FORECASTING THE TIME-VARYING BETA OF UK COMPANIES
GARCH MODELS VS KALMAN FILTER METHOD

Abstract

This paper forecast the weekly time-varying beta of 20 UK firms by means of four
different GARCH models and the Kalman filter method. The four GARCH models
applied are the bivariate GARCH, BEKK GARCH, GARCH-GIJR and the GARCH-X
model. The paper also compares the forecasting ability of the GARCH models and the
Kalman method. Forecast errors based on return forecasts are employed to evaluate
out-of-sample forecasting ability of both GARCH models and Kalman method.
Measures of forecast errors overwhelmingly support the Kalman filter approach.
Among the GARCH models both GJR and GARCH-X models appear to provide a bit
more accurate forecasts than the bivariate GARCH model.
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1. Introduction

The standard empirical testing of the Capital Asset Pricing Model (CAPM)
assumes that the beta of a risky asset or portfolio is constant (Bos and Newbold,
1984). Fabozzi and Francis (1978) suggest that stock’s beta coefficient may move
randomly through time rather than remain constant.! Fabozzi and Francis (1978) and
Bollerslev et al. (1988) provide tests of the CAPM that imply time-varying betas.

As indicated by Brooks et al. (1998) several different econometrical methods have
been applied to estimate time-varying betas of different countries and firms. Two of
the well methods are the different versions of the GARCH models and the Kalman
filter approach. The GARCH models apply the conditional variance information to
construct the conditional beta series. The Kalman approach recursively estimates the
beta series from an initial set of priors, generating a series of conditional alphas and
betas in the market model. Brooks et al. (1998) provide several citations of papers
that apply these different methods to estimate the time-varying beta.

Given that the beta is time-varying, empirical forecasting of the beta has become
important. Forecasting time-varying beta is important for few reasons. Since the beta
(systematic risk) is the only risk that investors should be concern about, prediction of
the beta value helps investors to make their investment decisions easier. The value of
beta can also be used by market participants to measure the performance of fund
managers through Treynor ratio. For corporate financial managers, forecasts of the
conditional beta not only benefit them in the capital structure decision but also in
investment appraisal.

This paper empirically estimates and attempts to forecast the weekly time-varying

beta of twenty UK firms. This paper also empirically investigates the forecasting

! According to Bos and Newbold (1984) the variation in the stock’s beta may be due to the influence of
either microeconomics factors, and/or macroeconomics factors. A detailed discussion of these factors is
provided by Rosenberg and Guy (1976a, 1976b).



ability of four different GARCH model; standard bivariate GARCH, bivariate BEKK,
bivariate GARCH-GJR and the bivariate GARCH-X. The paper also studies the non-
GARCH Kalman filter approach’s forecasting ability. A variety of GARCH models
have been employed to forecast time-varying betas for different stock markets, (see
Bollerslev et al. (1988), Engle and Rodrigues (1989), Ng (1991), Bodurtha and Mark
(1991), Koutmos et al. (1994), Giannopoulos (1995), Braun et al. (1995), Gonzalez-
Rivera (1996), Brooks et al. (1998) and Yun (2002). Similarly the Kalman filter
technique has also been used by some studies to forecast the time-varying beta (see
Black, et al., 1992 and Well, 1994).

Given the different methods available the empirical question to answer is which
econometrical method best forecast the time-varying beta. Although a large literature
exists on time-varying beta forecasting models; however no single model is superior.
Akgiray (1989) finds the GARCH(1,1) model specification exhibits superior
forecasting ability to traditional ARCH, exponentially weighted moving average and
historical mean models, using monthly US stock index returns. The apparent
superiority of GARCH is also observed in forecasting exchange rate volatility by
West and Cho (1995) for one week horizon, although for a longer horizon none of the
models exhibits forecast efficiency. On the contrary, Dimson and Marsh (1990) in an
examination of the UK equity market conclude that the simple models provide more
accurate forecasts than GARCH models.

More recently, empirical studies have been more emphasised on comparison
between GARCH models with relatively sophisticated non-linear and non-parametric
models. Pagan and Schwert (1990) compare GARCH, EGARCH, Markov switching
regime and three non-parametric models for forecasting US stock return volatility.

While all non-GARCH models produce very poor predictions; the EGARCH followed



by the GARCH models perform moderately. As a representative applied to exchange
rate data, Meade (2002) examines forecasting accuracy of linear AR-GARCH model
versus four non-linear methods using five data frequencies and finds that the linear
model is not outperformed by the non-linear models. Despite the debate and
inconsistence evidence, as Brooks (2002, p. 493) says, it appears that conditional
heteroscedasticity models are among the best that are currently available.

Franses and Van Dijk (1996) investigate the performance of the standard GARCH
model and non-linear Quadratic GARCH and GARCH-GJR models for forecasting
the weekly volatility of various European stock market indices. Their results indicate
that non-linear GARCH models can not beat the original model. In particular, the GJIR
model is not recommended for forecasting. In contrast to their result, Brailsford and
Faff (1996) find the evidence favours the GARCH-GJR model for predicting monthly
Australian stock volatility, compared with the standard GARCH model. However,
Day and Lewis (1992) find limited evidence that, in certain instances, GARCH
models provide better forecasts than EGARCH models by out of sample forecast
comparison.

Few papers have compared the forecasting ability Kalman filter method with the
GARCH models. Brooks et al. (1998) paper investigates three techniques for the
estimation of time-varying betas: GARCH; a time-varying beta market model
approach suggested by Schwert and Seguin (1990); and Kalman filter. According in-
sample and out-of-sample return forecasts based on beta estimates, Kalman filter is
superior to others. Faff et al. (2000) finds all three techniques are successful in
characterising time-varying beta. Comparison based on forecast errors support that

time-varying betas estimated by Kalman filter are more efficient than other models.



2. The (conditional) CAPM and the Time-Varying Beta
One of the assumptions of the capital asset pricing model (CAPM) is that all
investors have the same subjective expectations on the means, variances and

covariances of returns.’

According to Bollerslev et al. (1988) economic agents may
have common expectations on the moments of future returns but these are conditional
expectations and therefore random variables rather than constant.” The CAPM that
takes conditional expectations into consideration is sometimes known as conditional
CAPM. The conditional CAPM provides a convenient way to incorporate the time-
varying conditional variances and covariances (Bodurtha and Mark, 1991).* An
asset’s beta in the conditional CAPM can be expressed as the ratio of the conditional
covariance between the forecast error in the asset’s return, and the forecast’s error of
the market return and the conditional variance of the forecast error of the market
return.

The following analysis relies heavily on Bodurtha and Mark (1991). Let R;, be the
nominal return on asset i (i= 1, 2, ..., n) and R,,; the nominal return on the market
portfolio m. The excess (real) return of asset i and market portfolio over the risk-free

asset return is presented by r;, and r,,,, respectively. The conditional CAPM in excess

returns may be given as

E(r 1) = Bilt-l E(t,Ali-1) (D

where,

% See Markowitz (1952), Sharpe (1964) and Lintner (1965) for details of the CAPM.

3 According to Klemkosky and Martin (1975) betas will be time-varying if excess returns are
characterized by conditional heteroscedasticity.

* Hansen and Richard (1987) have shown that omission of conditioning information, as is done in tests
of constant beta versions of the CAPM, can lead to erroneous conclusions regarding the conditional
mean variance efficiency of a portfolio.



Bilt-l = cov(R;;, Ry L)/ var(Ry, ML) = cov(riy, T dli1)/var(t, Li.1) ()

and E(ll.;) is the mathematical expectation conditional on the information set
available to the economic agents last period (t-1), I;.;. Expectations are rational based
on Muth (1961)’s definition of rational expectation where the mathematical expected
values are interpreted as the agent’s subjective expectations. According to Bodurtha
and Mark (1991) asset I’s risk premium varies over time due to three time-varying
factors: the market’s conditional variance, the conditional covariance between asset’s
return, and the market’s return and/or the market’s risk premium. If the covariance
between asset i and the market portfolio m is not constant then the equilibrium returns
R;; will not be constant. If the variance and the covariance are stationary and
predictable then the equilibrium returns will be predictable.
3. Bivariate GARCH, BEKK GARCH, GARCH-X and BEKK GARCH-X
Models
3.1 Bivariate GARCH

As shown by Baillie and Myers (1991) and Bollerslev et al. (1992), weak
dependence of successive asset price changes may be modelled by means of the
GARCH model. The multivariate GARCH model uses information from more than
one market’s history. According to Engle and Kroner (1995), multivariate GARCH
models are useful in multivariate finance and economic models, which require the
modelling of both variance and covariance. Multivariate GARCH models allow the
variance and covariance to depend on the information set in a vector ARMA manner
(Engle and Kroner, 1995). This, in turn, leads to the unbiased and more precise

estimate of the parameters (Wahab, 1995).



The following bivariate GARCH(p,q) model may be used to represent the log

difference of the company stock index and the market stock index:
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where y, =(r; ¢, 1, f) is a (2x1) vector containing the log difference of the firm (r°) stock
index and market (rtf) index; H; is a (2x2) conditional covariance matrix; C is a (3x1)
parameter vector (constant); A; and B; are (3x3) parameter matrices; and vech is the
column stacking operator that stacks the lower triangular portion of a symmetric
matrix. We apply the GARCH model with diagonal restriction.

Given the bivariate GARCH model of the log difference of the firm and the

market indices presented above, the time-varying beta can be expressed as:

B. = Hio/ Hay (6)

Where IA{m is the estimated conditional variance between the log difference of the
firm index and market index, and H 2. 1s the estimated conditional variance of the log
difference of the market index from the bivariate GARCH model. Given that

conditional covariance is time-dependent, the beta will be time-dependent.



3.2 Bivariate BEKK GARCH
Lately, a more stable GARCH presentation has been put forward. This
presentation is termed by Engle and Kroner (1995) the BEKK model; the conditional

covariance matrix is parameterized as

K K
vech(Hy) = C'C + 2 i A’ki€i €' A + Z i B’kj H By (7

K=1 i=1 K=1 i=1

Equations 3 and 4 also apply to the BEKK model and are defined as before. In
equation 7 Ay, i =1,..., ¢, k =1,... K, and Byjj =1, ... p, k=1,..., Kareal Nx N
matrices. This formulation has the advantage over the general specification of the
multivariate GARCH that conditional variance (H;) is guaranteed to be positive for all
t (Bollerslev et al., 1994). The BEKK GARCH model is sufficiently general that it
includes all positive definite diagonal representation, and nearly all positive definite
vector representation. The following presents the BEKK bivariate GARCH(1,1), with

K=1.
H =CC + Ag, € 1A + BH. B (72)

where C is a 2x2 lower triangular matrix with intercept parameters, and A and B are
2x2 square matrices of parameters. The bivariate BEKK GARCH(1,1)
parameterization requires estimation of only 11 parameters in the conditional
variance-covariance structure, and guarantees H; positive definite. Importantly, the
BEKK model implies that only the magnitude of past returns innovations is important

in determining current conditional variances and co-variances. The time-varying beta



is based on the BEKK GARCH model is also expressed as equation 6. Once again we
apply the BEKK GARCH model with diagonal restriction.
3.3 GARCH-GJR

Along with the leptokurtic distribution of stock returns data, negative correlation
between current returns and future volatility have been shown by empirical research
(Black, 1976 and Christie, 1982). This negative effect of current returns on future
variance is sometimes called the leverage effect (Bollerslev et al. 1992). The leverage
effect is due to the reduction in the equity value which would raise the debt-to-equity
ratio, hence raising the riskiness of the firm as a result of an increase in future
volatility. Thus, according to the leverage effect stock returns, volatility tends to be
higher after negative shocks than after positive shocks of a similar size. Glosten et al.
(1993) provide an alternative explanation for the negative effect; if most of the
fluctuations in stock prices are caused by fluctuations in expected future cash flows,
and the riskiness of future cash flows does not change proportionally when investors
revise their expectations, the unanticipated changes in stock prices and returns will be
negatively related to unanticipated changes in future volatility.

In the linear (symmetric) GARCH model the conditional variance is only linked to
past conditional variances and squared innovations (&), and hence the sign of return
plays no role in affecting volatilities (Bollerslev et al. 1992). Glosten et al. (1993)
provide a modification to the GARCH model that allows positive and negative
innovations to returns to have different impact on conditional variance.”  This

modification involves adding a dummy variable (I.;) on the innovations in the

> There is more than one GARCH model available that is able to capture the asymmetric effect in
volatility. Pagan and Schwert (1990), Engle and Ng (1993), Hentschel (1995) and Fornari and Mele
(1996) provide excellent analyses and comparisons of symmetric and asymmetric GARCH models.
According to Engle and Ng (1993) the Glosten et al. (1993) model is the best at parsimoniously
capturing this asymmetric effect.



conditional variance equation. The dummy (I.;) takes the value one when
innovations (&) to returns are negative, and zero otherwise. If the coefficient of the
dummy is positive and significant, this indicates that negative innovations have a
larger effect on returns than positive innovations. A significant effect of the dummy
implies nonlinear dependencies in the returns volatility.

Glostern et al. (1993) suggest that the asymmetry effect can also be captured

simply by incorporating a dummy variable in the original GARCH.

2 2 2 2
O-t - aO + aut—l + Wr—llr—l +180-t—1 (8)

Where [, =1 if u,_, >0; otherwise I,_, =0. Thus, the ARCH coefficient in a
GARCH-GJR model switches between o+ and ¢, depending on whether the

lagged error term is positive or negative. Similarly, this version of GARCH model can
be applied to two variables to capture the conditional variance and covariance. The
time-varying beta is based on the GARCH-GJR model is also expressed as equation 6.
3.3 Bivariate GARCH-X

Lee (1994) provides an extension of the standard GARCH model linked to an
error-correction model of cointegrated series on the second moment of the bivariate
distributions of the variables. This model is known as the GARCH-X model.
According to Lee (1994), if short-run deviations affect the conditional mean, they
may also affect conditional variance, and a significant positive effect may imply that
the further the series deviate from each other in the short run, the harder they are to
predict. If the error correction term (short-run deviations) from the cointegrated
relationship between company index and market index affects the conditional

variance (and conditional covariance), then conditional heteroscedasticity may be
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modelled with a function of the lagged error correction term. If shocks to the system
that propagate on the first and the second moments change the volatility, then it is
reasonable to study the behaviour of conditional variance as a function of short-run
deviations (Lee, 1994). Given that short-run deviations from the long-run relationship
between the company and market stock indices may affect the conditional variance
and conditional covariance, then they will also influence the time-varying beta, as
defined in equation 6.

The following bivariate GARCH(p,q)-X model may be used to represent the log

difference of the company and the market indices:

)4 q k
vech(H) = C + Y Ajvech(e)* + D Bjvech(Hy) + . Djvech(zu)® (9)
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Once again, equations 3 and 4(defined as before) also apply to the GARCH-X model.
The squared error term (z.;) in the conditional variance and covariance equation
(equation 9) measures the influences of the short-run deviations on conditional
variance and covariance. The cointegration test between the log of the company stock
index and the market index is conducted by means of the Engle-Granger (1987) test. ®

As advocated by Lee (1994, p. 337), the square of the error-correction term (z)

lagged once should be applied in the GARCH(1,1)-X model. The parameters D;; and

® The following cointegration relationship is investigated by means of the Engle and Granger (1987)
method:

S = n +vF+z

Where S, and F, are log of firm stock index and market price index, respectively. The residuals z, are
tested for unit root(s) to check for cointegration between S, and F,. The error correction term, which
represents the short-run deviations from the long-run cointegrated relationship, has important
predictive powers for the conditional mean of the cointegrated series (Engle and Yoo, 1987).
Cointegration is found between the log of company index and market index for five firms. These
results are available on request.

11



D33 indicate the effects of the short-run deviations between the company stock index
and the market stock index from a long-run cointegrated relationship on the
conditional variance of the residuals of the log difference of the company and market
indices, respectively. The parameter D,, shows the effect of the short-run deviations
on the conditional covariance between the two variables. Significant parameters
indicate that these terms have potential predictive power in modelling the conditional
variance-covariance matrix of the returns. Therefore, last period’s equilibrium error
has significant impact on the adjustment process of the subsequent returns. If D33 and
Dy, are significant, then H;, (conditional covariance) and H,; (conditional variance of
futures returns) are going to differ from the standard GARCH model H;, and H,,. For
example, if D2, and D33 are positive, an increase in short-run deviations will increase
Hj; and Hy;. In such a case, the GARCH-X time-varying beta will be different from
the standard GARCH time-varying beta.

The methodology used to obtain the optimal forecast of the conditional variance
of a time series from a GARCH model is the same as that used to obtain the optimal
forecast of the conditional mean (Harris and Sollis 2003, p. 246)’. The basic
univariate GARCH(p, ¢) is utilised to illustrate the forecast function for the

conditional variance of the GARCH process due to its simplicity.
2 L 2 C 2
ol =ay+ Yy aul,+Y B0, (10)
i=1 j=1

Providing that all parameters are known and the sample size is 7, taking conditional
expectation the forecast function for the optimal h-step-ahead forecast of the

conditional variance can be written:

7 Harris and Sollis (2003, p. 247) discuss the methodology in details.
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Where Q, is the relevant information set. For i<0, E(u;,|Q,)=u;, and

E(0;,]Q,) =0}, for i >0, E(u;,,|Q;)=E(07,|Q;); and for i >1, E(0;,,[Q,) is

+i
obtained recursively. Consequently, the one-step-ahead forecast of the conditional
variance is given by:

E(02,|Q,)=a, +au’ + p,0? (12)

Although many GARCH specifications forecast the conditional variance in a similar
way, the forecast function for some extensions of GARCH will be more difficult to
derive. For instance, extra forecasts of the dummy variable / are necessary in the
GARCH-GJR model. However, following the same framework, it is straightforward
to generate forecasts of the conditional variance and covariance using bivariate
GARCH models, and thus the conditional beta.
4. Kalman Filter Method

In the engineering literature of the 1960s, an important notion called ‘state space’
was developed by control engineers to describe system that vary through time. The
general form of a state space model defines an observation (or measurement) equation
and a transition (or state) equation, which together express the structure and dynamics
of a system.

In a state space model, observation at time ¢ is a linear combination of a set of

variables, known as state variables, which compose the state vector at time . Denote
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the number of state variables by m and the (mXx1) vector by#,, the observation

equation can be written as

Y, :z;é’, +u, (13)

Where z,is assumed to be a known the (mXx1) vector, and u, is the observation error.
The disturbance u, is generally assumed to follow the normal distribution with zero

mean, u, ~N (0,0'5) . The set of state variables may be defined as the minimum set of

information from present and past data such that the future value of time series is
completely determined by the present values of the state variables. This important
property of the state vector is called the Markov property, which implies that the latest
value of variables is sufficient to make predictions.

A state space model can be used to incorporate unobserved variables into, and
estimate them along with, the observable model to impose a time-varying structure of
the CAPM beta (Faff et al., 2000). Additionally, the structure of the time-varying beta
can be explicitly modelled within the Kalman filter framework to follow any
stochastic process. The Kalman filter recursively forecasts conditional betas from an
initial set of priors, generating a series of conditional intercept and beta coefficients
for the CAPM.

The Kalman filter method estimates the conditional beta using the following

regression,

R, =q, +:BirRMr +é&, (14)
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Where R, and R,, is the excess return on the individual share and the market
portfolio at time ¢, and¢, is the disturbance term. The equation (14) represents the

observation equation of the state space model, which is similar to the CAPM model.
However, the form of the transition equation depends on the form of stochastic
process that betas are assumed to follow. In other words, the transition equation can
be flexible, such as using AR(1) or random walk process. According to Faff et al.
(2000), the random walk gives the best characterisation of the time-varying beta,
while AR(1) and random coefficient forms of transition equation encounter the
difficulty of convergence for some return series. Failure of convergence is indicative
of a misspecification in the transition equation. Therefore, this paper considers the

form of random walk; and thus the corresponding transition equation is

lBit = ﬂit—l +7, (15)

Equation (14) and (15) constitute a state space model. In addition, prior conditionals

are necessary for using the Kalman filter to forecast the future value, which can be

expressed by

130 “‘N(:B()’PO) (16)

The first two observations can be used to establish the prior condition. Based on the
prior condition, the Kalman filter can recursively estimate the entire series of

conditional beta.
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5. Data and Forecasting time-varying beta series

The data applied is weekly ranging from January 1989 to December 2003.
Twenty UK firms are selected based on size (market capitalization), industry and the
product/service provided by the firm. Table 1 provides the details on the firms under
study. The stock returns are created by taking the first difference of the log of the
stock indices. The excess stock returns are created by subtracting the return on a risk-
free asset from the stock returns. The risk-free asset applied is the UK Treasury Bill
Discount 3 Month. The proxy for market return is the return on index of FTSE all
share.

To avoid the sample effect and overlapping issue, three forecast horizons are
considered, including two one-year forecast horizons (2001 and 2003) and a two-year
forecast horizon (2002 to 2003). All models are estimated for the periods 1989-2000,
1989-2001 and 1989-2002, and the estimated parameters are applied for forecasting
over the forecast samples 2001, 2002-2003 and 2003.

The methodology of forecasting time-varying betas will be carried out in several
steps. In the first step, the actual beta series will be constructed by GARCH models
and the Kalman filter approach from 1989 to 2003. In the second step, the forecasting
models will be used to forecast time-varying betas and be compared in terms of
forecasting accuracy. The lack of ex ante beta values makes it impossible to evaluate
the predictive ability of models according to the real future benchmarks.
Consequently, ex post data must be used as remediation. For instance, sequences of
beta will be ‘predicted’ for the year 2003 based on parameter values derived from
1989 to 2002. Forecasted betas then will be compared to real beta values in 2003. In
the third and last step, the empirical results of performance of various models will be

produced on the basis of hypothesis tests whether the estimate is significantly
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different from the real value, which will provide evidences for comparative analysis
of merits of different forecasting models.

It is important to point out that the lack of benchmark is an inevitable weak point
of studies on time-varying beta forecasts, since the beta value is unobservable in the
real world. Although the point estimation of beta generated by the market model is a
moderate proxy for the actual beta value, it is not an appropriate scale to measure a
beta series forecasted with time variation. As a result, evaluation of forecast accuracy
based on comparing conditional betas estimated and forecasted by the same approach
cannot provide compellent evidence of the worth of the approach. To assess
predictive performance, a logical extension is to examine returns out-of-sample.

Recall the conditional CAPM equation

E(r|1.) =B, EG,|1.) (17)
With the out-of-sample forecasts of conditional betas, the out-of-sample forecasts of
returns can be easily calculated by equation (17), in which the market return and the
risk free rate of return are actual returns observed. The relative accuracy of
conditional beta forecasts then can be assessed by comparing the return forecasts with
the actual returns. In this way, the issue of missing benchmark can be settled.®
6. Measures of Forecast Accuracy

A group of measures derived from the forecast error are designed to evaluate ex
post forecasts. This family of measures of forecast accuracy includes mean squared
error (MSE), root mean squared error (RMSE), mean error (ME), mean absolute error

(MAE), mean squared percent error (MSPE) and root mean squared error (RMSPE)

¥ Brooks et al. (1998) provide a comparison in the context of the market model.
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and some other standard measures. Among them, the most common overall accuracy

measures are MSE and MSPE (Diebold 2004, p. 298):

MSE:lZef (18)
n

t=1

MSPE:lzpf (19)

t=1

Where e is the forecast error defined as the difference between the actual value and
the forecasted value and p is the percentage form of the forecast error. Very often, the
square roots of these measures are used to preserve units, as it is in the same units as
the measured variable. In this way, the root mean square error is sometimes a better
descriptive statistic. However, since the beta is a value without unit, MSE can be
competent measures in this research.

The lower the forecast error measure, the better the forecasting performance.
However, it does not necessarily mean that a lower MSE completely testifies superior
forecasting ability, since the difference between the MSEs may be not significantly
different from zero. Therefore, it is important check whether any reductions in MSEs
are statistically significant, rather than just compare the MSE of different forecasting
models (Harris and Sollis 2003, p. 250).

Diebold and Mariano (1995) develop a test of equal forecast accuracy to test for

whether two sets of forecast errors, say e, and e,,, have equal mean value. Using
MSE as the measure, the null hypothesis of equal forecast accuracy can be

represented as E[d,] =0, whered, = e], —e;, . Supposed n, h-step-ahead forecasts have
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been generated, Diebold and Mariano (1995) suggest the mean of the difference

between MSEs d = ! z d, has an approximate asymptotic variance of
t=1

Var(d) = 1 [;fo + 2§ 7, } (20)
n

k=1

Where y, is the kth autocovariance of d,, which can be estimated as:

7 =LY (d, -d)d,, -d) 1)

n r=k+1

Therefore, the corresponding statistic for testing the equal forecast accuracy
hypothesis is S =d //Var(d) , which has an asymptotic standard normal distribution.

According to Diebold and Mariano (1995), results of Monte Carlo simulation
experiments show that the performance of this statistic is good, even for small
samples and when forecast errors are non-normally distributed. However, this test is
found to be over-sized for small numbers of forecast observations and forecasts of
two-steps ahead or greater.

Harvey et al. (1997) further develop the test for equal forecast accuracy by
modifying Diebold and Mariano’s (1995) approach. Since the estimator used by
Diebold and Mariano (1995) is consistent but biased; Harvey et al. (1997) improve

the finite sample performance of Diebold and Mariano (1995) test using an

approximately unbiased estimator of the variance of d . The modified test statistic is

given by
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(22)
n

S*:[n+1—2h+n_lh(h—l)}ms
Through Monte Carlo simulation experiments, this modified statistics is found to
perform much better than the original Diebold and Mariano statistic at all forecast
horizon and when the forecast errors are autocorrelated or have non-normal
distribution.  In this paper we apply both the Diebold and Mariano test and the
modified Diebold and Mariano test but only the results from the second test are
presented. Results from the standard Diebold and Mariano tests are available on
request.

7. GARCH and Kalman Method Results

The GARCH model results obtained for all periods are quite standard for equity
market data. Given their bulkiness, these results are not provided in order to save
space but are available on request. The GARCH-X model is only estimated for five
companies; BT Group, Legal and General, British Vita, Alvis and Care UK. This is
because cointegration between the log of the company stock index and the log of the
market stock index is only found for these five companies. The cointegration results
are available on request. For the GARCH models except the BEKK the BHHH
algorithm is used as the optimisation method to estimate the time-varying beta series.
For the BEKK GARCH the BFGS algorithm is applied.

The Kalman filter approach is the non-GARCH models applied in competition
with GARCH for predicting the conditional beta. Once again, BHHH algorithm is
used as the optimisation method to estimate the twenty time-varying beta series.
Although the random walk gives the best characterisation of the conditional beta with

highest convergence rates and shortest time to converge (see Faff er al., 2000 for
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example), four firms (Singet Group, Caldwell Invs, Alvis and Tottenham Hotspur) fail
to converge to a unique solution when the random walk is chosen as the form of
transition equation. This is indicative of a misspecification in the transition equation.
In order to obtain the unique solution, AR(1), constant mean (plus noise), random
walk with drift are considered as alternative forms of transition equation for these
companies. However, no convergence can be achieved, implying that alternative
transition equations are no better than the random walk. The Kalman filter results are
also available on request.

The basic statistics indicate that the time-varying conditional betas estimated by
means of the different GARCH models have positive and significant mean values.
Most beta series show significant excess kurtosis. Hence, most conditional betas are
leptokurtic. All beta series are rejected for normality with the Jarque-Bera statistics,
usually at the 1% level. Compared to the results of GARCH models, betas generated
by the Kalman Filter approach show some different features. First, not all conditional
betas can be calculated by means of Kalman Filter approach. Second, conditional
betas have a wider range than those constructed by GARCH models. Third,
skewness, kurtosis and Jarque-Bera statistics are more diversified. There are very
few cases of symmetric distribution, mesokurtic and a single case of normal
distribution. These basic statistics of the estimated beta series is available on request.’
8. Forecasting Conditional Betas and Forecast Accuracy

As stated earlier to avoid the sample effect and overlapping issue, three forecast

horizons are considered, including two one-year forecast horizons (2001 and 2003)

° The augmented Dickey-Fuller test is applied to check for the stochastic structure of the beta series.
All GARCH estimated beta series are found to have zero unit roots. Some of the beta estimated by
means of the Kalman filter approach may contain one unit root. Therefore, conditional betas estimated
by Kalman filter show a different feature of dynamic structure from the ones generated by GARCH
models. These results are also available on request.
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and a two-year forecast horizon (2002 to 2003). In this way, beta forecasts series can
be compared to actual betas in the forecast horizon to assess forecast accuracy of each
model'.

As indicated earlier in order to evaluate the level of forecast errors between
conditional beta forecasts and actual values, mean absolute errors (MAE), mean
square errors (MSE), mean absolute percentage errors (MAPE) and Theil U statistics
are calculated for each forecast. We only provide a summary of the results here but
the actual results are available on request.

The GJR GARCH model produce the most accurate beta forecasts in the out-of-
sample period 2001, followed by bivariate GARCH, GARCH-X and Kalman filter
models. BEKK has the poorest forecasting performance. Franses and Van Dijk
(1996) and Brailsford and Faff (1996) also find evidence favouring the GJR model.
For 2003 overall, bivariate GARCH is the model with most accurate beta forecasts in
2003, followed by Kalman filter and GJR GARCH. GARCH-X produces moderate
conditional beta forecasts. BEKK is inferior to others in terms forecasting ability.
The longer out-of-sample forecast in 2002-2003 helps to evaluate the forecasting
performance of alternative models in a longer forecast horizon. Accordingly, GJR
GARCH is argued to be the most accurate model in the two-year out-of-sample
forecasts. Bivariate GARCH also performs considerably accurate prediction. Kalman
filter is not as precise as in the shorter forecast period (2003).

Given relative superiority of alternative models in different out-of-sample periods,
we can generally conclude that bivariate GARCH is the most accurate forecasting
model in one-year forecast sample. However, when the market is extremely volatile,

GJR GARCH is the most successful forecasting technique, allowing for the

' Due to difficulty of converge, Kalman filter only produces fourteen forecasts in the holdout sample
2001, fifteen forecasts in 2003 and sixteen forecasts in 2002-2003.
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asymmetric effect. Kalman filter fits to the shorter forecast sample without significant
volatility, but is less competent to forecast betas with extremely time variant features.
This confirms that the Kalman filter method is somewhat inferior to GARCH models
in capturing time-variation of beta series. For the longer forecast horizon, GJR
GARCH performs better than its competitors. Bivariate GARCH is still successful for
the longer forecast sample under analysis. Performance of Kalman filter approach
seems to be degenerative when the out-of-sample period becomes longer. GARCH-X
generates consistently accurate beta forecasts, regardless of forecast horizons and
market situations, which can be arguably due to the error correction terms
incorporated in the model. BEKK is the model with most inaccurate forecast results
over different holdout samples.
9. Forecast Errors Based on Return Forecasts

To evaluate return forecasts, different measures of forecast errors are employed.
Since the return series and forecasts are fairly small in size and can take on opposite
signs, MAPE and Theil U statistics are not reliable criterion in this case. In addition,
mean errors (ME) are employed to assess whether the models over or under forecast
return series. Thus, MAE, MSE and ME are the criterions to evaluate return
forecasting performance.

Errors of out-of-sample return forecasts in 2001 are presented in Tables 2, 3 and 4.
In Table 2, Kalman filter is favoured with eleven lowest MAE values in all fourteen
applicable instances. The simple GARCH model dominates when Kalman filter fails
to converge, with the smallest MAE for six firms. BEKK is found to be accurate in
forecasting returns with two firms, which is contrasting to evaluation results based on
beta forecasts. GJR seems to be relatively less successful to predict returns, with only

one smallest MAE. GARCH-X produces moderate return forecasts and wins no
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competitions. Examining Table 3, the similar result is evident that Kalman filter
approach performs better than the other models. It has the lowest MSE for thirteen
shares. Bivariate GARCH dominates in five cases; while BEKK outperforms the
others in the rest two competitions. All forecasting models tends to over predict the
return values in 2001, as indicated by Table 4 in which most ME are positive. The
general over-prediction is reasonable, given the fact the financial market was
significantly deteriorated by the tragic events of September 11.

Tables 5, 6 and 7 show the error of out-of-sample return forecast for 2003. Table
5 reports MAE of return forecasts in the forecast sample period 2003. Again, Kalman
filter is found to be the most successful forecasting approaches. GJR is the second
competent model with the lowest MAE for six shares. Bivariate GARCH and BEKK
have similar level of forecast errors, each dominating in two cases. In Table 6,
Kalman filter is confirmed to be the best in forecasting share returns when the popular
quadratic loss function is used. GJR produces relatively more accurate return forecasts
for five firms. BEKK and the simple GARCH have similar performance, with three
and one lowest MSE respectively. According to ME reported in Table 7, no significant
tendency of too high or too low forecasts is found.

Forecast errors for the two-year out-of-sample 2002-2003 are reported in Tables 8,
9 and 10. MAE results in Table 8 indicates that Kalman filter dominate the other
forecasting models by having eleven smallest MAEs. Bivariate GARCH has three
lowest MAEs; and the other models seem to have similar predictive performance,
each having the lowest MAE for two firms. Table 9 presents MSE of return forecasts
in the two-year holdout sample. Once again, Kalman filter approach is favoured by
MSE with the lowest values for thirteen shares. GARCH type models show

comparable forecasting accuracy, each having one or two smallest MSEs. In Table 10,
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positive and negative values of ME are mixed, implying all models do not tend to
over or under forecast returns.

In summary, evaluation of forecast accuracy based on return forecasts provides
different information on relative superiority of alternative models. Kalman filter
approach is the best model, when forecasted returns are compared to real values. It
dominates GARCH models in most cases for different forecast samples. Similar
conclusion is also reached by Brooks et al. (1998) and Faff et al. (2000). All GARCH
based models produce comparably accurate return forecasts. Interestingly, BEKK is
acceptable in terms of return forecasts, although it performs poorly when evaluated in
terms of beta forecasts.

Figure 1 shows the return forecasted by the different methods and the actual return
over the longer period (2002-2003) for two firms. All estimates seem to move
together with the actual return but the Kalman filter forecast shows the closest
correlation. Figures of other firms are available on request.

10. Modified Diebold and Mariano Tests

As stated earlier Harvey er al. (1997) propose a modified version that corrects for
the tendency of the Diebold-Mariano statistic to be biased in small samples. Out-of-
sample forecasts on the weekly basis are fairly finite with 52 observations in the one-
year forecast horizon. In this case, the modified Diebold-Mariano statistics are more
reliable and apposite for ranking the various forecasting models candidates than the
original Diebold-Mariano statistics. Two criteria, including MSE and MAE derived
from return forecasts, are employed to implement the modified Diebold-Mariano
tests. Each time, the tests are conducted to detect superiority between two forecasting

models; and thus there are ten groups of test for five models. For each group, there are
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a number of modified Diebold-Mariano tests for both MSE and MAE from return
forecasts, between all applicable firms and through three forecast samples.
Each modified Diebold-Mariano test generates two statistics, S; and S,, based on

two hypotheses:

1. H,: there is no statistical difference between two sets of forecast errors.
H/: the first set of forecasting errors is significantly smaller than the second.
2. H_;: there is no statistical difference between two sets of forecast errors.

H : the second set of forecasting errors is significantly smaller than the first.

It is clear that the sum of the P values of two statistics (S; and S>) is equal to unity. If
we define the significance of modified Diebold-Mariano statistics as at least 10%
significance level of ¢ distribution, adjusted statistics provide three possible answers to
superiority between two rival models:

1. If §;is significant, then the former forecasting model outperforms the later model.

If S, is significant, then the later forecasting model outperforms the former model.
3. If none of §; and §; is significant, then two models produce equally accurate

forecasts.

Tables 11 to 20 present the results of ten groups of modified Diebold-Mariano
tests. Tables 11 to 14 provide a comparison between the Kalman filter approach and
the four GARCH models. Kalman filter approach is found to significantly outperform
bivariate GARCH, BEKK GRACH and GJR GARCH models based on both the MSE
and MAE (Tables 11 to 13). No company accepts the hypothesis that these GARCH
models significantly outperforms Kalman filter method. In about half of cases, the
two forecasting models are found to produce equally accurate forecasts.

Since neither GARCH-X nor Kalman filter can be applied to all firms, the
modified Diebold-Mariano tests are valid in a smaller group of forecast errors. Test
results presented in Table 14 show that Kalman filter overwhelmingly dominates

GARCH-X in one-year forecast samples. In particular, the modified statistics based

on MSE in 2001 find evidence in all firms that Kalman filter outperform GARCH-X.
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For the two-year forecast horizon, although more forecast errors are found to have no
significant difference between each other, Kalman filter still exhibit superiority in
some cases. No modified Diebold-Mariano statistics provide evidence for dominance
of GARCH-X over Kalman filter.

Modified Diebold-Mariano tests are also applied among GARCH models. Table
14 report the results of tests between bivariate GARCH and BEKK. According to the
modified Diebold-Mariano statistics, the standard GARCH model has more accurate
forecasts than BEKK in 2003 no matter which error criterion is used. In forecast
sample of 2001 and 2002-2003, the test statistics based on MSE supports BEKK and
bivariate GARCH respectively; while no preference is found in terms of MAE.
Through three forecast samples, equal accuracy is supported by at least 70% of firms;
thus the predictive performance of these two GARCH models is fairly similar.

Table 15 reports the results of modified Diebold-Mariano tests between the
standard GARCH and GJR specification. The modified test statistics provide
conflicting evidence on the dominance of alternative models. In 2001, bivariate
GARCH outperforms GJR by having a higher percentage of dominance, in terms of
both MSE and MAE. In 2003 and 2002-2003, opposite evidence is found that GJR
GARCH is better than bivariate GARCH in few cases. However in all forecast
samples, most firms show that forecast errors are not statically different. Thus,
bivariate GARCH and GJR have similar forecasting performance in most cases.

Modified Diebold-Mariano tests are applied to a smaller group of forecast errors
to detect the superiority between bivariate GARCH and GARCH-X. According to the
results reported in Table 16, GARCH-X is found to be superior to bivariate GARCH

in one-year forecasts. In two-year forecast sample, evidence is found that bivariate
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GARCH outperforms GARCH-X. However, most firms accept the hypothesis that the
competing models have similarly accurate forecast errors over different samples.

The results of modified Diebold-Mariano tests between BEKK GARCH and GJR
GARCH are reported in table 17. In all forecast horizons, the proportion of firms
accepting the superiority of GJR is higher than firms supporting BEKK. Thus, GJR is
favored by more firms in terms of forecast accuracy. However, as more than half of
the firms provide evidence of equal accuracy between the two GARCH models.

According to the modified Diebold-Mariano test results in Table 18, GARCH-X
outperforms BEKK model through different samples in terms of MSE. MAE in 2001
also provides evidence for the dominance of GARCH-X; while in 2003 and 2002-
2003 test statistics show that both models have similar level of MAEs. A high
proportion of firms support that both forecasting model produce equally accurate
forecasts, especially in 2003 and 2002-2003.

Table 19 reports the results from modified Diebold-Mariano tests between GJR
GARCH and GARCH-X forecasting models. Modified statistics provide evidence that
the forecasting performance of the two models is similar, since most firms accept the
hypothesis of equal accuracy. In 2001, GARCH-X shows dominance over GJR in a
few cases; while GJR is found to be better in 2003. In forecast period 2002-2003, no
significant dominance is found in terms MSE; while GJR is favored by MAE.

Based on the ten groups of modified Diebold-Mariano comparison tests, Kalman
filter is the preeminent forecasting model, as it overwhelmingly dominates all
GARCH models with significantly smaller forecast errors in most cases. In contrast,
none of the firms show that GARCH type models can outperform Kalman filter.
Among the GARCH models, forecast performance is generally similar as many firms

accept the hypothesis of equal accuracy. In cases of firms that do not accept the
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hypothesis of equal accuracy the GJR is the best GARCH specification in terms of
return forecasts, followed by bivariate GARCH that also produces accurate out-of-
sample forecasts. BEKK shows a little inferior to bivariate GARCH. GARCH-X is
found to have similar forecasting performance to GJR; however it can only applied to
the firms with cointegrated relationship with the market.
11. Conclusion

This paper empirically estimates the weekly time-varying beta and attempts to
forecast the betas of the twenty UK firms. Since the beta (systematic risk) is the only
risk that investors should be concern about, prediction of the beta value helps
investors to make their investment decisions easier. The value of beta can also be
used by market participants to measure the performance of fund managers through
Treynor ratio. For corporate financial managers, forecasts of the conditional beta not
only benefit them in the capital structure decision but also in investment appraisal.
This paper also empirically investigates the forecasting ability of four different
GARCH model; standard bivariate GARCH, bivariate BEKK, bivariate GARCH-GJR
and the bivariate GARCH-X. The paper also studies the non-GARCH method
Kalman filter approach’s forecasting ability. The GARCH models apply the
conditional variance information to construct the conditional beta series. The Kalman
approach recursively estimates the beta series from an initial set of priors, generating
a series of conditional alphas and betas in the market model.

The tests are carried out in two steps. In the first step, the actual beta series will
be constructed by GARCH models and the Kalman filter approach from 1989 to 2003.
In the second step, the forecasting models will be used to forecast time-varying betas
and be compared in terms of forecasting accuracy. To avoid the sample effect, three

forecast horizons will be considered, including two one-year forecasts 2002 and 2003,
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and a two-year horizon from 2002 to 2003. Two sets of forecast are made and the
different methods applied compared. In the first test, the time-varying beta is directly
forecasted and in the second test the estimated betas are used to forecast stock returns.

The lack of ex ante beta values makes it impossible to evaluate the predictive
ability of models according to the real future benchmarks. Consequently, ex post data
must be used as remediation. For instance, sequences of beta will be ‘predicted’ for
the year 2003 based on parameter values derived from 1989 to 2002. Forecasted
betas then will be compared to real beta values in 2003. In the third and last step, the
empirical results of performance of various models will be produced on the basis of
hypothesis tests whether the estimate is significantly different from the real value,
which will provide evidences for comparative analysis of merits of different
forecasting models. Various measures of forecast errors are calculated on the basis of
beta forecasts to assess the relative superiority of alternative models. In order to
evaluate the level of forecast errors between conditional beta forecasts and actual
values, mean absolute errors (MAE), mean square errors (MSE), mean absolute
percentage errors (MAPE) and Theil U statistics are calculated for each forecast. GJR
and bivariate GARCH are found to be better compared to other methods in providing
beta forecast.

Forecast errors based on return forecasts are employed to evaluate out-of-sample
forecasting ability of both GARCH and non-GARCH models. Measures of forecast
errors overwhelmingly support the Kalman filter approach. The last comparison
technique used is modified Diebold-Mariano test. This test is conducted to detect
superiority between two forecasting models at a time. The results again finds
evidence in favour of the Kalman filter approach, relative to GARCH models. Both

GJR and GARCH-X models appear to have a bit more accurate forecasts than the

30



bivariate  GARCH model. The BEKK model is dominated by all the other
competitors. Results presented in this paper advocate further in this field applying

different markets, time periods and methods.
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Table 1

Company Profile Table
Market
Name Products Industry Capitalisation
(m£)

British Airways Airline services Transportation 2517.50

Mass market
TESCO distribution Retailer 18875.26
British American
Tobacco Cigars and Cigarettes Tobacco 15991.70
BT Group Telecommunications Utilities 16269.67
Legal and General Insurance Financial 6520.12
Glaxo Smith Kline Medicines Pharmaceutical 76153.00
Edinburgh Oil and
Gas Oil and gas Energy Producer 48.07

Health and beauty
Boots Group products Retailer 5416.64
Barclays Banking Financial 32698.64
Scottish and
Newcastle Beer Beverage 3380.12
Signet Group Jewellery and watches | Retailer 1770.29
Goodwin Mental products Metal Producer 17.64

Polymers, foams and
British Vita fibers Chemical 466.62
Caldwell Investments | Ninaclip products Wholesaler 3.08
Alvis Military vehicles Automotive 189.68
Tottenham Hotspur Football club Recreation 28.57
Care UK Health and social care | Service organization 146.84
Daily Mail and Gen Printing and
Trust Media products Publishing 237.84
Cable and Wireless Telecommunications Utilities 3185.61
BAE Systems Military equipments Aerospace 5148.61
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Table 2

Mean Absolute Error of Return Forecasts (2001)

GARCH BEKK GJR GARCH-X  Kalman

British Airways 0.0609990 0.0799615  0.0603233 FTC
TESCO 0.0294197 0.0270018  0.0271733 0.0257812
British American

Tobacco 0.0322958  0.0332396  0.0347135 0.0298413
BT Group 0.0597085 0.0693117  0.0561728 0.0556705
Legal and General 0.0219667 0.0349400 0.0219525 0.0219152 0.0211787
Glaxo Smith Kline 0.0265273  0.0265332  0.0267266 0.0262428  0.0250460
Edinburgh Oil and Gas  0.0730053  0.0843483  0.0705935 0.0695225
Boots Group 0.0209987  0.0225276  0.0208609 0.0196821
Barclays Bank 0.0277797  0.0325654  0.0284911 0.0277974
Scottish and Newcastle  0.0279828  0.0278869  0.0281130 0.0263320
Singet Group 0.0637875  0.0850078  0.0705701 FTC
Goodwin 0.0279662  0.0255463  0.0274539 0.0258745
British Vita 0.0350545 0.0486594  0.0359354 0.0339518 0.0325118
Caldwell Invs 0.0493035 0.0862989  0.0498145 FTC
Alvis 0.0314207  0.0279000 0.0301953  0.0295452 FTC
Tottenham Hotspur 0.0214986  0.0225482  0.0223097 FTC
Care UK 0.0236118 0.0251053  0.0234808 0.0235961 0.0220384
Daily Mail and Gen 0.0174536  0.0177491 0.0179107 0.0141337
Cable and Wireless 0.0420713  0.0521787  0.0462570 0.0451568
BAE Systems 0.0461277 0.0473308 0.0463786 FTC

Note: FTC stands for ‘failed to converge’.
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Table 3

Mean Square Error of Return Forecasts (2001)

GARCH BEKK GJR GARCH-X Kalman
British Airways 0.0085187 0.0154079 0.0087032 FTC
0.0009391
TESCO 0.0012330 0.0010271 0.0010685 33
British American 0.0012786
Tobacco 0.0014981 0.0016344 0.0017977 36
0.0042482
BT Group 0.0053241 0.0087424  0.0045427 37
0.0007586
Legal and General 0.0008527 0.0026156  0.0008538 0.0008509 28
0.0009450
Glaxo Smith Kline 0.0011373 0.0011467 0.0011088 0.0010788 36
0.0091493
Edinburgh Oil and Gas  0.0093925 0.0135059 0.0091701 68
0.0006383
Boots Group 0.0006781 0.0008722  0.0006762 86
0.0011286
Barclays Bank 0.0012553 0.0017128 0.0013166 39
0.0012077
Scottish and Newcastle 0.0012926 0.0013044 0.0012886 83
Singet Group 0.0072991 0.0151196  0.0090872 FTC
0.0019872
Goodwin 0.0026033 0.0015169 0.0020858 18
0.0021857
British Vita 0.0025077 0.0044825 0.0028430 0.0024042 82
Caldwell Invs 0.0071468 0.0190159 0.0071496 FTC
Alvis 0.0020730 0.0017017 0.0019852 0.0018858 FTC
Tottenham Hotspur 0.0007407  0.0008463  0.0007571 FTC
0.0008987
Care UK 0.0009450 0.0010012 0.0009306 0.0009409 88
0.0004520
Daily Mail and Gen 0.0005710 0.0005151 0.0005836 76
0.0038091
Cable and Wireless 0.0044692 0.0076678  0.0044877 86
BAE Systems 0.0042652 0.0044646  0.0042499 FTC

Note: FTC stands for ‘failed to converge’.
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Mean Errors of Return Forecasts (2001)

Table 4

GARCH BEKK GJR GARCH-X  Kalman

British Airways -0.0139102 -0.0162964 -0.0118706 FTC
TESCO 0.0050226  0.0017806  0.0039588 0.0028708
British American

Tobacco 0.0083852  0.0077729  0.0095356 0.0084557
BT Group -0.0012838 0.0110220 -0.0012781 -0.0006238
Legal and General 0.0001848 -0.0007834 0.0003833 0.0003137  0.0008287
Glaxo Smith Kline 0.0013172  0.0026602 0.0011444 0.0017139  0.0013509
Edinburgh Oil and Gas  0.0367699  0.0361849  0.0387579 0.0393829
Boots Group 0.0053399  0.0048794  0.0055962 0.0057619
Barclays Bank 0.0009250  0.0030465 0.0019472 0.0019511
Scottish and Newcastle  0.0089151  0.0075225  0.0090482 0.0075539
Singet Group 0.0168908  0.0088097  0.0229155 FTC
Goodwin 0.0130125 0.0083757 0.0114101 0.0102884
British Vita 0.0039950  0.0038823  0.0018632  0.0040780  0.0042790
Caldwell Invs 0.0146273  -0.0048967 0.0148512 FTC
Alvis 0.0104102  0.0081696 0.0107279  0.0097419 FTC
Tottenham Hotspur 0.0026985 0.0017467 0.0031731 FTC
Care UK 0.0000759 -0.0020731 0.0004696 0.0001375 -0.0003594
Daily Mail and Gen 0.0076791  0.0057418  0.0075297 0.0066064
Cable and Wireless -0.0201820 -0.0198705 -0.0183247 -0.0183278
BAE Systems 0.0022033 -0.0012331 0.0021877 FTC

Note: FTC stands for ‘failed to converge’.
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Table 5

Mean Absolute Error of Return Forecasts (2003)

GARCH BEKK GJR GARCH-X  Kalman

British Airways 0.0416672  0.0477844  0.0432998 0.0409881
TESCO 0.0216474 0.0216491 0.0217277 0.0216511
British American

Tobacco 0.0202814  0.0265001  0.0200560 0.0201715
BT Group 0.0201780  0.0256547  0.0206380 0.0187930
Legal and General 0.0297147  0.0405306  0.0297655 0.0296091  0.0290675
Glaxo Smith Kline 0.0224875 0.0224343  0.0227118  0.0224961 0.0221981
Edinburgh Oil and Gas  0.0338654  0.0347903  0.0337039 FTC
Boots Group 0.0173100  0.0170699  0.0175237 0.0174217
Barclays Bank 0.0198811 0.0265896 0.0196401 0.0190972
Scottish and Newcastle  0.0259553  0.0244490  0.0263909 0.0267344
Singet Group 0.0294916  0.0444378  0.0291656 FTC
Goodwin 0.0384271 0.0386126  0.0373638 0.0374500
British Vita 0.0270473  0.0270753  0.0270956  0.0269969  0.0267074
Caldwell Invs 0.0381234  0.0388304  0.0375019 FTC
Alvis 0.0331638  0.0347532  0.0326492  0.0334075 FTC
Tottenham Hotspur 0.0312275 0.0371545 0.0312879 FTC
Care UK 0.0326049 0.0328549 0.0326522 0.0327572 0.0321361
Daily Mail and Gen 0.0122952  0.0134707 0.0117770 0.0099523
Cable and Wireless 0.0544720 0.0648414  0.0537206 0.0514613
BAE Systems 0.0384981 0.0381986 0.0381810 0.0339778

Note: FTC stands for ‘failed to converge’.
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Table 6

Mean Square Error of Return Forecasts (2003)

GARCH BEKK GJR GARCH-X  Kalman
0.0030147
British Airways 0.0031605 0.0041235 0.0032571 56
0.0008022
TESCO 0.0007984  0.0007964  0.0008072 28
British American 0.0008190
Tobacco 0.0008738  0.0014522  0.0008433 26
0.0005873
BT Group 0.0006732  0.0010549  0.0007048 01
0.0013878
Legal and General 0.0015511  0.0035506  0.0015631 0.0015378 16
0.0007559
Glaxo Smith Kline 0.0007721  0.0007762  0.0007833  0.0007695 15
0.0004771
Edinburgh Oil and Gas  0.0023039  0.0023052  0.0022693 39
0.0006139
Boots Group 0.0004891  0.0004849  0.0005021 51
Barclays Bank 0.0006615  0.0013284  0.0006496 FTC
0.0014880
Scottish and Newcastle  0.0014493  0.0013794  0.0014643 15
Singet Group 0.0014419 0.0034116  0.0014117 FTC
0.0026948
Goodwin 0.0028299  0.0026457  0.0025885 35
0.0012649
British Vita 0.0012937  0.0012966  0.0012873  0.0012671 62
Caldwell Invs 0.0036322  0.0036766  0.0035098 FTC
Alvis 0.0019309 0.0023071 0.0019729  0.0020239 FTC
Tottenham Hotspur 0.0019907  0.0029566 0.0019793 FTC
0.0018157
Care UK 0.0018906  0.0018930 0.0018895 0.0019012 66
0.0002406
Daily Mail and Gen 0.0003092  0.0003634  0.0002870 22
0.0057650
Cable and Wireless 0.0064958  0.0097701  0.0063649 38
0.0019335
BAE Systems 0.0023583  0.0023259  0.0022473 31

Note: FTC stands for ‘failed to converge’.
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Mean Errors of Return Forecasts (2003)

Table 7

GARCH BEKK GJR GARCH-X  Kalman

British Airways 0.0045346  0.0042155  0.0057002 0.0046817
TESCO 0.0025815  0.0028179  0.0025901 0.0031636
British American

Tobacco 0.0019974  0.0073484  0.0023742 0.0031320
BT Group -0.0045563 -0.0070892 -0.0040437 -0.0044582 -0.0047429
Legal and General -0.0045087 -0.0053089 -0.0045062 -0.0010877 -0.0044496
Glaxo Smith Kline -0.0011045 -0.0005343 -0.0010485 -0.0012215
Edinburgh Oil and Gas  -0.0006010  0.0028190 -0.0000390 FTC
Boots Group 0.0005631  0.0009417  0.0007244 0.0010774
Barclays Bank 0.0005839  0.0024705  0.0007793 0.0004127
Scottish and Newcastle -0.0079979 -0.0068776 -0.0077126 -0.0067156
Singet Group 0.0036026 -0.0041888  0.0042960 FTC
Goodwin 0.0207486  0.0174581  0.0184627 0.0192450
British Vita -0.0014307 0.0014910 -0.0015915 -0.0008248 -0.0018519
Caldwell Invs 0.0047800  0.0040074  0.0047867 FTC
Alvis 0.0013305 -0.0009326 0.0000169  0.0002473 FTC
Tottenham Hotspur 0.0009067 -0.0032163 0.0011231 FTC
Care UK 0.0173390 0.0160539 0.0173403 0.0174967 0.0169852
Daily Mail and Gen -0.0024915 -0.0031226 -0.0025081 -0.0020287
Cable and Wireless 0.0182024  0.0025279  0.0176326 0.0168486
BAE Systems 0.0024500  0.0022334  0.0029007 0.0042813

Note: FTC stands for ‘failed to converge’.
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Table &8

Mean Absolute Error of Return Forecasts (2002-2003)

GARCH BEKK GJR GARCH-X  Kalman

British Airways 0.0459901 0.0849055 0.0457304 0.0440916
TESCO 0.0224134  0.0264573  0.0224682 0.0223333
British American

Tobacco 0.0281326 0.0312190  0.0268369 0.0264613
BT Group 0.0285032  0.0326030 0.0288145 0.0269189
Legal and General 0.0271959 0.0485533 0.0272949 0.0271602 0.0277687
Glaxo Smith Kline 0.0248275 0.0471357  0.0248880 0.0249294  0.0246228
Edinburgh Oil and Gas  0.0432631 0.0516222  0.0427810 0.0425370
Boots Group 0.0201640 0.0281675 0.0201372 0.0202668
Barclays Bank 0.0220496  0.0288025 0.0220734 0.0214115
Scottish and Newcastle  0.0256477  0.0254817  0.0259981 0.0256141
Singet Group 0.0325030 0.0387632  0.0328427 FTC
Goodwin 0.0329631  0.0422588  0.0333548 0.0335379
British Vita 0.0290202  0.0290309 0.0287858 0.0287817  0.0290522
Caldwell Invs 0.0428244  0.0416144  0.0423947 FTC
Alvis 0.0312607  0.0311505 0.0307495 0.0311206 FTC
Tottenham Hotspur 0.0269991 0.0333856  0.0266551 FTC
Care UK 0.0356891 0.0425404  0.0352456 0.0357548 0.0348651
Daily Mail and Gen 0.0129266 0.0120385 0.0124671 0.0109882
Cable and Wireless 0.0619775 0.0654206 0.0615435 0.0594908
BAE Systems 0.0451115 0.0513588  0.0449973 0.0413631

Note: FTC stands for ‘failed to converge’.
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Table 9

Mean Square Error of Return Forecasts (2002-2003)

GARCH BEKK GJR GARCH-X Kalman
0.0032736
British Airways 0.0035477 0.0158525 0.0035241 81
0.0008067
TESCO 0.0008249  0.0012067 0.0008287 62
British American 0.0013312
Tobacco 0.0015181 0.0020716  0.0013841 50
0.0013978
BT Group 0.0015129 0.0018350 0.0015477 48
0.0013659
Legal and General 0.0013661 0.0051013 0.0013773 0.0013611 09
0.0009746
Glaxo Smith Kline 0.0009887  0.0052613  0.0009951  0.0009903 88
0.0032596
Edinburgh Oil and Gas  0.0034091  0.0049787  0.0033457 12
0.0006789
Boots Group 0.0006917 0.0015269 0.0006941 60
0.0008159
Barclays Bank 0.0008628 0.0016418 0.0008659 46
0.0011925
Scottish and Newcastle 0.0012144 0.0012788  0.0012195 70
Singet Group 0.0018915 0.0024506 0.0019006 FTC
0.0027414
Goodwin 0.0026893  0.0050886  0.0026996 18
0.0013717
British Vita 0.0013739 0.0013772 0.0013520 0.0013505 09
Caldwell Invs 0.0047566  0.0048939  0.0046990 FTC
Alvis 0.0016677 0.0016299 0.0016675 0.0016968 FTC
Tottenham Hotspur 0.0018065 0.0030074 0.0017974 FTC
0.0021645
Care UK 0.0022527 0.0040282 0.0022218 0.0022626 37
0.0002543
Daily Mail and Gen 0.0003044 0.0005721 0.0002884 07
0.0110453
Cable and Wireless 0.0119222 0.0121186 0.0117780 37
0.0038713
BAE Systems 0.0046611 0.0055511 0.0046584 04

Note: FTC stands for ‘failed to converge’.
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Table 10

Mean Errors of Return Forecasts (2002-2003)

GARCH BEKK GJR GARCH-X  Kalman

British Airways 0.0050497  0.0026395  0.0039452 0.0043033
TESCO 0.0009001  0.0007283  0.0008637 0.0006214
British American

Tobacco 0.0040858  0.0030272  0.0032110 0.0032309
BT Group -0.0020439 -0.0021176 -0.0017494 -0.0026337
Legal and General -0.0028606 -0.0029936 -0.0029148 -0.0027922 -0.0032973
Glaxo Smith Kline -0.0014384 -0.0015465 -0.0014209 -0.0012542 -0.0020864
Edinburgh Oil and Gas  0.0005294  0.0004529  0.0003326 0.0005576
Boots Group 0.0021256  0.0020848  0.0022265 0.0018955
Barclays Bank 0.0004500  0.0003193  0.0003877 0.0002965
Scottish and Newcastle -0.0036630 -0.0036964 -0.0035048 -0.0034875
Singet Group 0.0016539 0.0015233  0.0016214 FTC
Goodwin 0.0109205 0.0115466 0.0113240 0.0111923
British Vita 0.0034881 0.0033962  0.0033760 0.0034559 0.0033513
Caldwell Invs 0.0052453  0.0048303  0.0052509 FTC
Alvis 0.0051217  0.0048099  0.0043986 0.0042584 FTC
Tottenham Hotspur -0.0039079 -0.0037993 -0.0037958 FTC
Care UK 0.0059078  0.0059754  0.0058244  0.0059090 0.0054745
Daily Mail and Gen -0.0040918 -0.0041134 -0.0041065 -0.0043576
Cable and Wireless -0.0063888 -0.0061460 -0.0063914 -0.0058531
BAE Systems -0.0040685 -0.0047480 -0.0046585 -0.0023001

Note: FTC stands for ‘failed to converge’.
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Table 11

Percentage of Dominance of Kalman Filter over Bivariate GARCH

2001 2003 2002-2003
Hypothesis
MSE MAE MSE MAE MSE MAE

Better 57.14 57.14 53.33 33.33 56.25 50.00
Worse 0 0 0 0 0 0
Equal

Accuracy 42.86 42.86 46.67 66.67 43.75 50.00
Note:

This table presents the proportion of firms that accept the three hypotheses. The
statistic is the modified Diebold-Mariano test statistic, using MSE and MAE as the
error criterion. Better means the former model dominate the later; while worse means
the later model significantly outperform the former. Equal accuracy indicates no
significant difference between forecast errors. The significance is defined as at least
10% significance level of ¢ distribution.

Table 12

Percentage of Dominance of Kalman Filter over BEKK GARCH

2001 2003 2002-2003
Hypothesis
MSE MAE MSE MAE MSE MAE

Better 57.14 50 53.33 40.00 56.25 43.75
Worse 0 0 0 0 0 0
Equal

Accuracy 42.86 50 46.67 60.00 43.75 56.25
Note:

This table presents the proportion of firms that accept the three hypotheses. The
statistic is the modified Diebold-Mariano test statistic, using MSE and MAE as the
error criterion. Better means the former model dominate the later; while worse means
the later model significantly outperform the former. Equal accuracy indicates no
significant different between forecast errors. The significance is defined as at least
10% significance level of ¢ distribution.
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Table 13

Percentage of Dominance of Kalman Filter over GR GARCH

2001 2003 2002-2003
Hypothesis
MSE MAE MSE MAE MSE MAE

Better 50.00 57.14 66.67 46.67 62.50 37.50
Worse 0 0 0 0 0 0
Equal

Accuracy 50.00 42.86 33.33 53.33 37.50 62.50
Note:

This table presents the proportion of firms that accept the three hypotheses. The
statistic is the modified Diebold-Mariano test statistic, using MSE and MAE as the
error criterion. Better means the former model dominate the later; while worse means
the later model significantly outperform the former. Equal accuracy indicates no
significant different between forecast errors. The significance is defined as at least
10% significance level of ¢ distribution.

Table 14

Percentage of Dominance of Kalman Filter over GARCH-X

2001 2003 2002-2003
Hypothesis
MSE MAE MSE MAE MSE MAE

Better 100.00 50.00 75.00 25.00 25.00 25.00
Worse 0 0 0 0 0 0
Equal

Accuracy 0 50.00 25.00 75.00 75.00 75.00
Note:

This table presents the proportion of firms that accept the three hypotheses. The
statistic is the modified Diebold-Mariano test statistic, using MSE and MAE as the
error criterion. Better means the former model dominate the later; while worse means
the later model significantly outperform the former. Equal accuracy indicates no
significant different between forecast errors. The significance is defined as at least
10% significance level of ¢ distribution.
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Table 15

Percentage of Dominance of Bivariate GARCH over BEKK GARCH

2001 2003 2002-2003
Hypothesis
MSE MAE MSE MAE MSE MAE

Better 0 5.00 15.00 25.00 15.00 5.00
Worse 5.00 5.00 0 5.00 10.00 5.00
Equal

Accuracy 95.00 90.00 85.00 70.00 75.00 90.00
Note:

This table presents the proportion of firms that accept the three hypotheses. The
statistic is the modified Diebold-Mariano test statistic, using MSE and MAE as the
error criterion. Better means the former model dominate the later; while worse means
the later model significantly outperform the former. Equal accuracy indicates no
significant different between forecast errors. The significance is defined as at least
10% significance level of ¢ distribution.

Table 16

Percentage of Dominance of Bivariate GARCH over GJR GARCH

2001 2003 2002-2003
Hypothesis
MSE MAE MSE MAE MSE MAE
Better 10.00 25.00 5.00 5.00 5.00 5.00
Worse 5.00 15.00 10.00 5.00 15.00 15.00
Equal
Accuracy 85.00 60.00 80.00 90.00 80.00 80.00
Note:

This table presents the proportion of firms that accept the three hypotheses. The
statistic is the modified Diebold-Mariano test statistic, using MSE and MAE as the
error criterion. Better means the former model dominate the later; while worse means
the later model significantly outperform the former. Equal accuracy indicates no
significant different between forecast errors. The significance is defined as at least
10% significance level of ¢ distribution.
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Table 17

Percentage of Dominance of Bivariate GARCH over GARCH-X

2001 2003 2002-2003
Hypothesis
MSE MAE MSE MAE MSE MAE

Better 0 0 0 0 20.00 20.00
Worse 20.00 40.00 20.00 0 0 0
Equal

Accuracy 80.00 60.00 80.00 100.00 80.00 80.00
Note:

This table presents the proportion of firms that accept the three hypotheses. The
statistic is the modified Diebold-Mariano test statistic, using MSE and MAE as the
error criterion. Better means the former model dominate the later; while worse means
the later model significantly outperform the former. Equal accuracy indicates no
significant different between forecast errors. The significance is defined as at least
10% significance level of ¢ distribution.

Table 18

Percentage of Dominance of BEKK GARCH over GJR GARCH

2001 2003 2002-2003
Hypothesis
MSE MAE MSE MAE MSE MAE

Better 10.00 15.00 10.00 5.00 5.00 5.00
Worse 15.00 20.00 20.00 20.00 20.00 15.00
Equal

Accuracy 75.00 65.00 70.00 75.00 75.00 80.00
Note:

This table presents the proportion of firms that accept the three hypotheses. The
statistic is the modified Diebold-Mariano test statistic, using MSE and MAE as the
error criterion. Better means the former model dominate the later; while worse means
the later model significantly outperform the former. Equal accuracy indicates no
significant different between forecast errors. The significance is defined as at least
10% significance level of ¢ distribution.
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Table 19

Percentage of Dominance of BEKK GARCH over GARCH-X

2001 2003 2002-2003
Hypothesis
MSE MAE MSE MAE MSE MAE

Better 0 0 0 0 0 0
Worse 20.00 40.00 20.00 0 20.00 0
Equal

Accuracy 80.00 60.00 80.00 100.00 80.00 100.00
Note:

This table presents the proportion of firms that accept the three hypotheses. The
statistic is the modified Diebold-Mariano test statistic, using MSE and MAE as the
error criterion. Better means the former model dominate the later; while worse means
the later model significantly outperform the former. Equal accuracy indicates no
significant different between forecast errors. The significance is defined as at least
10% significance level of ¢ distribution.

Table 20

Percentage of Dominance of GIR GARCH over GARCH-X

2001 2003 2002-2003
Hypothesis
MSE MAE MSE MAE MSE MAE

Better 0 0 20.00 20.00 20.00 20.00
Worse 20.00 20.00 0 0 20.00 0
Equal

Accuracy 80.00 80.00 80.00 80.00 60.00 80.00
Note:

This table presents the proportion of firms that accept the three hypotheses. The
statistic is the modified Diebold-Mariano test statistic, using MSE and MAE as the
error criterion. Better means the former model dominate the later; while worse means
the later model significantly outperform the former. Equal accuracy indicates no
significant different between forecast errors. The significance is defined as at least
10% significance level of ¢ distribution.
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