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Active Vibration Isolation with a Distributed Parameter Isolator

by Bo Yan

Conventional vibration isolators are usually assumed to be massless for the purpose of
modelling. This simplification tends to overestimate the isolator performance because of
neglecting the internal resonances (IRs) due to the distributed mass effects in the isolator,
which is especially important for lightly damped metallic isolators. Previous research on
the problem of IRs is not particularly comprehensive, because it does not clarify the
characteristics of the distributed parameter isolator. Furthermore, with the development
of active vibration isolation, there is a need to investigate the effects of isolator IRs on
the control performance and stability for commonly used control strategies. Effective
ways to attenuate these effects are also required.

This thesis concerns the active vibration isolation of a piece of delicate equipment
mounted on a distributed parameter isolator, which is modelled as different idealised
configurations under various types of deformation. The model is first developed to
determine the effects of IRs on a single-degree-of-freedom system with a distributed
parameter isolator. This analysis is then extended to include the resonance behaviour of
the supporting structure. Simple expressions are derived which describe the behaviour
of various types of distributed parameter isolator. The parameters which control the
isolator performance at various frequencies are clarified theoretically and
experimentally. The effects of IRs on control performance and stability of several
control strategies are determined and compared. Absolute Velocity Feedback (AVF)
control is shown to be the optimal solution to minimise the mean square velocity of the
equipment mass supported by a distributed parameter isolator. A stability condition for
an AVF control system containing a distributed parameter isolator is proposed. Based on
this condition, different approaches to stabilize such a control system are presented.
Experimental work is carried out to validate the theoretical results.

Based on the improved knowledge of the characteristics of IRs in the distributed
parameter isolator, different approaches which can suppress the IRs are proposed. AVF
control with more damping in the isolator is demonstrated to be effective in attenuating
the IRs theoretically and experimentally. Absolute velocity plus acceleration feedback
control and AVF control on a fraction of the isolator length are also shown theoretically
to be effective ways to attenuate the IRs and improve the isolation performance over a
broad range of frequencies.
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Chapter 1

Introduction

1.1 Background

Vibration is a physical phenomenon of oscillation of objects with respect to a
equilibrium position [1]. Although in some cases vibration can be useful and desirable
(e.g. ultrasonic vibrations, vibration conveyers, impactors and music), in most cases it is
detrimental and undesirable. It can cause fatigue, discomfort, noise, etc. Excessive
vibration amplitude can, for example, lead to damage of mechanical systems or even
destruction of buildings (e.g. the collapse of Tacoma Narrows bridge due to
wind-induced vibration). Vibration due to the engine and from uneven road may cause
discomfort to passengers in vehicles. Structural vibration (e.g. surface vibration) can be
transmitted to surfaces that radiate noise to the surrounding environment, which is
referred to as structure-borne noise. These potentially detrimental effects motivate

engineers to find approaches to control vibration levels.

1.1.1 Vibration control

Vibration control measures can be classified as follows: passive vibration control,

semi-active vibration control and active vibration control.
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Passive vibration control involves the modification of the stiffness, mass and damping
of a vibrating system to make the system less responsive to its vibratory environment
[2]. The modification may take the form of basic structural changes or the addition of
passive elements which requires no external assistance apart from their immediate
passive neighbours or structural components that interact with them. In general, passive
vibration control involves the use of reactive or resistive devices that either load the
transmission path of the disturbing vibration or absorb vibrational energy [3]. Passive
vibration control is usually simple to implement, reliable and cost efficient, but its
successful application requires a thorough understanding of the vibration problem in
hand. It often has limited capability to control the structural response. Also it has
limitations such as lack of versatility, and potentially large size and weight. There are
significant limitations in structural applications where broadband disturbances of highly

uncertain nature are encountered [3-5].

Semi-active vibration control can be broadly defined as a passive vibration control
measure in which the systems mechanical properties, such as stiffness and damping, can
be adjusted in real time by the application of a control signal [3, 6]. Adaptive-passive
vibration control can be categorized as semi-active vibration control. In an
adaptive-passive system, the properties are changed relatively slowly, but in a
semi-active system, the properties are changed within a cycle of vibration [7]. Although
semi-active devices behave in a strongly nonlinear way, they are inherently passive and
can not destabilize the system [8]. Semi-active vibration control strategies can maintain
the reliability of passive devices using a small amount of energy to tune the system, yet
provide versatility, adaptability and better performance at high frequencies [3, 9]. Its

main disadvantage is its inherent nonlinearity and complicated engineering design.

Active vibration control augments the system with actuators, sensors and some form of
electronic controller together with signal conditioning devices to achieve the
modification of the characteristics of the vibrating system [6, 10]. In contrast to passive
vibration control, active vibration control systems do require external energy to drive

2
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active devices continuously. Active vibration control can provide superior performance
over a wide frequency range and has the advantage of reducing the volume and weight
of the structure, although its practical applications are limited due to the cost, stability
and energy consumption [6, 11]. The active vibration system is usually integrated with a
passive approach to form a hybrid vibration control, intended to improve the reliability

and reduce the amount of external power necessary to achieve control performance.

1.1.2 Vibration isolation

A generic vibration control problem can be separated into three components: the source,
the transmission path and the receiver as shown in Figure 1.1 [1, 12]. There are three
approaches to control vibration levels. Firstly, it is preferable to reduce the vibrational
excitation at source, but this is often impractical because of technical or economic
reasons. Secondly, the vibration levels can be controlled by modifying the dynamic
characteristics of the receiver to reduce the ability of the structure to respond to the
input energy, which can be achieved by localised additions, i.e. absorbers and
neutralisers, addition of damping or structural modification. Finally, the vibration levels
can be controlled by isolating the receiver from the vibrating source through the
transmission path. The last approach is called vibration isolation, which is the dynamic
decoupling of the receiver and the source. It is usually achieved by placing a resilient
element in the transmission path [12]. Such resilient interconnections constitute the
vibration isolators or “anti-vibration mounts”. For a given source and receiver, an

isolator can reduce the vibrations of the receiver to acceptable levels [13].

In practice, there are two common situations for vibration isolation: a) isolation of a
vibrating machine from its surroundings and b) isolation of a delicate piece of
equipment from a vibrating host structure [12]. It is the second from of vibration
isolation which is concentrated on in the thesis. One of the most commonly used
performance measures of an isolator is the transmissibility. The transmissibility is

defined as the ratio of the amplitude of the transmitted motion or force at the receiver to
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the amplitude of the input motion or force at the source [2]. Clearly, a good isolator
results in a low receiver response for a given excitation and thus has a low

transmissibility over the frequency range of interest.

In a similar way to the classification of vibration control, there are three classes of
vibration isolation: passive vibration isolation, semi-active vibration isolation and active
vibration isolation. The following sections briefly review the passive and active systems,
as the former will be used as a benchmark for comparison in this study against the

active configurations presented later.

1.1.2.1 Passive vibration isolation

The conventional passive vibration isolation system consists of compliant mounts
positioned between the vibration source and the receiver to be protected. Passive
isolation devices impart forces that are developed in response to the motion of the
vibration source by means of their resilience and their energy dissipation properties [14].
These passive devices cannot supply energy to the system, so it cannot destabilize a
conservative system [15]. However, simple passive vibration isolation systems have
limited performance, which provides good isolation only at frequencies well above the

resonance caused by the mass of the equipment and stiffness of the mount [12, 14].

A traditional passive vibration isolation model is the single-degree-of-freedom (SDOF)
system model shown in Figure 1.2, which is normally adopted on mechanical vibrations
[2, 16-19]. It consists of a rigid mass, representing the equipment, mounted on a rigid
supporting structure through an isolator. For the purpose of modelling, the isolator is
considered to be massless and modelled as an elastic spring in parallel with a viscous
damper. The values of the spring stiffness and the damping coefficient are assumed to

be constant in the frequency range of interest.

The magnitude of the transmissibility of this SDOF system is shown in Figure 1.3.
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There is only one resonance peak corresponding to the equipment mass resonant on the

stiffness of the isolator. At frequencies less than V2 times the resonance frequency,

the transmissibility is equal to or greater than unity, i.e. the isolator is ineffective or
amplifies the transmitted force or motion. At frequencies close to the resonance, the
amplitude of the transmissibility is determined by the value of the damping ratio. The

larger the damping ratio, the smaller the transmissibility. At frequencies greater than

V2 times of the resonance frequency, the magnitude of the transmitted force or motion

is smaller than the magnitude of the input excitation force or motion. This region is
usually referred to as the isolation region. If the damping in the isolator is small, the
transmissibility decreases at a rate of 40 dB per decade at frequencies well above the
system resonance frequency [20, 21]. The viscous damping effect is reversed in the
isolation region compared to that around the resonance frequency. Increasing damping
in the isolator is detrimental to its performance in the isolation region. Thus there is a
trade-off in the choice of damping for passive vibration isolation between good high

frequency performance and good control at resonance.

Whilst viscous damping shown in Figure 1.2 receives the most attention in basic
vibration texts, the massless isolator can also be modelled with a hysteretic damping,
which leads to the concept of a complex stiffness [12]. If the massless isolator shown in
Figure 1.2 is modelled as a spring with a complex stiffness, increasing damping in the
isolator can reduce the transmissibility at the resonance frequency without degrading the

high frequency isolation performance [19, 22]

Although the traditional passive vibration isolation model, in which the mass of isolator
is assumed to be negligible, offers a wealth of information about vibration isolation and
basic guidelines for isolator design, it is only valid at relatively low frequencies, for
which the wavelength in the isolator is long compared to its dimension [12, 20]. At
higher frequencies, realistic isolators, which have distributed mass, stiffness and

damping, do not behave like the idealized massless models. Therefore the predictions
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from this massless model are no longer accurate and may be misleading due to the

internal mass effects of the isolator that are ignored.

1.1.2.2 Active vibration isolation

The compromise in the choice of damping for passive vibration isolation can be avoided
by coupling an active system to a passive isolation system. The active control system
reduces the overall response of a system by destructive interference using an external
secondary vibration source [6]. With the development of computers fast enough to run
control algorithms in real-time and more ‘smart’ materials such as piezo ceramics and
shape memory alloys, active vibration isolation has become prevalent in the last few

decades to achieve superior performance.

Active vibration isolation has been widely considered for applications to space
structures [23-25], aircraft [26-28], automobiles [29-34], ships and marine machinery
rafts [35, 36], buildings [37-39], etc. Spanos et al. [23] carried out vibration isolation
experiments on a flexible structure utilizing a proof-mass shaker as the disturbance
source and an active member as the isolator to investigate the active isolation of
precision space structures from noisy space machinery. They concluded that an active
stage can significantly reduce the transmissibility of a passive isolator both below and
above its characteristic corner frequency. Vaillon et al. [24] investigated active isolation
of sensitive payloads undergoing microvibration generated by some noisy equipment
(such as reaction wheels or cryocoolers) and propagated though the primary structure of
the satellite. Impressive isolation performance was achieved by incorporating active
elements as isolators in all the struts. Schulz [26] investigated the application of active
vibration isolation for compensation of vibrations generated by the rotor of a helicopter
and transmitted to the cabin which is of great importance for rotorcraft design. Pearson
et al. [27] identified that active vibration isolation in a helicopter can be applied at the
main gear box to the fuselage interface. Elbeheiry and Karnopp [29] studied active

suspension for a car. They investigated five types of suspension systems and concluded
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the fully active suspension system provides much better body isolation than the other
types. Karnopp [34] analyzed the benefits of road vehicle suspension systems
incorporating generalized velocity feedback compared with conventional passive
suspensions. A simple criterion is developed which indicates whether or not the
introduction of active damping forces will result in significant benefit for pneumatic
tired vehicles. Winberg et al. [35] showed that the sound level in the cabin of a ship
could be minimized by actively isolating the hull from the engine. Loh and Ma [38]
demonstrated that a combination of the active variable damper system with a passive
base-isolation system is the most effective form of control of the building response
when subjected to seismic excitation even under different site conditions. From this
incomplete review, it is clear that there is a wide range of applications available for

active vibration isolation.

However, stability is always an issue which may limit the performance and application
of active vibration isolation. Although Balas [40] concluded that for collocated and dual
actuators and sensors, a multi-input and multi-output system is unconditionally stable,
such stability guarantees are not always valid in practice. The presence of real hardware
and non-negligible dynamics of actuators and sensors, the unavoidable time delays,
unmodelled dynamic characteristics, component failure and other uncertainties may
destabilize active control systems. For example, Elliott et al. [41, 42] analyzed the
stability and performance of an active vibration isolation system under absolute velocity
feedback control, practically realised using either reactive or inertial actuators. It was
concluded that such control systems are conditionally stable and thus the control
performance was constrained due to the potential instability at high controller gains.
Brennan et al. [43] and Ananthaganeshan [15] investigated both high frequency and low
frequency dynamic behaviour of the system that limits controller gain. It was found that
the phase advance due to the high-pass filters, which are necessary in vibration control
systems to remove the DC signal in the feedback loop, may destabilize the control
system, and thus is detrimental to the control performance. Due to the undesirable
effects of the instability, great efforts should be expended on stability issues.

7
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In active vibration isolation, the control forces generated by the external source are
applied to the structure in a prescribed manner, which is defined as the control strategy.
These strategies are applied to a physical system with the objectives of keeping the
output (force, motion, etc) at a specified set of locations within the structure, below a
specified level in the presence of any disturbances [3, 15]. There are two fundamental
different strategies which have been used in the past for implementing active vibration
isolation systems: feedforward and feedback control [44]. Feedforward control involves
feeding a signal related to the disturbance input into the controller which then generates
a control signal to drive actuators in order to cancel the disturbance. Feedforward
control has generally been used for periodic disturbances, where a reference signal well
correlated with the disturbance input is available to the controller [15, 44]. On the other
hand, feedback control involves feeding a signal derived from the system response into
the controller which then generates a control signal to drive actuators to attenuate the
system response. Feedback control is generally used for random disturbances where a
suitable reference signal is not available [44, 45]. Because base vibration typically has
an unpredictable waveform with broadband random excitation spectra [46, 47],

feedback control is widely used in isolating delicate equipment from base vibration.

In active vibration isolation, the output of the system can be fed into the controller
directly to generate the control signal, which is simple and straightforward to implement
[8, 48]. The output can be velocity, displacement, acceleration, force, etc. Benassi and
Elliott [49, 50] investigated the design of inertial actuators with either local
displacement feedback or local force feedback control and their use in active vibration
isolation systems. Preumont [51] compares the acceleration feedback and force
feedback implementation of the sky-hook damper when it is used to isolate a flexible
structure from a disturbance source. Although active vibration isolation has been
investigated by many researchers using displacement, acceleration or force feedback
control, most of the work of this kind prefers velocity feedback control [40, 52, 53]. The
advantage of using velocity feedback control is that the control system is proven to be

unconditionally stable for collocated ideal force actuators and sensors, irrespective of

8
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structural modelling errors [40, 54].

A traditional active vibration isolation model under output feedback control for a SDOF
system is shown in Figure 1.4, which is widely used by researchers [6, 8, 55]. It is
similar to its passive counterpart, and consists of a rigid mass, representing the
equipment, mounted on a rigid supporting structure through an isolator. For the purpose
of modelling, the isolator is also considered to be massless and modelled as an elastic
spring in parallel with a viscous damper. The response of the equipment (velocity,
acceleration, displacement, force, etc.) is fed into a controller to generate a control force
in parallel with the passive isolator. If absolute velocity feedback control (AVF) is
applied, i.e. the velocity of the equipment fed through a controller with a constant gain,
the AVF control for such a system is equivalent as a ‘sky-hook’ damper [11]. The
transmissibility for this SDOF active vibration isolation model is attenuated at the
resonance frequency by the AVF control without compromising high-frequency
performance. At frequencies well above the system resonance frequency, the
transmissibility decreases at a rate of 40 dB per decade provided the passive damping in
the isolator is small. The trade-off in passive vibration isolation between damping
low-frequency resonances and achieving good high-frequency isolation is thus

overcome by using active vibration isolation.

Similar to the conventional passive vibration isolation model, the traditional active
vibration isolation model, in which the mass of isolator is also ignored, offers a good
prediction tool and provides design guidelines at relatively low frequencies. However,
at relatively high frequencies, the predictions based on this massless model may be

wrong and misleading due to the internal mass effects of the isolator that are ignored.
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1.1.3 Internal resonances in vibration isolators

1.1.3.1 Introduction

In practice, all realistic vibration isolators have distributed mass, stiffness and damping,
which introduce dynamics into the isolators. These dynamics are associated with the
resonance behaviour of the elastic motion of the isolator. Thus there are numerous
frequencies associated with the natural modes, i.e. resonances, of the isolator. These
resonances are referred to as internal resonances (IRs), or wave effects, in the isolators

[13, 20, 21].

The IRs in the isolator are determined by various factors. It is found that the IRs in the
isolator are dependent on the shape, material properties, dimensions, and boundary
conditions of the isolators [20], as well as the type of deformation (e.g. compression,
shear, flexure) [56]. Ungar and Dietrich [13] noted that the wave effects are more
important in a heavier and larger isolator than those in a lighter and smaller isolator of
equal static stiffness. It is also observed that the IRs occur in certain frequency ranges,
when the wavelength of the exciting vibration in the isolator is comparable with the
isolator’s length [57]. Because the wavelength is inversely proportional to the frequency,

the IRs in the isolator typically occur at high frequencies.

Given the trend in many segments of industry towards more complex equipment and
machines, which are lighter and more compact, operating at greater speeds and higher
power ratings, more problems associated with high frequency vibrations have become
important. As a consequence, it is necessary to provide vibration isolation systems that
will remain effective at high frequencies. However, due to the presence of the IRs in the
isolator, the prediction based on the traditional massless isolator model, as discussed in
last section for passive and active vibration isolation, holds true only at relatively low
frequencies when wavelength in the isolator is long compared to its dimension.

Therefore the traditional massless isolator model fails to perform satisfactorily at high
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Chapter 1: Introduction

frequencies. A model with distributed mass, stiffness and damping is thus necessary to

demonstrate the dynamic behaviour of many practical vibration isolators.

1.1.3.2 Distributed parameter isolator models

The idealized ‘long-rod’ model for helical springs and cylindrical rubber isolators,
which have simple geometries and deformation behaviours, has been widely used by
many researchers to investigate the wave effects in the isolator [13, 20, 21]. In this
‘long-rod’ theory, the isolator is modelled as a continuous elastic finite rod with internal
damping, which has mass characterized by the material density. If such a distributed
parameter isolator model is applied in the traditional SDOF passive vibration isolation
system, the transmissibility of the system has the same peak at the system fundamental
resonance as that for the massless isolator model. However, due to the effect of IRs at
high frequencies, the transmissibility for the distributed parameter isolator does not
decrease monotonically with frequency after the system resonance. It is found that the
minimum of the transmissibility for the distributed parameter isolator decreases at about
20 dB per decade rather than 40 dB predicted from the massless isolator model [20].
This reveals that the traditional vibration isolation model, in which the isolator is
assumed to be massless, significantly overestimates the isolation performance at high

frequencies due to the effect of IRs.

Moreover, based on the idealized ‘long-rod” model in which the lateral deformation of
the isolator under the longitudinal excitation is ignored, it has been found that the
amplitudes of the higher order IRs decrease rapidly with the frequency, i.e. the higher
order IRs are effectively damped out by the isolator material damping [13, 20, 21]. A
more complex model based on the Love’s theory [58] that accounts for the effect of the
lateral deformation in the isolator shows that the magnitude of the higher order IRs
decreases even more rapidly [59]. Therefore, it can be concluded that only the first

several IRs have the most practical significance in the isolator performance.
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Other distributed parameter models for the realistic isolators have also been studied by
previous researchers [56, 60]. Ungar [56] presented a simple SDOF model to show the
IRs in leaf springs, which work on their flexural elasticity so that their IRs are
associated with the resonant behavior in flexural vibration. The leaf spring was modeled
as a continuous uniform beam rather than a rod. The damping effects were also included
by considering a complex modulus of elasticity in the beam. It was also shown that the
IRs are detrimental to the isolation performance in a certain frequency range. Ungar
concluded that, given the same system frequency and mass ratio (isolator mass to
equipment mass), vibration isolators that deform primarily in flexure may work better
than isolators that deform primarily in compression or tension. The IRs in flexural
springs have lower density with respect to frequency and occur at higher frequencies,
which may not be excited in practice. Although the amplitude at an IR for a flexural
spring is greater than that for a comparable compression spring, the IRs can be
attenuated to a large extent since more damping can be incorporated more easily in

practical flexural springs than in compression springs.

1.1.3.3 1Rs in different types of isolators

Since the 1950s, many researchers have investigated the IR problem in both rubber
isolators [59, 61, 62] and metal springs [63, 64] based on the idealized ‘long-rod’ model.
Metal springs have a wide application in industries because of their attractive features,
such as wide range of natural frequencies, more freedom in isolation design, and long
service life. They can also be used under severe conditions, e.g. at temperatures far in
excess of that permissible with non-metallic resilient materials, under strong corrosions
of oil, dust water, ozone or atmospheric pressure, and in sizes to carry the heaviest loads
[65]. However, compared to practical rubber isolators, in which the IRs can be more
easily alleviated by the high internal damping of elastomer materials [21, 59], metal
springs are more commonly involved in IR problems in practice due to the low damping

of metal materials.
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The IRs in metal springs generally occur at lower frequencies (a few hundred Hertz)
with higher amplitude. Lee and Thompson [64] showed that the IRs lead to significant
dynamic stiffening for helical springs above a certain frequency. This occurs at
frequencies as low as about 40 Hz for an automotive suspension spring. Tomlinson [63]
pointed out that it is especially necessary to consider the wave effects in the metal
springs for high frequency isolation design. It was shown experimentally that the IRs in
metal helical springs due to the longitudinal vibrations are more significant than those
due to torsional vibrations, although these two different IRs tend to be equally important
with the increasing spring size. Tomlinson [63] also shows analytically and
experimentally that, in some situations, the first IR in metal springs appears below 200
Hz and has almost the same amplitude as the system resonance. As a consequence, the

IR problem in metal springs has greater importance in practice than rubber isolators.

1.1.3.4 Control of IRs

Due to the significant effects of IRs in isolators on their high frequency isolation
performance, much effort has been expended by previous researchers in the suppression
of IRs. It was shown that the IRs can be simply attenuated by increasing the damping in
the isolator [66]. A polymeric damping material can also be applied in parallel with the
original isolator [63]. The polymeric material, which has a high loss factor, helps
dissipate the energy at the IRs while the original isolator maintains the capability of
supporting heavy components. However, it is not always practical to use high damping
materials to suppress the IRs since typically such materials exhibit poor returnability
and great creep, which degrade the load capacity of isolators and the performance of the
system [57, 67]. Compound mounting systems, in which concentrated masses (referred
to as intermediate masses) were inserted into isolators, have been used to achieve lower
transmissibility at high frequencies [59]. However, the penalty is that the isolator
performance at low frequencies is degraded. Snowdon [68] presented a method of using
a dynamic vibration absorber, which efficiently attenuates the first IR peak in the

isolator. Du et al [67] improved the high frequency isolation performance by applying a
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dynamic vibration absorber (DVA) enhanced isolator. The modified isolator consisted
of a cylindrical isolator made of rubberlike material with two embedded dynamic
vibration absorbers. These were placed in the cylindrical cavity inside the isolator and
each of them was connected to the isolator at the ‘one-quarter-length’ position through a
thin plate that acted as an intermediate mass. However, introducing dynamic vibration
absorbers into the isolator dramatically increases the complexity of the isolator and the

resulting isolation system lacks versatility.

1.2 Motivation and objectives of the thesis

Among the various issues associated with vibration, the isolation of a delicate piece of
equipment from a vibrating host base structure is a common situation in a number of
engineering fields [12, 14, 41]. Due to design constraints and complex dynamics of the
host structure, very little can often be done to reduce the vibration of the base [46].
Traditionally passive vibration isolation, consisting of vibration isolators made of
compliant materials, is often used to provide dynamic decoupling between the delicate
equipment and the host structure [2]. Base vibration typically has an unpredictable
waveform and the vibration isolator has to deal with broadband excitation spectra [46,
47]. However, as presented in last section, conventional passive vibration isolation
systems suffer from an inherent trade-off in the choice of damping between high
frequency isolation, which requires a low level of damping, and isolation at the
fundamental mounted resonance frequency, which requires a high level of damping [19,
22, 69, 70]. This inherent compromise can be overcome by applying active vibration
isolation to a passive isolation system, which has been widely used to improve the

performance of an isolator over a broad range of frequencies [6, 11, 71].

In conventional research methodologies for vibration isolation presented in last section,
vibration isolators are usually considered as simple lumped parameter elements, which
are assumed to be massless for the purpose of modelling. It has been shown that this
simplification is only valid at relatively low frequencies when the wavelength in the
isolator is long compared to its dimension [12]. At higher frequencies, realistic isolators,

which have distributed mass, stiffness and damping, do not behave like the idealized
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massless models. Therefore in an active/passive vibration isolation system there are

several problems that should be addressed:

1.

1l.

1il.

Firstly, the massless models for isolators tend to overestimate the isolator
performance because the IRs due to the distributed mass in the isolator are
neglected [13, 20]. The presence and importance of IRs in practical isolators has
been identified by many researchers. The degradation in performance due to the IRs
on vibration isolation is especially important for lightly damped metallic isolators,
since the smaller the loss factor of the isolator the more significant are the
resonances caused by the wave effects [20, 72, 73]. For a better description of the
dynamic behaviour of vibration isolators at high frequencies, different distributed
parameter models have been investigated and some factors, which affect the IRs in
the isolator, have been presented in previous studies. However, previous research
on the IR problem is not particularly comprehensive, because it does not clarify all
the characteristics of vibration isolators. The parameters which control the isolator
performance at various frequencies need to be clarified.

Secondly, performance and stability are two crucial issues in active vibration
isolation systems. Many electronic and mechanical factors introduce limitations on
the control systems, which have been investigated in previous work, for example
[15, 42, 43]. However, few investigations have been carried out to relate the way in
which the IRs affect the performance and stability of the control systems for an
isolator. Therefore, there is a need to quantify the effects of IRs on the control
performance and stability for commonly used control strategies in active vibration
isolation.

Finally, due to the significant degradation effects of IRs on the isolator performance
at relatively high frequencies, approaches need to be investigated to attenuate the IR
peaks in order to improve the isolation performance over a broad range of
frequencies. Although some methods to control IRs have been proposed in previous
research [59, 63, 66-68], they all have inherent limitations either on the
performance, or the practical complexity in design and implementation. Therefore,
based on the understanding of isolator IRs, effective approaches are required to

improve the isolation performance over a broad range of frequencies.
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Motivated by the importance of IRs in vibration isolation and limitations in previous

studies, there are four main objectives of this thesis:

L.

1l.

1ii.

1V.

To determine the effects of IRs in a realistic isolator on the passive isolation of a
delicate piece of equipment from a vibrating host structure.

To investigate theoretically and experimentally the effects of IRs on the hybrid
active/passive isolation of a piece of equipment supported by a realistic isolator.

To compare the control performance and analyze the stability of different control
strategies in hybrid active/passive isolation of a piece of equipment supported by a
realistic isolator.

To investigate and implement an effective approach to suppress IRs in realistic
isolators, and further improve the isolation performance over a broad range of

frequencies.

1.3 Contributions of the thesis

The three main contributions of this thesis are as follows:

1l.

1il.

Simple expressions which describe the behaviour for various types of distributed
parameter models for isolators have been derived. The parameters which control the
isolator performance at various frequencies have been clarified.

The effects of IRs on the control performance and stability of several control
strategies have been determined. A stability condition for an absolute velocity
feedback (AVF) control system has been identified. Based on this condition, ways in
which an AVF control system can be stabilized have been presented.

Different strategies to suppress IRs and improve the isolation performance of

realistic isolators over a broad range of frequencies have been proposed.
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1.4 Overview of the thesis

This study is concerned with the active vibration isolation of a piece of delicate
equipment supported by a distributed parameter isolator. The structure of the thesis is
organized as three parts. The first part (Chapter 1 and 2) reviews the previous research
and introduces methodologies used in this study. The second part (Chapter 3, 4 and 5)
investigates the characteristics of various types of distributed parameter isolator, and the
effects of IRs in the isolator on the control performance and stability for several control
strategies. The third part (Chapter 6 and 7) investigates strategies to attenuate IRs to
improve the isolation performance over a broad range of frequencies. The detailed

overview of the thesis is as follows:

Chapter 1 introduced the background of the study on vibration control, vibration
isolation and IR problem in vibration isolators. The motivations of the thesis were

outlined based on the problems summarized. It was followed by the main contributions.

Chapter 2 introduces concepts and methodologies used in the thesis by reviewing and
summarizing the previous research on vibration isolation systems containing a massless

1solator.

Chapter 3 investigates theoretically and experimentally the characteristics of passive
vibration isolation systems containing a distributed parameter isolator, which is
modelled as different idealised configurations under various deformations. Simple
expressions which describe the behaviour for various types of isolator are derived. The

parameters which control the isolator performance at various frequencies are clarified.

Chapter 4 investigates and compares the control performance and stability of active
vibration isolation systems containing a distributed parameter isolator under various
control strategies theoretically. Such systems either are undergoing base motion or have

a base structure, which is allowed to have its own resonances. Absolute Velocity
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Feedback (AVF) control is shown to be the optimal solution to minimise the mean square

velocity of the equipment mass supported by a distributed parameter isolator

Chapter 5 examines approaches which can stabilize the active vibration isolation system
containing a distributed parameter isolator on a flexible base under AVF control. These
stabilizing approaches together with the control performance and stability of such a

system are investigated experimentally on a four-spring active vibration isolation system.
Chapter 6 and 7 investigates theoretically and experimentally the strategies which can
attenuate IRs in the isolator, in order to improve the isolation performance of a

distributed parameter isolator over a broad range of frequencies, respectively.

Chapter 8 summarizes the overall conclusions, along with suggestions for future work.
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Figure 1.1 Schematic diagram of a general vibration control problem.
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Figure 1.4 Schematic diagram of a traditional active vibration isolation model.
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Chapter 2

Review of Active Vibration Isolation with a

Massless Isolator

2.1 Introduction

Vibration isolation systems containing a massless isolator have been discussed in many
books and papers, for example [2, 16, 18, 19]. In these studies, the massless isolator is
usually modelled as a parallel combination of an elastic spring and a viscous damper.
The dynamics of such systems has been extensively studied and analyzed by many
researchers. The mobility and impedance approach is one of widely used methods for
this analysis [41, 42]. To overcome the compromise in the choice of damping in passive
vibration isolation, active components have been incorporated into passive systems to
form active vibration isolators. The performance and stability of such active vibration
isolation systems containing a massless isolator under different control strategies has

been reported extensively in the literature.

The aim of this chapter is to introduce the concepts and methodologies used in this
thesis by reviewing and summarizing the previous research on vibration isolation
systems containing a massless isolator. The dynamics of a passive vibration isolation

system containing such an isolator is first discussed. Then, concepts of single channel
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feedback control and the Nyquist stability criteria are introduced. This is followed by an
investigation and comparison of the performance and stability of different active control

strategies, based on the massless isolator model.

2.2 Passive vibration isolation with a massless isolator

Figure 2.1 depicts a piece of equipment, represented by its impedance Z,, mounted on

a massless isolator undergoing base motion. The isolator is modelled as an elastic spring
with stiffness k in parallel with a viscous damper with damping coefficient c. The

dynamics of such a system are described in frequency domain by [52]

(Z,+Z)u,—Zu, =0 (2.1)
where u, and u, are the velocities of the equipment and the base respectively, and
Z,=k/ jw+c is the impedance of the massless isolator. Therefore, the transmissibility

of the system is given by

A (22)

If the equipment is modelled as a mass, i.e. Z, = jwm,, then the system becomes the

traditional SDOF passive vibration isolation system discussed in Chapter 1. The
transmissibility of such a system can be written in terms of non-dimensional parameters
as [19]

L L 2.3)
1-Q° + j2LQ

where Q=®/®, is the ratio of the driving frequency @ to the system fundamental
natural frequency @, =./k/m, due to the interaction of the equipment mass and the

stiffness of the isolator, and ¢ = c/ 2,\/km, 1is the viscous damping ratio. The magnitude

of the transmissibility of this system is shown in Figure 1.3. Also the trade-off in the
choice of damping between good high frequency performance and good control at

resonance for passive vibration isolation has been discussed in Chapter 1.
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2.3 Introduction to single channel feedback control

A single channel feedback control system with a control sensor and a secondary
actuator is shown in Figure 2.2. Typically the response of the mechanical system is

measured by a sensor, and then fed back through the controller defined by its frequency

response H (j®), to the secondary actuator [6]. Figure 2.3 depicts the equivalent block
diagram for such a single channel feedback control system. The response of the system
is given by

W(jw)=D(jo)+G(jo)F,(jo) 2.4)
where G(j®) is defined as the ‘plant response’ of the mechanical system, which is the

frequency response from the secondary actuator force F,(j@) in the absence of any

primary disturbance (i.e. D(jw)=0) to the sensor output W (j®). The secondary

actuator force is given by
F (jo)=-H(jo)W(jo) (2.5)
The negative sign in the feedback controller accounts for the negative feedback.

Combining equations (2.4) and (2.5), the closed-loop performance of such a feedback

control system can be described by the ratio between the control system response,
W (j®) and the primary disturbance, D(j®), which is given by [6, 74]

W (jo) _ 1
D(jw) 1+G(jo)H (jo)

(2.6)

where the product of G(j@)H (j®) is defined as the open-loop frequency response of

the control system.

As discussed in many books on control [6, 48, 74-76], if at some frequency the

open-loop frequency response G(j@)H (jo) has little phase shift but simultaneously

has a gain much greater than unity, so that

1+G(jw)H (jo)>>1 Q2.7)

Then one has

W (jw)<<D(jw) (2.8)
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The response of the mechanical system is thus significantly reduced at this frequency.
However, it may not be possible to ensure that the phase shift of the open-loop
frequency response is always small. If the phase shift of the open-loop frequency
response is 180° while its gain is unity at that frequency so that 1+G(jw)H (jw)=0,
then the response of the system becomes infinite, i.e. the control system becomes
unstable. Therefore, the design of a practical feedback control system generally involves

a compromise between a high open-loop gain for good performance and a low

open-loop gain for stability [6].

The above discussion demonstrates that study of the open-loop frequency response of
the system gives insight into the stability and performance of a feedback control system.
The Nyquist stability criterion using the open-loop frequency response is therefore a
powerful experimental tool to assess the characteristics of a control system. The Nyquist
stability criterion states that a closed-loop control system is stable only if the polar plot
of the open-loop frequency response (generally referred to as the Nyquist plot) does not
enclose the unstable point (-1, 0j) [6, 76]. More practically, the Nyquist stability
criterion provides not only the prediction for the absolute stability of a control system,
but also its relative stability by looking at the proximity of the open-loop frequency
response to the unstable point [6]. The proximity of the open-loop frequency response
locus to the unstable point, which is generally represented in terms of gain margin and

phase margin, can be used as a measure of the margin of stability [74]. If the phase shift

of the open-loop frequency response is -180° at a frequency ¢, the gain margin can be

defined as the gain increase (in dB) necessary to cause instability and is given by [74]

1

G(o)H (o)

K (in dB) =20log,, =-20log,, |G (@) H (@) (2.9)

If the magnitude of the open-loop frequency response is unity at a frequency @, , the

phase margin can be defined as the amount of additional phase lag required to bring the

system to the verge of instability, which is given by [74]
7, =180° +¢(w,) (2.10)
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where ¢(@,) is the phase angle of the open-loop frequency response at @, .

2.4 Active vibration isolation with a massless isolator

In this section, active vibration isolation systems containing a massless isolator under
various control strategies are reviewed and discussed. The control performance and
stability for various control methods that can introduce active damping into the system
are analyzed and compared, as well as acceleration feedback control, which can add
mass to the system electronically. The optimal control is then discussed to find the best

solution to isolate the equipment.

2.4.1 Absolute Velocity Feedback (AVF) control

AVF control applied to a vibration isolation system containing a massless isolator has
been extensively investigated by many researchers [6, 11, 40-42, 46, 52, 53]. Figure
2.4(a) shows a base excited vibration isolation system containing a massless isolator

under AVF control. An active control force f,, which is in parallel with the isolator,
reacts between the equipment and the base. The control force f, is proportional to the
velocity of the equipment u,, and fed back to the system through a feedback controller

with a constant gain -4, so that

f, =—hi, 2.11)

2.4.1.1 Control performance

The relationship between the control force and the velocities of the equipment and the

base for the active vibration isolation system in Figure 2.4(a) can be written as
(Z,+Z)u,—Zu, = f, (2.12)

Substituting equation (2.11) into (2.12), the transmissibility of the system under AVF

control is given by

Z,
= i (2.13)
Z,+Z +h
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If the equipment is modelled as a mass, the transmissibility under AVF control can be
written in terms of non-dimensional parameters as

L . (2.14)
1-Q*+j2({+¢,)Q

where {, = h/ 2\/km, is the active damping ratio due to AVF control. It can be seen

from the transmissibility in equation (2.14) that the AVF control adds a damping term to
the denominator but leaves the numerator unchanged. The action of AVF control for this
base excited system is thus the same as a skyhook damper [11]. Figure 2.4(b) shows the
mechanical representation of the system under AVF control, which is equivalent to a
viscous damper with damping coefficient /& acting between the equipment and the

inertial ground [11].

The transmissibility for the active vibration isolation system containing a massless
isolator under AVF control is plotted in Figure 2.5, where the transmissibility of the
system without control is also plotted for comparison. It can be seen that the
transmissibility is attenuated at the resonance frequency by the AVF control without
compromising the high frequency isolation performance. The trade-off in the choice of
damping for passive vibration isolation is thus overcome by introducing active vibration
isolation. Moreover, the higher the control gains, the better the isolation performance

around the resonance frequency.

2.4.1.2 Stability analysis

The stability of the AVF control system has been discussed in several books and papers,
for example [8, 41, 42]. Because the controller is a constant gain, the Nyquist analysis
of the open-loop frequency response for AVF control can be simplified to the
consideration of the plant response with unitary control gain (h=1). The plant response

from the active force to the equipment velocity is given by

G=t| _—_1 (2.15)
fau:() Z+Zt

e

As discussed by Elliott et al. [41], the phase shift of Z, is between -90° and 90°
because it is an input impedance. The phase shift of Z; is -90° if the isolator is

dominated by its stiffness, reducing to 0° if it is dominated by its damping. Therefore
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the overall phase shift of the plant response G is between -90° and 90° and is thus
completely passive. Its Nyquist plot is then entirely on the right-hand side of the
complex plane and the feedback system has an infinite gain margin and a phase margin
of at least 90°. Based on the Nyquist stability criterion, the AVF control system

containing a massless isolator undergoing base motion is unconditionally stable.

From another point of view, because the base motion is prescribed which is not affected
by the active control force, the actuator and the sensor are thus collocated, so that such a
system under AVF control is unconditionally stable [8, 40]. However, if the system is
extended so that the base is not rigid but has its own resonance behaviour which will be
affected by the active control force, the AVF control system becomes conditionally
stable because the actuator and the sensor are no longer collocated. Under some
conditions such an AVF control system on a flexible base will be unstable at high

control gains [41].
2.4.2 Relative Velocity Feedback (RVF) control

Figure 2.6(a) shows a base excited vibration isolation system containing a massless
isolator under RVF control. An active control force f,, which is in parallel with the
isolator, reacts between the equipment and the base. The control force f, here is
proportional to the difference between the velocity of the equipment u, and the
velocity of the base #,, and fed back to the system through a feedback controller with a

constant gain—# , so that
1, :—h(ue —L'tb) (2.16)

2.4.2.1 Control performance

The relationship between the control force and the velocities of the equipment and the

base for the active vibration isolation system under RVF control shown in Figure 2.6(a)

is also given by equation (2.12). Substituting equation (2.16) into (2.12), the

transmissibility of the system under RVF control is given by
_ Z.+h

= (2.17)
Z,+Z +h
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If the equipment is modelled as a mass, the transmissibility under RVF control can be
written in terms of non-dimensional parameters as

_ 1+ 2(¢+dl)e
- 1-Q°+j2({+¢,)Q

(2.18)

It can be seen that a damping term is added to both the denominator and the numerator.
The action of RVF control is thus the same as a passive viscous damper. Figure 2.6(b)
shows the mechanical representation of the system under RVF control, which is
equivalent to a viscous damper with damping coefficient 4 acting between the
equipment and the base. Therefore, similar to the transmissibility for the passive
vibration isolation system shown in Figure 1.3, the transmissibility for the system under
RVF control is attenuated around the resonance frequency, while it is amplified at high
frequencies above the resonance frequency due to RVF control. Thus, the same
compromise in the choice of damping for passive vibration isolation also occurs in the

system under RVF control.

2.4.2.2 Stability analysis

Because the controller is also a constant gain for RVF control, the plant response of the
system can be used for the stability analysis. The plant response from the active force to
the difference between the velocity of the equipment and the velocity of the base is also
given by equation (2.15). Therefore the overall phase shift of the plant response is
between -90° and 90° and is thus completely passive, so that the RVF control system
containing a massless isolator undergoing base motion is unconditionally stable based
on the Nyquist stability criterion. The unconditional stability of the RVF control system
undergoing base motion can also be concluded due to the collocation of the actuator and
sensor. Furthermore, even if the base is not rigid and has its own resonance behaviour,
the RVF control system is still completely passive and thus unconditionally stable [72]
because the actuator and the sensor remain collocated. The unconditional stability is the
main advantage of RVF control compared to AVF control, although its control

performance is worse than that of AVF control.
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2.4.3 Integral Force Feedback (IFF) control

IFF control applied to a vibration isolation system containing a massless isolator has
been presented in several books and papers, for example [8, 41, 50, 51]. Figure 2.7
shows a base excited vibration isolation system containing a massless isolator under IFF

control. The control force f,, which is in parallel with the isolator, reacts between the
equipment and the base. The control force f, is generated by feeding the transmitted

force to the equipment through a controller with frequency response H(j@)

negatively, which is given by

h
H W) =— 2.19
IFF(J ) 17 ( )

The transmitted force to the equipment £, , which consists of the transmitted force from

the isolator Q, and the active force applied on the equipment f,, generates the

motion of the equipment and can be written as
fr=0+f =Zu, (2.20)

The control force is thus given by

Ja :_HIFF(ja))fT :_.izeue 2.21)

2.4.3.1 Control performance

The relationship between the control force and the velocities of the equipment and the
base for the active vibration isolation system under IFF control shown in Figure 2.7 is
also given by equation (2.12). Substituting equation (2.21) into (2.12), the
transmissibility of the system under IFF control is given by

T Z; - (2.22)
Z+7+ 7
]a)

If the equipment is modelled as a mass, i.e. Z, = jom,, the transmissibility under IFF

control can be written as

T (2.23)
Z,+Z +hm,
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Comparing equation (2.23) with equation (2.13) (the transmissibility of such a system
under AVF control), the action of IFF control is also the same as a skyhook damper.
The only difference is that the IFF control applied to a system containing a mass-like

equipment is equivalent to a viscous damper with damping coefficient hAm, (rather

than 4 for AVF control) acting between the equipment and the inertial ground.

2.4.3.2 Stability analysis

The stability of the IFF control system has been investigated by several researchers, for
example [8, 41, 51]. Combining equations (2.15) and (2.20), the plant response from the
active force to the transmitted force to the equipment is given by

G=Ir| _—_Z_ (2.24)
-fa =0 Ze + Zi

Because the IFF controller is not a constant gain, the open-loop frequency response is
used to analyze the stability, which is given by

h Y4
GH, =— £ 2.25
" jwz,+2Z 2.25)

The stability of the IFF control system can be investigated by examining the reciprocal

of the open-loop frequency response, which is given by

(GHy) " =(hz,)" jo(Z,+Z,) :% jo(1+2;'2)) (2.26)

Z' is passive since Z, is an input impedance, so that Z ' has a phase shift of

e

between -90° and 90°. The phase shift of Z, is -90° if the isolator is dominated by its

stiffness, reducing to 0° if it is dominated by its damping. The phase shift of 1+Z'Z,
can thus potentially vary between -180° and 90°. Therefore the overall phase shift of
(GH )_1 is between -90° and 180°. The phase limitations on the open-loop frequency

response are thus between -180° and 90°. In the Nyquist plot of the open-loop frequency
response, there is no loop on the left half of the complex plane crossing the negative real
axis, and thus the IFF control system containing a massless isolator undergoing base
motion is unconditionally stable based on the Nyquist stability criterion. However, such

an IFF control system is not completely passive, and thus not robustly stable as an AVF
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control system undergoing base motion. But if the equipment is rigid and has a

mass-like impedance, i.e. Z, = jom,, the open-loop frequency response can be reduced

as hm, / (Z,+Z,), so that the overall phase shift of the open-loop frequency response

is limited between -90° and 90°. The IFF control system is thus completely passive. The
advantage of the IFF control system compared to AVF control is that it remains
unconditionally stable for any combination of base and equipment dynamics [41], even

if the base has its own resonance behaviour.

2.4.4 Positive Position Feedback (PPF) control

PPF control has been presented in several books and papers, for example [8, 77-80].
Figure 2.8 shows a base excited vibration isolation system containing a massless
isolator under PPF control. The control force f,, which is in parallel with the isolator,

reacts between the equipment and the base. The control force f, is generated by
feeding the displacement of the equipment u, through a controller with frequency
response Hpp (j@) in a positive sense. The PPF control is implemented using an
auxiliary dynamic system, which is basically a second-order filter of the form [55, 77]
E+28 0,8+ W é=wu, (2.27)
where u, is the displacement of the equipment, and ¢, o, ¢ ; are the response, the
natural frequency and the damping ratio of the filter respectively. The output from the
filter is then multiplied by ga); , where g is a constant gain, to give the secondary force

f, . If the signal is time harmonic, the filter output is given by

VA
(4]
! u = ! u (2.28)

@+ 200~ 1—(w/@f)2+12§f-w/wf' e

3

The control force is thus given by
. 1 R
fa:gwﬁszPPF(]w)ue:j_a)HPPF(]w)ue (2.29)

where
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2
8w,

1- (0@, )2 +j2¢, 0 o,

Hpp (]w) = (2.30)
is the frequency response of the PPF controller which acts as a second order

compensator.

Figure 2.9 shows the frequency response of the PPF controller. It can be seen that the
PPF controller has -90° phase shift at its cut-off frequency with high magnitude, which
is why the PPF control can act as an active damping for the specific frequency and
needs fine-tuning [81]. Therefore, to attenuate a mode in the system, the cut-off
frequency of the PPF controller should be closely matched to the mode. Furthermore,
because the magnitude of the frequency response rolls off rapidly above the cut-off
frequency, the PPF controller has less spillover to higher frequency modes. This
inherent robustness to spillover to high frequency modes, i.e. insensitivity to the
un-modelled high frequency dynamics, is the main advantage of PPF control [77].
However, the PPF controller may lead to spillover problem to lower frequency modes

when the feedback gain is high.

2.4.4.1 Control performance

The relationship between the control force and the velocities of the equipment and the
base for the active vibration isolation system under PPF control shown in Figure 2.8 is
given by equation (2.12). Substituting equation (2.29) into (2.12), the transmissibility of
the system under PPF control is given by

T= Z (2.31)

2
()
z+7 -1 ke

ja)l—(w/a)f)2+j2§f o/ o,

If the equipment is modelled as a mass, i.e. Z, = jom,, and the undamped natural

frequency of the PPF controller @, is tuned to the system fundamental resonance

frequency @, =./k/m, , the transmissibility of the system under PPF control can be

written as
1+ j2{Q

i
1-Q2 + j20Q -5
o2l a

e

T =

(2.32)
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At frequencies much lower than the system fundamental resonance frequency, i.e.
Q <<1, and assuming the damping in the isolator is small, the transmissibility can be

reduced to

1
TQ<<1 = (233)

&
me

It can be seen that PPF control adds a negative stiffness term —g/m, to the system,

which may amplify the transmissibility of the system depending on the values of g and

m,. At the system fundamental resonance frequency, i.e. =1, the transmissibility can

be reduced to

1+ j2¢
Iy, = )
j(2§+g]
m, 26,

Thus PPF control is equivalent to a skyhook damper with damping ratio g / (24’ fme)

(2.34)

around the system fundamental resonance frequency, so that the resonance peak can be
effectively attenuated. At high frequencies, well above the system fundamental
resonance frequency, i.e. € >>1, the frequency response of the PPF controller rolls off

rapidly, and thus the effect of PPF control is negligible.

Figure 2.10 shows the transmissibility for the active vibration isolation system
containing a massless isolator under PPF control with various values for control gain g,
where the transmissibility of the system without control is also plotted for comparison.
It can be seen that the resonance peak is attenuated by PPF control without
compromising the high frequency isolation performance, because the frequency
response of the PPF controller rolls off very quickly at high frequencies. However, the

transmissibility is amplified at frequencies lower than the resonance frequency due to

the negative stiffness determined by the specific values of g and m, .

2.4.4.2 Stability analysis

The equation of motion for the system shown in Figure 2.8 is given by
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mii, +c (i, —i,)+k(u, —u,) = f, = g} (2.35)

It can be rearranged as
. . 2 ngzf . 2
i, +2{mu, + au, —75 =2{wu, + &u, (2.36)
Combining equations (2.27) and (2.36) gives
2
. . 8w
{u} {25@ 0 Hu} N — {u} [25@% + wfub} 237)
. : m, = .
é: 0 2§fa)f é: ) 2 0

Wy

To guarantee the stability of such a closed-loop system, the ‘stiffness’ matrix in equation
(2.37) should be positive definite, that is the eigenvalues of this matrix are all positive

[77]. Therefore, the stability condition is then given by

L& <ay (2.38)
o

e

In the earlier discussion, to control the system fundamental resonance mode, the natural

frequency of the PPF controller @, was tuned to the system fundamental resonance
frequency @, . So the stability condition given by equation (2.38) can be simplified so

that the control gain g should be less than the mass of the equipment, i.e. g<m,.

2.4.5 Acceleration-Position Feedback (APF) control

APF control was first introduced as an electrical dynamic vibration absorber by Kim et
al. [82]. Figure 2.11 shows a base excited vibration isolation system containing a

massless isolator under APF control. The control force f,, which is in parallel with the

isolator, reacts between the equipment and the base. The control force f, is generated

by feeding the acceleration of the equipment #, through a second order low-pass filter

in a negative sense with frequency response H . (j®) , which is given by
26, /@,

1‘(“’/“).f)2 +j2¢; 0 o,

H,, (jo)=h (2.39)
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where @, and 4,“ , are the natural frequency and the damping ratio of the filter

respectively, and / is a constant control gain. The control force is then given by
N Jj28, 0o .
f,=—H y (jo)ii, =—h J / ! i, (2.40)
I-(0)o,) +j2¢, 0o,

It can be seen that, around the natural frequency of the APF controller, i.e. @w=w®,, the

control force can be reduced to equation (2.11), which is the active control force under
AVF control. But at frequencies much lower or higher than its natural frequency, the
active control force rolls off rapidly, i.e. the APF control is not sensitive to the dynamics
in those frequency ranges. Therefore, the natural frequency of the APF controller should

be closely matched to the mode that is required to be attenuated.

2.4.5.1 Control performance

The relationship between the control force and the velocities of the equipment and the
base for the active vibration isolation system under APF control shown in Figure 2.11 is
given by equation (2.12). Substituting equation (2.40) into (2.12), the transmissibility of
the system under APF control is given by [82]
Zi
Jj26, 0@,
1_(w/wf)2 +J26, 0@,

T =

(2.41)
Z,+Z +h

It can be seen that, around the natural frequency of the APF controller, i.e. @w=w®,, the

transmissibility can be reduced to equation (2.13), which is the transmissibility of the
system under AVF control, so that APF control is equivalent to a skyhook damper
around its natural frequency. However, at frequencies much lower or higher than its
natural frequency, the effects of APF control are negligible. If the equipment is

modelled as a mass, i.e. Z, = jwm,, and the natural frequency of the APF controller

@, is tuned to the system fundamental resonance frequency @, , the transmissibility of
the system under APF control can be written as

T 1+ j2LQ

(2.42)

. . j2¢,Q
1-Q*+ 20Q+ j2 !
J20+ ] 5“1—92”2@9

Figure 2.12 shows the transmissibility for the active vibration isolation system

34



Chapter 2: Review of Active Vibration Isolation with a Massless Isolator

containing a massless isolator under APF control with various values for active damping

ratio {,, where the transmissibility of the system without control is also plotted for

comparison. It can be seen that the transmissibility is attenuated around the system
fundamental resonance frequency with an increase in the active damping ratio due to
APF control. However, the transmissibility close to the system fundamental resonance
frequency is amplified due to APF control, since the APF controller is equivalent to a
dynamic vibration absorber. While at frequencies much lower or higher than the system
fundamental resonance frequency, the effects of APF control are negligible, because the

active APF control force rolls off rapidly.

2.4.5.2 Stability analysis

From equation (2.15), the plant response from the active force to the acceleration of the
equipment is given by

_i,|  _ jou,

- £,

Because the APF controller is not a constant gain, the open-loop frequency response is

__Jjo
Z,+Z

(2.43)

1, =0 1, =0

used to analyze the stability, which is given by

jo | h 2,
Z,+Z, | o 1—(a)/a)f)2+j2§"f Wl o,

GH,,, = (2.44)

The phase shift of 1/(Z,+Z,) is between -90° and 90°, so that the phase shift of the

first term  j@/(Z,+Z,) is between 0° and 180°. Because the APF controller is a second

order low-pass filter, its phase shift can thus potentially vary between -180° and 0°.
Therefore the overall phase shift of the open-loop frequency response is between -180°
and 180°. The APF control system containing a massless isolator undergoing base
motion is thus unconditionally stable based on the Nyquist stability criterion. However,
such an APF control system is not passive, and thus not robustly stable. It is sensitive to
the unmodelled actuator dynamics and other uncertainties in the system which might

destabilize the control system.
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2.4.6 Comparison of the control performance

In the above discussion, AVF, RVF, IFF, PPF and APF control can all bring active
damping into the system around the system fundamental resonance. The comparison of
the overall control performance for the active vibration isolation systems under these
different control strategies can be realized by looking at their change in mean square
response compared to the original passive system. The relationship between the power
spectral densities of the base disturbance and equipment response can be written as [83]
s, =[t[ s, (2.45)
where S, and S, are the power spectral densities of the equipment response and the

base disturbance, respectively. The mean square velocity of the equipment is thus given

by [83]
il = [ 5,d0=[[1] 5,40 (2.46)
Substituting the corresponding transmissibility into equation (2.46), the change in mean

square velocity for the system under different control strategies compared to the passive

system can be calculated. For AVF, RVF, IFF and APF control, they all have the active

damping ratio ¢, in the transmissibility. However, the PPF control has an equivalent
active damping ratio g / (24,“ fme) around the system fundamental resonance peak. In
order to plot the change in mean square velocity against active damping ratio ¢, the

equivalent active damping ratio for PPF control is settobe {, =g / (2{ fme) . Therefore,

the range of the control gain g can be calculated according to the active damping ratio.

Figure 2.13 depicts the change in mean square velocity within the range 0.1<Q <1000

when ¢=0.005, m,=0.5, ¢,=0.5 and @, =®,. At high active damping ratios,

AVF and IFF control provides increasing reduction in the mean square response. The
performance of IFF control is determined by the mass of the equipment. In this case the

mass of the equipment is 0.5, which is less than unity, the control performance of IFF
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control is therefore worse than AVF control. The RVF, PPF and APF control do not

produce monotonically reducing mean square response for an increase in active

damping ratio. Furthermore, at ¢, =1, i.e. the control gain g =2¢ fmexg‘ ,=m,, the

change in mean square velocity for PPF control is infinite, i.e. the PPF control system
becomes unstable. The stability condition for PPF control given in equation (2.38) is

thus validated.

2.4.7 Acceleration feedback control

Acceleration feedback control applied to a vibration isolation system containing a
massless isolator has been investigated in several papers, for example [43, 47, 51].
Figure 2.14(a) shows a base excited vibration isolation system containing a massless

isolator under acceleration feedback control. The control force f,, which is in parallel
with the isolator, reacts between the equipment and the base. The control force f, is

proportional to the acceleration of the equipment, and fed back to the system through a
feedback controller with a constant gain—#, so that

f, =—hii, =— johi, (2.47)

2.4.7.1 Control performance

The equation of motion for the active vibration isolation system under acceleration
feedback control shown in Figure 2.14(a) is given by equation (2.12). Substituting
equation (2.47) into (2.12), the transmissibility of the system under acceleration

feedback control is given by
Z

=—"t (2.48)
Z,+Z, + joh

If the equipment is modelled as a mass, the transmissibility can be written as [47]

1+ j20Q

1—(1+hj§22+j2§§2
m

e

T= (2.49)

Different from the aforementioned control strategies that all introduce active damping to

the system, the action of acceleration feedback control for this base excited system is
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equivalent to adding a mass /4 on top of the equipment as shown in Figure 2.14(b).

The magnitude of the transmissibility for the active vibration isolation system
containing a massless isolator under acceleration feedback control is plotted in Figure
2.15, where the transmissibility of the system without control is also plotted for
comparison. It can be seen that the system fundamental resonance peak moves to a
lower frequency due to the acceleration feedback control, and thus the transmissibility

at high frequencies is reduced.

2.4.7.2 Stability analysis

For acceleration feedback control, because the controller is a constant gain, the plant
response of the system from the active force to the equipment acceleration can be used
for the stability analysis, which is given by equation (2.43). The overall phase shift of
the plant response is between 0° and 180°, and thus the acceleration feedback control
system containing a massless isolator undergoing base motion is unconditionally stable.

However, such a control system is not completely passive, and thus not robustly stable.

2.4.8 Optimal control

To find the best control strategy in attenuating the equipment response, the optimal
control for active vibration isolation system containing a massless isolator undergoing
base motion has been investigated [6]. Figure 2.16 shows a base excited system
containing a massless isolator under optimal control. The equipment is modelled as a
rigid mass. The massless isolator is modelled as an elastic spring in parallel with a
viscous damper. The dynamics of such a system is described by

meiie+c(ue—ub)+k(ue—ub)=fa (2.50)

which can be rearranged as

LI S R SN (2.51)
m m m m m

The state space representation for such a system has the form

x=Ax+bf, +Dy (2.52)

where
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0 1 0 0O O
ue uh
x=| |, A= k c ,b=|1|,D=| k c |, y=|.
u, - —— — — — u,
me me me me me
(2.53a,b,c,d,e)

The general quadratic performance index which is to be minimized is given by [6, 74]

J= j:(x’Qx+ fa'Rfa)dt (2.54)

where the prime denotes the transpose of the matrix, Q is a positive-definite or
positive-semidefinite real symmetric matrix and R is a positive-definite real

symmetric matrix. If one chooses

0 0
Q:{O q} (¢=0), Rz[r] (r>0) (2.55a,b)

The performance index can be written as
(7 2 2
J=["(qu +rf})de (2.56)

where ¢ is a weighting on the mean square velocity of the equipment mass and r is a
weighting on the mean square control effort applied. The control force required to

minimize the performance index is given by [6, 74]

f,= —R'b'Px (2.57)
where
P:{Pn p12} (2.58)
P Py

is a positive-definite real symmetric matrix to ensure the control is stable, and satisfies

the reduced-matrix Riccati equation
A’P+PA-PbR'D'P+Q =0 (2.59)
Substituting the appropriate matrices into the reduced-matrix Riccati equation, three

equations in terms of the unknown elements p,,, p,, and p,, result. They are given

by
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k 1
—2—pp 2 p122 =0
m, e
c k 1
Py =P~ Pn 7 PuPn =0 (2.60a,b.)
m, m, rm,

1
2p,—2—py,— 219;2"'61:0
m, rm,

There are two solutions to equation (2.60a) given by
P, =0, py, =—2rkm, (2.61a,b)

The solution to equation (2.60c) can be written as

Dy, =1, (i, I +M - cj (2.62)
r

Finally equation (2.60b) shows that

c k 1
Py=—Pot—Ppnt—F5PnulPxn (2.63)
m m rm;

e e

Because the matrix P is positive-definite, one has

P P

P >0, =DPuPxn— p122 >0 (2.64a,b)

12 Pxn

Combining equations (2.61-2.64), the only solution that ensures the matrix P is

positive-definite is given by

rk[‘/c2+g—cJ 0
r

pP= {pn p12:| _ (2.65)

Po P /
v 0 rme( c2+i—cj
r

Substituting appropriate matrices into equation (2.57), the control force is thus given by

Ja =—L(p12ue+p22u6)=—[\/cz+g—cjl}te (2.66)
rm r

e

It can be seen that the optimal control strategy to minimise the mean square velocity of
the equipment mass is precisely the AVF control, which results in skyhook damping of
the controlled system [6]. If the damping in the system is negligible, i.e. ¢ <<1, the

control force given by equation (2.66) can be reduced to
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f, =—J§ae (2.67)
r

which is identical to the result derived by Fuller et al. [6]. The feedback control gain for
optimal control is thus given by /q/r, which is a simple function of the ratio of the

relative penalty on minimising mean square equipment velocity response and mean
square control effort. The smaller the control effort weighting r, the higher the feedback

control gain, and thus the better the control performance.

2.4.9 Summary

The control performance and stability of active vibration isolation systems containing a
massless isolator under different control strategies have been reviewed and compared.
AVF control introduces skyhook damping to the system, which is effective in
attenuating the resonance peak. Also AVF control has shown to be robustly stable for a
base excited system, while it becomes conditionally stable if both the equipment and
base dynamics are included. RVF control is equivalent to a viscous damper between the
equipment and the base. Thus in this case there is a trade-off between the isolation
performance at the resonance frequency and the isolation performance at high frequency,
although RVF control is always unconditionally stable. If the equipment is a rigid mass,
IFF control also introduces skyhook damping to the system. Although IFF control is not
robustly stable for a base excited system, it remains unconditionally stable even if the
base has its own resonance behaviour. Both PPF and APF controllers are second order
filters that introduce active damping at the system fundamental resonance frequency,
and then roll off rapidly at high frequencies, so that they are not sensitive to spillover at
high frequencies. However, the PPF controller needs to be carefully designed to control
a specific mode, and it may cause amplification at low frequencies due to the negative
stiffness introduced. APF control is not robustly stable and thus very sensitive to the
unmodelled actuator dynamics and other uncertainties in the system which might
destabilize the control system. Different from other control methods, acceleration

feedback control is equivalent to adding a mass onto the equipment, so that the
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resonance peak moves to a lower frequency and the equipment response at high
frequencies is reduced. Finally the study for optimal control shows that, to minimise the

mean square velocity of the equipment mass, AVF control is the optimal solution.

2.5 Conclusions

Previous research on vibration isolation systems containing a massless isolator, which is
modelled as an elastic spring in parallel with a viscous damper, has been reviewed and
summarized. The compromise in the choice of damping in passive vibration isolation
has been demonstrated. The concepts of single channel feedback control have been
introduced together with the Nyquist stability criterion. The control performance and
stability of active vibration isolation systems containing a massless isolator under
various control strategies have been analyzed and compared. The different control
strategies have their own advantages and disadvantages in isolating a piece of
equipment undergoing base excitation based on the massless isolator model. It is shown
that AVF control is an optimal solution to minimise the mean square velocity of the

equipment mass.

The concepts and methodologies introduced in this chapter are applied to the vibration

isolation systems containing a distributed parameter isolator discussed in the following

chapters.
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C2 ) 1.
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Massless
isolator

t

Figure 2.1 Schematic diagram of a vibration isolation system containing a massless
isolator undergoing base motion, where u, and u, are velocities of the equipment
and the base respectively; Z, is the input impedance of the unconnected equipment at

the location of the isolator connection; k is the spring stiffness and c is the damping

coefficient of the viscous damper.

Primary Sensor detecting response of
excitation l mechanical svstem
'_I_ A\ 4
Mechanical Electrical
H(jo) | feedback
system controller
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Secondary excitation via
fully active actuator

Figure 2.2 Schematic diagram of a single channel feedback control system.

Primary disturbance

Plant response ,
P D(jo)

. . Response
F, (jo) 6ljo) ’
Secondary actuator
excitation
—H ( jo)

Feedback controller

Figure 2.3 Equivalent block diagram of the single channel feedback control system

shown in Figure 2.2.
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Figure 2.4 (a) schematic diagram and (b) mechanical representation of a base excited

system containing a massless isolator under AVF control, where h is the constant

feedback control gain and f, is the active control force.
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Figure 2.5 Transmissibility of the active vibration isolation system under AVF control

with { =0.005 and the active damping ratio {, =0 (solid line), {, =0.1 (dashed

line) or {,=0.5 (dotted line).
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Figure 2.6 (a) schematic diagram and (b) mechanical representation of a base excited

system containing a massless isolator under RVF control.
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Figure 2.7 Schematic diagram of a base excited system containing a massless isolator

under IFF control, where H g, (j®) is the frequency response of the IFF controller

and f, 1is the transmitted force to the equipment.
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Figure 2.8 Schematic diagram of a base excited system containing a massless isolator

under PPF control, where u, is the displacement of the equipment and H . (j®) is

the frequency response of the PPF controller.
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Figure 2.9 Frequency response of the PPF controller when the natural frequency of the

ilter w, =5, the damping ratio of the filter =0.5 and the gain g =0.5.
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45



Chapter 2: Review of Active Vibration Isolation with a Massless Isolator

40

[Transmissibilityl (dB)

Increasing g

58,

1

0 100

Frequency ratio Q

Figure 2.10 Transmissibility of the active vibration isolation system under PPF control

when §=0.005, @, =w,, ¢,=0.5, the mass of the equipment m,=2 and g=0

S

(solid line), g =0.5 (dashed line) or g =0.9 (dotted line).
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Figure 2.11 Schematic diagram of a base excited system containing a massless isolator

under APF control, where i, is the acceleration of the equipment and H ,p (j@) is

the frequency response of the APF controller.

46



Chapter 2: Review of Active Vibration Isolation with a Massless Isolator

40
Increasing ¢,
20
@
Z 0
=
=20
E
=
s -40
=

-60

_88.1 | i | 1‘0 100
Frequency ratio Q
Figure 2.12 Transmissibility of the active vibration isolation system under APF control
with {=0.005, @, =w, ¢,=0.5 and {, =0 (solid line), ¢, =0.1 (dashed line)
or § =0.5 (dotted line).
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Figure 2.13 Normalized change in mean square velocity for the system under AVF
(solid line), RVF (dashed line), IFF (dotted line), PPF (line with circle) and APF
(dashed-dotted line) control compared to the passive system when ¢ =0.005, m,=0.5,
o, =w, and {, =0.5.
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Figure 2.14 (a) schematic diagram and (b) mechanical representation of a base excited

system containing a massless isolator under acceleration feedback control.
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Figure 2.15 Transmissibility of the vibration isolation system under acceleration
feedback control when {=0.005 and h=0 (solid line), h/me =0.5 (dashed line)
or h/m,=35 (dotted line).

Figure 2.16 Schematic diagram of a base excited system containing a massless isolator

under optimal control.
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Chapter 3

Passive Vibration Isolation with a Distributed

Parameter Isolator

3.1 Introduction

As described in Chapter 2, traditional vibration isolation models, in which the mass of
isolator is assumed to be negligible, offer a wealth of information about vibration
isolation and basic guidelines for isolation design. However, this assumption is only
valid at frequencies which are low enough that the wavelength in the isolator is long
compared to its size, as discussed in Chapter 1 [12, 20]. At higher frequencies, the
predictions based on a massless isolator model are no longer accurate, and may be
misleading due to the internal mass effects of the isolator that are ignored. Due to
industrial trends towards more complex equipment and machines, greater operating
speeds and higher power ratings, vibration isolation is becoming important at high
frequencies, where traditional massless isolator models fail to perform satisfactorily. A
model incorporating a distributed parameter isolator is thus necessary for high

frequency isolation analysis.

The aim of this chapter is to investigate, theoretically and experimentally, the

characteristics of a passive vibration isolation system containing a distributed parameter
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isolator. First, different distributed parameter models for the isolator are presented.
Their characteristics in isolating a piece of equipment (a rigid mass) from base motion
are investigated. The way in which various system parameters affect the response of the
system at various frequencies is then discussed. Experimental work on a mass supported
by a helical spring is presented to support and validate the theoretical results. Finally,
the characteristics of a passive vibration isolation system containing a distributed

parameter isolator on a flexible base are investigated.

3.2 System undergoing base motion

Passive vibration isolation systems containing a distributed parameter isolator

undergoing base motion are investigated in this section.

3.2.1 Theoretical analysis

As mentioned in Chapter 1, the various types of realistic isolator (for example the
compression and leaf springs in automotive suspension, viscoelastic engine mounts,
etc...) can be modelled as different idealised configurations under various types of
deformation. Figure 3.1 depicts the passive vibration isolation systems containing a
piece of equipment supported by a distributed parameter isolator under different types
of excitation (e.g. longitudinal, torsional, or lateral vibration). These distributed
parameter models for a realistic isolator can be categorized into two types for the
purpose of dynamic analysis. One type can be modelled using a second order partial
differential equation, and is called a non-dispersive isolator, since the wave speed is
independent of frequency. The other type can be modelled using a fourth or higher order
partial differential equation, and is called a dispersive isolator, since the wave speed is
dependent on frequency. In Figure 3.1 the distributed parameter isolator is modelled as a
finite elastic rod under longitudinal vibration (Figure 3.1(a)) or torsional vibration
(Figure 3.1(c)), or a beam under lateral vibration (Figure 3.1(e)), respectively. The rod
in Figure 3.1(a, ¢) can be categorized as a non-dispersive isolator. The beam in Figure
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3.1(e) can be categorized either as a non-dispersive isolator if it is represented as a shear
beam, or a dispersive isolator if it is represented as an Euler-Bernoulli beam dominated

by bending.

The generalized dynamics of the systems containing a distributed parameter isolator

shown in Figure 3.1 are described by
Qe = _QZ = Zel/'te
{Ql}z {ﬂ{zn le}{l;th} (3.1a,b)
Q2 I I’.te ZZl ZZZ I"te
where Q,, O, and Q, are the internal forces shown in Figure 3.1(b) and (f), or
moments shown in Figure 3.1(d); #, and u, are velocity in Figure 3.1(b) and (f), or

angular velocity in Figure 3.1(d) of the equipment and the base respectively; Z, is the

input impedance of the unconnected equipment at the location of the isolator connection;
2,=7,., Z,, Z; (for shear beam) or Z; (for Euler-Bernoulli beam) is the
impedance matrix for the different isolator models and is discussed further below; and
the subscripts 1 and 2 in the impedance matrix refer to the positions at the base and
equipment respectively. From equations (3.1a, b), the transmissibility for all the systems
shown in Figure 3.1 has the same form and can be written as [72]

T:”“_e_ ~Z,

= 3.2
w, Z,+Zy 2

The performance of passive vibration isolation systems containing such isolators is
investigated and compared in the following sections.
3.2.1.1 Non-dispersive isolator

For the rod isolator under longitudinal vibration shown in Figure 3.1(a), the impedance

matrix is given by [84, 85] (the detailed derivation can be found in Appendix A)

ZL{Z“ ZIZ}_S—\/E*P cos(kiz) 1 (3.3)

Zy Zn| jsin(kL)| -1 cos(k'L)

where L, S, E°, p are the length, cross-sectional area, Young’s modulus and density

of the isolator respectively; to account for damping in the isolator, the Young’s modulus
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is assumed to be complex, ie. E'=E(1+jn,), where 7, is the loss factor;

k, =k (1-jn,/2) , where k, =+ p/E® is the longitudinal wavenumber in the

undamped isolator, and @ is angular frequency.

For the rod isolator under torsional vibration shown in Figure 3.1(c), the impedance

matrix is given by [84, 85] (the detailed derivation can be found in Appendix A)
z _[ZH Zn} _ G |eoslt) (3.4)
Y2, 7, jSin(k:L) -1 COS(k:L)
where J is the polar second moment of area of the isolator; G =G (1+ jn,) is the

complex shear modulus, where 7, is the loss factor; k, =k, (1—jn,/2), where

k,=+/p/Gw is the shear wavenumber in the undamped isolator.

Similarly for the shear beam isolator under lateral vibration in Figure 1(e), the

impedance matrix is given by [86] (the detailed derivation can be found in Appendix A)

Z_{Zn Zu}_ S{G p COS(k:L) -1 (3.5)

Y12, Z,] jsin(kL)] -1 cos(k;L)

Substituting the appropriate impedances in equations (3.3-3.5) into (3.2), and letting

Z,= jom,, where m, is the mass of the equipment in Figures 3.1(a) and (e);
Z,= jwJ,, where J, is the polar moment of inertia of the equipment in Figure 3.1(c);
n, =mn, =n,, where the subscript i refers to the isolator; the generalized transmissibility

can be written in non-dimensional form as

T = ! (3.6)

R R el 2

where Q=wm/@, is the ratio of the driving frequency @ to the system fundamental

natural frequency @, due to the interaction of the equipment mass and the static
stiffness of the isolator. For the rod isolator, @, =\/K,/m, where K, =ES/L is the

static longitudinal stiffness of the isolator; g = pSL/m, is the ratio of the mass of the

52



Chapter 3: Passive Vibration Isolation with a Distributed Parameter Isolator

isolator to the mass of the equipment. For the torsional isolator, @, =./K,/J, where

K, =GJ,/L is the static torsional stiffness of the isolator;  =pJ.L/J, is the ratio
of the polar moment of inertia of the isolator to the polar moment of inertia of the

equipment. For the shear beam isolator, @, =./Ky;/m, where K;=GS/L is the

static shear stiffness of the isolator and g, = pSL/m, is also the ratio of the mass of

the isolator to the mass of the equipment.

The transmissibility for the passive vibration isolation systems with a non-dispersive

isolator is plotted in Figure 3.2 for the case in which x4 =0.1 and 7,=0.01. For

comparison, the transmissibility of a system containing a massless isolator is also
plotted. The transmissibility for a non-dispersive isolator has a peak at a frequency close
to that of the fundamental resonance when the isolator is massless. The transmissibility
for a non-dispersive isolator, however, is greater than that for the massless isolator, at
high frequencies (Q >>1), due to the effects of the IRs. Some characteristic lines are
also plotted and identified. The dashed line called the ‘maximum’ line is through the IR
peaks in the transmissibility. The dotted line is the ‘minimum’ line of the
transmissibility across the isolator. The point circled corresponds to the frequency at
which the transmissibility of a system with a non-dispersive isolator and a system with a
massless isolator start to deviate, i.e. the wave effects in the isolator becomes
detrimental to the isolator performance. The characteristic lines and point are

determined below:

e  Maximum line

The natural frequencies of a fixed-fixed rod occur when sin(\/z Q) =0. At relatively

low frequencies, assuming light damping in the isolator, i.e. 77, <<1 and light isolator

compared to the equipment mass, i.e. 4, <<lI, gives

%77[\/;,.9 <<1 (3.7)

So using small angle approximations and considering sin (\/E Q) =0, one has
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co{ﬁ(l—j%}ﬂ}zil

(3.8a,b)
sin{\/;i(l— ]%jg} ~ ?j%ﬂi\/;iﬁ
Substituting equations (3.8a, b) into (3.6) gives
= 1 (3.9)

Q)L
1+\/;,~(1 .]2)]277[\/;1‘9‘

Assuming that the imaginary part of equation (3.9) dominates around the IR frequencies

in the isolator, the maximum line is given by

2 1
7| ey (3.10)

This equation is a function of the loss factor 7, and frequency ratio €. It decreases at

a rate of 40 dB per decade. From this equation, it should be noted that increasing
damping in the isolator or decreasing the system fundamental resonance frequency are

effective in attenuating the IR peaks.

The maximum line can also been derived from another point of view. The equations of
motion described in equations (3.1a, b) can be rearranged as

(Z,+Zy) i, =—Z,, = fy (3.11)
where the blocked force f; is the force transmitted from the base excitation by the

attachment point between the equipment and the isolator to an infinitely rigid fixed
point [87]. Based on this equation, the Thevenin equivalent system [87] is shown in

Figure 3.3.

At IR frequencies in the lightly damped rod isolator under longitudinal vibration,

assuming sin(k,L)=0 and 7, <<1, one has
* . * —_ .1
cos (kL) =1, sin(k /L) =¥kl (3.12a,b)

Substituting equations (3.12a, b) into the point and transfer impedances of the finite rod

shown in equation (3.3) gives
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7, =+2K 2K (3.13a,b)

n.ow n,@

Now, the impedance for a viscous damper is real and independent of frequency, so the

non-dispersive isolator behaves as a frequency dependent damper with equivalent

damping coefficient ¢, =2K, /n@ atits IR frequencies. The blocked force in Figure

3.3 at the IR frequencies is thus given by
2K
=—Z,u, =F—=%u 3.14
fB 217%b niw b ( )
So the blocked force is determined by the loss factor 77, and static stiffness K, of the
isolator. A high loss factor 7, or low static stiffness K, means smaller forces
transmitted to the equipment and the isolator. Therefore, increasing 77, or decreasing

K, , which is equivalent to a decrease in the system fundamental resonance frequency,

is effective in attenuating the effects of the IRs in the isolator. This solution is the same

as that concluded from equation (3.10).

In Figure 3.3 it is clear that the equipment response is governed by the total impedance

of the system, which is given by

Z=2,+7Z, (3.15)
At relatively high frequencies, if the equipment has a mass-like impedance
(i.e. Z, = jom, which increases with frequency), the point impedance Z,, can be
ignored in equation (3.15) because even its maxima (which occurs at IR frequencies
given by equation (3.13b), and decreases with frequency) is small compared to the
equipment impedance. Therefore, the equipment mass dominates the response at
relatively high frequencies. Equation (3.15) can thus be rewritten as

Z =Z7Z,= jom, (3.16)
Therefore, at relatively high frequencies, the transmissibility of the system can be

simplified and given by

(3.17)
Substituting equation (3.13a), which describes the transfer impedance Z,, at IR
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frequencies in the isolator, into (3.17), and noting that Z, = jom,, the maximum line is

given by

2K, _2 1
| |max~qw2fn - (3.18)

which is identical to the maximum line given by equation (3.10).

e  Minimum line

Assuming light damping in the isolator, i.e.77, <<1, and considering sin(\/;i Q) =*1

gives

sin{ﬁ[l—j%)g}zil
cos{ﬁ(l—j%jg}zijémﬁﬁ

Substituting equations (3.19a, b) into (3.6), the minimum line can be approximated by

1
oo =t (3.20)

which is a function of the mass (or polar moment of inertia) ratio 4, and frequency

(3.19a,b)

i

ratio €. The minimum line decreases at a rate of 20 dB per decade, compared to the
roll-off rate of 40 dB per decade for the massless isolator. It shows that the
transmissibility for the non-dispersive isolator rolls off at a lower rate than that for the
massless isolator at relatively high frequencies due to the IR effects. Substituting the
appropriate £, and Q into equation (3.20) gives

szJ? or JSJJG_” or S3GP (3.21)

. wm

e e e

r

min

It can be seen that the minimum line is independent of the isolator length. Therefore, to
improve the performance of the isolator its mass, polar moment of inertia or natural

frequency can be adjusted by changing the isolator parameters except for the length.

The minimum line can also be derived based on the Thevenin equivalent system shown

in Figure 3.3. Substituting sin(k,L) =21 into the transfer impedance in equation (3.3),

the minimum of the transfer impedance Z,,, i.e. the minimum of the blocked force f,

is determined by
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Z,,=tj K ,m (3.22)
where m, = pSL is the mass of the isolator. Substituting equation (3.22) into (3.17),

which describes the transmissibility of the system at relatively high frequencies, the

minimum line can be determined to give

T

VK, m. 1
== — 3.23
wm, # Q (523)
which is identical to the minimum line given by equation (3.20).

*  Crossing point
If the isolator mass is negligible, i.e. 4 <<1 and its damping is small, the expression
for the transmissibility reduces to

1
massless 1— QZ

(3.24)

i

Because the crossing point corresponds to the frequency at which the transmissibility

for a non-dispersive isolator starts to differ from that for a massless isolator, one can

assume|T|min = |T . By setting equations (3.20) and (3.24) to be equal and assuming

massless
that 4, <<1, the crossing point is given by

1
\/E ]

which is only a function of the mass (or polar moment of inertia) ratio £/ . This shows

Q=

T|=u, (3.25)

that, for a specific fixed equipment, the mass or the polar moment of inertia of the
isolator is crucial to the isolator performance. The lighter the isolator, the higher the
frequency at which the transmissibility for a non-dispersive isolator starts to differ from

that for a massless isolator, i.e. the better the isolator performance.

3.2.1.2 Dispersive isolator

Distributed parameter isolators, where bending motion is dominant, may be represented
by a dispersive system, which can be modelled using a fourth or higher order
differential equation. In Figure 3.1(e), the distributed parameter isolator can be
represented by an Euler-Bernoulli beam undergoing lateral vibration as an example of a

dispersive isolator. One end of the isolator is sliding under external excitation. The
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equipment represented by impedance Z, is supported by the other end of the isolator.

It is assumed that the equipment connects to the isolator by an internal force only (any

internal moments are assumed to be negligible).

For a finite sliding-free Euler-Bernoulli beam, assuming there is no rotation at the
sliding end and there is no bending moment at the free end, the impedance matrix is
given by (the detailed derivation can be found in Appendix A)

Z, Z
Z, :{ " 12} (3.26)
ZZI Z22

2E'Ik;’ cos(k,L)cosh (k, L)
joo(sin (k; L) cosh (k, L) —cos (k, L)sinh (, L))

n=

E'Ik,’ (1 +cos(k,L)cosh (kZL))
= . : . . (3.27a,b,c)
ja)(sin (k,L)cosh (k, L)—cos(k,L)sinh (kZL))

22

E'Ik,’ (cos (k,L)+cosh (kZL))
~ jo(sin (kL) cosh (k;L )~ cos (k; L) sinh (kL))

Z,=2,=

where [ 1is the second moment of area about the neutral axis of the isolator,
k; =k,(1— jn./4) , where k,=%pS/EI\Jw is the bending wavenumber in the

undamped isolator.

If the equipment has a mass-like impedance, i.e. Z, = jwm,, and the appropriate
impedances in equations (3.27b, c) are substituted into equation (3.2), the
non-dimensional transmissibility can be written as

T 1

— (3.28)
1+cosy coshy’ _\/392 (1 ~ jmj sin " cosh " —cos 7 sinh "

cosy +coshy’ \ u 4 cosy +coshy’

y = 7(1 - j%) =3uQ° (1 - j%) (3:29)

where Q =/ @, is the ratio of the driving frequency @ to the system fundamental

natural frequency @,; w,=./K,/m, where K,=3EI/L 1is the static bending
stiffness of the isolator; 4, = pSL/m, is the ratio of the mass of the isolator to the mass

of the equipment.
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The transmissibility of the passive isolation system with a dispersive isolator is plotted

in Figure 3.4 for 4, =0.1 and 7, =0.01. The transmissibility of such a system

containing a massless isolator is also plotted for comparison. The transmissibility for a
dispersive isolator has a peak at a frequency close to that of the fundamental resonance
when the isolator is massless. The transmissibility for a dispersive isolator, however, is
greater than that for the massless isolator, at high frequencies (Q >>1), due to the
effects of the IRs. Similar characteristic lines and point to those plotted in Figure 3.2 are
also depicted in Figure 3.4 to describe the transmissibility. The characteristic lines and
point are determined in a similar way to those for the non-dispersive isolator. The

detailed procedure is as follows:

e  Maximum line

At relatively high frequencies, i.e. ¥ >>1, assuming that the damping in the isolator is

very small, i.e. 77, <<1, one has
sinhy" =coshy >>1 (3.30)
Applying the conditions given in equation (3.30) to (3.28), the transmissibility can be

simplified for Q >>1 and is given by

T = ! (3.31)

L3 R
COS Y — 4|~ (sm;/ —cos;/)
/’ll

The natural frequencies of the sliding-free beam occur when

sin ycosh y—cos ysinh ¥y =0 (3.32)

So, at relatively high frequencies, one has
tany=tanhy =1 (3.33)

Therefore at IRs in the sliding-free beam which occur at relatively high frequencies, one
has

siny=cosy=1 (3.34)

1
Np

Using small angle approximations and equation (3.34) gives
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siny’ = \/_ (1 j 2L i34, sz
cos ¥ ziﬁ(Hj%:‘/&uinj

Therefore, applying the conditions given in equations (3.35a, b) to (3.31), and assuming

(3.35a,b)

that the imaginary part of equation (3.31) dominates around the IR frequencies, the

maximum line is given by

w21

Different from the maximum line for the non-dispersive isolator, it is a function of not

only the loss factor 77, and frequency ratio €, but the mass ratio 4 as well.

Increasing damping in the isolator or decreasing the system fundamental resonance

frequency are again effective in attenuating these peaks. Substituting the appropriate £,

and Q into equation (3.36) gives

T

It can be seen that, to suppress the IR peaks, the isolator mass can be adjusted by

_\2EIps 2 1
max meL 7][ a)

(3.37)

reducing its density or cross-section area, but increasing its length. It should be noted
that the IR peaks decrease at a rate of 20 dB per decade, rather than 40 dB per decade

for the non-dispersive isolator.

e  Minimum line

As shown in equation (3.31), the transmissibility of the system at relatively high

frequencies achieves its minima when (sin ¥ —cos }/*) is maximum, which is given by

‘sin ¥ —cos }/*‘max =2 (3.38)

Substituting equation (3.38) into (3.31), the minimum line is approximately given by

f,u? 1
T| & =#——— 3.39
| min 12\/5 ( )

which is a function of the mass ratio x4 and frequency ratio €. It decreases at a rate

of 10 dB per decade, compared to the rate of 40 dB per decade for the massless isolator

and 20 dB per decade for the non-dispersive isolator. Substituting the appropriate 4,

and Q into equation (3.39) gives
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T _JEL(pS) 1 1
min 4 me\/Z)

It can be seen that the minimum line is independent of the isolator length. Therefore, to

(3.40)

improve the performance of the isolator its mass or natural frequency can be adjusted by

changing the isolator parameters except for the length.

*  Crossing point

By setting equations (3.39) and (3.24) to be equal, i.e. |T|min =|T

and assuming

massless
that x4, <<1, the crossing point is given by
1

ﬁﬂi

which is only a function of the mass ratio ;. Similar to the non-dispersive isolator, it

T| =~ (3.41)

1
Q=12 —,
A

shows that the lighter the isolator, the better the isolator performance.

3.2.1.3 Summary

From the discussion of passive vibration isolation systems containing either a
non-dispersive isolator or a dispersive isolator, the characteristics of the distributed
parameter isolators are summarized in Table 3.1. It shows that three factors are crucial
in the isolation performance of the distributed parameter isolator, namely the mass (or

polar moment of inertia) ratio 4, the loss factor in the isolator 7, and frequency ratio

Q. The IR peaks can be suppressed effectively by increasing the damping in the
isolator or decreasing the system fundamental resonance frequency. Also, it shows that
the lighter the isolator the better the isolation performance. However, it should be noted

that the minimum line of the transmissibility is independent of the isolator length.

It can be seen that, compared to the non-dispersive isolator, the IRs for the dispersive
isolator have a lower density with respect to frequency and occur at much higher
non-dimensional frequencies. Generally, in practice, the IRs in the dispersive isolator
can be attenuated to a large extent compared to those in the non-dispersive isolator,
since more damping can be incorporated more easily into dispersive isolators, e.g.
flexural springs [56]. Therefore, in practice the undesirable effects of IRs on the

isolation performance for the non-dispersive isolator are more significant than that for
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the dispersive isolator. The distributed parameter isolator is thus modelled as a finite

elastic rod under longitudinal vibration in the following analysis

3.2.2 Experimental validation on a helical spring

A helical spring can be modelled theoretically as an equivalent finite elastic rod under
longitudinal vibration for simplicity [20, 21]. Both objects can be modelled as
distributed parameter elements, because their stiffness and mass are spread uniformly
throughout their length. Therefore, an experiment using a helical spring, as an example
of a non-dispersive isolator, was conducted to validate the theoretical findings for the

distributed parameter isolator.

3.2.2.1 Experimental setup

An experimental rig was built as illustrated in Figure 3.5, which consisted of a rigid
equipment mass supported by a helical spring. The equipment mass was excited by an
electromagnetic shaker (LDS V201) along the centre axis of the helical spring. The
shaker was driven with broadband noise. The characteristic properties of the equipment
and the spring are listed in Table 3.2. Three accelerometers (PCB type 352C22)
symmetrically attached to the top of the equipment were used to measure the
acceleration response of the equipment. The outputs of these three accelerometers were
averaged to eliminate the effect of any rotation. One accelerometer attached to the
centre of the bottom of the helical spring was used to sense the acceleration response of
the inelastic base, so that the transmissibility of the equipment to the base motion can be
calculated. A dynamic signal analyser (Data Physics-Signalcalc Mobilyzer 1I) was used
to both drive the system through a power amplifier (Ariston AX-910) and acquire the

acceleration data above and below the isolator.

3.2.2.2 Experimental validation

As presented theoretically, the non-dimensional transmissibility of the passive vibration
isolation system containing a rod isolator and its characteristics are given by equations

(3.6), (3.10), (3.20), (3.24) and (3.25), respectively, in which Q=w/w, ,
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w, =+ K,/m,, K, is the static stiffness of the isolator, and g 1is the ratio of the

mass of the isolator to the mass of the equipment. The predicted results for the
transmissibility of the experimental system can be obtained by substituting for the static
stiffness of the helical spring and the ratio of the mass of the spring to the mass of the
equipment into the corresponding equations. The static stiffness of a helical spring is
given by [88]

4

(3.42)

where G is the shear modulus, d and D are wire diameter and mean diameter of the coil
respectively and n is the number of active coils of the helical spring. The detailed
derivation of the static stiffness of a helical spring is presented in Appendix B. The
mass of the helical spring is given by

m, = M (3.43)

4

where p and N are the density and the number of complete coils of the spring
respectively. So the ratio of the mass of the helical spring to the mass of the equipment
is given by

s = 7’ pNDd*

‘ 3.44
’ 4m, ( )

Furthermore, the longitudinal IR frequencies in a helical spring can be predicted by

W, =nx K, (inrad/s) (n=12,3...) (3.45)
m

s

The detailed derivation can be found in Appendix B.

According to the parameters of the helical spring listed in Table 3.2, the appropriate

static stiffness K was calculated as 5851 N/m and the mass ratio 4 used in the

experiment was calculated as 0.125.

Figure 3.6 shows the measured and predicted transmissibility with the characteristic
lines and point of intersection. The first three IRs in the helical spring can clearly be
observed between 200 and 800 Hz, which are well predicted (with less than 3% error)

by equation (3.45) to be at 246.7 Hz, 493.4 Hz and 740.1 Hz. The experimental results
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agree reasonably well with the prediction, although there are some small measured
peaks between the resonance peaks possibly due to effects of rotational response. The
undesirable effects of IRs in the distributed parameter isolator on the isolation
performance compared to a massless isolator are clearly shown in the experimental
results, with the transmissibility being greater than unity at the first IR as well as at the
fundamental mounted resonance frequency. In addition, this result demonstrates that an
equivalent elastic finite rod is a good representation for the distributed parameter model
for a helical spring. The simple characteristic expressions shown in equations (3.10),
(3.20) and (3.25) predict and describe the isolation performance of a distributed

parameter isolator fairly accurately in the experiment.

3.3 System on a flexible base

In practice, the base structure is not usually rigid. Typically it possesses its own
dynamics. Therefore, the performance and characteristics of a passive vibration
isolation system containing a distributed parameter isolator on a flexible base are

discussed in this section.

Figure 3.7 shows an isolated equipment represented by its impedance Z, mounted on
a structure that possesses its own dynamics and is represented by a base impedance Z,

under excitation of primary force f applied to the base. The distributed parameter
isolator is modelled as a finite elastic rod. The equations of motion of such system are
given by equations (3.1a, b) and
Zyjy, = f+0Q, = f -0, (3.46)
where @, is an internal force. The velocity of the equipment is thus given by [72]
i, =Y, f (3.47)
where

Y, = —Zn (3.48)
(Ze + Zzz ) (Zh + Z11 ) - Z1zzz1
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is the transfer mobility from the force, f on the base to the equipment velocity, u,

when the system is connected (the detailed derivation can be found in Appendix C).

If the equipment has a mass-like impedance, i.e. Z, = jowm, and the base structure is

modelled as a mass m, on a complex spring, i.e. K, =K, (1+ jn,), where 7, is the
loss factor, the non-dimensional amplitude ratio of system can be written as

u 1

e

oo - JEAEAR]

, , Q' Q ) . .,
o= (1 + (1+jn)——= |——=—|1-j= |sin 1= 1Q
{( i)+ s (1+ ;) rz} m ( J 2) {\/ﬂ,( J 2) }
where u, is the displacement of the equipment, J, = f/K, is the static deflection of

the base, I'=w,/, :1/ M, is the natural frequency ratio with @, =./K,/m, is

the natural frequency of the base, x4, =K, /K, is the stiffness ratio, and g, =m,/m,

(3.49)

is the ratio of the mass of the supporting base structure to the mass of the mounted

equipment.

Figure 3.8 depicts the amplitude ratio of the passive vibration isolation systems on a
flexible base with a non-dispersive isolator. For comparison, the amplitude ratio of such
a system containing a massless isolator is also plotted, where the first peak is the
equipment resonance and the second peak is the base resonance. In order to exhibit the
base resonance effects on the isolator IRs, the parameters of the system are chosen so
that the base resonance occurs among the isolator IRs. It can be seen that the amplitude
ratio for the distributed parameter isolator has the same peak at the equipment resonance
as that for the massless isolator, but it is increased at relatively high frequencies due to
the effects of IRs. The characteristic lines and point defined in the earlier discussion are
also plotted to describe the amplitude ratio and included in Table 3.1, which are

presented as follows:

e  Maximum line
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Similar to the derivation for the system undergoing base motion discussed in section

3.2.1.1, assuming light damping in the isolator and base, i.e. 77, <<1, 77, <<1 and

considering the response when sin (\/;, Q) =0, the maximum line is given by

zlL 1 (3.50)

EAR XS ok
e [1+ﬂk i_F

In practice, if 4, =K, /K, <<1 (flexible isolator compared to the base), and

ue

M, =pSL/m, <<1 (light isolator compared to the equipment), equation (3.50) can be

written as

e

P — (3.51)

ST lmax

This equation is a function of the loss factor 7., frequency ratio £ and natural

frequency ratio I'. Increasing damping in the isolator or decreasing the system
fundamental resonance frequency are effective in attenuating the IR peaks. It should be
also noted that, at frequencies much lower than the base resonance, i.e. Q/ I'<<1 the
IR peaks in the isolator decrease at a rate of 40 dB per decade, while at frequencies
much higher than the base resonance such that Q/I" >>1, the amplitude of IR peaks

decrease at a rate of 80 dB per decade.

e  Minimum line

Similar to the derivation for the system undergoing base motion discussed in section

3.2.1.1, assuming light damping in the isolator and base, i.e. 77, <<1, 77, <<1 and

considering sin (\/E Q) =1, the minimum line is given by

~Ju 1 ! - (3.52)

Q Q
1+:u1< i_F

In practice, if g, <<1 and g, <<1, equation (3.52) can be written as

11
~Ju Y (3.53)

u

e

st

min
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which is a function of the mass ratio g, the frequency ratio € and the natural

frequency ratio I'. It can be seen that the minimum line tends to reduce at a rate of 20
dB per decade at frequencies much lower than the base resonance, rather than 40 dB per
decade for the massless isolator. It reduces at a rate of 60 dB per decade at frequencies
much higher than the base resonance, rather than 80 dB per decade for the massless
isolator. It shows that the isolation performance for the distributed parameter isolator is
much worse than that of the massless isolator at relatively high frequencies due to the
IR effects. The minimum line is again independent of the isolator length. Therefore, to
improve the performance of the isolator its mass or natural frequency can be adjusted by

changing the isolator parameters except for the length.

*  Crossing point for I'>>1

Assuming light damping in the isolator and base, i.e.7, <<1, 17, <<1, also considering
that the isolator mass is light compared to the equipment mass, i.e. 4, <<1, the
amplitude ratio for a massless isolator can be written as

1

(uej —
S B
o1/ massless 1{1+(1+1 —sz ! }92

4, 2

b

(3.54)

which is identical to the amplitude ratio of a traditional two-stage isolation system

containing massless isolators [2, 72]

If the base resonance frequency is much greater than the equipment resonance
frequency, i.e. @, >> @, so that I'>>1, the minimum line shown in equation (3.53)
for the system on a flexible base can be reduced to the minimum line shown in equation
(3.20) for the system undergoing base motion. Also, the amplitude ratio for a massless
isolator shown in equation (3.54) can be reduced to the transmissibility for a massless
isolator shown in equation (3.24) at frequencies much lower than the natural frequency
of the base @, . Therefore, when I'>>1, the crossing point for the system on a flexible

base is thus the same as that for the system undergoing base motion shown in equation

(3.25).
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3.4 Conclusions

Passive vibration isolation systems containing a distributed parameter isolator have
been investigated theoretically and experimentally. A distributed parameter isolator has
been modelled using different idealised configurations under various deformations. The
isolators can be categorized into two types for the purpose of dynamic analysis, namely
a non-dispersive isolator and a dispersive isolator. It has been shown that the isolation
performance is significantly affected by IRs in both isolator types. Simple expressions
which describe the behaviour for distributed parameter isolators have been derived. It
has been shown that the damping in the isolator, the ratio of the isolator mass (or polar
moment of inertia) to the equipment mass (or polar moment of inertia) and the system
fundamental resonance frequency are all crucial to the isolation performance. Therefore,
more efforts should be expended on lightly damped isolators, e.g. metallic isolators that
have inherently low damping, in which the IRs may cause more significant detrimental
effects. Also, it is concluded that, in general for the examples considered here, the IR
effects in the non-dispersive isolator on the isolation performance are more significant
than that for the dispersive isolator. The experiment on a helical spring has supported
and validated the theoretical analysis and some of the predictions. Such models describe

the isolation performance of a distributed parameter isolator fairly accurately.

The dynamic models developed in this chapter containing a non-dispersive isolator,
which is modelled as finite elastic rod, will be used in the following discussion for the
active vibration isolation with a distributed parameter isolator. The expressions for the
maximum line, the minimum line and the crossing point reveal the parameters that
dominate the isolation performance of the distributed parameter isolator at various
frequencies. This offers basic guidelines for the isolation design of a distributed
parameter isolator, which directs effective ways to improve the isolator performance. It
is also beneficial to understanding the performance of active vibration isolation systems

containing a distributed parameter isolator discussed in following chapters.
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Crossing point

Non-dispersive 2 1 1 1
—— M - M
isolator n; Q \/7 Q (\/Z J
o 24, 2 1 [P 1 o= 1 1
Dispersive isolator —_— Lahd \/E - H,;
P 3 7,Q 12 Jo Ju 2

Table 3.1 Characteristics of distributed parameter isolators undergoing base motion,

where € is the non-dimensional frequency ratio, 1), is the loss factor in the isolator

and U, 1is the ratio of the mass (or polar moment of inertia) of the isolator to the mass

(or polar moment of inertia) of the equipment.

Mass of the equipment

Shear modulus of the spring

Density of the spring

Wire diameter of the spring

Mean diameter of the coil of the spring
Number of complete coils of the spring

Number of active coils of the spring

193.1 g (measured)

7.93%10" N/m* (supplier data)
7900 kg/m’ (supplier data)

2.6 mm (supplier data)

24 mm (supplier data)

7.6 (supplier data)

5.6 (supplier data)

Table 3.2 Characteristic properties of the experimental rig on a helical spring.

69



Chapter 3: Passive Vibration Isolation with a Distributed Parameter Isolator
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Figure 3.1 Schematic diagrams of passive vibration isolation systems containing a
distributed parameter isolator under (a) longitudinal, (c) torsional or (e) lateral
vibration. (b), (d) and (f) are respectively free body diagrams. Q,, Q, and Q, are the
internal forces in (b) and (f), or moments in (d); u, and u, are velocities in (b) and

(f), or angular velocities (d) of the equipment and the base respectively; Z, is the input

impedance of the equipment; Z, and Z, are the impedance matrices for the rod
under longitudinal and torsional vibration, respectively; and Zg and Z, are the

impedance matrices for the shear beam and Euler-Bernoulli beam, respectively.
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Figure 3.2 Transmissibility of the passive vibration isolation systems with a

non-dispersive isolator when the ratio of the mass of the isolator to the mass of the

equipment 1. =0.1, and the loss factor in the isolator mn,=0.01 (solid line). The

dashed line passes through the IR peaks. The dotted line passes through the troughs in
the transmissibility. The dashed-dotted line is for the massless isolator. The point circled
is the intersection of the transmissibilities for the system with a massless isolator and

for the system with a non-dispersive isolator.
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Figure 3.3 Mechanical representation of the Thevenin equivalent system for the passive

vibration isolation systems shown in Figure 3.1, where Z,, and Z,, are respectively

the transfer and point impedances of the isolator and f, is the blocked force.
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[Transmissibilityl (dB)
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Frequency ratio Q

Figure 3.4 Transmissibility of the passive vibration isolation system with a dispersive

isolator when . =0.1 and 1n,=0.01 (solid line). The dashed line passes through the

IR peaks. The dotted line passes through the troughs in the transmissibility. The
dashed-dotted line is for the massless isolator. The point circled is the intersection of the
transmissibilities for the system with a massless isolator and for the system with a

dispersive isolator.
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(b)

Figure 3.5 (a) photograph and (b) schematic diagram of the experimental rig of a mass

supported by a helical spring undergoing base motion.
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[Transmissibilityl (dB)
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Figure 3.6 Measured (solid bold) and predicted (solid faint) transmissibility of the

experimental rig. The dashed line passes through the IR peaks. The dotted line passes

through the troughs in the transmissibility. The dashed-dotted line is for the massless

isolator. The point circled is the intersection of the transmissibilities for the system with

a massless isolator and for the system with a distributed parameter isolator.

‘ J ue Qi J I/.te

Figure 3.7 (a) schematic diagram and (b) free body diagram of the passive vibration

isolation system containing a distributed parameter isolator on a flexible base, where

f is the primary force applied to the base, Q, is an internal force and Z, is the

input impedance of the base.
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[Amplitude ratiol (dB)
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Figure 3.8 Amplitude ratio of the passive vibration isolation system shown in Figure 3.7

when . =0.1, n,=0.01, the ratio of the mass of the base to the mass of the equipment
i, =0.1, the ratio of the static stiffness of the isolator to the stiffness of the base

i, =0.01 and the loss factor in the base 1, =0.01 (solid line). The dashed line passes

through the IR peaks. The dotted line passes through the troughs in the amplitude ratio.
The dashed-dotted line is for the massless isolator. The point circled is the intersection
of the amplitude ratios for the system with a massless isolator and for the system with a

distributed parameter isolator.
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Chapter 4

Active Vibration Isolation with a Distributed

Parameter Isolator

4.1 Introduction

Passive vibration isolation systems containing a distributed parameter isolator have
been discussed in Chapter 3. The significant detrimental effects of IRs in the isolator on
the passive isolation performance and their characteristics have been investigated. With
the development of computers fast enough to run control algorithms in real-time and
more ‘smart’ materials, active devices have been widely used in vibration isolation to
improve the isolation performance. However, stability and control performance are two
crucial issues which may limit the application of active vibration isolation. Therefore,
the effects of IRs in the isolator on the stability for commonly used control strategies in
active vibration isolation need to be clarified. There is also a need to investigate the

control performance around IRs in the isolator for these control strategies.

The aim of this chapter is to investigate theoretically the control performance and
stability of active vibration isolation systems containing a distributed parameter isolator
under various control strategies. First, active vibration isolation systems undergoing

base motion is analyzed. Then the base structure is allowed to have its own resonances,
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so that the effects of this on the control system can be investigated.

4.2 System undergoing base motion

In this section, active vibration isolation systems containing a distributed parameter
isolator undergoing base motion are investigated. The control performance and stability

of such systems are analyzed and compared for several control strategies.

4.2.1 Absolute Velocity Feedback (AVF) control

A base excited active vibration isolation system consisting of an isolated equipment

represented by its impedance Z, supported by a distributed parameter isolator under

AVF control is shown in Figure 4.1. The isolator is modelled as a finite elastic rod. The

control force f,, which is in parallel with the isolator, acts between the equipment and

the base. The control force is proportional to the velocity of the equipment, and fed back
to the system through a feedback controller with a constant gain -k, which is given by

equation (2.11).
4.2.1.1 Control performance

The dynamics of the system shown in Figure 4.1 can be described by equation (3.1b)

and
Za, = f,+0Q, = f,— O 4.1)
The velocity of the equipment is thus given by
! f,+ 2 i, 4.2)

U =
¢ Z,+Z, Z,+7Z,
Substituting equation (2.11) into (4.2), the transmissibility of the system under AVF

control is given by

T=teo ~Zu 4.3)
uw, Z,+Z,+h

If the equipment is modelled as a mass, i.e.Z, = jowm,, the transmissibility can be
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written in non-dimensional form as

1

O S AR

where ¢ =h/2,/K,m, is the active damping ratio due to AVF control. It can be seen

T =

(4.4)

in equation (4.4) that AVF control adds a damping term to the denominator and leaves
the numerator unchanged. Similar to the base excited system containing a massless
isolator under AVF control discussed in Chapter 2, the action of absolute velocity
feedback for base excited system containing a distributed parameter isolator is also the
same as a skyhook damper. Figure 4.2 shows the mechanical representation of the AVF
control system under base motion, where AVF control is equivalent to a viscous damper

with damping coefficient £ acting between the equipment and the inertial ground.

The transmissibility for this active vibration isolation system with different values of
active damping ratio is plotted in Figure 4.3. It can be seen that the system fundamental
resonance peak is attenuated when the active damping ratio is increased. However, little
reduction at the IR peaks in the distributed parameter isolator is achieved by AVF
control. The characteristic lines similar to those presented in Chapter 3 for the passive
system are also plotted and identified in Figure 4.3. It should be noted that the AVF
control system has almost the same maximum and minimum lines for IRs in the isolator

as the passive system. These characteristic lines are determined as follows:

e  Maximum line

Assuming light damping in the isolator, i.e. 77, <<1 in equation (4.4) and considering
the response when sin(\/EQe)zo, the maximum line of the transmissibility under

AVF control is given by

S S (4.5)

Q- j2,)

i

At relatively high frequencies when Q >> ¢, this equation can be reduced to equation

(3.10), i.e. the system under AVF control and the passive system have equal amplitude
resonance peaks at relatively high frequencies. This demonstrates that AVF control

cannot suppress the IR peaks in the isolator at high frequencies.
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The maximum line can also been derived from another point of view. The dynamics of
the system described by equation (4.3) can be rearranged as

(Z,+Z,,+h)i, =—Zu, = [, (4.6)
Based on this equation, the Thevenin equivalent system is depicted in Figure 4.4. It can
be seen that, due to AVF control, the total impedance of the system which governs the
equipment response is given by

Z,=Z,+Z,+h 4.7)

It is clear that the skyhook damper due to AVF control is effectively in parallel with the
equipment. At relatively high frequencies, if the equipment has a mass-like impedance,
1e.Z, = jwm, which increases with frequency, the equipment mass dominates the
response, and the effect of AVF control is negligible. This explains why in Figure 4.3,
little reduction is achieved at the IR peaks which occur at high frequencies. So at
relatively high frequencies, equation (4.7) can be reduced to equation (3.16). Therefore,
the transmissibility of the AVF control system can be simplified and given by equation
(3.17) at relatively high frequencies. Similar to the descriptions in Chapter 3 for passive
vibration isolation system, at IR frequencies for lightly damped isolators the blocked

force f, 1is given by equation (3.14), which is determined by the loss factor 77, and
static stiffness K, of the isolator. Therefore, the system under AVF control has the

same maximum lines for IRs in the isolator as the passive system at relatively high

frequencies.

*  Minimum line
Assuming light damping in the isolator, i.e. 77, <<1, also considering sin(\/;i Q) ==1

in equation (4.4), the minimum line of the transmissibility under AVF control can be

written as

1
e Orerra (48)

At relatively high frequencies when Q >> ¢, this equation can be reduced to equation

T

(3.20), 1.e. the system under AVF control and the passive system have identical
minimum lines at relatively high frequencies. So AVF control cannot reduce the minima

of the transmissibility.
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The minimum line can also be derived based on the Thevenin equivalent system shown
in Figure 4.4. Similar to the description in Chapter 3, the minimum of the blocked force

fp for the AVF control system is also determined by equation (3.22). So the AVF

control system has an identical minimum line to that of the passive system at relatively

high frequencies.

4.2.1.2 Stability analysis

Because the feedback controller is a constant gain, the stability of the AVF control
system can be analyzed by investigating the plant response of the system with unitary
control gain (h=1). As shown in equation (4.2), for the base excited active vibration
isolation system with a distributed parameter isolator under AVF control, the plant

response from the active control force to the equipment velocity is given by

Gl 1 (4.9)
fa iy, =0 Ze +222

Because Z, and Z,, are both point impedances, their phase is between -90° and 90°.

Therefore the overall phase shift of the plant response G is between -90° and 90°, and is
thus completely passive. Its Nyquist plot is entirely on the right-hand side of the
complex plane and the feedback system has an infinite gain margin and a phase margin
of at least 90°. Based on the Nyquist criterion, the AVF control system containing a
distributed parameter isolator under base motion is unconditionally stable. From the
point of view of collocation, because the base motion is prescribed which is not affected
by the active control force, the actuator and the sensor are thus collocated, so that such a

system under AVF control is unconditionally stable

4.2.2 Relative Velocity Feedback (RVF) control

A base excited system containing a distributed parameter isolator under RVF control is

shown in Figure 4.5(a). A control force f, in parallel with the isolator reacts between

the equipment and the base. The control force is proportional to the difference between
the velocity of the equipment and the velocity of the base, and fed back to the system

through a feedback controller with a constant gain -4, which is given by equation (2.16).
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4.2.2.1 Control performance

The velocity of the equipment is also given by equation (4.2). Substituting equation
(2.16) into (4.2), the transmissibility of the system under RVF control is given by
u ~Z, +h

T=-*=

e = (4.10)
u, Z,+Z,+h

If the equipment is modelled as a mass, the non-dimensional transmissibility under RVF

control can be written as
) 1 N/ 17
1+ 20 —|1-7-* 11=-7"|Q
Jj2¢, '_ﬂ,-( szsm{\/ﬂ,( sz }
17 Q—JQ;( 77) ( «77)
11—-7" —— J a1 4 11—
cos{‘/ﬂl( Jj 2)9} \/—, ]2 sin| /4, ]2 Q

It can be seen in equation (4.11) that a damping term is added to both the denominator

T =

4.11)

and the numerator. Similar to the system containing a massless isolator under RVF
control discussed in Chapter 2, the action of relative velocity feedback is the same as a
viscous damper acting between the equipment and the base. Figure 4.5(b) shows the
mechanical representation of the system under RVF control, which is equivalent to a
viscous damper with damping coefficient & acting between the equipment and the base.
Thus it is clear that the equivalent viscous damper due to RVF control is effectively in

parallel with the distributed parameter isolator.

The transmissibility for the active vibration isolation system under RVF control is
plotted in Figure 4.6, where the transmissibility of the corresponding passive system is
also plotted for comparison. It can be seen that the system fundamental resonance peak
and also some IR peaks in the isolator are attenuated with a high active damping ratio,
which is a marginal advantage of RVF compared to AVF applied to the system
containing a distributed parameter isolator. However, the transmissibility of the system
is significantly amplified at high frequencies. This is because RVF control is equivalent
to a viscous damper in parallel with the isolator, so that the compromise in the choice of
damping inherent in passive vibration isolation occurs in this RVF control system.
Characteristic lines for RVF control system are also plotted and identified in Figure 4.6.
The two dashed-dotted lines namely maximum lines pass though the peaks at IR

frequencies and the dotted line namely minimum line passes through the troughs
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between IR peaks. These characteristic lines are determined as follows:

e  Maximum line

Assuming light damping in the isolator, i.e. 7, <<1 in equation (4.11) and considering
the response when sin(\/EQe)zo, the maximum line of the transmissibility under

RVF control is given by

n.
|T|max ~ 2 % (4.12)
7]1‘ Q (Q - .]25(1 )
At relatively high frequencies when Q >> ¢ , this equation can be reduced to
21
T| =[1xn{ Q—— 4.13
| max | 771;(1 | ni QZ ( )

From this equation, it is clear that RVF control can either amplify or attenuate the IR

peaks depending on the values of the active damping ratio ¢, .

The maximum line can also be derived from another point of view. The dynamics of the
system described in equation (4.10) can be rearranged as

(Z,+Zy+h)i,=(-Z, +h)u, = f, (4.14)
Based on this equation, the Thevenin equivalent system is depicted in Figure 4.7. Due to
RVF control, the total impedance of the system which governs the equipment response
is also given by equation (4.7). At relatively high frequencies, if the equipment has a

mass-like impedance, i.e.Z, = jwm, which increases with frequency, the equipment

mass dominates the response. Equation (4.7) can thus be reduced to equation (3.16).

Therefore, at relatively high frequencies, the transmissibility of the system can be

simplified and given by

=Lyt h
Z

e

T (4.15)

However, different from AVF control system, at IR frequencies for lightly damped

isolators, the blocked force f, for RVF control system is given by

fs=(=Z, +h)u, :(J_r 37% +hjub (4.16)
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which is determined by not only the loss factor 77, and static stiffness K, of the

isolator, but also the feedback controller gain 4. Therefore, RVF control may help to
reduce the force transmitted to the equipment and the isolator at some IR frequencies so
that the equipment response is attenuated, or it may increase the transmitted force at
other IR frequencies so that the equipment response is amplified, especially at high

frequencies. Combining equations (4.15) and (4.16), and noting that Z, = jwm,, the

maximum line of the transmissibility under RVF control is given by

|T B 2K, +h2775a):|
" nm,

2 1
1J_r77,.§a§z|—‘E (4.17)
which is identical to the maximum line given by equation (4.13).

e  Minimum line

Assuming light damping in the isolator, i.e. 77, <<1, also considering sin(\/;i Q) ==1

in equation (4.11), the minimum line of the transmissibility under RVF control can be

written as
7] VA L2, (4.18)
w e
At relatively high frequencies where Q >> ¢ , this equation can be reduced as
T = Nt (4.19)

Therefore, this minimum line for the transmissibility of the system under RVF control is

greater than that for the passive system.

The minimum line can also be derived based on the Thevenin equivalent system shown
in Figure 4.7. As discussed in Chapter 3, the minimum of the transfer impedance Z,,

is given by equation (3.22). Substituting equation (3.22) into (4.15), the minimum line

of the transmissibility under RVF control is given by

|T +]‘/K m;, +h ‘

(4.20)

min

which is identical to equation (4.19).
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4.2.2.2 Stability analysis

For the active vibration isolation system under RVF control shown in Figure 4.5(a), the
plant response from the active control force to the difference between the equipment
velocity and the base velocity is also given by equation (4.9). Therefore, the RVF
control system is also unconditionally stable and completely passive. The unconditional
stability of the RVF control system undergoing base motion can also been concluded

due to the collocation of the actuator and sensor.

4.2.3 Integral Force Feedback (IFF) control

A base excited active vibration isolation system containing a distributed parameter
isolator under IFF control is shown in Figure 4.8. The control force f, in parallel with
the isolator reacts between the equipment and the base. The control force is generated
by feeding the transmitted force to the equipment through a controller with frequency
response H . (j®) negatively, which is given by equation (2.19). Similar to the

description for IFF control in Chapter 2, the transmitted force is given by equation (2.20)

and the active control force is given by equation (2.21).

4.2.3.1 Control performance

The velocity of the equipment is also given by equation (4.2). Substituting equation
(2.21) into (4.2), the transmissibility of the system under IFF control is given by

T = —Zy

4.21)

e

Z+72,+ " 7
ja

If the equipment is modelled as a mass, i.e. Z, = jom,, the transmissibility under IFF

control can be written as
_Zz1

=—>= 4.22)
Z,+7Z,,+hm,

Comparing equation (4.22) with (4.3) (the transmissibility of such a system under AVF
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control), the action of IFF control applied to the system containing a mass-like
equipment is also equivalent to a skyhook damper acting between the equipment and the

inertial ground. However, this equivalent skyhook damper for IFF control has the

damping coefficient of Am, rather than A for AVF control. Therefore, this IFF control

system has similar control performance as AVF control shown in Figure 4.3, depending

on the feedback controller gain / and equipment mass m, .

4.2.3.2 Stability analysis

Because the IFF controller is not a constant gain, to analyze the stability of the IFF
control system, the open-loop frequency response of the system should be investigated.
Combining equations (2.20) and (4.9), the plant response from the active control force
to the transmitted force for the base excited system under IFF control is given by

G=Ir| _—_% (4.23)
fa 1, =0 Ze +Z22

So the open-loop frequency response of the system is described by

Z
GH . = i ¢ (4.24)
JjoZ,+7,,

The stability of the IFF control system can be investigated by examining the reciprocal

of the open-loop frequency response, which is given by
- -1, I . -
(GHLFF) = (hZe) 1 ]a)(ze + Zzz) = N ]a)(1+Ze lZzz) (4.25)

Z7' is passive since Z, is an input impedance, so that Z_' has a phase shift between
-90° and 90°. Because Z,, is a point impedance, its phase shift is also between -90°

and 90°. The phase shift of 1+Z.'Z,, can thus potentially vary between -180° and 180°.

Therefore the overall phase shift of (GH,;)  is between -90° and 270°. The phase

limitations on the open-loop frequency response are thus between -270° and 90°.
Therefore, the base excited system containing a distributed parameter isolator under IFF

system is only conditionally stable. The instability may occur when the equipment is
stiffness controlled, i.e. the phase shift of Z;1 is 90°, so that the overall phase shift of

the open-loop frequency response is between -270° and -90°. However, if the equipment
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is rigid and has a mass-like impedance, i.e. Z, = jwm,, then the open-loop frequency
response of the system in equation (4.24) can be reduced to hm, /(Z, +Z,,). The phase

of the open-loop frequency response is thus restricted between -90° and 90°. The IFF

control system is thus completely passive and unconditionally stable.

4.2.4 Positive Position Feedback (PPF) control

A base excited active vibration isolation system containing a distributed parameter
isolator under PPF control is shown in Figure 4.9. The control force f, in parallel with
the isolator reacts between the equipment and the base. The control force is generated
by feeding the displacement of the equipment through a controller with frequency
response H . (j@) in a positive sense. Similar to the description for PPF control in

Chapter 2, the PPF control is implemented using an auxiliary dynamic system and the

control force is given by equation (2.29).

4.2.4.1 Control performance

The velocity of the equipment is also given by equation (4.2). Substituting equation
(2.29) into (4.2), the transmissibility of the system under PPF control is given by

~Z,,
RS 89,
21-(0/ o, )2 +J26, 0@,

T =

(4.26)
Z,+7Z, —

If the equipment is modelled as a mass, i.e. Z, = jom,, and the undamped natural

frequency of the PPF controller @, is tuned to the system fundamental resonance

frequency @, =./K,/m, , the transmissibility of the system under PPF control can be

written as

T = !

AN ISR 1 . (_nj
cos{\/;i(l ]zjg} 7\/2 (Q+m891—§22+j2§’f£2}m{ i1 J Q
(4.27)

At frequencies much lower than the system fundamental resonance frequency, i.e.
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Q<<1, assuming the damping in the isolator is small and using small angle

approximations gives
co{\/ﬁi(l—j%jg} ~1
sin{ﬁ(l—j%)g} ~ 10

(4.28a,b)

Substituting equations (4.28a, b) into (4.27), and noting Q<<1 and 7, <<1, the

transmissibility can be reduced to

1
TQ<<1 = (429)

8
m€
which is identical to equation (2.33) for PPF control applied to the system containing a

massless isolator. Therefore, PPF control also adds a negative stiffness term —g / m, to

the system containing a distributed parameter isolator, which may amplify the

transmissibility of the system depending on the values of g and m,. At the system

fundamental resonance frequency, i.e. Q =1, assuming the isolator is light compared to

the equipment mass, i.e. 4 <<1, and the damping in the isolator is small, equations

(4.28a, b) still hold true. Substituting equations (4.28a, b) into (4.27), and noting Q=1

and 77, <<1, the transmissibility can be reduced to

T, =~———— (4.30)
Tn 2,
As discussed in Chapter 2, the PPF controller has -90° phase shift at its cut-off
frequency with high magnitude. PPF control is thus equivalent to a skyhook damper
with damping ratio g / (2{ fme) around the system fundamental resonance frequency.
Therefore, the system fundamental resonance peak can be effectively attenuated. At
frequencies well above the system fundamental resonance frequency, i.e. Q>>1, the

frequency response of the PPF controller rolls off rapidly, and thus the effect of PPF

control is negligible. Therefore, the IR peaks which occur at relatively high frequencies

cannot be attenuated by PPF control when @, istunedto @,.
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Figure 4.10 shows the transmissibility for the active vibration isolation system
containing a distributed parameter isolator under PPF control with various values for
control gain g. It can be seen that the system fundamental resonance peak is attenuated
by PPF control. However, the transmissibility is amplified at frequencies lower than the

system fundamental resonance frequency due to the negative stiffness determined by the

specific values of g and m,. Also, the IR peaks in the distributed parameter isolator are

not reduced by PPF control because the frequency response of the PPF controller rolls

off rapidly at high frequencies.

4.2.4.2 Stability analysis

Due to the IRs in the isolator, the method used in Chapter 2 to analyze the stability of
the PPF control system containing a massless isolator, which is a SDOF system, is not
applicable for the PPF control system containing a distributed parameter isolator.
Therefore, the Nyquist stability criterion is used to analyze the stability of such a system.
From equation (4.9), the plant response from the active control force to the
displacement of the equipment is given by

u _ ue/ja)| 3 1

G=—+* =—
fa iy =0 . ]w(ze"'zzz)

Because the PPF controller is not a constant gain, the open-loop frequency response is

4.31)

1, =0

used to analyze the stability, which is given by

0)2
GH,, = — 8% 4.32)

jo(2,+Z,) . 1- (0w, )2 +j2¢, 0o,

The phase shift of 1/(Z,+Z,,) is between -90° and 90°, so that the phase shift of the

first term 1/ jw(Z,+Z,) is between -180° and 0°. The phase shift of the PPF

controller can potentially vary between -180° and 0°. Therefore the overall phase shift
of the open-loop frequency response is between -360° and 0°. Based on the Nyquist
stability criterion, such a PPF control system containing a distributed parameter isolator

is only conditionally stable.
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4.2.5 Acceleration-Position Feedback (APF) control

A base excited active vibration isolation system containing a distributed parameter
isolator under APF control is shown in Figure 4.11. A control force f, in parallel with
the isolator reacts between the equipment and the base. The control force is generated
by feeding the acceleration of the equipment through a second order low-pass filter with

frequency response H . (j®) in a negative sense, which is given by equation (2.40).

4.2.5.1 Control performance

The velocity of the equipment is also given by equation (4.2). Substituting equation
(2.40) into (4.2), the transmissibility of the system under APF control is given by
~Z,,
J26, @ o,
1- (oo, )2 +J26, 0@,

T = (4.33)

Z,+Z,,+h

It can be seen that, around the natural frequency of the APF controller, i.e. @w=®,, the

transmissibility can be reduced to equation (4.3), which is the transmissibility of such a
system under AVF control. Therefore APF control is also equivalent to a skyhook
damper around its natural frequency. However, at frequencies much lower or higher
than its natural frequency, the effects of APF control are negligible because the active
APF control force rolls off rapidly. So the APF controller has less spillover to both low
and high frequency modes. As a consequence, the IR peaks which occur at relatively

high frequencies cannot be attenuated by APF control.

If the equipment is modelled as a mass, i.e. Z, = jwm,, and the natural frequency of the

APF controller @, is tuned to the system fundamental resonance frequency @,, the

transmissibility of the system under APF control can be written as

1

7, (I=jn/2)[ _ . 2 ). 7
cos{ﬁ(l—]zjﬂ}—\/ﬁ(ﬁ—ﬂ{a 1_Q2+§2§fgjsm{\/z(l—]2j9}
(4.34)

Figure 4.12 shows the transmissibility for the active vibration isolation system
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containing a distributed parameter isolator under APF control with various values for

active damping ratio ¢,. It can be seen that the transmissibility is attenuated around the

system fundamental resonance frequency with an increase in the active damping ratio
due to APF control. However, the transmissibility close to the system fundamental
resonance frequency is amplified, since the PPF controller behaves as a dynamic
vibration absorber. Also, the IR peaks which occur at relatively high frequencies are not
reduced by APF control, because the active APF control force rolls off rapidly at high

frequencies.

4.2.5.2 Stability analysis

From equation (4.9), the plant response from the active control force to the acceleration

of the equipment is given by

G:u—() :] 4

fa fu

Because the APF controller is not a constant gain, the open-loop frequency response is

__Jo
Z,+Z,

(4.35)

1, =0 1, =0

used to analyze the stability, which is given by

Jjo h 20, |,

- . i (4.36)
ZAZy | 1-(0w,) +j2¢, 0o,

GH ,;

The phase shift of 1/(Z,+Z,,) is between -90° and 90°, so that the phase shift of the

first term ja)/ (Z,+Z,,) is between 0° and 180°. Because the APF controller is a

second order low-pass filter, its phase shift can thus potentially vary between -180° and
0°.  Therefore the overall phase shift of the open-loop frequency response is between
-180° and 180°. the APF control system containing a distributed parameter isolator
undergoing base motion is thus unconditionally stable based on the Nyquist stability
criterion. However, such an APF control system is not passive, and thus not robustly
stable. It is sensitive to the unmodelled actuator dynamics and other uncertainties in the

system which might destabilize the control system.
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4.2.6 Comparison of the control performance

Similar to the discussion in Chapter 2 for the massless isolator, the comparison of the
overall control performance for the active vibration isolation systems containing a
distributed parameter isolator under above discussed control strategies can be realized
by looking at their change in mean square response compared to the original passive
system. Substituting the corresponding transmissibility into equation (2.46), the change
in mean square velocity for the system under different control strategies compared to

the passive system can be calculated. The equivalent active damping ratio for PPF

control is also settobe {, = g/(2§fme) .

Figure 4.13 depicts the change in mean square velocity within the range 0.1<Q <1000

when g =0.1, 7,=0.01, m,=0.5, ¢, =0.5 and @, =®,. At high active damping

ratios, AVF and IFF control provides increasing reduction in the mean square response.
The performance of IFF control is determined by the mass of the equipment. In this case
the mass of the equipment is 0.5, which is less than unity, the control performance of
IFF control is therefore worse than AVF control. The RVFE, PPF and APF control do not
produce monotonically reducing mean square response for an increasing in active
damping ratio. Furthermore, the instability of PPF control is seen to occur when the

active damping ratio is increased.

4.2.7 Acceleration feedback control

A base excited active vibration isolation system containing a distributed parameter

isolator under acceleration feedback control is shown in Figure 4.14(a). The control

force f, in parallel with the isolator reacts between the equipment and the base. The

control force is proportional to the acceleration of the equipment, and fed back to the
system through a feedback controller with a constant gain —h, which is given by

equation (2.45).
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4.2.7.1 Control performance

The velocity of the equipment is also given by equation (4.2). Substituting equation

(2.45) into (4.2), the transmissibility of the system under acceleration feedback control

is given by
T = ﬁ (4.37)
If the equipment is modelled as a mass, the transmissibility can be written as
T=- ! (4.38)

cos{\/;i(l—jzijﬂ}—\/llu_i(1+n};‘?jﬂ(l—j%jsin{\/ﬁi(l—j%jﬂ}

Different from the aforementioned control strategies that all introduce active damping to
the system, the action of acceleration feedback control for this base excited system is

equivalent to adding a mass /4 on top of the equipment as shown in Figure 4.14(b).

Figure 4.15 shows the transmissibility for the active vibration isolation system
containing a distributed parameter isolator under acceleration feedback control, where
the transmissibility of such a system without control is also plotted for comparison. It
can be seen that the system fundamental resonance peak moves to a lower frequency
due to the acceleration feedback control, and thus the transmissibility at high
frequencies including the IR peaks in the isolator is reduced. The effective attenuation
of IR peaks in the isolator is the main advantage of acceleration feedback control over

other control strategies.

4.2.7.2 Stability analysis

For acceleration feedback control, because the controller is a constant gain, the plant
response of the system from the active control force to the acceleration of the equipment
can be used for the stability analysis, which is given by equation (4.35). The overall
phase shift of the plant response is between 0° and 180° and thus the acceleration
feedback control system containing a distributed parameter isolator undergoing base
motion is unconditionally stable. However, such a control system is not completely

passive, and thus not robustly stable.
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4.2.8 Optimal control

Similar to the discussion in Chapter 2, to find out the best control strategy in attenuating
the equipment response, the optimal control for active vibration isolation system
containing a distributed parameter isolator undergoing base motion is investigated.
Figure 4.16 shows a base excited system containing a distributed parameter isolator
under optimal control. The equipment is modelled as a rigid mass. The distributed
parameter isolator is modelled as a mass-spring-mass-spring-mass system in order to
derive the state space representations for the optimal control system. Also the damping

in the isolator is ignored for simplicity. The equations of motion for such a system are
(mt’ +m)u(‘ +k(ue _ul): fa

(4.39a,b)
mii, +k (u, —u,)+k (v, —u,) =0

where u, and ii, are respectively the displacement and the acceleration of the middle

mass, and
k=2K,, m= %mi (4.40a,b)
Equations (4.39a, b) can be rearranged to give
.. k k 1
He =T + “e +mul+m +m"*
et e ‘ (4.41a,b)
. k 2k k
i, =—u,——u, +—u,
m m m
The state-space system equation is then given by:
x=Ax+bf, +du, (4.42)
where
0 1 0 0 o 0
u _
e k 0 k 0 | 0
u
x=| |, A= m, m, ,b=|m+m |, d=| Q
U, 0 0 0 1
. 0 k
u - L
! ﬁ 0 ﬂ 0 0] L m
L m _
(4.43a,b,c,d)

The general quadratic performance index required to be minimized is also given by
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equation (2.52), in which the matrices Q and R are given by

0000
10 g 00
100 0 0
0000

Q (¢=>0), R=[r] (r>0) (4.44a,b)

The performance index has thus the same form as equation (2.54), where ¢ is a
weighting on the mean square velocity of the equipment mass and r is a weighting on
the mean square control effort applied. The control force required to minimize the
performance index is then given by equation (2.55), where
Pu Pn Pz Pu
P Pn Pxs Pxn

Piz Py Pz DPu
Py Pu Py Pu

P= (4.45)

is a positive-definite real symmetric matrix to ensure the control is stable, and satisfies
the reduced-matrix Riccati equation given by equation (2.57). Substituting the
appropriate matrices into equation (2.55), the optimal control force can be written as

fi=—

1 ) )
" (plzue t Pplt, T Pyt + Pyl ) (4.46)

e

Therefore, only the four elements of the second row in P matrix are required to calculate

the optimal control force. Substituting the appropriate matrices into the reduced-matrix

Riccati equation, four equations in terms of p,,, p,,, p,; or p,, can be derived as

2p, - T P»+q=0
r(m,+m)
2k 1 2 2k 2k
- - TPt 7 PPy Py =0
m,+m r(me+m) rm(me m)
2k 1 2k
- 2 p§3 2 p§4 =0
m,+m r(m,+m) rm(m, +m)
k 1 k 5 k(2m, +m)
- PPyt P =4DPnPoy |t —F———= P» =0
m, +m r(me+m)2 12P23 rm(me+m)2( 24 2 24) m(me+m) 23
(4.47a,b,c,d)

From equations (4.47a-d), the only solution for the second row of the P matrix that

ensures the P matrix is positive-definite and real is given by

[Pros Prs Pass Pos] = [O, \/E(me +m), 0, 0} (4.48)
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Substituting equation (4.48) into (4.46), the optimal control force can be written as

f, =—J§ae (4.49)
r

which is identical to equation (2.65) for the system containing a massless isolator.
Therefore, the optimal control strategy to minimise the mean square velocity of the
equipment mass supported by a distributed parameter isolator is also precisely the AVF

control, which results in skyhook damping of the controlled system. The feedback
control gain for optimal control is again given by /q/r, which is a simple function of

the ratio of the relative penalty on minimising mean square equipment velocity response
and mean square control effort. The smaller the control effort weighting r, the higher the

feedback control gain, and thus the better the control performance.

4.2.9 Summary

The control performance and stability of the base excited system containing a
distributed parameter isolator under different control strategies have been investigated
and compared. Similar to the system containing a massless isolator, AVF control
introduces skyhook damping to the system containing a distributed parameter isolator,
which is effective in attenuating the system fundamental resonance peak. However, the
IR peaks in the isolator cannot be attenuated by AVF control because the equipment
mass dominates the response at high frequencies. AVF control has been shown to be
robustly stable for the base excited system. RVF control is equivalent to a viscous
damper between the equipment and the base. Thus the isolation performance at high
frequency is degraded although some IR peaks can be attenuated. The RVF control
system has been shown to be unconditionally stable. For the base excited system, if the
equipment is a rigid mass, IFF control also introduces skyhook damping to the system
and is unconditionally stable. However, the IFF control system may become unstable
when the equipment is stiffness controlled. Both PPF and APF controllers are second
order filters that introduce active damping at the system fundamental resonance

frequency, and then roll off rapidly at high frequencies, so that they are not effective in
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attenuating the IR peaks at high frequencies. Also PPF control may cause amplification
at low frequencies due to the negative stiffness introduced, which may destabilize the
PPF control system. The APF controller is not robustly stable and thus very sensitive to
the unmodelled actuator dynamics and other uncertainties in the system which might
destabilize the control system. Acceleration feedback control applied to the base excited
system containing a distributed parameter isolator is equivalent to adding mass onto the
equipment, so that the system fundamental resonance peak moves to a lower frequency,
and thus the IR peaks in the isolator at high frequencies is reduced. The study for
optimal control shows that, to minimise the mean square velocity of the equipment mass

supported by a distributed parameter isolator, AVF control is the optimal solution.

4.3 System on a flexible base

In this section, active vibration isolation systems containing a distributed parameter
isolator on a flexible base are investigated. The control performance and stability of

such systems under several control strategies are analyzed and compared.

4.3.1 Absolute Velocity Feedback (AVF) control

An active vibration isolation system containing a distributed parameter isolator on a

flexible base under AVF control is shown in Figure 4.17. The isolator is modelled as a

finite elastic rod. The control force f,, which is in parallel with the isolator, reacts

between the equipment and the base. The control force is given by equation (2.11).
4.3.1.1 Control performance

The dynamics of the system shown in Figure 4.17 can be described by equations (3.1b),

(4.1) and
Zo,=f=f,+0,=f—-1.-Q (4.50)

The velocity of the equipment is thus given by
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i, =Y, ~Y,)f,+Y,f (4.51)

ee

where

Y, = 24+ 2y (4.52)
(Ze + Zzz ) (Zb + Zn ) - lezn

is the input mobility of the equipment when coupled to the rest of the system. A detailed
derivation is given in Appendix C. Substituting equation (2.11) into (4.51), the velocity
of the equipment under AVF control can be written as

U Yo

IR, 1) (49

If the equipment has a mass-like impedance, i.e. Z, = jwm, and the base structure is
modelled as a mass m, on a complex spring, ie. K,=K,(1+jn,) , the
non-dimensional amplitude ratio of the system under AVF control is given by

u 1

(4

S, {(Hjn,,)—[néj?j}cos{ 4, (1—]";1)9}...
...—{(1+m,,)+ﬂkﬂi (1+j77i)—grﬂ\/gz_i(l—j';fjsin{\/ﬁi(l—j'gjg}...

ﬂkQ[cos( I (l‘j@gj‘l}-

...+\/Lj(l—j’;fj(nmh—?jjsm(\/z(l—j’;jgj

It can be seen in equation (4.54) that the absolute velocity feedback adds a damping

(4.54)

et Jj28,

term to the denominator and leaves the numerator unchanged. Figure 4.18 shows the
amplitude ratio for the system on a flexible base under AVF control with different

values of the active damping ratio . It can be seen that the equipment resonance peak

is attenuated with an increase in the active damping ratio. The base resonance peak,
which is the second peak in Figure 4.18, is also reduced for high active damping ratios.
However, the IR peaks in the distributed parameter isolator are reduced much Iess,
especially at relatively high frequencies. The reason is the same as that discussed for the

base excited system under AVF control. The equipment mass rather than AVF control
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dominates the response at high frequencies. Also it should be noted that some IR peaks
in the distributed parameter isolator, such as the third peak in Figure 4.18, are amplified
due to AVF control. This amplification may destabilize the control system at high
control gains, and thus the control performance at system resonance frequencies is

limited.

4.3.1.2 Stability analysis

From equation (4.51), the plant response from the active control force to the velocity of

the equipment is given by

G=-¢| =Y -V, (4.55)

From the point of view of the definitions of the input and transfer mobility, Y, is the

ee

response of the equipment per unit external force applied directly on the equipment, and

Y, is the response of the equipment per unit external force applied to the base. Because

Y,, is an input mobility, it has a phase shift between -90° and 90° so that it is only in the

right half in the complex plane. However, Y,, is a transfer mobility, which could be in

either left or right half in the complex plane. So it is a potential threat to the stability of
the AVF control system. Moreover, if the AVF control system is only conditionally
stable, there is at least one loop in the left half of the complex plane which crosses the
negative real axis in the Nyquist plot of the plant response. For the system analyzed
here, only at resonance frequencies can phase of the plant response generate such loops,

and hence create an unstable system. Therefore, at some resonance frequencies, if the

transfer mobility Y, is greater than the input mobility Y, , i.e. the equipment response

el ee?

due to the excitation at the base is greater than that due to the excitation at the
equipment, and they are in phase, the AVF control system has the potential to become
unstable at high control gains. A stability condition for such an AVF control system is

derived as follows.

For a multi-degree-of freedom system, the mobility can be written as [19]

97



Chapter 4: Active Vibration Isolation with a Distributed Parameter Isolator

. = -0 . 4D
y, =ty 000 (4.56)
£ FK(1-97+20,9))

where ¢ and ¢ are respectively the ;" modal amplitudes evaluated at the
response point 7 and excitation point s; K, M, and 4 ; are respectively the modal

stiffness, modal mass and modal damping ratio of the ;™ mode with corresponding

natural frequency @, = /K / M,; Q= (o/ ®; is the non-dimensional frequency ratio.

Based on equation (4.56), at a resonance frequency with corresponding natural

frequency @, = /K, / M, , in a lightly damped system, when only one mode dominates

the response, the input and transfer mobility for the system can be written as
.12 . .
. [@n] y (¢;/>¢e</> )
ee . [ . 2 ° eb T
2KM, S 2JK;M,; ¢

where ¢/ and @ are the j™ modal amplitudes evaluated at the equipment and

(4.57a,b)

base respectively. Substituting equations (4.57a, b) into (4.55), the plant response can be

(J)
W
[ T(-47]
G=Y,-Y, = ‘ (4.58)
2JK.M ¢,

Based on the Nyquist criterion, for stability, one requires at a resonant frequency

rearranged as

(J)
¢(j)
e

‘gf)(“‘ if the modal amplitudes of the system evaluated at the

<1 (4.59)

for all j, i.e.

equipment and base have the same phase. Therefore, equation (4.59) provides a simple
method to determine the stability of the AVF control system in terms of the modal
amplitudes of the system. According to the definition of modal amplitudes @'/ and

/), this stability condition means that if the displacement of the base is greater than

the displacement of the equipment and these two displacements are in phase at the ;"

natural frequency, then the system may become unstable. This stability condition can
direct the investigation into the approaches which can stabilize such a control system.

This stability condition in terms of the modal amplitudes can also be applied to the
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system containing a massless isolator on a flexible base, which has been investigated by

Elliott et al. [41].

Figures 4.19 and 4.20 respectively depict the frequency response and Nyquist plot of the
plant response for a potentially unstable AVF control system. It is clear in Figure 4.19
that the phase shift of the first IR peak in the isolator is less than -180°. This phase lag
thus generates a loop on the left half of the complex plane in Figure 4.20 that crosses
the negative real axis, which causes the system to be potentially unstable at high control
gains. It can be shown that, at this first IR frequency, the displacement of the base is
greater than the displacement of the equipment and they are in phase, so that instability

may potentially occur.

At a resonance frequency where ¢’/¢"’ >1, ie. the system has the potential to

become unstable, with constant control gain h, the open-loop frequency response is

N 2”]
G
2JK.M ¢,

given by

(4.60)

To guarantee stability, the quantity in equation (4.60) must be greater than -1, so that the

maximum gain h___ that can be applied to the control system is thus given by
2, KM ¢,
— 7 ’;’ (4.61)
P8 1
7] §0

4.3.2 Relative Velocity Feedback (RVF) control

An active vibration isolation system containing a distributed parameter isolator on a

flexible base under RVF control is shown in Figure 4.21. The control force f,, which is

in parallel with the isolator, reacts between the equipment and the base. The control

force is given by equation (2.16).
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4.3.2.1 Control performance

The velocity of the equipment under RVF control is also given by equation (4.51).
Substituting equation (2.16) into (4.51), the velocity of the equipment under RVF
control can be written as

e

f 1+h(Yee+th_2Yeh)

I/.t_ - Yeb + h(Yeeth _Yebz) (4 62)

where Y,, is the input mobility of the base when coupled to the rest of the system, and

is given by
Z +7Z
Y — e 22
" (Ze +ZZZ)(Zb +Z11)_Z12221

(4.63)

If the equipment has a mass-like impedance, i.e. Z, = jowm, and the base structure is

modelled as a mass m, on a complex spring, ie. K, =K,(1+jn,) , the
non-dimensional amplitude ratio of the system under RVF control can be written as

) 1+j2§aJ%(l—j’;jsin{\/z(l—j’;jg}

e

oo et

{(1+ )+t (1+ ;) }\/Q_(l Jra jsm{ﬁ(l—j%jﬂ}.

yli

o E ]
...+ﬁ@—j%j{lﬂm—(1+;j§}sm[\/ﬁi(1—j'gjgj

It can be seen in equation (4.64) that the relative velocity feedback adds a damping term

(4.64)

ot j28,

both to the denominator and the numerator. Figure 4.22 shows the amplitude ratio for
the system under RVF control with different values of the active damping ratio. It can
be seen that the system resonance peaks and some IR peaks in the distributed parameter
isolator are attenuated with high active damping ratio. However, the amplitude ratio
between resonance peaks and at relative high frequencies is amplified due to RVF

control.
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4.3.2.2 Stability analysis

The velocity of the base under RVF control is given by
w, :(Yeb_Ybb)fa +Y,f (4.65)

Combining equations (4.51) and (4.65), for the system under RVF control, the plant
response from the active control force to the difference between velocity of the
equipment and the velocity of the base is given by
G — I’le - uh

fa f:()

At a resonance frequency, in a lightly damped system, when only one mode dominates

=Y, +Y, -2, (4.66)

the response, the input mobility of the base can be written as

b

[ </‘>}2
y,~—Lto 4 (4.67)
2 Kijéaj

Substituting equations (4.57a, b) and (4.67) into (4.66), the plant response is given by

. .12
¢e(<1) 00
G=Y, +Y,-2Y, ]

2K M, ¢,

which is always non-negative. Therefore, the Nyquist plot of the plant response of the

(4.68)

RVF control system is always in the right half in the complex plane, and thus the RVF

control system is unconditionally stable. This is the main advantage of RVF control.

From the point of view of the energy, the time averaged power generated by the active
control force for the system under RVF control at any particular frequency can be

written as [19]

1 A | .
P, =§Re{fa-ue}+5Re{—fa.uh} (4.69)
Substituting equation (2.16) into (4.69) gives
... .
Fy, ==5 . — | (4.70)

Therefore, the power generated by the control force is always negative. That means the
RVF control law is designed such that energy can only be extracted from the mechanical
structure. The RVF control system is thus unconditionally stable, and also said to be

dissipative [89].
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4.3.3 Integral Force Feedback (IFF) control

An active vibration isolation system containing a distributed parameter isolator on a

flexible base under IFF control is shown in Figure 4.23. The control force f,, which is

in parallel with the isolator, reacts between the equipment and the base. The control

force is given by equation (2.21).
4.3.3.1 Control performance

The velocity of the equipment under IFF control is given by equation (4.51).
Substituting equation (2.21) into (4.51), the velocity of the equipment under IFF control

can be written as
1 Y
% _ cb 4.71)

Fowh 2wy
]a) e( ee eb)

If the equipment has a mass-like mobility, i.e. Z, = jwm,, the velocity of the equipment

under IFF control is given by

= Yo 4.72)
f 1+hme(Yee_Yeh)

Comparing equations (4.72) with (4.53) (the velocity of the equipment of such a system
under AVF control), it can be seen that the IFF control applied to the system containing

a mass-like equipment is similar to AVF control. The only difference is that the control

gain for IFF control is hm, rather than i for AVF control. Therefore, this IFF control

system has similar control performance as AVF control, depending on the feedback

controller gain /4 and equipment mass m, .

4.3.3.2 Stability analysis

Combining equations (2.20) and (4.55), the plant response from the active control force

to the transmitted force for the system on a flexible base under IFF control is given by

G :£ :Ze (Yee _Yeb) (473)
-fa =0
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So the open-loop frequency response of the IFF control system is described by

GHIFF = .ize (Yee -Y, ) (4.74)
jo

Due to the effect of the transfer mobility Y

e

,» the IFF control system containing a

distributed parameter isolator on a flexible base is only conditionally stable. If the

equipment has a mass-like mobility, the open-loop frequency response can be written as

GH . = hme (Yee _Yeb) 4.75)

Because hm, is a constant gain, similar to the AVF control system on a flexible base,

the stability condition for such a IFF control system is also given by equation (4.59) in

terms of modal amplitudes.

4.3.4 Positive Position Feedback (PPF) control

An active vibration isolation system containing a distributed parameter isolator on a
flexible base under PPF control is shown in Figure 4.24. The control force f,, which is

in parallel with the isolator, reacts between the equipment and the base. The active

control force is given by equation (2.29).

4.3.4.1 Control performance

The velocity of the equipment under PPF control is given by equation (4.51).
Substituting equation (2.29) into (4.51), the velocity of the equipment under PPF control

can be written as

Y _ Yo (4.76)

2

i 1 8w; (Y.-,)

1_7
jwl—(a)/a)f)2+j2§f o/ o,

If the equipment has a mass-like impedance, i.e. Z, = jom,, the base structure is
modelled as a mass m, on a complex spring, i.e. K, = K, (1+ jn,), and the undamped

natural frequency of the PPF controller @, is tuned to the system fundamental

resonance frequency @, =/K, /m, , the non-dimensional amplitude ratio of the system

under PPF control is given by
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u 1

e

9, {(Hjn,,)—[néj?j}cos{ﬁ(l—j%jg}.
|:(1+]77h)+,uk,u(l+]77 }\/_( njsm{\/;(l—j’;"jﬂ}.

o]
oo ol (1)

4.77)

[t

[\.)Q

_8 !
m,1-Q*+ j2{ . Q

\ \‘;

gl

Assuming damping in the isolator and in the base is small, i.e. 77, <<1 and 7, <<1,

and considering the base resonance frequency to be much greater than the system
fundamental resonance frequency, i.e. I'>>1, equations (4.29) and (4.30) still hold
valid respectively at low frequencies and around the system fundamental resonance
frequency for the PPF control system on a flexible base. Figure 4.25 shows the
amplitude ratio for the system under PPF control with various values for control gain g.
It can be seen that the equipment resonance peak is attenuated by PPF control with an
increase in the control gain g. However, the amplitude ratio is amplified at frequencies
lower than the system fundamental resonance frequency due to the negative stiffness
introduced by PPF control. Also, the base resonance peak and the IR peaks in the
distributed parameter isolator are not reduced by PPF control because the frequency

response of the PPF controller rolls off rapidly at high frequencies.

4.3.4.2 Stability analysis

From equation (4.55), the plant response from the active control force to the

displacement of the equipment is given by

u,| _u,ljo

Ll

The open-loop frequency response of the PPF control system is thus given by

- L(r,-v,) @78)

=0
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8w,
GHPPF:._(Yee_Yeh) 2 f.
JO I-(0/@,) +2{, 0o,

(4.79)

Due to the effect of the transfer mobility Y, and the PPF controller, the PPF control

system containing a distributed parameter isolator on a flexible base is only

conditionally stable.

4.3.5 Acceleration-Position Feedback (APF) control

An active vibration isolation system containing a distributed parameter isolator on a
flexible base under APF control is shown in Figure 4.26. The control force f,, which is

in parallel with the isolator, reacts between the equipment and the base. The active

control force is given by equation (2.40).

4.3.5.1 Control performance

The velocity of the equipment under APF control is given by equation (4.51).
Substituting equation (2.40) into (4.51), the velocity of the equipment under APF

control can be written as

Y
_ eb (4.80)

I/'te
P 00y Ly
1_(w/wf) +j20; oo,

It can be seen that, around the natural frequency of the APF controller, i.e. w=w,,

equation (4.80) can be reduced to equation (4.53), which is the velocity of the
equipment of such a system under AVF control. However, at frequencies much lower or
higher than its natural frequency, the effects of APF control are negligible so that the IR

peaks which occur at relatively high frequencies cannot be attenuated by APF control.

If the equipment has a mass-like impedance, i.e. Z, = jom,, the base structure is
modelled as a mass m, on a complex spring, i.e. K, = K,(1+ jn,), and the natural
frequency of the APF controller @, is tuned to the system fundamental resonance

frequency @, , the amplitude ratio of the system under APF control can be written as
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|:(1+]77h)+,uk,u(1+]77 }\/_(1 ]njsm{\/;(l—j’;"jg}.
(-

e el E(- ]
R ) ol )

(4.81)
Figure 4.27 shows the amplitude ratio for the system under APF control with various
values for active damping ratio ¢, . It can be seen that the amplitude ratio is attenuated
around the equipment resonance frequency with an increase in the active damping ratio
due to APF control. However, the amplitude ratio close to the system fundamental
resonance frequency is amplified. Also, the base resonance peak and IR peaks in the

distributed parameter isolator are not reduced by APF control, because the active APF

control force rolls off rapidly at high frequencies.

4.3.5.2 Stability analysis

From equation (4.55), the plant response from the active control force to the

acceleration of the equipment is given by

G="c =%l = jo(r,-v,) (4.82)
T alf=0 T a |f=0
The open-loop frequency response of the APF control system is thus given by
2¢, /o,
GH v = joO(¥,. = Y,,)| h 1/ (4.83)

2 .
I-(0/@,) +2{, 0o,
Due to the effect of the transfer mobility Y, , the APF control system containing a

distributed parameter isolator on a flexible base is only conditionally stable.
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4.3.6 Comparison of control performance

The comparison of the overall control performance for the active vibration isolation
systems containing a distributed parameter isolator on a flexible base under above
discussed control strategies can be realized by looking at their change in mean square
response compared to the original passive system. The relationship between the power
spectral densities of the primary disturbance applied on the base and equipment

response can be written as [83]
2

S, (4.84)

u

€

2}

st

S =

e

The mean square displacement of the equipment is thus given by [83]

2

;e S,dQ (4.85)

st

Z:Tsedng

Substituting the corresponding amplitude ratio into equation (4.85), the change in mean
square displacement for the system under different control strategies compared to the

passive system can be calculated. The equivalent active damping ratio for PPF control is

alsosettobe ¢, = g/(2§fme)

Figure 4.28 depicts the change in mean square displacement within the range

0.1<Q<1000 when 4 =01, =05, =001, n=n=001, m =05,
4 ;=05 and @, =®,. At high active damping ratios, AVF and IFF control provides

increasing reduction in the mean square response. The performance of IFF control is
determined by the mass of the equipment. In this case the mass of the equipment is 0.5,
which is less than unity, the control performance of IFF control is therefore worse than
AVF control. The RVFE, PPF and APF control do not produce monotonically reducing
mean square response for an increasing in active damping ratio. For the parameters
given in this case, AVF, IFF and APF control remains stable for the given range of the
active damping ratio. However, the instability of PPF control is seen to occur when the

active damping ratio is increased. Although the behaviour shown in Figure 4.28 is
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similar to the case when the base is rigid, the additional mode due to the dynamics of

the base has a negative contribution to the reduction of the mean square response.

4.3.7 Acceleration feedback control

An active vibration isolation system containing a distributed parameter isolator on a
flexible base under acceleration feedback control is shown in Figure 4.29. The control

force f,, which is in parallel with the isolator, reacts between the equipment and the

base. The active control force is given by equation (2.45).

4.3.7.1 Control performance

The velocity of the equipment under acceleration control is given by equation (4.51).
Substituting equation (2.45) into (4.51), the velocity of the equipment under
acceleration feedback control can be written as

7 Y

Teo— " (4.86)

foo1+jon(Y, -Y,)

If the equipment has a mass-like impedance, i.e. Z, = jowm, and the base structure is

modelled as a mass m, on a complex spring, i.e. K, = K, (1+ jn,), the amplitude ratio

of the system under acceleration feedback control can be written as

u 1

e

J, {(H jﬂb)—(l+;Jg}cos{ﬁ(l—jgjg}...
...—{(1+mb)+uku,. (1+j771.)—?22}Jgi_i(l—jrgjsin{ﬁ(l—j’gjg}...

ﬂkg[cos(ﬁ,. (1— jg"jﬂj—l}.

m, 1 7] Q) 7]
+\/Z(l_']2j(l+ ]ﬂb—WjS1n(\/;l(l—]2ij

Figure 4.30 shows the amplitude ratio for the system under acceleration feedback

(4.87)

control, where the amplitude ratio of the system without control is also plotted for

comparison. It can be seen that the equipment resonance peak moves to a lower
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frequency due to the acceleration feedback control. As a consequence, the amplitude
ratio at high frequencies including the base resonance peak and IR peaks in the isolator

is reduced.

4.3.7.2 Stability analysis

For acceleration feedback control, the plant response from the active control force to the

acceleration of the equipment is given by equation (4.82). Again, due to the effect of the

transfer mobility Y, , the acceleration feedback control system containing a distributed

e

parameter isolator on a flexible base is only conditionally stable.

4.3.8 Summary

The control performance and stability of the active vibration isolation system containing
a distributed parameter isolator on a flexible base under different control strategies have
been investigated and compared. The control strategies which can introduce active
damping, such as AVE, RVE, IFF, PPF and APF, are effective in attenuating the
equipment resonance peak. However, the IR peaks in the isolator cannot be attenuated
by these control strategies because the equipment mass dominates the response at high
frequencies. If the equipment is a rigid mass, IFF control is equivalent to AVF control.
PPF control may cause amplification at low frequencies due to the negative stiffness
introduced. Also APF control causes some amplification close to the system
fundamental resonance frequency. Furthermore, for the system on a flexible base, AVF,
IFF, PPF and APF control systems are only conditionally stable. A stability condition in
terms of modal amplitudes has been proposed for AVF control. In contrast, the RVF
control system on a flexible base remains unconditionally stable, although its control
performance at high frequencies is degraded. Different from other control strategies,
acceleration feedback control can reduce the IR peaks in the isolator at high frequencies.
However, as a compromise, the equipment resonance peak moves to a lower frequency

and cannot be reduced by acceleration feedback control.
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4.4 Conclusions

Active vibration isolation systems containing a distributed parameter isolator, which is
modelled as a finite elastic rod, under various control strategies have been investigated
and compared in this chapter. The different control strategies have their own advantages
and disadvantages in isolating a piece of equipment supported by a distributed
parameter isolator. It has been shown that AVF control is again an optimal solution to
minimise the mean square velocity of the equipment mass. A stability condition in terms
of modal amplitudes has been proposed for AVF control system on a flexible base
containing a distributed parameter isolator. The theoretical analysis for AVF control
system discussed in this chapter is validated experimentally in the next chapter. Also,
based on the proposed stability condition, approaches which can stabilize the AVF
control system on a flexible base are investigated in the following chapter. The positive
effect of acceleration feedback control at high frequencies gives a clue in attenuating the

IR peaks in the distributed parameter isolator.
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(a) (b)

|‘1u”

Figure 4.1 (a) schematic diagram and (b) free body diagram of base excited active
vibration isolation system containing a distributed parameter isolator under AVF

control, where u, and u, are velocities of the equipment and the base respectively;
Z, is the input impedance of the unconnected equipment at the location of the isolator
connection; Z, 1is the impedance matrix of the isolator; h is the constant feedback

control gain; f, 1is the active control force; and Q,, Q, and Q, are internal forces.

Figure 4.2 Mechanical representation of the base excited active vibration isolation

system containing a distributed parameter isolator under AVF control.
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Figure 4.3 Transmissibility of the active vibration isolation system under AVF control

when the ratio of the mass of the isolator to the mass of the equipment 1, =0.1, the loss
factor in the isolator 1,=0.01, and the active damping ratio {,=0 (solid line),
¢, =0.2 (dashed line) or { =1 (dotted line). The bold and faint dashed-dotted lines

pass through the IR peaks and the troughs of the transmissibility respectively.
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Figure 4.4 Mechanical representation of the Thevenin equivalent system for the active

vibration isolation system under AVF control shown in Figure 4.1, where Z,, and Z,,

are respectively the transfer and point impedances of the isolator, and f, is the

blocked force.
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(a)

(b)
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Figure 4.5 (a) schematic diagram and (b) mechanical representation of base excited

active vibration isolation system containing a distributed parameter isolator under RVF

control.
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Figure 4.6 Transmissibility of the active vibration isolation system under RVF control

when . =0.1, n,=0.01, and {, =0 (dashed line) or {, =1 (solid line). The two

dashed-dotted lines pass through the IR peaks and the dotted line passes through the

troughs of the transmissibility.
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Figure 4.7 Mechanical representation of the Thevenin equivalent system for the active

vibration isolation system under AVF control shown in Figure 4.5.
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Figure 4.8 Schematic diagram of base excited active vibration isolation system

containing a distributed parameter isolator under IFF control, where H . (j®) is the

frequency response of the IFF controller and f, is the transmitted force to the

equipment.

HPPF (.]a))

1

Figure 4.9 Schematic diagram of base excited active vibration isolation system

containing a distributed parameter isolator under PPF control, where u, is the
displacement of the equipment and H . ( ja)) is the frequency response of the PPF

controller.
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Figure 4.10 Transmissibility of the active vibration isolation system under PPF control
when 1, =0.1 , 17,=0.01, the natural frequency of the filter @, =@,, the damping

ratio of the filter { ; =0.5, the mass of the equipment m,=2 and the constant gain

g =0 (solid line), g=0.5 (dashed line) or g =0.9 (dotted line).
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Figure 4.11 Schematic diagram of base excited active vibration isolation system

containing a distributed parameter isolator under APF control, where i, is the

acceleration of the equipment and H .. (j®) is the frequency response of the APF

controller.
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Figure 4.12 Transmissibility of the active vibration isolation system under APF control
when p,=0.1 , 7,=001, @, =w,, {,=05 and {, =0 (solid line) ¢, 6 =02
(dashed line) or {, =1 (dotted line).
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Active damping ratio ¢,
Figure 4.13 Normalized change in mean square velocity for the base motion system
under AVF (solid line), RVF (dashed line), IFF (dotted line), PPF (line with circle) and
APF (dashed-dotted line) control compared to the passive system when p, =0.1,
7,=0.01, m, =05, @, =, and {,=0.5.
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Figure 4.14 (a) schematic diagram and (b) mechanical representation of a base excited

system containing a distributed parameter isolator under acceleration feedback control.
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Figure 4.15 Transmissibility of the active vibration isolation system under acceleration
feedback control when 1, =0.1 , 17,=0.01 and h=0 (solid line), h/m,=0.5
(dashed line) or h/m,=35 (dotted line).
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Figure 4.16 Schematic diagram of a base excited system containing a distributed

parameter isolator under optimal control, where u, is the velocity of the middle mass.
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ma )
(2 D1

(a)

Figure 4.17 (a) schematic diagram and (b) free body diagram of an active vibration
isolation system containing a distributed parameter isolator on a flexible base under

AVF control, where Z, is the input impedance of the base, f is the primary force

applied to the base and Q, 1is an internal force.
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Figure 4.18 Amplitude ratio of the active vibration isolation system on a flexible base
under AVF control when . =0.1, 1,=0.01, the ratio of the mass of the base to the
mass of the equipment 1, =0.5, the ratio of the static stiffness of the isolator to the
stiffness of the base , =0.1, the loss factor in the base 1, =0.01 and {,=0 (solid
line), §,=0.2 (dashed line)or ¢, =1 (dotted line).
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Figure 4.19 Plant responses of the AVF control system containing a distributed

parameter isolator on a flexible base when u,=0.1, u, =05, u, =0.1, and

n,=n,=0.01.
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Figure 4.20 Zoomed Nyquist plot of the plant responses of the AVF control system

containing a distributed parameter isolator on a flexible base when i, =0.1, 1, =0.5,

i, =0.1 and 7, =1, =0.0l.
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Figure 4.21 Schematic diagram of an active vibration isolation system containing a

distributed parameter isolator on a flexible base under RVF control.
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Figure 4.22 Amplitude ratio of the active vibration isolation system on a flexible base

B+ ST T T/

Frequency ratio Q

00

under RVF control when y,=0.1, u, =05, u =0.1, n,=n,=0.01 and {, =0

(solid line), {,=0.2 (dashed line)or {, =1 (dotted line).
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Figure 4.23 Schematic diagram of an active vibration isolation system containing a

distributed parameter isolator on a flexible base under IFF control.

HPPF ( ]a))

Figure 4.24 Schematic diagram of an active vibration isolation system containing a

distributed parameter isolator on a flexible base under PPF control.
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Figure 4.25 Amplitude ratio of the active vibration isolation system on a flexible base

under PPF control when p,=0.1, u,=05, @ =01, n,=1,=001, o =0,
{f =05, m,=2 and g=0 (solid line), g=0.5 (dashed line) or g =0.9 (dotted

line).

_HAPF (](())

Figure 4.26 Schematic diagram of an active vibration isolation system containing a

distributed parameter isolator on a flexible base under APF control.
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Figure 4.27 Amplitude ratio of the active vibration isolation system on a flexible base
under APF control when p,=0.1, u,=05, @ =01, n,=7n,=001, o =0,
{,=0.5 and {,=0 (solidline), {, =02 (dashedline)or {, =1 (dotted line).
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Figure 4.28 Normalized change in mean square displacement for the system on a
flexible base under AVF (solid line), RVF (dashed line), IFF (dotted line), PPF (line
with circle) and APF (dashed-dotted line) control compared to the passive system when
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Figure 4.29 Schematic diagram of an active vibration isolation system containing a

distributed parameter isolator on a flexible base under acceleration feedback control.
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Chapter 5

AVF Control on a System Containing a

Distributed Parameter Isolator

5.1 Introduction

As discussed in Chapter 4, AVF control is an optimal solution to minimise the mean
square velocity of the equipment mass in active vibration isolation with a distributed
parameter isolator and a rigid base (section 4.2.8). The AVF control system, which could
be considered as the simplest way to implement active damping, is effective in
attenuating the resonance peaks at relatively low frequencies, whereas it is not effective
in attenuating the isolator IRs. It was also shown that the AVF control system containing
a distributed parameter isolator on a flexible base is only conditionally stable. Such a
system may become unstable at high control gains, so that the AVF control performance

is limited.

The aim of this chapter is to investigate the stability and performance of AVF control
system containing a distributed parameter isolator and examine approaches to stabilize
such a system both theoretically and experimentally. First, several approaches which
can stabilize the AVF control system are presented theoretically. Then the stability and

performance of the AVF control system containing a distributed parameter isolator are
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investigated experimentally on a four-spring active vibration isolation system. The

approaches to stabilize the AVF control system are also validated experimentally.

5.2 Approaches to stabilize the AVF control system

As presented in Chapter 4, the active vibration isolation system containing a distributed

parameter isolator on a flexible base under AVF control is only conditionally stable. The

stability condition proposed in Chapter 4 is given by ¢’ / ¢ <1 forall jin a lightly

damped system, where ¢'” and ¢\” are respectively the modal amplitudes evaluated

at the equipment and the base. This stability condition means that if the displacement of

the base is greater than the displacement of the equipment and these two displacements

are in phase at the j™ natural frequency, then the system may become unstable.

Therefore, to stabilize the AVF control system, the relative displacement between the
equipment and the base at the troublesome natural frequency needs to be altered. In
some situations, this can simply be achieved by adding more damping in the isolator as
mentioned in [72, 90]. Additional mass could also be added to the base structure to
change the modal amplitude in order to stabilize the AVF control system. Furthermore,
some other mechanical approaches can also be applied to change the dynamics of the
base structure. Alternatively, electronic means can be used to compensate for the phase
lag at IRs in the isolator which causes instability. These approaches are discussed in the

following sections.

5.2.1 Adding more damping in the isolator

Additional damping introduced in the isolator constrains the amplitude and phase shift
of the open-loop frequency response at IRs, so that the instability due to the IRs can be
eliminated. For the AVF control system on a flexible base shown in Figure 4.16, the
simulation result of adding more damping in the isolator can be achieved if a larger
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value for the loss factor in the isolator 77, is applied. Figure 5.1 shows the plant

response of the active vibration isolation system on a flexible base under AVF control
with high damping in the distributed parameter isolator. The plant response for such a
system with low damping in the isolator is also plotted for comparison. It can be seen
that with high damping in the isolator it helps limit the amplitude and phase shift of the

plant response at IR frequencies, so that the phase at the first IR frequency (the third
peak in Figure 5.1) where instability occurs becomes greater than -180°. It can also be

noted that in the Nyquist plot of the plant response, shown in Figure 5.2, the loop on the
left half of the complex plane caused by the first IR for the system with low damping in
the isolator is shifted to the third quadrant. For large damping the loop never crosses the
negative real axis. Thus the system becomes unconditionally stable. From the above
analysis, it is demonstrated that the situation of having a lightly damped system, i.e. one

mode dominating the response at resonance frequencies, is the worst case for stability.

This approach to stabilize the AVF control system is simple and straightforward.
However, it is not always practical to introducing more damping in the isolator. Also,
high damping materials may degrade the load capacity of the isolator and the

performance of the system [67].

5.2.2 Adding more mass to the base

Adding more mass to the base structure can reduce the relative displacement between
the base and the equipment at IRs, so that the proposed stability condition can be
satisfied. The AVF control system can thus be stabilized. For the AVF control system on
a flexible base shown in Figure 4.16, the simulation result of adding more mass to the

base can be achieved if a larger value for the ratio of the mass of the base to the mass of

the equipment 4, 1is applied. Figure 5.3 shows the plant response of the AVF control

system on a heavy flexible base. For comparison, the plant response of the system on a

light flexible base is also plotted. It can be seen that the base resonance moves to a
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lower frequency due to the extra mass on the base structure. It should also be noted that
the phase shift due to the IRs in the isolator is limited by the addition of more mass to
the base structure. Figure 5.4 shows the Nyquist plot of the plant response. The loop,
which is on the left half of the complex plane caused by the first IR for the system on a
light base, is shifted to the third quadrant rather than crossing the negative real axis, due
to the effects of the additional base mass. Thus the system becomes unconditionally
stable. However, this approach is also limited in practical use because it is again not

always practical to add extra mass to the base.

5.2.3 Electronic means: introducing a lead compensator

Figure 5.5 shows a lead compensator that is introduced into the feedback loop to
compensate for the phase lag due to the IRs in the distributed parameter isolator, which
causes the instability. The open-loop frequency response of the modified control system

is given by
G(jo)H (jo)=h-G ., G (5.1)

where h is the constant feedback gain, G=Y -Y, is the plant response of the

system, and G, 1is the frequency response function of the lead compensator, which is

given by [74, 75, 91]
1+ jal
1+ jowl,

lead —

(0<a<l) (5.2)

where o and 7, are the coefficients of the lead compensator. The corresponding

frequency where the maximum phase lead occurs is given by

1
o, =—F— (5.3)
JaT,
The corresponding maximum phase lead is given by
O = arcsin(l_ “j (5.4)
I+a

Figure 5.6 shows the frequency response of a lead compensator. To compensate for the

phase lag due to the IRs in the isolator, which causes the instability, the lead
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compensator needs to be tuned. @. should be equal to the instability frequency, so that

the maximum phase lead compensation can be achieved at the troublesome frequency. If

a phase lead compensation of ¢ is required, the parameter « is given by

g=1Z5n¢ (5.5)
I+sing

so that the coefficient 7, can be written as

T

1
1_\/5@

Figure 5.7 illustrates the open-loop frequency response of the system with a lead

(5.6)

compensator shown in Figure 5.5 when the feedback control gain is unity. For
comparison, the open-loop frequency response of the original system without the lead

compensator is also plotted. It can be seen that the phase shift at the first IR frequency

where instability occurs is greater than -180° due to the phase compensation, so that the

Nyquist plot of the open-loop frequency response does not cross the negative real axis

as shown in Figure 5.8. Thus the system becomes unconditionally stable.

This approach to stabilize the AVF control system requires information on the IRs in the
isolator before the lead compensator can be designed and implemented. Also higher
control gains are required to achieve good control performance because the open-loop
frequency response of the stabilized system is less due to the lead compensator. In
practice, the higher order resonances in the equipment or base structures at high

frequencies are likely to cause instabilities due to the higher control gain used.

5.2.4 Mechanical means

To stabilize the AVF control system, an additional SDOF mechanical system comprising
a rigid mass m_ , an elastic spring with stiffness k, and a viscous damper with
damping coefficient ¢, can be introduced to attach onto the base structure of the active

vibration isolation system. Figure 5.9 shows the idealized situation. The hypothesis is
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that the displacement of the base at the instability frequency can be altered. The active
force due to AVF control acting on the equipment reacts against the additional mass, as

shown in Figure 5.9, rather than acting directly onto the flexible base. The force

transmitted to the base structure f, is thus given by

f.=T,f,+ 2, (5.7)
where
Z.
T =—"a — (5.8)
Zma + Zia
is the force transmissibility and
Z 7.
; - ma“—1a (5.9)
Zma + Zia

is the total impedance of the additional system, Z = jom, is the impedance of the

additional mass, Z, =k,/ jo+c, is the impedance of the combined suspension of the

additional system.

The velocity of the equipment for the stabilized system with the additional mechanical

system on the base shown in Figure 5.9 is given by

i, =Y, f,+Y,(f=f) (5.10)

Substituting equations for Y

ee?

Y, given in chapters 3 and 4 and equation (5.7) into

(5.10), the velocity of the equipment can be rewritten as

i, =, ~TY,)f,+Y,f (5.11)
where
v - Z,+72,+Z,
ee Z +7Z Z.+7Z +7Z )\—Z.7
(2.+2,)(2,+2,+2,)-2,,Z,, (5.12a,b)
_ZZI

eb

(Ze +Zzz)(zb +le +Za)_ZIZZZI

where Y, is the input mobility of the equipment when coupled to the rest of the

'

stabilized system and Y, is the transfer mobility from the force on the base to the
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equipment velocity #, when the stabilized system is coupled.

Therefore, the plant response from actuator force to absolute equipment velocity for the
stabilized system is given by
Cou
G =—*
Ja

At resonance frequencies, in a lightly damped system, when only one mode dominates

=Y, -TY, (5.13)
f=0

the response, the plant response can be written as

) o
R IR

G=Y,-TY,=~ (5.14)
2JK;M, ¢
The stability condition is thus given by
@)
b
Re(Ta)a):a)j W<1 (515)
at a resonance frequency, where Re denotes the real part.
The force transmissibility in equation (5.15) can be written as
Z 1+ j2¢ Q
a — -] ;&‘ a (5 . 16)

T = = >
Z.+Z, 1-Q.+j2{Q,
where non-dimensional frequency Q, =@/@,, @, =\/k,/m, is the natural frequency

of the additional system, and ¢, =c, / 2\/k,m, is the viscous damping ratio of the
additional system. According to the stability condition giving by equation (5.15), to
stabilize the AVF control system, Re(7,) should be as small as possible around

potentially unstable frequencies. As shown in equation (5.16), it means that the natural
frequency of the additional system @, should be much smaller than the potentially
unstable frequencies. However, around the natural frequency of the additional system
@, , if it is lightly damped, instability may occur due to the amplification of Re(7,).In
order to overcome this low frequency potential instability due to the natural frequency
of the additional system, a relatively highly damped additional system should be used to

attenuate Re(7,) around its natural frequency.
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The plant response of the active vibration isolation system with the additional
mechanical system attached to the base shown in Figure 5.9 is plotted in Figure 5.10.
The plant response of the original system is also plotted for comparison. It can be seen
that the phase lag at the first IR in the isolator, which might cause instability, is
eliminated due to the attachment of the mechanical system. But as a compromise, there
is a new phase lead occurring at the natural frequency of the additional system. If the
damping of the additional system is relatively high, this phase lead will not be a danger
to stability for the AVF control. As shown in Figure 5.11 for the Nyquist plot of the
plant responses, there is no loop which crosses the negative real axis for the stabilized
system with the additional mechanical system attached to the base. The AVF control

system is thus unconditionally stable.

The phase margin around the natural frequency of the additional system can be further
increased by introducing a phase-lag compensator into the feedback control loop as
shown in Figure 5.12. If a lag compensator is applied to the stabilized system, the

open-loop frequency response becomes

G(jo)H (jo)=h-G -G,, (5.17)
where the frequency response function of a lag compensator is given by [74]
1+ jor,
o ST >1 5.18
lag 1+ ]ﬁa)Tz (ﬁ ) ( )

where S and 7, are the coefficients of the lag compensator. The corresponding

frequency where the maximum phase lag occurs is given by
1

W = (5.19)
JAT,
The corresponding maximum phase lag is given by
Q. = arcsin(l_ p j (5.20)
1+

Figure 5.13 shows the frequency response of a lag compensator. To limit the phase shift

around the natural frequency of the additional system, @, should be equal to @,, so
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that the maximum phase lag compensation can be achieved. The appropriate parameters

for the lag compensator need to be chosen based on this principle. If a phase lag

compensation of ¢ is required, the parameter S 1is given by

_losing (5.21)
1+sin @
so that the coefficient 7, can be written as
1 1
T, = = (5.22)
JBo, B,

Figure 5.14 illustrates the open-loop frequency response and its Nyquist plot of the
stabilized system with a lag compensator shown in Figure 5.12 when the feedback
control gain is unity. For comparison, the open-loop frequency response of the system
shown in Figure 5.9 is also plotted. It can be seen that the phase around the natural
frequency of the additional system is further suppressed due to the lag compensator, so

that a greater phase margin is achieved.

Compared to the aforementioned approach of adding more mass to the base to stabilize
the AVF control, less mass is required in this mechanical configuration. As a
compromise, it does increase the design complexity. The potential danger to stability at

the natural frequency of the additional system should also be noted and considered.

5.3 Experimental validation for AVF control system

In the theoretical analysis described in this thesis, the distributed parameter isolator has
been modelled as a ‘long-rod’, i.e. the lateral deformation of the isolator under the
longitudinal excitation is ignored. As presented in Chapter 3, a helical spring is a typical
lightly damped distributed parameter isolator. It can be modelled as a finite rod under
longitudinal vibration for simplicity, because both objects are continuously distributed
elements, in that their stiffness and mass are spread uniformly throughout their length.

Therefore, a four-spring active vibration isolation system was designed and
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implemented to show the validity of stability and control performance for vibration
isolation system under AVF control. The purpose of using four springs that are in
parallel in the experimental rig is to eliminate the effect of any rotation. It is also less
likely to result in lateral isolator deformation. Different aforementioned approaches
which can stabilize the AVF control system are also implemented experimentally. Part

of the experimental results has been reported in [92].

5.3.1 Experimental setup

A four-spring active vibration isolation system was built as shown in Figure 5.15. It
consisted of an equipment plate together with four actuators mounted on a base plate
through four springs under excitation of a primary vibrator. A symmetrical aluminium
plate representing the equipment was installed on top of another symmetrical aluminium
plate representing the base via four identical helical springs. A large electromagnetic
vibrator (Derritron type VP4) underneath the base plate acted as the primary force
actuator, and the four small electromagnetic actuators (LDS V101) fixed on the
equipment plate were the control actuators at each mount position. The equipment to be
isolated was thus a combined structure of the aluminium equipment plate and four
actuators. Each helical spring was bolted to the equipment plate through an aluminium
washer underneath each actuator. A stinger was connected through the inside of the
spring between each actuator and the corresponding washer at the foot of each spring.
The base plate, to which the washers were attached by wax, was bolted to the primary
vibrator with four bolts. The detailed physical and geometrical parameters of the

experimental setup are listed in Table 5.1.

Figure 5.16 shows a schematic diagram of the experimental setup and signal path with
details of one actuator and the corresponding spring underneath. The primary vibrator
was driven with white noise from a dynamic signal analyzer (Data Physics-Signalcalc
Mobilyzer II) through a power amplifier (Ariston AX-910). The base response was

measured using an accelerometer (B&K type 4375) at the centre of the base plate. The
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equipment response was monitored by five accelerometers (B&K type 4375) located
along two central lines of the equipment plate, so that the average vertical equipment
response and the dynamic behaviour of the equipment plate could be analyzed, and the
effect of any rigid body equipment plate rotation reduced. The acceleration signals from
the equipment plate and the base plate were then passed through charge amplifiers
(B&K type 2635). These include an integrator and high and low-pass filter modules, so
that the velocity response of the equipment and base can be obtained. The high-pass
filter cut-off frequency was set to 1 Hz to avoid DC signal overflow, and the low-pass
filter cut-off frequency was set to 10 kHz. The velocity response at the centre of the
equipment plate was fed back to the actuators via a power amplifier (Cambridge audio

AI V2.0) with gain control to generate the active control force.

5.3.2 Passive response

The base dynamics were firstly measured when it was uncoupled from the springs and
equipment structure, i.e. the equipment plate, actuators and springs were removed from
the base plate. The base plate was driven by the large vibrator using broadband white
noise from the signal analyzer through a power amplifier. The vibrator input voltage to
the power amplifier was used as the reference signal instead of the input force because
the input voltage is approximately proportional to the force input within the frequency
range of interest in this study [93]. The acceleration response at the centre of the base
plate was measured and passed through a charge amplifier to obtain the velocity
response. The base dynamics is then the measured transfer function from the input of
the power amplifier to the output of the charge amplifier. Different masses were used to

change the weight of the base structure.

Figure 5.17 shows the base dynamics with different additional weight added to the base
structure. It can be seen that the base structure behaves as SDOF system which is a mass
supported by a spring upto about 600 Hz at least. The solid line is for a 0.8 kg mass

attached to the base plate with a resonance frequency of about 23.3 Hz. The dashed line
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is for a 1.8 kg mass attached to the base plate, so that the resonance frequency of the
system is reduced to about 19 Hz. These resonance frequencies are the effective mass of

the base structure resonant on the internal support stiffness of the vibrator. Therefore,

the effective mass of 1.18 kg and effective stiffness of 4.25x10* N/m can be estimated

from these two resonance frequencies, assuming light damping. Based on the above
results, the base structure can be modelled as a SDOF system, i.e. a flexible base with
an effective mass supported by a spring. Therefore, the active vibration isolation system
used in the experiment can be simulated using the theoretical model described in the
earlier chapters, which is an equipment mass mounted on a flexible base structure

through a distributed parameter isolator.

To measure the performance of the system without control, the equipment structure and
springs were reassembled onto to the base plate. The transmissibility and velocity
response of the active vibration isolation system without control were measured when
the large vibrator was driven with white noise and the actuators on the equipment plate
were inactive. The vibrator input voltage was again used as the reference signal. The
acceleration responses were passed through charge amplifiers to obtain the velocity
responses. The measured data was then averaged to obtain the transmissibility and the
velocity response of the equipment plate per unit voltage to the power amplifier as
shown in Figures 5.18 and 5.19. The predicted results are obtained using the parameters

listed in Table 5.1.

There is a reasonable agreement between the measured and predicted results. The
responses below 3 Hz are very noisy due to low sensitivity of the actuators and the
mechanical plant, so that they are not presented. For the transmissibility shown in
Figure 5.18, the base dynamics is excluded by definition of the transmissibility. The first
peak at 18.4 Hz is the fundamental resonance peak of the system when the equipment
structure is resonant on the stiffness of the four parallel springs. In the velocity response

of the equipment plate shown in Figure 5.19, the base dynamics is included. The
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resonance peaks at approximately 11.8 Hz and 50 Hz are the natural frequencies of the
coupled system. In both figures the first internal resonance in the helical springs occurs
around 404 Hz, which is well predicted by the theoretical model at 400 Hz. The second
internal resonance in the springs, which is predicted to occur at 800 Hz, is strongly
coupled with high-order modes in the equipment plate, which can no longer be assumed
to be rigid at these relatively high frequencies. The resonance around 289 Hz is a
rotational mode with a diagonal nodal line on the equipment plate and the resonance
around 327 Hz is a flexural mode in the equipment plate, which were detected by
analyzing the phase differences between the responses at different locations on the
equipment plate. Therefore discrepancies at high frequencies are mainly due to the
effect of the modal behaviour of the equipment plate, which are not considered in the
theoretical study. The discrepancies at low frequencies in Figure 5.19 are due to
high-pass filters incorporated in the power amplifier and charge amplifiers, which are

also not accounted for in the theoretical model.

5.3.3 Stability analysis

To measure the open-loop frequency response, the four actuators fixed on top of the
equipment plate were driven with the same white noise from the dynamic signal
analyser through a power amplifier, while the primary vibrator was connected but
inactive. The open-loop frequency response of the system was measured and averaged
using the input to the power amplifier and the integrated output from the charge

amplifiers.

The predicted and measured open-loop frequency responses of the four-spring active
vibration isolation system are shown in Figure 5.20. Apart from some differences in the
resonant amplitudes, the theoretical results agree fairly well with the experimental
measurements, except for the unmodelled rotational modes around 32 Hz and 289 Hz,
the unmodelled flexural modal behaviour around 327 Hz and in the frequency range

above 500 Hz. The data below 3 Hz had low coherence due to the low instrumentation
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sensitivity, so again they are not presented. The first IR in the helical springs around 404
Hz can be clearly identified and compares well with predictions. The second IR is again
strongly coupled with some flexural modes in the equipment plate. The phase shift at
low frequencies, which is greater than 90° is due to the phase advances in the power
amplifier and charge amplifiers. The phase shift at high frequencies, where the phase
tends to decrease below -90°, is due to the phase lag in the low-pass filters incorporated

inside the charge amplifiers.

The measured potential instability occurs at the first IR of the helical springs as
predicted. This supports the stability analysis in the former theoretical study that the IRs
might destabilize the AVF control system when the mass of the isolators becomes
significant. The flexural mode in the equipment plate at 327 Hz also has the potential to
destabilize the system, which is not considered in the theoretical study here but was
identified and reported by Kim et al [52]. The cause of the instability in the experiment
also includes the phase advances in the power amplifier and charge amplifiers. The
power amplifier has a phase advance of up to about 90° at very low frequencies (under 5
Hz). Furthermore, an additional phase advance occurs in the charge amplifier. A phase
advance of greater than 90° at very low frequencies can cause the Nyquist plot of the
plant response to cross the negative real axis, thus making the system unstable to high
gain [15, 43]. The experimental plant can also be potentially unstable at very high
frequencies due to the high-order modes in the experimental structure as well as
electrical causes. The low-pass filter incorporated inside the charge amplifier produces
an effective time delay in the control loop, which can make the system unstable at high
frequencies. Furthermore, the phase shift in the electromagnetic actuators can also be
modelled as an additional time delay [52]. In this experiment, it has been found that the
AVF control system first becomes unstable at very low frequencies, due to the phase
advances in the charge amplifier and power amplifier with increased feedback control

gain.

Figure 5.21 depicts the Nyquist plot of the open-loop frequency response of the active
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vibration isolation system corresponding to the results and frequency range shown in
Figure 5.20. Two loops in the left half of the complex plane crossing the negative real
axis are caused by the first IR in the helical springs at 404 Hz (smaller loop on left half)
and the flexural mode in the equipment plate at 327 Hz (larger loop on left half)
respectively. The Nyquist plot of the plant response also crosses the negative real axis at
very low frequencies due to the phase advances in the power amplifier and charge
amplifiers, which is not shown in Figure 5.21 since this is only plotted for frequencies
from 3 Hz to 1 kHz. In these experiments, it was this phase shift that caused instability

at very low frequencies before the potential instabilities above became important.

5.3.4 Control performance

A single-channel AVF control on the active vibration isolation system was implemented
on each of the four springs when the equipment structure was mounted on the base
structure. The primary vibrator was again driven with white noise. The velocity
responses of the equipment and base were also obtained using accelerometers through
charge amplifiers and then passed to the signal analyzer. The velocity response at the
centre of the equipment plate was fed back into four actuators through a power amplifier
to generate the control forces, which were identical for each actuator. Each feedback

channel had thus an equal, constant feedback gain.

Figure 5.22 shows the predicted and measured transmissibility of the active vibration
isolation system with various control gains, where the original transmissibility without
control is also shown for comparison. Figure 5.23 shows the velocity response of the
equipment plate per unit voltage to the power amplifier, which drove the primary
vibrator, without control and with various control gains. Responses less than 3 Hz are
again excluded from the plots. There is good agreement between the predicted and
measured results for low and high gains used. The system resonance peaks at low
frequencies are well attenuated with an increased control gain as predicted. However,

the resonance peaks at high frequencies including the first IR peak in the springs are not
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reduced because the mass of the equipment structure dominates the response at this
frequency range as discussed in the theoretical study. Zooming into the amplitude at the
first IR in the helical springs at 404 Hz shows that there is a small amplification caused
by the phase shift at this frequency. The similar amplification in the amplitude occurs
around 327 Hz also due to the corresponding phase shift. The gain margin for the higher
feedback gain used in Figures 5.22 and 5.23 was 1.8 dB, determined by the very low

frequency instability.

Therefore, as predicted theoretically, good control performance is achieved around the
system resonance peaks at low frequencies, while the isolation performance is not
improved at high frequencies where the equipment mass dominates the response.
Furthermore, there are small amplifications at some frequencies due to the potential
instability caused by IRs in the spring and flexural modal behaviour of the equipment

plate.

5.3.5 Approaches to stabilize the AVF control system

In this experiment, because the base structure is much lighter and more flexible than the
equipment structure, the system is then much more likely to be unstable at some IR
frequencies in the isolator. Two approaches discussed in section 5.2 were implemented

experimentally and presented in following sections.

5.3.5.1 Adding more mass to the base

As presented theoretically, adding mass to the base structure is a simple way to change
the base response. A mass of 1.8 kg was attached to the base plate to investigate its
stabilizing effect on the experimental plant. The measured open-loop frequency
responses of the potential stabilized system are shown in Figure 5.24, where the original
open-loop frequency responses are also shown for comparison. It can be seen that the
base resonance is reduced to a lower frequency due to the attachment of the mass, as
predicted in the theoretical study. The amplitude and phase of the first IR are also

restricted. As shown in Figure 5.25 for the zoomed open-loop frequency response, it can
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be seen that the phase at the first IR is reduced from -235° to -175°, which means the
potential instability is eliminated by adding mass to the base. However, the flexural
mode in the equipment plate at 327 Hz is not affected, because the change of the base
dynamics does not affect the flexural modal behaviour in the equipment plate. Figure
5.26 depicts the Nyquist plot of the open-loop frequency response for the original and
stabilized system. The detailed Nyquist plot between 350 and 450 Hz where only the
first IR occurs is shown in Figure 5.27. It can be seen that, for the stabilized system with
more mass on the base, the loop on the left half of the complex plane due to the first IR
in the spring is shifted to the third quadrant rather than crossing the negative real axis,
so that the AVF control system becomes stable at this frequency. However, due to the
phase advances in the charge amplifier and power amplifier, the instability of the control
system with additional mass on the base again still first occurred at very low
frequencies. The control performance of the system with more mass on the base is
shown in Figure 5.28. It can be seen that the resonance peaks at low frequencies are

attenuated without the compromise of an increase at the first IR in the helical springs.

5.3.5.2 Electronic means: introducing a lead compensator

A schematic diagram of an electrical circuit for a lead compensator is shown in Figure

5.29(a), which consists of two resistors (R, R,) and one capacitor (C). The transfer

function between the output e and input e, is given by [74]
e, R, 1+ RCs

¢ R+Ry, K g

l+2

(5.23)

Letting @=R,/(R +R,) and T,=R,C, the transfer function can be written as

e, 1+ jaT,
b—q L2 (a
e, 1+ joal,

1

<1) (5.24)

which is identical to equation (5.2). In the experiment, the phase of the open-loop
frequency response of the AVF control system at the first IR is -235°. To stabilize the
control system at this frequency, a phase lead compensator of at least 55° is required.

The coefficient & can thus be determined by equation (5.5) to give
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o= R, <0.1 (5.25)
R +R,

If a=0.03 is chosen, in order to achieve the maximum phase lead compensation at

404 Hz, where the first IR occurs, the coefficient 7, can be determined by equation

(5.6) to give
1, = 0.0023 (5.26)

By choosing the appropriate values for the resistances and the capacitance, the required
lead compensator can be realized as shown in Figure 5.29(b). The measured and

predicted frequency responses of the lead compensator agree well, see Figure 5.30.

The four-spring active vibration isolation system with a lead compensator and its signal
path are shown in Figure 5.31. The lead compensator was introduced between the
charge amplifier and the power amplifier. The velocity response at the centre of the
equipment plate was obtained using an accelerometer connected to the charge amplifier,
integrated and then passed to the signal analyzer. The velocity response was also fed

back into the four actuators through the power amplifier to generate the control forces.

The measured open-loop frequency responses of the potential stabilized system are
shown in Figure 5.32, where the original open-loop frequency responses are also shown
for comparison. It can be noted that the phase is constrained to be less than -180° both at
the first IR frequency of 404 Hz and at the flexural mode in the equipment plate of 327
Hz, which means that these potential instabilities are eliminated by introducing the
particular lead compensator. Figure 5.33 shows the Nyquist plot of the open-loop
frequency response for the stabilized system with the lead compensator. It can be seen
that there is no loop on the left half of the complex plane crossing the negative real axis,
so that the AVF control system becomes unconditionally stable within this frequency
range. However, it should also be noted that the magnitude of the open-loop frequency
response is reduced due to the lead compensator. As a consequence, the instability in
such a control system does not first occur at low frequencies. As shown in Figure 5.34,
which depicts the open-loop frequency response of the system with the lead

compensator up to 5 kHz, the control system first became unstable at a natural
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frequency of the system at about 1160 Hz, corresponding to the Nyquist plot crossing

the negative real axis shown in Figure 5.35.

The decrease in the magnitude of the open-loop frequency response also means that
greater feedback control gain is required for the stabilized system with the lead
compensator to achieve the same control performance as that of the original system. The
control performance of the stabilized system with the lead compensator is shown in
Figure 5.36. It can be seen that the resonance peaks at low frequencies are attenuated
without the compromise of the increase at both the first IR in the helical springs and the
flexural mode in the equipment plate of 327 Hz. But the control performance is limited
due to the instability occurring at a natural frequency of the system at approximately
1160 Hz. Figure 5.37 shows the control performance of the system upto 5 kHz. It can be
clearly seen that the velocity response of the equipment is amplified around 1160 Hz,

which will cause instability with increased control gain.

5.4 Conclusions

Active vibration isolation system containing a distributed parameter isolator under AVF
control has been investigated experimentally on a four-spring active vibration isolation
system. The effects of IRs on the stability and control performance of AVF control
system have been examined experimentally. It has been shown that the first IR in the
helical spring is a potential danger to the stability of the AVF control system. It has also
been shown that the AVF control is only effective in attenuating the resonance peaks at
relatively low frequencies, while it cannot suppress the IRs at higher frequencies where
the equipment mass dominates the response. Different approaches to stabilize the AVF
control system have also been investigated theoretically and experimentally based on
the proposed stability condition. It has been confirmed experimentally that adding more
mass to the base and introducing a lead compensator are effective solutions to eliminate
the potential instability at IRs in the isolator. However, in the experiment instabilities
still occur both at low frequencies due to the phase advances in the charge amplifier and

power amplifier, and at high frequencies due to the unmodelled high-order modes in the
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equipment and base plate, which have not been considered theoretically. The control
performance of AVF control system is thus limited by these instabilities which are not

internal isolator resonances.
In this experimental work, the base plate was attached to the washers underneath the

helical springs by wax. For stronger bondage between the base plate and the isolators,

glue can be used in further experimental validation instead of wax.
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Equipment structure ~ Material of the equipment plate Aluminum

Dimension of the equipment plate ~ (160xX160x10mm)

Mass of each actuator 0.91 kg
Mass of the equipment structure Skg
Spring Mass of each spring 27.1¢g
Stiffness of each spring 1.73x10* N/m
Base structure Material of the base plate Aluminum
Dimension of the base plate (160x160x10mm)
Effective mass 1.18 kg
Effective stiffness 4.25%10* N/m

Table 5.1 Physical properties and geometrical data of the four-spring active vibration

isolation system.

1

A2 Enr P
Natural Frequency (Hz) f, =— > ) ;i=123..;j=123..
Yo,

Y 7' (1-v?
Mode Sequence 1 2 3 4 5 6
13.49 19.79 24.43 35.02 35.02 61.53
4 (i)
(22) (13) (31) (32) (23) (41)
J; 1297 1902 2348 3366 3366 5914

Table 5.2 Natural frequencies of a free-free-free-free plate, when the length and width
of the plate a=b=0.16 m, the thickness h=0.01 m, Young’s modulus E=69 Gpa, density

p=2700 kg/m® and Poisson’s ratio v =0.33. i is the number of half-waves in mode
shape along horizontal axis and j is the number of half-waves in mode shape along

vertical axis [94].
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Figure 5.1 Plant responses of the AVF control system on a flexible base containing a

highly damped (solid line, loss factor in the isolator 1, =0.05) or lightly damped

(dashed line, 1n,=0.01) distributed parameter isolator, when the ratio of the mass of

the isolator to the mass of the equipment (. =0.1, the ratio of the mass of the base to

the mass of the equipment p, =0.5, the ratio of the static stiffness of the isolator to the

base stiffness p, =0.1, and loss factor in the base 1], =0.01.
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Figure 5.2 Zoomed Nyquist plot of the plant responses of the AVF control system on a

flexible base containing a highly damped (solid line,n,=0.05) or lightly damped

(dashed line, 1, =0.01 ) distributed parameter isolator when w4, =0.1, u, =0.5,
i, =0.1 and n, =0.01.
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Figure 5.3 Plant responses of the AVF control system containing a distributed

parameter isolator on a heavy (solid line, i, =0.8 ) or light (dashed line, 1, =0.5)

flexible base when u,=0.1, @, =0.1 and n,=mn,=0.01.
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Figure 5.4 Zoomed Nyquist plot of the plant responses of the AVF control system

containing a distributed parameter isolator on a heavy (solid line, u, =0.8 ) or light

(dashed line, 11, = 0.5 ) flexible base when u,=0.1, g, =0.1 and n,=n,=0.01.
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Figure 5.5 Schematic diagram of the active vibration isolation system containing a
distributed parameter isolator on a flexible base under AVF control with a lead

compensator, where u, and u, are velocity of the equipment and the base
respectively; Z, and Z, are the input impedances of the equipment and the base,
respectively; Z, is the impedance matrix of the isolator; h is the constant feedback
control gain; f is the primary force; f, is the active control force and G, is the

frequency response of the lead compensator.
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Figure 5.6 Frequency response of a lead compensator when the coefficients o« =0.2
and T,=0.5.
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Figure 5.7 Open-loop frequency responses of the AVF control system on a flexible base

with (solid line) or without (dashed line) a lead compensator when p,=0.1, u, =0.5,

i, =0.1, 7,=1,=001, @=0.1 and T,=0.0125.
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Figure 5.8 Zoomed Nyquist plot of the open-loop frequency responses of the AVF
control system on a flexible base with (solid) or without (dashed) a lead compensator

when u =0.1, 4,=05, u =0.1, 7,=7,=0.01, a=0.1 and T, =0.0125.
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Figure 5.9 Schematic diagram of the active vibration isolation system containing a
distributed parameter isolator on a flexible base under AVF control with an additional

system attached on the base, where m,, k,6 and c, are the mass, stiffness and
damping coefficient of the additional system, respectively, and f, is the active control

force transmitted to the base through the additional system.
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Figure 5.10 Plant responses of the AVF control system on a flexible base with (solid) or
without (dashed) an additional system attached on the base when u,=0.1, n, =0.5,
u, =01, n,=n,=0.01, the natural frequency and damping ratio of the additional

system respectively @, =0.29w, and ¢ =0.05.

150



Chapter 5: AVF Control on a System Containing a Distributed Parameter Isolator

0.04
o3 <

O ' 02 | ///,/" \‘\\\\ 4

e \,
) \
s A
L 7 N -
/ \
. S \
/ \
\
/ \
! \
\

Imaginary

i
i
/
i
{
|
L i -
'() 01 \ /
. L !
/
i
/
/
\ K
L AN 7 _
Y. , /
\ S/
\ /

_0'03 L \\\\\ ///_,// 4

-0.04

-0.02 0 0.02 0.04 0.06

Figure 5.11 Zoomed Nyquist plot of the plant responses of the AVF control system on a
flexible base with (solid) or without (dashed) an additional system attached on the base
when u =0.1, u, =05, u, =0.1, n,=n,=001, @, =029, and { =0.05.
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Figure 5.12 Schematic diagram of the active vibration isolation system containing a
distributed parameter isolator on a flexible base under AVF control with an additional

system attached on the base and a lag compensator with frequency response G, in

the feedback loop.
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Figure 5.13 Frequency response of a lag compensator when the coefficient =5 and

the frequency where the maximum phase lag occurs @, = @, .
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Figure 5.14 (a) open-loop frequency response and (b) its Nyquist plot of the stabilized

AVF control system with an additional system on the base and with (solid) or without

(dashed) a lag compensator in the feedback loop when . =0.1, u, =05, g =0.1,

n,=n,=0.01, @, =029, ¢ =0.05, f=5 and . =0,.
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Figure 5.15 Photographs of the four-spring active vibration isolation system.
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Figure 5.16 Schematic diagram of one corner of the four-spring active vibration

isolation system, where i, and 1ii, are acceleration of the equipment and the base

respectively.
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Figure 5.17 Measured velocity response of the base plate per unit voltage to the power

amplifier with different weight on the base structure: base plate with 0.8 kg mass

attached (solid line) and base plate with 1.8 kg mass attached (dashed line).
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Figure 5.18 Measured (solid line) and predicted (dashed line) transmissibility of the

active vibration isolation system without control.
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Figure 5.19 Measured (solid line) and predicted (dashed line) velocity response of the

equipment plate per unit voltage to the power amplifier without control.
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Figure 5.20 Measured (solid line) and predicted (dashed line) open-loop frequency

response of the active vibration isolation system.
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Figure 5.21 Measured Nyquist plot of the open-loop frequency response of the active
vibration isolation system.

156



Chapter 5: AVF Control on a System Containing a Distributed Parameter Isolator

)
=
3
2
g
&
=
60 HHHIO | 100 | “““1‘000
Frequency (Hz)
(b)
=)
2
3
2
k=
&
=

O e 0 1000

Frequency (Hz)

Figure 5.22 (a) predicted and (b) measured transmissibility of the active vibration
isolation system with various feedback gains: without control (solid line), low control

gain (dashed line) and high control gain (dotted line).
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Figure 5.23 (a) predicted and (b) measured velocity response of the equipment plate per
unit voltage to the power amplifier of the active vibration isolation system with various
feedback gains: without control (solid line), low control gain (dashed line) and high

control gain (dotted line).
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Figure 5.24 Measured open-loop frequency response of the active vibration isolation

system: stabilized system (solid line) and original system (dashed line).
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Figure 5.25 Zoomed experimental open-loop frequency response of the active vibration

isolation system: stabilized system (solid line) and original system (dashed line).
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Figure 5.26 Measured Nyquist plot of the open-loop frequency response of the active

vibration isolation system: stabilized system (solid line) and original system (dashed

line).
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Figure 5.27 Measured Nyquist plot of the open-loop frequency response of the active
vibration isolation system between 350 Hz and 450 Hz: stabilized system (solid line)

and original system (dashed line).
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Figure 5.28 Measured (a) transmissibility and (b) velocity response of the equipment
plate per unit voltage to the power amplifier of the stabilized active vibration isolation
system with more mass on the base under various feedback gains: without control (solid
line), low control gain (dashed line) and high control gain (dotted line).
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Figure 5.29 (a) schematic diagram and (b) physical configuration of an electrical

circuit of lead compensator, where e, and e, are the input and output, respectively;

R, and R, are resistors and C is capacitor.
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Figure 5.30 Measured (solid line) and predicted (dashed line) frequency response of the

lead compensator shown in Figure 5.29(b).
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Figure 5.31 (a) photograph and (b) schematic diagram of one corner of the four-spring

active vibration isolation system with a lead compensator.
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Figure 5.32 Measured open-loop frequency response of the active vibration isolation

system: stabilized system (solid line) and original system (dashed line).
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Figure 5.33 Measured Nyquist plot of the open-loop frequency response of the active

vibration isolation system with a lead compensator.
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Figure 5.34 Measured open-loop frequency response of the active vibration isolation

system with a lead compensator up to 5 kHz.
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Figure 5.35 Measured Nyquist plot of the open-loop frequency response of the active

vibration isolation system with a lead compensator up to 5 kHz.
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Figure 5.36 Measured (a) transmissibility and (b) velocity response of the equipment
plate per unit voltage to the power amplifier of the stabilized active vibration isolation
system with a lead compensator under various feedback gains: without control (solid

line), low control gain (dashed line) and high control gain (dotted line).
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Figure 5.37 Measured velocity response of the equipment plate per unit voltage to the

power amplifier of the stabilized active vibration isolation system with a lead

compensator upto 5 kHz without control (solid line) and with control (dashed line).
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Chapter 6

Control of Internal Resonances

6.1 Introduction

In Chapter 4, the commonly used control strategies in active vibration isolation, which
can introduce active damping, have been shown to be effective in attenuating the system
resonance peaks at relatively low frequencies. However, none of them can suppress the
IR peaks in the distributed parameter isolator, because the IR peaks occur at relatively
high frequencies where the equipment mass dominates the response. Due to the
significant effects of IRs in lightly damped isolators, effort has been expended by
previous researchers to attenuate the IRs, which has been discussed in Chapter 1.
However, all of the solutions have their inherent limitations either on the performance,
or the practical complexity in design and implementation. Therefore, novel approaches
to suppress IRs in the distributed parameter isolator are required, based on the

understanding of the characteristics of IRs in the distributed parameter isolator.

The aim of this chapter is to investigate theoretically strategies to attenuate IRs in the
isolator in order to improve the isolation performance of a distributed parameter isolator
over a broad range of frequencies. First, based on the earlier discussion on the
maximum response of the equipment at the IRs, an isolator with greater damping under

AVF control is investigated. Then, based on the knowledge that the equipment mass
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dominates the isolation performance at relatively high frequencies and the
characteristics of acceleration feedback control, a combined control strategy of absolute
velocity plus acceleration feedback control is presented. This is followed by the analysis

of AVF control on a fraction of the isolator length.

6.2 AVF control with more damping in the isolator

As discussed in Chapter 3, the response at the IRs is determined by the damping in the
isolator. It can be seen from equation (3.10) that the higher the damping in the isolator,
the lower the response at the IR frequencies. To achieve high damping in the isolator,
one can choose isolators made of highly damped material to increase the inherent
damping in the isolator [66], or use a polymeric material, which has a high loss factor,
in parallel with the original isolator [63]. For metal isolators, e.g. helical springs, which
have low damping, the latter approach offers a practical solution. In contrast with
previous work on applying polymeric damping materials in attenuating the IR peaks in
the isolator, in this thesis AVF control is applied together with an increase in the isolator
damping to further suppress the system fundamental resonance peaks. As discussed in
Chapter 5, high damping in the isolator is also beneficial to the stability of the AVF

control system.

Figures 6.1 and 6.2 depict respectively the transmissibility of the base excited system

(shown in Figure 4.1) and the amplitude ratio of the system on a flexible base (shown in

Figure 4.15), both of which contain a relatively highly damped isolator 7, =0.05

under AVF control. The transmissibility and amplitude ratio of the corresponding
passive systems with low damping and high damping in the isolator are also plotted for
comparison. It can be seen that the system resonance peaks in Figures 6.1 and 6.2 are
attenuated, which are mainly due to AVF control. The IR peaks in the distributed
parameter isolator are also effectively suppressed by the additional damping introduced

in the isolator.
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However, the above discussion only shows the idealized situation for introducing more
damping in the isolator. In practice, the high damping materials applied in parallel with
the original isolator increase not only the overall damping in the isolator, but also the
overall static stiffness of the isolator [14]. As a consequence, although the IR peaks can
be suppressed, the system resonances in Figures 6.1 and 6.2 will move to higher
frequencies. Therefore, the velocity response of the equipment above the system
resonances will be amplified compared to that for the original systems. Furthermore, as
discussed in Chapter 1, there are other limitations in the use of high damping materials
to suppress the IRs, since typically these materials exhibit poor returnability and great
creep, which degrade the load capacity of isolators and the performance of the system

[57, 67].

6.3 Absolute velocity plus acceleration feedback control

It was concluded in Chapter 4 that the commonly used control strategies in active
vibration isolation cannot attenuate the IR peaks in the distributed parameter isolator,
because the mass dominates the equipment response at relatively high frequencies.
Therefore, it is possible that acceleration feedback control may suppress the IR peaks at
high frequencies, since it is equivalent to adding a mass to the system as discussed in
Chapter 4. However, the system resonance peaks at low frequencies cannot be
attenuated by acceleration feedback control. On the contrary, AVF control was shown to
be effective in attenuating the equipment response at the system resonances at low
frequencies, while it is not effective in suppressing the IR peaks. Therefore, in this
section these two control strategies are combined together to form a new control method,
namely absolute velocity plus acceleration feedback control. An investigation is
conducted into whether this improves the isolation performance of systems containing a

distributed parameter isolator over a broad range of frequencies
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6.3.1 System undergoing base motion

Figure 6.3 shows a base excited vibration isolation system containing a distributed
parameter isolator under absolute velocity plus acceleration feedback control. In
practice the acceleration response of the equipment is measured, and then the velocity
response of the equipment is obtained by the integration of the acceleration. The control

force f, is proportional to the sum of the velocity and the acceleration of the

equipment and is then fed back to the system through a controller with a constant gain

—h , so that

f, =—h(u,+Ai,) (6.1)

where ii, = jou, is the acceleration of the equipment and A is a real coefficient, so

that
f,= —h(1+ ja)/i)ue (6.2)

As shown in equation (6.2), if the velocity of the equipment is assumed to be constant
with frequency, the control force increases with frequency. In practice, the control force
has to be constrained at high frequencies. Therefore, a first order low-pass filter is
introduced into the system shown in Figure 6.3 to limit the control signal. The

frequency response function for a first order low-pass filter can be written as [74]

1

- 1+ oo, (63)

LPF

where @, is the corner frequency of the filter. The control force is thus given by

1+ jowd

—nu 6.4
1+ja)/a)f ¢ ©4)

fo= _h(1+ ja)/l)HLPFue =—h

6.3.1.1 Control performance

The dynamic behaviour of the active vibration isolation system containing a distributed
parameter isolator undergoing base motion has been presented in Chapter 4. The
velocity of the equipment is given by equation (4.2). Substituting equation (6.4) into
(4.2), the transmissibility of the system under absolute velocity plus acceleration

feedback control is given by
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r= _2211+ A ©.5)
Z,+7Z, +h+
I+joo,

If the equipment is modelled as a mass, i.e.Z, = jom,, the transmissibility can be

written in non-dimensional form as

1

cos{ﬁ(l—jgjﬂ}—\/}z(g—ﬂ{amJ(l—jZJSin{\/ﬁ(l—jZJQ}

(6.6)

T =

where A =A@, is a real coefficient and I',=w,/w, is a ratio of the corner

frequency of the low-pass filter to the system fundamental resonance frequency.

The transmissibility for the base excited system containing a distributed parameter
isolator under absolute velocity plus acceleration feedback control is plotted in Figure
6.4, where the transmissibility of the passive system is also plotted for comparison. It
can be seen that both the system fundamental resonance peak and the IR peaks in the
distributed parameter isolator are reduced due to the control. The troughs in the
transmissibility are also reduced. Characteristic lines are plotted and identified for the

transmissibility under control. These characteristic lines are presented as follows:

e  Maximum line

Similar to the derivation for the maximum line for the passive vibration isolation system
containing a distributed parameter isolator discussed in Chapter 3, assuming light

damping in the isolator, ie. 7,<<1 and considering the response when
sin(\/z. Q) =0, the maximum line of the transmissibility under absolute velocity plus

acceleration feedback control is given by

2 6.7)

7

max

77,9(9—1242 L+ jAQ ]

1+jQT,

Within the frequency range 1/4’<<Q <<T',, the maximum line can be reduced to

2
7, = nQ* (1+24¢,)

(6.8)
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This equation is a function of not only the loss factor 77, and frequency ratio €, but

also the active damping ratio {, and coefficient A . It is clear that the absolute

velocity plus acceleration feedback control is effective in suppressing the IR peaks

depending on its parameters. The greater the values of active damping ratio ¢, and

coefficient A , the better the control performance.

*  Minimum line
Similar to the derivation for the minimum line for the passive vibration isolation system

containing a distributed parameter isolator discussed in Chapter 3, assuming light
damping in the isolator, i.e. 77, <<1, also considering sin(J y7a Qe) ==1, the minimum

line of the transmissibility under absolute velocity plus acceleration feedback control

can be approximated by

~ i , (6.9)
Q-2 1+ j4Q
Iy o,

T

min

Within frequency range 1/4"<<Q<<T,, the minimum line can be reduced to

ir VA (6.10)

T Q(1+24¢,)

It can be seen that the minima of the transmissibility can also be reduced by the absolute

velocity plus acceleration feedback control. The greater the values of active damping

ratio ¢, and coefficient A, the better the control performance.

6.3.1.2 Stability analysis

The plant response from the active control force to the equipment velocity for the base

excited system under absolute velocity plus acceleration feedback control shown in

Figure 6.3 is given by equation (4.9). The open-loop frequency response of such a

control system is thus given by

_ I 1+ jod
Z,+7Z,, 1+ joo,

G(jo)H (jo) (6.11)
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The phase shift of the plant response 1/(Z, +Z,,) is between -90° and 90°. The phase

shift of the controller is 0° at very low frequencies, increasing to 90° when

1/A<< << @, , and reducing to 0° again at frequencies much higher than the corner

frequency of the low-pass filter @, . Therefore, the overall phase shift of the open-loop

frequency response is between -90° and 180°. The absolute velocity plus acceleration
feedback control system containing a distributed parameter isolator undergoing base
motion is thus unconditionally stable based on the Nyquist stability criterion. However,
such a control system is not completely passive, and thus not robustly stable as an AVF

control system containing a distributed parameter isolator undergoing base motion.

6.3.2 System on a flexible base

Figure 6.5 shows an absolute velocity plus acceleration feedback control system

consisting of an isolated equipment mounted on a base structure that possesses its own

dynamics under excitation of the primary force f .

6.3.2.1 Control performance

The dynamics of the active vibration isolation system containing a distributed parameter
isolator on a flexible base has been presented in Chapter 4. The velocity of the
equipment is given by equation (4.52). Substituting equation (6.4) into (4.52), the
velocity of the equipment under absolute velocity plus acceleration feedback control is
given by

Y

© eb
i, = ol . )f (6.12)
ee eb

1+h
1+ jo o,

If the equipment is modelled as a mass, i.e. Z, = jowm,, and the base structure is

modelled as a mass on a complex spring, i.e. Z, = jom, + K Z / j@, the amplitude ratio

of the system under absolute velocity plus acceleration feedback control is given by
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u

e

u, 1
5, {(H,—m)_(uéj?;}w{ﬁ(l—j’;jg}
{(H i)+ (1+ j, —2}\/9_( 'njsin{\/z(l—jzijg}.
©ta [ F (-2
77

1+jQ/T, \/1;(1 i j(1+]77;, ?zjsm(\/;(l_jzijgj

(6.13)

+ j2;¢l

The amplitude ratio for this system is plotted in Figure 6.6, where the amplitude ratio of
the corresponding passive system is also plotted for comparison. It can be seen that the
system resonance peaks and the IR peaks in the distributed parameter isolator are all
reduced due to absolute velocity plus acceleration feedback control. The troughs in the

amplitude ratio are also reduced.

6.3.2.2 Stability analysis

The plant response from the active control force to the equipment velocity for the
system on a flexible base under absolute velocity plus acceleration feedback control
shown in Figure 6.5 is given by equation (4.56). The open-loop frequency response of
such a control system is thus given by

1+ jod

G(jw)H(ja))th

(v,.-v,) (6.14)

The frequency response of the absolute velocity plus acceleration feedback controller is
shown in Figure 6.7. The phase shift of the frequency response of the controller is 0° at

both low frequencies and high frequencies, while it has a phase lead upto 90° when
l/A<w<w, . It can be seen that the feedback controller is similar to a lead
compensator that is used in Chapter 5 to stabilize the AVF control system. But the
difference between this feedback controller and the lead compensator is that the

magnitude of the frequency response of the controller is greater than unity and increases

with frequency. This is why the absolute velocity plus acceleration feedback control can

175



Chapter 6: Control of Internal Resonances

attenuate the IRs in the distributed parameter isolator at high frequencies. Based on the
analysis for the lead compensator in Chapter 5, the parameters of the absolute velocity
plus acceleration feedback controller can be tuned so that it can both attenuate the IR

peaks in the isolator and stabilize the control system.

As discussed in the last section, the greater the values of the coefficient A, the better
the control performance. However, due to the stability issues for the system on a
flexible base, the coefficient A should be carefully chosen to provide sufficient phase
lead compensation at the unstable frequency, but not to be a danger to stability at other
frequencies. Also, the first order low-pass filter needs to be carefully designed so that
the controller can both constrain the control signal and provide sufficient phase lead
compensation at the unstable frequency. The general rules to determine these parameters

are discussed below.

The phase of the controller has two contributions: the phase lead due to the frequency

response function 1+ jwd and the phase lag due to the first order low-pass filter. As
shown in Figure 6.7, f,=1/274 (inHz) is the corner frequency of the frequency

response function 1+ jwd, and f, =, /2z (inHz) is the corner frequency of the
first order low-pass filter. To stabilize the control system, the unstable frequency should
lie between f, and f, so that the compensation for the phase lag which causes the

instability can take place. For the transfer function 1+ jwA, if a least phase lead 6, is

required at the unstable frequency ®,, i.e. arctan(Aw@,)>6,, the coefficient A is

determined by
tan 6,
> —_—
wL

A (6.15)

For the first order low-pass filter, if a maximum phase lag 6, (6, <0) is required at

0)

), , 1.e. arctan(—a)L o, ) >0, , the corner frequency of the low-pass filter @, can be
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determined by
o,
W, >—= 6.16
77 —tan o, (010

The required overall phase lead compensation of the controller at the unstable frequency

can thus be obtained by choosing appropriate phase lead 6, and phase lag 6,. As a

result, the controller parameters A and @, can be determined from equations (6.15)

and (6.16).

There is another limitation on the selection of the coefficient A. Because the phase
shift of the plant response G is approximately 90° at frequencies lower than the
equipment resonance and around the base resonance, the phase lead due to the controller

should be minimized at those frequencies, so that the open-loop frequency response of

the control system can maintain its phase margin. As a consequence, the frequency f,
cannot be too small, i.e. A cannot be too large. If at a low frequency @, the phase

shift due to the controller is required to be less than 6, ,i.e. arctan(A@,,)<8,, . the

low *

coefficient A is given by

< fan o, (6.17)
()]

low

A

Figure 6.8 shows the open-loop frequency response of the vibration isolation system on
a flexible base under absolute velocity plus acceleration feedback control. The plant
response of the system is also plotted to show the stability of such a system under AVF
control. It can be seen that the instability that occurs under AVF control at the first IR in
the isolator is stabilized by the phase lead due to the controller. The phase shift of the
open-loop frequency response is thus limited between -180° and 180°, so that the system
on a flexible base under absolute velocity plus acceleration feedback control is
unconditionally stable. However, the phase shifts around the system resonance

frequencies are also increased due to the control, which are now greater than 90°.
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Therefore, the controller should be carefully designed to allow the phase lead
compensation to occur around the instability frequency, but it should minimize the

phase shifts at low frequencies.

6.3.3 Limitations in practice

For both a base excited system and a system on a flexible base under absolute velocity
plus acceleration feedback control, to achieve good control performance, the frequency
response of the controller cannot be constrained too much by the low-pass filter. So the
magnitude of the open-loop frequency response of the control system does not roll off
rapidly and remains large over a broad range of frequencies. This is not a problem for
the simplified models used in the above stability analysis, in which the resonance
behaviour in the equipment and the base is neglected since the equipment is modelled as
a rigid mass, and the base is simplified as a rigid mass on a complex spring. Also only
the longitudinal vibration of the system is considered. Any rotational or lateral modes
are ignored. However, in practice unmodelled dynamics of the system that are not
considered in this analysis may be a danger to the stability of the control system, and

thus result in the problem of spillover.

6.4 AVF control on a fraction of the isolator length

As discussed in Chapter 4, AVF control applied to a base excited vibration isolation
system containing a distributed parameter isolator is equivalent to a skyhook damper
with a constant damping coefficient, which is effectively in parallel with the equipment
mass. The equipment response is thus determined by the total impedance of the
equipment mass, isolator and the skyhook damper, and the transmitted force from the
base excitation to the equipment and the isolator. Since the impedance of the equipment
mass increases with frequency, it dominates the response at high frequencies. Also, the
transmitted force to the equipment and the isolator is solely determined by the transfer
impedance of the isolator. Therefore, AVF control cannot attenuate the IR peaks in the
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isolator which occur at relatively high frequencies. To overcome the disadvantages of
AVF control applied in parallel to the entire isolator, AVF control can be applied in
parallel with the lower part of the isolator to change the dynamics of the active vibration
isolator system. As a consequence, the equivalent skyhook damper due to AVF control
is no longer in parallel with the equipment mass. Also the transmitted force from the

base excitation to the equipment will be altered.

In the following sections, the active vibration isolation system containing a distributed

parameter isolator under AVF control on a fraction of the isolator length is investigated.

6.4.1 System undergoing base motion

Figure 6.9 shows a base excited vibration isolation system containing a distributed
parameter isolator under AVF control on a fraction of the isolator length. The isolator is
modelled as a finite elastic rod. Different from AVF control discussed in the previous
chapters, the active control force f,, which is in parallel with the lower part of the
isolator, acts between the base and a point along the isolator. The length of the upper
and the lower part of the isolator are respectively denoted as x and y, and thus
x+y=L, which is the total length of the isolator. The control force is generated by
feeding back the velocity u, of the point along the isolator where the active control
force applied (defined as point r in the following discussion), through a controller with a
constant feedback gain —h. The control force is thus given by

£, =—hi, (6.18)

6.4.1.1 Control performance

The dynamics of the active vibration isolation system shown in Figure 6.9 can be

described by
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e = _QxZ = Zeue
_Qx1+fa:|:Z _L.tr:|:|:lel Zx12:||:dr:|
L QXZ ’ _L.te Zle Zx22 l/.te (6 19 b d)
.1¥Ya,0,C
Qx1 — _Qy2 s UsLy

le _7 |:ub_: Zyll Zylz {I’.‘bj|
Qyz ' ur_ Zﬂl ZyZZ ur

where O,, Q,, O,,, O, and Q, are internal forces; u, and u, are respectively

the velocities of the equipment and the base; Z, and Z, are respectively the

impedance matrices for the upper and lower part of the isolator, and are given by:

Z=_ZX“ Zm}_ SJE p cos K, x) -1

’ Zo Zoy - ]'Sin(k,*x) -1 COS(k,*x)
) . (6.20a,b)
7 - Z, Zm}: g /E*p cos(k, y) -1
“1Zw Zyn jsin(kl*y) -1 cos(k,*y)
Combining equations (6.18) and (6.19a-d) gives
(Ze + Zx22 )ue = _szll/.tr
(6.21a,b)

(an + Zy22 + h)ur =—Z 1, — Zy21ub

From equations (6.21a, b), the transmissibility of the system under AVF control on a

fraction of the isolator length can be written as

y Z . Z
7 =" = 217yl (6.22)
u, (Ze+Zx22)(lel+Zy22+h)_Z zZ

x12x21

It should be noted that, if the control gain h=0, i.e. without control, this equation is

equivalent to the transmissibility of the passive system given by equation (3.6).

If the equipment is modelled as a mass, i.e. Z, = jom,, the transmissibility can be

written in non-dimensional form as
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1

co{\/i(l—j’;fjg}9(1—]";‘)9{ 1 (1—]";‘)9}.
Ji,

cos x\/z(l_jmjg
el (l,-f,g;émwg}

A 2

Ja
(6.23)

It can be seen that the first two parts in the denominator are the same as that in the
non-dimensional transmissibility for the passive system given in equation (3.7). AVF
control on a fraction of the isolator length adds an active damping term in the
denominator, but leaves the numerator unchanged. Therefore, this feedback control is

equivalent to a skyhook damper.

Figure 6.10 shows the transmissibility of the active vibration isolation system under

AVF control on a fraction of the isolator length when g =0.1, 7, =0.01. For

comparison, the transmissibility for such a system without control and under AVF
control on the entire isolator length is also plotted. It can be seen that AVF control on a
fraction of the isolator length can attenuate not only the system fundamental resonance
peak, but also the IR peaks in the distributed parameter isolator. However, for the same
control gain applied, its control performance around the system fundamental resonance
frequency is worse than that under AVF control on the entire isolator length.

Furthermore, it should be noted that its control performance around the system
fundamental resonance frequency is worse when y=2L/z than that when y=3L/4.
Also when y=2L/z, some IR peaks (e.g. the third and sixth IR peaks) shown in
Figure 6.10 are reduced much less than the other IR peaks, although some reduction are
achieved. However, when y=3L/4, some IR peaks (e.g. the fourth and eighth IR

peaks) shown in Figure 6.10 are almost not reduced at all.

The mechanical analogue of the base excited system under AVF control on a fraction of
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the isolator length is shown in Figure 6.11. It should be noted that, different from a
skyhook damper acting between the inertial ground and the equipment for AVF control
discussed in Chapter 4, AVF control on a fraction of the isolator length is equivalent to a
skyhook damper acting between the inertial ground and the point r along the isolator
where the active control force is applied. Thus this equivalent skyhook damper damps
the response at the point r, but not directly the equipment response. It thus explains why
the control performance of AVF control on a fraction of the isolator length around the
system fundamental resonance frequency is worse than that for AVF control on the
entire isolator length shown in Figure 6.10. Also in the mechanical analogue, it can be
seen that the closer the point r to the equipment, i.e. the closer the attachment point of
the equivalent skyhook damper to the equipment, the more the equipment response can
be attenuated around the system fundamental resonance frequency. It can thus be
concluded that the longer the fraction of the isolator length controlled by AVF control,
i.e. the longer the length y, the better the control performance around the system

fundamental resonance frequency.

The above discussion gives the design guideline for modifying the system response
around the fundamental resonance frequency. In the following discussion, the control
performance of the system at IRs and at high frequencies is investigated. Equations

(6.21a, b) can be rearranged as

(Ze +Zx22)l;le —Z o, = fg

‘ (6.24a,b)
(lel+Z +h) —Z U, — y21ub Js2

where the blocked force f,, is the force transmitted from the excitation at point r to an
infinitely rigid fixed point by the attachment point between the equipment and the
isolator, and the blocked force f,, is the force transmitted from the equipment and

base excitation to an infinitely rigid fixed point by the point r. Based on equations
(6.24a, b), the Thevenin equivalent systems for the active vibration isolation system
under AVF control on a fraction of the isolator length is shown in Figure 6.12. It can be

seen that the equivalent skyhook damper due to the control is in parallel with the point

182



Chapter 6: Control of Internal Resonances

impedances Z,, and Z ,, to determine the velocity u, .

Similar to the description in Chapter 3, when sin(kx)=0, ie. o=, =(L/x)®,
where @) is the IR frequencies for the entire isolator given in Appendix B, the maxima

of the point and transfer impedances of the upper part of the isolator are given by

L2K, L L2K L
Z,=Zp=— - =—Z,Z,=2,=%t— n =—2Z, (6.25a,b)
XN x x N x

Similarly when sin(k,y)=0, ie. @®=o,=(L/y)®, , the maxima of the point and

transfer impedances of the lower part of the isolator are given by

L2K, L L2K, L
= — L :—le, Zy12 = Zy21 = i— L :—221 (626a,b)

ynow 'y ynow 'y

Z, = Zy22

y

It can be seen that these impedances decrease with frequency. So at relatively high

Z, ,tZ

frequencies and at frequencies where w# @, and @w# @,, one has h>\Z  +Z ,,|,

so that the velocity u, is reduced due to AVF control on a fraction of the isolator

length. Thus the equipment response is attenuated. While at frequencies where |Z | or

Zm‘ is much greater than h, there are a few different situations that affect the control

performance, and this is discussed below.

Z,,+Z

When o=, #®,, although |Z },22‘ = >>h and thus the control effort is

lel

negligible, the transfer impedance Z,, is small so that the transmitted force from the
base excitation is small. As a consequence, the velocity #, and thus the equipment

Z,,+Z

X1l )'22‘ =

response are small. Similarly, when @=o, # @, , although Zm‘ >>h
and thus the control effort is negligible, the transfer impedance Z ,, is small so that the

transmitted force to the equipment and the isolator f,, is small. So the equipment

response is small.
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Z,tZ

However, when @=®, =®,, one has |Z, +Z ,,

‘>>h so that the control effort is

negligible. Also the transfer impedances |ZX21| and ‘Zﬂl‘ are large. The

transmissibility of the system can thus be reduced to that of the passive system given by

equation (3.6). So if at a frequency where @ =@, = @, = @), the IR peaks in the isolator
at these frequencies will not be attenuated by AVF control on a fraction of the isolator

length. To avoid this situation, the ratios L/x and L/y should be irrational numbers.

So both @, and @, will not equal @, although they may approach it. From another

point of view, if the ratios L/ x and L/ y are rational numbers, the point » where the
active force is applied will be a nodal point at some frequencies depending on the values
of L/x and L/y.Because there is no movement at a nodal point, no signal will be fed
back through the controller to generate the control force. Therefore, to avoid the nodal

points along the rod, an irrational number for the ratios L/x and L/y is required.

The above discussion explains the reduction at IRs in Figure 6.10. When L/y is a
rational number 4/3, the condition @=®, = ®, =@, occurs at the fourth IR peak and

every other fourth IR peaks at higher frequencies, i.e. the control point r is a nodal point

of the fourth mode and every other subsequent fourth modes in the isolator, so that these

peaks are almost not reduced at all. When L/y is an irrational number 7/2, because

7 =3, the condition w=®, =®, =@, approximately occurs at the third and the sixth

IR peaks, i.e. the control point r is close to the nodal point in the third and sixth mode in

the isolator, so that these peaks are reduced much less than the other IR peaks.

From the above discussion, the control performance at both the fundamental resonance
frequency and at IRs is related to the length y under AVF control. To evaluate the
overall control performance of the system under AVF control on a fraction of the

isolator length, its mean square response can be compared to that for AVF control on
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the entire isolator length. The mean square velocity of the equipment is given by
equation (2.46). Substituting the corresponding transmissibility into equation (2.46), the
change in the mean square velocity for the system under AVF control on a fraction of
the isolator length compared to that under AVF control on the entire isolator length can
be calculated. Figure 6.13 depicts such a change in mean square velocity within the

range 0.1<Q <1000 when gz =0.1, 7, =0.01, with respect to the length ratio y/L
and active damping ratio ¢,. It can be seen that when the length y under AVF control is

very short, the control performance of AVF control on a fraction of the isolator length is
much worse than that under AVF control on the entire isolator length at high active
damping ratios. With an increase in the controlled length y, AVF control on a fraction of
the isolator length provides increasing reduction in the mean square velocity.
Furthermore, for the given parameters, the change in the mean square velocity is
slightly less than O dB at high length ratios y/L, i.e. the overall control performance
under AVF control on a fraction of the isolator length is better than that under AVF

control on the entire isolator length.

To further improve the control performance around the system fundamental resonance
frequency, AVF control on a fraction of the isolator length can be combined with AVF
on the entire isolator length, as shown in Figure 6.14(a). The dynamics for the control

system are given by
(Ze + Zx22 ) ue = fal - Zleur

. . . (6.27a,b)
(an + Zy22 ) U, = fop =24, — Zy21uh
where the active control forces are given by
Ja ==l f,=~hu, (6.28a,b)

Substituting equations (6.28a, b) into (6.27a, b), the transmissibility of the system is

given by

T = Zx21Zy21 (6.29)
(Ze + szz + hl ) (an + ZyZZ + hz ) - lezzle

It can be seen in the mechanical analogue shown in Figure 6.14(b) that AVF control on
the entire isolator length is equivalent to a skyhook damper acting between the inertial

ground and the equipment, and AVF control on a fraction of the isolator length is
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equivalent to a skyhook damper acting between the inertial ground and the point r. So
the isolation performance can be improved at both the system fundamental resonance

frequency and IR frequencies. The transmissibility of the system is shown in Figure

6.15 when £ =0.1, 7,=001, y=2L/z and {, ={,,=03, where the active

damping ratios are defined as Calzh/&/KLme and {azzhz/&/KLme . For

comparison, such a system without control, under AVF control on a fraction of the
isolator length alone and under AVF control on the entire isolator length alone are also
plotted. It can be seen that the control performance at IR frequencies of the system
under AVF control on both the entire and a fraction of the isolator length is as good as
that under AVF control on a fraction of the isolator length. Also its control performance
around the system fundamental resonance frequency is even better than that for AVF

control on the entire isolator length.
6.4.1.2 Stability analysis

For the base excited system under AVF control on a fraction of the isolator length,
because the base motion is prescribed which is not affected by the active control force,
the actuator and the sensor are thus collocated, so that such a control system is

unconditionally stable.

6.4.2 System on a flexible base

Figure 6.16 shows a vibration isolation system containing a distributed parameter
isolator on a flexible base under AVF control on a fraction of the isolator length. The

isolator is modelled as a finite elastic rod. The active control force f,, which is in

parallel with the lower part of the isolator, reacts between the base and a point along the

isolator. The control force is also given by equation (6.18).

6.4.2.1 Control performance

The dynamics of the active vibration isolation system shown in Figure 6.16 can be
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described by equations (6.19a-d) and
Zu,=f+0,=f-0, (6.30)

From these equations, the velocity of the equipment can be written as

i, =Y, f,+Y, (f=f)=(Y, =Y,) fo +Y,f (6.31)

where the transfer mobility Y, was defined in Chapter 3 and Y, is the transfer

mobility from the force applied to the point r to the equipment velocity, #, when the

system is coupled. The velocity at the point r where the active control force is applied

can be written as

ur:Yrrﬁt—i_Yrb(f_fa):(Yrr_Yrb)fa+Yrbf (632’)
where Y is the point mobility from the force applied to the point r to the velocity, u

when the system is coupled, and Y, is the transfer mobility from the force applied to

T

the base to the velocity, #, when the system is coupled. These mobilities are given by

_ ~Z (Zb +Z“,11)(Z +Zy22)

x11
“ ZeZbZteZth _lezzxmzylzzym
~Z ,\Z,+Z, VAR VA
= >12( 22)( 11 )22) (6.33a.b.c)
ZeZbZreth - leZZ)chZylZZyZI
_ 1- leZYer - ZyZIth
. lel + Zy22
where
(Ze + szz ) (lel + ZyZZ ) - leZZy21
Zte =
Ze
(6.34a,b)
_ (Zh + Zyll ) (an + Zy22 ) - ZylZZyZI
=
1 Zh
A detailed derivation can be found in Appendix C.
Substituting equation (6.18) into (6.32) gives
1
f (6.35)

(Y, -v,)

Substituting equations (6.18) and (6.35) into (6.31), the velocity of the equipment is
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given by
. Yeb + h(YebYrr _Yerth)

T (Y, -,

f (6.36)

If the base is modelled as a mass m, on a complex spring, i.e. K, = K, (1+ j1,), the

amplitude ratio of the system is given by

e —ﬁﬂ_ﬁyeb-i_h(yebyrr_YY)

e er”rb

S, jof jo 1+h(Y,-Y,)

(6.37)

Figure 6.17 shows the amplitude ratio of system on a flexible base under AVF control

on a fraction of the isolator length when x =0.1, 1 =0.5 g, =0.1, n,=n,=0.01

and y=2L/x . For comparison, the amplitude ratio for such a system without control

and under AVF control on the entire isolator length is also plotted. It can be seen that
AVF control on a fraction of the isolator length can effectively attenuate the system
resonance peaks and the IR peaks in the distributed parameter isolator. However, for the
same control gain applied, its control performance around the equipment resonance
frequency is worse than that under AVF control on the entire isolator. The reason is the

same as that for the base excited system discussed in the last section. Because the ratio
L/y is also set to be 7/2, the third and sixth IR peaks (corresponding to the fifth and

eighth peak shown in Figure 6.15) are again reduced much less than other IR peaks.

To further improve the control performance of the system on a flexible base around the
equipment resonance frequency, AVF control on a fraction of the isolator length can also
be combined with AVF on the entire isolator length, as shown in Figure 6.18. The

velocity of the equipment can be written as

ue:Yeefal+Yerf‘aZ+Yeb(f_f‘al_faZ):(Yee_Yeb)f‘al—i_(Yer_Yeb)ﬁ12+Yebf(6'38)

where the input mobility Y, was defined in Chapter 4. The velocity at the point r can

be written as

I/.l', :Ye1rf‘al+Yrrfa2+Yrb(f_fal _faZ) :(Yer _Yrb)fal +(Yrr _Yrb)f‘az +Yrbf (639)

Combining equations (6.28), (6.38) and (6.39), the velocity of the equipment is given by

188



Chapter 6: Control of Internal Resonances

Yeb+h2 (YebYrr_Y Y )

er”rb

T len (Y, Y, )+ (Y, -,)

f (6.40)

If the base is modelled as a mass m, on a complex spring, i.e. K, = K,(1+ j1,), the

amplitude ratio of the system is given by

u__&&_& Yeh+h2(YebYrr_Yerth)

(4

s, jof jol+h(Y,-Y,)+h(Y,-Y,)

st

(6.41)

The amplitude ratio of the system is shown in Figure 6.19 when u =0.1, x4, =0.5

&, =01, n.=1,=001, y=2L/x and ¢, = ,=0.3. For comparison, such a

system without control, under AVF control on a fraction of the isolator length alone and
under AVF control on the entire isolator length alone are also plotted. It can be seen that
the system under AVF control on both the entire and a fraction of the isolator length has
the best performance at the equipment resonance frequencies compared to other control
methods. Also its control performance at IR frequencies is as good as that under AVF

control on a fraction of the isolator length.
6.4.2.2 Stability analysis

Because the feedback controller is a constant gain, the plant response of the control
system can be used to analyze the stability. From equation (6.32), the plant response

from the active control force to the velocity of the control point r can be written as

G=—1 =Y,-7Y, (6.42)
fa j:O

Although the input mobility Y has a phase shift between -90° and 90° and is thus only
in the right half in the complex plane, the transfer mobility Y, could be in either left

or right half in the complex plane. So it is a potential threat to stability of the control
system. Therefore, the system containing a distributed parameter isolator on a flexible
base under AVF control on a fraction of the isolator length is only conditionally stable.
Similar to the discussion for AVF control in Chapter 4, at a resonance frequency, in a
lightly damped system, when only one mode dominates the response, the plant response

given by equation (6.42) can be written as
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(J)
7P
#7(-45)
G=Y -Y, = - (6.43)
20,\JKM,

where ¢ and @ are the j™ modal amplitudes evaluated at the control point r

and base respectively. Based on the Nyquist criterion, for stability, one requires at a

resonant frequency
@)
b
o <1 (6.44)

for all j, i.e. ‘qﬁ,fj )‘ < ‘qﬁff )‘ if the modal amplitudes of the system evaluated at the control

point r and base have the same phase. According to the definition of modal amplitudes
¢ and @, this stability condition means that if the displacement of the base is

greater than the displacement of the control point r and these two displacements are in

h

phase at the j" natural frequency, then the system may become unstable.

Figures 6.20 shows the Nyquist plot of the plant response for a potentially unstable
system on a flexible base under AVF control on a fraction of the isolator length. It can
be seen that there is a loop on the left half of the complex plane crossing the negative
real axis, which causes the system to be potentially unstable at high control gains. This

potential instability occurs at the base resonance, at which the phase shift results in the

small amplification in the magnitude of the base resonance peak shown in Figure 6.17.

At a resonance frequency where @ /¢'” >1, i.e. the system has a potential to become

unstable, with constant controller gain A, the open-loop response of the control system is

given by

@)
DNk ‘
o195

24, KM,

G(jo)H (jo)=hG=h (6.45)

To guarantee stability, the quantity in equation (6.45) must be greater than -1, so that the

maximum gain h___ that can be applied to the control system is thus given by
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h e KM, (6.46)
max () )
0T
4] {¢1]

It should be noted that the stability condition proposed in equation (6.44) has the same

form and physical meaning as that for AVF control on the entire isolator length
concluded in Chapter 4. Therefore, such a system under AVF control on a fraction of the
isolator length can also be stabilized by the approaches proposed in Chapter 5, e.g.

adding more damping in the isolator, adding more mass to the base, etc.

6.4.3 Limitations in practice

Although AVF control on a fraction of the isolator length performs well in attenuating
the IR peaks in the isolator for both base excited system and system on a flexible base,
there are difficulties in implementing it in practice. As discussed in Chapter 5 in the
experimental work, to realize AVF control on the entire isolator length, the actuators can
be installed on top of the equipment reacting between the equipment and the base
through corresponding stingers to generate active control forces, which are in parallel
with the entire isolator. If such arrangements applied on a fraction of the isolator, i.e.
actuators are attached on top of the control point r reacting between the control point
and the base through stingers to generate active control forces, the mass of the actuators
will change the dynamics at the control point . The masses of actuators which perform
as intermediate masses as discussed in Chapter 1 will dominate the response at the
control point. Although better performance is achieved at high frequencies, the penalty
is that the isolation performance at low frequencies is degraded [59]. The advantages of
using AVF control on a fraction of the isolator length are thus lost. Therefore, how to
generate an active control force in parallel with a fraction of the isolator without
changing the dynamics at the control point is crucial in implementing AVF control on a

fraction of the isolator length.
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6.5 Conclusions

Three approaches which can attenuate the IRs in the distributed parameter isolator have
been investigated theoretically in this chapter. These control methods demonstrate their
own advantages and disadvantages in attenuating the IR peaks and improving the

isolation performance over a broad range of frequencies.

Based on the equation for the maximum line of the IR peaks derived in Chapter 3, AVF
control with more damping in the isolator has been investigated and shown to be a
simple and straightforward method to attenuate the IR peaks. However, in practice due
to the increase in the static stiffness of the isolator caused by the high damping materials
applied in parallel with the isolator, the isolation performance at frequencies greater
than the original system fundamental resonance frequency or the equipment resonance

frequency will be degraded.

Based on the knowledge that the mass dominates the response of the equipment at high
frequencies, acceleration feedback control, which electronically introduces extra mass
into the system, has been investigated in combination with AVF control. It has been
shown that the absolute velocity plus acceleration feedback control is effective in
suppressing the IR peaks. Furthermore, for the system on a flexible base, the controller
can also be carefully designed to make the control system unconditionally stable.
However, to achieve good control performance at IRs, the magnitude of the open-loop
frequency response of the control system remains large over a broad range of
frequencies. Thus, the unmodelled dynamics of the system might be a danger to stability

in practice.

Finally, AVF control on a fraction of the isolator length has been analyzed. It has been
shown that the IR peaks can be effectively attenuated by AVF control on the lower part
of the isolator. It is concluded that the longer the fraction of the isolator length

controlled by AVF control, the better the control performance around the system
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fundamental resonance frequency or the equipment resonance frequency. Also the ratio
of the controlled length to the entire length of the isolator should be an irrational
number in order to suppress all the IR peaks. However, the difficulty in implementing
this control method in practice is how to generate an active control force in parallel with

a fraction of the isolator without changing the dynamics at the control point.

To validate the theoretical analysis discussed in this chapter for the strategies which can

attenuate the IRs in the distributed parameter isolator, the experiments are designed and

conducted in the next chapter.
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Figure 6.1 Transmissibility of the base excited system under AVF control when the ratio

of the mass of the isolator to the mass of the equipment p, =0.1. The solid line is for
n.=0.01 (loss factor in the isolator), {, =0 (active damping ratio), the dashed line
is for 1,=0.05, ¢, =0 and the dotted line is for 17, =0.05, ¢ =1.

40

T T
<——Equipment resonance peak

20

<—Base resoannce peak

[Amplitude ratiol (dB re 1m/Ns)
2

-80

T e oo
Frequency ratio Q

Figure 6.2 Amplitude ratio of the system on a flexible base under AVF control when
U, =0.1, the ratio of the mass of the base to the mass of the equipment p, =0.5, the
ratio of the static stiffness of the isolator to the stiffness of the base p, =0.1 and the
loss factor in the base 1, =0.01. The solid line is for 1, =0.01, {, =0, the dashed
line is for m,=0.05, ¢, =0 and the dotted line is for 1,=0.05, ¢ =1.
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Figure 6.3 Schematic diagram of a base excited system containing a distributed

parameter isolator under absolute velocity plus acceleration feedback control, where

u,, u, and u, are velocity and acceleration of the equipment and velocity of the base

e’

respectively, Z, is the input impedance of the equipment, Z, 1is the impedance matrix

e

of the isolator, h is the constant feedback gain, f, is the active control force, A is a

real coefficient, and H, .. is the frequency response function of the low-pass filter.
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Figure 6.4 Transmissibility of a base excited system under absolute velocity plus
acceleration feedback control when . =0.1, 1 =0.01, { =1, the ratio of the
corner frequency of the low-pass filter to the system fundamental resonance frequency
I', =200 and the coefficient A =1 (dashed line). The solid line is for the

transmissibility of the corresponding passive system. The dashed-dotted line and the
dotted line respectively pass through the IR peaks (equation (6.8)) and the troughs

(equation (6.10)) in the transmissibility under control.
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Figure 6.5 Schematic diagram of an active vibration isolation system containing a

distributed parameter isolator on a flexible base under absolute velocity plus

acceleration feedback control, where Z, is the input impedance of the base and f'is the

primary force.
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Figure 6.6 Amplitude ratio of the systems on a flexible base under absolute velocity

plus acceleration feedback control when . =0.1, u,=0.5, u, =0.1, n, =n, =0.01,
¢,=1, T', =200 and A =1 (dashed line). The solid line is for the amplitude ratio of

the corresponding passive system.
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Figure 6.7 Frequency response of the absolute velocity plus acceleration feedback

controller when T, =50, A =1 and h=1, where f,=1/27A, and f, =, |27 is the

corner frequency of the first order low-pass filter.
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Figure 6.8 Open-loop frequency responses (solid line) and plant response (dashed line)

of the absolute velocity plus acceleration feedback control system on a flexible base

when p,=0.1, 4,=0.5, i, =0.1, 17,=1,=001, T', =50, A =1 and h=1.
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Figure 6.9 (a) schematic diagram and (b) free body diagram of a base excited system

containing a distributed parameter isolator under AVF control on a fraction of the
isolator length, where u, is the velocity at the control point r; Q,, Q,, O, 0O,
and Q, are internal forces; x and y are respectively the length of the upper and lower
part of the isolator; and Z, and Z, are respectively the impedance matrices for the

upper and lower part of the isolator.
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Figure 6.10 Transmissibility of the base excited system containing a distributed
parameter isolator under AVF control on a fraction of the isolator length when
4=01, n=001, ¢ =03 and y=2L/mr (dashed line) or y=3L/4
(dashed-dotted line). The solid line and the dotted line are respectively for such a system

without control and under AVF control on the entire isolator length when ¢, =0.3.
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Figure 6.11 Mechanical analogue of the active vibration isolation system under AVF

control on a fraction of the isolator length shown in Figure 6.9.
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Figure 6.12 Mechanical representations of the Thevenin equivalent systems for the
system under AVF control on a fraction of the isolator length shown in Figure 6.9, (a) at
the attachment point between the equipment and the isolator, and (b) at the control point
r, where Z , and Z_,, are respectively the point and transfer impedances of the
upper part of the isolator; Z, and Z,, are respectively the point and transfer

impedances of the lower part of the isolator; and f,, and f,, are the blocked forces.
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Change in mean square velocity (dB)

Figure 6.13 Normalized change in mean square velocity for the system under AVF
control on a fraction of the isolator length compared to that under AVF control on the

entire isolator length within 0.1<Q <1000 when u, =0.1 and 1, =0.01.

(a) . (b)

Figure 6.14 (a) schematic diagram and (b) its mechanical analogue of a base excited

system containing a distributed parameter isolator under both AVF control on a

fraction of the isolator length and AVF control on the entire isolator length, where b,

and h, are constant feedback control gains, and f,, and f,, are control forces.
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Figure 6.15 Transmissibility of the base excited system containing a distributed
parameter isolator under both AVF control on a fraction of the isolator length and AVF
on the entire isolator length when ., =0.1, 17,=0.01, y=2L/7 and active damping
ratios §,=¢ ,,=0.3 (dashed line). The solid line, dotted line and dashed-dotted line
are respectively for such a system without control, under AVF control on a fraction of

the isolator length, and under AVF control on the entire isolator length when ¢, =0.3.
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Figure 6.16 (a) schematic diagram and (b) free body diagram of a system containing a
distributed parameter isolator on a flexible base under AVF control on a fraction of the

isolator length, where Q, is an internal force.

201



Chapter 6: Control of Internal Resonances

N
o

|Amplitude ratiol (dB re 1m/Ns)
[\®)
=

%
S

_108.1 ' I 1) | 100
Frequency ratio Q

Figure 6.17 Amplitude ratio of the system containing a distributed parameter isolator
on a flexible base under AVF control on a fraction of the isolator length when u, =0.1,
4,=05 =01, n.=1,=0.01, y=2L/7 and {,=0 (solid line) or {, =0.3
(dashed line). The dotted line is for such a system under AVF control on the entire

isolator when {,=0.3.

tr

Figure 6.18 Schematic diagram of a system containing a distributed parameter isolator
on a flexible base under both AVF control on a fraction of the isolator length and AVF

control on the entire isolator length.
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Figure 6.19 Amplitude ratio of the system containing a distributed parameter isolator
on a flexible base under both AVF control on a fraction of the isolator length and AVF
on the entire isolator length when u,=0.1, @, =05 pu =01, n=n =001,
y=2L/mr and {,={,=03 (dashed line). The solid line, dotted line and
dashed-dotted line are respectively for such a system without control, under AVF control
on a fraction of the isolator length and under AVF control on the entire isolator length

when { =0.3.
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Figure 6.20 Nyquist plot of the plant response of the system on a flexible base under
AVF control on a fraction of the isolator length when u,=0.1, @, =05 u, =0.1,

n.=n,=001 and y=2L/x.
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Control of Internal Resonances: Experimental
Validation

7.1 Introduction

In Chapter 6, a few strategies which can attenuate the IR peaks in the distributed
parameter isolator have been investigated theoretically. The equation derived for the
maximum response of the equipment at the IRs shows that the damping in the isolator
governs the IR peaks. Therefore, AVF control with more damping in the isolator was
investigated and shown to be a simple and straightforward method to attenuate the IR
peaks. Also, it was concluded in Chapter 5 that more damping in the isolator helps
stabilize the AVF control system. Based on the knowledge that the mass dominates the
equipment response at high frequencies, acceleration feedback control, which
electronically introduces extra mass into the system, has been investigated in
combination with AVF control. It has been shown that absolute velocity plus
acceleration feedback control is effective in suppressing both system resonance peaks at
low frequencies and IR peaks at high frequencies. Furthermore, for the system on a
flexible base, an absolute velocity plus acceleration feedback controller can be carefully

designed to stabilize the control system at IR frequencies.

204



Chapter 7: Control of Internal Resonances: Experimental Validation

The aim of this chapter is to validate experimentally the strategies which can attenuate
the IRs in the distributed parameter isolator. First, AVF control with more damping in
the isolator is investigated experimentally. A highly damped non-elastomeric material,
steel wool, is introduced in parallel with the original isolator under AVF control. It is
followed by the experimental validation of the absolute velocity plus acceleration

feedback control.

7.2 Experimental validation for AVF control with additional

damping in the isolator

As discussed in Chapter 6, to achieve high damping in the isolator, one can either
choose isolators made of highly damped material to increase the inherent damping in
the isolator, or use highly damped material in parallel with the original isolator. For
metal isolators, e.g. helical springs that have inherently low damping, a highly damped
material is required to offer a practical solution. In this section, fine steel wool (Oakey)
that has a high loss factor due to internal friction is used to perform as a highly damped

material in parallel with the isolator to increase the overall damping.

To realize AVF control with more damping in the isolator, the four-spring active
vibration isolation system used in Chapter 5 to validate AVF control was modified. As
shown in Figure 7.1, the difference between the modified system and the original one is
that the fine steel wool was inserted inside each helical spring surrounding the
corresponding stinger. Therefore, the steel wool is effectively in parallel with each

spring, and thus the overall damping in the isolator is increased.

7.2.1 Stability analysis

To measure the open-loop frequency response of the AVF control system with additional

damping in the isolator, the four actuators fixed on top of the equipment plate were
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driven with white noise from the dynamic signal analyser through a power amplifier,
while the primary vibrator was connected but inactive. The equipment response was
monitored by five accelerometers located along two central lines of the equipment plate,
so that the average vertical equipment response could be analyzed, and the effect of any
rigid body equipment plate rotation reduced. The acceleration signals from the
equipment plate were then passed through charge amplifiers. These include an
integrator and high and low-pass filter modules, so that the velocity response of the
equipment can be obtained. The high-pass filter cut-off frequency was set to 1 Hz to
avoid DC signal overflow, and the low-pass filter cut-off frequency was set to 10 kHz.
The open-loop frequency response of the AVF control system with additional damping
in the isolator on the modified system was then measured and averaged using the input

to the power amplifier and the integrated output from the charge amplifiers.

The measured open-loop frequency response of the modified four-spring active
vibration isolation system with steel wool in the springs is shown in Figure 7.2. The
open-loop frequency response of the original system without steel wool is also plotted
for comparison. The data below 3 Hz had low coherence due to the low instrumentation
sensitivity, so they are not presented. It can be seen that the system resonance peaks are
attenuated due to the extra damping introduced by the steel wool. Also, the fist IR peak
in the helical springs around 404 Hz is suppressed and has almost disappeared due the
increased damping in the isolator. Furthermore, the phase lag at the first IR was
constrained to be in the range of -238° to -100°, so that the potential instability at the
first IR is eliminated by the extra damping introduced into the isolator. This result
validates the conclusion in Chapter 5 that adding more damping in the isolator can
stabilize the AVF control system. The system resonances of the open-loop frequency
response with additional damping in the isolator also move to higher frequencies
compared to those for the original system. This phenomenon has been predicted in the
theoretical analysis in Chapter 6. The reason is that the steel wool applied in parallel
with the helical springs increases not only the damping, but also the static stiffness of

the isolator, so that the system resonance frequencies are increased. Also it should be
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noted that the rotational mode around 289 Hz, the flexural mode in the equipment plate
around 327 Hz, and those modes above 500 Hz are affected much less by the change of
the damping and static stiffness of the isolator. Therefore, the phase lag due to the
flexural mode in the equipment plate around 327 Hz still occurs, which may destabilize
the control system at high control gains. Furthermore, in this experiment, it has been
found that the AVF control system with additional damping in the isolator first becomes
unstable at very low frequencies, due to the phase advances in the charge amplifiers and

power amplifiers with increased feedback control gain.

Figure 7.3 depicts the Nyquist plot of the open-loop frequency response of the AVF
control system with additional damping in the isolator corresponding to the results and
frequency range shown in Figure 7.2. The only loop in the left half of the complex plane
crossing the negative real axis is caused by the flexural mode in the equipment plate at
327 Hz. The potential instability for the original system at the first IR in the helical

springs at 404 Hz has been eliminated by the extra damping introduced into the isolator.

7.2.2 Control performance

A single-channel AVF control on the modified active vibration isolation system with
additional damping in the isolator was implemented on each of the four springs. The
primary vibrator was driven with white noise. The velocity responses of the equipment
and base were obtained using accelerometers through charge amplifiers and then passed
to the signal analyzer. The velocity response at the centre of the equipment plate was fed
back to four actuators through a power amplifier to generate the control forces, which
were identical for each actuator. Each feedback channel had thus an equal, constant

feedback gain.

Figure 7.4 shows the transmissibility for the modified active vibration isolation system
with additional damping in the isolator with various control gains, where the

transmissibility for the original active vibration isolation system without control is also
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plotted for comparison. Figure 7.5 shows the velocity response of the equipment plate
per unit voltage to the power amplifier, which drove the primary vibrator, for the
modified active vibration isolation system with additional damping in the isolator under
various control gains. For comparison, the velocity response of the equipment plate per
unit voltage to the power amplifier for the original active vibration isolation system
without control is also plotted. Responses less than 3 Hz are again excluded from the
plots. It can be seen that, for the modified system without control, the system resonance
peaks in Figures 7.4 and 7.5 are attenuated due to the extra damping introduced by the
steel wool compared to those in the original system. Furthermore, the fist IR peak in the
helical springs around 404 Hz is well suppressed and has almost disappeared due the
increased damping in the isolator. With an increase in the AVF control gain, the system
resonance peaks in Figures 7.4 and 7.5 are further reduced, while the first IR peak is
affected much less. These results validate the conclusion in Chapter 6 that AVF control
with more damping in the isolator is effective in attenuating both the system resonance
peaks at low frequencies and the IR peaks in the isolator at high frequencies. However,
it should be noted that the system resonances in Figures 7.4 and 7.5 for the modified
system move to higher frequencies compared to those for the original system, because
the static stiffness of the isolator is increased due to the steel wool introduced. It should
also be noted that there is amplification at the flexural mode in the equipment plate

around 327 Hz with an increase in the control gain.

7.2.3 Summary

The theoretical analysis on AVF control with more damping in the isolator has been
validated by the experiment on the modified four-spring active vibration isolation
system with the steel wool in parallel with helical springs. It has been shown that, as
predicted in the theoretical analysis, AVF control with more damping in the isolator is
effective in attenuating both the system resonance peaks at low frequencies and the IR
peaks in the isolator at high frequencies. Also, the high damping introduced into the

isolator can stabilize the AVF control system at the IR frequencies. However, the

208



Chapter 7: Control of Internal Resonances: Experimental Validation

increase of the static stiffness of the isolator due to the high damping material
introduced pushes the system resonances to higher frequencies. Also, the instability
occurred at the flexural mode in the equipment plate, which is not considered in the

theoretical analysis, cannot be eliminated by the high damping introduced.

7.3 Experimental validation for absolute velocity plus

acceleration feedback control

Based on the conclusion in Chapter 4 that the mass dominates the equipment response
at relatively high frequencies, acceleration feedback control is used to suppress the IR
peaks at high frequencies, since it is equivalent to adding a mass to the system. On the
other hand, AVF control was shown to be effective in attenuating the equipment
response at the system resonances at low frequencies. Therefore, absolute velocity plus
acceleration feedback control was investigated in Chapter 6 to improve the isolation
performance of systems containing a distributed parameter isolator over a broad range
of frequencies. In this section, absolute velocity plus acceleration feedback control is

investigated experimentally on the four-spring active vibration isolation rig.

7.3.1 Experimental setup

To realize the absolute velocity plus acceleration feedback, the acceleration response at
the centre of the equipment plate for the four-spring active vibration isolation system
was measured by accelerometers. Then the corresponding velocity response was
obtained through a charge amplifier. By setting the gain in the charge amplifier, the ratio
between the acceleration and the velocity (i.e. A defined in equation (6.1)) can be
adjusted. A summing amplifier was designed to sum up the obtained absolute velocity
and acceleration signal. Its physical configuration is shown in Figure 7.6. A first order
low-pass filter was also included in this summing amplifier to constrain the control

signal at high frequencies. The corner frequency of the low-pass filter is adjustable
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between 1 kHz and 5 kHz. The summing amplifier is powered by a stabilised power

supply (Farnell instruments LTD LT30-1).

Figure 7.7 shows a photograph of the experimental setup and the schematic diagram of
the signal path with details of one actuator and the corresponding spring underneath.
The primary vibrator was driven with white noise from a dynamic signal analyzer
through a power amplifier. The base response was measured using an accelerometer at
the centre of the base plate and then passed through a charge amplifier to obtain the
velocity response. The equipment response was monitored by two accelerometers at the
centre of the equipment plate. One acceleration signal from the equipment plate was
passed through a charge amplifier to obtain the velocity response. The other one was
also passed through a charge amplifier to introduce a gain. Then the velocity and
acceleration responses were input into the summing amplifier. Its output was then fed
back to the actuators via a power amplifier with gain control to generate the active

control force.

7.3.2 Stability analysis

To measure the open-loop frequency response, the four actuators fixed on top of the
equipment plate were driven with the same white noise from the dynamic signal
analyzer through a power amplifier, while the primary vibrator was connected but
inactive. The open-loop frequency response for the absolute velocity plus acceleration
feedback control system was measured using the input to the power amplifier and the

output from the summing amplifier.

The measured open-loop frequency response of the absolute velocity plus acceleration
feedback control system is shown in Figure 7.8. For comparison, the open-loop
frequency response of the AVF control system is also plotted. The data below 3 Hz had
low coherence due to the low instrumentation sensitivity, so again they are not presented.

It can be seen that the phase lag that occurs at the first IR in the helical springs around
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404 Hz and the flexural mode in the equipment plate around 327 Hz was compensated
by the phase lead due to the absolute velocity plus acceleration feedback controller. The
phase shifts at these two frequencies are now greater than -180°, so that the phase shift
of the open-loop frequency response in the frequency range shown in Figure 7.8 is
between -180° and 180°. Therefore, the experimental result validates the conclusion in
Chapter 6 that a carefully designed absolute velocity plus acceleration feedback
controller can help stabilize the control system at IR frequencies without compromising

the stability at other frequencies.

Figure 7.9 depicts the Nyquist plot of the open-loop frequency response of the absolute
velocity plus acceleration feedback control system corresponding to the results and
frequency range shown in Figure 7.8. It can be seen that, due to the phase lead of the
controller, the Nyquist plot of the open-loop frequency response of the absolute velocity
plus acceleration feedback control system is shifted clockwise compared to that of AVF
control system. Therefore, there is no loop in the left half of complex plane which

crosses the negative real axis shown in Figure 7.9.

However, it should be noted in Figure 7.8 that, above the equipment resonance
frequency, the magnitude of open-loop frequency response of the absolute velocity plus
acceleration feedback control system is increased with frequency due to the acceleration
feedback incorporated. This amplification may cause stability problems at high
frequencies before the open-loop frequency response can be effectively limited by the
first order low-pass filter in the summing amplifier. Figure 7.10 depicts the open-loop
frequency of the absolute velocity plus acceleration feedback control system up to 5
kHz. It can be seen that, in this experiment, the instability does not first occur at low
frequencies due to the phase advances in the charge amplifiers and power amplifiers.
Instead, the control system first became unstable at a natural frequency of the system at
about 1160 Hz, corresponding to the Nyquist plot of the open-loop frequency response
crossing the negative real axis as shown in Figure 7.11. Furthermore, the magnitude of
the open-loop frequency response at 1160 Hz is very large, so that its Nyquist plot is

211



Chapter 7: Control of Internal Resonances: Experimental Validation

close to the unstable point (-1, 0j). Thus the absolute velocity plus acceleration feedback
control system became unstable at very low control gains. As a consequence, very poor
control performance at system resonance peaks and IR peaks in the isolator can be
achieved in this experiment. Therefore, as discussed in Chapter 6, the unmodelled
dynamics in the system that are not considered in the theoretical analysis may be a

danger to stability of the control system, and thus limit the control performance.

7.4 Conclusions

AVF control with more damping in the isolator and absolute velocity plus acceleration
feedback control have been investigated experimentally in this chapter. Some theoretical

results given in Chapter 5 and Chapter 6 have been validated experimentally.

The AVF controller with additional damping in the isolator has been shown
experimentally to be a simple approach to attenuate the IR peaks in the isolator. Also,
the additional damping in the isolator is beneficial to the stability of the AVF control
system at IR frequencies. However, the system resonances move to higher frequencies
because the static stiffness of the isolator is increased due to the high damping material
introduced. Furthermore, the instability occurred in other modes, such as the flexural
mode in the equipment plate, which was not considered in the theoretical analysis,

cannot be eliminated by the high damping introduced in the isolator.

The absolute velocity plus acceleration feedback control was shown to be effective in
stabilizing the control system at the first IR frequency, as well as the flexural mode in
the equipment plate, due to the phase lead introduced by the controller. However, the
increase in the magnitude of the open-loop frequency response of the control system
due to the acceleration feedback incorporated causes stability problem at high
frequencies. In the experiment, the absolute velocity plus acceleration feedback control

system first became unstable at a natural frequency of the system at high frequencies,
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and very small control gains can be applied. Therefore the control performance is
limited. It shows that, although absolute velocity plus acceleration feedback control is
theoretically effective in attenuating both system resonance peaks at low frequencies
and IR peaks at high frequencies, in practice the unmodelled dynamics at high

frequencies may destabilize the control system and thus limit the control performance.
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Figure 7.1 Photograph of the modified four-spring active vibration isolation system

with steel wool inside the helical springs.
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Figure 7.2 Measured open-loop frequency response of the AVF control system with

(solid line) or without (dashed line) additional damping in the isolator.
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Figure 7.3 Measured Nyquist plot of the open-loop frequency response of the AVF

control system with additional damping in the isolator.
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Figure 7.4 Measured transmissibility of the original active vibration isolation system
without control (dashed-dotted line), and the modified active vibration isolation system
with additional damping in the isolator under various feedback gains: without control

(solid line), low control gain (dashed line) and high control gain (dotted line).
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Figure 7.5 Measured velocity response of the equipment plate per unit voltage to the
power amplifier of the original active vibration isolation system without control
(dashed-dotted line), and the modified active vibration isolation system with additional
damping in the isolator under various feedback gains: without control (solid line), low

control gain (dashed line) and high control gain (dotted line).
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Figure 7.7 (a) photograph and (b) schematic diagram of one corner of the four-spring

active vibration isolation system for absolute velocity plus acceleration feedback

control, where u,, u,, i, and i, are velocities and accelerations of the equipment

and the base respectively, and A is the real coefficient.
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acceleration feedback control system when A =0.01 and the corner frequency of the

first order low-pass filter is 5 kHz (solid line), and AVF control system (dashed line).
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frequency of the first order low-pass filter is 5 kHz.
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Figure 7.10 Measured open-loop frequency response of the absolute velocity plus
acceleration feedback control system up to 5 kHz when A=0.01 and the corner

[frequency of the first order low-pass filter is 5 kHz (solid line).
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Figure 7.11 Measured Nyquist plot of the open-loop frequency response of the absolute
velocity plus acceleration feedback control system up to 5 kHz when A =0.01 and the

corner frequency of the first order low-pass filter is 5 kHz (solid line).
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Chapter 8

Conclusions and Future Work

In this thesis, the active vibration isolation of a piece of delicate equipment mounted on
a distributed parameter isolator has been investigated. This chapter summarizes the

overall conclusions of the thesis and the recommendations for future work.

8.1 Conclusions

In traditional vibration isolation theory, vibration isolators are usually considered as
simple lumped parameter elements, e.g. elastic springs and viscous dampers, which are
assumed to be massless for the purpose of modelling. However, this simplification is
only valid at frequencies low enough that the wavelength in the isolator is long
compared to its dimension. At higher frequencies, realistic isolators, which have
distributed mass, stiffness and damping, do not behave like the idealized massless
models. The dynamics introduced by these distributed parameter elements inherent in
the isolator are associated with the internal resonance behaviour of the isolator. The
presence and significance of IRs in realistic isolators has been identified by many
researchers. The degradation in performance due to the IRs in vibration isolation is

especially important for lightly damped metallic isolators.

For a better description of the dynamic behaviour of vibration isolators, different
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idealised distributed parameter models under various types of deformation have been
investigated. These distributed parameter models for realistic isolator have been
categorized into two types for the purpose of dynamic analysis, namely a non-dispersive
isolator and a dispersive isolator. It has been shown that the isolation performance is
significantly affected by the IRs in both isolator types. Simple expressions which
describe the behaviour for distributed parameter isolators have been derived. The
parameters which control the isolator performance at various frequencies have been
clarified. The damping in the isolator, the ratio of the isolator mass (or polar moment of
inertia) to the equipment mass (or polar moment of inertia) and the system fundamental
resonance frequency are all crucial to the isolation performance. This offers basic
guidelines for the isolation design of a distributed parameter isolator, which directs
effective ways to improve the isolator performance. Also, it is concluded that, in general
for the examples considered, the IR effects in the non-dispersive isolator on the isolation
performance are more significant than that for the dispersive isolator. The experiment

on a helical spring has supported and validated the theoretical analysis and predictions.

Stability and control performance are two crucial issues in active vibration isolation
systems, since they may limit the application of active vibration isolation in practice.
The effects of IRs in the distributed parameter isolator on the stability and control
performance for commonly used control strategies in active vibration isolation have
been investigated. The AVF control system containing a distributed parameter isolator is
only conditionally stable if the base of the system has its own resonance behaviour. A
stability condition in terms of the modal amplitudes evaluated at the equipment and base
for such an AVF control system has been proposed. This stability condition means that if
the displacement of the base is greater than the displacement of the equipment and these
two displacements are in phase at a resonance frequency, the AVF control system may
become unstable. The RVF control system containing a distributed parameter isolator is
always unconditionally stable, which is its main advantage, although its control
performance is much worse than AVF control. The IFF control system containing a
distributed parameter isolator may become unstable even if the base is rigid while the

221



Chapter 8: Conclusions and Future Work

equipment is stiffness controlled. However, if the equipment is a rigid mass, IFF control
is equivalent to AVF control. The PPF and APF control systems containing a distributed
parameter isolator on a flexible base are also only conditionally stable. All these control
strategies can introduce active damping into the system, and are thus effective in
attenuating the system fundamental resonance peak. However, the IR peaks in the
distributed parameter isolator cannot be attenuated by these control strategies because
the equipment mass dominates the response at high frequencies. Based on this
knowledge, acceleration feedback control has been applied to suppress the IR peaks,
because it is equivalent to adding a mass electronically onto the equipment. However, as
a compromise, the system fundamental resonance peak moves to a lower frequency and
cannot be reduced by acceleration feedback control. The study for optimal control has
shown that, to minimise the mean square velocity of the equipment mass, AVF control is
the optimal solution. The theoretical results for the effects of IRs on the stability and
control performance of AVF control system have been validated experimentally on a

four-spring active vibration isolation system.

Different approaches to stabilize the AVF control system have been investigated
theoretically and experimentally based on the proposed stability condition. It has been
validated experimentally that adding more damping into the isolator, adding more mass
to the base, and introducing a lead compensator are all effective in stabilizing the AVF
control system. An additional SDOF mechanical mass-spring-damper system has also
been introduced to attach onto the base structure to effectively stabilize the AVF control

system.

Because the commonly used control strategies in active vibration isolation cannot
suppress the IRs in the distributed parameter isolator due to the dominant effect of the
equipment mass at high frequencies, various approaches have been investigated based
on the understanding of the characteristics of IRs in the distributed parameter isolator.
AVF control with more damping in the isolator has been investigated theoretically and

experimentally. It was shown to be a simple and straightforward method to attenuate the
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IR peaks. However, in practice due to the increase in the static stiffness of the isolator
caused by the high damping materials applied in parallel with the isolator, the isolation
performance at frequencies greater than the system fundamental resonance frequency is
degraded. Based on the knowledge that the mass dominates the response of the
equipment at high frequencies, absolute velocity plus acceleration feedback control has
been investigated, which was shown to be effective in suppressing the IR peaks.
Furthermore, for the system on a flexible base, the absolute velocity plus acceleration
feedback controller can be carefully designed to make the control system
unconditionally stable. However, such a controller is sensitive to the unmodelled
dynamics of the system at high frequencies, which may destabilize the control system
and has been validated experimentally. AVF control on a fraction of the isolator length
has also been investigated theoretically. It was shown that the IR peaks can be
effectively attenuated by AVF control on the lower part of the isolator. It has been
concluded that the longer the fraction of the isolator length controlled by AVF control,
the better the control performance around the system fundamental resonance frequency.
Also the ratio of the controlled length to the entire length of the isolator should be an
irrational number in order to suppress all of the IR peaks. Otherwise, at some
frequencies the control point in the isolator corresponds to a node in a particular mode.
However, the practical limitation in implementing this control method is to generate an
active control force in parallel with a fraction of the isolator without changing the

dynamics at the control point.

Overall, this thesis has presented an investigation on the active vibration isolation of a
piece of delicate equipment mounted on a distributed parameter isolator. The
characteristics of a distributed parameter isolator have been clarified. The effects of IRs
in the distributed parameter isolator on the control performance and stability of several
control strategies have been determined. Different novel strategies to attenuate IRs and
improve the isolation performance of the distributed parameter isolator over a broad

range of frequencies have been proposed.
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8.2 Recommendations for further work

The research presented in this thesis has improved the understanding of the

characteristics and effects of a distributed parameter isolator in isolating a piece of

delicate equipment. This study has also highlighted several issues discussed below

which are thought to be worth of further study:

1.

1il.

iv.

In this thesis, only one distributed parameter isolator is applied to isolate the
delicate equipment from the base disturbance in the longitudinal direction. Any
rotational effects are neglected. However, in practice, more isolators may be used in
active vibration isolation. Therefore, the active vibration isolation systems
containing two or more distributed parameter isolators should be investigated in
future work.

Although the equipment and base dynamics have been considered in the stability
analysis for active vibration isolation systems containing a distributed parameter
isolator, the equipment and base have been respectively simplified as a rigid mass
or a rigid mass on a complex spring in the analysis of control performance. In
future research, more complex combinations of the equipment and base dynamics
should be considered.

In the experimental results, the unmodelled modes in the equipment and the base
have been demonstrated to be potential dangers to stability of the control system
other than the IRs in the isolator. Although several approaches proposed in the
thesis can eliminate these instabilities, further research could be carried out on this
issue.

In attenuating the IRs in the isolator, although absolute velocity plus acceleration
feedback control and AVF control on a fraction of the isolator length are effective
theoretically, there are limitations in implementing these control strategies in

practice. Further efforts should be expended on this issue.
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Appendix A

Impedance Matrices for Distributed Parameter

Isolators

As discussed in Chapter 3, various types of realistic isolator can be modelled as
different idealised configurations under various types of deformation. These distributed
parameter models for realistic isolator can be categorized into two types for the purpose
of dynamic analysis. One type can be modelled using a second order differential
equation, and is called a non-dispersive isolator, in which the wave speed is independent
of frequency. The other type can be modelled using a fourth or higher order differential
equation, and is called a dispersive isolator, in which the wave speed is dependent on
frequency. In this appendix, the impedance matrices for these two types of distributed

parameter isolator are derived.

A.1 Impedance matrix for a non-dispersive isolator

In Figure A.1, the distributed parameter isolator is modelled as a finite elastic rod under
longitudinal vibration (Figure A.1(a)) or torsional vibration (Figure A.1(b)), or a beam
under lateral vibration (Figure A.1(c)), respectively. The rod in Figure A.1(a, b) can be

categorized as a non-dispersive isolator. The beam in Figure A.l(c) can also be

categorized as a non-dispersive isolator if it is represented as a shear beam. Q, and O,

are the forces shown in Figure A.1(a) and (c), or moments shown in Figure A.1(b)
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Appendix A Impedance Matrices for Distributed Parameter Isolators

applied to each end of the isolator. u(0) and u(L) are displacements shown in Figure

A.1(a) and (c), or angles shown in Figure A.1(b) at each end of the isolators,

respectively.
()
(b)
u(0)
© u(L)
to
0
x=0 x=L

Figure A.1 Schematic diagrams of a distributed parameter isolator undergoing (a)
longitudinal, (b) torsional or (c) lateral vibration, where Q, and Q, are forces in (a)
and (c), or moment in (b) applied to each end of the isolator, respectively; and u(O)
and u (L) are displacements in (a) and (c), or angles in (b) at each end of the isolator,

respectively

The general equation of motion for the non-dispersive isolator is given by [19]

, 0%u(x,1) _ d’u(x,1)

“Tow  on (A-D

where ¢, 1is the complex wave speed in the distributed parameter isolator. For the finite
rod undergoing longitudinal vibration shown in Figure A.1(a), ¢, =c¢, = E*/ p , where
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E" is the complex Young’s modulus of elasticity and o is the density. For the finite
rod undergoing torsional vibration shown in Figure (b) and the shear beam undergoing

lateral vibration shown in Figure A.1(c), ¢, =c, =+/G"/p , where G" is the complex

shear modulus.

Equation (A.1) has a solution to harmonic excitation, consisting of negative going and
positive going waves, which can be written as [19]

u(x,t) =u(x)e’” = (Aejk*x +Be ™ ) e (A.2)

where A and B are complex wave amplitudes that depend on the boundary conditions,

and x is the distance along the isolator. For the finite rod undergoing longitudinal
vibration shown in Figure A.l1(a), k" =k =@/c, =+/p/E @ is the longitudinal

wavenumber. For the finite rod undergoing torsional vibration shown in Figure A.1(b)

and the shear beam undergoing lateral vibration shown in Figure A.1(c),

ES *

kK'=kl =afc. = p/G @ is the shear wavenumber. In the following discussion, the

complex harmonic (e’”) time dependence of the variables will be assumed but will be

omitted for clarity.

The impedance matrix for the non-dispersive isolator can be calculated using the wave

approach and the boundary conditions.

* Point impedance
The point impedances of a non-dispersive isolator at each end are equal due to
symmetry, and are defined as [84]

9

_ _9
i)

’ Z -
=)

(A.3a,b)

i(L)=0 1(0)=0

At x=0, due to Hooke’s law which gives the stress-strain relationship, one has [84,

86]
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u(0)_ o (A4)

ox K

where K=E'S is the longitudinal rigidity for the finite rod undergoing longitudinal
vibration shown in Figure A.1(a), in which § is the cross-sectional area of the isolator;

k=GJ, is the torsional rigidity for the finite rod undergoing torsional vibration shown
in Figure A.1(b) where J is the polar second moment of area of the isolator; or

k=G S is the shear rigidity for the shear beam undergoing lateral vibration shown in

Figure A.1(c).

At x=L, due to the definition of the point impedance given in equation (A.3a), one
has

u(L)= jou(L)=0 (A.5)
Substituting equation (A.2) into (A.4) and (A.5) and letting x=0 and x=L

respectively gives

4ol Q1 g 0 M (A.6ab)
KA K PR |

Substituting equations (A.6a, b) into (A.2) and letting x=0 gives

2jk°L _
u(0)=—2-<_—1_G tan (kL) (A7)
JKrM 41k

K

Differentiating equation (A.7) with respect to time and re-arranging gives

0, 0, Kk
Z,=—2-= = A8
" a(0) jou(0) jotan(k'L) (A8

* Transfer impedance
The transfer impedances of a non-dispersive isolator at each end are equal due to

reciprocity, and are defined as [84]

9

_ _9
“e ()

’ Z -
a0

(A.9a,b)

(0)=0 i(L)=0

237



Appendix A Impedance Matrices for Distributed Parameter Isolators

At x=0, equation (A.4) is still valid because of Hooke’s law. Also due to the

definition of the transfer impedance given by equation (A.9a), one has

i(0) = jeu (0) =0 (A.10)

Substituting (A.2) into (A.4) and (A.10) and letting x=0 gives

A=— Ql* , B= Ql* (A.11a,b)
2jk 2jk x

Substituting (A.11a, b) into (A.2) and letting x=L gives

u(L):szﬁ.(e_jk*L—eﬂ‘*L) Ql in(k"L) (A.12)

Differentiating equation (A.12) with respect to time and re-arranging gives

o _ o _ k'x

Z,= = = - A.13
? 4(L) jeou(L)  jwsin(k'L) a.13)
Therefore, the impedance matrix for the non-dispersive isolator is given by
A4 * cos(k'L -1
z{ 1 12}:—. kx (K) * (A.14)
Z,, Z,| josin(k L) -1 COS(k'L)

Substituting the appropriate kK and k into equation (A.14), the corresponding

impedance matrix for the finite rod undergoing longitudinal vibration shown in Figure
A.1(a) is given by

[Ep k'L -1
ZL{Z“ “} S cos(i 1) (A.15)

n Ly ]Sm(k/L) -1 Cos(k;L)

The corresponding impedance matrix for the finite rod undergoing torsional vibration
shown in Figure A.1(b) is given by

J, * cos k L) -1
ZT_[ ! ‘2} , (A.16)
Z, Z, Jjsin (ks L) -1 cos (k;L)

And the corresponding impedance matrix for the shear beam undergoing lateral

vibration shown in Figure A.1(c) is given by

G p [cos(kiL) -1
zs{ ! ”} : costie (A.17)
z

n Ly J Sln(ksL) -1 COS(k:L)
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A.2 Impedance matrix for a dispersive isolator

In Figure A.l1(c), the distributed parameter isolator can be represented by an
Euler-Bernoulli beam undergoing lateral vibration as an example of a dispersive isolator.
One end of the isolator is sliding under external excitation. It is assumed that the other
end of the isolator is excited by a force only (any moments at this end are assumed to be

negligible). The equation of motion for such a dispersive isolator is given by

4 2
0*u(x,1) _ps o u(x,t)

EI
d*x o°t

(A.18)

where [ is the second moment of area about the neutral axis of the isolator. Equation

(A.18) has a solution to harmonic excitation, which can be written as [19]
u(x,t) =u(x)e’ = (Acosh (k,x)+ Bsinh (k,x)+U cos (k,x)+V sin (ka))ej“"
(A.19)

where A, B, U and V are complex wave amplitudes that depend on the boundary

conditions and k, =3/ pS / E'INo is the bending wavenumber. In the following

discussion, the complex harmonic (e’™) time dependence of the variables will be

assumed but will be again omitted for clarity. The impedance matrix for the dispersive
isolator can be calculated by applying the boundary conditions.
* Point impedance Z;, at x=0

The point impedances Z,, at x=0 is defined by equation (A.3a). Due to the

boundary conditions, one has, at x=0,

du(0) )
——==0 (no rotation) (A.20)
ox
andat x=1L,
0°u(L) .
EI Y 0 (no bending moment) (A.21)
X
Also at x =0, since the shear force equals to the applied force, one has
9°u(0)
EI —=0, (A.22)
ox
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At x=L, due to the definition of the point impedance given by equation (A.3a),
equation (A.5) is valid. Substituting equation (A.19) into (A.5) and (A.20-A.22) gives

~ 0, sinh(k;L) 0 sin(k;L)

2E Ik, cosh(kZL) ’ 2E Ik, cos(kZL)

(A.23a,b)

Substituting equations (A.23a, b) into (A.19) and letting x=0 gives
) sin (k,L)cosh (k, L) —cos(k;L)sinh (k,L)
0= 35 cos(k,L)cosh (k; L)

(A.24)

Differentiating equation (A.24) with respect to time and re-arranging gives
, _ 0 _ 2E' Ik, cos(k,L)cosh(k,L)
"a(0) ja)(sin(k;L)cosh(kZL)—cos(kZL)sinh(kZL))

(A.25)

* Pointimpedance Z,, at x=L
The point impedance Z,, at x=L is defined by equation (A.3b). Due to the

boundary conditions, equations (A.20) and (A.21) still hold. Also at x=0, due to the
definition of the point impedance given by equation (A.3b), equation (A.10) holds. At
x = L, since the shear force equals to the applied force, one has

d’u(L)

EI
ox®

=-0, (A.26)

Substituting equation (A.19) into (A.10), (A.20), (A.21), (A.26) gives
0, sin(k,L)+sinh(k,L)
C2E'IK 1+cos(k,L)cosh (kL)

. . (A.27a,b)
0, cos(k,,L)+cosh(k,,L)
- 2E"Ik, 1+ cos(k,L)cosh (k, L)
Substituting equations (A.27a, b) into (A.19) and letting x=L gives
sin(k, L)cosh (k,L)—cos(k,L)sinh (k,L
u(L)=—2 (kL) (”*) (”*) (kL) (A.28)
E'lk, 1+cos(k,L)cosh (kL)
Differentiating equation (A.28) with respect to time and re-arranging gives
E'Ik,” (1+cos(k,L)cosh(k, L
222: Q2 _ b ( ( b ) ( b )) (A'29)

i(L) ja)(sin (k;L)cosh (k,L)—cos(k,L)sinh (k;L))
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* Transfer impedance

The transfer impedances of the dispersive isolator at each end are equal due to
reciprocity, and are defined by equation (A.9). Due to the boundary conditions,
equations (A.23) and (A.24) hold. At x=0, due to the definition of the transfer
impedance given by equation (A.9a), and since the shear force equals to the applied
force, equations (A.10) and (A.22) hold. Substituting equation (A.19) into (A.10) and
(A.22-A.24), one can derive

sin(k,L)+sinh(k, L
__yoo_g sinlkbjrsihlkl) 0 s
2E Ik, cos(kbL)+cosh(kbL) 2E Ik,
Substituting equations (A.30a, b) into (A.19) and letting x=L gives
0. sin(k,L)cosh(k,L)—cos(k,L)sinh(k,L)
u(L)=-—="- : - (A31)
E Ik, cos(kbL)+cosh(kbL)
Differentiating equation (A.31) with respect to time and re-arranging gives
E'Ik,’ (cos(k,L)+cosh(k, L
z,=-2 - (cos(kL) (k,2) (A.32)

(L) ja)(sin (k,L)cosh (k,L)—cos k,L)sinh (k;L))

Therefore, the impedance matrix for the dispersive isolator, if it is modelled as an

Euler-Bernoulli beam undergoing lateral vibration shown in Figure A.1(c), is given by

Z. Z
Z, = { 1 12} (A.33)
Zy Zy

where
2E'Ik,” cos (k,L)cosh (k, L)

7 =
! ja)(sin(k;L)cosh(kZL)—cos(k;L)sinh(k;L))

E'Ik,’ (1 k,L)cosh (k,L
Z, = — ( +Cof( Lo *( 1) * (A34a,b.c)
j(o(sin(kb'L)cosh(k;L)—cos(kb'L)sinh(kb'L))

E'Ik,} (cos(k;L)+cosh(kZL))
ja)(sin (k,L)cosh (k, L)—cos (k,L)sinh (kZL))
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Appendix B

Characteristics of a Helical Spring

In Chapter 3, an experiment on a helical spring was conducted to validate the
characteristics of a non-dispersive isolator, because a helical spring can be modelled
theoretically as an equivalent finite elastic rod under longitudinal vibration for
simplicity. In this appendix, some characteristics of a helical spring, such as static

stiffness and internal resonance frequencies, are derived.

B.1 Static stiffness

P
I i d , T
——— ' T
Y s s | H
At/ F
y Ll Ty =—
] [ S
F I I I I I
(a) (b) (c)

Figure B.1 (a) schematic diagram of a helical spring under longitudinal excitation, (b)
the cross section of the spring along its length and (c) the cross section of the spring

wire, where F is the longitudinal force [95].
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The derivation of the static stiffness of a helical spring has been presented in [95]. The
schematic diagram of a helical spring under longitudinal force F' and the cross section
along its length are respectively shown in Figures B.1 (a) and (b). The length, the
diameter, the cross-section area and the second moment of area of the wire of the helical
spring are denoted as L, d, S, and I, respectively. The mean diameter of the coil is

denoted as D. As shown in Figure B.1 (c), the cross section of the spring wire is thus

exposed to a shear force F and a torsion moment 7)., which is given by

_m

T, 5

(B.1)

The stress from the shear force and the torsion moment in the helical spring are

respectively given by

F T.d
T =—, T, = £ B.2a,b
R Y ( )
where
s=Zg4 =" 4 (B.3a.b)
4 64

Therefore, the energy generated by stress in the helical spring comes from two sources:

shear force and torsion.

*  Shear force strain energy

The shear force strain energy can be written as

1
U, :EVLTF £, -dvol (B.4)
where
T F
F= GG (B.5)

is the strain due to the shear force and G is the shear modulus. Substituting equations

(B.2a) and (B.5) into (B.4), the strain energy due to the shear force is given by

2 2
U _1F F dvole_”deS.dL:ﬂ
2G13s 2GS

: B.6
2l s Gs (B.6)

vol

* Torsion strain energy
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The torsion strain energy can be written as

U, = jf &, -dvol (B.7)
Vol
where
T Td
e =—"L= B.8
"TG4GI (B-8)

is the strain due to the torsion. Substituting equations (B.2b) and (B.8) into (B.7), the

strain energy due to the torsion is given by

2L

I,d T.d 24
=— d~d SdS = B.9
AR o ®9)
Combining equations (B.1), (B.6) and (B.9), the total strain energy is given by
2 212
U,,=U,+U, = §G§+IZ6I()}IL (B.10)

According to the Castigliano's theorem [96], the spring deflection due to longitudinal

excitation F is given by

2
AL:aUtoml :E_i_FD L (Bll)
oF GS 8GI

The length of the spring wire is given by
L=nzxD (B.12)

where 7 is the number of active coils of the spring. Substituting equations (B.3a, b) and

(B.12) into (B.11), the deflection can be written as

3 2 3
AL=8nD4F 1+ d : z8nD4F (B.13)
Gd 2D Gd
Therefore, the static stiffness of the helical spring is given by
4
s _F_od (B.14)
AL 8nD’

B.2 Internal resonances

To derive the expression for the internal resonance frequencies in a helical spring, an
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analogy between a rod and a spring is assumed. The analogy works because both
objects are continuously distributed elements, in that their stiffness and mass are spread

uniformly throughout their interiors.

From the impedance matrix derived in Appendix A, it can be seen that the undamped

natural frequencies in a fixed-fixed finite elastic rod occur when sin(k,L)=0.

Therefore, the internal resonances in the finite rod occur when
k,L=nr (n=1,2,3...) (B.15)

Substituting the corresponding equation for the longitudinal wavenumber k, = @\/p/E

into (B.15), the internal resonance frequencies are thus given by:

w="" \/E —nz | XL (in radss) (B.16)
L\p m,

where K, =ES/L is the static stiffness of the rod and m, = pSL is the mass of the

rod.

By analogy, the internal resonance frequencies in a helical spring will have the same

W, =nrxw /K‘Y (in rad/s) B.17)
mS

where K is the static stiffness of the helical spring given in equation (B.14) and

form as

2 2
m = 7" pNDd

s y (B.18)

is the mass of the helical spring.
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Appendix C

Dynamic Analysis of a System Containing a

Distributed Parameter Isolator

In this appendix, the equations describing the dynamics of the vibration isolation
systems containing a distributed parameter isolator on a flexible base used in chapters 3,
4, and 6 are given. The input and transfer impedances of the system at the location of

the equipment, the base and a point along the isolator are derived.

C.1 Impedances at the equipment and the base

Figure C.1 shows a vibration isolation system containing a distributed parameter

isolator on a flexible base. The equipment, represented by its impedance Z, is

mounted on the base, represented by its impedance Z, , through a distributed parameter

isolator. The isolator is modelled as a finite elastic rod that has an impedance matrix

Z, . The external forces f, and f, are applied to the equipment and the base

respectively. #, and u, are the velocity of the equipment and the base, respectively.

The dynamic behaviour of such a system can be described by
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Figure C.1 Schematic diagram of a vibration isolation system containing a distributed
parameter isolator on a flexible base, where u, and u, are the velocity of the
equipment and the base, respectively; f, and f, are the external forces applied to
the equipment and the base, respectively, Q,, Q,, Q, and Q, are internal forces;
Z, and Z, are the input impedances of the equipment and the base, respectively; and

Z, is the impedance matrix for the isolator.

Zu,=[f,+0Q,=/f.-0,
{Qﬂ =7, {I’:tb:|:|:zll le:|{l’:tb:| (C.la,b,c)
0, u, Zy Zy]ll,
Zy, = f,+0Q, = f,— O
where Q,, O, O, and Q, are internal forces. From equations (C.la-c), the

velocities of the equipment and the base are found to be

HER A
u, Y, Y, |/,

where
y = Zb + le
“ (Ze + Zzz ) (Zb + le ) - lezzl
-7
Y, =Y, = 21 (C.3a,b,c)
’ ’ (Ze +Zzz)(Zh +le)_ZIZZZI
Z,+7Z,

Y
" (Ze +Zzz)(zb +le)_ZIZZZI
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For the system shown in Figure 3.8 in Chapter 3, there is no external force applied to

the equipment, i.e. f, =0, and the external force applied to the base is the primary
force f,i.e. f,=f.Based on the above discussion, the velocity of the equipment is

thus given by
u,=Y,f (C4)

For the system shown in Figure 4.16 in Chapter 4, the external force applied to the

equipment is the active control force f ,i.e. f, = f, , and the external force applied to

the base is the primary force f and the active control force —f , 1e. f,=f—7f, .

The velocity of the equipment is thus given by
l/'te:Yeefa+Yeh(f_fa):(Yee_Yeb)fa+Yehf (CS)

C.2 Impedances at a point along the isolator

Figure C.2 Schematic diagram of a vibration isolation system containing a distributed
parameter isolator on a flexible base, where f, is the external force applied at a point
along the isolator; Z  and Z, are the impedance matrix for the upper and lower
part of the isolator, respectively; Q,,, Q.,, O, and Q,, are internal forces; and u,

is the velocity of the point along the isolator.
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Figure C.2 shows a vibration isolation system containing a distributed parameter

isolator on a flexible base, in which an external force f, is applied at a point along the

isolator. The external forces f, and f, are still applied to the equipment and base

respectively. The isolator is also modelled as a finite elastic rod. The impedance matrix

of the upper part of the isolator above the point where the external force applied is

represented by Z  and that of the lower part is represented by Z,. u, is the velocity

of the point along the isolator where the force f, applied. The dynamics of such a

system can be described by

Zu,=f,+0,=f, -0,

_Qx1+fr}zz _ﬂr}:{zxu Zm}{ﬂr}

L QXZ ’ _L.le szl ZX22 L.te

0,=-0, (C.6a,b,c.d,e)
g 2l

_Qy2 Y u, | Z, Zy|lua,

Zy, = [, +0Q, = f, =0y

where O,, 0, O,,, Q,, @, and O, are internal forces. From equations (C.6a-e),

the velocities of the equipment, the base and the point along the isolator are given by

| (Y Y. Y, L

e er

i, |=\Y, ¥, v, |/ (C7)

r e

l/'tb Yhe Ybr th f b

where Y, Y,, Y,, and Y,, are the same as those given in equations (C.3a-c), and

ee? eb
_ _ _Zx21(Zb+Zyll)(lel+Zy22)
“ " ZeZbZtleb _lezzlezylzzyzl
—Z \Z +Z Z +7Z
th — th — y12 ( e x22)( x11 y22) (C,Sa,b,c)
ZeZbZteZth _lezzxmzylzzym
Y = 1_Zx12Yer _ZyZerb
" lel + ZyZZ
in which
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(Ze + szz ) (an + Zy22 ) - leZZyZI
Zte = Z

‘ (C.9a,b)
(Zb + Zyll ) (lel + Zy22 ) _ZyIZZyZl

Z,

7 =

th

For the system shown in Figure 6.16 in Chapter 6, there is no external force applied to

the equipment, i.e. f, =0. The external force applied to the point along the isolator is
the active control force f,,i.e. f = f, , and the external force applied to the base is

the primary force f and the active control force —f, ,ie. f, = f—f, . Based on the

above discussion, the velocities of the equipment and the point along the isolator are

thus given by

ue:Yc)rfa+Yc)h(f_fa) (Yer_Yeb)fa-i-Yehf

) (C.10a,b)
ur :Yrr-fa +Yrb(f_fa):(Yrr_Yrb)fa +Yrbf
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