HJNIVERSITY OF

Southampton

University of Southampton Research Repository

ePrints Soton

Copyright © and Moral Rights for this thesis are retained by the author and/or other
copyright owners. A copy can be downloaded for personal non-commercial
research or study, without prior permission or charge. This thesis cannot be
reproduced or quoted extensively from without first obtaining permission in writing
from the copyright holder/s. The content must not be changed in any way or sold
commercially in any format or medium without the formal permission of the
copyright holders.

When referring to this work, full bibliographic details including the author, title,
awarding institution and date of the thesis must be given e.g.

AUTHOR (year of submission) "Full thesis title", University of Southampton, name
of the University School or Department, PhD Thesis, pagination

http://eprints.soton.ac.uk

http://eprints.soton.ac.uk/

Appendix E

FORTRAN 95 Codes

VIX Head Files and Definitions

parameter (NQA = 300)

type node
integer i

real:: x,y,z
real:: s,t,TAU
real:: Up,U,Cp,Cpe
real:: Dxt2,Dyt2,Dzt2
real:: Dxs2,Dys2,Dzs2
real:: Dps2,Dpt2

end type node

type section
integer:: id,Nnd,Nlower
integer:: istag,iblte(2),Nbl(2)
integer,dimension(Nga, 2) :: IBL
integer,dimension(2) :: imatch,Nmatch, tr
real:: sc,disp, leng,Vchord(3),aflow
real,dimension(2):: xsep, xre,xtr
real,dimension (NQA) :: s,t,curv

real,dimension(3,NQA):: P,Vn

) BOUNDARY LAYER VARS
real,dimension (NQA,2):: TAU,UINV
real,dimension (NQA):: Up,Cp

real,dimension (4,NQA,2):: Q
real:: cli,clv,cd,Cdf,Cdp
end type section

NODE
id -> pt identity
X,yY,2z —> coordinates of node
Cp —-> pressure coefficient
Cpe -> viscous pressure coefficient
U -> absolute velocity
TAU -> shear stress
s, t —-> surface coordinates

Dxt2,Dyt2,Dzt2 -> spline 2nd derivatives on parametric
t direction for each coordinate
Dxs2,Dys2,Dzs2 -> spline 2nd derivatives on parametric
s direction for each coordinate

|
|
1
1
|
|
|
1
1
|
|
1
!
! Dps2,Dpt2
|
1
1
|
|
1
1
|
|
1
1
|
|

-> spline second derivative on parametric
directions s and t for nodal Cp
SECTION
id -> identity of section
istag -> location of stagnation point
Nlower —-> index where leading edge is
Npt -> No of points on section (max=100)
ite -> index where trailing edge lives
p(..) -> coordinates points
s(.) -> curve coordinate
t(.) -> spanwise curve coordinate
vn(..) -> normal vector on a section node
imatch(.) -> point of beginning of matching surface

Nmatch(.) —-> point where ends matching surface

R R R R R R R R R R R T

Program created by Augusto Veiga (University of Southampton 2003) *
‘**

1

! tr(.) -> point where transition occurs
! disp -> displacement of section on x axis
! sc -> scale of section

! leng -> chord length

! aflow -> flow incidence on the particular section
! Vchord -> unitary vector of chord

! xsep,ysep -> point of separation 1 - upper
i 2 - lower
! xtr,ytr -> point of transition

! BOUNDARY LAYER

) o] -> vector of boundary layer variables

! 1 - nr or Ct

! 2 - th

! 3 - dels

i 4 - Ue

! Cli -> inviscid lift coefficient

! Clv -> viscous lift coefficient

! Ccd -> drag coefficient

! Ue -> edge velocity modulus (viscous)

! Up -> edge velocity modulus (potential)

1

1

1

type panel
integer:: id,np,ibc
integer,dimension (4) : :ngb
character (5):: tipo

real:: s,t,area,fl, fd

type (node),dimension(4):: nd,mid
type (node):: co

real:: Mx,My,Mz

real:: cp,Up,rpv

real:: u(3),vm(3)

end type panel

Mx,My,Mz -> momentum in relation to origin of root chord

1

! PANEL

! id -> pt identity

! ibc -> panel type index:

! -1 trailing edge panel

! 1 Dbody panel

! 2 wake attached to trailing edge

) 3 free wake panels

! 4 fixed wake

! ngb -> neighbouring panels (they are 4)
! ngb(i)= -4 reflection plane

! ngb(i)= -2 discontinuous

1

! X,y,2z —> coordinates of node

! Cp —-> pressure coefficient

! U -> absolute velocity

! co —> collocation pt of panel

! mid —> mid edge between nodes (follows right hand rule)
! vm -> vector velocity in m/s (not that useful)
! nd —> panel nodes (they are 4)

! area -> area of panel

! f1l —-> lifting force of panel

! fd -> drag force of panel

! rpv -> viscous pressure resistence

1

!

1% % sk ok ok ok ok ok sk ok ok sk ok ok ok ok ok ok ke sk ok ok ok ok ok ok ok ke sk ok ok sk ok ok ok ok ok sk ok ok sk ok ok ok ok ok ok ok ok ok ke ok ok ok ok ok ok ok ok ke ok ok ok ok ok ok ok ok ok ok

! Program created by Augusto Veiga (University of Southampton 2003) *
!**

Two-Dimensional Panel Method

subroutine panel (X,Y,IFLAG,Nlower
& ,Nupper,Nodtot,Nmax,V, alpha,

173

& naca,tau)

integer Nmax
real,dimension (Nmax) ::x,y,xmid, ymid, costhe, sinthe
real,dimension (Nmax) ::V,CP

real:: alpha, Tau,gamma,CD,CL1,CL2
integer:: Nodtot,Nupper,Nlower, IFLAG

real PI, PI2INV, XNU,cosalf,sinalf,thick,camber,beta
real, dimension (Nodtot,Nodtot+1l) :: A
integer N

PI = 4. * atan(1l.)

PI2INV = 1. / (2. * PI)
V=20

IF (ALPHA.gt.PI/2.) GOTO 400
if (ALPHA.gt.90.) goto 400
close (5)

... Initializing data

print *, '"*** Inicializacao dos dados - aguarde ... '
call SETUP(x,y,xmid, ymid, costhe, sinthe,cosalf,sinalf,PI,

& PI2INV,Nodtot, Nmax, Nupper,Nlower, alpha, tau,
& NACA, IFLAG, XNU)

COSALF = cos (ALPHA) 1*P1/180.)

SINALF = sin (ALPHA) 1*PI1/180.)

A=0

...................... Influence coefficient matrix assembly
print *, '*** Montagem da matriz de coeficientes - aguarde ... '
call COFISH(x,y,xmid,ymid, costhe, sinthe,Nodtot,pi,pi2inv,

& alpha, cosalf,sinalf,Nmax,A)

................ Gauss Elimination solution system
print *, '*** Solucao do sistema de equacoes - aguarde ... '
call GAUSS2 (A,Nodtot-1,1,Nodtot)

................. Velocity and pressure coefficient
print *, '*** Calculo das velocidades e pressoes - aguarde ... '
call VELDIS(A,x,y,Nlower, Nupper,Nodtot, xmid, ymid, V,CP, gamma,

& Nmax, XNU)

................................. Calculo dos coeficientes do aerofolio
print *, '*** Calculo dos coefs. adimensionais - aguarde ... '
call FANDM(A, x,y,Nlower,Nupper,Nodtot, xmid, ymid, V, CP, gamma,

& Nmax, sinalf, cosalf,CD,CL1,CL2)
400 write (*,9999)
!'stop
9999 format (//, ' End of panel method - Univ. Southampton/COPPE (C)
& 2001")

——— Fim do programa principal

end subroutine

174

cAAARARARARARRARARAARARARARAARAARARARAAAARAAARAA SUBROUTINE 3 SETUP 3

c ARARRAAARAARU
c
subroutine SETUP (x,y,xmid, ymid,costhe, sinthe,cosalf,sinalf,PI,
& PI2INV,Nodtot, Nmax, Nupper,Nlower, alpha, tau,
& NACA, IFLAG, XNU)
c
integer Nmax
real,dimension (Nmax) ::x,y,xmid, ymid, costhe, sinthe
real,dimension (Nmax) ::V,CP
real alpha,Tau, thick, camber,beta
real Z
integer Nodtot,Nupper,Nlower, IFLAG, SIGN
real PI, PI2INV, XNU
integer N, NACA
real cosalf,sinalf
XNU= .89292E-06
if (IFLAG.ne.l) go to 120
NPOINTS = NLOWER
SIGN = -1.
NSTART = 0
do 110 NSURF=1,2
do 100 N=1,NPOINTS
FRACT = float (N-1) / float (NPOINTS)
Z = .5 * (1. - cos(PI * FRACT))
I = NSTART + N
call BODY(Z,alpha,NACA, tau,Nlower, Nupper, SIGN,
& beta, X (I),Y(I))
100 continue
NPOINTS = NUPPER
SIGN = 1.
NSTART = NLOWER
110 continue
c
c
ettt et et e et i i e e panel slope
c
120 do 200 I=1,Nodtot-1
DX = X(I+1l) - X(I)
DY = Y(I+1l) - Y(I)
DIST = sqgrt (DX * DX + DY * DY)
SINTHE(I) = DY / DIST
COSTHE (I) = DX / DIST
200 continue
c
c
ottt e ettt e e e e e collocation pts
c
do 300 I=1,Nodtot-1
XMID(I) = .5 * (X(I) + X(I+1))
YMID(I) = .5 * (Y(I) + Y(I+1))
300 continue
return
c
c
e End SETUP
c
end
c
c UARARRAARAL,
cAARRRRAAARAAAAAARAAAARRAAARAARAAAAAARAAAARRAAAAAA SUBROUTINE 3 BODY 3
c ARRARRRAARAD
c
subroutine BODY (Z,alpha,NACA,tau,Nlower, Nupper, SIGN,
& beta,xi,yi)
c

175

UARARAARARARAARARARAARA Descricao dos Parametros AARARARAAAARARARAARA

c

c 3 3
c 3 Z - parametro de espacamento nodal (entrada) 3
c 3 SIGN - identificador da superficie: +1 - superficie superior 3
c 3 -1 - superficie inferior 3
c 3 (entrada) 3
c 3 X — coordenada cartesiana X (entrada) 3
c 3 Y - coordenada cartesiana Y (entrada) 3
c

ARRARAARAAARRARRARAAAAAARARARRARRARAARARARARAARARRAAARARRAARAARAARAAARRARARY
real alpha,Xi,Yi,tau,epsmax,ptmax,thick, camber,beta

real Z
integer Nlower, Nupper,Nmax,SIGN
if (SIGN.1lt.0.) Z = 1. - Z

call NACA45(Z,tau,NACA, epsmax,ptmax,alpha,thick, camber)
Xi = Z - SIGN * THICK * sin(BETA)
Yi = CAMBER + SIGN * THICK * cos(BETA)

return
c
c
O e End BODY
c

end
c
c URAARARAAARAA;
cAARRRAAAARAAAAAARRAAARARAAAAARAAAAAARAAAARRAAAA SUBROUTINE 3 COFISH 3
c ARRARRAARRARRU
c

subroutine COFISH(x,y,xmid,ymid, costhe, sinthe,Nodtot,pi,pi2inv,

& alpha, cosalf,sinalf,Nmax,A)
c
c
c UARRARARAARRAAARRRRAAAAARA Descricao dos Parametros AARRRAAAARARAAARAARRAA;
c 3 3
c 3 SINALF - valor de sin(Alpha) (entrada) 3
c 3 COSALF - valor de cos(Alpha) (entrada) 3
c AAARARARRAARAARRARRAARAARRAARAARAARRAARAARAARAARRAARAARRAAARAARAARRARRAUD
c

integer Nmax,Nodtot,N
real,dimension (Nmax) ::x,y,xmid, ymid, costhe, sinthe
real,dimension (Nodtot, Nodtot+1) ::A

real alpha,Tau, Epsmax,ptmax,cosalf,sinalf,pi,pi2inv

N = NODTOT-1
do 120 I=1,N

c
ottt et e e et et e e, panel contribution
c
do 110 J=1,N
FTAN = PI
if (J.eq.I) goto 100
DXJ = XMID(I) - X(J)
DXJP = XMID(I) - X(J+1)
DYJ = YMID(I) - Y(J)
DYJP = YMID(I) - Y(J+1)
FTAN = atan2 (DYJP*DXJ-DXJP*DYJ, DXJP*DXJ+DYJP*DYJ)
100 A(I,J) = FTAN * PI2INV
c
Cveenennnn Kutta condition at trailing edge
c
if (J.eq.l) then
A(I,J) = A(I,J) - PI2INV * atan(YMID(I)/(1.-XMID(I)))
endif
if (J.eq.N) then
A(I,J) = A(I,J) + PI2INV * atan(YMID(I)/(1.-XMID(I)))
endif
if (I.eq.J) A(I,J) = A(I,J) - 1.
110 continue
c
Coa ettt ettt ittt i e e Free vars
c
A(I,N+1) = - (XMID(I) * COSALF + YMID(I) * SINALF)

120 continue

176

return
c
c
C——— End COFISH
c
end
c
c URARRARAAARAA;
cARRARARARARARRARARAARARARARAARARARARRAARARAAAAR SUBROUTINE * VELDIS 3
c ARRARRARARRARRU
c
subroutine VELDIS (A, x,y,Nlower,Nupper, Nodtot, xmid, ymid,V,CP, gamma,
& Nmax, XNU)
real gamma
integer Nmax
real,dimension (Nmax) ::x,y,xmid, ymid, costhe, sinthe,V,CP,FI,CF
real,dimension (Nodtot,Nodtot+1) ::A
real alpha, Tau, Epsmax,ptmax,cosalf,sinalf,pi,pi2inv, XNU
integer Nodtot,N
N=Nodtot-1 !number of panels
do 50 I=1,N
FI(I) = A(I,N+1)
50 continue
GAMMA = FI(N) - FI(1l)
c
c
[tangential velocity and pressure
c
[lower surface
c

do 100 K=1,NLOWER-1
if (K.eg.l.or.K.eq.NLOWER-1) then

if (K.eqg.l) then
XK1l = .5 * (X(K) + X(K+1))
YK1 = .5 * (Y(K) + Y(K+1))
XK2 = .5 * (X(K+1) + X(K+2))
YK2 = .5 * (Y(K+1) + Y(K+2))
XK3 = .5 * (X(K+2) + X(K+3))
YK3 = .5 * (Y(K+2) + Y(K+3))
S1 = 0.
Fl = FI(K)

S2 = sqrt ((XK2 - XKI1)**2 + (YK2 - YK1)**2)

F2 = FI(K+1)

S3 = S2 + sqgrt ((XK3 - XK2)**2 + (YK3 - YK2)**2)
F3 = FI(K+2)

endif

if (K.eq.NLOWER-1) then
XK1 = .5 * (X(K-2) + X(K-1))
YKL = .5 * (Y(K-2) + Y(K-1))
XK2 = .5 * (X(K-1) + X(K))
YK2 = .5 * (Y(K-1) + Y(K))
XK3 = .5 * (X(K) + X(K+1))
YK3 = .5 * (Y(K) + Y(K+1))
S3 = 0.
F3 = FI(K)
S2 = - sqgrt((XK3 - XK2)**2 + (YK3 - YK2)**2)

F2 = FI(K-1)
S1 = S2 - sqgrt((XK2 - XK1)**2 + (YK2 - YKI1)**2)
Fl = FI(K-2)

endif
else
XK1l = .5 * (X(K-1) + X(K))
YK1 = .5 * (Y(K-1) + Y(K))
XK2 = .5 * (X(K) + X(K+1))
YK2 = .5 * (Y(K) + Y(K+1))
XK3 = .5 * (X(K+1) + X(K+2))
YK3 = .5 * (Y(K+1) + Y(K+2))
S1 = - sgrt ((XK2 - XK1)**2 + (YK2 - YKI1)**2)

177

Fl = FI(K-1)

s2 = 0.
F2 = FI(K)
S3 = sgrt((XK3 — XK2)**2 + (YK3 - YK2)**2)
F3 = FI(K+1)
endif
DELTA = (S3 - S1) * (S2 - S1) * (S2 - S3)
DELTB = (S2**2 - S1**2) * (F3 - F1)

(
(
(S3**2 — S1**2) * (F2 - F1)
V(K) = DELTB / DELTA !~ DELTB / DELTA
CP(K) = 1. = V(K) * V(K)

! CF(K) = 0.075/(log(V(K)/XNU) -2.0)**2
100 continue

... upper surface

do 110 K=Nlower, NUPPER-1
L =k ! NLOWER
if (K.eg.Nlower.or.K.eq.NUPPER-1) then

if (K.eqg.Nlower) then
XK1 = .5 * (X(L) + X(L+1))
YK1 = .5 * (Y(L) + Y(L+1)
XK2 = .5 * (X(L+1) + X(L+2))
YK2 = .5 * (Y(L+1) + Y(L+2))
XK3 = .5 * (X(L+2) + X(L+3)) ! x e y com o n° de nds
YK3 = .5 * (Y(L+2) + Y(L+3))
sl = 0.
F1 = FI(L) 'Fi varia com o n° de painéis

S2 = sqgrt ((XK2 — XK1)**2 + (YK2 - YKI1)**2)
F2 = FI(L+1)
S3 = S2 + sgrt((XK3 - XK2)**2 + (YK3 - YK2)**2)
F3 = FI(L+2)
endif
if (K.eq.NUPPER-1) then
XK1 = .5 * (X(L-2) + X(L-1))
YK1 =
XK2 =
YK2 =
XK3 =
YK3 =
sS3 = 0.
F3 FI(L)
S2 — sqrt ((XK3 - XK2)**2 + (YK3 - YK2)**2)
F2 FI(L-1)
S1 = S2 - sqgrt((XK2 - XK1)**2 + (YK2 - YKI)**2)
Fl FI(L-2)
endif
else
XK1 =
YK1 =
XK2 =
YK2 =

Y(L-2) + Y(L-1))
(L-1) + X(L))
(L-1) + Y(L))
(L) + X(L+1))
(L) + Y(L+1))

Xk ok o ok

[C1BNC BNC RN BC))

(X(L-1) + X(L))
(Y(L-1) + Y(L))
(X (L) + X(L+1))
(Y(L) + Y(L+1))
XK3 = (X(L+1) + X(L+2))
YK3 = .5 (Y(L+1) + Y(L+2))
S1 — sgrt ((XK2 - XK1)**2 + (YK2 - YKI1)**2)
Fl FI(L-1)
s2 = 0.
F2 FI(L)
S3 sqgrt ((XK3 - XK2)**2 + (YK3 - YK2)**2)
F3 FI(L+1)
endif
DELTA = (S3 - S1) * (S2 - Sl1) * (S2 - S83)
DELTB = (S2**2 — S1**2) * (F3 - F1)
* — (S3**2 - S1**2) * (F2 - F1)
V(L) = DELTB / DELTA
CP(L) = 1. - V(L) * V(L)
CF(L) = 0.075/(log(V(L)/XNU) -2.0)**2
110 continue

(G BN BNCINC, B E)]

EOE A

return

178

O End VELDIS

c URAARAARARRA;
cARAARRARRAAARAARAARAAARAARAAARAARAARAAAARAARAARA SUBROUTINE * FANDM °?
c ARARRAAARAARU
c

subroutine FANDM(A, x,vy,Nlower,Nupper,Nodtot, xmid, ymid, V, CP, gamma,

& Nmax, sinalf, cosalf,CD,CL1,CL2)

integer Nmax,Nodtot,N

real gamma,sinalf,cosalf,CD,CL1,CL2

real,dimension (Nmax) ::x,y,xmid, ymid, costhe, sinthe, V, CP

real,dimension (Nodtot,Nodtot+1) ::A

real alpha, Tau,Epsmax,ptmax,pi,pi2inv

!integer Nodtot,N

CM = 0.

do 100 I=1,NODTOT-1
DX = X(I+1l) - X(I)
DY = Y (I+1l) - Y(I)

CM = CM + CP(I) * (DX * XMID(I) + DY * YMID(I))
100 continue

CD=0.0
CL1=0.0
CL2 = 2. * GAMMA
return
c
c
C——— End FANDM
c
end subroutine
c
c URAARARAARARAA,;
cARAARRARARAARAARAARAAARAARAARAARAAARAARAAARAAA SUBROTINA 3 NACA45 3
c ARRARAAAARARAU
c
subroutine NACA45(Z, tau,NACA, epsmax,ptmax,alpha,thick, camber)
real tau,epsmax,ptmax,thick,camber,beta,alpha
integer NACA
real Z
THICK = 0.
if (Z.1t.1.e-10) goto 100
THICK = 5. * TAU * (.2969 * sqgrt(z) - Z * (.126 + Z * (.3537
* - Z * (.2843 - z * .1015))))
c

100 if (EPSMAX.eq.0.) goto 130
if (NACA.gt.9999) goto 140
if (Z.gt.PTMAX) goto 110

c
CAMBER = EPSMAX / PTMAX / PTMAX * (2 * PTMAX - Z) * Z
DCAMDX = 2. * EPSMAX / PTMAX / PTMAX * (PTMAX - Z)
goto 120

c

110 CAMBER = EPSMAX / (1. — PTMAX)**2 * (1. + Z - 2. * PTMAX)
* * (1. - 2)
DCAMDX = 2. * EPSMAX / (1. - PTMAX)**2 * (PTMAX - Z)

c

120 BETA = atan (DCAMDX)
return
c
130 CAMBER = 0.
BETA = 0.
return
c

140 if (Z.gt.PTMAX) goto 150
W = Z / PTMAX

CAMBER = EPSMAX * W *((W - 3.) * W + 3. - PTMAX)
DCAMDX = EPSMAX * 3. * W * (1. - W) / PTMAX
goto 120

179

150 CAMBER = EPSMAX * (1. - 2)

DCAMDX = - EPSMAX
goto 120
c
c
e End NACA45
c
end

VIX 3D Main Code

Program VII3d

luse AVDef

'use DFLib

This program reads the streamlines given by PALISUPAN
as object str where str has the properties

id -> identity of streamline

Npt -> No of points on streamline (max=100)
p(..) —-> coordinates of points

u(.) -> stream velocity on each point

V(..) -> vector of velocities

imatch(.) -> point of beginning of matching surface
Nmatch(.) —-> point where ends matching surface
tr(.) -> point where transition occurs

Nsec —-> number of sections (z cte)

flags -> false if Xsep=0

true, otherwise

With data on streamlines, the program calculates:

influence matrix for each streamline

boundary layer var distribution

make a Newton-Raphson solver for Lag entrainment method
make viscous corrections for potential stream velocity
print out viscous flow characteristics for each velocity

1% % sk ok ok ok ok ok sk ok ok sk ok ok ok ok ok ok ke sk ok ok ok ok ok ok ok ke sk ok ok sk ok ok sk ok ok sk ok ok sk ok ok ok ok ok ok ok ok ok ke ok ok ok ok ok ok ok ok ke sk ok ok ok ke ok ok ok ok ok ok ok

I *
1%
1%

Program created by Augusto Elisio Lessa Veiga
FSIG - University of Southampton/2003
Sugestions are welcome

*

*

*

1% % sk ok ok ok ok ok sk ok ok sk ok ok ok ok ok ok ke sk ok ok sk ok ok ok ok ke sk ok ok sk ok ok sk ok ok ok ok ok sk ok ok ok ok ok ok ok ok ok ke sk ok ok ok ok ok ok ok ke sk ok ok ok ok ok ok ok ok ok ok ok

include 'section.inc'
include 'panel.inc'
include 'xfoil.inc'

integer Nstr,Npan,Npb,Nmax,Nte,Nsec
real:: Rey,visc,alpha,Dlimit,pi,EPS1

real,dimension(3):: tol

real,dimension(2,150) :: xsep,Xre, Xtr

type (node),allocatable,dimension(:):: nd,bnd,wnd
type (section),allocatable,dimension(:):: sec,wsec
type (panel),allocatable,dimension(:):: pan,bpan,wpan
character*70 :: argname,argname?2

logical:: fl,inviscid, fsharp

BIJ = 0

CIJ =0

DIJ 0

p

pflag -> flag that indicates if it's to apply
wall pressure correction
i=4. * atan(l.)

call read_set (argname, argname2,Rey, visc,alpha,ACRIT,

&
&

Nit,Nsec, Nmax,
xtr, TFORCE, VACCEL, EPS1, f1,inviscid, fsharp)

alpha = alpha*pi/180
ALFA = alpha

if

o

C

pen(l,file ='BL_log.txt"')
write(1l,*) 'New problem'
lose (1)

(inviscid) then
call read_prev(Nsec,Nmax, Nw)

180

allocate (sec(Nsec),wsec(Nsec))
call read_section(sec,wsec,Nsec,Nmax, Nw)

Write(*,*) LIRSS S S S SRR R R SRR R R SRR R R R R EEE SRS R R RS SRS R RS EEEE RS S E %S
write (*,*) '* vV I X * !
write(*,*) '* Copyright, Augusto E. L. Veiga *!
write(*,*) '* University of Southampton, 2004 * !
write(*,*) '* Version 1.0 * !
write(*,*) IE S S S S S E S EEESEE RS EE SRS EEEEEREEEEEEEEEEEEEEEEEEEEEEEN
write (*,*)
write(*,*) 'previously interpolated sections...'

N = Nmax
else
call read_N(argname, Nt, Npan) !reads the number of sections
land nodes
allocate (nd (Nt)) lallocate vector str

allocate (pan(Npan), sec(Nsec),wsec (Nsec))
'allocate(sec(Nsec))
'initialize structure sec
call read_nodes (argname, nd, pan,Nt,Npan) !read body nodes
if (mod(nmax,2)==0) then
Nmax=Nmax+1
Else
Nmax=Nmax
endif
call read_uns (argname2, pan,Npan,nd, nt,Nte)
call find_wk (pan, Npan,Npw, Iwake)
allocate (wpan (Npw))
! sections are interpolated on this routine

write(* *) IE S S S S EE S EEESEER SRR SRR SRR EEEEEEEEEEEEEEEEEEEEEEEEEN
’

write (*,*) '* vV I X *
write(*,*) '* Copyright, Augusto E. L. Veiga w!
write(*,*) '* University of Southampton, 2004 * !
write(*,*) '* Version 1.0 * 1
write(*,*) IE S S S S S E S EEESE RS R SRS EEEEEEEEEEEEEEEEEEEEEEEEEEEEEN
write(*,*)

write(*,*) 'Interpolating sections...'

call wk_surface(pan,wpan,Npan, Npw, Iwake,wsec,Nsec, f1)
call surface(pan,Npan, sec,Nsec,Nmax,Nte, fl)

! there is no need anymore for such heavy structure
deallocate (nd, pan,wpan)

N = sec(l).Nnd
Nw = wsec(1l).Nnd
endif
write (*,*)
write(*,*) '...calculating viscous flow'

li=int (Nsec/2)
do i=1,Nsec
!calculate geometric curvature for each node
call G_curv(sec(i),Nmax,pflag)
'find very first point on leading edge
call find_Nlower (sec (i), Nmax)
REINF = Rey

QINF = 1.0

XSTRIP (1) = xtr(l,i) !localizes transition upper part
XSTRIP(2) = xtr(2,1i) !lower part

XTE = sec(i).p(1,1)

XLE = sec(i).p(l,sec(i).nlower)

YTE = sec(i).p(2,1)

YLE = sec(i).p(2,sec(i).nlower)

SLE = sec(i).s(sec (i) .nlower)
'fill up vars for xlib library
call secset(sec(i),wsec(i),N,Nw,QINV,x,y,s)

'ALFA = -sec(i).aflow

open(2,file ="'BL_log.txt',position = 'APPEND')
write(2,10) i

close(2)

! This part solves the viscous flow for each section
call VIX(sec(i),wsec(i),Nmax,EPS1,NQX,Nit,Nsec, i, fsharp)

sec(i).tr(l) = ITRAN(1)
sec(i).tr(2) = ITRAN(2)
sec (i) .Nbl (1) = NBL(1)

181

sec (i) .Nbl(2) = NBL(2)
do is = 1,2
do ip =2,iblte(is)

sec(i).ibl(ip,is) = IPAN(ip,is)
enddo
sec (i) .iblte(is) = iblte(is)
do in = 1,sec (i) .Nbl(is)
sec(i) .TAU(in,is) = TAU(in, is)
enddo
enddo
enddo

'perform 1ift, drag and viscous pressure resistance calculations
'call trefftz(wsec,Nsec,20,Dtrefftz) !calculates inviscid induced drag
call panmk (wsec, sec,Nsec,Nw,Nmax,CLvis,CLinv, cdf, cd,
& cdi, cdiv, area, Cmx, Cmy,Cmz, zcp)
'call vii_graph(sec, Nsec,Nmax)
write (*,*)
write(*,*) '...printing results'
call print_result(sec,Nsec,Nw,CLvis,CLinv,cdf, cd,
& cdi, cdiv, area,Cmx,Cny,Cmz, zcp)
call print_blvar (sec,Nsec, Nmax)
call post_process(sec,Nsec,Nmax) 'organize sectional plots
!reorganise panels using the sections again and print
! files to be used by PANVISE
!'call makepan
deallocate (sec,wsec)
10 format ('Section =',14)
END

subroutine VIX(sec,wsec,Nmax, EPS1,NQX,NIT,Nsec, isec, fsharp)
! This subroutine receives the following variables:

! Geometry: x,y,2z and s of each section
! Inviscid flow: QINV for each section
QINV for wake section
Data N -> number of section points

Nw-> number of wake section points
Nlower -> leading edge point that
divides upper and lower parts

1

! tr(.) -> transition point on lower and upper

! parts

) Nsep -> separation points on lower and upper parts
Nre -> reattachment points on lower and upper parts

isec -> index of section

culated
...And spills out the following:
Viscous flow:

QVIS -> viscous velocity
Dstr —-> displacement thickness
! Thet —> momentum thickness
! Ctau -> sqgrt (max shear coefficient
! H —> shape parameter
! Cf —> friction coefficient
! Dis —> dissipation coefficient

1
!***
! A T E N T I O N ! ! !

!

! Points are input on counterclockwise order and this continues like that.

! Do not use the inverse order or you may experience problems
!***
! This program was modified by Augusto Elisio Lessa Veiga and

! uses parts of the GNU software XFOIL
!***

1% Author: Augusto Elisio Lessa Veiga *
1% University of Southampton, 2004 *
[(Made in Brasil) *

1% % sk ok ok ok ok ok sk ok ok sk ok ok ok ok ok ok ke sk ok ok ok ok ok ok ok ke sk ok ok sk ok ke ok ok ok ok ok ok ok ok ke ok ok ok ok ok ok ok ok ok ok

include 'section.inc'
include 'xfoil.inc'
include 'xbl.inc'

182

if isec=1 or isec=Nsec, then viscous flow is not

cal

type (section) :: sec,wsec

real,dimension (N+Nw) : : Up, xbd, shd
real,dimension (Nw) : : Upw
real,dimension(3,N):: p
real,dimension(3,Nw):: pw
real,dimension(Izx+Iwx):: 2z
real:: clsec,cdsec,EPS1
real,dimension(igx,2):: pcor

integer N,Nw,Nlower,Nsec, isec
logical:: fsharp

do i =1,N

Up (i) = sec.Up(1i)

xbd (i) = X(i)

sbd (i) = S(i)
enddo
j =20
do 1 = N+1,N+Nw

j o= j+1

Up(i) = wsec.up(j)
enddo

'main settings

pcor = 0 !22/05/2005
PI = 4.0*ATAN(1.0)
HOPI = 0.50/PI

QOPI = 0.25/PI

DTOR = PI/180.0

C-—-- default Cp/Cv (air)

GAMMA = 1.4
GAMM1 = GAMMA - 1.0

Q0O

C---- initialize freestream Mach number to zero
MATYP =1
MINF1 = O.
MINF = 0.
CL = 0.
CM = 0
CD =0
SIGTE = 0.0
GAMTE = 0.0
SIGTE_A = 0.
GAMTE_A = O.
SIG = 0
SHARP = .true. !if trailing edge is sharp
LIMAGE = .FALSE. !if image airfoil is present
LGAMU = .TRUE. !if GAMU arrays exist for current airfoil geometry
LQINU = .TRUE. !if QINVU arrays exist for current airfoil geometry
LVISC = .TRUE. !if viscous option is invoked
LALFA = .TRUE. !if alpha is specifed, .FALSE. if CL is specified
LWAKE = .TRUE. 'if wake geometry has been calculated
LPACC .TRUE. if each point calculated is to be saved
LBLINI = .FALSE. !if BL has been initialized
LIPAN = .TRUE. !if BL->panel pointers IPAN have been calculated
LOAIJ .TRUE. if dPsi/dGam matrix has been computed and factored
LADIJ = .FALSE. !if dQ/dSig matrix for the airfoil has been computed
LWDIJ = .FALSE. !if dQ/dSig matrix for the wake has been computed
LQVDES .TRUE. if viscous Ue is to be plotted in QDES routines
LQSPEC .TRUE. if QOspec has been initialized
LOREFL .TRUE. if reflected Qspec 1is to be plotted in QDES routines
LVCONV = .FALSE. !if converged BL solution exists
LCPREF .TRUE. if reference data is to be plotted on Cp vs x/c plots
LCLOCK .TRUE. if source airfoil coordinates are clockwise
LPFILE .TRUE. if polar file is ready to be appended to
LPFILX .TRUE. if polar dump file is ready to be appended to
LPPSHO .TRUE. if CL-CD polar is plotted during point sequence
LBFLAP .TRUE. if buffer airfoil flap parameters are defined
LFLAP .TRUE. if current airfoil flap parameters are defined
LEIW .TRUE. if unit circle complex number array is initialized
LSCINI .TRUE. if old-airfoil circle-plane arc length s(w) exists

O NONO NN NN NS

183

C LFOREF .TRUE. if CL,CD... data is to be plotted on Cp vs x/c plots
C LNORM .TRUE. if input buffer airfoil is to be normalized

C LGSAME .TRUE. if current and buffer airfoils are identical

C

C LPLCAM .TRUE. if thickness and camber are to be plotted

C LOSYM .TRUE. if symmetric Qspec will be enforced

C LGSYM .TRUE. if symmetric geometry will be enforced

C LQGRID .TRUE. if grid is to overlaid on Qspec(s) plot

C LGGRID .TRUE. if grid is to overlaid on buffer airfoil geometry plot
C LGTICK .TRUE. if node tick marks are to be plotted on buffer airfoil
C LQSLOP .TRUE. if modified Qspec(s) segment is to match slopes

C LGSLOP .TRUE. if modified geometry segment is to match slopes

C LCSLOP .TRUE. if modified camber line segment is to match slopes

C LQOSPPL .TRUE. if current Qspec(s) in in plot

C LGEOPL .TRUE. if current geometry in in plot

C LCPGRD .TRUE. if grid is to be plotted on Cp plots

C LBLGRD .TRUE. if grid is to be plotted on BL variable plots

C LBLSYM .TRUE. if symbols are to be plotted on BL variable plots

C LCMINP .TRUE. if min Cp is to be written to polar file for cavitation
C LHMOMP .TRUE. if hinge moment is to be written to polar file

C

C LPGRID .TRUE. if polar grid overlay is enabled

C LPCDW .TRUE. if polar CDwave is plotted

C LPLIST .TRUE. if polar listing lines (at top of plot) are enabled
C LPLEGN .TRUE. if polar legend is enabled

C

C LPLOT .TRUE. if plot page is open

C LSYM .TRUE. if symbols are to be plotted in QDES routines

C LIQSET .TRUE. if inverse target segment is marked off in QDES

C LCLIP .TRUE. if line-plot clipping is to be performed

C LVLAB .TRUE. if label is to be plotted on viscous-variable plots
C LCURS .TRUE. if cursor input is to be used for blowups, etc.

C LLAND .TRUE. if Landscape orientation for PostScript is used

call stagpoint (Up, sbd, GAM, xbd, N, Nw, IST, SST, SST_GO, SST_GP, £sharp)
sec.istag = IST

call SIC(sec,wsec,N,Nw)
! DATA EPS1 / 1.0E-4 /

C
NITER = 10
QINF = 1.0
C
Cc
C--——- set velocities on wake from airfoil vorticity for alpha=0, 90
C CALL QWCALC
Cc
C--—- set velocities on airfoil and wake for initial alpha
C CALL QISET
C
Cc
C———— locate stagnation point arc length position and panel index
! CALL STFIND
C
C————- set BL position -> panel position pointers
CALL IBLPAN
sec.iblte(l) = iblte(1l)
sec.iblte(2) = iblte(2)
C
C———— calculate surface arc length array for current stagnation point location
CALL XICALC
C
C———— set BL position -> system line pointers
CALL IBLSYS
C
C
C-—-- set inviscid BL edge velocity UINV from QINV
CALL UICALC
C

IF(.NOT.LBLINI) THEN

184

C————- set initial Ue from inviscid Ue
DO IBL=1, NBL(1)
UEDG(IBL, 1) = UINV(IBL,1)
ENDDO
C
DO IBL=1, NBL(2)
UEDG (IBL,2) = UINV(IBL,2)
ENDDO
C
ENDIF
'initial 1ift calculation (inviscid)
Nref = igx
call clcalc2(N,Nref,sec,gam_a,alfa,minf,ginf, pcor,
& XCMREF, YCMREF, CL,CM, CDP, CL_ALF, CL_MSQ)
! CALL CLCALC(N,X,Y,GAM, GAM_A, ALFA, MINF, QINF, XCMREF,YCMREF,
) & CcL,CM, CDP,CL_ALF, CL_MSQ)
sec.cli = CL
C
C
C-——-- Newton iteration for entire BL solution
NITER = Nit
if (isec>1 .and. isec<Nsec) then
WRITE(*,*) 'Solving BL system ...'
open(l,file = 'BL_log.txt',position = 'APPEND')
DO 1000 ITER=1, NITER
C
C————— fill Newton system for BL variables
CALL SETBL
C
C—r—— solve Newton system with custom solver
CALL BLSOLV
C
C————— update BL variables
CALL UPDATE (sec,pcor) !output pcor (22/05/2005)
C
C IF (LALFA) THEN
C—————— set new freestream Mach, Re from new CL
C CALL MRCL(CL,MINF_CL,REINF_CL)
C CALL COMSET
C ELSE
C—m—— set new inviscid speeds QINV and UINV for new alpha
C CALL QISET
C CALL UICALC
C ENDIF
C
C—————- calculate edge velocities QVIS(.) from UEDG(..)
CALL QVFUE
C
C————— set GAM distribution from QVIS
CALL GAMQV
c
C————— relocate stagnation point
) CALL STMOVE
C
C————- set updated CL,CD
INref = igx
call clcalc2(N,Nref,sec,gam_a,alfa,minf,ginf, pcor,
& XCMREF, YCMREF, CL,CM, CDP, CL_ALF, CL_MSQ)
sec.clv = CL
! CALL CLCALC(N,X,Y,GAM, GAM_A, ALFA, MINF, QINF, XCMREF,YCMREF,
) & CcL,CM, CDP,CL_ALF, CL_MSQ)
CALL CDCALC
sec.cdf = CDF !sectional frict. Cd
sec.cd = CD
! if (iter==1) then
! sec.cli = CL
! endif
C
C————— display changes and test for convergence

IF(RLX.LT.1.0)

185

1000

90

&

endif

WRITE(1,2000) ITE
IF(RLX.EQ.1.0)
WRITE(1,2010) ITE
CDP = CD - CDF
WRITE(1,2020) ALFA/DTOR, CL, CM, CD, CDF, CDP

IF (RMSBL
LVCONV =

GO TO 90
ENDIF

CONTINUE

.LT. EPS1

.TRUE.
AVISC = ALFA
MVISC = MINF

WRITE(1,*) 'VISCAL:

CONTINUE
close (1)

'filling up vectors
sec.clv = CL

R, RMSBL, RMXBL, VMXBL, IMXBL, ISMXBL,RLX

R, RMSBL, RMXBL, VMXBL, IMXBL, ISMXBL

) THEN

Convergence failed'

lavoiding tip sections

DO Is=1, 2
DO IBL=2, NBL(IS)
I = ibl 'TPAN(IBL, IS)
sec.Q(1l,1i,1s) = Ctau(i,is) !'shear stress or critical amp
sec.Q(2,1,1s) = thet(i,is) !momentum thick
sec.Q(3,1i,1is) = dstr(i,is) !'recording displacement thick
sec.Q(4,1i,1is) = uedg(i,is) 'recording viscous velocity

sec.UINV (i, is) =

enddo

! wake variables
if (is==2) then

iwk=0

UINV (i, is) 'recording inviscid velocity

do ibl=iblte(is)+1,iblte(is)+wsec.Nnd
iwk = iwk+1

i = ibl

wsec.Q(1l,iwk,is
wsec.Q(2,1iwk,1is
wsec.Q(3,1wk, is
wsec.Q(4,iwk, is

enddo
endif

enddo
if (isec>1 .and. isec

clsec = cl
cdsec = cd
sec.CD = C

D

sec.Cdf = Cdf
sec.Cdp = Cdp
iter

sec.iter =

else
clsec = sec.cli

cdsec = 0

sec.CD = 0
sec.Cdf = 0
sec.Cdp = 0

= Ctau(i, is
= thet (i, is
= dstr(i,is
= uedg (i, is

!'shear stress or critical amp
!momentum thick

!recording displacement thick
!recording viscous velocity

))
))
))
))

<Nsec) then

2010

2020

sec.iter = 0
endif
RETURN
FORMAT
& (/1%X,13," rms:
& ' RLX:',F6.3)
FORMAT
& (/1%X,13," rms:
FORMAT
& (1X,3X%," a =",
& 1X,3X%," Cm ="',
& ' =>

END subroutine ! VIX

',E10.4,' max: ',E10.4,3X,Al,' at ', 14,13,
',E10.4,' max: ',E10.4,3X,Al,' at ', I4,I3)
F7.3," CcL =',F8.4 /

Fg.4, cD =',F9.5,

CDf =',F9.5," CDp =',F9.5)

186

IERES SRS SRS RS SRS E SRS E RS EE SRS EEEEEEEEREEE SRS EREREEEEEEREEEEEEEEEEEES]

! This subroutine was taken from XFOIL code *

C————

205
20

SUBROUTINE CDCALC
INCLUDE 'XFOIL.INC'

SA SIN(ALFA)
CA = COS(ALFA)

IF(LVISC .AND. LBLINI) THEN

- set variables at the end of the wake

THWAKE = THET (NBL(2),2)

URAT UEDG (NBL (2),2) /QINF

UEWAKE = UEDG(NBL(2),2) * (1.0-TKLAM) / (1.0 - TKLAM*URAT**2)
SHWAKE = DSTR(NBL(2),2)/THET (NBL(2),2)

- extrapolate wake to downstream infinity using Squire-Young relation

(reduces errors of the wake not being long enough)
CD = 2.0*THWAKE * (UEWAKE/QINF)**(0.5*(5.0+SHWAKE))

ELSE

ENDIF

calculate friction drag coefficient
CDF = 0.0
DO 20 Is=1, 2
DO 205 IBL=3, IBLTE(IS)
I = IPAN(IBL ,IS)
IM = IPAN(IBL-1,1IS)
DX = (X(I) - X(IM))*CA + (Y(I) - Y(IM))*SA
CDF = CDF + 0.5*(TAU(IBL,IS)+TAU(IBL-1,IS))*DX * 2.0/QINF**2
CONTINUE
CONTINUE

RETURN
END ! CDCALC

I xkhkhkkhkhkhkhhkhkkhhkkhhkhhhhkhhkhhhkhkhhhkhhkhhkhhkhhkhhkhkhkhkhkhkhhkdhhkhkhkhkhkhhhkhhkhkhkhkhkhhkhkhkrkhkhkhkkhhkhhkxkrxk

! Thi

Qa0

c
C,,,,
ccc
ccc

c

c

s subroutine include on CL the three-dimensional effects

SUBROUTINE CLCALC2(N,Nref, sec,gam_a,ALFA,MINF, QINF, pcor,
& XREF, YREF,
& cL,CcM,CDbP, CL_ALF,CL_MSQ)
include 'section.inc'
Integrates surface pressures to get CL and CM.
Integrates skin friction to get CDF.
Calculates dCL/dAlpha for prescribed-CL routines.
Modified by Augusto Veiga
real,dimension (Nref, 2):: pcor
type (section) :: sec
REAL:: MINF,v
real:: dui(N),gam_a(N),x(N),y(N)

moment-reference coordinates
XREF = 0.25
YREF = 0.

transforming Vpot into pressure coefficient

do i =1,N
sum = 0
x (1) = sec.p(l,1i)
y(i) = sec.p(2,1)
do k =1,3
v = sec.vpot(k,1i)
sum = sum + vV**2
enddo

187

*

sec.cp(i) = 1.0-sum

enddo
'transforming pcor into dui
j = sec.istag
do 1 = 1,sec.iblte(1)
dui(j) = pcor(i,1l)
j = 3-1
enddo
j = sec.istag
do 1 = 2,sec.iblte(2)
j = 341
dui(j) = pcor(i,2)
enddo
SA = SIN(ALFA)
CA = COS(ALFA)
C
BETA = SQRT (1.0 - MINF**2)
BETA_MSQ = -0.5/BETA
C
BFAC = 0.5*MINF**2 / (1.0 + BETA)
BFAC_MSQ = 0.5 / (1.0 + BETA)
& - BFAC / (1.0 + BETA) * BETA_MSQ
C
CL = 0.0
CM = 0.0
CDP = 0.0
C
CL_ALF = 0.
CL_MSQ = 0.
C
I =1
CGINC = sec.cp(i) + dui(i)**2
CPG1 = CGINC/ (BETA + BFAC*CGINC)
CPG1_MSQ = -CPG1l/(BETA + BFAC*CGINC)* (BETA_MSQ + BFAC_MSQ*CGINC)
C
CPI_GAM = -2.0*cginc
CPC_CPI = (1.0 - BFAC*CPGl)/ (BETA + BFAC*CGINC)
CPG1_ALF = CPC_CPI*CPI_GAM*GAM_A(I)
C
DO 10 I=1, N
IP = I+1
IF(I.EQ.N) IP =1
C
CGINC = sec.cp(i) + dui(i)**2
CPG2 = CGINC/ (BETA + BFAC*CGINC)
CPG2_MSQ = -CPG2/(BETA + BFAC*CGINC)* (BETA_MSQ + BFAC_MSQ*CGINC)
C
CPI_GAM = -2.0*cginc
CPC_CPI = (1.0 - BFAC*CPG2)/ (BETA + BFAC*CGINC)
CPG2_ALF = CPC_CPI*CPI_GAM*GAM_A (IP)
c
DX = (X(IP) - X(I))*CA + (Y(IP) - Y(I))*SA
DY = (Y(IP) - Y(I))*CA - (X(IP) - X(I))*SA
DG = CPG2 - CPGl
C
AX = (0.5*(X(IP)+X(I))-XREF)*CA + (0.5*(Y(IP)+Y(I))-YREF)*SA
AY = (0.5*(Y(IP)+Y(I))-YREF)*CA - (0.5* (X(IP)+X(I))-XREF)*SA
AG = 0.5*(CPG2 + CPG1)
C
DX_ALF = —(X(IP) - X(I))*SA + (Y(IP) - Y(I))*CA
AG_ALF = 0.5* (CPG2_ALF + CPGl_ALF)
AG_MSQ = 0.5* (CPG2_MSQ + CPG1_MSQ)
C
CL = CL + DX* AG
CDP = CDP - DY* AG
CM = CM — DX* (AG*AX + DG*DX/12.0)
& - DY* (AG*AY + DG*DY/12.0)
C

CL_ALF = CL_ALF + DX*AG_ALF + AG*DX_ALF

188

CL_MSQ = CL_MSQ + DX*AG_MSQ

C
CPGl = CPG2
CPG1_ALF = CPG2_ALF
CPG1_MSQ = CPG2_MSQ
10 CONTINUE
C

RETURN
END ! CLCALC2

VIX Surface Interpolation

subroutine surface (pan,Npan, sec,Nsec,Nmax,Nte, fl)

include 'section.inc'

include 'panel.inc'

This subroutine calculates collocation points for each panel
calculates mean edges

calculates surface coordinate for each collocation point on s and t

! gets points and interpolate cp using a spline distribution
!***

1% (C) Augusto Veiga, University of Southampton 2003 *
!***
integer Npan,Nsec,Nv,Nh,Nb, Nmax
type (panel),dimension (Npan) :: pan,panb
type (section),dimension (Nsec) :: sec
real:: S(3),Dmax
logical:: f1
!Calculating collocation points
Do i=1,Npan
S=0
do j=1,4
S(1)=S(1l)+pan(i).nd(3j).x
S(2)=S(2)+pan(i).nd(Jj) .y
S(3)=S(3)+pan(i).nd(j) .z
enddo
pan(i).co.x=S(1)/4.
pan(i).co.y=S(2)/4.
pan(i).co.z=S(3)/4.
enddo
!call smooth_cp (pan, Npan)
!Calculating surface coordinates s and t
call org_pan(pan,panb,Npan,Nb,Nv,Nh, Nte)
call surf_coord(panb,Nb, Nv,Nh)

call surf_spl (panb,Nb,Nv,Nh, fl) !'Makes a spline surface

do i =1,3
call press_int (panb,Nb,Nv,Nh, i, .false.) !Makes a V(x,y,z) surface
i —> 1=x

! 2 =y

! 3 =2z

enddo

!dividing surface into sections with 100 points equaly
! spaced each and following a plane which normal is the
! slope at yz plane
do i=1,Nsec
sec (1) .Nnd=Nmax
enddo
call interpol_surf (panb,Nb,Nv,Nsec, sec,Nmax)
call sec_normal (sec,Nsec,Nmax) !calculate normals on each point of section
!call calc_Up(sec,Nsec,Nmax) !calculate modular potential velocity
call vsec_plot(Sec,Nsec,Nmax) !plots spanwise velocity

return
end subroutine

subroutine interpol_surf (pan,Npan,Nv,Nsec, sec,Nmax)
include 'section.inc'
include 'panel.inc'

integer :: Npan,Nv,Nsec,Nmax,iv,ih
type (panel),dimension(Npan) :: pan
type (section),dimension(Nsec):: sec

189

real:: tc,sc,t

! divide body onto spanwise sections with tc spacement
tc= (pan(Nv).nd(4).t-pan(l).nd(1l).t)/(Nsec-1)
t=pan(l).nd (1) .t
k=1
id=0
ih=1
iv=1
i=1
do while (i<=Nsec)
!This loop makes geometry interpolation just
!finding s last points
sc=1.0
sec (i) .id=1id
id=id+1
sec(i).s(1)=0
sec (i) .s(Nmax)=sc
sec(i).t(l)=t
sc=(sec(1i).s(Nmax)-sec(i).s(1))/ (Nmax-1)
(t<=pan(iv).nd(4).t) then
ih=iv

call interpol_sec(sec(i),1l,pan,Npan,ih,iv,Nv,1) I'x
call interpol_sec(sec(i),1l,pan,Npan,ih,iv,Nv,2) ly
call interpol_sec(sec(i),1l,pan,Npan,ih,iv,Nv, 3) 'z
!call interpol_Vs(sec(i),1l,pan,Npan,ih, iv,Nv) !'Vm
do j=2,Nmax
if (j==Nmax) then
sec (i) .s(j)=pan(Npan- (Nv-iv)) .nd(2).s
sec(i).t(j)=t
else
sec(i).s(j)=sc+sec(i).s(j-1)
sec(i).t(j)=t
endif
call interpol_sec(sec(i), j,pan,Npan,ih,iv,Nv,1) I'x
call interpol_sec(sec(i), j,pan,Npan,ih,iv,Nv,2) ly
call interpol_sec(sec(i), j,pan,Npan,ih,iv,Nv, 3) 'z
!call interpol_Vs(sec(i), j,pan,Npan,ih, iv, Nv) 'Vm
enddo
t=t+tc
i=i+1
else if (i==Nsec) then
ih=Nv !Last section
call interpol_sec(sec(i),1l,pan,Npan,ih,iv,Nv,1) I'x
call interpol_sec(sec(i),1l,pan,Npan,ih,iv,Nv,2) ly
call interpol_sec(sec(i),1l,pan,Npan,ih,iv,Nv, 3) 'z
!call interpol_Vs(sec(i),1l,pan,Npan,ih, iv,Nv) !'Vm
do j=2,Nmax
if (j==Nmax) then
sec(i).s(j)=pan(Npan).nd(2).s
sec(i).t(j)=pan(Npan).nd(3) .t
else
sec(i).s(j)=sc+sec(i).s(j-1)
sec(i).t(j)=t
endif
call interpol_sec(sec(i), j,pan,Npan,ih,iv,Nv,1) I'x
call interpol_sec(sec(i),j,pan,Npan,ih,iv,Nv,2) ly
call interpol_sec(sec(i), j,pan,Npan,ih,iv,Nv, 3) 'z
!call interpol_Vs(sec(i), j,pan,Npan,ih, iv, Nv) 'Vm
enddo
i=i+1
else if (iv<Nv) then
iv=iv+1l
endif

enddo
!Now we calculate the cossine of sectional segments
do isec = 1,Nsec
do j = 1,Nmax
if (j==Nmax) then
do k =1,3
sec(isec).vcos(k,j) = sec(isec).vcos(k,j-1)

190

enddo

else
!Calculate length
soma = 0
do k = 1,3
soma = soma+ (sec(isec).p(k,j+1l)-sec(isec).p(k,]))**2
enddo
!calculate cossine
do k =1,3
sec(isec) .vcos(k, j)=(sec(isec) .p(k, j+1)-sec(isec) .p(k, J))
& /sqrt (soma)
enddo
endif
enddo
enddo

!Now we interpolate sectional velocity (Vs)
!'...and calculate the tangential velocity g
iv =1
ih =1
i=1
do while (i<=Nsec)
sc=1.0
t = sec(i).t(1l)
if (t<=pan(iv).nd(4).t) then
ih=iv
call interpol_Vs(sec(i),1l,pan,Npan,ih,iv,Nv) 'Vm
do j=2,Nmax
call interpol_Vs(sec(i), j,pan,Npan,ih,iv,Nv) 'Vm
enddo
i = 1i+1
else if (i==Nsec) then
ih=Nv !Last section
call interpol_Vs(sec(i),1l,pan,Npan,ih,iv,Nv) 'Vm
do j=2,Nmax
call interpol_Vs(sec(i), j,pan,Npan,ih,iv,Nv) 'Vm
enddo
i = 1i+1
else if (iv<Nv) then
iv=iv+1l
endif
enddo

! Writing a scratch file of potential tangential velocity
open(l,file="'potential_scratch.txt')
write(1,100)
do isec = 1,Nsec
do j = 1,Nmax
write(1,200) j,sec(isec).Up(j),sec(isec).vcos(l,]),
& sec(isec) .vcos(2,7j),sec(isec) .vcos(3,7)
enddo
write(1l,*)
enddo
close (1)

return
100 format ('node , velocity , cos x , cos y , cos z')
200 format (i4,1x,£f8.3,1%x,f8.3,1%x,£f8.3,1x,f8.3)

end subroutine

subroutine interpol_sec(sec, j,pan,Npan,ih,iv,Nv,Nflag)
include 'section.inc'
include 'panel.inc'
This subroutine gets the current section with s,t variables and,
marching along chordwise panels, interpolates x,y,z using Coons
bicubic spline surface
As the solution marches, ih is changed to the next panel on
chordwise direction.
Nflag chooses what is going to be interpolated

1 -> x coordinate

2 —-> 'y coordinate

3 —-> 1z coordinate

4 -> cp

191

Bdl, Bd2 -> first derivative coefficients

1% % sk ok ok ok ok ok sk ok ok sk ok ok ok ok ok ok ke sk ok ok ok ok ok ok ok ke sk ok ok sk ok ok ok ok ok ok ok ok sk ok

1 *

(C) Augusto Veiga, University of Southampton, 2003

*

1% % sk ok ok ok ok ok sk ok ok sk ok ok ok ok ok ok ke sk ok ok ok ok ok ok ok ke sk ok ok sk ok ok ok ok ok ok ok ok sk ok

integer j,ih,iv,Nv,Nflag

type (section) :: sec

type (panel),dimension (Npan) : :pan
real::s,w,T,U,A(4),B1(4),B2(4), soma

real:: deltal,delta2,vn(4),C(4),D(4),dxs2(4),dxt2(4),x(4)
real:: tiny

tiny=1.0E-10
soma=0;A=0;B1=0;B2=0;Bd1=0;Bd2=0
s=sec.s(j)
w=sec.t (J)
i=ih
lpl: do
select case (Nflag)
case(l) !options to interpolate variables
do k=1,4
dxs2 (k)=pan (i) .nd (k) .dxs2
dxt2 (k)=pan (i) .nd (k) .dxt2
x(k)=pan(i).nd (k) .x
enddo
case (2)
do k=1,4
dxs2 (k)=pan(i).nd (k) .dys2
dxt2 (k)=pan(i).nd (k) .dyt2
x(k)=pan(i).nd (k) .y
enddo
case (3)
do k=1,4
dxs2 (k)=pan(i).nd (k) .dzs2
dxt2 (k)=pan(i).nd (k) .dzt2
x(k)=pan(i).nd(k) .z
enddo
case (4)
do k=1,4
dxs2 (k)=0
dxt2(k)=0
x(k)=pan (i) .nd (k) .up
enddo
end select
if (s<pan(i).nd(2).s) then
!calculate normal coefficients T and U

T=(s-pan(i).nd(1l).s)/(pan(i).nd(2).s-pan(i).nd(1l).s)
U=(w-pan(i).nd(l).t)/(pan(i).nd(4).t-pan(i).nd(1l).t)

!calculate coefficients A

A(1l)=(1-T)*(1-U)

A(2)=T*(1-U)

A(3)=T*U

A(4)=(1-T)*U

!calculate coefficients B
deltal=(pan(i).nd(2).s-pan(i).nd(1l).s)
delta2=(pan(i).nd(4).t-pan(i).nd (1) .t)
do k=1,14
Bl (k)=(A(k)**3-A(k))/6.*deltal

B2 (k)=(A(k)**3-A(k))/6.*delta2
enddo
!calculating normal vectors of 2nd derivatives
C(1l)=B1l(2)*dxs2(2)-B1l(1l)*dxs2(1)
C(2)=B1(3)*dxs2(3)-B1l(2)*dxs2(2)
C(3)=B1l(4)*dxs2(4)-B1l(3)*dxs2(3)
C(4)=B1l(4)*dxs2(4)-B1l(1)*dxs2(1)
D(1)=B2(2)*dxt2(2)-B2(1)*dxt2(1)
D(2)=B2(3)*dxt2(3)-B2(2)*dxt2(2)
D(3)=B2(4)*dxt2(4)-B2(3) *dxt2(3)

D(4)=B2(4)*dxt2(4)-B2(1)*dxt2(1)
Vn(l)=c(1l)*d(4)-d(1)*c(4)
Vn(2)=c(1l)*d(2)-d (1) *c(2)
Vn(3)=c(3)*d(2)-d(3)*c(2)

192

Vn(4)=c(3)*d(4)-d(3)*c(4)

!calculate final value for interpolation

soma=0

do k=1,4
soma=soma+A (k) *x (k) +Vn (k)

enddo

if (abs(soma)<tiny) then
soma=0

endif

exit 1pl

else if (s==pan(Npan-(Nv-iv)).nd(2).s) then

!calculate normal coefficients T and U

T=(s-pan(i).nd(1l).s)/(pan(i).nd(2).s-pan(i).nd(1l).s)
U=(w-pan(i).nd(l).t)/(pan(i).nd(4).t-pan(i).nd(1l).t)

!calculate coefficients A
A(1l)=(1-T)*(1-U)
A(2)=T*(1-U)
A(3)=T*U
A(4)=(1-T)*U
!calculate coefficients B
deltal=(pan(i).nd(2).s-pan(i).nd(1l).s)
delta2=(pan(i).nd(4).t-pan(i).nd(1l) .t)
do k=1,4
Bl(k)=(A(k)**3-A(k))*deltal
B2 (k)=(A(k)**3-A(k))*delta2
enddo
'calculating normal vectors of 2nd derivatives
C(1l)=B1l(2)*dxs2(2)-B1l(1l)*dxs2(1)
C(2)=B1(3)*dxs2(3)-B1l(2)*dxs2(2)
C(3)=B1l(4)*dxs2(4)-B1l(3)*dxs2(3)
C(4)=B1(4)*dxs2(4)-B1(1)*dxs2(1)
D(1)=B2(2)*dxt2(2)-B2(1)*dxt2(1)
D(2)=B2(3)*dxt2(3)-B2(2)*dxt2(2)
D(3)=B2(4)*dxt2(4)-B2(3)*dxt2(3)
D(4)=B2(4)*dxt2(4)-B2(1)*dxt2(1)
Vn(l)=c(l)*d(4)-d(1l)*c(4)
Vn(2)=c(1l)*d(2)-d(1)*c(2)
Vn(3)=c(3)*d(2)-d(3)*c(2)
Vn(4)=c(3)*d(4)-d(3)*c(4)
!calculate final value for interpolation
soma=0
do k=1,4
soma=soma+A (k) *x (k) +Vn (k)
enddo
if (abs(soma)<tiny) then
soma=0
endif
exit 1pl
else if (ih>Npan-(Nv-iv)) then
exit 1pl
else if (ih<=Npan-(Nv-iv)) then
ih=ih+Nv
i=ih
endif
enddo 1lpl

select case (Nflag)

case(l) !options to interpolate variables
sec.p(l, j)=soma
case (2)
sec.p(2, j)=soma
case (3)
sec.p(3, j)=soma
! case (4)

! sec.cp(j)=soma
end select

return
end subroutine

193

subroutine interpol_Vs(sec, j,pan,Npan, ih, iv, Nv)

include 'section.inc'

include 'panel.inc'
! This subroutine gets the current section with s,t variables and,
! marching along chordwise panels, interpolates x,y,z using Coons
! bicubic spline surface
! As the solution marches, ih is changed to the next panel on
! chordwise direction.
! Nflag chooses what is going to be interpolated
1
1
1

1 -> x coordinate

2 —-> 'y coordinate

3 -> 1z coordinate
! 4 -> cp

IEEE S S SR E SRS SRR SRS E SRR EE SRS RS RS EEEEEEEEREREEEEEEEEEEEEEEEEESEES]

1% (C) Augusto Veiga, University of Southampton, 2003 *
!**
integer j,ih,iv,Nv,Nflag
type (section) :: sec
type (panel),dimension (Npan) : :pan
real::s,w,T,U,A(4),B1(4),B2(4),soma,V(3)
real:: deltal,delta2,Vvn(4),C(4),D(4),dxs2(4),dxt2(4),x(4)
real:: tiny

tiny=1.0E-10
soma=0;A=0;B1=0;B2=0
s=sec.s(7J)
w=sec.t (J)

i=ih
do ind =1,3
lpl: do
do k=1,4
dxs2 (k)=0
dxt2(k)=0
x(k)=pan(i).nd (k) .vm(ind)
enddo

if (s<pan(i).nd(2).s) then
!calculate normal coefficients T and U
T=(s-pan(i).nd(1l).s)/(pan(i).nd(2).s-pan(i).nd(1l).s)
U=(w-pan (i) .nd(1l).t)/(pan(i).nd(4) .t-pan(i).nd (1) .t)
!calculate coefficients A
A(1l)=(1-T)*(1-U)
A(2)=T*(1-U)
A(3)=T*U
A(4)=(1-T)*U
!calculate coefficients B
!calculating normal vectors of 2nd derivatives
!calculate final value for interpolation
soma=0
do k=1,4
soma=soma+A (k) *x (k)
enddo
if (abs(soma)<tiny) then
soma=0
endif
exit 1pl
else if (s==pan(Npan-(Nv-iv)).nd(2).s) then
!calculate normal coefficients T and U
T=(s-pan(i).nd(1l).s)/(pan(i).nd(2).s-pan(i).nd(1l).s)
U=(w-pan(i).nd(l).t)/(pan(i).nd(4).t-pan(i).nd(1l).t)
!calculate coefficients A
A(l)=(1-T)*(1-0U)
A(2)=T*(1-U)
A(3)=T*U
A(4)=(1-T)*U
!calculate coefficients B
!calculating normal vectors of 2nd derivatives
!calculate final value for interpolation
soma=0
do k=1,4
soma=soma+A (k) *x (k)

194

enddo
if (abs(soma)<tiny) then
soma=0
endif
exit 1pl
else if (ih>Npan-(Nv-iv)) then
exit 1pl
else if (ih<=Npan-(Nv-iv)) then
ih=ih+Nv
i=ih
endif
enddo 1lpl
V(ind) = soma
enddo !indexes

soma = 0
do k =1,3
sec.vpot (k,j) = v(k) !potential 3D velocity

soma = soma+ (sec.vcos(k,]j)*V(k))**2 !velocity on section
'projects velocity on each segment of section
enddo

sec.Up(j) = sqgrt(soma) !tangential velocity on section pt

return
end subroutine

XFOIL Routines for Initial Boundary Layer Solution that Were Added to VIX
SUBROUTINE SETBL

Sets up the BL Newton system coefficients
for the current BL variables and the edge
velocities received from SETUP. The local
BL system coefficients are then
incorporated into the global Newton system.

Q000

INCLUDE 'XFOIL.INC'

INCLUDE 'XBL.INC'

REAL USAV (IVX,2)

REAL U1_M(2*IVX), U2_M(2*IVX)
REAL D1_M(2*IVX), D2_M(2*IVX)
REAL ULE1_M(2*IVX), ULE2_M(2*IVX)
REAL UTE1_M(2*IVX), UTE2_M(2*IVX)
REAL MA_CLMR, MSQ_CLMR, MDI

C--—-—- set the CL used to define Mach, Reynolds numbers
IF (LALFA) THEN
CLMR = CL
ELSE
CLMR = CLSPEC
ENDIF

C-—-——- set current MINF (CL)
!CALL MRCL (CLMR,MA_CLMR,RE_CLMR)
MINF = 0
RE_CLMR = O
MA_CLMR = 0
CLMR = 0.000001
MSQ_CLMR = 2.0*MINF*MA_CLMR
C
C--—- set compressibility parameter TKLAM and derivative TK_MSQ
!CALL COMSET
¢
C---- set gas constant (= Cp/Cv)
GAMBL = GAMMA
GM1BL = GAMM1

C--—- set parameters for compressibility correction
QINFBL = QINF
TKBL TKLAM
TKBL_MS TKL_MSQ

195

c

C-—-— stagnation density and 1/enthalpy
RSTBL = (1.0 + 0.5*GM1IBL*MINF**2) ** (1.0/GM1BL)
RSTBL_MS = 0.5*RSTBL/ (1.0 + 0.5*GM1BL*MINE**2)
C
HSTINV = GM1BL* (MINF/QINFBL)**2 / (1.0 + O0.5*GMIBL*MINF**2)
HSTINV_MS = GMIBL*(1.0/QINFBL)**2 / (1.0 + 0.5*GMIBL*MINEF**2)
& - 0.5*GM1IBL*HSTINV / (1.0 + 0.5*GMIBL*MINEF**2)
C
C———- Sutherland's const./To (assumes stagnation conditions are at STP)
HVRAT = 0.35
C
C---- set Reynolds number based on freestream density, velocity, viscosity
HERAT = 1.0 - 0.5*QINFBL**2*HSTINV
HERAT_MS = — 0.5*QINFBL**2*HSTINV_MS
C
REYBL = REINF * SQRT (HERAT**3) * (1.0+HVRAT)/(HERAT+HVRAT)
REYBL_RE = SQRT (HERAT**3) * (1.0+HVRAT)/ (HERAT+HVRAT)
REYBL_MS = REYBL * (1.5/HERAT - 1.0/ (HERAT+HVRAT))*HERAT_MS
C
AMCRIT = ACRIT
C
C---- save TE thickness
DWTE = WGAP (1)
C
IF(.NOT.LBLINI) THEN
C———— initialize BL by marching with Ue (fudge at separation)
WRITE (*, *)
WRITE(*,*) 'Initializing BL ...'
CALL MRCHUE
LBLINI = .TRUE.
ENDIF
C
WRITE (*, *)
C
C---—- march BL with current Ue and Ds to establish transition
CALL MRCHDU
C
DO 5 IsS=1, 2
DO 6 IBL=2, NBL(IS)
USAV (IBL, IS) = UEDG(IBL,IS)
6 CONTINUE
5 CONTINUE
C
CALL UESET
C
DO 7 IsS=1, 2
DO 8 IBL=2, NBL(IS)
TEMP = USAV(IBL,IS)
USAV (IBL,IS) = UEDG(IBL,IS)
UEDG (IBL, IS) = TEMP
8 CONTINUE
7 CONTINUE
C
ILE1l = IPAN(2,1)
ILE2 = IPAN(2,2)
ITE1l = IPAN(IBLTE(1),1)
ITE2 = IPAN(IBLTE(2),2)
C
JVTEl = ISYS(IBLTE(1l),1)
JVTE2 = ISYS(IBLTE(2),2)
C
DULEl = UEDG(2,1) - USAV(2,1)
DULE2 = UEDG(2,2) - USAV(2,2)
C
C--—— set LE and TE Ue sensitivities wrt all m values

DO 10 Js=1, 2
DO 110 JBL=2, NBL(JS)

J = IPAN(JBL,JS)
JVv = ISYS(JBL,JS)
ULE1_M(JV) = -VTI(2,1)*VTI(JBL,JS)*DIJ(ILEL, J)
ULE2_M(JV) = -VTI(2,2)*VTI(JBL,JS)*DIJ(ILE2,J)

196

110
10

C****

C————

210

20

C————

C————

C———-

C———-

UTE1_M(JV)
UTE2_M(JV)
CONTINUE
CONTINUE

-VTI(IBLTE(1),1)*VTI(JBL,JS)*DIJ(ITELl,J)
-VTI(IBLTE(2),2)*VTI(JBL,JS)*DIJ(ITE2,J)

ULEI1_A = UINV_A(2,1)
ULE2_A UINV_A(2,2)

Go over each boundary layer/wake
DO 2000 Is=1, 2

there is no station "1" at similarity, so zero everything out
DO 20 Js=1, 2
DO 210 JBL=2, NBL(JS)
JV = ISYS(JBL,JS)
Ul_M(JV) = 0.
D1_M(Jv) = 0.
CONTINUE
CONTINUE
Ul_A = 0.
D1_A = 0.

DUELl = 0.
DDS1 = 0.

similarity station pressure gradient parameter x/u du/dx
IBL = 2
BULE = 1.0

set forced transition arc length position
CALL XIFSET (IS)

TRAN
TURB

.FALSE.
.FALSE.

Sweep downstream setting up BL equation linearizations
DO 1000 IBL=2, NBL(IS)

IV = ISYS(IBL,IS)

SIMI = IBL.EQ.2

WAKE = IBL.GT.IBLTE(IS)
TRAN = IBL.EQ.ITRAN(IS)
TURB = IBL.GT.ITRAN(IS)

I = IPAN(IBL,IS)

set primary variables for current station
XSI = XSSI(IBL,IS)

IF(IBL.LT.ITRAN(IS)) AMI = CTAU(IBL,IS)
IF(IBL.GE.ITRAN(IS)) CTI CTAU (IBL, IS)
UEI = UEDG(IBL, IS)

THI THET (IBL, IS)

MDI = MASS(IBL,IS)

DSI

MDI/UEI

IF (WAKE) THEN
IW = IBL - IBLTE(IS)
DSWAKI = WGAP (IW)

ELSE
DSWAKI = 0.
ENDIF
set derivatives of DSI (= D2)
D2_M2 = 1.0/UEI
D2_U2 = -DSI/UEI

DO 30 Js=1, 2
DO 310 JBL=2, NBL(JS)
J = IPAN(JBL,JS)
JV = ISYS(JBL,JS)

197

U2_M(JV)
D2_M(JV)
310 CONTINUE
30 CONTINUE
D2_M(IV) = D2_M(IV) + D2_M2

—VTI(IBL,IS)*VTI (JBL,JS)*DIJ(I,J)
D2_U2*U2_M(JV)

C
U2_A = UINV_A(IBL,IS)
D2_A = D2_U2*U2_A
¢
C--—- "forced" changes due to mismatch between UEDG and USAV=UINV+dij*MASS
DUE2 = UEDG(IBL,IS) - USAV(IBL,IS)
DDS2 = D2_U2*DUE2
C
CALL BLPRV(XSI,AMI,CTI,THI,DSI,DSWAKI,UET)
CALL BLKIN
¢
C--—- check for transition and set TRAN, XT, etc. if found
IF (TRAN) THEN
CALL TRCHEK
AMI = AMPL2
ENDIF
IF(IBL.EQ.ITRAN(IS) .AND. .NOT.TRAN) THEN
WRITE(*,*) 'SETBL: Xtr??? nl n2: ', AMPL1, AMPL2
ENDIF
¢
C--—- assemble 10x4 linearized system for dCtau, dTh, dDs, dUe, dXi
C at the previous "1" station and the current "2" station
¢
IF(IBL.EQ.IBLTE(IS)+1) THEN
¢
C———— define quantities at start of wake, adding TE base thickness to Dstar
TTE = THET (IBLTE(1l),1) + THET(IBLTE(2),2)
DTE = DSTR(IBLTE(1),1) + DSTR(IBLTE(2),2) + ANTE
CTE = (CTAU(IBLTE(1l),1)*THET(IBLTE(1),1)
& + CTAU(IBLTE(2),2)*THET (IBLTE(2),2)) / TTE
CALL TESYS(CTE,TTE,DTE)
¢
TTE_TTEl1 = 1.0
TTE_TTE2 = 1.0
DTE_MTE1l = 1.0 / UEDG(IBLTE(1l),1)
DTE_UTE1 = -DSTR(IBLTE(1),1) / UEDG(IBLTE(1),1)
DTE_MTE2 = 1.0 / UEDG(IBLTE(2),2)
DTE_UTE2 = -DSTR(IBLTE(2),2) / UEDG(IBLTE(2),2)
CTE_CTEl = THET(IBLTE(1),1)/TTE
CTE_CTE2 = THET(IBLTE(2),2)/TTE
CTE_TTEl = (CTAU(IBLTE(1l),1) - CTE)/TTE
CTE_TTE2 = (CTAU(IBLTE(2),2) - CTE)/TTE
C
C———— re-define D1 sensitivities wrt m since D1 depends on both TE Ds values
DO 35 JSs=1, 2
DO 350 JBL=2, NBL(JS)
J = IPAN(JBL,JS)
JV = ISYS(JBL,JS)
D1_M(JV) = DTE_UTE1*UTE1_M(JV) + DTE_UTE2*UTE2_M(JV)
350 CONTINUE
35 CONTINUE
D1_M(JVTEl) = D1_M(JVTEl) + DTE_MTELl
D1_M(JVTE2) = D1_M(JVTE2) + DTE_MTE2
¢
C————= "forced" changes from UEDG --- USAV=UINV+dij*MASS mismatch
DUEl = 0.
DDS1 = DTE_UTE1* (UEDG(IBLTE(1),1) - USAV(IBLTE(1l),1))
& + DTE_UTE2* (UEDG(IBLTE(2),2) - USAV(IBLTE(2),2))
C
ELSE
¢
CALL BLSYS
C
ENDIF
¢
¢
C--—- Save wall shear and equil. max shear coefficient for plotting output

198

TAU (IBL, IS) 0.5*%R2*U2*U2*CF2

DIS(IBL, IS) R2*U2*U2*U2*DI2*HS2*0.5
CTQ(IBL, IS) CQ2

DELT (IBL,IS) = DE2

USLP(IBL,IS) = 1.60/(1.0+US2)

C--—- set XI sensitivities wrt LE Ue changes

IF(IS.EQ.1) THEN

XI_ULEl = SST_GO

XI_ULE2 = —-SST_GP
ELSE

XI_ULEl = -SST_GO

XI_ULE2 = SST_GP
ENDIF

C--—— stuff BL system coefficients into main Jacobian matrix

DO 40 Jv=1, NSYS
VM(1,JV,IV) = VS1(1,3)*D1_M(JV) + VS1(1,4)*Ul_M(JV)
& + VS2(1,3)*D2_M(JV) + VS2(1,4)*U2_M(JV)
& + (VS1(1,5) + VvS2(1,5) + VSX (1))
& *(XI_ULE1*ULE1_M(JV) + XI_ULE2*ULE2_M(JV))
40 CONTINUE

VB(1,1,IV)
VB(1,2,1IV)

vS1(1,1)
vS1(1,2)

VA(1,1,IV) = vS2(1,1)
VA(1,2,IV) = VS2(1,2)

IF (LALFA) THEN

VDEL (1,2,IV) = VSR(1)*RE_CLMR + VSM(1)*MSQ_CLMR
ELSE

VDEL (1,2,IV) =

(VS1(1,4)*Ul_A + VS1(1,3)*D1_A)
(VS2(1,4)*U2_A + VS2(1,3)*D2_A)
(VS1(1,5) + VS2(1,5) + VSX(1))
(XI_ULE1*ULE1_A + XI_ULE2*ULE2_A)

+
+

R R R R

*

ENDIF

VDEL(1,1,IV) = VSREZ(1)

+ (VS1(1,4)*DUEl + VS1(1,3)*DDS1)
+ (VS2(1,4)*DUE2 + VS2(1,3)*DDS2)
+ (VS1(1,5) + VS2(1,5) + VSX(1)
* (XI_ULE1*DULEl + XI_ULE2*DULE2)

R R R R

DO 50 Jv=1, NSYS
VM (2,JV,IV) = VS1(2,3)*D1_M(JV) + VS1(2,4)*Ul_M(JV)
& + VS2(2,3)*D2_M(JV) + VS2(2,4)*U2_M(JV)
& + (VS1(2,5) + VS2(2,5) + VSX(2))
& * (XI_ULE1*ULE1_M(JV) + XI_ULE2*ULE2_M(JV))
50 CONTINUE

VB (2,1, IV) vSs1(2,1)
VB(2,2,IV) = VS1(2,2)

VA(2,1,IV) = VS2(2,1)
VA(2,2,IV) = VS2(2,2)

IF (LALFA) THEN

VDEL (2,2,IV) = VSR(2)*RE_CLMR + VSM(2)*MSQ_CLMR
ELSE

VDEL(2,2,IV) =

(VS1(2,4)*Ul_A + VS1(2,3)*D1_A)
(VS2(2,4)*U2_A + VS2(2,3)*D2_A)
(VS1(2,5) + VS2(2,5) + VSX(2))
*(XI_ULEL1*ULEL_A + XI_ULE2*ULE2_A)

&
& +
& +
&
ENDIF

VDEL(2,1,IV) = VSREZ(2)
& + (VS1(2,4)*DUEl + VS1(2,3)*DDS1)

199

+ VS1(3,4)*Ul_M(JV)
+ VS2(3,4)*U2_M(JV)
+ VSX(3))
+ XI_ULE2*ULE2_M(JV))

VS1(1,2)*TTE_TTEL

VS1(1,2)*TTE_TTE2

VS1(2,2)*TTE_TTEL

VS1(2,2)*TTE_TTE2

VS1(3,2)*TTE_TTEL

VS1(3,2)*TTE_TTE2

if currently at transition interval

& + (VS2(2,4)*DUE2 + VS2(2,3)*DDS2)
& + (VS1(2,5) + VS2(2,5) + VSX(2))
& *(XI_ULE1*DULEl + XI_ULE2*DULE2)
C
C
DO 60 Jv=1, NSYS
VM(3,JV,1IV) = VS1(3,3)*D1_M(JV)
& + VS2(3,3)*D2_M(JV)
& + (VS1(3,5) + VS2(3,5)
& *(XI_ULE1*ULE1l_M(JV)
60 CONTINUE
C
VB(3,1,IV) = VS1(3,1)
VB(3,2,IV) = VS1(3,2)
C
VA(3,1,IV) = VS2(3,1)
VA(3,2,IV) = VS2(3,2)
C
IF (LALFA) THEN
VDEL (3,2,IV) = VSR(3)*RE_CLMR + VSM(3)*MSQ_CLMR
ELSE
VDEL(3,2,1IV) =
& (VS1(3,4)*Ul_A + VS1(3,3)*D1_A)
& + (VS2(3,4)*U2_A + VS2(3,3)*D2_A)
& + (VS1(3,5) + VS2(3,5) + VSX(3))
& *(XI_ULE1*ULE1_A + XI_ULE2*ULE2_A)
ENDIF
C
VDEL(3,1,IV) = VSREZ(3)
& + (VS1(3,4)*DUEl + VS1(3,3)*DDS1)
& + (VS2(3,4)*DUE2 + VS2(3,3)*DDS2)
& + (VS1(3,5) + VS2(3,5) + VSX(3))
& *(XI_ULE1*DULEl + XI_ULE2*DULEZ2)
C
C
IF(IBL.EQ.IBLTE(IS)+1) THEN
C
C———— redefine coefficients for TTE, DTE, etc
vz (1,1) = VS1(1l,1)*CTE_CTE1l
vz (1,2) = VS1(1l,1)*CTE_TTE1l +
VB(1,1,IV) = VSl(l,1)*CTE_CTE2
VB(1,2,IV) = VS1(1l,1)*CTE_TTE2 +
C
VZ(2,1) = VS1(2,1)*CTE_CTE1l
VZ(2,2) = VS1(2,1)*CTE_TTE1l +
VB(2,1,IV) = VS1l(2,1)*CTE_CTE2
VB(2,2,1IV) = VS1(2,1)*CTE_TTE2 +
C
vz (3,1) = VS1(3,1)*CTE_CTEl
VZ(3,2) = VS1(3,1)*CTE_TTE1l +
VB(3,1,1IV) = VS1(3,1)*CTE_CTE2
VB(3,2,1IV) = VS1(3,1)*CTE_TTE2 +
c
ENDIF
c
C--—- turbulent intervals will follow
IF (TRAN) THEN
TURB = .TRUE.
C
C————— save transition location
ITRAN(IS) = IBL
TFORCE (IS) = TRFORC
XSSITR(IS) = XT
C
C————— interpolate airfoil geometry to find transition x/c
C— (for user output)
IF(IS.EQ.1) THEN
STR = SST - XT
ELSE
STR = SST + XT
ENDIF
CHX = XTE - XLE

200

810
80

1000

9100

9200

C————
2000

110

XOCTR(IS) = ((XTR-XLE)*CHX +
YOCTR(IS) = ((YTR-YLE) *CHX -
ENDIF
TRAN = .FALSE.
IF(IBL.EQ.IBLTE(IS)) THEN

s

T

CHY = YTE - YLE

CHSQ = CHX**2 + CHY**2
XTR = SEVAL (STR, X, XP,S,N)
YTR = SEVAL(STR,Y,YP,S,N)

(YTR-YLE) *CHY) /CHSQ
(XTR-XLE) *CHY) /CHSQ

et "2" variables at TE to wake correlations for next station

URB = .TRUE.

WAKE = .TRUE.
CALL BLVAR(3)
CALL BLMID(3)

EN

DO

CcO

DIF

80 Js=1, 2
DO 810 JBL=2, NBL(JS)
JV = ISYS(JBL,JS)

Ul_M(JV) U2_M(JV)
D1_M(JV) = D2_M(JV)
CONTINUE
NTINUE

Ul_A = U2_A
D1_A = D2_A

DU
DD

se
DO

E1 = DUE2
S1 = DDS2
t BL variables for next station

190 ICOM=1, NCOM
COM1 (ICOM) = COM2 (ICOM)

CONTINUE

next streamwise station

CONTINUE

IF(TFORCE (IS)) THEN

WRITE(*,9100) IS,XOCTR(IS),ITRAN(IS)

FORMAT (1X, 'Side',I2,' forced transition at x/c = ',F7.4,15)
ELSE

WRITE (*,9200) IS,XOCTR(IS),ITRAN(IS)

F
EN

ne

ORMAT (1X, 'Side"', I2,"
DIF

xt airfoil side

CONTINUE

RE
EN

SU.

TURN
D

BROUTINE IBLSYS

free

transition at x/c = ',F7.4,15)

Sets the BL Newton system line number
corresponding to each BL station.

IN
IN

v
DO

CLUDE 'XFOIL.INC'
CLUDE 'XBL.INC'
=0
10 18=1, 2

DO 110 IBL=2, NBL(IS)
IV = IV+l
ISYS(IBL,IS) = IV

CONTINUE

10 CONTINUE

C————

C————

C———-

C————

C———-

NSYS = IV

IF(NSYS.GT.2*IVX) STOP '*** IBLSYS: BL system array

RETURN
END

SUBROUTINE MRCHUE

Marches the BLs and wake in direct mode using
the UEDG array. If separation is encountered,
a plausible value of Hk extrapolated from
upstream is prescribed instead. Continuous
checking of transition onset is performed.

INCLUDE 'XFOIL.INC'
INCLUDE 'XBL.INC'
LOGICAL DIRECT
REAL MSQ

shape parameters for separation criteria
HLMAX = 3.8
HTMAX = 2.5

DO 2000 Is=1, 2
WRITE (*,*) ' side ', Is, ' ...

set forced transition arc length position
CALL XIFSET(IS)

initialize similarity station with Thwaites'
IBL = 2

XSI = XSSI(IBL,IS)

UEI = UEDG(IBL, IS)

overflow.

BULE = LOG(UEDG(IBL+1,IS)/UEI) / LOG(XSSI(IBL+1,IS)/XSI)

BULE = MAX(-.08 , BULE)
BULE = 1.0
UCON = UEI/XSI**BULE

TSQ = 0.45/(UCON* (5.0*BULE+1.0) *REYBL) * XSI**(1.0-BULE)
THI = SQRT(TSQ)

DSI = 2.2*THI

AMI = 0.0

initialize Ctau for first turbulent station
CTI = 0.03

TRAN = .FALSE.
TURB = .FALSE.
ITRAN(IS) = IBLTE(IS)

march downstream
DO 1000 IBL=2, NBL(IS)
IBM = IBL-1

IW = IBL - IBLTE(IS)

SIMI = IBL.EQ.2
WAKE = IBL.GT.IBLTE(IS)

- prescribed quantities
XSI = XSSI(IBL,IS)
UEI = UEDG(IBL,IS)

IF (WAKE) THEN
IW = IBL - IBLTE(IS)
DSWAKI = WGAP (IW)

ELSE

DSWAKI = 0.
ENDIF

DIRECT = .TRUE.

202

* Kk k!

C————— Newton iteration loop for current station
DO 100 ITBL=1, 25

QQQ

[oNONONe!

assemble 10x3 linearized system for dCtau, dTh, dDs, dUe, dXi

at the previous "1" station and the current "2" station
(the "1" station coefficients will be ignored)

CALL BLPRV(XSI,AMI,CTI,THI,DSI,DSWAKI,UETI)

CALL BLKIN

check for transition and set appropriate flags and things

IF((.NOT.SIMI) .AND. (.NOT.TURB)) THEN
CALL TRCHEK
AMI = AMPL2

fixed BUG MD 7 Jun 99
IF (TRAN) THEN

ITRAN(IS) = IBL
IF(CTI.LE.0.0) THEN
CTI = 0.03
52 = CTI
ENDIF
ELSE
ITRAN(IS) = IBL+2
ENDIF
ENDIF

IF(IBL.EQ.IBLTE(IS)+1) THEN
TTE = THET (IBLTE(1),1) + THET(IBLTE(2
DTE = DSTR(IBLTE(1),1) + DSTR(IBLTE(2
CTE = (CTAU(IBLTE(1l),1)*THET (IBLTE(1
+ CTAU(IBLTE(2),2)*THET (IBLTE (2

CALL TESYS(CTE, TTE,DTE)

ELSE

CALL BLSYS

ENDIF

)
)
)
)

IF (DIRECT) THEN

’2)
,2) + ANTE

1)
,2)) / TTE

try direct mode (set dUe = 0 in currently empty 4th line)

vS2(4,1)
VS2 (4,2
vs2 (4,3
VS2 (4,4
VSREZ (4

|
or ooo

)
)
)
)

solve Newton system for current "2" station

CALL GAUSS(4,4,VS2,VSREZ, 1)

determine max changes and underrelax if necessary

DMAX = MAX(ABS(VSREZ(2)/THI),
ABS (VSREZ (3) /DSI))

IF (IBL.LT.ITRAN(

IF (IBL.GE.ITRAN (

RLX = 1.0
IF (DMAX.GT.0.3) RLX = 0.3/DMAX

see i1f direct mode is not applicable
IF(IBL .NE. IBLTE(IS)+1) THEN

MSQ = UEI*UEI*HSTINV / (GMIBL*(1.0 -

IS)) DMAX = MAX(DMAX,ABS(VSREZ(1)/10.0))
IS)) DMAX = MAX(DMAX,ABS(VSREZ(1)/CTI))

calculate resulting kinematic shape parameter Hk

0.5*UEI*UEI*HSTINV))

HTEST = (DSI + RLX*VSREZ(3)) / (THI + RLX*VSREZ(2))

CALL HKIN(HTEST, MSQ, HKTEST, DUMMY,

IF(IBL.LT.ITRAN(IS)) HMAX = HLMAX

203

DUMMY)

decide whether to do direct or inverse problem based on Hk

IF(IBL.GE.ITRAN(IS)) HMAX = HTMAX
DIRECT = HKTEST.LT.HMAX

ENDIF
C
IF (DIRECT) THEN
C————— update as usual
ccc IF(IBL.LT.ITRAN(IS)) AMI = AMI + RLX*VSREZ (1)
IF(IBL.GE.ITRAN(IS)) CTI = CTI + RLX*VSREZ (1)
THI = THI + RLX*VSREZ(2)
DSI = DSI + RLX*VSREZ(3)
ELSE
Cr———— set prescribed Hk for inverse calculation at the current station
IF(IBL.LT.ITRAN(IS)) THEN
Commm—— laminar case: relatively slow increase in Hk downstream
HTARG = HK1 + 0.03*(X2-X1)/T1
ELSE IF(IBL.EQ.ITRAN(IS)) THEN
Cr———— transition interval: weighted laminar and turbulent case
HTARG = HK1 + (0.03*(XT-X1) - 0.15*%(X2-XT))/T1
ELSE IF(WAKE) THEN
Cm————— turbulent wake case:
Cc- asymptotic wake behavior with approximate Backward Euler
CONST = 0.03*(X2-X1)/T1
HK2 = HK1
HK2 = HK2 - (HK2 + CONST* (HK2-1.0) **3 - HK1)
& /(1.0 + 3.0*CONST* (HK2-1.0) **2)
HK2 = HK2 - (HK2 + CONST* (HK2-1.0)**3 — HK1)
& /(1.0 + 3.0*CONST* (HK2-1.0)**2)
HK2 = HK2 - (HK2 + CONST* (HK2-1.0)**3 - HK1)
& /(1.0 + 3.0*CONST* (HK2-1.0) **2)
HTARG = HK2
ELSE
Comm——— turbulent case: relatively fast decrease in Hk downstream
HTARG = HK1 - 0.15*(X2-X1)/T1
ENDIF
C
Com——— limit specified Hk to something reasonable
IF (WAKE) THEN
HTARG = MAX(HTARG , 1.01)
ELSE
HTARG = MAX(HTARG , HMAX)
ENDIF
C
WRITE(*,1300) IBL, HTARG
1300 FORMAT (' MRCHUE: Inverse mode at', I4, ' Hk =', F8.3)
C
C——— try again with prescribed Hk
GO TO 100
C
ENDIF
C
ELSE
C
C—r——— inverse mode (force Hk to prescribed value HTARG)
vVs2(4,1) = 0.
VS2(4,2) = HK2_T2
VS2(4,3) = HK2_D2
VS2(4,4) = HK2_U2
VSREZ (4) = HTARG - HK2
C
CALL GAUSS(4,4,VS2,VSREZ, 1)
C
DMAX = MAX(ABS(VSREZ(2)/THI),
& ABS (VSREZ (3) /DSI))
IF(IBL.GE.ITRAN(IS)) DMAX = MAX(DMAX , ABS(VSREZ(1)/CTI))
C
RLX = 1.0
IF (DMAX.GT.0.3) RLX = 0.3/DMAX
C
C—m——— update variables
ccc IF(IBL.LT.ITRAN(IS)) AMI = AMI + RLX*VSREZ (1)

IF(IBL.GE.ITRAN(IS)) CTI = CTI + RLX*VSREZ (1)
THI = THI + RLX*VSREZ(2)

204

DSI = DSI + RLX*VSREZ(3)

UEI = UEI + RLX*VSREZ(4)
C
ENDIF
C
C—m——— eliminate absurd transients
IF(IBL.GE.ITRAN(IS)) THEN
CTI = MIN(CTI , 0.30)
CTI = MAX(CTI , 0.0000001
ENDIF
C
IF(IBL.LE.IBLTE(IS)) THEN
HKLIM = 1.02
ELSE
HKLIM = 1.00005
ENDIF
MSQ = UEI*UEI*HSTINV / (GM1BL* (1.0 - O0.5*UEI*UEI*HSTINV))
DSW = DSI - DSWAKI
CALL DSLIM(DSW, THI,UEI,MSQ, HKLIM)
DSI = DSW + DSWAKI
C
IF(DMAX.LE.1.0E-5) GO TO 110
C
100 CONTINUE
WRITE(*,1350) IBL, IS, DMAX
1350 FORMAT (' MRCHUE: Convergence failed at',I4,' side',I2,
& ' Res =', E12.4)
C
C————— the current unconverged solution might still be reasonable...
CCcC IF(DMAX .LE. 0.1) GO TO 110
IF(DMAX .LE. 0.1) GO TO 109
C
C——— the current solution is garbage --> extrapolate values instead
IF(IBL.GT.3) THEN
IF(IBL.LE.IBLTE(IS)) THEN
THI = THET(IBM,IS) * (XSSI(IBL,IS)/XSSI(IBM,IS))**0.5
DSI = DSTR(IBM,IS) * (XSSI(IBL,IS)/XSSI(IBM,IS))**0.5
ELSE IF(IBL.EQ.IBLTE(IS)+1) THEN
CTI = CTE
THI = TTE
DSI = DTE
ELSE
THI = THET(IBM, IS)
RATLEN = (XSSI(IBL,IS)-XSSI(IBM,IS)) / (10.0*DSTR(IBM,IS))
DSI = (DSTR(IBM,IS) + THI*RATLEN) / (1.0 + RATLEN)
ENDIF
IF(IBL.EQ.ITRAN(IS)) CTI = 0.05
IF(IBL.GT.ITRAN(IS)) CTI = CTAU(IBM, IS)
C
UEI = UEDG(IBL,IS)
IF(IBL.GT.2 .AND. IBL.LT.NBL(IS))
& UEI = 0.5* (UEDG (IBL-1,1IS) + UEDG(IBL+1,1IS))
ENDIF
C
109 CALL BLPRV(XSI,AMI,CTI,THI,DSI,DSWAKI,UEI)
CALL BLKIN
C
Cor————- check for transition and set appropriate flags and things
IF((.NOT.SIMI) .AND. (.NOT.TURB)) THEN
CALL TRCHEK
AMI = AMPL2
IF (TRAN) ITRAN(IS) = IBL
IF (.NOT.TRAN) ITRAN(IS) = IBL+2
ENDIF
C
C———— set all other extrapolated values for current station
IF(IBL.LT.ITRAN(IS)) CALL BLVAR(1l)
IF(IBL.GE.ITRAN(IS)) CALL BLVAR(2)
IF (WAKE) CALL BLVAR(3)
C

IF(IBL.LT.ITRAN(IS)) CALL BLMID(1)
IF(IBL.GE.ITRAN(IS)) CALL BLMID(2)

205

IF (WAKE) CALL BLMID(3)

c
C————— pick up here after the Newton iterations
110 CONTINUE
C
C————— store primary variables
IF(IBL.LT.ITRAN(IS)) CTAU(IBL,IS) = AMI
IF(IBL.GE.ITRAN(IS)) CTAU(IBL,IS) = CTI
THET (IBL,IS) = THI
DSTR(IBL,IS) = DSI
UEDG (IBL, IS) = UEI
MASS (IBL,IS) = DSI*UEI
TAU (IBL,IS) = 0.5*%R2*U2*U2*CF2
DIS(IBL,IS) = R2*U2*U2*U2*DI2*HS2*0.5
CTQ(IBL,IS) = CQ2
DELT (IBL,IS) = DE2
c
C————— set "1" variables to "2" variables for next streamwise station
CALL BLPRV(XSI,AMI,CTI,THI,DSI,DSWAKI,UET)
CALL BLKIN
DO 310 ICOM=1, NCOM
COM1 (ICOM) = COM2 (ICOM)
310 CONTINUE
C
C—————= turbulent intervals will follow transition interval or TE
IF(TRAN .OR. IBL.EQ.IBLTE(IS)) THEN
TURB = .TRUE.
C
C————- save transition location
TFORCE (IS) = TRFORC
XSSITR(IS) = XT
ENDIF
C
TRAN = .FALSE.
C
IF(IBL.EQ.IBLTE(IS)) THEN
THI = THET(IBLTE(1),1) + THET(IBLTE(2),2)
DSI = DSTR(IBLTE(1l),1) + DSTR(IBLTE(2),2) + ANTE
ENDIF
C

1000 CONTINUE
2000 CONTINUE

C
RETURN
END
SUBROUTINE MRCHDU
C __
C Marches the BLs and wake in mixed mode using
C the current Ue and Hk. The calculated Ue
C and Hk lie along a line quasi-normal to the
c natural Ue-Hk characteristic line of the
C current BL so that the Goldstein or Levy-Lees
c singularity is never encountered. Continuous
C checking of transition onset is performed.
C ,,
INCLUDE 'XFOIL.INC'
INCLUDE 'XBL.INC'
REAL VTMP(4,5), VZTMP(4)
REAL MSQ
ccc REAL MDI
C
DATA DEPS / 5.0E-6 /
C
C--—- constant controlling how far Hk is allowed to deviate
Cc- from the specified value.
SENSWT = 1000.0
C
DO 2000 Is=1, 2
C
C--—- set forced transition arc length position

206

CALL XIFSET(IS)

x/u du/dx

dTh, dDs,

+ DSWAKI
+ DSWAKI

dUe, dXi

C
C---- set leading edge pressure gradient parameter
IBL = 2
XSI = XSSI(IBL,IS)
UEI = UEDG(IBL, IS)
CCcC BULE = LOG(UEDG (IBL+1,IS)/UEI) / LOG(XSSI(IBL+1,IS)/XSI)
CCC BULE = MAX(-.08 , BULE)
BULE = 1.0
C
C--—- o0ld transition station
ITROLD = ITRAN(IS)
C
TRAN = .FALSE.
TURB = .FALSE.
ITRAN(IS) = IBLTE(IS)
C
C-——-- march downstream
DO 1000 IBL=2, NBL(IS)
IBM = IBL-1
C
SIMI = IBL.EQ.2
WAKE = IBL.GT.IBLTE(IS)
C
C————— initialize current station to existing variables
XSI = XSSI(IBL,IS)
UEI = UEDG(IBL,IS)
THI = THET(IBL,IS)
DSI = DSTR(IBL,IS)
CCcC MDI = MASS (IBL,IS)
C
C————— fixed BUG MD 7 June 99
IF(IBL.LT.ITROLD) THEN
AMI = CTAU(IBL,IS)
CTI = 0.03
ELSE
CTI = CTAU(IBL,IS)
IF(CTI.LE.0.0) CTI = 0.03
ENDIF
C
CCC DSI = MDI/UEI
C
IF (WAKE) THEN
IW = IBL - IBLTE(IS)
DSWAKI = WGAP (IW)
ELSE
DSWAKI = 0.
ENDIF
C
IF(IBL.LE.IBLTE(IS)) DSI = MAX(DSI-DSWAKI,1.02000*THI)
IF(IBL.GT.IBLTE(IS)) DSI = MAX(DSI-DSWAKI,1.00005*THI)
Cc
C————— Newton iteration loop for current station
DO 100 ITBL=1, 25
C
C—————— assemble 10x3 linearized system for dCtau,
C at the previous "1" station and the current "2" station
C (the "1" station coefficients will be ignored)
C
C
CALL BLPRV(XSI,AMI,CTI,THI,DSI,DSWAKI,UETI)
CALL BLKIN
C
C—m——— check for transition and set appropriate flags and things
IF((.NOT.SIMI) .AND. (.NOT.TURB)) THEN
CALL TRCHEK
AMI = AMPLZ2
IF(TRAN) ITRAN(IS) = IBL
IF(.NOT.TRAN) ITRAN(IS) = IBL+2
ENDIF
C

IF(IBL.EQ.IBLTE(IS)+1) THEN

207

c

C

TTE = THET(IBLTE(1),1) + THET(IBLTE(2),2)
DTE = DSTR(IBLTE(1),1) + DSTR(IBLTE(2),2) + ANTE
CTE = (CTAU(IBLTE(1l),1)*THET(IBLTE(1),1)

+ CTAU(IBLTE(2),2)*THET (IBLTE(2),2)) / TTE

CALL TESYS(CTE, TTE,DTE)
ELSE

CALL BLSYS
ENDIF

set stuff at first iteration...

IF(ITBL.EQ.1) THEN

set "baseline" Ue and Hk
UEREF = U2

HKREF = HK2

if current point IBL was

IF(IBL.LT.ITRAN(IS) .AND.

- extrapolate baseline Hk
UEM = UEDG(IBL-1,1IS)
DSM = DSTR(IBL-1,1IS)
THM = THET (IBL-1,1IS)

for forming Ue(Hk) relation

turbulent and is now laminar, then...
IBL.GE.ITROLD) THEN

MSQ = UEM*UEM*HSTINV / (GMIBL* (1.0 - O0.5*UEM*UEM*HSTINV))

CALL HKIN(DSM/THM, MSQ,
ENDIF

if current point IBL was
IF(IBL.LT.ITROLD) THEN

HKREF, DUMMY, DUMMY)

laminar, then...

- reinitialize or extrapolate Ctau if it's now turbulent

IF (TRAN) CTAU(IBL,IS) =
IF (TURB) CTAU(IBL,IS) =
IF (TRAN .OR. TURB) THEN
CTI = CTAU(IBL, IS)
S2 = CTI
ENDIF
ENDIF

ENDIF

0.03
CTAU (IBL-1,IS)

IF(SIMI .OR. IBL.EQ.IBLTE(IS)+1) THEN

for similarity station or first wake point, prescribe Ue

vS2(4,1) = 0.
vS2(4,2) = 0.
VvS2(4,3) = 0.
VS2(4,4) = U2_UEI
VSREZ (4) = UEREF - U2
ELSE

CHxx*4x***x cglculate Ue-Hk characteristic slope

c

DO 20 K=1, 4

VZTMP (K) = VSREZ (K)
DO 201 L=1, 5
VTIMP (K, L) = VS2(K,L)
CONTINUE
CONTINUE

set unit dHk

VIMP (4,1) = O.

VIMP (4,2) = HK2_T2

VTMP (4,3) = HK2_D2

VTMP (4,4) = HK2_U2*U2_UEI

VZTMP (4) = 1.0

calculate dUe response

CALL GAUSS (4, 4,VIMP,VZTMP, 1)

set SENSWT * (normalized dUe/dHk)
SENNEW = SENSWT * VZTMP (4) * HKREF/UEREF

208

IF(ITBL.LE.5) THEN
SENS = SENNEW
ELSE IF(ITBL.LE.15) THEN
SENS = 0.5* (SENS + SENNEW)
ENDIF

—- set prescribed Ue-Hk combination

vs2(4,1) = 0.
VS2(4,2) = HK2_T2 * HKREF
VS2(4,3) = HK2_D2 * HKREF
VS2(4,4) =(HK2_U2 * HKREF + SENS/UEREF)*U2_UEI
VSREZ (4) = —(HKREF**2)* (HK2 / HKREF - 1.0)
- SENS* (U2 / UEREF - 1.0)
ENDIF

- solve Newton system for current "2" station
CALL GAUSS(4,4,VS2,VSREZ, 1)

— determine max changes and underrelax if necessary
DMAX = MAX(ABS(VSREZ(2)/THI),
ABS (VSREZ (3) /DSI))
IF(IBL.GE.ITRAN(IS)) DMAX = MAX (DMAX,ABS(VSREZ(1)/(10.0*CTI)))

RLX = 1.0
IF (DMAX.GT.0.3) RLX = 0.3/DMAX

- update as usual
IF(IBL.LT.ITRAN(IS)) AMI
IF(IBL.GE.ITRAN(IS)) CTI
THI = THI + RLX*VSREZ(2)
DSI = DSI + RLX*VSREZ(3)
UEI = UEI + RLX*VSREZ(4)

AMI + RLX*VSREZ (1)
CTI + RLX*VSREZ(1)

— eliminate absurd transients
IF(IBL.GE.ITRAN(IS)) THEN
CTI = MIN(CTI , 0.30)
CTI = MAX(CTI , 0.0000001
ENDIF

IF(IBL.LE.IBLTE(IS)) THEN
HKLIM = 1.02
ELSE
HKLIM = 1.00005
ENDIF
MSQ = UEI*UEI*HSTINV / (GMIBL*(1.0 - O.5*UEI*UEI*HSTINV))
DSW = DSI - DSWAKI
CALL DSLIM(DSW, THI,UEI,MSQ, HKLIM)
DSI = DSW + DSWAKI

IF (DMAX.LE.DEPS) GO TO 110
CONTINUE

WRITE(*,1350) IBL, IS, DMAX
FORMAT (' MRCHDU: Convergence failed at',I4,' side',I2,
' Res =', E12.4)

the current unconverged solution might still be reasonable...
IF(DMAX .LE. 0.1) GO TO 110
IF(DMAX .LE. 0.1) GO TO 109

the current solution is garbage --> extrapolate values instead
IF(IBL.GT.3) THEN

IF(IBL.LE.IBLTE(IS)) THEN

THI = THET (IBM,IS) * (XSSI(IBL,IS)/XSSI(IBM,IS))**0.5

DSI = DSTR(IBM,IS) * (XSSI(IBL,IS)/XSSI(IBM,IS))**0.5

UEI = UEDG (IBM,IS)

ELSE IF(IBL.EQ.IBLTE(IS)+1) THEN

CTI = CTE
THI = TTE
DSI = DTE

209

UEI = UEDG(IBM, IS)

ELSE

THI = THET (IBM, IS)

RATLEN = (XSSI(IBL,IS)-XSSI(IBM,IS)) / (10.0*DSTR(IBM,IS))
DSI = (DSTR(IBM,IS) + THI*RATLEN) / (1.0 + RATLEN)

UEI = UEDG(IBM, IS)
ENDIF

IF(IBL.EQ.ITRAN(IS)) CTI 0.05
IF(IBL.GT.ITRAN(IS)) CTI = CTAU(IBM,IS)

ENDIF
Cc
109 CALL BLPRV (XSI,AMI,CTI,THI,DSI,DSWAKI,UEI)
CALL BLKIN
Cc
C—m—— check for transition and set appropriate flags and things
IF((.NOT.SIMI) .AND. (.NOT.TURB)) THEN
CALL TRCHEK
AMI = AMPL2
IF(TRAN) ITRAN(IS) = IBL
IF(.NOT.TRAN) ITRAN(IS) = IBL+2
ENDIF
C
C—r——— set all other extrapolated values for current station
IF(IBL.LT.ITRAN(IS)) CALL BLVAR(1)
IF(IBL.GE.ITRAN(IS)) CALL BLVAR(2)
IF (WAKE) CALL BLVAR(3)
C
IF(IBL.LT.ITRAN(IS)) CALL BLMID(1)
IF(IBL.GE.ITRAN(IS)) CALL BLMID(2)
IF (WAKE) CALL BLMID(3)
C
C————— pick up here after the Newton iterations
110 CONTINUE
c
SENS = SENNEW
C
C———— store primary variables
IF(IBL.LT.ITRAN(IS)) CTAU(IBL,IS) = AMI
IF(IBL.GE.ITRAN(IS)) CTAU(IBL,IS) = CTI
THET (IBL,IS) = THI
DSTR(IBL,IS) = DSI
UEDG(IBL,IS) = UEI
MASS (IBL,IS) = DSI*UEI
TAU (IBL,IS) = 0.5*R2*U2*U2*CF2
DIS(IBL,IS) = R2*U2*U2*U2*DI2*HS2*0.5
CTQ(IBL,IS) = CQ2
Cc
C————= set "1" variables to "2" variables for next streamwise station

CALL BLPRV(XSI,AMI,CTI,THI,DSI,DSWAKI,UETI)
CALL BLKIN
DO 310 ICOM=1, NCOM
COM1 (ICOM) = COM2 (ICOM)
310 CONTINUE

c
c
C————— turbulent intervals will follow transition interval or TE
IF(TRAN .OR. IBL.EQ.IBLTE(IS)) THEN
TURB = .TRUE.
C
C—m—— save transition location
TFORCE (IS) = TRFORC
XSSITR(IS) = XT
ENDIF
C
TRAN = .FALSE.
C
1000 CONTINUE
C
2000 CONTINUE
C
RETURN
END

210

SUBROUTINE XIFSET(IS)

C ___
C Sets forced-transition BL coordinate locations.
C ,,,
INCLUDE 'XFOIL.INC'
INCLUDE 'XBL.INC'
c
IF (XSTRIP(IS).GE.1.0) THEN
XIFORC = XSSI(IBLTE(IS),IS)
RETURN
ENDIF
Cc
CHX = XTE - XLE
CHY = YTE - YLE
CHSQ = CHX**2 + CHY**2
C
C---- calculate chord-based x/c, y/c
DO 10 I=1, N
W1(I) = ((X(I)-XLE)*CHX + (Y(I)-YLE)*CHY) / CHSQ
W2(I) = ((Y(I)-YLE)*CHX - (X(I)-XLE)*CHY) / CHSQ
10 CONTINUE
C
CALL SPLIND(W1,W3,S,N,-999.0,-999.0)
CALL SPLIND(W2,W4,S,N,-999.0,-999.0)
C
IF(IS.EQ.1) THEN
C
C——— set approximate arc length of forced transition point for SINVRT
STR = SLE + (S(1)-SLE)*XSTRIP(IS)
C
C————= calculate actual arc length
CALL SINVRT(STR,XSTRIP(IS),Wl,W3,S,N)
C
C————- set BL coordinate value
XIFORC = MIN((SST - STR) , XSSI(IBLTE(IS),IS))
C
ELSE
C————- same for bottom side
C
STR = SLE + (S(N)-SLE)*XSTRIP(IS)
CALL SINVRT(STR,XSTRIP(IS),Wl,W3,S,N)
XIFORC = MIN((STR - SST) , XSSI(IBLTE(IS),IS))
C
ENDIF
Cc
IF (XIFORC .LT. 0.0) THEN
WRITE (*,1000) IS
1000 FORMAT(/' *** Stagnation point is past trip on side',I2,' ***')
XIFORC = XSSI(IBLTE(IS),IS)
ENDIF
c
RETURN
END
SUBROUTINE UPDATE (sec,pcor)
C ,,
C Adds on Newton deltas to boundary layer variables.
C Checks for excessive changes and underrelaxes if necessary.
C Calculates max and rms changes.
C Also calculates the change in the global variable "AC".
C If LALFA=.TRUE. , "AC" is CL
C If LALFA=.FALSE., "AC" is alpha
C ,,

INCLUDE 'XFOIL.INC'
include 'section.inc' !02/06/2005

type (section) :: sec

211

REAL UNEW(IVX,2),

U_AC(IVX,2)

real:: pcor (igx,2) 'mass defect correction (22/05/2005)
REAL:: QNEW(IQX), Q_AC(IQX), Qcorr (IQX) !viscous correction
EQUIVALENCE (VA(1,1,1), UNEW(1,1)) ,

& (VB(1,1,1), QONEW(1))

EQUIVALENCE (VA(1,1,IVX), U_AC(1,1)) ,
& (VB(1,1,IVX), Q_AC(1l))
REAL MSQ
C
C---- max allowable alpha changes per iteration
DALMAX = O0.5*DTOR
DALMIN = -0.5*DTOR
C
C---- max allowable CL change per iteration
DCLMAX = 0.5
DCLMIN = -0.5
IF(MATYP.NE.1) DCLMIN = MAX(-0.5 , -0.9*CL)
C
HSTINV = GAMM1* (MINF/QINF)**2 / (1.0 + 0.5*GAMMI*MINF**2)
C
C--—- calculate new Ue distribution assuming no under-relaxation
C- also set the sensitivity of Ue wrt to alpha or Re
DO 1 Is=1, 2
DO 10 IBL=2, NBL(IS)
I = IPAN(IBL,IS)
C
DUI = 0.
DUI_AC = 0.
DO 100 Js=1, 2
DO 1000 JBL=2, NBL(JS)
J = IPAN(JBL,JS)
JV = ISYS(JBL,JS)
UE_M = -VTI(IBL,IS)*VTI(JBL,JS)*DIJ(I,Jd)
DUI = DUI + UE_M* (MASS (JBL,JS)+VDEL(3,1,JV))
DUI_AC = DUI_AC + UE_M*(-VDEL (3,2,JV))
1000 CONTINUE
100 CONTINUE
C
C—m——— UINV depends on "AC" only if "AC" is alpha
IF (LALFA) THEN
UINV_AC = 0.
ELSE
UINV_AC = UINV_A(IBL,IS)
ENDIF
C
pcor (ibl,is) = DUI !viscous correction vector (22/05/2005)
UNEW (IBL,IS) = UINV(IBL,IS) + DUI
U_AC(IBL,IS) = UINV_AC + DUI_AC
C
10 CONTINUE
1 CONTINUE
C
C-—-- set new Qtan from new Ue with appropriate sign change
DO 2 Is=1, 2
DO 20 IBL=2, IBLTE(IS)
I = IPAN(IBL,IS)
Qcorr (i) = VTI(IBL,IS)*pcor (IBL,IS) !added 02/06/2005
QONEW(I) = VTI(IBL,IS)*UNEW(IBL,IS)
Q_AC(I) = VTI(IBL,IS)*U_AC(IBL,IS)
20 CONTINUE
2 CONTINUE
ONEW(IST) = 0. !correction on 30/03/2004
C
C--—- calculate new CL from this new Qtan
SA = SIN(ALFA)
CA = COS(ALFA)
C
BETA = SQRT (1.0 - MINF**2)
BETA_MSQ = -0.5/BETA
C
BFAC = 0.5*MINF**2 / (1.0 + BETA)
BFAC_MSQ = 0.5 / (1.0 + BETA)

212

& - BFAC / (1.0 + BETA) * BETA_MSQ

C
CLNEW = 0.
CL_A = 0.
CL_MS = 0.
CL_AC = 0.
C
I =1
ICGINC = 1.0 - (QNEW(I)/QINF)**2
CGINC = sec.cp(i)+ Qcorr(i)**2
CPGl = CGINC / (BETA + BFAC*CGINC)
CPG1_MS = -CPG1l/(BETA + BFAC*CGINC) * (BETA_MSQ + BFAC_MSQ*CGINC)
C
ICPI_Q = —-2.0*QNEW(I)/QINF**2
CPI_Q = -2.0*(l-sec.cp(i))
CPC_CPI = (1.0 - BFAC*CPG1l)/ (BETA + BFAC*CGINC)
CPG1_AC = CPC_CPI*CPI_Q*Q_AC(I)
C
DO 3 I=1, N
IP = I+1
IF(I.EQ.N) IP =1
C
ICGINC = 1.0 — (QNEW(IP)/QINF)**2
CGINC = sec.cp(i)+ Qcorr (i)**2
CPG2 = CGINC / (BETA + BFAC*CGINC)
CPG2_MS = —-CPG2/(BETA + BFAC*CGINC)* (BETA_MSQ + BFAC_MSQ*CGINC)
C
CPI_Q = -2.0*(l-sec.cp(i))
CPC_CPI = (1.0 - BFAC*CPG2)/ (BETA + BFAC*CGINC)
CPG2_AC = CPC_CPI*CPI_Q*Q_AC(IP)
C
DX = (X(IP) - X(I))*CA + (Y(IP) - Y(I))*SA
DX_A = —(X(IP) — X(I))*SA + (Y(IP) - Y(I))*CA
C
AG = 0.5*(CPG2 + CPG1)
AG_MS = 0.5*(CPG2_MS + CPG1_MS)
AG_AC = 0.5*(CPG2_AC + CPG1l_AC)
C
CLNEW = CLNEW + DX *AG
CL_A = CL_A + DX_A*AG
CL_MS = CL_MS + DX *AG_MS
CL_AC = CL_AC + DX *AG_AC
C
CPG1 = CPG2
CPG1_MS = CPG2_MS
CPG1_AC = CPG2_AC
3 CONTINUE
C
C-—-- initialize under-relaxation factor
RLX = 1.0
Cc
IF (LALFA) THEN
C===== alpha is prescribed: AC is CL
C
C————- set change in Re to account for CL changing, since Re = Re(CL)
DAC = (CLNEW - CL) / (1.0 - CL_AC - CL_MS*2.0*MINF*MINF_CL)
Cc
C————- set under-relaxation factor if Re change is too large
IF (RLX*DAC .GT. DCLMAX) RLX = DCLMAX/DAC
IF (RLX*DAC .LT. DCLMIN) RLX = DCLMIN/DAC
Cc
ELSE
C===== CL 1is prescribed: AC is alpha
C
C———— set change in alpha to drive CL to prescribed value
DAC = (CLNEW - CLSPEC) / (0.0 - CL_AC - CL_A)
C
C————- set under-relaxation factor if alpha change is too large
IF (RLX*DAC .GT. DALMAX) RLX = DALMAX/DAC
IF (RLX*DAC .LT. DALMIN) RLX = DALMIN/DAC
C

ENDIF

213

RMSBL = O.
RMXBL = 0.

DHI = 1.5
DLO = -.5

C--—- calculate changes in BL variables and under-relaxation if needed
DO 4 IS=1, 2
DO 40 IBL=2, NBL(IS)
IV = ISYS(IBL,IS)

———————— set changes without underrelaxation
DCTAU = VDEL(1,1,1IV) - DAC*VDEL(1l,2,1IV)
DTHET = VDEL(2,1,1IV) - DAC*VDEL(2,2,1IV)
DMASS = VDEL(3,1,IV) - DAC*VDEL(3,2,IV)
DUEDG = UNEW(IBL,IS) + DAC*U_AC(IBL,IS) - UEDG (IBL,IS)
DDSTR = (DMASS - DSTR(IBL,IS)*DUEDG)/UEDG (IBL,IS)

———————— normalize changes !all corrected 27/06/2004
IF(IBL.LT.ITRAN(IS)) DN1 = DCTAU / 10.0
IF(IBL.GE.ITRAN(IS)) DN1 = DCTAU / CTAU(IBL,IS)
DN2 = DTHET / THET (IBL, IS)

DN3 = DDSTR / DSTR(IBL,IS)
DN4 = ABS(DUEDG)/0.25

if (iv<=iblte(is)) then !just for body 30/03/2004

———————— accumulate for rms change
RMSBL = RMSBL + DN1**2 + DN2**2 + DN3**2 + DN4**2
endif

———————— see if Ctau needs underrelaxation

RDN1 = RLX*DNL1

IF (ABS(DN1) .GT. ABS(RMXBL)) THEN
RMXBL = DN1
IF(IBL.LT.ITRAN(IS)
IF(IBL.GE.ITRAN(IS)
IMXBL = IBL
ISMXBL = IS

ENDIF

IF(RDN1 .GT. DHI) RLX = DHI/DN1
IF(RDN1 .LT. DLO) RLX = DLO/DN1

VMXBL = 'n'
VMXBL = 'C'

)
)

———————— see if Theta needs underrelaxation

RDN2 = RLX*DN2
IF (ABS(DN2) .GT. ABS(RMXBL)) THEN
RMXBL = DN2

VMXBL 'T!

IMXBL = IBL

ISMXBL = IS
ENDIF
IF(RDN2 .GT. DHI) RLX
IF(RDN2 .LT. DLO) RLX

DHI/DN2
DLO/DN2

———————— see if Dstar needs underrelaxation

RDN3 = RLX*DN3
IF (ABS(DN3) .GT. ABS(RMXBL)) THEN
RMXBL = DN3

VMXBL = 'D'

IMXBL = IBL

ISMXBL = IS
ENDIF
IF(RDN3 .GT. DHI) RLX
IF(RDN3 .LT. DLO) RLX

DHI/DN3
DLO/DN3

———————— see if Ue needs underrelaxation
RDN4 = RLX*DN4
IF (ABS(DN4) .GT. ABS(RMXBL)) THEN
RMXBL = DUEDG
VMXBL = 'U'
IMXBL = IBL

214

ISMXBL = IS
ENDIF

IF (RDN4 .GT. DHI) RLX = DHI/DN4
IF(RDN4 .LT. DLO) RLX = DLO/DN4

C
40 CONTINUE
4 CONTINUE
C
C———- set true rms change
RMSBL = SQRT(RMSBL / (4.0*FLOAT(NBL(1)+NBL(2)))) !/1000 !14/04/2004
Cc
C
IF (LALFA) THEN
C———— set underrelaxed change in Reynolds number from change in lift
CL = CL + RLX*DAC
ELSE
C————= set underrelaxed change in alpha
ALFA = ALFA + RLX*DAC
ADEG = ALFA/DTOR
ENDIF
C
C--—- update BL variables with underrelaxed changes
DO 5 Is=1, 2
DO 50 IBL=2, NBL(IS)
IV = ISYS(IBL,IS)
C
DCTAU = VDEL(1,1,IV) - DAC*VDEL(1l,2,IV)
DTHET = VDEL(2,1,IV) - DAC*VDEL(2,2,1IV)
DMASS = VDEL(3,1,IV) - DAC*VDEL(3,2,1IV)
DUEDG = UNEW(IBL,IS) + DAC*U_AC(IBL,IS) - UEDG(IBL,IS)
DDSTR = (DMASS - DSTR(IBL,IS)*DUEDG)/UEDG(IBL,IS)
C
CTAU(IBL,IS) = CTAU(IBL,IS) + RLX*DCTAU
THET (IBL,IS) = THET(IBL,IS) + RLX*DTHET
DSTR(IBL,IS) = DSTR(IBL,IS) + RLX*DDSTR
UEDG (IBL, IS) = UEDG(IBL,IS) + RLX*DUEDG
C
IF(IBL.GT.IBLTE(IS)) THEN
IW = IBL - IBLTE(IS)
DSWAKI = WGAP (IW)
ELSE
DSWAKI = 0.
ENDIF
C
C———— eliminate absurd transients
IF(IBL.GE.ITRAN(IS))
& CTAU(IBL,IS) = MIN(CTAU(IBL,IS) , 0.25
C
IF(IBL.LE.IBLTE(IS)) THEN
HKLIM = 1.02
ELSE
HKLIM = 1.00005
ENDIF
MSQ = UEDG (IBL,IS)**2*HSTINV
& / (GAMM1* (1.0 - 0.5*UEDG(IBL,IS)**2*HSTINV))
DSW = DSTR(IBL,IS) - DSWAKI
CALL DSLIM(DSW, THET (IBL,IS),UEDG(IBL,IS),MSQ,HKLIM)
DSTR(IBL,IS) = DSW + DSWAKI
C
C————— set new mass defect (nonlinear update)
MASS (IBL,IS) = DSTR(IBL,IS) * UEDG(IBL,IS)
C
50 CONTINUE
5 CONTINUE
C
C
C-———- equate upper wake arrays to lower wake arrays
DO 6 KBL=1, NBL(2)-IBLTE(2)
CTAU (IBLTE (1) +KBL,1) = CTAU(IBLTE(2)+KBL,2)
THET (IBLTE (1) +KBL, 1) = THET (IBLTE(2)+KBL, 2)
DSTR(IBLTE (1) +KBL,1l) = DSTR(IBLTE(2)+KBL,?2)
UEDG (IBLTE (1) +KBL, 1) = UEDG(IBLTE (2)+KBL,2)

215

TAU (IBLTE (2) +KBL, 2)

TAU(IBLTE (1) +KBL, 1)

DIS(IBLTE(1)+KBL,1) = DIS(IBLTE(2)+KBL,2)
CTQ(IBLTE(1)+KBL,1) = CTQ(IBLTE(2)+KBL,?2)
6 CONTINUE
C
RETURN
END

SUBROUTINE DSLIM(DSTR, THET,UEDG,MSQ, HKLIM)
IMPLICIT REAL (A-H,M,0-2)

C
H = DSTR/THET
CALL HKIN (H,MSQ, HK, HK_H, HK_M)
C
DH = MAX(0.0 , HKLIM-HK) / HK_H
DSTR = DSTR + DH*THET
C
RETURN
END

VIX Subroutine Stagpoint

!This subroutine finds the stagnation point of

! a interpolated section. If it is a membrane,

! fsharp = true, program will set the stagnation
! point at the very leading edge
!***
! Created by: Augusto Veiga,

! FSIG, University of Southampton 2003

1% %k ok ok sk ok ok sk ok ok sk ok ok ok ok ok sk ok ok ok ok ok ok ok ok ok ke sk ok ok ok ok ok ok ok ok sk ok ok ok ok ok ok ok ok ok

subroutine stagpoint (Up, s, gamma, x,N,Nw, Ist, SST,SSt_GO, SST_GP,
& fsharp)

integer:: N,Nw, IST,IS

real:: cpmax,h

real:: dcpl,dcp2

real,dimension (N+Nw) : : Up, s, x, gamma, Cp

logical:: fsharp

!Calculating Cp over the wing
do i =1,N
cp(i) = 1.-Up(i)**2
enddo
if (fsharp) then
ist = int (N/2)+1

sst = s(ist)
is = ist
else

!Getting biggest Cp and position
cpmax = 0
is = int (N/2)+1

k = 1is

i = 1is
lpl: do
i = i+1

if (cp(i)>cpmax) then
cpmax = cp (i)

is = 1 !'finding a possible point
h = s(i)-s(i-1)
dcpl = (cpmax-cp(i-1))/h
dcp2 = (cp(i+l)-cpmax)/h
if ((dcpl>0 .and. dcp2<0)) then
ist = is !testing derivatives
sst = s (is)
exit 1pl
endif
else if (i>(k+int(N/2))) then
is = int(N/2)+1
sst = s(is)
exit 1pl

216

endif

enddo 1pl
endif
!'signal for gamma
gamma (ist) = 0
do i = 1,IST-1 'IST+1,N
gamma (1) = Up (i)
enddo

lupper part
do i = IST+1,N
gamma (i) = -Up(i)
enddo
'wake
do 1 = N+1,N+Nw
gamma (i) = Up (i)
enddo
DGAM = GAMMA (IST+1) - GAMMA (IST)
SST_GO = (SST - S(Ist+l))/DGAM
SST_GP = (S(Ist+1l) - SST)/DGAM
return
end subroutine

VIX Subroutine AIJCALC

IRES SRR SRS EE SRS SRS S EEE SRS SRR RS RS ERE RS RS RS EEEEEEEEREEEEEEEEEEEEEEEEEEEEEESE]

SUBROUTINE ATIJCALC

C Calculates two surface vorticity (gamma) distributions
C for alpha = 0, 90 degrees. These are superimposed

C in SPECAL or SPECCL for specified alpha or CL.

C This subroutine was adapted from XFOIL by Augusto Veiga

C ,,
INCLUDE 'XFOIL.INC'
¢
C--—- distance of internal control point ahead of sharp TE
C- (fraction of smaller panel length adjacent to TE)
BWT = 0.1
¢
WRITE (*,*) 'Calculating unit vorticity distributions ...'
C
DO 10 I=1, N
! GAM(I) = 0.
GAMU(I,1) = 0.
GAMU(I,2) = 0.
10 CONTINUE
PSIO = 0.
C
C--—- Set up matrix system for Psi = Psio on airfoil surface.
Cc- The unknowns are (dGamma)i and dPsio.
DO 20 I=1, N
C
C—r——— calculate Psi and dPsi/dGamma array for current node
CALL PSILIN(I,X(I),Y(I),NX(I),NY(I),PSI,PSI_N, .FALSE.,.TRUE.)
¢
PSIINF = QINF* (COS(ALFA)*Y(I) - SIN(ALFA)*X(I))
C
C————— RES1 = PSI(0) - PSIO
C———— RES2 = PSI(90) - PSIO
RES1 = QINF*Y(I)
RES2 = -QINF*X(I)
C
C————— dRes/dGamma
DO 201 J=1, N
AIJ(I,J) = DZDG(J)
201 CONTINUE
¢
DO 202 J=1, N
BIJ(I,J) = -DZDM(J)
202 CONTINUE
¢
C————— dRes/dPsio

217

AIJ(I,N+1) = -1.0

C
GAMU(I,1l) = -RES1
GAMU(I,2) = -RES2
C
20 CONTINUE
C
C-—-—- set Kutta condition
C- RES = GAM(1l) + GAM(N)
RES = 0.
C
DO 30 J=1, N+1
AIJ(N+1,J) = 0.0
30 CONTINUE
C
AIJ(N+1,1) = 1.0
AIJ(N+1,N) = 1.0
C
GAMU (N+1,1) = -RES
GAMU (N+1,2) = -RES
C
C--—- set up Kutta condition (no direct source influence)
DO 32 J=1, N
BIJ(N+1,J) = 0.
32 CONTINUE
C
IF (SHARP) THEN
C————- set zero internal velocity in TE corner
C
C———— set TE bisector angle
AGl = ATAN2(-YP(1l),-XP (1))
AG2 = ATANC(YP(N), XP(N),AGl)
ABIS = 0.5* (AG1+AG2)
CBIS = COS(ABIS)
SBIS = SIN(ABIS)
C
C————- minimum panel length adjacent to TE
DS1 = SQRT((X(1)-X(2))**F2 + (Y (1)-Y(2)) **2)
DS2 = SQRT((X(N)-X(N-1))**2 + (Y(N)-Y(N-1))**2)
DSMIN = MIN(DS1 , DS2)
C
C———— control point on bisector just ahead of TE point
XBIS = XTE - BWT*DSMIN*CBIS
YBIS = YTE - BWT*DSMIN*SBIS
ccc write(*,*) xbis, ybis
C
C———— set velocity component along bisector line
CALL PSILIN(O,XBIS,YBIS,-SBIS,CBIS,PSI,QBRIS, .FALSE., .TRUE.)
C
CCC--- RES = DQDGj*Gammaj + DQDMj*Massj + QINF* (COSA*CBIS + SINA*SBIS)
RES = QBIS
C
C———— dRes/dGamma
DO J=1, N
AIJ(N,J) = DQDG(J)
ENDDO
C
C————- -dRes/dMass
DO J=1, N
BIJ(N,J) = -DQDM(J)
ENDDO
C
C———— dRes/dPsio
AIJ(N,N+1) = 0.
C
C————- -dRes/dUinf
GAMU (N, 1) = -CBIS
C
C————- -dRes/dvinf
GAMU (N, 2) = -SBIS
C
ENDIF

218

C-—-—- LU-factor coefficient matrix AIJ
CALL LUDCMP (IQX,N+1,AIJ,AIJPIV)
LOAIJ = .TRUE.
C
C--—- solve system for the two vorticity distributions

CALL BAKSUB(IQX,N+1,AIJ,AIJPIV,GAMU(1,1)
CALL BAKSUB (IQX,N+1,AIJ,AIJPIV,GAMU(1,2))

¢
C--—- set inviscid alpha=0,90 surface speeds for this geometry
DO 50 I=1, N
QINVU(I,1) = GAMU(I,1)
QINVU(I,2) = GAMU(I,?2)
50 CONTINUE
C
LGAMU = .TRUE.
¢
RETURN
END

Mesh_Sail: Program for Creating Sail Mesh

Program Mesh_sail
include 'section.inc'

real:: length, height, aflow, p(3),dt

real:: org(3),x(3),y(3) 'origin
real,dimension(3,3):: vr

type (section):: csec(7),tesec
real:: intquad

pi = 3.1415
open(l,file = 'dados.txt')

'reading height, footleng and flow incidence
read(1l,*) height, length,aflow
!reading sections
! length, entry angle, te angle
j=1
do i =1,4
read(1l,*) csec(j).leng,csec(j).thl,csec(]j).th2
j = 3+2
enddo
!reading trailing edge (te) section
read(1l,*) trv,abat,tesec.cpos,tesec.camber
'reading foot and top section angles
read(1l,*) alfal,betal,alfa2,beta2
close (1)
dt = 1./3
t =0
do i=1,7,2
csec(i).t =t
t=t+dt
enddo
aflow = aflow*pi/180
abat = abat*pi/180
alfal = alfal*pi/180
alfa2 = alfa2*pi/180
betal = betal*pi/180
beta2 = beta2*pi/180

!calculation of intermediary section angles
do i =2,6,2

csec(i).thl =(csec(i+1l).thl+csec(i-1).thl)/2
csec(i).th2 =(csec(i+l).th2+csec(i-1).th2)/2

csec(i).t = (csec(i+l).t+csec(i-1).t)/2
if (i==2) then
k=1
do j=1,3
x(j) = csec(k).t

v (j) = csec(k).leng

219

k = k+2

enddo
else
k=1-3
do j=1,3
x(j) = csec(k).t
't = t+tr
v(j) = csec(k).leng
k = k+2
enddo
endif

csec(i).leng = intquad(x,y,csec(i).t) !quadratic interpolation
enddo

!generation of transversal sections
do k =1,7
'xm = csec (k) .cpos
'ym = csec (k) .camber
'call solve_foil (xm,ym,a,b,c)
ds = 1.0/10
s =0
csec(k).pl = 0
call set_sec(csec(k))
do i = 2,11
s=s+ds
csec(k).pl(2,i)= csec(k).pl(2,1i)*csec(k).leng
! (a*s**3+b*s**2+c*s) *csec (k) .leng
csec(k).pl(l,i)= csec(k).pl(l,i)*csec(k).leng
I's*csec (k) .leng
enddo
enddo
!foot section height
zf = tan(betal)
b = tan(alfal)
a = zf-b
=0
csec(l).pl(3,1) =0
do i = 2,11
s = s+ds
csec(l).pl(3,1) = (a*s**2+b*s)*csec(l).leng
enddo

[0}

!top section height
zf = tan(betal2)
b = tan(alfa2)
a = zf-b
s =0
csec(7).p1(3,1) = height
do i =2,11
s = s+ds
csec(7).pl(3,1) = height+ (a*s**2+b*s) *csec(l).leng
enddo

!intermediate sections height

dt = 1.0/6
t=0
do i =2,6
t = t+dt
do j =1,11
'df = csec(4).pl(3,3j)+csec(l).pl(3,3)
csec(i).pl(3,3J) = t*height 'df
enddo
enddo

!Generation of te section
xm = tesec.cpos

ym = tesec.camber

call solve_foil (xm,ym,a,b,c)
t =0

'tesec.pl = 0

doi=1,7

220

tesec.pl(2,1)= (a*t**3+b*t**2+c*t)*height
tesec.pl(3,1)= csec(i).pl(3,10)
tesec.pl(l,i)= csec(i).pl(1,10)
t=t+dt

enddo

'rotation of te section (just y coordinate)

al = aflow-abat

xXp = csec(4).pl(1,10)
yp = csec(4).pl(2,10)

p(l) = xp*cos(al)-yp*sin(al)
p(2) = xp*sin(al)+Yp*cos(al)
p(3) csec(4) .p1(3,10)
a2 = atan(p(2)/p(3))

do i =1,7

zp = tesec.pl(3,1)
yp = tesec.pl(2,1)

'tesec.pl(3,1) = zp*cos(al)-yp*sin(al)
tesec.pl(2,1) = zp*sin(a2)+Yp*cos(a2)
enddo

!translating te section
yt = trv*length

do i =1,7
tesec.pl(2,1) = tesec.pl(2,1i) +yt
enddo

!Calculating central and top sections twist angles

do k = 1,7

csec (k) .asec = atan(tesec.pl(2,k)/
& (tesec.pl(1l,k)-csec(k).pl(1,1)))
enddo

! rotating sections
do k = 1,7

al = csec(k) .asec
xo = csec(k).pl(1,1)
yo = 0

do i = 2,11
xp = csec(k).pl(1l,1)
yp = csec(k).pl(2,1)
csec(k).pl(l,1i) =xo+ xp*cos(al)-yp*sin(al)
csec(k).pl(2,1) =yo+ xp*sin(al)+Yp*cos(al)

enddo
enddo
'writting msh file
M = 11 !chordwise
N = 7 !'spanwise
open(2,file = 'c:\codigos\mshuns\sail.msh"')

do i =1,12
write(2,10)
enddo
write(2,20) M,N
t =0
do i =1,N
s =0
do j =1,M
write(2,30) csec(i).pl(1l,7j),csec(i).pl(2,3),csec(i).pl(3,7),
& s, t
s = s+ds
enddo
t = t+dt
enddo
close(2)

10 format ('%', 1x)

20 format (1x,14,1x,1i4)

30 format (1x,£8.5,1x,£8.5,1%,£8.5,1%,£8.5,1%,£8.5)
end program

1% % sk ok ok ok ok ok sk ok ok sk ok ok ok ok ok ok ke sk ok ok ok ok ok ok ok ke sk ok ok sk ok ok ok ok ok ok ok ok sk ok ok ok ok ok ok ok ok ok ke ok ok ok ok ok ok ok ok ke sk ok ok ok ke ok ok ok ok ok ok ok

221

subroutine set_sec(sec)
include 'section.inc'
!This program generates the section using the Jackson Polynomial
'Ref: P.S. Jackson, "A Simple Model for 2D Sails
! ATIAA Technical notes 1983
! Author: Augusto Veiga

type (section) :: sec
real:: A,B, pi
real:: delta, al,bl,cl

pi = 4. * atan(l.)
sec.thl = sec.thl*pi/180
sec.th2 = sec.th2*pi/180
A = sec.thl+sec.th2

B = sec.thl-sec.th2

!'seeking maximum camber position
al = -0.75*B*2

bl = -0.5*A

cl = 0.25*B

delta = bl**2-4*al*cl

if (delta>=0) then
r = (bl-sgrt(delta))/(2*al)
sec.cpos = (l+r)/2.
tm = 0.25*%(1-r**2)* (A+B*r)
sec.camber = tm/2.

endif

!Generating sections
ds = 2.0/10
dx = 1.0/10
s = -1
x =0
do i=1,11
t = 0.25%(1-s**2)* (A+B*s)
sec.pl(2,i) = t/2
sec.pl(l,i) = x
s = s+ds
x = x+dx
enddo
return
end subroutine

IEEE SRS RS EES RS RS SRR EEEE SR SRS EEEEEEEEEEEEEEEEEEEE]

real function intquad(x,y,x1l)

real,dimension(3):: x,y

real:: x1,sum

sum = 0

sum = sum+ ((x1-x(2))*(x1-x(3)))/ ((x(1)-x(2))*(x(1)-x(3)))*y (1)
sum = sum+ ((x1-x(1))*(x1-x(3)))/((x(2)-x(1))*(x(2)-x(3)))*y(2)
sum = sum+ ((x1-x(1))*(x1-x(2)))/((x(3)-x(1))*(x(3)-x(2)))*y(3)

intquad = sum

end function

subroutine solve_foil (xm,ym,a,b,c)

'makes the foil using a 3rd order polynomial
real:: xm,ym,a,b,c

real:: vr(3,3), v(3)

do i=1,3
k =4
if (i==2) then
v(i) = ym/xm
else
v(i) =0
endif
do j=1,3
k = k-3
if (i==1) then

222

OO NN N NN NN NO NN NONe!

Q

Q

vr(i,j) = k*xm**(k-1)

else if (i==2) then
vr(i,j) = xm**(k-1)

else
vr(i,j) = 1.0

endif

enddo
enddo

!solve system using Gauss elimination
call gauss(3,3,Vr,v,1)

a = v(l)
b = v(2)
c = v(3)
return

end subroutine

SUBROUTINE GAUSS (NSIZ,NN, Z,R,NRHS)

R RS S S SRS SRS SRS SRR SRR EEEEREEEEEEEEEEEEEEEEE RS

Solves general NxN system in NN unknowns

with arbitrary number (NRHS) of righthand sides.
Assumes system is invertible...

...1if it isn't, a divide by zero will result.

*
* *
* *
* *
* *
* Z is the coefficient matrix... *
* ...destroyed during solution process. *
* *
* *
* *
* *
* *

R is the righthand side(s)...
.replaced by the solution vector(s).

LR E RS SRS R SRR R R R SRR EEEEEEEEEEEEEEEEEEEEEEEEESE]

DIMENSION Z(NSIZ,NSIZ), R(NSIZ,NRHS)

DO 1 NP=1, NN-1
NP1 = NP+1

—————— find max pivot index NX
NX = NP
DO 11 N=NP1l, NN
IF (ABS(Z (N,NP))-ABS (Z (NX,NP))) 11,11,111
111 NX = N

11 CONTINUE
PIVOT = 1.0/Z(NX,NP)

______ switch pivots
7 (NX,NP) = Z(NP,NP)

—————— switch rows & normalize pivot row
DO 12 L=NP1, NN
TEMP = Z(NX,L)*PIVOT
7 (NX,L) = Z(NP,L)
Z(NP,L) = TEMP
12 CONTINUE

DO 13 L=1, NRHS
TEMP = R(NX, L) *PIVOT
R(NX,L) = R(NP,L)
R(NP,L) = TEMP
13 CONTINUE

—————— forward eliminate everything
DO 15 K=NP1, NN
ZTMP = Z (K, NP)
IF(ZTMP.EQ.0.0) GO TO 15

DO 151 L=NP1, NN
Z(X,L) = Z(X,L) - ZTMP*Z(NP,L)

223

151

152
15

C
1

C
C————
2

C
C7777
310
31
3

C

CONTINUE
DO 152 L=1, NRHS
R(K,L) = R(K,L) - ZTMP*R(NP,L)
CONTINUE
CONTINUE
CONTINUE

solve for last row
DO 2 L=1, NRHS

R(NN,L) = R(NN,L)/Z(NN,NN)
CONTINUE

back substitute everything
DO 3 NP=NN-1, 1, -1
NP1 = NP+1
DO 31 L=1, NRHS
DO 310 K=NP1l, NN
R(NP,L) = R(NP,L) - Z(NP,K)*R(K,L)
CONTINUE
CONTINUE
CONTINUE

RETURN
END ! GAUSS

224

