CI users and 

2*3*3 listening conditions for AM subjects. The results of the CI user experiment are 

reported in 5.3 while results of the AM experiment are reported in 5.4.  In section 5.5 

the two sets of data are considered together. All results are reported separately by 

transmission of six consonant features and also by total correct scores. 

5.3 Results of CI user experiment 

Data analysis methods are described in 2.3.6. For convenience, total correct values are 

also included in graphical presentation along with feature transmission values 

although it should be noted that this represents the absolute number with correct 

responses rather than averaged information transmission. Figure 5.4 shows 

performance across features and total correct averaged across MAP conditions and 

figures 5.5 to 5.7 show equivalent data separately for each of the three MAP 

conditions.   
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Figure 5.4 Mean (+ 1 SD) feature transmission values and total correct (across MAP conditions) 

in 9 users of Nucleus 24 CI with ACE processing. 
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 Figure 5.5. Mean (+ 1 SD) feature transmission values and total correct in 9 users of Nucleus 24 

CI with ACE MAPs with 12 maxima out of 20 channels and channel stimulation rate of 900 

pps/ch. 
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Figure 5.6. Mean (+ 1 SD) feature transmission values and total correct in 9 users of Nucleus 24 

CI with ACE MAPs with 4 maxima out of 7 channels and channel stimulation rate of 900 pps/ch. 
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Figure 5.7. Mean (+ 1 SD) feature transmission values and total correct in 9 users of Nucleus 24 

CI with ACE MAPs with 12 maxima out of 20 channels and channel stimulation rate of 250 

pps/ch. 

 

Figures 5.5 to 5.7 indicate only small differences across MAP conditions.  Noise 

effects also appear to be small, with the exception of nasality, which shows a more 

marked noise effect. As might be anticipated in any group of CI users, variance 

appears large for most measures. A MANOVA was performed with seven dependent 

variables (percentage information transmission for six consonant features percentage 

total correct) and three predictor variables (channel number, channel stimulation rate 

and noise).  As with previous analyses, only significant factors or interactions are 

reported here and full details are given in Appendix B. The noise factor had a 

significant effect on nasality (p<0.05) but no other dependent variable. Neither 

channel number nor stimulation rate had a significant effect on any dependent 

measure. There were no significant factor interactions for any variable. 

 

It was also of interest to consider differences between individual CI users. Although 

the 9 CI users had been chosen on the basis of overall BKB sentence score in quiet 

>60%, one of the aims of the experiment was to determine, post hoc, the degree and 

nature of variance in performance. In practice, variance in most-recent BKB score 

was low (see table 5.2) and the consonant recognition measure itself showed much 

higher variance.  Therefore, the definition of “better” vs. “worse” performer was 
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taken as consonant recognition total correct in quiet during the test sessions, using the 

“high channel number, high stimulation rate” MAP that represented the default MAP 

for most of the listeners. On the basis of this, of the 9 subjects, 5 had baseline 

consonant recognition scores in quiet (e.g. with the normal high rate/high channel 

number MAP) of 50% or more while the other 4 had scores of less than 50%. 

Therefore, separate analyses of these two subgroups were undertaken. Figures 4.8 and 

5.9 show performance across features (averaged across MAP conditions) in quiet and 

noise for the two groups.   
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 Figure 5.8. Mean (+ 1 SD) feature transmission (across MAP conditions) in 5 users of Nucleus 24 

CI with ACE processing with baseline consonant recognition scores of 50% or better. 
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Figure 5.9. Mean (+ 1 SD)  feature transmission (across MAP conditions) in 4 users of Nucleus 24 

CI with ACE processing with baseline consonant recognition scores of less than 50%. 
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It is also of interest to represent the magnitude of differences between better and 

worse users. Therefore, figure 5.10 shows difference in transmission of different 

features between better and worse CI users in quiet and noise, averaged across MAPs.  

This clearly shows that differences between the two subgroups were much greater for 

noise-contaminated stimuli. 
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Figure 5.10. Difference between better and worse CI performers across MAPs. 

 

In summary, there appeared to be marked differences in overall performance levels 

and particularly in degree of noise effect between the two subgroups of CI users. In 

order to explore this statistically, MANOVA analyses were undertaken on the same 

basis as for the overall group results, but here split into the two groups of subjects. 

Full details of these two sets of analyses are in Appendix B. For the “better user” 

group (N=5), no factor or interaction had an effect on any variable, although the effect 

of noise on nasality just failed to reach significance (p=0.065). For the “worse 

listener” group (N=4), the noise factor had a significant effect on transmission of 

voicing, manner and envelope and also on total correct scores.  As with other 

analyses, neither processing factor had a significant effect on any measure; there were 

also no factor interactions. 

5.4 Results of AM experiment 

For the AM experiment results, data were first combined into confusion matrices for 

each listening condition/individual. As with previous experiments, total correct values 

and  information transmission values for six features were computed for each 

confusion matrix and the data were then used for further analysis. In this experiment, 
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testing was also undertaken in the “unaltered” listening condition, e.g. with no AM 

applied. These data are shown in figure 5.11. 
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Figure 5.11. Mean (+ 1 SD) feature transmission in the “unaltered” condition. 

All feature transmission values exceeded 90% except for place of articulation and all 

except place and fricative exceeded 95%.  None of the features showed worse 

performance in the “noise” conditions.  These values were not included in subsequent 

data analysis but are presented here as baseline data for comparison.  The only likely 

effect on interpretation of AM data was the relatively low place transmission values in 

the unaltered condition. However, all AM conditions yielded place transmission 

values of 60% or less; therefore, the fact that place transmission in the unaltered 

condition was at 87% and 86% (for quiet and noise) and was, therefore, not 

considered to have any impact on interpretation of model findings. 

 

Subsequent data analysis and illustration relates to the three AMs. In order to illustrate 

the overall pattern of feature performance in quiet and noise, figures 5.12 to 5.14 

show performance across features for the three different “channel interaction” 

conditions, averaged across MAP conditions.  
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Figure 5.12. Mean (+ 1 SD) feature transmission (across MAP conditions) with and without 

stationary background noise at +10 dB SNR with an AM with no “channel interaction”. 
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Figure 5.13. Mean (+ 1 SD) feature transmission (across MAP conditions) with and without 

stationary background noise at +10 dB SNR, AM with 1 mm “channel interaction”. 
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Figure 5.14 Mean (+ 1 SD)  feature transmission (across MAP conditions) with and without 

stationary background noise at +10 dB SNR, AM with 3.3 mm “channel interaction”. 

 

In order to make a clearer comparison between AM conditions, figures 5.15 and 5.16 

show performance for each of the three channel interaction conditions for quiet and 

noise separately, again averaged across MAP conditions.  
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Figure 5.15. Mean (+ 1 SD) feature transmission (across MAP conditions) in quiet with varying 

degrees of  “channel interaction”. 
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Figure 5.16. Mean (+ 1 SD) feature transmission (across MAP conditions) in stationary 

backgound noise at +10 dB SNR using AMs with varying degrees of  “channel interaction”. 

 

These figures suggest a trend for worse performance for most features in the 3.3 mm 

channel interaction condition compared to the other two conditions, little difference 

between the “no channel interaction” and “1 mm channel interaction” conditions and 

worse performance in noise compared to quiet for some features, particularly nasality 

and voicing. In terms of differences between features, there appeared to be a trend for 

manner and envelope transmission being greatest and voicing or place worst.  

 

Figures 5.17 to 5.25 show equivalent feature transmission values as shown in figures 

5.12 to 5.14, but here data are presented for each of the specific MAP conditions, e.g. 

the high channel number high stimulation rate condition (900 pp/ch x 12/20), the low 

channel number high stimulation rate condition (900 pps/ch x 4/7) and the high 

channel number low stimulation rate condition (250 pps/ch x 12/20).  Figures 5.17 to 

5.19 are for the “no channel interaction” model, figures 5.20 to 5.22 are for the “1 mm 

channel interaction” model and figures 5.23 to 5.25 are for the “3.3 mm channel 

interaction” model. Only mean data are presented. 
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Figure 5.17. Mean feature transmission for the 900 pps/ch x 12/20 MAP condition with and 

without stationary background noise at +10 dB SNR with an AM with no “channel interaction”  
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Figure 5.18. Mean feature transmission for the 900 pps/ch x 4/7 MAP condition with and without 

stationary background noise at +10 dB SNR with an AM with no “channel interaction”. 
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Figure 5.19. Mean feature transmission for the 250 pps/ch x 12/20 MAP condition with and 

without stationary background noise at +10 dB SNR with an AM with no “channel interaction”. 
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Figure 5.20. Mean  feature transmission for the 900 pps/ch x 12/20 MAP condition with and 

without stationary background noise at +10 dB SNR with an AM with 1 mm “channel 

interaction”  
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Figure 5.21. Mean feature transmission for the 900 pps/ch x 4/7 MAP condition with and without 

stationary background noise at +10 dB SNR with an AM with 1 mm“channel interaction”. 
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Figure 5.22. Mean feature transmission for the 250 pps/ch x 12/20 MAP condition with and 

without stationary background noise at +10 dB SNR with an AM with 1 mm “channel 

interaction”. 
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Figure 5.23. Mean feature transmission for the 900 pps/ch x 12/20 MAP condition with and 

without stationary background noise at +10 dB SNR with an AM with 3.3 mm “channel 

interaction”  
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Figure 5.24. Mean feature transmission for the 900 pps/ch x 4/7 MAP condition with and without 

stationary background noise at +10 dB SNR with an AM with 3.3 mm“channel interaction”. 
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Figure 5.25. Mean  feature transmission for the 250 pps/ch x 12/20 MAP condition with and 

without stationary background noise at +10 dB SNR with an AM with 3.3 mm “channel 

interaction”. 

 

It appears from these figures that differences between processing, or MAP, conditions 

are small. It is notable that place transmission appears to be less for the 4-channel 

MAP compared to the high-channel conditions. In order to analyse results, MANOVA 

was undertaken with the same approach as for analysis of CI user data: again, with 

seven dependent variables (information transmission for each of the six features and 

total percent correct).  For the main analysis there were four factors: noise, channel 

number and channel stimulation rate and the additional factor for the AM experiment, 

channel interaction (with three levels). Again, only significant factors and interactions 

are mentioned in the text; the full MANOVA report is included in Appendix B.  

 

The noise factor was found to have a significant effect on the features voicing, 

nasality and manner. In each case the effect was in the expected direction, e.g. worse 

transmission of those features with the inclusion of background noise at +10 dB SNR. 

Stimulation rate had no effect on any variable. Channel number had a significant 

effect on total correct, place, manner and fricative, again in the expected direction, 

e.g. worse transmission with 4 channels compared to 12 channels.  

 

Channel interaction had a significant effect on total correct, voicing, place, manner, 

fricative and envelope (all p<0.05). As this factor had three levels, it was necessary to 



 153

use post-hoc t-tests to determine where the differences lay. The results are indicated in 

table 5.3, which shows the magnitude of the difference between each of the three 

possible comparisons between channel interaction conditions for the six dependent 

variables which showed a significant channel interaction effect (numbers in bold 

indicate that the comparison was significant). 

 
Table 5.3.Comparisons between three different channel interaction conditions.  Values given are 

mean differences (rounded to nearest 1%) for the variables indicated on the left.  Differences 

highlighted in bold were statistically significant. 

Dependent variable/ 

comparison 

No channel interaction – 

1 mm channel 

interaction 

No channel interaction – 

3.3mm channel 

interaction 

1mm channel 

interaction – 3.3 mm 

channel interaction 

Total correct 
1 9 8 

Voicing 0 8 8 

Place 0 6 6 

Manner -1 5 5 

Fricative 2 7 6 

Envelope -1 5 6 

 

These tests can be summarised as follows. For the six dependent measures which 

showed a channel interaction effect, post-hoc comparisons between either the “no 

channel interaction” condition or the “1 mm channel interaction” condition on the one 

hand and the 3.3 mm channel interaction condition on the other were significant, 

whereas the comparison between the “no channel interaction” and “1 mm channel 

interaction” condition was not significant for any variable.  Effectively, the “no 

channel interaction” and “1 mm channel interaction” conditions were equivalent, 

whereas there were significant differences of between 5 and 9% information 

transmission for either of these conditions and the 3.3 mm channel interaction 

condition. There was also a two-way interaction between noise and channel number 

on place, due to a significant difference between place transmission in quiet vs. noise 

within the 4-channel condition but not the 12-channel condition. There were two-way 

interactions between channel interaction and channel number on place and fricative. 

Because the other interactions involved channel interaction (an inescapably inelegant 

repetition of the word “interaction”), and because of the importance of determining 

differences between the three AMs, three further MANOVAs were performed for 
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each of the three channel interaction conditions. In each case the seven dependent 

variable were analysed in terms of the combined effects of the three factors channel 

number, stimulation rate and noise but only considering one channel interaction 

condition in each case.  Given the number of possible effects, the results here are 

tabulated below for clarity. 

 

The differences across the three channel interaction models given in table 5.4 can be 

summarised as follows. The pattern of noise effects differed in that nasality was the 

only dependent variable effect for the 1 mm and 3.3 mm channel interaction 

conditions, whereas voicing and manner were affected in the no channel interaction 

condition. There were also differences in the pattern of channel number across 

models.  In the condition without channel overlap or with 1 mm channel overlap there 

were channel number effects for a number of measures while there were no channel 

number effects in the 3.3 mm channel overlap condition.  It is worth noting that the 

pattern of effects for the 3.3 mm channel overlap condition was the same as for the CI 

user group, e.g. no effects of any processing parameter condition and noise having an 

effect on nasality only. The following section explores the relationship between the 

data sets from the two experiments quantitatively. 

 
Table 5.4.  Summary of significant factors/interactions from MANOVAs undertaken separately 

for three different channel interaction conditions.   

Factor (interaction)/ 

Channel interaction 

condition 

No channel interaction 1 mm channel 

interaction 

3 mm channel 

interaction 

Noise Voicing, manner Nasality Nasality 

Channel number Total, place, manner Total, place, manner, 

fricative 

- 

Stimulation rate - - - 

Noise x channel 

number 

- Place - 

Noise x stimulation 

rate 

- - - 

Stimulation rate x 

channel number 

- - - 
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5.5 Combined data analysis of AM and CI user experiments 

This section aims to quantify the degree of match between the two data sets, in order 

to address the core questions noted in 5.1. In order to illustrate the similarities or 

differences in patterns of feature recognition in the two groups, figures 5.26 and 5.27 

show performance for CI users and for the three versions of the AM, averaged across 

MAP conditions, for quiet and noise respectively. The variance has already been 

shown for most variables and was not substantially different between CI and AM 

subjects across features. Therefore, in order to facilitate visual comparison between 

means, figures in this section, other than those concerned with statistical interactions, 

do not include standard deviation values.  
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Figure 5.26. Mean feature transmission for CI users and listeners to three different AMs, in 

quiet. 
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Figure 5.27. Mean feature transmission for CI users and listeners to three different AMs, in 

stationary background noise at +10 dB SNR. 
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These figures suggest that the models over-predict absolute transmission values, 

although the overall pattern between features is similar between model and CI user 

data.  It also appears that the model with greatest channel interaction approximates 

absolute feature transmission values of CI users most closely, particularly in quiet 

listening conditions. Given the differences between the models (but particularly 

between the 3.3 mm channel interaction and other two models), it was appropriate to 

consider the relationship between CI user data and each separate model, rather than 

averaging across all the AMs.  In any case, this was also necessary in order to address 

the question of whether inclusion or degree of channel interaction affected the 

predictive power of the model. Therefore, a series of MANOVAs were undertaken; in 

each case, a “group” factor was included. This factor distinguished between CI users 

and AM subjects and therefore had two levels.  If this factor was found to be 

significant, it could be assumed that the model was not a good predictor of 

performance, e.g. the analysis showed a significant difference between AM and CI 

user results. On the other hand, if the factor was not significant, the model would be 

shown to have predictive power (e.g. indicating no difference between AM and CI 

user results).  The other factors, namely noise, channel interaction and channel 

stimulation rate were not of particular interest in themselves as any difference in the 

significance of these factors between these analyses and analyses with either CI user 

data or AM data only would not be very meaningful. However, both the “group” 

factor and any interactions between “group” and the other factors were of interest.  

Where there were interactions involving the group factor, this would be indicative that 

the model was predictive of CI user results in one level of the second factor but not 

the other.  For example, if there were an interaction between “group” and “noise” for 

any particular analysis, this would indicate that the AM in question had predictive 

power for either the quiet or the noise-contaminated condition, but not both.  

 

The first set of MANOVA analyses were undertaken across all CI users and each of 

the three AMs. Significant factors are summarised in table 5.5 (as there were no 

significant interactions, these are not included in the table). Full details of all 

MANOVA analyses are given in Appendix B. With subsequent analyses comparing 

groups, particularly where further subgroup analyses are reported in tables 5.6 and 

5.7, the possible deficit in statistical power, noted in 5.2, should be borne in mind. 
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The relatively small sample size, particularly with regard to subgroup analyses, does 

increase the possibility that a type II error. Nevertheless, it can also be argued that the 

group numbers still equal, or exceed, those obtained in numerous reported CI and AM 

studies. 

 
Table 5.5.  Summary of significant factors/interactions from MANOVAs undertaken separately 

for three different channel interaction conditions.  Here data from all 9 subjects in the CI user 

experiment are also included in the analysis. The “group” factor has two levels (CI users vs. AM). 

Factor (interaction)/ 

Channel interaction 

condition 

No channel interaction 1 mm channel 

interaction 

3.3 mm channel 

interaction 

Group All six features and 

total correct 

All six features and 

total correct 

Total, place, manner, 

fricative, envelope 

Noise Voicing, nasality, 

manner 

Nasality Nasality and manner 

Channel number Place Place - 

Stimulation rate - - - 

 

This analysis shows that the model was poor in predicting CI performance in all cases 

except for voicing and nasality in the 3.3 mm channel interaction model. This 

corresponds well with the impression given by figure 5.26 that the model, even with 

3.3 mm channel interaction over-predicts feature transmission values across almost all 

features.  However, it was also important to determine the predictive power of the 

models separately for better- and worse-performing CI users, as defined in 5.3. 

Figures 5.28 to 5.31 shows feature transmission values for the two CI user subgroups 

separately for quiet and noise-contaminated conditions. 
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Figure 5.28. Mean feature transmission for CI users with baseline consonant recognition of 50% 

or more and listeners to three different AMs, in quiet. 
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 Figure 5.29. Mean feature transmission for CI users with baseline consonant recognition of 50% 

or more and listeners to three different AMs, in background stationary noise at +10 dB SNR. 
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Figure  5.30. Mean feature transmission for CI users with baseline consonant recognition of less 

than 50% and listeners to three different AMs, in quiet. 
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Figure  5.31. Mean feature transmission for CI users with baseline consonant recognition of less 

than and listeners to three different AMs, in background stationary noise at +10 dB SNR. 

 

The figures suggest that the AM is predictive of performance of “better” CI users 

whereas it markedly over-estimates performance for “worse” CI users. In order to 

determine this quantitatively, a further two sets of MANOVAs were undertaken in the 

same way as the analysis summarised in table 5.6, but in this case including either the 

“better user” and “worse user” subgroup only. These analyses are reported in tables 

5.6 and 5.7, respectively; full MANOVA details are given in Appendix B. 
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Table 5.6.  Summary of significant factors/interactions from MANOVAs undertaken separately 

for three different channel interaction conditions.  Here only data from the better CI users (N=5)  

in the CI user experiment are included in the analysis-see 5.3 for definition of the subgroup. The 

“group” factor had two levels (CI users vs. AM). 

Factor (interaction)/ 

Channel interaction 

condition 

No channel interaction 1 mm channel 

interaction 

3 mm channel 

interaction 

Group - - Voicing, fricative 

Noise - Nasality, fricative Nasality 

Channel number - - - 

Stimulation rate - - - 

Noise x channel 

number 

- - - 

Noise x stimulation 

rate 

- - - 

Noise x group Fricative, voicing  Fricative 

Channel number x 

group 

Place Place - 

Stimulation rate x 

channel number 

- - - 

 

The striking finding from table 5.6 is the lack of effects for the “group” factor. This 

indicates that the model works well for the subgroup of better users. Interestingly, the 

model appears to be better (e.g. for a larger number of features) for the conditions 

with no channel interaction or 1 mm channel interaction.  

 

There are some interactions involving the group factor that need to be considered.  

First, there was an interaction between group and channel number with place 

transmission, due to the pattern of effects of channel number on place: There was a 

significant effect of channel number on place with AMs with no channel interaction 

(p <0.001) or 1 mm channel interaction (p <0.001). However, for CI users, and for the 

3.3 mm channel interaction condition, there was no significant difference in place 

transmission between 12 and 4 channels. The interaction is shown in figure 5.32.  
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Figure 5.32. Mean (+ 1 SD) place transmission in 12-channel and 4-channel listening conditions, 

across better CI users and the three AMs. 

 

A further interaction between noise and group on fricative occurred for both the no- 

and 3.3 mm channel interaction conditions (the effect falls just short of significance in 

the 1 mm channel interaction condition). Therefore, it appears that the amount of 

channel interaction is not the only issue, but rather the estimation of the noise effect 

on fricative transmission in particular.  As it happens that the 3.3 mm model falls 

down with respect to transmission of voicing and fricative, it is convenient to 

illustrate both the interactions between group and noise and this effect via figures 

focusing on these two features. Figure 5.33 shows fricative transmission in quiet and 

noise across better CI users and the three AM.  Figure 5.34 shows equivalent data for 

voicing. In figure 5.33 it can be seen that fricative transmission actually gets better in 

background noise whereas the differences between quiet and noise conditions are 

smaller for the AM conditions. This is supported by post-hoc t-tests: The difference 

with and without noise was significant for better CI users (p<0.05) but not for no 

channel interaction, (p= 0.37), 1 mm channel interaction (p= 0.37) or 3.3 mm channel 

interaction (p= 0.14).  
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Figure 5.33. Mean (+ 1 SD) fricative transmission in quiet and noise listening conditions, across 

better CI users and the three AMs. 

 

For voicing transmission, the interaction between noise and group appears to be for 

rather different reasons. Figure 5.34 suggests no difference with the addition of noise 

for voicing with better CI users, but there is a clear difference with noise across AMs, 

although the difference is less for 1 mm channel interaction.  Post-hoc t-tests were 

non-significant for better CI users (p=0.78), significant for the no channel interaction 

model (p<0.01), not significant for the 1 mm channel interaction model (p=0.12) and 

just short of reaching significance for the 3.3 mm channel interaction model 

(p=0.051).   
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Figure 5.34. Mean (+ 1 SD) voicing transmission in quiet and noise listening conditions, across 

better CI users and the three AMs. 

 

As noted, a final MANOVA comparing worse CI users with AMs was undertaken and 

significant factors and interactions are tabulated below.  
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Table 5.7.  Summary of significant factors/interactions from MANOVAs undertaken separately 

for three different channel interaction conditions.  Here only data from the worse CI users (N=4)  

in the CI user experiment are included in the analysis-see 5.3 for definition of the subgroup. The 

“group” factor has two levels (CI users vs. AM). 

Factor (interaction)/ 

Channel interaction 

condition 

No channel interaction 1 mm channel 

interaction 

3.3 mm channel 

interaction 

Group All features and total 

correct 

All features and total 

correct 

All features and total 

correct 

Noise Total and all features 

except nasality 

Voicing, nasality, 

manner, envelope 

All features except 

place 

Channel number Total, place,manner Total, place, manner, 

fricative 

 

Stimulation rate    

Noise*channel number    

Noise*stimulation rate - - - 

Noise*group Manner Manner, fricative, 

envelope 

 

Stimulation 

rate*channel number 

- - - 

 

These analyses clearly show that the model is very poor when considering those with 

baseline consonant recognition scores <50%, given that the “group” factor was 

significant for all dependent variables and for all AM conditions. Some two-way 

interactions between noise and group were found for manner transmission. Figure 

5.35 shows manner transmission for the two AMs in which there was a significant 

interaction. It appears that there was a large noise effect for the worse users but not 

for the AM conditions. Post-hoc t-tests showed a significant difference with and 

without noise for worse CI users (p<0.005) and the no channel interaction AM 

(p<0.05) but not the 1 mm channel interaction model (p=0.31) or the 3.3 mm model 

(p=0.11). 
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Figure 5.35. Mean (+ 1 SD) manner transmission in quiet and noise listening conditions, across 

worse CI users and two of the AMs. 

 

The final two interactions noted were for the 1 mm channel interaction model for 

fricative and envelope.  Figures 5.36 and 5.37 show transmission of those two features 

in quiet and noise within this model and for worse CI users. It appears that, in both 

cases, the interaction is produced by the larger noise effect in worse CI users than in 

the AM. For fricative transmission, post-hoc t-tests showed no difference with noise 

for either worse CI users (p=0.077) or the AM (p=0.36), although the difference in CI 

users just failed to reach significance. For envelope transmission, the noise effect for 

worse CI users was significant (p<0.05) but was not for the AM (p=0.16). 
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Figure 5.36. Fricative transmission in quiet and noise listening conditions, across worse CI users 

and 1 mm channel interaction model. 
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Figure 5.37. Envelope transmission in quiet and noise listening conditions, across worse CI users 

and 1 mm channel interaction model. 

 

A final issue in presentation of the data is the question of whether differences between 

channel interaction can mimic differences between better and worse users. In order to 

illustrate whether this might the case, differences between “no channel interaction” 

and the “worst” “3.3 mm channel interaction” AM conditions are presented in figure 
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5.38 while differences between “better” and “worse” CI users are presented 

immediately below in figure 5.39. (data are averaged across MAP conditions in both 

cases). 
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Figure 5.38. Difference between better and worse CI performers across MAPs. 
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Figure 5.39. Difference between AM with no channel interaction and AM with 3.3 mm channel 

interaction, across MAPs.  Values are no channel interaction conditions – equivalent 3.3 mm 

channel interaction conditions. 
 

The clear impression is that the two patterns do not match.  The absolute magnitude of 

differences between better and worse CI users far exceeds that for the difference 

between no channel interaction and 3.3 mm channel interaction. Moreover, the 

differences between better and worse CI users are greater for the noise-contaminated 

conditions whereas this is not generally the case for the AM differences.  
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A further useful way of looking at the data is in terms of information loss between 

conditions. Figures 5.40 and 5.41 illustrate this by showing three comparisons: first, 

between the unaltered condition and the AM with no channel overlap (referred to as 

“processing effect”, second, the difference between the unaltered condition and the 

AM with 3.3 mm overlap (referred to as “processing +channel interaction effect”) 

and, third, the difference between NH listeners in the unaltered condition and better 

CI users (“CI user effect”).  
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Figure 5.40. Reduction in mean feature transmission across listener and channel interaction 

conditions in quiet. The first comparison is between NH listeners with the unaltered stimuli vs. 

stimuli with AM with no channel overlap. The second comparison is between NH listeners with 

the unaltered stimuli vs. stimuli with AM with 3.3 mm channel overlap. The third comparison is 

between NH listeners with unaltered stimuli and better CI users. Data are averaged across MAP 

conditions in quiet. 
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Figure 5.41. Reduction in mean feature transmission across listener and channel interaction 

conditions in background noise. The first comparison is between NH listeners with the unaltered 

stimuli vs. stimuli with AM with no channel overlap. The second comparison is between NH 

listeners with the unaltered stimuli vs. stimuli with AM with 3.3 mm channel overlap. The third 

comparison is between NH listeners with unaltered stimuli and better CI users. Data are 

averaged across MAP conditions in background noise at +10 dB SNR. 

 

The noteworthy aspect of the data presented in this way is the equivalence in 

magnitude between the “CI user effect” and “processing + channel interaction effect”, 

at least in quiet listening conditions. Interestingly, the effect of adding channel 

interaction does not reduce information transmission anything like as much as the 

“processing effect”, e.g. the effect of the AM without channel interaction. The 

reduction in performance in the better CI users is modelled well by using an AM with 

3.3 mm channel interaction, but the contribution of channel interaction is a smaller 

part of the overall effect than the effect of processing per se (albeit with pitch shift 

included also). This important finding is expanded on in chapter 7. 

5.6 Consonant confusion matrices 
Analysis of information transmission measures was used to determine the 

correspondence between CI and AM data in quantitative terms. However, it is also 
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important to note, qualitatively, what types of phoneme error were made, given the 

possibility that two different error patterns could lead to the same information 

transmission values. Evaluation of every consonant confusion table for each listening 

condition for both experiments would be impractical. Instead, just a handful of 

important confusion matrices are considered here.  Given the findings of analyses in 

5.5 that indicated a strong convergence between AMs and CI user data, the most 

important comparison was between confusion matrices for “better” CI users and AMs. 

Therefore, tables 5.8 to 5.12 show confusion matrices for better CI users, no channel 

interaction AM and 3.3 mm channel interaction AM, respectively. Given the minimal 

effects of processing parameters across experimental conditions, data are averaged 

across the three MAPs. The matrices are briefly discussed in this section and referred 

to at various points in the discussions in chapters 6 and 7. 
 
Table 5.8. Confusion matrix for better CI users in quiet, averaged across MAP conditions. 
 b d g w j ɹ l v z ʤ m n p t k f ɵ s ʃ ʧ 
b 100                    
d  95       2     2       
g  64 14        2  14 2   2    
w    50  43     7          
j 2    17  36 12 2 2 21      7    
ɹ    24  76               
l    14  17 33 10   19 5    2     
v        88   2   5 5      
z        14 50       5 7 17 7  
ʤ  5 7  2     76    7      2 
m       2    9 7         
n       2    86 12         
p             100        
t          2    79 2     17 
k  2 2       12   17 14 50     2 
f        12        71 5 12   
ɵ         10     2  7  76 5  
s        2 7        2 81 5 2 
ʃ                5 5 5 86  
ʧ  5 7       38    7     2 40 
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Table 5.9. Confusion matrix for no channel interaction AM, averaged across MAP conditions. 
 b d g w j ɹ l v z ʤ m n p t k f ɵ s ʃ ʧ 
b 66       1  1   31       1 
d  8        1    15 3     1 
g  19 46    1   2   2  29      
w    13  86            1   
j 1  1 1 69 1 16 1 2  1  2    4 1   
ɹ      100               
l      3 96     1         
v   1   25 2 61 9  1       1   
z    1  2  1 84        2 9 1  
ʤ   11       73    1  1    14 
m      23 1    71 5         
n    1  14     84 1         
p   1      1 4   88 1 5      
t  2 2       6    57   2   31 
k 1  1      1 7   9 12 66     3 
f        2 2       62 17 15 1 1 
ɵ         5       5 15 74  1 
s         2        2 93 3  
ʃ                2 4 6 88  
ʧ  1 5       15          79 
 
 
Table 5.10. Confusion matrix for 3.3 mm channel interaction AM, averaged across MAP 
conditions.  
 b d g w j ɹ l v z ʤ m n p t k f ɵ s ʃ ʧ 
b 45 5      2  1   43  1 2     
d 2 62 2       4   11 14 2  1   2 
g 6 2 22       3  1 25 1 20     1 
w    38  38 1 12   7 3         
j 2 1 1 4 45 8 17 1 1  2 3 2    1 1  1 
ɹ    24 1 56 8 5 1  2 2      1   
l    5 2 11 56 12   7 5   1  1    
v    1  2  8 6     1  6 2 2   
z        8 75       7  7 3  
ʤ   11       74          15 
m    1  5 2    86 6         
n  1  1  2 2   1 82 10 1        
p 1  1   1    2   74 2 18     1 
t   1       10    40 1 1 1   45 
k  1 2 1  1  1  2 1  18 26 38  2   6 
f  2       1 1      79 11 4 2  
ɵ        3 5       48 21 20 2  
s        1 7       6  66 20  
ʃ         1 1      1 3 4 81  
ʧ  1 4       11          84 
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The most striking impression from the confusion matrices is the high degree of 

correspondence for error patterns for most, but not all, consonants.  Both models 

corresponded well with better CI users with respect to the perception of nasals (in 

particular the misperception of /n/ as /m/), the perception of voiceless fricatives, 

including the misperception of /ɵ/ as /s/. The 3.3 mm channel interaction 

corresponded better in terms of liquid confusion patterns, e.g the high error rates for 

/ɹ/ and /w/.  However, there were a number of areas where the better CI user confusion 

patterns diverged from the model data:  in particular, the perception of bilabial stops 

(/b/ and /p/) was notably better with better CI users than with AM listeners. 

 
Table 5.11. Confusion matrix for CI users in quiet, averaged across MAP conditions. 
 b d g w j ɹ l v z ʤ m n p t k f ɵ s ʃ ʧ 
b 91 5      1      1 1      
d 1 92 1      1    1 3       
g 4 64 9        1  12 8 1  1    
w    27 1 44 19    8   1       
j 1 3   13 1 33 13 1 5 17 5    1 5 1   
ɹ    13  62 19 1   4       1   
l    9  13 51 6   13 4   3 1     
v 1  9  1 1  63   1  15 3 3 1 1    
z  6 1     19 40       4 4 13 6 6 
ʤ  6 40  1     41    9      3 
m      4 18 1   69 8         
n      1 14 1   63 19      1   
p 3            87  10      
t  1 6       3   1 74 3  3   9 
k  1 4   1    8   19 28 37     1 
f  1      14  1    1  56 6 8 5 6 
ɵ   3  3  1 4 8     1  5 3 51 5 17 
s  1 1     1 6    1    4 6 12 13 
ʃ   3       3    1  3 4 3 79 5 
ʧ  4 19       22    19   3  3 31 
 

First it is important to note whether two specific hypotheses, which were put forward 

in 1.7.3, are supported by the data.  The first stated that place coding for nasals and 

liquids should be more difficult for CI users than fricative or plosive place. This is 

supported by the confusion matrices for the better CI users. 
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Table 5.12. Confusion matrix for worse CI users in quiet, averaged across MAP conditions. 
 b d g w j ɹ l v z ʤ m n p t k f ɵ s ʃ ʧ 
b 81 11      3      3 3      
d 3 89 3          3 3       
g 8 64 3          8 14 3      
w     3 44 42    8   3       
j  6   8 3 31 14  8 11 11    3 3 3   
ɹ      44 42 3   8       3   
l    3  8 72 3   6 3   6      
v 3  19  3 3  33     33   3 3    
z  14 3     25 28       3  8 6 14 
ʤ  8 78           11      3 
m      8 36 3   44 8         
n      3 28 3   36 28      3   
p 6            72  22      
t  3 14       3   3 69 3  6    
k   6   3    3   22 44 22      
f  3      17  3    3  39 8 3 11 14 
ɵ   6  6  3 8 6       3 6 22 6 36 
s  3 3      6    3    6 36 19 25 
ʃ   6       6    3   3  72 11 
ʧ  3 33       3    33   6  3 19 
 
The most striking difference in “worse CI user” error patterns was the worse nasality 

transmission.  Specifically, these subjects consistently confused the nasals for the 

liquid /l/, suggesting a reduced ability to determine the pattern of envelope 

modulations within apical channels. 

5.7 Overview of experiments 3 and 4 
Two experiments were undertaken, the aims of which were to determine the relative 

contributions of CI processing and electrical/neural interface factors on consonant 

recognition.  It was found that the results of the AM experiment matched the results 

obtained with a subset of the CI users.  It was also found that the magnitude of 

deterioration in consonant recognition as a consequence of CI processing was 

markedly greater than the effect of channel interaction. The results are discussed from 

two perspectives. The first perspective is the question of information transmission of 

specific features. This is dealt with in the subsequent chapter, while chapter 7 

provides a more general discussion of findings. 
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Chapter 6. Analysis of consonant feature 

transmission 
In this chapter the transmission of specific consonant features is considered.  In 6.1 

differences between findings in experiments 3 and 4 and previously available findings 

are considered. Sections 6.2 to 6.7 considers transmission of the six main features 

separately.  

6.1 Comparison with available data 
Section 2.1.2 outlined available evidence on voicing, place and manner transmission 

in quiet for CI users from recent studies. Figure 2.3 is repeated here as figure 6.1, for 

convenience, in order to compare against performance obtained in experiments 3 and 

4. Although the data from figure 6.1 were collected from users of a variety of 

different CI devices and with a variety of different approaches to consonant confusion 

testing (see table 2.2 and the discussion in 2.1.2 for an overview), it is of interest to 

note whether the present experimental work replicated the same pattern of 

performance.  For comparison purposes, figure 6.2 shows percentage information 

transmission for voicing, place and manner in quiet across experiments 3 and 4, 

averaged across MAP conditions. 
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Figure 6.1. Mean consonant voicing, place and manner transmission from various studies of CI 

user performance (repeats figure 2.3). 
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Figure 6.2. Mean voicing, place and manner in quiet across MAP conditions from experiments 3 

and 4. 

 

Both present and previous studies show that place transmission is worst and that 

manner transmission is much better than place transmission.  However, the difference 

between the present and previous studies is the relatively worse transmission of 

voicing compared to place and (particularly) manner, which contrasts with studies in 

figure 6.1 showing broad equivalence between voicing and manner transmission. This 

disparity might be due to a number of stimulus or processing differences between the 

work discussed in this thesis and previous studies cited in figure/table. The most 

obvious difference is the choice of vowel environment for the VCV stimuli: in all the 

studies cited in figure 6.1 (with the exception of Geurt and Wouters, 1999-but here 

data were averaged across vowel environments) subjects were tested with aCa 

whereas in this study iCi was used, for reasons outlined in 3.3.1.   

 

In experiment 2, feature transmission was compared between /iCi/ and /aCa/ vowel 

environments and significantly worse overall performance was shown for /iCi/. 

Overall, performance for voicing, as for other features, was worse with the /iCi/ vowel 

environment, although, if data from the analogous AM conditions are compared 

(noise band with Greenwood shift), there was relatively little difference.  However, a 

number of parameters differed between experiment 2 and the latter experiments, in 

particular strategy type (ACE vs. CIS), channel stimulation rate and channel number, 
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making this inference problematic. A more useful comparison can be made between 

experiment 3 results and data from SOECIC in figure 6.1.  The latter data were 

collected using the same test room and in all respects an identical testing regime 

(albeit data are from a mixture of Nucleus 22, Nucleus 24 and MED-EL users), with 

the exception that testing was undertaken with the /aCa/ vowel environment.  It can be 

seen that the “SOECIC” data also show the relatively better voicing transmission, 

comparable with manner transmission.  Given this, it seems likely that the relatively 

poorer voicing transmission may be due at least in part to use of a different vowel 

environment. 

 

It is now appropriate to consider transmission of each of the six specific features in 

more depth. In each case, the main findings from experiments 3 and 4 are illustrated 

and the statistical findings are summarised.  Because of the general lack of effects of 

processing parameter conditions (e.g. channel number and stimulation rate), data were 

averaged across the three MAPs used and discussed in this context. Where 

appropriate, additional consideration is given to results from the experiments reported 

in chapter 3. The most important consideration is what can be concluded about the 

key question, the relative contribution of CI processing vs. the electrical/neural 

interface, for each of the features.   

6.2 Voicing 
Figure 6.3 shows voicing transmission across experiments 3 and 4, averaged across 

MAP conditions. As with all other features, channel interaction had a small but 

significant effect on voicing transmission. Voicing was not significantly different 

between better CI users and AM results with no/1 mm channel interaction but was 

significantly better than AM performance with 3.3 mm channel interaction. Voicing 

was significantly reduced by the inclusion of noise in most listening conditions, 

except for better CI users. The comparison between voicing in the no channel 

interaction AM and better CI users was significant for transmission in noise but not in 

quiet (e.g. the AM under-predicted transmission for better CI users-there was no 

effect for the latter group but there was for AM conditions).  In short, the 1 mm 

channel interaction AM was the best predictor of voicing transmission but the general 

problem with the AM prediction of voicing transmission was the absence of a noise 

effect for voicing transmission in the better users, an effect that was obtained in AM 
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conditions, albeit least for 1mm channel interaction. In this respect, AM data were 

better at predicting worse CI user performance, although the absolute magnitude of 

voicing transmission and degree of noise effect were over-estimated even by the 3.3 

mm channel interaction model.  
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Figure 6.3. Mean (+ 1 SD) voicing transmission for CI users and AM listeners across MAP 

conditions. 

 
As discussed in 2.6.1, voicing is signalled by a variety of acoustic cues, most of which 

rely on temporal resolution. However, there is also a spectral contribution to voicing 

because of the first formant transition onset frequency cue (thought to be more 

important in noise) and also because the voice onset time distinction requires a 

comparison of different frequency components, albeit the spectral differences of the 

two components, e.g. voice bar and burst, are large (in CI processing terms many 

electrodes apart). Stickney (2001) found a correlation between voicing transmission 

and channel interaction in a group of Clarion implant users, although the relationship 

was less strong than for place of articulation, while there was no correlation between 

manner transmission and channel interaction. This could be seen as supporting 

evidence for a role of spectral resolution in voicing transmission in CI users, although 

it should also be noted that the spectral contribution to voicing could be less in the 

/iCi/ vowel environment  

 

Across CI users and AM listeners, voicing transmission in quiet was around 60% or 

less, and transmission in noise was worse (except for better CI users). In NH listeners 
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there is no effect of noise on voicing transmission at positive SNRs (in studies of NH 

subjects such as Miller and Nicely, 1957, or Jiang et al, 2006, noise only affects 

voicing transmission at negative SNRs). Also, figure 5.11. shows voicing 

transmission both in quiet and noise around 100%. Consequently, two related 

questions emerge: first, why was voicing transmission markedly reduced by the 

addition of noise across AMs and worse CI users, but not better CI users?  Second, 

why was voicing transmission so much worse than for NH listeners even in quiet?  

 

Given the absence of effects at +10 dB SNR in NH listeners (unaltered condition) the 

susceptibility to noise must be related, at least in part, to information loss with CI 

processing. It has been proposed that noise reduces accuracy of coding of within-

channel envelope fluctuations and that therefore the listener becomes more reliant on 

spectral information, which is of course impoverished by CI processing.  However, it 

also appeared that the AM data over-predicted the noise effect for better CI users.  A 

useful comparison here is between the noise effects with voicing and the noise effects 

with nasality-for the latter, even better CI users showed a very strong noise effect. In 

many respects, cues to voicing are similar to cues to nasality; however, voicing cues 

are higher in amplitude than cues to nasality.  It therefore seems likely that the 

difference in noise susceptibility across CI users relates to some aspect of audibility or 

dynamic range in the apical electrodes and, moreover, that better CI users have a 

better access to within-channel information. The simplest possibility might be 

electrical dynamic range. This possibility could be tested simply by checking the 

MAPs of the better and worse CI users with respect to the electrical dynamic range of 

the relevant apical electrodes.  However, a comparison of average apical electrode (15 

and above) electrical dynamic range showed very similar means between the better 

and worse CI users (around 40 current units difference between T- and C-levels for 

both subgroups), so this simple explanation cannot be used.  

 

There is also the further question of why voicing transmission is so poor in quiet in 

the first place.  A further contributing factor may be the fact that combining pre-

emphasis with a relatively small dynamic range means that the audibility of the low-

frequency components is relatively reduced compared to NH. A frequent voicing error 

was for /g/-/k/ and also /s/-/z/.  After pre-emphasis and compression, F1 (or the voice 
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bar, or, for nasals, the characteristic ultra-low nasal murmur) is of relatively lower 

amplitude than in the unprocessed signal. In this context, it is interesting to note that 

Goedegebure et al. ( 2002) found that a form of compression used to reduced upward 

spread of masking had a negative effect on transmission of nasality and voicing in 

hearing aid users.  This supports the idea that pre-emphasis combined with reduced 

dynamic range could be a factor which reduces both nasality and voicing 

transmission. 

 

It is interesting that Verschuur (2005) found voicing transmission around 90% in quiet 

for a group of users of the MED-EL device with the CIS processing strategy.  This 

difference is suggestive of a relationship between CI temporal processing and voicing 

transmission.  In particular, the MED-EL device uses a set of IIR fiters (in the 

Verschuur, 2005 study, all with envelope cut-off frequencies at 400 Hz) rather than 

the FFT approach described in 2.2. As noted, it seems possible that this approach 

might improve the representation of higher modulation frequencies as compared to 

the Nucleus device (particularly at those frequencies said by Rosen, 1992 to relate to 

periodicity), although this needs to be supported by TMTF measurements undertaken 

for an IIR based processor. It is likely that that voicing transmission in quiet is limited 

in part by inadequacies in temporal coding in the Nucleus device, and perhaps in part 

by the modest spectral contribution to voicing.  Voicing transmission in noise may be 

further limited by individual differences in electrical dynamic range in apical 

electrodes. 

6.3 Place of articulation 
Figure 6.4 shows place of articulation transmission across experiments 3 and 4, for all 

MAP conditions averaged together. Place transmission was not affected by noise, 

except for worse CI users (even here the effect was smaller than for other features) 

and there was a good prediction of transmission by AM data. One particularly 

interesting aspect of place transmission was the better prediction with the 3.3 mm 

channel interaction mode of better users, in particular the absence of a channel 

number effect for the 3.3 mm channel interaction model and CI users but the presence 

of such an effect of the other AM conditions.  This indicated that better CI users are 

limited in benefiting from the higher channel number for place transmission by an 

increase of around 10% transmission because of channel interaction. In this one 
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domain, the inclusion of channel interaction in the model made an important 

difference in the predictive power of the model.  
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Figure 6.4. Mean (+ 1 SD) place of articulation transmission for CI users and AM listeners across 

MAP conditions. 

 

It can be seen from figure 6.4 that the magnitude of place transmission was best 

predicted by the 3.3 mm channel interaction model , although this was not specifically 

supported by the MANOVAs summarised in table 5.6.  It is interesting to compare the 

findings with place to those obtained for F0 discrimination in Laneau et al. (2006). In 

that study, which used the same AM as the present study, the authors found the best 

match between CI and AM performance with a channel interaction equivalent to 1 

mm. Moreover, in the present study, the effect of channel interaction was rather more 

modest than for F0 discrimination in Laneau et al. (2006).  This would suggest that 

the type of cues to F0 discrimination differ to the types of cue to place transmission, 

although in both cases the cues are considered “spectral”. 

 

Previous studies (as in figure 6.1) have shown, at best, around 50 to 60% place 

transmission, and the findings of the present study are consistent with this. It was also 

interesting that performance was less variable across AM variations. This suggests 

that AMs are broadly equivalent in their (accurate) prediction of the magnitude of 

place transmission and the lack of a noise effect. Place of articulation perception in 

English consonants relies on a number of spectral cues, particularly the spectrum of 

the burst and the onset frequency of the formant transitions into following vowels, 
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particularly F2 and F3. The electrodographic analyses shown in 2.6.3 suggested that 

the burst spectrum should be better preserved by Nucleus 24 than the onset frequency 

of formant transitions. CIs and AMs across studies have some characteristics in 

common, in particular the relatively small number of channels and the use of pre-

emphasis. It seems likely that the combination of these two characteristics leads to a 

more generalisable result, namely poor representation of formant transition onset 

frequency and a much better representation of burst or frication frequency. The 

consequence of these processing characteristics means poor but not terrible place 

transmission and robustness to noise. 

 

It was hypothesised in 2.6.3 that place transmission should be worse for nasals and 

liquids than for stops and fricatives, because with the latter the burst/frication should 

be well represented by CI processing, whereas for nasals and liquids/glides place 

transmission relies almost entirely on formant transition information.  Although this 

hypothesis was not explicitly addressed in the statistical analysis, the confusion 

matrices shown in 5.6 do appear to support the hypothesis: Better CI users showed a 

high proportion of place errors for liquids and also showed the consistent /n/ for /m/ 

error. By contrast, for the majority of fricatives and plosives, place errors were 

relatively few. The notable exceptions were velar stops-these were consistently 

mistaken for alveolar or bilabial stops. The latter finding agrees with Valimaa et al. 

(2002a) who showed a consistent trend (albeit in Finnish CI users) for place of 

articulation errors in the direction of higher frequency place cues.  The question here 

is whether the trend for errors was due to the coding of the formant transition onset 

frequency or the coding of the burst.  The AMs converged with the CI user data in 

that they showed errors for /g/, but they diverged markedly in that the error patterns 

were less consistent than for CI users (who generally misperceived /g/ as /d/). It is 

also worth noting that, although the models under-estimated performance with the 

other stops, this was primarily because the models over-estimated stop voicing errors, 

not place or manner errors.  

 

In summary, place of articulation transmission is unaffected by most variables, even 

noise (at the +10 dB SNR in any case) and its transmission remains poor, compared to 

other features, across listening conditions, but also does not appear to get worse with 
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noise or channel interaction.  It is therefore not a particularly good measure to use for 

variations across existing processing parameters within a limited-channel envelope 

extraction processing scheme.  It could, however, be a very effective method for 

demonstrating genuine improvements in spectral processing, e.g. as might be 

introduced by improved within-channel frequency coding that improves the 

representation of formant transition information.   

6.4 Manner of articulation 
Figure 6.5 shows manner of articulation transmission across experiments 3 and 4, for 

all MAP conditions averaged together. Manner is a notably more “robust” feature 

than the previous categories and was around 80% transmission across all AMs and 

better CI users. The category was unaffected by most variables, the only exception 

being an effect for channel number in the no channel interaction model condition.  

Otherwise, the overall pattern was very similar to the “envelope” feature.  As noted in 

2.6.2, it may be that the “manner” category is too broad to provide a sensitive handle 

on perceptual differences- rather, specific manner subcategories such as nasality and 

fricative (some other possibilities not included in this study are continuant and 

plosive, sibilant and affricate) may be more useful measures and may provide more 

explanatory power.  As suggested in 2.6.2, the contrasts between manner categories 

are signalled by different modulation patterns across a small range of electrodes.  

However, it should also be noted that manner was more affected by noise at +5 dB 

SNR than envelope (in experiment 2). 
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Figure 6.5. Mean (+ 1 SD) manner transmission for CI users and AM listeners across MAP 

conditions. 
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6.5 Nasality 
Figure 6.6 shows nasality transmission across experiments 3 and 4, for all MAP 

conditions averaged together. The most striking aspect of nasality transmission was its 

high susceptibility to noise across all experimental conditions, including better CI 

users whose performance was not significantly affected by the addition of +10 dB 

SNR background noise for any other feature. 

0

20

40

60

80

100

120

all CI users  better CI
users

worse CI
users

no c.int
model

 1mm
model

 3.3mm
model

%
 in

fo
rm

at
io

n 
tra

ns
m

is
si

on

quiet
noise

 
Figure 6.6. Mean (+ 1 SD) nasality transmission for CI users and AM listeners across MAP 

conditions. 
 

The ability to distinguish nasal from non-nasal consonants depends on low-frequency 

audibility and amplitude resolution, specifically the identification of the characteristic 

low frequency nasal murmur, low-amplitude formants and spectral zeroes.  As noted, 

this means that nasality can be distinguished from voicing in the low amplitude of the 

important cues to this feature.  Nasality perception was unaffected by noise at positive 

SNRs in NH listeners, as in figure 5.11. As noted in 2.6.2, acoustic cues to nasality 

are converted into differences in envelope modulation pattern in apical electrodes by 

CI processing.  The fact that noise interference had a significant effect across CI users 

and across AMs, and that this effect was at SNRs where NH listeners do not 

experience difficulties in nasality perception, suggests that the low-frequency 

audibility and amplitude resolution is compromised by CI processing, and that the 

degree of compromise is such that even better CI users are unable to cope with noise 

interference. It is also possible that the low amplitude of these cues relative to cues to 
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other features, in particular the presence of spectral zeroes, or antiformants, in the 

spectrum of a nasal consonant, made them more susceptible to noise interference. 

 

In the same vein, it was also notable that variance between better and worse CI users, 

and across users overall, was greater for nasality than any other feature category 

except fricative.  The confusion matrix shown in table 5.12 showed a frequent error 

pattern for worse CI users, namely misperception of both nasals /n/ and /m/ as /l/. This 

error pattern was absent from better CI users or from AM results. As indicated in 

figure 2.16, the distinction between nasals and the liquid /l/ is the slowly varying 

modulation pattern of the most apical electrodes.  One possible reason for this inter-

user variation could therefore relate the listeners’ ability to make use of within-

channel envelope variations in the apical channels.  Taken together, these findings 

suggest that this feature is affected by inadequate CI processing of lower-amplitude 

cues (and consequent susceptibility to noise masking) and to electrical/neural 

interface variations relating to amplitude resolution or electrical dynamic range. 

 

There are some further issues relating to nasality transmission which relate 

exclusively to AM characteristics. Nasality transmission was sensitive both to choice 

of carrier stimulus and the inclusion of pitch shift, as indicated by the significant 

interactions in experiment 2.  It was the only feature to show a significant statistical 

association with the inclusion of the Greenwood pitch shift, albeit this association was 

stronger for the /aCa/ vowel environment that was not used in subsequent 

experimental work. The difference between nasals in the two vowel environments is 

due to the marked difference in F2- much higher for iCi (typically 2500 Hz +) than 

aCa (typically 1100 Hz). Presumably the perceived shift was greater for a lower-

frequency formant transition (or whatever was left of the formant transition after CI 

processing, e.g. locus of relative amplitude shift across channels) than for the higher 

frequency formant transition.  

6.6 Fricative 
Figure 6.7 shows fricative transmission across experiments 3 and 4, for all MAP 

conditions averaged together. 
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Figure 6.7. Mean (+ 1 SD) fricative transmission for CI users and AM listeners across MAP 

conditions. 

 

Fricative transmission was similar to nasality transmission in that there were marked 

differences between better and worse CI users.  However, unlike nasality, fricative 

transmission was not sensitive to noise effects for better users or for AMs. The 

identification of both the presence and duration of the characteristic frication noise 

that is required to distinguish fricatives from other consonant types appeared to be 

relatively well represented by CI processing according to figures 2.16 and 2.18.  For 

better CI users and AM subjects, the feature was robust to noise interference, 

presumably because of the salience of the high amplitude of the frication cue (as for 

the burst cue, noted in 6.3), due in part to pre-emphasis. 

 

At the same time, fricative transmission in noise showed the greatest difference 

between better and worse CI users than any other feature (this can be seen in figure 

5.38.). The difficulty in determining the reason for high between-user variation for 

this feature is the presence of both within-channel (envelope/temporal) and cross-

channel (spectral) cues.  One temporal cue is duration- e.g. the duration of the noise in 

the basal channels signals that a consonant is a fricative and not a stop. The difference 

in duration of the frication/burst cue between fricatives and stops is of the order 80 

ms. The TMTFs shown in 2.3.3 showed that modulation depth for a 2000 Hz carrier at 

a modulation frequency of 25 (which is more than adequate to code a distinction of 80 

ms)  was 99%, regardless of stimulation rate. A further distinguishing feature of 
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fricatives is the presence of aperiodic (corresponding to voiceless e.g.burst, frication) 

rather than quasi-periodic (e.g. voiced) energy in the basal channels. However, in 

practice, it is likely that this distinction is unimportant given that there is a marked 

place distinction anyway-presumably it would become more important if the CI user 

had access to only one or two channels. Therefore, it seems likely that the spectral 

cues are more important.  It could be that worse users have more channel interaction 

than the 3.3 mm channel interaction model, rendering the spectral cues to fricative 

transmission vulnerable, or it could be that audibility or amplitude resolution is the 

important factor. One way to distinguish these possibilities is to consider a specific 

fricative vs. non-fricative confusion in which spectral cues are relatively unimportant.  

The distinction between the fricative /ʃ/ and the affricative /ʧ/ provides such a 

contrast.  The confusion matrix for better users show that all the errors made for the 

/ʃ/ stimulus were for place, whereas for worse users (table 5.12) /ʃ/ is mistaken for the 

affricates /ʧ/ and /ʤ/. The error patterns for the AMs show the same patterns as for 

better CI users, irrespective of channel interaction. This suggests that within-channel 

envelope processing, rather than spectral information (and therefore channel 

interaction) is implicated in the inter-user variation in fricative transmission. 

  

A final interesting aspect of fricative transmission was that, in experiment 2, the sine 

wave carrier was associated with better fricative transmission than the noise bands.  

If, as has been suggested, the advantage from sine wave carriers is in the spectral side 

bands, this lends further support to the idea that noise bands are a more appropriate 

carrier stimulus because they are less likely to over-estimate the amount of spectral 

information available to the CI user. However, a caveat to this is that the sine wave 

carriers might also carry more information about within-channel envelope fluctuations 

(e.g. the important periodic vs. non-periodic distinction), although this explanation 

seems less likely given that within-channel cues are probably less important for 

distinguishing fricatives from non-fricatives, as suggested above. 

 

6.7 Envelope 
Figure 6.8 shows envelope transmission across experiments 3 and 4, for all MAP 

conditions averaged together. 
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Figure 6.8.  Mean (+ 1 SD) envelope transmission for CI users and AM listeners across MAP 

conditions. 

 

Performance with the “envelope” feature was expected to be more robust, i.e. less 

affected by noise or channel overlap, and with a higher level of transmission than 

other features.  This was borne out by the findings, although it should be noted that 

manner transmission followed almost the same pattern across conditions. As with 

manner, performance was relatively unaffected by differences in AM parameters, and 

performance was largely unaffected by background noise across conditions (with the 

exception of “worse CI users”); even with AM listeners in experiment 2, envelope 

was relatively unaffected by +5 dB SNR. However, it is still worth noting that 

envelope transmission at best is around 80%, contrasting to 100% with NH listeners 

(unaltered condition- see figure 5.11) in both quiet and noise.  Assuming that this 

feature truly does reflect temporal envelope differences exclusively, this is further 

support for the idea that the Nucleus 24 processing does not code temporal envelope 

information optimally (at any stimulation rate), for reasons discussed in 2.3.3. 

 

It is of interest to determine why envelope transmission did not approach 100%.  

Tables 5.8 to 5.10 showed a large number of misperception of the voiceless plosive /t/ 

as the voiceless affricate considered as “fricative” within the feature categorisation 

scheme used /ʧ /.  In this classification system, the distinction between affricates and 

fricative counted as an “envelope” distinction, whereas it can be seen from figure 6.9 

that the difference between these two consonants is in fact a spectral rather than 
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temporal/envelope distinction. It is likely that this particular error pattern diluted the 

effectiveness of the “envelope” feature as a true measure of envelope perception. 
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Figure 6.9. /iti/ on left and /iʧi/ on right, single channel CIS above, 900*12/20 ACE below. 
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Chapter 7. General discussion 

7.1 Overview of design and aims of the study 

The key question to be addressed in this thesis was: “to what extent can deficits in 

consonant recognition by CI users be explained by information loss in CI signal 

processing as opposed to information loss at the electrical/neural interface?”  It was 

argued that a comparison between CI user performance and equivalent AM 

performance might help to answer this question. An initial review of literature 

suggested a number of factors likely to affect consonant recognition in CI users. Two 

CI signal processing parameters were identified as being particularly important: 

number of channels and channel stimulation rate.  Also, two electrical/neural interface 

factors were deemed to be particularly important: pitch shift and channel interaction.  

Background noise was also identified as a factor likely to impact on feature 

transmission. The broad aim of the work was therefore to determine if it was possible 

to model changes to consonant feature recognition as a function of these processing 

and stimulus variables using a carefully matched AM which incorporated some 

spectral distortions associated with the electrical/neural interface. An important 

assumption was that transmission of different consonant features would be affected by 

different processing and electrical/neural interface factors in different ways, according 

to the relative importance of temporal or spectral information to coding each specific 

feature.  

 

All experimental work related to a specific device implementing one of two 

processing strategies, and great care was taken to ensure that device characteristics 

were simulated as precisely as possible in the AMs. To achieve this, the Nucleus NIC-

STREAM (Cochlear, 2002) and AMO/CISIM (Laneau et al., 2006) MATLAB 

toolboxes were used to generate AMs that were identical in processing details to the 

speech processing implemented for the Nucleus 24 device. A further advantage of 

using the toolboxes to generate AMs was the fact that this has been validated as a 

means of simulating spectral channel interaction in Laneau et al. (2006).  
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Each of the four experiments employed the same consonant recognition task 

comprising a forced choice between 20 possible English consonants in an intervocalic 

position between preceded and followed by the vowel /i/ (or /a/ for part of experiment 

2). A single iteration of sequential information transfer analysis (Wang and Bilger, 

1973), equivalent to the information transmission measure of Miller and Nicely 

(1955), was used to determine relative information transmission rates for the same six 

phonological features, across all experiments. 

7.1.1 Overview of preliminary experimental work 
Two preliminary experiments were undertaken to investigate the effects of AM 

characteristics on consonant recognition in quiet and noise by using an AM 

implementing the fixed-channel CIS strategy with 8 channels and a channel 

stimulation rate of 500 pps/ch.  It was evident that voicing transmission in quiet 

probably over-estimated CI users’ likely perceptual abilities- this was thought likely 

to be due to the choice of carrier stimulus (sine wave) and possibly the absence of any 

electrical/neural interface factors.  It was also found that fricative transmission was 

very poor- a possible methodological shortcoming to do with subject instruction was 

identified as a contributing factor to this.  However, in other respects, the 

experimental findings suggested that the model would be appropriate, albeit that 

various other model characteristics, particularly choice of carrier stimulus, needed to 

be considered in a further experiment. Results showed a varied pattern of noise effects 

across different consonant features: transmission of manner, voicing, nasality and 

envelope were markedly affected by the addition of background stationary noise at 

SNRs of +10 and worse whereas place and fricative were not. This disparity was 

consistent with the hypothesis that noise interference disrupts within-channel 

information, which would have a disproportionate effect on consonant features that 

relied more on temporal/amplitude resolution than spectral resolution.  

 

The second experiment compared two AM parameters, namely carrier stimulus and 

inclusion of Greenwood pitch mismatch, and two more general stimulus parameters, 

noise and vowel environment. It was found that choice of carrier stimulus and vowel 

environment had a greater effect on performance than pitch mismatch.  It was also 

found that the choice of +5 dB SNR would probably be less than sensitive to 

differences across features than +10 dB SNR (the two SNRs having been found to be 
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broadly equivalent in experiment 1). Based on the combined results of experiments 1 

and 2, parameters were chosen for a further AM experiment that was intended for 

direct comparison with CI user data. The model parameter choices were: noise band 

carrier implementing Greenwood pitch shift. Stimulus parameters chosen were: the 

/iCi/ vowel environment and stationary noise at +10 dB SNR. 

7.1.2 Overview of main experiments 
A further two experiments were undertaken and were designed to form a “matched 

pair”, one with an AM and the other with CI users. Because a review of literature had 

identified the two processing parameters of channel number and stimulation rate as 

being particularly important in determining general speech perception performance, 

these two processing parameters were varied, with equivalent variations in both AM 

and CI user experiments. This meant that all testing was undertaken in three 

processing parameter, or MAP, conditions: one with a higher stimulation rate and 

higher channel/peak number, the second with a higher stimulation rate and lower 

channel/peak number and a third with a lower stimulation rate and a higher 

channel/peak number.  Testing was undertaken in quiet and with the addition of 

background speech-shaped stationary noise at +10 dB. A model of spectral channel 

interaction, based on Laneau et al. (2006), varying from no interaction, 1 mm 

interaction and 3.3 mm interaction, was included as an additional variable in the AM 

by changing the filter used to generate the noise bands serving as carrier stimuli.  

 

The design of the experimental work had a number of advantages over previous work 

and therefore provided an opportunity to add to the existing knowledge base. Stimulus 

and processing conditions were matched as precisely as possible between the AM and 

CI user experiments, in a way that has not been achieved in other AM studies with the 

exception of Laneau et al. (2006) and in no other study of consonant recognition. This 

close matching between AM and CI user experiments allowed stronger inferences 

about the likely contributions of different factors to performance. All the experiments 

evaluated consonant feature transmission in noise as well as quiet, both in CI users 

and AM listeners, and therefore helped to address the lack of knowledge about the 

effect of noise on transmission of different consonant features and the possible 

mechanism of noise interference for CI users. Six features with contrasting acoustic 

attributes were included in the analysis of consonant recognition data in order to 
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provide a greater level of detail to the acoustic-phonetic analysis of results than has 

previously been obtained. Spectral overlap between channels was included as a 

variable in the AM experiment in order to determine whether the inclusion of this 

term would better predict performance in the CI users; the values of this parameter 

and the method of simulation were based on Laneau et al. (2006).  Although there has 

been previous work on spectral smearing in relation to consonant recognition 

(Shannon et al., 1995), there has been no previous attempt to combine this with a 

model of specific device characteristics, or in relation to changes in processing 

parameters, or in relation to performance in noise as well as quiet.  It is also worth 

noting that, in the second set of experiments reported here, a peak-picking strategy, 

ACE, was used. The majority of studies of channel number, channel stimulation rate 

and consonant feature recognition have used other strategies, either CIS or the earlier 

lower-rate peak-picking strategy SPEAK. Moreover, almost all previous AM studies 

have used AMs based on fixed-channel devices and moreover based on the 

implemention of a band of linear IIR filters followed by smoothing, rather than the 

FFT approach used in the Nucleus device. Therefore, both the AM and CI user data 

collected in this study has further direct clinical relevance to users of the Nucleus 24 

device, as well as broader relevance to other peak-picking strategies, although the 

close matching between CI and AM characteristics was the most important aspect of 

the study. 

7.2 Overview of methodology and methodological limitations 

The most important point about the test and analysis methodology used was that it 

was identical across experiments.  Nonetheless, it is important to consider what 

impact the particular choice of methodology might have had, and what this means in 

terms of comparison with other studies. One limiting factor was the need to devise a 

consonant recognition task that was time-efficient, given the number of different 

listening conditions used in the experimental work and the fact that the task is 

inherently tiring or boring and therefore can lead to fatigue effects.  Because a large 

number of consonants were used (20) in order to represent the majority of consonants 

in the English language, there was little scope for using a large number of repetitions.  

The pilot study in experiment 1 suggested, albeit qualitatively, that 3 repetitions of 

each stimulus would be adequate to obtain meaningful and repeatable results.  Work 

in the literature has varied from 2 to 7 repetitions per stimulus. It should be argued 
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that all subsequent experimental work in this study supports the argument that 3 

repetitions was adequate, given the reasonably low variance of most features, the 

meaningful pattern of results across experiments and the finding of various significant 

effects between listening conditions and features.  

 

Another methodological issue is that of acclimatisation to AMs, and, in particular, the 

acclimatisation to pitch-shifted stimuli.  In the work here a specific (and quick) 

approach to acclimatisation was used: stimuli were presented visually and the listener 

took as much time as they wished to learn which stimuli corresponded to which 

consonants. In practice, this self-directed acclimatisation process never took more 

than 10 minutes. Despite this, and despite the fact that stimuli were not only processed 

using an AM, but also (for most experiments) shifted in pitch and in some conditions 

having large channel overlap, performance levels were remarkably high. This 

contrasts with other work, such as Rosen et al. (1999), who showed that performance 

to basally-shifted AM stimuli was very poor without substantial acclimatisation.  . 

However, there a number of important differences between this work and the Rosen et 

al. paper, in particular the fact that those authors employed a four-channel AM. It 

appears that, given a richer spectral representation (in the AMs in the present study), 

and possibly because of a more constrained stimulus set, it was possible for NH 

listeners to acclimatise rapidly and effectively to pitch-shifted stimuli. Faulkner 

(2006) also found that listeners needed at least some hours to adapt to stimuli that 

were spectrally warped. 

 

Another important methodological issue was the choice of vowel environment. 

Because of the large number of variables in experiments 3 and 4, it was not possible 

to add vowel environment as an additional variable and therefore the work relied on 

results of experiment 2, which showed that transmission of some features tended to be 

above 90% for the /aCa/ vowel environment but less with /iCi/.  However, a weakness 

of using a consonant recognition task with /iCi/ is the difficult of comparing current 

findings with those from the research literature in which almost all data have been 

collected with using consonant confusion tasks with the /aCa/ vowel environment. 

Previous work has identified the possibility that the /aCa/ vowel environment is more 

likely to lead to ceiling effects in CI user performance and that the emphasis on the 

burst produced by the /iCi/ stimuli might mean greater sensitivity to rate effects.  
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Although the latter proved to be inconclusive (e.g. there were no rate effects), it seems 

that the meaningful pattern of results obtained across experiments 3 and 4, and in 

particular the absence of floor or ceiling effects in any listening condition, vindicates 

the choice of the /iCi/ vowel environment in this study. It should also be emphasised 

that the most important comparison was between the results of experiment 3 and 4 

rather than comparison with other evidence in the literature. (Also, it is very difficult 

to compare across studies very closely in any case as there are very large differences 

in test methodology and CI user/processing characteristics, as discussed in 2.1.2). 

 

A further methodological limitation may have been the choice of a single SNR of +10 

dB for the third and fourth experiments.  Although the worse performing CI users 

showed marked noise effects at this SNR, other CI users did not, although here the 

effect on nasality perception was apparent. The choice of a single SNR was motivated 

by the desire to minimise the number of listening conditions and the particular choice 

of SNR was motivated by findings of experiments 1 and 2 taken together.  However, 

the interpretation of the correspondence between AM and CI findings may have been 

strengthened if noise effects overall had been stronger. A related weakness in 

methodology may have been the fixed order of noise conditions used in experiments 3 

and 4, e.g. within each listening condition quiet stimuli were followed by nois-

contaminated stimuli. This approach may have diluted and under-estimated the true 

effect of noise as, in each case, subjects had extra time to acclimatise to stimuli in 

quiet prior to exposure to the same stimuli in noise.  This can be seen in some 

individuals (from the “better performing” CI group) who showed better transmission 

of the fricative feature (see figure 6.7) and for some AM conditions, e.g. for place, as 

shown in figure 6.4. In retrospect, the order of quiet and noise-contaminated 

conditions should probably also have been randomised as the fixed order may have 

diluted noise effects.  Nevertheless, the presence of significant reductions with 

background noise for some features despite this makes conclusions about noise 

effects, where these obtain, even stronger.  

 

A more fundamental question concerning methodology is whether a consonant 

confusion task is able to truly distinguish different perceptual processes. In the present 

study, as in various other studies, transmission of “temporal” consonant cues was not 

normal.  It is interesting to ask whether this is an artefact of the methodology.  Neither 



 195

CI users nor AM listeners obtained 100% information transmission for manner, 

nasality or even for the “envelope” category.  Figure 6.5, 6.6 and 6.8 shows around 

80% transmission for these features, even for better CI users; this contrasts with 

performance around 100% for normal hearing listeners as shown in figure 5.11.  It 

was noted in 6. 7 that the “envelope” category used in the feature analysis in the 

present study may have been affected by the inclusion of the affricative/plosive 

distinction which, in reality represents a spectral contrast. Certainly, voicing and 

manner are assumed to be temporal in the CI perception literature whereas it is clear 

that from the literature that voicing has a spectral component (albeit reduced in the 

/iCi/ vowel environment) and even manner requires resolution of different frequency 

components.  One possible way to prove more definitively that temporal envelope 

information is impaired in CI users would be to use a categorical perception task in 

which exclusively envelope cues are varied.  Although this is difficult to achieve with 

natural-sounding speech synthesis, it should be possible to construct, for example, a 

continuum of stimuli varying from fricative to affricate in which only envelope 

information is varied (Faulkner et al., 1995).  

7.3 AM findings 

A striking finding was the close match between AM performance and performance by 

“better” CI users, across a range of features in different listening conditions. These 

results were markedly different from results obtained with NH listeners (e.g. in the 

“unaltered” listening condition in the present study).  Equally striking was the fact 

that inclusion of a channel overlap in the model had only a modest effect on 

performance. The important comparison here is between the effect of processing and 

the effect of channel interaction as shown in figures 5.40 and 5.41. That is, the 

processing of the signal with a specific set of Nucleus 24 processing characteristics 

led to marked reductions in performance across consonant features, and both the 

magnitude and pattern of these deficits were mirrored by better CI users. By contrast, 

the difference in performance between AMs with and without channel overlap was 

relatively modest. This was an unexpected finding, given that the degree of spectral 

overlap implied by 3.3 mm spectral spread is considerable in the context of a total 

electrode length of 25 mm (see figure 5.3).  Moreover, Laneau et al. (2006) and 

Laneau et al. (2004) found equivalent performance in pitch perception between the 

Nucleus 24 user performance and performance with an AM using a channel overlap 
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equivalent to 1 mm spectral spread. Although pitch discrimination is more implicated 

in frequency resolution than overall consonant recognition, at least some consonant 

feature (particularly place) are reliant on spectral resolution, and therefore it seemed a 

reasonable hypothesis that the channel overlap model would also explain some 

variance in consonant recognition performance. Fu and Nogaki (2005) found that 

sentence recognition by the best CI users is approximated by an AM with 8 to 16 

channels with some channel overlap, although direct equivalence between sentence 

and consonant recognition data cannot be assumed, given the difference in acoustic 

and contextual cues accessible in sentence materials compared to those accessible 

from nonsense syllables. 

 

The implication of these findings is that, for better CI users, deficits to consonant 

recognition are due more to CI processing information loss than channel interaction. 

This conclusion is tempered by the fact that Greenwood pitch shift was included in all 

the models used in experiment 4.  However, the finding of experiment 2 that pitch 

shift had very little effect on consonant recognition, combined with experiment 3 

findings, lends weight to the argument that CI processing is more important than 

electrical/neural interface factors in determining better CI users’ consonant 

recognition abilities. It is therefore important to determine which aspects of signal 

processing are likely to have had an effect on performance. 

 

The work also provides some further information about the design of AM 

experiments.  One of the important issues identified in 2.5 was the choice of carrier 

stimulus. The findings generally support the hypothesis that the noise band carrier is 

more appropriate when modelling consonant recognition.  The presence of sidelobes 

produced by modulation of sine waves appears to be of benefit to many aspects of 

consonant recognition, to an extent that this over-estimates CI user abilities. This does 

not mean that a noise band model is in any sense a perfect model of all aspects of 

speech perception in CI users, but the data from this study suggest that it is a more 

than adequate model of consonant feature recognition.  Other stimuli, notably pulse 

trains (Carlyon et al., 2002; Carlyon and Deeks, 2002) have been used, although these 

cannot be used with higher rate stimulation as for higher pulse rates harmonics are 

resolved. 
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7.4 CI filterbank characteristics 
For any CI, information loss from processing must be determined in part by the 

choice of filterbank characteristics, which in effect means the choice of which type of 

information to reduce at the expense of other types of information. It is clear from the 

evidence and analyses in the present study that the Nucleus 24 filterbank imposes 

limitations in both spectral and temporal information. The present work has 

highlighted some shortcomings of the particular approach taken in the Nucleus 24, 

although some of these limitations may apply to other filterbank approaches also.  

 

The finding that there was no change in consonant recognition when changing from 

250  pps/ch to 900 pps/ch is broadly consistent with previous work using the Nucleus 

24 device as noted in  2.3.3, e.g. Vandali et al. (2000) who found no increase in 

speech recognition beyond 250 pps/ch.  What is novel in the present work is the clear 

demonstration that this must relate to an absence of significant increases in temporal 

sampling with increasing stimulation rate. The TMTF analyses in 2.3.3 showed that 

temporal information provided by the Nucleus 24 processing decreases as modulation 

rate increases from 25 to 250. Moreover, this effect was obtained for different carrier 

stimuli and at differing stimulation rates. It was therefore hypothesised that changes to 

stimulation rate should have little effect, assuming that the benefit to higher rates was 

in the improved temporal representation of the signal rather than some other benefit to 

neural coding, or an indirect benefit due to increased dynamic range. However, the 

present study showed that changes in channel stimulation rate from 250 to 900 pps/ch 

had no effect on any consonant recognition measure, either for CI users for AM 

listeners, and irrespective of feature or noise condition. This supports the hypothesis 

that changes in stimulation rate have little or no effect on perception because they 

have little or no effect on the temporal information available through the CI. It also 

fits with the evidence noted in 2.3.3 that the majority of studies showing benefit to 

changing rate above about 200 pps/ch have been in users of the MED-EL device 

which implements a bank of IIR filters with variable envelope cut-off frequency, 

whereas studies of the Nucleus system have not shown consistent benefit.  

 

Another way to determine if the chief limiting factor on temporal information is the 

fixed FFT length is to compare with devices in which envelope variations are 

definitely coded at higher frequencies. Verschuur (2005) showed manner transmission 
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around 90% in six MED-EL users where envelope cut-off frequency was at 400 Hz.  

This supports the idea that the fixed FFT approach does restrict temporal envelope 

information and therefore limits the upper range of performance with consonant 

features that are more reliant on temporal envelope processing.  In order to determine 

whether this hypothesis can be supported, a similar exercise in temporal analysis as 

undertaken in 2.3.3 (use of an objective TMTF measurement across stimulation rates 

and for phonologically relevant carrier frequencies) would need to be undertaken for 

other CI processing strategies and other devices. 

 

A further question is whether the filterbank (and also sampling and selection) used in 

the Nucleus 24 is an optimal approach to spectral analysis. It is therefore important to 

consider how the current work has contributed to the literature on channel number.  

The first point to make is that relatively little work has looked at channel number in 

the context of peak-picking strategies. Dorman et al. (2002) has stated that there is 

equivalence (in terms of perceptual effects) between channel number in a fixed-

channel strategy and number of peaks in a peak-picking strategy. If this is the case, 

then the comparison made in experiments 3 and 4 between 4-of-7 and 12-of-20 ACE 

strategies is a comparison between 4 and 12 channels.  This is quite a marked 

difference in spectral resolution, in theory, and it is therefore perhaps surprising that 

CI user showed absolutely no effect for changes in channel number. This is despite 

the fact that listeners had much less experience of the 4-of-7 condition and therefore a 

confounding effect of acclimatisation in itself might have been expected to yield 

worse performance.  Why should this be?  In order to understand this, it is important 

to consider the AM data regarding place transmission.  Here channel number did have 

an effect on transmission of place (the consonant feature which is most reliant on 

spectral information), but only with AMs with no channel interaction or 1 mm 

channel interaction, as shown in 5.5.  By contrast, the 3.3 mm channel interaction 

model showed no effect for channel number for any feature, and the same finding was 

obtained in the CI users.  The corollary of this is that channel interaction is implicated 

in the lack of improvement in place transmission (of around 10%) when changing 

from 4/7 to 12/20 MAP condition for the CI users.  It is also worth noting that 

transmission in the best AM or CI user condition was still worse than NH listeners’ 

performance by some 30%. By contrast, the difference between the 12/20 MAP 

conditions and 4/7 MAP condition for the no channel interaction model was around 
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10%. By the same token, for most features, the difference between the best AM and 

NH was still far greater than the difference between AMs with and without channel 

interaction. This underlines the finding that CI processing is a more dominant factor 

in determining performance than channel interaction, whether for more “spectral” or 

more “temporal” features.  

 

The findings underline the need to look at better ways of filtering the incoming signal 

as it seems clear that the FFT filterbank approach used in the Nucleus 24 is not an 

optimal approach. It may be that improvements in filterbank processing would mean 

that channel interaction becomes a bigger problem for better CI users, but it is first 

necessary to establish those improvements before this can be determined. In this 

context, it is worth noting that the particular signal processing approaches used in CIs 

are largely based on previously available techniques rather than based on data of 

direct relevance to auditory or speech processing. Other approaches to filterbank 

processing have been suggested in the recent literature, e.g. wavelet analysis {Yao 

and Zhang, 2002).  It can be anticipated that newer techniques should provide better 

frequency and temporal resolution than those in current devices. It is essential that a 

filterbank used for CI processing should provide temporal information with better 

accuracy up to higher modulation rates than was indicated by the TMTFs measured 

for the Nucleus 24.  This recommendation adds to the more well-established finding 

that CI processing limits spectral resolution with all currently available CI devices. 

Moreover, the finding that place and fricative transmission were so poor even in the 

best AMs with least channel interaction, implementing a 12/20 ACE strategy, shows 

that the filterbank also provides inadequate spectral information and this imposes 

limitations on even the best performers with (presumably) the least electrical/neural 

interface information loss. 

7.5 Electrical/neural interface and variations between users 
A number of questions and hypotheses arose concerning the role of the 

electrical/neural interface in determining consonant recognition. It was hypothesised 

that spectral channel interaction determines differences between individual CI users.  

The simple assumption here would be that place of articulation perception should 

show the greatest variance between users, as this feature relies on spectral resolution 

to a greater extent than other features.  This was clearly not the case here or in the 
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study by Munson et al. (2003).  This in itself does not disprove a role for spectral 

channel interaction, as the lack of further deterioration with place with channel 

overlap in the AM could be explained by the fact that formant transition information 

is essentially removed by CI processing, and further spectral channel interaction 

cannot therefore worsen performance for this feature further, at least until very high 

values of overlap are reached. 

 

It is essential to understand the source of variations between CI users, and the data 

obtained from experiment 3 can help to illuminate this area and to follow on from the 

work of Munson et al. (2003). The comparison between better and worse CI users in 

this study does not support the argument of Munson et al. (2003) that there is no 

quantitative difference, e.g. pattern of feature transmission, between better and worse 

users. In the present study the smallest differences between better and worse users 

were found for voicing and envelope (around 15%) while the largest differences were 

found for nasality (35%) and fricative (30%). By contrast, Munson et al. (2003) found 

a uniform difference of around 30% in feature transmission in quiet for voicing, place 

and manner tested in the /aCa/ vowel environment, for a group of 30 users of either 

the Nucleus 22 or Clarion (version 1.2) device.  The study differs from the current 

work in a number of ways: larger subject number, different (and varied) devices and 

processing parameters, vowel environment and number of stimuli used in the 

consonant confusion task and the number of features used in analysis and inclusion of 

a noise condition in this study. In the present study, the greatest difference between 

the two subgroups was in nasality and fricative transmission. Nasality is the feature 

which most relies on low-amplitude formant cues and therefore low-frequency 

audibility (and frequency resolution).  By contrast, voicing and envelope show the 

smallest difference between better and worse CI users. The difference in the cues 

signalling these features as compared with nasality is the relative amplitude (less for 

nasality and greater for envelope and voicing).  Taken together, these findings suggest 

a role for low-frequency temporal/amplitude resolution in determining performance 

differences.  This fits well with the finding of Fu (2002) that temporal resolution 

(measured by TMTFs and averaged across sensation levels) was a good predictor of 

consonant recognition. 
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Another possibility is that forward masking is more marked with worse performing CI 

users.  This would suggest that the difference between better and worse CI users 

would look similar to the difference in performance with and without noise, as in both 

cases the same mechanism would apply, e.g. a reduction in salience of within-channel 

amplitude fluctuations.  To some extent this is supported by the data, as nasality is 

highly affected by both.  However, these possibilities must remain as untested 

hypotheses. (Suggestions for how these might be tested are given in 7.8.) The more 

general point is that, for worse CI users, performance was considerably worse than 

predicted with an AM with even with 3.3 mm spread of excitation.  The arguments in 

this section suggest that these further variations are unlikely to be solely or mainly 

due to spectral channel interaction. 

7.6. Effects of background noise 
A further important question is what implications the present study has for the 

understanding of the effects of background noise on speech perception in CI users. 

Noise had the expected effect on temporal envelope cues, both in the AM(s) and in 

the CI user study.  This effect applied across model configurations, MAP conditions 

and individual users. This suggests that this is a robust finding and supports the very 

limited data available from the literature, e.g. Friesen, 2001. 

 

The question is: how to reduce the distortions in the envelope fluctuations introduced 

by noise.  It should be noted that the effect will be even greater at less favourable 

SNRs than those used in the present study and for more “realistic” noise types with 

non-random envelope fluctuations, e.g. babble noise.  The greatest noise effect was 

with nasality transmission, which relies on the resolution of low-intensity low-

frequency spectral components. NH listeners do not experience any difficulty in 

determining nasality for positive SNRs (see figure 5.11) and yet a marked reduction in 

nasality transmission was found across CI users and different types of AM. This 

suggests that audibility and dynamic range are likely to be important factors in 

explaining susceptibility to noise interference in CI users and, for better users at 

reasonably favourable SNRs, this may be the dominant factor determining 

performance.  One aspect of CI processing that has been somewhat ignored in this 

work is the amplitude range and also the quantization introduced by the CI processing 

at the mapping stage (not to be confused with quantization in the stricter sense of the 
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term at the point of ADC). Inadequate amplitude quantization would impose an upper 

limit on CI performance as would inadequacies in the residual neural capacity to code 

envelope level fluctuations. In these AMs no explicit attempt to match amplitude 

resolution characteristics was undertaken, and it may therefore be fortuitous that these 

perceptual abilities were mapped so well between AM and CI conditions. 

 

The worse performing CI users were far more susceptible to noise interference across 

feature types.  This is likely to mean that those users were at the less favourable end 

of their individual SNR functions and that a more favourable SNR (e.g. +15 dB SNR) 

would be needed for those individuals to tease out differences between features.  One 

possible interpretation is that the worse the transmission of any feature the worse the 

noise interference for that feature. However, that is clearly not borne out by the 

findings.  First, place transmission was the worst feature in quiet but there was no 

effect of noise for better CI users or for AM subjects and the magnitude of the noise 

effect was less for this feature than for other features for CI users.  Individual CI user 

data also failed to support this possible explanation. The reverse also did not apply (as 

it did in experiment 1), e.g. there did not appear to be a correlation between better-

transmitted features and worse noise effects. 

7.7. Overall conceptual map 
It is appropriate to consider the findings of the present study in the context of the 

overall conceptual model of information transmission/loss associated with CI 

processing, with particular reference to the Nucleus 24 CI system, shown in figure 

2.22.  

 

At the input stage low-pass filtering in the analogue filter determines the maximum 

frequency available in the signal. ADC could introduce quantization noise (though in 

practice this is likely to be low even with 8-bit resolution) and the limited input 

dynamic range of the Nucleus 24 system could reduce amplitude resolution and 

therefore reduce the salience of envelope fluctuations. Pre-emphasis increases high-

frequency audibility at the expense of low-frequency audibility.  The findings related 

to voicing and nasality transmission suggest that the combination of pre-emphasis and 

reduced amplitude information in apical channels could be a limiting factor affecting 

transmission of voicing and nasality, particularly in noise. This would need to be 
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tested by comparing performance with and without pre-emphasis and with and 

without increased dynamic range (e.g. such as provided by Adaptive Dynamic Range 

Optimisation).  However, the focus of the present study was not input stage 

characteristics (and these parameters were not varied in the experiments). 

Consequently, these conclusions must be taken as suggestive rather than definitive. 

 

In terms of frequency analysis and envelope extraction, it was anticipated that there is 

loss of temporal information through envelope extraction and loss of spectral detail 

associated with FFT analysis and recombination into a small number of channels.  

What is of particular interest from the present study is the finding that even temporal 

envelope (and periodicity) information is lost via the filterbank used in the Nucleus 24 

system, and that this information loss is implicated in the fact that no consonant 

features were transmitted with 100% accuracy.  Moreover, increases in stimulation 

rate had little or no bearing on coding of temporal information. The spectral 

limitations of current CI processing strategies have been noted in a number of studies 

and are not unique to the present study, nor are they unique to the specific filterbank 

approach used in the Nucleus 24.  However, the present study has strengthened the 

argument that limitations in spectral information in consonant, e.g. place transmission 

in particular, can be explained by information loss due to CI processing rather than 

channel interaction. 

 

At the electrical-neural interface, it was suggested that there should be loss of 

temporal information because of abnormal temporal coding in the excited auditory 

nerve and loss of both temporal and (particularly) spectral information due to channel 

interaction. The striking finding from the present study was that differences between 

better and worse CI users were related primarily to differences in temporal envelope 

processing, not spectral processing, or at least this is what the differences in feature 

transmission and error patterns strongly suggested. This finding contrasted with 

Munson et al. (2003), probably because different feature and also noise effects were 

considered in the present study, and they support the idea that there is a stronger 

relationship between consonant recognition and individual variations in 

electrical/neural interface temporal envelope resolution abilities than spectral 

resolution abilities.  
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It is proposed that the conceptual model suggested in figure 2.22 could provide the 

basis of a genuine “model”, in the broader sense of a mathematical and 

physiologically realistic model of CI neural stimulation.  Inclusion of a simple 

channel overlap term is a small step in this direction.  What is needed is a means of 

modelling both temporal and spectral aspects of the electrical/neural interface and 

more central processing.  

 

7.8. Recommendations for further research and development 

The present study showed that it was possible to predict the magnitude and pattern of 

consonant feature transmission in CI users by using a “closely matched” acoustic 

model. It was shown that, for better CI users, the magnitude of the deficit to 

consonant recognition due to loss of information with CI processing was much greater 

than the loss of information due to spectral channel interaction. Moreover, for worse 

CI users, the pattern of consonant recognition suggested a more important role for 

deficits in the processing of within-channel temporal information, rather than 

increased amounts of spectral channel interaction, in explaining why these users were 

worse at consonant recognition than better users.  The findings also showed that there 

was no benefit to changing stimulation rate even more than threefold, and that this 

lack of benefit was due to CI processing limitations in the device used, and 

corresponding AMs. Acoustic measurements showed the marked reductions in 

temporal information available at higher modulation rates through the Nucleus 24 

implant.  It also showed that there was no benefit from increasing channel/maxima 

number approximately threefold, although this was due in part to channel interaction 

as well as to CI processing. The loss of spectral information was also apparent from 

acoustic analyses, although this is better-established in the existing literature for a 

range of CI devices. 

 

Recommendations can be divided into those concerning: filterbank design; 

electrical/neural interface factors and methodology.  Concerning temporal aspects of 

filterbank design, there is a need to determine whether other currently available 

processing approaches provide more temporal information than provided by the 

Nucleus 24 FFT filterbank. This can be achieved by undertaking objective TMTF 

measurements, along the lines of those reported in 2.3.3, for other approaches. It was 
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suggested that a set of IIR band-pass filters could provide an advantage in this respect 

and therefore it would be of interest to measure TMTFs for this type of filterbank at 

varying envelope cut-off frequencies as well as varying stimulation rates, to determine 

whether there are advantages over the FFT approach in temporal processing. TMTFs 

could also be used to compare standard envelope extraction with Hilbert envelope 

extraction, as it has been claimed that the Hilbert transform provides a better 

representation of the envelope.  The TMTF measurements undertaken in the present 

study should also be undertaken at different intensity levels (those undertaken in 1.4.3 

all used stimuli which were near to saturation, e.g. at upper levels within the electrical 

dynamic range of the system), as it has been claimed that benefits to stimulation rate 

obtained in the Nucleus 24 system have been obtained at lower intensity levels 

(Holden, 2002). Also, Fu (2002) showed that behavioural TMTFs in CI users showed 

cut-offs at lower frequencies (e.g. worse temporal resolution) with decreasing 

intensity. Finally, within the specific context of the Nucleus FFT filterbank approach, 

might a shorter FFT be useful? Although frequency resolution would be reduced with, 

say, a 64-point FFT (e.g. 32 real bins), this might benefit temporal processing and the 

trade-off might be worthwhile. 

 

Related to this is the need to improve audibility/dynamic range in low frequencies, 

particularly for nasality and voicing transmission in noise, also in quiet and perhaps 

for some manner distinctions and envelope. As noted, it would be of interest to co-

vary pre-emphasis and input dynamic range (e.g. via ADRO or other forms of 

dynamic range optimisation) to determine if consonant recognition, particularly in 

noise, could be improved.  

 

Concerning spectral aspects of filterbank design, it was clear from the current work, 

as in other studies, that the main limitation on consonant recognition is transmission 

of place (though here fricative was also implicated, albeit to a lesser extent). Place 

transmission is almost certainly restricted primarily by loss of formant transition 

information- this is the case with only 20 channels even if no channel interaction is 

assumed, as is shown by AM with no channel interaction (and by the uniformity of 

<60% place transmission across different types of AM and varying CI studies).  It 

would be of interest to determine what channel number is required to adequately code 

formant transitions which are important to place transmission. This could be tested 
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empirically using an AM with varying channel number to values well above numbers 

currently available in CI devices or by looking at place transmission in the very best 

(e.g. lowest channel interaction) CI users. However, AM work is needed first. Place 

transmission would be a useful outcome measure to determine any processing 

modification whose aim is to improve access to formant and formant transition 

information, or otherwise to provide an increase in effective channel number. Voicing 

in noise is probably also implicated as F1 transition could be a useful cue. 

 

As noted in 7.5, there is a clear need to further understand the electrical/neural 

interface factors determining performance in worse CI users. The likely factors are:  

 

• A greater degree of spectral channel interaction than that modelled by the 3.3 

mm spread with the Laneau et al. (2006) model 

• A more sophisticated model of spectral channel interaction and other spectral 

anomalies (Throckmorton and Collins, 2002) 

• Temporal channel interaction 

• Amplitude resolution or dynamic range 

 

For reasons outlined previously, it seems possible that within-channel 

temporal/amplitude resolution is more important than spectral channel interaction. 

This is supported by Fu and Shannon (2000b) who found a strong relationship 

between within-channel temporal resolution and consonant perception.  

 

Additionally, there are some more purely “methodological” issues raised.  A direct 

comparison between performance with /iCi/ and /aCa/ vowel environments in CI 

users would be useful to definitively resolve the question of consonant recognition as 

a function of vowel environment. An alternative approach to consonant recognition 

for this type of research is also implied by the findings. This would be to use a 

specific subset of English consonants.  One logical approach would be to use one 

manner category only and to assess voicing and place errors within that category.  

Further work has been undertaken by an MSc student supervised by the author.  In 

that work two “reduced” forms of the consonant confusion measure were used in CI 

users, one with fricatives only and the other with stops only.  
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Chapter 8. Conclusions 
Consonant feature transmission in CI users can be modelled with a high degree of 

accuracy using a carefully matched acoustic model in which great care is taken to 

match processing parameters to those used by the CI subjects, and where more 

general acoustic model parameters, such as carrier stimulus, are carefully chosen.  

However, the accuracy of the model is very good for better performing CI users and 

very poor for worse performing CI users. Deficits in consonant recognition in better 

performing CI users can be attributed primarily to information loss in CI processing, 

with channel interaction playing a markedly smaller role. Consonant recognition in 

worse-performing CI users is worse even than that predicted by a model with quite a 

high degree of channel interaction. The pattern of consonant feature transmission 

suggested that deficits in temporal and amplitude resolution may be more important 

than channel interaction in explaining performance variations. 

 

It is possible to obtain useful CI acoustic model data with a relatively small amount of 

pre-experiment acclimatisation time, even with considerable spectral distortions in the 

acoustic model stimuli (introduced to mimic aspects of information loss due to the 

electrical/neural interface). By comparing CI user data with equivalent acoustic model 

data in which an identical set of processing parameters are implemented, it is possible 

to make strong inferences about the relative contribution of different factors in 

determining deficits in speech perception abilities experienced by cochlear implant 

users.  The use of a detailed phonological analysis of consonant confusions can also 

reveal perceptual abnormalities that cannot be analysed using more generic or global 

speech perception measures. 

 

The combination of acoustic and behavioural measurements undertaken in the study 

show that the filterbank used in the Nucleus 24 processor reduces both temporal and 

spectral information in speech, and this defines the ceiling of performance.  The loss 

of spectral resolution because of CI processing explains the poor transmission of the 

consonant place feature, and this occurs even with a relatively large number of 

channels and no channel interaction. However, the Nucleus 24 also shows a poor 
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temporal response at higher modulation rates, which in turn limits transmission of 

consonant features that are more reliant on temporal information.  The absence of 

benefit with increases stimulation rate shown in the present study, and in most other 

studies of the Nucleus device, can be predicted by the fact that the temporal response 

of the processor changes very little across stimulation rates. The absence of benefit 

associated with increasing channel number can be attributed to loss of spectral detail 

associated with CI processing although spectral channel interaction also plays a 

modest role in restricting benefit with a higher channel number. The loss of audibility 

and dynamic range in lower frequencies is also implicated in some of the deficits in 

consonant recognition shown by CI users, although further work is clearly needed to 

understand reasons for within-user variation. 
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Appendix A. Investigation of the Front 

End of the Nucleus Sprint Speech 

Processor and Headset 
M L Grasmeder, C A Verschuur 

 

Introduction 

 

The NIC-STREAM software includes simulations of the processing of the Nucleus 24 

cochlear implant but did not (at the time of initial experimental work) currently 

include a simulation of the Nucleus ‘front-end’.  This includes the effect of the 

headset microphone, subsequent amplifier, anti-alias filter and AGC.  In order to 

produce a simulation of these aspects of the processing, some investigations were 

made.  

 

Method 

At the calibrated spot in a soundproof room (approximating a free field environment), 

a Sprint microphone was placed on an artificial pinna and this was attached to a Sprint 

processor, set to sensitivity 10.  A pair of modified monitor earphones was attached to 

the audio output socket on the Sprint and this was fed through to a line-in socket on a 

laptop computer.  A sound sample of pink noise was played using standard clinic 

loudspeakers. Recordings of the processed sound were made using CoolEdit (now 

Adobe Audition) software, using a sampling rate 44100 Hz. The pink noise was 

played at different levels between 40 and 70 dB (A). Spectra were derived for the 

recorded samples and original sample. However, there was some difficulty in 

measuring the effect of the AGC, as the effect of the line-in input on the sound level 

could not be found independently.  Hence no attempt was made to simulate the effect 

of the AGC, but instead a more simple comparison was made between the original 

signal before and after processing through the implant. Figure A1 shows the 

difference in energy between the original and processed signal as a function of 

frequency. 
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Figure A1.  Effect of Nucleus input stage processing on frequency response of incoming sound 

 

In order to design a filter that would mimic these results, the effect of the front end (as 

shown above) was separated into 3 frequency regions.  The low frequencies showed 

an increasing output as a function of frequency.  The mid frequencies showed a near 

flat response and the high frequencies show a decreasing output with frequency.  

Linear regression was used to fit the low and high frequency areas with a straight line 

graph. The mid frequency area was assumed to be a flat line. In summary, there is 

approximately a +6dB/octave slope for the low frequencies up to about 1700 Hz (5.4 

dB/octave was measured).  The frequency response is approximately flat until 5000 

Hz, after which there is a –24 dB/octave slope to 10 kHz (measured value = -25.6 

dB/octave).These data were used to produce a filter, which can be used prior to 

processing a sound sample through the NIC software, having the following 

characteristicis: 

 

• Up to 1800 Hz, +6 dB per octave 

• 1800 – 5000 Hz, flat 

• 5000 – 10000 Hz (or above), -24 dB per octave 
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Summary 

The Nucleus input stage processing includes a microphone, amplifier, anti-alias filter 

and AGC.   In this investigation, the effect of these aspects of processing were 

analysed with respect to their effect on the amplitude spectrum of pink noise, although 

this did not include a characterisation of AGC effects.  A filter was derived based on 

the measurements, and this was used prior to processing samples through the NIC 

software.  
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Appendix B. Summary of MANOVA 

and ANOVA details for experiments 1 to 

4. 
 
Table B1. Summary of MANOVA from Experiment 1, as described in 4.1.4. Seven dependent 
variables (six feature transmission values and total percentage correct) were entered. The factor 
was “listening conditions”, which had five levels (unaltered, quiet AM, AM+10 dB SNR, AM +5 
dB SNR and AM 0 dB SNR). Significant effects at the a priori significance level (p≤0.05) are 
highlighted. 

Source 
Dependent 
Variable 

Sum of 
Squares 

Degrees 
of 
Freedom 

Mean 
Square F p 

Listening 
condition total 43514.822 4.000 10878.706 161.086 <0.001 
 voicing 77254.933 4.000 19313.733 56.630 <0.001 
 place 29064.156 4.000 7266.039 88.955 <0.001 
 manner 43934.733 4.000 10983.683 213.232 <0.001 
 fricative 51918.489 4.000 12979.622 134.337 <0.001 
 nasality 89890.511 4.000 22472.628 97.013 <0.001 
 envelope 55303.142 4.000 13825.785 96.458 <0.001 
Error  total 5740.3 85.0 67.5   
 voicing 28989.2 85.0 341.0   
 place 6943.0 85.0 81.7   
 manner 4378.4 85.0 51.5   
 fricative 8212.7 85.0 96.6   
 nasality 19689.9 85.0 231.6   
 envelope 12183.5 85.0 143.3   
 
 
Table B2. Summary of results of ANOVA on from Experiment 1, as described in 4.1.4. The factor 
“feature” had six levels, corresponding to the six consonant feature transmission values. Only 
quiet acoustic model conditions were included in the analysis.  

Source 
Sum of 
Squares 

Degrees 
of 
Freedom 

Mean 
Square F p 

Feature 40089.583  4 10022.396  103.661 <0.001 
Error (feature) 8701.606  90 96.685   <0.001 
 
 
Table B3. Summary of MANOVA from Experiment 2, as described in 4.3.3. Seven dependent 
variables (six feature transmission values and total percentage correct) were entered. There were 
four factors, each with two levels: carrier, shift, vowel and noise. Significant effects at the a priori 
significance level (p≤0.05) are highlighted. 

Source 
Dependent 
Variable 

Sum of 
Squares 

Degrees of 
Freedom 

Mean 
Square F p 

carrier total 921.4848 1 921.4848 12.62628 0.001 
 voicing 1330.578 1 1330.578 5.623042 0.021 
 place 412.8483 1 412.8483 4.106917 0.047 
 manner 583.57 1 583.57 11.41062 0.001 



 226

 nasality 18.08704 1 18.08704 0.039574 0.843 
 envelope 152.4639 1 152.4639 0.319315 0.574 
 fricative 1132.196 1 1132.196 13.02732 0.001 
shift total 124.6202 1 124.6202 1.707558 0.196 
 voicing 229.6561 1 229.6561 0.97053 0.328 
 place 24.20828 1 24.20828 0.240818 0.625 
 manner 58.51203 1 58.51203 1.144094 0.289 
 nasality 3420.603 1 3420.603 7.48419 0.008 
 envelope 68.67803 1 68.67803 0.143837 0.706 
 fricative 59.79188 1 59.79188 0.68798 0.410 
vowel total 848.5616 1 848.5616 11.62708 0.001 
 voicing 116.7601 1 116.7601 0.49343 0.485 
 place 2838.647 1 2838.647 28.23819 0.000 
 manner 71.93357 1 71.93357 1.406527 0.240 
 nasality 4039.35 1 4039.35 8.837993 0.004 
 envelope 309.1969 1 309.1969 0.647572 0.424 
 fricative 75.07212 1 75.07212 0.863798 0.356 
noise total 5142.162 1 5142.162 70.45841 0.000 
 voicing 7004.546 1 7004.546 29.60132 0.000 
 place 4502.69 1 4502.69 44.79169 0.000 
 manner 6642.592 1 6642.592 129.8835 0.000 
 nasality 41366.69 1 41366.69 90.50924 0.000 
 envelope 859.7476 1 859.7476 1.800627 0.184 
 fricative 4617.308 1 4617.308 53.12787 0.000 
carrier * 
shift total 6.496623 1 6.496623 0.089017 0.766 
 voicing 31.26351 1 31.26351 0.13212 0.717 
 place 0.339231 1 0.339231 0.003375 0.954 
 manner 0.000277 1 0.000277 5.41E-06 0.998 
 nasality 2097.43 1 2097.43 4.589123 0.036 
 envelope 84.99212 1 84.99212 0.178005 0.675 
 fricative 50.25489 1 50.25489 0.578245 0.450 
carrier * 
vowel total 66.35361 1 66.35361 0.909184 0.344 
 voicing 16.66757 1 16.66757 0.070437 0.792 
 place 94.77 1 94.77 0.94275 0.335 
 manner 218.53 1 218.53 4.272946 0.043 
 nasality 8782.073 1 8782.073 19.21495 0.000 
 envelope 0.428431 1 0.428431 0.000897 0.976 
 fricative 29.19003 1 29.19003 0.335868 0.564 
shift * 
vowel total 45.53453 1 45.53453 0.623919 0.433 
 voicing 85.60689 1 85.60689 0.361776 0.550 
 place 45.72188 1 45.72188 0.45483 0.503 
 manner 20.84089 1 20.84089 0.407505 0.526 
 nasality 3213.357 1 3213.357 7.03074 0.010 
 envelope 95.52751 1 95.52751 0.20007 0.656 
 fricative 4.121723 1 4.121723 0.047426 0.828 
carrier * 
shift * 
vowel total 29.76222 1 29.76222 0.407805 0.525 
 voicing 0.3328 1 0.3328 0.001406 0.970 
 place 392.8101 1 392.8101 3.907582 0.052 
 manner 77.29923 1 77.29923 1.511442 0.223 
 nasality 594.7991 1 594.7991 1.301405 0.258 
 envelope 7.387692 1 7.387692 0.015473 0.901 
 fricative 62.56849 1 62.56849 0.719928 0.399 
carrier * total 472.6917 1 472.6917 6.476869 0.013 
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noise 
 voicing 2.343877 1 2.343877 0.009905 0.921 
 place 644.5824 1 644.5824 6.412153 0.014 
 manner 753.6185 1 753.6185 14.7356 0.000 
 nasality 406.4042 1 406.4042 0.889202 0.349 
 envelope 55.74511 1 55.74511 0.116751 0.734 
 fricative 146.4961 1 146.4961 1.68562 0.199 
shift * noise total 73.0197 1 73.0197 1.000523 0.321 
 voicing 316.6543 1 316.6543 1.338186 0.252 
 place 239.6825 1 239.6825 2.384305 0.128 
 manner 5.822308 1 5.822308 0.113844 0.737 
 nasality 209.1696 1 209.1696 0.457658 0.501 
 envelope 184.0897 1 184.0897 0.385551 0.537 
 fricative 293.7877 1 293.7877 3.380393 0.071 
carrier * 
shift * noise total 55.29047 1 55.29047 0.757596 0.387 
 voicing 42.84308 1 42.84308 0.181056 0.672 
 place 96.94231 1 96.94231 0.964359 0.330 
 manner 4.800769 1 4.800769 0.09387 0.760 
 nasality 222.2025 1 222.2025 0.486173 0.488 
 envelope 110.8432 1 110.8432 0.232146 0.632 
 fricative 94.23077 1 94.23077 1.084242 0.302 
vowel * 
noise total 239.0817 1 239.0817 3.275922 0.075 
 voicing 290.3749 1 290.3749 1.227129 0.272 
 place 636.72 1 636.72 6.33394 0.014 
 manner 0.496277 1 0.496277 0.009704 0.922 
 nasality 1048.433 1 1048.433 2.293944 0.135 
 envelope 319.4241 1 319.4241 0.668991 0.416 
 fricative 247.1248 1 247.1248 2.843478 0.097 
carrier * 
vowel * 
noise total 1.176008 1 1.176008 0.016114 0.899 
 voicing 23.18228 1 23.18228 0.097969 0.755 
 place 1.728277 1 1.728277 0.017192 0.896 
 manner 166.6132 1 166.6132 3.25781 0.076 
 nasality 2169.681 1 2169.681 4.747206 0.033 
 envelope 0.295508 1 0.295508 0.000619 0.980 
 fricative 2.806277 1 2.806277 0.03229 0.858 
shift * 
vowel * 
noise total 253.8848 1 253.8848 3.478755 0.067 
 voicing 4.537108 1 4.537108 0.019174 0.890 
 place 218.8581 1 218.8581 2.177149 0.145 
 manner 52.88372 1 52.88372 1.034042 0.313 
 nasality 41.7106 1 41.7106 0.091262 0.764 
 envelope 93.3712 1 93.3712 0.195554 0.660 
 fricative 0.847877 1 0.847877 0.009756 0.922 
carrier * 
shift * 
vowel * 
noise total 2.008623 1 2.008623 0.027522 0.869 
 voicing 9.240123 1 9.240123 0.039049 0.844 
 place 10.60212 1 10.60212 0.105467 0.746 
 manner 4.189569 1 4.189569 0.081919 0.776 
 nasality 853.9995 1 853.9995 1.868529 0.177 
 envelope 4.396431 1 4.396431 0.009208 0.924 
 fricative 4.212308 1 4.212308 0.048468 0.826 
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Error total 4597.836 63 72.98152   
 voicing 14907.66 63 236.6295   
 place 6333.082 63 100.5251   
 manner 3221.99 63 51.1427   
 nasality 28793.76 63 457.0439   
 envelope 30080.68 63 477.4712   
 fricative 5475.288 63 86.90933   
 
 
Table B4. Summary of MANOVA from Experiment 3, as described in 5.3. Data from all 9 CI 
users in the experiment are included in the analysis. Seven dependent variables (six feature 
transmission values and total percentage correct) were entered. There were three factors: “noise 
condition”, “stimulation rate” and “ channel number”, here summarised as “noise”, “stimrate” 
and “channo”, respectively. Significant effects at the a priori significance level (p≤0.05) are 
highlighted. Because the factors “stimulation rate” and “channel number” overlapped, 
interactions involving both these factors could not be computed. 

Source 
Dependent 
Variable 

Sum of 
Squares 

Degrees of 
Freedom 

Mean 
Square F p 

noise total 284.5869 1 284.5869 0.934738 0.339 
 voicing 349.2347 1 349.2347 0.711424 0.403 
 nasality 5719.427 1 5719.427 5.040231 0.030 
 place 130.1356 1 130.1356 0.41796 0.521 
 manner 736.8845 1 736.8845 1.948424 0.169 
 fricative 14.02661 1 14.02661 0.018073 0.894 
 envelope 497.2547 1 497.2547 1.629146 0.208 
stimrate total 28.38438 1 28.38438 0.09323 0.761 
 voicing 0.171671 1 0.171671 0.00035 0.985 
 nasality 848.0003 1 848.0003 0.747298 0.392 
 place 17.21736 1 17.21736 0.055298 0.815 
 manner 28.92533 1 28.92533 0.076483 0.783 
 fricative 340.1374 1 340.1374 0.438269 0.511 
 envelope 157.1275 1 157.1275 0.514794 0.477 
channo total 9.100278 1 9.100278 0.02989 0.863 
 voicing 259.21 1 259.21 0.528035 0.471 
 nasality 11.9025 1 11.9025 0.010489 0.919 
 place 2.777778 1 2.777778 0.008921 0.925 
 manner 107.1225 1 107.1225 0.283247 0.597 
 fricative 20.85444 1 20.85444 0.026871 0.871 
 envelope 196 1 196 0.642151 0.427 
noise * 
stimrate total 0.428824 1 0.428824 0.001408 0.970 
 voicing 570.8172 1 570.8172 1.162809 0.287 
 nasality 870.0361 1 870.0361 0.766717 0.386 
 place 5.813926 1 5.813926 0.018673 0.892 
 manner 95.81147 1 95.81147 0.253339 0.617 
 fricative 332.5757 1 332.5757 0.428526 0.516 
 envelope 52.23765 1 52.23765 0.171145 0.681 
noise * 
channo total 28.26694 1 28.26694 0.092844 0.762 
 voicing 305.0844 1 305.0844 0.621486 0.435 
 nasality 78.3225 1 78.3225 0.069022 0.794 
 place 6.25 1 6.25 0.020073 0.888 
 manner 2.4025 1 2.4025 0.006353 0.937 
Error total 14005 46 304.4564   
 voicing 22581.18 46 490.8951   
 nasality 52198.73 46 1134.755   
 place 14322.49 46 311.3586   
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 manner 17396.98 46 378.1952   
 fricative 35700.26 46 776.0926   
 envelope 14040.31 46 305.2242   
 
 
Table B5. Summary of MANOVA from Experiment 3, as described 5.3. Only data from CI users 
with baseline consonant scores of 50% or more  were included in the analyses (N=). Seven 
dependent variables (six feature transmission values and total percentage correct) were entered. 
There were three factors: “noise condition”, “stimulation rate” and “ channel number”, here 
summarised as “noise”, “stimrate” and “channo”, respectively. Significant effects at the a priori 
significance level (p≤0.05) are highlighted. Because the factors “stimulation rate” and “channel 
number” overlapped, interactions involving both these factors could not be computed. 

Source 
Dependent 
Variable 

Sum of 
Squares 

Degrees of 
Freedom 

Mean 
Square F p 

noise total 20.1601 1 20.1601 0.116559 0.736 
 voicing 162.9452 1 162.9452 0.498829 0.487 
 nasality 2640.418 1 2640.418 3.779919 0.065 
 place 10.98922 1 10.98922 0.037662 0.848 
 manner 28.6225 1 28.6225 0.236235 0.632 
 fricative 674.7006 1 674.7006 3.13045 0.091 
 envelope 0.8836 1 0.8836 0.006506 0.936 
stimrate total 151.0618 1 151.0618 0.873391 0.360 
 voicing 474.9507 1 474.9507 1.453982 0.241 
 nasality 552.7922 1 552.7922 0.791356 0.383 
 place 125.9067 1 125.9067 0.431505 0.518 
 manner 60.025 1 60.025 0.495414 0.489 
 fricative 53.43803 1 53.43803 0.24794 0.623 
 envelope 13.689 1 13.689 0.100796 0.754 
channo total 50.2445 1 50.2445 0.290498 0.595 
 voicing 12.9605 1 12.9605 0.039676 0.844 
 nasality 10.082 1 10.082 0.014433 0.905 
 place 24.642 1 24.642 0.084453 0.774 
 manner 0.002 1 0.002 1.65E-05 0.997 
 fricative 24.8645 1 24.8645 0.115365 0.737 
 envelope 0.018 1 0.018 0.000133 0.991 
noise * 
stimrate total 0.784 1 0.784 0.004533 0.947 
 voicing 787.0647 1 787.0647 2.409467 0.135 
 nasality 265.3967 1 265.3967 0.379931 0.544 
 place 10.37003 1 10.37003 0.03554 0.852 
 manner 49.43211 1 49.43211 0.407986 0.530 
 fricative 129.0007 1 129.0007 0.598532 0.447 
 envelope 6.453444 1 6.453444 0.047518 0.829 
noise * 
channo total 11.4005 1 11.4005 0.065914 0.800 
 voicing 7.8125 1 7.8125 0.023917 0.879 
 nasality 8.712 1 8.712 0.012472 0.912 
 place 11.552 1 11.552 0.039591 0.844 
 manner 0.338 1 0.338 0.00279 0.958 
Error total 3805.12 22 172.96   
 voicing 7186.414 22 326.6552   
 nasality 15367.84 22 698.5383   
 place 6419.274 22 291.7852   
 manner 2665.546 22 121.1612   
 fricative 4741.624 22 215.5283   
 envelope 2987.802 22 135.8092   
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Table B6. Summary of MANOVA from Experiment 3, as described in 5.3. Only data from CI 
users with baseline consonant scores of less than 50%  were included in the analyses (N=). Seven 
dependent variables (six feature transmission values and total percentage correct) were entered. 
There were three factors: “noise condition”, “stimulation rate” and “ channel number”, here 
summarised as “noise”, “stimrate” and “channo”, respectively. Significant effects at the a priori 
significance level (p≤0.05) are highlighted. Because the factors “stimulation rate” and “channel 
number” overlapped, interactions involving both these factors could not be computed. 

Source 
Dependent 
Variable 

Sum of 
Squares 

Degrees of 
Freedom 

Mean 
Square F p 

noise total 394.805 1 394.805 5.623892 0.029 
 voicing 1525.361 1 1525.361 5.989678 0.025 
 nasality 3083.742 1 3083.742 2.976544 0.102 
 place 196.02 1 196.02 3.713262 0.070 
 manner 1164.031 1 1164.031 10.77848 0.004 
 fricative 1094.34 1 1094.34 3.517951 0.077 
 envelope 1125.751 1 1125.751 6.501929 0.020 
stimrate total 223.5025 1 223.5025 3.183733 0.091 
 voicing 315.0625 1 315.0625 1.237165 0.281 
 nasality 685.1306 1 685.1306 0.661314 0.427 
 place 160.0225 1 160.0225 3.031351 0.099 
 manner 82.81 1 82.81 0.766789 0.393 
 fricative 608.8556 1 608.8556 1.957274 0.179 
 envelope 291.5556 1 291.5556 1.683919 0.211 
channo total 155.0025 1 155.0025 2.207969 0.155 
 voicing 405.0156 1 405.0156 1.590387 0.223 
 nasality 2.640625 1 2.640625 0.002549 0.960 
 place 64.8025 1 64.8025 1.227572 0.282 
 manner 242.5806 1 242.5806 2.246204 0.151 
 fricative 154.3806 1 154.3806 0.496284 0.490 
 envelope 434.7225 1 434.7225 2.510799 0.130 
noise * 
stimrate total 0.7225 1 0.7225 0.010292 0.920 
 voicing 76.5625 1 76.5625 0.30064 0.590 
 nasality 716.9006 1 716.9006 0.69198 0.416 
 place 51.84 1 51.84 0.98202 0.335 
 manner 28.09 1 28.09 0.260103 0.616 
 fricative 126.0006 1 126.0006 0.405051 0.533 
 envelope 37.51563 1 37.51563 0.216677 0.647 
noise * 
channo total 17.64 1 17.64 0.251277 0.622 
 voicing 532.4556 1 532.4556 2.090809 0.165 
 nasality 274.7306 1 274.7306 0.26518 0.613 
 place 0.0025 1 0.0025 0.000047 0.995 
 manner 2.805625 1 2.805625 0.025979 0.874 
 fricative   38.13062 0.122578  
 envelope   3.4225 0.019767  
Error total 1263.625 18 70.20139   
 voicing 4583.968 18 254.6649   
 nasality 18648.26 18 1036.014   
 place 950.205 18 52.78917   
 manner 1943.925 18 107.9958   
 fricative 5599.318 18 311.0732   
 envelope 3116.54 18 173.1411   
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Error total 1263.625 18 70.20139   
 voicing 4583.968 18 254.6649   
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Table B7. Summary of MANOVA from Experiment 4, as described in 5.4. Data across all 
acoustic model conditions were included. Seven dependent variables (six feature transmission 
values and total percentage correct) were entered. There were four factors: “channel interaction 
condition”,“noise condition”, “stimulation rate” and “ channel number”, here summarised as 
“chanint”,“noise”, “stimrate” and “channo”, respectively. Significant effects at the a priori 
significance level (p≤0.05) are highlighted. Because the factors “stimulation rate” and “channel 
number” overlapped, interactions involving both these factors could not be computed. 

Source 
Dependent 
Variable 

Sum of 
Squares 

Degrees of 
Freedom 

Mean 
Square F p 

chanint total 2407.776 2 1203.888 8.597039 0.001 
 voicing 3461.736 2 1730.868 3.817841 0.058 
 nasality 4861.775 2 2430.888 2.537777 0.118 
 place 1045.277 2 522.6384 5.294059 0.000 
 manner 1077.53 2 538.7649 6.878833 0.002 
 fricative 1750.553 2 875.2766 4.669267 0.003 
 envelope 1508.495 2 754.2477 5.662181 0.334 
noise total 310.99 1 310.99 2.220799 0.000 
 voicing 6351.713 1 6351.713 14.01021 0.000 
 nasality 8746.91 1 8746.91 9.131523 0.000 
 place 2.521364 1 2.521364 0.02554 0.000 
 manner 593.0004 1 593.0004 7.571301 0.000 
 fricative 193.698 1 193.698 1.033305 0.000 
 envelope 273.4158 1 273.4158 2.052548 0.000 
stimrate total 2.163712 1 2.163712 0.015451 0.000 
 voicing 246.5467 1 246.5467 0.543817 0.024 
 nasality 1978.964 1 1978.964 2.065981 0.082 
 place 1.054848 1 1.054848 0.010685 0.006 
 manner 6.6825 1 6.6825 0.085321 0.001 
 fricative 136.2334 1 136.2334 0.726753 0.011 
 envelope 58.4003 1 58.4003 0.438414 0.004 
channo total 1232.815 1 1232.815 8.803608 0.138 
 voicing 450.2912 1 450.2912 0.993224 0.000 
 nasality 2.677576 1 2.677576 0.002795 0.003 
 place 2859.753 1 2859.753 28.96783 0.873 
 manner 695.5227 1 695.5227 8.880283 0.007 
 fricative 1737.464 1 1737.464 9.268707 0.311 
 envelope 62.45939 1 62.45939 0.468886 0.154 
chanint * 
noise total 92.76771 2 46.38386 0.33123 0.901 
 voicing 485.5128 2 242.7564 0.535457 0.462 
 nasality 1561.375 2 780.6877 0.815016 0.152 
 place 403.213 2 201.6065 2.042171 0.918 
 manner 73.34892 2 36.67446 0.468252 0.771 
 fricative 640.0766 2 320.0383 1.707282 0.395 
 envelope 32.76458 2 16.38229 0.122983 0.509 
chanint * 
stimrate total 83.46424 2 41.73212 0.298012 0.003 
 voicing 1652.502 2 826.251 1.822493 0.320 
 nasality 261.8756 2 130.9378 0.136695 0.958 
 place 14.37288 2 7.186439 0.072795 0.000 
 manner 78.18682 2 39.09341 0.499136 0.003 
 fricative 335.4668 2 167.7334 0.894794 0.003 
 envelope 134.8783 2 67.43917 0.50627 0.494 
noise * 
stimrate total 86.5728 1 86.5728 0.618222 0.718 
 voicing 308.5094 1 308.5094 0.680491 0.586 
 nasality 254.537 1 254.537 0.265729 0.444 
 place 3.030303 1 3.030303 0.030695 0.133 
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 manner 91.83341 1 91.83341 1.172509 0.627 
 fricative 148.697 1 148.697 0.793242 0.184 
 envelope 3.030303 1 3.030303 0.022749 0.884 
chanint * 
noise * 
stimrate total 9.640606 2 4.820303 0.034422 0.743 
 voicing 13.59106 2 6.79553 0.014989 0.165 
 nasality 2223.091 2 1111.546 1.160422 0.872 
 place 110.5656 2 55.2828 0.559986 0.930 
 manner 49.14591 2 24.57295 0.313742 0.608 
 fricative 627.5814 2 313.7907 1.673954 0.411 
 envelope 29.77652 2 14.88826 0.111767 0.604 
chanint * 
channo total 621.4911 2 310.7455 2.219053 0.433 
 voicing 734.3838 2 367.1919 0.809929 0.411 
 nasality 13.28015 2 6.640076 0.006932 0.607 
 place 692.6309 2 346.3155 3.507998 0.861 
 manner 47.91455 2 23.95727 0.305881 0.280 
 fricative 1262.264 2 631.1321 3.366849 0.374 
 envelope 15.69288 2 7.846439 0.058904 0.880 
noise * 
channo total 253.7045 1 253.7045 1.81172 0.966 
 voicing 52.69364 1 52.69364 0.116228 0.985 
 nasality 571.2512 1 571.2512 0.59637 0.316 
 place 441.4694 1 441.4694 4.471859 0.572 
 manner 13.1103 1 13.1103 0.16739 0.731 
 fricative 36.5928 1 36.5928 0.195209 0.190 
 envelope 186.7348 1 186.7348 1.401829 0.894 
chanint * 
noise * 
channo total 100.8005 2 50.40023 0.359911 0.112 
 voicing 327.5568 2 163.7784 0.361252 0.447 
 nasality 1822.511 2 911.2555 0.951325 0.993 
 place 85.80061 2 42.9003 0.434558 0.032 
 manner 17.06424 2 8.532121 0.108936 0.737 
 fricative 276.5261 2 138.263 0.737581 0.037 
 envelope 26.72379 2 13.36189 0.100308 0.943 
Error total 25206.33 180 140.0352   
 voicing 81605.35 180 453.3631   
 nasality 172418.5 180 957.8807   
 place 17769.9 180 98.72168   
 manner 14097.98 180 78.32213   
 fricative 33741.87 180 187.4548   
 envelope 23977.44 180 133.208   
 
 
Table B7. Summary of MANOVA from Experiment 4, as described in 5.4. Only data from the 
“no channel interaction” acoustic model are included. Seven dependent variables (six feature 
transmission values and total percentage correct) were entered. There were three factors: “noise 
condition”, “stimulation rate” and “ channel number”, here summarised as “noise”, “stimrate” 
and “channo”, respectively. Significant effects at the a priori significance level (p≤0.05) are 
highlighted. Because the factors “stimulation rate” and “channel number” overlapped, 
interactions involving both these factors could not be computed. 

Source 
Dependent 
Variable 

Sum of 
Squares 

Degrees of 
Freedom 

Mean 
Square F p 

noise total 325.5819 1 325.5819 2.914374 0.093 
 voicing 3979.855 1 3979.855 8.640582 0.005 
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 nasality 476.3152 1 476.3152 0.420152 0.519 
 place 229.9978 1 229.9978 2.831881 0.098 
 manner 358.9675 1 358.9675 6.875167 0.011 
 fricative 341.1516 1 341.1516 1.998682 0.163 
 envelope 202.0202 1 202.0202 1.419028 0.238 
stimrate total 7.445682 1 7.445682 0.066648 0.797 
 voicing 576.7384 1 576.7384 1.252145 0.268 
 nasality 1508.131 1 1508.131 1.330305 0.253 
 place 3.494545 1 3.494545 0.043027 0.836 
 manner 8.553636 1 8.553636 0.163825 0.687 
 fricative 64.80818 1 64.80818 0.379687 0.540 
 envelope 15.48205 1 15.48205 0.108749 0.743 
channo total 737.182 1 737.182 6.598722 0.013 
 voicing 97.50568 1 97.50568 0.211693 0.647 
 nasality 0.638409 1 0.638409 0.000563 0.981 
 place 1838.258 1 1838.258 22.63382 0.000 
 manner 415.4327 1 415.4327 7.956625 0.006 
 fricative 357.9602 1 357.9602 2.097158 0.153 
 envelope 2.800227 1 2.800227 0.019669 0.889 
noise * 
stimrate total 60.7475 1 60.7475 0.543768 0.464 
 voicing 135.802 1 135.802 0.294837 0.589 
 nasality 72.29455 1 72.29455 0.06377 0.801 
 place 34.56818 1 34.56818 0.425626 0.517 
 manner 0.073636 1 0.073636 0.00141 0.970 
 fricative 754.4736 1 754.4736 4.420184 0.040 
 envelope 10.50568 1 10.50568 0.073794 0.787 
noise * 
channo total 100.5057 1 100.5057 0.899654 0.347 
 voicing 165.3657 1 165.3657 0.359022 0.551 
 nasality 823.0475 1 823.0475 0.726001 0.398 
 place 46.43273 1 46.43273 0.57171 0.453 
 manner 1.312727 1 1.312727 0.025142 0.875 
 fricative 186.142 1 186.142 1.090538 0.301 
 envelope 35.46023 1 35.46023 0.249079 0.620 
noise total 325.5819 1 325.5819 2.914374 0.093 
 voicing 3979.855 1 3979.855 8.640582 0.005 
 nasality 476.3152 1 476.3152 0.420152 0.519 
 place 229.9978 1 229.9978 2.831881 0.098 
 manner 358.9675 1 358.9675 6.875167 0.011 
 fricative 341.1516 1 341.1516 1.998682 0.163 
 envelope 202.0202 1 202.0202 1.419028 0.238 
stimrate total 7.445682 1 7.445682 0.066648 0.797 
 voicing 576.7384 1 576.7384 1.252145 0.268 
 nasality 1508.131 1 1508.131 1.330305 0.253 
 place 3.494545 1 3.494545 0.043027 0.836 
 manner 8.553636 1 8.553636 0.163825 0.687 
 fricative 64.80818 1 64.80818 0.379687 0.540 
 envelope 15.48205 1 15.48205 0.108749 0.743 
Error total 6702.953 60 111.7159   
 voicing 27636.02 60 460.6004   
 nasality 68020.39 60 1133.673   
 place 4873.038 60 81.2173   
 manner 3132.731 60 52.21218   
 fricative 10241.3 60 170.6883   
 envelope 8541.909 60 142.3652   
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Table B8. Summary of MANOVA from Experiment 4, as described in 5.4. Only data from the 
“1mm channel interaction” acoustic model are included. Seven dependent variables (six feature 
transmission values and total percentage correct) were entered. There were three factors: “noise 
condition”, “stimulation rate” and “ channel number”, here summarised as “noise”, “stimrate” 
and “channo”, respectively. Significant effects at the a priori significance level (p≤0.05) are 
highlighted. Because the factors “stimulation rate” and “channel number” overlapped, 
interactions involving both these factors could not be computed. 

Source 
Dependent 
Variable 

Sum of 
Squares 

Degrees of 
Freedom 

Mean 
Square F p 

noise total 40.90909 1 40.90909 0.350742 0.556 
 voicing 1060.34 1 1060.34 2.61677 0.111 
 nasality 5210.336 1 5210.336 6.191506 0.016 
 place 38.40323 1 38.40323 0.408663 0.525 
 manner 53.06187 1 53.06187 0.908331 0.344 
 fricative 159.3018 1 159.3018 0.857645 0.358 
 envelope 55.25838 1 55.25838 0.527088 0.471 
stimrate total 69.00023 1 69.00023 0.591587 0.445 
 voicing 541.102 1 541.102 1.335364 0.252 
 nasality 324.0082 1 324.0082 0.385023 0.537 
 place 5.745682 1 5.745682 0.061142 0.806 
 manner 28.64205 1 28.64205 0.490304 0.486 
 fricative 257.7784 1 257.7784 1.387821 0.243 
 envelope 21.98205 1 21.98205 0.209678 0.649 
channo total 1117.066 1 1117.066 9.577376 0.003 
 voicing 536.2036 1 536.2036 1.323276 0.255 
 nasality 15.24568 1 15.24568 0.018117 0.893 
 place 1625.063 1 1625.063 17.29288 0.000 
 manner 214.7236 1 214.7236 3.675712 0.060 
 fricative 2638.102 1 2638.102 14.20295 0.000 
 envelope 52.80091 1 52.80091 0.503647 0.481 
noise * 
stimrate total 23.1275 1 23.1275 0.198288 0.658 
 voicing 50.8475 1 50.8475 0.125485 0.724 
 nasality 2272.328 1 2272.328 2.700236 0.106 
 place 57.04568 1 57.04568 0.607044 0.439 
 manner 102.3275 1 102.3275 1.751677 0.191 
 fricative 16.69114 1 16.69114 0.089861 0.765 
 envelope 18.46023 1 18.46023 0.176085 0.676 
noise * 
channo total 251.0457 1 251.0457 2.152388 0.148 
 voicing 104.4736 1 104.4736 0.257826 0.613 
 nasality 438.482 1 438.482 0.521054 0.473 
 place 378.2045 1 378.2045 4.024611 0.049 
 manner 28.80364 1 28.80364 0.49307 0.485 
 fricative 38.76568 1 38.76568 0.208706 0.649 
 envelope 31.45091 1 31.45091 0.299998 0.586 
noise total 40.90909 1 40.90909 0.350742 0.556 
 voicing 1060.34 1 1060.34 2.61677 0.111 
 nasality 5210.336 1 5210.336 6.191506 0.016 
 place 38.40323 1 38.40323 0.408663 0.525 
 manner 53.06187 1 53.06187 0.908331 0.344 
 fricative 159.3018 1 159.3018 0.857645 0.358 
 envelope 55.25838 1 55.25838 0.527088 0.471 
stimrate total 69.00023 1 69.00023 0.591587 0.445 
 voicing 541.102 1 541.102 1.335364 0.252 
 nasality 324.0082 1 324.0082 0.385023 0.537 
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 place 5.745682 1 5.745682 0.061142 0.806 
 manner 28.64205 1 28.64205 0.490304 0.486 
 fricative 257.7784 1 257.7784 1.387821 0.243 
 envelope 21.98205 1 21.98205 0.209678 0.649 
Error total 6998.153 60 116.6359   
 voicing 24312.56 60 405.2093   
 nasality 50491.78 60 841.5296   
 place 5638.376 60 93.97294   
 manner 3505.013 60 58.41688   
 fricative 11144.6 60 185.7433   
 envelope 6290.229 60 104.8372   
 
 
Table B9. Summary of MANOVA from Experiment 4, as described in 5.4. Only data from the 
“3.3mm channel interaction” acoustic model are included. Seven dependent variables (six feature 
transmission values and total percentage correct) were entered. There were three factors: “noise 
condition”, “stimulation rate” and “ channel number”, here summarised as “noise”, “stimrate” 
and “channo”, respectively. Significant effects at the a priori significance level (p≤0.05) are 
highlighted. Because the factors “stimulation rate” and “channel number” overlapped, 
interactions involving both these factors could not be computed. 

Source 
Dependent 
Variable 

Sum of 
Squares 

Degrees of 
Freedom 

Mean 
Square F p 

noise total 37.26672 1 37.26672 0.194347 0.661 
 voicing 1797.032 1 1797.032 3.635659 0.061 
 nasality 4621.634 1 4621.634 5.14407 0.027 
 place 137.3334 1 137.3334 1.135223 0.291 
 manner 254.32 1 254.32 2.045403 0.158 
 fricative 333.3213 1 333.3213 1.618592 0.208 
 envelope 48.90182 1 48.90182 0.320832 0.573 
stimrate total 9.182045 1 9.182045 0.047885 0.828 
 voicing 781.2082 1 781.2082 1.580499 0.214 
 nasality 408.7002 1 408.7002 0.4549 0.503 
 place 6.1875 1 6.1875 0.051147 0.822 
 manner 47.67364 1 47.67364 0.383422 0.538 
 fricative 149.1136 1 149.1136 0.724089 0.398 
 envelope 155.8145 1 155.8145 1.02226 0.316 
channo total 0.058182 1 0.058182 0.000303 0.986 
 voicing 550.9657 1 550.9657 1.114684 0.295 
 nasality 0.073636 1 0.073636 8.2E-05 0.993 
 place 89.06273 1 89.06273 0.736209 0.394 
 manner 113.2809 1 113.2809 0.911077 0.344 
 fricative 3.665682 1 3.665682 0.0178 0.894 
 envelope 22.55114 1 22.55114 0.147952 0.702 
noise * 
stimrate total 12.33841 1 12.33841 0.064345 0.801 
 voicing 135.4509 1 135.4509 0.274037 0.603 
 nasality 133.0057 1 133.0057 0.148041 0.702 
 place 21.98205 1 21.98205 0.181708 0.671 
 manner 38.57818 1 38.57818 0.31027 0.580 
 fricative 5.113636 1 5.113636 0.024832 0.875 
 envelope 3.840909 1 3.840909 0.025199 0.874 
noise * 
channo total 2.953636 1 2.953636 0.015403 0.902 
 voicing 110.4111 1 110.4111 0.223378 0.638 
 nasality 1132.233 1 1132.233 1.260222 0.266 
 place 102.6327 1 102.6327 0.848381 0.361 
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 manner 0.058182 1 0.058182 0.000468 0.983 
 fricative 88.21114 1 88.21114 0.428349 0.515 
 envelope 146.5475 1 146.5475 0.961461 0.331 
noise total 37.26672 1 37.26672 0.194347 0.661 
 voicing 1797.032 1 1797.032 3.635659 0.061 
 nasality 4621.634 1 4621.634 5.14407 0.027 
 place 137.3334 1 137.3334 1.135223 0.291 
 manner 254.32 1 254.32 2.045403 0.158 
 fricative 333.3213 1 333.3213 1.618592 0.208 
 envelope 48.90182 1 48.90182 0.320832 0.573 
stimrate total 9.182045 1 9.182045 0.047885 0.828 
 voicing 781.2082 1 781.2082 1.580499 0.214 
 nasality 408.7002 1 408.7002 0.4549 0.503 
 place 6.1875 1 6.1875 0.051147 0.822 
 manner 47.67364 1 47.67364 0.383422 0.538 
 fricative 149.1136 1 149.1136 0.724089 0.398 
 envelope 155.8145 1 155.8145 1.02226 0.316 
Error total 11505.23 60 191.7538   
 voicing 29656.77 60 494.2795   
 nasality 53906.35 60 898.4392   
 place 7258.487 60 120.9748   
 manner 7460.24 60 124.3373   
 fricative 12355.97 60 205.9329   
 envelope 9145.302 60 152.4217   
 
 
Table B10. Summary of MANOVA combining all data from all CI users in experiment 3 and “no 
channel interaction” acoustic model conditions from experiment 4, as described in 5.5. Seven 
dependent variables (six feature transmission values and total percentage correct) were entered. 
There were four factors: “noise condition”, “stimulation rate”, “ channel number” and “group”, 
here summarised as “noise”, “stimrate”, “channo” and “group”, respectively. Significant effects 
at the a priori significance level (p≤0.05) are highlighted. Because the factors “stimulation rate” 
and “channel number” overlapped, interactions involving both these factors could not be 
computed. 

Source 
Dependent 
Variable 

Sum of 
Squares 

Degrees of 
Freedom 

Mean 
Square F p 

noise total 604.4302 1 604.4302 3.093962 0.081 
 voicing 3104.016 1 3104.016 6.552052 0.012 
 nasality 5067.214 1 5067.214 4.467881 0.037 
 place 345.3527 1 345.3527 1.907079 0.170 
 manner 1082.033 1 1082.033 5.586805 0.020 
 fricative 225.486 1 225.486 0.520259 0.472 
 envelope 682.7318 1 682.7318 3.204715 0.076 
stimrate total 4.860716 1 4.860716 0.024881 0.875 
 voicing 241.1383 1 241.1383 0.509002 0.477 
 nasality 13.88767 1 13.88767 0.012245 0.912 
 place 18.93831 1 18.93831 0.10458 0.747 
 manner 35.65891 1 35.65891 0.184116 0.669 
 fricative 73.1437 1 73.1437 0.168763 0.682 
 envelope 46.6013 1 46.6013 0.218745 0.641 
channo total 418.2323 1 418.2323 2.140851 0.146 
 voicing 28.26056 1 28.26056 0.059653 0.808 
 nasality 4.090909 1 4.090909 0.003607 0.952 
 place 899.844 1 899.844 4.969045 0.028 
 manner 455.7601 1 455.7601 2.353203 0.128 
 fricative 258.5195 1 258.5195 0.596477 0.442 
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 envelope 132.3701 1 132.3701 0.62134 0.432 
group total 6288.825 1 6288.825 32.19128 0.000 
 voicing 2681.944 1 2681.944 5.66113 0.019 
 nasality 9407.414 1 9407.414 8.294736 0.005 
 place 5173.869 1 5173.869 28.57072 0.000 
 manner 6456.751 1 6456.751 33.33781 0.000 
 fricative 9883.527 1 9883.527 22.80406 0.000 
 envelope 4084.701 1 4084.701 19.17341 0.000 
noise * 
stimrate total 21.60952 1 21.60952 0.110615 0.740 
 voicing 105.5045 1 105.5045 0.222702 0.638 
 nasality 771.6535 1 771.6535 0.680385 0.411 
 place 4.266835 1 4.266835 0.023562 0.878 
 manner 51.52752 1 51.52752 0.266049 0.607 
 fricative 1012.794 1 1012.794 2.336799 0.129 
 envelope 10.85456 1 10.85456 0.050951 0.822 
noise * 
channo total 7.740626 1 7.740626 0.039623 0.843 
 voicing 18.725 1 18.725 0.039525 0.843 
 nasality 666.072 1 666.072 0.587291 0.445 
 place 7.382227 1 7.382227 0.040766 0.840 
 manner 0.145102 1 0.145102 0.000749 0.978 
 fricative 448.0209 1 448.0209 1.033709 0.312 
 envelope 47.4301 1 47.4301 0.222635 0.638 
noise * 
group total 0.545135 1 0.545135 0.00279 0.958 
 voicing 765.1299 1 765.1299 1.61506 0.207 
 nasality 1792.75 1 1792.75 1.58071 0.211 
 place 2.129601 1 2.129601 0.01176 0.914 
 manner 61.69521 1 61.69521 0.318548 0.574 
 fricative 88.25043 1 88.25043 0.203618 0.653 
 envelope 53.94478 1 53.94478 0.253215 0.616 
stimrate * 
group total 33.68948 1 33.68948 0.17245 0.679 
 voicing 260.8703 1 260.8703 0.550653 0.460 
 nasality 2256.486 1 2256.486 1.989597 0.161 
 place 3.556315 1 3.556315 0.019638 0.889 
 manner 4.466527 1 4.466527 0.023062 0.880 
 fricative 367.5697 1 367.5697 0.848086 0.359 
 envelope 144.4093 1 144.4093 0.677851 0.412 
noise * 
stimrate * 
group total 31.73085 1 31.73085 0.162424 0.688 
 voicing 657.6273 1 657.6273 1.38814 0.241 
 nasality 274.3112 1 274.3112 0.241867 0.624 
 place 32.37983 1 32.37983 0.178805 0.673 
 manner 56.79483 1 56.79483 0.293246 0.589 
 fricative 19.44652 1 19.44652 0.044869 0.833 
 envelope 57.31015 1 57.31015 0.269011 0.605 
channo * 
group total 255.2418 1 255.2418 1.306534 0.256 
 voicing 344.6256 1 344.6256 0.727446 0.396 
 nasality 9.576409 1 9.576409 0.008444 0.927 
 place 757.644 1 757.644 4.183799 0.043 
 manner 35.9641 1 35.9641 0.185692 0.667 
 fricative 86.58455 1 86.58455 0.199775 0.656 
 envelope 85.7501 1 85.7501 0.402507 0.527 
noise * total 113.8081 1 113.8081 0.582562 0.447 
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channo * 
group 
 voicing 465.697 1 465.697 0.983007 0.324 
 nasality 160.8255 1 160.8255 0.141804 0.707 
 place 41.28223 1 41.28223 0.227965 0.634 
 manner 3.679102 1 3.679102 0.018996 0.891 
 fricative 8.19092 1 8.19092 0.018899 0.891 
 envelope 1.215102 1 1.215102 0.005704 0.940 
Error total 20707.95 106 195.358   
 voicing 50217.2 106 473.7472   
 nasality 120219.1 106 1134.143   
 place 19195.53 106 181.0899   
 manner 20529.71 106 193.6765   
 fricative 45941.56 106 433.4109   
 envelope 22582.22 106 213.0398   
 
 
Table B11. Summary of MANOVA combining all data from all CI users in experiment 3 and 
“1mm channel interaction” acoustic model conditions from experiment 4, as described in 5.5. 
Seven dependent variables (six feature transmission values and total percentage correct) were 
entered. There were four factors: “noise condition”, “stimulation rate”, “ channel number” and 
“group”, here summarised as “noise”, “stimrate”, “channo” and “group”, respectively. 
Significant effects at the a priori significance level (p≤0.05) are highlighted. Because the factors 
“stimulation rate” and “channel number” overlapped, interactions involving both these factors 
could not be computed. 

Source 
Dependent 
Variable 

Sum of 
Squares 

Degrees of 
Freedom 

Mean 
Square F p 

noise total 8508.466 11 773.4969 3.903732 0.000 
 voicing 5940.043 11 540.0039 1.220641 0.282 
 nasality 33507.07 11 3046.097 3.144266 0.001 
 place 8994.512 11 817.6829 4.342215 0.000 
 manner 9303.186 11 845.7442 4.289011 0.000 
 fricative 12511.27 11 1137.388 2.573669 0.006 
 envelope 6122.306 11 556.5733 2.901879 0.002 
stimrate total 319436.2 1 319436.2 1612.151 0.000 
 voicing 295755.2 1 295755.2 668.5339 0.000 
 nasality 433633.4 1 433633.4 447.6084 0.000 
 place 250375.7 1 250375.7 1329.592 0.000 
 manner 615992.8 1 615992.8 3123.876 0.000 
 fricative 419736.6 1 419736.6 949.7751 0.000 
 envelope 558686.7 1 558686.7 2912.898 0.000 
channo total 285.2128 1 285.2128 1.43943 0.233 
 voicing 1263.37 1 1263.37 2.85576 0.094 
 nasality 10912.1 1 10912.1 11.26377 0.001 
 place 19.95562 1 19.95562 0.105972 0.745 
 manner 634.4333 1 634.4333 3.217393 0.076 
 fricative 30.57287 1 30.57287 0.06918 0.793 
 envelope 468.6815 1 468.6815 2.443626 0.121 
group total 89.93436 1 89.93436 0.453886 0.502 
 voicing 245.0572 1 245.0572 0.553935 0.458 
 nasality 100.3073 1 100.3073 0.10354 0.748 
 place 22.0885 1 22.0885 0.117299 0.733 
 manner 0.262663 1 0.262663 0.001332 0.971 
 fricative 597.9064 1 597.9064 1.352936 0.247 
 envelope 156.6057 1 156.6057 0.816515 0.368 
noise * 
stimrate total 608.004 1 608.004 3.068512 0.083 
 voicing 754.8011 1 754.8011 1.706175 0.194 
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 nasality 26.81018 1 26.81018 0.027674 0.868 
 place 799.656 1 799.656 4.246485 0.042 
 manner 306.446 1 306.446 1.554076 0.215 
 fricative 1431.995 1 1431.995 3.240302 0.075 
 envelope 232.7804 1 232.7804 1.213678 0.273 
noise * 
channo total 5586.395 1 5586.395 28.19377 0.000 
 voicing 1956.422 1 1956.422 4.422354 0.038 
 nasality 13997.76 1 13997.76 14.44888 0.000 
 place 4907.167 1 4907.167 26.05897 0.000 
 manner 7124.482 1 7124.482 36.13029 0.000 
 fricative 7347.47 1 7347.47 16.62577 0.000 
 envelope 4924.709 1 4924.709 25.6766 0.000 
noise * 
group total 7.181239 1 7.181239 0.036243 0.849 
 voicing 175.6843 1 175.6843 0.397122 0.530 
 nasality 85.95084 1 85.95084 0.088721 0.766 
 place 46.15925 1 46.15925 0.245124 0.622 
 manner 0.469413 1 0.469413 0.002381 0.961 
 fricative 121.2775 1 121.2775 0.274425 0.601 
 envelope 68.33327 1 68.33327 0.356278 0.552 
stimrate * 
group total 44.70013 1 44.70013 0.225595 0.636 
 voicing 37.17358 1 37.17358 0.084028 0.772 
 nasality 56.00455 1 56.00455 0.057809 0.810 
 place 125.2545 1 125.2545 0.66515 0.417 
 manner 6.006011 1 6.006011 0.030458 0.862 
 fricative 262.1456 1 262.1456 0.59318 0.443 
 envelope 44.28041 1 44.28041 0.230871 0.632 
noise * 
stimrate * 
group total 0 0 . . . 
 voicing 56.11813 1 56.11813 0.126851 0.722 
 nasality 82.16097 1 82.16097 0.084809 0.771 
 place 160.2042 1 160.2042 0.850747 0.358 
 manner 242.1429 1 242.1429 1.227976 0.270 
 fricative 124.3514 1 124.3514 0.281381 0.597 
 envelope 139.8258 1 139.8258 0.729028 0.395 
channo * 
group total 2.173872 1 2.173872 0.010971 0.917 
 voicing 225.9446 1 225.9446 0.510732 0.476 
 nasality 1139.773 1 1139.773 1.176505 0.281 
 place 2.364816 1 2.364816 0.012558 0.911 
 manner 57.34151 1 57.34151 0.290795 0.591 
 fricative 10.70854 1 10.70854 0.024231 0.877 
 envelope 40.06052 1 40.06052 0.208869 0.649 
noise * 
channo * 
group total 13.42631 1 13.42631 0.067761 0.795 
 voicing 513.5292 1 513.5292 1.160797 0.284 
 nasality 2874.243 1 2874.243 2.966873 0.088 
 place 10.04487 1 10.04487 0.053342 0.818 
 manner 196.8231 1 196.8231 0.998146 0.320 
 fricative 269.0257 1 269.0257 0.608748 0.437 
 envelope 6.752606 1 6.752606 0.035207 0.852 
Error total 407.3655 1 407.3655 2.055917 0.155 
 voicing 12.91314 1 12.91314 0.029189 0.865 
 nasality 0.003682 1 0.003682 3.8E-06 0.998 
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 place 665.956 1 665.956 3.536486 0.063 
 manner 4.640011 1 4.640011 0.023531 0.878 
 fricative 965.2364 1 965.2364 2.184126 0.142 
 envelope 30.34041 1 30.34041 0.15819 0.692 
 
 
Table B12. Summary of MANOVA combining all data from all CI users in experiment 3 and 
“3.3mm channel interaction” acoustic model conditions from experiment 4, as described in 5.5. 
Seven dependent variables (six feature transmission values and total percentage correct) were 
entered. There were four factors: “noise condition”, “stimulation rate”, “ channel number” and 
“group”, here summarised as “noise”, “stimrate”, “channo” and “group”, respectively. 
Significant effects at the a priori significance level (p≤0.05) are highlighted. Because the factors 
“stimulation rate” and “channel number” overlapped, interactions involving both these factors 
could not be computed. 

Source 
Dependent 
Variable 

Sum of 
Squares 

Degrees of 
Freedom 

Mean 
Square F p 

noise total 278.7465 1 278.7465 1.158247 0.284 
 voicing 1767.247 1 1767.247 3.586055 0.061 
 nasality 10339.96 1 10339.96 10.32972 0.002 
 place 0.669609 1 0.669609 0.003289 0.954 
 manner 955.5835 1 955.5835 4.074947 0.046 
 fricative 221.2748 1 221.2748 0.488077 0.486 
 envelope 456.1596 1 456.1596 2.085471 0.152 
stimrate total 4.023364 1 4.023364 0.016718 0.897 
 voicing 351.4404 1 351.4404 0.713135 0.400 
 nasality 73.16496 1 73.16496 0.073092 0.787 
 place 2.184881 1 2.184881 0.010732 0.918 
 manner 73.90157 1 73.90157 0.315142 0.576 
 fricative 480.334 1 480.334 1.059496 0.306 
 envelope 311.7 1 311.7 1.42503 0.235 
channo total 5.755335 1 5.755335 0.023915 0.877 
 voicing 766.5156 1 766.5156 1.555395 0.215 
 nasality 5.648011 1 5.648011 0.005642 0.940 
 place 57.25601 1 57.25601 0.281226 0.597 
 manner 219.5003 1 219.5003 0.936027 0.336 
 fricative 21.819 1 21.819 0.048127 0.827 
 envelope 184.098 1 184.098 0.841659 0.361 
group total 1406.757 1 1406.757 5.845353 0.017 
 voicing 0.712547 1 0.712547 0.001446 0.970 
 nasality 2951.498 1 2951.498 2.948575 0.089 
 place 2013.796 1 2013.796 9.891228 0.002 
 manner 3141.25 1 3141.25 13.39541 0.000 
 fricative 3702.905 1 3702.905 8.16768 0.005 
 envelope 1301.949 1 1301.949 5.952253 0.016 
noise * 
stimrate total 3.329308 1 3.329308 0.013834 0.907 
 voicing 105.7088 1 105.7088 0.214502 0.644 
 nasality 886.6878 1 886.6878 0.88581 0.349 
 place 1.638636 1 1.638636 0.008049 0.929 
 manner 10.63095 1 10.63095 0.045334 0.832 
 fricative 149.2251 1 149.2251 0.329153 0.567 
 envelope 45.22759 1 45.22759 0.206771 0.650 
noise * 
channo total 7.784456 1 7.784456 0.032346 0.858 
 voicing 400.0955 1 400.0955 0.811864 0.370 
 nasality 848.8801 1 848.8801 0.848039 0.359 
 place 24.42223 1 24.42223 0.119955 0.730 
 manner 1.719557 1 1.719557 0.007333 0.932 
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 fricative 32.64801 1 32.64801 0.072013 0.789 
 envelope 121.2874 1 121.2874 0.554502 0.458 
noise * 
group total 74.43879 1 74.43879 0.309308 0.579 
 voicing 195.6059 1 195.6059 0.396919 0.530 
 nasality 140.1777 1 140.1777 0.140039 0.709 
 place 265.8875 1 265.8875 1.305968 0.256 
 manner 96.75451 1 96.75451 0.412596 0.522 
 fricative 85.62332 1 85.62332 0.188864 0.665 
 envelope 146.7964 1 146.7964 0.671124 0.414 
stimrate * 
group total 36.03762 1 36.03762 0.149743 0.700 
 voicing 328.4755 1 328.4755 0.666535 0.416 
 nasality 1240.605 1 1240.605 1.239376 0.268 
 place 22.65286 1 22.65286 0.111265 0.739 
 manner 0.261814 1 0.261814 0.001116 0.973 
 fricative 33.73278 1 33.73278 0.074406 0.786 
 envelope 1.412601 1 1.412601 0.006458 0.936 
noise * 
stimrate * 
group total 7.890758 1 7.890758 0.032788 0.857 
 voicing 657.1174 1 657.1174 1.333407 0.251 
 nasality 212.1011 1 212.1011 0.211891 0.646 
 place 24.05694 1 24.05694 0.118161 0.732 
 manner 131.1938 1 131.1938 0.559457 0.456 
 fricative 231.0046 1 231.0046 0.509538 0.477 
 envelope 17.13816 1 17.13816 0.078352 0.780 
channo * 
group total 4.307335 1 4.307335 0.017898 0.894 
 voicing 14.48456 1 14.48456 0.029392 0.864 
 nasality 7.511011 1 7.511011 0.007504 0.931 
 place 25.95601 1 25.95601 0.127489 0.722 
 manner 0.287284 1 0.287284 0.001225 0.972 
 fricative 4.420001 1 4.420001 0.009749 0.922 
 envelope 51.79801 1 51.79801 0.23681 0.628 
noise * 
channo * 
group total 25.96746 1 25.96746 0.1079 0.743 
 voicing 34.86746 1 34.86746 0.070752 0.791 
 nasality 256.2841 1 256.2841 0.25603 0.614 
 place 74.82223 1 74.82223 0.367507 0.546 
 manner 0.975557 1 0.975557 0.00416 0.949 
 fricative 335.426 1 335.426 0.739866 0.392 
 envelope 27.33638 1 27.33638 0.124976 0.724 
Error total 25510.22 106 240.6625   
 voicing 52237.95 106 492.8108   
 nasality 106105.1 106 1000.991   
 place 21580.98 106 203.5942   
 manner 24857.22 106 234.5021   
 fricative 48056.23 106 453.3607   
 envelope 23185.61 106 218.7322   
 
 
Table B13. Summary of MANOVA combining all data from CI users with baseline consonant 
recognition scores of 50% or more from experiment 3 and “no channel interaction” acoustic 
model conditions from experiment 4, as described in 5.5. Seven dependent variables (six feature 
transmission values and total percentage correct) were entered. There were four factors: “noise 
condition”, “stimulation rate”, “ channel number” and “group”, here summarised as “noise”, 
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“stimrate”, “channo” and “group”, respectively. Significant effects at the a priori significance 
level (p≤0.05) are highlighted. Because the factors “stimulation rate” and “channel number” 
overlapped, interactions involving both these factors could not be computed. 

Source 
Dependent 
Variable 

Sum of 
Squares 

Degrees of 
Freedom 

Mean 
Square F p 

noise total 182.38 1 182.38 1.423207 0.236 
 voicing 540.0164 1 540.0164 1.271633 0.263 
 nasality 3030.216 1 3030.216 2.97977 0.088 
 place 120.2124 1 120.2124 0.872932 0.353 
 manner 216.5491 1 216.5491 3.062466 0.084 
 fricative 142.3217 1 142.3217 0.778912 0.380 
 envelope 47.14907 1 47.14907 0.335327 0.564 
stimrate total 140.0997 1 140.0997 1.093272 0.299 
 voicing 978.131 1 978.131 2.303306 0.133 
 nasality 0.980641 1 0.980641 0.000964 0.975 
 place 71.68766 1 71.68766 0.520566 0.473 
 manner 24.69655 1 24.69655 0.349262 0.556 
 fricative 109.9948 1 109.9948 0.60199 0.440 
 envelope 27.38642 1 27.38642 0.194774 0.660 
channo total 86.50092 1 86.50092 0.675012 0.414 
 voicing 6.426182 1 6.426182 0.015132 0.902 
 nasality 4.779003 1 4.779003 0.004699 0.946 
 place 394.0946 1 394.0946 2.861748 0.095 
 manner 128.9791 1 128.9791 1.82404 0.181 
 fricative 41.4991 1 41.4991 0.22712 0.635 
 envelope 1.095571 1 1.095571 0.007792 0.930 
group total 115.6138 1 115.6138 0.902195 0.345 
 voicing 125.3719 1 125.3719 0.295226 0.588 
 nasality 40.43878 1 40.43878 0.039766 0.842 
 place 131.2005 1 131.2005 0.952723 0.332 
 manner 8.077138 1 8.077138 0.114228 0.736 
 fricative 34.36444 1 34.36444 0.188073 0.666 
 envelope 10.77407 1 10.77407 0.076626 0.783 
noise * 
stimrate total 11.79105 1 11.79105 0.092012 0.762 
 voicing 303.6309 1 303.6309 0.714991 0.400 
 nasality 335.2467 1 335.2467 0.329666 0.567 
 place 34.47669 1 34.47669 0.250355 0.618 
 manner 33.50075 1 33.50075 0.473772 0.493 
 fricative 591.4684 1 591.4684 3.237047 0.076 
 envelope 0.16416 1 0.16416 0.001168 0.973 
noise * 
channo total 7.866182 1 7.866182 0.061384 0.805 
 voicing 23.72756 1 23.72756 0.055874 0.814 
 nasality 184.6931 1 184.6931 0.181618 0.671 
 place 0.982227 1 0.982227 0.007133 0.933 
 manner 0.025102 1 0.025102 0.000355 0.985 
 fricative 443.892 1 443.892 2.429376 0.123 
 envelope 39.63132 1 39.63132 0.28186 0.597 
noise * 
group total 35.28184 1 35.28184 0.275323 0.601 
 voicing 2002.144 1 2002.144 4.714657 0.033 
 nasality 994.0442 1 994.0442 0.977495 0.326 
 place 28.93229 1 28.93229 0.210094 0.648 
 manner 32.50911 1 32.50911 0.459748 0.500 
 fricative 1013.406 1 1013.406 5.546268 0.021 
 envelope 71.40713 1 71.40713 0.507852 0.478 
stimrate * total 79.36707 1 79.36707 0.619343 0.434 
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group 
 voicing 30.35327 1 30.35327 0.071476 0.790 
 nasality 1654.439 1 1654.439 1.626896 0.206 
 place 109.6727 1 109.6727 0.796397 0.375 
 manner 65.72964 1 65.72964 0.929557 0.338 
 fricative 3.425266 1 3.425266 0.018746 0.891 
 envelope 1.023545 1 1.023545 0.00728 0.932 
noise * 
stimrate * 
group total 24.28832 1 24.28832 0.189534 0.664 
 voicing 895.6711 1 895.6711 2.10913 0.150 
 nasality 84.40874 1 84.40874 0.083004 0.774 
 place 0.19036 1 0.19036 0.001382 0.970 
 manner 36.95572 1 36.95572 0.522633 0.472 
 fricative 26.51737 1 26.51737 0.145127 0.704 
 envelope 15.07495 1 15.07495 0.107214 0.744 
channo * 
group total 443.324 1 443.324 3.45949 0.066 
 voicing 72.33556 1 72.33556 0.170336 0.681 
 nasality 9.482753 1 9.482753 0.009325 0.923 
 place 788.6996 1 788.6996 5.727203 0.019 
 manner 130.6691 1 130.6691 1.84794 0.178 
 fricative 216.4147 1 216.4147 1.184416 0.280 
 envelope 0.679321 1 0.679321 0.004831 0.945 
noise * 
channo * 
group total 70.62556 1 70.62556 0.551128 0.460 
 voicing 90.36818 1 90.36818 0.212799 0.646 
 nasality 341.6906 1 341.6906 0.336002 0.564 
 place 43.92223 1 43.92223 0.318945 0.574 
 manner 1.260102 1 1.260102 0.017821 0.894 
 fricative 33.81392 1 33.81392 0.18506 0.668 
 envelope 0.131321 1 0.131321 0.000934 0.976 
Error total 10508.07 82 128.1472   
 voicing 34822.44 82 424.6638   
 nasality 83388.24 82 1016.93   
 place 11292.31 82 137.7111   
 manner 5798.277 82 70.71069   
 fricative 14982.92 82 182.7185   
 envelope 11529.71 82 140.6062   
 
 
Table B14. Summary of MANOVA combining all data from CI users with baseline consonant 
recognition scores of 50% or more from experiment 3 and “1mm channel interaction” acoustic 
model conditions from experiment 4, as described in 5.5. Seven dependent variables (six feature 
transmission values and total percentage correct) were entered. There were four factors: “noise 
condition”, “stimulation rate”, “ channel number” and “group”, here summarised as “noise”, 
“stimrate”, “channo” and “group”, respectively. Significant effects at the a priori significance 
level (p≤0.05) are highlighted. Because the factors “stimulation rate” and “channel number” 
overlapped, interactions involving both these factors could not be computed. 

Source 
Dependent 
Variable 

Sum of 
Squares 

Degrees of 
Freedom 

Mean 
Square F p 

noise total 52.25497 1 52.25497 0.39663 0.531 
 voicing 46.1292 1 46.1292 0.120086 0.730 
 nasality 6753.733 1 6753.733 8.408887 0.005 
 place 0.298582 1 0.298582 0.002031 0.964 
 manner 71.09683 1 71.09683 0.944799 0.334 
 fricative 822.6919 1 822.6919 4.246494 0.043 
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 envelope 10.32634 1 10.32634 0.091265 0.763 
stimrate total 35.00579 1 35.00579 0.265704 0.608 
 voicing 34.97231 1 34.97231 0.091042 0.764 
 nasality 103.7584 1 103.7584 0.129187 0.720 
 place 66.97468 1 66.97468 0.455472 0.502 
 manner 88.5371 1 88.5371 1.176562 0.281 
 fricative 5.970871 1 5.970871 0.03082 0.861 
 envelope 0.368869 1 0.368869 0.00326 0.955 
channo total 164.0046 1 164.0046 1.244843 0.268 
 voicing 253.754 1 253.754 0.660587 0.419 
 nasality 23.18878 1 23.18878 0.028872 0.865 
 place 339.2647 1 339.2647 2.307225 0.133 
 manner 66.49501 1 66.49501 0.883646 0.350 
 fricative 604.0759 1 604.0759 3.118062 0.081 
 envelope 17.41641 1 17.41641 0.153928 0.696 
group total 49.48048 1 49.48048 0.375571 0.542 
 voicing 301.3049 1 301.3049 0.784375 0.378 
 nasality 563.7636 1 563.7636 0.701927 0.405 
 place 98.458 1 98.458 0.66958 0.416 
 manner 37.78104 1 37.78104 0.502069 0.481 
 fricative 290.0853 1 290.0853 1.497335 0.225 
 envelope 70.40114 1 70.40114 0.622211 0.433 
noise * 
stimrate total 3.358245 1 3.358245 0.02549 0.874 
 voicing 394.0685 1 394.0685 1.025862 0.314 
 nasality 139.784 1 139.784 0.174041 0.678 
 place 1.779497 1 1.779497 0.012102 0.913 
 manner 0.257115 1 0.257115 0.003417 0.954 
 fricative 54.66665 1 54.66665 0.282173 0.597 
 envelope 19.79137 1 19.79137 0.174918 0.677 
noise * 
channo total 36.69556 1 36.69556 0.27853 0.599 
 voicing 11.53473 1 11.53473 0.030028 0.863 
 nasality 200.3114 1 200.3114 0.249402 0.619 
 place 64.85592 1 64.85592 0.441063 0.508 
 manner 6.341011 1 6.341011 0.084265 0.772 
 fricative 286.3682 1 286.3682 1.478148 0.228 
 envelope 37.22841 1 37.22841 0.329028 0.568 
noise * 
group total 0.113033 1 0.113033 0.000858 0.977 
 voicing 800.8289 1 800.8289 2.084766 0.153 
 nasality 19.31401 1 19.31401 0.024047 0.877 
 place 37.59768 1 37.59768 0.255689 0.614 
 manner 0.338768 1 0.338768 0.004502 0.947 
 fricative 227.4455 1 227.4455 1.174007 0.282 
 envelope 23.01331 1 23.01331 0.203394 0.653 
stimrate * 
group total 219.8881 1 219.8881 1.669015 0.200 
 voicing 953.0018 1 953.0018 2.480911 0.119 
 nasality 870.1518 1 870.1518 1.083402 0.301 
 place 115.6813 1 115.6813 0.786709 0.378 
 manner 13.45077 1 13.45077 0.178746 0.674 
 fricative 218.5112 1 218.5112 1.12789 0.291 
 envelope 31.78211 1 31.78211 0.280893 0.598 
noise * 
stimrate * 
group total 11.06932 1 11.06932 0.084019 0.773 
 voicing 756.3388 1 756.3388 1.968946 0.164 
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 nasality 1546.078 1 1546.078 1.924979 0.169 
 place 45.82424 1 45.82424 0.311635 0.578 
 manner 129.0505 1 129.0505 1.71494 0.194 
 fricative 138.6961 1 138.6961 0.715909 0.400 
 envelope 0.0259 1 0.0259 0.000229 0.988 
channo * 
group total 603.2477 1 603.2477 4.578826 0.035 
 voicing 99.19398 1 99.19398 0.258228 0.613 
 nasality 0.202526 1 0.202526 0.000252 0.987 
 place 710.2822 1 710.2822 4.830389 0.031 
 manner 67.71001 1 67.71001 0.899792 0.346 
 fricative 1078.927 1 1078.927 5.569101 0.021 
 envelope 15.60891 1 15.60891 0.137953 0.711 
noise * 
channo * 
group total 135.8837 1 135.8837 1.031397 0.313 
 voicing 64.50348 1 64.50348 0.167919 0.683 
 nasality 85.71889 1 85.71889 0.106726 0.745 
 place 187.4059 1 187.4059 1.274484 0.262 
 manner 12.12601 1 12.12601 0.161141 0.689 
 fricative 99.22756 1 99.22756 0.512183 0.476 
 envelope 0.028409 1 0.028409 0.000251 0.987 
Error total 10803.27 82 131.7472   
 voicing 31498.97 82 384.1338   
 nasality 65859.62 82 803.1661   
 place 12057.65 82 147.0445   
 manner 6170.559 82 75.25072   
 fricative 15886.22 82 193.7344   
 envelope 9278.031 82 113.1467   
 
 
Table B15. Summary of MANOVA combining all data from CI users with baseline consonant 
recognition scores of 50% or more from experiment 3 and “3.3mm channel interaction” acoustic 
model conditions from experiment 4, as described in 5.5. Seven dependent variables (six feature 
transmission values and total percentage correct) were entered. There were four factors: “noise 
condition”, “stimulation rate”, “ channel number” and “group”, here summarised as “noise”, 
“stimrate”, “channo” and “group”, respectively. Significant effects at the a priori significance 
level (p≤0.05) are highlighted. Because the factors “stimulation rate” and “channel number” 
overlapped, interactions involving both these factors could not be computed. 

Source 
Dependent 
Variable 

Sum of 
Squares 

Degrees of 
Freedom 

Mean 
Square F p 

noise total 50.00983 1 50.00983 0.267845 0.606 
 voicing 146.1108 1 146.1108 0.325191 0.570 
 nasality 6386.893 1 6386.893 7.560178 0.007 
 place 12.40246 1 12.40246 0.074354 0.786 
 manner 171.6018 1 171.6018 1.389655 0.242 
 fricative 145.0758 1 145.0758 0.695783 0.407 
 envelope 8.856889 1 8.856889 0.059858 0.807 
stimrate total 143.9548 1 143.9548 0.771001 0.382 
 voicing 11.55069 1 11.55069 0.025708 0.873 
 nasality 80.95275 1 80.95275 0.095824 0.758 
 place 116.7274 1 116.7274 0.699797 0.405 
 manner 8.03468 1 8.03468 0.065066 0.799 
 fricative 0.145397 1 0.145397 0.000697 0.979 
 envelope 12.77146 1 12.77146 0.086314 0.770 
channo total 32.97628 1 32.97628 0.176616 0.675 
 voicing 259.4237 1 259.4237 0.577386 0.450 
 nasality 6.155636 1 6.155636 0.007286 0.932 
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 place 1.344727 1 1.344727 0.008062 0.929 
 manner 34.96041 1 34.96041 0.283114 0.596 
 fricative 9.389557 1 9.389557 0.045032 0.832 
 envelope 7.65023 1 7.65023 0.051703 0.821 
group total 544.171 1 544.171 2.914501 0.092 
 voicing 2781.096 1 2781.096 6.189744 0.015 
 nasality 808.2145 1 808.2145 0.956685 0.331 
 place 112.4815 1 112.4815 0.674342 0.414 
 manner 288.249 1 288.249 2.33428 0.130 
 fricative 1391.849 1 1391.849 6.675302 0.012 
 envelope 376.7263 1 376.7263 2.546056 0.114 
noise * 
stimrate total 1.292895 1 1.292895 0.006925 0.934 
 voicing 303.9128 1 303.9128 0.676403 0.413 
 nasality 397.4147 1 397.4147 0.470421 0.495 
 place 27.38219 1 27.38219 0.16416 0.686 
 manner 6.768534 1 6.768534 0.054813 0.815 
 fricative 70.09435 1 70.09435 0.336172 0.564 
 envelope 10.20955 1 10.20955 0.069 0.793 
noise * 
channo total 3.38148 1 3.38148 0.018111 0.893 
 voicing 67.10114 1 67.10114 0.149344 0.700 
 nasality 267.7422 1 267.7422 0.316927 0.575 
 place 8.094727 1 8.094727 0.048529 0.826 
 manner 0.380557 1 0.380557 0.003082 0.956 
 fricative 67.10114 1 67.10114 0.321817 0.572 
 envelope 94.74609 1 94.74609 0.640329 0.426 
noise * 
group total 0.243247 1 0.243247 0.001303 0.971 
 voicing 1128.604 1 1128.604 2.511876 0.117 
 nasality 44.32665 1 44.32665 0.05247 0.819 
 place 82.93711 1 82.93711 0.497219 0.483 
 manner 16.69339 1 16.69339 0.135185 0.714 
 fricative 1006.105 1 1006.105 4.825276 0.031 
 envelope 20.79186 1 20.79186 0.140519 0.709 
stimrate * 
group total 76.51135 1 76.51135 0.409784 0.524 
 voicing 1114.614 1 1114.614 2.48074 0.119 
 nasality 941.7011 1 941.7011 1.114693 0.294 
 place 66.18283 1 66.18283 0.396775 0.531 
 manner 104.9066 1 104.9066 0.849548 0.359 
 fricative 161.7958 1 161.7958 0.775972 0.381 
 envelope 96.40542 1 96.40542 0.651543 0.422 
noise * 
stimrate * 
group total 6.925125 1 6.925125 0.03709 0.848 
 voicing 895.1871 1 895.1871 1.992372 0.162 
 nasality 57.18237 1 57.18237 0.067687 0.795 
 place 0.04104 1 0.04104 0.000246 0.988 
 manner 85.84882 1 85.84882 0.695216 0.407 
 fricative 116.6051 1 116.6051 0.559238 0.457 
 envelope 1.193722 1 1.193722 0.008068 0.929 
channo * 
group total 36.14628 1 36.14628 0.193594 0.661 
 voicing 102.7506 1 102.7506 0.228687 0.634 
 nasality 7.753136 1 7.753136 0.009177 0.924 
 place 88.20223 1 88.20223 0.528784 0.469 
 manner 35.84291 1 35.84291 0.290261 0.592 
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 fricative 27.09018 1 27.09018 0.129924 0.719 
 envelope 6.46898 1 6.46898 0.04372 0.835 
noise * 
channo * 
group total 14.14023 1 14.14023 0.075733 0.784 
 voicing 12.64801 1 12.64801 0.02815 0.867 
 nasality 451.8822 1 451.8822 0.534894 0.467 
 place 71.93473 1 71.93473 0.431258 0.513 
 manner 0.120557 1 0.120557 0.000976 0.975 
 fricative 349.398 1 349.398 1.675711 0.199 
 envelope 14.44609 1 14.44609 0.097632 0.755 
Error total 15310.35 82 186.7116   
 voicing 36843.18 82 449.3071   
 nasality 69274.2 82 844.8073   
 place 13677.76 82 166.802   
 manner 10125.79 82 123.4852   
 fricative 17097.6 82 208.5073   
 envelope 12133.1 82 147.9647   
 
 
Table B16. Summary of MANOVA combining all data from CI users with baseline consonant 
recognition scores of less than 50% from experiment 3 and “no channel interaction” acoustic 
model conditions from experiment 4, as described in 5.5. Seven dependent variables (six feature 
transmission values and total percentage correct) were entered. There were four factors: “noise 
condition”, “stimulation rate”, “ channel number” and “group”, here summarised as “noise”, 
“stimrate”, “channo” and “group”, respectively. Significant effects at the a priori significance 
level (p≤0.05) are highlighted. Because the factors “stimulation rate” and “channel number” 
overlapped, interactions involving both these factors could not be computed. 

Source 
Dependent 
Variable 

Sum of 
Squares 

Degrees of 
Freedom 

Mean 
Square F p 

noise total 693.4384 1 693.4384 6.789389 0.011 
 voicing 4359.032 1 4359.032 10.55259 0.002 
 nasality 3460.321 1 3460.321 3.114218 0.082 
 place 392.8727 1 392.8727 5.262372 0.024 
 manner 1521.056 1 1521.056 23.37019 0.000 
 fricative 1433.889 1 1433.889 7.060545 0.010 
 envelope 1301.201 1 1301.201 8.705588 0.004 
stimrate total 129.808 1 129.808 1.270938 0.263 
 voicing 7.832742 1 7.832742 0.018962 0.891 
 nasality 5.573367 1 5.573367 0.005016 0.944 
 place 139.1964 1 139.1964 1.86448 0.176 
 manner 86.54697 1 86.54697 1.329746 0.252 
 fricative 288.0903 1 288.0903 1.418572 0.237 
 envelope 158.515 1 158.515 1.060533 0.306 
channo total 609.2164 1 609.2164 5.964779 0.017 
 voicing 147.2546 1 147.2546 0.356482 0.552 
 nasality 0.958367 1 0.958367 0.000863 0.977 
 place 842.98 1 842.98 11.29138 0.001 
 manner 569.4399 1 569.4399 8.749127 0.004 
 fricative 416.5802 1 416.5802 2.051262 0.156 
 envelope 350.4012 1 350.4012 2.344334 0.130 
group total 14450.14 1 14450.14 141.4799 0.000 
 voicing 9490.776 1 9490.776 22.97582 0.000 
 nasality 24221.39 1 24221.39 21.79876 0.000 
 place 11458.21 1 11458.21 153.4781 0.000 
 manner 17186.73 1 17186.73 264.0646 0.000 
 fricative 29490.3 1 29490.3 145.2118 0.000 
 envelope 10617.27 1 10617.27 71.03404 0.000 
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noise * 
stimrate total 10.86983 1 10.86983 0.106425 0.745 
 voicing 2.176379 1 2.176379 0.005269 0.942 
 nasality 746.3537 1 746.3537 0.671703 0.415 
 place 9.794182 1 9.794182 0.131189 0.718 
 manner 19.34697 1 19.34697 0.297255 0.587 
 fricative 566.2861 1 566.2861 2.788422 0.099 
 envelope 12.75464 1 12.75464 0.085334 0.771 
noise * 
channo total 2.497515 1 2.497515 0.024453 0.876 
 voicing 172.1253 1 172.1253 0.416691 0.520 
 nasality 841.5115 1 841.5115 0.757343 0.387 
 place 12.68523 1 12.68523 0.169914 0.681 
 manner 0.710186 1 0.710186 0.010912 0.917 
 fricative 152.112 1 152.112 0.749007 0.389 
 envelope 21.70923 1 21.70923 0.145244 0.704 
noise * 
group total 59.25261 1 59.25261 0.580137 0.449 
 voicing 0.753296 1 0.753296 0.001824 0.966 
 nasality 1316.536 1 1316.536 1.184855 0.280 
 place 17.28874 1 17.28874 0.231576 0.632 
 manner 377.6387 1 377.6387 5.802209 0.018 
 fricative 353.0904 1 353.0904 1.738635 0.191 
 envelope 457.6452 1 457.6452 3.061842 0.084 
stimrate * 
group total 201.9667 1 201.9667 1.977436 0.164 
 voicing 761.8527 1 761.8527 1.844337 0.178 
 nasality 1803.621 1 1803.621 1.623222 0.206 
 place 97.36705 1 97.36705 1.304192 0.257 
 manner 39.46964 1 39.46964 0.606429 0.438 
 fricative 639.4623 1 639.4623 3.148745 0.080 
 envelope 277.357 1 277.357 1.855637 0.177 
noise * 
stimrate * 
group total 22.5885 1 22.5885 0.221162 0.639 
 voicing 182.543 1 182.543 0.441911 0.508 
 nasality 343.6577 1 343.6577 0.309285 0.580 
 place 84.67418 1 84.67418 1.134177 0.290 
 manner 21.89097 1 21.89097 0.336343 0.564 
 fricative 20.90076 1 20.90076 0.102916 0.749 
 envelope 47.87131 1 47.87131 0.320279 0.573 
channo * 
group total 11.28438 1 11.28438 0.110484 0.740 
 voicing 498.7713 1 498.7713 1.207454 0.275 
 nasality 3.255034 1 3.255034 0.002929 0.957 
 place 232.468 1 232.468 3.113816 0.082 
 manner 7.909186 1 7.909186 0.12152 0.728 
 fricative 0.756852 1 0.756852 0.003727 0.951 
 envelope 288.6852 1 288.6852 1.931427 0.169 
noise * 
channo * 
group total 76.97752 1 76.97752 0.753679 0.388 
 voicing 697.0046 1 697.0046 1.687349 0.198 
 nasality 0.385458 1 0.385458 0.000347 0.985 
 place 12.08256 1 12.08256 0.161841 0.689 
 manner 4.104852 1 4.104852 0.063069 0.802 
 fricative 3.08867 1 3.08867 0.015209 0.902 
 envelope 2.222561 1 2.222561 0.01487 0.903 
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Error total 7966.578 78 102.1356   
 voicing 32219.99 78 413.0768   
 nasality 86668.65 78 1111.137   
 place 5823.243 78 74.65696   
 manner 5076.656 78 65.08533   
 fricative 15840.61 78 203.0848   
 envelope 11658.45 78 149.4673   
 
 
Table B17. Summary of MANOVA combining all data from CI users with baseline consonant 
recognition scores of less than 50% from experiment 3 and “1mm channel interaction” acoustic 
model conditions from experiment 4, as described in 5.5. Seven dependent variables (six feature 
transmission values and total percentage correct) were entered. There were four factors: “noise 
condition”, “stimulation rate”, “ channel number” and “group”, here summarised as “noise”, 
“stimrate”, “channo” and “group”, respectively. Significant effects at the a priori significance 
level (p≤0.05) are highlighted. Because the factors “stimulation rate” and “channel number” 
overlapped, interactions involving both these factors could not be computed. 

Source 
Dependent 
Variable 

Sum of 
Squares 

Degrees of 
Freedom 

Mean 
Square F p 

noise total 412.8328 1 412.8328 3.897582 0.052 
 voicing 2526.151 1 2526.151 6.818805 0.011 
 nasality 7196.003 1 7196.003 8.118137 0.006 
 place 77.25286 1 77.25286 0.914571 0.342 
 manner 1087.578 1 1087.578 15.56838 0.000 
 fricative 475.7201 1 475.7201 2.216099 0.141 
 envelope 1060.876 1 1060.876 8.796681 0.004 
stimrate total 292.1346 1 292.1346 2.758062 0.101 
 voicing 740.5164 1 740.5164 1.998866 0.161 
 nasality 172.1253 1 172.1253 0.194182 0.661 
 place 145.7 1 145.7 1.724894 0.193 
 manner 25.29188 1 25.29188 0.362046 0.549 
 fricative 865.62 1 865.62 4.032412 0.048 
 envelope 290.4737 1 290.4737 2.408579 0.125 
channo total 779.5747 1 779.5747 7.360017 0.008 
 voicing 852.1591 1 852.1591 2.300221 0.133 
 nasality 11.61364 1 11.61364 0.013102 0.909 
 place 767.8812 1 767.8812 9.090688 0.003 
 manner 437.0041 1 437.0041 6.25559 0.014 
 fricative 1381.133 1 1381.133 6.43388 0.013 
 envelope 466.8727 1 466.8727 3.871263 0.053 
group total 13606.12 1 13606.12 128.4563 0.000 
 voicing 8375.138 1 8375.138 22.60689 0.000 
 nasality 29685.05 1 29685.05 33.48905 0.000 
 place 11146.1 1 11146.1 131.9549 0.000 
 manner 18027.17 1 18027.17 258.0538 0.000 
 fricative 25928.2 1 25928.2 120.7842 0.000 
 envelope 11650.12 1 11650.12 96.60167 0.000 
noise * 
stimrate total 3.081833 1 3.081833 0.029096 0.865 
 voicing 14.52183 1 14.52183 0.039199 0.844 
 nasality 2.847307 1 2.847307 0.003212 0.955 
 place 101.3242 1 101.3242 1.199543 0.277 
 manner 0.469333 1 0.469333 0.006718 0.935 
 fricative 56.29176 1 56.29176 0.26223 0.610 
 envelope 55.70919 1 55.70919 0.461935 0.499 
noise * 
channo total 21.02552 1 21.02552 0.198503 0.657 
 voicing 209.7291 1 209.7291 0.566119 0.454 
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 nasality 11.42867 1 11.42867 0.012893 0.910 
 place 101.7164 1 101.7164 1.204186 0.276 
 manner 1.787761 1 1.787761 0.025591 0.873 
 fricative 72.30364 1 72.30364 0.33682 0.563 
 envelope 20.07274 1 20.07274 0.166441 0.684 
noise * 
group total 188.0328 1 188.0328 1.77523 0.187 
 voicing 276.5588 1 276.5588 0.746511 0.390 
 nasality 105.6647 1 105.6647 0.119205 0.731 
 place 230.7249 1 230.7249 2.731474 0.102 
 manner 647.9672 1 647.9672 9.275467 0.003 
 fricative 1214.273 1 1214.273 5.65658 0.020 
 envelope 619.6967 1 619.6967 5.138464 0.026 
stimrate * 
group total 72.46923 1 72.46923 0.684187 0.411 
 voicing 10.16305 1 10.16305 0.027433 0.869 
 nasality 1005.537 1 1005.537 1.134392 0.290 
 place 92.06402 1 92.06402 1.089915 0.300 
 manner 111.4385 1 111.4385 1.595211 0.210 
 fricative 164.85 1 164.85 0.767939 0.384 
 envelope 148.865 1 148.865 1.234374 0.270 
noise * 
stimrate * 
group total 10.3125 1 10.3125 0.097361 0.756 
 voicing 124.8885 1 124.8885 0.33711 0.563 
 nasality 2260.515 1 2260.515 2.55019 0.114 
 place 5.132182 1 5.132182 0.060758 0.806 
 manner 95.304 1 95.304 1.36425 0.246 
 fricative 137.4111 1 137.4111 0.640117 0.426 
 envelope 9.159186 1 9.159186 0.075947 0.784 
channo * 
group total 43.53068 1 43.53068 0.410976 0.523 
 voicing 27.83909 1 27.83909 0.075146 0.785 
 nasality 0.390307 1 0.390307 0.00044 0.983 
 place 193.8626 1 193.8626 2.295074 0.134 
 manner 33.30009 1 33.30009 0.476681 0.492 
 fricative 252.28 1 252.28 1.175223 0.282 
 envelope 198.8807 1 198.8807 1.649099 0.203 
noise * 
channo * 
group total 138.7375 1 138.7375 1.30983 0.256 
 voicing 626.9251 1 626.9251 1.69225 0.197 
 nasality 625.3667 1 625.3667 0.705504 0.404 
 place 99.99638 1 99.99638 1.183824 0.280 
 manner 17.68909 1 17.68909 0.253214 0.616 
 fricative 4.296307 1 4.296307 0.020014 0.888 
 envelope 1.720742 1 1.720742 0.014268 0.905 
Error total 8261.778 78 105.9202   
 voicing 28896.53 78 370.4683   
 nasality 69140.03 78 886.4107   
 place 6588.581 78 84.46899   
 manner 5448.938 78 69.85818   
 fricative 16743.92 78 214.6656   
 envelope 9406.769 78 120.5996   
 
 
Table B18. Summary of MANOVA combining all data from CI users with baseline consonant 
recognition scores of less than 50% from experiment 3 and “3.3mm channel interaction” acoustic 
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model conditions from experiment 4, as described in 5.5. Seven dependent variables (six feature 
transmission values and total percentage correct) were entered. There were four factors: “noise 
condition”, “stimulation rate”, “ channel number” and “group”, here summarised as “noise”, 
“stimrate”, “channo” and “group”, respectively. Significant effects at the a priori significance 
level (p≤0.05) are highlighted. Because the factors “stimulation rate” and “channel number” 
overlapped, interactions involving both these factors could not be computed. 

Source 
Dependent 
Variable 

Sum of 
Squares 

Degrees of 
Freedom 

Mean 
Square F p 

noise total 406.741 1 406.741 2.484624 0.119 
 voicing 3062.103 1 3062.103 6.975435 0.010 
 nasality 6832.735 1 6832.735 7.345548 0.008 
 place 35.25824 1 35.25824 0.335028 0.564 
 manner 1402.655 1 1402.655 11.6339 0.001 
 fricative 1425.563 1 1425.563 6.192824 0.015 
 envelope 1046.106 1 1046.106 6.654488 0.012 
stimrate total 126.2844 1 126.2844 0.771423 0.382 
 voicing 878.148 1 878.148 2.000411 0.161 
 nasality 143.4069 1 143.4069 0.15417 0.696 
 place 91.16983 1 91.16983 0.866307 0.355 
 manner 129.011 1 129.011 1.070042 0.304 
 fricative 752.7478 1 752.7478 3.270029 0.074 
 envelope 443.866 1 443.866 2.823519 0.097 
channo total 116.34 1 116.34 0.710676 0.402 
 voicing 861.7306 1 861.7306 1.963012 0.165 
 nasality 1.566095 1 1.566095 0.001684 0.967 
 place 138.4626 1 138.4626 1.315688 0.255 
 manner 354.7134 1 354.7134 2.942063 0.090 
 fricative 135.2296 1 135.2296 0.587454 0.446 
 envelope 412.3801 1 412.3801 2.623232 0.109 
group total 7664.443 1 7664.443 46.81913 0.000 
 voicing 3318.885 1 3318.885 7.560381 0.007 
 nasality 14955.18 1 14955.18 16.0776 0.000 
 place 7378.958 1 7378.958 70.11577 0.000 
 manner 12567.06 1 12567.06 104.2336 0.000 
 fricative 20047.83 1 20047.83 87.09025 0.000 
 envelope 6608.456 1 6608.456 42.0377 0.000 
noise * 
stimrate total 1.179409 1 1.179409 0.007205 0.933 
 voicing 2.199409 1 2.199409 0.00501 0.944 
 nasality 834.3003 1 834.3003 0.896916 0.347 
 place 14.02188 1 14.02188 0.133238 0.716 
 manner 1.772182 1 1.772182 0.014699 0.904 
 fricative 71.31409 1 71.31409 0.309797 0.579 
 envelope 39.15237 1 39.15237 0.249056 0.619 
noise * 
channo total 7.339636 1 7.339636 0.044835 0.833 
 voicing 634.3541 1 634.3541 1.445051 0.233 
 nasality 996.6699 1 996.6699 1.071472 0.304 
 place 27.81856 1 27.81856 0.264335 0.609 
 manner 2.430307 1 2.430307 0.020157 0.887 
 fricative 0.191761 1 0.191761 0.000833 0.977 
 envelope 61.3965 1 61.3965 0.390555 0.534 
noise * 
group total 192.1819 1 192.1819 1.173965 0.282 
 voicing 133.5091 1 133.5091 0.304132 0.583 
 nasality 154.9584 1 154.9584 0.166588 0.684 
 place 325.4822 1 325.4822 3.092772 0.083 
 manner 440.2283 1 440.2283 3.65134 0.060 



 253

 fricative 357.2401 1 357.2401 1.551895 0.217 
 envelope 631.0767 1 631.0767 4.014404 0.049 
stimrate * 
group total 206.4164 1 206.4164 1.260918 0.265 
 voicing 0.588015 1 0.588015 0.001339 0.971 
 nasality 1079.425 1 1079.425 1.160438 0.285 
 place 146.8298 1 146.8298 1.395195 0.241 
 manner 17.86964 1 17.86964 0.148214 0.701 
 fricative 219.7678 1 219.7678 0.954698 0.332 
 envelope 66.85 1 66.85 0.425246 0.516 
noise * 
stimrate * 
group total 6.460742 1 6.460742 0.039466 0.843 
 voicing 182.3327 1 182.3327 0.415352 0.521 
 nasality 288.0903 1 288.0903 0.309712 0.579 
 place 73.73388 1 73.73388 0.700628 0.405 
 manner 60.00152 1 60.00152 0.497664 0.483 
 fricative 116.2141 1 116.2141 0.504848 0.479 
 envelope 17.91903 1 17.91903 0.113987 0.737 
channo * 
group total 111.028 1 111.028 0.678227 0.413 
 voicing 26.14064 1 26.14064 0.059548 0.808 
 nasality 2.346095 1 2.346095 0.002522 0.960 
 place 4.081227 1 4.081227 0.03878 0.844 
 manner 61.48803 1 61.48803 0.509994 0.477 
 fricative 93.15031 1 93.15031 0.404656 0.527 
 envelope 237.2401 1 237.2401 1.509131 0.223 
noise * 
channo * 
group total 20.10764 1 20.10764 0.12283 0.727 
 voicing 205.4668 1 205.4668 0.468051 0.496 
 nasality 10.12585 1 10.12585 0.010886 0.917 
 place 26.92256 1 26.92256 0.255821 0.614 
 manner 1.71564 1 1.71564 0.01423 0.905 
 fricative 102.7791 1 102.7791 0.446485 0.506 
 envelope 21.78183 1 21.78183 0.138559 0.711 
Error total 12768.85 78 163.7032   
 voicing 34240.74 78 438.9838   
 nasality 72554.61 78 930.1873   
 place 8208.692 78 105.2396   
 manner 9404.165 78 120.5662   
 fricative 17955.29 78 230.196   
 envelope 12261.84 78 157.2031   
 


