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1. Introduction

Many experiments in science and industry involve the measurement of binary responses,
such as success or failure of a drug (e.g. [1]) or a component under test (e.g. [2]). Often,
generalised linear models (GLMSs, see [3]) provide an appropriate model for such a response.
Although these models have received considerable attention in the literature, the development
of methods of designing efficient experiments to estimate GLMs has lagged behind. A difficulty
is that, in common with nonlinear models generally, the information matrix for the parameter
estimators depends on the unknown values of these parameters. This has led to the development
of locally optimal designs which are optimal for given values of the model parameters [4]. Such
designs, however, may have poor efficiency for other parameter values. The issue of parameter
dependance has limited the type of design problems for GLMs that can be addressed.

Initial work to overcome the parameter dependence problem mainly concentrated on small
experiments with one or two variables. There are three main approaches: sequential experi-
mentation [5, 6], maximin designs [7] and Bayesian designs [8]. More recent work [9] has used
computer intensive optimisation methods to find designs for several variables which are robust
to misspecification of the parameter values. In addition, use of the optimum-in-average (or
compromise) criterion by Woods et al. [10] has allowed designs to be found that are also robust
to the choice of link function and form of the linear predictor (see also [11]).

In this paper we describe a simulated annealing algorithm for finding robust designs and
introduce techniques to select designs for GLMs using an Information Capacity criterion and
an approach which enables correlations between the possible values of the different parameters
in a model to be taken into account in selecting a design. The performance of the designs
obtained is illustrated through examples.



In Section 2, GLMs are introduced and the design selection criterion from [10] is briefly de-
scribed. The simulated annealing algorithm is given in Section 3 and an updating procedure for
the criterion’s objective function is outlined in Section 4. The new techniques are evaluated in
Section 5 via two examples. The performance and tuning of the simulated annealing algorithm
is discussed in Section 6.

2. Generalised linear models and a design selection criterion

Consider an experiment involving k variables and a design £(N) composed of N points, not
necessarily distinct. Each design point is defined by a vector x; = (z1;...,xy;)’, where z;
holds the value taken by the ¢th variable in the jth run of the experiment where, after scaling
if necessary, —1 <ux;; <1 (i=1,...,k; j=1,...,N). Thus, each x; defines the treatment to
be applied to the jth unit in the experiment. Suppose that the observation from the jth design
point, Yj, follows a distribution from the exponential family. Further, the experimental units
are assumed to be exchangeable in the sense that the distribution of an observation from the
7th design point depends only on the treatment applied to the jth unit.

A GLM to describe Y; has three components [3, p.27]:

1. a distribution for the response,

2. a linear predictor n; = f(x;)'3, where f(x;) is a p x 1 vector of known functions of the
k explanatory variables and 3 is the p x 1 vector of unknown model parameters, and

3. a link function g(-) that relates the mean response from the jth design point to the linear
predictor through g(u;) = n;.

Hence, for a given distribution, a GLM is completely specified by s = (g,7n,3). We shall refer
to s as a model.

For binary data, each Y; follows an independent Bernoulli distribution with success proba-
bility ;. If there are n distinct treatments to be applied to the /N units in the experiment, the
exchangeability of the units allows the number of successes on the tth treatment to be described
by a binomial(my, 7;) distribution, where m; is the number of units to which the ¢th treatment
is applied and 7 is the probability of success induced by the tth treatment (¢t = 1,...,n).
Appropriate link functions include the probit, the complementary log-log and the logit link.

The asymptotic variance-covariance matrix of the maximum likelihood estimator [% is given
by the inverse of the Fisher Information matrix M(&(N),s) = X'WX, where X is the model
matrix and W is a diagonal weight matrix with jth diagonal element (du;/dn;)*(Var(Y;))™" [3,
p.119]. For example, for Binomial data and the logit link, W has entries p;(1 — ;).

If all three components of s are known, then the application of a standard optimality
criterion, such as D-optimality (see, for example, [12]) within a search algorithm may be used
to find a locally optimal design for several variables. As this knowledge is often unlikely to be
available in practice, we follow the approach of Woods et al. [10] and represent uncertainty in
the model s = (g,n,3) through sets G, N' and B of possible link functions, linear predictors
and model parameters, respectively. These sets may be incorporated into a criterion for design
selection that maximizes an objective function ® obtained by integrating a local objective
function ¢(§(N), s) across M =G x N x B to give

B E(N)] = /M HE(N). 5] dF(s)., (1)
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where F' is an appropriate cumulative distribution function. This criterion was first proposed
for linear models in the seminal work of Lauter [13]. From a Bayesian perspective, (1) can
be viewed as the pre-posterior loss from an asymptotic Normal approximation to the posterior
distribution [8].

The expression (1) is computationally expensive to approximate within a design search.
The computational burden can be reduced by finding model-robust (or compromise) designs
through maximisation of the surrogate objective function

O E(N)] =D BIE(N), s]p(s), (2)
seS

where § = G, X N X By, with G, N and B; finite subsets of G, N and B, respectively [10], and
where p(s) is a probability mass functon. In this paper, we concentrate on finding compromise
designs under D-optimality for p(s) a uniform probability mass function, resulting in (2) having

the form

1

2 EN] = 17 D_log én [E(N), o], (3)

seS

where ¢p[€(N),s] = (|X'WX|)/P*, p, is the number of parameters to be estimated in model
s, and both X and W are dependent on the model s. Hence, in this context, a design £(N)
is robust to the choice of model s if it achieves good average performance across & under
D-optimality. A robust-optimal design £*(N) maximises the objective function (3).

3. Implementation

A simulated annealing algorithm [14, 15], modelled on the cooling of materials in metallurgy,
may be used to solve the optimization problem. This is a probabilistic optimization technique,
not a greedy algorithm, which means that changes to the current state (a design in our problem)
are accepted according to a transition probability. In the original formulation for a minimization
problem, transitions which decrease the energy function (objective function) are accepted with
probability 1 but transitions that increase the energy function also have non-zero probability
of being accepted, allowing the algorithm to move away from local optima in the search space.
The probability of accepting a move that increases the value of the energy function is given by
the Boltzmann-Gibbs distribution, as used in the Metropolis-Hastings algorithm [16]. Under
this formulation, the probability of accepting an “uphill” transition decreases with the increase
in energy between the initial state and the transition, and also decreases as the temperature of
the system decreases. The initial temperature is user-controlled and often a geometric cooling
scheme is employed with the temperature decreasing by a fixed proportion after a set number
of iterations. A useful review of simulated annealing is given by Spall [17].

The annealing algorithm described below, for continuous variables, is similar in implemen-
tation to the algorithm for linear models [18]. A transition is via a random perturbation made
to a design point x5, so that the new point z7;" is given by

ry; = min {1, max [~1, 24 +ud(T)]} ,
where u is a realisation of a uniform random number from [—1,1] and d(7") is the size of the
maximum allowed perturbation at temperature 7. The perturbed design, £&P"(NN), is compared



to the original design, {(NV), via calculation of the value of the objective function (3) for each
design. It is accepted with probability

1 if @2[Err(N)] > 2[E(N))]

ay — 4 min {1,exp (‘DEEPE’”(N)]T— QDSD[&(N)])} if D [erer (N)] < BL[E(N)]

for a perturbation of the value of the ith variable for the jth run (i =1,...,k; 7 =1,...,N).
In general, any objective function ®(-) may be used instead of ®(-). Changes which improve
the design are always accepted; changes which result in a singular design, that is, a design
that does not allow the model to be estimated, are always rejected. As the system cools, i.e.
the temperature parameter decreases, the probability of accepting a poor move also decreases.
When the temperature is zero, a greedy algorithm results. Both the temperature 7" and per-
turbation size d(T) are decreased geometrically and the temperature is cooled continually. In
order to reach an equilibrium state with respect to the Boltzmann-Gibbs distribution, d(7T') is
only decreased when the average number of accepted moves, averaged across all f x N values of
the variables in the design, lies between 0.4 and 0.6 [16]. The value of this average is assessed
every m iterations, where m is user-specified; see Section 6.

4. Updating formula

An often quoted advantage of the D-optimality criterion for linear models is the availability
of updating formulae ([19, p.162], [20]) for both the determinant and inverse of the information
matrix. These formulae eliminate the need for costly evaluations of matrix determinants at
every iteration of the optimization. In this section, we derive updating formulae for the D-
optimality criterion for finding designs under a GLM. For simplicity of notation, the dependence
of the information matrix M{&(N), s} on the model s is suppressed.

Assuming a fixed model s, consider a design (NN + 1) formed by the addition of a run x4
to a design £(IV). The additivity of information matrices implies that

MEN +1)] = XyWhXn +wnii f(@n) f(ens),

where X and Wy are the model and weight matrices, respectively, under design £(/N) and

w1 = (dpns1/dnng)*[Var(Yaen)] 7

For logistic regression, wyy1 = pni1(1 — pyy1). Using results on partitioned matrices [21,
p.183-184],

IM[E(N +1)]| = [XyWrXy +wyirf(en)f(@n)]
= |MEMN{1 +wysr f(@n) MTEN)] f(@ns) }

and

~wnn MTEN)f (@n) f (@) MHE(N))]

M™HEN + 1)) = MTHE(N)] L+ wnir f(®n1) MEN)]f (2n41)
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Similar results can be derived for a design £(N — 1) formed by removing an arbitrary design
point ; from {(N) (j = 1,..., N). Thus it is straightforward to obtain the following result for
removing &, from £(N) and replacing it with point @, to form a new design £¢(N):

IMIEC(N)]| = [MIE(N)] — wu f (@) f(®a) + wo f () f(),]
= [MEWN)] (1 + Ay, 2, wa, wy)) (4)

where A(-) is a generalisation of Fedorov’s delta function given by

Ay, @y iy w,) = wy f (@) MEN)] f (@) — w, f (@) MTE(N)] f ()
—wyw, f(@, )M EN)] (@) f(@,) M E(N)] f ()
+w,w, { fla,) M7EN)] f (@)}

As each transition in the annealing algorithm is made by perturbing a single design point,
the objective function (3) is updated for each new design by repeated use of (4) for each model
s € §. Use of the updating formula provides evaluations of the objective function that do not
depend on N, and results in considerable computational savings for large experiment sizes as
discussed in Section 6.

5. Applications
5.1. Information Capacity

In the early stages of experimentation, the aim is often to identify those variables that have
a substantive impact on the response. For such screening experiments under linear models, a
design is often chosen for which the designs formed from projections into subsets of the variables
are as efficient as possible [see, for example, 22|. This ensures that submodels of a specified
larger model can be estimated efficiently from data obtained using the given design. This idea
has been formalised for linear models in the Information Capacity (IC) criterion [23, 25, 24],
using a weighted average of the D criterion across all submodels. This criterion can be viewed
as a special case of (3) in which S is a set of all submodels of the full £ variable model.

As an example, suppose that an experiment has four variables and the response is described
by a logistic regression with 7; = By + 2?21 Bizij. Then the 15 submodels, including the full
model, can be written as

4
" = G+ Y Bayl(m,i) (m=1...15j=1,....N), (5)
=1

where I(m,i) = 1 if variable ¢ is in model m, and 0 otherwise. The submodels are indexed as
shown in Table 1 with the linear predictors given in the notation of [26]. For example, submodel
5 is a logistic regression model with linear predictor n = 3y + B1x1 + Poxs.

The simulated annealing algorithm was used to find a maximum IC design in 16 runs,
£€1(16), for the model space S = {logit, n™, By; m = 1,...,15}, with 8, = (0,1,0,3,0.5). The
efficiency of the design for each of the 15 submodels is given in Table 1, where efficiency is
defined relative to a locally optimal design £* as



Table 1: Submodel efficiencies for the maximum information capacity design in Section 5.1.

Model Efficiency Model Efficiency
1 T 0.94 9 To + Ty 0.93
3 T3 0.88 Average (2 factors) 0.92
4 T4 0.94 11 T+ To + 23 0.91
Average (1 factor) 0.93 12 T, + To + x4 0.91
5 T+ X9 0.93 13 T1+ T3+ T4 0.91
6 T —I—l‘g 0.91 14 ) —f-ZL‘g + Ty 0.90
7 1+ X4 0.93 Average (3 factors) 0.91
8 To + T3 0.91 15 1+ X2+ T3+ x4 0.90

¢p(&(16), 5)

¢(£+(16),s)
The maximum IC design is highly efficient for each of the models, with an overall average
efficiency of 0.91. Model 3, which has a single variable, x3, has the lowest efficiency of 0.88.
Note that the coefficient 33 of x3 has the largest absolute value, and also that the other models
which involve this factor also have slightly lower efficiencies than models which do not involve
Zs.

We now compare & with four further designs found for different parameter spaces, B, for

the full four variable model. The following independent intervals are used for each parameter,
centered on the above values of (3, ..., 04

sES. (6)

(=3,3)  i=0
(—2,4) i=1

B € (=3,3) =2 (7)
0,6)  i=23

(—2.5,—3.5) i=4

The product of these intervals defines a parameter space B C R®. Four different designs,
&, ..., & were found, each with 16 runs for the four variable model and the logit link using the
following four choices of Bj:

&9: By is the centroid of B

&: B, is a 2°72 fractional factorial design where the levels of factor ¢ are the limits of the
range of (;, augmented by the centroid of B

&40 B is a 9 point U-optimal set (as in SAS PROC OPTEX [27]) chosen from a candidate
set of 6° equally spaced points across B

&: Bs is a 9 point Latin Hypercube Sample (LHS), with uniform margins, selected from B
Design &, is the locally optimal design for 3) = (0, 1,0, 3,0.5); designs {3 —&; are compromise

designs across different sets of 9 models. Designs & — &, were considered in [10]. Design &5
employs a LHS as a designed sample of the parameter values from B. A LHS is a commonly used
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Table 2: Five number summaries (min., Q1, med., Q3, max.) for projections of five compromise

designs onto 1, 2, 3 and 4 variables.

Design No. of variables
1 2
&. IC (0.25, 0.64, 0.87, 1.00, 1.00) (0.13, 0.49, 0.64, 0.78, 1.00)
&. Centroid (0.44, 0.75, 0.84, 0.89, 0.97) (0.10, 0.53, 0.63, 0.73, 0.91)
&s. Fraction  (0.25, 0.65, 0.85, 1.00, 1.00) (0.12, 0.50, 0.63, 0.78, 1.00)
&y. U-opt. (0.45, 0.70, 0.87, 0.97, 0.99) (0.27, 0.55, 0.65, 0.77, 1.00)
&s. LHS (0.34, 0.71, 0.87, 0.97, 1.00)  (0.20, 0.54, 0.65, 0.77, 1.00)
3 4
&. IC (0.13, 0.40, 0.48, 0.60, 1.00) (0.12, 0.33, 0.39, 0.47, 0.98)
&. Centroid (0.11, 0.40, 0.49, 0.57, 0.86) (0.08, 0.31, 0.39, 0.47, 0.79)
&3. Fraction (0.13, 0.41, 0.49, 0.61, 1.00) (0.12, 0.35, 0.40, 0.47, 1.00)
&y U-opt. (0.19, 0.45, 0.53, 0.62, 1.00) (0.11, 0.38, 0.44, 0.51, 0.92)
&. LHS (0.12, 0.44, 0.52, 0.62, 0.97) (0.08, 0.35, 0.43, 0.51, 0.90)

method in computer experiments (see, for example, [28]), when it is envisaged that only a subset
of the variables will affect the response. Design &;, found using the IC criterion, compromises
across the possible submodels (projections) of the variables, whereas designs {3 — 5 compromise
across the parameter space for the full model.

To assess the performance of these five designs, simulation studies were carried out. For
each of fy,..., s, 1000 parameter vectors were generated from the ranges in (7) by quasi-
random uniform sampling using a Sobol sequence [29, Ch.3]. Locally optimal exact designs
£*(16) were found using simulated annealing for each parameter vector under each of the 15
models from (5). Designs & — &5 were then assessed by calculating the efficiency (6) for each
model and parameter combination. Table 2 gives the five-number summaries for the efficiencies
from these simulations for k-factor models (k =1,...,4).

The design with the consistently best performance (highest efficiencies) is &, which com-
promises across the U-optimal set. In particular, it has the highest minimum efficiency for each
size of submodel except for the full model with four variables. The locally optimal design (&)
at the centroid of the 5-dimensional parameter space also performs well, as was found for the
full model by [10]. Design &;, found using the IC criterion, is the poorest design, especially
for projections onto one and two variables. This study suggests that uncertainty in the values
of the parameters has more impact on design performance than uncertainty in the numbers of
variables.

5.2. Prior information for correlated parameters

An experiment from the food industry on protected atmosphere packing of potatoes was
described in [10]. The experiment had three quantitative variables which could be varied and
was performed using a 16 run central composite design (CCD). Due to separation in the data
[30], a penalised likelihood method [31] was used to obtain parameter estimates and standard
errors for three linear predictors, each with the logit link:



3
77](-1) = 50+Z@'93ij,
i=1

3 3 3
77](-2) = [o+ Z Biwij + Z Z BriTrjrij
=1

k=1 1>k
3 3 3 3
3
n = Bot DB+ 30 B + 3 Bay
i=1 k=1 1>k 1=1

We further investigate this example by considering the impact on compromise design selection

of (i) correlation between the parameters, and (ii) the size of the parameter space.
For n™™, n® and n®, the maximum penalised likelihood estimates are

nV B = (—0.28,0,—0.76, —1.15)
n® By =(—1.44,0,—1.95,—2.36,0,0, —2.34)
n® By =(—2.93,0,—0.52,—0.79,0,0, —0.66,0.94,0.79, 1.82) .

The variance-covariance matrices for these estimators are given by

033 0 0.03 0.04

N 045 0 0
s Vi= 0.52 0.14
0.56
128 0 112 112 0 0 1.16
077 0 0 045 032 0
173 129 0 0 1.36
n® V= 191 0 0 153
1.11 041 O
098 0
2.17

391 0 011 001 0 0 —001 —149 —1.34 —1.64
054 0 0 005 —003 0 0 0 0
058 0 0 0 004 —0.08 011 —0.08

051 0 0 004 —001 —0.01 —0.03

® . 7 0.75 001 0 0 0 0
' 0.74 0 0 0 0
0.75 0.0l —0.01 0.01

139 015  0.37

137 0.26

1.41

where the rows and columns are ordered as intercept, linear terms, interactions, and squared
terms. We represent uncertainty in the parameter values by a multivariate normal distirbution
N(Bs,7%V;) for each n (i = 1,2,3). For v = 0.1,0.5,1, the following 16-run designs are

considered:



&1 the CCD used in the original experiment, with 8 factorial points, 6 axial points with
a = 1.2872 and 2 centre points.

&9;: the locally D-optimal design for BZ

3+ a D-optimal compromise design across S = {logit, n¥, Bg; i=1,2,3}, where ng) is a set

of 16 parameter vectors selected using a LHS from N(3;,+?V;) generated by the method
of Stein [32].

¢} a D-optimal compromise design for S = {logit, n¥, Bg?; i=1,2,3}, where ng} is a set of
200 parameter vectors selected from N(3;,7?V;) using a Sobol quasi-random sequence.
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Figure 1: Design efficiencies for robust designs from Section 5.2.

For each of the nine combinations of n? and +, the designs were assessed through simulation,
with 1000 sets of parameter values drawn from N (Bi,fy?f/i) using transformed Sobol quasi-
random sequences. Figure 1 shows the results of these simulation studies for each design as
box plots of efficiency, defined in (6). In the figure, v increases with the column number and
n® changes with the rows. Larger parameter spaces result from moving both right and down
in the figure. Key points from the figure are (i) the poor performance of the CCD (&;) for
small parameter spaces (e.g. for small models or small «); (ii) the strong performance of the



centroid designs (&), which have similar efficiencies to the compromise designs &;; and &} for
each scenario; (iii) the comparable performance of &, and &J;, showing that the use of 200
models (parameter vectors) from B offers little or no improvement over the use of 16 models,
whilst being considerably more computationally expensive; (iv) when there is less information
on the model, i.e. for second-order models with large v, the CCD (&) is competitive with the
other, more tailored, designs.

6. Performance and tuning of the annealing algorithm

The performance of an annealing algorithm depends upon the choice of cooling schedule
and the scheme chosen for transitions between states (designs). The initial temperature of the
system is set empirically through the evaluation of 1000 perturbations of a randomly selected
design. This temperature is determined such that the probability of accepting the single tran-
sition which produced the 950th largest difference between the objective function (3) for the
original design and the perturbed design is equal to 0.5. The best design from this set of 1000
is used as the starting design for the annealing algorithm.

The algorithm is controlled by three tuning parameters, the geometric cooling rate (J;), the
geometric rate of decrease (J5) in the size of the perturbation for z;;, and the number of iterations
(m) between potential changes in d(7"). Although theoretically guaranteed to converge to the
optimal solution if cooled sufficiently slowly, in practice the annealing algorithm is a heuristic
optimisation method. Hence the values of the tuning parameters are vital in controlling the
trade-off between computational effort and quality of the final solution. The performance of the
algorithm for 10 different random starts is summarised in Table 3 for design &3 from Example 1,
including indicative timings for 16 runs (as in the example) and also 24 runs. The results were
obtained by running the algorithm on a 3.2Ghz Intel Pentium IV desktop PC with v, = 0.9
and m = 20. Empirical studies for this problem have shown that v, and the updating formula
have most impact on the computational cost of the design search. The computational savings
from using the updating formula are clear, especially for the larger run size and for smaller ;.
Also note that the use of larger 4, which results in a more rapid decrease in the sizes of the
x;; perturbations, can still produce designs which perform well.

Table 3: Performance of the SA algorithm for Section 5.1, using 10 random starts.

Runs d, Update Average Average Value of
Run Time Objective Function

16 1.1 No 1m 36s 2.30
16 1.1 Yes 1m 26s 2.24
16  1.01 No 9m 21s 2.28
16 1.01 Yes 5m 29s 2.26
24 1.1 No 3m 33s 97.47
24 1.1 Yes 2m 33s 97.09
24  1.01 No 22m 15s 98.62
24  1.01 Yes 9m 46s 98.72

In common with other heuristic algorithms, simulated annealing is not guaranteed to find
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the optimal design after a finite number of iterations. Consequently it is important to run
several design searches and use the best design found. It is easy to implement the algorithm in
a simple parallel fashion, with each separate design search carried out on a different machine or
on a different node of a computational cluster. All the designs in this paper were found using
multiple starts of the algorithm on a Beowulf cluster.

7. Discussion

We have described a flexible algorithmic approach to finding designs for GLMs that can
incorporate different numbers of runs and factors, and a variety of linear predictors. The
resulting designs can substantially outperform standard designs from linear model theory and
can incorporate uncertainty in all aspects of the model. Simulated annealing has some particular
benefits for this design search problem. These include stochastic transitions between designs to
avoid local optima, and a candidate-list free continuous search which can accommodate larger
problems than an exchange algorithm. The provision of an updating formula for D-optimality
under GLMs increases the efficiency of the design search, making the algorithm a practical
design tool. For moderate-sized problems, the algorithm runs in “coffee break” time; for larger
problems, an overnight search may be necessary to find the best design but highly efficient
designs can be found in much less time.

Although the methods have been described and illustrated for binary data, they can be
employed to find designs for models with other types of categorical or count data. For ex-
ample, Poisson log-linear regression [33] and multinomial models [34, Ch.7]. For multinomial
data, the response may be modelled using a multivariate GLM [35], with potentially different
linear predictors used to describe the probability of success in each category, together with an
identifiability constraint. The design problem is then a natural generalisation of that given in
Section 2, using a suitably defined information matrix [36] which will depend on the parameters
from each linear predictor.

The usefulness of the resulting designs for binary data has been demonstrated through new
applications that have several striking features: the poor performance of the standard linear
model designs for all but the weakest information on the model; the remarkable robustness of
locally optimal designs for the centroid of model spaces; and the ability of designs for several
variables to estimate efficiently submodels which contain subsets of the variables. The algo-
rithm can also be used to search heuristically for approximate designs, where the the design
is represented as a probability measure with finite support across the design region [37]. The
algorithm is written in C++ using the Gnu Scientific Library [38] and source code is available,
with documentation, at http://www.soton.ac.uk/~davew/glm alg.
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