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Active Vibration Isolation with a Distributed Parameter Isolator 

by Bo Yan 

 

Conventional vibration isolators are usually assumed to be massless for the purpose of 

modelling. This simplification tends to overestimate the isolator performance because of 

neglecting the internal resonances (IRs) due to the distributed mass effects in the isolator, 

which is especially important for lightly damped metallic isolators. Previous research on 

the problem of IRs is not particularly comprehensive, because it does not clarify the 

characteristics of the distributed parameter isolator. Furthermore, with the development 

of active vibration isolation, there is a need to investigate the effects of isolator IRs on 

the control performance and stability for commonly used control strategies. Effective 

ways to attenuate these effects are also required.  

 

This thesis concerns the active vibration isolation of a piece of delicate equipment 

mounted on a distributed parameter isolator, which is modelled as different idealised 

configurations under various types of deformation. The model is first developed to 

determine the effects of IRs on a single-degree-of-freedom system with a distributed 

parameter isolator. This analysis is then extended to include the resonance behaviour of 

the supporting structure. Simple expressions are derived which describe the behaviour 

of various types of distributed parameter isolator. The parameters which control the 

isolator performance at various frequencies are clarified theoretically and 

experimentally. The effects of IRs on control performance and stability of several 

control strategies are determined and compared. Absolute Velocity Feedback (AVF) 

control is shown to be the optimal solution to minimise the mean square velocity of the 

equipment mass supported by a distributed parameter isolator. A stability condition for 

an AVF control system containing a distributed parameter isolator is proposed. Based on 

this condition, different approaches to stabilize such a control system are presented. 

Experimental work is carried out to validate the theoretical results. 

 

Based on the improved knowledge of the characteristics of IRs in the distributed 

parameter isolator, different approaches which can suppress the IRs are proposed. AVF 

control with more damping in the isolator is demonstrated to be effective in attenuating 

the IRs theoretically and experimentally. Absolute velocity plus acceleration feedback 

control and AVF control on a fraction of the isolator length are also shown theoretically 

to be effective ways to attenuate the IRs and improve the isolation performance over a 

broad range of frequencies.
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1Q , 2Q    Internal force or moment applied to one end of the isolator 

R      Positive-definite real symmetric matrix 
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1R , 2R    Resistor 

S     Cross-sectional area 

b
S     Power spectral densities of the base disturbance 

e
S      Power spectral densities of the equipment response 

T     Transmissibility 

aT     Force transmissibility 

FT     Torsion moment 

1T      Coefficient of a lead compensator 

2T      Coefficient of a lag compensator 

massless
T    Modulus of the transmissibility for the massless isolator 

max
T    Maximum modulus of the transmissibility 

min
T    Minimum modulus of the transmissibility 

FU     Shear force strain energy 

TU     Torsion strain energy 

totalU    Total strain energy 

( )W jω    Response of the system 

bbY     Input mobility of the base when coupled to the rest of the system 

ebY    Transfer mobility from the force on the base to the equipment velocity 

  when the system is coupled 

'

ebY     Transfer mobility from the force on the base to the equipment velocity 

    when the stabilized system is coupled 

eeY     Input mobility of the equipment when coupled to the rest of the system 

'

eeY      Input mobility of the equipment when coupled to the rest of the   

    stabilized system 

erY     Transfer mobility from the force applied to the point r to the   

    equipment velocity when the system is coupled 

rrY     Point mobility from the force applied to the point r to the velocity at  

    point r when the system is coupled  

rbY     Transfer mobility from the force applied to the base to the velocity at 

    point r when the system is coupled 
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tsY     Mobility from the excitation point s to the response point t in a   

    multi-degree-of freedom system 

aZ     Total impedance of the additional SDOF system  

BZ    Impedance matrix of a finite sliding-free Euler-Bernoulli beam under 

  lateral vibration 

bZ     Impedance of the base  

eZ     Impedance of the equipment 

IZ     Impedance matrix of a distributed parameter isolator 

iZ      Impedance of the massless isolator 

iaZ      Impedance of the combined suspension of the additional SDOF system 

LZ     Impedance matrix of a finite rod under longitudinal vibration 

maZ     Impedance of the mass in the additional SDOF system 

SZ     Impedance matrix of a finite shear beam under lateral vibration 

TZ     Impedance matrix of a finite rod under torsional vibration 

xZ     Impedance matrix of the upper part of the isolator 

yZ     Impedance matrix of the lower part of the isolator 

tZ , teZ , tbZ  Total impedance 

11 22,x xZ Z   Point impedance of the upper part of the isolator 

12 21,x xZ Z   Transfer impedance of the upper part of the isolator 

11 22,y yZ Z   Point impedance of the lower part of the isolator 

12 21,y yZ Z   Transfer impedance of the lower part of the isolator 

11 22,  Z Z    Point impedance of the isolator 

12 21,  Z Z    Transfer impedance of the isolator 

b , d    Coefficient vector 

c     Damping coefficient 

ac      Damping coefficient of an additional SDOF system 

eqc     Equivalent damping coefficient  

ic      Complex wave speed in the distributed parameter isolator  

lc     Complex wave speed for the finite rod undergoing longitudinal   

    vibration 
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sc      Complex wave speed for the finite rod undergoing torsional vibration 

    and the shear beam undergoing lateral vibration  

d     Wire diameter of the coil of a helical spring 

ie     Input of an electrical circuit for a lead compensator 

oe     Output of an electrical circuit for a lead compensator 

f     Primary force applied to the base 

af , 1af , 2af  Active control force  

'

af     Force transmitted to the base through the additional SDOF system 

Bf , 1Bf , 2Bf  Blocked force 

bf     External force applied to the base 

ef      External force applied to the equipment 

Tf     Transmitted force 

1f     Corner frequency of the frequency response function 1 jωλ+  in Hz 

2f     Corner frequency of a first order low-pass filter in Hz 

h , 1h , 2h , g  Constant gain 

maxh    Maximum control gain 

*
k     Complex wavenumber 

ak     Stiffness of an additional SDOF system 

bk , *

bk    Bending wavenumber and complex bending wavenumber 

lk , *

lk    Longitudinal wavenumber and complex longitudinal wavenumber 

sk , *

sk    Shear wavenumber and complex shear wavenumber    

m     Mass 

am     Mass of an additional SDOF system 

bm    Mass of the base 

em     Mass of the equipment 

im     Mass of the isolator 

sm     Mass of a helical spring 

n     Number of active coils of a helical spring 

q     Weighting on the mean square velocity of the equipment mass 

r     Weighting on the mean square control effort applied 
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( )u L     Displacement or angle at one end of the isolator 

( )u L&     Velocity or angular velocity at one end of the isolator 

( , )u x t    Displacement or angle of an element along the isolator 

(0)u     Displacement or angle at one end of the isolator 

(0)u&     Velocity or angular velocity at one end of the isolator 

bu     Displacement of the base 

bu&     Velocity of the base 

eu     Displacement of the equipment  

e stu δ    Amplitude ratio 

( )e st massless
u δ  Modulus of the amplitude ratio for the massless isolator 

maxe stu δ   Maximum modulus of the amplitude ratio 

mine stu δ   Minimum modulus of the amplitude ratio 

eu&      Velocity of the equipment 

2

e
u&     Mean square velocity of the equipment 

eu&&     Acceleration of the equipment 

lu     Displacement of the middle mass of the mass-spring-mass-spring- 

    mass system   

lu&&     Acceleration of the middle mass of the mass-spring-mass-spring-  

    mass system   

ru&     Velocity of the point r along the isolator where the active force applied 

x , x&    State vector     

x     Length of the upper part of the isolator 

y     Disturbance vector     

y     Length of the lower part of the isolator 

Ω , aΩ , jΩ  Frequency ratio 

bΓ     Ratio of the base resonance frequency to the equipment resonance  

    frequency 

fΓ     Ratio of the corner frequency of the low-pass filter to the system  

    fundamental resonance frequency 

α      Coefficient of a lead compensator 
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β      Coefficient of a lag compensator 

stδ    Static deflection of the base 

Fε     Strain due to the shear force 

Tε     Strain due to the torsion 

φ , ϕ    Phase angle (degree) 

( )a

bφ     Modal amplitude evaluated at the base at the natural frequency of the 

    additional SDOF system 

( )j

bφ    thj  modal amplitude evaluated at the base 

( )a

eφ  Modal amplitude evaluated at the equipment at the natural frequency 

of the additional SDOF system 

( )j

eφ     thj  modal amplitude evaluated at the equipment 

( )j

rφ     thj  modal amplitude evaluated at the control point r 

( )j

sφ     thj  modal amplitude evaluated at the excitation point s; 

( )j

tφ     thj  modal amplitude evaluated at the response point t 

maxϕ    Maximum phase lead or phases lag 

γ , *γ    Real coefficient and complex coefficient 

gγ     Phase margin (degree) 

bη    Loss factor in the base 

iη     Loss factor in a distributed parameter isolator 

lη     Loss factor in a finite rod under longitudinal vibration 

sη     Loss factor in a finite rod under torsional vibration 

κ      Longitudinal, torsional or shear rigidity 

λ , 'λ    Real coefficient in the absolute velocity plus acceleration feedback  

    controller 

bµ    Ratio of the mass of the base to the mass of the equipment 

iµ     Ratio of the mass or the rotational inertia of the isolator to the mass or 

    the rotational inertia of the equipment 

kµ     Ratio of static stiffness of the isolator to the stiffness of the base 

sµ     Ratio of the mass of a helical spring to the mass of the equipment 

lowθ  , 1θ , 2θ  Phase angle (degree) 
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ρ     Density 

Fτ     Stress due to the shear force 

Tτ     Stress due to the torsion moment 

ω     Frequency (rad/s) 

aω     Natural frequency of the additional SDOF system 

bω    Natural frequency of the base 

c
ω     Frequency where the maximum phases lead or phase lag occurs 

eω     Natural frequency of the equipment 

fω     Corner frequency of the filter 

lω     Longitudinal internal resonance frequencies in a fixed-fixed finite rod 

lowω , 1ω , 2ω  Frequency (rad/s) 

jω     Natural frequency of the thj  mode 

sω     Longitudinal internal resonance frequencies in a helical spring 

xω     Longitudinal internal resonance frequencies in the upper part of the  

    isolator 

yω     Longitudinal internal resonance frequencies in the lower part of the  

    isolator 

ξ , ξ& , ξ&&   Response of the filter 

ζ      Viscous damping ratio 

aζ , 1aζ , 2aζ   Active damping ratio 

fζ     Damping ratio of the filter 

jζ      Modal damping ratio of the thj  mode  

sζ      Damping ratio of the additional SDOF system 
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Chapter 1 

 

Introduction 

 

 

1.1 Background 

Vibration is a physical phenomenon of oscillation of objects with respect to a 

equilibrium position [1]. Although in some cases vibration can be useful and desirable 

(e.g. ultrasonic vibrations, vibration conveyers, impactors and music), in most cases it is 

detrimental and undesirable. It can cause fatigue, discomfort, noise, etc. Excessive 

vibration amplitude can, for example, lead to damage of mechanical systems or even 

destruction of buildings (e.g. the collapse of Tacoma Narrows bridge due to 

wind-induced vibration). Vibration due to the engine and from uneven road may cause 

discomfort to passengers in vehicles. Structural vibration (e.g. surface vibration) can be 

transmitted to surfaces that radiate noise to the surrounding environment, which is 

referred to as structure-borne noise. These potentially detrimental effects motivate 

engineers to find approaches to control vibration levels.  

1.1.1 Vibration control 

Vibration control measures can be classified as follows: passive vibration control, 

semi-active vibration control and active vibration control.  
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Passive vibration control involves the modification of the stiffness, mass and damping 

of a vibrating system to make the system less responsive to its vibratory environment 

[2]. The modification may take the form of basic structural changes or the addition of 

passive elements which requires no external assistance apart from their immediate 

passive neighbours or structural components that interact with them. In general, passive 

vibration control involves the use of reactive or resistive devices that either load the 

transmission path of the disturbing vibration or absorb vibrational energy [3]. Passive 

vibration control is usually simple to implement, reliable and cost efficient, but its 

successful application requires a thorough understanding of the vibration problem in 

hand. It often has limited capability to control the structural response. Also it has 

limitations such as lack of versatility, and potentially large size and weight. There are 

significant limitations in structural applications where broadband disturbances of highly 

uncertain nature are encountered [3-5].  

 

Semi-active vibration control can be broadly defined as a passive vibration control 

measure in which the systems mechanical properties, such as stiffness and damping, can 

be adjusted in real time by the application of a control signal [3, 6]. Adaptive-passive 

vibration control can be categorized as semi-active vibration control. In an 

adaptive-passive system, the properties are changed relatively slowly, but in a 

semi-active system, the properties are changed within a cycle of vibration [7]. Although 

semi-active devices behave in a strongly nonlinear way, they are inherently passive and 

can not destabilize the system [8]. Semi-active vibration control strategies can maintain 

the reliability of passive devices using a small amount of energy to tune the system, yet 

provide versatility, adaptability and better performance at high frequencies [3, 9]. Its 

main disadvantage is its inherent nonlinearity and complicated engineering design. 

 

Active vibration control augments the system with actuators, sensors and some form of 

electronic controller together with signal conditioning devices to achieve the 

modification of the characteristics of the vibrating system [6, 10]. In contrast to passive 

vibration control, active vibration control systems do require external energy to drive 
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active devices continuously. Active vibration control can provide superior performance 

over a wide frequency range and has the advantage of reducing the volume and weight 

of the structure, although its practical applications are limited due to the cost, stability 

and energy consumption [6, 11]. The active vibration system is usually integrated with a 

passive approach to form a hybrid vibration control, intended to improve the reliability 

and reduce the amount of external power necessary to achieve control performance.  

1.1.2 Vibration isolation 

A generic vibration control problem can be separated into three components: the source, 

the transmission path and the receiver as shown in Figure 1.1 [1, 12]. There are three 

approaches to control vibration levels. Firstly, it is preferable to reduce the vibrational 

excitation at source, but this is often impractical because of technical or economic 

reasons. Secondly, the vibration levels can be controlled by modifying the dynamic 

characteristics of the receiver to reduce the ability of the structure to respond to the 

input energy, which can be achieved by localised additions, i.e. absorbers and 

neutralisers, addition of damping or structural modification. Finally, the vibration levels 

can be controlled by isolating the receiver from the vibrating source through the 

transmission path. The last approach is called vibration isolation, which is the dynamic 

decoupling of the receiver and the source. It is usually achieved by placing a resilient 

element in the transmission path [12]. Such resilient interconnections constitute the 

vibration isolators or “anti-vibration mounts”. For a given source and receiver, an 

isolator can reduce the vibrations of the receiver to acceptable levels [13].  

 

In practice, there are two common situations for vibration isolation: a) isolation of a 

vibrating machine from its surroundings and b) isolation of a delicate piece of 

equipment from a vibrating host structure [12]. It is the second from of vibration 

isolation which is concentrated on in the thesis. One of the most commonly used 

performance measures of an isolator is the transmissibility. The transmissibility is 

defined as the ratio of the amplitude of the transmitted motion or force at the receiver to 
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the amplitude of the input motion or force at the source [2]. Clearly, a good isolator 

results in a low receiver response for a given excitation and thus has a low 

transmissibility over the frequency range of interest. 

 

In a similar way to the classification of vibration control, there are three classes of 

vibration isolation: passive vibration isolation, semi-active vibration isolation and active 

vibration isolation. The following sections briefly review the passive and active systems, 

as the former will be used as a benchmark for comparison in this study against the 

active configurations presented later. 

1.1.2.1 Passive vibration isolation 

The conventional passive vibration isolation system consists of compliant mounts 

positioned between the vibration source and the receiver to be protected. Passive 

isolation devices impart forces that are developed in response to the motion of the 

vibration source by means of their resilience and their energy dissipation properties [14]. 

These passive devices cannot supply energy to the system, so it cannot destabilize a 

conservative system [15]. However, simple passive vibration isolation systems have 

limited performance, which provides good isolation only at frequencies well above the 

resonance caused by the mass of the equipment and stiffness of the mount [12, 14]. 

 

A traditional passive vibration isolation model is the single-degree-of-freedom (SDOF) 

system model shown in Figure 1.2, which is normally adopted on mechanical vibrations 

[2, 16-19]. It consists of a rigid mass, representing the equipment, mounted on a rigid 

supporting structure through an isolator. For the purpose of modelling, the isolator is 

considered to be massless and modelled as an elastic spring in parallel with a viscous 

damper. The values of the spring stiffness and the damping coefficient are assumed to 

be constant in the frequency range of interest.  

 

The magnitude of the transmissibility of this SDOF system is shown in Figure 1.3. 
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There is only one resonance peak corresponding to the equipment mass resonant on the 

stiffness of the isolator. At frequencies less than 2  times the resonance frequency, 

the transmissibility is equal to or greater than unity, i.e. the isolator is ineffective or 

amplifies the transmitted force or motion. At frequencies close to the resonance, the 

amplitude of the transmissibility is determined by the value of the damping ratio. The 

larger the damping ratio, the smaller the transmissibility. At frequencies greater than 

2  times of the resonance frequency, the magnitude of the transmitted force or motion 

is smaller than the magnitude of the input excitation force or motion. This region is 

usually referred to as the isolation region. If the damping in the isolator is small, the 

transmissibility decreases at a rate of 40 dB per decade at frequencies well above the 

system resonance frequency [20, 21]. The viscous damping effect is reversed in the 

isolation region compared to that around the resonance frequency. Increasing damping 

in the isolator is detrimental to its performance in the isolation region. Thus there is a 

trade-off in the choice of damping for passive vibration isolation between good high 

frequency performance and good control at resonance. 

 

Whilst viscous damping shown in Figure 1.2 receives the most attention in basic 

vibration texts, the massless isolator can also be modelled with a hysteretic damping, 

which leads to the concept of a complex stiffness [12]. If the massless isolator shown in 

Figure 1.2 is modelled as a spring with a complex stiffness, increasing damping in the 

isolator can reduce the transmissibility at the resonance frequency without degrading the 

high frequency isolation performance [19, 22] 

 

Although the traditional passive vibration isolation model, in which the mass of isolator 

is assumed to be negligible, offers a wealth of information about vibration isolation and 

basic guidelines for isolator design, it is only valid at relatively low frequencies, for 

which the wavelength in the isolator is long compared to its dimension [12, 20]. At 

higher frequencies, realistic isolators, which have distributed mass, stiffness and 

damping, do not behave like the idealized massless models. Therefore the predictions 
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from this massless model are no longer accurate and may be misleading due to the 

internal mass effects of the isolator that are ignored. 

1.1.2.2 Active vibration isolation 

The compromise in the choice of damping for passive vibration isolation can be avoided 

by coupling an active system to a passive isolation system. The active control system 

reduces the overall response of a system by destructive interference using an external 

secondary vibration source [6]. With the development of computers fast enough to run 

control algorithms in real-time and more ‘smart’ materials such as piezo ceramics and 

shape memory alloys, active vibration isolation has become prevalent in the last few 

decades to achieve superior performance.  

 

Active vibration isolation has been widely considered for applications to space 

structures [23-25], aircraft [26-28], automobiles [29-34], ships and marine machinery 

rafts [35, 36], buildings [37-39], etc. Spanos et al. [23] carried out vibration isolation 

experiments on a flexible structure utilizing a proof-mass shaker as the disturbance 

source and an active member as the isolator to investigate the active isolation of 

precision space structures from noisy space machinery. They concluded that an active 

stage can significantly reduce the transmissibility of a passive isolator both below and 

above its characteristic corner frequency. Vaillon et al. [24] investigated active isolation 

of sensitive payloads undergoing microvibration generated by some noisy equipment 

(such as reaction wheels or cryocoolers) and propagated though the primary structure of 

the satellite. Impressive isolation performance was achieved by incorporating active 

elements as isolators in all the struts. Schulz [26] investigated the application of active 

vibration isolation for compensation of vibrations generated by the rotor of a helicopter 

and transmitted to the cabin which is of great importance for rotorcraft design. Pearson 

et al. [27] identified that active vibration isolation in a helicopter can be applied at the 

main gear box to the fuselage interface. Elbeheiry and Karnopp [29] studied active 

suspension for a car. They investigated five types of suspension systems and concluded 
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the fully active suspension system provides much better body isolation than the other 

types. Karnopp [34] analyzed the benefits of road vehicle suspension systems 

incorporating generalized velocity feedback compared with conventional passive 

suspensions. A simple criterion is developed which indicates whether or not the 

introduction of active damping forces will result in significant benefit for pneumatic 

tired vehicles. Winberg et al. [35] showed that the sound level in the cabin of a ship 

could be minimized by actively isolating the hull from the engine. Loh and Ma [38] 

demonstrated that a combination of the active variable damper system with a passive 

base-isolation system is the most effective form of control of the building response 

when subjected to seismic excitation even under different site conditions. From this 

incomplete review, it is clear that there is a wide range of applications available for 

active vibration isolation. 

 

However, stability is always an issue which may limit the performance and application 

of active vibration isolation. Although Balas [40] concluded that for collocated and dual 

actuators and sensors, a multi-input and multi-output system is unconditionally stable, 

such stability guarantees are not always valid in practice. The presence of real hardware 

and non-negligible dynamics of actuators and sensors, the unavoidable time delays, 

unmodelled dynamic characteristics, component failure and other uncertainties may 

destabilize active control systems. For example, Elliott et al. [41, 42] analyzed the 

stability and performance of an active vibration isolation system under absolute velocity 

feedback control, practically realised using either reactive or inertial actuators. It was 

concluded that such control systems are conditionally stable and thus the control 

performance was constrained due to the potential instability at high controller gains. 

Brennan et al. [43] and Ananthaganeshan [15] investigated both high frequency and low 

frequency dynamic behaviour of the system that limits controller gain. It was found that 

the phase advance due to the high-pass filters, which are necessary in vibration control 

systems to remove the DC signal in the feedback loop, may destabilize the control 

system, and thus is detrimental to the control performance. Due to the undesirable 

effects of the instability, great efforts should be expended on stability issues. 
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In active vibration isolation, the control forces generated by the external source are 

applied to the structure in a prescribed manner, which is defined as the control strategy. 

These strategies are applied to a physical system with the objectives of keeping the 

output (force, motion, etc) at a specified set of locations within the structure, below a 

specified level in the presence of any disturbances [3, 15]. There are two fundamental 

different strategies which have been used in the past for implementing active vibration 

isolation systems: feedforward and feedback control [44]. Feedforward control involves 

feeding a signal related to the disturbance input into the controller which then generates 

a control signal to drive actuators in order to cancel the disturbance. Feedforward 

control has generally been used for periodic disturbances, where a reference signal well 

correlated with the disturbance input is available to the controller [15, 44]. On the other 

hand, feedback control involves feeding a signal derived from the system response into 

the controller which then generates a control signal to drive actuators to attenuate the 

system response. Feedback control is generally used for random disturbances where a 

suitable reference signal is not available [44, 45]. Because base vibration typically has 

an unpredictable waveform with broadband random excitation spectra [46, 47], 

feedback control is widely used in isolating delicate equipment from base vibration. 

 

In active vibration isolation, the output of the system can be fed into the controller 

directly to generate the control signal, which is simple and straightforward to implement 

[8, 48]. The output can be velocity, displacement, acceleration, force, etc. Benassi and 

Elliott [49, 50] investigated the design of inertial actuators with either local 

displacement feedback or local force feedback control and their use in active vibration 

isolation systems. Preumont [51] compares the acceleration feedback and force 

feedback implementation of the sky-hook damper when it is used to isolate a flexible 

structure from a disturbance source. Although active vibration isolation has been 

investigated by many researchers using displacement, acceleration or force feedback 

control, most of the work of this kind prefers velocity feedback control [40, 52, 53]. The 

advantage of using velocity feedback control is that the control system is proven to be 

unconditionally stable for collocated ideal force actuators and sensors, irrespective of 
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structural modelling errors [40, 54].  

 

A traditional active vibration isolation model under output feedback control for a SDOF 

system is shown in Figure 1.4, which is widely used by researchers [6, 8, 55]. It is 

similar to its passive counterpart, and consists of a rigid mass, representing the 

equipment, mounted on a rigid supporting structure through an isolator. For the purpose 

of modelling, the isolator is also considered to be massless and modelled as an elastic 

spring in parallel with a viscous damper. The response of the equipment (velocity, 

acceleration, displacement, force, etc.) is fed into a controller to generate a control force 

in parallel with the passive isolator. If absolute velocity feedback control (AVF) is 

applied, i.e. the velocity of the equipment fed through a controller with a constant gain, 

the AVF control for such a system is equivalent as a ‘sky-hook’ damper [11]. The 

transmissibility for this SDOF active vibration isolation model is attenuated at the 

resonance frequency by the AVF control without compromising high-frequency 

performance. At frequencies well above the system resonance frequency, the 

transmissibility decreases at a rate of 40 dB per decade provided the passive damping in 

the isolator is small. The trade-off in passive vibration isolation between damping 

low-frequency resonances and achieving good high-frequency isolation is thus 

overcome by using active vibration isolation. 

 

Similar to the conventional passive vibration isolation model, the traditional active 

vibration isolation model, in which the mass of isolator is also ignored, offers a good 

prediction tool and provides design guidelines at relatively low frequencies. However, 

at relatively high frequencies, the predictions based on this massless model may be 

wrong and misleading due to the internal mass effects of the isolator that are ignored. 
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1.1.3 Internal resonances in vibration isolators 

1.1.3.1 Introduction 

In practice, all realistic vibration isolators have distributed mass, stiffness and damping, 

which introduce dynamics into the isolators. These dynamics are associated with the 

resonance behaviour of the elastic motion of the isolator. Thus there are numerous 

frequencies associated with the natural modes, i.e. resonances, of the isolator. These 

resonances are referred to as internal resonances (IRs), or wave effects, in the isolators 

[13, 20, 21].  

 

The IRs in the isolator are determined by various factors. It is found that the IRs in the 

isolator are dependent on the shape, material properties, dimensions, and boundary 

conditions of the isolators [20], as well as the type of deformation (e.g. compression, 

shear, flexure) [56]. Ungar and Dietrich [13] noted that the wave effects are more 

important in a heavier and larger isolator than those in a lighter and smaller isolator of 

equal static stiffness. It is also observed that the IRs occur in certain frequency ranges, 

when the wavelength of the exciting vibration in the isolator is comparable with the 

isolator’s length [57]. Because the wavelength is inversely proportional to the frequency, 

the IRs in the isolator typically occur at high frequencies. 

 

Given the trend in many segments of industry towards more complex equipment and 

machines, which are lighter and more compact, operating at greater speeds and higher 

power ratings, more problems associated with high frequency vibrations have become 

important. As a consequence, it is necessary to provide vibration isolation systems that 

will remain effective at high frequencies. However, due to the presence of the IRs in the 

isolator, the prediction based on the traditional massless isolator model, as discussed in 

last section for passive and active vibration isolation, holds true only at relatively low 

frequencies when wavelength in the isolator is long compared to its dimension. 

Therefore the traditional massless isolator model fails to perform satisfactorily at high 
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frequencies. A model with distributed mass, stiffness and damping is thus necessary to 

demonstrate the dynamic behaviour of many practical vibration isolators.  

1.1.3.2 Distributed parameter isolator models 

The idealized ‘long-rod’ model for helical springs and cylindrical rubber isolators, 

which have simple geometries and deformation behaviours, has been widely used by 

many researchers to investigate the wave effects in the isolator [13, 20, 21]. In this 

‘long-rod’ theory, the isolator is modelled as a continuous elastic finite rod with internal 

damping, which has mass characterized by the material density. If such a distributed 

parameter isolator model is applied in the traditional SDOF passive vibration isolation 

system, the transmissibility of the system has the same peak at the system fundamental 

resonance as that for the massless isolator model. However, due to the effect of IRs at 

high frequencies, the transmissibility for the distributed parameter isolator does not 

decrease monotonically with frequency after the system resonance. It is found that the 

minimum of the transmissibility for the distributed parameter isolator decreases at about 

20 dB per decade rather than 40 dB predicted from the massless isolator model [20]. 

This reveals that the traditional vibration isolation model, in which the isolator is 

assumed to be massless, significantly overestimates the isolation performance at high 

frequencies due to the effect of IRs. 

 

Moreover, based on the idealized ‘long-rod’ model in which the lateral deformation of 

the isolator under the longitudinal excitation is ignored, it has been found that the 

amplitudes of the higher order IRs decrease rapidly with the frequency, i.e. the higher 

order IRs are effectively damped out by the isolator material damping [13, 20, 21]. A 

more complex model based on the Love’s theory [58] that accounts for the effect of the 

lateral deformation in the isolator shows that the magnitude of the higher order IRs 

decreases even more rapidly [59]. Therefore, it can be concluded that only the first 

several IRs have the most practical significance in the isolator performance.  
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Other distributed parameter models for the realistic isolators have also been studied by 

previous researchers [56, 60]. Ungar [56] presented a simple SDOF model to show the 

IRs in leaf springs, which work on their flexural elasticity so that their IRs are 

associated with the resonant behavior in flexural vibration. The leaf spring was modeled 

as a continuous uniform beam rather than a rod. The damping effects were also included 

by considering a complex modulus of elasticity in the beam. It was also shown that the 

IRs are detrimental to the isolation performance in a certain frequency range. Ungar 

concluded that, given the same system frequency and mass ratio (isolator mass to 

equipment mass), vibration isolators that deform primarily in flexure may work better 

than isolators that deform primarily in compression or tension. The IRs in flexural 

springs have lower density with respect to frequency and occur at higher frequencies, 

which may not be excited in practice. Although the amplitude at an IR for a flexural 

spring is greater than that for a comparable compression spring, the IRs can be 

attenuated to a large extent since more damping can be incorporated more easily in 

practical flexural springs than in compression springs.  

1.1.3.3 IRs in different types of isolators  

Since the 1950s, many researchers have investigated the IR problem in both rubber 

isolators [59, 61, 62] and metal springs [63, 64] based on the idealized ‘long-rod’ model. 

Metal springs have a wide application in industries because of their attractive features, 

such as wide range of natural frequencies, more freedom in isolation design, and long 

service life. They can also be used under severe conditions, e.g. at temperatures far in 

excess of that permissible with non-metallic resilient materials, under strong corrosions 

of oil, dust water, ozone or atmospheric pressure, and in sizes to carry the heaviest loads 

[65]. However, compared to practical rubber isolators, in which the IRs can be more 

easily alleviated by the high internal damping of elastomer materials [21, 59], metal 

springs are more commonly involved in IR problems in practice due to the low damping 

of metal materials.  
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The IRs in metal springs generally occur at lower frequencies (a few hundred Hertz) 

with higher amplitude. Lee and Thompson [64] showed that the IRs lead to significant 

dynamic stiffening for helical springs above a certain frequency. This occurs at 

frequencies as low as about 40 Hz for an automotive suspension spring. Tomlinson [63] 

pointed out that it is especially necessary to consider the wave effects in the metal 

springs for high frequency isolation design. It was shown experimentally that the IRs in 

metal helical springs due to the longitudinal vibrations are more significant than those 

due to torsional vibrations, although these two different IRs tend to be equally important 

with the increasing spring size. Tomlinson [63] also shows analytically and 

experimentally that, in some situations, the first IR in metal springs appears below 200 

Hz and has almost the same amplitude as the system resonance. As a consequence, the 

IR problem in metal springs has greater importance in practice than rubber isolators.  

1.1.3.4 Control of IRs  

Due to the significant effects of IRs in isolators on their high frequency isolation 

performance, much effort has been expended by previous researchers in the suppression 

of IRs. It was shown that the IRs can be simply attenuated by increasing the damping in 

the isolator [66]. A polymeric damping material can also be applied in parallel with the 

original isolator [63]. The polymeric material, which has a high loss factor, helps 

dissipate the energy at the IRs while the original isolator maintains the capability of 

supporting heavy components. However, it is not always practical to use high damping 

materials to suppress the IRs since typically such materials exhibit poor returnability 

and great creep, which degrade the load capacity of isolators and the performance of the 

system [57, 67]. Compound mounting systems, in which concentrated masses (referred 

to as intermediate masses) were inserted into isolators, have been used to achieve lower 

transmissibility at high frequencies [59]. However, the penalty is that the isolator 

performance at low frequencies is degraded. Snowdon [68] presented a method of using 

a dynamic vibration absorber, which efficiently attenuates the first IR peak in the 

isolator. Du et al [67] improved the high frequency isolation performance by applying a 
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dynamic vibration absorber (DVA) enhanced isolator. The modified isolator consisted 

of a cylindrical isolator made of rubberlike material with two embedded dynamic 

vibration absorbers. These were placed in the cylindrical cavity inside the isolator and 

each of them was connected to the isolator at the ‘one-quarter-length’ position through a 

thin plate that acted as an intermediate mass. However, introducing dynamic vibration 

absorbers into the isolator dramatically increases the complexity of the isolator and the 

resulting isolation system lacks versatility.  

 

1.2 Motivation and objectives of the thesis 

Among the various issues associated with vibration, the isolation of a delicate piece of 

equipment from a vibrating host base structure is a common situation in a number of 

engineering fields [12, 14, 41]. Due to design constraints and complex dynamics of the 

host structure, very little can often be done to reduce the vibration of the base [46]. 

Traditionally passive vibration isolation, consisting of vibration isolators made of 

compliant materials, is often used to provide dynamic decoupling between the delicate 

equipment and the host structure [2]. Base vibration typically has an unpredictable 

waveform and the vibration isolator has to deal with broadband excitation spectra [46, 

47]. However, as presented in last section, conventional passive vibration isolation 

systems suffer from an inherent trade-off in the choice of damping between high 

frequency isolation, which requires a low level of damping, and isolation at the 

fundamental mounted resonance frequency, which requires a high level of damping [19, 

22, 69, 70]. This inherent compromise can be overcome by applying active vibration 

isolation to a passive isolation system, which has been widely used to improve the 

performance of an isolator over a broad range of frequencies [6, 11, 71].  

 

In conventional research methodologies for vibration isolation presented in last section, 

vibration isolators are usually considered as simple lumped parameter elements, which 

are assumed to be massless for the purpose of modelling. It has been shown that this 

simplification is only valid at relatively low frequencies when the wavelength in the 

isolator is long compared to its dimension [12]. At higher frequencies, realistic isolators, 

which have distributed mass, stiffness and damping, do not behave like the idealized 
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massless models. Therefore in an active/passive vibration isolation system there are 

several problems that should be addressed:  

 

i. Firstly, the massless models for isolators tend to overestimate the isolator 

performance because the IRs due to the distributed mass in the isolator are 

neglected [13, 20]. The presence and importance of IRs in practical isolators has 

been identified by many researchers. The degradation in performance due to the IRs 

on vibration isolation is especially important for lightly damped metallic isolators, 

since the smaller the loss factor of the isolator the more significant are the 

resonances caused by the wave effects [20, 72, 73]. For a better description of the 

dynamic behaviour of vibration isolators at high frequencies, different distributed 

parameter models have been investigated and some factors, which affect the IRs in 

the isolator, have been presented in previous studies. However, previous research 

on the IR problem is not particularly comprehensive, because it does not clarify all 

the characteristics of vibration isolators. The parameters which control the isolator 

performance at various frequencies need to be clarified.  

ii. Secondly, performance and stability are two crucial issues in active vibration 

isolation systems. Many electronic and mechanical factors introduce limitations on 

the control systems, which have been investigated in previous work, for example 

[15, 42, 43]. However, few investigations have been carried out to relate the way in 

which the IRs affect the performance and stability of the control systems for an 

isolator. Therefore, there is a need to quantify the effects of IRs on the control 

performance and stability for commonly used control strategies in active vibration 

isolation. 

iii. Finally, due to the significant degradation effects of IRs on the isolator performance 

at relatively high frequencies, approaches need to be investigated to attenuate the IR 

peaks in order to improve the isolation performance over a broad range of 

frequencies. Although some methods to control IRs have been proposed in previous 

research [59, 63, 66-68], they all have inherent limitations either on the 

performance, or the practical complexity in design and implementation. Therefore, 

based on the understanding of isolator IRs, effective approaches are required to 

improve the isolation performance over a broad range of frequencies. 
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Motivated by the importance of IRs in vibration isolation and limitations in previous 

studies, there are four main objectives of this thesis: 

 

i. To determine the effects of IRs in a realistic isolator on the passive isolation of a 

delicate piece of equipment from a vibrating host structure. 

ii. To investigate theoretically and experimentally the effects of IRs on the hybrid 

active/passive isolation of a piece of equipment supported by a realistic isolator.  

iii. To compare the control performance and analyze the stability of different control 

strategies in hybrid active/passive isolation of a piece of equipment supported by a 

realistic isolator. 

iv. To investigate and implement an effective approach to suppress IRs in realistic 

isolators, and further improve the isolation performance over a broad range of 

frequencies. 

 

1.3 Contributions of the thesis 

The three main contributions of this thesis are as follows: 

 

i. Simple expressions which describe the behaviour for various types of distributed 

parameter models for isolators have been derived. The parameters which control the 

isolator performance at various frequencies have been clarified.  

ii. The effects of IRs on the control performance and stability of several control 

strategies have been determined. A stability condition for an absolute velocity 

feedback (AVF) control system has been identified. Based on this condition, ways in 

which an AVF control system can be stabilized have been presented. 

iii. Different strategies to suppress IRs and improve the isolation performance of 

realistic isolators over a broad range of frequencies have been proposed. 
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1.4 Overview of the thesis 

This study is concerned with the active vibration isolation of a piece of delicate 

equipment supported by a distributed parameter isolator. The structure of the thesis is 

organized as three parts. The first part (Chapter 1 and 2) reviews the previous research 

and introduces methodologies used in this study. The second part (Chapter 3, 4 and 5) 

investigates the characteristics of various types of distributed parameter isolator, and the 

effects of IRs in the isolator on the control performance and stability for several control 

strategies. The third part (Chapter 6 and 7) investigates strategies to attenuate IRs to 

improve the isolation performance over a broad range of frequencies. The detailed 

overview of the thesis is as follows: 

 

Chapter 1 introduced the background of the study on vibration control, vibration 

isolation and IR problem in vibration isolators. The motivations of the thesis were 

outlined based on the problems summarized. It was followed by the main contributions.  

 

Chapter 2 introduces concepts and methodologies used in the thesis by reviewing and 

summarizing the previous research on vibration isolation systems containing a massless 

isolator.  

 

Chapter 3 investigates theoretically and experimentally the characteristics of passive 

vibration isolation systems containing a distributed parameter isolator, which is 

modelled as different idealised configurations under various deformations. Simple 

expressions which describe the behaviour for various types of isolator are derived. The 

parameters which control the isolator performance at various frequencies are clarified. 

 

Chapter 4 investigates and compares the control performance and stability of active 

vibration isolation systems containing a distributed parameter isolator under various 

control strategies theoretically. Such systems either are undergoing base motion or have 

a base structure, which is allowed to have its own resonances. Absolute Velocity 
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Feedback (AVF) control is shown to be the optimal solution to minimise the mean square 

velocity of the equipment mass supported by a distributed parameter isolator 

 

Chapter 5 examines approaches which can stabilize the active vibration isolation system 

containing a distributed parameter isolator on a flexible base under AVF control. These 

stabilizing approaches together with the control performance and stability of such a 

system are investigated experimentally on a four-spring active vibration isolation system.  

 

Chapter 6 and 7 investigates theoretically and experimentally the strategies which can 

attenuate IRs in the isolator, in order to improve the isolation performance of a 

distributed parameter isolator over a broad range of frequencies, respectively.  

 

Chapter 8 summarizes the overall conclusions, along with suggestions for future work. 
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Figure 1.1 Schematic diagram of a general vibration control problem. 

 
Figure 1.2 Schematic diagram of a traditional passive vibration isolation model. 
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Figure 1.3 Transmissibility of the traditional SDOF passive isolation model with 

different damping in the isolator. 

 

Figure 1.4 Schematic diagram of a traditional active vibration isolation model. 
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Chapter 2 

 

Review of Active Vibration Isolation with a 

Massless Isolator 

 

 

2.1 Introduction 

Vibration isolation systems containing a massless isolator have been discussed in many 

books and papers, for example [2, 16, 18, 19]. In these studies, the massless isolator is 

usually modelled as a parallel combination of an elastic spring and a viscous damper. 

The dynamics of such systems has been extensively studied and analyzed by many 

researchers. The mobility and impedance approach is one of widely used methods for 

this analysis [41, 42]. To overcome the compromise in the choice of damping in passive 

vibration isolation, active components have been incorporated into passive systems to 

form active vibration isolators. The performance and stability of such active vibration 

isolation systems containing a massless isolator under different control strategies has 

been reported extensively in the literature. 

 

The aim of this chapter is to introduce the concepts and methodologies used in this 

thesis by reviewing and summarizing the previous research on vibration isolation 

systems containing a massless isolator. The dynamics of a passive vibration isolation 

system containing such an isolator is first discussed. Then, concepts of single channel
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feedback control and the Nyquist stability criteria are introduced. This is followed by an 

investigation and comparison of the performance and stability of different active control 

strategies, based on the massless isolator model.  

 

2.2 Passive vibration isolation with a massless isolator 

Figure 2.1 depicts a piece of equipment, represented by its impedance 
e

Z , mounted on 

a massless isolator undergoing base motion. The isolator is modelled as an elastic spring 

with stiffness k in parallel with a viscous damper with damping coefficient c. The 

dynamics of such a system are described in frequency domain by [52] 

 ( ) 0e i e i bZ Z u Z u+ − =& &  (2.1) 

where 
e

u&  and 
b

u&  are the velocities of the equipment and the base respectively, and 

i
Z k j cω= +  is the impedance of the massless isolator. Therefore, the transmissibility 

of the system is given by 

 e i

b e i

u Z
T

u Z Z
= =

+

&

&
 (2.2) 

If the equipment is modelled as a mass, i.e. 
e e

Z j mω= , then the system becomes the 

traditional SDOF passive vibration isolation system discussed in Chapter 1. The 

transmissibility of such a system can be written in terms of non-dimensional parameters 

as [19] 

 
2

1 2

1 2

j
T

j

ζ

ζ

+ Ω
=

− Ω + Ω
 (2.3) 

where e
ω ωΩ =  is the ratio of the driving frequency ω  to the system fundamental 

natural frequency e ek mω =  due to the interaction of the equipment mass and the 

stiffness of the isolator, and 2 ec kmζ =  is the viscous damping ratio. The magnitude 

of the transmissibility of this system is shown in Figure 1.3. Also the trade-off in the 

choice of damping between good high frequency performance and good control at 

resonance for passive vibration isolation has been discussed in Chapter 1. 
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2.3 Introduction to single channel feedback control 

A single channel feedback control system with a control sensor and a secondary 

actuator is shown in Figure 2.2. Typically the response of the mechanical system is 

measured by a sensor, and then fed back through the controller defined by its frequency 

response ( )H jω , to the secondary actuator [6]. Figure 2.3 depicts the equivalent block 

diagram for such a single channel feedback control system. The response of the system 

is given by 

 ( ) ( ) ( ) ( )sW j D j G j F jω ω ω ω= +  (2.4) 

where ( )G jω  is defined as the ‘plant response’ of the mechanical system, which is the 

frequency response from the secondary actuator force ( )sF jω  in the absence of any 

primary disturbance (i.e. ( ) 0D jω = ) to the sensor output ( )W jω . The secondary 

actuator force is given by 

 ( ) ( ) ( )sF j H j W jω ω ω= −  (2.5) 

The negative sign in the feedback controller accounts for the negative feedback. 

Combining equations (2.4) and (2.5), the closed-loop performance of such a feedback 

control system can be described by the ratio between the control system response, 

( )W jω  and the primary disturbance, ( )D jω , which is given by [6, 74] 

 
( )
( ) ( ) ( )

1

1

W j

D j G j H j

ω

ω ω ω
=

+
 (2.6) 

where the product of ( ) ( )G j H jω ω  is defined as the open-loop frequency response of 

the control system.  

 

As discussed in many books on control [6, 48, 74-76], if at some frequency the 

open-loop frequency response ( ) ( )G j H jω ω  has little phase shift but simultaneously 

has a gain much greater than unity, so that 

 ( ) ( )1 1G j H jω ω+ >>  (2.7) 

Then one has 

 ( ) ( )W j D jω ω<<  (2.8) 
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The response of the mechanical system is thus significantly reduced at this frequency. 

However, it may not be possible to ensure that the phase shift of the open-loop 

frequency response is always small. If the phase shift of the open-loop frequency 

response is 180º while its gain is unity at that frequency so that ( ) ( )1 0G j H jω ω+ = , 

then the response of the system becomes infinite, i.e. the control system becomes 

unstable. Therefore, the design of a practical feedback control system generally involves 

a compromise between a high open-loop gain for good performance and a low 

open-loop gain for stability [6].  

 

The above discussion demonstrates that study of the open-loop frequency response of 

the system gives insight into the stability and performance of a feedback control system. 

The Nyquist stability criterion using the open-loop frequency response is therefore a 

powerful experimental tool to assess the characteristics of a control system. The Nyquist 

stability criterion states that a closed-loop control system is stable only if the polar plot 

of the open-loop frequency response (generally referred to as the Nyquist plot) does not 

enclose the unstable point (-1, 0j) [6, 76]. More practically, the Nyquist stability 

criterion provides not only the prediction for the absolute stability of a control system, 

but also its relative stability by looking at the proximity of the open-loop frequency 

response to the unstable point [6]. The proximity of the open-loop frequency response 

locus to the unstable point, which is generally represented in terms of gain margin and 

phase margin, can be used as a measure of the margin of stability [74]. If the phase shift 

of the open-loop frequency response is -180º at a frequency 1ω , the gain margin can be 

defined as the gain increase (in dB) necessary to cause instability and is given by [74] 

 
( ) ( )

( ) ( )10 10 1 1

1 1

1
(in dB) 20log 20loggK G H

G H
ω ω

ω ω
= = −  (2.9) 

If the magnitude of the open-loop frequency response is unity at a frequency 2ω , the 

phase margin can be defined as the amount of additional phase lag required to bring the 

system to the verge of instability, which is given by [74] 

 ( )2180gγ φ ω= +o  (2.10) 
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where ( )2φ ω  is the phase angle of the open-loop frequency response at 2ω . 

 

2.4 Active vibration isolation with a massless isolator 

In this section, active vibration isolation systems containing a massless isolator under 

various control strategies are reviewed and discussed. The control performance and 

stability for various control methods that can introduce active damping into the system 

are analyzed and compared, as well as acceleration feedback control, which can add 

mass to the system electronically. The optimal control is then discussed to find the best 

solution to isolate the equipment.  

2.4.1 Absolute Velocity Feedback (AVF) control   

AVF control applied to a vibration isolation system containing a massless isolator has 

been extensively investigated by many researchers [6, 11, 40-42, 46, 52, 53]. Figure 

2.4(a) shows a base excited vibration isolation system containing a massless isolator 

under AVF control. An active control force 
a

f , which is in parallel with the isolator, 

reacts between the equipment and the base. The control force af  is proportional to the 

velocity of the equipment 
e

u& , and fed back to the system through a feedback controller 

with a constant gain -h, so that 

 
a e

f hu= − &  (2.11) 

2.4.1.1 Control performance 

The relationship between the control force and the velocities of the equipment and the 

base for the active vibration isolation system in Figure 2.4(a) can be written as 

 ( )e i e i b aZ Z u Z u f+ − =& &  (2.12) 

Substituting equation (2.11) into (2.12), the transmissibility of the system under AVF 

control is given by 

 i

e i

Z
T

Z Z h
=

+ +
 (2.13) 
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If the equipment is modelled as a mass, the transmissibility under AVF control can be 

written in terms of non-dimensional parameters as 

 
( )2

1 2

1 2 a

j
T

j

ζ

ζ ζ

+ Ω
=

− Ω + + Ω
 (2.14) 

where 2a eh kmζ =  is the active damping ratio due to AVF control. It can be seen 

from the transmissibility in equation (2.14) that the AVF control adds a damping term to 

the denominator but leaves the numerator unchanged. The action of AVF control for this 

base excited system is thus the same as a skyhook damper [11]. Figure 2.4(b) shows the 

mechanical representation of the system under AVF control, which is equivalent to a 

viscous damper with damping coefficient h acting between the equipment and the 

inertial ground [11].  

 

The transmissibility for the active vibration isolation system containing a massless 

isolator under AVF control is plotted in Figure 2.5, where the transmissibility of the 

system without control is also plotted for comparison. It can be seen that the 

transmissibility is attenuated at the resonance frequency by the AVF control without 

compromising the high frequency isolation performance. The trade-off in the choice of 

damping for passive vibration isolation is thus overcome by introducing active vibration 

isolation. Moreover, the higher the control gains, the better the isolation performance 

around the resonance frequency. 

2.4.1.2 Stability analysis 

The stability of the AVF control system has been discussed in several books and papers, 

for example [8, 41, 42]. Because the controller is a constant gain, the Nyquist analysis 

of the open-loop frequency response for AVF control can be simplified to the 

consideration of the plant response with unitary control gain (h=1). The plant response 

from the active force to the equipment velocity is given by 

 

0

1

b

e

a e iu

u
G

f Z Z
=

= =
+

&

&
 (2.15) 

As discussed by Elliott et al. [41], the phase shift of eZ  is between -90º and 90º 

because it is an input impedance. The phase shift of iZ  is -90º if the isolator is 

dominated by its stiffness, reducing to 0º if it is dominated by its damping. Therefore 
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the overall phase shift of the plant response G is between -90º and 90º and is thus 

completely passive. Its Nyquist plot is then entirely on the right-hand side of the 

complex plane and the feedback system has an infinite gain margin and a phase margin 

of at least 90º. Based on the Nyquist stability criterion, the AVF control system 

containing a massless isolator undergoing base motion is unconditionally stable.  

 

From another point of view, because the base motion is prescribed which is not affected 

by the active control force, the actuator and the sensor are thus collocated, so that such a 

system under AVF control is unconditionally stable [8, 40]. However, if the system is 

extended so that the base is not rigid but has its own resonance behaviour which will be 

affected by the active control force, the AVF control system becomes conditionally 

stable because the actuator and the sensor are no longer collocated. Under some 

conditions such an AVF control system on a flexible base will be unstable at high 

control gains [41].  

2.4.2 Relative Velocity Feedback (RVF) control   

Figure 2.6(a) shows a base excited vibration isolation system containing a massless 

isolator under RVF control. An active control force af , which is in parallel with the 

isolator, reacts between the equipment and the base. The control force af  here is 

proportional to the difference between the velocity of the equipment eu&  and the 

velocity of the base bu& , and fed back to the system through a feedback controller with a 

constant gain h− , so that 

 ( )a e bf h u u= − −& &  (2.16) 

2.4.2.1 Control performance 

The relationship between the control force and the velocities of the equipment and the 

base for the active vibration isolation system under RVF control shown in Figure 2.6(a) 

is also given by equation (2.12). Substituting equation (2.16) into (2.12), the 

transmissibility of the system under RVF control is given by 

 i

e i

Z h
T

Z Z h

+
=

+ +
 (2.17) 
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If the equipment is modelled as a mass, the transmissibility under RVF control can be 

written in terms of non-dimensional parameters as  

 
( )

( )2

1 2

1 2

a

a

j
T

j

ζ ζ

ζ ζ

+ + Ω
=

− Ω + + Ω
 (2.18) 

It can be seen that a damping term is added to both the denominator and the numerator. 

The action of RVF control is thus the same as a passive viscous damper. Figure 2.6(b) 

shows the mechanical representation of the system under RVF control, which is 

equivalent to a viscous damper with damping coefficient h acting between the 

equipment and the base. Therefore, similar to the transmissibility for the passive 

vibration isolation system shown in Figure 1.3, the transmissibility for the system under 

RVF control is attenuated around the resonance frequency, while it is amplified at high 

frequencies above the resonance frequency due to RVF control. Thus, the same 

compromise in the choice of damping for passive vibration isolation also occurs in the 

system under RVF control. 

2.4.2.2 Stability analysis 

Because the controller is also a constant gain for RVF control, the plant response of the 

system can be used for the stability analysis. The plant response from the active force to 

the difference between the velocity of the equipment and the velocity of the base is also 

given by equation (2.15). Therefore the overall phase shift of the plant response is 

between -90º and 90º and is thus completely passive, so that the RVF control system 

containing a massless isolator undergoing base motion is unconditionally stable based 

on the Nyquist stability criterion. The unconditional stability of the RVF control system 

undergoing base motion can also be concluded due to the collocation of the actuator and 

sensor. Furthermore, even if the base is not rigid and has its own resonance behaviour, 

the RVF control system is still completely passive and thus unconditionally stable [72] 

because the actuator and the sensor remain collocated. The unconditional stability is the 

main advantage of RVF control compared to AVF control, although its control 

performance is worse than that of AVF control.  
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2.4.3 Integral Force Feedback (IFF) control   

IFF control applied to a vibration isolation system containing a massless isolator has 

been presented in several books and papers, for example [8, 41, 50, 51]. Figure 2.7 

shows a base excited vibration isolation system containing a massless isolator under IFF 

control. The control force 
a

f , which is in parallel with the isolator, reacts between the 

equipment and the base. The control force af  is generated by feeding the transmitted 

force to the equipment through a controller with frequency response ( )IFFH jω  

negatively, which is given by 

 ( )IFF

h
H j

j
ω

ω
=  (2.19) 

The transmitted force to the equipment 
T

f , which consists of the transmitted force from 

the isolator 
e

Q  and the active force applied on the equipment 
a

f , generates the 

motion of the equipment and can be written as 

 
T i a e e

f Q f Z u= + = &  (2.20) 

The control force is thus given by 

 ( )IFFa T e e

h
f H j f Z u

j
ω

ω
= − = − &  (2.21) 

2.4.3.1 Control performance 

The relationship between the control force and the velocities of the equipment and the 

base for the active vibration isolation system under IFF control shown in Figure 2.7 is 

also given by equation (2.12). Substituting equation (2.21) into (2.12), the 

transmissibility of the system under IFF control is given by 

 i

e i e

Z
T

h
Z Z Z

jω

=

+ +

 (2.22) 

If the equipment is modelled as a mass, i.e. 
e e

Z j mω= , the transmissibility under IFF 

control can be written as  

 i

e i e

Z
T

Z Z hm
=

+ +
 (2.23) 
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Comparing equation (2.23) with equation (2.13) (the transmissibility of such a system 

under AVF control), the action of IFF control is also the same as a skyhook damper. 

The only difference is that the IFF control applied to a system containing a mass-like 

equipment is equivalent to a viscous damper with damping coefficient 
e

hm  (rather 

than h for AVF control) acting between the equipment and the inertial ground.  

2.4.3.2 Stability analysis 

The stability of the IFF control system has been investigated by several researchers, for 

example [8, 41, 51]. Combining equations (2.15) and (2.20), the plant response from the 

active force to the transmitted force to the equipment is given by 

 

0b

eT

a e iu

Zf
G

f Z Z
=

= =
+

&

 (2.24) 

Because the IFF controller is not a constant gain, the open-loop frequency response is 

used to analyze the stability, which is given by 

 IFF
e

e i

Zh
GH

j Z Zω
=

+
 (2.25) 

The stability of the IFF control system can be investigated by examining the reciprocal 

of the open-loop frequency response, which is given by 

 ( ) ( ) ( ) ( )1 1 1

IFF

1
1

e e i e i
GH hZ j Z Z j Z Z

h
ω ω

− − −= + = +  (2.26) 

1

e
Z

−  is passive since 
e

Z  is an input impedance, so that 1

e
Z

−  has a phase shift of 

between -90º and 90º. The phase shift of 
i

Z  is -90º if the isolator is dominated by its 

stiffness, reducing to 0º if it is dominated by its damping. The phase shift of 11
e i

Z Z
−+  

can thus potentially vary between -180º and 90º. Therefore the overall phase shift of 

( )
1

IFFGH
−

 is between -90º and 180º. The phase limitations on the open-loop frequency 

response are thus between -180º and 90º. In the Nyquist plot of the open-loop frequency 

response, there is no loop on the left half of the complex plane crossing the negative real 

axis, and thus the IFF control system containing a massless isolator undergoing base 

motion is unconditionally stable based on the Nyquist stability criterion. However, such 

an IFF control system is not completely passive, and thus not robustly stable as an AVF 
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control system undergoing base motion. But if the equipment is rigid and has a 

mass-like impedance, i.e. 
e e

Z j mω= , the open-loop frequency response can be reduced 

as ( )e e ihm Z Z+ , so that the overall  phase shift of the open-loop frequency response 

is limited between -90º and 90º. The IFF control system is thus completely passive. The 

advantage of the IFF control system compared to AVF control is that it remains 

unconditionally stable for any combination of base and equipment dynamics [41], even 

if the base has its own resonance behaviour.  

2.4.4 Positive Position Feedback (PPF) control   

PPF control has been presented in several books and papers, for example [8, 77-80]. 

Figure 2.8 shows a base excited vibration isolation system containing a massless 

isolator under PPF control. The control force 
a

f , which is in parallel with the isolator, 

reacts between the equipment and the base. The control force af  is generated by 

feeding the displacement of the equipment 
e

u  through a controller with frequency 

response ( )PPFH jω  in a positive sense. The PPF control is implemented using an 

auxiliary dynamic system, which is basically a second-order filter of the form [55, 77] 

 2 22 f f f f euξ ζ ω ξ ω ξ ω+ + =&& &  (2.27) 

where 
e

u  is the displacement of the equipment, and ξ , 
f

ω , 
f

ζ  are the response, the 

natural frequency and the damping ratio of the filter respectively. The output from the 

filter is then multiplied by 2

fgω , where g is a constant gain, to give the secondary force 

a
f . If the signal is time harmonic, the filter output is given by 

 

( )

2

22 2

1

2 1 2

f

e e

f f f
f f f

u u
j j

ω
ξ

ω ζ ω ω ω ω ω ζ ω ω
= =

+ − − +
 (2.28) 

The control force is thus given by 

 ( ) ( )2

PPF PPF

1
a f e e

f g H j u H j u
j

ω ξ ω ω
ω

= = = &  (2.29) 

where  
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 ( )
( )

2

PPF 2

1 2

f

f f f

g
H j

j

ω
ω

ω ω ζ ω ω
=

− +
 (2.30) 

is the frequency response of the PPF controller which acts as a second order 

compensator.  

 

Figure 2.9 shows the frequency response of the PPF controller. It can be seen that the 

PPF controller has -90º phase shift at its cut-off frequency with high magnitude, which 

is why the PPF control can act as an active damping for the specific frequency and 

needs fine-tuning [81]. Therefore, to attenuate a mode in the system, the cut-off 

frequency of the PPF controller should be closely matched to the mode. Furthermore, 

because the magnitude of the frequency response rolls off rapidly above the cut-off 

frequency, the PPF controller has less spillover to higher frequency modes. This 

inherent robustness to spillover to high frequency modes, i.e. insensitivity to the 

un-modelled high frequency dynamics, is the main advantage of PPF control [77]. 

However, the PPF controller may lead to spillover problem to lower frequency modes 

when the feedback gain is high. 

2.4.4.1 Control performance 

The relationship between the control force and the velocities of the equipment and the 

base for the active vibration isolation system under PPF control shown in Figure 2.8 is 

given by equation (2.12). Substituting equation (2.29) into (2.12), the transmissibility of 

the system under PPF control is given by 

 

( )

2

2

1

1 2

i

f

e i

f f f

Z
T

g
Z Z

j j

ω

ω ω ω ζ ω ω

=

+ −
− +

 (2.31) 

If the equipment is modelled as a mass, i.e. 
e e

Z j mω= , and the undamped natural 

frequency of the PPF controller 
f

ω  is tuned to the system fundamental resonance 

frequency e ek mω = , the transmissibility of the system under PPF control can be 

written as  

 
2

2

1 2

1
1 2

1 2
e f

j
T

g
j

m j

ζ

ζ
ζ

+ Ω
=

− Ω + Ω −
− Ω + Ω

 (2.32) 
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At frequencies much lower than the system fundamental resonance frequency, i.e. 

1Ω << , and assuming the damping in the isolator is small, the transmissibility can be 

reduced to 

 1

1

1
e

T
g

m

Ω<< ≈

−

 (2.33) 

It can be seen that PPF control adds a negative stiffness term 
e

g m−  to the system, 

which may amplify the transmissibility of the system depending on the values of g and 

e
m . At the system fundamental resonance frequency, i.e. 1Ω = , the transmissibility can 

be reduced to  

 1

1 2

1
2

2e f

j
T

g
j

m

ζ

ζ
ζ

Ω=

+
≈

 
+  

 

 (2.34) 

Thus PPF control is equivalent to a skyhook damper with damping ratio ( )2 f eg mζ  

around the system fundamental resonance frequency, so that the resonance peak can be 

effectively attenuated. At high frequencies, well above the system fundamental 

resonance frequency, i.e. 1Ω >> , the frequency response of the PPF controller rolls off 

rapidly, and thus the effect of PPF control is negligible.  

 

Figure 2.10 shows the transmissibility for the active vibration isolation system 

containing a massless isolator under PPF control with various values for control gain g, 

where the transmissibility of the system without control is also plotted for comparison. 

It can be seen that the resonance peak is attenuated by PPF control without 

compromising the high frequency isolation performance, because the frequency 

response of the PPF controller rolls off very quickly at high frequencies. However, the 

transmissibility is amplified at frequencies lower than the resonance frequency due to 

the negative stiffness determined by the specific values of g and em . 

2.4.4.2 Stability analysis 

The equation of motion for the system shown in Figure 2.8 is given by 
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 ( ) ( ) 2

e e e b e b a fm u c u u k u u f gω ξ+ − + − = =&& & &  (2.35) 

It can be rearranged as 

 

2

2 22 2
f

e e e e e e b e b

e

g
u u u u u

m

ω
ζω ω ξ ζω ω+ + − = +&& & &  (2.36) 

Combining equations (2.27) and (2.36) gives 

 

2

2 2

2 2

2 0 2

0 2 0

f

e ee e e e b e b

e

f f

f f

g
u u u u u

m

ω
ζω ω ζω ω

ζ ωξ ξ ξ
ω ω

 
−   +      

+ + =         
          − 

&& & &

&& &
 (2.37) 

To guarantee the stability of such a closed-loop system, the ‘stiffness’ matrix in equation 

(2.37) should be positive definite, that is the eigenvalues of this matrix are all positive 

[77]. Therefore, the stability condition is then given by 

 2 2

f e

e

g

m
ω ω<  (2.38) 

In the earlier discussion, to control the system fundamental resonance mode, the natural 

frequency of the PPF controller fω  was tuned to the system fundamental resonance 

frequency eω . So the stability condition given by equation (2.38) can be simplified so 

that the control gain g should be less than the mass of the equipment, i.e. eg m< . 

2.4.5 Acceleration-Position Feedback (APF) control   

APF control was first introduced as an electrical dynamic vibration absorber by Kim et 

al. [82]. Figure 2.11 shows a base excited vibration isolation system containing a 

massless isolator under APF control. The control force af , which is in parallel with the 

isolator, reacts between the equipment and the base. The control force af  is generated 

by feeding the acceleration of the equipment eu&&  through a second order low-pass filter 

in a negative sense with frequency response ( )APFH jω , which is given by 

 ( )
( )

APF 2

2

1 2

f f

f f f

H j h
j

ζ ω
ω

ω ω ζ ω ω
=

− +
 (2.39) 
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where fω  and fζ  are the natural frequency and the damping ratio of the filter 

respectively, and h is a constant control gain. The control force is then given by 

 ( )
( )

APF 2

2

1 2

f f

a e e

f f f

j
f H j u h u

j

ζ ω ω
ω

ω ω ζ ω ω
= − = −

− +
&& &  (2.40) 

It can be seen that, around the natural frequency of the APF controller, i.e. fω ω= , the 

control force can be reduced to equation (2.11), which is the active control force under 

AVF control. But at frequencies much lower or higher than its natural frequency, the 

active control force rolls off rapidly, i.e. the APF control is not sensitive to the dynamics 

in those frequency ranges. Therefore, the natural frequency of the APF controller should 

be closely matched to the mode that is required to be attenuated. 

2.4.5.1 Control performance 

The relationship between the control force and the velocities of the equipment and the 

base for the active vibration isolation system under APF control shown in Figure 2.11 is 

given by equation (2.12). Substituting equation (2.40) into (2.12), the transmissibility of 

the system under APF control is given by [82] 

 

( )
2

2

1 2

i

f f

e i

f f f

Z
T

j
Z Z h

j

ζ ω ω

ω ω ζ ω ω

=

+ +
− +

 (2.41) 

It can be seen that, around the natural frequency of the APF controller, i.e. fω ω= , the 

transmissibility can be reduced to equation (2.13), which is the transmissibility of the 

system under AVF control, so that APF control is equivalent to a skyhook damper 

around its natural frequency. However, at frequencies much lower or higher than its 

natural frequency, the effects of APF control are negligible. If the equipment is 

modelled as a mass, i.e. e eZ j mω= , and the natural frequency of the APF controller 

fω  is tuned to the system fundamental resonance frequency eω , the transmissibility of 

the system under APF control can be written as  

 
2

2

1 2

2
1 2 2

1 2

f

a

f

j
T

j
j j

j

ζ
ζ

ζ ζ
ζ

+ Ω
=

Ω
− Ω + Ω +

− Ω + Ω

 (2.42) 

Figure 2.12 shows the transmissibility for the active vibration isolation system 
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containing a massless isolator under APF control with various values for active damping 

ratio 
a

ζ , where the transmissibility of the system without control is also plotted for 

comparison. It can be seen that the transmissibility is attenuated around the system 

fundamental resonance frequency with an increase in the active damping ratio due to 

APF control. However, the transmissibility close to the system fundamental resonance 

frequency is amplified due to APF control, since the APF controller is equivalent to a 

dynamic vibration absorber. While at frequencies much lower or higher than the system 

fundamental resonance frequency, the effects of APF control are negligible, because the 

active APF control force rolls off rapidly.  

2.4.5.2 Stability analysis 

From equation (2.15), the plant response from the active force to the acceleration of the 

equipment is given by 

 

0 0b b

e e

a a e iu u

u j u j
G

f f Z Z

ω ω

= =

= = =
+

& &

&& &
 (2.43) 

Because the APF controller is not a constant gain, the open-loop frequency response is 

used to analyze the stability, which is given by 

 

( )
APF 2

2

1 2

f

e i f
f f f

j h
GH

Z Z j

ζω

ω ω ω ζ ω ω

 
 = ⋅
 + − + 

 (2.44) 

The phase shift of ( )1 e iZ Z+  is between -90º and 90º, so that the phase shift of the 

first term ( )e ij Z Zω +  is between 0º and 180º. Because the APF controller is a second 

order low-pass filter, its phase shift can thus potentially vary between -180º and 0º.  

Therefore the overall phase shift of the open-loop frequency response is between -180º 

and 180º. The APF control system containing a massless isolator undergoing base 

motion is thus unconditionally stable based on the Nyquist stability criterion. However, 

such an APF control system is not passive, and thus not robustly stable. It is sensitive to 

the unmodelled actuator dynamics and other uncertainties in the system which might 

destabilize the control system. 
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2.4.6 Comparison of the control performance 

In the above discussion, AVF, RVF, IFF, PPF and APF control can all bring active 

damping into the system around the system fundamental resonance. The comparison of 

the overall control performance for the active vibration isolation systems under these 

different control strategies can be realized by looking at their change in mean square 

response compared to the original passive system. The relationship between the power 

spectral densities of the base disturbance and equipment response can be written as [83] 

 
2

e b
S T S=  (2.45) 

where 
e

S  and 
b

S  are the power spectral densities of the equipment response and the 

base disturbance, respectively. The mean square velocity of the equipment is thus given 

by [83] 

 
22

e e b
u S d T S d

+∞ +∞

−∞ −∞

= Ω = Ω∫ ∫&  (2.46) 

Substituting the corresponding transmissibility into equation (2.46), the change in mean 

square velocity for the system under different control strategies compared to the passive 

system can be calculated. For AVF, RVF, IFF and APF control, they all have the active 

damping ratio 
a

ζ  in the transmissibility. However, the PPF control has an equivalent 

active damping ratio ( )2
f e

g mζ  around the system fundamental resonance peak. In 

order to plot the change in mean square velocity against active damping ratio 
a

ζ , the 

equivalent active damping ratio for PPF control is set to be ( )2
a f e

g mζ ζ= . Therefore, 

the range of the control gain g can be calculated according to the active damping ratio.  

 

Figure 2.13 depicts the change in mean square velocity within the range 0.1 1000< Ω <  

when 0.005ζ = , 0.5
e

m = , 0.5
f

ζ =  and 
f e

ω ω= . At high active damping ratios, 

AVF and IFF control provides increasing reduction in the mean square response. The 

performance of IFF control is determined by the mass of the equipment. In this case the 

mass of the equipment is 0.5, which is less than unity, the control performance of IFF 
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control is therefore worse than AVF control. The RVF, PPF and APF control do not 

produce monotonically reducing mean square response for an increase in active 

damping ratio. Furthermore, at 1
a

ζ = , i.e. the control gain 2
f e a e

g m mζ ζ= × = , the 

change in mean square velocity for PPF control is infinite, i.e. the PPF control system 

becomes unstable. The stability condition for PPF control given in equation (2.38) is 

thus validated. 

2.4.7 Acceleration feedback control   

Acceleration feedback control applied to a vibration isolation system containing a 

massless isolator has been investigated in several papers, for example [43, 47, 51]. 

Figure 2.14(a) shows a base excited vibration isolation system containing a massless 

isolator under acceleration feedback control. The control force 
a

f , which is in parallel 

with the isolator, reacts between the equipment and the base. The control force af  is 

proportional to the acceleration of the equipment, and fed back to the system through a 

feedback controller with a constant gain h− , so that 

 
a e e

f hu j huω= − = −&& &  (2.47) 

2.4.7.1 Control performance 

The equation of motion for the active vibration isolation system under acceleration 

feedback control shown in Figure 2.14(a) is given by equation (2.12). Substituting 

equation (2.47) into (2.12), the transmissibility of the system under acceleration 

feedback control is given by 

 i

e i

Z
T

Z Z j hω
=

+ +
 (2.48) 

If the equipment is modelled as a mass, the transmissibility can be written as [47] 

 
2

1 2

1 1 2
e

j
T

h
j

m

ζ

ζ

+ Ω
=

 
− + Ω + Ω 
 

 (2.49) 

Different from the aforementioned control strategies that all introduce active damping to 

the system, the action of acceleration feedback control for this base excited system is 
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equivalent to adding a mass h  on top of the equipment as shown in Figure 2.14(b).  

 

The magnitude of the transmissibility for the active vibration isolation system 

containing a massless isolator under acceleration feedback control is plotted in Figure 

2.15, where the transmissibility of the system without control is also plotted for 

comparison. It can be seen that the system fundamental resonance peak moves to a 

lower frequency due to the acceleration feedback control, and thus the transmissibility 

at high frequencies is reduced.  

2.4.7.2 Stability analysis 

For acceleration feedback control, because the controller is a constant gain, the plant 

response of the system from the active force to the equipment acceleration can be used 

for the stability analysis, which is given by equation (2.43). The overall phase shift of 

the plant response is between 0º and 180º, and thus the acceleration feedback control 

system containing a massless isolator undergoing base motion is unconditionally stable. 

However, such a control system is not completely passive, and thus not robustly stable. 

2.4.8 Optimal control 

To find the best control strategy in attenuating the equipment response, the optimal 

control for active vibration isolation system containing a massless isolator undergoing 

base motion has been investigated [6]. Figure 2.16 shows a base excited system 

containing a massless isolator under optimal control. The equipment is modelled as a 

rigid mass. The massless isolator is modelled as an elastic spring in parallel with a 

viscous damper. The dynamics of such a system is described by 

 ( ) ( )e e e b e b am u c u u k u u f+ − + − =&& & &  (2.50) 

which can be rearranged as 

 
1

e e e a b b

e e e e e

c k c k
u u u f u u

m m m m m
= − − + + +&& & &  (2.51) 

The state space representation for such a system has the form 

 afx=Ax+b +Dy&  (2.52) 

where  
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0 1 0 0 0

, , , ,1x  A  b  D  y
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e b

e e e e e

u u
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u u
m m m m m

     
        = = = = =        − −             
& &

  

  (2.53a,b,c,d,e) 

 

The general quadratic performance index which is to be minimized is given by [6, 74] 

 ( )
0

a a
J f f dt

∞
′′= +∫ x Qx R  (2.54) 

where the prime denotes the transpose of the matrix, Q  is a positive-definite or 

positive-semidefinite real symmetric matrix and R  is a positive-definite real 

symmetric matrix. If one chooses 

 ( ) [ ] ( )
0 0

0 , 0
0

Q   R  q r r
q

 
= ≥ = > 
 

 (2.55a,b) 

The performance index can be written as 

 ( )2 2

0
e aJ qu rf dt

∞

= +∫ &  (2.56) 

where q is a weighting on the mean square velocity of the equipment mass and r is a 

weighting on the mean square control effort applied. The control force required to 

minimize the performance index is given by [6, 74] 

 af ′= − -1
R b Px  (2.57) 

where 

 
11 12

12 22

p p

p p

 
=  
 

P  (2.58) 

is a positive-definite real symmetric matrix to ensure the control is stable, and satisfies 

the reduced-matrix Riccati equation 

 0′ ′ =-1A P+PA-PbR b P+Q  (2.59) 

Substituting the appropriate matrices into the reduced-matrix Riccati equation, three 

equations in terms of the unknown elements 11p , 12p  and 22p  result. They are given 

by 
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12 122

11 12 22 12 222

2
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1
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e e

e e e

e e

k
p p

m rm

c k
p p p p p

m m rm
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p p p q

m rm

− − =

− − − =

− − + =

 (2.60a,b,c) 

There are two solutions to equation (2.60a) given by 

 12 120,  2 ep p rkm= = −  (2.61a,b) 

The solution to equation (2.60c) can be written as 

 2 12
22

2
e

p q
p rm c c

r

 +
= ± + −  

 
 (2.62) 

Finally equation (2.60b) shows that 

 11 12 22 12 222

1

e e e

c k
p p p p p

m m rm
= + +  (2.63) 

 

Because the matrix P is positive-definite, one has 

 
11 12 2

11 11 22 12

12 22

0, 0
p p

p p p p
p p

> = − >  (2.64a,b) 

Combining equations (2.61-2.64), the only solution that ensures the matrix P is 

positive-definite is given by 
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0 e
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P  (2.65) 

Substituting appropriate matrices into equation (2.57), the control force is thus given by 

 ( ) 2

12 22

1
a e e e

e

q
f p u p u c c u

rm r

 
= − + = − + −  
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& &  (2.66) 

It can be seen that the optimal control strategy to minimise the mean square velocity of 

the equipment mass is precisely the AVF control, which results in skyhook damping of 

the controlled system [6]. If the damping in the system is negligible, i.e. 1c << , the 

control force given by equation (2.66) can be reduced to 
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 a e

q
f u

r
= − &  (2.67) 

which is identical to the result derived by Fuller et al. [6]. The feedback control gain for 

optimal control is thus given by q r , which is a simple function of the ratio of the 

relative penalty on minimising mean square equipment velocity response and mean 

square control effort. The smaller the control effort weighting r, the higher the feedback 

control gain, and thus the better the control performance. 

2.4.9 Summary 

The control performance and stability of active vibration isolation systems containing a 

massless isolator under different control strategies have been reviewed and compared. 

AVF control introduces skyhook damping to the system, which is effective in 

attenuating the resonance peak. Also AVF control has shown to be robustly stable for a 

base excited system, while it becomes conditionally stable if both the equipment and 

base dynamics are included. RVF control is equivalent to a viscous damper between the 

equipment and the base. Thus in this case there is a trade-off between the isolation 

performance at the resonance frequency and the isolation performance at high frequency, 

although RVF control is always unconditionally stable. If the equipment is a rigid mass, 

IFF control also introduces skyhook damping to the system. Although IFF control is not 

robustly stable for a base excited system, it remains unconditionally stable even if the 

base has its own resonance behaviour. Both PPF and APF controllers are second order 

filters that introduce active damping at the system fundamental resonance frequency, 

and then roll off rapidly at high frequencies, so that they are not sensitive to spillover at 

high frequencies. However, the PPF controller needs to be carefully designed to control 

a specific mode, and it may cause amplification at low frequencies due to the negative 

stiffness introduced. APF control is not robustly stable and thus very sensitive to the 

unmodelled actuator dynamics and other uncertainties in the system which might 

destabilize the control system. Different from other control methods, acceleration 

feedback control is equivalent to adding a mass onto the equipment, so that the 
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resonance peak moves to a lower frequency and the equipment response at high 

frequencies is reduced. Finally the study for optimal control shows that, to minimise the 

mean square velocity of the equipment mass, AVF control is the optimal solution.  

 

2.5 Conclusions 

Previous research on vibration isolation systems containing a massless isolator, which is 

modelled as an elastic spring in parallel with a viscous damper, has been reviewed and 

summarized. The compromise in the choice of damping in passive vibration isolation 

has been demonstrated. The concepts of single channel feedback control have been 

introduced together with the Nyquist stability criterion. The control performance and 

stability of active vibration isolation systems containing a massless isolator under 

various control strategies have been analyzed and compared. The different control 

strategies have their own advantages and disadvantages in isolating a piece of 

equipment undergoing base excitation based on the massless isolator model. It is shown 

that AVF control is an optimal solution to minimise the mean square velocity of the 

equipment mass.  

 

The concepts and methodologies introduced in this chapter are applied to the vibration 

isolation systems containing a distributed parameter isolator discussed in the following 

chapters. 
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Figure 2.1 Schematic diagram of a vibration isolation system containing a massless 

isolator undergoing base motion, where eu&  and bu&  are velocities of the equipment 

and the base respectively; eZ  is the input impedance of the unconnected equipment at 

the location of the isolator connection; k is the spring stiffness and c is the damping 

coefficient of the viscous damper. 

 

Figure 2.2 Schematic diagram of a single channel feedback control system. 

 

Figure 2.3 Equivalent block diagram of the single channel feedback control system 

shown in Figure 2.2. 
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Figure 2.4 (a) schematic diagram and (b) mechanical representation of a base excited 

system containing a massless isolator under AVF control, where h is the constant 

feedback control gain and af  is the active control force.  
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Figure 2.5 Transmissibility of the active vibration isolation system under AVF control 

with 0.005ζ =  and the active damping ratio 0aζ =  (solid line), 0.1aζ =  (dashed 

line) or 0.5aζ =  (dotted line). 

Figure 2.6 (a) schematic diagram and (b) mechanical representation of a base excited 

system containing a massless isolator under RVF control.  
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Figure 2.7 Schematic diagram of a base excited system containing a massless isolator 

under IFF control, where ( )IFFH jω  is the frequency response of the IFF controller 

and Tf  is the transmitted force to the equipment. 

 

Figure 2.8 Schematic diagram of a base excited system containing a massless isolator 

under PPF control, where eu  is the displacement of the equipment and ( )PPFH jω  is 

the frequency response of the PPF controller. 
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Figure 2.9 Frequency response of the PPF controller when the natural frequency of the 

filter 5fω = , the damping ratio of the filter 0.5fζ =  and the gain 0.5g = . 
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Figure 2.10 Transmissibility of the active vibration isolation system under PPF control  

when 0.005ζ = , f eω ω= , 0.5fζ = , the mass of the equipment 2em =  and 0g =  

(solid line), 0.5g =  (dashed line) or 0.9g = (dotted line). 

 

Figure 2.11 Schematic diagram of a base excited system containing a massless isolator 

under APF control, where eu&&  is the acceleration of the equipment and ( )APFH jω  is 

the frequency response of the APF controller. 
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Figure 2.12 Transmissibility of the active vibration isolation system under APF control 

with 0.005ζ = , f eω ω= , 0.5fζ =  and 0aζ =  (solid line), 0.1aζ =  (dashed line) 

or 0.5aζ =  (dotted line). 
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Figure 2.13 Normalized change in mean square velocity for the system under AVF 

(solid line), RVF (dashed line), IFF (dotted line), PPF (line with circle) and APF 

(dashed-dotted line) control compared to the passive system when 0.005ζ = , 0.5em = , 

f eω ω=  and 0.5fζ = .  
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Figure 2.14 (a) schematic diagram and (b) mechanical representation of a base excited 

system containing a massless isolator under acceleration feedback control.  
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Figure 2.15 Transmissibility of the vibration isolation system under acceleration 

feedback control when 0.005ζ =  and 0h =  (solid line), 0.5eh m =  (dashed line) 

or 5eh m =  (dotted line). 

 

Figure 2.16 Schematic diagram of a base excited system containing a massless isolator 

under optimal control. 
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Chapter 3 

 

Passive Vibration Isolation with a Distributed 

Parameter Isolator 

 

 

3.1 Introduction 

As described in Chapter 2, traditional vibration isolation models, in which the mass of 

isolator is assumed to be negligible, offer a wealth of information about vibration 

isolation and basic guidelines for isolation design. However, this assumption is only 

valid at frequencies which are low enough that the wavelength in the isolator is long 

compared to its size, as discussed in Chapter 1 [12, 20]. At higher frequencies, the 

predictions based on a massless isolator model are no longer accurate, and may be 

misleading due to the internal mass effects of the isolator that are ignored. Due to 

industrial trends towards more complex equipment and machines, greater operating 

speeds and higher power ratings, vibration isolation is becoming important at high 

frequencies, where traditional massless isolator models fail to perform satisfactorily. A 

model incorporating a distributed parameter isolator is thus necessary for high 

frequency isolation analysis. 

 

The aim of this chapter is to investigate, theoretically and experimentally, the 

characteristics of a passive vibration isolation system containing a distributed parameter
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isolator. First, different distributed parameter models for the isolator are presented. 

Their characteristics in isolating a piece of equipment (a rigid mass) from base motion 

are investigated. The way in which various system parameters affect the response of the 

system at various frequencies is then discussed. Experimental work on a mass supported 

by a helical spring is presented to support and validate the theoretical results. Finally, 

the characteristics of a passive vibration isolation system containing a distributed 

parameter isolator on a flexible base are investigated. 

 

3.2 System undergoing base motion 

Passive vibration isolation systems containing a distributed parameter isolator 

undergoing base motion are investigated in this section.  

3.2.1 Theoretical analysis 

As mentioned in Chapter 1, the various types of realistic isolator (for example the 

compression and leaf springs in automotive suspension, viscoelastic engine mounts, 

etc...) can be modelled as different idealised configurations under various types of 

deformation. Figure 3.1 depicts the passive vibration isolation systems containing a 

piece of equipment supported by a distributed parameter isolator under different types 

of excitation (e.g. longitudinal, torsional, or lateral vibration). These distributed 

parameter models for a realistic isolator can be categorized into two types for the 

purpose of dynamic analysis. One type can be modelled using a second order partial 

differential equation, and is called a non-dispersive isolator, since the wave speed is 

independent of frequency. The other type can be modelled using a fourth or higher order 

partial differential equation, and is called a dispersive isolator, since the wave speed is 

dependent on frequency. In Figure 3.1 the distributed parameter isolator is modelled as a 

finite elastic rod under longitudinal vibration (Figure 3.1(a)) or torsional vibration 

(Figure 3.1(c)), or a beam under lateral vibration (Figure 3.1(e)), respectively. The rod 

in Figure 3.1(a, c) can be categorized as a non-dispersive isolator. The beam in Figure 
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3.1(e) can be categorized either as a non-dispersive isolator if it is represented as a shear 

beam, or a dispersive isolator if it is represented as an Euler-Bernoulli beam dominated 

by bending.  

 

The generalized dynamics of the systems containing a distributed parameter isolator 

shown in Figure 3.1 are described by 

 

2

1 11 12

2 21 22

e e e

b b

e e

Q Q Z u

u uQ Z Z

u uQ Z Z

= − =

      
= =      

      
IZ

&

& &

& &

 (3.1a,b) 

where eQ , 1Q  and 2Q  are the internal forces shown in Figure 3.1(b) and (f), or 

moments shown in Figure 3.1(d); eu&  and bu&  are velocity in Figure 3.1(b) and (f), or 

angular velocity in Figure 3.1(d) of the equipment and the base respectively; eZ  is the 

input impedance of the unconnected equipment at the location of the isolator connection; 

I LZ Z= , TZ , SZ  (for shear beam) or BZ  (for Euler-Bernoulli beam) is the 

impedance matrix for the different isolator models and is discussed further below; and 

the subscripts 1 and 2 in the impedance matrix refer to the positions at the base and 

equipment respectively. From equations (3.1a, b), the transmissibility for all the systems 

shown in Figure 3.1 has the same form and can be written as [72] 

 21

22

e

b e

u Z
T

u Z Z

−
= =

+

&

&
 (3.2) 

The performance of passive vibration isolation systems containing such isolators is 

investigated and compared in the following sections. 

3.2.1.1 Non-dispersive isolator 

For the rod isolator under longitudinal vibration shown in Figure 3.1(a), the impedance 

matrix is given by [84, 85] (the detailed derivation can be found in Appendix A) 

 
( )

( )
( )

*
*

11 12

* *
21 22

cos 1

sin 1 cos
LZ =

l

l l

k LZ Z S E

Z Z j k L k L

ρ  −   =   −   

 (3.3) 

where L, S, *E , ρ  are the length, cross-sectional area, Young’s modulus and density 

of the isolator respectively; to account for damping in the isolator, the Young’s modulus 
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is assumed to be complex, i.e. ( )* 1
l

E E jη= + , where lη  is the loss factor; 

( )* 1 2l l lk k jη≈ − , where lk Eρ ω=  is the longitudinal wavenumber in the 

undamped isolator, and ω  is angular frequency.  

 

For the rod isolator under torsional vibration shown in Figure 3.1(c), the impedance 

matrix is given by [84, 85] (the detailed derivation can be found in Appendix A) 

 
( )

( )
( )

*
*

11 12

* *
21 22

cos 1

sin 1 cos
TZ =

s
s

s s

k LZ Z J G

Z Z j k L k L

ρ  −   =   −   

 (3.4) 

where sJ  is the polar second moment of area of the isolator; ( )* 1
s

G G jη= +  is the 

complex shear modulus, where sη  is the loss factor; ( )* 1 2s s sk k jη≈ − , where 

sk Gρ ω=  is the shear wavenumber in the undamped isolator.  

 

Similarly for the shear beam isolator under lateral vibration in Figure 1(e), the 

impedance matrix is given by [86] (the detailed derivation can be found in Appendix A) 

 
( )

( )
( )

*
*

11 12

* *
21 22

cos 1

sin 1 cos
SZ =

s

s s

k LZ Z S G

Z Z j k L k L

ρ  −   =   −   

 (3.5) 

 

Substituting the appropriate impedances in equations (3.3-3.5) into (3.2), and letting 

e eZ j mω= , where em  is the mass of the equipment in Figures 3.1(a) and (e); 

e eZ j Jω= , where eJ  is the polar moment of inertia of the equipment in Figure 3.1(c); 

i l sη η η= = , where the subscript i refers to the isolator; the generalized transmissibility 

can be written in non-dimensional form as 

 
1

cos 1 1 sin 1
2 2 2

i i i
i i

i

T

j j j
η η η

µ µ
µ

=
   Ω     

− Ω − − − Ω        
        

 (3.6) 

where eω ωΩ =  is the ratio of the driving frequency ω  to the system fundamental 

natural frequency eω  due to the interaction of the equipment mass and the static 

stiffness of the isolator. For the rod isolator, e L eK mω =  where LK ES L=  is the 

static longitudinal stiffness of the isolator; i eSL mµ ρ=  is the ratio of the mass of the 
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isolator to the mass of the equipment. For the torsional isolator, e T eK Jω =  where 

T sK GJ L=  is the static torsional stiffness of the isolator; i s eJ L Jµ ρ=  is the ratio 

of the polar moment of inertia of the isolator to the polar moment of inertia of the 

equipment. For the shear beam isolator, e S eK mω =  where SK GS L=  is the 

static shear stiffness of the isolator and i eSL mµ ρ=  is also the ratio of the mass of 

the isolator to the mass of the equipment. 

 

The transmissibility for the passive vibration isolation systems with a non-dispersive 

isolator is plotted in Figure 3.2 for the case in which 0.1iµ =  and 0.01iη = . For 

comparison, the transmissibility of a system containing a massless isolator is also 

plotted. The transmissibility for a non-dispersive isolator has a peak at a frequency close 

to that of the fundamental resonance when the isolator is massless. The transmissibility 

for a non-dispersive isolator, however, is greater than that for the massless isolator, at 

high frequencies ( 1Ω >> ), due to the effects of the IRs. Some characteristic lines are 

also plotted and identified. The dashed line called the ‘maximum’ line is through the IR 

peaks in the transmissibility. The dotted line is the ‘minimum’ line of the 

transmissibility across the isolator. The point circled corresponds to the frequency at 

which the transmissibility of a system with a non-dispersive isolator and a system with a 

massless isolator start to deviate, i.e. the wave effects in the isolator becomes 

detrimental to the isolator performance. The characteristic lines and point are 

determined below: 

� Maximum line 

The natural frequencies of a fixed-fixed rod occur when ( )sin 0iµ Ω = . At relatively 

low frequencies, assuming light damping in the isolator, i.e. 1iη <<  and light isolator 

compared to the equipment mass, i.e. 1iµ << , gives  

 
1

1
2

i iη µ Ω <<  (3.7) 

So using small angle approximations and considering ( )sin 0iµ Ω = , one has 
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cos 1 1
2

1
sin 1

2 2

i
i

i
i i i

j

j j

η
µ

η
µ η µ

  
− Ω ≈ ±  

  

  
− Ω ≈ Ω  

  
m

 (3.8a,b) 

Substituting equations (3.8a, b) into (3.6) gives 

 
1

1
1 1

2 2
i

i i

i

T

j j
η

η µ
µ

=
Ω  

+ − Ω 
 

 (3.9) 

Assuming that the imaginary part of equation (3.9) dominates around the IR frequencies 

in the isolator, the maximum line is given by 

 
2max

2 1

i

T
η

≈
Ω

 (3.10) 

This equation is a function of the loss factor iη  and frequency ratio Ω . It decreases at 

a rate of 40 dB per decade. From this equation, it should be noted that increasing 

damping in the isolator or decreasing the system fundamental resonance frequency are 

effective in attenuating the IR peaks.  

 

The maximum line can also been derived from another point of view. The equations of 

motion described in equations (3.1a, b) can be rearranged as 

 ( )22 21e e b BZ Z u Z u f+ = − =& &  (3.11) 

where the blocked force Bf  is the force transmitted from the base excitation by the 

attachment point between the equipment and the isolator to an infinitely rigid fixed 

point [87]. Based on this equation, the Thevenin equivalent system [87] is shown in 

Figure 3.3. 

 

At IR frequencies in the lightly damped rod isolator under longitudinal vibration, 

assuming ( )sin 0lk L =  and 1iη << , one has 

 ( ) ( )* * 1
cos 1, sin

2
l l i lk L k L j k Lη≈ ± ≈ m  (3.12a,b) 

Substituting equations (3.12a, b) into the point and transfer impedances of the finite rod 

shown in equation (3.3) gives 
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 21 22

2 2
,  L L

i i

K K
Z Z

η ω η ω
= ± =  (3.13a,b) 

Now, the impedance for a viscous damper is real and independent of frequency, so the 

non-dispersive isolator behaves as a frequency dependent damper with equivalent 

damping coefficient 2eq L ic K η ω=  at its IR frequencies. The blocked force in Figure 

3.3 at the IR frequencies is thus given by 

 21

2 L
B b b

i

K
f Z u u

η ω
= − =& &m  (3.14) 

So the blocked force is determined by the loss factor iη  and static stiffness LK  of the 

isolator. A high loss factor iη  or low static stiffness LK  means smaller forces 

transmitted to the equipment and the isolator. Therefore, increasing iη  or decreasing 

LK , which is equivalent to a decrease in the system fundamental resonance frequency, 

is effective in attenuating the effects of the IRs in the isolator. This solution is the same 

as that concluded from equation (3.10). 

 

In Figure 3.3 it is clear that the equipment response is governed by the total impedance 

of the system, which is given by 

 22t eZ Z Z= +  (3.15) 

At relatively high frequencies, if the equipment has a mass-like impedance 

(i.e. e eZ j mω=  which increases with frequency), the point impedance 22Z  can be 

ignored in equation (3.15) because even its maxima (which occurs at IR frequencies 

given by equation (3.13b), and decreases with frequency) is small compared to the 

equipment impedance. Therefore, the equipment mass dominates the response at 

relatively high frequencies. Equation (3.15) can thus be rewritten as 

 t e eZ Z j mω≈ =  (3.16) 

Therefore, at relatively high frequencies, the transmissibility of the system can be 

simplified and given by 

 21

e

Z
T

Z

−
≈  (3.17) 

Substituting equation (3.13a), which describes the transfer impedance 21Z  at IR 
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frequencies in the isolator, into (3.17), and noting that e eZ j mω= , the maximum line is 

given by 

 
2 2max

2 2 1L

i e i

K
T

mη ω η
≈ =

Ω
 (3.18) 

which is identical to the maximum line given by equation (3.10). 

� Minimum line 

Assuming light damping in the isolator, i.e. 1iη << , and considering ( )sin 1iµ Ω = ±  

gives 

 

sin 1 1
2

1
cos 1

2 2

i
i

i
i i i

j

j j

η
µ

η
µ η µ

  
− Ω ≈ ±  

  

  
− Ω ≈ ± Ω  

  

 (3.19a,b) 

Substituting equations (3.19a, b) into (3.6), the minimum line can be approximated by 

 
min

1
iT µ≈

Ω
 (3.20) 

which is a function of the mass (or polar moment of inertia) ratio iµ  and frequency 

ratio Ω . The minimum line decreases at a rate of 20 dB per decade, compared to the 

roll-off rate of 40 dB per decade for the massless isolator. It shows that the 

transmissibility for the non-dispersive isolator rolls off at a lower rate than that for the 

massless isolator at relatively high frequencies due to the IR effects. Substituting the 

appropriate iµ  and Ω  into equation (3.20) gives 

 
min

 or  or s

e e e

S E J G S G
T

m J m

ρ ρ ρ

ω ω ω
≈  (3.21) 

It can be seen that the minimum line is independent of the isolator length. Therefore, to 

improve the performance of the isolator its mass, polar moment of inertia or natural 

frequency can be adjusted by changing the isolator parameters except for the length. 

 

The minimum line can also be derived based on the Thevenin equivalent system shown 

in Figure 3.3. Substituting ( )sin 1lk L = ±  into the transfer impedance in equation (3.3), 

the minimum of the transfer impedance 21Z , i.e. the minimum of the blocked force Bf  

is determined by 
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 21 L iZ j K m= ±  (3.22) 

where im SLρ=  is the mass of the isolator. Substituting equation (3.22) into (3.17), 

which describes the transmissibility of the system at relatively high frequencies, the 

minimum line can be determined to give 

 
min

1L i

i

e

K m
T

m
µ

ω
≈ =

Ω
 (3.23) 

which is identical to the minimum line given by equation (3.20). 

� Crossing point 

If the isolator mass is negligible, i.e. 1iµ <<  and its damping is small, the expression 

for the transmissibility reduces to 

 
2massless

1

1
T ≈

− Ω
 (3.24) 

Because the crossing point corresponds to the frequency at which the transmissibility 

for a non-dispersive isolator starts to differ from that for a massless isolator, one can 

assume
min massless

T T= . By setting equations (3.20) and (3.24) to be equal and assuming 

that 1iµ << , the crossing point is given by 

 
1

,  i

i

T µ
µ

Ω ≈ ≈  (3.25) 

which is only a function of the mass (or polar moment of inertia) ratio 
i

µ . This shows 

that, for a specific fixed equipment, the mass or the polar moment of inertia of the 

isolator is crucial to the isolator performance. The lighter the isolator, the higher the 

frequency at which the transmissibility for a non-dispersive isolator starts to differ from 

that for a massless isolator, i.e. the better the isolator performance. 

3.2.1.2 Dispersive isolator 

Distributed parameter isolators, where bending motion is dominant, may be represented 

by a dispersive system, which can be modelled using a fourth or higher order 

differential equation. In Figure 3.1(e), the distributed parameter isolator can be 

represented by an Euler-Bernoulli beam undergoing lateral vibration as an example of a 

dispersive isolator. One end of the isolator is sliding under external excitation. The 
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equipment represented by impedance eZ  is supported by the other end of the isolator. 

It is assumed that the equipment connects to the isolator by an internal force only (any 

internal moments are assumed to be negligible). 

 

For a finite sliding-free Euler-Bernoulli beam, assuming there is no rotation at the 

sliding end and there is no bending moment at the free end, the impedance matrix is 

given by (the detailed derivation can be found in Appendix A) 

 
11 12

21 22

BZ
Z Z

Z Z

 
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 (3.26) 
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 (3.27a,b,c) 

where I  is the second moment of area about the neutral axis of the isolator, 

* (1 4)b b ik k jη≈ − , where 4
bk S EIρ ω=  is the bending wavenumber in the 

undamped isolator. 

 

If the equipment has a mass-like impedance, i.e. e eZ j mω= , and the appropriate 

impedances in equations (3.27b, c) are substituted into equation (3.2), the 

non-dimensional transmissibility can be written as 

 
* * 2 * * * *

4
* * 3 * *

1

1 cos cosh 3 sin cosh cos sinh
1
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i

T

j
ηγ γ γ γ γ γ

γ γ µ γ γ

=
+ Ω − 
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 (3.28) 

 * 241 3 1
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i i
ij j

η η
γ γ µ

   
= − = Ω −   

   
 (3.29) 

where / eω ωΩ =  is the ratio of the driving frequency ω  to the system fundamental 

natural frequency eω ; /e B eω K m=  where 33 /
B

K EI L=  is the static bending 

stiffness of the isolator; /i eSL mµ ρ=  is the ratio of the mass of the isolator to the mass 

of the equipment. 
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The transmissibility of the passive isolation system with a dispersive isolator is plotted 

in Figure 3.4 for 0.1iµ =  and 0.01iη = . The transmissibility of such a system 

containing a massless isolator is also plotted for comparison. The transmissibility for a 

dispersive isolator has a peak at a frequency close to that of the fundamental resonance 

when the isolator is massless. The transmissibility for a dispersive isolator, however, is 

greater than that for the massless isolator, at high frequencies ( 1Ω >> ), due to the 

effects of the IRs. Similar characteristic lines and point to those plotted in Figure 3.2 are 

also depicted in Figure 3.4 to describe the transmissibility. The characteristic lines and 

point are determined in a similar way to those for the non-dispersive isolator. The 

detailed procedure is as follows: 

� Maximum line 

At relatively high frequencies, i.e. 1γ >> , assuming that the damping in the isolator is 

very small, i.e. 1iη << , one has 

 * *sinh cosh 1γ γ≈ >>  (3.30) 

Applying the conditions given in equation (3.30) to (3.28), the transmissibility can be 

simplified for 1Ω >>  and is given by 

 

( )
2

* * *
4

3

1

3
cos sin cos

i

T

γ γ γ
µ

≈
Ω

− −

 (3.31) 

The natural frequencies of the sliding-free beam occur when 

 sin cosh cos sinh 0γ γ γ γ− =  (3.32) 

So, at relatively high frequencies, one has 

 tan tanh 1γ γ= ≈  (3.33) 

Therefore at IRs in the sliding-free beam which occur at relatively high frequencies, one 

has 

 
1

sin cos
2

γ γ≈ = ±  (3.34) 

Using small angle approximations and equation (3.34) gives 
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Therefore, applying the conditions given in equations (3.35a, b) to (3.31), and assuming 

that the imaginary part of equation (3.31) dominates around the IR frequencies, the 

maximum line is given by 

 
max

2 2 1

3

i

i

T
µ

η
≈

Ω
 (3.36) 

Different from the maximum line for the non-dispersive isolator, it is a function of not 

only the loss factor iη  and frequency ratio Ω , but the mass ratio iµ  as well. 

Increasing damping in the isolator or decreasing the system fundamental resonance 

frequency are again effective in attenuating these peaks. Substituting the appropriate iµ  

and Ω  into equation (3.36) gives 

 
max

2 2 1

e i

EI S
T

m L

ρ

η ω
≈  (3.37) 

It can be seen that, to suppress the IR peaks, the isolator mass can be adjusted by 

reducing its density or cross-section area, but increasing its length. It should be noted 

that the IR peaks decrease at a rate of 20 dB per decade, rather than 40 dB per decade 

for the non-dispersive isolator.  

� Minimum line 

As shown in equation (3.31), the transmissibility of the system at relatively high 

frequencies achieves its minima when ( )* *sin cosγ γ−  is maximum, which is given by 

 * *

max
sin cos 2γ γ− =  (3.38) 

Substituting equation (3.38) into (3.31), the minimum line is approximately given by 

 
3

4
min

1

12

iT
µ

≈
Ω

 (3.39) 

which is a function of the mass ratio iµ  and frequency ratio Ω . It decreases at a rate 

of 10 dB per decade, compared to the rate of 40 dB per decade for the massless isolator 

and 20 dB per decade for the non-dispersive isolator. Substituting the appropriate iµ  

and Ω  into equation (3.39) gives 
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≈  (3.40) 

It can be seen that the minimum line is independent of the isolator length. Therefore, to 

improve the performance of the isolator its mass or natural frequency can be adjusted by 

changing the isolator parameters except for the length. 

� Crossing point 

By setting equations (3.39) and (3.24) to be equal, i.e. 
min massless

T T=  and assuming 

that 1iµ << , the crossing point is given by 

 6

3

1 1
12 ,  

12
i

i

T µ
µ

Ω ≈ ≈  (3.41) 

which is only a function of the mass ratio iµ . Similar to the non-dispersive isolator, it 

shows that the lighter the isolator, the better the isolator performance. 

3.2.1.3 Summary 

From the discussion of passive vibration isolation systems containing either a 

non-dispersive isolator or a dispersive isolator, the characteristics of the distributed 

parameter isolators are summarized in Table 3.1. It shows that three factors are crucial 

in the isolation performance of the distributed parameter isolator, namely the mass (or 

polar moment of inertia) ratio iµ , the loss factor in the isolator iη  and frequency ratio 

Ω . The IR peaks can be suppressed effectively by increasing the damping in the 

isolator or decreasing the system fundamental resonance frequency. Also, it shows that 

the lighter the isolator the better the isolation performance. However, it should be noted 

that the minimum line of the transmissibility is independent of the isolator length. 

 

It can be seen that, compared to the non-dispersive isolator, the IRs for the dispersive 

isolator have a lower density with respect to frequency and occur at much higher 

non-dimensional frequencies. Generally, in practice, the IRs in the dispersive isolator 

can be attenuated to a large extent compared to those in the non-dispersive isolator, 

since more damping can be incorporated more easily into dispersive isolators, e.g. 

flexural springs [56]. Therefore, in practice the undesirable effects of IRs on the 

isolation performance for the non-dispersive isolator are more significant than that for 
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the dispersive isolator. The distributed parameter isolator is thus modelled as a finite 

elastic rod under longitudinal vibration in the following analysis  

3.2.2 Experimental validation on a helical spring 

A helical spring can be modelled theoretically as an equivalent finite elastic rod under 

longitudinal vibration for simplicity [20, 21]. Both objects can be modelled as 

distributed parameter elements, because their stiffness and mass are spread uniformly 

throughout their length. Therefore, an experiment using a helical spring, as an example 

of a non-dispersive isolator, was conducted to validate the theoretical findings for the 

distributed parameter isolator.  

3.2.2.1 Experimental setup 

An experimental rig was built as illustrated in Figure 3.5, which consisted of a rigid 

equipment mass supported by a helical spring. The equipment mass was excited by an 

electromagnetic shaker (LDS V201) along the centre axis of the helical spring. The 

shaker was driven with broadband noise. The characteristic properties of the equipment 

and the spring are listed in Table 3.2. Three accelerometers (PCB type 352C22) 

symmetrically attached to the top of the equipment were used to measure the 

acceleration response of the equipment. The outputs of these three accelerometers were 

averaged to eliminate the effect of any rotation. One accelerometer attached to the 

centre of the bottom of the helical spring was used to sense the acceleration response of 

the inelastic base, so that the transmissibility of the equipment to the base motion can be 

calculated. A dynamic signal analyser (Data Physics-Signalcalc Mobilyzer II) was used 

to both drive the system through a power amplifier (Ariston AX-910) and acquire the 

acceleration data above and below the isolator.  

3.2.2.2 Experimental validation 

As presented theoretically, the non-dimensional transmissibility of the passive vibration 

isolation system containing a rod isolator and its characteristics are given by equations 

(3.6), (3.10), (3.20), (3.24) and (3.25), respectively, in which / eω ωΩ = , 
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/e L eK mω = , LK  is the static stiffness of the isolator, and iµ  is the ratio of the 

mass of the isolator to the mass of the equipment. The predicted results for the 

transmissibility of the experimental system can be obtained by substituting for the static 

stiffness of the helical spring and the ratio of the mass of the spring to the mass of the 

equipment into the corresponding equations. The static stiffness of a helical spring is 

given by [88] 

 
4

38
s

Gd
K

nD
=  (3.42) 

where G is the shear modulus, d and D are wire diameter and mean diameter of the coil 

respectively and n is the number of active coils of the helical spring. The detailed 

derivation of the static stiffness of a helical spring is presented in Appendix B. The 

mass of the helical spring is given by 

 
2 2

4
s

NDd
m

π ρ
=  (3.43) 

where ρ  and N are the density and the number of complete coils of the spring 

respectively. So the ratio of the mass of the helical spring to the mass of the equipment 

is given by 

 
2 2

4
s

e

NDd

m

π ρ
µ =  (3.44) 

Furthermore, the longitudinal IR frequencies in a helical spring can be predicted by 

  (in / ) ( 1,2,3...)s
s

s

K
n rad s n

m
ω π= =  (3.45) 

The detailed derivation can be found in Appendix B. 

 

According to the parameters of the helical spring listed in Table 3.2, the appropriate 

static stiffness sK  was calculated as 5851 N/m and the mass ratio sµ  used in the 

experiment was calculated as 0.125.  

 

Figure 3.6 shows the measured and predicted transmissibility with the characteristic 

lines and point of intersection. The first three IRs in the helical spring can clearly be 

observed between 200 and 800 Hz, which are well predicted (with less than 3% error) 

by equation (3.45) to be at 246.7 Hz, 493.4 Hz and 740.1 Hz. The experimental results 
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agree reasonably well with the prediction, although there are some small measured 

peaks between the resonance peaks possibly due to effects of rotational response. The 

undesirable effects of IRs in the distributed parameter isolator on the isolation 

performance compared to a massless isolator are clearly shown in the experimental 

results, with the transmissibility being greater than unity at the first IR as well as at the 

fundamental mounted resonance frequency. In addition, this result demonstrates that an 

equivalent elastic finite rod is a good representation for the distributed parameter model 

for a helical spring. The simple characteristic expressions shown in equations (3.10), 

(3.20) and (3.25) predict and describe the isolation performance of a distributed 

parameter isolator fairly accurately in the experiment. 

 

3.3 System on a flexible base 

In practice, the base structure is not usually rigid. Typically it possesses its own 

dynamics. Therefore, the performance and characteristics of a passive vibration 

isolation system containing a distributed parameter isolator on a flexible base are 

discussed in this section.  

 

Figure 3.7 shows an isolated equipment represented by its impedance eZ  mounted on 

a structure that possesses its own dynamics and is represented by a base impedance bZ  

under excitation of primary force f  applied to the base. The distributed parameter 

isolator is modelled as a finite elastic rod. The equations of motion of such system are 

given by equations (3.1a, b) and 

 1b b bZ u f Q f Q= + = −&  (3.46) 

where bQ  is an internal force. The velocity of the equipment is thus given by [72] 

 e ebu Y f=&  (3.47) 

where 

 
( )( )

21
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e b

Z
Y

Z Z Z Z Z Z

−
=

+ + −
 (3.48) 
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is the transfer mobility from the force, f  on the base to the equipment velocity, eu&  

when the system is connected (the detailed derivation can be found in Appendix C). 

 

If the equipment has a mass-like impedance, i.e. e eZ j mω=  and the base structure is 

modelled as a mass bm  on a complex spring, i.e. * (1 )b b bK K jη= + , where bη  is the 

loss factor, the non-dimensional amplitude ratio of system can be written as 
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 (3.49) 

where 
e

u  is the displacement of the equipment, 
st b

f Kδ =  is the static deflection of 

the base, 1b e k bω ω µ µΓ = =  is the natural frequency ratio with b b bK mω =  is 

the natural frequency of the base, k L bK Kµ =  is the stiffness ratio, and b b em mµ =  

is the ratio of the mass of the supporting base structure to the mass of the mounted 

equipment. 

 

Figure 3.8 depicts the amplitude ratio of the passive vibration isolation systems on a 

flexible base with a non-dispersive isolator. For comparison, the amplitude ratio of such 

a system containing a massless isolator is also plotted, where the first peak is the 

equipment resonance and the second peak is the base resonance. In order to exhibit the 

base resonance effects on the isolator IRs, the parameters of the system are chosen so 

that the base resonance occurs among the isolator IRs. It can be seen that the amplitude 

ratio for the distributed parameter isolator has the same peak at the equipment resonance 

as that for the massless isolator, but it is increased at relatively high frequencies due to 

the effects of IRs. The characteristic lines and point defined in the earlier discussion are 

also plotted to describe the amplitude ratio and included in Table 3.1, which are 

presented as follows: 

� Maximum line 
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Similar to the derivation for the system undergoing base motion discussed in section 

3.2.1.1, assuming light damping in the isolator and base, i.e. 1,  1i bη η<< <<  and 

considering the response when ( )sin 0iµ Ω = , the maximum line is given by 
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 (3.50) 

In practice, if / 1k L bK Kµ = <<  (flexible isolator compared to the base), and 

/ 1i eSL mµ ρ= <<  (light isolator compared to the equipment), equation (3.50) can be 

written as 
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 (3.51) 

This equation is a function of the loss factor iη , frequency ratio Ω  and natural 

frequency ratio Γ . Increasing damping in the isolator or decreasing the system 

fundamental resonance frequency are effective in attenuating the IR peaks. It should be 

also noted that, at frequencies much lower than the base resonance, i.e. 1Ω Γ <<  the 

IR peaks in the isolator decrease at a rate of 40 dB per decade, while at frequencies 

much higher than the base resonance such that 1Ω Γ >> , the amplitude of IR peaks 

decrease at a rate of 80 dB per decade. 

� Minimum line 

Similar to the derivation for the system undergoing base motion discussed in section 

3.2.1.1, assuming light damping in the isolator and base, i.e. 1,  1i bη η<< <<  and 

considering ( )sin 1iµ Ω = ± , the minimum line is given by 
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 (3.52) 

In practice, if 1kµ <<  and 1iµ << , equation (3.52) can be written as 
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 (3.53) 
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which is a function of the mass ratio iµ , the frequency ratio Ω  and the natural 

frequency ratio Γ . It can be seen that the minimum line tends to reduce at a rate of 20 

dB per decade at frequencies much lower than the base resonance, rather than 40 dB per 

decade for the massless isolator. It reduces at a rate of 60 dB per decade at frequencies 

much higher than the base resonance, rather than 80 dB per decade for the massless 

isolator. It shows that the isolation performance for the distributed parameter isolator is 

much worse than that of the massless isolator at relatively high frequencies due to the 

IR effects. The minimum line is again independent of the isolator length. Therefore, to 

improve the performance of the isolator its mass or natural frequency can be adjusted by 

changing the isolator parameters except for the length.  

� Crossing point for 1Γ >>  

Assuming light damping in the isolator and base, i.e. 1,  1i bη η<< << , also considering 

that the isolator mass is light compared to the equipment mass, i.e. 1iµ << , the 

amplitude ratio for a massless isolator can be written as 
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1 1 1

e
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  (3.54) 

which is identical to the amplitude ratio of a traditional two-stage isolation system 

containing massless isolators [2, 72]  

 

If the base resonance frequency is much greater than the equipment resonance 

frequency, i.e. b eω ω>>  so that 1Γ >> , the minimum line shown in equation (3.53) 

for the system on a flexible base can be reduced to the minimum line shown in equation 

(3.20) for the system undergoing base motion. Also, the amplitude ratio for a massless 

isolator shown in equation (3.54) can be reduced to the transmissibility for a massless 

isolator shown in equation (3.24) at frequencies much lower than the natural frequency 

of the base bω . Therefore, when 1Γ >> , the crossing point for the system on a flexible 

base is thus the same as that for the system undergoing base motion shown in equation 

(3.25).  
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3.4 Conclusions 

Passive vibration isolation systems containing a distributed parameter isolator have 

been investigated theoretically and experimentally. A distributed parameter isolator has 

been modelled using different idealised configurations under various deformations. The 

isolators can be categorized into two types for the purpose of dynamic analysis, namely 

a non-dispersive isolator and a dispersive isolator. It has been shown that the isolation 

performance is significantly affected by IRs in both isolator types. Simple expressions 

which describe the behaviour for distributed parameter isolators have been derived. It 

has been shown that the damping in the isolator, the ratio of the isolator mass (or polar 

moment of inertia) to the equipment mass (or polar moment of inertia) and the system 

fundamental resonance frequency are all crucial to the isolation performance. Therefore, 

more efforts should be expended on lightly damped isolators, e.g. metallic isolators that 

have inherently low damping, in which the IRs may cause more significant detrimental 

effects. Also, it is concluded that, in general for the examples considered here, the IR 

effects in the non-dispersive isolator on the isolation performance are more significant 

than that for the dispersive isolator. The experiment on a helical spring has supported 

and validated the theoretical analysis and some of the predictions. Such models describe 

the isolation performance of a distributed parameter isolator fairly accurately.  

 

The dynamic models developed in this chapter containing a non-dispersive isolator, 

which is modelled as finite elastic rod, will be used in the following discussion for the 

active vibration isolation with a distributed parameter isolator. The expressions for the 

maximum line, the minimum line and the crossing point reveal the parameters that 

dominate the isolation performance of the distributed parameter isolator at various 

frequencies. This offers basic guidelines for the isolation design of a distributed 

parameter isolator, which directs effective ways to improve the isolator performance. It 

is also beneficial to understanding the performance of active vibration isolation systems 

containing a distributed parameter isolator discussed in following chapters. 
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Table 3.1 Characteristics of distributed parameter isolators undergoing base motion, 

where Ω  is the non-dimensional frequency ratio, iη  is the loss factor in the isolator 

and iµ  is the ratio of the mass (or polar moment of inertia) of the isolator to the mass 

(or polar moment of inertia) of the equipment. 

 

Mass of the equipment 193.1 g (measured) 

Shear modulus of the spring 10 27.93 10 N / m ×  (supplier data) 

Density of the spring 
37900 kg / m  (supplier data) 

Wire diameter of the spring 2.6 mm (supplier data) 

Mean diameter of the coil of the spring 24 mm (supplier data) 

Number of complete coils of the spring 7.6 (supplier data) 

Number of active coils of the spring 5.6 (supplier data) 

Table 3.2 Characteristic properties of the experimental rig on a helical spring. 
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Figure 3.1 Schematic diagrams of passive vibration isolation systems containing a 

distributed parameter isolator under (a) longitudinal, (c) torsional or (e) lateral 

vibration. (b), (d) and (f) are respectively free body diagrams. eQ , 1Q  and 2Q  are the 

internal forces in (b) and (f), or moments in (d); eu&  and bu&  are velocities in (b) and 

(f), or angular velocities (d) of the equipment and the base respectively; eZ  is the input 

impedance of the equipment; LZ  and TZ  are the impedance matrices for the rod 

under longitudinal and torsional vibration, respectively; and SZ  and BZ  are the 

impedance matrices for the shear beam and Euler-Bernoulli beam, respectively. 
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Figure 3.2 Transmissibility of the passive vibration isolation systems with a 

non-dispersive isolator when the ratio of the mass of the isolator to the mass of the 

equipment 0.1iµ = , and the loss factor in the isolator 0.01iη =  (solid line). The 

dashed line passes through the IR peaks. The dotted line passes through the troughs in 

the transmissibility. The dashed-dotted line is for the massless isolator. The point circled 

is the intersection of the transmissibilities for the system with a massless isolator and 

for the system with a non-dispersive isolator. 

 

Figure 3.3 Mechanical representation of the Thevenin equivalent system for the passive 

vibration isolation systems shown in Figure 3.1, where 21Z  and 22Z  are respectively 

the transfer and point impedances of the isolator and Bf  is the blocked force. 
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Figure 3.4 Transmissibility of the passive vibration isolation system with a dispersive 

isolator when 0.1iµ =  and 0.01iη =  (solid line). The dashed line passes through the 

IR peaks. The dotted line passes through the troughs in the transmissibility. The 

dashed-dotted line is for the massless isolator. The point circled is the intersection of the 

transmissibilities for the system with a massless isolator and for the system with a 

dispersive isolator. 

 

(a) 

 

(b) 

Figure 3.5 (a) photograph and (b) schematic diagram of the experimental rig of a mass 

supported by a helical spring undergoing base motion. 
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Figure 3.6 Measured (solid bold) and predicted (solid faint) transmissibility of the 

experimental rig. The dashed line passes through the IR peaks. The dotted line passes 

through the troughs in the transmissibility. The dashed-dotted line is for the massless 

isolator. The point circled is the intersection of the transmissibilities for the system with 

a massless isolator and for the system with a distributed parameter isolator. 

 

Figure 3.7 (a) schematic diagram and (b) free body diagram of the passive vibration 

isolation system containing a distributed parameter isolator on a flexible base, where 

f  is the primary force applied to the base, bQ  is an internal force and bZ  is the 

input impedance of the base. 
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Figure 3.8 Amplitude ratio of the passive vibration isolation system shown in Figure 3.7 

when 0.1iµ = , 0.01iη = , the ratio of the mass of the base to the mass of the equipment 

0.1bµ = , the ratio of the static stiffness of the isolator to the stiffness of the base 

0.01kµ =  and the loss factor in the base 0.01bη =  (solid line). The dashed line passes 

through the IR peaks. The dotted line passes through the troughs in the amplitude ratio. 

The dashed-dotted line is for the massless isolator. The point circled is the intersection 

of the amplitude ratios for the system with a massless isolator and for the system with a 

distributed parameter isolator. 
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Chapter 4 

 

Active Vibration Isolation with a Distributed 

Parameter Isolator 

 

 

4.1 Introduction 

Passive vibration isolation systems containing a distributed parameter isolator have 

been discussed in Chapter 3. The significant detrimental effects of IRs in the isolator on 

the passive isolation performance and their characteristics have been investigated. With 

the development of computers fast enough to run control algorithms in real-time and 

more ‘smart’ materials, active devices have been widely used in vibration isolation to 

improve the isolation performance. However, stability and control performance are two 

crucial issues which may limit the application of active vibration isolation. Therefore, 

the effects of IRs in the isolator on the stability for commonly used control strategies in 

active vibration isolation need to be clarified. There is also a need to investigate the 

control performance around IRs in the isolator for these control strategies. 

 

The aim of this chapter is to investigate theoretically the control performance and 

stability of active vibration isolation systems containing a distributed parameter isolator 

under various control strategies. First, active vibration isolation systems undergoing 

base motion is analyzed. Then the base structure is allowed to have its own resonances,
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so that the effects of this on the control system can be investigated.  

 

4.2 System undergoing base motion 

In this section, active vibration isolation systems containing a distributed parameter 

isolator undergoing base motion are investigated. The control performance and stability 

of such systems are analyzed and compared for several control strategies.  

4.2.1 Absolute Velocity Feedback (AVF) control 

A base excited active vibration isolation system consisting of an isolated equipment 

represented by its impedance eZ  supported by a distributed parameter isolator under 

AVF control is shown in Figure 4.1. The isolator is modelled as a finite elastic rod. The 

control force af , which is in parallel with the isolator, acts between the equipment and 

the base. The control force is proportional to the velocity of the equipment, and fed back 

to the system through a feedback controller with a constant gain -h, which is given by 

equation (2.11).  

4.2.1.1 Control performance 

The dynamics of the system shown in Figure 4.1 can be described by equation (3.1b) 

and 

 2e e a e aZ u f Q f Q= + = −&  (4.1) 

The velocity of the equipment is thus given by 

 21

22 22

1
e a b

e e

Z
u f u

Z Z Z Z

−
= +

+ +
& &  (4.2) 

Substituting equation (2.11) into (4.2), the transmissibility of the system under AVF 

control is given by 

 21

22

e

b e

u Z
T

u Z Z h

−
= =

+ +

&

&
 (4.3) 

If the equipment is modelled as a mass, i.e. e eZ j mω= , the transmissibility can be 
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written in non-dimensional form as 

 
1

2
cos 1 1 sin 1

2 2 2
i a i i

i i

i

T
j

j j j
η ζ η η

µ µ
µ

=
   Ω −     

− Ω − − − Ω        
        

 (4.4) 

where / 2a L eh K mζ =  is the active damping ratio due to AVF control. It can be seen 

in equation (4.4) that AVF control adds a damping term to the denominator and leaves 

the numerator unchanged. Similar to the base excited system containing a massless 

isolator under AVF control discussed in Chapter 2, the action of absolute velocity 

feedback for base excited system containing a distributed parameter isolator is also the 

same as a skyhook damper. Figure 4.2 shows the mechanical representation of the AVF 

control system under base motion, where AVF control is equivalent to a viscous damper 

with damping coefficient h acting between the equipment and the inertial ground.  

 

The transmissibility for this active vibration isolation system with different values of 

active damping ratio is plotted in Figure 4.3. It can be seen that the system fundamental 

resonance peak is attenuated when the active damping ratio is increased. However, little 

reduction at the IR peaks in the distributed parameter isolator is achieved by AVF 

control. The characteristic lines similar to those presented in Chapter 3 for the passive 

system are also plotted and identified in Figure 4.3. It should be noted that the AVF 

control system has almost the same maximum and minimum lines for IRs in the isolator 

as the passive system. These characteristic lines are determined as follows: 

� Maximum line 

Assuming light damping in the isolator, i.e. 1iη <<  in equation (4.4) and considering 

the response when ( )sin 0i eµ Ω = , the maximum line of the transmissibility under 

AVF control is given by 

 
( )max

2 1

2i a

T
jη ζ

≈
Ω Ω −

 (4.5) 

At relatively high frequencies when aζΩ >> , this equation can be reduced to equation 

(3.10), i.e. the system under AVF control and the passive system have equal amplitude 

resonance peaks at relatively high frequencies. This demonstrates that AVF control 

cannot suppress the IR peaks in the isolator at high frequencies. 
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The maximum line can also been derived from another point of view. The dynamics of 

the system described by equation (4.3) can be rearranged as 

 ( )22 21e e b BZ Z h u Z u f+ + = − =& &  (4.6) 

Based on this equation, the Thevenin equivalent system is depicted in Figure 4.4. It can 

be seen that, due to AVF control, the total impedance of the system which governs the 

equipment response is given by 

 22t eZ Z Z h= + +  (4.7) 

It is clear that the skyhook damper due to AVF control is effectively in parallel with the 

equipment. At relatively high frequencies, if the equipment has a mass-like impedance, 

i.e. e eZ j mω=  which increases with frequency, the equipment mass dominates the 

response, and the effect of AVF control is negligible. This explains why in Figure 4.3, 

little reduction is achieved at the IR peaks which occur at high frequencies. So at 

relatively high frequencies, equation (4.7) can be reduced to equation (3.16). Therefore, 

the transmissibility of the AVF control system can be simplified and given by equation 

(3.17) at relatively high frequencies. Similar to the descriptions in Chapter 3 for passive 

vibration isolation system, at IR frequencies for lightly damped isolators the blocked 

force Bf  is given by equation (3.14), which is determined by the loss factor iη  and 

static stiffness LK  of the isolator. Therefore, the system under AVF control has the 

same maximum lines for IRs in the isolator as the passive system at relatively high 

frequencies.  

� Minimum line 

Assuming light damping in the isolator, i.e. 1iη << , also considering ( )sin 1iµ Ω = ±  

in equation (4.4), the minimum line of the transmissibility under AVF control can be 

written as 

 
min

1

2
i

a

T
j

µ
ζ

≈
Ω −

 (4.8) 

At relatively high frequencies when aζΩ >> , this equation can be reduced to equation 

(3.20), i.e. the system under AVF control and the passive system have identical 

minimum lines at relatively high frequencies. So AVF control cannot reduce the minima 

of the transmissibility. 
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The minimum line can also be derived based on the Thevenin equivalent system shown 

in Figure 4.4. Similar to the description in Chapter 3, the minimum of the blocked force 

Bf  for the AVF control system is also determined by equation (3.22). So the AVF 

control system has an identical minimum line to that of the passive system at relatively 

high frequencies.  

4.2.1.2 Stability analysis 

Because the feedback controller is a constant gain, the stability of the AVF control 

system can be analyzed by investigating the plant response of the system with unitary 

control gain (h=1). As shown in equation (4.2), for the base excited active vibration 

isolation system with a distributed parameter isolator under AVF control, the plant 

response from the active control force to the equipment velocity is given by 

 
220

1

b

e

a eu

u
G

f Z Z
=

= =
+

&

&
 (4.9) 

Because eZ  and 22Z  are both point impedances, their phase is between -90º and 90º. 

Therefore the overall phase shift of the plant response G is between -90º and 90º, and is 

thus completely passive. Its Nyquist plot is entirely on the right-hand side of the 

complex plane and the feedback system has an infinite gain margin and a phase margin 

of at least 90º. Based on the Nyquist criterion, the AVF control system containing a 

distributed parameter isolator under base motion is unconditionally stable. From the 

point of view of collocation, because the base motion is prescribed which is not affected 

by the active control force, the actuator and the sensor are thus collocated, so that such a 

system under AVF control is unconditionally stable 

4.2.2 Relative Velocity Feedback (RVF) control 

A base excited system containing a distributed parameter isolator under RVF control is 

shown in Figure 4.5(a). A control force af  in parallel with the isolator reacts between 

the equipment and the base. The control force is proportional to the difference between 

the velocity of the equipment and the velocity of the base, and fed back to the system 

through a feedback controller with a constant gain -h, which is given by equation (2.16).  
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4.2.2.1 Control performance 

The velocity of the equipment is also given by equation (4.2). Substituting equation 

(2.16) into (4.2), the transmissibility of the system under RVF control is given by 

 21

22

e

b e

u Z h
T

u Z Z h

− +
= =

+ +

&

&
 (4.10) 

If the equipment is modelled as a mass, the non-dimensional transmissibility under RVF 

control can be written as 

 

1
1 2 1 sin 1

2 2

2
cos 1 1 sin 1

2 2 2

i i
a i

i

i a i i
i i

i

j j j

T
j

j j j

η η
ζ µ

µ

η ζ η η
µ µ

µ

    
+ − − Ω    

    
=

   Ω −     
− Ω − − − Ω        

        

 (4.11) 

It can be seen in equation (4.11) that a damping term is added to both the denominator 

and the numerator. Similar to the system containing a massless isolator under RVF 

control discussed in Chapter 2, the action of relative velocity feedback is the same as a 

viscous damper acting between the equipment and the base. Figure 4.5(b) shows the 

mechanical representation of the system under RVF control, which is equivalent to a 

viscous damper with damping coefficient h acting between the equipment and the base. 

Thus it is clear that the equivalent viscous damper due to RVF control is effectively in 

parallel with the distributed parameter isolator.  

 

The transmissibility for the active vibration isolation system under RVF control is 

plotted in Figure 4.6, where the transmissibility of the corresponding passive system is 

also plotted for comparison. It can be seen that the system fundamental resonance peak 

and also some IR peaks in the isolator are attenuated with a high active damping ratio, 

which is a marginal advantage of RVF compared to AVF applied to the system 

containing a distributed parameter isolator. However, the transmissibility of the system 

is significantly amplified at high frequencies. This is because RVF control is equivalent 

to a viscous damper in parallel with the isolator, so that the compromise in the choice of 

damping inherent in passive vibration isolation occurs in this RVF control system. 

Characteristic lines for RVF control system are also plotted and identified in Figure 4.6. 

The two dashed-dotted lines namely maximum lines pass though the peaks at IR 

frequencies and the dotted line namely minimum line passes through the troughs 
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between IR peaks. These characteristic lines are determined as follows: 

� Maximum line 

Assuming light damping in the isolator, i.e. 1iη <<  in equation (4.11) and considering 

the response when ( )sin 0i eµ Ω = , the maximum line of the transmissibility under 

RVF control is given by 

 
( )max

12
 

2

i a

i a

T
j

η ζ

η ζ

± Ω
≈

Ω Ω −
 (4.12) 

At relatively high frequencies when aζΩ >> , this equation can be reduced to 

 
2max

2 1
1 i a

i

T η ζ
η

≈ ± Ω
Ω

 (4.13) 

From this equation, it is clear that RVF control can either amplify or attenuate the IR 

peaks depending on the values of the active damping ratio aζ . 

 

The maximum line can also be derived from another point of view. The dynamics of the 

system described in equation (4.10) can be rearranged as 

 ( ) ( )22 21e e b BZ Z h u Z h u f+ + = − + =& &  (4.14) 

Based on this equation, the Thevenin equivalent system is depicted in Figure 4.7. Due to 

RVF control, the total impedance of the system which governs the equipment response 

is also given by equation (4.7). At relatively high frequencies, if the equipment has a 

mass-like impedance, i.e. e eZ j mω=  which increases with frequency, the equipment 

mass dominates the response. Equation (4.7) can thus be reduced to equation (3.16). 

Therefore, at relatively high frequencies, the transmissibility of the system can be 

simplified and given by 

 21

e

Z h
T

Z

− +
≈  (4.15) 

However, different from AVF control system, at IR frequencies for lightly damped 

isolators, the blocked force Bf  for RVF control system is given by  

 ( )21

2 L
B b b

i

K
f Z h u h u

η ω

 
= − + = ± + 

 
& &  (4.16) 
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which is determined by not only the loss factor iη  and static stiffness LK  of the 

isolator, but also the feedback controller gain h. Therefore, RVF control may help to 

reduce the force transmitted to the equipment and the isolator at some IR frequencies so 

that the equipment response is attenuated, or it may increase the transmitted force at 

other IR frequencies so that the equipment response is amplified, especially at high 

frequencies. Combining equations (4.15) and (4.16), and noting that e eZ j mω= , the 

maximum line of the transmissibility under RVF control is given by 

 
2 2max

2 2 1
1L i

i a

i e i

K h
T

m

η ω
η ζ

η ω η

± +
≈ = ± Ω

Ω
 (4.17) 

which is identical to the maximum line given by equation (4.13). 

� Minimum line 

Assuming light damping in the isolator, i.e. 1iη << , also considering ( )sin 1iµ Ω = ±  

in equation (4.11), the minimum line of the transmissibility under RVF control can be 

written as 

 
min

2
 

2

i a

a

j
T

j

µ ζ

ζ

±
≈

Ω −
 (4.18) 

At relatively high frequencies where aζΩ >> , this equation can be reduced as 

 
min

1
 2  i aT jµ ζ≈ ±

Ω
 (4.19) 

Therefore, this minimum line for the transmissibility of the system under RVF control is 

greater than that for the passive system.  

 

The minimum line can also be derived based on the Thevenin equivalent system shown 

in Figure 4.7. As discussed in Chapter 3, the minimum of the transfer impedance 21Z  

is given by equation (3.22). Substituting equation (3.22) into (4.15), the minimum line 

of the transmissibility under RVF control is given by 

 
min

1
2

L i

i a

e

j K m h
T j

j m
µ ζ

ω

± +
≈ = ±

Ω
 (4.20) 

which is identical to equation (4.19). 
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4.2.2.2 Stability analysis 

For the active vibration isolation system under RVF control shown in Figure 4.5(a), the 

plant response from the active control force to the difference between the equipment 

velocity and the base velocity is also given by equation (4.9). Therefore, the RVF 

control system is also unconditionally stable and completely passive. The unconditional 

stability of the RVF control system undergoing base motion can also been concluded 

due to the collocation of the actuator and sensor. 

4.2.3 Integral Force Feedback (IFF) control 

A base excited active vibration isolation system containing a distributed parameter 

isolator under IFF control is shown in Figure 4.8. The control force af  in parallel with 

the isolator reacts between the equipment and the base. The control force is generated 

by feeding the transmitted force to the equipment through a controller with frequency 

response ( )IFFH jω  negatively, which is given by equation (2.19). Similar to the 

description for IFF control in Chapter 2, the transmitted force is given by equation (2.20) 

and the active control force is given by equation (2.21). 

4.2.3.1 Control performance 

The velocity of the equipment is also given by equation (4.2). Substituting equation 

(2.21) into (4.2), the transmissibility of the system under IFF control is given by 

 21

22e e

Z
T

h
Z Z Z

jω

−
=

+ +

 (4.21) 

If the equipment is modelled as a mass, i.e. e eZ j mω= , the transmissibility under IFF 

control can be written as 

 21

22e e

Z
T

Z Z hm

−
=

+ +
 (4.22) 

Comparing equation (4.22) with (4.3) (the transmissibility of such a system under AVF 
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control), the action of IFF control applied to the system containing a mass-like 

equipment is also equivalent to a skyhook damper acting between the equipment and the 

inertial ground. However, this equivalent skyhook damper for IFF control has the 

damping coefficient of ehm  rather than h for AVF control. Therefore, this IFF control 

system has similar control performance as AVF control shown in Figure 4.3, depending 

on the feedback controller gain h and equipment mass em . 

4.2.3.2 Stability analysis 

Because the IFF controller is not a constant gain, to analyze the stability of the IFF 

control system, the open-loop frequency response of the system should be investigated. 

Combining equations (2.20) and (4.9), the plant response from the active control force 

to the transmitted force for the base excited system under IFF control is given by 

 
220b

eT

a eu

Zf
G

f Z Z
=

= =
+

&

 (4.23) 

So the open-loop frequency response of the system is described by 

 IFF

22

e

e

Zh
GH

j Z Zω
=

+
 (4.24) 

The stability of the IFF control system can be investigated by examining the reciprocal 

of the open-loop frequency response, which is given by 

 ( ) ( ) ( ) ( )1 1 1

IFF 22 22

1
1e e eGH hZ j Z Z j Z Z

h
ω ω

− − −= + = +  (4.25) 

1

eZ
−  is passive since eZ  is an input impedance, so that 1

eZ
−  has a phase shift between 

-90º and 90º. Because 22Z  is a point impedance, its phase shift is also between -90º 

and 90º. The phase shift of 1

221 eZ Z
−+  can thus potentially vary between -180º and 180º. 

Therefore the overall phase shift of ( )
1

IFFGH
−

 is between -90º and 270º. The phase 

limitations on the open-loop frequency response are thus between -270º and 90º. 

Therefore, the base excited system containing a distributed parameter isolator under IFF 

system is only conditionally stable. The instability may occur when the equipment is 

stiffness controlled, i.e. the phase shift of 1

eZ
−  is 90º, so that the overall phase shift of 

the open-loop frequency response is between -270º and -90º. However, if the equipment 
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is rigid and has a mass-like impedance, i.e. e eZ j mω= , then the open-loop frequency 

response of the system in equation (4.24) can be reduced to ( )22e ehm Z Z+ . The phase 

of the open-loop frequency response is thus restricted between -90º and 90º. The IFF 

control system is thus completely passive and unconditionally stable. 

4.2.4 Positive Position Feedback (PPF) control 

A base excited active vibration isolation system containing a distributed parameter 

isolator under PPF control is shown in Figure 4.9. The control force af  in parallel with 

the isolator reacts between the equipment and the base. The control force is generated 

by feeding the displacement of the equipment through a controller with frequency 

response ( )PPFH jω  in a positive sense. Similar to the description for PPF control in 

Chapter 2, the PPF control is implemented using an auxiliary dynamic system and the 

control force is given by equation (2.29). 

4.2.4.1 Control performance 

The velocity of the equipment is also given by equation (4.2). Substituting equation 

(2.29) into (4.2), the transmissibility of the system under PPF control is given by 

 

( )

21

2

22 2

1

1 2

f

e

f f f

Z
T

g
Z Z

j j

ω

ω ω ω ζ ω ω

−
=

+ −
− +

 (4.26) 

If the equipment is modelled as a mass, i.e. e eZ j mω= , and the undamped natural 

frequency of the PPF controller fω  is tuned to the system fundamental resonance 

frequency e L eK mω = , the transmissibility of the system under PPF control can be 

written as  

( )
2

1

1 2 1 1
cos 1 sin 1

2 1 2 2

ii i
i i

e fi

T
j g

j j
m j

ηη η
µ µ

ζµ

=
 −      

− Ω − Ω + − Ω        Ω − Ω + Ω       
  (4.27) 

At frequencies much lower than the system fundamental resonance frequency, i.e. 
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1Ω << , assuming the damping in the isolator is small and using small angle 

approximations gives 

 

cos 1 1
2

sin 1
2

i
i

i
i i

j

j
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µ µ
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− Ω ≈  

  

  
− Ω ≈ Ω  

  

 (4.28a,b) 

Substituting equations (4.28a, b) into (4.27), and noting 1Ω <<  and 1iη << , the 

transmissibility can be reduced to 

 1

1

1
e

T
g

m

Ω<< ≈

−

 (4.29) 

which is identical to equation (2.33) for PPF control applied to the system containing a 

massless isolator. Therefore, PPF control also adds a negative stiffness term eg m−  to 

the system containing a distributed parameter isolator, which may amplify the 

transmissibility of the system depending on the values of g and em . At the system 

fundamental resonance frequency, i.e. 1Ω = , assuming the isolator is light compared to 

the equipment mass, i.e. 1iµ << , and the damping in the isolator is small, equations 

(4.28a, b) still hold true. Substituting equations (4.28a, b) into (4.27), and noting 1Ω =  

and 1iη << , the transmissibility can be reduced to  

 1

1

1

2e f

T
g

j
m ζ

Ω= ≈  (4.30) 

As discussed in Chapter 2, the PPF controller has -90º phase shift at its cut-off 

frequency with high magnitude. PPF control is thus equivalent to a skyhook damper 

with damping ratio ( )2 f eg mζ  around the system fundamental resonance frequency. 

Therefore, the system fundamental resonance peak can be effectively attenuated. At 

frequencies well above the system fundamental resonance frequency, i.e. 1Ω >> , the 

frequency response of the PPF controller rolls off rapidly, and thus the effect of PPF 

control is negligible. Therefore, the IR peaks which occur at relatively high frequencies 

cannot be attenuated by PPF control when fω  is tuned to eω . 
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Figure 4.10 shows the transmissibility for the active vibration isolation system 

containing a distributed parameter isolator under PPF control with various values for 

control gain g. It can be seen that the system fundamental resonance peak is attenuated 

by PPF control. However, the transmissibility is amplified at frequencies lower than the 

system fundamental resonance frequency due to the negative stiffness determined by the 

specific values of g and em . Also, the IR peaks in the distributed parameter isolator are 

not reduced by PPF control because the frequency response of the PPF controller rolls 

off rapidly at high frequencies. 

4.2.4.2 Stability analysis 

Due to the IRs in the isolator, the method used in Chapter 2 to analyze the stability of 

the PPF control system containing a massless isolator, which is a SDOF system, is not 

applicable for the PPF control system containing a distributed parameter isolator. 

Therefore, the Nyquist stability criterion is used to analyze the stability of such a system. 

From equation (4.9), the plant response from the active control force to the 

displacement of the equipment is given by 

 
( )220 0

1

b b

e e

a a eu u
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 (4.31) 

Because the PPF controller is not a constant gain, the open-loop frequency response is 

used to analyze the stability, which is given by 

 
( ) ( )

2

PPF 2

22

1

1 2

f

e
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ω ω ω ζ ω ω
= ⋅

+ − +
 (4.32) 

The phase shift of ( )221 eZ Z+  is between -90º and 90º, so that the phase shift of the 

first term ( )221 ej Z Zω +  is between -180º and 0º. The phase shift of the PPF 

controller can potentially vary between -180º and 0º.  Therefore the overall phase shift 

of the open-loop frequency response is between -360º and 0º. Based on the Nyquist 

stability criterion, such a PPF control system containing a distributed parameter isolator 

is only conditionally stable.  
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4.2.5 Acceleration-Position Feedback (APF) control 

A base excited active vibration isolation system containing a distributed parameter 

isolator under APF control is shown in Figure 4.11. A control force af  in parallel with 

the isolator reacts between the equipment and the base. The control force is generated 

by feeding the acceleration of the equipment through a second order low-pass filter with 

frequency response ( )APFH jω  in a negative sense, which is given by equation (2.40). 

4.2.5.1 Control performance 

The velocity of the equipment is also given by equation (4.2). Substituting equation 

(2.40) into (4.2), the transmissibility of the system under APF control is given by 
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1 2

f f

e
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j
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ζ ω ω

ω ω ζ ω ω

−
=

+ +
− +

 (4.33) 

It can be seen that, around the natural frequency of the APF controller, i.e. fω ω= , the 

transmissibility can be reduced to equation (4.3), which is the transmissibility of such a 

system under AVF control. Therefore APF control is also equivalent to a skyhook 

damper around its natural frequency. However, at frequencies much lower or higher 

than its natural frequency, the effects of APF control are negligible because the active 

APF control force rolls off rapidly. So the APF controller has less spillover to both low 

and high frequency modes. As a consequence, the IR peaks which occur at relatively 

high frequencies cannot be attenuated by APF control. 

 

If the equipment is modelled as a mass, i.e. e eZ j mω= , and the natural frequency of the 

APF controller fω  is tuned to the system fundamental resonance frequency eω , the 

transmissibility of the system under APF control can be written as  
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21 2
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jj
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ζηη η
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− Ω − Ω − − Ω        − Ω + Ω       
  (4.34) 

Figure 4.12 shows the transmissibility for the active vibration isolation system 
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containing a distributed parameter isolator under APF control with various values for 

active damping ratio aζ . It can be seen that the transmissibility is attenuated around the 

system fundamental resonance frequency with an increase in the active damping ratio 

due to APF control. However, the transmissibility close to the system fundamental 

resonance frequency is amplified, since the PPF controller behaves as a dynamic 

vibration absorber. Also, the IR peaks which occur at relatively high frequencies are not 

reduced by APF control, because the active APF control force rolls off rapidly at high 

frequencies. 

4.2.5.2 Stability analysis 

From equation (4.9), the plant response from the active control force to the acceleration 

of the equipment is given by 

 
220 0b b

e e

a a eu u

u j u j
G

f f Z Z

ω ω

= =

= = =
+

& &

&& &
 (4.35) 

Because the APF controller is not a constant gain, the open-loop frequency response is 

used to analyze the stability, which is given by 

 

( )
APF 2

22

2

1 2

f f

e f f f

j
GH h

Z Z j

ζ ωω

ω ω ζ ω ω

 
 = ⋅
 + − + 

 (4.36) 

The phase shift of ( )221 eZ Z+  is between -90º and 90º, so that the phase shift of the 

first term ( )22ej Z Zω +  is between 0º and 180º. Because the APF controller is a 

second order low-pass filter, its phase shift can thus potentially vary between -180º and 

0º.  Therefore the overall phase shift of the open-loop frequency response is between 

-180º and 180º. the APF control system containing a distributed parameter isolator 

undergoing base motion is thus unconditionally stable based on the Nyquist stability 

criterion. However, such an APF control system is not passive, and thus not robustly 

stable. It is sensitive to the unmodelled actuator dynamics and other uncertainties in the 

system which might destabilize the control system. 
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4.2.6 Comparison of the control performance 

Similar to the discussion in Chapter 2 for the massless isolator, the comparison of the 

overall control performance for the active vibration isolation systems containing a 

distributed parameter isolator under above discussed control strategies can be realized 

by looking at their change in mean square response compared to the original passive 

system. Substituting the corresponding transmissibility into equation (2.46), the change 

in mean square velocity for the system under different control strategies compared to 

the passive system can be calculated. The equivalent active damping ratio for PPF 

control is also set to be ( )2a f eg mζ ζ= .  

 

Figure 4.13 depicts the change in mean square velocity within the range 0.1 1000< Ω <  

when 0.1iµ = , 0.01iη = , 0.5em = , 0.5fζ =  and f eω ω= . At high active damping 

ratios, AVF and IFF control provides increasing reduction in the mean square response. 

The performance of IFF control is determined by the mass of the equipment. In this case 

the mass of the equipment is 0.5, which is less than unity, the control performance of 

IFF control is therefore worse than AVF control. The RVF, PPF and APF control do not 

produce monotonically reducing mean square response for an increasing in active 

damping ratio. Furthermore, the instability of PPF control is seen to occur when the 

active damping ratio is increased. 

4.2.7 Acceleration feedback control 

A base excited active vibration isolation system containing a distributed parameter 

isolator under acceleration feedback control is shown in Figure 4.14(a). The control 

force af  in parallel with the isolator reacts between the equipment and the base. The 

control force is proportional to the acceleration of the equipment, and fed back to the 

system through a feedback controller with a constant gain –h, which is given by 

equation (2.45). 
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4.2.7.1 Control performance 

The velocity of the equipment is also given by equation (4.2). Substituting equation 

(2.45) into (4.2), the transmissibility of the system under acceleration feedback control 

is given by 

 21

22e

Z
T

Z Z j hω

−
=

+ +
 (4.37) 

If the equipment is modelled as a mass, the transmissibility can be written as 
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(4.38) 

Different from the aforementioned control strategies that all introduce active damping to 

the system, the action of acceleration feedback control for this base excited system is 

equivalent to adding a mass h  on top of the equipment as shown in Figure 4.14(b). 

 

Figure 4.15 shows the transmissibility for the active vibration isolation system 

containing a distributed parameter isolator under acceleration feedback control, where 

the transmissibility of such a system without control is also plotted for comparison. It 

can be seen that the system fundamental resonance peak moves to a lower frequency 

due to the acceleration feedback control, and thus the transmissibility at high 

frequencies including the IR peaks in the isolator is reduced. The effective attenuation 

of IR peaks in the isolator is the main advantage of acceleration feedback control over 

other control strategies. 

4.2.7.2 Stability analysis 

For acceleration feedback control, because the controller is a constant gain, the plant 

response of the system from the active control force to the acceleration of the equipment 

can be used for the stability analysis, which is given by equation (4.35). The overall 

phase shift of the plant response is between 0º and 180º, and thus the acceleration 

feedback control system containing a distributed parameter isolator undergoing base 

motion is unconditionally stable. However, such a control system is not completely 

passive, and thus not robustly stable. 
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4.2.8 Optimal control 

Similar to the discussion in Chapter 2, to find out the best control strategy in attenuating 

the equipment response, the optimal control for active vibration isolation system 

containing a distributed parameter isolator undergoing base motion is investigated. 

Figure 4.16 shows a base excited system containing a distributed parameter isolator 

under optimal control. The equipment is modelled as a rigid mass. The distributed 

parameter isolator is modelled as a mass-spring-mass-spring-mass system in order to 

derive the state space representations for the optimal control system. Also the damping 

in the isolator is ignored for simplicity. The equations of motion for such a system are 
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 (4.39a,b) 

where lu  and lu&&  are respectively the displacement and the acceleration of the middle 

mass, and  
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Equations (4.39a, b) can be rearranged to give 
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The state-space system equation is then given by: 

 a bf ux=Ax+b +d&  (4.42) 
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  (4.43a,b,c,d) 

The general quadratic performance index required to be minimized is also given by 
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equation (2.52), in which the matrices Q  and R  are given by 
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The performance index has thus the same form as equation (2.54), where q is a 

weighting on the mean square velocity of the equipment mass and r is a weighting on 

the mean square control effort applied. The control force required to minimize the 

performance index is then given by equation (2.55), where 
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P  (4.45) 

is a positive-definite real symmetric matrix to ensure the control is stable, and satisfies 

the reduced-matrix Riccati equation given by equation (2.57). Substituting the 

appropriate matrices into equation (2.55), the optimal control force can be written as 
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Therefore, only the four elements of the second row in P matrix are required to calculate 

the optimal control force. Substituting the appropriate matrices into the reduced-matrix 

Riccati equation, four equations in terms of 12p , 22p , 23p  or 24p  can be derived as 
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  (4.47a,b,c,d) 

From equations (4.47a-d), the only solution for the second row of the P matrix that 

ensures the P matrix is positive-definite and real is given by 

 [ ] ( )12 22 23 24,  ,  ,  0,  ,  0,  0ep p p p rq m m = +   (4.48) 
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Substituting equation (4.48) into (4.46), the optimal control force can be written as 

 a e

q
f u

r
= − &  (4.49) 

which is identical to equation (2.65) for the system containing a massless isolator. 

Therefore, the optimal control strategy to minimise the mean square velocity of the 

equipment mass supported by a distributed parameter isolator is also precisely the AVF 

control, which results in skyhook damping of the controlled system. The feedback 

control gain for optimal control is again given by q r , which is a simple function of 

the ratio of the relative penalty on minimising mean square equipment velocity response 

and mean square control effort. The smaller the control effort weighting r, the higher the 

feedback control gain, and thus the better the control performance. 

4.2.9 Summary 

The control performance and stability of the base excited system containing a 

distributed parameter isolator under different control strategies have been investigated 

and compared. Similar to the system containing a massless isolator, AVF control 

introduces skyhook damping to the system containing a distributed parameter isolator, 

which is effective in attenuating the system fundamental resonance peak. However, the 

IR peaks in the isolator cannot be attenuated by AVF control because the equipment 

mass dominates the response at high frequencies. AVF control has been shown to be 

robustly stable for the base excited system. RVF control is equivalent to a viscous 

damper between the equipment and the base. Thus the isolation performance at high 

frequency is degraded although some IR peaks can be attenuated. The RVF control 

system has been shown to be unconditionally stable. For the base excited system, if the 

equipment is a rigid mass, IFF control also introduces skyhook damping to the system 

and is unconditionally stable. However, the IFF control system may become unstable 

when the equipment is stiffness controlled. Both PPF and APF controllers are second 

order filters that introduce active damping at the system fundamental resonance 

frequency, and then roll off rapidly at high frequencies, so that they are not effective in 
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attenuating the IR peaks at high frequencies. Also PPF control may cause amplification 

at low frequencies due to the negative stiffness introduced, which may destabilize the 

PPF control system. The APF controller is not robustly stable and thus very sensitive to 

the unmodelled actuator dynamics and other uncertainties in the system which might 

destabilize the control system. Acceleration feedback control applied to the base excited 

system containing a distributed parameter isolator is equivalent to adding mass onto the 

equipment, so that the system fundamental resonance peak moves to a lower frequency, 

and thus the IR peaks in the isolator at high frequencies is reduced. The study for 

optimal control shows that, to minimise the mean square velocity of the equipment mass 

supported by a distributed parameter isolator, AVF control is the optimal solution. 

 

4.3 System on a flexible base 

In this section, active vibration isolation systems containing a distributed parameter 

isolator on a flexible base are investigated. The control performance and stability of 

such systems under several control strategies are analyzed and compared.  

4.3.1 Absolute Velocity Feedback (AVF) control 

An active vibration isolation system containing a distributed parameter isolator on a 

flexible base under AVF control is shown in Figure 4.17. The isolator is modelled as a 

finite elastic rod. The control force af , which is in parallel with the isolator, reacts 

between the equipment and the base. The control force is given by equation (2.11). 

4.3.1.1 Control performance 

The dynamics of the system shown in Figure 4.17 can be described by equations (3.1b), 

(4.1) and 

 1b b a b aZ u f f Q f f Q= − + = − −&  (4.50) 

The velocity of the equipment is thus given by 
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 ( )e ee eb a ebu Y Y f Y f= − +&  (4.51) 

where  
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is the input mobility of the equipment when coupled to the rest of the system. A detailed 

derivation is given in Appendix C. Substituting equation (2.11) into (4.51), the velocity 

of the equipment under AVF control can be written as 
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If the equipment has a mass-like impedance, i.e. e eZ j mω=  and the base structure is 

modelled as a mass bm  on a complex spring, i.e. * (1 )b b bK K jη= + , the 

non-dimensional amplitude ratio of the system under AVF control is given by 
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 (4.54) 

It can be seen in equation (4.54) that the absolute velocity feedback adds a damping 

term to the denominator and leaves the numerator unchanged. Figure 4.18 shows the 

amplitude ratio for the system on a flexible base under AVF control with different 

values of the active damping ratio aζ . It can be seen that the equipment resonance peak 

is attenuated with an increase in the active damping ratio. The base resonance peak, 

which is the second peak in Figure 4.18, is also reduced for high active damping ratios. 

However, the IR peaks in the distributed parameter isolator are reduced much less, 

especially at relatively high frequencies. The reason is the same as that discussed for the 

base excited system under AVF control. The equipment mass rather than AVF control 
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dominates the response at high frequencies. Also it should be noted that some IR peaks 

in the distributed parameter isolator, such as the third peak in Figure 4.18, are amplified 

due to AVF control. This amplification may destabilize the control system at high 

control gains, and thus the control performance at system resonance frequencies is 

limited. 

4.3.1.2 Stability analysis 

From equation (4.51), the plant response from the active control force to the velocity of 

the equipment is given by 
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a f

u
G Y Y

f
=

= = −
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 (4.55) 

From the point of view of the definitions of the input and transfer mobility, eeY  is the 

response of the equipment per unit external force applied directly on the equipment, and 

ebY  is the response of the equipment per unit external force applied to the base. Because 

eeY  is an input mobility, it has a phase shift between -90º and 90º so that it is only in the 

right half in the complex plane. However, ebY  is a transfer mobility, which could be in 

either left or right half in the complex plane. So it is a potential threat to the stability of 

the AVF control system. Moreover, if the AVF control system is only conditionally 

stable, there is at least one loop in the left half of the complex plane which crosses the 

negative real axis in the Nyquist plot of the plant response. For the system analyzed 

here, only at resonance frequencies can phase of the plant response generate such loops, 

and hence create an unstable system. Therefore, at some resonance frequencies, if the 

transfer mobility ebY  is greater than the input mobility eeY , i.e. the equipment response 

due to the excitation at the base is greater than that due to the excitation at the 

equipment, and they are in phase, the AVF control system has the potential to become 

unstable at high control gains. A stability condition for such an AVF control system is 

derived as follows. 

 

For a multi-degree-of freedom system, the mobility can be written as [19] 
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where ( )j

tφ  and ( )j

sφ  are respectively the thj  modal amplitudes evaluated at the 

response point t and excitation point s; jK , jM  and jζ  are respectively the modal 

stiffness, modal mass and modal damping ratio of the thj  mode with corresponding 

natural frequency j j jK Mω = ; j jω ωΩ =  is the non-dimensional frequency ratio.  

 

Based on equation (4.56), at a resonance frequency with corresponding natural 

frequency j j jK Mω = , in a lightly damped system, when only one mode dominates 

the response, the input and transfer mobility for the system can be written as  
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where ( )j

eφ  and ( )j

bφ  are the thj  modal amplitudes evaluated at the equipment and 

base respectively. Substituting equations (4.57a, b) into (4.55), the plant response can be 

rearranged as 
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Based on the Nyquist criterion, for stability, one requires at a resonant frequency 
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for all j, i.e. ( ) ( )j j

e bφ φ>  if the modal amplitudes of the system evaluated at the 

equipment and base have the same phase. Therefore, equation (4.59) provides a simple 

method to determine the stability of the AVF control system in terms of the modal 

amplitudes of the system. According to the definition of modal amplitudes ( )j

eφ  and 

( )j

bφ , this stability condition means that if the displacement of the base is greater than 

the displacement of the equipment and these two displacements are in phase at the thj  

natural frequency, then the system may become unstable. This stability condition can 

direct the investigation into the approaches which can stabilize such a control system. 

This stability condition in terms of the modal amplitudes can also be applied to the 
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system containing a massless isolator on a flexible base, which has been investigated by 

Elliott et al. [41]. 

 

Figures 4.19 and 4.20 respectively depict the frequency response and Nyquist plot of the 

plant response for a potentially unstable AVF control system. It is clear in Figure 4.19 

that the phase shift of the first IR peak in the isolator is less than -180º. This phase lag 

thus generates a loop on the left half of the complex plane in Figure 4.20 that crosses 

the negative real axis, which causes the system to be potentially unstable at high control 

gains. It can be shown that, at this first IR frequency, the displacement of the base is 

greater than the displacement of the equipment and they are in phase, so that instability 

may potentially occur. 

 

At a resonance frequency where ( ) ( ) 1j j

b eφ φ > , i.e. the system has the potential to 

become unstable, with constant control gain h, the open-loop frequency response is 

given by  
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To guarantee stability, the quantity in equation (4.60) must be greater than -1, so that the 

maximum gain maxh  that can be applied to the control system is thus given by 
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 (4.61) 

4.3.2 Relative Velocity Feedback (RVF) control 

An active vibration isolation system containing a distributed parameter isolator on a 

flexible base under RVF control is shown in Figure 4.21. The control force af , which is 

in parallel with the isolator, reacts between the equipment and the base. The control 

force is given by equation (2.16). 
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4.3.2.1 Control performance 

The velocity of the equipment under RVF control is also given by equation (4.51). 

Substituting equation (2.16) into (4.51), the velocity of the equipment under RVF 

control can be written as 

 
2( )

1 ( 2 )

e eb ee bb eb

ee bb eb

u Y h Y Y Y

f h Y Y Y

+ −
=

+ + −

&
 (4.62) 

where bbY  is the input mobility of the base when coupled to the rest of the system, and 

is given by 
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If the equipment has a mass-like impedance, i.e. e eZ j mω=  and the base structure is 

modelled as a mass bm  on a complex spring, i.e. * (1 )b b bK K jη= + , the 

non-dimensional amplitude ratio of the system under RVF control can be written as 
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(4.64) 

It can be seen in equation (4.64) that the relative velocity feedback adds a damping term 

both to the denominator and the numerator. Figure 4.22 shows the amplitude ratio for 

the system under RVF control with different values of the active damping ratio. It can 

be seen that the system resonance peaks and some IR peaks in the distributed parameter 

isolator are attenuated with high active damping ratio. However, the amplitude ratio 

between resonance peaks and at relative high frequencies is amplified due to RVF 

control.  
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4.3.2.2 Stability analysis 

The velocity of the base under RVF control is given by 

 ( )b eb bb a bbu Y Y f Y f= − +&  (4.65) 

Combining equations (4.51) and (4.65), for the system under RVF control, the plant 

response from the active control force to the difference between velocity of the 

equipment and the velocity of the base is given by 
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2e b
ee bb eb

a f

u u
G Y Y Y
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 (4.66) 

At a resonance frequency, in a lightly damped system, when only one mode dominates 

the response, the input mobility of the base can be written as 
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Substituting equations (4.57a, b) and (4.67) into (4.66), the plant response is given by 
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which is always non-negative. Therefore, the Nyquist plot of the plant response of the 

RVF control system is always in the right half in the complex plane, and thus the RVF 

control system is unconditionally stable. This is the main advantage of RVF control. 

 

From the point of view of the energy, the time averaged power generated by the active 

control force for the system under RVF control at any particular frequency can be 

written as [19] 

 { } { }
1 1

Re Re
2 2af a e a bP f u f u′ ′= ⋅ + − ⋅& &  (4.69) 

Substituting equation (2.16) into (4.69) gives 

 
21

2af e bP h u u= − −& &  (4.70) 

Therefore, the power generated by the control force is always negative. That means the 

RVF control law is designed such that energy can only be extracted from the mechanical 

structure. The RVF control system is thus unconditionally stable, and also said to be 

dissipative [89]. 
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4.3.3 Integral Force Feedback (IFF) control 

An active vibration isolation system containing a distributed parameter isolator on a 

flexible base under IFF control is shown in Figure 4.23. The control force af , which is 

in parallel with the isolator, reacts between the equipment and the base. The control 

force is given by equation (2.21). 

4.3.3.1 Control performance 

The velocity of the equipment under IFF control is given by equation (4.51). 

Substituting equation (2.21) into (4.51), the velocity of the equipment under IFF control 

can be written as 
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 (4.71) 

If the equipment has a mass-like mobility, i.e. e eZ j mω= , the velocity of the equipment 

under IFF control is given by 
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 (4.72) 

Comparing equations (4.72) with (4.53) (the velocity of the equipment of such a system 

under AVF control), it can be seen that the IFF control applied to the system containing 

a mass-like equipment is similar to AVF control. The only difference is that the control 

gain for IFF control is ehm  rather than h for AVF control. Therefore, this IFF control 

system has similar control performance as AVF control, depending on the feedback 

controller gain h and equipment mass em .  

4.3.3.2 Stability analysis 

Combining equations (2.20) and (4.55), the plant response from the active control force 

to the transmitted force for the system on a flexible base under IFF control is given by 

 ( )
0

T
e ee eb

a f

f
G Z Y Y

f
=

= = −  (4.73) 
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So the open-loop frequency response of the IFF control system is described by 

 ( )IFF e ee eb

h
GH Z Y Y

jω
= −  (4.74) 

Due to the effect of the transfer mobility ebY , the IFF control system containing a 

distributed parameter isolator on a flexible base is only conditionally stable. If the 

equipment has a mass-like mobility, the open-loop frequency response can be written as 

 ( )IFF e ee ebGH hm Y Y= −  (4.75) 

Because ehm  is a constant gain, similar to the AVF control system on a flexible base, 

the stability condition for such a IFF control system is also given by equation (4.59) in 

terms of modal amplitudes. 

4.3.4 Positive Position Feedback (PPF) control 

An active vibration isolation system containing a distributed parameter isolator on a 

flexible base under PPF control is shown in Figure 4.24. The control force af , which is 

in parallel with the isolator, reacts between the equipment and the base. The active 

control force is given by equation (2.29). 

4.3.4.1 Control performance 

The velocity of the equipment under PPF control is given by equation (4.51). 

Substituting equation (2.29) into (4.51), the velocity of the equipment under PPF control 

can be written as 
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 (4.76) 

If the equipment has a mass-like impedance, i.e. e eZ j mω= , the base structure is 

modelled as a mass bm  on a complex spring, i.e. * (1 )b b bK K jη= + , and the undamped 

natural frequency of the PPF controller fω  is tuned to the system fundamental 

resonance frequency e L eK mω = , the non-dimensional amplitude ratio of the system 

under PPF control is given by 
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  (4.77) 

Assuming damping in the isolator and in the base is small, i.e. 1iη <<  and 1bη << , 

and considering the base resonance frequency to be much greater than the system 

fundamental resonance frequency, i.e. 1Γ >> , equations (4.29) and (4.30) still hold 

valid respectively at low frequencies and around the system fundamental resonance 

frequency for the PPF control system on a flexible base. Figure 4.25 shows the 

amplitude ratio for the system under PPF control with various values for control gain g. 

It can be seen that the equipment resonance peak is attenuated by PPF control with an 

increase in the control gain g. However, the amplitude ratio is amplified at frequencies 

lower than the system fundamental resonance frequency due to the negative stiffness 

introduced by PPF control. Also, the base resonance peak and the IR peaks in the 

distributed parameter isolator are not reduced by PPF control because the frequency 

response of the PPF controller rolls off rapidly at high frequencies.  

4.3.4.2 Stability analysis 

From equation (4.55), the plant response from the active control force to the 

displacement of the equipment is given by 
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 (4.78) 

The open-loop frequency response of the PPF control system is thus given by 
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Due to the effect of the transfer mobility ebY  and the PPF controller, the PPF control 

system containing a distributed parameter isolator on a flexible base is only 

conditionally stable. 

4.3.5 Acceleration-Position Feedback (APF) control 

An active vibration isolation system containing a distributed parameter isolator on a 

flexible base under APF control is shown in Figure 4.26. The control force af , which is 

in parallel with the isolator, reacts between the equipment and the base. The active 

control force is given by equation (2.40). 

4.3.5.1 Control performance 

The velocity of the equipment under APF control is given by equation (4.51). 

Substituting equation (2.40) into (4.51), the velocity of the equipment under APF 

control can be written as 
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 (4.80) 

It can be seen that, around the natural frequency of the APF controller, i.e. fω ω= , 

equation (4.80) can be reduced to equation (4.53), which is the velocity of the 

equipment of such a system under AVF control. However, at frequencies much lower or 

higher than its natural frequency, the effects of APF control are negligible so that the IR 

peaks which occur at relatively high frequencies cannot be attenuated by APF control. 

 

If the equipment has a mass-like impedance, i.e. e eZ j mω= , the base structure is 

modelled as a mass bm  on a complex spring, i.e. * (1 )b b bK K jη= + , and the natural 

frequency of the APF controller fω  is tuned to the system fundamental resonance 

frequency 
eω , the amplitude ratio of the system under APF control can be written as  
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  (4.81) 

Figure 4.27 shows the amplitude ratio for the system under APF control with various 

values for active damping ratio aζ . It can be seen that the amplitude ratio is attenuated 

around the equipment resonance frequency with an increase in the active damping ratio 

due to APF control. However, the amplitude ratio close to the system fundamental 

resonance frequency is amplified. Also, the base resonance peak and IR peaks in the 

distributed parameter isolator are not reduced by APF control, because the active APF 

control force rolls off rapidly at high frequencies. 

4.3.5.2 Stability analysis 

From equation (4.55), the plant response from the active control force to the 

acceleration of the equipment is given by 
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 (4.82) 

The open-loop frequency response of the APF control system is thus given by 
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Due to the effect of the transfer mobility ebY , the APF control system containing a 

distributed parameter isolator on a flexible base is only conditionally stable. 
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4.3.6 Comparison of control performance 

The comparison of the overall control performance for the active vibration isolation 

systems containing a distributed parameter isolator on a flexible base under above 

discussed control strategies can be realized by looking at their change in mean square 

response compared to the original passive system. The relationship between the power 

spectral densities of the primary disturbance applied on the base and equipment 

response can be written as [83] 
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The mean square displacement of the equipment is thus given by [83] 
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Substituting the corresponding amplitude ratio into equation (4.85), the change in mean 

square displacement for the system under different control strategies compared to the 

passive system can be calculated. The equivalent active damping ratio for PPF control is 

also set to be ( )2a f eg mζ ζ=   

 

Figure 4.28 depicts the change in mean square displacement within the range 

0.1 1000< Ω <  when 0.1iµ = , 0.5bµ = , 0.01kµ = , 0.01i bη η= = , 0.5em = , 

0.5fζ =  and f eω ω= . At high active damping ratios, AVF and IFF control provides 

increasing reduction in the mean square response. The performance of IFF control is 

determined by the mass of the equipment. In this case the mass of the equipment is 0.5, 

which is less than unity, the control performance of IFF control is therefore worse than 

AVF control. The RVF, PPF and APF control do not produce monotonically reducing 

mean square response for an increasing in active damping ratio. For the parameters 

given in this case, AVF, IFF and APF control remains stable for the given range of the 

active damping ratio. However, the instability of PPF control is seen to occur when the 

active damping ratio is increased. Although the behaviour shown in Figure 4.28 is 
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similar to the case when the base is rigid, the additional mode due to the dynamics of 

the base has a negative contribution to the reduction of the mean square response. 

4.3.7 Acceleration feedback control 

An active vibration isolation system containing a distributed parameter isolator on a 

flexible base under acceleration feedback control is shown in Figure 4.29. The control 

force af , which is in parallel with the isolator, reacts between the equipment and the 

base. The active control force is given by equation (2.45). 

4.3.7.1 Control performance 

The velocity of the equipment under acceleration control is given by equation (4.51). 

Substituting equation (2.45) into (4.51), the velocity of the equipment under 

acceleration feedback control can be written as 
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If the equipment has a mass-like impedance, i.e. e eZ j mω=  and the base structure is 

modelled as a mass bm  on a complex spring, i.e. * (1 )b b bK K jη= + , the amplitude ratio 

of the system under acceleration feedback control can be written as 
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 (4.87) 

Figure 4.30 shows the amplitude ratio for the system under acceleration feedback 

control, where the amplitude ratio of the system without control is also plotted for 

comparison. It can be seen that the equipment resonance peak moves to a lower 
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frequency due to the acceleration feedback control. As a consequence, the amplitude 

ratio at high frequencies including the base resonance peak and IR peaks in the isolator 

is reduced.  

4.3.7.2 Stability analysis 

For acceleration feedback control, the plant response from the active control force to the 

acceleration of the equipment is given by equation (4.82). Again, due to the effect of the 

transfer mobility ebY , the acceleration feedback control system containing a distributed 

parameter isolator on a flexible base is only conditionally stable. 

4.3.8 Summary 

The control performance and stability of the active vibration isolation system containing 

a distributed parameter isolator on a flexible base under different control strategies have 

been investigated and compared. The control strategies which can introduce active 

damping, such as AVF, RVF, IFF, PPF and APF, are effective in attenuating the 

equipment resonance peak. However, the IR peaks in the isolator cannot be attenuated 

by these control strategies because the equipment mass dominates the response at high 

frequencies. If the equipment is a rigid mass, IFF control is equivalent to AVF control. 

PPF control may cause amplification at low frequencies due to the negative stiffness 

introduced. Also APF control causes some amplification close to the system 

fundamental resonance frequency. Furthermore, for the system on a flexible base, AVF, 

IFF, PPF and APF control systems are only conditionally stable. A stability condition in 

terms of modal amplitudes has been proposed for AVF control. In contrast, the RVF 

control system on a flexible base remains unconditionally stable, although its control 

performance at high frequencies is degraded. Different from other control strategies, 

acceleration feedback control can reduce the IR peaks in the isolator at high frequencies. 

However, as a compromise, the equipment resonance peak moves to a lower frequency 

and cannot be reduced by acceleration feedback control.  
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4.4 Conclusions 

Active vibration isolation systems containing a distributed parameter isolator, which is 

modelled as a finite elastic rod, under various control strategies have been investigated 

and compared in this chapter. The different control strategies have their own advantages 

and disadvantages in isolating a piece of equipment supported by a distributed 

parameter isolator. It has been shown that AVF control is again an optimal solution to 

minimise the mean square velocity of the equipment mass. A stability condition in terms 

of modal amplitudes has been proposed for AVF control system on a flexible base 

containing a distributed parameter isolator. The theoretical analysis for AVF control 

system discussed in this chapter is validated experimentally in the next chapter. Also, 

based on the proposed stability condition, approaches which can stabilize the AVF 

control system on a flexible base are investigated in the following chapter. The positive 

effect of acceleration feedback control at high frequencies gives a clue in attenuating the 

IR peaks in the distributed parameter isolator. 
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Figure 4.1 (a) schematic diagram and (b) free body diagram of base excited active 

vibration isolation system containing a distributed parameter isolator under AVF 

control, where eu&  and bu&  are velocities of the equipment and the base respectively; 

eZ  is the input impedance of the unconnected equipment at the location of the isolator 

connection; LZ  is the impedance matrix of the isolator; h is the constant feedback 

control gain; af  is the active control force; and eQ , 1Q  and 2Q  are internal forces. 

 

Figure 4.2 Mechanical representation of the base excited active vibration isolation 

system containing a distributed parameter isolator under AVF control. 
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Figure 4.3 Transmissibility of the active vibration isolation system under AVF control 

when the ratio of the mass of the isolator to the mass of the equipment 0.1iµ = , the loss 

factor in the isolator 0.01iη = , and the active damping ratio 0aζ =  (solid line), 

0.2aζ =  (dashed line) or 1aζ =  (dotted line). The bold and faint dashed-dotted lines 

pass through the IR peaks and the troughs of the transmissibility respectively.  

 

Figure 4.4 Mechanical representation of the Thevenin equivalent system for the active 

vibration isolation system under AVF control shown in Figure 4.1, where 21Z  and 22Z  

are respectively the transfer and point impedances of the isolator, and Bf  is the 

blocked force. 
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Figure 4.5 (a) schematic diagram and (b) mechanical representation of base excited 

active vibration isolation system containing a distributed parameter isolator under RVF 

control. 
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Figure 4.6 Transmissibility of the active vibration isolation system under RVF control 

when 0.1iµ = ， 0.01iη = , and 0aζ =  (dashed line) or 1aζ =  (solid line). The two 

dashed-dotted lines pass through the IR peaks and the dotted line passes through the 

troughs of the transmissibility.  
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Figure 4.7 Mechanical representation of the Thevenin equivalent system for the active 

vibration isolation system under AVF control shown in Figure 4.5. 

 

Figure 4.8 Schematic diagram of base excited active vibration isolation system 

containing a distributed parameter isolator under IFF control, where ( )IFFH jω  is the 

frequency response of the IFF controller and Tf  is the transmitted force to the 

equipment. 

 

Figure 4.9 Schematic diagram of base excited active vibration isolation system 

containing a distributed parameter isolator under PPF control, where eu  is the 

displacement of the equipment and ( )PPFH jω  is the frequency response of the PPF 

controller. 
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Figure 4.10 Transmissibility of the active vibration isolation system under PPF control  

when 0.1iµ = ， 0.01iη = , the natural frequency of the filter f eω ω= , the damping 

ratio of the filter 0.5fζ = , the mass of the equipment 2em =  and the constant gain 

0g =  (solid line), 0.5g =  (dashed line) or 0.9g = (dotted line). 

 

Figure 4.11 Schematic diagram of base excited active vibration isolation system 

containing a distributed parameter isolator under APF control, where  eu&&  is the 

acceleration of the equipment and ( )APFH jω  is the frequency response of the APF 

controller. 
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Figure 4.12 Transmissibility of the active vibration isolation system under APF control 

when 0.1iµ = ， 0.01iη = , f eω ω= , 0.5fζ =  and 0aζ =  (solid line), 0.2aζ =  

(dashed line) or 1aζ =  (dotted line). 
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Figure 4.13 Normalized change in mean square velocity for the base motion system 

under AVF (solid line), RVF (dashed line), IFF (dotted line), PPF (line with circle) and 

APF (dashed-dotted line) control compared to the passive system when 0.1iµ = , 

0.01iη = , 0.5em = , f eω ω=  and 0.5fζ = .  
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Figure 4.14 (a) schematic diagram and (b) mechanical representation of a base excited 

system containing a distributed parameter isolator under acceleration feedback control. 
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Figure 4.15 Transmissibility of the active vibration isolation system under acceleration 

feedback control when 0.1iµ = ， 0.01iη =  and 0h =  (solid line), 0.5eh m =  

(dashed line) or 5eh m =  (dotted line). 

 

Figure 4.16 Schematic diagram of a base excited system containing a distributed 

parameter isolator under optimal control, where 
lu&  is the velocity of the middle mass. 
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Figure 4.17 (a) schematic diagram and (b) free body diagram of an active vibration 

isolation system containing a distributed parameter isolator on a flexible base under 

AVF control, where bZ  is the input impedance of the base, f  is the primary force 

applied to the base and bQ  is an internal force. 
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Figure 4.18 Amplitude ratio of the active vibration isolation system on a flexible base 

under AVF control when 0.1iµ = , 0.01iη = , the ratio of the mass of the base to the 

mass of the equipment 0.5bµ = , the ratio of the static stiffness of the isolator to the 

stiffness of the base 0.1kµ = , the loss factor in the base 0.01bη =  and 0aζ =  (solid 

line), 0.2aζ =  (dashed line) or 1aζ =  (dotted line). 
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Figure 4.19 Plant responses of the AVF control system containing a distributed 

parameter isolator on a flexible base when 0.1
i

µ = , 0.5
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µ = , 0.1
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µ = , and 
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Figure 4.20 Zoomed Nyquist plot of the plant responses of the AVF control system 

containing a distributed parameter isolator on a flexible base when 0.1
i

µ = , 0.5
b

µ = , 

0.1
k

µ =  and 0.01
i b

η η= = . 
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Figure 4.21 Schematic diagram of an active vibration isolation system containing a 

distributed parameter isolator on a flexible base under RVF control. 
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Figure 4.22 Amplitude ratio of the active vibration isolation system on a flexible base 

under RVF control when 0.1iµ = , 0.5bµ = , 0.1kµ = , 0.01i bη η= =  and 0aζ =  

(solid line), 0.2aζ =  (dashed line) or 1aζ =  (dotted line). 
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Figure 4.23 Schematic diagram of an active vibration isolation system containing a 

distributed parameter isolator on a flexible base under IFF control. 

 

Figure 4.24 Schematic diagram of an active vibration isolation system containing a 

distributed parameter isolator on a flexible base under PPF control. 
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Figure 4.25 Amplitude ratio of the active vibration isolation system on a flexible base 

under PPF control when 0.1iµ = , 0.5bµ = , 0.1kµ = , 0.01i bη η= = , f eω ω= , 

0.5fζ = , 2em =  and 0g =  (solid line), 0.5g = (dashed line) or 0.9g = (dotted 

line). 

 

Figure 4.26 Schematic diagram of an active vibration isolation system containing a 

distributed parameter isolator on a flexible base under APF control. 
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Figure 4.27 Amplitude ratio of the active vibration isolation system on a flexible base 

under APF control when 0.1iµ = , 0.5bµ = , 0.1kµ = , 0.01i bη η= = , f eω ω= , 

0.5fζ =  and 0aζ =  (solid line), 0.2aζ =  (dashed line) or 1aζ =  (dotted line). 
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Figure 4.28 Normalized change in mean square displacement for the system on a 

flexible base under AVF (solid line), RVF (dashed line), IFF (dotted line), PPF (line 

with circle) and APF (dashed-dotted line) control compared to the passive system when 

0.1iµ = , 0.5bµ = , 0.1kµ = , 0.01i bη η= = , 0.5em = , f eω ω=  and 0.5fζ = . N.B. 

since AVF is only conditionally stable in this case, the solid line starts to increase if 

2.5aζ ≈  [73]. 
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Figure 4.29 Schematic diagram of an active vibration isolation system containing a 

distributed parameter isolator on a flexible base under acceleration feedback control. 
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Figure 4.30 Amplitude ratio of the active vibration isolation system on a flexible base 

under acceleration feedback control when 0.1iµ = , 0.5bµ = , 0.1kµ = , 

0.01i bη η= =  and 0h =  (solid line), 0.5eh m = (dashed line) or 5eh m =  (dotted 

line). 
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Chapter 5 

 

AVF Control on a System Containing a 

Distributed Parameter Isolator 

 

 

5.1 Introduction 

As discussed in Chapter 4, AVF control is an optimal solution to minimise the mean 

square velocity of the equipment mass in active vibration isolation with a distributed 

parameter isolator and a rigid base (section 4.2.8). The AVF control system, which could 

be considered as the simplest way to implement active damping, is effective in 

attenuating the resonance peaks at relatively low frequencies, whereas it is not effective 

in attenuating the isolator IRs. It was also shown that the AVF control system containing 

a distributed parameter isolator on a flexible base is only conditionally stable. Such a 

system may become unstable at high control gains, so that the AVF control performance 

is limited.  

 

The aim of this chapter is to investigate the stability and performance of AVF control 

system containing a distributed parameter isolator and examine approaches to stabilize 

such a system both theoretically and experimentally. First, several approaches which 

can stabilize the AVF control system are presented theoretically. Then the stability and 

performance of the AVF control system containing a distributed parameter isolator are
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investigated experimentally on a four-spring active vibration isolation system. The 

approaches to stabilize the AVF control system are also validated experimentally. 

 

5.2 Approaches to stabilize the AVF control system 

As presented in Chapter 4, the active vibration isolation system containing a distributed 

parameter isolator on a flexible base under AVF control is only conditionally stable. The 

stability condition proposed in Chapter 4 is given by 
( ) ( ) 1j j

b eφ φ <  for all j in a lightly 

damped system, where ( )j

eφ  and ( )j

bφ  are respectively the modal amplitudes evaluated 

at the equipment and the base. This stability condition means that if the displacement of 

the base is greater than the displacement of the equipment and these two displacements 

are in phase at the thj  natural frequency, then the system may become unstable.  

 

Therefore, to stabilize the AVF control system, the relative displacement between the 

equipment and the base at the troublesome natural frequency needs to be altered. In 

some situations, this can simply be achieved by adding more damping in the isolator as 

mentioned in [72, 90]. Additional mass could also be added to the base structure to 

change the modal amplitude in order to stabilize the AVF control system. Furthermore, 

some other mechanical approaches can also be applied to change the dynamics of the 

base structure. Alternatively, electronic means can be used to compensate for the phase 

lag at IRs in the isolator which causes instability. These approaches are discussed in the 

following sections. 

5.2.1 Adding more damping in the isolator 

Additional damping introduced in the isolator constrains the amplitude and phase shift 

of the open-loop frequency response at IRs, so that the instability due to the IRs can be 

eliminated. For the AVF control system on a flexible base shown in Figure 4.16, the 

simulation result of adding more damping in the isolator can be achieved if a larger 
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value for the loss factor in the isolator iη  is applied. Figure 5.1 shows the plant 

response of the active vibration isolation system on a flexible base under AVF control 

with high damping in the distributed parameter isolator. The plant response for such a 

system with low damping in the isolator is also plotted for comparison. It can be seen 

that with high damping in the isolator it helps limit the amplitude and phase shift of the 

plant response at IR frequencies, so that the phase at the first IR frequency (the third 

peak in Figure 5.1) where instability occurs becomes greater than -180º. It can also be 

noted that in the Nyquist plot of the plant response, shown in Figure 5.2, the loop on the 

left half of the complex plane caused by the first IR for the system with low damping in 

the isolator is shifted to the third quadrant. For large damping the loop never crosses the 

negative real axis. Thus the system becomes unconditionally stable. From the above 

analysis, it is demonstrated that the situation of having a lightly damped system, i.e. one 

mode dominating the response at resonance frequencies, is the worst case for stability. 

 

This approach to stabilize the AVF control system is simple and straightforward. 

However, it is not always practical to introducing more damping in the isolator. Also, 

high damping materials may degrade the load capacity of the isolator and the 

performance of the system [67].  

5.2.2 Adding more mass to the base 

Adding more mass to the base structure can reduce the relative displacement between 

the base and the equipment at IRs, so that the proposed stability condition can be 

satisfied. The AVF control system can thus be stabilized. For the AVF control system on 

a flexible base shown in Figure 4.16, the simulation result of adding more mass to the 

base can be achieved if a larger value for the ratio of the mass of the base to the mass of 

the equipment bµ  is applied. Figure 5.3 shows the plant response of the AVF control 

system on a heavy flexible base. For comparison, the plant response of the system on a 

light flexible base is also plotted. It can be seen that the base resonance moves to a 
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lower frequency due to the extra mass on the base structure. It should also be noted that 

the phase shift due to the IRs in the isolator is limited by the addition of more mass to 

the base structure. Figure 5.4 shows the Nyquist plot of the plant response. The loop, 

which is on the left half of the complex plane caused by the first IR for the system on a 

light base, is shifted to the third quadrant rather than crossing the negative real axis, due 

to the effects of the additional base mass. Thus the system becomes unconditionally 

stable. However, this approach is also limited in practical use because it is again not 

always practical to add extra mass to the base.  

5.2.3 Electronic means: introducing a lead compensator 

Figure 5.5 shows a lead compensator that is introduced into the feedback loop to 

compensate for the phase lag due to the IRs in the distributed parameter isolator, which 

causes the instability. The open-loop frequency response of the modified control system 

is given by 

 ( ) ( ) leadG j H j h G Gω ω = ⋅ ⋅  (5.1) 

where h  is the constant feedback gain, ee ebG Y Y= −  is the plant response of the 

system, and leadG  is the frequency response function of the lead compensator, which is 

given by [74, 75, 91] 

 ( )1
lead

1

1
   0 1

1

j T
G

j T

ω
α α

αω

+
= ⋅ < <

+
 (5.2) 

where α  and 1T  are the coefficients of the lead compensator. The corresponding 

frequency where the maximum phase lead occurs is given by 

 
1

1
c

T
ω

α
=  (5.3) 

The corresponding maximum phase lead is given by 

 max

1
arcsin

1

α
ϕ

α

− 
=  

+ 
 (5.4) 

Figure 5.6 shows the frequency response of a lead compensator. To compensate for the 

phase lag due to the IRs in the isolator, which causes the instability, the lead 
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compensator needs to be tuned. 
c

ω  should be equal to the instability frequency, so that 

the maximum phase lead compensation can be achieved at the troublesome frequency. If 

a phase lead compensation of ϕ  is required, the parameter α  is given by 

 
1 sin

1 sin

ϕ
α

ϕ

−
=

+
 (5.5) 

so that the coefficient 1T  can be written as 

 1

1

c

T
αω

=  (5.6) 

Figure 5.7 illustrates the open-loop frequency response of the system with a lead 

compensator shown in Figure 5.5 when the feedback control gain is unity. For 

comparison, the open-loop frequency response of the original system without the lead 

compensator is also plotted. It can be seen that the phase shift at the first IR frequency 

where instability occurs is greater than -180º due to the phase compensation, so that the 

Nyquist plot of the open-loop frequency response does not cross the negative real axis 

as shown in Figure 5.8. Thus the system becomes unconditionally stable.  

 

This approach to stabilize the AVF control system requires information on the IRs in the 

isolator before the lead compensator can be designed and implemented. Also higher 

control gains are required to achieve good control performance because the open-loop 

frequency response of the stabilized system is less due to the lead compensator. In 

practice, the higher order resonances in the equipment or base structures at high 

frequencies are likely to cause instabilities due to the higher control gain used. 

5.2.4 Mechanical means 

To stabilize the AVF control system, an additional SDOF mechanical system comprising 

a rigid mass am , an elastic spring with stiffness ak  and a viscous damper with 

damping coefficient ac  can be introduced to attach onto the base structure of the active 

vibration isolation system. Figure 5.9 shows the idealized situation. The hypothesis is 
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that the displacement of the base at the instability frequency can be altered. The active 

force due to AVF control acting on the equipment reacts against the additional mass, as 

shown in Figure 5.9, rather than acting directly onto the flexible base. The force 

transmitted to the base structure '

af  is thus given by 

 '

a a a a bf T f Z u= + &  (5.7) 

where  

 ia
a

ma ia

Z
T

Z Z
=

+
 (5.8) 

is the force transmissibility and  

 ma ia
a

ma ia

Z Z
Z

Z Z
=

+
 (5.9) 

is the total impedance of the additional system, ma aZ j mω=  is the impedance of the 

additional mass, ia a aZ k j cω= +  is the impedance of the combined suspension of the 

additional system.  

 

The velocity of the equipment for the stabilized system with the additional mechanical 

system on the base shown in Figure 5.9 is given by 

 '( )e ee a eb au Y f Y f f= + −&  (5.10) 

Substituting equations for eeY , ebY  given in chapters 3 and 4 and equation (5.7) into 

(5.10), the velocity of the equipment can be rewritten as 

 ' ' '( )e ee a eb a ebu Y T Y f Y f= − +&  (5.11) 

where 

 
( )( )

( )( )

' 11

22 11 12 21

' 21

22 11 12 21

b a
ee

e b a

eb

e b a

Z Z Z
Y

Z Z Z Z Z Z Z

Z
Y

Z Z Z Z Z Z Z

+ +
=

+ + + −

−
=

+ + + −

 (5.12a,b) 

where '

eeY  is the input mobility of the equipment when coupled to the rest of the 

stabilized system and '

eb
Y  is the transfer mobility from the force on the base to the 
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equipment velocity eu&  when the stabilized system is coupled. 

 

Therefore, the plant response from actuator force to absolute equipment velocity for the 

stabilized system is given by 

 ' ' '

0

e
ee a eb

a f

u
G Y T Y

f
=

= = −
&

 (5.13) 

At resonance frequencies, in a lightly damped system, when only one mode dominates 

the response, the plant response can be written as 

 

( )
( )

2
( )

( )

' ' '

1

2

j

j
j b

e a j

e

ee a eb

j j j

T

G Y T Y
K M

ω ω

φ
φ

φ

ζ

=

 
  − ⋅  

 = − ≈  (5.14) 

The stability condition is thus given by 

 ( )
( )

( )
Re 1

j

j

b
a j

e

T
ω ω

φ

φ=
⋅ <  (5.15) 

at a resonance frequency, where Re denotes the real part.  

 

The force transmissibility in equation (5.15) can be written as 

 
2

1 2

1 2

ia s a
a

ma ia a s a

Z j
T

Z Z j

ζ

ζ

+ Ω
= =

+ − Ω + Ω
 (5.16) 

where non-dimensional frequency a aω ωΩ = , a a ak mω =  is the natural frequency 

of the additional system, and 2s a a ac k mζ =  is the viscous damping ratio of the 

additional system. According to the stability condition giving by equation (5.15), to 

stabilize the AVF control system, ( )Re aT  should be as small as possible around 

potentially unstable frequencies. As shown in equation (5.16), it means that the natural 

frequency of the additional system aω  should be much smaller than the potentially 

unstable frequencies. However, around the natural frequency of the additional system 

aω , if it is lightly damped, instability may occur due to the amplification of ( )Re aT . In 

order to overcome this low frequency potential instability due to the natural frequency 

of the additional system, a relatively highly damped additional system should be used to 

attenuate ( )Re aT  around its natural frequency.  
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The plant response of the active vibration isolation system with the additional 

mechanical system attached to the base shown in Figure 5.9 is plotted in Figure 5.10. 

The plant response of the original system is also plotted for comparison. It can be seen 

that the phase lag at the first IR in the isolator, which might cause instability, is 

eliminated due to the attachment of the mechanical system. But as a compromise, there 

is a new phase lead occurring at the natural frequency of the additional system. If the 

damping of the additional system is relatively high, this phase lead will not be a danger 

to stability for the AVF control. As shown in Figure 5.11 for the Nyquist plot of the 

plant responses, there is no loop which crosses the negative real axis for the stabilized 

system with the additional mechanical system attached to the base. The AVF control 

system is thus unconditionally stable. 

 

The phase margin around the natural frequency of the additional system can be further 

increased by introducing a phase-lag compensator into the feedback control loop as 

shown in Figure 5.12. If a lag compensator is applied to the stabilized system, the 

open-loop frequency response becomes 

 ( ) ( ) '

lagG j H j h G Gω ω = ⋅ ⋅  (5.17) 

where the frequency response function of a lag compensator is given by [74] 
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+
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where β and 2T  are the coefficients of the lag compensator. The corresponding 

frequency where the maximum phase lag occurs is given by 

 
2

1
c

T
ω

β
=  (5.19) 

The corresponding maximum phase lag is given by 

 max

1
arcsin

1

β
ϕ

β

 −
=  

+ 
 (5.20) 

Figure 5.13 shows the frequency response of a lag compensator. To limit the phase shift 

around the natural frequency of the additional system, 
c

ω  should be equal to 
a

ω , so 
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that the maximum phase lag compensation can be achieved. The appropriate parameters 

for the lag compensator need to be chosen based on this principle. If a phase lag 

compensation of ϕ  is required, the parameter β  is given by 

 
1 sin

1 sin

ϕ
β

ϕ

−
=

+
 (5.21) 

so that the coefficient 2T  can be written as 

 2

1 1

c a

T
βω βω

= =  (5.22) 

Figure 5.14 illustrates the open-loop frequency response and its Nyquist plot of the 

stabilized system with a lag compensator shown in Figure 5.12 when the feedback 

control gain is unity. For comparison, the open-loop frequency response of the system 

shown in Figure 5.9 is also plotted. It can be seen that the phase around the natural 

frequency of the additional system is further suppressed due to the lag compensator, so 

that a greater phase margin is achieved.  

 

Compared to the aforementioned approach of adding more mass to the base to stabilize 

the AVF control, less mass is required in this mechanical configuration. As a 

compromise, it does increase the design complexity. The potential danger to stability at 

the natural frequency of the additional system should also be noted and considered. 

 

5.3 Experimental validation for AVF control system 

In the theoretical analysis described in this thesis, the distributed parameter isolator has 

been modelled as a ‘long-rod’, i.e. the lateral deformation of the isolator under the 

longitudinal excitation is ignored. As presented in Chapter 3, a helical spring is a typical 

lightly damped distributed parameter isolator. It can be modelled as a finite rod under 

longitudinal vibration for simplicity, because both objects are continuously distributed 

elements, in that their stiffness and mass are spread uniformly throughout their length. 

Therefore, a four-spring active vibration isolation system was designed and 
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implemented to show the validity of stability and control performance for vibration 

isolation system under AVF control. The purpose of using four springs that are in 

parallel in the experimental rig is to eliminate the effect of any rotation. It is also less 

likely to result in lateral isolator deformation. Different aforementioned approaches 

which can stabilize the AVF control system are also implemented experimentally. Part 

of the experimental results has been reported in [92]. 

5.3.1 Experimental setup 

A four-spring active vibration isolation system was built as shown in Figure 5.15. It 

consisted of an equipment plate together with four actuators mounted on a base plate 

through four springs under excitation of a primary vibrator. A symmetrical aluminium 

plate representing the equipment was installed on top of another symmetrical aluminium 

plate representing the base via four identical helical springs. A large electromagnetic 

vibrator (Derritron type VP4) underneath the base plate acted as the primary force 

actuator, and the four small electromagnetic actuators (LDS V101) fixed on the 

equipment plate were the control actuators at each mount position. The equipment to be 

isolated was thus a combined structure of the aluminium equipment plate and four 

actuators. Each helical spring was bolted to the equipment plate through an aluminium 

washer underneath each actuator. A stinger was connected through the inside of the 

spring between each actuator and the corresponding washer at the foot of each spring. 

The base plate, to which the washers were attached by wax, was bolted to the primary 

vibrator with four bolts. The detailed physical and geometrical parameters of the 

experimental setup are listed in Table 5.1.   

 

Figure 5.16 shows a schematic diagram of the experimental setup and signal path with 

details of one actuator and the corresponding spring underneath. The primary vibrator 

was driven with white noise from a dynamic signal analyzer (Data Physics-Signalcalc 

Mobilyzer II) through a power amplifier (Ariston AX-910). The base response was 

measured using an accelerometer (B&K type 4375) at the centre of the base plate. The 
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equipment response was monitored by five accelerometers (B&K type 4375) located 

along two central lines of the equipment plate, so that the average vertical equipment 

response and the dynamic behaviour of the equipment plate could be analyzed, and the 

effect of any rigid body equipment plate rotation reduced. The acceleration signals from 

the equipment plate and the base plate were then passed through charge amplifiers 

(B&K type 2635). These include an integrator and high and low-pass filter modules, so 

that the velocity response of the equipment and base can be obtained. The high-pass 

filter cut-off frequency was set to 1 Hz to avoid DC signal overflow, and the low-pass 

filter cut-off frequency was set to 10 kHz. The velocity response at the centre of the 

equipment plate was fed back to the actuators via a power amplifier (Cambridge audio 

AI V2.0) with gain control to generate the active control force.  

5.3.2 Passive response 

The base dynamics were firstly measured when it was uncoupled from the springs and 

equipment structure, i.e. the equipment plate, actuators and springs were removed from 

the base plate. The base plate was driven by the large vibrator using broadband white 

noise from the signal analyzer through a power amplifier. The vibrator input voltage to 

the power amplifier was used as the reference signal instead of the input force because 

the input voltage is approximately proportional to the force input within the frequency 

range of interest in this study [93]. The acceleration response at the centre of the base 

plate was measured and passed through a charge amplifier to obtain the velocity 

response. The base dynamics is then the measured transfer function from the input of 

the power amplifier to the output of the charge amplifier. Different masses were used to 

change the weight of the base structure. 

 

Figure 5.17 shows the base dynamics with different additional weight added to the base 

structure. It can be seen that the base structure behaves as SDOF system which is a mass 

supported by a spring upto about 600 Hz at least. The solid line is for a 0.8 kg mass 

attached to the base plate with a resonance frequency of about 23.3 Hz. The dashed line 
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is for a 1.8 kg mass attached to the base plate, so that the resonance frequency of the 

system is reduced to about 19 Hz. These resonance frequencies are the effective mass of 

the base structure resonant on the internal support stiffness of the vibrator. Therefore, 

the effective mass of 1.18 kg and effective stiffness of 44.25 10× N/m can be estimated 

from these two resonance frequencies, assuming light damping. Based on the above 

results, the base structure can be modelled as a SDOF system, i.e. a flexible base with 

an effective mass supported by a spring. Therefore, the active vibration isolation system 

used in the experiment can be simulated using the theoretical model described in the 

earlier chapters, which is an equipment mass mounted on a flexible base structure 

through a distributed parameter isolator.  

 

To measure the performance of the system without control, the equipment structure and 

springs were reassembled onto to the base plate. The transmissibility and velocity 

response of the active vibration isolation system without control were measured when 

the large vibrator was driven with white noise and the actuators on the equipment plate 

were inactive. The vibrator input voltage was again used as the reference signal. The 

acceleration responses were passed through charge amplifiers to obtain the velocity 

responses. The measured data was then averaged to obtain the transmissibility and the 

velocity response of the equipment plate per unit voltage to the power amplifier as 

shown in Figures 5.18 and 5.19. The predicted results are obtained using the parameters 

listed in Table 5.1. 

 

There is a reasonable agreement between the measured and predicted results. The 

responses below 3 Hz are very noisy due to low sensitivity of the actuators and the 

mechanical plant, so that they are not presented. For the transmissibility shown in 

Figure 5.18, the base dynamics is excluded by definition of the transmissibility. The first 

peak at 18.4 Hz is the fundamental resonance peak of the system when the equipment 

structure is resonant on the stiffness of the four parallel springs. In the velocity response 

of the equipment plate shown in Figure 5.19, the base dynamics is included. The 
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resonance peaks at approximately 11.8 Hz and 50 Hz are the natural frequencies of the 

coupled system. In both figures the first internal resonance in the helical springs occurs 

around 404 Hz, which is well predicted by the theoretical model at 400 Hz. The second 

internal resonance in the springs, which is predicted to occur at 800 Hz, is strongly 

coupled with high-order modes in the equipment plate, which can no longer be assumed 

to be rigid at these relatively high frequencies. The resonance around 289 Hz is a 

rotational mode with a diagonal nodal line on the equipment plate and the resonance 

around 327 Hz is a flexural mode in the equipment plate, which were detected by 

analyzing the phase differences between the responses at different locations on the 

equipment plate. Therefore discrepancies at high frequencies are mainly due to the 

effect of the modal behaviour of the equipment plate, which are not considered in the 

theoretical study. The discrepancies at low frequencies in Figure 5.19 are due to 

high-pass filters incorporated in the power amplifier and charge amplifiers, which are 

also not accounted for in the theoretical model.  

5.3.3 Stability analysis 

To measure the open-loop frequency response, the four actuators fixed on top of the 

equipment plate were driven with the same white noise from the dynamic signal 

analyser through a power amplifier, while the primary vibrator was connected but 

inactive. The open-loop frequency response of the system was measured and averaged 

using the input to the power amplifier and the integrated output from the charge 

amplifiers.  

 

The predicted and measured open-loop frequency responses of the four-spring active 

vibration isolation system are shown in Figure 5.20. Apart from some differences in the 

resonant amplitudes, the theoretical results agree fairly well with the experimental 

measurements, except for the unmodelled rotational modes around 32 Hz and 289 Hz, 

the unmodelled flexural modal behaviour around 327 Hz and in the frequency range 

above 500 Hz. The data below 3 Hz had low coherence due to the low instrumentation 
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sensitivity, so again they are not presented. The first IR in the helical springs around 404 

Hz can be clearly identified and compares well with predictions. The second IR is again 

strongly coupled with some flexural modes in the equipment plate. The phase shift at 

low frequencies, which is greater than 90º, is due to the phase advances in the power 

amplifier and charge amplifiers. The phase shift at high frequencies, where the phase 

tends to decrease below -90º, is due to the phase lag in the low-pass filters incorporated 

inside the charge amplifiers.  

 

The measured potential instability occurs at the first IR of the helical springs as 

predicted. This supports the stability analysis in the former theoretical study that the IRs 

might destabilize the AVF control system when the mass of the isolators becomes 

significant. The flexural mode in the equipment plate at 327 Hz also has the potential to 

destabilize the system, which is not considered in the theoretical study here but was 

identified and reported by Kim et al [52]. The cause of the instability in the experiment 

also includes the phase advances in the power amplifier and charge amplifiers. The 

power amplifier has a phase advance of up to about 90º at very low frequencies (under 5 

Hz). Furthermore, an additional phase advance occurs in the charge amplifier. A phase 

advance of greater than 90º at very low frequencies can cause the Nyquist plot of the 

plant response to cross the negative real axis, thus making the system unstable to high 

gain [15, 43]. The experimental plant can also be potentially unstable at very high 

frequencies due to the high-order modes in the experimental structure as well as 

electrical causes. The low-pass filter incorporated inside the charge amplifier produces 

an effective time delay in the control loop, which can make the system unstable at high 

frequencies. Furthermore, the phase shift in the electromagnetic actuators can also be 

modelled as an additional time delay [52]. In this experiment, it has been found that the 

AVF control system first becomes unstable at very low frequencies, due to the phase 

advances in the charge amplifier and power amplifier with increased feedback control 

gain. 

 

Figure 5.21 depicts the Nyquist plot of the open-loop frequency response of the active 
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vibration isolation system corresponding to the results and frequency range shown in 

Figure 5.20. Two loops in the left half of the complex plane crossing the negative real 

axis are caused by the first IR in the helical springs at 404 Hz (smaller loop on left half) 

and the flexural mode in the equipment plate at 327 Hz (larger loop on left half) 

respectively. The Nyquist plot of the plant response also crosses the negative real axis at 

very low frequencies due to the phase advances in the power amplifier and charge 

amplifiers, which is not shown in Figure 5.21 since this is only plotted for frequencies 

from 3 Hz to 1 kHz. In these experiments, it was this phase shift that caused instability 

at very low frequencies before the potential instabilities above became important. 

5.3.4 Control performance 

A single-channel AVF control on the active vibration isolation system was implemented 

on each of the four springs when the equipment structure was mounted on the base 

structure. The primary vibrator was again driven with white noise. The velocity 

responses of the equipment and base were also obtained using accelerometers through 

charge amplifiers and then passed to the signal analyzer. The velocity response at the 

centre of the equipment plate was fed back into four actuators through a power amplifier 

to generate the control forces, which were identical for each actuator. Each feedback 

channel had thus an equal, constant feedback gain. 

 

Figure 5.22 shows the predicted and measured transmissibility of the active vibration 

isolation system with various control gains, where the original transmissibility without 

control is also shown for comparison. Figure 5.23 shows the velocity response of the 

equipment plate per unit voltage to the power amplifier, which drove the primary 

vibrator, without control and with various control gains. Responses less than 3 Hz are 

again excluded from the plots. There is good agreement between the predicted and 

measured results for low and high gains used. The system resonance peaks at low 

frequencies are well attenuated with an increased control gain as predicted. However, 

the resonance peaks at high frequencies including the first IR peak in the springs are not 
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reduced because the mass of the equipment structure dominates the response at this 

frequency range as discussed in the theoretical study. Zooming into the amplitude at the 

first IR in the helical springs at 404 Hz shows that there is a small amplification caused 

by the phase shift at this frequency. The similar amplification in the amplitude occurs 

around 327 Hz also due to the corresponding phase shift. The gain margin for the higher 

feedback gain used in Figures 5.22 and 5.23 was 1.8 dB, determined by the very low 

frequency instability. 

 

Therefore, as predicted theoretically, good control performance is achieved around the 

system resonance peaks at low frequencies, while the isolation performance is not 

improved at high frequencies where the equipment mass dominates the response. 

Furthermore, there are small amplifications at some frequencies due to the potential 

instability caused by IRs in the spring and flexural modal behaviour of the equipment 

plate. 

5.3.5 Approaches to stabilize the AVF control system 

In this experiment, because the base structure is much lighter and more flexible than the 

equipment structure, the system is then much more likely to be unstable at some IR 

frequencies in the isolator. Two approaches discussed in section 5.2 were implemented 

experimentally and presented in following sections. 

5.3.5.1 Adding more mass to the base 

As presented theoretically, adding mass to the base structure is a simple way to change 

the base response. A mass of 1.8 kg was attached to the base plate to investigate its 

stabilizing effect on the experimental plant. The measured open-loop frequency 

responses of the potential stabilized system are shown in Figure 5.24, where the original 

open-loop frequency responses are also shown for comparison. It can be seen that the 

base resonance is reduced to a lower frequency due to the attachment of the mass, as 

predicted in the theoretical study. The amplitude and phase of the first IR are also 

restricted. As shown in Figure 5.25 for the zoomed open-loop frequency response, it can 
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be seen that the phase at the first IR is reduced from -235º to -175º, which means the 

potential instability is eliminated by adding mass to the base. However, the flexural 

mode in the equipment plate at 327 Hz is not affected, because the change of the base 

dynamics does not affect the flexural modal behaviour in the equipment plate. Figure 

5.26 depicts the Nyquist plot of the open-loop frequency response for the original and 

stabilized system. The detailed Nyquist plot between 350 and 450 Hz where only the 

first IR occurs is shown in Figure 5.27. It can be seen that, for the stabilized system with 

more mass on the base, the loop on the left half of the complex plane due to the first IR 

in the spring is shifted to the third quadrant rather than crossing the negative real axis, 

so that the AVF control system becomes stable at this frequency. However, due to the 

phase advances in the charge amplifier and power amplifier, the instability of the control 

system with additional mass on the base again still first occurred at very low 

frequencies. The control performance of the system with more mass on the base is 

shown in Figure 5.28. It can be seen that the resonance peaks at low frequencies are 

attenuated without the compromise of an increase at the first IR in the helical springs.  

5.3.5.2 Electronic means: introducing a lead compensator 

A schematic diagram of an electrical circuit for a lead compensator is shown in Figure 

5.29(a), which consists of two resistors ( 1R , 2R ) and one capacitor ( C ). The transfer 

function between the output oe  and input ie  is given by [74] 
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which is identical to equation (5.2). In the experiment, the phase of the open-loop 

frequency response of the AVF control system at the first IR is -235º. To stabilize the 

control system at this frequency, a phase lead compensator of at least 55º is required. 

The coefficient α  can thus be determined by equation (5.5) to give 
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If 0.03α =  is chosen, in order to achieve the maximum phase lead compensation at 

404 Hz, where the first IR occurs, the coefficient 1T  can be determined by equation 

(5.6) to give 

 1 0.0023T ≈  (5.26) 

By choosing the appropriate values for the resistances and the capacitance, the required 

lead compensator can be realized as shown in Figure 5.29(b). The measured and 

predicted frequency responses of the lead compensator agree well, see Figure 5.30.   

 

The four-spring active vibration isolation system with a lead compensator and its signal 

path are shown in Figure 5.31. The lead compensator was introduced between the 

charge amplifier and the power amplifier. The velocity response at the centre of the 

equipment plate was obtained using an accelerometer connected to the charge amplifier, 

integrated and then passed to the signal analyzer. The velocity response was also fed 

back into the four actuators through the power amplifier to generate the control forces.  

 

The measured open-loop frequency responses of the potential stabilized system are 

shown in Figure 5.32, where the original open-loop frequency responses are also shown 

for comparison. It can be noted that the phase is constrained to be less than -180º both at 

the first IR frequency of 404 Hz and at the flexural mode in the equipment plate of 327 

Hz, which means that these potential instabilities are eliminated by introducing the 

particular lead compensator. Figure 5.33 shows the Nyquist plot of the open-loop 

frequency response for the stabilized system with the lead compensator. It can be seen 

that there is no loop on the left half of the complex plane crossing the negative real axis, 

so that the AVF control system becomes unconditionally stable within this frequency 

range. However, it should also be noted that the magnitude of the open-loop frequency 

response is reduced due to the lead compensator. As a consequence, the instability in 

such a control system does not first occur at low frequencies. As shown in Figure 5.34, 

which depicts the open-loop frequency response of the system with the lead 

compensator up to 5 kHz, the control system first became unstable at a natural 



Chapter 5: AVF Control on a System Containing a Distributed Parameter Isolator 

 143 

frequency of the system at about 1160 Hz, corresponding to the Nyquist plot crossing 

the negative real axis shown in Figure 5.35.  

 

The decrease in the magnitude of the open-loop frequency response also means that 

greater feedback control gain is required for the stabilized system with the lead 

compensator to achieve the same control performance as that of the original system. The 

control performance of the stabilized system with the lead compensator is shown in 

Figure 5.36. It can be seen that the resonance peaks at low frequencies are attenuated 

without the compromise of the increase at both the first IR in the helical springs and the 

flexural mode in the equipment plate of 327 Hz. But the control performance is limited 

due to the instability occurring at a natural frequency of the system at approximately 

1160 Hz. Figure 5.37 shows the control performance of the system upto 5 kHz. It can be 

clearly seen that the velocity response of the equipment is amplified around 1160 Hz, 

which will cause instability with increased control gain. 

 

5.4 Conclusions 

Active vibration isolation system containing a distributed parameter isolator under AVF 

control has been investigated experimentally on a four-spring active vibration isolation 

system. The effects of IRs on the stability and control performance of AVF control 

system have been examined experimentally. It has been shown that the first IR in the 

helical spring is a potential danger to the stability of the AVF control system. It has also 

been shown that the AVF control is only effective in attenuating the resonance peaks at 

relatively low frequencies, while it cannot suppress the IRs at higher frequencies where 

the equipment mass dominates the response. Different approaches to stabilize the AVF 

control system have also been investigated theoretically and experimentally based on 

the proposed stability condition. It has been confirmed experimentally that adding more 

mass to the base and introducing a lead compensator are effective solutions to eliminate 

the potential instability at IRs in the isolator. However, in the experiment instabilities 

still occur both at low frequencies due to the phase advances in the charge amplifier and 

power amplifier, and at high frequencies due to the unmodelled high-order modes in the 
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equipment and base plate, which have not been considered theoretically. The control 

performance of AVF control system is thus limited by these instabilities which are not 

internal isolator resonances.  

 

In this experimental work, the base plate was attached to the washers underneath the 

helical springs by wax. For stronger bondage between the base plate and the isolators, 

glue can be used in further experimental validation instead of wax.   
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Equipment structure Material of the equipment plate Aluminum 

 Dimension of the equipment plate (160 160 10mm)× ×  

 Mass of each actuator 0.91 kg 

 Mass of the equipment structure 5 kg 

Spring Mass of each spring 27.1 g 

 Stiffness of each spring 41.73 10  N/m×  

Base structure Material of the base plate Aluminum 

 Dimension of the base plate (160 160 10mm)× ×  

 Effective mass 1.18 kg 

 Effective stiffness 44.25 10  N/m×  

Table 5.1 Physical properties and geometrical data of the four-spring active vibration 

isolation system. 
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Mode Sequence 1 2 3 4 5 6 

( )2  ,ij i jλ  
13.49 

(22) 

19.79 

(13) 

24.43 

(31) 

35.02 

(32) 

35.02 

(23) 

61.53 

(41) 

ijf  1297 1902 2348 3366 3366 5914 

Table 5.2 Natural frequencies of a free-free-free-free plate, when the length and width 

of the plate a=b=0.16 m, the thickness h=0.01 m, Young’s modulus E=69 Gpa, density 

32700 kg/mρ =  and Poisson’s ratio 0.33ν = . i is the number of half-waves in mode 

shape along horizontal axis and j is the number of half-waves in mode shape along 

vertical axis [94].     
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Figure 5.1 Plant responses of the AVF control system on a flexible base containing a 

highly damped (solid line, loss factor in the isolator 0.05
i

η = ) or lightly damped 

(dashed line, 0.01
i

η = ) distributed parameter isolator, when the ratio of the mass of 

the isolator to the mass of the equipment 0.1
i

µ = , the ratio of the mass of the base to 

the mass of the equipment 0.5
b

µ = , the ratio of the static stiffness of the isolator to the 

base stiffness 0.1
k

µ = , and loss factor in the base 0.01
b

η = . 
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Figure 5.2 Zoomed Nyquist plot of the plant responses of the AVF control system on a 

flexible base containing a highly damped (solid line, 0.05
i

η = ) or lightly damped 

(dashed line, 0.01
i

η = ) distributed parameter isolator when 0.1
i

µ = , 0.5
b

µ = , 

0.1
k

µ =  and 0.01
b

η = .  
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Figure 5.3 Plant responses of the AVF control system containing a distributed 

parameter isolator on a heavy (solid line, 0.8
b

µ = ) or light (dashed line, 0.5
b

µ = ) 

flexible base when 0.1
i

µ = , 0.1
k

µ =  and 0.01
i b

η η= = . 
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Figure 5.4 Zoomed Nyquist plot of the plant responses of the AVF control system 

containing a distributed parameter isolator on a heavy (solid line, 0.8
b

µ = ) or light 

(dashed line, 0.5
b

µ = ) flexible base when 0.1
i

µ = , 0.1
k

µ =  and 0.01
i b

η η= = . 
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Figure 5.5 Schematic diagram of the active vibration isolation system containing a 

distributed parameter isolator on a flexible base under AVF control with a lead 

compensator, where eu&  and bu&  are velocity of the equipment and the base 

respectively; eZ  and bZ  are the input impedances of the equipment and the base, 

respectively; LZ  is the impedance matrix of the isolator; h is the constant feedback 

control gain; f is the primary force; af  is the active control force and leadG  is the 

frequency response of the lead compensator. 
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Figure 5.6 Frequency response of a lead compensator when the coefficients 0.2α =  

and 1 0.5T = . 
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Figure 5.7 Open-loop frequency responses of the AVF control system on a flexible base 

with (solid line) or without (dashed line) a lead compensator when 0.1
i

µ = , 0.5
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0.1
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Figure 5.8 Zoomed Nyquist plot of the open-loop frequency responses of the AVF 

control system on a flexible base with (solid) or without (dashed) a lead compensator 

when 0.1
i

µ = , 0.5
b

µ = , 0.1
k

µ = , 0.01
i b

η η= = , 0.1α =  and 1 0.0125T = . 
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Figure 5.9 Schematic diagram of the active vibration isolation system containing a 

distributed parameter isolator on a flexible base under AVF control with an additional 

system attached on the base, where am , ak  and ac  are the mass, stiffness and 

damping coefficient of the additional system, respectively, and af ′  is the active control  

force transmitted to the base through the additional system. 
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Figure 5.10 Plant responses of the AVF control system on a flexible base with (solid) or 

without (dashed) an additional system attached on the base when 0.1
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Figure 5.11 Zoomed Nyquist plot of the plant responses of the AVF control system on a 

flexible base with (solid) or without (dashed) an additional system attached on the base 

when 0.1
i

µ = , 0.5
b

µ = , 0.1
k

µ = , 0.01
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η η= = , 0.29
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Figure 5.12 Schematic diagram of the active vibration isolation system containing a 

distributed parameter isolator on a flexible base under AVF control with an additional 

system attached on the base and a lag compensator with frequency response lagG  in 

the feedback loop. 
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Figure 5.13 Frequency response of a lag compensator when the coefficient 5β =  and 

the frequency where the maximum phase lag occurs c aω ω= . 
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Figure 5.14 (a) open-loop frequency response and (b) its Nyquist plot of the stabilized 

AVF control system with an additional system on the base and with (solid) or without 

(dashed) a lag compensator in the feedback loop when 0.1
i

µ = , 0.5
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µ = , 0.1
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µ = , 
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η η= = , 0.29
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Figure 5.15 Photographs of the four-spring active vibration isolation system. 
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Figure 5.16 Schematic diagram of one corner of the four-spring active vibration 

isolation system, where eu&&  and bu&&  are acceleration of the equipment and the base 

respectively. 
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Figure 5.17 Measured velocity response of the base plate per unit voltage to the power 

amplifier with different weight on the base structure: base plate with 0.8 kg mass 

attached (solid line) and base plate with 1.8 kg mass attached (dashed line). 
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Figure 5.18 Measured (solid line) and predicted (dashed line) transmissibility of the 

active vibration isolation system without control. 
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Figure 5.19 Measured (solid line) and predicted (dashed line) velocity response of the 

equipment plate per unit voltage to the power amplifier without control. 

Frequency (Hz) 

Frequency (Hz) 

M
ag

n
it

u
d

e 
(d

B
 r

e 
1

m
/s

V
) 

M
ag

n
it

u
d

e 
(d

B
) 



Chapter 5: AVF Control on a System Containing a Distributed Parameter Isolator 

 156 

10 100 1000
-80

-60

-40

-20

10 100 1000

-200

-100

0

100

 

Figure 5.20 Measured (solid line) and predicted (dashed line) open-loop frequency 

response of the active vibration isolation system. 
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Figure 5.21 Measured Nyquist plot of the open-loop frequency response of the active 

vibration isolation system. 
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Figure 5.22 (a) predicted and (b) measured transmissibility of the active vibration 

isolation system with various feedback gains: without control (solid line), low control 

gain (dashed line) and high control gain (dotted line). 
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Figure 5.23 (a) predicted and (b) measured velocity response of the equipment plate per 

unit voltage to the power amplifier of the active vibration isolation system with various 

feedback gains: without control (solid line), low control gain (dashed line) and high 

control gain (dotted line). 
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Figure 5.24 Measured open-loop frequency response of the active vibration isolation 

system: stabilized system (solid line) and original system (dashed line).  
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Figure 5.25 Zoomed experimental open-loop frequency response of the active vibration 

isolation system: stabilized system (solid line) and original system (dashed line).  
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Figure 5.26 Measured Nyquist plot of the open-loop frequency response of the active 

vibration isolation system: stabilized system (solid line) and original system (dashed 

line). 
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Figure 5.27 Measured Nyquist plot of the open-loop frequency response of the active 

vibration isolation system between 350 Hz and 450 Hz: stabilized system (solid line) 

and original system (dashed line). 
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Figure 5.28 Measured (a) transmissibility and (b) velocity response of the equipment 

plate per unit voltage to the power amplifier of the stabilized active vibration isolation 

system with more mass on the base under various feedback gains: without control (solid 

line), low control gain (dashed line) and high control gain (dotted line). 
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Figure 5.29 (a) schematic diagram and (b) physical configuration of an electrical 

circuit of lead compensator, where ie  and oe  are the input and output, respectively; 

1R  and 2R  are resistors and C is capacitor. 
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Figure 5.30 Measured (solid line) and predicted (dashed line) frequency response of the 

lead compensator shown in Figure 5.29(b). 
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Figure 5.31 (a) photograph and (b) schematic diagram of one corner of the four-spring 

active vibration isolation system with a lead compensator. 
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Figure 5.32 Measured open-loop frequency response of the active vibration isolation 

system: stabilized system (solid line) and original system (dashed line).  
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Figure 5.33 Measured Nyquist plot of the open-loop frequency response of the active 

vibration isolation system with a lead compensator. 
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Figure 5.34 Measured open-loop frequency response of the active vibration isolation 

system with a lead compensator up to 5 kHz. 
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Figure 5.35 Measured Nyquist plot of the open-loop frequency response of the active 

vibration isolation system with a lead compensator up to 5 kHz. 
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Figure 5.36 Measured (a) transmissibility and (b) velocity response of the equipment 

plate per unit voltage to the power amplifier of the stabilized active vibration isolation 

system with a lead compensator under various feedback gains: without control (solid 

line), low control gain (dashed line) and high control gain (dotted line). 
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Figure 5.37 Measured velocity response of the equipment plate per unit voltage to the 

power amplifier of the stabilized active vibration isolation system with a lead 

compensator upto 5 kHz without control (solid line) and with control (dashed line). 
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Chapter 6 

 

Control of Internal Resonances 

 

 

6.1 Introduction 

In Chapter 4, the commonly used control strategies in active vibration isolation, which 

can introduce active damping, have been shown to be effective in attenuating the system 

resonance peaks at relatively low frequencies. However, none of them can suppress the 

IR peaks in the distributed parameter isolator, because the IR peaks occur at relatively 

high frequencies where the equipment mass dominates the response. Due to the 

significant effects of IRs in lightly damped isolators, effort has been expended by 

previous researchers to attenuate the IRs, which has been discussed in Chapter 1. 

However, all of the solutions have their inherent limitations either on the performance, 

or the practical complexity in design and implementation. Therefore, novel approaches 

to suppress IRs in the distributed parameter isolator are required, based on the 

understanding of the characteristics of IRs in the distributed parameter isolator. 

 

The aim of this chapter is to investigate theoretically strategies to attenuate IRs in the 

isolator in order to improve the isolation performance of a distributed parameter isolator 

over a broad range of frequencies. First, based on the earlier discussion on the 

maximum response of the equipment at the IRs, an isolator with greater damping under 

AVF control is investigated. Then, based on the knowledge that the equipment mass
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dominates the isolation performance at relatively high frequencies and the 

characteristics of acceleration feedback control, a combined control strategy of absolute 

velocity plus acceleration feedback control is presented. This is followed by the analysis 

of AVF control on a fraction of the isolator length.  

 

6.2 AVF control with more damping in the isolator 

As discussed in Chapter 3, the response at the IRs is determined by the damping in the 

isolator. It can be seen from equation (3.10) that the higher the damping in the isolator, 

the lower the response at the IR frequencies. To achieve high damping in the isolator, 

one can choose isolators made of highly damped material to increase the inherent 

damping in the isolator [66], or use a polymeric material, which has a high loss factor, 

in parallel with the original isolator [63]. For metal isolators, e.g. helical springs, which 

have low damping, the latter approach offers a practical solution. In contrast with 

previous work on applying polymeric damping materials in attenuating the IR peaks in 

the isolator, in this thesis AVF control is applied together with an increase in the isolator 

damping to further suppress the system fundamental resonance peaks. As discussed in 

Chapter 5, high damping in the isolator is also beneficial to the stability of the AVF 

control system. 

 

Figures 6.1 and 6.2 depict respectively the transmissibility of the base excited system 

(shown in Figure 4.1) and the amplitude ratio of the system on a flexible base (shown in 

Figure 4.15), both of which contain a relatively highly damped isolator 0.05iη =  

under AVF control. The transmissibility and amplitude ratio of the corresponding 

passive systems with low damping and high damping in the isolator are also plotted for 

comparison. It can be seen that the system resonance peaks in Figures 6.1 and 6.2 are 

attenuated, which are mainly due to AVF control. The IR peaks in the distributed 

parameter isolator are also effectively suppressed by the additional damping introduced 

in the isolator.   
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However, the above discussion only shows the idealized situation for introducing more 

damping in the isolator. In practice, the high damping materials applied in parallel with 

the original isolator increase not only the overall damping in the isolator, but also the 

overall static stiffness of the isolator [14]. As a consequence, although the IR peaks can 

be suppressed, the system resonances in Figures 6.1 and 6.2 will move to higher 

frequencies. Therefore, the velocity response of the equipment above the system 

resonances will be amplified compared to that for the original systems. Furthermore, as 

discussed in Chapter 1, there are other limitations in the use of high damping materials 

to suppress the IRs, since typically these materials exhibit poor returnability and great 

creep, which degrade the load capacity of isolators and the performance of the system 

[57, 67]. 

 

6.3 Absolute velocity plus acceleration feedback control 

It was concluded in Chapter 4 that the commonly used control strategies in active 

vibration isolation cannot attenuate the IR peaks in the distributed parameter isolator, 

because the mass dominates the equipment response at relatively high frequencies. 

Therefore, it is possible that acceleration feedback control may suppress the IR peaks at 

high frequencies, since it is equivalent to adding a mass to the system as discussed in 

Chapter 4. However, the system resonance peaks at low frequencies cannot be 

attenuated by acceleration feedback control. On the contrary, AVF control was shown to 

be effective in attenuating the equipment response at the system resonances at low 

frequencies, while it is not effective in suppressing the IR peaks. Therefore, in this 

section these two control strategies are combined together to form a new control method, 

namely absolute velocity plus acceleration feedback control. An investigation is 

conducted into whether this improves the isolation performance of systems containing a 

distributed parameter isolator over a broad range of frequencies 
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6.3.1 System undergoing base motion 

Figure 6.3 shows a base excited vibration isolation system containing a distributed 

parameter isolator under absolute velocity plus acceleration feedback control. In 

practice the acceleration response of the equipment is measured, and then the velocity 

response of the equipment is obtained by the integration of the acceleration. The control 

force af  is proportional to the sum of the velocity and the acceleration of the 

equipment and is then fed back to the system through a controller with a constant gain 

h− , so that 

 ( )a e ef h u uλ= − +& &&  (6.1) 

where e eu j uω=&& &  is the acceleration of the equipment and λ  is a real coefficient, so 

that 

 ( )1a ef h j uωλ= − + &  (6.2) 

As shown in equation (6.2), if the velocity of the equipment is assumed to be constant 

with frequency, the control force increases with frequency. In practice, the control force 

has to be constrained at high frequencies. Therefore, a first order low-pass filter is 

introduced into the system shown in Figure 6.3 to limit the control signal. The 

frequency response function for a first order low-pass filter can be written as [74] 

 LPF

1

1 f

H
jω ω

=
+

 (6.3) 

where fω  is the corner frequency of the filter. The control force is thus given by 

 ( ) LPF

1
1

1
a e e

f

j
f h j H u h u

j

ωλ
ωλ

ω ω

+
= − + = −

+
& &  (6.4) 

6.3.1.1 Control performance 

The dynamic behaviour of the active vibration isolation system containing a distributed 

parameter isolator undergoing base motion has been presented in Chapter 4. The 

velocity of the equipment is given by equation (4.2). Substituting equation (6.4) into 

(4.2), the transmissibility of the system under absolute velocity plus acceleration 

feedback control is given by 
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 21

22
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e

f

Z
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Z Z h

j

ωλ

ω ω

−
=

+
+ +

+

 (6.5) 

If the equipment is modelled as a mass, i.e. e eZ j mω= , the transmissibility can be 

written in non-dimensional form as 

'

1

1 1
cos 1 2 1 sin 1

2 1 2 2
i i i

i a i

fi

T
j

j j j j
j

η η ηλ
µ ζ µ

µ

=
    + Ω     

− Ω − Ω − − − Ω          + Ω Γ         

  (6.6) 

where '

eλ λω=  is a real coefficient and f f eω ωΓ =  is a ratio of the corner 

frequency of the low-pass filter to the system fundamental resonance frequency. 

 

The transmissibility for the base excited system containing a distributed parameter 

isolator under absolute velocity plus acceleration feedback control is plotted in Figure 

6.4, where the transmissibility of the passive system is also plotted for comparison. It 

can be seen that both the system fundamental resonance peak and the IR peaks in the 

distributed parameter isolator are reduced due to the control. The troughs in the 

transmissibility are also reduced. Characteristic lines are plotted and identified for the 

transmissibility under control. These characteristic lines are presented as follows: 

� Maximum line 

Similar to the derivation for the maximum line for the passive vibration isolation system 

containing a distributed parameter isolator discussed in Chapter 3, assuming light 

damping in the isolator, i.e. 1iη <<  and considering the response when 

( )sin 0iµ Ω = , the maximum line of the transmissibility under absolute velocity plus 

acceleration feedback control is given by 

 
max '

2

1
2

1
i a

f

T
j

j
j

λ
η ζ

≈
 + Ω

Ω Ω −  + Ω Γ 

 (6.7) 

Within the frequency range 1 fλ′ << Ω << Γ , the maximum line can be reduced to 

 
( )max 2 '

2

1 2
i a

T
η λ ζ

≈
Ω +

 (6.8) 
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This equation is a function of not only the loss factor iη  and frequency ratio Ω , but 

also the active damping ratio aζ  and coefficient 'λ . It is clear that the absolute 

velocity plus acceleration feedback control is effective in suppressing the IR peaks 

depending on its parameters. The greater the values of active damping ratio aζ  and 

coefficient 'λ , the better the control performance. 

� Minimum line 

Similar to the derivation for the minimum line for the passive vibration isolation system 

containing a distributed parameter isolator discussed in Chapter 3, assuming light 

damping in the isolator, i.e. 1iη << , also considering ( )sin 1i eµ Ω = ± , the minimum 

line of the transmissibility under absolute velocity plus acceleration feedback control 

can be approximated by 

 
min '1

2
1

i

a

f

T
j

j
j

µ

λ
ζ

≈
+ Ω

Ω −
+ Ω Γ

 (6.9) 

Within frequency range 1 fλ′ << Ω << Γ , the minimum line can be reduced to 

 
( )min '1 2

i

a

T
µ

λ ζ
≈

Ω +
 (6.10) 

It can be seen that the minima of the transmissibility can also be reduced by the absolute 

velocity plus acceleration feedback control. The greater the values of active damping 

ratio aζ  and coefficient 'λ , the better the control performance. 

6.3.1.2 Stability analysis 

The plant response from the active control force to the equipment velocity for the base 

excited system under absolute velocity plus acceleration feedback control shown in 

Figure 6.3 is given by equation (4.9). The open-loop frequency response of such a 

control system is thus given by 

 ( ) ( )
22

1 1

1
e f

j
G j H j h

Z Z j

ωλ
ω ω

ω ω

+
= ⋅

+ +
 (6.11) 
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The phase shift of the plant response ( )221 eZ Z+  is between -90º and 90º. The phase 

shift of the controller is 0º at very low frequencies, increasing to 90º when 

1
f

λ ω ω<< << , and reducing to 0º again at frequencies much higher than the corner 

frequency of the low-pass filter 
f

ω . Therefore, the overall phase shift of the open-loop 

frequency response is between -90º and 180º. The absolute velocity plus acceleration 

feedback control system containing a distributed parameter isolator undergoing base 

motion is thus unconditionally stable based on the Nyquist stability criterion. However, 

such a control system is not completely passive, and thus not robustly stable as an AVF 

control system containing a distributed parameter isolator undergoing base motion. 

6.3.2 System on a flexible base 

Figure 6.5 shows an absolute velocity plus acceleration feedback control system 

consisting of an isolated equipment mounted on a base structure that possesses its own 

dynamics under excitation of the primary force f .  

6.3.2.1 Control performance 

The dynamics of the active vibration isolation system containing a distributed parameter 

isolator on a flexible base has been presented in Chapter 4. The velocity of the 

equipment is given by equation (4.52). Substituting equation (6.4) into (4.52), the 

velocity of the equipment under absolute velocity plus acceleration feedback control is 

given by 
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1
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ee eb
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Y
u f

j
h Y Y

j

ωλ

ω ω

=
+

+ −
+

&  (6.12) 

If the equipment is modelled as a mass, i.e. e eZ j mω= , and the base structure is 

modelled as a mass on a complex spring, i.e. *

b b bZ j m K jω ω= + , the amplitude ratio 

of the system under absolute velocity plus acceleration feedback control is given by 
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  (6.13) 

The amplitude ratio for this system is plotted in Figure 6.6, where the amplitude ratio of 

the corresponding passive system is also plotted for comparison. It can be seen that the 

system resonance peaks and the IR peaks in the distributed parameter isolator are all 

reduced due to absolute velocity plus acceleration feedback control. The troughs in the 

amplitude ratio are also reduced. 

6.3.2.2 Stability analysis 

The plant response from the active control force to the equipment velocity for the 

system on a flexible base under absolute velocity plus acceleration feedback control 

shown in Figure 6.5 is given by equation (4.56). The open-loop frequency response of 

such a control system is thus given by 

 ( ) ( ) ( )
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1
ee eb
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j
G j H j h Y Y

j

ωλ
ω ω

ω ω

+
= −

+
 (6.14) 

The frequency response of the absolute velocity plus acceleration feedback controller is 

shown in Figure 6.7. The phase shift of the frequency response of the controller is 0º at 

both low frequencies and high frequencies, while it has a phase lead upto 90º when 

1
f

λ ω ω< < . It can be seen that the feedback controller is similar to a lead 

compensator that is used in Chapter 5 to stabilize the AVF control system. But the 

difference between this feedback controller and the lead compensator is that the 

magnitude of the frequency response of the controller is greater than unity and increases 

with frequency. This is why the absolute velocity plus acceleration feedback control can 



Chapter 6: Control of Internal Resonances 

 176 

attenuate the IRs in the distributed parameter isolator at high frequencies. Based on the 

analysis for the lead compensator in Chapter 5, the parameters of the absolute velocity 

plus acceleration feedback controller can be tuned so that it can both attenuate the IR 

peaks in the isolator and stabilize the control system.  

 

As discussed in the last section, the greater the values of the coefficient λ , the better 

the control performance. However, due to the stability issues for the system on a 

flexible base, the coefficient λ  should be carefully chosen to provide sufficient phase 

lead compensation at the unstable frequency, but not to be a danger to stability at other 

frequencies. Also, the first order low-pass filter needs to be carefully designed so that 

the controller can both constrain the control signal and provide sufficient phase lead 

compensation at the unstable frequency. The general rules to determine these parameters 

are discussed below. 

 

The phase of the controller has two contributions: the phase lead due to the frequency 

response function 1 jωλ+  and the phase lag due to the first order low-pass filter. As 

shown in Figure 6.7, ( )1 1 2  in Hzf πλ=  is the corner frequency of the frequency 

response function 1 jωλ+ , and ( )2 2  in Hzff ω π=  is the corner frequency of the 

first order low-pass filter. To stabilize the control system, the unstable frequency should 

lie between 1f  and 2f  so that the compensation for the phase lag which causes the 

instability can take place. For the transfer function 1 jωλ+ , if a least phase lead 1θ  is 

required at the unstable frequency 
L

ω , i.e. ( ) 1arctan Lλω θ> , the coefficient λ  is 

determined by 

 1tan

L

θ
λ

ω
>  (6.15) 

For the first order low-pass filter, if a maximum phase lag ( )2 2 0θ θ <  is required at 

L
ω , i.e. ( ) 2arctan

L f
ω ω θ− > , the corner frequency of the low-pass filter 

f
ω  can be 
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determined by 

 
2tan

L
f

ω
ω

θ
>

−
 (6.16) 

The required overall phase lead compensation of the controller at the unstable frequency 

can thus be obtained by choosing appropriate phase lead 1θ  and phase lag 2θ . As a 

result, the controller parameters λ  and 
f

ω  can be determined from equations (6.15) 

and (6.16).  

 

There is another limitation on the selection of the coefficient λ . Because the phase 

shift of the plant response G  is approximately 90º at frequencies lower than the 

equipment resonance and around the base resonance, the phase lead due to the controller 

should be minimized at those frequencies, so that the open-loop frequency response of 

the control system can maintain its phase margin. As a consequence, the frequency 1f  

cannot be too small, i.e. λ  cannot be too large. If at a low frequency lowω  the phase 

shift due to the controller is required to be less than lowθ , i.e. ( )low lowarctan λω θ< , the 

coefficient λ  is given by 

 low

low

tanθ
λ

ω
<  (6.17) 

 

Figure 6.8 shows the open-loop frequency response of the vibration isolation system on 

a flexible base under absolute velocity plus acceleration feedback control. The plant 

response of the system is also plotted to show the stability of such a system under AVF 

control. It can be seen that the instability that occurs under AVF control at the first IR in 

the isolator is stabilized by the phase lead due to the controller. The phase shift of the 

open-loop frequency response is thus limited between -180º and 180º, so that the system 

on a flexible base under absolute velocity plus acceleration feedback control is 

unconditionally stable. However, the phase shifts around the system resonance 

frequencies are also increased due to the control, which are now greater than 90º. 
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Therefore, the controller should be carefully designed to allow the phase lead 

compensation to occur around the instability frequency, but it should minimize the 

phase shifts at low frequencies.  

6.3.3 Limitations in practice 

For both a base excited system and a system on a flexible base under absolute velocity 

plus acceleration feedback control, to achieve good control performance, the frequency 

response of the controller cannot be constrained too much by the low-pass filter. So the 

magnitude of the open-loop frequency response of the control system does not roll off 

rapidly and remains large over a broad range of frequencies. This is not a problem for 

the simplified models used in the above stability analysis, in which the resonance 

behaviour in the equipment and the base is neglected since the equipment is modelled as 

a rigid mass, and the base is simplified as a rigid mass on a complex spring. Also only 

the longitudinal vibration of the system is considered. Any rotational or lateral modes 

are ignored. However, in practice unmodelled dynamics of the system that are not 

considered in this analysis may be a danger to the stability of the control system, and 

thus result in the problem of spillover. 

 

6.4 AVF control on a fraction of the isolator length 

As discussed in Chapter 4, AVF control applied to a base excited vibration isolation 

system containing a distributed parameter isolator is equivalent to a skyhook damper 

with a constant damping coefficient, which is effectively in parallel with the equipment 

mass. The equipment response is thus determined by the total impedance of the 

equipment mass, isolator and the skyhook damper, and the transmitted force from the 

base excitation to the equipment and the isolator. Since the impedance of the equipment 

mass increases with frequency, it dominates the response at high frequencies. Also, the 

transmitted force to the equipment and the isolator is solely determined by the transfer 

impedance of the isolator. Therefore, AVF control cannot attenuate the IR peaks in the 
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isolator which occur at relatively high frequencies. To overcome the disadvantages of 

AVF control applied in parallel to the entire isolator, AVF control can be applied in 

parallel with the lower part of the isolator to change the dynamics of the active vibration 

isolator system. As a consequence, the equivalent skyhook damper due to AVF control 

is no longer in parallel with the equipment mass. Also the transmitted force from the 

base excitation to the equipment will be altered.  

 

In the following sections, the active vibration isolation system containing a distributed 

parameter isolator under AVF control on a fraction of the isolator length is investigated. 

6.4.1 System undergoing base motion 

Figure 6.9 shows a base excited vibration isolation system containing a distributed 

parameter isolator under AVF control on a fraction of the isolator length. The isolator is 

modelled as a finite elastic rod. Different from AVF control discussed in the previous 

chapters, the active control force af , which is in parallel with the lower part of the 

isolator, acts between the base and a point along the isolator. The length of the upper 

and the lower part of the isolator are respectively denoted as x and y, and thus 

x y L+ = , which is the total length of the isolator. The control force is generated by 

feeding back the velocity ru&  of the point along the isolator where the active control 

force applied (defined as point r in the following discussion), through a controller with a 

constant feedback gain –h. The control force is thus given by 

 a rf hu= − &  (6.18) 

6.4.1.1 Control performance 

The dynamics of the active vibration isolation system shown in Figure 6.9 can be 

described by 
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 (6.19a,b,c,d) 

where eQ , 1xQ , 2xQ , 1yQ  and 2yQ  are internal forces; eu&  and bu&  are respectively 

the velocities of the equipment and the base; xZ  and yZ  are respectively the 

impedance matrices for the upper and lower part of the isolator, and are given by: 
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Combining equations (6.18) and (6.19a-d) gives 
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From equations (6.21a, b), the transmissibility of the system under AVF control on a 

fraction of the isolator length can be written as 
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b e x x y x x

Z Zu
T
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= =

+ + + −

&

&
 (6.22) 

It should be noted that, if the control gain h=0, i.e. without control, this equation is 

equivalent to the transmissibility of the passive system given by equation (3.6).  

 

If the equipment is modelled as a mass, i.e. e eZ j mω= , the transmissibility can be 

written in non-dimensional form as 



Chapter 6: Control of Internal Resonances 

 181 

1

cos 1 1 sin 1 ...
2 2 2

cos 1 ...
22

... 1 sin 1
2 2

... 1 sin 1
2 2

i i i
i i

i

i
i

a i i
i

i i i
i

i

T

j j j

x
j

Ly
j j j

L x
j j

L

η η η
µ µ

µ

η
µ

ζ η η
µ

µ η η
µ

µ

=
   Ω     

− Ω − − − Ω        
        

   
− Ω   

       
+ − − Ω     

 Ω          − − − Ω         








  (6.23) 

It can be seen that the first two parts in the denominator are the same as that in the 

non-dimensional transmissibility for the passive system given in equation (3.7). AVF 

control on a fraction of the isolator length adds an active damping term in the 

denominator, but leaves the numerator unchanged. Therefore, this feedback control is 

equivalent to a skyhook damper.  

 

Figure 6.10 shows the transmissibility of the active vibration isolation system under 

AVF control on a fraction of the isolator length when 0.1iµ = , 0.01iη = . For 

comparison, the transmissibility for such a system without control and under AVF 

control on the entire isolator length is also plotted. It can be seen that AVF control on a 

fraction of the isolator length can attenuate not only the system fundamental resonance 

peak, but also the IR peaks in the distributed parameter isolator. However, for the same 

control gain applied, its control performance around the system fundamental resonance 

frequency is worse than that under AVF control on the entire isolator length. 

Furthermore, it should be noted that its control performance around the system 

fundamental resonance frequency is worse when 2y L π=  than that when 3 4y L= . 

Also when 2y L π= , some IR peaks (e.g. the third and sixth IR peaks) shown in 

Figure 6.10 are reduced much less than the other IR peaks, although some reduction are 

achieved. However, when 3 4y L= , some IR peaks (e.g. the fourth and eighth IR 

peaks) shown in Figure 6.10 are almost not reduced at all. 

 

The mechanical analogue of the base excited system under AVF control on a fraction of 
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the isolator length is shown in Figure 6.11. It should be noted that, different from a 

skyhook damper acting between the inertial ground and the equipment for AVF control 

discussed in Chapter 4, AVF control on a fraction of the isolator length is equivalent to a 

skyhook damper acting between the inertial ground and the point r along the isolator 

where the active control force is applied. Thus this equivalent skyhook damper damps 

the response at the point r, but not directly the equipment response. It thus explains why 

the control performance of AVF control on a fraction of the isolator length around the 

system fundamental resonance frequency is worse than that for AVF control on the 

entire isolator length shown in Figure 6.10. Also in the mechanical analogue, it can be 

seen that the closer the point r to the equipment, i.e. the closer the attachment point of 

the equivalent skyhook damper to the equipment, the more the equipment response can 

be attenuated around the system fundamental resonance frequency. It can thus be 

concluded that the longer the fraction of the isolator length controlled by AVF control, 

i.e. the longer the length y, the better the control performance around the system 

fundamental resonance frequency. 

 

The above discussion gives the design guideline for modifying the system response 

around the fundamental resonance frequency. In the following discussion, the control 

performance of the system at IRs and at high frequencies is investigated. Equations 

(6.21a, b) can be rearranged as 
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where the blocked force 1Bf  is the force transmitted from the excitation at point r to an 

infinitely rigid fixed point by the attachment point between the equipment and the 

isolator, and the blocked force 2Bf  is the force transmitted from the equipment and 

base excitation to an infinitely rigid fixed point by the point r. Based on equations 

(6.24a, b), the Thevenin equivalent systems for the active vibration isolation system 

under AVF control on a fraction of the isolator length is shown in Figure 6.12. It can be 

seen that the equivalent skyhook damper due to the control is in parallel with the point 
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impedances 11xZ  and 22yZ  to determine the velocity ru& . 

 

Similar to the description in Chapter 3, when ( )sin 0lk x = , i.e. ( )x lL xω ω ω= =  

where lω  is the IR frequencies for the entire isolator given in Appendix B, the maxima 

of the point and transfer impedances of the upper part of the isolator are given by 

 11 22 11 12 21 21

2 2
= , L L

x x x x

i i

K KL L L L
Z Z Z Z Z Z

x x x xη ω η ω
= = = = ± =  (6.25a,b) 

Similarly when ( )sin 0lk y = , i.e. ( )y lL yω ω ω= = , the maxima of the point and 

transfer impedances of the lower part of the isolator are given by 

 11 22 11 12 21 21

2 2
= , L L

y y y y

i i

K KL L L L
Z Z Z Z Z Z

y y y yη ω η ω
= = = = ± =  (6.26a,b) 

It can be seen that these impedances decrease with frequency. So at relatively high 

frequencies and at frequencies where xω ω≠  and yω ω≠ , one has 11 22x yh Z Z> + , 

so that the velocity ru&  is reduced due to AVF control on a fraction of the isolator 

length. Thus the equipment response is attenuated. While at frequencies where 11xZ  or 

22yZ  is much greater than h, there are a few different situations that affect the control 

performance, and this is discussed below.  

 

When x yω ω ω= ≠ , although 11 22 11x y xZ Z Z h+ ≈ >>  and thus the control effort is 

negligible, the transfer impedance 21yZ  is small so that the transmitted force from the 

base excitation is small. As a consequence, the velocity ru&  and thus the equipment 

response are small. Similarly, when y xω ω ω= ≠ , although 11 22 22x y yZ Z Z h+ ≈ >>  

and thus the control effort is negligible, the transfer impedance 21xZ  is small so that the 

transmitted force to the equipment and the isolator 1Cf  is small. So the equipment 

response is small.  
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However, when x yω ω ω= = , one has 11 22x yZ Z h+ >>  so that the control effort is 

negligible. Also the transfer impedances 21xZ  and 21yZ  are large. The 

transmissibility of the system can thus be reduced to that of the passive system given by 

equation (3.6). So if at a frequency where x y lω ω ω ω= = = , the IR peaks in the isolator 

at these frequencies will not be attenuated by AVF control on a fraction of the isolator 

length. To avoid this situation, the ratios L x  and L y  should be irrational numbers. 

So both xω  and yω  will not equal lω , although they may approach it. From another 

point of view, if the ratios L x  and L y  are rational numbers, the point r where the 

active force is applied will be a nodal point at some frequencies depending on the values 

of L x  and L y . Because there is no movement at a nodal point, no signal will be fed 

back through the controller to generate the control force. Therefore, to avoid the nodal 

points along the rod, an irrational number for the ratios L x  and L y  is required.  

 

The above discussion explains the reduction at IRs in Figure 6.10. When L y  is a 

rational number 4 3 , the condition x y lω ω ω ω= = =  occurs at the fourth IR peak and 

every other fourth IR peaks at higher frequencies, i.e. the control point r is a nodal point 

of the fourth mode and every other subsequent fourth modes in the isolator, so that these 

peaks are almost not reduced at all. When L y  is an irrational number 2π , because 

3π ≈ , the condition x y lω ω ω ω= = =  approximately occurs at the third and the sixth 

IR peaks, i.e. the control point r is close to the nodal point in the third and sixth mode in 

the isolator, so that these peaks are reduced much less than the other IR peaks.  

 

From the above discussion, the control performance at both the fundamental resonance 

frequency and at IRs is related to the length y under AVF control. To evaluate the 

overall control performance of the system under AVF control on a fraction of the 

isolator length, its mean square response can be compared to that for AVF control on 
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the entire isolator length. The mean square velocity of the equipment is given by 

equation (2.46). Substituting the corresponding transmissibility into equation (2.46), the 

change in the mean square velocity for the system under AVF control on a fraction of 

the isolator length compared to that under AVF control on the entire isolator length can 

be calculated. Figure 6.13 depicts such a change in mean square velocity within the 

range 0.1 1000< Ω <  when 0.1iµ = , 0.01iη = , with respect to the length ratio y L  

and active damping ratio aζ . It can be seen that when the length y under AVF control is 

very short, the control performance of AVF control on a fraction of the isolator length is 

much worse than that under AVF control on the entire isolator length at high active 

damping ratios. With an increase in the controlled length y, AVF control on a fraction of 

the isolator length provides increasing reduction in the mean square velocity. 

Furthermore, for the given parameters, the change in the mean square velocity is 

slightly less than 0 dB at high length ratios y L , i.e. the overall control performance 

under AVF control on a fraction of the isolator length is better than that under AVF 

control on the entire isolator length. 

 

To further improve the control performance around the system fundamental resonance 

frequency, AVF control on a fraction of the isolator length can be combined with AVF 

on the entire isolator length, as shown in Figure 6.14(a). The dynamics for the control 

system are given by 
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where the active control forces are given by 

 1 1 2 2,      a e a rf h u f h u= − = −& &  (6.28a,b) 

Substituting equations (6.28a, b) into (6.27a, b), the transmissibility of the system is 

given by 
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It can be seen in the mechanical analogue shown in Figure 6.14(b) that AVF control on 

the entire isolator length is equivalent to a skyhook damper acting between the inertial 

ground and the equipment, and AVF control on a fraction of the isolator length is 
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equivalent to a skyhook damper acting between the inertial ground and the point r. So 

the isolation performance can be improved at both the system fundamental resonance 

frequency and IR frequencies. The transmissibility of the system is shown in Figure 

6.15 when 0.1iµ = , 0.01iη = , 2y L π=  and 1 2 0.3a aζ ζ= = , where the active 

damping ratios are defined as 1 1 2a L eh K mζ =  and 2 2 2a L eh K mζ = . For 

comparison, such a system without control, under AVF control on a fraction of the 

isolator length alone and under AVF control on the entire isolator length alone are also 

plotted. It can be seen that the control performance at IR frequencies of the system 

under AVF control on both the entire and a fraction of the isolator length is as good as 

that under AVF control on a fraction of the isolator length. Also its control performance 

around the system fundamental resonance frequency is even better than that for AVF 

control on the entire isolator length.  

6.4.1.2 Stability analysis 

For the base excited system under AVF control on a fraction of the isolator length, 

because the base motion is prescribed which is not affected by the active control force, 

the actuator and the sensor are thus collocated, so that such a control system is 

unconditionally stable. 

6.4.2 System on a flexible base 

Figure 6.16 shows a vibration isolation system containing a distributed parameter 

isolator on a flexible base under AVF control on a fraction of the isolator length. The 

isolator is modelled as a finite elastic rod. The active control force af , which is in 

parallel with the lower part of the isolator, reacts between the base and a point along the 

isolator. The control force is also given by equation (6.18).  

6.4.2.1 Control performance 

The dynamics of the active vibration isolation system shown in Figure 6.16 can be 



Chapter 6: Control of Internal Resonances 

 187 

described by equations (6.19a-d) and 

 1b b b yZ u f Q f Q= + = −&  (6.30) 

From these equations, the velocity of the equipment can be written as 

 ( ) ( )e er a eb a er eb a ebu Y f Y f f Y Y f Y f= + − = − +&  (6.31) 

where the transfer mobility ebY  was defined in Chapter 3 and erY  is the transfer 

mobility from the force applied to the point r to the equipment velocity, eu&  when the 

system is coupled. The velocity at the point r where the active control force is applied 

can be written as 

 ( ) ( )r rr a rb a rr rb a rbu Y f Y f f Y Y f Y f= + − = − +&  (6.32) 

where rrY  is the point mobility from the force applied to the point r to the velocity, ru&  

when the system is coupled, and rbY  is the transfer mobility from the force applied to 

the base to the velocity, ru&  when the system is coupled. These mobilities are given by 

 

( )( )

( )( )

21 11 11 22

12 21 12 21

12 22 11 22

12 21 12 21

12 21

11 22

1

x b y x y

er

e b te tb x x y y

y e x x y

rb

e b te tb x x y y

x er y rb

rr

x y

Z Z Z Z Z
Y

Z Z Z Z Z Z Z Z

Z Z Z Z Z
Y

Z Z Z Z Z Z Z Z

Z Y Z Y
Y

Z Z

− + +
=

−

− + +
=

−

− −
=

+

 (6.33a,b,c) 

where 

 

( )( )

( )( )

22 11 22 12 21

11 11 22 12 21

e x x y x y

te

e

b y x y y y

tb

b

Z Z Z Z Z Z
Z

Z

Z Z Z Z Z Z
Z

Z

+ + −
=

+ + −
=

 (6.34a,b) 

A detailed derivation can be found in Appendix C. 

 

Substituting equation (6.18) into (6.32) gives 

 
( )

1

1
r

rr rb

u f
h Y Y

=
+ −

&  (6.35) 

Substituting equations (6.18) and (6.35) into (6.31), the velocity of the equipment is 
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given by 

 
( )

( )1

eb eb rr er rb

e

rr rb

Y h Y Y Y Y
u f

h Y Y

+ −
=

+ −
&  (6.36) 

If the base is modelled as a mass bm  on a complex spring, i.e. * (1 )b b bK K jη= + , the 

amplitude ratio of the system is given by 

 
( )

( )1

eb eb rr er rbe b e b

st rr rb

Y h Y Y Y Yu K u K

j f j h Y Yδ ω ω

+ −
= =

+ −

&
 (6.37) 

Figure 6.17 shows the amplitude ratio of system on a flexible base under AVF control 

on a fraction of the isolator length when 0.1iµ = , 0.5bµ =  0.1kµ = , 0.01i bη η= =  

and 2y L π= . For comparison, the amplitude ratio for such a system without control 

and under AVF control on the entire isolator length is also plotted. It can be seen that 

AVF control on a fraction of the isolator length can effectively attenuate the system 

resonance peaks and the IR peaks in the distributed parameter isolator. However, for the 

same control gain applied, its control performance around the equipment resonance 

frequency is worse than that under AVF control on the entire isolator. The reason is the 

same as that for the base excited system discussed in the last section. Because the ratio 

L y  is also set to be 2π , the third and sixth IR peaks (corresponding to the fifth and 

eighth peak shown in Figure 6.15) are again reduced much less than other IR peaks. 

 

To further improve the control performance of the system on a flexible base around the 

equipment resonance frequency, AVF control on a fraction of the isolator length can also 

be combined with AVF on the entire isolator length, as shown in Figure 6.18. The 

velocity of the equipment can be written as 

 ( ) ( ) ( )1 2 1 2 1 2e ee a er a eb a a ee eb a er eb a ebu Y f Y f Y f f f Y Y f Y Y f Y f= + + − − = − + − +& (6.38) 

where the input mobility eeY  was defined in Chapter 4. The velocity at the point r can 

be written as 

 ( ) ( ) ( )1 2 1 2 1 2r er a rr a rb a a er rb a rr rb a rbu Y f Y f Y f f f Y Y f Y Y f Y f= + + − − = − + − +& (6.39) 

Combining equations (6.28), (6.38) and (6.39), the velocity of the equipment is given by 
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( )

( ) ( )
2

1 21

eb eb rr er rb

e

ee eb rr rb

Y h Y Y Y Y
u f

h Y Y h Y Y

+ −
=

+ − + −
&  (6.40) 

If the base is modelled as a mass bm  on a complex spring, i.e. * (1 )b b bK K jη= + , the 

amplitude ratio of the system is given by 

 
( )

( ) ( )
2

1 21

eb eb rr er rbe b e b

st ee eb rr rb

Y h Y Y Y Yu K u K

j f j h Y Y h Y Yδ ω ω

+ −
= =

+ − + −

&
 (6.41) 

The amplitude ratio of the system is shown in Figure 6.19 when 0.1iµ = , 0.5bµ =  

0.1kµ = , 0.01i bη η= = , 2y L π=  and 1 2 0.3a aζ ζ= = . For comparison, such a 

system without control, under AVF control on a fraction of the isolator length alone and 

under AVF control on the entire isolator length alone are also plotted. It can be seen that 

the system under AVF control on both the entire and a fraction of the isolator length has 

the best performance at the equipment resonance frequencies compared to other control 

methods. Also its control performance at IR frequencies is as good as that under AVF 

control on a fraction of the isolator length. 

6.4.2.2 Stability analysis 

Because the feedback controller is a constant gain, the plant response of the control 

system can be used to analyze the stability. From equation (6.32), the plant response 

from the active control force to the velocity of the control point r can be written as 

 

0

r
rr rb

a f

u
G Y Y

f
=

= = −
&

 (6.42) 

Although the input mobility rrY  has a phase shift between -90º and 90º and is thus only 

in the right half in the complex plane, the transfer mobility rbY  could be in either left 

or right half in the complex plane. So it is a potential threat to stability of the control 

system. Therefore, the system containing a distributed parameter isolator on a flexible 

base under AVF control on a fraction of the isolator length is only conditionally stable. 

Similar to the discussion for AVF control in Chapter 4, at a resonance frequency, in a 

lightly damped system, when only one mode dominates the response, the plant response 

given by equation (6.42) can be written as 
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( )
2

( )

( )
1

2

j
j b

r j

r

rr rb

j j j

G Y Y
K M

φ
φ

φ

ζ

 
  −  

 = − ≈  (6.43) 

where ( )j

rφ  and ( )j

bφ  are the thj  modal amplitudes evaluated at the control point r 

and base respectively. Based on the Nyquist criterion, for stability, one requires at a 

resonant frequency 

 
( )

( )
1

j

b

j

r

φ

φ
<  (6.44) 

for all j, i.e. ( ) ( )j j

b rφ φ<  if the modal amplitudes of the system evaluated at the control 

point r and base have the same phase. According to the definition of modal amplitudes 

( )j

rφ  and ( )j

bφ , this stability condition means that if the displacement of the base is 

greater than the displacement of the control point r and these two displacements are in 

phase at the thj  natural frequency, then the system may become unstable. 

 

Figures 6.20 shows the Nyquist plot of the plant response for a potentially unstable 

system on a flexible base under AVF control on a fraction of the isolator length. It can 

be seen that there is a loop on the left half of the complex plane crossing the negative 

real axis, which causes the system to be potentially unstable at high control gains. This 

potential instability occurs at the base resonance, at which the phase shift results in the 

small amplification in the magnitude of the base resonance peak shown in Figure 6.17. 

 

At a resonance frequency where ( ) ( ) 1j j

b rφ φ > , i.e. the system has a potential to become 

unstable, with constant controller gain h, the open-loop response of the control system is 

given by  

 ( ) ( )

( )
2

( )

( )
1-

2

j
j b

r j

r

j j j

G j H j hG h
K M

φ
φ

φ
ω ω

ζ

 
    

 = =  (6.45) 

To guarantee stability, the quantity in equation (6.45) must be greater than -1, so that the 

maximum gain maxh  that can be applied to the control system is thus given by 
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φ
φ

φ

=
 

  −  
 

 (6.46) 

It should be noted that the stability condition proposed in equation (6.44) has the same 

form and physical meaning as that for AVF control on the entire isolator length 

concluded in Chapter 4. Therefore, such a system under AVF control on a fraction of the 

isolator length can also be stabilized by the approaches proposed in Chapter 5, e.g. 

adding more damping in the isolator, adding more mass to the base, etc. 

6.4.3 Limitations in practice 

Although AVF control on a fraction of the isolator length performs well in attenuating 

the IR peaks in the isolator for both base excited system and system on a flexible base, 

there are difficulties in implementing it in practice. As discussed in Chapter 5 in the 

experimental work, to realize AVF control on the entire isolator length, the actuators can 

be installed on top of the equipment reacting between the equipment and the base 

through corresponding stingers to generate active control forces, which are in parallel 

with the entire isolator. If such arrangements applied on a fraction of the isolator, i.e. 

actuators are attached on top of the control point r reacting between the control point 

and the base through stingers to generate active control forces, the mass of the actuators 

will change the dynamics at the control point r. The masses of actuators which perform 

as intermediate masses as discussed in Chapter 1 will dominate the response at the 

control point. Although better performance is achieved at high frequencies, the penalty 

is that the isolation performance at low frequencies is degraded [59]. The advantages of 

using AVF control on a fraction of the isolator length are thus lost. Therefore, how to 

generate an active control force in parallel with a fraction of the isolator without 

changing the dynamics at the control point is crucial in implementing AVF control on a 

fraction of the isolator length. 
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6.5 Conclusions 

Three approaches which can attenuate the IRs in the distributed parameter isolator have 

been investigated theoretically in this chapter. These control methods demonstrate their 

own advantages and disadvantages in attenuating the IR peaks and improving the 

isolation performance over a broad range of frequencies.  

 

Based on the equation for the maximum line of the IR peaks derived in Chapter 3, AVF 

control with more damping in the isolator has been investigated and shown to be a 

simple and straightforward method to attenuate the IR peaks. However, in practice due 

to the increase in the static stiffness of the isolator caused by the high damping materials 

applied in parallel with the isolator, the isolation performance at frequencies greater 

than the original system fundamental resonance frequency or the equipment resonance 

frequency will be degraded.  

 

Based on the knowledge that the mass dominates the response of the equipment at high 

frequencies, acceleration feedback control, which electronically introduces extra mass 

into the system, has been investigated in combination with AVF control. It has been 

shown that the absolute velocity plus acceleration feedback control is effective in 

suppressing the IR peaks. Furthermore, for the system on a flexible base, the controller 

can also be carefully designed to make the control system unconditionally stable. 

However, to achieve good control performance at IRs, the magnitude of the open-loop 

frequency response of the control system remains large over a broad range of 

frequencies. Thus, the unmodelled dynamics of the system might be a danger to stability 

in practice.  

 

Finally, AVF control on a fraction of the isolator length has been analyzed. It has been 

shown that the IR peaks can be effectively attenuated by AVF control on the lower part 

of the isolator. It is concluded that the longer the fraction of the isolator length 

controlled by AVF control, the better the control performance around the system 
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fundamental resonance frequency or the equipment resonance frequency. Also the ratio 

of the controlled length to the entire length of the isolator should be an irrational 

number in order to suppress all the IR peaks. However, the difficulty in implementing 

this control method in practice is how to generate an active control force in parallel with 

a fraction of the isolator without changing the dynamics at the control point. 

 

To validate the theoretical analysis discussed in this chapter for the strategies which can 

attenuate the IRs in the distributed parameter isolator, the experiments are designed and 

conducted in the next chapter.  
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Figure 6.1 Transmissibility of the base excited system under AVF control when the ratio 

of the mass of the isolator to the mass of the equipment 0.1iµ = . The solid line is for 

0.01iη =  (loss factor in the isolator), 0aζ =  (active damping ratio), the dashed line 

is for 0.05iη = , 0aζ =  and the dotted line is for 0.05iη = , 1aζ = . 

0.1 1 10 100
-100

-80

-60

-40

-20

0

20

40
Equipment resonance peak

Base resoannce peak

IRs

 

Figure 6.2 Amplitude ratio of the system on a flexible base under AVF control when 

0.1iµ = , the ratio of the mass of the base to the mass of the equipment 0.5bµ = , the 

ratio of the static stiffness of the isolator to the stiffness of the base 0.1kµ =  and the 

loss factor in the base 0.01bη = . The solid line is for 0.01iη = , 0aζ = , the dashed 

line is for 0.05iη = , 0aζ =  and the dotted line is for 0.05iη = , 1aζ = . 
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Figure 6.3 Schematic diagram of a base excited system containing a distributed 

parameter isolator under absolute velocity plus acceleration feedback control, where 

eu& , eu&&  and bu&  are velocity and acceleration of the equipment and velocity of the base 

respectively, eZ  is the input impedance of the equipment, LZ  is the impedance matrix 

of the isolator, h is the constant feedback gain, af  is the active control force, λ  is a 

real coefficient, and LPFH  is the frequency response function of the low-pass filter. 
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Figure 6.4 Transmissibility of a base excited system under absolute velocity plus 

acceleration feedback control when 0.1iµ = ， 0.01iη = , 1aζ = , the ratio of the 

corner frequency of the low-pass filter to the system fundamental resonance frequency 

200
f

Γ =  and the coefficient 
' 1λ =  (dashed line). The solid line is for the 

transmissibility of the corresponding passive system. The dashed-dotted line and the 

dotted line respectively pass through the IR peaks (equation (6.8)) and the troughs 

(equation (6.10)) in the transmissibility under control.  
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Figure 6.5 Schematic diagram of an active vibration isolation system containing a 

distributed parameter isolator on a flexible base under absolute velocity plus 

acceleration feedback control, where bZ  is the input impedance of the base and f is the 

primary force. 
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Figure 6.6 Amplitude ratio of the systems on a flexible base under absolute velocity 

plus acceleration feedback control when 0.1iµ = , 0.5bµ = , 0.1kµ = , 0.01i bη η= = , 

1aζ = , 200
f

Γ =  and 
' 1λ =  (dashed line). The solid line is for the amplitude ratio of 

the corresponding passive system. 
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Figure 6.7 Frequency response of the absolute velocity plus acceleration feedback 

controller when 50
f

Γ = , 
' 1λ =  and h=1, where 1 1 2f πλ= , and 2 2

f
f ω π=  is the 

corner frequency of the first order low-pass filter. 
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Figure 6.8 Open-loop frequency responses (solid line) and plant response (dashed line) 

of the absolute velocity plus acceleration feedback control system on a flexible base 

when 0.1
i

µ = , 0.5
b

µ = , 0.1
k

µ = , 0.01
i b

η η= = , 50
f

Γ = , 
' 1λ =  and h=1. 
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Figure 6.9 (a) schematic diagram and (b) free body diagram of a base excited system 

containing a distributed parameter isolator under AVF control on a fraction of the 

isolator length, where ru&  is the velocity at the control point r; eQ , 1xQ , 2xQ , 1yQ  

and 2yQ  are internal forces; x and y are respectively the length of the upper and lower 

part of the isolator; and xZ  and yZ  are respectively the impedance matrices for the 

upper and lower part of the isolator. 
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Figure 6.10 Transmissibility of the base excited system containing a distributed 

parameter isolator under AVF control on a fraction of the isolator length when 

0.1iµ = , 0.01iη = , 0.3aζ =  and 2y L π=  (dashed line) or 3 4y L=  

(dashed-dotted line). The solid line and the dotted line are respectively for such a system 

without control and under AVF control on the entire isolator length when 0.3aζ = . 
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Figure 6.11 Mechanical analogue of the active vibration isolation system under AVF 

control on a fraction of the isolator length shown in Figure 6.9. 

 

Figure 6.12 Mechanical representations of the Thevenin equivalent systems for the 

system under AVF control on a fraction of the isolator length shown in Figure 6.9, (a) at 

the attachment point between the equipment and the isolator, and (b) at the control point 

r, where 21xZ  and 22xZ  are respectively the point and transfer impedances of the 

upper part of the isolator; 21yZ  and 22yZ  are respectively the point and transfer 

impedances of the lower part of the isolator; and 1Bf  and 2Bf  are the blocked forces. 
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Figure 6.13 Normalized change in mean square velocity for the system under AVF 

control on a fraction of the isolator length compared to that under AVF control on the 

entire isolator length within 0.1 1000< Ω <  when 0.1iµ =  and 0.01iη = . 

 

Figure 6.14 (a) schematic diagram and (b) its mechanical analogue of a base excited 

system containing a distributed parameter isolator under both AVF control on a 

fraction of the isolator length and AVF control on the entire isolator length, where 1h  

and 2h  are constant feedback control gains, and 1af  and 2af  are control forces. 
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Figure 6.15 Transmissibility of the base excited system containing a distributed 

parameter isolator under both AVF control on a fraction of the isolator length and AVF 

on the entire isolator length when 0.1iµ = , 0.01iη = , 2y L π=  and active damping 

ratios 1 2 0.3a aζ ζ= =  (dashed line). The solid line, dotted line and dashed-dotted line 

are respectively for such a system without control, under AVF control on a fraction of 

the isolator length, and under AVF control on the entire isolator length when 0.3aζ = . 

 

Figure 6.16 (a) schematic diagram and (b) free body diagram of a system containing a 

distributed parameter isolator on a flexible base under AVF control on a fraction of the 

isolator length, where bQ  is an internal force. 
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Figure 6.17 Amplitude ratio of the system containing a distributed parameter isolator 

on a flexible base under AVF control on a fraction of the isolator length when 0.1iµ = , 

0.5bµ =  0.1kµ = , 0.01i bη η= = , 2y L π=  and 0aζ =  (solid line) or 0.3aζ =  

(dashed line). The dotted line is for such a system under AVF control on the entire 

isolator when 0.3aζ = . 

 

Figure 6.18 Schematic diagram of a system containing a distributed parameter isolator 

on a flexible base under both AVF control on a fraction of the isolator length and AVF 

control on the entire isolator length. 
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Figure 6.19 Amplitude ratio of the system containing a distributed parameter isolator 

on a flexible base under both AVF control on a fraction of the isolator length and AVF 

on the entire isolator length when 0.1iµ = , 0.5bµ =  0.1kµ = , 0.01i bη η= = , 

2y L π=  and 1 2 0.3a aζ ζ= =  (dashed line). The solid line, dotted line and 

dashed-dotted line are respectively for such a system without control, under AVF control 

on a fraction of the isolator length and under AVF control on the entire isolator length 

when 0.3aζ = . 
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Figure 6.20 Nyquist plot of the plant response of the system on a flexible base under 

AVF control on a fraction of the isolator length when 0.1iµ = , 0.5bµ =  0.1kµ = , 

0.01i bη η= =  and 2y L π= .  
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Chapter 7 

 

Control of Internal Resonances: Experimental 

Validation 

 

 

7.1 Introduction 

In Chapter 6, a few strategies which can attenuate the IR peaks in the distributed 

parameter isolator have been investigated theoretically. The equation derived for the 

maximum response of the equipment at the IRs shows that the damping in the isolator 

governs the IR peaks. Therefore, AVF control with more damping in the isolator was 

investigated and shown to be a simple and straightforward method to attenuate the IR 

peaks. Also, it was concluded in Chapter 5 that more damping in the isolator helps 

stabilize the AVF control system. Based on the knowledge that the mass dominates the 

equipment response at high frequencies, acceleration feedback control, which 

electronically introduces extra mass into the system, has been investigated in 

combination with AVF control. It has been shown that absolute velocity plus 

acceleration feedback control is effective in suppressing both system resonance peaks at 

low frequencies and IR peaks at high frequencies. Furthermore, for the system on a 

flexible base, an absolute velocity plus acceleration feedback controller can be carefully 

designed to stabilize the control system at IR frequencies.
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The aim of this chapter is to validate experimentally the strategies which can attenuate 

the IRs in the distributed parameter isolator. First, AVF control with more damping in 

the isolator is investigated experimentally. A highly damped non-elastomeric material, 

steel wool, is introduced in parallel with the original isolator under AVF control. It is 

followed by the experimental validation of the absolute velocity plus acceleration 

feedback control.  

 

7.2 Experimental validation for AVF control with additional 

damping in the isolator 

As discussed in Chapter 6, to achieve high damping in the isolator, one can either 

choose isolators made of highly damped material to increase the inherent damping in 

the isolator, or use highly damped material in parallel with the original isolator. For 

metal isolators, e.g. helical springs that have inherently low damping, a highly damped 

material is required to offer a practical solution. In this section, fine steel wool (Oakey) 

that has a high loss factor due to internal friction is used to perform as a highly damped 

material in parallel with the isolator to increase the overall damping.  

 

To realize AVF control with more damping in the isolator, the four-spring active 

vibration isolation system used in Chapter 5 to validate AVF control was modified. As 

shown in Figure 7.1, the difference between the modified system and the original one is 

that the fine steel wool was inserted inside each helical spring surrounding the 

corresponding stinger. Therefore, the steel wool is effectively in parallel with each 

spring, and thus the overall damping in the isolator is increased. 

7.2.1 Stability analysis 

To measure the open-loop frequency response of the AVF control system with additional 

damping in the isolator, the four actuators fixed on top of the equipment plate were 
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driven with white noise from the dynamic signal analyser through a power amplifier, 

while the primary vibrator was connected but inactive. The equipment response was 

monitored by five accelerometers located along two central lines of the equipment plate, 

so that the average vertical equipment response could be analyzed, and the effect of any 

rigid body equipment plate rotation reduced. The acceleration signals from the 

equipment plate were then passed through charge amplifiers. These include an 

integrator and high and low-pass filter modules, so that the velocity response of the 

equipment can be obtained. The high-pass filter cut-off frequency was set to 1 Hz to 

avoid DC signal overflow, and the low-pass filter cut-off frequency was set to 10 kHz. 

The open-loop frequency response of the AVF control system with additional damping 

in the isolator on the modified system was then measured and averaged using the input 

to the power amplifier and the integrated output from the charge amplifiers.  

 

The measured open-loop frequency response of the modified four-spring active 

vibration isolation system with steel wool in the springs is shown in Figure 7.2. The 

open-loop frequency response of the original system without steel wool is also plotted 

for comparison. The data below 3 Hz had low coherence due to the low instrumentation 

sensitivity, so they are not presented. It can be seen that the system resonance peaks are 

attenuated due to the extra damping introduced by the steel wool. Also, the fist IR peak 

in the helical springs around 404 Hz is suppressed and has almost disappeared due the 

increased damping in the isolator. Furthermore, the phase lag at the first IR was 

constrained to be in the range of -238º to -100º, so that the potential instability at the 

first IR is eliminated by the extra damping introduced into the isolator. This result 

validates the conclusion in Chapter 5 that adding more damping in the isolator can 

stabilize the AVF control system. The system resonances of the open-loop frequency 

response with additional damping in the isolator also move to higher frequencies 

compared to those for the original system. This phenomenon has been predicted in the 

theoretical analysis in Chapter 6. The reason is that the steel wool applied in parallel 

with the helical springs increases not only the damping, but also the static stiffness of 

the isolator, so that the system resonance frequencies are increased. Also it should be 
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noted that the rotational mode around 289 Hz, the flexural mode in the equipment plate 

around 327 Hz, and those modes above 500 Hz are affected much less by the change of 

the damping and static stiffness of the isolator. Therefore, the phase lag due to the 

flexural mode in the equipment plate around 327 Hz still occurs, which may destabilize 

the control system at high control gains. Furthermore, in this experiment, it has been 

found that the AVF control system with additional damping in the isolator first becomes 

unstable at very low frequencies, due to the phase advances in the charge amplifiers and 

power amplifiers with increased feedback control gain. 

 

Figure 7.3 depicts the Nyquist plot of the open-loop frequency response of the AVF 

control system with additional damping in the isolator corresponding to the results and 

frequency range shown in Figure 7.2. The only loop in the left half of the complex plane 

crossing the negative real axis is caused by the flexural mode in the equipment plate at 

327 Hz. The potential instability for the original system at the first IR in the helical 

springs at 404 Hz has been eliminated by the extra damping introduced into the isolator. 

7.2.2 Control performance 

A single-channel AVF control on the modified active vibration isolation system with 

additional damping in the isolator was implemented on each of the four springs. The 

primary vibrator was driven with white noise. The velocity responses of the equipment 

and base were obtained using accelerometers through charge amplifiers and then passed 

to the signal analyzer. The velocity response at the centre of the equipment plate was fed 

back to four actuators through a power amplifier to generate the control forces, which 

were identical for each actuator. Each feedback channel had thus an equal, constant 

feedback gain. 

 

Figure 7.4 shows the transmissibility for the modified active vibration isolation system 

with additional damping in the isolator with various control gains, where the 

transmissibility for the original active vibration isolation system without control is also 
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plotted for comparison. Figure 7.5 shows the velocity response of the equipment plate 

per unit voltage to the power amplifier, which drove the primary vibrator, for the 

modified active vibration isolation system with additional damping in the isolator under 

various control gains. For comparison, the velocity response of the equipment plate per 

unit voltage to the power amplifier for the original active vibration isolation system 

without control is also plotted. Responses less than 3 Hz are again excluded from the 

plots. It can be seen that, for the modified system without control, the system resonance 

peaks in Figures 7.4 and 7.5 are attenuated due to the extra damping introduced by the 

steel wool compared to those in the original system. Furthermore, the fist IR peak in the 

helical springs around 404 Hz is well suppressed and has almost disappeared due the 

increased damping in the isolator. With an increase in the AVF control gain, the system 

resonance peaks in Figures 7.4 and 7.5 are further reduced, while the first IR peak is 

affected much less. These results validate the conclusion in Chapter 6 that AVF control 

with more damping in the isolator is effective in attenuating both the system resonance 

peaks at low frequencies and the IR peaks in the isolator at high frequencies. However, 

it should be noted that the system resonances in Figures 7.4 and 7.5 for the modified 

system move to higher frequencies compared to those for the original system, because 

the static stiffness of the isolator is increased due to the steel wool introduced. It should 

also be noted that there is amplification at the flexural mode in the equipment plate 

around 327 Hz with an increase in the control gain. 

7.2.3 Summary 

The theoretical analysis on AVF control with more damping in the isolator has been 

validated by the experiment on the modified four-spring active vibration isolation 

system with the steel wool in parallel with helical springs. It has been shown that, as 

predicted in the theoretical analysis, AVF control with more damping in the isolator is 

effective in attenuating both the system resonance peaks at low frequencies and the IR 

peaks in the isolator at high frequencies. Also, the high damping introduced into the 

isolator can stabilize the AVF control system at the IR frequencies. However, the 
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increase of the static stiffness of the isolator due to the high damping material 

introduced pushes the system resonances to higher frequencies. Also, the instability 

occurred at the flexural mode in the equipment plate, which is not considered in the 

theoretical analysis, cannot be eliminated by the high damping introduced.  

 

7.3 Experimental validation for absolute velocity plus 

acceleration feedback control 

Based on the conclusion in Chapter 4 that the mass dominates the equipment response 

at relatively high frequencies, acceleration feedback control is used to suppress the IR 

peaks at high frequencies, since it is equivalent to adding a mass to the system. On the 

other hand, AVF control was shown to be effective in attenuating the equipment 

response at the system resonances at low frequencies. Therefore, absolute velocity plus 

acceleration feedback control was investigated in Chapter 6 to improve the isolation 

performance of systems containing a distributed parameter isolator over a broad range 

of frequencies. In this section, absolute velocity plus acceleration feedback control is 

investigated experimentally on the four-spring active vibration isolation rig.  

7.3.1 Experimental setup 

To realize the absolute velocity plus acceleration feedback, the acceleration response at 

the centre of the equipment plate for the four-spring active vibration isolation system 

was measured by accelerometers. Then the corresponding velocity response was 

obtained through a charge amplifier. By setting the gain in the charge amplifier, the ratio 

between the acceleration and the velocity (i.e. λ  defined in equation (6.1)) can be 

adjusted. A summing amplifier was designed to sum up the obtained absolute velocity 

and acceleration signal. Its physical configuration is shown in Figure 7.6. A first order 

low-pass filter was also included in this summing amplifier to constrain the control 

signal at high frequencies. The corner frequency of the low-pass filter is adjustable 



Chapter 7: Control of Internal Resonances: Experimental Validation 

 210 

between 1 kHz and 5 kHz. The summing amplifier is powered by a stabilised power 

supply (Farnell instruments LTD LT30-1).  

 

Figure 7.7 shows a photograph of the experimental setup and the schematic diagram of 

the signal path with details of one actuator and the corresponding spring underneath. 

The primary vibrator was driven with white noise from a dynamic signal analyzer 

through a power amplifier. The base response was measured using an accelerometer at 

the centre of the base plate and then passed through a charge amplifier to obtain the 

velocity response. The equipment response was monitored by two accelerometers at the 

centre of the equipment plate. One acceleration signal from the equipment plate was 

passed through a charge amplifier to obtain the velocity response. The other one was 

also passed through a charge amplifier to introduce a gain. Then the velocity and 

acceleration responses were input into the summing amplifier. Its output was then fed 

back to the actuators via a power amplifier with gain control to generate the active 

control force. 

7.3.2 Stability analysis 

To measure the open-loop frequency response, the four actuators fixed on top of the 

equipment plate were driven with the same white noise from the dynamic signal 

analyzer through a power amplifier, while the primary vibrator was connected but 

inactive. The open-loop frequency response for the absolute velocity plus acceleration 

feedback control system was measured using the input to the power amplifier and the 

output from the summing amplifier. 

 

The measured open-loop frequency response of the absolute velocity plus acceleration 

feedback control system is shown in Figure 7.8. For comparison, the open-loop 

frequency response of the AVF control system is also plotted. The data below 3 Hz had 

low coherence due to the low instrumentation sensitivity, so again they are not presented. 

It can be seen that the phase lag that occurs at the first IR in the helical springs around 
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404 Hz and the flexural mode in the equipment plate around 327 Hz was compensated 

by the phase lead due to the absolute velocity plus acceleration feedback controller. The 

phase shifts at these two frequencies are now greater than -180º, so that the phase shift 

of the open-loop frequency response in the frequency range shown in Figure 7.8 is 

between -180º and 180º. Therefore, the experimental result validates the conclusion in 

Chapter 6 that a carefully designed absolute velocity plus acceleration feedback 

controller can help stabilize the control system at IR frequencies without compromising 

the stability at other frequencies.  

 

Figure 7.9 depicts the Nyquist plot of the open-loop frequency response of the absolute 

velocity plus acceleration feedback control system corresponding to the results and 

frequency range shown in Figure 7.8. It can be seen that, due to the phase lead of the 

controller, the Nyquist plot of the open-loop frequency response of the absolute velocity 

plus acceleration feedback control system is shifted clockwise compared to that of AVF 

control system. Therefore, there is no loop in the left half of complex plane which 

crosses the negative real axis shown in Figure 7.9. 

 

However, it should be noted in Figure 7.8 that, above the equipment resonance 

frequency, the magnitude of open-loop frequency response of the absolute velocity plus 

acceleration feedback control system is increased with frequency due to the acceleration 

feedback incorporated. This amplification may cause stability problems at high 

frequencies before the open-loop frequency response can be effectively limited by the 

first order low-pass filter in the summing amplifier. Figure 7.10 depicts the open-loop 

frequency of the absolute velocity plus acceleration feedback control system up to 5 

kHz. It can be seen that, in this experiment, the instability does not first occur at low 

frequencies due to the phase advances in the charge amplifiers and power amplifiers. 

Instead, the control system first became unstable at a natural frequency of the system at 

about 1160 Hz, corresponding to the Nyquist plot of the open-loop frequency response 

crossing the negative real axis as shown in Figure 7.11. Furthermore, the magnitude of 

the open-loop frequency response at 1160 Hz is very large, so that its Nyquist plot is 
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close to the unstable point (-1, 0j). Thus the absolute velocity plus acceleration feedback 

control system became unstable at very low control gains. As a consequence, very poor 

control performance at system resonance peaks and IR peaks in the isolator can be 

achieved in this experiment. Therefore, as discussed in Chapter 6, the unmodelled 

dynamics in the system that are not considered in the theoretical analysis may be a 

danger to stability of the control system, and thus limit the control performance. 

 

7.4 Conclusions 

AVF control with more damping in the isolator and absolute velocity plus acceleration 

feedback control have been investigated experimentally in this chapter. Some theoretical 

results given in Chapter 5 and Chapter 6 have been validated experimentally.  

 

The AVF controller with additional damping in the isolator has been shown 

experimentally to be a simple approach to attenuate the IR peaks in the isolator. Also, 

the additional damping in the isolator is beneficial to the stability of the AVF control 

system at IR frequencies. However, the system resonances move to higher frequencies 

because the static stiffness of the isolator is increased due to the high damping material 

introduced. Furthermore, the instability occurred in other modes, such as the flexural 

mode in the equipment plate, which was not considered in the theoretical analysis, 

cannot be eliminated by the high damping introduced in the isolator.  

 

The absolute velocity plus acceleration feedback control was shown to be effective in 

stabilizing the control system at the first IR frequency, as well as the flexural mode in 

the equipment plate, due to the phase lead introduced by the controller. However, the 

increase in the magnitude of the open-loop frequency response of the control system 

due to the acceleration feedback incorporated causes stability problem at high 

frequencies. In the experiment, the absolute velocity plus acceleration feedback control 

system first became unstable at a natural frequency of the system at high frequencies, 
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and very small control gains can be applied. Therefore the control performance is 

limited. It shows that, although absolute velocity plus acceleration feedback control is 

theoretically effective in attenuating both system resonance peaks at low frequencies 

and IR peaks at high frequencies, in practice the unmodelled dynamics at high 

frequencies may destabilize the control system and thus limit the control performance.  
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Figure 7.1 Photograph of the modified four-spring active vibration isolation system 

with steel wool inside the helical springs. 
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Figure 7.2 Measured open-loop frequency response of the AVF control system with 

(solid line) or without (dashed line) additional damping in the isolator. 

Actuators 

Primary 

vibrator 

Steel wool 

Base plate 

Equipment 

plate 

Spring 

Frequency (Hz) 

Frequency (Hz) 

M
ag

n
it

u
d

e 
(d

B
 r

e 
1

m
/s

V
) 

P
h

as
e 

(d
eg

re
e)

 



Chapter 7: Control of Internal Resonances: Experimental Validation 

 215 

-0.02 -0.01 0 0.01 0.02 0.03 0.04
-0.02

-0.01

0

0.01

0.02

0.03

327 Hz

 
Figure 7.3 Measured Nyquist plot of the open-loop frequency response of the AVF 

control system with additional damping in the isolator. 
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Figure 7.4 Measured transmissibility of the original active vibration isolation system 

without control (dashed-dotted line), and the modified active vibration isolation system 

with additional damping in the isolator under various feedback gains: without control 

(solid line), low control gain (dashed line) and high control gain (dotted line). 
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Figure 7.5 Measured velocity response of the equipment plate per unit voltage to the 

power amplifier of the original active vibration isolation system without control 

(dashed-dotted line), and the modified active vibration isolation system with additional 

damping in the isolator under various feedback gains: without control (solid line), low 

control gain (dashed line) and high control gain (dotted line). 

 
Figure 7.6 Physical configuration of a summing amplifier with a first order low-pass 

filter included. 
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Figure 7.7 (a) photograph and (b) schematic diagram of one corner of the four-spring 

active vibration isolation system for absolute velocity plus acceleration feedback 

control, where eu& , bu& , eu&&  and bu&&  are velocities and accelerations of the equipment 

and the base respectively, and λ  is the real coefficient. 
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Figure 7.8 Measured open-loop frequency response of the absolute velocity plus 

acceleration feedback control system when 0.01λ =  and the corner frequency of the 

first order low-pass filter is 5 kHz (solid line), and AVF control system (dashed line). 
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Figure 7.9 Measured Nyquist plot of the open-loop frequency response of the absolute 

velocity plus acceleration feedback control system when 0.01λ =  and the corner 

frequency of the first order low-pass filter is 5 kHz. 
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Figure 7.10 Measured open-loop frequency response of the absolute velocity plus 

acceleration feedback control system up to 5 kHz when 0.01λ =  and the corner 

frequency of the first order low-pass filter is 5 kHz (solid line). 
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Figure 7.11 Measured Nyquist plot of the open-loop frequency response of the absolute 

velocity plus acceleration feedback control system up to 5 kHz when 0.01λ =  and the 

corner frequency of the first order low-pass filter is 5 kHz (solid line). 
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Chapter 8 

 

Conclusions and Future Work 

 

 

In this thesis, the active vibration isolation of a piece of delicate equipment mounted on 

a distributed parameter isolator has been investigated. This chapter summarizes the 

overall conclusions of the thesis and the recommendations for future work. 

 

8.1 Conclusions 

In traditional vibration isolation theory, vibration isolators are usually considered as 

simple lumped parameter elements, e.g. elastic springs and viscous dampers, which are 

assumed to be massless for the purpose of modelling. However, this simplification is 

only valid at frequencies low enough that the wavelength in the isolator is long 

compared to its dimension. At higher frequencies, realistic isolators, which have 

distributed mass, stiffness and damping, do not behave like the idealized massless 

models. The dynamics introduced by these distributed parameter elements inherent in 

the isolator are associated with the internal resonance behaviour of the isolator. The 

presence and significance of IRs in realistic isolators has been identified by many 

researchers. The degradation in performance due to the IRs in vibration isolation is 

especially important for lightly damped metallic isolators.  

 

For a better description of the dynamic behaviour of vibration isolators, different 
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idealised distributed parameter models under various types of deformation have been 

investigated. These distributed parameter models for realistic isolator have been 

categorized into two types for the purpose of dynamic analysis, namely a non-dispersive 

isolator and a dispersive isolator. It has been shown that the isolation performance is 

significantly affected by the IRs in both isolator types. Simple expressions which 

describe the behaviour for distributed parameter isolators have been derived. The 

parameters which control the isolator performance at various frequencies have been 

clarified. The damping in the isolator, the ratio of the isolator mass (or polar moment of 

inertia) to the equipment mass (or polar moment of inertia) and the system fundamental 

resonance frequency are all crucial to the isolation performance. This offers basic 

guidelines for the isolation design of a distributed parameter isolator, which directs 

effective ways to improve the isolator performance. Also, it is concluded that, in general 

for the examples considered, the IR effects in the non-dispersive isolator on the isolation 

performance are more significant than that for the dispersive isolator. The experiment 

on a helical spring has supported and validated the theoretical analysis and predictions.  

 

Stability and control performance are two crucial issues in active vibration isolation 

systems, since they may limit the application of active vibration isolation in practice. 

The effects of IRs in the distributed parameter isolator on the stability and control 

performance for commonly used control strategies in active vibration isolation have 

been investigated. The AVF control system containing a distributed parameter isolator is 

only conditionally stable if the base of the system has its own resonance behaviour. A 

stability condition in terms of the modal amplitudes evaluated at the equipment and base 

for such an AVF control system has been proposed. This stability condition means that if 

the displacement of the base is greater than the displacement of the equipment and these 

two displacements are in phase at a resonance frequency, the AVF control system may 

become unstable. The RVF control system containing a distributed parameter isolator is 

always unconditionally stable, which is its main advantage, although its control 

performance is much worse than AVF control. The IFF control system containing a 

distributed parameter isolator may become unstable even if the base is rigid while the 
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equipment is stiffness controlled. However, if the equipment is a rigid mass, IFF control 

is equivalent to AVF control. The PPF and APF control systems containing a distributed 

parameter isolator on a flexible base are also only conditionally stable. All these control 

strategies can introduce active damping into the system, and are thus effective in 

attenuating the system fundamental resonance peak. However, the IR peaks in the 

distributed parameter isolator cannot be attenuated by these control strategies because 

the equipment mass dominates the response at high frequencies. Based on this 

knowledge, acceleration feedback control has been applied to suppress the IR peaks, 

because it is equivalent to adding a mass electronically onto the equipment. However, as 

a compromise, the system fundamental resonance peak moves to a lower frequency and 

cannot be reduced by acceleration feedback control. The study for optimal control has 

shown that, to minimise the mean square velocity of the equipment mass, AVF control is 

the optimal solution. The theoretical results for the effects of IRs on the stability and 

control performance of AVF control system have been validated experimentally on a 

four-spring active vibration isolation system.  

 

Different approaches to stabilize the AVF control system have been investigated 

theoretically and experimentally based on the proposed stability condition. It has been 

validated experimentally that adding more damping into the isolator, adding more mass 

to the base, and introducing a lead compensator are all effective in stabilizing the AVF 

control system. An additional SDOF mechanical mass-spring-damper system has also 

been introduced to attach onto the base structure to effectively stabilize the AVF control 

system. 

 

Because the commonly used control strategies in active vibration isolation cannot 

suppress the IRs in the distributed parameter isolator due to the dominant effect of the 

equipment mass at high frequencies, various approaches have been investigated based 

on the understanding of the characteristics of IRs in the distributed parameter isolator. 

AVF control with more damping in the isolator has been investigated theoretically and 

experimentally. It was shown to be a simple and straightforward method to attenuate the 
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IR peaks. However, in practice due to the increase in the static stiffness of the isolator 

caused by the high damping materials applied in parallel with the isolator, the isolation 

performance at frequencies greater than the system fundamental resonance frequency is 

degraded. Based on the knowledge that the mass dominates the response of the 

equipment at high frequencies, absolute velocity plus acceleration feedback control has 

been investigated, which was shown to be effective in suppressing the IR peaks. 

Furthermore, for the system on a flexible base, the absolute velocity plus acceleration 

feedback controller can be carefully designed to make the control system 

unconditionally stable. However, such a controller is sensitive to the unmodelled 

dynamics of the system at high frequencies, which may destabilize the control system 

and has been validated experimentally. AVF control on a fraction of the isolator length 

has also been investigated theoretically. It was shown that the IR peaks can be 

effectively attenuated by AVF control on the lower part of the isolator. It has been 

concluded that the longer the fraction of the isolator length controlled by AVF control, 

the better the control performance around the system fundamental resonance frequency. 

Also the ratio of the controlled length to the entire length of the isolator should be an 

irrational number in order to suppress all of the IR peaks. Otherwise, at some 

frequencies the control point in the isolator corresponds to a node in a particular mode. 

However, the practical limitation in implementing this control method is to generate an 

active control force in parallel with a fraction of the isolator without changing the 

dynamics at the control point. 

 

Overall, this thesis has presented an investigation on the active vibration isolation of a 

piece of delicate equipment mounted on a distributed parameter isolator. The 

characteristics of a distributed parameter isolator have been clarified. The effects of IRs 

in the distributed parameter isolator on the control performance and stability of several 

control strategies have been determined. Different novel strategies to attenuate IRs and 

improve the isolation performance of the distributed parameter isolator over a broad 

range of frequencies have been proposed.  
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8.2 Recommendations for further work 

The research presented in this thesis has improved the understanding of the 

characteristics and effects of a distributed parameter isolator in isolating a piece of 

delicate equipment. This study has also highlighted several issues discussed below 

which are thought to be worth of further study:  

 

i. In this thesis, only one distributed parameter isolator is applied to isolate the 

delicate equipment from the base disturbance in the longitudinal direction. Any 

rotational effects are neglected. However, in practice, more isolators may be used in 

active vibration isolation. Therefore, the active vibration isolation systems 

containing two or more distributed parameter isolators should be investigated in 

future work. 

ii. Although the equipment and base dynamics have been considered in the stability 

analysis for active vibration isolation systems containing a distributed parameter 

isolator, the equipment and base have been respectively simplified as a rigid mass 

or a rigid mass on a complex spring in the analysis of control performance. In 

future research, more complex combinations of the equipment and base dynamics 

should be considered.  

iii. In the experimental results, the unmodelled modes in the equipment and the base 

have been demonstrated to be potential dangers to stability of the control system 

other than the IRs in the isolator. Although several approaches proposed in the 

thesis can eliminate these instabilities, further research could be carried out on this 

issue. 

iv. In attenuating the IRs in the isolator, although absolute velocity plus acceleration 

feedback control and AVF control on a fraction of the isolator length are effective 

theoretically, there are limitations in implementing these control strategies in 

practice. Further efforts should be expended on this issue.
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Appendix A 

 

Impedance Matrices for Distributed Parameter 

Isolators 

 

 

As discussed in Chapter 3, various types of realistic isolator can be modelled as 

different idealised configurations under various types of deformation. These distributed 

parameter models for realistic isolator can be categorized into two types for the purpose 

of dynamic analysis. One type can be modelled using a second order differential 

equation, and is called a non-dispersive isolator, in which the wave speed is independent 

of frequency. The other type can be modelled using a fourth or higher order differential 

equation, and is called a dispersive isolator, in which the wave speed is dependent on 

frequency. In this appendix, the impedance matrices for these two types of distributed 

parameter isolator are derived. 

 

A.1 Impedance matrix for a non-dispersive isolator 

In Figure A.1, the distributed parameter isolator is modelled as a finite elastic rod under 

longitudinal vibration (Figure A.1(a)) or torsional vibration (Figure A.1(b)), or a beam 

under lateral vibration (Figure A.1(c)), respectively. The rod in Figure A.1(a, b) can be 

categorized as a non-dispersive isolator. The beam in Figure A.1(c) can also be 

categorized as a non-dispersive isolator if it is represented as a shear beam. 1Q  and 2Q  

are the forces shown in Figure A.1(a) and (c), or moments shown in Figure A.1(b)
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applied to each end of the isolator. (0)u  and ( )u L  are displacements shown in Figure 

A.1(a) and (c), or angles shown in Figure A.1(b) at each end of the isolators, 

respectively.  

 

Figure A.1 Schematic diagrams of a distributed parameter isolator undergoing (a) 

longitudinal, (b) torsional or (c) lateral vibration, where 1Q  and 2Q  are forces in (a) 

and (c), or moment in (b) applied to each end of the isolator, respectively; and ( )0u  

and ( )u L  are displacements in (a) and (c), or angles in (b) at each end of the isolator, 

respectively 

 

The general equation of motion for the non-dispersive isolator is given by [19] 

 
2 2

2

2 2

( , ) ( , )
i

u x t u x t
c

x t

∂ ∂
=

∂ ∂
 (A.1) 

where ic  is the complex wave speed in the distributed parameter isolator. For the finite 

rod undergoing longitudinal vibration shown in Figure A.1(a), *

i lc c E ρ= = , where 

( )0u  ( )u L  

0x =  x L=  

1Q  2Q  

0x =  

1Q  2Q  

x L=  

( )0u  ( )u L  

(a) 

(b) 

(c) ( )u L

( )0u  

0x =  x L=  

2Q  

1Q  
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*E  is the complex Young’s modulus of elasticity and ρ  is the density. For the finite 

rod undergoing torsional vibration shown in Figure (b) and the shear beam undergoing 

lateral vibration shown in Figure A.1(c), *

i sc c G ρ= = , where *
G  is the complex 

shear modulus.  

 

Equation (A.1) has a solution to harmonic excitation, consisting of negative going and 

positive going waves, which can be written as [19] 

 ( )* *

( , ) ( ) j t jk x jk x j t
u x t u x e Ae Be e

ω ω−= = +  (A.2) 

where A and B are complex wave amplitudes that depend on the boundary conditions, 

and x is the distance along the isolator. For the finite rod undergoing longitudinal 

vibration shown in Figure A.1(a), 
** * *

l l
k k c Eω ρ ω= = =  is the longitudinal 

wavenumber. For the finite rod undergoing torsional vibration shown in Figure A.1(b) 

and the shear beam undergoing lateral vibration shown in Figure A.1(c), 

** * *

s s
k k c Gω ρ ω= = =  is the shear wavenumber. In the following discussion, the 

complex harmonic ( j t
e

ω ) time dependence of the variables will be assumed but will be 

omitted for clarity.  

 

The impedance matrix for the non-dispersive isolator can be calculated using the wave 

approach and the boundary conditions. 

� Point impedance 

The point impedances of a non-dispersive isolator at each end are equal due to 

symmetry, and are defined as [84] 

 
( )

( )
( )

( )

1 2
11 22

0 0 0

,  
0

u L u

Q Q
Z Z

u u L
= =

= =
& &

& &
 (A.3a,b) 

 

At 0x = , due to Hooke’s law which gives the stress-strain relationship, one has [84, 

86] 
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( )

1
0u Q

x κ

∂
= −

∂
 (A.4) 

where *
E Sκ =  is the longitudinal rigidity for the finite rod undergoing longitudinal 

vibration shown in Figure A.1(a), in which S is the cross-sectional area of the isolator; 

*

s
G Jκ =  is the torsional rigidity for the finite rod undergoing torsional vibration shown 

in Figure A.1(b) where sJ  is the polar second moment of area of the isolator; or 

*
G Sκ =  is the shear rigidity for the shear beam undergoing lateral vibration shown in 

Figure A.1(c). 

 

At x L= , due to the definition of the point impedance given in equation (A.3a), one 

has 

 ( ) ( ) 0u L j u Lω= =&  (A.5) 

Substituting equation (A.2) into (A.4) and (A.5) and letting 0x =  and x L=  

respectively gives 

 

*

* *

2

1 1

* *2 2

1
,  

1 1

jk L

jk L jk L

Q Q e
A B

jk jke eκ κ
= − =

+ +
 (A.6a,b) 

Substituting equations (A.6a, b) into (A.2) and letting 0x =  gives 

 ( ) ( )
*

*

2
*1 1

* *2

1
0 tan

1

jk L

jk L

Q Qe
u k L

jk keκ κ

−
= =

+
 (A.7) 

Differentiating equation (A.7) with respect to time and re-arranging gives 

 
( ) ( ) ( )

*

1 1
11 *0 0 tan

Q Q k
Z

u j u j k L

κ

ω ω
= = =
&

 (A.8) 

� Transfer impedance 

The transfer impedances of a non-dispersive isolator at each end are equal due to 

reciprocity, and are defined as [84] 

 
( )

( )
( )

( )

1 2
12 21

0 0 0

,  
0

u u L

Q Q
Z Z

u L u
= =

= =
& &

& &
 (A.9a,b) 
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At 0x = , equation (A.4) is still valid because of Hooke’s law. Also due to the 

definition of the transfer impedance given by equation (A.9a), one has 

 ( ) ( )0 0 0u j uω= =&  (A.10) 

Substituting (A.2) into (A.4) and (A.10) and letting 0x =  gives 

 1 1

* *
,  

2 2

Q Q
A B

jk jkκ κ
= − =  (A.11a,b) 

Substituting (A.11a, b) into (A.2) and letting x L=  gives 

 ( ) ( ) ( )
* * *1 1

* *
sin

2

jk L jk LQ Q
u L e e k L

jk kκ κ
−= − = −  (A.12) 

Differentiating equation (A.12) with respect to time and re-arranging gives  

 
( ) ( )

*

1 1
12 *sin( )

Q Q k
Z

u L j u L j k L

κ

ω ω
= = = −

&
 (A.13) 

 

Therefore, the impedance matrix for the non-dispersive isolator is given by 

 
( )

( )

*
*

11 12

* *
21 22

cos 1

sin( ) 1 cos

k LZ Z k

Z Z j k L k L

κ

ω

 −   =   −   

Z=  (A.14) 

Substituting the appropriate *
k  and κ  into equation (A.14), the corresponding 

impedance matrix for the finite rod undergoing longitudinal vibration shown in Figure 

A.1(a) is given by 

 
( )

( )
( )

*
*

11 12

* *
21 22

cos 1

sin 1 cos

l

l l

k LZ Z S E

Z Z j k L k L

ρ  −   =   −   
LZ =  (A.15) 

The corresponding impedance matrix for the finite rod undergoing torsional vibration 

shown in Figure A.1(b) is given by 

 
( )

( )
( )

*
*

11 12

* *
21 22

cos 1

sin 1 cos

s
s

s s

k LZ Z J G

Z Z j k L k L

ρ  −   =   −   
TZ =  (A.16) 

And the corresponding impedance matrix for the shear beam undergoing lateral 

vibration shown in Figure A.1(c) is given by 

 
( )

( )
( )

*
*

11 12

* *
21 22

cos 1

sin 1 cos

s

s s

k LZ Z S G

Z Z j k L k L

ρ  −   =   −   
SZ =  (A.17) 
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A.2 Impedance matrix for a dispersive isolator 

In Figure A.1(c), the distributed parameter isolator can be represented by an 

Euler-Bernoulli beam undergoing lateral vibration as an example of a dispersive isolator. 

One end of the isolator is sliding under external excitation. It is assumed that the other 

end of the isolator is excited by a force only (any moments at this end are assumed to be 

negligible). The equation of motion for such a dispersive isolator is given by 

 
4 2

4 2

( , ) ( , )u x t u x t
EI S

x t
ρ

∂ ∂
=

∂ ∂
 (A.18) 

where I  is the second moment of area about the neutral axis of the isolator. Equation 

(A.18) has a solution to harmonic excitation, which can be written as [19] 

 ( ) ( ) ( ) ( )( )* * * *( , ) ( ) cosh sinh cos sinj t j t

b b b b
u x t u x e A k x B k x U k x V k x e

ω ω= = + + +   

  (A.19) 

where A, B, U and V are complex wave amplitudes that depend on the boundary 

conditions and *4
bk S E Iρ ω=  is the bending wavenumber. In the following 

discussion, the complex harmonic ( j t
e

ω ) time dependence of the variables will be 

assumed but will be again omitted for clarity. The impedance matrix for the dispersive 

isolator can be calculated by applying the boundary conditions. 

� Point impedance 11Z  at 0x =  

The point impedances 11Z  at 0x =  is defined by equation (A.3a). Due to the 

boundary conditions, one has, at 0x = ,  

 
( )

( )
0

0 no rotation
u

x

∂
=

∂
 (A.20) 

and at x L= ,  

 
( )

( )
2

2
0 no bending moment

u L
EI

x

∂
=

∂
 (A.21) 

Also at 0x = , since the shear force equals to the applied force, one has 

 
( )3

13

0u
EI Q

x

∂
=

∂
 (A.22) 
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At x L= , due to the definition of the point impedance given by equation (A.3a), 

equation (A.5) is valid. Substituting equation (A.19) into (A.5) and (A.20-A.22) gives 

 
( )
( )

( )
( )

* *

1 1

* *3 * *3* *

sinh sin
,  

2 2cosh cos

b b

b bb b

k L k LQ Q
A U

E Ik E Ikk L k L
= − =  (A.23a,b) 

Substituting equations (A.23a, b) into (A.19) and letting 0x =  gives 

 ( )
( ) ( ) ( ) ( )

( ) ( )

* * * *

1

* *3 * *

sin cosh cos sinh
0

2 cos cosh

b b b b

b b b

k L k L k L k LQ
u

E Ik k L k L

−
=  (A.24) 

Differentiating equation (A.24) with respect to time and re-arranging gives 

 
( )

( ) ( )
( ) ( ) ( ) ( )( )

* *3 * *

1
11 * * * *

2 cos cosh

0 sin cosh cos sinh

b b b

b b b b

E Ik k L k LQ
Z

u j k L k L k L k Lω
= =

−&
 (A.25) 

� Point impedance 22Z  at x L=  

The point impedance 22Z  at x L=  is defined by equation (A.3b). Due to the 

boundary conditions, equations (A.20) and (A.21) still hold. Also at 0x = , due to the 

definition of the point impedance given by equation (A.3b), equation (A.10) holds. At 

x L= , since the shear force equals to the applied force, one has 

 
( )3

23

u L
EI Q

x

∂
= −

∂
 (A.26) 

Substituting equation (A.19) into (A.10), (A.20), (A.21), (A.26) gives 

 

( ) ( )
( ) ( )

( ) ( )
( ) ( )

* *

2

* *3 * *

* *

2

* *3 * *

sin sinh

2 1 cos cosh

cos cosh

2 1 cos cosh

b b

b b b

b b

b b b

k L k LQ
A U

E Ik k L k L

k L k LQ
B V

E Ik k L k L

+
= − =

+

+
= − = −

+

 (A.27a,b) 

Substituting equations (A.27a, b) into (A.19) and letting x L=  gives 

 ( )
( ) ( ) ( ) ( )

( ) ( )

* * * *

2

* *3 * *

sin cosh cos sinh

1 cos cosh

b b b b

b b b

k L k L k L k LQ
u L

E Ik k L k L

−
=

+
 (A.28) 

Differentiating equation (A.28) with respect to time and re-arranging gives  

 
( )

( ) ( )( )
( ) ( ) ( ) ( )( )

* *3 * *

2
22 * * * *

1 cos cosh

sin cosh cos sinh

b b b

b b b b

E Ik k L k LQ
Z

u L j k L k L k L k Lω

+
= =

−&
 (A.29) 
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� Transfer impedance 

The transfer impedances of the dispersive isolator at each end are equal due to 

reciprocity, and are defined by equation (A.9). Due to the boundary conditions, 

equations (A.23) and (A.24) hold. At 0x = , due to the definition of the transfer 

impedance given by equation (A.9a), and since the shear force equals to the applied 

force, equations (A.10) and (A.22) hold. Substituting equation (A.19) into (A.10) and 

(A.22-A.24), one can derive 

 
( ) ( )
( ) ( )

* *

1 1

* *3 * *3* *

sin sinh
, 

2 2cos cosh

b b

b bb b

k L k LQ Q
A U B V

E Ik E Ikk L k L

+
= − = − = − =

+
 (A.30a,b) 

Substituting equations (A.30a, b) into (A.19) and letting x L=  gives 

 ( )
( ) ( ) ( ) ( )

( ) ( )

* * * *

1

* *3 * *

sin cosh cos sinh

cos cosh

b b b b

b b b

k L k L k L k LQ
u L

E Ik k L k L

−
= −

+
 (A.31) 

Differentiating equation (A.31) with respect to time and re-arranging gives 

 
( )

( ) ( )( )
( ) ( ) ( ) ( )( )

* *3 * *

1
12 * * * *

cos cosh

sin cosh cos sinh

b b b

b b b b

E Ik k L k LQ
Z

u L j k L k L k L k Lω

+
= = −

−&
 (A.32) 

 

Therefore, the impedance matrix for the dispersive isolator, if it is modelled as an 

Euler-Bernoulli beam undergoing lateral vibration shown in Figure A.1(c), is given by 

 
11 12

21 22

Z Z

Z Z

 
=  
 

BZ  (A.33) 

where 

 

( ) ( )
( ) ( ) ( ) ( )( )

( ) ( )( )
( ) ( ) ( ) ( )( )

( ) ( )( )
( ) ( ) ( ) ( )( )

* *3 * *

11 * * * *

* *3 * *

22 * * * *

* *3 * *

12 21 * * * *

2 cos cosh

sin cosh cos sinh

1 cos cosh

sin cosh cos sinh

cos cosh

sin cosh cos sinh

b b b

b b b b

b b b

b b b b

b b b

b b b b

E Ik k L k L
Z

j k L k L k L k L

E Ik k L k L
Z

j k L k L k L k L

E Ik k L k L
Z Z

j k L k L k L k L

ω

ω

ω

=
−

+
=

−

+
= = −

−

 (A.34a,b,c) 
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Appendix B 

 

Characteristics of a Helical Spring 

 

 

In Chapter 3, an experiment on a helical spring was conducted to validate the 

characteristics of a non-dispersive isolator, because a helical spring can be modelled 

theoretically as an equivalent finite elastic rod under longitudinal vibration for 

simplicity. In this appendix, some characteristics of a helical spring, such as static 

stiffness and internal resonance frequencies, are derived.  

 

B.1 Static stiffness  

 

  

(a) (b) (c) 

Figure B.1 (a) schematic diagram of a helical spring under longitudinal excitation, (b) 

the cross section of the spring along its length and (c) the cross section of the spring 

wire, where F is the longitudinal force [95].

F

F

S
τ =  

d 

4

F
T

T d

I
τ =  
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The derivation of the static stiffness of a helical spring has been presented in [95]. The 

schematic diagram of a helical spring under longitudinal force F and the cross section 

along its length are respectively shown in Figures B.1 (a) and (b). The length, the 

diameter, the cross-section area and the second moment of area of the wire of the helical 

spring are denoted as L, d, S, and I, respectively. The mean diameter of the coil is 

denoted as D. As shown in Figure B.1 (c), the cross section of the spring wire is thus 

exposed to a shear force F and a torsion moment FT , which is given by 

 
2

F

FD
T =  (B.1) 

The stress from the shear force and the torsion moment in the helical spring are 

respectively given by 

 ,    
4

F
F T

T dF

S I
τ τ= =  (B.2a,b) 

where 

 2 4,    
4 64

S d I d
π π

= =  (B.3a,b) 

Therefore, the energy generated by stress in the helical spring comes from two sources: 

shear force and torsion. 

� Shear force strain energy 

The shear force strain energy can be written as 

 
vol

1
vol

2
F F FU dτ ε= ⋅ ⋅∫  (B.4) 

where 

 F
F

F

G GS

τ
ε = =  (B.5) 

is the strain due to the shear force and G is the shear modulus. Substituting equations 

(B.2a) and (B.5) into (B.4), the strain energy due to the shear force is given by 

 
2 2

2

vol

1 1
vol

2 2 2
F

L S

F F F F L
U d dS dL

S GS G S GS
= ⋅ ⋅ = ⋅ =∫ ∫ ∫  (B.6) 

� Torsion strain energy 
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The torsion strain energy can be written as 

 
vol

1
vol

2
T T TU dτ ε= ⋅ ⋅∫  (B.7) 

where  

 
4

T F
T

T d

G GI

τ
ε = =  (B.8) 

is the strain due to the torsion. Substituting equations (B.2b) and (B.8) into (B.7), the 

strain energy due to the torsion is given by 

 
2 2 2

2

2 2

vol

1
vol

2 4 4 32 8 4

F F F F F
T

L S S

T d T d T T L T L
U d d dS dL SdS

I GI GI GI GIπ
= ⋅ ⋅ = ⋅ = =∫ ∫ ∫ ∫  (B.9) 

 

Combining equations (B.1), (B.6) and (B.9), the total strain energy is given by 

 
2 2 2

2 16
total F T

F L F D L
U U U

GS GI
= + = +  (B.10) 

According to the Castigliano's theorem [96], the spring deflection due to longitudinal 

excitation F is given by 

 
2

8

totalU FL FD L
L

F GS GI

∂
∆ = = +

∂
 (B.11) 

The length of the spring wire is given by 

 L n Dπ=  (B.12) 

where n is the number of active coils of the spring. Substituting equations (B.3a, b) and 

(B.12) into (B.11), the deflection can be written as 

 
3 2 3

4 2 4

8 8
1

2

nD F d nD F
L

Gd D Gd

 
∆ = + ≈ 

 
 (B.13) 

Therefore, the static stiffness of the helical spring is given by 

 
4

38
s

F Gd
K

L nD
= =

∆
 (B.14) 

 

B.2 Internal resonances  

To derive the expression for the internal resonance frequencies in a helical spring, an 
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analogy between a rod and a spring is assumed. The analogy works because both 

objects are continuously distributed elements, in that their stiffness and mass are spread 

uniformly throughout their interiors.  

 

From the impedance matrix derived in Appendix A, it can be seen that the undamped 

natural frequencies in a fixed-fixed finite elastic rod occur when ( )sin 0lk L = . 

Therefore, the internal resonances in the finite rod occur when 

  (n=1, 2, 3...)lk L nπ=  (B.15) 

Substituting the corresponding equation for the longitudinal wavenumber lk Eω ρ=  

into (B.15), the internal resonance frequencies are thus given by: 

  (in rad/s)L
l

i

Kn E
n

L m

π
ω π

ρ
= =  (B.16) 

where LK ES L=  is the static stiffness of the rod and im SLρ=  is the mass of the 

rod.  

 

By analogy, the internal resonance frequencies in a helical spring will have the same 

form as 

  (in rad/s)s
s

s

K
n

m
ω π=  (B.17) 

where sK  is the static stiffness of the helical spring given in equation (B.14) and  

 
2 2

4
s

NDd
m

π ρ
=  (B.18) 

is the mass of the helical spring. 
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Appendix C 

 

Dynamic Analysis of a System Containing a 

Distributed Parameter Isolator 

 

 

In this appendix, the equations describing the dynamics of the vibration isolation 

systems containing a distributed parameter isolator on a flexible base used in chapters 3, 

4, and 6 are given. The input and transfer impedances of the system at the location of 

the equipment, the base and a point along the isolator are derived.  

 

C.1 Impedances at the equipment and the base 

Figure C.1 shows a vibration isolation system containing a distributed parameter 

isolator on a flexible base. The equipment, represented by its impedance eZ  is 

mounted on the base, represented by its impedance bZ , through a distributed parameter 

isolator. The isolator is modelled as a finite elastic rod that has an impedance matrix 

LZ . The external forces ef  and bf  are applied to the equipment and the base 

respectively. eu&  and bu&  are the velocity of the equipment and the base, respectively. 

The dynamic behaviour of such a system can be described by
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Figure C.1 Schematic diagram of a vibration isolation system containing a distributed 

parameter isolator on a flexible base, where eu&  and bu&  are the velocity of the 

equipment and the base, respectively; ef  and bf  are the external forces applied to 

the equipment and the base, respectively; eQ , 1Q , 2Q  and bQ  are internal forces; 

eZ  and bZ  are the input impedances of the equipment and the base, respectively; and 

LZ  is the impedance matrix for the isolator. 

  

 

2

1 11 12

2 21 22

1

e e e e e

b b

e e

b b b b b

Z u f Q f Q

u uQ Z Z

u uQ Z Z

Z u f Q f Q

= + = −

      
= =      

      

= + = −

LZ

&

& &

& &

&

 (C.1a,b,c) 

where eQ , 1Q , 2Q  and bQ  are internal forces. From equations (C.1a-c), the 

velocities of the equipment and the base are found to be 

 
e ee eb e

b be bb b

u Y Y f

u Y Y f

     
=     

     

&

&
 (C.2) 

where 

 

( )( )

( ) ( )

( )( )

11

22 11 12 21

21

22 11 12 21

22

22 11 12 21

b
ee

e b

eb be

e b

e
bb

e b

Z Z
Y

Z Z Z Z Z Z

Z
Y Y

Z Z Z Z Z Z

Z Z
Y

Z Z Z Z Z Z

+
=

+ + −

−
= =

+ + −

+
=

+ + −

 (C.3a,b,c) 
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For the system shown in Figure 3.8 in Chapter 3, there is no external force applied to 

the equipment, i.e. 0ef = , and the external force applied to the base is the primary 

force f , i.e. bf f= . Based on the above discussion, the velocity of the equipment is 

thus given by 

 e ebu Y f=&  (C.4) 

For the system shown in Figure 4.16 in Chapter 4, the external force applied to the 

equipment is the active control force af , i.e. e af f= , and the external force applied to 

the base is the primary force f  and the active control force af− , i.e. b af f f= − . 

The velocity of the equipment is thus given by 

 ( ) ( )e ee a eb a ee eb a ebu Y f Y f f Y Y f Y f= + − = − +&  (C.5) 

 

C.2 Impedances at a point along the isolator 

 

Figure C.2 Schematic diagram of a vibration isolation system containing a distributed 

parameter isolator on a flexible base, where rf  is the external force applied at a point 

along the isolator; xZ  and yZ  are the impedance matrix for the upper and lower 

part of the isolator, respectively; 1xQ , 2xQ , 1yQ  and 2yQ  are internal forces; and ru&  

is the velocity of the point along the isolator. 
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Figure C.2 shows a vibration isolation system containing a distributed parameter 

isolator on a flexible base, in which an external force rf  is applied at a point along the 

isolator. The external forces ef  and bf  are still applied to the equipment and base 

respectively. The isolator is also modelled as a finite elastic rod. The impedance matrix 

of the upper part of the isolator above the point where the external force applied is 

represented by xZ  and that of the lower part is represented by yZ . ru&  is the velocity 

of the point along the isolator where the force rf  applied. The dynamics of such a 

system can be described by 

 

2

1 11 12

2 21 22

1 2

1 11 12

2 21 22

1

e e e e e x

x r r x x r

x e x x e

x y

y y yb b

y y yr r

b b b b b y

Z u f Q f Q

Q f u Z Z u

Q u Z Z u

Q Q

Q Z Zu u

Q Z Zu u

Z u f Q f Q

= + = −

+       
= =       

       

= −

      
= =      

      

= + = −

x

y

Z

Z

&

& &

& &

& &

& &

&

 (C.6a,b,c,d,e) 

where eQ , 1xQ , 2xQ , 1yQ , 2yQ  and bQ  are internal forces. From equations (C.6a-e), 

the velocities of the equipment, the base and the point along the isolator are given by 

 

e ee er eb e

r re rr rb r

b be br bb b

u Y Y Y f

u Y Y Y f

u Y Y Y f

     
     =     
          

&

&

&

 (C.7) 

where eeY , ebY , beY  and bbY  are the same as those given in equations (C.3a-c), and  

 

( )( )

( )( )

21 11 11 22

12 21 12 21

12 22 11 22

12 21 12 21

12 21

11 22

1

x b y x y

er re

e b te tb x x y y

y e x x y

rb br

e b te tb x x y y

x er y rb

rr

x y

Z Z Z Z Z
Y Y

Z Z Z Z Z Z Z Z

Z Z Z Z Z
Y Y

Z Z Z Z Z Z Z Z

Z Y Z Y
Y

Z Z

− + +
= =

−

− + +
= =

−

− −
=

+

 (C.8a,b,c) 

in which 
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( )( )

( )( )

22 11 22 12 21

11 11 22 12 21

e x x y x y

te

e

b y x y y y

tb

b

Z Z Z Z Z Z
Z

Z

Z Z Z Z Z Z
Z

Z

+ + −
=

+ + −
=

 (C.9a,b) 

 

For the system shown in Figure 6.16 in Chapter 6, there is no external force applied to 

the equipment, i.e. 0ef = . The external force applied to the point along the isolator is 

the active control force af , i.e. r af f= , and the external force applied to the base is 

the primary force f  and the active control force af− , i.e. b af f f= − . Based on the 

above discussion, the velocities of the equipment and the point along the isolator are 

thus given by 

 
( ) ( )

( ) ( )
e er a eb a er eb a eb

r rr a rb a rr rb a rb

u Y f Y f f Y Y f Y f

u Y f Y f f Y Y f Y f

= + − = − +

= + − = − +

&

&
 (C.10a,b) 

 


