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FORTRAN 95 Codes 
 

 
VIX Head Files and Definitions 
 
       parameter(NQA = 300) 
       type node 
       integer id 
    real:: x,y,z 
    real:: s,t,TAU 
    real:: Up,U,Cp,Cpe 
    real:: Dxt2,Dyt2,Dzt2 
    real:: Dxs2,Dys2,Dzs2 
    real:: Dps2,Dpt2 
    end type node 
 
       type section 
  integer:: id,Nnd,Nlower 
  integer:: istag,iblte(2),Nbl(2) 
  integer,dimension(NqA,2):: IBL  
  integer,dimension(2):: imatch,Nmatch,tr 
  real:: sc,disp,leng,Vchord(3),aflow 
  real,dimension(2):: xsep,xre,xtr 
  real,dimension(NQA)::   s,t,curv 
  real,dimension(3,NQA):: P,Vn 
!         BOUNDARY LAYER VARS 
           real,dimension(NQA,2):: TAU,UINV 
           real,dimension(NQA):: Up,Cp 
           real,dimension(4,NQA,2):: Q  
    real:: cli,clv,cd,Cdf,Cdp        
    end type section 
!_____________________________________________________________    
!   NODE 
!   id     -> pt identity 
!   x,y,z  -> coordinates of node 
!     Cp     -> pressure coefficient 
!     Cpe    -> viscous pressure coefficient 
!     U      -> absolute velocity 
!    TAU     -> shear stress 
!    s,t     -> surface coordinates 
! Dxt2,Dyt2,Dzt2 -> spline 2nd derivatives on parametric 
!                   t direction for each coordinate 
! Dxs2,Dys2,Dzs2 -> spline 2nd derivatives on parametric 
!                   s direction for each coordinate 
! Dps2,Dpt2    -> spline second derivative on parametric 
!                   directions s and t for nodal Cp 
!_____________________________________________________________ 
!   SECTION 
!     id        -> identity of section 
!     istag     -> location of stagnation point 
!     Nlower    -> index where leading edge is 
!     Npt       -> No of points on section (max=100) 
!     ite       -> index where trailing edge lives 
!     p(..)     -> coordinates points 
!     s(.)      -> curve coordinate 
!     t(.)      -> spanwise curve coordinate 
!     Vn(..)    -> normal vector on a section node 
!     imatch(.) -> point of beginning of matching surface 
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!     Nmatch(.) -> point where ends matching surface 
!     tr(.)     -> point where transition occurs 
!     disp      -> displacement of section on x axis 
!     sc        -> scale of section 
!     leng      -> chord length 
!     aflow     -> flow incidence on the particular section 
!     Vchord    -> unitary vector of chord 
!  xsep,ysep    -> point of separation  1 - upper 
!                                       2 - lower 
!   xtr,ytr     -> point of transition 
!        BOUNDARY LAYER 
!   Q     -> vector of boundary layer variables 
!            1 - nr or Ct 
!            2 - th 
!            3 - dels 
!            4 - Ue 
!   Cli   -> inviscid lift coefficient 
!   Clv   -> viscous lift coefficient 
!   Cd    -> drag coefficient 
!   Ue    -> edge velocity modulus (viscous) 
!   Up    -> edge velocity modulus (potential) 
!********************************************************************** 
!   Program created by Augusto Veiga (University of Southampton 2003) * 
!********************************************************************** 
 
       type panel 
       integer:: id,np,ibc 
    integer,dimension(4)::ngb 
    character(5):: tipo 
    real:: s,t,area,fl,fd 
    type (node),dimension(4):: nd,mid 
    type (node):: co 
    real:: Mx,My,Mz 
    real:: cp,Up,rpv 
    real:: u(3),vm(3) 
    end type panel 
 
!    
!  PANEL 
!   id     -> pt identity 
!     ibc    -> panel type index: 
!               -1  trailing edge panel 
!                1  body panel 
!                2  wake attached to trailing edge 
!                3  free wake panels 
!                4  fixed wake 
!     ngb    -> neighbouring panels (they are 4) 
!            ngb(i)= -4  reflection plane 
!            ngb(i)= -2  discontinuous 
! 
!   x,y,z  -> coordinates of node 
!     Cp     -> pressure coefficient 
!     U      -> absolute velocity 
!     co     -> collocation pt of panel 
!     mid    -> mid edge between nodes (follows right hand rule) 
!     vm     -> vector velocity in m/s (not that useful) 
!     nd     -> panel nodes (they are 4) 
!     area   -> area of panel 
!     fl     -> lifting force of panel 
!     fd     -> drag force of panel 
!     rpv    -> viscous pressure resistence 
!   Mx,My,Mz -> momentum in relation to origin of root chord 
! 
!********************************************************************** 
!   Program created by Augusto Veiga (University of Southampton 2003) * 
!********************************************************************** 
 

Two-Dimensional Panel Method 

 
      subroutine panel (X,Y,IFLAG,Nlower 
     &  ,Nupper,Nodtot,Nmax,V,alpha, 
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     &  naca,tau) 
   
 integer Nmax 
 real,dimension(Nmax)::x,y,xmid,ymid,costhe,sinthe 
 real,dimension(Nmax)::V,CP 
 
 real:: alpha,Tau,gamma,CD,CL1,CL2 
 integer:: Nodtot,Nupper,Nlower,IFLAG 
 
 
      real PI, PI2INV, XNU,cosalf,sinalf,thick,camber,beta 
  real, dimension(Nodtot,Nodtot+1) :: A 
  integer N 
 
c.................................................... Begin 
c 
      PI = 4. * atan(1.) 
      PI2INV = 1. / (2. * PI) 
  V = 0 
      IF (ALPHA.gt.PI/2.) GOTO 400 
!      if (ALPHA.gt.90.) goto 400 
!      close (5) 
c 
c 
c............................................... Initializing data 
c 
      print *, '*** Inicializacao dos dados - aguarde ... ' 
      call SETUP(x,y,xmid,ymid,costhe,sinthe,cosalf,sinalf,PI, 
     &     PI2INV,Nodtot,Nmax,Nupper,Nlower,alpha,tau, 
     &     NACA,IFLAG,XNU) 
c 
      COSALF = cos(ALPHA)   !*PI/180.) 
      SINALF = sin(ALPHA)   !*PI/180.) 
 
      A=0 
c 
c 
c...................... Influence coefficient matrix assembly 
c 
      print *, '*** Montagem da matriz de coeficientes - aguarde ... ' 
      call COFISH(x,y,xmid,ymid,costhe,sinthe,Nodtot,pi,pi2inv, 
     &   alpha,cosalf,sinalf,Nmax,A) 
c 
c................ Gauss Elimination solution system 
c 
      print *, '*** Solucao do sistema de equacoes - aguarde ... ' 
      call GAUSS2(A,Nodtot-1,1,Nodtot) 
c 
c 
c................. Velocity and pressure coefficient 
c 
      print *, '*** Calculo das velocidades e pressoes - aguarde ... ' 
      call VELDIS(A,x,y,Nlower,Nupper,Nodtot,xmid,ymid,V,CP,gamma, 
     &   Nmax,XNU) 
 
c 
c................................. Calculo dos coeficientes do aerofolio 
c 
      print *, '*** Calculo dos coefs. adimensionais - aguarde ... ' 
      call FANDM(A,x,y,Nlower,Nupper,Nodtot,xmid,ymid,V,CP,gamma, 
     &   Nmax,sinalf,cosalf,CD,CL1,CL2) 
 
  400 write (*,9999) 
      !stop 
 9999 format (//, ' End of panel method - Univ. Southampton/COPPE(C) 
     & 2001') 
 
c 
c--------------------------------------------- Fim do programa principal 
c 
      end subroutine 
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cÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ SUBROUTINE  ³   SETUP   ³ 
c                                                          ÀÄÄÄÄÄÄÄÄÄÄÄÙ 
c 
      subroutine SETUP(x,y,xmid,ymid,costhe,sinthe,cosalf,sinalf,PI, 
     &     PI2INV,Nodtot,Nmax,Nupper,Nlower,alpha,tau, 
     &     NACA,IFLAG,XNU) 
c 
      integer Nmax 
 real,dimension(Nmax)::x,y,xmid,ymid,costhe,sinthe 
 real,dimension(Nmax)::V,CP 
 
 real alpha,Tau,thick,camber,beta 
 real Z 
 integer Nodtot,Nupper,Nlower,IFLAG,SIGN 
 
 
      real PI, PI2INV, XNU 
 integer N,NACA 
 real cosalf,sinalf 
 
      XNU= .89292E-06 
      if (IFLAG.ne.1) go to 120 
      NPOINTS = NLOWER 
      SIGN = -1. 
      NSTART = 0 
      do 110 NSURF=1,2 
         do 100 N=1,NPOINTS 
            FRACT = float(N-1) / float(NPOINTS) 
            Z = .5 * (1. - cos(PI * FRACT)) 
            I = NSTART + N 
            call BODY(Z,alpha,NACA,tau,Nlower,Nupper,SIGN, 
     &     beta,X(I),Y(I)) 
  100    continue 
         NPOINTS = NUPPER 
         SIGN = 1. 
         NSTART = NLOWER 
  110 continue 
c 
c 
c................................. panel slope 
c 
120   do 200 I=1,Nodtot-1 
         DX = X(I+1) - X(I) 
         DY = Y(I+1) - Y(I) 
         DIST = sqrt(DX * DX + DY * DY) 
         SINTHE(I) = DY / DIST 
         COSTHE(I) = DX / DIST 
  200 continue 
 
c 
c 
c................................. collocation pts 
c 
      do 300 I=1,Nodtot-1 
         XMID(I) = .5 * (X(I) + X(I+1)) 
         YMID(I) = .5 * (Y(I) + Y(I+1)) 
  300 continue 
 
      return 
c 
c 
c------------------------------------------------ End SETUP 
c 
      end 
c 
c                                                           ÚÄÄÄÄÄÄÄÄÄÄ¿ 
cÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ SUBROUTINE  ³   BODY   ³ 
c                                                           ÀÄÄÄÄÄÄÄÄÄÄÙ 
c 
      subroutine BODY (Z,alpha,NACA,tau,Nlower,Nupper,SIGN, 
     & beta,xi,yi) 
c 
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c ÚÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ Descricao dos Parametros ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ¿ 
c ³                                                                    ³ 
c ³   Z     - parametro de espacamento nodal (entrada)                 ³ 
c ³   SIGN  - identificador da superficie: +1 - superficie superior    ³ 
c ³                                        -1 - superficie inferior    ³ 
c ³           (entrada)                                                ³ 
c ³   X     - coordenada cartesiana X (entrada)                        ³ 
c ³   Y     - coordenada cartesiana Y (entrada)                        ³ 
c ÀÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÙ 
 real alpha,Xi,Yi,tau,epsmax,ptmax,thick,camber,beta 
 real Z 
 integer Nlower, Nupper,Nmax,SIGN 
      if (SIGN.lt.0.) Z = 1. - Z 
      call NACA45(Z,tau,NACA,epsmax,ptmax,alpha,thick,camber) 
      Xi = Z - SIGN * THICK * sin(BETA) 
      Yi = CAMBER + SIGN * THICK * cos(BETA) 
      return 
c 
c 
c------------------------------------------------- End BODY 
c 
      end 
c 
c                                                         ÚÄÄÄÄÄÄÄÄÄÄÄÄ¿ 
cÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ SUBROUTINE  ³   COFISH   ³ 
c                                                         ÀÄÄÄÄÄÄÄÄÄÄÄÄÙ 
c 
      subroutine COFISH(x,y,xmid,ymid,costhe,sinthe,Nodtot,pi,pi2inv, 
     &   alpha,cosalf,sinalf,Nmax,A) 
c 
c 
c ÚÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ Descricao dos Parametros ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ¿ 
c ³                                                                    ³ 
c ³   SINALF - valor de sin(Alpha) (entrada)                           ³ 
c ³   COSALF - valor de cos(Alpha) (entrada)                           ³ 
c ÀÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÙ 
c 
 integer Nmax,Nodtot,N 
 real,dimension(Nmax)::x,y,xmid,ymid,costhe,sinthe 
 real,dimension(Nodtot,Nodtot+1)::A 
 real alpha,Tau,Epsmax,ptmax,cosalf,sinalf,pi,pi2inv 
 
      N = NODTOT-1 
      do 120 I=1,N 
c 
c........................... panel contribution 
c 
         do 110 J=1,N 
            FTAN = PI 
            if (J.eq.I) goto 100 
            DXJ = XMID(I) - X(J) 
            DXJP = XMID(I) - X(J+1) 
            DYJ = YMID(I) - Y(J) 
            DYJP = YMID(I) - Y(J+1) 
            FTAN = atan2(DYJP*DXJ-DXJP*DYJ,DXJP*DXJ+DYJP*DYJ) 
  100       A(I,J) = FTAN * PI2INV 
c 
c.......... Kutta condition at trailing edge 
c 
            if (J.eq.1) then 
               A(I,J) = A(I,J) - PI2INV * atan(YMID(I)/(1.-XMID(I))) 
            endif 
            if (J.eq.N) then 
               A(I,J) = A(I,J) + PI2INV * atan(YMID(I)/(1.-XMID(I))) 
            endif 
            if (I.eq.J) A(I,J) = A(I,J) - 1. 
  110    continue 
c 
c........................................ Free vars 
c 
         A(I,N+1) = - (XMID(I) * COSALF + YMID(I) * SINALF) 
  120 continue 
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c 
      return 
c 
c 
c----------------------------------------------- End COFISH 
c 
      end 
c 
c                                                         ÚÄÄÄÄÄÄÄÄÄÄÄÄ¿ 
cÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ SUBROUTINE  ³   VELDIS   ³ 
c                                                         ÀÄÄÄÄÄÄÄÄÄÄÄÄÙ 
c 
      subroutine VELDIS(A,x,y,Nlower,Nupper,Nodtot,xmid,ymid,V,CP,gamma, 
     &   Nmax,XNU) 
      real gamma 
 integer Nmax 
 real,dimension(Nmax)::x,y,xmid,ymid,costhe,sinthe,V,CP,FI,CF 
 real,dimension(Nodtot,Nodtot+1)::A 
 real alpha,Tau,Epsmax,ptmax,cosalf,sinalf,pi,pi2inv,XNU 
 integer Nodtot,N 
 
 N=Nodtot-1  !number of panels 
 
      do 50 I=1,N 
         FI(I) = A(I,N+1) 
   50 continue 
   GAMMA = FI(N) - FI(1) 
c 
c 
c............. tangential velocity and pressure 
c 
c................................................... lower surface 
c 
 
      do 100 K=1,NLOWER-1 
         if (K.eq.1.or.K.eq.NLOWER-1) then 
            if (K.eq.1) then 
               XK1 = .5 * (X(K) + X(K+1)) 
               YK1 = .5 * (Y(K) + Y(K+1)) 
               XK2 = .5 * (X(K+1) + X(K+2)) 
               YK2 = .5 * (Y(K+1) + Y(K+2)) 
               XK3 = .5 * (X(K+2) + X(K+3)) 
               YK3 = .5 * (Y(K+2) + Y(K+3)) 
               S1 = 0. 
               F1 = FI(K) 
               S2 = sqrt((XK2 - XK1)**2 + (YK2 - YK1)**2) 
               F2 = FI(K+1) 
               S3 = S2 + sqrt((XK3 - XK2)**2 + (YK3 - YK2)**2) 
               F3 = FI(K+2) 
            endif 
            if (K.eq.NLOWER-1) then 
               XK1 = .5 * (X(K-2) + X(K-1))  
               YK1 = .5 * (Y(K-2) + Y(K-1)) 
               XK2 = .5 * (X(K-1) + X(K)) 
               YK2 = .5 * (Y(K-1) + Y(K)) 
               XK3 = .5 * (X(K) + X(K+1)) 
               YK3 = .5 * (Y(K) + Y(K+1)) 
               S3 = 0. 
               F3 = FI(K) 
               S2 = - sqrt((XK3 - XK2)**2 + (YK3 - YK2)**2) 
               F2 = FI(K-1) 
               S1 = S2 - sqrt((XK2 - XK1)**2 + (YK2 - YK1)**2) 
               F1 = FI(K-2) 
            endif 
         else 
            XK1 = .5 * (X(K-1) + X(K)) 
            YK1 = .5 * (Y(K-1) + Y(K)) 
            XK2 = .5 * (X(K) + X(K+1)) 
            YK2 = .5 * (Y(K) + Y(K+1)) 
            XK3 = .5 * (X(K+1) + X(K+2)) 
            YK3 = .5 * (Y(K+1) + Y(K+2)) 
            S1 = - sqrt((XK2 - XK1)**2 + (YK2 - YK1)**2) 
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            F1 = FI(K-1) 
            S2 = 0. 
            F2 = FI(K) 
            S3 = sqrt((XK3 - XK2)**2 + (YK3 - YK2)**2) 
            F3 = FI(K+1) 
         endif 
         DELTA = (S3 - S1) * (S2 - S1) * (S2 - S3) 
         DELTB = (S2**2 - S1**2) * (F3 - F1) 
     *         - (S3**2 - S1**2) * (F2 - F1) 
         V(K) = DELTB / DELTA    !- DELTB / DELTA 
         CP(K) = 1. - V(K) * V(K) 
    !     CF(K) = 0.075/(log(V(K)/XNU) -2.0)**2 
  100 continue 
c 
c 
c................................................... upper surface 
c 
      do 110 K=Nlower,NUPPER-1 
         L = k       !    NLOWER 
         if (K.eq.Nlower.or.K.eq.NUPPER-1) then 
            if (K.eq.Nlower) then 
               XK1 = .5 * (X(L) + X(L+1)) 
               YK1 = .5 * (Y(L) + Y(L+1)) 
               XK2 = .5 * (X(L+1) + X(L+2)) 
               YK2 = .5 * (Y(L+1) + Y(L+2)) 
               XK3 = .5 * (X(L+2) + X(L+3)) ! x e y com o nº de nós 
               YK3 = .5 * (Y(L+2) + Y(L+3)) 
               S1 = 0. 
               F1 = FI(L)  !Fi varia com o nº de painéis 
               S2 = sqrt((XK2 - XK1)**2 + (YK2 - YK1)**2) 
               F2 = FI(L+1) 
               S3 = S2 + sqrt((XK3 - XK2)**2 + (YK3 - YK2)**2) 
               F3 = FI(L+2) 
            endif 
            if (K.eq.NUPPER-1) then 
               XK1 = .5 * (X(L-2) + X(L-1)) 
               YK1 = .5 * (Y(L-2) + Y(L-1)) 
               XK2 = .5 * (X(L-1) + X(L)) 
               YK2 = .5 * (Y(L-1) + Y(L)) 
               XK3 = .5 * (X(L) + X(L+1)) 
               YK3 = .5 * (Y(L) + Y(L+1)) 
               S3 = 0. 
               F3 = FI(L) 
               S2 = - sqrt((XK3 - XK2)**2 + (YK3 - YK2)**2) 
               F2 = FI(L-1) 
               S1 = S2 - sqrt((XK2 - XK1)**2 + (YK2 - YK1)**2) 
               F1 = FI(L-2) 
            endif 
         else 
            XK1 = .5 * (X(L-1) + X(L)) 
            YK1 = .5 * (Y(L-1) + Y(L)) 
            XK2 = .5 * (X(L) + X(L+1)) 
            YK2 = .5 * (Y(L) + Y(L+1)) 
            XK3 = .5 * (X(L+1) + X(L+2)) 
            YK3 = .5 * (Y(L+1) + Y(L+2)) 
            S1 = - sqrt((XK2 - XK1)**2 + (YK2 - YK1)**2) 
            F1 = FI(L-1) 
            S2 = 0. 
            F2 = FI(L) 
            S3 = sqrt((XK3 - XK2)**2 + (YK3 - YK2)**2) 
            F3 = FI(L+1) 
    endif 
         DELTA = (S3 - S1) * (S2 - S1) * (S2 - S3) 
         DELTB = (S2**2 - S1**2) * (F3 - F1) 
     *         - (S3**2 - S1**2) * (F2 - F1) 
         V(L) = DELTB / DELTA 
         CP(L) = 1. - V(L) * V(L) 
!        CF(L) = 0.075/(log(V(L)/XNU) -2.0)**2 
  110 continue 
c 
      return 
c 



 

 

 179 

c 
c----------------------------------------------- End VELDIS 
c 
      end 
c 
c                                                          ÚÄÄÄÄÄÄÄÄÄÄÄ¿ 
cÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ SUBROUTINE  ³   FANDM   ³ 
c                                                          ÀÄÄÄÄÄÄÄÄÄÄÄÙ 
c 
      subroutine FANDM(A,x,y,Nlower,Nupper,Nodtot,xmid,ymid,V,CP,gamma, 
     &   Nmax,sinalf,cosalf,CD,CL1,CL2) 
 integer Nmax,Nodtot,N 
      real gamma,sinalf,cosalf,CD,CL1,CL2 
 real,dimension(Nmax)::x,y,xmid,ymid,costhe,sinthe,V,CP 
 real,dimension(Nodtot,Nodtot+1)::A 
 real alpha,Tau,Epsmax,ptmax,pi,pi2inv 
 !integer Nodtot,N 
 
      CM = 0. 
      do 100 I=1,NODTOT-1 
         DX = X(I+1) - X(I) 
         DY = Y(I+1) - Y(I) 
         CM = CM + CP(I) * (DX * XMID(I) + DY * YMID(I)) 
  100 continue 
      CD=0.0 
      CL1=0.0 
      CL2 = 2. * GAMMA 
      return 
c 
c 
c------------------------------------------------ End FANDM 
c 
      end subroutine 
c 
c                                                         ÚÄÄÄÄÄÄÄÄÄÄÄÄ¿ 
cÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ SUBROTINA  ³   NACA45   ³ 
c                                                         ÀÄÄÄÄÄÄÄÄÄÄÄÄÙ 
c 
      subroutine NACA45(Z,tau,NACA,epsmax,ptmax,alpha,thick,camber) 
 real tau,epsmax,ptmax,thick,camber,beta,alpha 
 integer NACA 
 real Z 
      THICK = 0. 
      if (Z.lt.1.e-10) goto 100 
      THICK = 5. * TAU * (.2969 * sqrt(Z) - Z * (.126 + Z * (.3537 
     *             - Z * (.2843 - Z * .1015)))) 
c 
  100 if (EPSMAX.eq.0.) goto 130 
      if (NACA.gt.9999) goto 140 
      if (Z.gt.PTMAX) goto 110 
c 
      CAMBER = EPSMAX / PTMAX / PTMAX * (2 * PTMAX - Z) * Z 
      DCAMDX = 2. * EPSMAX / PTMAX / PTMAX * (PTMAX - Z) 
      goto 120 
c 
  110 CAMBER = EPSMAX / (1. - PTMAX)**2 * (1. + Z - 2. * PTMAX) 
     *         * (1. - Z) 
      DCAMDX = 2. * EPSMAX / (1. - PTMAX)**2 * (PTMAX - Z) 
c 
  120 BETA = atan(DCAMDX) 
      return 
c 
  130 CAMBER = 0. 
      BETA = 0. 
      return 
c 
  140 if (Z.gt.PTMAX) goto 150 
      W = Z / PTMAX 
      CAMBER = EPSMAX * W *((W - 3.) * W + 3. - PTMAX) 
      DCAMDX = EPSMAX * 3. * W * (1. - W) / PTMAX 
      goto 120 
c 
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  150 CAMBER = EPSMAX * (1. - Z) 
      DCAMDX = - EPSMAX 
      goto 120 
c 
c 
c----------------------------------------------- End NACA45 
c 
      end 
 

VIX 3D Main Code 
 
 Program VII3d 
      !use AVDef 
 !use DFLib 
 
!     This program reads the streamlines given by PALISUPAN 
!     as object str where str has the properties 
!     id        -> identity of streamline 
!     Npt       -> No of points on streamline (max=100) 
!     p(..)     -> coordinates of points 
!     u(.)      -> stream velocity on each point 
!     V(..)     -> vector of velocities 
!     imatch(.) -> point of beginning of matching surface 
!     Nmatch(.) -> point where ends matching surface 
!     tr(.)     -> point where transition occurs 
!     Nsec      -> number of sections (z cte) 
 
!     flags     -> false if Xsep=0 
!                  true, otherwise 
!      
!     With data on streamlines, the program calculates: 
!     - influence matrix for each streamline 
!     - boundary layer var distribution 
!     - make a Newton-Raphson solver for Lag entrainment method 
!     - make viscous corrections for potential stream velocity 
!     - print out viscous flow characteristics for each velocity 
!************************************************************************ 
!*     Program created by Augusto Elisio Lessa Veiga   * 
!*     FSIG - University of Southampton/2003           * 
!*     Sugestions are welcome              * 
!************************************************************************ 
 include 'section.inc' 
 include 'panel.inc' 
 include 'xfoil.inc' 
 
 integer Nstr,Npan,Npb,Nmax,Nte,Nsec 
 real:: Rey,visc,alpha,Dlimit,pi,EPS1 
 real,dimension(3):: tol 
 real,dimension(2,150):: xsep,Xre,Xtr 
 type (node),allocatable,dimension(:):: nd,bnd,wnd 
 type (section),allocatable,dimension(:):: sec,wsec 
 type (panel),allocatable,dimension(:):: pan,bpan,wpan 
 character*70 :: arqname,arqname2 
 logical:: fl,inviscid,fsharp 
 BIJ = 0 
 CIJ = 0 
 DIJ = 0 
 ! pflag  -> flag that indicates if it's to apply  
 !           wall pressure correction 
      pi = 4. * atan(1.) 
 call read_set(arqname,arqname2,Rey,visc,alpha,ACRIT, 
     &            Nit,Nsec,Nmax, 
     &              xtr,TFORCE,VACCEL,EPS1,fl,inviscid,fsharp) 
 alpha = alpha*pi/180  
 ALFA  = alpha 
      open(1,file ='BL_log.txt') 
       write(1,*) 'New problem' 
      close(1) 
 
 if (inviscid) then 
    call read_prev(Nsec,Nmax,Nw) 



 

 

 181 

    allocate (sec(Nsec),wsec(Nsec)) 
    call read_section(sec,wsec,Nsec,Nmax,Nw) 
      write(*,*) '*****************************************************' 
 write(*,*) '*                    V  I  X                        *' 
 write(*,*) '*        Copyright, Augusto E. L. Veiga             *' 
 write(*,*) '*        University of Southampton, 2004            *' 
 write(*,*) '*                       Version 1.0                 *' 
 write(*,*) '*****************************************************' 
 write(*,*) 
 write(*,*) 'previously interpolated sections...'  
         N = Nmax  
      else 
   call read_N(arqname,Nt,Npan)  !reads the number of sections  
                                            !and nodes 
   allocate(nd(Nt))  !allocate vector str 
   allocate(pan(Npan),sec(Nsec),wsec(Nsec)) 
        !allocate(sec(Nsec)) 
        !initialize structure sec 
   call read_nodes(arqname,nd,pan,Nt,Npan) !read body nodes 
     if (mod(nmax,2)==0) then 
      Nmax=Nmax+1 
   Else 
      Nmax=Nmax 
   endif 
   call read_uns(arqname2,pan,Npan,nd,nt,Nte) 
   call find_wk(pan,Npan,Npw,Iwake) 
   allocate(wpan(Npw)) 
 ! sections are interpolated on this routine 
      write(*,*) '*****************************************************' 
 write(*,*) '*                    V  I  X                        *' 
 write(*,*) '*        Copyright, Augusto E. L. Veiga             *' 
 write(*,*) '*        University of Southampton, 2004            *' 
 write(*,*) '*                       Version 1.0                 *' 
 write(*,*) '*****************************************************' 
 write(*,*) 
 write(*,*) 'Interpolating sections...'  
   call wk_surface(pan,wpan,Npan,Npw,Iwake,wsec,Nsec,fl) 
   call surface(pan,Npan,sec,Nsec,Nmax,Nte,fl)  
   ! there is no need anymore for such heavy structure 
   deallocate(nd,pan,wpan) 
        N  = sec(1).Nnd 
   Nw = wsec(1).Nnd 
 endif 
      write(*,*) 
 write(*,*) '...calculating viscous flow' 
 !i=int(Nsec/2) 
    do i=1,Nsec 
   !calculate geometric curvature for each node 
   call G_curv(sec(i),Nmax,pflag) 
   !find very first point on leading edge 
   call find_Nlower(sec(i),Nmax) 
   REINF = Rey 
   QINF = 1.0 
    
        XSTRIP(1) = xtr(1,i) !localizes transition upper part 
   XSTRIP(2) = xtr(2,i) !lower part 
   XTE = sec(i).p(1,1) 
   XLE = sec(i).p(1,sec(i).nlower) 
   YTE = sec(i).p(2,1) 
   YLE = sec(i).p(2,sec(i).nlower) 
   SLE = sec(i).s(sec(i).nlower) 
   !fill up vars for xlib library 
   call secset(sec(i),wsec(i),N,Nw,QINV,x,y,s) 
   !ALFA = -sec(i).aflow 
        open(2,file ='BL_log.txt',position = 'APPEND') 
      write(2,10) i 
   close(2) 
         ! This part solves the viscous flow for each section 
   call VIX(sec(i),wsec(i),Nmax,EPS1,NQX,Nit,Nsec,i,fsharp) 
    sec(i).tr(1) = ITRAN(1) 
    sec(i).tr(2) = ITRAN(2) 
    sec(i).Nbl(1) = NBL(1) 
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    sec(i).Nbl(2) = NBL(2) 
    do is = 1,2 
      do ip =2,iblte(is) 
        sec(i).ibl(ip,is) = IPAN(ip,is) 
      enddo 
      sec(i).iblte(is) = iblte(is) 
      do in = 1,sec(i).Nbl(is) 
        sec(i).TAU(in,is) = TAU(in,is) 
      enddo 
    enddo 
        enddo 
 !perform lift, drag and viscous pressure resistance calculations 
 !call trefftz(wsec,Nsec,20,Dtrefftz) !calculates inviscid induced drag 
 call panmk(wsec,sec,Nsec,Nw,Nmax,CLvis,CLinv,cdf,cd, 
     &          cdi,cdiv,area,Cmx,Cmy,Cmz,zcp) 
 !call vii_graph(sec,Nsec,Nmax) 
      write(*,*) 
 write(*,*) '...printing results' 
 call print_result(sec,Nsec,Nw,CLvis,CLinv,cdf,cd, 
     &                  cdi,cdiv,area,Cmx,Cmy,Cmz,zcp) 
 call print_blvar(sec,Nsec,Nmax) 
 call post_process(sec,Nsec,Nmax)  !organize sectional plots 
 !reorganise panels using the sections again and print 
 ! files to be used by PANVISE 
 !call makepan 
 deallocate(sec,wsec) 
10    format('Section =',i4) 
 END 
 
    subroutine VIX(sec,wsec,Nmax,EPS1,NQX,NIT,Nsec,isec,fsharp) 
!     This subroutine receives the following variables: 
!     Geometry:            x,y,z and s of each section 
!     Inviscid flow:       QINV for each section 
!                          QINV for wake section 
!     Data                 N -> number of section points 
!                          Nw-> number of wake section points 
!                          Nlower -> leading edge point that  
!                                  divides upper and lower parts 
!                          tr(.) -> transition point on lower and upper 
!                                   parts 
!                          Nsep  -> separation points on lower and upper parts 
!                          Nre   -> reattachment points on lower and upper parts 
!                          isec  ->  index of section 
!                                    if isec=1 or isec=Nsec, then viscous flow is not cal 
!                                    culated 
!      ...And spills out the following: 
!      Viscous flow: 
!      QVIS        -> viscous velocity  
!      Dstr        -> displacement thickness 
!      Thet        -> momentum thickness 
!      Ctau        -> sqrt (max shear coefficient 
!      H           -> shape parameter 
!      Cf          -> friction coefficient 
!      Dis         -> dissipation coefficient 
!       
!******************************************************************************* 
!       A  T  E  N  T  I  O  N  !  !  !                                         
! 
!     Points are input on counterclockwise order and this continues like that. 
!     Do not use the inverse order or you may experience problems 
!******************************************************************************* 
!     This program was modified by Augusto Elisio Lessa Veiga and  
!     uses parts of the GNU software XFOIL 
!******************************************************************************* 
!*    Author: Augusto Elisio Lessa Veiga                                       * 
!*            University of Southampton, 2004                                  * 
!*                         (Made in Brasil)                                    * 
!******************************************************************************* 
      include 'section.inc' 
 include 'xfoil.inc' 
 include 'xbl.inc' 
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 type(section) :: sec,wsec 
 real,dimension(N+Nw):: Up,xbd,sbd 
 real,dimension(Nw):: Upw 
 real,dimension(3,N):: p 
 real,dimension(3,Nw):: pw 
 real,dimension(Izx+Iwx):: z 
      real:: clsec,cdsec,EPS1 
 real,dimension(iqx,2):: pcor 
 integer N,Nw,Nlower,Nsec,isec 
 logical:: fsharp 
 
 do i = 1,N 
    Up(i) = sec.Up(i) 
    xbd(i) = X(i) 
    sbd(i) = S(i) 
 enddo 
 j = 0 
 do i = N+1,N+Nw 
   j = j+1 
   Up(i) = wsec.up(j) 
 enddo 
 !main settings 
      pcor = 0 !22/05/2005 
      PI = 4.0*ATAN(1.0) 
      HOPI = 0.50/PI 
      QOPI = 0.25/PI 
      DTOR = PI/180.0 
C---- default Cp/Cv (air) 
      GAMMA = 1.4 
      GAMM1 = GAMMA - 1.0 
C---- initialize freestream Mach number to zero 
      MATYP = 1 
      MINF1 = 0. 
      MINF  = 0. 
 
      CL = 0. 
      CM = 0. 
      CD = 0. 
 
      SIGTE = 0.0 
      GAMTE = 0.0 
      SIGTE_A = 0. 
      GAMTE_A = 0. 
 
        SIG = 0. 
       
 SHARP   = .true.  !if trailing edge is sharp 
      LIMAGE  = .FALSE. !if image airfoil is present 
      LGAMU   = .TRUE.  !if GAMU  arrays exist for current airfoil geometry 
      LQINU   = .TRUE.  !if QINVU arrays exist for current airfoil geometry 
      LVISC   = .TRUE.  !if viscous option is invoked 
      LALFA   = .TRUE.  !if alpha is specifed, .FALSE. if CL is specified 
      LWAKE   = .TRUE.  !if wake geometry has been calculated 
C   LPACC       .TRUE. if each point calculated is to be saved 
      LBLINI  = .FALSE. !if BL has been initialized 
      LIPAN   = .TRUE.  !if BL-&gt;panel pointers IPAN have been calculated 
C   LQAIJ       .TRUE. if dPsi/dGam matrix has been computed and factored 
      LADIJ   = .FALSE.  !if dQ/dSig matrix for the airfoil has been computed 
      LWDIJ   = .FALSE.  !if dQ/dSig matrix for the wake has been computed 
C   LQVDES      .TRUE. if viscous Ue is to be plotted in QDES routines 
C   LQSPEC      .TRUE. if Qspec has been initialized 
C   LQREFL      .TRUE. if reflected Qspec is to be plotted in QDES routines 
      LVCONV  = .FALSE. !if converged BL solution exists 
C   LCPREF      .TRUE. if reference data is to be plotted on Cp vs x/c plots 
C   LCLOCK      .TRUE. if source airfoil coordinates are clockwise 
C   LPFILE      .TRUE. if polar file is ready to be appended to 
C   LPFILX      .TRUE. if polar dump file is ready to be appended to 
C   LPPSHO      .TRUE. if CL-CD polar is plotted during point sequence 
C   LBFLAP      .TRUE. if buffer  airfoil flap parameters are defined 
C   LFLAP       .TRUE. if current airfoil flap parameters are defined 
C   LEIW        .TRUE. if unit circle complex number array is initialized 
C   LSCINI      .TRUE. if old-airfoil circle-plane arc length s(w) exists 
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C   LFOREF      .TRUE. if CL,CD... data is to be plotted on Cp vs x/c plots 
C   LNORM       .TRUE. if input buffer airfoil is to be normalized 
C   LGSAME      .TRUE. if current and buffer airfoils are identical 
C 
C   LPLCAM      .TRUE. if thickness and camber are to be plotted 
C   LQSYM       .TRUE. if symmetric Qspec will be enforced 
C   LGSYM       .TRUE. if symmetric geometry will be enforced 
C   LQGRID      .TRUE. if grid is to overlaid on Qspec(s) plot 
C   LGGRID      .TRUE. if grid is to overlaid on buffer airfoil geometry plot 
C   LGTICK      .TRUE. if node tick marks are to be plotted on buffer airfoil 
C   LQSLOP      .TRUE. if modified Qspec(s) segment is to match slopes 
C   LGSLOP      .TRUE. if modified geometry segment is to match slopes 
C   LCSLOP      .TRUE. if modified camber line segment is to match slopes 
C   LQSPPL      .TRUE. if current Qspec(s) in in plot 
C   LGEOPL      .TRUE. if current geometry in in plot 
C   LCPGRD      .TRUE. if grid is to be plotted on Cp plots 
C   LBLGRD      .TRUE. if grid is to be plotted on BL variable plots 
C   LBLSYM      .TRUE. if symbols are to be plotted on BL variable plots 
C   LCMINP      .TRUE. if min Cp is to be written to polar file for cavitation 
C   LHMOMP      .TRUE. if hinge moment is to be written to polar file 
C 
C   LPGRID      .TRUE. if polar grid overlay is enabled 
C   LPCDW       .TRUE. if polar CDwave is plotted 
C   LPLIST      .TRUE. if polar listing lines (at top of plot) are enabled 
C   LPLEGN      .TRUE. if polar legend is enabled 
C    
C   LPLOT       .TRUE. if plot page is open 
C   LSYM        .TRUE. if symbols are to be plotted in QDES routines 
C   LIQSET      .TRUE. if inverse target segment is marked off in QDES 
C   LCLIP       .TRUE. if line-plot clipping is to be performed 
C   LVLAB       .TRUE. if label is to be plotted on viscous-variable plots 
C   LCURS       .TRUE. if cursor input is to be used for blowups, etc. 
C   LLAND       .TRUE. if Landscape orientation for PostScript is used 
 
 call stagpoint(Up,sbd,GAM,xbd,N,Nw,IST,SST,SST_GO,SST_GP,fsharp) 
      sec.istag = IST 
 
      call SIC(sec,wsec,N,Nw) 
!      DATA EPS1 / 1.0E-4 / 
C 
      NITER = 10 
 QINF = 1.0 
C 
C 
C---- set velocities on wake from airfoil vorticity for alpha=0, 90 
C      CALL QWCALC 
C 
C---- set velocities on airfoil and wake for initial alpha 
C      CALL QISET 
C 
C 
C----- locate stagnation point arc length position and panel index 
!       CALL STFIND 
C 
C----- set  BL position -> panel position  pointers 
       CALL IBLPAN 
  sec.iblte(1) = iblte(1) 
  sec.iblte(2) = iblte(2) 
C 
C----- calculate surface arc length array for current stagnation point location 
       CALL XICALC 
C 
C----- set  BL position -> system line  pointers 
       CALL IBLSYS 
C 
C 
C---- set inviscid BL edge velocity UINV from QINV 
      CALL UICALC 
C 
 
 
      IF(.NOT.LBLINI) THEN 



 

 

 185 

C 
C----- set initial Ue from inviscid Ue 
       DO IBL=1, NBL(1) 
         UEDG(IBL,1) = UINV(IBL,1) 
       ENDDO 
C 
       DO IBL=1, NBL(2) 
         UEDG(IBL,2) = UINV(IBL,2) 
       ENDDO 
C 
      ENDIF 
 !initial lift calculation (inviscid) 
   Nref = iqx 
   call clcalc2(N,Nref,sec,gam_a,alfa,minf,qinf,pcor, 
     &               XCMREF,YCMREF,CL,CM,CDP,CL_ALF,CL_MSQ) 
!        CALL CLCALC(N,X,Y,GAM,GAM_A,ALFA,MINF,QINF, XCMREF,YCMREF, 
!     &              CL,CM,CDP,CL_ALF,CL_MSQ) 
      sec.cli = CL 
C 
C 
C---- Newton iteration for entire BL solution 
      NITER = Nit 
 if (isec>1 .and. isec<Nsec) then 
 
      WRITE(*,*) 'Solving BL system ...' 
 open(1,file = 'BL_log.txt',position = 'APPEND') 
      DO 1000 ITER=1, NITER 
C 
C------ fill Newton system for BL variables 
        CALL SETBL 
C 
C------ solve Newton system with custom solver 
        CALL BLSOLV 
C 
C------ update BL variables 
        CALL UPDATE(sec,pcor) !output pcor (22/05/2005) 
C 
C        IF(LALFA) THEN 
C------- set new freestream Mach, Re from new CL 
C         CALL MRCL(CL,MINF_CL,REINF_CL) 
C         CALL COMSET 
C        ELSE 
C------- set new inviscid speeds QINV and UINV for new alpha 
C         CALL QISET 
C         CALL UICALC 
C        ENDIF 
C 
C------ calculate edge velocities QVIS(.) from UEDG(..) 
        CALL QVFUE 
C 
C------ set GAM distribution from QVIS 
        CALL GAMQV 
C 
C------ relocate stagnation point 
!        CALL STMOVE 
C 
C------ set updated CL,CD 
        !Nref = iqx 
   call clcalc2(N,Nref,sec,gam_a,alfa,minf,qinf,pcor, 
     &               XCMREF,YCMREF,CL,CM,CDP,CL_ALF,CL_MSQ) 
        sec.clv = CL 
!        CALL CLCALC(N,X,Y,GAM,GAM_A,ALFA,MINF,QINF, XCMREF,YCMREF, 
!     &              CL,CM,CDP,CL_ALF,CL_MSQ) 
        CALL CDCALC 
   sec.cdf = CDF  !sectional frict. Cd 
   sec.cd = CD 
!   if (iter==1) then 
!     sec.cli = CL 
!   endif 
C 
C------ display changes and test for convergence 
        IF(RLX.LT.1.0)  
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     &   WRITE(1,2000) ITER, RMSBL, RMXBL, VMXBL,IMXBL,ISMXBL,RLX 
        IF(RLX.EQ.1.0)  
     &   WRITE(1,2010) ITER, RMSBL, RMXBL, VMXBL,IMXBL,ISMXBL 
         CDP = CD - CDF 
         WRITE(1,2020) ALFA/DTOR, CL, CM, CD, CDF, CDP 
C 
        IF(RMSBL .LT. EPS1) THEN 
         LVCONV = .TRUE. 
         AVISC = ALFA 
         MVISC = MINF 
         GO TO 90 
        ENDIF 
C 
 1000 CONTINUE 
      WRITE(1,*) 'VISCAL:  Convergence failed' 
C 
   90 CONTINUE 
      close(1) 
 
 endif !avoiding tip sections 
      !filling up vectors 
 sec.clv = CL 
      DO IS=1, 2 
        DO IBL=2, NBL(IS) 
          I = ibl  !IPAN(IBL,IS) 
     sec.Q(1,i,is) = Ctau(i,is)   !shear stress or critical amp 
     sec.Q(2,i,is) = thet(i,is)   !momentum thick 
     sec.Q(3,i,is) = dstr(i,is)   !recording displacement thick 
     sec.Q(4,i,is) = uedg(i,is)   !recording viscous velocity 
     sec.UINV(i,is) = UINV(i,is)  !recording inviscid velocity 
   enddo 
   ! wake variables 
   if (is==2) then 
     iwk=0 
     do ibl=iblte(is)+1,iblte(is)+wsec.Nnd 
       iwk = iwk+1 
       i = ibl 
       wsec.Q(1,iwk,is) = Ctau(i,is)   !shear stress or critical amp 
       wsec.Q(2,iwk,is) = thet(i,is)   !momentum thick 
       wsec.Q(3,iwk,is) = dstr(i,is)   !recording displacement thick 
       wsec.Q(4,iwk,is) = uedg(i,is)   !recording viscous velocity 
     enddo 
   endif 
 enddo 
 if (isec>1 .and. isec<Nsec) then 
   clsec = cl 
   cdsec = cd 
        sec.CD = CD 
   sec.Cdf = Cdf 
   sec.Cdp = Cdp 
   sec.iter = iter 
 else 
   clsec = sec.cli 
   cdsec = 0 
   sec.CD = 0 
   sec.Cdf = 0 
   sec.Cdp = 0 
   sec.iter = 0 
 endif 
      RETURN 
C.................................................................... 
 2000   FORMAT 
     &   (/1X,I3,'   rms: ',E10.4,'   max: ',E10.4,3X,A1,' at ',I4,I3, 
     &     '   RLX:',F6.3) 
 2010   FORMAT 
     &   (/1X,I3,'   rms: ',E10.4,'   max: ',E10.4,3X,A1,' at ',I4,I3) 
 2020   FORMAT 
     &   ( 1X,3X,'   a =', F7.3,'      CL =',F8.4  / 
     &     1X,3X,'  Cm =', F8.4, '     CD =',F9.5, 
     &           '   =>   CDf =',F9.5,'    CDp =',F9.5) 
      END subroutine ! VIX 
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!***************************************************************************** 
! This subroutine was taken from XFOIL code                                  * 
 
      SUBROUTINE CDCALC 
      INCLUDE 'XFOIL.INC' 
C 
      SA = SIN(ALFA) 
      CA = COS(ALFA) 
C 
      IF(LVISC .AND. LBLINI) THEN 
C 
C----- set variables at the end of the wake 
       THWAKE = THET(NBL(2),2) 
       URAT   = UEDG(NBL(2),2)/QINF 
       UEWAKE = UEDG(NBL(2),2) * (1.0-TKLAM) / (1.0 - TKLAM*URAT**2) 
       SHWAKE = DSTR(NBL(2),2)/THET(NBL(2),2) 
C 
C----- extrapolate wake to downstream infinity using Squire-Young relation 
C      (reduces errors of the wake not being long enough) 
       CD = 2.0*THWAKE * (UEWAKE/QINF)**(0.5*(5.0+SHWAKE)) 
C 
      ELSE 
C 
       CD = 0.0 
C 
      ENDIF 
C 
C---- calculate friction drag coefficient 
      CDF = 0.0 
      DO 20 IS=1, 2 
        DO 205 IBL=3, IBLTE(IS) 
          I  = IPAN(IBL  ,IS) 
          IM = IPAN(IBL-1,IS) 
          DX = (X(I) - X(IM))*CA + (Y(I) - Y(IM))*SA 
          CDF = CDF + 0.5*(TAU(IBL,IS)+TAU(IBL-1,IS))*DX * 2.0/QINF**2 
 205    CONTINUE 
 20   CONTINUE 
C 
      RETURN 
      END ! CDCALC 
!****************************************************************************** 
! This subroutine include on CL the three-dimensional effects                 * 
 
      SUBROUTINE CLCALC2(N,Nref,sec,gam_a,ALFA,MINF,QINF,pcor,  
     &                  XREF,YREF, 
     &                  CL,CM,CDP, CL_ALF,CL_MSQ) 
 include 'section.inc' 
C----------------------------------------------------------- 
C     Integrates surface pressures to get CL and CM. 
C     Integrates skin friction to get CDF. 
C     Calculates dCL/dAlpha for prescribed-CL routines. 
C      Modified by Augusto Veiga 
C----------------------------------------------------------- 
 real,dimension(Nref,2):: pcor 
      type(section):: sec 
      REAL:: MINF,v 
 real:: dui(N),gam_a(N),x(N),y(N) 
C 
C---- moment-reference coordinates 
ccc      XREF = 0.25 
ccc      YREF = 0. 
C 
C     transforming Vpot into pressure coefficient 
      do i = 1,N 
   sum = 0 
   x(i) = sec.p(1,i) 
   y(i) = sec.p(2,i) 
   do k = 1,3 
     v = sec.vpot(k,i) 
     sum = sum + v**2 
   enddo 
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   sec.cp(i) = 1.0-sum 
 enddo 
!transforming pcor into dui 
      j = sec.istag 
 do i = 1,sec.iblte(1) 
   dui(j) = pcor(i,1) 
   j = j-1 
 enddo 
 j = sec.istag 
 do i = 2,sec.iblte(2) 
   j = j+1 
   dui(j) = pcor(i,2) 
 enddo 
      
    
      SA = SIN(ALFA) 
      CA = COS(ALFA) 
C 
      BETA = SQRT(1.0 - MINF**2) 
      BETA_MSQ = -0.5/BETA 
C 
      BFAC     = 0.5*MINF**2 / (1.0 + BETA) 
      BFAC_MSQ = 0.5         / (1.0 + BETA) 
     &         - BFAC        / (1.0 + BETA) * BETA_MSQ 
C 
      CL = 0.0 
      CM = 0.0 
 
      CDP = 0.0 
C 
      CL_ALF = 0. 
      CL_MSQ = 0. 
C 
      I = 1 
      CGINC = sec.cp(i) + dui(i)**2 
      CPG1     = CGINC/(BETA + BFAC*CGINC) 
      CPG1_MSQ = -CPG1/(BETA + BFAC*CGINC)*(BETA_MSQ + BFAC_MSQ*CGINC) 
C 
      CPI_GAM = -2.0*cginc 
      CPC_CPI = (1.0 - BFAC*CPG1)/ (BETA + BFAC*CGINC) 
      CPG1_ALF = CPC_CPI*CPI_GAM*GAM_A(I) 
C 
      DO 10 I=1, N 
        IP = I+1 
        IF(I.EQ.N) IP = 1 
C 
        CGINC = sec.cp(i) + dui(i)**2 
        CPG2     = CGINC/(BETA + BFAC*CGINC) 
        CPG2_MSQ = -CPG2/(BETA + BFAC*CGINC)*(BETA_MSQ + BFAC_MSQ*CGINC) 
C 
        CPI_GAM = -2.0*cginc 
        CPC_CPI = (1.0 - BFAC*CPG2)/ (BETA + BFAC*CGINC) 
        CPG2_ALF = CPC_CPI*CPI_GAM*GAM_A(IP) 
C 
        DX = (X(IP) - X(I))*CA + (Y(IP) - Y(I))*SA 
        DY = (Y(IP) - Y(I))*CA - (X(IP) - X(I))*SA 
        DG = CPG2 - CPG1 
C 
        AX = (0.5*(X(IP)+X(I))-XREF)*CA + (0.5*(Y(IP)+Y(I))-YREF)*SA 
        AY = (0.5*(Y(IP)+Y(I))-YREF)*CA - (0.5*(X(IP)+X(I))-XREF)*SA 
        AG = 0.5*(CPG2 + CPG1) 
C 
        DX_ALF = -(X(IP) - X(I))*SA + (Y(IP) - Y(I))*CA 
        AG_ALF = 0.5*(CPG2_ALF + CPG1_ALF) 
        AG_MSQ = 0.5*(CPG2_MSQ + CPG1_MSQ) 
C 
        CL     = CL     + DX* AG 
        CDP    = CDP    - DY* AG 
        CM     = CM     - DX*(AG*AX + DG*DX/12.0) 
     &                  - DY*(AG*AY + DG*DY/12.0) 
C 
        CL_ALF = CL_ALF + DX*AG_ALF + AG*DX_ALF 
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        CL_MSQ = CL_MSQ + DX*AG_MSQ 
C 
        CPG1 = CPG2 
        CPG1_ALF = CPG2_ALF 
        CPG1_MSQ = CPG2_MSQ 
   10 CONTINUE 
C 
      RETURN  
      END ! CLCALC2 

 

VIX Surface Interpolation 
 
      subroutine surface(pan,Npan,sec,Nsec,Nmax,Nte,fl) 
 include 'section.inc' 
 include 'panel.inc' 
!     This subroutine calculates collocation points for each panel 
!     calculates mean edges 
!     calculates surface coordinate for each collocation point on s and t 
!     gets points and interpolate cp using a spline distribution 
!*************************************************************************** 
!*     (C) Augusto Veiga, University of Southampton 2003    * 
!*************************************************************************** 
 integer Npan,Nsec,Nv,Nh,Nb,Nmax 
 type(panel),dimension(Npan):: pan,panb 
 type(section),dimension(Nsec):: sec 
 real:: S(3),Dmax 
      logical:: fl 
 !Calculating collocation points 
 Do i=1,Npan 
   S=0 
   do j=1,4 
     S(1)=S(1)+pan(i).nd(j).x 
     S(2)=S(2)+pan(i).nd(j).y 
     S(3)=S(3)+pan(i).nd(j).z 
   enddo 
   pan(i).co.x=S(1)/4. 
   pan(i).co.y=S(2)/4. 
   pan(i).co.z=S(3)/4. 
 enddo 
      !call smooth_cp(pan,Npan) 
 !Calculating surface coordinates s and t 
 call org_pan(pan,panb,Npan,Nb,Nv,Nh,Nte) 
 call surf_coord(panb,Nb,Nv,Nh) 
 call surf_spl(panb,Nb,Nv,Nh,fl)   !Makes a spline surface 
 do i = 1,3 
       call press_int(panb,Nb,Nv,Nh,i,.false.)!Makes a V(x,y,z) surface 
       ! i ->  1 = x 
 !        2 = y 
 !        3 = z 
 enddo 
 !dividing surface into sections with 100 points equaly 
 ! spaced each and following a plane which normal is the 
 ! slope at yz plane 
 do i=1,Nsec 
    sec(i).Nnd=Nmax 
 enddo 
 call interpol_surf(panb,Nb,Nv,Nsec,sec,Nmax) 
 call sec_normal(sec,Nsec,Nmax) !calculate normals on each point of section 
 !call calc_Up(sec,Nsec,Nmax) !calculate modular potential velocity 
 call vsec_plot(Sec,Nsec,Nmax) !plots spanwise velocity 
 
 return 
 end subroutine 
 
      subroutine interpol_surf(pan,Npan,Nv,Nsec,sec,Nmax) 
 include 'section.inc' 
 include 'panel.inc' 
 
 integer :: Npan,Nv,Nsec,Nmax,iv,ih 
 type(panel),dimension(Npan) :: pan 
 type (section),dimension(Nsec):: sec 
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 real:: tc,sc,t 
 
 ! divide body onto spanwise sections with tc spacement 
 tc= (pan(Nv).nd(4).t-pan(1).nd(1).t)/(Nsec-1) 
 t=pan(1).nd(1).t 
 k=1 
      id=0 
 ih=1 
 iv=1 
 i=1 
 do while (i<=Nsec) 
   !This loop makes geometry interpolation just 
        !finding s last points 
     sc=1.0 
     sec(i).id=id 
     id=id+1 
     sec(i).s(1)=0 
     sec(i).s(Nmax)=sc 
     sec(i).t(1)=t 
     sc=(sec(i).s(Nmax)-sec(i).s(1))/(Nmax-1) 
     if ( t<=pan(iv).nd(4).t) then 
        ih=iv 
        call interpol_sec(sec(i),1,pan,Npan,ih,iv,Nv,1)  !x 
        call interpol_sec(sec(i),1,pan,Npan,ih,iv,Nv,2)  !y 
        call interpol_sec(sec(i),1,pan,Npan,ih,iv,Nv,3)  !z 
        !call interpol_Vs(sec(i),1,pan,Npan,ih,iv,Nv)  !Vm 
        do j=2,Nmax 
          if (j==Nmax) then 
             sec(i).s(j)=pan(Npan-(Nv-iv)).nd(2).s 
             sec(i).t(j)=t 
          else 
             sec(i).s(j)=sc+sec(i).s(j-1) 
             sec(i).t(j)=t 
          endif 
          call interpol_sec(sec(i),j,pan,Npan,ih,iv,Nv,1)  !x 
          call interpol_sec(sec(i),j,pan,Npan,ih,iv,Nv,2)  !y 
          call interpol_sec(sec(i),j,pan,Npan,ih,iv,Nv,3)  !z 
          !call interpol_Vs(sec(i),j,pan,Npan,ih,iv,Nv)  !Vm 
       enddo 
       t=t+tc 
       i=i+1 
     else if (i==Nsec) then 
        ih=Nv  !Last section 
        call interpol_sec(sec(i),1,pan,Npan,ih,iv,Nv,1)  !x 
        call interpol_sec(sec(i),1,pan,Npan,ih,iv,Nv,2)  !y 
        call interpol_sec(sec(i),1,pan,Npan,ih,iv,Nv,3)  !z 
        !call interpol_Vs(sec(i),1,pan,Npan,ih,iv,Nv)  !Vm 
        do j=2,Nmax 
          if (j==Nmax) then 
             sec(i).s(j)=pan(Npan).nd(2).s 
             sec(i).t(j)=pan(Npan).nd(3).t 
          else 
             sec(i).s(j)=sc+sec(i).s(j-1) 
             sec(i).t(j)=t 
          endif 
          call interpol_sec(sec(i),j,pan,Npan,ih,iv,Nv,1)  !x 
          call interpol_sec(sec(i),j,pan,Npan,ih,iv,Nv,2)  !y 
          call interpol_sec(sec(i),j,pan,Npan,ih,iv,Nv,3)  !z 
          !call interpol_Vs(sec(i),j,pan,Npan,ih,iv,Nv)  !Vm 
        enddo 
        i=i+1 
     else if (iv<Nv) then 
        iv=iv+1 
     endif 
 enddo  
 !Now we calculate the cossine of sectional segments 
 do isec = 1,Nsec 
   do j = 1,Nmax 
      if (j==Nmax) then 
             do k = 1,3 
           sec(isec).vcos(k,j) = sec(isec).vcos(k,j-1) 
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        enddo 
      else 
        !Calculate length 
        soma = 0 
        do k = 1,3 
          soma = soma+ (sec(isec).p(k,j+1)-sec(isec).p(k,j))**2 
        enddo 
        !calculate cossine 
        do k = 1,3 
          sec(isec).vcos(k,j)=(sec(isec).p(k,j+1)-sec(isec).p(k,j)) 
     &         /sqrt(soma) 
        enddo 
     endif 
   enddo 
 enddo 
 !Now we interpolate sectional velocity (Vs) 
 !...and calculate the tangential velocity q   
 iv = 1 
 ih = 1  
 i =1 
 do while(i<=Nsec) 
     sc=1.0 
          t = sec(i).t(1) 
     if ( t<=pan(iv).nd(4).t) then 
        ih=iv 
        call interpol_Vs(sec(i),1,pan,Npan,ih,iv,Nv)  !Vm 
        do j=2,Nmax 
          call interpol_Vs(sec(i),j,pan,Npan,ih,iv,Nv)  !Vm 
       enddo 
       i = i+1 
     else if (i==Nsec) then 
        ih=Nv  !Last section 
        call interpol_Vs(sec(i),1,pan,Npan,ih,iv,Nv)  !Vm 
        do j=2,Nmax 
          call interpol_Vs(sec(i),j,pan,Npan,ih,iv,Nv)  !Vm 
        enddo 
        i = i+1 
     else if (iv<Nv) then 
        iv=iv+1 
     endif 
 enddo  
 
      ! Writing a scratch file of potential tangential velocity 
 open(1,file='potential_scratch.txt') 
   write(1,100) 
   do isec = 1,Nsec 
     do j = 1,Nmax 
       write(1,200) j,sec(isec).Up(j),sec(isec).vcos(1,j), 
     &                   sec(isec).vcos(2,j),sec(isec).vcos(3,j) 
     enddo 
     write(1,*) 
   enddo 
 close(1) 
    
 return 
100   format('node , velocity , cos x , cos y , cos z') 
200   format(i4,1x,f8.3,1x,f8.3,1x,f8.3,1x,f8.3) 
 end subroutine 
 
      subroutine interpol_sec(sec,j,pan,Npan,ih,iv,Nv,Nflag) 
 include 'section.inc' 
 include 'panel.inc' 
!     This subroutine gets the current section with s,t variables and, 
!     marching along chordwise panels, interpolates x,y,z using Coons  
!     bicubic spline surface 
!     As the solution marches, ih is changed  to the next panel on   
!     chordwise direction. 
!     Nflag chooses what is going to be interpolated 
!      1  ->  x coordinate 
!      2  ->  y coordinate 
!      3  ->  z coordinate 
!      4  ->  cp 
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! 
!      Bd1, Bd2 -> first derivative coefficients 
!******************************************************************** 
!*       (C) Augusto Veiga, University of Southampton, 2003         * 
!******************************************************************** 
      integer j,ih,iv,Nv,Nflag 
      type(section):: sec 
 type(panel),dimension(Npan)::pan 
 real::s,w,T,U,A(4),B1(4),B2(4),soma 
 real:: delta1,delta2,Vn(4),C(4),D(4),dxs2(4),dxt2(4),x(4) 
 real:: tiny 
 
 tiny=1.0E-10 
 soma=0;A=0;B1=0;B2=0;Bd1=0;Bd2=0     
 s=sec.s(j) 
 w=sec.t(j) 
 i=ih  
 lp1: do 
  select case (Nflag) 
    case(1) !options to interpolate variables 
      do k=1,4 
         dxs2(k)=pan(i).nd(k).dxs2 
         dxt2(k)=pan(i).nd(k).dxt2 
         x(k)=pan(i).nd(k).x 
      enddo 
    case(2) 
      do k=1,4 
         dxs2(k)=pan(i).nd(k).dys2 
         dxt2(k)=pan(i).nd(k).dyt2 
         x(k)=pan(i).nd(k).y 
      enddo 
    case(3) 
      do k=1,4 
         dxs2(k)=pan(i).nd(k).dzs2 
         dxt2(k)=pan(i).nd(k).dzt2 
         x(k)=pan(i).nd(k).z 
      enddo 
    case(4) 
      do k=1,4 
         dxs2(k)=0 
         dxt2(k)=0 
         x(k)=pan(i).nd(k).up 
      enddo 
  end select 
    if (s<pan(i).nd(2).s) then 
           !calculate normal coefficients T and U 
   T=(s-pan(i).nd(1).s)/(pan(i).nd(2).s-pan(i).nd(1).s) 
   U=(w-pan(i).nd(1).t)/(pan(i).nd(4).t-pan(i).nd(1).t) 
   !calculate coefficients A 
   A(1)=(1-T)*(1-U) 
   A(2)=T*(1-U) 
   A(3)=T*U 
   A(4)=(1-T)*U 
   !calculate coefficients B 
      delta1=(pan(i).nd(2).s-pan(i).nd(1).s) 
      delta2=(pan(i).nd(4).t-pan(i).nd(1).t) 
      do k=1,4 
      B1(k)=(A(k)**3-A(k))/6.*delta1  
           B2(k)=(A(k)**3-A(k))/6.*delta2 
      enddo 
          !calculating normal vectors of 2nd derivatives 
          C(1)=B1(2)*dxs2(2)-B1(1)*dxs2(1) 
          C(2)=B1(3)*dxs2(3)-B1(2)*dxs2(2) 
     C(3)=B1(4)*dxs2(4)-B1(3)*dxs2(3) 
     C(4)=B1(4)*dxs2(4)-B1(1)*dxs2(1) 
          D(1)=B2(2)*dxt2(2)-B2(1)*dxt2(1) 
          D(2)=B2(3)*dxt2(3)-B2(2)*dxt2(2) 
     D(3)=B2(4)*dxt2(4)-B2(3)*dxt2(3) 
     D(4)=B2(4)*dxt2(4)-B2(1)*dxt2(1) 
     Vn(1)=c(1)*d(4)-d(1)*c(4) 
     Vn(2)=c(1)*d(2)-d(1)*c(2) 
     Vn(3)=c(3)*d(2)-d(3)*c(2) 
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     Vn(4)=c(3)*d(4)-d(3)*c(4) 
           
     !calculate final value for interpolation 
     soma=0 
     do k=1,4 
        soma=soma+A(k)*x(k)+Vn(k) 
     enddo 
     if (abs(soma)<tiny) then 
        soma=0 
     endif 
     exit lp1 
   else if (s==pan(Npan-(Nv-iv)).nd(2).s) then 
           !calculate normal coefficients T and U 
   T=(s-pan(i).nd(1).s)/(pan(i).nd(2).s-pan(i).nd(1).s) 
   U=(w-pan(i).nd(1).t)/(pan(i).nd(4).t-pan(i).nd(1).t) 
   !calculate coefficients A 
   A(1)=(1-T)*(1-U) 
   A(2)=T*(1-U) 
   A(3)=T*U 
   A(4)=(1-T)*U 
   !calculate coefficients B 
      delta1=(pan(i).nd(2).s-pan(i).nd(1).s) 
      delta2=(pan(i).nd(4).t-pan(i).nd(1).t) 
      do k=1,4 
      B1(k)=(A(k)**3-A(k))*delta1          
            B2(k)=(A(k)**3-A(k))*delta2 
      enddo 
          !calculating normal vectors of 2nd derivatives 
          C(1)=B1(2)*dxs2(2)-B1(1)*dxs2(1) 
          C(2)=B1(3)*dxs2(3)-B1(2)*dxs2(2) 
     C(3)=B1(4)*dxs2(4)-B1(3)*dxs2(3) 
     C(4)=B1(4)*dxs2(4)-B1(1)*dxs2(1) 
          D(1)=B2(2)*dxt2(2)-B2(1)*dxt2(1) 
          D(2)=B2(3)*dxt2(3)-B2(2)*dxt2(2) 
     D(3)=B2(4)*dxt2(4)-B2(3)*dxt2(3) 
     D(4)=B2(4)*dxt2(4)-B2(1)*dxt2(1) 
     Vn(1)=c(1)*d(4)-d(1)*c(4) 
     Vn(2)=c(1)*d(2)-d(1)*c(2) 
     Vn(3)=c(3)*d(2)-d(3)*c(2) 
     Vn(4)=c(3)*d(4)-d(3)*c(4) 
     !calculate final value for interpolation 
     soma=0 
     do k=1,4 
        soma=soma+A(k)*x(k)+Vn(k) 
     enddo 
     if (abs(soma)<tiny) then 
        soma=0 
     endif 
     exit lp1      
   else if(ih>Npan-(Nv-iv)) then 
     exit lp1 
   else if (ih<=Npan-(Nv-iv)) then 
     ih=ih+Nv 
     i=ih 
   endif 
 enddo lp1 
         
 select case (Nflag) 
    case(1) !options to interpolate variables 
      sec.p(1,j)=soma 
    case(2) 
           sec.p(2,j)=soma 
    case(3) 
           sec.p(3,j)=soma 
 !   case(4) 
     !  sec.cp(j)=soma 
     end select 
     
        
 return 
 end subroutine 
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!_____________________________________________________________ 
 
      subroutine interpol_Vs(sec,j,pan,Npan,ih,iv,Nv) 
 include 'section.inc' 
 include 'panel.inc' 
!     This subroutine gets the current section with s,t variables and, 
!     marching along chordwise panels, interpolates x,y,z using Coons  
!     bicubic spline surface 
!     As the solution marches, ih is changed  to the next panel on   
!     chordwise direction. 
!     Nflag chooses what is going to be interpolated 
!      1  ->  x coordinate 
!      2  ->  y coordinate 
!      3  ->  z coordinate 
!      4  ->  cp 
!******************************************************************** 
!*       (C) Augusto Veiga, University of Southampton, 2003         * 
!******************************************************************** 
      integer j,ih,iv,Nv,Nflag 
      type(section):: sec 
 type(panel),dimension(Npan)::pan 
 real::s,w,T,U,A(4),B1(4),B2(4),soma,V(3) 
 real:: delta1,delta2,Vn(4),C(4),D(4),dxs2(4),dxt2(4),x(4) 
 real:: tiny 
 
 tiny=1.0E-10 
 soma=0;A=0;B1=0;B2=0      
 s=sec.s(j) 
 w=sec.t(j) 
 i=ih  
 do ind =1,3 
 lp1: do 
    do k=1,4 
       dxs2(k)=0 
       dxt2(k)=0 
       x(k)=pan(i).nd(k).vm(ind) 
    enddo 
    if (s<pan(i).nd(2).s) then 
           !calculate normal coefficients T and U 
   T=(s-pan(i).nd(1).s)/(pan(i).nd(2).s-pan(i).nd(1).s) 
   U=(w-pan(i).nd(1).t)/(pan(i).nd(4).t-pan(i).nd(1).t) 
   !calculate coefficients A 
   A(1)=(1-T)*(1-U) 
   A(2)=T*(1-U) 
   A(3)=T*U 
   A(4)=(1-T)*U 
   !calculate coefficients B 
          !calculating normal vectors of 2nd derivatives 
     !calculate final value for interpolation 
     soma=0 
     do k=1,4 
        soma=soma+A(k)*x(k) 
     enddo 
     if (abs(soma)<tiny) then 
        soma=0 
     endif 
     exit lp1 
   else if (s==pan(Npan-(Nv-iv)).nd(2).s) then 
           !calculate normal coefficients T and U 
   T=(s-pan(i).nd(1).s)/(pan(i).nd(2).s-pan(i).nd(1).s) 
   U=(w-pan(i).nd(1).t)/(pan(i).nd(4).t-pan(i).nd(1).t) 
   !calculate coefficients A 
   A(1)=(1-T)*(1-U) 
   A(2)=T*(1-U) 
   A(3)=T*U 
   A(4)=(1-T)*U 
   !calculate coefficients B 
          !calculating normal vectors of 2nd derivatives 
     !calculate final value for interpolation 
     soma=0 
     do k=1,4 
        soma=soma+A(k)*x(k) 
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     enddo 
     if (abs(soma)<tiny) then 
        soma=0 
     endif 
     exit lp1      
   else if(ih>Npan-(Nv-iv)) then 
     exit lp1 
   else if (ih<=Npan-(Nv-iv)) then 
     ih=ih+Nv 
     i=ih 
   endif 
 enddo lp1 
  V(ind) = soma 
 enddo !indexes 
 
      soma = 0 
      do k = 1,3 
   sec.vpot(k,j) = v(k)                  !potential 3D velocity 
   soma = soma+ (sec.vcos(k,j)*V(k))**2  !velocity on section    
   !projects velocity on each segment of section 
 enddo 
 
 sec.Up(j) = sqrt(soma) !tangential velocity on section pt 
            
 return 
 end subroutine 
 

XFOIL Routines for Initial Boundary Layer Solution that Were Added to VIX 
 
      SUBROUTINE SETBL 
C------------------------------------------------- 
C     Sets up the BL Newton system coefficients 
C     for the current BL variables and the edge 
C     velocities received from SETUP. The local 
C     BL system coefficients are then 
C     incorporated into the global Newton system.   
C------------------------------------------------- 
      INCLUDE 'XFOIL.INC' 
      INCLUDE 'XBL.INC' 
      REAL USAV(IVX,2) 
      REAL U1_M(2*IVX), U2_M(2*IVX) 
      REAL D1_M(2*IVX), D2_M(2*IVX) 
      REAL ULE1_M(2*IVX), ULE2_M(2*IVX) 
      REAL UTE1_M(2*IVX), UTE2_M(2*IVX) 
      REAL MA_CLMR, MSQ_CLMR, MDI 
C 
C---- set the CL used to define Mach, Reynolds numbers 
      IF(LALFA) THEN 
       CLMR = CL 
      ELSE 
       CLMR = CLSPEC 
      ENDIF 
C 
C---- set current MINF(CL) 
      !CALL MRCL(CLMR,MA_CLMR,RE_CLMR) 
 MINF = 0 
 RE_CLMR = 0 
      MA_CLMR = 0 
 CLMR = 0.000001 
      MSQ_CLMR = 2.0*MINF*MA_CLMR 
C 
C---- set compressibility parameter TKLAM and derivative TK_MSQ 
      !CALL COMSET 
C 
C---- set gas constant (= Cp/Cv) 
      GAMBL = GAMMA 
      GM1BL = GAMM1 
C 
C---- set parameters for compressibility correction 
      QINFBL = QINF 
      TKBL    = TKLAM 
      TKBL_MS = TKL_MSQ 
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C 
C---- stagnation density and 1/enthalpy 
      RSTBL    = (1.0 + 0.5*GM1BL*MINF**2) ** (1.0/GM1BL) 
      RSTBL_MS = 0.5*RSTBL/(1.0 + 0.5*GM1BL*MINF**2) 
C 
      HSTINV    = GM1BL*(MINF/QINFBL)**2 / (1.0 + 0.5*GM1BL*MINF**2) 
      HSTINV_MS = GM1BL*( 1.0/QINFBL)**2 / (1.0 + 0.5*GM1BL*MINF**2) 
     &                - 0.5*GM1BL*HSTINV / (1.0 + 0.5*GM1BL*MINF**2) 
C 
C---- Sutherland's const./To   (assumes stagnation conditions are at STP) 
      HVRAT = 0.35 
C 
C---- set Reynolds number based on freestream density, velocity, viscosity 
      HERAT    = 1.0 - 0.5*QINFBL**2*HSTINV 
      HERAT_MS =     - 0.5*QINFBL**2*HSTINV_MS 
C 
      REYBL    = REINF * SQRT(HERAT**3) * (1.0+HVRAT)/(HERAT+HVRAT) 
      REYBL_RE =         SQRT(HERAT**3) * (1.0+HVRAT)/(HERAT+HVRAT) 
      REYBL_MS = REYBL * (1.5/HERAT - 1.0/(HERAT+HVRAT))*HERAT_MS 
C 
      AMCRIT = ACRIT 
C 
C---- save TE thickness 
      DWTE = WGAP(1) 
C 
      IF(.NOT.LBLINI) THEN 
C----- initialize BL by marching with Ue (fudge at separation) 
       WRITE(*,*) 
       WRITE(*,*) 'Initializing BL ...' 
       CALL MRCHUE 
       LBLINI = .TRUE. 
      ENDIF 
C 
      WRITE(*,*) 
C 
C---- march BL with current Ue and Ds to establish transition 
      CALL MRCHDU 
C 
      DO 5 IS=1, 2 
        DO 6 IBL=2, NBL(IS) 
          USAV(IBL,IS) = UEDG(IBL,IS) 
    6   CONTINUE 
    5 CONTINUE 
C 
      CALL UESET 
C 
      DO 7 IS=1, 2 
        DO 8 IBL=2, NBL(IS) 
          TEMP = USAV(IBL,IS) 
          USAV(IBL,IS) = UEDG(IBL,IS) 
          UEDG(IBL,IS) = TEMP 
    8   CONTINUE 
    7 CONTINUE 
C 
      ILE1 = IPAN(2,1) 
      ILE2 = IPAN(2,2) 
      ITE1 = IPAN(IBLTE(1),1) 
      ITE2 = IPAN(IBLTE(2),2) 
C 
      JVTE1 = ISYS(IBLTE(1),1) 
      JVTE2 = ISYS(IBLTE(2),2) 
C 
      DULE1 = UEDG(2,1) - USAV(2,1) 
      DULE2 = UEDG(2,2) - USAV(2,2) 
C 
C---- set LE and TE Ue sensitivities wrt all m values 
      DO 10 JS=1, 2 
        DO 110 JBL=2, NBL(JS) 
          J  = IPAN(JBL,JS) 
          JV = ISYS(JBL,JS) 
          ULE1_M(JV) = -VTI(       2,1)*VTI(JBL,JS)*DIJ(ILE1,J) 
          ULE2_M(JV) = -VTI(       2,2)*VTI(JBL,JS)*DIJ(ILE2,J) 
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          UTE1_M(JV) = -VTI(IBLTE(1),1)*VTI(JBL,JS)*DIJ(ITE1,J) 
          UTE2_M(JV) = -VTI(IBLTE(2),2)*VTI(JBL,JS)*DIJ(ITE2,J) 
  110   CONTINUE 
   10 CONTINUE 
C 
      ULE1_A = UINV_A(2,1) 
      ULE2_A = UINV_A(2,2) 
C 
C**** Go over each boundary layer/wake 
      DO 2000 IS=1, 2 
C 
C---- there is no station "1" at similarity, so zero everything out 
      DO 20 JS=1, 2 
        DO 210 JBL=2, NBL(JS) 
          JV = ISYS(JBL,JS) 
          U1_M(JV) = 0. 
          D1_M(JV) = 0. 
  210   CONTINUE 
   20 CONTINUE 
      U1_A = 0. 
      D1_A = 0. 
C 
      DUE1 = 0. 
      DDS1 = 0. 
C 
C---- similarity station pressure gradient parameter  x/u du/dx 
      IBL = 2 
      BULE = 1.0 
C 
C---- set forced transition arc length position 
      CALL XIFSET(IS) 
C 
      TRAN = .FALSE. 
      TURB = .FALSE. 
C 
C**** Sweep downstream setting up BL equation linearizations 
      DO 1000 IBL=2, NBL(IS) 
C 
      IV  = ISYS(IBL,IS) 
C 
      SIMI = IBL.EQ.2 
      WAKE = IBL.GT.IBLTE(IS) 
      TRAN = IBL.EQ.ITRAN(IS) 
      TURB = IBL.GT.ITRAN(IS) 
C 
      I = IPAN(IBL,IS) 
C 
C---- set primary variables for current station 
      XSI = XSSI(IBL,IS) 
      IF(IBL.LT.ITRAN(IS)) AMI = CTAU(IBL,IS) 
      IF(IBL.GE.ITRAN(IS)) CTI = CTAU(IBL,IS) 
      UEI = UEDG(IBL,IS) 
      THI = THET(IBL,IS) 
      MDI = MASS(IBL,IS) 
C 
      DSI = MDI/UEI 
C 
      IF(WAKE) THEN 
       IW = IBL - IBLTE(IS) 
       DSWAKI = WGAP(IW) 
      ELSE 
       DSWAKI = 0. 
      ENDIF 
C 
C---- set derivatives of DSI (= D2) 
      D2_M2 =  1.0/UEI 
      D2_U2 = -DSI/UEI 
C 
      DO 30 JS=1, 2 
        DO 310 JBL=2, NBL(JS) 
          J  = IPAN(JBL,JS) 
          JV = ISYS(JBL,JS) 
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          U2_M(JV) = -VTI(IBL,IS)*VTI(JBL,JS)*DIJ(I,J) 
          D2_M(JV) = D2_U2*U2_M(JV) 
  310   CONTINUE 
   30 CONTINUE 
      D2_M(IV) = D2_M(IV) + D2_M2 
C 
      U2_A = UINV_A(IBL,IS) 
      D2_A = D2_U2*U2_A 
C 
C---- "forced" changes due to mismatch between UEDG and USAV=UINV+dij*MASS 
      DUE2 = UEDG(IBL,IS) - USAV(IBL,IS) 
      DDS2 = D2_U2*DUE2 
C 
      CALL BLPRV(XSI,AMI,CTI,THI,DSI,DSWAKI,UEI) 
      CALL BLKIN 
C 
C---- check for transition and set TRAN, XT, etc. if found 
      IF(TRAN) THEN 
        CALL TRCHEK 
        AMI = AMPL2 
      ENDIF 
      IF(IBL.EQ.ITRAN(IS) .AND. .NOT.TRAN) THEN 
       WRITE(*,*) 'SETBL: Xtr???  n1 n2: ', AMPL1, AMPL2 
      ENDIF 
C 
C---- assemble 10x4 linearized system for dCtau, dTh, dDs, dUe, dXi 
C     at the previous "1" station and the current "2" station 
C 
      IF(IBL.EQ.IBLTE(IS)+1) THEN 
C 
C----- define quantities at start of wake, adding TE base thickness to Dstar 
       TTE = THET(IBLTE(1),1) + THET(IBLTE(2),2) 
       DTE = DSTR(IBLTE(1),1) + DSTR(IBLTE(2),2) + ANTE 
       CTE = ( CTAU(IBLTE(1),1)*THET(IBLTE(1),1) 
     &       + CTAU(IBLTE(2),2)*THET(IBLTE(2),2) ) / TTE 
       CALL TESYS(CTE,TTE,DTE) 
C 
       TTE_TTE1 = 1.0 
       TTE_TTE2 = 1.0 
       DTE_MTE1 =               1.0 / UEDG(IBLTE(1),1) 
       DTE_UTE1 = -DSTR(IBLTE(1),1) / UEDG(IBLTE(1),1) 
       DTE_MTE2 =               1.0 / UEDG(IBLTE(2),2) 
       DTE_UTE2 = -DSTR(IBLTE(2),2) / UEDG(IBLTE(2),2) 
       CTE_CTE1 = THET(IBLTE(1),1)/TTE 
       CTE_CTE2 = THET(IBLTE(2),2)/TTE 
       CTE_TTE1 = (CTAU(IBLTE(1),1) - CTE)/TTE 
       CTE_TTE2 = (CTAU(IBLTE(2),2) - CTE)/TTE 
C 
C----- re-define D1 sensitivities wrt m since D1 depends on both TE Ds values 
       DO 35 JS=1, 2 
         DO 350 JBL=2, NBL(JS) 
           J  = IPAN(JBL,JS) 
           JV = ISYS(JBL,JS) 
           D1_M(JV) = DTE_UTE1*UTE1_M(JV) + DTE_UTE2*UTE2_M(JV) 
  350    CONTINUE 
   35  CONTINUE 
       D1_M(JVTE1) = D1_M(JVTE1) + DTE_MTE1 
       D1_M(JVTE2) = D1_M(JVTE2) + DTE_MTE2 
C 
C----- "forced" changes from  UEDG --- USAV=UINV+dij*MASS  mismatch 
       DUE1 = 0. 
       DDS1 = DTE_UTE1*(UEDG(IBLTE(1),1) - USAV(IBLTE(1),1)) 
     &      + DTE_UTE2*(UEDG(IBLTE(2),2) - USAV(IBLTE(2),2)) 
C 
      ELSE 
C 
       CALL BLSYS 
C 
      ENDIF 
C 
C 
C---- Save wall shear and equil. max shear coefficient for plotting output 
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      TAU(IBL,IS) = 0.5*R2*U2*U2*CF2 
      DIS(IBL,IS) =     R2*U2*U2*U2*DI2*HS2*0.5 
      CTQ(IBL,IS) = CQ2 
      DELT(IBL,IS) = DE2 
      USLP(IBL,IS) = 1.60/(1.0+US2) 
C 
C---- set XI sensitivities wrt LE Ue changes 
      IF(IS.EQ.1) THEN 
       XI_ULE1 =  SST_GO 
       XI_ULE2 = -SST_GP 
      ELSE 
       XI_ULE1 = -SST_GO 
       XI_ULE2 =  SST_GP 
      ENDIF 
C 
C---- stuff BL system coefficients into main Jacobian matrix 
C 
      DO 40 JV=1, NSYS 
        VM(1,JV,IV) = VS1(1,3)*D1_M(JV) + VS1(1,4)*U1_M(JV) 
     &              + VS2(1,3)*D2_M(JV) + VS2(1,4)*U2_M(JV) 
     &              + (VS1(1,5) + VS2(1,5) + VSX(1)) 
     &               *(XI_ULE1*ULE1_M(JV) + XI_ULE2*ULE2_M(JV)) 
   40 CONTINUE 
C 
      VB(1,1,IV) = VS1(1,1) 
      VB(1,2,IV) = VS1(1,2) 
C 
      VA(1,1,IV) = VS2(1,1) 
      VA(1,2,IV) = VS2(1,2) 
C 
      IF(LALFA) THEN 
       VDEL(1,2,IV) = VSR(1)*RE_CLMR + VSM(1)*MSQ_CLMR 
      ELSE 
       VDEL(1,2,IV) =  
     &       (VS1(1,4)*U1_A + VS1(1,3)*D1_A) 
     &     + (VS2(1,4)*U2_A + VS2(1,3)*D2_A) 
     &     + (VS1(1,5) + VS2(1,5) + VSX(1)) 
     &      *(XI_ULE1*ULE1_A + XI_ULE2*ULE2_A) 
      ENDIF 
C 
      VDEL(1,1,IV) = VSREZ(1) 
     &   + (VS1(1,4)*DUE1 + VS1(1,3)*DDS1) 
     &   + (VS2(1,4)*DUE2 + VS2(1,3)*DDS2) 
     &   + (VS1(1,5) + VS2(1,5) + VSX(1)) 
     &    *(XI_ULE1*DULE1 + XI_ULE2*DULE2) 
C 
C 
      DO 50 JV=1, NSYS 
        VM(2,JV,IV) = VS1(2,3)*D1_M(JV) + VS1(2,4)*U1_M(JV) 
     &              + VS2(2,3)*D2_M(JV) + VS2(2,4)*U2_M(JV) 
     &              + (VS1(2,5) + VS2(2,5) + VSX(2)) 
     &               *(XI_ULE1*ULE1_M(JV) + XI_ULE2*ULE2_M(JV)) 
   50 CONTINUE 
C 
      VB(2,1,IV)  = VS1(2,1) 
      VB(2,2,IV)  = VS1(2,2) 
C 
      VA(2,1,IV) = VS2(2,1) 
      VA(2,2,IV) = VS2(2,2) 
C 
      IF(LALFA) THEN 
       VDEL(2,2,IV) = VSR(2)*RE_CLMR + VSM(2)*MSQ_CLMR 
      ELSE 
       VDEL(2,2,IV) =  
     &       (VS1(2,4)*U1_A + VS1(2,3)*D1_A) 
     &     + (VS2(2,4)*U2_A + VS2(2,3)*D2_A) 
     &     + (VS1(2,5) + VS2(2,5) + VSX(2)) 
     &      *(XI_ULE1*ULE1_A + XI_ULE2*ULE2_A) 
      ENDIF 
C 
      VDEL(2,1,IV) = VSREZ(2) 
     &   + (VS1(2,4)*DUE1 + VS1(2,3)*DDS1) 
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     &   + (VS2(2,4)*DUE2 + VS2(2,3)*DDS2) 
     &   + (VS1(2,5) + VS2(2,5) + VSX(2)) 
     &    *(XI_ULE1*DULE1 + XI_ULE2*DULE2) 
C 
C 
      DO 60 JV=1, NSYS 
        VM(3,JV,IV) = VS1(3,3)*D1_M(JV) + VS1(3,4)*U1_M(JV) 
     &              + VS2(3,3)*D2_M(JV) + VS2(3,4)*U2_M(JV) 
     &              + (VS1(3,5) + VS2(3,5) + VSX(3)) 
     &               *(XI_ULE1*ULE1_M(JV) + XI_ULE2*ULE2_M(JV)) 
   60 CONTINUE 
C 
      VB(3,1,IV) = VS1(3,1) 
      VB(3,2,IV) = VS1(3,2) 
C 
      VA(3,1,IV) = VS2(3,1) 
      VA(3,2,IV) = VS2(3,2) 
C 
      IF(LALFA) THEN 
       VDEL(3,2,IV) = VSR(3)*RE_CLMR + VSM(3)*MSQ_CLMR 
      ELSE 
       VDEL(3,2,IV) =  
     &       (VS1(3,4)*U1_A + VS1(3,3)*D1_A) 
     &     + (VS2(3,4)*U2_A + VS2(3,3)*D2_A) 
     &     + (VS1(3,5) + VS2(3,5) + VSX(3)) 
     &      *(XI_ULE1*ULE1_A + XI_ULE2*ULE2_A) 
      ENDIF 
C 
      VDEL(3,1,IV) = VSREZ(3) 
     &   + (VS1(3,4)*DUE1 + VS1(3,3)*DDS1) 
     &   + (VS2(3,4)*DUE2 + VS2(3,3)*DDS2) 
     &   + (VS1(3,5) + VS2(3,5) + VSX(3)) 
     &    *(XI_ULE1*DULE1 + XI_ULE2*DULE2) 
C 
C 
      IF(IBL.EQ.IBLTE(IS)+1) THEN 
C 
C----- redefine coefficients for TTE, DTE, etc 
       VZ(1,1)    = VS1(1,1)*CTE_CTE1 
       VZ(1,2)    = VS1(1,1)*CTE_TTE1 + VS1(1,2)*TTE_TTE1 
       VB(1,1,IV) = VS1(1,1)*CTE_CTE2 
       VB(1,2,IV) = VS1(1,1)*CTE_TTE2 + VS1(1,2)*TTE_TTE2 
C 
       VZ(2,1)    = VS1(2,1)*CTE_CTE1 
       VZ(2,2)    = VS1(2,1)*CTE_TTE1 + VS1(2,2)*TTE_TTE1 
       VB(2,1,IV) = VS1(2,1)*CTE_CTE2 
       VB(2,2,IV) = VS1(2,1)*CTE_TTE2 + VS1(2,2)*TTE_TTE2 
C 
       VZ(3,1)    = VS1(3,1)*CTE_CTE1 
       VZ(3,2)    = VS1(3,1)*CTE_TTE1 + VS1(3,2)*TTE_TTE1 
       VB(3,1,IV) = VS1(3,1)*CTE_CTE2 
       VB(3,2,IV) = VS1(3,1)*CTE_TTE2 + VS1(3,2)*TTE_TTE2 
C 
      ENDIF 
C 
C---- turbulent intervals will follow if currently at transition interval 
      IF(TRAN) THEN 
        TURB = .TRUE. 
C 
C------ save transition location 
        ITRAN(IS) = IBL 
        TFORCE(IS) = TRFORC 
        XSSITR(IS) = XT 
C 
C------ interpolate airfoil geometry to find transition x/c 
C-      (for user output) 
        IF(IS.EQ.1) THEN 
         STR = SST - XT 
        ELSE 
         STR = SST + XT 
        ENDIF 
        CHX = XTE - XLE 
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        CHY = YTE - YLE 
        CHSQ = CHX**2 + CHY**2 
        XTR = SEVAL(STR,X,XP,S,N) 
        YTR = SEVAL(STR,Y,YP,S,N) 
        XOCTR(IS) = ((XTR-XLE)*CHX + (YTR-YLE)*CHY)/CHSQ 
        YOCTR(IS) = ((YTR-YLE)*CHX - (XTR-XLE)*CHY)/CHSQ 
      ENDIF 
C 
      TRAN = .FALSE. 
C 
      IF(IBL.EQ.IBLTE(IS)) THEN 
C----- set "2" variables at TE to wake correlations for next station 
C 
       TURB = .TRUE. 
       WAKE = .TRUE. 
       CALL BLVAR(3) 
       CALL BLMID(3) 
      ENDIF 
C 
      DO 80 JS=1, 2 
        DO 810 JBL=2, NBL(JS) 
          JV = ISYS(JBL,JS) 
          U1_M(JV) = U2_M(JV) 
          D1_M(JV) = D2_M(JV) 
  810   CONTINUE 
   80 CONTINUE 
C 
      U1_A = U2_A 
      D1_A = D2_A 
C 
      DUE1 = DUE2 
      DDS1 = DDS2 
C       
C---- set BL variables for next station 
      DO 190 ICOM=1, NCOM 
        COM1(ICOM) = COM2(ICOM) 
  190 CONTINUE 
C 
C---- next streamwise station 
 1000 CONTINUE 
C 
      IF(TFORCE(IS)) THEN 
       WRITE(*,9100) IS,XOCTR(IS),ITRAN(IS) 
 9100  FORMAT(1X,'Side',I2,' forced transition at x/c = ',F7.4,I5) 
      ELSE 
       WRITE(*,9200) IS,XOCTR(IS),ITRAN(IS) 
 9200  FORMAT(1X,'Side',I2,'  free  transition at x/c = ',F7.4,I5) 
      ENDIF 
C 
C---- next airfoil side 
 2000 CONTINUE 
C 
      RETURN 
      END 
 
 
      SUBROUTINE IBLSYS 
C--------------------------------------------- 
C     Sets the BL Newton system line number 
C     corresponding to each BL station. 
C--------------------------------------------- 
      INCLUDE 'XFOIL.INC' 
      INCLUDE 'XBL.INC' 
C 
      IV = 0 
      DO 10 IS=1, 2 
        DO 110 IBL=2, NBL(IS) 
          IV = IV+1 
          ISYS(IBL,IS) = IV 
  110   CONTINUE 
   10 CONTINUE 
C 
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      NSYS = IV 
      IF(NSYS.GT.2*IVX) STOP '*** IBLSYS: BL system array overflow. ***' 
C 
      RETURN 
      END 
 
 
      SUBROUTINE MRCHUE 
C---------------------------------------------------- 
C     Marches the BLs and wake in direct mode using 
C     the UEDG array. If separation is encountered, 
C     a plausible value of Hk extrapolated from 
C     upstream is prescribed instead.  Continuous 
C     checking of transition onset is performed. 
C---------------------------------------------------- 
      INCLUDE 'XFOIL.INC' 
      INCLUDE 'XBL.INC' 
      LOGICAL DIRECT 
      REAL MSQ 
C 
C---- shape parameters for separation criteria 
      HLMAX = 3.8 
      HTMAX = 2.5 
C 
      DO 2000 IS=1, 2 
C 
      WRITE(*,*) '   side ', IS, ' ...' 
C 
C---- set forced transition arc length position 
      CALL XIFSET(IS) 
C 
C---- initialize similarity station with Thwaites' formula 
      IBL = 2 
      XSI = XSSI(IBL,IS) 
      UEI = UEDG(IBL,IS) 
C      BULE = LOG(UEDG(IBL+1,IS)/UEI) / LOG(XSSI(IBL+1,IS)/XSI) 
C      BULE = MAX( -.08 , BULE ) 
      BULE = 1.0 
      UCON = UEI/XSI**BULE 
      TSQ = 0.45/(UCON*(5.0*BULE+1.0)*REYBL) * XSI**(1.0-BULE) 
      THI = SQRT(TSQ) 
      DSI = 2.2*THI 
      AMI = 0.0 
C 
C---- initialize Ctau for first turbulent station 
      CTI = 0.03 
C 
      TRAN = .FALSE. 
      TURB = .FALSE. 
      ITRAN(IS) = IBLTE(IS) 
C 
C---- march downstream 
      DO 1000 IBL=2, NBL(IS) 
        IBM = IBL-1 
C 
        IW = IBL - IBLTE(IS) 
C 
        SIMI = IBL.EQ.2 
        WAKE = IBL.GT.IBLTE(IS) 
C 
C------ prescribed quantities 
        XSI = XSSI(IBL,IS) 
        UEI = UEDG(IBL,IS) 
C 
        IF(WAKE) THEN 
         IW = IBL - IBLTE(IS) 
         DSWAKI = WGAP(IW) 
        ELSE 
         DSWAKI = 0. 
        ENDIF 
C 
        DIRECT = .TRUE. 
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C 
C------ Newton iteration loop for current station 
        DO 100 ITBL=1, 25 
C 
C-------- assemble 10x3 linearized system for dCtau, dTh, dDs, dUe, dXi 
C         at the previous "1" station and the current "2" station 
C         (the "1" station coefficients will be ignored) 
C 
C 
          CALL BLPRV(XSI,AMI,CTI,THI,DSI,DSWAKI,UEI) 
          CALL BLKIN 
C 
C-------- check for transition and set appropriate flags and things 
          IF((.NOT.SIMI) .AND. (.NOT.TURB)) THEN 
           CALL TRCHEK 
           AMI = AMPL2 
C 
C--------- fixed BUG   MD 7 Jun 99 
           IF(TRAN) THEN 
            ITRAN(IS) = IBL 
            IF(CTI.LE.0.0) THEN 
             CTI = 0.03 
             S2 = CTI 
            ENDIF 
           ELSE 
            ITRAN(IS) = IBL+2 
           ENDIF 
C 
C 
          ENDIF 
C 
          IF(IBL.EQ.IBLTE(IS)+1) THEN 
           TTE = THET(IBLTE(1),1) + THET(IBLTE(2),2) 
           DTE = DSTR(IBLTE(1),1) + DSTR(IBLTE(2),2) + ANTE 
           CTE = ( CTAU(IBLTE(1),1)*THET(IBLTE(1),1) 
     &           + CTAU(IBLTE(2),2)*THET(IBLTE(2),2) ) / TTE 
           CALL TESYS(CTE,TTE,DTE) 
          ELSE 
           CALL BLSYS 
          ENDIF 
C 
          IF(DIRECT) THEN 
C 
C--------- try direct mode (set dUe = 0 in currently empty 4th line) 
           VS2(4,1) = 0. 
           VS2(4,2) = 0. 
           VS2(4,3) = 0. 
           VS2(4,4) = 1.0 
           VSREZ(4) = 0. 
C 
C--------- solve Newton system for current "2" station 
           CALL GAUSS(4,4,VS2,VSREZ,1) 
C 
C--------- determine max changes and underrelax if necessary 
           DMAX = MAX( ABS(VSREZ(2)/THI), 
     &                 ABS(VSREZ(3)/DSI)  ) 
           IF(IBL.LT.ITRAN(IS)) DMAX = MAX(DMAX,ABS(VSREZ(1)/10.0)) 
           IF(IBL.GE.ITRAN(IS)) DMAX = MAX(DMAX,ABS(VSREZ(1)/CTI )) 
C 
           RLX = 1.0 
           IF(DMAX.GT.0.3) RLX = 0.3/DMAX 
C 
C--------- see if direct mode is not applicable 
           IF(IBL .NE. IBLTE(IS)+1) THEN 
C 
C---------- calculate resulting kinematic shape parameter Hk 
            MSQ = UEI*UEI*HSTINV / (GM1BL*(1.0 - 0.5*UEI*UEI*HSTINV)) 
            HTEST = (DSI + RLX*VSREZ(3)) / (THI + RLX*VSREZ(2)) 
            CALL HKIN( HTEST, MSQ, HKTEST, DUMMY, DUMMY) 
C 
C---------- decide whether to do direct or inverse problem based on Hk 
            IF(IBL.LT.ITRAN(IS)) HMAX = HLMAX 
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            IF(IBL.GE.ITRAN(IS)) HMAX = HTMAX 
            DIRECT = HKTEST.LT.HMAX 
           ENDIF 
C 
           IF(DIRECT) THEN 
C---------- update as usual 
ccc            IF(IBL.LT.ITRAN(IS)) AMI = AMI + RLX*VSREZ(1) 
            IF(IBL.GE.ITRAN(IS)) CTI = CTI + RLX*VSREZ(1) 
            THI = THI + RLX*VSREZ(2) 
            DSI = DSI + RLX*VSREZ(3) 
           ELSE 
C---------- set prescribed Hk for inverse calculation at the current station 
            IF(IBL.LT.ITRAN(IS)) THEN 
C----------- laminar case: relatively slow increase in Hk downstream 
             HTARG = HK1 + 0.03*(X2-X1)/T1 
            ELSE IF(IBL.EQ.ITRAN(IS)) THEN 
C----------- transition interval: weighted laminar and turbulent case 
             HTARG = HK1 + (0.03*(XT-X1) - 0.15*(X2-XT))/T1 
            ELSE IF(WAKE) THEN 
C----------- turbulent wake case: 
C-           asymptotic wake behavior with approximate Backward Euler 
             CONST = 0.03*(X2-X1)/T1 
             HK2 = HK1 
             HK2 = HK2 - (HK2 +     CONST*(HK2-1.0)**3 - HK1) 
     &                  /(1.0 + 3.0*CONST*(HK2-1.0)**2) 
             HK2 = HK2 - (HK2 +     CONST*(HK2-1.0)**3 - HK1) 
     &                  /(1.0 + 3.0*CONST*(HK2-1.0)**2) 
             HK2 = HK2 - (HK2 +     CONST*(HK2-1.0)**3 - HK1) 
     &                  /(1.0 + 3.0*CONST*(HK2-1.0)**2) 
             HTARG = HK2 
            ELSE 
C----------- turbulent case: relatively fast decrease in Hk downstream 
             HTARG = HK1 - 0.15*(X2-X1)/T1 
            ENDIF 
C 
C---------- limit specified Hk to something reasonable 
            IF(WAKE) THEN 
             HTARG = MAX( HTARG , 1.01 ) 
            ELSE 
             HTARG = MAX( HTARG , HMAX ) 
            ENDIF 
C 
            WRITE(*,1300) IBL, HTARG 
 1300       FORMAT(' MRCHUE: Inverse mode at', I4, '     Hk =', F8.3) 
C 
C---------- try again with prescribed Hk 
            GO TO 100 
C 
           ENDIF 
C 
          ELSE 
C 
C-------- inverse mode (force Hk to prescribed value HTARG) 
           VS2(4,1) = 0. 
           VS2(4,2) = HK2_T2 
           VS2(4,3) = HK2_D2 
           VS2(4,4) = HK2_U2 
           VSREZ(4) = HTARG - HK2 
C 
           CALL GAUSS(4,4,VS2,VSREZ,1) 
C 
           DMAX = MAX( ABS(VSREZ(2)/THI), 
     &                 ABS(VSREZ(3)/DSI)  ) 
           IF(IBL.GE.ITRAN(IS)) DMAX = MAX( DMAX , ABS(VSREZ(1)/CTI)) 
C 
           RLX = 1.0 
           IF(DMAX.GT.0.3) RLX = 0.3/DMAX 
C 
C--------- update variables 
ccc           IF(IBL.LT.ITRAN(IS)) AMI = AMI + RLX*VSREZ(1) 
           IF(IBL.GE.ITRAN(IS)) CTI = CTI + RLX*VSREZ(1) 
           THI = THI + RLX*VSREZ(2) 
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           DSI = DSI + RLX*VSREZ(3) 
           UEI = UEI + RLX*VSREZ(4) 
C 
          ENDIF 
C 
C-------- eliminate absurd transients 
          IF(IBL.GE.ITRAN(IS)) THEN 
           CTI = MIN(CTI , 0.30 ) 
           CTI = MAX(CTI , 0.0000001 ) 
          ENDIF 
C 
          IF(IBL.LE.IBLTE(IS)) THEN 
            HKLIM = 1.02 
          ELSE 
            HKLIM = 1.00005 
          ENDIF 
          MSQ = UEI*UEI*HSTINV / (GM1BL*(1.0 - 0.5*UEI*UEI*HSTINV)) 
          DSW = DSI - DSWAKI 
          CALL DSLIM(DSW,THI,UEI,MSQ,HKLIM) 
          DSI = DSW + DSWAKI 
C 
          IF(DMAX.LE.1.0E-5) GO TO 110 
C 
  100   CONTINUE 
        WRITE(*,1350) IBL, IS, DMAX  
 1350   FORMAT(' MRCHUE: Convergence failed at',I4,'  side',I2, 
     &         '    Res =', E12.4) 
C 
C------ the current unconverged solution might still be reasonable... 
CCC        IF(DMAX .LE. 0.1) GO TO 110 
        IF(DMAX .LE. 0.1) GO TO 109 
C 
C------- the current solution is garbage --> extrapolate values instead 
         IF(IBL.GT.3) THEN  
          IF(IBL.LE.IBLTE(IS)) THEN 
           THI = THET(IBM,IS) * (XSSI(IBL,IS)/XSSI(IBM,IS))**0.5 
           DSI = DSTR(IBM,IS) * (XSSI(IBL,IS)/XSSI(IBM,IS))**0.5 
          ELSE IF(IBL.EQ.IBLTE(IS)+1) THEN 
           CTI = CTE 
           THI = TTE 
           DSI = DTE 
          ELSE 
           THI = THET(IBM,IS) 
           RATLEN = (XSSI(IBL,IS)-XSSI(IBM,IS)) / (10.0*DSTR(IBM,IS)) 
           DSI = (DSTR(IBM,IS) + THI*RATLEN) / (1.0 + RATLEN) 
          ENDIF 
          IF(IBL.EQ.ITRAN(IS)) CTI = 0.05 
          IF(IBL.GT.ITRAN(IS)) CTI = CTAU(IBM,IS) 
C 
          UEI = UEDG(IBL,IS) 
          IF(IBL.GT.2 .AND. IBL.LT.NBL(IS)) 
     &     UEI = 0.5*(UEDG(IBL-1,IS) + UEDG(IBL+1,IS)) 
         ENDIF 
C 
 109     CALL BLPRV(XSI,AMI,CTI,THI,DSI,DSWAKI,UEI) 
         CALL BLKIN 
C 
C------- check for transition and set appropriate flags and things 
         IF((.NOT.SIMI) .AND. (.NOT.TURB)) THEN 
          CALL TRCHEK 
          AMI = AMPL2 
          IF(     TRAN) ITRAN(IS) = IBL 
          IF(.NOT.TRAN) ITRAN(IS) = IBL+2 
         ENDIF 
C 
C------- set all other extrapolated values for current station 
         IF(IBL.LT.ITRAN(IS)) CALL BLVAR(1) 
         IF(IBL.GE.ITRAN(IS)) CALL BLVAR(2) 
         IF(WAKE) CALL BLVAR(3) 
C 
         IF(IBL.LT.ITRAN(IS)) CALL BLMID(1) 
         IF(IBL.GE.ITRAN(IS)) CALL BLMID(2) 
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         IF(WAKE) CALL BLMID(3) 
C 
C------ pick up here after the Newton iterations 
  110   CONTINUE 
C 
C------ store primary variables 
        IF(IBL.LT.ITRAN(IS)) CTAU(IBL,IS) = AMI 
        IF(IBL.GE.ITRAN(IS)) CTAU(IBL,IS) = CTI 
        THET(IBL,IS) = THI 
        DSTR(IBL,IS) = DSI 
        UEDG(IBL,IS) = UEI 
        MASS(IBL,IS) = DSI*UEI 
        TAU(IBL,IS)  = 0.5*R2*U2*U2*CF2 
        DIS(IBL,IS)  =     R2*U2*U2*U2*DI2*HS2*0.5 
        CTQ(IBL,IS)  = CQ2 
        DELT(IBL,IS) = DE2 
C 
C------ set "1" variables to "2" variables for next streamwise station 
        CALL BLPRV(XSI,AMI,CTI,THI,DSI,DSWAKI,UEI) 
        CALL BLKIN 
        DO 310 ICOM=1, NCOM 
          COM1(ICOM) = COM2(ICOM) 
  310   CONTINUE 
C 
C------ turbulent intervals will follow transition interval or TE 
        IF(TRAN .OR. IBL.EQ.IBLTE(IS)) THEN 
         TURB = .TRUE. 
C 
C------- save transition location 
         TFORCE(IS) = TRFORC 
         XSSITR(IS) = XT 
        ENDIF 
C 
        TRAN = .FALSE. 
C 
        IF(IBL.EQ.IBLTE(IS)) THEN 
         THI = THET(IBLTE(1),1) + THET(IBLTE(2),2) 
         DSI = DSTR(IBLTE(1),1) + DSTR(IBLTE(2),2) + ANTE 
        ENDIF 
C 
 1000 CONTINUE 
 2000 CONTINUE 
C 
      RETURN 
      END 
   
  
      SUBROUTINE MRCHDU 
C---------------------------------------------------- 
C     Marches the BLs and wake in mixed mode using 
C     the current Ue and Hk.  The calculated Ue 
C     and Hk lie along a line quasi-normal to the 
C     natural Ue-Hk characteristic line of the 
C     current BL so that the Goldstein or Levy-Lees 
C     singularity is never encountered.  Continuous 
C     checking of transition onset is performed. 
C---------------------------------------------------- 
      INCLUDE 'XFOIL.INC' 
      INCLUDE 'XBL.INC' 
      REAL VTMP(4,5), VZTMP(4) 
      REAL MSQ 
ccc   REAL MDI 
C 
      DATA DEPS / 5.0E-6 / 
C 
C---- constant controlling how far Hk is allowed to deviate 
C-    from the specified value. 
      SENSWT = 1000.0 
C 
      DO 2000 IS=1, 2 
C 
C---- set forced transition arc length position 
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      CALL XIFSET(IS) 
C 
C---- set leading edge pressure gradient parameter  x/u du/dx 
      IBL = 2 
      XSI = XSSI(IBL,IS) 
      UEI = UEDG(IBL,IS) 
CCC      BULE = LOG(UEDG(IBL+1,IS)/UEI) / LOG(XSSI(IBL+1,IS)/XSI) 
CCC      BULE = MAX( -.08 , BULE ) 
      BULE = 1.0 
C 
C---- old transition station 
      ITROLD = ITRAN(IS) 
C 
      TRAN = .FALSE. 
      TURB = .FALSE. 
      ITRAN(IS) = IBLTE(IS) 
C 
C---- march downstream 
      DO 1000 IBL=2, NBL(IS) 
        IBM = IBL-1 
C 
        SIMI = IBL.EQ.2 
        WAKE = IBL.GT.IBLTE(IS) 
C 
C------ initialize current station to existing variables 
        XSI = XSSI(IBL,IS) 
        UEI = UEDG(IBL,IS) 
        THI = THET(IBL,IS) 
        DSI = DSTR(IBL,IS) 
CCC        MDI = MASS(IBL,IS) 
C 
C------ fixed BUG   MD 7 June 99 
        IF(IBL.LT.ITROLD) THEN 
         AMI = CTAU(IBL,IS) 
         CTI = 0.03 
        ELSE 
         CTI = CTAU(IBL,IS) 
         IF(CTI.LE.0.0) CTI = 0.03 
        ENDIF 
C 
CCC        DSI = MDI/UEI 
C 
        IF(WAKE) THEN 
         IW = IBL - IBLTE(IS) 
         DSWAKI = WGAP(IW) 
        ELSE 
         DSWAKI = 0. 
        ENDIF 
C 
        IF(IBL.LE.IBLTE(IS)) DSI = MAX(DSI-DSWAKI,1.02000*THI) + DSWAKI 
        IF(IBL.GT.IBLTE(IS)) DSI = MAX(DSI-DSWAKI,1.00005*THI) + DSWAKI 
C 
C------ Newton iteration loop for current station 
        DO 100 ITBL=1, 25 
C 
C-------- assemble 10x3 linearized system for dCtau, dTh, dDs, dUe, dXi 
C         at the previous "1" station and the current "2" station 
C         (the "1" station coefficients will be ignored) 
C 
C 
          CALL BLPRV(XSI,AMI,CTI,THI,DSI,DSWAKI,UEI) 
          CALL BLKIN 
C 
C-------- check for transition and set appropriate flags and things 
          IF((.NOT.SIMI) .AND. (.NOT.TURB)) THEN 
           CALL TRCHEK 
           AMI = AMPL2 
           IF(     TRAN) ITRAN(IS) = IBL 
           IF(.NOT.TRAN) ITRAN(IS) = IBL+2 
          ENDIF 
C 
          IF(IBL.EQ.IBLTE(IS)+1) THEN 
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           TTE = THET(IBLTE(1),1) + THET(IBLTE(2),2) 
           DTE = DSTR(IBLTE(1),1) + DSTR(IBLTE(2),2) + ANTE 
           CTE = ( CTAU(IBLTE(1),1)*THET(IBLTE(1),1) 
     &           + CTAU(IBLTE(2),2)*THET(IBLTE(2),2) ) / TTE 
           CALL TESYS(CTE,TTE,DTE) 
          ELSE 
           CALL BLSYS 
          ENDIF 
C 
C-------- set stuff at first iteration... 
          IF(ITBL.EQ.1) THEN 
C 
C--------- set "baseline" Ue and Hk for forming  Ue(Hk)  relation 
           UEREF = U2 
           HKREF = HK2 
C 
C--------- if current point IBL was turbulent and is now laminar, then... 
           IF(IBL.LT.ITRAN(IS) .AND. IBL.GE.ITROLD ) THEN 
C---------- extrapolate baseline Hk 
            UEM = UEDG(IBL-1,IS) 
            DSM = DSTR(IBL-1,IS) 
            THM = THET(IBL-1,IS) 
            MSQ = UEM*UEM*HSTINV / (GM1BL*(1.0 - 0.5*UEM*UEM*HSTINV)) 
            CALL HKIN( DSM/THM, MSQ, HKREF, DUMMY, DUMMY ) 
           ENDIF 
C 
C--------- if current point IBL was laminar, then... 
           IF(IBL.LT.ITROLD) THEN 
C---------- reinitialize or extrapolate Ctau if it's now turbulent 
            IF(TRAN) CTAU(IBL,IS) = 0.03 
            IF(TURB) CTAU(IBL,IS) = CTAU(IBL-1,IS) 
            IF(TRAN .OR. TURB) THEN 
             CTI = CTAU(IBL,IS) 
             S2 = CTI 
            ENDIF 
           ENDIF 
C 
          ENDIF 
C 
C 
          IF(SIMI .OR. IBL.EQ.IBLTE(IS)+1) THEN 
C 
C--------- for similarity station or first wake point, prescribe Ue 
           VS2(4,1) = 0. 
           VS2(4,2) = 0. 
           VS2(4,3) = 0. 
           VS2(4,4) = U2_UEI 
           VSREZ(4) = UEREF - U2 
C 
          ELSE 
C 
C********* calculate Ue-Hk characteristic slope 
C 
           DO 20 K=1, 4 
             VZTMP(K) = VSREZ(K) 
             DO 201 L=1, 5 
               VTMP(K,L) = VS2(K,L) 
  201        CONTINUE 
   20      CONTINUE 
C 
C--------- set unit dHk 
           VTMP(4,1) = 0. 
           VTMP(4,2) = HK2_T2 
           VTMP(4,3) = HK2_D2 
           VTMP(4,4) = HK2_U2*U2_UEI 
           VZTMP(4)  = 1.0 
C 
C--------- calculate dUe response 
           CALL GAUSS(4,4,VTMP,VZTMP,1) 
C 
C--------- set  SENSWT * (normalized dUe/dHk) 
           SENNEW = SENSWT * VZTMP(4) * HKREF/UEREF 
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           IF(ITBL.LE.5) THEN 
            SENS = SENNEW 
           ELSE IF(ITBL.LE.15) THEN 
            SENS = 0.5*(SENS + SENNEW) 
           ENDIF 
C 
C--------- set prescribed Ue-Hk combination 
           VS2(4,1) = 0. 
           VS2(4,2) =  HK2_T2 * HKREF 
           VS2(4,3) =  HK2_D2 * HKREF 
           VS2(4,4) =( HK2_U2 * HKREF  +  SENS/UEREF )*U2_UEI 
           VSREZ(4) = -(HKREF**2)*(HK2 / HKREF - 1.0) 
     &                     - SENS*(U2  / UEREF - 1.0) 
C 
          ENDIF 
C 
C-------- solve Newton system for current "2" station 
          CALL GAUSS(4,4,VS2,VSREZ,1) 
C 
C-------- determine max changes and underrelax if necessary 
          DMAX = MAX( ABS(VSREZ(2)/THI), 
     &                ABS(VSREZ(3)/DSI)  ) 
          IF(IBL.GE.ITRAN(IS)) DMAX = MAX(DMAX,ABS(VSREZ(1)/(10.0*CTI))) 
C 
          RLX = 1.0 
          IF(DMAX.GT.0.3) RLX = 0.3/DMAX 
C 
C-------- update as usual 
          IF(IBL.LT.ITRAN(IS)) AMI = AMI + RLX*VSREZ(1) 
          IF(IBL.GE.ITRAN(IS)) CTI = CTI + RLX*VSREZ(1) 
          THI = THI + RLX*VSREZ(2) 
          DSI = DSI + RLX*VSREZ(3) 
          UEI = UEI + RLX*VSREZ(4) 
C 
C-------- eliminate absurd transients 
          IF(IBL.GE.ITRAN(IS)) THEN 
           CTI = MIN(CTI , 0.30 ) 
           CTI = MAX(CTI , 0.0000001 ) 
          ENDIF 
C 
          IF(IBL.LE.IBLTE(IS)) THEN 
            HKLIM = 1.02 
          ELSE 
            HKLIM = 1.00005 
          ENDIF 
          MSQ = UEI*UEI*HSTINV / (GM1BL*(1.0 - 0.5*UEI*UEI*HSTINV)) 
          DSW = DSI - DSWAKI 
          CALL DSLIM(DSW,THI,UEI,MSQ,HKLIM) 
          DSI = DSW + DSWAKI 
C 
          IF(DMAX.LE.DEPS) GO TO 110 
C 
  100   CONTINUE 
C 
        WRITE(*,1350) IBL, IS, DMAX  
 1350   FORMAT(' MRCHDU: Convergence failed at',I4,'  side',I2, 
     &         '    Res =', E12.4) 
C 
C------ the current unconverged solution might still be reasonable... 
CCC        IF(DMAX .LE. 0.1) GO TO 110 
        IF(DMAX .LE. 0.1) GO TO 109 
C 
C------- the current solution is garbage --> extrapolate values instead 
         IF(IBL.GT.3) THEN 
          IF(IBL.LE.IBLTE(IS)) THEN 
           THI = THET(IBM,IS) * (XSSI(IBL,IS)/XSSI(IBM,IS))**0.5 
           DSI = DSTR(IBM,IS) * (XSSI(IBL,IS)/XSSI(IBM,IS))**0.5 
           UEI = UEDG(IBM,IS) 
          ELSE IF(IBL.EQ.IBLTE(IS)+1) THEN 
           CTI = CTE 
           THI = TTE 
           DSI = DTE 
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           UEI = UEDG(IBM,IS) 
          ELSE 
           THI = THET(IBM,IS) 
           RATLEN = (XSSI(IBL,IS)-XSSI(IBM,IS)) / (10.0*DSTR(IBM,IS)) 
           DSI = (DSTR(IBM,IS) + THI*RATLEN) / (1.0 + RATLEN) 
           UEI = UEDG(IBM,IS) 
          ENDIF 
          IF(IBL.EQ.ITRAN(IS)) CTI = 0.05 
          IF(IBL.GT.ITRAN(IS)) CTI = CTAU(IBM,IS) 
         ENDIF 
C 
 109     CALL BLPRV(XSI,AMI,CTI,THI,DSI,DSWAKI,UEI) 
         CALL BLKIN 
C 
C------- check for transition and set appropriate flags and things 
         IF((.NOT.SIMI) .AND. (.NOT.TURB)) THEN 
          CALL TRCHEK 
          AMI = AMPL2 
          IF(     TRAN) ITRAN(IS) = IBL 
          IF(.NOT.TRAN) ITRAN(IS) = IBL+2 
         ENDIF 
C 
C------- set all other extrapolated values for current station 
         IF(IBL.LT.ITRAN(IS)) CALL BLVAR(1) 
         IF(IBL.GE.ITRAN(IS)) CALL BLVAR(2) 
         IF(WAKE) CALL BLVAR(3) 
C 
         IF(IBL.LT.ITRAN(IS)) CALL BLMID(1) 
         IF(IBL.GE.ITRAN(IS)) CALL BLMID(2) 
         IF(WAKE) CALL BLMID(3) 
C 
C------ pick up here after the Newton iterations 
  110   CONTINUE 
C 
        SENS = SENNEW 
C 
C------ store primary variables 
        IF(IBL.LT.ITRAN(IS)) CTAU(IBL,IS) = AMI 
        IF(IBL.GE.ITRAN(IS)) CTAU(IBL,IS) = CTI 
        THET(IBL,IS) = THI 
        DSTR(IBL,IS) = DSI 
        UEDG(IBL,IS) = UEI 
        MASS(IBL,IS) = DSI*UEI 
        TAU(IBL,IS)  = 0.5*R2*U2*U2*CF2 
        DIS(IBL,IS)  =     R2*U2*U2*U2*DI2*HS2*0.5 
        CTQ(IBL,IS)  = CQ2 
C 
C------ set "1" variables to "2" variables for next streamwise station 
        CALL BLPRV(XSI,AMI,CTI,THI,DSI,DSWAKI,UEI) 
        CALL BLKIN 
        DO 310 ICOM=1, NCOM 
          COM1(ICOM) = COM2(ICOM) 
  310   CONTINUE 
C 
C 
C------ turbulent intervals will follow transition interval or TE 
        IF(TRAN .OR. IBL.EQ.IBLTE(IS)) THEN 
         TURB = .TRUE. 
C 
C------- save transition location 
         TFORCE(IS) = TRFORC 
         XSSITR(IS) = XT 
        ENDIF 
C 
        TRAN = .FALSE. 
C 
 1000 CONTINUE 
C 
 2000 CONTINUE 
C 
      RETURN 
      END 
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      SUBROUTINE XIFSET(IS) 
C----------------------------------------------------- 
C     Sets forced-transition BL coordinate locations. 
C----------------------------------------------------- 
      INCLUDE 'XFOIL.INC' 
      INCLUDE 'XBL.INC' 
C 
      IF(XSTRIP(IS).GE.1.0) THEN 
       XIFORC = XSSI(IBLTE(IS),IS) 
       RETURN 
      ENDIF 
C 
      CHX = XTE - XLE 
      CHY = YTE - YLE 
      CHSQ = CHX**2 + CHY**2 
C 
C---- calculate chord-based x/c, y/c 
      DO 10 I=1, N 
        W1(I) = ((X(I)-XLE)*CHX + (Y(I)-YLE)*CHY) / CHSQ 
        W2(I) = ((Y(I)-YLE)*CHX - (X(I)-XLE)*CHY) / CHSQ 
 10   CONTINUE 
C 
      CALL SPLIND(W1,W3,S,N,-999.0,-999.0) 
      CALL SPLIND(W2,W4,S,N,-999.0,-999.0) 
C 
      IF(IS.EQ.1) THEN 
C 
C----- set approximate arc length of forced transition point for SINVRT 
       STR = SLE + (S(1)-SLE)*XSTRIP(IS) 
C 
C----- calculate actual arc length 
       CALL SINVRT(STR,XSTRIP(IS),W1,W3,S,N) 
C 
C----- set BL coordinate value 
       XIFORC = MIN( (SST - STR) , XSSI(IBLTE(IS),IS) ) 
C 
      ELSE 
C----- same for bottom side 
C 
       STR = SLE + (S(N)-SLE)*XSTRIP(IS) 
       CALL SINVRT(STR,XSTRIP(IS),W1,W3,S,N) 
       XIFORC = MIN( (STR - SST) , XSSI(IBLTE(IS),IS) ) 
C 
      ENDIF 
C 
      IF(XIFORC .LT. 0.0) THEN 
       WRITE(*,1000) IS 
 1000  FORMAT(/' ***  Stagnation point is past trip on side',I2,'  ***') 
       XIFORC = XSSI(IBLTE(IS),IS) 
      ENDIF 
C 
      RETURN 
      END 
 
 
 
 
      SUBROUTINE UPDATE(sec,pcor) 
C------------------------------------------------------------------ 
C      Adds on Newton deltas to boundary layer variables. 
C      Checks for excessive changes and underrelaxes if necessary. 
C      Calculates max and rms changes. 
C      Also calculates the change in the global variable "AC". 
C        If LALFA=.TRUE. , "AC" is CL 
C        If LALFA=.FALSE., "AC" is alpha 
C------------------------------------------------------------------ 
      INCLUDE 'XFOIL.INC'  
      include 'section.inc' !02/06/2005 
 
      type(section):: sec 
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      REAL UNEW(IVX,2), U_AC(IVX,2) 
 real:: pcor(iqx,2)  !mass defect correction (22/05/2005) 
      REAL:: QNEW(IQX), Q_AC(IQX), Qcorr(IQX) !viscous correction 
      EQUIVALENCE (VA(1,1,1), UNEW(1,1)) , 
     &            (VB(1,1,1), QNEW(1)  ) 
      EQUIVALENCE (VA(1,1,IVX), U_AC(1,1)) , 
     &            (VB(1,1,IVX), Q_AC(1)  ) 
      REAL MSQ 
C 
C---- max allowable alpha changes per iteration 
      DALMAX =  0.5*DTOR 
      DALMIN = -0.5*DTOR 
C 
C---- max allowable CL change per iteration 
      DCLMAX =  0.5 
      DCLMIN = -0.5 
      IF(MATYP.NE.1) DCLMIN = MAX(-0.5 , -0.9*CL) 
C 
      HSTINV = GAMM1*(MINF/QINF)**2 / (1.0 + 0.5*GAMM1*MINF**2) 
C 
C---- calculate new Ue distribution assuming no under-relaxation 
C-    also set the sensitivity of Ue wrt to alpha or Re 
      DO 1 IS=1, 2 
        DO 10 IBL=2, NBL(IS) 
          I = IPAN(IBL,IS) 
C 
          DUI    = 0. 
          DUI_AC = 0. 
          DO 100 JS=1, 2 
            DO 1000 JBL=2, NBL(JS) 
              J  = IPAN(JBL,JS) 
              JV = ISYS(JBL,JS) 
              UE_M = -VTI(IBL,IS)*VTI(JBL,JS)*DIJ(I,J) 
              DUI    = DUI    + UE_M*(MASS(JBL,JS)+VDEL(3,1,JV)) 
              DUI_AC = DUI_AC + UE_M*(            -VDEL(3,2,JV)) 
 1000       CONTINUE 
  100     CONTINUE 
C 
C-------- UINV depends on "AC" only if "AC" is alpha 
          IF(LALFA) THEN 
           UINV_AC = 0. 
          ELSE 
           UINV_AC = UINV_A(IBL,IS) 
          ENDIF 
C 
          pcor(ibl,is) = DUI !viscous correction vector (22/05/2005) 
  UNEW(IBL,IS) = UINV(IBL,IS) + DUI 
          U_AC(IBL,IS) = UINV_AC      + DUI_AC 
C 
   10   CONTINUE 
    1 CONTINUE 
C 
C---- set new Qtan from new Ue with appropriate sign change 
      DO 2 IS=1, 2 
        DO 20 IBL=2, IBLTE(IS) 
          I = IPAN(IBL,IS)   
          Qcorr(i) = VTI(IBL,IS)*pcor(IBL,IS) !added 02/06/2005 
          QNEW(I) = VTI(IBL,IS)*UNEW(IBL,IS) 
          Q_AC(I) = VTI(IBL,IS)*U_AC(IBL,IS) 
   20   CONTINUE 
    2 CONTINUE 
      QNEW(IST) = 0.  !correction on 30/03/2004 
C 
C---- calculate new CL from this new Qtan 
      SA = SIN(ALFA) 
      CA = COS(ALFA) 
C 
      BETA = SQRT(1.0 - MINF**2) 
      BETA_MSQ = -0.5/BETA 
C 
      BFAC     = 0.5*MINF**2 / (1.0 + BETA) 
      BFAC_MSQ = 0.5         / (1.0 + BETA) 
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     &         - BFAC        / (1.0 + BETA) * BETA_MSQ 
C 
      CLNEW = 0. 
      CL_A  = 0. 
      CL_MS = 0. 
      CL_AC = 0. 
C 
      I = 1 
      !CGINC = 1.0 - (QNEW(I)/QINF)**2 
      CGINC = sec.cp(i)+ Qcorr(i)**2 
      CPG1  = CGINC / (BETA + BFAC*CGINC) 
      CPG1_MS = -CPG1/(BETA + BFAC*CGINC)*(BETA_MSQ + BFAC_MSQ*CGINC) 
C 
      !CPI_Q = -2.0*QNEW(I)/QINF**2 
      CPI_Q = -2.0*(1-sec.cp(i)) 
      CPC_CPI = (1.0 - BFAC*CPG1)/ (BETA + BFAC*CGINC) 
      CPG1_AC = CPC_CPI*CPI_Q*Q_AC(I) 
C 
      DO 3 I=1, N 
        IP = I+1 
        IF(I.EQ.N) IP = 1 
C 
        !CGINC = 1.0 - (QNEW(IP)/QINF)**2 
        CGINC = sec.cp(i)+ Qcorr(i)**2 
        CPG2  = CGINC / (BETA + BFAC*CGINC) 
        CPG2_MS = -CPG2/(BETA + BFAC*CGINC)*(BETA_MSQ + BFAC_MSQ*CGINC) 
C 
        CPI_Q = -2.0*(1-sec.cp(i)) 
        CPC_CPI = (1.0 - BFAC*CPG2)/ (BETA + BFAC*CGINC) 
        CPG2_AC = CPC_CPI*CPI_Q*Q_AC(IP) 
C 
        DX   =  (X(IP) - X(I))*CA + (Y(IP) - Y(I))*SA 
        DX_A = -(X(IP) - X(I))*SA + (Y(IP) - Y(I))*CA 
C 
        AG    = 0.5*(CPG2    + CPG1   ) 
        AG_MS = 0.5*(CPG2_MS + CPG1_MS) 
        AG_AC = 0.5*(CPG2_AC + CPG1_AC) 
C 
        CLNEW = CLNEW + DX  *AG 
        CL_A  = CL_A  + DX_A*AG 
        CL_MS = CL_MS + DX  *AG_MS 
        CL_AC = CL_AC + DX  *AG_AC 
C 
        CPG1    = CPG2 
        CPG1_MS = CPG2_MS 
        CPG1_AC = CPG2_AC 
    3 CONTINUE 
C 
C---- initialize under-relaxation factor 
      RLX = 1.0 
C 
      IF(LALFA) THEN 
C===== alpha is prescribed: AC is CL 
C 
C----- set change in Re to account for CL changing, since Re = Re(CL) 
       DAC = (CLNEW - CL) / (1.0 - CL_AC - CL_MS*2.0*MINF*MINF_CL) 
C 
C----- set under-relaxation factor if Re change is too large 
       IF(RLX*DAC .GT. DCLMAX) RLX = DCLMAX/DAC 
       IF(RLX*DAC .LT. DCLMIN) RLX = DCLMIN/DAC 
C 
      ELSE 
C===== CL is prescribed: AC is alpha 
C 
C----- set change in alpha to drive CL to prescribed value 
       DAC = (CLNEW - CLSPEC) / (0.0 - CL_AC - CL_A) 
C 
C----- set under-relaxation factor if alpha change is too large 
       IF(RLX*DAC .GT. DALMAX) RLX = DALMAX/DAC 
       IF(RLX*DAC .LT. DALMIN) RLX = DALMIN/DAC 
C 
      ENDIF 
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C 
      RMSBL = 0. 
      RMXBL = 0. 
C 
      DHI = 1.5 
      DLO = -.5 
C 
C---- calculate changes in BL variables and under-relaxation if needed 
      DO 4 IS=1, 2 
        DO 40 IBL=2, NBL(IS) 
          IV = ISYS(IBL,IS) 
C 
C-------- set changes without underrelaxation 
          DCTAU = VDEL(1,1,IV) - DAC*VDEL(1,2,IV) 
          DTHET = VDEL(2,1,IV) - DAC*VDEL(2,2,IV) 
          DMASS = VDEL(3,1,IV) - DAC*VDEL(3,2,IV) 
          DUEDG = UNEW(IBL,IS) + DAC*U_AC(IBL,IS)  -  UEDG(IBL,IS) 
          DDSTR = (DMASS - DSTR(IBL,IS)*DUEDG)/UEDG(IBL,IS) 
C 
C-------- normalize changes  !all corrected 27/06/2004 
          IF(IBL.LT.ITRAN(IS)) DN1 = DCTAU / 10.0  
          IF(IBL.GE.ITRAN(IS)) DN1 = DCTAU / CTAU(IBL,IS) 
          DN2 = DTHET / THET(IBL,IS) 
          DN3 = DDSTR / DSTR(IBL,IS) 
          DN4 = ABS(DUEDG)/0.25 
 
     if (iv<=iblte(is)) then  !just for body 30/03/2004 
C 
C-------- accumulate for rms change 
          RMSBL = RMSBL + DN1**2 + DN2**2 + DN3**2 + DN4**2 
          endif 
C           
C-------- see if Ctau needs underrelaxation 
          RDN1 = RLX*DN1 
          IF(ABS(DN1) .GT. ABS(RMXBL)) THEN 
           RMXBL = DN1 
           IF(IBL.LT.ITRAN(IS)) VMXBL = 'n' 
           IF(IBL.GE.ITRAN(IS)) VMXBL = 'C' 
           IMXBL = IBL 
           ISMXBL = IS 
          ENDIF 
          IF(RDN1 .GT. DHI) RLX = DHI/DN1 
          IF(RDN1 .LT. DLO) RLX = DLO/DN1 
C 
C-------- see if Theta needs underrelaxation 
          RDN2 = RLX*DN2 
          IF(ABS(DN2) .GT. ABS(RMXBL)) THEN 
           RMXBL = DN2 
           VMXBL = 'T' 
           IMXBL = IBL 
           ISMXBL = IS 
          ENDIF 
          IF(RDN2 .GT. DHI) RLX = DHI/DN2 
          IF(RDN2 .LT. DLO) RLX = DLO/DN2 
C 
C-------- see if Dstar needs underrelaxation 
          RDN3 = RLX*DN3 
          IF(ABS(DN3) .GT. ABS(RMXBL)) THEN 
           RMXBL = DN3 
           VMXBL = 'D' 
           IMXBL = IBL 
           ISMXBL = IS 
          ENDIF 
          IF(RDN3 .GT. DHI) RLX = DHI/DN3 
          IF(RDN3 .LT. DLO) RLX = DLO/DN3 
C 
C-------- see if Ue needs underrelaxation 
          RDN4 = RLX*DN4 
          IF(ABS(DN4) .GT. ABS(RMXBL)) THEN 
           RMXBL = DUEDG 
           VMXBL = 'U' 
           IMXBL = IBL 
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           ISMXBL = IS 
          ENDIF 
          IF(RDN4 .GT. DHI) RLX = DHI/DN4 
          IF(RDN4 .LT. DLO) RLX = DLO/DN4 
C 
   40   CONTINUE 
    4 CONTINUE 
C 
C---- set true rms change 
      RMSBL = SQRT( RMSBL / (4.0*FLOAT( NBL(1)+NBL(2) )) ) !/1000 !14/04/2004 
C 
C 
      IF(LALFA) THEN 
C----- set underrelaxed change in Reynolds number from change in lift 
       CL = CL + RLX*DAC 
      ELSE 
C----- set underrelaxed change in alpha 
       ALFA = ALFA + RLX*DAC 
       ADEG = ALFA/DTOR 
      ENDIF 
C 
C---- update BL variables with underrelaxed changes 
      DO 5 IS=1, 2 
        DO 50 IBL=2, NBL(IS) 
          IV = ISYS(IBL,IS) 
C 
          DCTAU = VDEL(1,1,IV) - DAC*VDEL(1,2,IV) 
          DTHET = VDEL(2,1,IV) - DAC*VDEL(2,2,IV) 
          DMASS = VDEL(3,1,IV) - DAC*VDEL(3,2,IV) 
          DUEDG = UNEW(IBL,IS) + DAC*U_AC(IBL,IS)  -  UEDG(IBL,IS) 
          DDSTR = (DMASS - DSTR(IBL,IS)*DUEDG)/UEDG(IBL,IS) 
C 
          CTAU(IBL,IS) = CTAU(IBL,IS) + RLX*DCTAU 
          THET(IBL,IS) = THET(IBL,IS) + RLX*DTHET 
          DSTR(IBL,IS) = DSTR(IBL,IS) + RLX*DDSTR 
          UEDG(IBL,IS) = UEDG(IBL,IS) + RLX*DUEDG 
C 
          IF(IBL.GT.IBLTE(IS)) THEN 
           IW = IBL - IBLTE(IS) 
           DSWAKI = WGAP(IW) 
          ELSE 
           DSWAKI = 0. 
          ENDIF 
C 
C-------- eliminate absurd transients 
          IF(IBL.GE.ITRAN(IS)) 
     &      CTAU(IBL,IS) = MIN( CTAU(IBL,IS) , 0.25 ) 
C 
          IF(IBL.LE.IBLTE(IS)) THEN 
            HKLIM = 1.02 
          ELSE 
            HKLIM = 1.00005 
          ENDIF 
          MSQ = UEDG(IBL,IS)**2*HSTINV 
     &        / (GAMM1*(1.0 - 0.5*UEDG(IBL,IS)**2*HSTINV)) 
          DSW = DSTR(IBL,IS) - DSWAKI 
          CALL DSLIM(DSW,THET(IBL,IS),UEDG(IBL,IS),MSQ,HKLIM) 
          DSTR(IBL,IS) = DSW + DSWAKI 
C 
C-------- set new mass defect (nonlinear update) 
          MASS(IBL,IS) = DSTR(IBL,IS) * UEDG(IBL,IS) 
C 
   50   CONTINUE 
    5 CONTINUE 
C 
C 
C---- equate upper wake arrays to lower wake arrays 
      DO 6 KBL=1, NBL(2)-IBLTE(2) 
        CTAU(IBLTE(1)+KBL,1) = CTAU(IBLTE(2)+KBL,2) 
        THET(IBLTE(1)+KBL,1) = THET(IBLTE(2)+KBL,2) 
        DSTR(IBLTE(1)+KBL,1) = DSTR(IBLTE(2)+KBL,2) 
        UEDG(IBLTE(1)+KBL,1) = UEDG(IBLTE(2)+KBL,2) 
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         TAU(IBLTE(1)+KBL,1) =  TAU(IBLTE(2)+KBL,2) 
         DIS(IBLTE(1)+KBL,1) =  DIS(IBLTE(2)+KBL,2) 
         CTQ(IBLTE(1)+KBL,1) =  CTQ(IBLTE(2)+KBL,2) 
 6    CONTINUE 
C 
      RETURN 
      END 
 
 
 
      SUBROUTINE DSLIM(DSTR,THET,UEDG,MSQ,HKLIM) 
      IMPLICIT REAL (A-H,M,O-Z) 
C 
      H = DSTR/THET 
      CALL HKIN(H,MSQ,HK,HK_H,HK_M) 
C 
      DH = MAX( 0.0 , HKLIM-HK ) / HK_H 
      DSTR = DSTR + DH*THET 
C 
      RETURN 
      END 
 

VIX Subroutine Stagpoint 
 
      !This subroutine finds the stagnation point of 
      ! a interpolated section. If it is a membrane, 
      ! fsharp = true, program will set the stagnation 
      ! point at the very leading edge 
      !*********************************************** 
      ! Created by: Augusto Veiga, 
      ! FSIG, University of Southampton 2003 
      !*********************************************** 
  
      subroutine stagpoint(Up,s,gamma,x,N,Nw,Ist,SST,SSt_GO,SST_GP, 
     &   fsharp) 
 integer:: N,Nw,IST,IS 
 real:: cpmax,h 
 real:: dcp1,dcp2 
 real,dimension(N+Nw):: Up,s,x,gamma,cp 
      logical:: fsharp 
 
 !Calculating Cp over the wing 
 do i = 1,N 
    cp(i) = 1.-Up(i)**2 
 enddo 
      if (fsharp) then 
   ist = int(N/2)+1 
   sst = s(ist) 
   is = ist 
 else 
   !Getting biggest Cp and position 
   cpmax = 0  
   is = int(N/2)+1 
   k  = is 
        i  = is 
   lp1: do 
    i = i+1 
    if (cp(i)>cpmax) then 
       cpmax = cp(i) 
       is = i       !finding a possible point 
       h = s(i)-s(i-1) 
       dcp1 = (cpmax-cp(i-1))/h 
    dcp2 = (cp(i+1)-cpmax)/h 
    if ((dcp1>0 .and. dcp2<0)) then 
       ist = is  !testing derivatives 
          sst = s(is) 
          exit lp1 
       endif 
     else if (i>(k+int(N/2))) then 
       is = int(N/2)+1 
       sst = s(is) 
       exit lp1 
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     endif 
   enddo lp1 
 endif           
 !signal for gamma 
 gamma(ist) = 0 
 do i = 1,IST-1  !IST+1,N 
         gamma(i) = Up(i) 
 enddo 
      !upper part 
 do i = IST+1,N 
    gamma(i) = -Up(i) 
 enddo 
 !wake 
 do i = N+1,N+Nw 
    gamma(i) = Up(i) 
 enddo 
      DGAM = GAMMA(IST+1) - GAMMA(IST) 
 SST_GO = (SST - S(Ist+1))/DGAM 
 SST_GP = (S(Ist+1) - SST)/DGAM 
      return 
 end subroutine 
 

VIX Subroutine AIJCALC 
 
 
!*********************************************************************************** 
      SUBROUTINE AIJCALC 
C-------------------------------------------------------------- 
C     Calculates two surface vorticity (gamma) distributions 
C     for alpha = 0, 90  degrees.  These are superimposed 
C     in SPECAL or SPECCL for specified alpha or CL. 
C     This subroutine was adapted from XFOIL by Augusto Veiga 
C-------------------------------------------------------------- 
      INCLUDE 'XFOIL.INC' 
C 
C---- distance of internal control point ahead of sharp TE 
C-    (fraction of smaller panel length adjacent to TE) 
      BWT = 0.1 
C 
      WRITE(*,*) 'Calculating unit vorticity distributions ...' 
C 
      DO 10 I=1, N 
!        GAM(I) = 0. 
        GAMU(I,1) = 0. 
        GAMU(I,2) = 0. 
   10 CONTINUE 
      PSIO = 0. 
C 
C---- Set up matrix system for  Psi = Psio  on airfoil surface. 
C-    The unknowns are (dGamma)i and dPsio. 
      DO 20 I=1, N 
C 
C------ calculate Psi and dPsi/dGamma array for current node 
        CALL PSILIN(I,X(I),Y(I),NX(I),NY(I),PSI,PSI_N,.FALSE.,.TRUE.) 
C 
        PSIINF = QINF*(COS(ALFA)*Y(I) - SIN(ALFA)*X(I)) 
C 
C------ RES1 = PSI( 0) - PSIO 
C------ RES2 = PSI(90) - PSIO 
        RES1 =  QINF*Y(I) 
        RES2 = -QINF*X(I) 
C 
C------ dRes/dGamma 
        DO 201 J=1, N 
          AIJ(I,J) = DZDG(J) 
  201   CONTINUE 
C 
        DO 202 J=1, N 
          BIJ(I,J) = -DZDM(J) 
  202   CONTINUE 
C 
C------ dRes/dPsio 
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        AIJ(I,N+1) = -1.0 
C 
        GAMU(I,1) = -RES1 
        GAMU(I,2) = -RES2 
C 
   20 CONTINUE 
C 
C---- set Kutta condition 
C-    RES = GAM(1) + GAM(N) 
      RES = 0. 
C 
      DO 30 J=1, N+1 
        AIJ(N+1,J) = 0.0 
   30 CONTINUE 
C 
      AIJ(N+1,1) = 1.0 
      AIJ(N+1,N) = 1.0 
C 
      GAMU(N+1,1) = -RES 
      GAMU(N+1,2) = -RES 
C 
C---- set up Kutta condition (no direct source influence) 
      DO 32 J=1, N 
        BIJ(N+1,J) = 0. 
   32 CONTINUE 
C 
      IF(SHARP) THEN 
C----- set zero internal velocity in TE corner  
C 
C----- set TE bisector angle 
       AG1 = ATAN2(-YP(1),-XP(1)    ) 
       AG2 = ATANC( YP(N), XP(N),AG1) 
       ABIS = 0.5*(AG1+AG2) 
       CBIS = COS(ABIS) 
       SBIS = SIN(ABIS) 
C 
C----- minimum panel length adjacent to TE 
       DS1 = SQRT( (X(1)-X(2)  )**2 + (Y(1)-Y(2)  )**2 ) 
       DS2 = SQRT( (X(N)-X(N-1))**2 + (Y(N)-Y(N-1))**2 ) 
       DSMIN = MIN( DS1 , DS2 ) 
C 
C----- control point on bisector just ahead of TE point 
       XBIS = XTE - BWT*DSMIN*CBIS 
       YBIS = YTE - BWT*DSMIN*SBIS 
ccc       write(*,*) xbis, ybis 
C 
C----- set velocity component along bisector line 
       CALL PSILIN(0,XBIS,YBIS,-SBIS,CBIS,PSI,QBIS,.FALSE.,.TRUE.) 
C 
CCC--- RES = DQDGj*Gammaj + DQDMj*Massj + QINF*(COSA*CBIS + SINA*SBIS) 
       RES = QBIS 
C 
C----- dRes/dGamma 
       DO J=1, N 
         AIJ(N,J) = DQDG(J) 
       ENDDO 
C 
C----- -dRes/dMass 
       DO J=1, N 
         BIJ(N,J) = -DQDM(J) 
       ENDDO 
C 
C----- dRes/dPsio 
       AIJ(N,N+1) = 0. 
C 
C----- -dRes/dUinf 
       GAMU(N,1) = -CBIS 
C 
C----- -dRes/dVinf 
       GAMU(N,2) = -SBIS 
C 
      ENDIF 
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C 
C---- LU-factor coefficient matrix AIJ 
      CALL LUDCMP(IQX,N+1,AIJ,AIJPIV) 
      LQAIJ = .TRUE. 
C 
C---- solve system for the two vorticity distributions 
      CALL BAKSUB(IQX,N+1,AIJ,AIJPIV,GAMU(1,1)) 
      CALL BAKSUB(IQX,N+1,AIJ,AIJPIV,GAMU(1,2)) 
C 
C---- set inviscid alpha=0,90 surface speeds for this geometry 
      DO 50 I=1, N 
        QINVU(I,1) = GAMU(I,1) 
        QINVU(I,2) = GAMU(I,2) 
   50 CONTINUE 
C 
      LGAMU = .TRUE. 
C 
      RETURN 
      END 
 

Mesh_Sail: Program for Creating Sail Mesh 
 
      Program Mesh_sail 
      include 'section.inc' 
       
      real:: length, height, aflow, p(3),dt 
      real:: org(3),x(3),y(3) !origin 
 real,dimension(3,3):: vr 
      type(section):: csec(7),tesec 
 real:: intquad 
       
      pi = 3.1415 
      open(1,file = 'dados.txt') 
 
      !reading height,footleng and flow incidence 
         read(1,*) height,length,aflow 
      !reading sections 
 ! length, entry angle, te angle 
    j = 1 
         do i = 1,4 
           read(1,*) csec(j).leng,csec(j).th1,csec(j).th2 
      j = j+2 
         enddo         
      !reading trailing edge (te) section 
         read(1,*) trv,abat,tesec.cpos,tesec.camber 
 !reading foot and top section angles 
    read(1,*) alfa1,beta1,alfa2,beta2 
      close(1) 
      dt = 1./3 
 t = 0 
 do i=1,7,2 
        csec(i).t = t 
   t=t+dt 
 enddo 
      aflow = aflow*pi/180 
      abat = abat*pi/180 
 alfa1 = alfa1*pi/180 
      alfa2 = alfa2*pi/180 
 beta1 = beta1*pi/180 
      beta2 = beta2*pi/180 
 
 !calculation of intermediary section angles 
  
 do i = 2,6,2 
   csec(i).th1 =(csec(i+1).th1+csec(i-1).th1)/2 
        csec(i).th2 =(csec(i+1).th2+csec(i-1).th2)/2 
   csec(i).t = (csec(i+1).t+csec(i-1).t)/2 
   if (i==2) then 
     k = 1 
     do j=1,3 
       x(j) = csec(k).t 
    y(j) = csec(k).leng  
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       k = k+2 
     enddo 
   else 
          k=i-3 
     do j=1,3 
       x(j) = csec(k).t 
    !t = t+tr 
    y(j) = csec(k).leng  
       k = k+2 
     enddo 
        endif 
   csec(i).leng = intquad(x,y,csec(i).t) !quadratic interpolation 
 enddo 
 
      !generation of transversal sections 
      do k =1,7 
        !xm = csec(k).cpos 
        !ym = csec(k).camber 
   !call solve_foil(xm,ym,a,b,c)        
   ds = 1.0/10 
        s = 0 
        csec(k).p1 = 0 
   call set_sec(csec(k))      
        do i = 2,11 
          s=s+ds 
          csec(k).p1(2,i)= csec(k).p1(2,i)*csec(k).leng 
  !(a*s**3+b*s**2+c*s)*csec(k).leng 
          csec(k).p1(1,i)= csec(k).p1(1,i)*csec(k).leng 
  !s*csec(k).leng 
        enddo 
      enddo 
      !foot section height 
      zf = tan(beta1) 
 b  = tan(alfa1) 
 a  = zf-b 
 s = 0 
 csec(1).p1(3,1) = 0 
 do i = 2,11 
   s = s+ds 
   csec(1).p1(3,i) = (a*s**2+b*s)*csec(1).leng 
 enddo 
 
      !top section height 
      zf = tan(beta2) 
 b  = tan(alfa2) 
 a  = zf-b 
 s = 0 
 csec(7).p1(3,1) = height 
 do i = 2,11 
   s = s+ds 
   csec(7).p1(3,i) = height+(a*s**2+b*s)*csec(1).leng 
 enddo 
 
 !intermediate sections height 
 dt = 1.0/6 
 t=0 
 do i = 2,6 
   t = t+dt 
   do j = 1,11  
      !df = csec(4).p1(3,j)+csec(1).p1(3,j) 
      csec(i).p1(3,j) = t*height   !df 
   enddo 
 enddo 
 
 
      !Generation of te section 
      xm = tesec.cpos 
      ym = tesec.camber   
      call solve_foil(xm,ym,a,b,c) 
      t = 0 
      !tesec.p1 = 0      
      do i = 1,7         
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        tesec.p1(2,i)= (a*t**3+b*t**2+c*t)*height 
        tesec.p1(3,i)= csec(i).p1(3,10) 
        tesec.p1(1,i)= csec(i).p1(1,10) 
   t=t+dt 
      enddo 
 
 
      !rotation of te section (just y coordinate) 
      a1 = aflow-abat 
 xp = csec(4).p1(1,10) 
 yp = csec(4).p1(2,10) 
      p(1) = xp*cos(a1)-yp*sin(a1) 
 p(2) = xp*sin(a1)+Yp*cos(a1) 
 p(3) = csec(4).p1(3,10) 
 a2 = atan(p(2)/p(3)) 
      do i = 1,7 
         zp = tesec.p1(3,i) 
         yp = tesec.p1(2,i) 
         !tesec.p1(3,i) = zp*cos(a1)-yp*sin(a1) 
         tesec.p1(2,i) = zp*sin(a2)+Yp*cos(a2) 
      enddo 
 
      !translating te section 
      yt = trv*length 
      do i = 1,7 
         tesec.p1(2,i) = tesec.p1(2,i) +yt 
      enddo         
       
      !Calculating central and top sections twist angles 
      do k = 1,7 
        csec(k).asec = atan(tesec.p1(2,k)/ 
     &                 (tesec.p1(1,k)-csec(k).p1(1,1)) ) 
      enddo 
 
      ! rotating sections 
      do k = 1,7 
        a1 = csec(k).asec 
        xo = csec(k).p1(1,1) 
        yo = 0 
        do i = 2,11 
           xp = csec(k).p1(1,i) 
           yp = csec(k).p1(2,i) 
           csec(k).p1(1,i) =xo+ xp*cos(a1)-yp*sin(a1) 
           csec(k).p1(2,i) =yo+ xp*sin(a1)+Yp*cos(a1) 
        enddo 
      enddo 
      !writting msh file  
 M = 11  !chordwise 
 N = 7   !spanwise 
      open(2,file = 'c:\codigos\mshuns\sail.msh') 
   do i = 1,12 
     write(2,10)  
   enddo 
   write(2,20) M,N 
   t = 0 
   do i = 1,N 
     s = 0 
     do j = 1,M 
       write(2,30) csec(i).p1(1,j),csec(i).p1(2,j),csec(i).p1(3,j), 
     &                  s,t 
       s = s+ds 
     enddo 
     t = t+dt 
        enddo 
 close(2) 
 
10    format('%',1x) 
20    format(1x,i4,1x,i4) 
30    format(1x,f8.5,1x,f8.5,1x,f8.5,1x,f8.5,1x,f8.5) 
      end program 
 
!************************************************************************ 
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      subroutine set_sec(sec) 
 include 'section.inc' 
 !This program generates the section using the Jackson Polynomial 
 !Ref: P.S. Jackson, "A Simple Model for 2D Sails 
 ! AIAA Technical notes 1983 
       ! Author: Augusto Veiga 
 
 type(section):: sec 
 real:: A,B, pi 
 real:: delta, a1,b1,c1 
       
 pi = 4. * atan(1.) 
 sec.th1 = sec.th1*pi/180 
 sec.th2 = sec.th2*pi/180 
 A = sec.th1+sec.th2 
 B = sec.th1-sec.th2 
       
 !seeking maximum camber position 
 a1 = -0.75*B*2 
 b1 = -0.5*A 
 c1 = 0.25*B 
  
 delta = b1**2-4*a1*c1 
 if (delta>=0) then 
   r = (b1-sqrt(delta))/(2*a1) 
   sec.cpos = (1+r)/2. 
   tm = 0.25*(1-r**2)*(A+B*r) 
   sec.camber = tm/2.  
 endif 
 
 !Generating sections 
      ds = 2.0/10 
 dx = 1.0/10 
 s = -1 
 x = 0 
 do i=1,11 
   t = 0.25*(1-s**2)*(A+B*s) 
   sec.p1(2,i) = t/2 
   sec.p1(1,i) = x 
   s = s+ds 
   x = x+dx 
 enddo 
      return 
 end subroutine 
 
!******************************************************* 
 real function intquad(x,y,x1) 
 real,dimension(3):: x,y 
 real:: x1,sum 
       
 sum = 0 
      sum = sum+((x1-x(2))*(x1-x(3)))/((x(1)-x(2))*(x(1)-x(3)))*y(1) 
 sum = sum+((x1-x(1))*(x1-x(3)))/((x(2)-x(1))*(x(2)-x(3)))*y(2) 
 sum = sum+((x1-x(1))*(x1-x(2)))/((x(3)-x(1))*(x(3)-x(2)))*y(3)   
  
 intquad = sum 
 end function 
      subroutine solve_foil(xm,ym,a,b,c) 
 !makes the foil using a 3rd order polynomial 
 real:: xm,ym,a,b,c 
 real:: vr(3,3), v(3) 
 
 do i=1,3 
   k = 4  
   if (i==2) then  
     v(i) = ym/xm 
   else 
     v(i) = 0 
   endif 
   do j=1,3 
     k = k-j 
     if (i==1) then 
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       vr(i,j) = k*xm**(k-1) 
     else if (i==2) then 
       vr(i,j) = xm**(k-1) 
     else 
       vr(i,j) = 1.0 
     endif 
   enddo 
      enddo 
      !solve system using Gauss elimination 
      call gauss(3,3,Vr,v,1) 
      a = v(1) 
 b = v(2) 
 c = v(3) 
 
 return 
 end subroutine 
 
 
      SUBROUTINE GAUSS(NSIZ,NN,Z,R,NRHS) 
C     ******************************************************* 
C     *                                                     * 
C     *   Solves general NxN system in NN unknowns          * 
C     *    with arbitrary number (NRHS) of righthand sides. * 
C     *   Assumes system is invertible...                   * 
C     *    ...if it isn't, a divide by zero will result.    * 
C     *                                                     * 
C     *   Z is the coefficient matrix...                    * 
C     *     ...destroyed during solution process.           * 
C     *   R is the righthand side(s)...                     * 
C     *     ...replaced by the solution vector(s).          * 
C     *                                                     * 
C     *                                                     * 
C     ******************************************************* 
C 
      DIMENSION Z(NSIZ,NSIZ), R(NSIZ,NRHS) 
C 
      DO 1 NP=1, NN-1 
        NP1 = NP+1 
C 
C------ find max pivot index NX 
        NX = NP 
        DO 11 N=NP1, NN 
          IF(ABS(Z(N,NP))-ABS(Z(NX,NP))) 11,11,111 
  111      NX = N 
   11   CONTINUE 
C 
        PIVOT = 1.0/Z(NX,NP) 
C 
C------ switch pivots 
        Z(NX,NP) = Z(NP,NP) 
C 
C------ switch rows & normalize pivot row 
        DO 12 L=NP1, NN 
          TEMP = Z(NX,L)*PIVOT 
          Z(NX,L) = Z(NP,L) 
          Z(NP,L) = TEMP 
   12   CONTINUE 
C 
        DO 13 L=1, NRHS 
          TEMP = R(NX,L)*PIVOT 
          R(NX,L) = R(NP,L) 
          R(NP,L) = TEMP 
   13   CONTINUE 
C 
C------ forward eliminate everything 
        DO 15 K=NP1, NN 
          ZTMP = Z(K,NP) 
C 
C          IF(ZTMP.EQ.0.0) GO TO 15 
C 
          DO 151 L=NP1, NN 
            Z(K,L) = Z(K,L) - ZTMP*Z(NP,L) 
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  151     CONTINUE 
          DO 152 L=1, NRHS 
            R(K,L) = R(K,L) - ZTMP*R(NP,L) 
  152     CONTINUE 
   15   CONTINUE 
C 
    1 CONTINUE 
C 
C---- solve for last row 
      DO 2 L=1, NRHS 
        R(NN,L) = R(NN,L)/Z(NN,NN) 
    2 CONTINUE 
C 
C---- back substitute everything 
      DO 3 NP=NN-1, 1, -1 
        NP1 = NP+1 
        DO 31 L=1, NRHS 
          DO 310 K=NP1, NN 
            R(NP,L) = R(NP,L) - Z(NP,K)*R(K,L) 
  310     CONTINUE 
   31   CONTINUE 
    3 CONTINUE 
C 
      RETURN 
      END ! GAUSS 


