
University of Southampton Research Repository

ePrints Soton

Copyright © and Moral Rights for this thesis are retained by the author and/or other
copyright owners. A copy can be downloaded for personal non-commercial
research or study, without prior permission or charge. This thesis cannot be
reproduced or quoted extensively from without first obtaining permission in writing
from the copyright holder/s. The content must not be changed in any way or sold
commercially in any format or medium without the formal permission of the
copyright holders.

 When referring to this work, full bibliographic details including the author, title,
awarding institution and date of the thesis must be given e.g.

AUTHOR (year of submission) "Full thesis title", University of Southampton, name
of the University School or Department, PhD Thesis, pagination

http://eprints.soton.ac.uk

http://eprints.soton.ac.uk/

Appendix E

FORTRAN 95 Codes

VIX Head Files and Definitions

 parameter(NQA = 300)
 type node
 integer id
 real:: x,y,z
 real:: s,t,TAU
 real:: Up,U,Cp,Cpe
 real:: Dxt2,Dyt2,Dzt2
 real:: Dxs2,Dys2,Dzs2
 real:: Dps2,Dpt2
 end type node

 type section
 integer:: id,Nnd,Nlower
 integer:: istag,iblte(2),Nbl(2)
 integer,dimension(NqA,2):: IBL
 integer,dimension(2):: imatch,Nmatch,tr
 real:: sc,disp,leng,Vchord(3),aflow
 real,dimension(2):: xsep,xre,xtr
 real,dimension(NQA):: s,t,curv
 real,dimension(3,NQA):: P,Vn
! BOUNDARY LAYER VARS
 real,dimension(NQA,2):: TAU,UINV
 real,dimension(NQA):: Up,Cp
 real,dimension(4,NQA,2):: Q
 real:: cli,clv,cd,Cdf,Cdp
 end type section
!___
! NODE
! id -> pt identity
! x,y,z -> coordinates of node
! Cp -> pressure coefficient
! Cpe -> viscous pressure coefficient
! U -> absolute velocity
! TAU -> shear stress
! s,t -> surface coordinates
! Dxt2,Dyt2,Dzt2 -> spline 2nd derivatives on parametric
! t direction for each coordinate
! Dxs2,Dys2,Dzs2 -> spline 2nd derivatives on parametric
! s direction for each coordinate
! Dps2,Dpt2 -> spline second derivative on parametric
! directions s and t for nodal Cp
!___
! SECTION
! id -> identity of section
! istag -> location of stagnation point
! Nlower -> index where leading edge is
! Npt -> No of points on section (max=100)
! ite -> index where trailing edge lives
! p(..) -> coordinates points
! s(.) -> curve coordinate
! t(.) -> spanwise curve coordinate
! Vn(..) -> normal vector on a section node
! imatch(.) -> point of beginning of matching surface

 173

! Nmatch(.) -> point where ends matching surface
! tr(.) -> point where transition occurs
! disp -> displacement of section on x axis
! sc -> scale of section
! leng -> chord length
! aflow -> flow incidence on the particular section
! Vchord -> unitary vector of chord
! xsep,ysep -> point of separation 1 - upper
! 2 - lower
! xtr,ytr -> point of transition
! BOUNDARY LAYER
! Q -> vector of boundary layer variables
! 1 - nr or Ct
! 2 - th
! 3 - dels
! 4 - Ue
! Cli -> inviscid lift coefficient
! Clv -> viscous lift coefficient
! Cd -> drag coefficient
! Ue -> edge velocity modulus (viscous)
! Up -> edge velocity modulus (potential)
!**
! Program created by Augusto Veiga (University of Southampton 2003) *
!**

 type panel
 integer:: id,np,ibc
 integer,dimension(4)::ngb
 character(5):: tipo
 real:: s,t,area,fl,fd
 type (node),dimension(4):: nd,mid
 type (node):: co
 real:: Mx,My,Mz
 real:: cp,Up,rpv
 real:: u(3),vm(3)
 end type panel

!
! PANEL
! id -> pt identity
! ibc -> panel type index:
! -1 trailing edge panel
! 1 body panel
! 2 wake attached to trailing edge
! 3 free wake panels
! 4 fixed wake
! ngb -> neighbouring panels (they are 4)
! ngb(i)= -4 reflection plane
! ngb(i)= -2 discontinuous
!
! x,y,z -> coordinates of node
! Cp -> pressure coefficient
! U -> absolute velocity
! co -> collocation pt of panel
! mid -> mid edge between nodes (follows right hand rule)
! vm -> vector velocity in m/s (not that useful)
! nd -> panel nodes (they are 4)
! area -> area of panel
! fl -> lifting force of panel
! fd -> drag force of panel
! rpv -> viscous pressure resistence
! Mx,My,Mz -> momentum in relation to origin of root chord
!
!**
! Program created by Augusto Veiga (University of Southampton 2003) *
!**

Two-Dimensional Panel Method

 subroutine panel (X,Y,IFLAG,Nlower
 & ,Nupper,Nodtot,Nmax,V,alpha,

 174

 & naca,tau)

 integer Nmax
 real,dimension(Nmax)::x,y,xmid,ymid,costhe,sinthe
 real,dimension(Nmax)::V,CP

 real:: alpha,Tau,gamma,CD,CL1,CL2
 integer:: Nodtot,Nupper,Nlower,IFLAG

 real PI, PI2INV, XNU,cosalf,sinalf,thick,camber,beta
 real, dimension(Nodtot,Nodtot+1) :: A
 integer N

c.. Begin
c
 PI = 4. * atan(1.)
 PI2INV = 1. / (2. * PI)
 V = 0
 IF (ALPHA.gt.PI/2.) GOTO 400
! if (ALPHA.gt.90.) goto 400
! close (5)
c
c
c... Initializing data
c
 print *, '*** Inicializacao dos dados - aguarde ... '
 call SETUP(x,y,xmid,ymid,costhe,sinthe,cosalf,sinalf,PI,
 & PI2INV,Nodtot,Nmax,Nupper,Nlower,alpha,tau,
 & NACA,IFLAG,XNU)
c
 COSALF = cos(ALPHA) !*PI/180.)
 SINALF = sin(ALPHA) !*PI/180.)

 A=0
c
c
c...................... Influence coefficient matrix assembly
c
 print *, '*** Montagem da matriz de coeficientes - aguarde ... '
 call COFISH(x,y,xmid,ymid,costhe,sinthe,Nodtot,pi,pi2inv,
 & alpha,cosalf,sinalf,Nmax,A)
c
c................ Gauss Elimination solution system
c
 print *, '*** Solucao do sistema de equacoes - aguarde ... '
 call GAUSS2(A,Nodtot-1,1,Nodtot)
c
c
c................. Velocity and pressure coefficient
c
 print *, '*** Calculo das velocidades e pressoes - aguarde ... '
 call VELDIS(A,x,y,Nlower,Nupper,Nodtot,xmid,ymid,V,CP,gamma,
 & Nmax,XNU)

c
c................................. Calculo dos coeficientes do aerofolio
c
 print *, '*** Calculo dos coefs. adimensionais - aguarde ... '
 call FANDM(A,x,y,Nlower,Nupper,Nodtot,xmid,ymid,V,CP,gamma,
 & Nmax,sinalf,cosalf,CD,CL1,CL2)

 400 write (*,9999)
 !stop
 9999 format (//, ' End of panel method - Univ. Southampton/COPPE(C)
 & 2001')

c
c--- Fim do programa principal
c
 end subroutine

 175

cÄÄ SUBROUTINE ³ SETUP ³
c ÀÄÄÄÄÄÄÄÄÄÄÄÙ
c
 subroutine SETUP(x,y,xmid,ymid,costhe,sinthe,cosalf,sinalf,PI,
 & PI2INV,Nodtot,Nmax,Nupper,Nlower,alpha,tau,
 & NACA,IFLAG,XNU)
c
 integer Nmax
 real,dimension(Nmax)::x,y,xmid,ymid,costhe,sinthe
 real,dimension(Nmax)::V,CP

 real alpha,Tau,thick,camber,beta
 real Z
 integer Nodtot,Nupper,Nlower,IFLAG,SIGN

 real PI, PI2INV, XNU
 integer N,NACA
 real cosalf,sinalf

 XNU= .89292E-06
 if (IFLAG.ne.1) go to 120
 NPOINTS = NLOWER
 SIGN = -1.
 NSTART = 0
 do 110 NSURF=1,2
 do 100 N=1,NPOINTS
 FRACT = float(N-1) / float(NPOINTS)
 Z = .5 * (1. - cos(PI * FRACT))
 I = NSTART + N
 call BODY(Z,alpha,NACA,tau,Nlower,Nupper,SIGN,
 & beta,X(I),Y(I))
 100 continue
 NPOINTS = NUPPER
 SIGN = 1.
 NSTART = NLOWER
 110 continue
c
c
c................................. panel slope
c
120 do 200 I=1,Nodtot-1
 DX = X(I+1) - X(I)
 DY = Y(I+1) - Y(I)
 DIST = sqrt(DX * DX + DY * DY)
 SINTHE(I) = DY / DIST
 COSTHE(I) = DX / DIST
 200 continue

c
c
c................................. collocation pts
c
 do 300 I=1,Nodtot-1
 XMID(I) = .5 * (X(I) + X(I+1))
 YMID(I) = .5 * (Y(I) + Y(I+1))
 300 continue

 return
c
c
c-- End SETUP
c
 end
c
c ÚÄÄÄÄÄÄÄÄÄÄ¿
cÄÄÄ SUBROUTINE ³ BODY ³
c ÀÄÄÄÄÄÄÄÄÄÄÙ
c
 subroutine BODY (Z,alpha,NACA,tau,Nlower,Nupper,SIGN,
 & beta,xi,yi)
c

 176

c ÚÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ Descricao dos Parametros ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ¿
c ³ ³
c ³ Z - parametro de espacamento nodal (entrada) ³
c ³ SIGN - identificador da superficie: +1 - superficie superior ³
c ³ -1 - superficie inferior ³
c ³ (entrada) ³
c ³ X - coordenada cartesiana X (entrada) ³
c ³ Y - coordenada cartesiana Y (entrada) ³
c ÀÄÄÙ
 real alpha,Xi,Yi,tau,epsmax,ptmax,thick,camber,beta
 real Z
 integer Nlower, Nupper,Nmax,SIGN
 if (SIGN.lt.0.) Z = 1. - Z
 call NACA45(Z,tau,NACA,epsmax,ptmax,alpha,thick,camber)
 Xi = Z - SIGN * THICK * sin(BETA)
 Yi = CAMBER + SIGN * THICK * cos(BETA)
 return
c
c
c--- End BODY
c
 end
c
c ÚÄÄÄÄÄÄÄÄÄÄÄÄ¿
cÄÄÄ SUBROUTINE ³ COFISH ³
c ÀÄÄÄÄÄÄÄÄÄÄÄÄÙ
c
 subroutine COFISH(x,y,xmid,ymid,costhe,sinthe,Nodtot,pi,pi2inv,
 & alpha,cosalf,sinalf,Nmax,A)
c
c
c ÚÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ Descricao dos Parametros ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ¿
c ³ ³
c ³ SINALF - valor de sin(Alpha) (entrada) ³
c ³ COSALF - valor de cos(Alpha) (entrada) ³
c ÀÄÄÙ
c
 integer Nmax,Nodtot,N
 real,dimension(Nmax)::x,y,xmid,ymid,costhe,sinthe
 real,dimension(Nodtot,Nodtot+1)::A
 real alpha,Tau,Epsmax,ptmax,cosalf,sinalf,pi,pi2inv

 N = NODTOT-1
 do 120 I=1,N
c
c........................... panel contribution
c
 do 110 J=1,N
 FTAN = PI
 if (J.eq.I) goto 100
 DXJ = XMID(I) - X(J)
 DXJP = XMID(I) - X(J+1)
 DYJ = YMID(I) - Y(J)
 DYJP = YMID(I) - Y(J+1)
 FTAN = atan2(DYJP*DXJ-DXJP*DYJ,DXJP*DXJ+DYJP*DYJ)
 100 A(I,J) = FTAN * PI2INV
c
c.......... Kutta condition at trailing edge
c
 if (J.eq.1) then
 A(I,J) = A(I,J) - PI2INV * atan(YMID(I)/(1.-XMID(I)))
 endif
 if (J.eq.N) then
 A(I,J) = A(I,J) + PI2INV * atan(YMID(I)/(1.-XMID(I)))
 endif
 if (I.eq.J) A(I,J) = A(I,J) - 1.
 110 continue
c
c.. Free vars
c
 A(I,N+1) = - (XMID(I) * COSALF + YMID(I) * SINALF)
 120 continue

 177

c
 return
c
c
c--- End COFISH
c
 end
c
c ÚÄÄÄÄÄÄÄÄÄÄÄÄ¿
cÄÄÄ SUBROUTINE ³ VELDIS ³
c ÀÄÄÄÄÄÄÄÄÄÄÄÄÙ
c
 subroutine VELDIS(A,x,y,Nlower,Nupper,Nodtot,xmid,ymid,V,CP,gamma,
 & Nmax,XNU)
 real gamma
 integer Nmax
 real,dimension(Nmax)::x,y,xmid,ymid,costhe,sinthe,V,CP,FI,CF
 real,dimension(Nodtot,Nodtot+1)::A
 real alpha,Tau,Epsmax,ptmax,cosalf,sinalf,pi,pi2inv,XNU
 integer Nodtot,N

 N=Nodtot-1 !number of panels

 do 50 I=1,N
 FI(I) = A(I,N+1)
 50 continue
 GAMMA = FI(N) - FI(1)
c
c
c............. tangential velocity and pressure
c
c... lower surface
c

 do 100 K=1,NLOWER-1
 if (K.eq.1.or.K.eq.NLOWER-1) then
 if (K.eq.1) then
 XK1 = .5 * (X(K) + X(K+1))
 YK1 = .5 * (Y(K) + Y(K+1))
 XK2 = .5 * (X(K+1) + X(K+2))
 YK2 = .5 * (Y(K+1) + Y(K+2))
 XK3 = .5 * (X(K+2) + X(K+3))
 YK3 = .5 * (Y(K+2) + Y(K+3))
 S1 = 0.
 F1 = FI(K)
 S2 = sqrt((XK2 - XK1)**2 + (YK2 - YK1)**2)
 F2 = FI(K+1)
 S3 = S2 + sqrt((XK3 - XK2)**2 + (YK3 - YK2)**2)
 F3 = FI(K+2)
 endif
 if (K.eq.NLOWER-1) then
 XK1 = .5 * (X(K-2) + X(K-1))
 YK1 = .5 * (Y(K-2) + Y(K-1))
 XK2 = .5 * (X(K-1) + X(K))
 YK2 = .5 * (Y(K-1) + Y(K))
 XK3 = .5 * (X(K) + X(K+1))
 YK3 = .5 * (Y(K) + Y(K+1))
 S3 = 0.
 F3 = FI(K)
 S2 = - sqrt((XK3 - XK2)**2 + (YK3 - YK2)**2)
 F2 = FI(K-1)
 S1 = S2 - sqrt((XK2 - XK1)**2 + (YK2 - YK1)**2)
 F1 = FI(K-2)
 endif
 else
 XK1 = .5 * (X(K-1) + X(K))
 YK1 = .5 * (Y(K-1) + Y(K))
 XK2 = .5 * (X(K) + X(K+1))
 YK2 = .5 * (Y(K) + Y(K+1))
 XK3 = .5 * (X(K+1) + X(K+2))
 YK3 = .5 * (Y(K+1) + Y(K+2))
 S1 = - sqrt((XK2 - XK1)**2 + (YK2 - YK1)**2)

 178

 F1 = FI(K-1)
 S2 = 0.
 F2 = FI(K)
 S3 = sqrt((XK3 - XK2)**2 + (YK3 - YK2)**2)
 F3 = FI(K+1)
 endif
 DELTA = (S3 - S1) * (S2 - S1) * (S2 - S3)
 DELTB = (S2**2 - S1**2) * (F3 - F1)
 * - (S3**2 - S1**2) * (F2 - F1)
 V(K) = DELTB / DELTA !- DELTB / DELTA
 CP(K) = 1. - V(K) * V(K)
 ! CF(K) = 0.075/(log(V(K)/XNU) -2.0)**2
 100 continue
c
c
c... upper surface
c
 do 110 K=Nlower,NUPPER-1
 L = k ! NLOWER
 if (K.eq.Nlower.or.K.eq.NUPPER-1) then
 if (K.eq.Nlower) then
 XK1 = .5 * (X(L) + X(L+1))
 YK1 = .5 * (Y(L) + Y(L+1))
 XK2 = .5 * (X(L+1) + X(L+2))
 YK2 = .5 * (Y(L+1) + Y(L+2))
 XK3 = .5 * (X(L+2) + X(L+3)) ! x e y com o nº de nós
 YK3 = .5 * (Y(L+2) + Y(L+3))
 S1 = 0.
 F1 = FI(L) !Fi varia com o nº de painéis
 S2 = sqrt((XK2 - XK1)**2 + (YK2 - YK1)**2)
 F2 = FI(L+1)
 S3 = S2 + sqrt((XK3 - XK2)**2 + (YK3 - YK2)**2)
 F3 = FI(L+2)
 endif
 if (K.eq.NUPPER-1) then
 XK1 = .5 * (X(L-2) + X(L-1))
 YK1 = .5 * (Y(L-2) + Y(L-1))
 XK2 = .5 * (X(L-1) + X(L))
 YK2 = .5 * (Y(L-1) + Y(L))
 XK3 = .5 * (X(L) + X(L+1))
 YK3 = .5 * (Y(L) + Y(L+1))
 S3 = 0.
 F3 = FI(L)
 S2 = - sqrt((XK3 - XK2)**2 + (YK3 - YK2)**2)
 F2 = FI(L-1)
 S1 = S2 - sqrt((XK2 - XK1)**2 + (YK2 - YK1)**2)
 F1 = FI(L-2)
 endif
 else
 XK1 = .5 * (X(L-1) + X(L))
 YK1 = .5 * (Y(L-1) + Y(L))
 XK2 = .5 * (X(L) + X(L+1))
 YK2 = .5 * (Y(L) + Y(L+1))
 XK3 = .5 * (X(L+1) + X(L+2))
 YK3 = .5 * (Y(L+1) + Y(L+2))
 S1 = - sqrt((XK2 - XK1)**2 + (YK2 - YK1)**2)
 F1 = FI(L-1)
 S2 = 0.
 F2 = FI(L)
 S3 = sqrt((XK3 - XK2)**2 + (YK3 - YK2)**2)
 F3 = FI(L+1)
 endif
 DELTA = (S3 - S1) * (S2 - S1) * (S2 - S3)
 DELTB = (S2**2 - S1**2) * (F3 - F1)
 * - (S3**2 - S1**2) * (F2 - F1)
 V(L) = DELTB / DELTA
 CP(L) = 1. - V(L) * V(L)
! CF(L) = 0.075/(log(V(L)/XNU) -2.0)**2
 110 continue
c
 return
c

 179

c
c--- End VELDIS
c
 end
c
c ÚÄÄÄÄÄÄÄÄÄÄÄ¿
cÄÄ SUBROUTINE ³ FANDM ³
c ÀÄÄÄÄÄÄÄÄÄÄÄÙ
c
 subroutine FANDM(A,x,y,Nlower,Nupper,Nodtot,xmid,ymid,V,CP,gamma,
 & Nmax,sinalf,cosalf,CD,CL1,CL2)
 integer Nmax,Nodtot,N
 real gamma,sinalf,cosalf,CD,CL1,CL2
 real,dimension(Nmax)::x,y,xmid,ymid,costhe,sinthe,V,CP
 real,dimension(Nodtot,Nodtot+1)::A
 real alpha,Tau,Epsmax,ptmax,pi,pi2inv
 !integer Nodtot,N

 CM = 0.
 do 100 I=1,NODTOT-1
 DX = X(I+1) - X(I)
 DY = Y(I+1) - Y(I)
 CM = CM + CP(I) * (DX * XMID(I) + DY * YMID(I))
 100 continue
 CD=0.0
 CL1=0.0
 CL2 = 2. * GAMMA
 return
c
c
c-- End FANDM
c
 end subroutine
c
c ÚÄÄÄÄÄÄÄÄÄÄÄÄ¿
cÄÄÄ SUBROTINA ³ NACA45 ³
c ÀÄÄÄÄÄÄÄÄÄÄÄÄÙ
c
 subroutine NACA45(Z,tau,NACA,epsmax,ptmax,alpha,thick,camber)
 real tau,epsmax,ptmax,thick,camber,beta,alpha
 integer NACA
 real Z
 THICK = 0.
 if (Z.lt.1.e-10) goto 100
 THICK = 5. * TAU * (.2969 * sqrt(Z) - Z * (.126 + Z * (.3537
 * - Z * (.2843 - Z * .1015))))
c
 100 if (EPSMAX.eq.0.) goto 130
 if (NACA.gt.9999) goto 140
 if (Z.gt.PTMAX) goto 110
c
 CAMBER = EPSMAX / PTMAX / PTMAX * (2 * PTMAX - Z) * Z
 DCAMDX = 2. * EPSMAX / PTMAX / PTMAX * (PTMAX - Z)
 goto 120
c
 110 CAMBER = EPSMAX / (1. - PTMAX)**2 * (1. + Z - 2. * PTMAX)
 * * (1. - Z)
 DCAMDX = 2. * EPSMAX / (1. - PTMAX)**2 * (PTMAX - Z)
c
 120 BETA = atan(DCAMDX)
 return
c
 130 CAMBER = 0.
 BETA = 0.
 return
c
 140 if (Z.gt.PTMAX) goto 150
 W = Z / PTMAX
 CAMBER = EPSMAX * W *((W - 3.) * W + 3. - PTMAX)
 DCAMDX = EPSMAX * 3. * W * (1. - W) / PTMAX
 goto 120
c

 180

 150 CAMBER = EPSMAX * (1. - Z)
 DCAMDX = - EPSMAX
 goto 120
c
c
c--- End NACA45
c
 end

VIX 3D Main Code

 Program VII3d
 !use AVDef
 !use DFLib

! This program reads the streamlines given by PALISUPAN
! as object str where str has the properties
! id -> identity of streamline
! Npt -> No of points on streamline (max=100)
! p(..) -> coordinates of points
! u(.) -> stream velocity on each point
! V(..) -> vector of velocities
! imatch(.) -> point of beginning of matching surface
! Nmatch(.) -> point where ends matching surface
! tr(.) -> point where transition occurs
! Nsec -> number of sections (z cte)

! flags -> false if Xsep=0
! true, otherwise
!
! With data on streamlines, the program calculates:
! - influence matrix for each streamline
! - boundary layer var distribution
! - make a Newton-Raphson solver for Lag entrainment method
! - make viscous corrections for potential stream velocity
! - print out viscous flow characteristics for each velocity
!**
!* Program created by Augusto Elisio Lessa Veiga *
!* FSIG - University of Southampton/2003 *
!* Sugestions are welcome *
!**
 include 'section.inc'
 include 'panel.inc'
 include 'xfoil.inc'

 integer Nstr,Npan,Npb,Nmax,Nte,Nsec
 real:: Rey,visc,alpha,Dlimit,pi,EPS1
 real,dimension(3):: tol
 real,dimension(2,150):: xsep,Xre,Xtr
 type (node),allocatable,dimension(:):: nd,bnd,wnd
 type (section),allocatable,dimension(:):: sec,wsec
 type (panel),allocatable,dimension(:):: pan,bpan,wpan
 character*70 :: arqname,arqname2
 logical:: fl,inviscid,fsharp
 BIJ = 0
 CIJ = 0
 DIJ = 0
 ! pflag -> flag that indicates if it's to apply
 ! wall pressure correction
 pi = 4. * atan(1.)
 call read_set(arqname,arqname2,Rey,visc,alpha,ACRIT,
 & Nit,Nsec,Nmax,
 & xtr,TFORCE,VACCEL,EPS1,fl,inviscid,fsharp)
 alpha = alpha*pi/180
 ALFA = alpha
 open(1,file ='BL_log.txt')
 write(1,*) 'New problem'
 close(1)

 if (inviscid) then
 call read_prev(Nsec,Nmax,Nw)

 181

 allocate (sec(Nsec),wsec(Nsec))
 call read_section(sec,wsec,Nsec,Nmax,Nw)
 write(*,*) '***'
 write(*,*) '* V I X *'
 write(*,*) '* Copyright, Augusto E. L. Veiga *'
 write(*,*) '* University of Southampton, 2004 *'
 write(*,*) '* Version 1.0 *'
 write(*,*) '***'
 write(*,*)
 write(*,*) 'previously interpolated sections...'
 N = Nmax
 else
 call read_N(arqname,Nt,Npan) !reads the number of sections
 !and nodes
 allocate(nd(Nt)) !allocate vector str
 allocate(pan(Npan),sec(Nsec),wsec(Nsec))
 !allocate(sec(Nsec))
 !initialize structure sec
 call read_nodes(arqname,nd,pan,Nt,Npan) !read body nodes
 if (mod(nmax,2)==0) then
 Nmax=Nmax+1
 Else
 Nmax=Nmax
 endif
 call read_uns(arqname2,pan,Npan,nd,nt,Nte)
 call find_wk(pan,Npan,Npw,Iwake)
 allocate(wpan(Npw))
 ! sections are interpolated on this routine
 write(*,*) '***'
 write(*,*) '* V I X *'
 write(*,*) '* Copyright, Augusto E. L. Veiga *'
 write(*,*) '* University of Southampton, 2004 *'
 write(*,*) '* Version 1.0 *'
 write(*,*) '***'
 write(*,*)
 write(*,*) 'Interpolating sections...'
 call wk_surface(pan,wpan,Npan,Npw,Iwake,wsec,Nsec,fl)
 call surface(pan,Npan,sec,Nsec,Nmax,Nte,fl)
 ! there is no need anymore for such heavy structure
 deallocate(nd,pan,wpan)
 N = sec(1).Nnd
 Nw = wsec(1).Nnd
 endif
 write(*,*)
 write(*,*) '...calculating viscous flow'
 !i=int(Nsec/2)
 do i=1,Nsec
 !calculate geometric curvature for each node
 call G_curv(sec(i),Nmax,pflag)
 !find very first point on leading edge
 call find_Nlower(sec(i),Nmax)
 REINF = Rey
 QINF = 1.0

 XSTRIP(1) = xtr(1,i) !localizes transition upper part
 XSTRIP(2) = xtr(2,i) !lower part
 XTE = sec(i).p(1,1)
 XLE = sec(i).p(1,sec(i).nlower)
 YTE = sec(i).p(2,1)
 YLE = sec(i).p(2,sec(i).nlower)
 SLE = sec(i).s(sec(i).nlower)
 !fill up vars for xlib library
 call secset(sec(i),wsec(i),N,Nw,QINV,x,y,s)
 !ALFA = -sec(i).aflow
 open(2,file ='BL_log.txt',position = 'APPEND')
 write(2,10) i
 close(2)
 ! This part solves the viscous flow for each section
 call VIX(sec(i),wsec(i),Nmax,EPS1,NQX,Nit,Nsec,i,fsharp)
 sec(i).tr(1) = ITRAN(1)
 sec(i).tr(2) = ITRAN(2)
 sec(i).Nbl(1) = NBL(1)

 182

 sec(i).Nbl(2) = NBL(2)
 do is = 1,2
 do ip =2,iblte(is)
 sec(i).ibl(ip,is) = IPAN(ip,is)
 enddo
 sec(i).iblte(is) = iblte(is)
 do in = 1,sec(i).Nbl(is)
 sec(i).TAU(in,is) = TAU(in,is)
 enddo
 enddo
 enddo
 !perform lift, drag and viscous pressure resistance calculations
 !call trefftz(wsec,Nsec,20,Dtrefftz) !calculates inviscid induced drag
 call panmk(wsec,sec,Nsec,Nw,Nmax,CLvis,CLinv,cdf,cd,
 & cdi,cdiv,area,Cmx,Cmy,Cmz,zcp)
 !call vii_graph(sec,Nsec,Nmax)
 write(*,*)
 write(*,*) '...printing results'
 call print_result(sec,Nsec,Nw,CLvis,CLinv,cdf,cd,
 & cdi,cdiv,area,Cmx,Cmy,Cmz,zcp)
 call print_blvar(sec,Nsec,Nmax)
 call post_process(sec,Nsec,Nmax) !organize sectional plots
 !reorganise panels using the sections again and print
 ! files to be used by PANVISE
 !call makepan
 deallocate(sec,wsec)
10 format('Section =',i4)
 END

 subroutine VIX(sec,wsec,Nmax,EPS1,NQX,NIT,Nsec,isec,fsharp)
! This subroutine receives the following variables:
! Geometry: x,y,z and s of each section
! Inviscid flow: QINV for each section
! QINV for wake section
! Data N -> number of section points
! Nw-> number of wake section points
! Nlower -> leading edge point that
! divides upper and lower parts
! tr(.) -> transition point on lower and upper
! parts
! Nsep -> separation points on lower and upper parts
! Nre -> reattachment points on lower and upper parts
! isec -> index of section
! if isec=1 or isec=Nsec, then viscous flow is not cal
! culated
! ...And spills out the following:
! Viscous flow:
! QVIS -> viscous velocity
! Dstr -> displacement thickness
! Thet -> momentum thickness
! Ctau -> sqrt (max shear coefficient
! H -> shape parameter
! Cf -> friction coefficient
! Dis -> dissipation coefficient
!
!***
! A T E N T I O N ! ! !
!
! Points are input on counterclockwise order and this continues like that.
! Do not use the inverse order or you may experience problems
!***
! This program was modified by Augusto Elisio Lessa Veiga and
! uses parts of the GNU software XFOIL
!***
!* Author: Augusto Elisio Lessa Veiga *
!* University of Southampton, 2004 *
!* (Made in Brasil) *
!***
 include 'section.inc'
 include 'xfoil.inc'
 include 'xbl.inc'

 183

 type(section) :: sec,wsec
 real,dimension(N+Nw):: Up,xbd,sbd
 real,dimension(Nw):: Upw
 real,dimension(3,N):: p
 real,dimension(3,Nw):: pw
 real,dimension(Izx+Iwx):: z
 real:: clsec,cdsec,EPS1
 real,dimension(iqx,2):: pcor
 integer N,Nw,Nlower,Nsec,isec
 logical:: fsharp

 do i = 1,N
 Up(i) = sec.Up(i)
 xbd(i) = X(i)
 sbd(i) = S(i)
 enddo
 j = 0
 do i = N+1,N+Nw
 j = j+1
 Up(i) = wsec.up(j)
 enddo
 !main settings
 pcor = 0 !22/05/2005
 PI = 4.0*ATAN(1.0)
 HOPI = 0.50/PI
 QOPI = 0.25/PI
 DTOR = PI/180.0
C---- default Cp/Cv (air)
 GAMMA = 1.4
 GAMM1 = GAMMA - 1.0
C---- initialize freestream Mach number to zero
 MATYP = 1
 MINF1 = 0.
 MINF = 0.

 CL = 0.
 CM = 0.
 CD = 0.

 SIGTE = 0.0
 GAMTE = 0.0
 SIGTE_A = 0.
 GAMTE_A = 0.

 SIG = 0.

 SHARP = .true. !if trailing edge is sharp
 LIMAGE = .FALSE. !if image airfoil is present
 LGAMU = .TRUE. !if GAMU arrays exist for current airfoil geometry
 LQINU = .TRUE. !if QINVU arrays exist for current airfoil geometry
 LVISC = .TRUE. !if viscous option is invoked
 LALFA = .TRUE. !if alpha is specifed, .FALSE. if CL is specified
 LWAKE = .TRUE. !if wake geometry has been calculated
C LPACC .TRUE. if each point calculated is to be saved
 LBLINI = .FALSE. !if BL has been initialized
 LIPAN = .TRUE. !if BL->panel pointers IPAN have been calculated
C LQAIJ .TRUE. if dPsi/dGam matrix has been computed and factored
 LADIJ = .FALSE. !if dQ/dSig matrix for the airfoil has been computed
 LWDIJ = .FALSE. !if dQ/dSig matrix for the wake has been computed
C LQVDES .TRUE. if viscous Ue is to be plotted in QDES routines
C LQSPEC .TRUE. if Qspec has been initialized
C LQREFL .TRUE. if reflected Qspec is to be plotted in QDES routines
 LVCONV = .FALSE. !if converged BL solution exists
C LCPREF .TRUE. if reference data is to be plotted on Cp vs x/c plots
C LCLOCK .TRUE. if source airfoil coordinates are clockwise
C LPFILE .TRUE. if polar file is ready to be appended to
C LPFILX .TRUE. if polar dump file is ready to be appended to
C LPPSHO .TRUE. if CL-CD polar is plotted during point sequence
C LBFLAP .TRUE. if buffer airfoil flap parameters are defined
C LFLAP .TRUE. if current airfoil flap parameters are defined
C LEIW .TRUE. if unit circle complex number array is initialized
C LSCINI .TRUE. if old-airfoil circle-plane arc length s(w) exists

 184

C LFOREF .TRUE. if CL,CD... data is to be plotted on Cp vs x/c plots
C LNORM .TRUE. if input buffer airfoil is to be normalized
C LGSAME .TRUE. if current and buffer airfoils are identical
C
C LPLCAM .TRUE. if thickness and camber are to be plotted
C LQSYM .TRUE. if symmetric Qspec will be enforced
C LGSYM .TRUE. if symmetric geometry will be enforced
C LQGRID .TRUE. if grid is to overlaid on Qspec(s) plot
C LGGRID .TRUE. if grid is to overlaid on buffer airfoil geometry plot
C LGTICK .TRUE. if node tick marks are to be plotted on buffer airfoil
C LQSLOP .TRUE. if modified Qspec(s) segment is to match slopes
C LGSLOP .TRUE. if modified geometry segment is to match slopes
C LCSLOP .TRUE. if modified camber line segment is to match slopes
C LQSPPL .TRUE. if current Qspec(s) in in plot
C LGEOPL .TRUE. if current geometry in in plot
C LCPGRD .TRUE. if grid is to be plotted on Cp plots
C LBLGRD .TRUE. if grid is to be plotted on BL variable plots
C LBLSYM .TRUE. if symbols are to be plotted on BL variable plots
C LCMINP .TRUE. if min Cp is to be written to polar file for cavitation
C LHMOMP .TRUE. if hinge moment is to be written to polar file
C
C LPGRID .TRUE. if polar grid overlay is enabled
C LPCDW .TRUE. if polar CDwave is plotted
C LPLIST .TRUE. if polar listing lines (at top of plot) are enabled
C LPLEGN .TRUE. if polar legend is enabled
C
C LPLOT .TRUE. if plot page is open
C LSYM .TRUE. if symbols are to be plotted in QDES routines
C LIQSET .TRUE. if inverse target segment is marked off in QDES
C LCLIP .TRUE. if line-plot clipping is to be performed
C LVLAB .TRUE. if label is to be plotted on viscous-variable plots
C LCURS .TRUE. if cursor input is to be used for blowups, etc.
C LLAND .TRUE. if Landscape orientation for PostScript is used

 call stagpoint(Up,sbd,GAM,xbd,N,Nw,IST,SST,SST_GO,SST_GP,fsharp)
 sec.istag = IST

 call SIC(sec,wsec,N,Nw)
! DATA EPS1 / 1.0E-4 /
C
 NITER = 10
 QINF = 1.0
C
C
C---- set velocities on wake from airfoil vorticity for alpha=0, 90
C CALL QWCALC
C
C---- set velocities on airfoil and wake for initial alpha
C CALL QISET
C
C
C----- locate stagnation point arc length position and panel index
! CALL STFIND
C
C----- set BL position -> panel position pointers
 CALL IBLPAN
 sec.iblte(1) = iblte(1)
 sec.iblte(2) = iblte(2)
C
C----- calculate surface arc length array for current stagnation point location
 CALL XICALC
C
C----- set BL position -> system line pointers
 CALL IBLSYS
C
C
C---- set inviscid BL edge velocity UINV from QINV
 CALL UICALC
C

 IF(.NOT.LBLINI) THEN

 185

C
C----- set initial Ue from inviscid Ue
 DO IBL=1, NBL(1)
 UEDG(IBL,1) = UINV(IBL,1)
 ENDDO
C
 DO IBL=1, NBL(2)
 UEDG(IBL,2) = UINV(IBL,2)
 ENDDO
C
 ENDIF
 !initial lift calculation (inviscid)
 Nref = iqx
 call clcalc2(N,Nref,sec,gam_a,alfa,minf,qinf,pcor,
 & XCMREF,YCMREF,CL,CM,CDP,CL_ALF,CL_MSQ)
! CALL CLCALC(N,X,Y,GAM,GAM_A,ALFA,MINF,QINF, XCMREF,YCMREF,
! & CL,CM,CDP,CL_ALF,CL_MSQ)
 sec.cli = CL
C
C
C---- Newton iteration for entire BL solution
 NITER = Nit
 if (isec>1 .and. isec<Nsec) then

 WRITE(*,*) 'Solving BL system ...'
 open(1,file = 'BL_log.txt',position = 'APPEND')
 DO 1000 ITER=1, NITER
C
C------ fill Newton system for BL variables
 CALL SETBL
C
C------ solve Newton system with custom solver
 CALL BLSOLV
C
C------ update BL variables
 CALL UPDATE(sec,pcor) !output pcor (22/05/2005)
C
C IF(LALFA) THEN
C------- set new freestream Mach, Re from new CL
C CALL MRCL(CL,MINF_CL,REINF_CL)
C CALL COMSET
C ELSE
C------- set new inviscid speeds QINV and UINV for new alpha
C CALL QISET
C CALL UICALC
C ENDIF
C
C------ calculate edge velocities QVIS(.) from UEDG(..)
 CALL QVFUE
C
C------ set GAM distribution from QVIS
 CALL GAMQV
C
C------ relocate stagnation point
! CALL STMOVE
C
C------ set updated CL,CD
 !Nref = iqx
 call clcalc2(N,Nref,sec,gam_a,alfa,minf,qinf,pcor,
 & XCMREF,YCMREF,CL,CM,CDP,CL_ALF,CL_MSQ)
 sec.clv = CL
! CALL CLCALC(N,X,Y,GAM,GAM_A,ALFA,MINF,QINF, XCMREF,YCMREF,
! & CL,CM,CDP,CL_ALF,CL_MSQ)
 CALL CDCALC
 sec.cdf = CDF !sectional frict. Cd
 sec.cd = CD
! if (iter==1) then
! sec.cli = CL
! endif
C
C------ display changes and test for convergence
 IF(RLX.LT.1.0)

 186

 & WRITE(1,2000) ITER, RMSBL, RMXBL, VMXBL,IMXBL,ISMXBL,RLX
 IF(RLX.EQ.1.0)
 & WRITE(1,2010) ITER, RMSBL, RMXBL, VMXBL,IMXBL,ISMXBL
 CDP = CD - CDF
 WRITE(1,2020) ALFA/DTOR, CL, CM, CD, CDF, CDP
C
 IF(RMSBL .LT. EPS1) THEN
 LVCONV = .TRUE.
 AVISC = ALFA
 MVISC = MINF
 GO TO 90
 ENDIF
C
 1000 CONTINUE
 WRITE(1,*) 'VISCAL: Convergence failed'
C
 90 CONTINUE
 close(1)

 endif !avoiding tip sections
 !filling up vectors
 sec.clv = CL
 DO IS=1, 2
 DO IBL=2, NBL(IS)
 I = ibl !IPAN(IBL,IS)
 sec.Q(1,i,is) = Ctau(i,is) !shear stress or critical amp
 sec.Q(2,i,is) = thet(i,is) !momentum thick
 sec.Q(3,i,is) = dstr(i,is) !recording displacement thick
 sec.Q(4,i,is) = uedg(i,is) !recording viscous velocity
 sec.UINV(i,is) = UINV(i,is) !recording inviscid velocity
 enddo
 ! wake variables
 if (is==2) then
 iwk=0
 do ibl=iblte(is)+1,iblte(is)+wsec.Nnd
 iwk = iwk+1
 i = ibl
 wsec.Q(1,iwk,is) = Ctau(i,is) !shear stress or critical amp
 wsec.Q(2,iwk,is) = thet(i,is) !momentum thick
 wsec.Q(3,iwk,is) = dstr(i,is) !recording displacement thick
 wsec.Q(4,iwk,is) = uedg(i,is) !recording viscous velocity
 enddo
 endif
 enddo
 if (isec>1 .and. isec<Nsec) then
 clsec = cl
 cdsec = cd
 sec.CD = CD
 sec.Cdf = Cdf
 sec.Cdp = Cdp
 sec.iter = iter
 else
 clsec = sec.cli
 cdsec = 0
 sec.CD = 0
 sec.Cdf = 0
 sec.Cdp = 0
 sec.iter = 0
 endif
 RETURN
C..
 2000 FORMAT
 & (/1X,I3,' rms: ',E10.4,' max: ',E10.4,3X,A1,' at ',I4,I3,
 & ' RLX:',F6.3)
 2010 FORMAT
 & (/1X,I3,' rms: ',E10.4,' max: ',E10.4,3X,A1,' at ',I4,I3)
 2020 FORMAT
 & (1X,3X,' a =', F7.3,' CL =',F8.4 /
 & 1X,3X,' Cm =', F8.4, ' CD =',F9.5,
 & ' => CDf =',F9.5,' CDp =',F9.5)
 END subroutine ! VIX

 187

!***
! This subroutine was taken from XFOIL code *

 SUBROUTINE CDCALC
 INCLUDE 'XFOIL.INC'
C
 SA = SIN(ALFA)
 CA = COS(ALFA)
C
 IF(LVISC .AND. LBLINI) THEN
C
C----- set variables at the end of the wake
 THWAKE = THET(NBL(2),2)
 URAT = UEDG(NBL(2),2)/QINF
 UEWAKE = UEDG(NBL(2),2) * (1.0-TKLAM) / (1.0 - TKLAM*URAT**2)
 SHWAKE = DSTR(NBL(2),2)/THET(NBL(2),2)
C
C----- extrapolate wake to downstream infinity using Squire-Young relation
C (reduces errors of the wake not being long enough)
 CD = 2.0*THWAKE * (UEWAKE/QINF)**(0.5*(5.0+SHWAKE))
C
 ELSE
C
 CD = 0.0
C
 ENDIF
C
C---- calculate friction drag coefficient
 CDF = 0.0
 DO 20 IS=1, 2
 DO 205 IBL=3, IBLTE(IS)
 I = IPAN(IBL ,IS)
 IM = IPAN(IBL-1,IS)
 DX = (X(I) - X(IM))*CA + (Y(I) - Y(IM))*SA
 CDF = CDF + 0.5*(TAU(IBL,IS)+TAU(IBL-1,IS))*DX * 2.0/QINF**2
 205 CONTINUE
 20 CONTINUE
C
 RETURN
 END ! CDCALC
!**
! This subroutine include on CL the three-dimensional effects *

 SUBROUTINE CLCALC2(N,Nref,sec,gam_a,ALFA,MINF,QINF,pcor,
 & XREF,YREF,
 & CL,CM,CDP, CL_ALF,CL_MSQ)
 include 'section.inc'
C---
C Integrates surface pressures to get CL and CM.
C Integrates skin friction to get CDF.
C Calculates dCL/dAlpha for prescribed-CL routines.
C Modified by Augusto Veiga
C---
 real,dimension(Nref,2):: pcor
 type(section):: sec
 REAL:: MINF,v
 real:: dui(N),gam_a(N),x(N),y(N)
C
C---- moment-reference coordinates
ccc XREF = 0.25
ccc YREF = 0.
C
C transforming Vpot into pressure coefficient
 do i = 1,N
 sum = 0
 x(i) = sec.p(1,i)
 y(i) = sec.p(2,i)
 do k = 1,3
 v = sec.vpot(k,i)
 sum = sum + v**2
 enddo

 188

 sec.cp(i) = 1.0-sum
 enddo
!transforming pcor into dui
 j = sec.istag
 do i = 1,sec.iblte(1)
 dui(j) = pcor(i,1)
 j = j-1
 enddo
 j = sec.istag
 do i = 2,sec.iblte(2)
 j = j+1
 dui(j) = pcor(i,2)
 enddo

 SA = SIN(ALFA)
 CA = COS(ALFA)
C
 BETA = SQRT(1.0 - MINF**2)
 BETA_MSQ = -0.5/BETA
C
 BFAC = 0.5*MINF**2 / (1.0 + BETA)
 BFAC_MSQ = 0.5 / (1.0 + BETA)
 & - BFAC / (1.0 + BETA) * BETA_MSQ
C
 CL = 0.0
 CM = 0.0

 CDP = 0.0
C
 CL_ALF = 0.
 CL_MSQ = 0.
C
 I = 1
 CGINC = sec.cp(i) + dui(i)**2
 CPG1 = CGINC/(BETA + BFAC*CGINC)
 CPG1_MSQ = -CPG1/(BETA + BFAC*CGINC)*(BETA_MSQ + BFAC_MSQ*CGINC)
C
 CPI_GAM = -2.0*cginc
 CPC_CPI = (1.0 - BFAC*CPG1)/ (BETA + BFAC*CGINC)
 CPG1_ALF = CPC_CPI*CPI_GAM*GAM_A(I)
C
 DO 10 I=1, N
 IP = I+1
 IF(I.EQ.N) IP = 1
C
 CGINC = sec.cp(i) + dui(i)**2
 CPG2 = CGINC/(BETA + BFAC*CGINC)
 CPG2_MSQ = -CPG2/(BETA + BFAC*CGINC)*(BETA_MSQ + BFAC_MSQ*CGINC)
C
 CPI_GAM = -2.0*cginc
 CPC_CPI = (1.0 - BFAC*CPG2)/ (BETA + BFAC*CGINC)
 CPG2_ALF = CPC_CPI*CPI_GAM*GAM_A(IP)
C
 DX = (X(IP) - X(I))*CA + (Y(IP) - Y(I))*SA
 DY = (Y(IP) - Y(I))*CA - (X(IP) - X(I))*SA
 DG = CPG2 - CPG1
C
 AX = (0.5*(X(IP)+X(I))-XREF)*CA + (0.5*(Y(IP)+Y(I))-YREF)*SA
 AY = (0.5*(Y(IP)+Y(I))-YREF)*CA - (0.5*(X(IP)+X(I))-XREF)*SA
 AG = 0.5*(CPG2 + CPG1)
C
 DX_ALF = -(X(IP) - X(I))*SA + (Y(IP) - Y(I))*CA
 AG_ALF = 0.5*(CPG2_ALF + CPG1_ALF)
 AG_MSQ = 0.5*(CPG2_MSQ + CPG1_MSQ)
C
 CL = CL + DX* AG
 CDP = CDP - DY* AG
 CM = CM - DX*(AG*AX + DG*DX/12.0)
 & - DY*(AG*AY + DG*DY/12.0)
C
 CL_ALF = CL_ALF + DX*AG_ALF + AG*DX_ALF

 189

 CL_MSQ = CL_MSQ + DX*AG_MSQ
C
 CPG1 = CPG2
 CPG1_ALF = CPG2_ALF
 CPG1_MSQ = CPG2_MSQ
 10 CONTINUE
C
 RETURN
 END ! CLCALC2

VIX Surface Interpolation

 subroutine surface(pan,Npan,sec,Nsec,Nmax,Nte,fl)
 include 'section.inc'
 include 'panel.inc'
! This subroutine calculates collocation points for each panel
! calculates mean edges
! calculates surface coordinate for each collocation point on s and t
! gets points and interpolate cp using a spline distribution
!***
!* (C) Augusto Veiga, University of Southampton 2003 *
!***
 integer Npan,Nsec,Nv,Nh,Nb,Nmax
 type(panel),dimension(Npan):: pan,panb
 type(section),dimension(Nsec):: sec
 real:: S(3),Dmax
 logical:: fl
 !Calculating collocation points
 Do i=1,Npan
 S=0
 do j=1,4
 S(1)=S(1)+pan(i).nd(j).x
 S(2)=S(2)+pan(i).nd(j).y
 S(3)=S(3)+pan(i).nd(j).z
 enddo
 pan(i).co.x=S(1)/4.
 pan(i).co.y=S(2)/4.
 pan(i).co.z=S(3)/4.
 enddo
 !call smooth_cp(pan,Npan)
 !Calculating surface coordinates s and t
 call org_pan(pan,panb,Npan,Nb,Nv,Nh,Nte)
 call surf_coord(panb,Nb,Nv,Nh)
 call surf_spl(panb,Nb,Nv,Nh,fl) !Makes a spline surface
 do i = 1,3
 call press_int(panb,Nb,Nv,Nh,i,.false.)!Makes a V(x,y,z) surface
 ! i -> 1 = x
 ! 2 = y
 ! 3 = z
 enddo
 !dividing surface into sections with 100 points equaly
 ! spaced each and following a plane which normal is the
 ! slope at yz plane
 do i=1,Nsec
 sec(i).Nnd=Nmax
 enddo
 call interpol_surf(panb,Nb,Nv,Nsec,sec,Nmax)
 call sec_normal(sec,Nsec,Nmax) !calculate normals on each point of section
 !call calc_Up(sec,Nsec,Nmax) !calculate modular potential velocity
 call vsec_plot(Sec,Nsec,Nmax) !plots spanwise velocity

 return
 end subroutine

 subroutine interpol_surf(pan,Npan,Nv,Nsec,sec,Nmax)
 include 'section.inc'
 include 'panel.inc'

 integer :: Npan,Nv,Nsec,Nmax,iv,ih
 type(panel),dimension(Npan) :: pan
 type (section),dimension(Nsec):: sec

 190

 real:: tc,sc,t

 ! divide body onto spanwise sections with tc spacement
 tc= (pan(Nv).nd(4).t-pan(1).nd(1).t)/(Nsec-1)
 t=pan(1).nd(1).t
 k=1
 id=0
 ih=1
 iv=1
 i=1
 do while (i<=Nsec)
 !This loop makes geometry interpolation just
 !finding s last points
 sc=1.0
 sec(i).id=id
 id=id+1
 sec(i).s(1)=0
 sec(i).s(Nmax)=sc
 sec(i).t(1)=t
 sc=(sec(i).s(Nmax)-sec(i).s(1))/(Nmax-1)
 if (t<=pan(iv).nd(4).t) then
 ih=iv
 call interpol_sec(sec(i),1,pan,Npan,ih,iv,Nv,1) !x
 call interpol_sec(sec(i),1,pan,Npan,ih,iv,Nv,2) !y
 call interpol_sec(sec(i),1,pan,Npan,ih,iv,Nv,3) !z
 !call interpol_Vs(sec(i),1,pan,Npan,ih,iv,Nv) !Vm
 do j=2,Nmax
 if (j==Nmax) then
 sec(i).s(j)=pan(Npan-(Nv-iv)).nd(2).s
 sec(i).t(j)=t
 else
 sec(i).s(j)=sc+sec(i).s(j-1)
 sec(i).t(j)=t
 endif
 call interpol_sec(sec(i),j,pan,Npan,ih,iv,Nv,1) !x
 call interpol_sec(sec(i),j,pan,Npan,ih,iv,Nv,2) !y
 call interpol_sec(sec(i),j,pan,Npan,ih,iv,Nv,3) !z
 !call interpol_Vs(sec(i),j,pan,Npan,ih,iv,Nv) !Vm
 enddo
 t=t+tc
 i=i+1
 else if (i==Nsec) then
 ih=Nv !Last section
 call interpol_sec(sec(i),1,pan,Npan,ih,iv,Nv,1) !x
 call interpol_sec(sec(i),1,pan,Npan,ih,iv,Nv,2) !y
 call interpol_sec(sec(i),1,pan,Npan,ih,iv,Nv,3) !z
 !call interpol_Vs(sec(i),1,pan,Npan,ih,iv,Nv) !Vm
 do j=2,Nmax
 if (j==Nmax) then
 sec(i).s(j)=pan(Npan).nd(2).s
 sec(i).t(j)=pan(Npan).nd(3).t
 else
 sec(i).s(j)=sc+sec(i).s(j-1)
 sec(i).t(j)=t
 endif
 call interpol_sec(sec(i),j,pan,Npan,ih,iv,Nv,1) !x
 call interpol_sec(sec(i),j,pan,Npan,ih,iv,Nv,2) !y
 call interpol_sec(sec(i),j,pan,Npan,ih,iv,Nv,3) !z
 !call interpol_Vs(sec(i),j,pan,Npan,ih,iv,Nv) !Vm
 enddo
 i=i+1
 else if (iv<Nv) then
 iv=iv+1
 endif
 enddo
 !Now we calculate the cossine of sectional segments
 do isec = 1,Nsec
 do j = 1,Nmax
 if (j==Nmax) then
 do k = 1,3
 sec(isec).vcos(k,j) = sec(isec).vcos(k,j-1)

 191

 enddo
 else
 !Calculate length
 soma = 0
 do k = 1,3
 soma = soma+ (sec(isec).p(k,j+1)-sec(isec).p(k,j))**2
 enddo
 !calculate cossine
 do k = 1,3
 sec(isec).vcos(k,j)=(sec(isec).p(k,j+1)-sec(isec).p(k,j))
 & /sqrt(soma)
 enddo
 endif
 enddo
 enddo
 !Now we interpolate sectional velocity (Vs)
 !...and calculate the tangential velocity q
 iv = 1
 ih = 1
 i =1
 do while(i<=Nsec)
 sc=1.0
 t = sec(i).t(1)
 if (t<=pan(iv).nd(4).t) then
 ih=iv
 call interpol_Vs(sec(i),1,pan,Npan,ih,iv,Nv) !Vm
 do j=2,Nmax
 call interpol_Vs(sec(i),j,pan,Npan,ih,iv,Nv) !Vm
 enddo
 i = i+1
 else if (i==Nsec) then
 ih=Nv !Last section
 call interpol_Vs(sec(i),1,pan,Npan,ih,iv,Nv) !Vm
 do j=2,Nmax
 call interpol_Vs(sec(i),j,pan,Npan,ih,iv,Nv) !Vm
 enddo
 i = i+1
 else if (iv<Nv) then
 iv=iv+1
 endif
 enddo

 ! Writing a scratch file of potential tangential velocity
 open(1,file='potential_scratch.txt')
 write(1,100)
 do isec = 1,Nsec
 do j = 1,Nmax
 write(1,200) j,sec(isec).Up(j),sec(isec).vcos(1,j),
 & sec(isec).vcos(2,j),sec(isec).vcos(3,j)
 enddo
 write(1,*)
 enddo
 close(1)

 return
100 format('node , velocity , cos x , cos y , cos z')
200 format(i4,1x,f8.3,1x,f8.3,1x,f8.3,1x,f8.3)
 end subroutine

 subroutine interpol_sec(sec,j,pan,Npan,ih,iv,Nv,Nflag)
 include 'section.inc'
 include 'panel.inc'
! This subroutine gets the current section with s,t variables and,
! marching along chordwise panels, interpolates x,y,z using Coons
! bicubic spline surface
! As the solution marches, ih is changed to the next panel on
! chordwise direction.
! Nflag chooses what is going to be interpolated
! 1 -> x coordinate
! 2 -> y coordinate
! 3 -> z coordinate
! 4 -> cp

 192

!
! Bd1, Bd2 -> first derivative coefficients
!**
!* (C) Augusto Veiga, University of Southampton, 2003 *
!**
 integer j,ih,iv,Nv,Nflag
 type(section):: sec
 type(panel),dimension(Npan)::pan
 real::s,w,T,U,A(4),B1(4),B2(4),soma
 real:: delta1,delta2,Vn(4),C(4),D(4),dxs2(4),dxt2(4),x(4)
 real:: tiny

 tiny=1.0E-10
 soma=0;A=0;B1=0;B2=0;Bd1=0;Bd2=0
 s=sec.s(j)
 w=sec.t(j)
 i=ih
 lp1: do
 select case (Nflag)
 case(1) !options to interpolate variables
 do k=1,4
 dxs2(k)=pan(i).nd(k).dxs2
 dxt2(k)=pan(i).nd(k).dxt2
 x(k)=pan(i).nd(k).x
 enddo
 case(2)
 do k=1,4
 dxs2(k)=pan(i).nd(k).dys2
 dxt2(k)=pan(i).nd(k).dyt2
 x(k)=pan(i).nd(k).y
 enddo
 case(3)
 do k=1,4
 dxs2(k)=pan(i).nd(k).dzs2
 dxt2(k)=pan(i).nd(k).dzt2
 x(k)=pan(i).nd(k).z
 enddo
 case(4)
 do k=1,4
 dxs2(k)=0
 dxt2(k)=0
 x(k)=pan(i).nd(k).up
 enddo
 end select
 if (s<pan(i).nd(2).s) then
 !calculate normal coefficients T and U
 T=(s-pan(i).nd(1).s)/(pan(i).nd(2).s-pan(i).nd(1).s)
 U=(w-pan(i).nd(1).t)/(pan(i).nd(4).t-pan(i).nd(1).t)
 !calculate coefficients A
 A(1)=(1-T)*(1-U)
 A(2)=T*(1-U)
 A(3)=T*U
 A(4)=(1-T)*U
 !calculate coefficients B
 delta1=(pan(i).nd(2).s-pan(i).nd(1).s)
 delta2=(pan(i).nd(4).t-pan(i).nd(1).t)
 do k=1,4
 B1(k)=(A(k)**3-A(k))/6.*delta1
 B2(k)=(A(k)**3-A(k))/6.*delta2
 enddo
 !calculating normal vectors of 2nd derivatives
 C(1)=B1(2)*dxs2(2)-B1(1)*dxs2(1)
 C(2)=B1(3)*dxs2(3)-B1(2)*dxs2(2)
 C(3)=B1(4)*dxs2(4)-B1(3)*dxs2(3)
 C(4)=B1(4)*dxs2(4)-B1(1)*dxs2(1)
 D(1)=B2(2)*dxt2(2)-B2(1)*dxt2(1)
 D(2)=B2(3)*dxt2(3)-B2(2)*dxt2(2)
 D(3)=B2(4)*dxt2(4)-B2(3)*dxt2(3)
 D(4)=B2(4)*dxt2(4)-B2(1)*dxt2(1)
 Vn(1)=c(1)*d(4)-d(1)*c(4)
 Vn(2)=c(1)*d(2)-d(1)*c(2)
 Vn(3)=c(3)*d(2)-d(3)*c(2)

 193

 Vn(4)=c(3)*d(4)-d(3)*c(4)

 !calculate final value for interpolation
 soma=0
 do k=1,4
 soma=soma+A(k)*x(k)+Vn(k)
 enddo
 if (abs(soma)<tiny) then
 soma=0
 endif
 exit lp1
 else if (s==pan(Npan-(Nv-iv)).nd(2).s) then
 !calculate normal coefficients T and U
 T=(s-pan(i).nd(1).s)/(pan(i).nd(2).s-pan(i).nd(1).s)
 U=(w-pan(i).nd(1).t)/(pan(i).nd(4).t-pan(i).nd(1).t)
 !calculate coefficients A
 A(1)=(1-T)*(1-U)
 A(2)=T*(1-U)
 A(3)=T*U
 A(4)=(1-T)*U
 !calculate coefficients B
 delta1=(pan(i).nd(2).s-pan(i).nd(1).s)
 delta2=(pan(i).nd(4).t-pan(i).nd(1).t)
 do k=1,4
 B1(k)=(A(k)**3-A(k))*delta1
 B2(k)=(A(k)**3-A(k))*delta2
 enddo
 !calculating normal vectors of 2nd derivatives
 C(1)=B1(2)*dxs2(2)-B1(1)*dxs2(1)
 C(2)=B1(3)*dxs2(3)-B1(2)*dxs2(2)
 C(3)=B1(4)*dxs2(4)-B1(3)*dxs2(3)
 C(4)=B1(4)*dxs2(4)-B1(1)*dxs2(1)
 D(1)=B2(2)*dxt2(2)-B2(1)*dxt2(1)
 D(2)=B2(3)*dxt2(3)-B2(2)*dxt2(2)
 D(3)=B2(4)*dxt2(4)-B2(3)*dxt2(3)
 D(4)=B2(4)*dxt2(4)-B2(1)*dxt2(1)
 Vn(1)=c(1)*d(4)-d(1)*c(4)
 Vn(2)=c(1)*d(2)-d(1)*c(2)
 Vn(3)=c(3)*d(2)-d(3)*c(2)
 Vn(4)=c(3)*d(4)-d(3)*c(4)
 !calculate final value for interpolation
 soma=0
 do k=1,4
 soma=soma+A(k)*x(k)+Vn(k)
 enddo
 if (abs(soma)<tiny) then
 soma=0
 endif
 exit lp1
 else if(ih>Npan-(Nv-iv)) then
 exit lp1
 else if (ih<=Npan-(Nv-iv)) then
 ih=ih+Nv
 i=ih
 endif
 enddo lp1

 select case (Nflag)
 case(1) !options to interpolate variables
 sec.p(1,j)=soma
 case(2)
 sec.p(2,j)=soma
 case(3)
 sec.p(3,j)=soma
 ! case(4)
 ! sec.cp(j)=soma
 end select

 return
 end subroutine

 194

!___

 subroutine interpol_Vs(sec,j,pan,Npan,ih,iv,Nv)
 include 'section.inc'
 include 'panel.inc'
! This subroutine gets the current section with s,t variables and,
! marching along chordwise panels, interpolates x,y,z using Coons
! bicubic spline surface
! As the solution marches, ih is changed to the next panel on
! chordwise direction.
! Nflag chooses what is going to be interpolated
! 1 -> x coordinate
! 2 -> y coordinate
! 3 -> z coordinate
! 4 -> cp
!**
!* (C) Augusto Veiga, University of Southampton, 2003 *
!**
 integer j,ih,iv,Nv,Nflag
 type(section):: sec
 type(panel),dimension(Npan)::pan
 real::s,w,T,U,A(4),B1(4),B2(4),soma,V(3)
 real:: delta1,delta2,Vn(4),C(4),D(4),dxs2(4),dxt2(4),x(4)
 real:: tiny

 tiny=1.0E-10
 soma=0;A=0;B1=0;B2=0
 s=sec.s(j)
 w=sec.t(j)
 i=ih
 do ind =1,3
 lp1: do
 do k=1,4
 dxs2(k)=0
 dxt2(k)=0
 x(k)=pan(i).nd(k).vm(ind)
 enddo
 if (s<pan(i).nd(2).s) then
 !calculate normal coefficients T and U
 T=(s-pan(i).nd(1).s)/(pan(i).nd(2).s-pan(i).nd(1).s)
 U=(w-pan(i).nd(1).t)/(pan(i).nd(4).t-pan(i).nd(1).t)
 !calculate coefficients A
 A(1)=(1-T)*(1-U)
 A(2)=T*(1-U)
 A(3)=T*U
 A(4)=(1-T)*U
 !calculate coefficients B
 !calculating normal vectors of 2nd derivatives
 !calculate final value for interpolation
 soma=0
 do k=1,4
 soma=soma+A(k)*x(k)
 enddo
 if (abs(soma)<tiny) then
 soma=0
 endif
 exit lp1
 else if (s==pan(Npan-(Nv-iv)).nd(2).s) then
 !calculate normal coefficients T and U
 T=(s-pan(i).nd(1).s)/(pan(i).nd(2).s-pan(i).nd(1).s)
 U=(w-pan(i).nd(1).t)/(pan(i).nd(4).t-pan(i).nd(1).t)
 !calculate coefficients A
 A(1)=(1-T)*(1-U)
 A(2)=T*(1-U)
 A(3)=T*U
 A(4)=(1-T)*U
 !calculate coefficients B
 !calculating normal vectors of 2nd derivatives
 !calculate final value for interpolation
 soma=0
 do k=1,4
 soma=soma+A(k)*x(k)

 195

 enddo
 if (abs(soma)<tiny) then
 soma=0
 endif
 exit lp1
 else if(ih>Npan-(Nv-iv)) then
 exit lp1
 else if (ih<=Npan-(Nv-iv)) then
 ih=ih+Nv
 i=ih
 endif
 enddo lp1
 V(ind) = soma
 enddo !indexes

 soma = 0
 do k = 1,3
 sec.vpot(k,j) = v(k) !potential 3D velocity
 soma = soma+ (sec.vcos(k,j)*V(k))**2 !velocity on section
 !projects velocity on each segment of section
 enddo

 sec.Up(j) = sqrt(soma) !tangential velocity on section pt

 return
 end subroutine

XFOIL Routines for Initial Boundary Layer Solution that Were Added to VIX

 SUBROUTINE SETBL
C---
C Sets up the BL Newton system coefficients
C for the current BL variables and the edge
C velocities received from SETUP. The local
C BL system coefficients are then
C incorporated into the global Newton system.
C---
 INCLUDE 'XFOIL.INC'
 INCLUDE 'XBL.INC'
 REAL USAV(IVX,2)
 REAL U1_M(2*IVX), U2_M(2*IVX)
 REAL D1_M(2*IVX), D2_M(2*IVX)
 REAL ULE1_M(2*IVX), ULE2_M(2*IVX)
 REAL UTE1_M(2*IVX), UTE2_M(2*IVX)
 REAL MA_CLMR, MSQ_CLMR, MDI
C
C---- set the CL used to define Mach, Reynolds numbers
 IF(LALFA) THEN
 CLMR = CL
 ELSE
 CLMR = CLSPEC
 ENDIF
C
C---- set current MINF(CL)
 !CALL MRCL(CLMR,MA_CLMR,RE_CLMR)
 MINF = 0
 RE_CLMR = 0
 MA_CLMR = 0
 CLMR = 0.000001
 MSQ_CLMR = 2.0*MINF*MA_CLMR
C
C---- set compressibility parameter TKLAM and derivative TK_MSQ
 !CALL COMSET
C
C---- set gas constant (= Cp/Cv)
 GAMBL = GAMMA
 GM1BL = GAMM1
C
C---- set parameters for compressibility correction
 QINFBL = QINF
 TKBL = TKLAM
 TKBL_MS = TKL_MSQ

 196

C
C---- stagnation density and 1/enthalpy
 RSTBL = (1.0 + 0.5*GM1BL*MINF**2) ** (1.0/GM1BL)
 RSTBL_MS = 0.5*RSTBL/(1.0 + 0.5*GM1BL*MINF**2)
C
 HSTINV = GM1BL*(MINF/QINFBL)**2 / (1.0 + 0.5*GM1BL*MINF**2)
 HSTINV_MS = GM1BL*(1.0/QINFBL)**2 / (1.0 + 0.5*GM1BL*MINF**2)
 & - 0.5*GM1BL*HSTINV / (1.0 + 0.5*GM1BL*MINF**2)
C
C---- Sutherland's const./To (assumes stagnation conditions are at STP)
 HVRAT = 0.35
C
C---- set Reynolds number based on freestream density, velocity, viscosity
 HERAT = 1.0 - 0.5*QINFBL**2*HSTINV
 HERAT_MS = - 0.5*QINFBL**2*HSTINV_MS
C
 REYBL = REINF * SQRT(HERAT**3) * (1.0+HVRAT)/(HERAT+HVRAT)
 REYBL_RE = SQRT(HERAT**3) * (1.0+HVRAT)/(HERAT+HVRAT)
 REYBL_MS = REYBL * (1.5/HERAT - 1.0/(HERAT+HVRAT))*HERAT_MS
C
 AMCRIT = ACRIT
C
C---- save TE thickness
 DWTE = WGAP(1)
C
 IF(.NOT.LBLINI) THEN
C----- initialize BL by marching with Ue (fudge at separation)
 WRITE(*,*)
 WRITE(*,*) 'Initializing BL ...'
 CALL MRCHUE
 LBLINI = .TRUE.
 ENDIF
C
 WRITE(*,*)
C
C---- march BL with current Ue and Ds to establish transition
 CALL MRCHDU
C
 DO 5 IS=1, 2
 DO 6 IBL=2, NBL(IS)
 USAV(IBL,IS) = UEDG(IBL,IS)
 6 CONTINUE
 5 CONTINUE
C
 CALL UESET
C
 DO 7 IS=1, 2
 DO 8 IBL=2, NBL(IS)
 TEMP = USAV(IBL,IS)
 USAV(IBL,IS) = UEDG(IBL,IS)
 UEDG(IBL,IS) = TEMP
 8 CONTINUE
 7 CONTINUE
C
 ILE1 = IPAN(2,1)
 ILE2 = IPAN(2,2)
 ITE1 = IPAN(IBLTE(1),1)
 ITE2 = IPAN(IBLTE(2),2)
C
 JVTE1 = ISYS(IBLTE(1),1)
 JVTE2 = ISYS(IBLTE(2),2)
C
 DULE1 = UEDG(2,1) - USAV(2,1)
 DULE2 = UEDG(2,2) - USAV(2,2)
C
C---- set LE and TE Ue sensitivities wrt all m values
 DO 10 JS=1, 2
 DO 110 JBL=2, NBL(JS)
 J = IPAN(JBL,JS)
 JV = ISYS(JBL,JS)
 ULE1_M(JV) = -VTI(2,1)*VTI(JBL,JS)*DIJ(ILE1,J)
 ULE2_M(JV) = -VTI(2,2)*VTI(JBL,JS)*DIJ(ILE2,J)

 197

 UTE1_M(JV) = -VTI(IBLTE(1),1)*VTI(JBL,JS)*DIJ(ITE1,J)
 UTE2_M(JV) = -VTI(IBLTE(2),2)*VTI(JBL,JS)*DIJ(ITE2,J)
 110 CONTINUE
 10 CONTINUE
C
 ULE1_A = UINV_A(2,1)
 ULE2_A = UINV_A(2,2)
C
C**** Go over each boundary layer/wake
 DO 2000 IS=1, 2
C
C---- there is no station "1" at similarity, so zero everything out
 DO 20 JS=1, 2
 DO 210 JBL=2, NBL(JS)
 JV = ISYS(JBL,JS)
 U1_M(JV) = 0.
 D1_M(JV) = 0.
 210 CONTINUE
 20 CONTINUE
 U1_A = 0.
 D1_A = 0.
C
 DUE1 = 0.
 DDS1 = 0.
C
C---- similarity station pressure gradient parameter x/u du/dx
 IBL = 2
 BULE = 1.0
C
C---- set forced transition arc length position
 CALL XIFSET(IS)
C
 TRAN = .FALSE.
 TURB = .FALSE.
C
C**** Sweep downstream setting up BL equation linearizations
 DO 1000 IBL=2, NBL(IS)
C
 IV = ISYS(IBL,IS)
C
 SIMI = IBL.EQ.2
 WAKE = IBL.GT.IBLTE(IS)
 TRAN = IBL.EQ.ITRAN(IS)
 TURB = IBL.GT.ITRAN(IS)
C
 I = IPAN(IBL,IS)
C
C---- set primary variables for current station
 XSI = XSSI(IBL,IS)
 IF(IBL.LT.ITRAN(IS)) AMI = CTAU(IBL,IS)
 IF(IBL.GE.ITRAN(IS)) CTI = CTAU(IBL,IS)
 UEI = UEDG(IBL,IS)
 THI = THET(IBL,IS)
 MDI = MASS(IBL,IS)
C
 DSI = MDI/UEI
C
 IF(WAKE) THEN
 IW = IBL - IBLTE(IS)
 DSWAKI = WGAP(IW)
 ELSE
 DSWAKI = 0.
 ENDIF
C
C---- set derivatives of DSI (= D2)
 D2_M2 = 1.0/UEI
 D2_U2 = -DSI/UEI
C
 DO 30 JS=1, 2
 DO 310 JBL=2, NBL(JS)
 J = IPAN(JBL,JS)
 JV = ISYS(JBL,JS)

 198

 U2_M(JV) = -VTI(IBL,IS)*VTI(JBL,JS)*DIJ(I,J)
 D2_M(JV) = D2_U2*U2_M(JV)
 310 CONTINUE
 30 CONTINUE
 D2_M(IV) = D2_M(IV) + D2_M2
C
 U2_A = UINV_A(IBL,IS)
 D2_A = D2_U2*U2_A
C
C---- "forced" changes due to mismatch between UEDG and USAV=UINV+dij*MASS
 DUE2 = UEDG(IBL,IS) - USAV(IBL,IS)
 DDS2 = D2_U2*DUE2
C
 CALL BLPRV(XSI,AMI,CTI,THI,DSI,DSWAKI,UEI)
 CALL BLKIN
C
C---- check for transition and set TRAN, XT, etc. if found
 IF(TRAN) THEN
 CALL TRCHEK
 AMI = AMPL2
 ENDIF
 IF(IBL.EQ.ITRAN(IS) .AND. .NOT.TRAN) THEN
 WRITE(*,*) 'SETBL: Xtr??? n1 n2: ', AMPL1, AMPL2
 ENDIF
C
C---- assemble 10x4 linearized system for dCtau, dTh, dDs, dUe, dXi
C at the previous "1" station and the current "2" station
C
 IF(IBL.EQ.IBLTE(IS)+1) THEN
C
C----- define quantities at start of wake, adding TE base thickness to Dstar
 TTE = THET(IBLTE(1),1) + THET(IBLTE(2),2)
 DTE = DSTR(IBLTE(1),1) + DSTR(IBLTE(2),2) + ANTE
 CTE = (CTAU(IBLTE(1),1)*THET(IBLTE(1),1)
 & + CTAU(IBLTE(2),2)*THET(IBLTE(2),2)) / TTE
 CALL TESYS(CTE,TTE,DTE)
C
 TTE_TTE1 = 1.0
 TTE_TTE2 = 1.0
 DTE_MTE1 = 1.0 / UEDG(IBLTE(1),1)
 DTE_UTE1 = -DSTR(IBLTE(1),1) / UEDG(IBLTE(1),1)
 DTE_MTE2 = 1.0 / UEDG(IBLTE(2),2)
 DTE_UTE2 = -DSTR(IBLTE(2),2) / UEDG(IBLTE(2),2)
 CTE_CTE1 = THET(IBLTE(1),1)/TTE
 CTE_CTE2 = THET(IBLTE(2),2)/TTE
 CTE_TTE1 = (CTAU(IBLTE(1),1) - CTE)/TTE
 CTE_TTE2 = (CTAU(IBLTE(2),2) - CTE)/TTE
C
C----- re-define D1 sensitivities wrt m since D1 depends on both TE Ds values
 DO 35 JS=1, 2
 DO 350 JBL=2, NBL(JS)
 J = IPAN(JBL,JS)
 JV = ISYS(JBL,JS)
 D1_M(JV) = DTE_UTE1*UTE1_M(JV) + DTE_UTE2*UTE2_M(JV)
 350 CONTINUE
 35 CONTINUE
 D1_M(JVTE1) = D1_M(JVTE1) + DTE_MTE1
 D1_M(JVTE2) = D1_M(JVTE2) + DTE_MTE2
C
C----- "forced" changes from UEDG --- USAV=UINV+dij*MASS mismatch
 DUE1 = 0.
 DDS1 = DTE_UTE1*(UEDG(IBLTE(1),1) - USAV(IBLTE(1),1))
 & + DTE_UTE2*(UEDG(IBLTE(2),2) - USAV(IBLTE(2),2))
C
 ELSE
C
 CALL BLSYS
C
 ENDIF
C
C
C---- Save wall shear and equil. max shear coefficient for plotting output

 199

 TAU(IBL,IS) = 0.5*R2*U2*U2*CF2
 DIS(IBL,IS) = R2*U2*U2*U2*DI2*HS2*0.5
 CTQ(IBL,IS) = CQ2
 DELT(IBL,IS) = DE2
 USLP(IBL,IS) = 1.60/(1.0+US2)
C
C---- set XI sensitivities wrt LE Ue changes
 IF(IS.EQ.1) THEN
 XI_ULE1 = SST_GO
 XI_ULE2 = -SST_GP
 ELSE
 XI_ULE1 = -SST_GO
 XI_ULE2 = SST_GP
 ENDIF
C
C---- stuff BL system coefficients into main Jacobian matrix
C
 DO 40 JV=1, NSYS
 VM(1,JV,IV) = VS1(1,3)*D1_M(JV) + VS1(1,4)*U1_M(JV)
 & + VS2(1,3)*D2_M(JV) + VS2(1,4)*U2_M(JV)
 & + (VS1(1,5) + VS2(1,5) + VSX(1))
 & *(XI_ULE1*ULE1_M(JV) + XI_ULE2*ULE2_M(JV))
 40 CONTINUE
C
 VB(1,1,IV) = VS1(1,1)
 VB(1,2,IV) = VS1(1,2)
C
 VA(1,1,IV) = VS2(1,1)
 VA(1,2,IV) = VS2(1,2)
C
 IF(LALFA) THEN
 VDEL(1,2,IV) = VSR(1)*RE_CLMR + VSM(1)*MSQ_CLMR
 ELSE
 VDEL(1,2,IV) =
 & (VS1(1,4)*U1_A + VS1(1,3)*D1_A)
 & + (VS2(1,4)*U2_A + VS2(1,3)*D2_A)
 & + (VS1(1,5) + VS2(1,5) + VSX(1))
 & *(XI_ULE1*ULE1_A + XI_ULE2*ULE2_A)
 ENDIF
C
 VDEL(1,1,IV) = VSREZ(1)
 & + (VS1(1,4)*DUE1 + VS1(1,3)*DDS1)
 & + (VS2(1,4)*DUE2 + VS2(1,3)*DDS2)
 & + (VS1(1,5) + VS2(1,5) + VSX(1))
 & *(XI_ULE1*DULE1 + XI_ULE2*DULE2)
C
C
 DO 50 JV=1, NSYS
 VM(2,JV,IV) = VS1(2,3)*D1_M(JV) + VS1(2,4)*U1_M(JV)
 & + VS2(2,3)*D2_M(JV) + VS2(2,4)*U2_M(JV)
 & + (VS1(2,5) + VS2(2,5) + VSX(2))
 & *(XI_ULE1*ULE1_M(JV) + XI_ULE2*ULE2_M(JV))
 50 CONTINUE
C
 VB(2,1,IV) = VS1(2,1)
 VB(2,2,IV) = VS1(2,2)
C
 VA(2,1,IV) = VS2(2,1)
 VA(2,2,IV) = VS2(2,2)
C
 IF(LALFA) THEN
 VDEL(2,2,IV) = VSR(2)*RE_CLMR + VSM(2)*MSQ_CLMR
 ELSE
 VDEL(2,2,IV) =
 & (VS1(2,4)*U1_A + VS1(2,3)*D1_A)
 & + (VS2(2,4)*U2_A + VS2(2,3)*D2_A)
 & + (VS1(2,5) + VS2(2,5) + VSX(2))
 & *(XI_ULE1*ULE1_A + XI_ULE2*ULE2_A)
 ENDIF
C
 VDEL(2,1,IV) = VSREZ(2)
 & + (VS1(2,4)*DUE1 + VS1(2,3)*DDS1)

 200

 & + (VS2(2,4)*DUE2 + VS2(2,3)*DDS2)
 & + (VS1(2,5) + VS2(2,5) + VSX(2))
 & *(XI_ULE1*DULE1 + XI_ULE2*DULE2)
C
C
 DO 60 JV=1, NSYS
 VM(3,JV,IV) = VS1(3,3)*D1_M(JV) + VS1(3,4)*U1_M(JV)
 & + VS2(3,3)*D2_M(JV) + VS2(3,4)*U2_M(JV)
 & + (VS1(3,5) + VS2(3,5) + VSX(3))
 & *(XI_ULE1*ULE1_M(JV) + XI_ULE2*ULE2_M(JV))
 60 CONTINUE
C
 VB(3,1,IV) = VS1(3,1)
 VB(3,2,IV) = VS1(3,2)
C
 VA(3,1,IV) = VS2(3,1)
 VA(3,2,IV) = VS2(3,2)
C
 IF(LALFA) THEN
 VDEL(3,2,IV) = VSR(3)*RE_CLMR + VSM(3)*MSQ_CLMR
 ELSE
 VDEL(3,2,IV) =
 & (VS1(3,4)*U1_A + VS1(3,3)*D1_A)
 & + (VS2(3,4)*U2_A + VS2(3,3)*D2_A)
 & + (VS1(3,5) + VS2(3,5) + VSX(3))
 & *(XI_ULE1*ULE1_A + XI_ULE2*ULE2_A)
 ENDIF
C
 VDEL(3,1,IV) = VSREZ(3)
 & + (VS1(3,4)*DUE1 + VS1(3,3)*DDS1)
 & + (VS2(3,4)*DUE2 + VS2(3,3)*DDS2)
 & + (VS1(3,5) + VS2(3,5) + VSX(3))
 & *(XI_ULE1*DULE1 + XI_ULE2*DULE2)
C
C
 IF(IBL.EQ.IBLTE(IS)+1) THEN
C
C----- redefine coefficients for TTE, DTE, etc
 VZ(1,1) = VS1(1,1)*CTE_CTE1
 VZ(1,2) = VS1(1,1)*CTE_TTE1 + VS1(1,2)*TTE_TTE1
 VB(1,1,IV) = VS1(1,1)*CTE_CTE2
 VB(1,2,IV) = VS1(1,1)*CTE_TTE2 + VS1(1,2)*TTE_TTE2
C
 VZ(2,1) = VS1(2,1)*CTE_CTE1
 VZ(2,2) = VS1(2,1)*CTE_TTE1 + VS1(2,2)*TTE_TTE1
 VB(2,1,IV) = VS1(2,1)*CTE_CTE2
 VB(2,2,IV) = VS1(2,1)*CTE_TTE2 + VS1(2,2)*TTE_TTE2
C
 VZ(3,1) = VS1(3,1)*CTE_CTE1
 VZ(3,2) = VS1(3,1)*CTE_TTE1 + VS1(3,2)*TTE_TTE1
 VB(3,1,IV) = VS1(3,1)*CTE_CTE2
 VB(3,2,IV) = VS1(3,1)*CTE_TTE2 + VS1(3,2)*TTE_TTE2
C
 ENDIF
C
C---- turbulent intervals will follow if currently at transition interval
 IF(TRAN) THEN
 TURB = .TRUE.
C
C------ save transition location
 ITRAN(IS) = IBL
 TFORCE(IS) = TRFORC
 XSSITR(IS) = XT
C
C------ interpolate airfoil geometry to find transition x/c
C- (for user output)
 IF(IS.EQ.1) THEN
 STR = SST - XT
 ELSE
 STR = SST + XT
 ENDIF
 CHX = XTE - XLE

 201

 CHY = YTE - YLE
 CHSQ = CHX**2 + CHY**2
 XTR = SEVAL(STR,X,XP,S,N)
 YTR = SEVAL(STR,Y,YP,S,N)
 XOCTR(IS) = ((XTR-XLE)*CHX + (YTR-YLE)*CHY)/CHSQ
 YOCTR(IS) = ((YTR-YLE)*CHX - (XTR-XLE)*CHY)/CHSQ
 ENDIF
C
 TRAN = .FALSE.
C
 IF(IBL.EQ.IBLTE(IS)) THEN
C----- set "2" variables at TE to wake correlations for next station
C
 TURB = .TRUE.
 WAKE = .TRUE.
 CALL BLVAR(3)
 CALL BLMID(3)
 ENDIF
C
 DO 80 JS=1, 2
 DO 810 JBL=2, NBL(JS)
 JV = ISYS(JBL,JS)
 U1_M(JV) = U2_M(JV)
 D1_M(JV) = D2_M(JV)
 810 CONTINUE
 80 CONTINUE
C
 U1_A = U2_A
 D1_A = D2_A
C
 DUE1 = DUE2
 DDS1 = DDS2
C
C---- set BL variables for next station
 DO 190 ICOM=1, NCOM
 COM1(ICOM) = COM2(ICOM)
 190 CONTINUE
C
C---- next streamwise station
 1000 CONTINUE
C
 IF(TFORCE(IS)) THEN
 WRITE(*,9100) IS,XOCTR(IS),ITRAN(IS)
 9100 FORMAT(1X,'Side',I2,' forced transition at x/c = ',F7.4,I5)
 ELSE
 WRITE(*,9200) IS,XOCTR(IS),ITRAN(IS)
 9200 FORMAT(1X,'Side',I2,' free transition at x/c = ',F7.4,I5)
 ENDIF
C
C---- next airfoil side
 2000 CONTINUE
C
 RETURN
 END

 SUBROUTINE IBLSYS
C---
C Sets the BL Newton system line number
C corresponding to each BL station.
C---
 INCLUDE 'XFOIL.INC'
 INCLUDE 'XBL.INC'
C
 IV = 0
 DO 10 IS=1, 2
 DO 110 IBL=2, NBL(IS)
 IV = IV+1
 ISYS(IBL,IS) = IV
 110 CONTINUE
 10 CONTINUE
C

 202

 NSYS = IV
 IF(NSYS.GT.2*IVX) STOP '*** IBLSYS: BL system array overflow. ***'
C
 RETURN
 END

 SUBROUTINE MRCHUE
C--
C Marches the BLs and wake in direct mode using
C the UEDG array. If separation is encountered,
C a plausible value of Hk extrapolated from
C upstream is prescribed instead. Continuous
C checking of transition onset is performed.
C--
 INCLUDE 'XFOIL.INC'
 INCLUDE 'XBL.INC'
 LOGICAL DIRECT
 REAL MSQ
C
C---- shape parameters for separation criteria
 HLMAX = 3.8
 HTMAX = 2.5
C
 DO 2000 IS=1, 2
C
 WRITE(*,*) ' side ', IS, ' ...'
C
C---- set forced transition arc length position
 CALL XIFSET(IS)
C
C---- initialize similarity station with Thwaites' formula
 IBL = 2
 XSI = XSSI(IBL,IS)
 UEI = UEDG(IBL,IS)
C BULE = LOG(UEDG(IBL+1,IS)/UEI) / LOG(XSSI(IBL+1,IS)/XSI)
C BULE = MAX(-.08 , BULE)
 BULE = 1.0
 UCON = UEI/XSI**BULE
 TSQ = 0.45/(UCON*(5.0*BULE+1.0)*REYBL) * XSI**(1.0-BULE)
 THI = SQRT(TSQ)
 DSI = 2.2*THI
 AMI = 0.0
C
C---- initialize Ctau for first turbulent station
 CTI = 0.03
C
 TRAN = .FALSE.
 TURB = .FALSE.
 ITRAN(IS) = IBLTE(IS)
C
C---- march downstream
 DO 1000 IBL=2, NBL(IS)
 IBM = IBL-1
C
 IW = IBL - IBLTE(IS)
C
 SIMI = IBL.EQ.2
 WAKE = IBL.GT.IBLTE(IS)
C
C------ prescribed quantities
 XSI = XSSI(IBL,IS)
 UEI = UEDG(IBL,IS)
C
 IF(WAKE) THEN
 IW = IBL - IBLTE(IS)
 DSWAKI = WGAP(IW)
 ELSE
 DSWAKI = 0.
 ENDIF
C
 DIRECT = .TRUE.

 203

C
C------ Newton iteration loop for current station
 DO 100 ITBL=1, 25
C
C-------- assemble 10x3 linearized system for dCtau, dTh, dDs, dUe, dXi
C at the previous "1" station and the current "2" station
C (the "1" station coefficients will be ignored)
C
C
 CALL BLPRV(XSI,AMI,CTI,THI,DSI,DSWAKI,UEI)
 CALL BLKIN
C
C-------- check for transition and set appropriate flags and things
 IF((.NOT.SIMI) .AND. (.NOT.TURB)) THEN
 CALL TRCHEK
 AMI = AMPL2
C
C--------- fixed BUG MD 7 Jun 99
 IF(TRAN) THEN
 ITRAN(IS) = IBL
 IF(CTI.LE.0.0) THEN
 CTI = 0.03
 S2 = CTI
 ENDIF
 ELSE
 ITRAN(IS) = IBL+2
 ENDIF
C
C
 ENDIF
C
 IF(IBL.EQ.IBLTE(IS)+1) THEN
 TTE = THET(IBLTE(1),1) + THET(IBLTE(2),2)
 DTE = DSTR(IBLTE(1),1) + DSTR(IBLTE(2),2) + ANTE
 CTE = (CTAU(IBLTE(1),1)*THET(IBLTE(1),1)
 & + CTAU(IBLTE(2),2)*THET(IBLTE(2),2)) / TTE
 CALL TESYS(CTE,TTE,DTE)
 ELSE
 CALL BLSYS
 ENDIF
C
 IF(DIRECT) THEN
C
C--------- try direct mode (set dUe = 0 in currently empty 4th line)
 VS2(4,1) = 0.
 VS2(4,2) = 0.
 VS2(4,3) = 0.
 VS2(4,4) = 1.0
 VSREZ(4) = 0.
C
C--------- solve Newton system for current "2" station
 CALL GAUSS(4,4,VS2,VSREZ,1)
C
C--------- determine max changes and underrelax if necessary
 DMAX = MAX(ABS(VSREZ(2)/THI),
 & ABS(VSREZ(3)/DSI))
 IF(IBL.LT.ITRAN(IS)) DMAX = MAX(DMAX,ABS(VSREZ(1)/10.0))
 IF(IBL.GE.ITRAN(IS)) DMAX = MAX(DMAX,ABS(VSREZ(1)/CTI))
C
 RLX = 1.0
 IF(DMAX.GT.0.3) RLX = 0.3/DMAX
C
C--------- see if direct mode is not applicable
 IF(IBL .NE. IBLTE(IS)+1) THEN
C
C---------- calculate resulting kinematic shape parameter Hk
 MSQ = UEI*UEI*HSTINV / (GM1BL*(1.0 - 0.5*UEI*UEI*HSTINV))
 HTEST = (DSI + RLX*VSREZ(3)) / (THI + RLX*VSREZ(2))
 CALL HKIN(HTEST, MSQ, HKTEST, DUMMY, DUMMY)
C
C---------- decide whether to do direct or inverse problem based on Hk
 IF(IBL.LT.ITRAN(IS)) HMAX = HLMAX

 204

 IF(IBL.GE.ITRAN(IS)) HMAX = HTMAX
 DIRECT = HKTEST.LT.HMAX
 ENDIF
C
 IF(DIRECT) THEN
C---------- update as usual
ccc IF(IBL.LT.ITRAN(IS)) AMI = AMI + RLX*VSREZ(1)
 IF(IBL.GE.ITRAN(IS)) CTI = CTI + RLX*VSREZ(1)
 THI = THI + RLX*VSREZ(2)
 DSI = DSI + RLX*VSREZ(3)
 ELSE
C---------- set prescribed Hk for inverse calculation at the current station
 IF(IBL.LT.ITRAN(IS)) THEN
C----------- laminar case: relatively slow increase in Hk downstream
 HTARG = HK1 + 0.03*(X2-X1)/T1
 ELSE IF(IBL.EQ.ITRAN(IS)) THEN
C----------- transition interval: weighted laminar and turbulent case
 HTARG = HK1 + (0.03*(XT-X1) - 0.15*(X2-XT))/T1
 ELSE IF(WAKE) THEN
C----------- turbulent wake case:
C- asymptotic wake behavior with approximate Backward Euler
 CONST = 0.03*(X2-X1)/T1
 HK2 = HK1
 HK2 = HK2 - (HK2 + CONST*(HK2-1.0)**3 - HK1)
 & /(1.0 + 3.0*CONST*(HK2-1.0)**2)
 HK2 = HK2 - (HK2 + CONST*(HK2-1.0)**3 - HK1)
 & /(1.0 + 3.0*CONST*(HK2-1.0)**2)
 HK2 = HK2 - (HK2 + CONST*(HK2-1.0)**3 - HK1)
 & /(1.0 + 3.0*CONST*(HK2-1.0)**2)
 HTARG = HK2
 ELSE
C----------- turbulent case: relatively fast decrease in Hk downstream
 HTARG = HK1 - 0.15*(X2-X1)/T1
 ENDIF
C
C---------- limit specified Hk to something reasonable
 IF(WAKE) THEN
 HTARG = MAX(HTARG , 1.01)
 ELSE
 HTARG = MAX(HTARG , HMAX)
 ENDIF
C
 WRITE(*,1300) IBL, HTARG
 1300 FORMAT(' MRCHUE: Inverse mode at', I4, ' Hk =', F8.3)
C
C---------- try again with prescribed Hk
 GO TO 100
C
 ENDIF
C
 ELSE
C
C-------- inverse mode (force Hk to prescribed value HTARG)
 VS2(4,1) = 0.
 VS2(4,2) = HK2_T2
 VS2(4,3) = HK2_D2
 VS2(4,4) = HK2_U2
 VSREZ(4) = HTARG - HK2
C
 CALL GAUSS(4,4,VS2,VSREZ,1)
C
 DMAX = MAX(ABS(VSREZ(2)/THI),
 & ABS(VSREZ(3)/DSI))
 IF(IBL.GE.ITRAN(IS)) DMAX = MAX(DMAX , ABS(VSREZ(1)/CTI))
C
 RLX = 1.0
 IF(DMAX.GT.0.3) RLX = 0.3/DMAX
C
C--------- update variables
ccc IF(IBL.LT.ITRAN(IS)) AMI = AMI + RLX*VSREZ(1)
 IF(IBL.GE.ITRAN(IS)) CTI = CTI + RLX*VSREZ(1)
 THI = THI + RLX*VSREZ(2)

 205

 DSI = DSI + RLX*VSREZ(3)
 UEI = UEI + RLX*VSREZ(4)
C
 ENDIF
C
C-------- eliminate absurd transients
 IF(IBL.GE.ITRAN(IS)) THEN
 CTI = MIN(CTI , 0.30)
 CTI = MAX(CTI , 0.0000001)
 ENDIF
C
 IF(IBL.LE.IBLTE(IS)) THEN
 HKLIM = 1.02
 ELSE
 HKLIM = 1.00005
 ENDIF
 MSQ = UEI*UEI*HSTINV / (GM1BL*(1.0 - 0.5*UEI*UEI*HSTINV))
 DSW = DSI - DSWAKI
 CALL DSLIM(DSW,THI,UEI,MSQ,HKLIM)
 DSI = DSW + DSWAKI
C
 IF(DMAX.LE.1.0E-5) GO TO 110
C
 100 CONTINUE
 WRITE(*,1350) IBL, IS, DMAX
 1350 FORMAT(' MRCHUE: Convergence failed at',I4,' side',I2,
 & ' Res =', E12.4)
C
C------ the current unconverged solution might still be reasonable...
CCC IF(DMAX .LE. 0.1) GO TO 110
 IF(DMAX .LE. 0.1) GO TO 109
C
C------- the current solution is garbage --> extrapolate values instead
 IF(IBL.GT.3) THEN
 IF(IBL.LE.IBLTE(IS)) THEN
 THI = THET(IBM,IS) * (XSSI(IBL,IS)/XSSI(IBM,IS))**0.5
 DSI = DSTR(IBM,IS) * (XSSI(IBL,IS)/XSSI(IBM,IS))**0.5
 ELSE IF(IBL.EQ.IBLTE(IS)+1) THEN
 CTI = CTE
 THI = TTE
 DSI = DTE
 ELSE
 THI = THET(IBM,IS)
 RATLEN = (XSSI(IBL,IS)-XSSI(IBM,IS)) / (10.0*DSTR(IBM,IS))
 DSI = (DSTR(IBM,IS) + THI*RATLEN) / (1.0 + RATLEN)
 ENDIF
 IF(IBL.EQ.ITRAN(IS)) CTI = 0.05
 IF(IBL.GT.ITRAN(IS)) CTI = CTAU(IBM,IS)
C
 UEI = UEDG(IBL,IS)
 IF(IBL.GT.2 .AND. IBL.LT.NBL(IS))
 & UEI = 0.5*(UEDG(IBL-1,IS) + UEDG(IBL+1,IS))
 ENDIF
C
 109 CALL BLPRV(XSI,AMI,CTI,THI,DSI,DSWAKI,UEI)
 CALL BLKIN
C
C------- check for transition and set appropriate flags and things
 IF((.NOT.SIMI) .AND. (.NOT.TURB)) THEN
 CALL TRCHEK
 AMI = AMPL2
 IF(TRAN) ITRAN(IS) = IBL
 IF(.NOT.TRAN) ITRAN(IS) = IBL+2
 ENDIF
C
C------- set all other extrapolated values for current station
 IF(IBL.LT.ITRAN(IS)) CALL BLVAR(1)
 IF(IBL.GE.ITRAN(IS)) CALL BLVAR(2)
 IF(WAKE) CALL BLVAR(3)
C
 IF(IBL.LT.ITRAN(IS)) CALL BLMID(1)
 IF(IBL.GE.ITRAN(IS)) CALL BLMID(2)

 206

 IF(WAKE) CALL BLMID(3)
C
C------ pick up here after the Newton iterations
 110 CONTINUE
C
C------ store primary variables
 IF(IBL.LT.ITRAN(IS)) CTAU(IBL,IS) = AMI
 IF(IBL.GE.ITRAN(IS)) CTAU(IBL,IS) = CTI
 THET(IBL,IS) = THI
 DSTR(IBL,IS) = DSI
 UEDG(IBL,IS) = UEI
 MASS(IBL,IS) = DSI*UEI
 TAU(IBL,IS) = 0.5*R2*U2*U2*CF2
 DIS(IBL,IS) = R2*U2*U2*U2*DI2*HS2*0.5
 CTQ(IBL,IS) = CQ2
 DELT(IBL,IS) = DE2
C
C------ set "1" variables to "2" variables for next streamwise station
 CALL BLPRV(XSI,AMI,CTI,THI,DSI,DSWAKI,UEI)
 CALL BLKIN
 DO 310 ICOM=1, NCOM
 COM1(ICOM) = COM2(ICOM)
 310 CONTINUE
C
C------ turbulent intervals will follow transition interval or TE
 IF(TRAN .OR. IBL.EQ.IBLTE(IS)) THEN
 TURB = .TRUE.
C
C------- save transition location
 TFORCE(IS) = TRFORC
 XSSITR(IS) = XT
 ENDIF
C
 TRAN = .FALSE.
C
 IF(IBL.EQ.IBLTE(IS)) THEN
 THI = THET(IBLTE(1),1) + THET(IBLTE(2),2)
 DSI = DSTR(IBLTE(1),1) + DSTR(IBLTE(2),2) + ANTE
 ENDIF
C
 1000 CONTINUE
 2000 CONTINUE
C
 RETURN
 END

 SUBROUTINE MRCHDU
C--
C Marches the BLs and wake in mixed mode using
C the current Ue and Hk. The calculated Ue
C and Hk lie along a line quasi-normal to the
C natural Ue-Hk characteristic line of the
C current BL so that the Goldstein or Levy-Lees
C singularity is never encountered. Continuous
C checking of transition onset is performed.
C--
 INCLUDE 'XFOIL.INC'
 INCLUDE 'XBL.INC'
 REAL VTMP(4,5), VZTMP(4)
 REAL MSQ
ccc REAL MDI
C
 DATA DEPS / 5.0E-6 /
C
C---- constant controlling how far Hk is allowed to deviate
C- from the specified value.
 SENSWT = 1000.0
C
 DO 2000 IS=1, 2
C
C---- set forced transition arc length position

 207

 CALL XIFSET(IS)
C
C---- set leading edge pressure gradient parameter x/u du/dx
 IBL = 2
 XSI = XSSI(IBL,IS)
 UEI = UEDG(IBL,IS)
CCC BULE = LOG(UEDG(IBL+1,IS)/UEI) / LOG(XSSI(IBL+1,IS)/XSI)
CCC BULE = MAX(-.08 , BULE)
 BULE = 1.0
C
C---- old transition station
 ITROLD = ITRAN(IS)
C
 TRAN = .FALSE.
 TURB = .FALSE.
 ITRAN(IS) = IBLTE(IS)
C
C---- march downstream
 DO 1000 IBL=2, NBL(IS)
 IBM = IBL-1
C
 SIMI = IBL.EQ.2
 WAKE = IBL.GT.IBLTE(IS)
C
C------ initialize current station to existing variables
 XSI = XSSI(IBL,IS)
 UEI = UEDG(IBL,IS)
 THI = THET(IBL,IS)
 DSI = DSTR(IBL,IS)
CCC MDI = MASS(IBL,IS)
C
C------ fixed BUG MD 7 June 99
 IF(IBL.LT.ITROLD) THEN
 AMI = CTAU(IBL,IS)
 CTI = 0.03
 ELSE
 CTI = CTAU(IBL,IS)
 IF(CTI.LE.0.0) CTI = 0.03
 ENDIF
C
CCC DSI = MDI/UEI
C
 IF(WAKE) THEN
 IW = IBL - IBLTE(IS)
 DSWAKI = WGAP(IW)
 ELSE
 DSWAKI = 0.
 ENDIF
C
 IF(IBL.LE.IBLTE(IS)) DSI = MAX(DSI-DSWAKI,1.02000*THI) + DSWAKI
 IF(IBL.GT.IBLTE(IS)) DSI = MAX(DSI-DSWAKI,1.00005*THI) + DSWAKI
C
C------ Newton iteration loop for current station
 DO 100 ITBL=1, 25
C
C-------- assemble 10x3 linearized system for dCtau, dTh, dDs, dUe, dXi
C at the previous "1" station and the current "2" station
C (the "1" station coefficients will be ignored)
C
C
 CALL BLPRV(XSI,AMI,CTI,THI,DSI,DSWAKI,UEI)
 CALL BLKIN
C
C-------- check for transition and set appropriate flags and things
 IF((.NOT.SIMI) .AND. (.NOT.TURB)) THEN
 CALL TRCHEK
 AMI = AMPL2
 IF(TRAN) ITRAN(IS) = IBL
 IF(.NOT.TRAN) ITRAN(IS) = IBL+2
 ENDIF
C
 IF(IBL.EQ.IBLTE(IS)+1) THEN

 208

 TTE = THET(IBLTE(1),1) + THET(IBLTE(2),2)
 DTE = DSTR(IBLTE(1),1) + DSTR(IBLTE(2),2) + ANTE
 CTE = (CTAU(IBLTE(1),1)*THET(IBLTE(1),1)
 & + CTAU(IBLTE(2),2)*THET(IBLTE(2),2)) / TTE
 CALL TESYS(CTE,TTE,DTE)
 ELSE
 CALL BLSYS
 ENDIF
C
C-------- set stuff at first iteration...
 IF(ITBL.EQ.1) THEN
C
C--------- set "baseline" Ue and Hk for forming Ue(Hk) relation
 UEREF = U2
 HKREF = HK2
C
C--------- if current point IBL was turbulent and is now laminar, then...
 IF(IBL.LT.ITRAN(IS) .AND. IBL.GE.ITROLD) THEN
C---------- extrapolate baseline Hk
 UEM = UEDG(IBL-1,IS)
 DSM = DSTR(IBL-1,IS)
 THM = THET(IBL-1,IS)
 MSQ = UEM*UEM*HSTINV / (GM1BL*(1.0 - 0.5*UEM*UEM*HSTINV))
 CALL HKIN(DSM/THM, MSQ, HKREF, DUMMY, DUMMY)
 ENDIF
C
C--------- if current point IBL was laminar, then...
 IF(IBL.LT.ITROLD) THEN
C---------- reinitialize or extrapolate Ctau if it's now turbulent
 IF(TRAN) CTAU(IBL,IS) = 0.03
 IF(TURB) CTAU(IBL,IS) = CTAU(IBL-1,IS)
 IF(TRAN .OR. TURB) THEN
 CTI = CTAU(IBL,IS)
 S2 = CTI
 ENDIF
 ENDIF
C
 ENDIF
C
C
 IF(SIMI .OR. IBL.EQ.IBLTE(IS)+1) THEN
C
C--------- for similarity station or first wake point, prescribe Ue
 VS2(4,1) = 0.
 VS2(4,2) = 0.
 VS2(4,3) = 0.
 VS2(4,4) = U2_UEI
 VSREZ(4) = UEREF - U2
C
 ELSE
C
C********* calculate Ue-Hk characteristic slope
C
 DO 20 K=1, 4
 VZTMP(K) = VSREZ(K)
 DO 201 L=1, 5
 VTMP(K,L) = VS2(K,L)
 201 CONTINUE
 20 CONTINUE
C
C--------- set unit dHk
 VTMP(4,1) = 0.
 VTMP(4,2) = HK2_T2
 VTMP(4,3) = HK2_D2
 VTMP(4,4) = HK2_U2*U2_UEI
 VZTMP(4) = 1.0
C
C--------- calculate dUe response
 CALL GAUSS(4,4,VTMP,VZTMP,1)
C
C--------- set SENSWT * (normalized dUe/dHk)
 SENNEW = SENSWT * VZTMP(4) * HKREF/UEREF

 209

 IF(ITBL.LE.5) THEN
 SENS = SENNEW
 ELSE IF(ITBL.LE.15) THEN
 SENS = 0.5*(SENS + SENNEW)
 ENDIF
C
C--------- set prescribed Ue-Hk combination
 VS2(4,1) = 0.
 VS2(4,2) = HK2_T2 * HKREF
 VS2(4,3) = HK2_D2 * HKREF
 VS2(4,4) =(HK2_U2 * HKREF + SENS/UEREF)*U2_UEI
 VSREZ(4) = -(HKREF**2)*(HK2 / HKREF - 1.0)
 & - SENS*(U2 / UEREF - 1.0)
C
 ENDIF
C
C-------- solve Newton system for current "2" station
 CALL GAUSS(4,4,VS2,VSREZ,1)
C
C-------- determine max changes and underrelax if necessary
 DMAX = MAX(ABS(VSREZ(2)/THI),
 & ABS(VSREZ(3)/DSI))
 IF(IBL.GE.ITRAN(IS)) DMAX = MAX(DMAX,ABS(VSREZ(1)/(10.0*CTI)))
C
 RLX = 1.0
 IF(DMAX.GT.0.3) RLX = 0.3/DMAX
C
C-------- update as usual
 IF(IBL.LT.ITRAN(IS)) AMI = AMI + RLX*VSREZ(1)
 IF(IBL.GE.ITRAN(IS)) CTI = CTI + RLX*VSREZ(1)
 THI = THI + RLX*VSREZ(2)
 DSI = DSI + RLX*VSREZ(3)
 UEI = UEI + RLX*VSREZ(4)
C
C-------- eliminate absurd transients
 IF(IBL.GE.ITRAN(IS)) THEN
 CTI = MIN(CTI , 0.30)
 CTI = MAX(CTI , 0.0000001)
 ENDIF
C
 IF(IBL.LE.IBLTE(IS)) THEN
 HKLIM = 1.02
 ELSE
 HKLIM = 1.00005
 ENDIF
 MSQ = UEI*UEI*HSTINV / (GM1BL*(1.0 - 0.5*UEI*UEI*HSTINV))
 DSW = DSI - DSWAKI
 CALL DSLIM(DSW,THI,UEI,MSQ,HKLIM)
 DSI = DSW + DSWAKI
C
 IF(DMAX.LE.DEPS) GO TO 110
C
 100 CONTINUE
C
 WRITE(*,1350) IBL, IS, DMAX
 1350 FORMAT(' MRCHDU: Convergence failed at',I4,' side',I2,
 & ' Res =', E12.4)
C
C------ the current unconverged solution might still be reasonable...
CCC IF(DMAX .LE. 0.1) GO TO 110
 IF(DMAX .LE. 0.1) GO TO 109
C
C------- the current solution is garbage --> extrapolate values instead
 IF(IBL.GT.3) THEN
 IF(IBL.LE.IBLTE(IS)) THEN
 THI = THET(IBM,IS) * (XSSI(IBL,IS)/XSSI(IBM,IS))**0.5
 DSI = DSTR(IBM,IS) * (XSSI(IBL,IS)/XSSI(IBM,IS))**0.5
 UEI = UEDG(IBM,IS)
 ELSE IF(IBL.EQ.IBLTE(IS)+1) THEN
 CTI = CTE
 THI = TTE
 DSI = DTE

 210

 UEI = UEDG(IBM,IS)
 ELSE
 THI = THET(IBM,IS)
 RATLEN = (XSSI(IBL,IS)-XSSI(IBM,IS)) / (10.0*DSTR(IBM,IS))
 DSI = (DSTR(IBM,IS) + THI*RATLEN) / (1.0 + RATLEN)
 UEI = UEDG(IBM,IS)
 ENDIF
 IF(IBL.EQ.ITRAN(IS)) CTI = 0.05
 IF(IBL.GT.ITRAN(IS)) CTI = CTAU(IBM,IS)
 ENDIF
C
 109 CALL BLPRV(XSI,AMI,CTI,THI,DSI,DSWAKI,UEI)
 CALL BLKIN
C
C------- check for transition and set appropriate flags and things
 IF((.NOT.SIMI) .AND. (.NOT.TURB)) THEN
 CALL TRCHEK
 AMI = AMPL2
 IF(TRAN) ITRAN(IS) = IBL
 IF(.NOT.TRAN) ITRAN(IS) = IBL+2
 ENDIF
C
C------- set all other extrapolated values for current station
 IF(IBL.LT.ITRAN(IS)) CALL BLVAR(1)
 IF(IBL.GE.ITRAN(IS)) CALL BLVAR(2)
 IF(WAKE) CALL BLVAR(3)
C
 IF(IBL.LT.ITRAN(IS)) CALL BLMID(1)
 IF(IBL.GE.ITRAN(IS)) CALL BLMID(2)
 IF(WAKE) CALL BLMID(3)
C
C------ pick up here after the Newton iterations
 110 CONTINUE
C
 SENS = SENNEW
C
C------ store primary variables
 IF(IBL.LT.ITRAN(IS)) CTAU(IBL,IS) = AMI
 IF(IBL.GE.ITRAN(IS)) CTAU(IBL,IS) = CTI
 THET(IBL,IS) = THI
 DSTR(IBL,IS) = DSI
 UEDG(IBL,IS) = UEI
 MASS(IBL,IS) = DSI*UEI
 TAU(IBL,IS) = 0.5*R2*U2*U2*CF2
 DIS(IBL,IS) = R2*U2*U2*U2*DI2*HS2*0.5
 CTQ(IBL,IS) = CQ2
C
C------ set "1" variables to "2" variables for next streamwise station
 CALL BLPRV(XSI,AMI,CTI,THI,DSI,DSWAKI,UEI)
 CALL BLKIN
 DO 310 ICOM=1, NCOM
 COM1(ICOM) = COM2(ICOM)
 310 CONTINUE
C
C
C------ turbulent intervals will follow transition interval or TE
 IF(TRAN .OR. IBL.EQ.IBLTE(IS)) THEN
 TURB = .TRUE.
C
C------- save transition location
 TFORCE(IS) = TRFORC
 XSSITR(IS) = XT
 ENDIF
C
 TRAN = .FALSE.
C
 1000 CONTINUE
C
 2000 CONTINUE
C
 RETURN
 END

 211

 SUBROUTINE XIFSET(IS)
C---
C Sets forced-transition BL coordinate locations.
C---
 INCLUDE 'XFOIL.INC'
 INCLUDE 'XBL.INC'
C
 IF(XSTRIP(IS).GE.1.0) THEN
 XIFORC = XSSI(IBLTE(IS),IS)
 RETURN
 ENDIF
C
 CHX = XTE - XLE
 CHY = YTE - YLE
 CHSQ = CHX**2 + CHY**2
C
C---- calculate chord-based x/c, y/c
 DO 10 I=1, N
 W1(I) = ((X(I)-XLE)*CHX + (Y(I)-YLE)*CHY) / CHSQ
 W2(I) = ((Y(I)-YLE)*CHX - (X(I)-XLE)*CHY) / CHSQ
 10 CONTINUE
C
 CALL SPLIND(W1,W3,S,N,-999.0,-999.0)
 CALL SPLIND(W2,W4,S,N,-999.0,-999.0)
C
 IF(IS.EQ.1) THEN
C
C----- set approximate arc length of forced transition point for SINVRT
 STR = SLE + (S(1)-SLE)*XSTRIP(IS)
C
C----- calculate actual arc length
 CALL SINVRT(STR,XSTRIP(IS),W1,W3,S,N)
C
C----- set BL coordinate value
 XIFORC = MIN((SST - STR) , XSSI(IBLTE(IS),IS))
C
 ELSE
C----- same for bottom side
C
 STR = SLE + (S(N)-SLE)*XSTRIP(IS)
 CALL SINVRT(STR,XSTRIP(IS),W1,W3,S,N)
 XIFORC = MIN((STR - SST) , XSSI(IBLTE(IS),IS))
C
 ENDIF
C
 IF(XIFORC .LT. 0.0) THEN
 WRITE(*,1000) IS
 1000 FORMAT(/' *** Stagnation point is past trip on side',I2,' ***')
 XIFORC = XSSI(IBLTE(IS),IS)
 ENDIF
C
 RETURN
 END

 SUBROUTINE UPDATE(sec,pcor)
C--
C Adds on Newton deltas to boundary layer variables.
C Checks for excessive changes and underrelaxes if necessary.
C Calculates max and rms changes.
C Also calculates the change in the global variable "AC".
C If LALFA=.TRUE. , "AC" is CL
C If LALFA=.FALSE., "AC" is alpha
C--
 INCLUDE 'XFOIL.INC'
 include 'section.inc' !02/06/2005

 type(section):: sec

 212

 REAL UNEW(IVX,2), U_AC(IVX,2)
 real:: pcor(iqx,2) !mass defect correction (22/05/2005)
 REAL:: QNEW(IQX), Q_AC(IQX), Qcorr(IQX) !viscous correction
 EQUIVALENCE (VA(1,1,1), UNEW(1,1)) ,
 & (VB(1,1,1), QNEW(1))
 EQUIVALENCE (VA(1,1,IVX), U_AC(1,1)) ,
 & (VB(1,1,IVX), Q_AC(1))
 REAL MSQ
C
C---- max allowable alpha changes per iteration
 DALMAX = 0.5*DTOR
 DALMIN = -0.5*DTOR
C
C---- max allowable CL change per iteration
 DCLMAX = 0.5
 DCLMIN = -0.5
 IF(MATYP.NE.1) DCLMIN = MAX(-0.5 , -0.9*CL)
C
 HSTINV = GAMM1*(MINF/QINF)**2 / (1.0 + 0.5*GAMM1*MINF**2)
C
C---- calculate new Ue distribution assuming no under-relaxation
C- also set the sensitivity of Ue wrt to alpha or Re
 DO 1 IS=1, 2
 DO 10 IBL=2, NBL(IS)
 I = IPAN(IBL,IS)
C
 DUI = 0.
 DUI_AC = 0.
 DO 100 JS=1, 2
 DO 1000 JBL=2, NBL(JS)
 J = IPAN(JBL,JS)
 JV = ISYS(JBL,JS)
 UE_M = -VTI(IBL,IS)*VTI(JBL,JS)*DIJ(I,J)
 DUI = DUI + UE_M*(MASS(JBL,JS)+VDEL(3,1,JV))
 DUI_AC = DUI_AC + UE_M*(-VDEL(3,2,JV))
 1000 CONTINUE
 100 CONTINUE
C
C-------- UINV depends on "AC" only if "AC" is alpha
 IF(LALFA) THEN
 UINV_AC = 0.
 ELSE
 UINV_AC = UINV_A(IBL,IS)
 ENDIF
C
 pcor(ibl,is) = DUI !viscous correction vector (22/05/2005)
 UNEW(IBL,IS) = UINV(IBL,IS) + DUI
 U_AC(IBL,IS) = UINV_AC + DUI_AC
C
 10 CONTINUE
 1 CONTINUE
C
C---- set new Qtan from new Ue with appropriate sign change
 DO 2 IS=1, 2
 DO 20 IBL=2, IBLTE(IS)
 I = IPAN(IBL,IS)
 Qcorr(i) = VTI(IBL,IS)*pcor(IBL,IS) !added 02/06/2005
 QNEW(I) = VTI(IBL,IS)*UNEW(IBL,IS)
 Q_AC(I) = VTI(IBL,IS)*U_AC(IBL,IS)
 20 CONTINUE
 2 CONTINUE
 QNEW(IST) = 0. !correction on 30/03/2004
C
C---- calculate new CL from this new Qtan
 SA = SIN(ALFA)
 CA = COS(ALFA)
C
 BETA = SQRT(1.0 - MINF**2)
 BETA_MSQ = -0.5/BETA
C
 BFAC = 0.5*MINF**2 / (1.0 + BETA)
 BFAC_MSQ = 0.5 / (1.0 + BETA)

 213

 & - BFAC / (1.0 + BETA) * BETA_MSQ
C
 CLNEW = 0.
 CL_A = 0.
 CL_MS = 0.
 CL_AC = 0.
C
 I = 1
 !CGINC = 1.0 - (QNEW(I)/QINF)**2
 CGINC = sec.cp(i)+ Qcorr(i)**2
 CPG1 = CGINC / (BETA + BFAC*CGINC)
 CPG1_MS = -CPG1/(BETA + BFAC*CGINC)*(BETA_MSQ + BFAC_MSQ*CGINC)
C
 !CPI_Q = -2.0*QNEW(I)/QINF**2
 CPI_Q = -2.0*(1-sec.cp(i))
 CPC_CPI = (1.0 - BFAC*CPG1)/ (BETA + BFAC*CGINC)
 CPG1_AC = CPC_CPI*CPI_Q*Q_AC(I)
C
 DO 3 I=1, N
 IP = I+1
 IF(I.EQ.N) IP = 1
C
 !CGINC = 1.0 - (QNEW(IP)/QINF)**2
 CGINC = sec.cp(i)+ Qcorr(i)**2
 CPG2 = CGINC / (BETA + BFAC*CGINC)
 CPG2_MS = -CPG2/(BETA + BFAC*CGINC)*(BETA_MSQ + BFAC_MSQ*CGINC)
C
 CPI_Q = -2.0*(1-sec.cp(i))
 CPC_CPI = (1.0 - BFAC*CPG2)/ (BETA + BFAC*CGINC)
 CPG2_AC = CPC_CPI*CPI_Q*Q_AC(IP)
C
 DX = (X(IP) - X(I))*CA + (Y(IP) - Y(I))*SA
 DX_A = -(X(IP) - X(I))*SA + (Y(IP) - Y(I))*CA
C
 AG = 0.5*(CPG2 + CPG1)
 AG_MS = 0.5*(CPG2_MS + CPG1_MS)
 AG_AC = 0.5*(CPG2_AC + CPG1_AC)
C
 CLNEW = CLNEW + DX *AG
 CL_A = CL_A + DX_A*AG
 CL_MS = CL_MS + DX *AG_MS
 CL_AC = CL_AC + DX *AG_AC
C
 CPG1 = CPG2
 CPG1_MS = CPG2_MS
 CPG1_AC = CPG2_AC
 3 CONTINUE
C
C---- initialize under-relaxation factor
 RLX = 1.0
C
 IF(LALFA) THEN
C===== alpha is prescribed: AC is CL
C
C----- set change in Re to account for CL changing, since Re = Re(CL)
 DAC = (CLNEW - CL) / (1.0 - CL_AC - CL_MS*2.0*MINF*MINF_CL)
C
C----- set under-relaxation factor if Re change is too large
 IF(RLX*DAC .GT. DCLMAX) RLX = DCLMAX/DAC
 IF(RLX*DAC .LT. DCLMIN) RLX = DCLMIN/DAC
C
 ELSE
C===== CL is prescribed: AC is alpha
C
C----- set change in alpha to drive CL to prescribed value
 DAC = (CLNEW - CLSPEC) / (0.0 - CL_AC - CL_A)
C
C----- set under-relaxation factor if alpha change is too large
 IF(RLX*DAC .GT. DALMAX) RLX = DALMAX/DAC
 IF(RLX*DAC .LT. DALMIN) RLX = DALMIN/DAC
C
 ENDIF

 214

C
 RMSBL = 0.
 RMXBL = 0.
C
 DHI = 1.5
 DLO = -.5
C
C---- calculate changes in BL variables and under-relaxation if needed
 DO 4 IS=1, 2
 DO 40 IBL=2, NBL(IS)
 IV = ISYS(IBL,IS)
C
C-------- set changes without underrelaxation
 DCTAU = VDEL(1,1,IV) - DAC*VDEL(1,2,IV)
 DTHET = VDEL(2,1,IV) - DAC*VDEL(2,2,IV)
 DMASS = VDEL(3,1,IV) - DAC*VDEL(3,2,IV)
 DUEDG = UNEW(IBL,IS) + DAC*U_AC(IBL,IS) - UEDG(IBL,IS)
 DDSTR = (DMASS - DSTR(IBL,IS)*DUEDG)/UEDG(IBL,IS)
C
C-------- normalize changes !all corrected 27/06/2004
 IF(IBL.LT.ITRAN(IS)) DN1 = DCTAU / 10.0
 IF(IBL.GE.ITRAN(IS)) DN1 = DCTAU / CTAU(IBL,IS)
 DN2 = DTHET / THET(IBL,IS)
 DN3 = DDSTR / DSTR(IBL,IS)
 DN4 = ABS(DUEDG)/0.25

 if (iv<=iblte(is)) then !just for body 30/03/2004
C
C-------- accumulate for rms change
 RMSBL = RMSBL + DN1**2 + DN2**2 + DN3**2 + DN4**2
 endif
C
C-------- see if Ctau needs underrelaxation
 RDN1 = RLX*DN1
 IF(ABS(DN1) .GT. ABS(RMXBL)) THEN
 RMXBL = DN1
 IF(IBL.LT.ITRAN(IS)) VMXBL = 'n'
 IF(IBL.GE.ITRAN(IS)) VMXBL = 'C'
 IMXBL = IBL
 ISMXBL = IS
 ENDIF
 IF(RDN1 .GT. DHI) RLX = DHI/DN1
 IF(RDN1 .LT. DLO) RLX = DLO/DN1
C
C-------- see if Theta needs underrelaxation
 RDN2 = RLX*DN2
 IF(ABS(DN2) .GT. ABS(RMXBL)) THEN
 RMXBL = DN2
 VMXBL = 'T'
 IMXBL = IBL
 ISMXBL = IS
 ENDIF
 IF(RDN2 .GT. DHI) RLX = DHI/DN2
 IF(RDN2 .LT. DLO) RLX = DLO/DN2
C
C-------- see if Dstar needs underrelaxation
 RDN3 = RLX*DN3
 IF(ABS(DN3) .GT. ABS(RMXBL)) THEN
 RMXBL = DN3
 VMXBL = 'D'
 IMXBL = IBL
 ISMXBL = IS
 ENDIF
 IF(RDN3 .GT. DHI) RLX = DHI/DN3
 IF(RDN3 .LT. DLO) RLX = DLO/DN3
C
C-------- see if Ue needs underrelaxation
 RDN4 = RLX*DN4
 IF(ABS(DN4) .GT. ABS(RMXBL)) THEN
 RMXBL = DUEDG
 VMXBL = 'U'
 IMXBL = IBL

 215

 ISMXBL = IS
 ENDIF
 IF(RDN4 .GT. DHI) RLX = DHI/DN4
 IF(RDN4 .LT. DLO) RLX = DLO/DN4
C
 40 CONTINUE
 4 CONTINUE
C
C---- set true rms change
 RMSBL = SQRT(RMSBL / (4.0*FLOAT(NBL(1)+NBL(2)))) !/1000 !14/04/2004
C
C
 IF(LALFA) THEN
C----- set underrelaxed change in Reynolds number from change in lift
 CL = CL + RLX*DAC
 ELSE
C----- set underrelaxed change in alpha
 ALFA = ALFA + RLX*DAC
 ADEG = ALFA/DTOR
 ENDIF
C
C---- update BL variables with underrelaxed changes
 DO 5 IS=1, 2
 DO 50 IBL=2, NBL(IS)
 IV = ISYS(IBL,IS)
C
 DCTAU = VDEL(1,1,IV) - DAC*VDEL(1,2,IV)
 DTHET = VDEL(2,1,IV) - DAC*VDEL(2,2,IV)
 DMASS = VDEL(3,1,IV) - DAC*VDEL(3,2,IV)
 DUEDG = UNEW(IBL,IS) + DAC*U_AC(IBL,IS) - UEDG(IBL,IS)
 DDSTR = (DMASS - DSTR(IBL,IS)*DUEDG)/UEDG(IBL,IS)
C
 CTAU(IBL,IS) = CTAU(IBL,IS) + RLX*DCTAU
 THET(IBL,IS) = THET(IBL,IS) + RLX*DTHET
 DSTR(IBL,IS) = DSTR(IBL,IS) + RLX*DDSTR
 UEDG(IBL,IS) = UEDG(IBL,IS) + RLX*DUEDG
C
 IF(IBL.GT.IBLTE(IS)) THEN
 IW = IBL - IBLTE(IS)
 DSWAKI = WGAP(IW)
 ELSE
 DSWAKI = 0.
 ENDIF
C
C-------- eliminate absurd transients
 IF(IBL.GE.ITRAN(IS))
 & CTAU(IBL,IS) = MIN(CTAU(IBL,IS) , 0.25)
C
 IF(IBL.LE.IBLTE(IS)) THEN
 HKLIM = 1.02
 ELSE
 HKLIM = 1.00005
 ENDIF
 MSQ = UEDG(IBL,IS)**2*HSTINV
 & / (GAMM1*(1.0 - 0.5*UEDG(IBL,IS)**2*HSTINV))
 DSW = DSTR(IBL,IS) - DSWAKI
 CALL DSLIM(DSW,THET(IBL,IS),UEDG(IBL,IS),MSQ,HKLIM)
 DSTR(IBL,IS) = DSW + DSWAKI
C
C-------- set new mass defect (nonlinear update)
 MASS(IBL,IS) = DSTR(IBL,IS) * UEDG(IBL,IS)
C
 50 CONTINUE
 5 CONTINUE
C
C
C---- equate upper wake arrays to lower wake arrays
 DO 6 KBL=1, NBL(2)-IBLTE(2)
 CTAU(IBLTE(1)+KBL,1) = CTAU(IBLTE(2)+KBL,2)
 THET(IBLTE(1)+KBL,1) = THET(IBLTE(2)+KBL,2)
 DSTR(IBLTE(1)+KBL,1) = DSTR(IBLTE(2)+KBL,2)
 UEDG(IBLTE(1)+KBL,1) = UEDG(IBLTE(2)+KBL,2)

 216

 TAU(IBLTE(1)+KBL,1) = TAU(IBLTE(2)+KBL,2)
 DIS(IBLTE(1)+KBL,1) = DIS(IBLTE(2)+KBL,2)
 CTQ(IBLTE(1)+KBL,1) = CTQ(IBLTE(2)+KBL,2)
 6 CONTINUE
C
 RETURN
 END

 SUBROUTINE DSLIM(DSTR,THET,UEDG,MSQ,HKLIM)
 IMPLICIT REAL (A-H,M,O-Z)
C
 H = DSTR/THET
 CALL HKIN(H,MSQ,HK,HK_H,HK_M)
C
 DH = MAX(0.0 , HKLIM-HK) / HK_H
 DSTR = DSTR + DH*THET
C
 RETURN
 END

VIX Subroutine Stagpoint

 !This subroutine finds the stagnation point of
 ! a interpolated section. If it is a membrane,
 ! fsharp = true, program will set the stagnation
 ! point at the very leading edge
 !***
 ! Created by: Augusto Veiga,
 ! FSIG, University of Southampton 2003
 !***

 subroutine stagpoint(Up,s,gamma,x,N,Nw,Ist,SST,SSt_GO,SST_GP,
 & fsharp)
 integer:: N,Nw,IST,IS
 real:: cpmax,h
 real:: dcp1,dcp2
 real,dimension(N+Nw):: Up,s,x,gamma,cp
 logical:: fsharp

 !Calculating Cp over the wing
 do i = 1,N
 cp(i) = 1.-Up(i)**2
 enddo
 if (fsharp) then
 ist = int(N/2)+1
 sst = s(ist)
 is = ist
 else
 !Getting biggest Cp and position
 cpmax = 0
 is = int(N/2)+1
 k = is
 i = is
 lp1: do
 i = i+1
 if (cp(i)>cpmax) then
 cpmax = cp(i)
 is = i !finding a possible point
 h = s(i)-s(i-1)
 dcp1 = (cpmax-cp(i-1))/h
 dcp2 = (cp(i+1)-cpmax)/h
 if ((dcp1>0 .and. dcp2<0)) then
 ist = is !testing derivatives
 sst = s(is)
 exit lp1
 endif
 else if (i>(k+int(N/2))) then
 is = int(N/2)+1
 sst = s(is)
 exit lp1

 217

 endif
 enddo lp1
 endif
 !signal for gamma
 gamma(ist) = 0
 do i = 1,IST-1 !IST+1,N
 gamma(i) = Up(i)
 enddo
 !upper part
 do i = IST+1,N
 gamma(i) = -Up(i)
 enddo
 !wake
 do i = N+1,N+Nw
 gamma(i) = Up(i)
 enddo
 DGAM = GAMMA(IST+1) - GAMMA(IST)
 SST_GO = (SST - S(Ist+1))/DGAM
 SST_GP = (S(Ist+1) - SST)/DGAM
 return
 end subroutine

VIX Subroutine AIJCALC

!***
 SUBROUTINE AIJCALC
C--
C Calculates two surface vorticity (gamma) distributions
C for alpha = 0, 90 degrees. These are superimposed
C in SPECAL or SPECCL for specified alpha or CL.
C This subroutine was adapted from XFOIL by Augusto Veiga
C--
 INCLUDE 'XFOIL.INC'
C
C---- distance of internal control point ahead of sharp TE
C- (fraction of smaller panel length adjacent to TE)
 BWT = 0.1
C
 WRITE(*,*) 'Calculating unit vorticity distributions ...'
C
 DO 10 I=1, N
! GAM(I) = 0.
 GAMU(I,1) = 0.
 GAMU(I,2) = 0.
 10 CONTINUE
 PSIO = 0.
C
C---- Set up matrix system for Psi = Psio on airfoil surface.
C- The unknowns are (dGamma)i and dPsio.
 DO 20 I=1, N
C
C------ calculate Psi and dPsi/dGamma array for current node
 CALL PSILIN(I,X(I),Y(I),NX(I),NY(I),PSI,PSI_N,.FALSE.,.TRUE.)
C
 PSIINF = QINF*(COS(ALFA)*Y(I) - SIN(ALFA)*X(I))
C
C------ RES1 = PSI(0) - PSIO
C------ RES2 = PSI(90) - PSIO
 RES1 = QINF*Y(I)
 RES2 = -QINF*X(I)
C
C------ dRes/dGamma
 DO 201 J=1, N
 AIJ(I,J) = DZDG(J)
 201 CONTINUE
C
 DO 202 J=1, N
 BIJ(I,J) = -DZDM(J)
 202 CONTINUE
C
C------ dRes/dPsio

 218

 AIJ(I,N+1) = -1.0
C
 GAMU(I,1) = -RES1
 GAMU(I,2) = -RES2
C
 20 CONTINUE
C
C---- set Kutta condition
C- RES = GAM(1) + GAM(N)
 RES = 0.
C
 DO 30 J=1, N+1
 AIJ(N+1,J) = 0.0
 30 CONTINUE
C
 AIJ(N+1,1) = 1.0
 AIJ(N+1,N) = 1.0
C
 GAMU(N+1,1) = -RES
 GAMU(N+1,2) = -RES
C
C---- set up Kutta condition (no direct source influence)
 DO 32 J=1, N
 BIJ(N+1,J) = 0.
 32 CONTINUE
C
 IF(SHARP) THEN
C----- set zero internal velocity in TE corner
C
C----- set TE bisector angle
 AG1 = ATAN2(-YP(1),-XP(1))
 AG2 = ATANC(YP(N), XP(N),AG1)
 ABIS = 0.5*(AG1+AG2)
 CBIS = COS(ABIS)
 SBIS = SIN(ABIS)
C
C----- minimum panel length adjacent to TE
 DS1 = SQRT((X(1)-X(2))**2 + (Y(1)-Y(2))**2)
 DS2 = SQRT((X(N)-X(N-1))**2 + (Y(N)-Y(N-1))**2)
 DSMIN = MIN(DS1 , DS2)
C
C----- control point on bisector just ahead of TE point
 XBIS = XTE - BWT*DSMIN*CBIS
 YBIS = YTE - BWT*DSMIN*SBIS
ccc write(*,*) xbis, ybis
C
C----- set velocity component along bisector line
 CALL PSILIN(0,XBIS,YBIS,-SBIS,CBIS,PSI,QBIS,.FALSE.,.TRUE.)
C
CCC--- RES = DQDGj*Gammaj + DQDMj*Massj + QINF*(COSA*CBIS + SINA*SBIS)
 RES = QBIS
C
C----- dRes/dGamma
 DO J=1, N
 AIJ(N,J) = DQDG(J)
 ENDDO
C
C----- -dRes/dMass
 DO J=1, N
 BIJ(N,J) = -DQDM(J)
 ENDDO
C
C----- dRes/dPsio
 AIJ(N,N+1) = 0.
C
C----- -dRes/dUinf
 GAMU(N,1) = -CBIS
C
C----- -dRes/dVinf
 GAMU(N,2) = -SBIS
C
 ENDIF

 219

C
C---- LU-factor coefficient matrix AIJ
 CALL LUDCMP(IQX,N+1,AIJ,AIJPIV)
 LQAIJ = .TRUE.
C
C---- solve system for the two vorticity distributions
 CALL BAKSUB(IQX,N+1,AIJ,AIJPIV,GAMU(1,1))
 CALL BAKSUB(IQX,N+1,AIJ,AIJPIV,GAMU(1,2))
C
C---- set inviscid alpha=0,90 surface speeds for this geometry
 DO 50 I=1, N
 QINVU(I,1) = GAMU(I,1)
 QINVU(I,2) = GAMU(I,2)
 50 CONTINUE
C
 LGAMU = .TRUE.
C
 RETURN
 END

Mesh_Sail: Program for Creating Sail Mesh

 Program Mesh_sail
 include 'section.inc'

 real:: length, height, aflow, p(3),dt
 real:: org(3),x(3),y(3) !origin
 real,dimension(3,3):: vr
 type(section):: csec(7),tesec
 real:: intquad

 pi = 3.1415
 open(1,file = 'dados.txt')

 !reading height,footleng and flow incidence
 read(1,*) height,length,aflow
 !reading sections
 ! length, entry angle, te angle
 j = 1
 do i = 1,4
 read(1,*) csec(j).leng,csec(j).th1,csec(j).th2
 j = j+2
 enddo
 !reading trailing edge (te) section
 read(1,*) trv,abat,tesec.cpos,tesec.camber
 !reading foot and top section angles
 read(1,*) alfa1,beta1,alfa2,beta2
 close(1)
 dt = 1./3
 t = 0
 do i=1,7,2
 csec(i).t = t
 t=t+dt
 enddo
 aflow = aflow*pi/180
 abat = abat*pi/180
 alfa1 = alfa1*pi/180
 alfa2 = alfa2*pi/180
 beta1 = beta1*pi/180
 beta2 = beta2*pi/180

 !calculation of intermediary section angles

 do i = 2,6,2
 csec(i).th1 =(csec(i+1).th1+csec(i-1).th1)/2
 csec(i).th2 =(csec(i+1).th2+csec(i-1).th2)/2
 csec(i).t = (csec(i+1).t+csec(i-1).t)/2
 if (i==2) then
 k = 1
 do j=1,3
 x(j) = csec(k).t
 y(j) = csec(k).leng

 220

 k = k+2
 enddo
 else
 k=i-3
 do j=1,3
 x(j) = csec(k).t
 !t = t+tr
 y(j) = csec(k).leng
 k = k+2
 enddo
 endif
 csec(i).leng = intquad(x,y,csec(i).t) !quadratic interpolation
 enddo

 !generation of transversal sections
 do k =1,7
 !xm = csec(k).cpos
 !ym = csec(k).camber
 !call solve_foil(xm,ym,a,b,c)
 ds = 1.0/10
 s = 0
 csec(k).p1 = 0
 call set_sec(csec(k))
 do i = 2,11
 s=s+ds
 csec(k).p1(2,i)= csec(k).p1(2,i)*csec(k).leng
 !(a*s**3+b*s**2+c*s)*csec(k).leng
 csec(k).p1(1,i)= csec(k).p1(1,i)*csec(k).leng
 !s*csec(k).leng
 enddo
 enddo
 !foot section height
 zf = tan(beta1)
 b = tan(alfa1)
 a = zf-b
 s = 0
 csec(1).p1(3,1) = 0
 do i = 2,11
 s = s+ds
 csec(1).p1(3,i) = (a*s**2+b*s)*csec(1).leng
 enddo

 !top section height
 zf = tan(beta2)
 b = tan(alfa2)
 a = zf-b
 s = 0
 csec(7).p1(3,1) = height
 do i = 2,11
 s = s+ds
 csec(7).p1(3,i) = height+(a*s**2+b*s)*csec(1).leng
 enddo

 !intermediate sections height
 dt = 1.0/6
 t=0
 do i = 2,6
 t = t+dt
 do j = 1,11
 !df = csec(4).p1(3,j)+csec(1).p1(3,j)
 csec(i).p1(3,j) = t*height !df
 enddo
 enddo

 !Generation of te section
 xm = tesec.cpos
 ym = tesec.camber
 call solve_foil(xm,ym,a,b,c)
 t = 0
 !tesec.p1 = 0
 do i = 1,7

 221

 tesec.p1(2,i)= (a*t**3+b*t**2+c*t)*height
 tesec.p1(3,i)= csec(i).p1(3,10)
 tesec.p1(1,i)= csec(i).p1(1,10)
 t=t+dt
 enddo

 !rotation of te section (just y coordinate)
 a1 = aflow-abat
 xp = csec(4).p1(1,10)
 yp = csec(4).p1(2,10)
 p(1) = xp*cos(a1)-yp*sin(a1)
 p(2) = xp*sin(a1)+Yp*cos(a1)
 p(3) = csec(4).p1(3,10)
 a2 = atan(p(2)/p(3))
 do i = 1,7
 zp = tesec.p1(3,i)
 yp = tesec.p1(2,i)
 !tesec.p1(3,i) = zp*cos(a1)-yp*sin(a1)
 tesec.p1(2,i) = zp*sin(a2)+Yp*cos(a2)
 enddo

 !translating te section
 yt = trv*length
 do i = 1,7
 tesec.p1(2,i) = tesec.p1(2,i) +yt
 enddo

 !Calculating central and top sections twist angles
 do k = 1,7
 csec(k).asec = atan(tesec.p1(2,k)/
 & (tesec.p1(1,k)-csec(k).p1(1,1)))
 enddo

 ! rotating sections
 do k = 1,7
 a1 = csec(k).asec
 xo = csec(k).p1(1,1)
 yo = 0
 do i = 2,11
 xp = csec(k).p1(1,i)
 yp = csec(k).p1(2,i)
 csec(k).p1(1,i) =xo+ xp*cos(a1)-yp*sin(a1)
 csec(k).p1(2,i) =yo+ xp*sin(a1)+Yp*cos(a1)
 enddo
 enddo
 !writting msh file
 M = 11 !chordwise
 N = 7 !spanwise
 open(2,file = 'c:\codigos\mshuns\sail.msh')
 do i = 1,12
 write(2,10)
 enddo
 write(2,20) M,N
 t = 0
 do i = 1,N
 s = 0
 do j = 1,M
 write(2,30) csec(i).p1(1,j),csec(i).p1(2,j),csec(i).p1(3,j),
 & s,t
 s = s+ds
 enddo
 t = t+dt
 enddo
 close(2)

10 format('%',1x)
20 format(1x,i4,1x,i4)
30 format(1x,f8.5,1x,f8.5,1x,f8.5,1x,f8.5,1x,f8.5)
 end program

!**

 222

 subroutine set_sec(sec)
 include 'section.inc'
 !This program generates the section using the Jackson Polynomial
 !Ref: P.S. Jackson, "A Simple Model for 2D Sails
 ! AIAA Technical notes 1983
 ! Author: Augusto Veiga

 type(section):: sec
 real:: A,B, pi
 real:: delta, a1,b1,c1

 pi = 4. * atan(1.)
 sec.th1 = sec.th1*pi/180
 sec.th2 = sec.th2*pi/180
 A = sec.th1+sec.th2
 B = sec.th1-sec.th2

 !seeking maximum camber position
 a1 = -0.75*B*2
 b1 = -0.5*A
 c1 = 0.25*B

 delta = b1**2-4*a1*c1
 if (delta>=0) then
 r = (b1-sqrt(delta))/(2*a1)
 sec.cpos = (1+r)/2.
 tm = 0.25*(1-r**2)*(A+B*r)
 sec.camber = tm/2.
 endif

 !Generating sections
 ds = 2.0/10
 dx = 1.0/10
 s = -1
 x = 0
 do i=1,11
 t = 0.25*(1-s**2)*(A+B*s)
 sec.p1(2,i) = t/2
 sec.p1(1,i) = x
 s = s+ds
 x = x+dx
 enddo
 return
 end subroutine

!***
 real function intquad(x,y,x1)
 real,dimension(3):: x,y
 real:: x1,sum

 sum = 0
 sum = sum+((x1-x(2))*(x1-x(3)))/((x(1)-x(2))*(x(1)-x(3)))*y(1)
 sum = sum+((x1-x(1))*(x1-x(3)))/((x(2)-x(1))*(x(2)-x(3)))*y(2)
 sum = sum+((x1-x(1))*(x1-x(2)))/((x(3)-x(1))*(x(3)-x(2)))*y(3)

 intquad = sum
 end function
 subroutine solve_foil(xm,ym,a,b,c)
 !makes the foil using a 3rd order polynomial
 real:: xm,ym,a,b,c
 real:: vr(3,3), v(3)

 do i=1,3
 k = 4
 if (i==2) then
 v(i) = ym/xm
 else
 v(i) = 0
 endif
 do j=1,3
 k = k-j
 if (i==1) then

 223

 vr(i,j) = k*xm**(k-1)
 else if (i==2) then
 vr(i,j) = xm**(k-1)
 else
 vr(i,j) = 1.0
 endif
 enddo
 enddo
 !solve system using Gauss elimination
 call gauss(3,3,Vr,v,1)
 a = v(1)
 b = v(2)
 c = v(3)

 return
 end subroutine

 SUBROUTINE GAUSS(NSIZ,NN,Z,R,NRHS)
C ***
C * *
C * Solves general NxN system in NN unknowns *
C * with arbitrary number (NRHS) of righthand sides. *
C * Assumes system is invertible... *
C * ...if it isn't, a divide by zero will result. *
C * *
C * Z is the coefficient matrix... *
C * ...destroyed during solution process. *
C * R is the righthand side(s)... *
C * ...replaced by the solution vector(s). *
C * *
C * *
C ***
C
 DIMENSION Z(NSIZ,NSIZ), R(NSIZ,NRHS)
C
 DO 1 NP=1, NN-1
 NP1 = NP+1
C
C------ find max pivot index NX
 NX = NP
 DO 11 N=NP1, NN
 IF(ABS(Z(N,NP))-ABS(Z(NX,NP))) 11,11,111
 111 NX = N
 11 CONTINUE
C
 PIVOT = 1.0/Z(NX,NP)
C
C------ switch pivots
 Z(NX,NP) = Z(NP,NP)
C
C------ switch rows & normalize pivot row
 DO 12 L=NP1, NN
 TEMP = Z(NX,L)*PIVOT
 Z(NX,L) = Z(NP,L)
 Z(NP,L) = TEMP
 12 CONTINUE
C
 DO 13 L=1, NRHS
 TEMP = R(NX,L)*PIVOT
 R(NX,L) = R(NP,L)
 R(NP,L) = TEMP
 13 CONTINUE
C
C------ forward eliminate everything
 DO 15 K=NP1, NN
 ZTMP = Z(K,NP)
C
C IF(ZTMP.EQ.0.0) GO TO 15
C
 DO 151 L=NP1, NN
 Z(K,L) = Z(K,L) - ZTMP*Z(NP,L)

 224

 151 CONTINUE
 DO 152 L=1, NRHS
 R(K,L) = R(K,L) - ZTMP*R(NP,L)
 152 CONTINUE
 15 CONTINUE
C
 1 CONTINUE
C
C---- solve for last row
 DO 2 L=1, NRHS
 R(NN,L) = R(NN,L)/Z(NN,NN)
 2 CONTINUE
C
C---- back substitute everything
 DO 3 NP=NN-1, 1, -1
 NP1 = NP+1
 DO 31 L=1, NRHS
 DO 310 K=NP1, NN
 R(NP,L) = R(NP,L) - Z(NP,K)*R(K,L)
 310 CONTINUE
 31 CONTINUE
 3 CONTINUE
C
 RETURN
 END ! GAUSS

