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Abstract

This paper provides a set-theoretic model of knowledge and unawareness. A new
property called Awareness Leads to Knowledge shows that unawareness of theorems
not only constrains an agent’s knowledge, but also, can impair his reasoning about
what other agents know. For example, in contrast to Li (2009), Heifetz et al. (2006)
and the standard model of knowledge, it is possible that two agents disagree on whether
another agent knows a particular event. The model follows Aumann (1976) in defining
common knowledge and characterizing it in terms of a self evident event, but departs
in showing that no-trade theorems do not hold.

JEL-Classifications: C70, C72, D80, D82.
Keywords: unawareness, uncertainty, knowledge, interactive epistemology, bounded

perception.

1 Introduction

1.1 Motivation and outline

A common assumption in economics is that agents who participate in a model perceive the
“world” the same way the analyst does. This means that they understand how the model
works, they know all the relevant theorems and they do not miss any dimension of the
problem they are facing. In essence, agents are as educated and as intelligent as the analyst
and they can make the best decision, given their information and preferences.

Modelling unawareness aims at relaxing this assumption, so that agents may perceive
a more simplified version of the world. Intuitively, there are many instances where agents
of different perception coexist in the same market. In the stock market, for example, one
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can find investors who are highly educated about how the market and the economy work,
together with investors whose understanding is much more limited.

One way in which we might hope to capture differences between these two types of
investors is by attributing differences to asymmetric information. However, Dekel et al.
(1998) showed that the standard model of knowledge, introduced into economics by Aumann
(1976), cannot accommodate unawareness.1 Moreover, it can be criticized on the grounds
that it only models a highly sophisticated and rational agent, who is aware of everything,
knows all the possible theorems that can be derived and has no constraints on the number
of calculations he can perform.

This paper provides a model of knowledge and awareness, where agents may not know
some of the relevant theorems, may be unaware of some of the dimensions of the world
and thus can make mistakes. Moreover, the paper does not depart from the set-theoretic
approach of Aumann (1976) and its advantages, while aiming at giving a better insight into
the connection between awareness and knowledge.

Consider the following comparative statics exercise, where an agent gains awareness. He
becomes aware of new events, and some of these he may subsequently know. This effect
of awareness on knowledge is well described by other papers. The second, less immediate
connection is that more awareness can lead to awareness of new theorems, which connect
answers to different questions. As a result, more awareness can lead to knowing an event that
the agent previously was aware of but did not know. Or equivalently, what one is unaware
of, may constrain his knowledge about events he is aware of. This less immediate connection
is not accommodated in the other papers that model unawareness - it is expressed in this
model by the property Awareness Leads to Knowledge.

The implications of this property in a multi agent setting can be stark. The unaware
agent 1 may falsely conclude that agent 2 does not know an event, when in fact agent 2
knows it, because he knows a theorem beyond 1’s awareness.

It is worthwhile noting that these mistakes in reasoning about others (due to unawareness
of theorems) can be accommodated by the standard model of knowledge or the extensions
discussed below, only if we allow for false beliefs. But allowing for false beliefs permits
all kinds of mistakes. For instance, it allows for agents to make numerical mistakes. The
purpose of this paper is to isolate and study this specific type of mistake due to unawareness
of theorems, without relaxing the assumption that agents are otherwise rational.

In order to overcome the impossibility result of Dekel et al. (1998), the paper follows the
approach of Heifetz et al. (2009) and Li (2009) of introducing multiple state spaces. However,
it retains the set-theoretic nature exhibited also in the standard model of knowledge and
as a result, familiar notions naturally extend here. For instance, common knowledge is
characterized in terms of a self evident event, just like in the standard model. Moreover,
there is a well defined notion of a common state space. This is the state space that everyone
is aware of and this is common knowledge. As the following discussion on no-trade theorems
reveals, results that are true for the unique state space of the standard model are also true
when stated for the common state space of this model, but fail to hold in general.

A natural question is whether agents can agree to disagree and trade in an environment

1An overview of the standard model of knowledge is given in Rubinstein (1998). A more philosophical
treatment is given in Hintikka (1962).
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with unawareness. In the standard model of knowledge this is not possible, if we assume a
common prior - Aumann (1976) shows that common knowledge of posteriors implies they
are identical. In this model it is shown that the same result is true for common priors and
posteriors defined on the common state space. However, an example with two agents i and j
demonstrates that although the posteriors defined on the common state space are common
knowledge and identical, i’s actual posterior is different and beyond j’s reasoning because
agent i is aware of a theorem that j is unaware of. As a result, the two agents can agree to
disagree and trade.

Intuition for this result can be obtained if we interpret common knowledge of posteriors
as the outcome of the following procedure. Initially the posteriors are different. Agent i
announces his posterior and j updates his information and announces a possibly different
posterior. Then, i can update and announce a different posterior, which triggers a new round
of updating.2 Geanakoplos and Polemarchakis (1982) show in the standard model that if the
state space is finite, then after finitely many steps the agents will agree on their posteriors.
A necessary condition for this result is that partitions are common knowledge. This is true
in this model, but only for the common state space. Hence, updating of information due to
other agents’ actions or announcements still takes place in an environment with unawareness,
but it is constrained by what is commonly known that everyone is aware of. As a result,
agents can engage in trade when the differences in their posteriors stem from asymmetric
information acquired by theorems that others are unaware of.

An example

Consider the following example, which has been cited numerous times in the literature on
unawareness. Sherlock Holmes and Dr. Watson are investigating a crime where a horse was
stolen from a stable and the keeper was killed. The question they want to answer is whether
there was an intruder in the stable. Holmes is the highly sophisticated and intelligent agent
who has already solved the mystery, while Watson struggles to keep up. Watson is unable
to answer the question because he is unaware that the dog did not bark, and therefore he is
also unaware of the theorem that no barking implies no intruder.

Using the example, we can distinguish three features of unawareness. The first is a
restricted perception of the world, which limits the agent’s reasoning and subsequently what
he can potentially know, or know that he does not know. Watson does not know that the dog
did not bark, and he does not know that he does not know. He also cannot reason whether
Holmes knows whether or not the dog barked. The possibility of the dog not barking simply
never crosses his mind - he is unaware of it.

Watson is already aware of the possibility of an intruder, but he does not know whether
there was one or not. Although the information about the dog not barking is available
to him, he is simply unaware of it. The second feature of unawareness is that available
information cannot always be used by the agent. In other words, what Watson is unaware
of, constrains his knowledge about events he is aware of.

The third feature of unawareness is that it constrains an agent’s ability to reason about
the knowledge of others. Unawareness of the theorem “no barking implies no intruder” results

2In Galanis (2010) we provide a dynamic version of the current model in order to formalize this story.
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not only in Watson not knowing whether there was an intruder, but also in believing that
Holmes does not know. In fact, Watson may be aware of many other ways (or theorems) in
which Holmes could have known (for example, because he asked a police officer), but Watson
has correctly deduced that none of these ways were employed. He therefore inevitably
concludes that Holmes does not know whether there was an intruder. In other words,
Watson’s expressive power is not rich enough to include Holmes’ knowledge of no intruder
through the specific theorem “no barking implies no intruder”. Moreover, Watson, within
the bounds of his awareness, is not making a mistake.

However, Watson does make a mistake outside the bounds of his awareness. In particular,
Watson underestimates Holmes’ knowledge because he falsely believes one of the following.
First, that he is aware of everything. Second, that whatever he is unaware of, Holmes is
also unaware of. Third, that Holmes is aware of something (e.g. the dog) that Watson is
unaware of, but it is of no use to Holmes to determine whether there was an intruder (e.g.
because Holmes does not know whether the dog barked or not).3

To conclude the example, Holmes and Watson are exposed to the same information
and the standard model would specify that they have the same state space and the same
partition. However, Watson’s reasoning is limited in three ways. First, his expressive power
is poorer than Holmes’, limiting the events that he knows and the events he knows that he
does not know. Second, Watson misses information because he is unaware of its existence
and cannot make the necessary deductions. As a result, his knowledge about an event he
is aware of is constrained by a theorem that he is unaware of. Finally, Watson incorrectly
deduces that Holmes does not know whether there was an intruder. This is not a result
of a logical mistake, but of Watson’s constrained reasoning, due to his unawareness of the
theorem “no barking implies no intruder”.

Suppose Holmes pointed out to Watson that the incident of the dog is important. Once
Watson becomes aware of the dog, he can collect the information of the dog not barking that
was always available to him, become aware of the theorem “no barking implies no intruder”,
and answer the question whether there was an intruder. Increased awareness can lead to
increased knowledge about questions that one was already aware of.

1.2 Related literature

Unawareness and unforeseen contingencies have been studied using decision theoretic and
epistemic approaches. In terms of decision theory, Kreps (1979) was the first to model
preference for flexibility and derive a subjective state space. Kreps (1992) interpreted this as
a model of unforeseen contingencies. Ghirardato (2001), Mukerji (1997), Skiadas (1997) and
Nehring (1999) also model unforeseen contingencies. Dekel et al. (2001) derives an essentially
unique subjective state space and shows that its size provides a measure of the agent’s
uncertainty about future contingencies. Sagi (2006) provides a definition for a subjective

3These three types of false beliefs cannot be captured by the present model (the same is true for other
set-theoretic models in the literature) because knowledge and awareness always refer to specific events. That
is, the model is not rich enough to capture notions such as “everything” or “something”. Halpern and
Rêgo (2009a), Board and Chung (2006), Sillari (2008) and Halpern and Rêgo (2009b) construct syntactic
(logic-theoretic) models of agents who can reason about being unaware of “something”.
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state space that is topologically unique. Epstein et al. (2007) highlights the connection
between ambiguity and coarse perceptions by axiomatizing a multiple priors utility without
an objective state space. Higashi and Hyogo (forthcoming) axiomatizes a non-Archimedean
model with subjective states. Rustichini (2002) extends the preference for flexibility model
to many periods and axiomatizes an additive representation over a subjective state space.
Finally, Kochov (2011) provides, in a dynamic setting, a definition of unforeseen contingencies
that is based on preferences and shows that his model is behaviorally distinct from recursive
models of ambiguity.

Models of knowledge (and of unawareness) are either syntactic or semantic (set-theoretic).
The two approaches are equivalent, but syntactic models are widely used by logicians and
computer scientists, while set-theoretic ones are more common in the economics literature,
following Aumann (1976). Beginning with Fagin and Halpern (1988), there has been a
stream of syntactic models, namely Halpern (2001), Modica and Rustichini (1994, 1999),
Halpern and Rêgo (2008), Halpern and Rêgo (2009a), Heifetz et al. (2008a), Board and
Chung (2006) and Galanis (forthcoming). Applications with unawareness have been provided
by Modica et al. (1998), Ewerhart (2001), Feinberg (2004, 2005, 2009), Sadzik (2006), Čopič
and Galeotti (2007), Li (2006b), Heifetz et al. (2009), Heifetz et al. (2008b), von Thadden and
Zhao (2008), Zhao (2008), Filiz-Ozbay (2008), Ozbay (2008), Galanis (2010) and Halpern
and Rêgo (2006).

Geanakoplos (1989) provides one of the first set-theoretic models that deals with unaware-
ness, by using non-partitional information structures, defined on a standard state space.
However, Dekel et al. (1998) proposes three intuitive properties for unawareness and shows
that they are incompatible with the use of a standard state space. Addressing this impossi-
bility result has been achieved with two different approaches. The first is by arguing against
one of the properties (Chen et al. (2009)), or by relaxing them (Xiong (2007)). The second
is by introducing multiple state spaces, one for each state of awareness. This approach was
initiated by Li (2009) and Heifetz et al. (2006) (HMS from now on) and is being followed by
the present paper.4

Before illustrating the differences between these models, recall that the standard model of
knowledge (Aumann (1976)) specifies a unique state space Ω and a possibility correspondence
P i which maps states in Ω to subsets of Ω. The interpretation is that for any ω ∈ Ω, the set
P i(ω) denotes the states that the agent considers possible when ω has occurred. In contrast,
modelling unawareness using multiple state spaces leads to a possibility correspondence that
maps states of any possible state space to subsets of possibly different state spaces. The
reason is that awareness varies with the state. For example, suppose that state ω ∈ Ω
specifies that the agent’s awareness is different, so that if ω occurs, the agent’s state space is
Ω′, not Ω. Then, the set of states that the agent considers possible, P i(ω), is a subset of Ω′

and not of Ω. As a result, a model with unawareness has to impose axioms on the possibility
correspondence P i, restricting what it prescribes across different state spaces.

One of the main differences between this model and the set-theoretic models of Li (2009)
and HMS is that weaker restrictions are imposed here on what the possibility correspondence
P i prescribes across state spaces.

Li assumes a possibility correspondence P i, just as in the standard model, which maps

4Halpern and Rêgo (2008) and Heifetz et al. (2008a) provide syntactic foundations of HMS.
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Figure 1: Projecting knowledge downwards.

full states to subsets of the full state space Ω∗, which, in Li’s terminology, is the most
complete state space.5 For each full state ω∗ ∈ Ω∗, P i(ω∗) denotes the set of full states
that the agent would consider possible if he were fully aware. In Li’s terminology, P i(ω∗)
denotes the agent’s factual information. If the agent is not fully aware at ω∗, so that his
state space is different from the full state space, then what he actually perceives as possible
is the projection of P i(ω∗) onto the state space that he is aware of. Similarly, when i reasons
about j’s knowledge, he projects j’s full state partition to i’s state space. HMS follow a
similar approach. Their property “Projections Preserve Knowledge” requires that if the
agent considers states in P i(ω) to be possible at ω, then at the projection of ω to a more
limited state space S he considers possible the projection of P i(ω) to S. In essence, these
two properties place a restriction on what the possibility correspondence can prescribe across
different state spaces.

In order to illustrate why these two properties are restrictive, recall the Holmes example
depicted in Figure 1. The two relevant dimensions or questions of the problem are “Did the
dog bark?” and “Was there an intruder?”. Holmes is always aware of both questions, so
his subjective state space is the full state space, containing the four states (ω1, ω2, ω3, ω4) on
the plane. At state ω4, which specifies that there was no intruder and no barking, Holmes
knows that there is no intruder because he knows that the dog did not bark and he is also
aware of and knows the theorem “no barking implies no intruder”. Hence, PH(ω4) = ω4. At
states ω1 and ω2 the dog barks and Holmes does not know whether there was an intruder,
hence PH(ω1) = PH(ω2) = {ω1, ω2}. Finally, state ω3 is impossible.6

Watson is only aware of the question “Was there an intruder?”. His subjective state space
consists of states ω5 and ω6 on the horizontal axis. Since he never knows whether there is an

5Since the full state space Ω∗ is the most complete state space, only an agent who is fully aware, is also
aware of Ω∗. A full state ω∗ is an element of the full state space.

6Formally, the full state space only contains three states, S∗ = {ω1, ω2, ω4}, since ω3 is impossible and
hence nonexistent. We have included ω3 in the graph and in the example just for illustrative purposes, to
highlight the connection with the theorem “no barking implies no intruder”.
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Figure 2: Allowing for unawareness of theorems.

intruder, his information is trivial. Formally, PW (ω) = {ω5, ω6} for ω ∈ {ω1, ω2, ω4, ω5, ω6}.
How will Watson reason at ω6 about Holmes’ knowledge (PH(ω6))? As modeled by Li

(2009) and HMS, this is determined by projecting PH(ω4) = ω4 and PH(ω2) = {ω1, ω2} to
the lower state space, because both ω4 and ω2 project to ω6. This is clearly not possible
because the first projection yields {ω6} while the second yields {ω5, ω6}. Therefore, we cannot
simultaneously have the following. First, Holmes does not know there was no intruder in one
state, while he knows in another state because of a theorem that Watson is always unaware
of. Second, Watson is certain that Holmes never knows whether there was an intruder.7

In order to accommodate the example so that Watson reasons that Holmes does not know
whether there is an intruder, we have to abandon projections.8 When Watson reasons about
Holmes at ω6, he is unaware of the theorem “no barking implies no intruder” and therefore
he cannot reason that Holmes is aware of it. We model this by having PH(ω6) = PH(ω5) =
{ω5, ω6}, so that Watson reasons that Holmes does not know. This is depicted in Figure 2.

The example suggests that unawareness can restrict Watson’s reasoning about Holmes’
knowledge, concerning an event that both are aware of. This is not captured in other papers
that model unawareness. Moreover, Watson makes no mistake within the bounds of his
awareness. It is true that with Watson’s awareness, Holmes would not know that there is no
intruder and Watson can reason only up to his awareness. Essentially, there are two different
views of Holmes’ knowledge. The first belongs to Holmes and the second to Watson.

7It is possible to construct an example, within the HMS and Li (2009) framework, that satisfies the first
requirement only. But in that case Watson will be aware that there is a possibility that Holmes knows,
although he cannot determine whether this possibility has occurred. This version of the story seems natural
because everyone “knows” that Holmes is very smart. However, in my model I also allow for the second
requirement which is more plausible if we talk about two “regular” agents, where it is not “commonly known”
that one is always smarter than the other.

8The only other way of accommodating the example is by allowing for false beliefs. But, as was argued
before, this carries the excess baggage of allowing for any kind of false beliefs, even those unrelated to
unawareness.
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This is formally captured in this model by creating one knowledge operator for each
state space S. If Watson’s state space is S, then his view of Holmes’ knowledge is given by
knowledge operator Ki

S. Holmes’ state space is S ′, so his view of Holmes’ knowledge is given
by Ki

S′ . Moreover, S ′ is “more expressive” than S. In the model this is captured by having a
partial order � on the collection of state spaces. The relationship between the two different
views about knowledge is given by the property Awareness Leads to Knowledge. It states
that if S ′ is more expressive than S, then Ki

S′ gives a better description of one’s knowledge
than Ki

S. HMS specify one knowledge operator Ki so that there is always one objective view
of Holmes’ knowledge.

A few clarifications are in order. First, is it the case that these multiple knowledge
operators can somehow be incorporated in frameworks that have been proposed by other
papers? For instance, is the present model a generalization of HMS? The answer is no. In
Galanis (forthcoming) we construct a syntactic model which provides a complete and sound
axiomatization of the present model. By comparing it with the syntactic model of Heifetz
et al. (2008a), (which is a complete and sound axiomatization of HMS) we show that the
model of the present paper is neither a generalization nor a weakening of HMS.

Second, agents are not allowed to make mistakes within the bounds of their awareness.
In other words, the axiom of knowledge, when interpreted locally, is not violated, meaning
that if an agent knows an event, then the event is true. The axiom is not violated because
we allow for multiple knowledge operators, one for each state space. In the example, Watson
knows the complement (negation) of the event KH

S ({ω6}), (Holmes does not know ω6), where
{ω6} is the event “there is no intruder”. The axiom of knowledge says that the complement
of KH

S ({ω6}) must be true, but it does not specify that the complement of KH
S′({ω6}) should

also be true, because Watson is unaware of that event and hence he does not know it.
Therefore, although Watson makes a mistake outside the bounds of his awareness (from the
perspective of the analyst), within these bounds he remains correct.

Third, outside the bounds of his awareness Watson is only allowed to “make mistakes”
about the ignorance of others and only when he lacks awareness that the others have. We
show that formally by defining global operator Ki and showing that the axiom of knowledge
is violated only when i reasons about j’s ignorance, that is, only when ¬Kj is included in
the chain of interactive reasoning.

The paper is organized as follows. Section 2 introduces the model and proves the main
properties of the knowledge and awareness operators. Section 3 describes the multi-agent
model; in particular, common knowledge is defined and characterized in terms of a self evident
event. Section 4 examines no-trade theorems. Proofs are contained in the Appendix.

2 The Model

2.1 Preliminaries

Consider a complete lattice of disjoint state spaces S = {Sa}a∈A and denote by Σ = ∪a∈ASa

the union of these state spaces. A state ω is an element of some state space S. Let �
be a partial order on S. For any S, S ′ ∈ S, S � S ′ means that S ′ is more expressive
than S. Moreover, there is a surjective projection rS′

S : S ′ → S. Projections are required
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to commute. If S � S ′ � S ′′ then rS′′
S = rS′

S ◦ rS′′

S′ . If ω ∈ S ′, denote ωS = rS′
S (ω) and

ωS′′ = {ω′ ∈ S ′′ : rS′′

S′ (ω
′) = ω}. If E ⊆ S ′, denote by ES = {ωS : ω ∈ E} the restriction of E

on S and by ES′′ =
⋃
{ωS′′ : ω ∈ E} the enlargement of E on S ′′. Let g(S) = {S ′ : S � S ′}

be the collection of state spaces that are at least as expressive as S. For a set E ⊆ S,
denote by E↑ =

⋃
S′∈g(S) E

S′ the enlargements of E to all state spaces which are at least as

expressive as S. Let rS
S be the identity for any S ∈ S.

Consider a possibility correspondence P i : Σ→ 2Σ \ ∅ with the following properties:

(0) Confinedness: If ω ∈ S then P i(ω) ⊆ S ′ for some S ′ � S.

(1) Generalized Reflexivity: ω ∈ (P i(ω))↑ for every ω ∈ Σ.

(2) Stationarity: ω′ ∈ P i(ω) implies P i(ω′) = P i(ω).

(3) Projections Preserve Ignorance: If ω ∈ S ′ and S � S ′ then (P i(ω))↑ ⊆ (P i(ωS))↑.

(4) Projections Preserve Awareness: If ω ∈ S ′, ω ∈ P i(ω) and S � S ′ then ωS ∈ P i(ωS).

(5) Projections Preserve Knowledge: If S � S ′ � S ′′, ω ∈ S ′′ and P i(ω) ⊆ S ′ then
(P i(ω))S = P i(ωS).

The setting above is identical to that of HMS. The first difference with the present
model is that we drop the last axiom, Projections Preserve Knowledge (PPK). To argue
against PPK, consider the example in the introduction. There are two different state spaces,
S ′ = S ′′ = {ω1, ω2, ω4} and S = {ω5, ω6}. At ω4, Holmes is aware of the theorem “no barking
implies no intruder” and he knows that there is no intruder. Hence, PH(ω4) = {ω4}. Since
the projection of ω4 to S is ω6, PPK implies that PH(ω6) = {ω6}. As was argued in the
introduction, this is restrictive. In order to allow for PH(ω6) = {ω5, ω6}, we drop PPK.

2.2 Events, awareness and knowledge

Dropping PPK means that we also need to change the definitions of knowledge, awareness
and events. In the setting of HMS, a set E ⊆ Σ is an event if it is of the form F ↑, where
F ⊆ S for some state space S ∈ S. The negation of E, denoted ¬E, is defined as (S \ F )↑.
Hence, an event in the setting of HMS contains states lying in different state spaces. For an
event E, knowledge of E is defined to be Ki(E) = {ω ∈ Σ : P i(ω) ⊆ E}. With PPK, Ki(E)
and ¬Ki(E) are also events, so Ki¬KjKk(E), for example, is well defined.

However, if we drop PPK then Ki(E) and ¬Ki(E) may not be events. Consider the
following example with two state spaces, S ′ = {ω′1, ω′2, ω′3} and S = {ω1, ω2, ω3}, where
S ≺ S ′. Moreover, ω′1 projects to ω1, ω′2 projects to ω2 and ω′3 projects to ω3. The agent’s
possibility correspondence is such that P i(ω′) = {ω′} for ω′ ∈ S ′, P i(ω1) = P i(ω2) =
{ω1, ω2}, P i(ω3) = {ω3}. The possibility correspondence satisfies all properties except for
PPK. Consider the event E = {ω2, ω3, ω

′
2, ω

′
3}. Then, Ki(E) = {ω3, ω

′
2, ω

′
3} is not an event

and hence ¬Ki(E) is not defined.
As was suggested in the introduction, dropping PPK allows for differences in awareness to

imply different views about knowledge. In the example, Watson’s view of Holmes’ knowledge
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is different from Holmes’ view. Hence, together with the objective description of an agent’s
knowledge there are also several subjective descriptions, one for each state of awareness.
Formally, for each state space S ∈ S, Ki

S(E) captures the subjective (or local) description
of the agent’s knowledge about E.

Moreover, allowing for different views of knowledge requires that we also change the
definition of an event. The reason is that Ki

S(E) describes “knowledge of E, with the
vocabulary of state space S”. Since we want Ki

S(E) to be an event, we require that an event
is a subset of some state space. Hence, contrary to HMS, an event does not contain states
lying in different state spaces.

Formally, an event is a pair (E, S), where E ⊆ S and S ∈ S. The negation of (E, S),
defined by ¬(E, S) = (S \E, S), is the complement of E with respect to S. Let E = {(E, S) :
E ⊆ S, S ∈ S} be the set of all events. We write E as a shorthand for (E, S) and ∅S as a
shorthand for (∅, S). For each event E, let S(E) be the state space of which it is a subset.
An event E “inherits” the expressiveness of the state space of which it is a subset. Hence,
we can extend � to a partial order �0 on E in the following way: E �0 E

′ if and only if
S(E) � S(E ′). Abusing notation, we write � instead of �0.

Before defining knowledge, we need to define awareness. For any event E, for any state
space S such that S � E, define

Ai
S(E) = {ω ∈ S : E � P i(ω)}9

to be the event which describes, with the vocabulary of S, that the agent is aware of event
E. The agent is aware of an event whenever his possibility set resides in a state space that
is rich enough to express event E. Unawareness is defined as the negation of awareness.
More formally, for any state space S such that S � E, the event U i

S(E) describes, with the
vocabulary of S, that the agent is unaware of E:

U i
S(E) = ¬Ai

S(E) = (S \ Ai
S(E), S).

Let Ωi : Σ → S be such that for any ω ∈ Σ, Ωi(ω) = S if and only if P i(ω) ⊆ S. Ωi(ω)
denotes the most expressive universal event that the agent is aware of at ω. We can therefore
interpret Ωi(ω) as agent i’s state space at ω. An agent knows an event E if he is aware of
it and in all the states he considers possible, E is true. Formally, for any event E, for any
state space S such that S � E, define

Ki
S(E) = {ω ∈ Ai

S(E) : P i(ω) ⊆ EΩi(ω)}10

to be the event which describes, with the vocabulary of S, that the agent knows event E.
Since there are many knowledge operators, one for each state space S, a natural question

that arises is how do we determine which is used on every instance. As the motivating

9An equivalent definition is ÃS(E) = {ω ∈ S : P i(ω) ⊆ S′ with S′ � S(E)}. This is exactly the definition
of the awareness operator in HMS, except that here it is restricted to states in S.

10Note that conceptually it is not possible to define Ai
S(E), U i

S(E) and Ki
S(E) when S � E. The reason

is that one cannot describe the awareness and knowledge of E in a language that cannot describe E. Such
a definition would create other problems. To give an example, suppose that we defined Ai

S(E) = (∅, S) and
S ≺ E. Then, U i

S(E) = (S, S). If an agent is aware of S but not of E at ω ∈ S, we would have that
ω ∈ Ki

SU i
S(E), which is undesirable.

10



example (and Proposition 1 below) shows, if S ′ � S then Ki
S′ gives a more accurate picture

of i’s knowledge than Ki
S does. Hence, if j’s (most complete) state space is S, she will use

Ki
S to describe i’s knowledge. See Section 2.4 for a discussion of interactive reasoning.

2.3 Awareness Leads to Knowledge

The next property is the most important departure from other models dealing with unaware-
ness.

Proposition 1. Awareness Leads to Knowledge
If E � S � S ′ then Ki

S(E) ⊆ (Ki
S′(E))S ∩ Ai

S(E).

This feature is new. On the one hand, the standard model assumes an agent who is aware
of everything and knows all relevant theorems. On the other hand, the property Projections
Preserve Knowledge of HMS implies that Ki

S(E) = (Ki
S′(E))S ∩ Ai

S(E). Nothing is lost by
describing knowledge in less expressive state spaces.

The condition E � S � S ′ ensures that S and S ′ are rich enough to describe the agent’s
knowledge and awareness of E, so that Ki

S(E), Ki
S′(E) and Ai

S(E) are well defined. The
property says that state spaces which are more expressive give a more complete description
of the agent’s knowledge. In other words, whatever we capture by describing knowledge with
S, we can capture by describing knowledge with the more expressive S ′. But the converse is
not true.

Recall the example in the introduction. On the one hand, Holmes is aware of S ′ and
state ω ∈ S ′ specifies that the dog did not bark, there is no intruder, and because of the
theorem “no barking implies no intruder”, Holmes knows event E, “there is no intruder”.
Hence, ω ∈ KH

S′(E). On the other hand, Watson is aware of S, and his limited perception
of the truth is ωS, specifying that there is no intruder and that Holmes is aware of E, so
ωS ∈ AH

S (E). The property allows for ωS /∈ KH
S (E), so that according to Watson’s limited

view, Holmes does not know E at ωS.
As was argued in the introduction, the reason behind Watson’s reasoning about Holmes

is Watson’s unawareness of the theorem “no barking implies no intruder”. Intuitively, if a
state space is more complete then it may also include more “theorems”, and in effect contain
more ways in which an agent can know an event. Conversely, what an agent is unaware of
constrains his knowledge about events he is aware of. In the multi-agent case an agent’s
limited awareness may lead to incomplete reasoning about other agents’ knowledge. See
Section 3.1 for further discussion and illustration of this property in the multi-agent context.

The Awareness Leads to Knowledge property can best be understood as a comparative
statics property. It specifies what happens to the description of knowledge as we move
to richer vocabularies. It does not, however, specify what would happen if the agent’s
awareness were higher because the model is static and the full state that has occurred has
determined everything about the agents’ awareness and knowledge. In other words, Holmes’
knowledge is independent of Watson’s awareness and the vocabulary that he uses. But
Watson’s perception of Holmes’ knowledge is not.

11



2.4 Interactive reasoning

The Awareness Leads to Knowledge property shows that the description of knowledge de-
pends on the state space/vocabulary used for that description. In other words, if S ′′ � S ′

then Ki
S′′(E) is not just the enlargement of Ki

S′(E) but can be a very different event quali-
tatively.

This is one of the main differences between the present model and those of HMS and Li
(2009) and has direct implications for modelling interactive knowledge. In particular, the
sentence “i knows that j knows E” has only one interpretation in those models (and in the
standard model) because there is one knowledge operator. In this model however, one needs
to specify in which state space j’s knowledge of E is described. In other words, because
Kj

S′′(E) is not just the enlargement of Kj
S′(E), event Ki

SK
j
S′′(E) is qualitatively different

from Ki
SK

j
S′(E).

However, one can also interpret sentence “i knows E” as describing i’s knowledge of E
in all possible state spaces. We define

Ki(E) =
⋃

S�E

Ki
S(E),

which contains all descriptions of i’s knowledge of event E, Ki
S(E), for all state spaces that are

rich enough to describe E. Similarly, we define i’s ignorance of E as ¬Ki(E) =
⋃

S�E

¬Ki
S(E),

her awareness Ai(E) =
⋃

S�E

Ai
S(E) and her unawareness U i(E) =

⋃
S�E

U i
S(E).11 Note that

Ki(E) is not an event anymore as it contains states from different state spaces. If property
PPK was assumed in the model then Ki(E) would be an event according to the definition
of Heifetz et al. (2006). Here, however, this is not true because PPK is violated, as is also
shown in the motivating example.

Still, we can define interactive knowledge using these global operators by saying that “i
knows that j knows E at ω” if for all states that i considers possible, P i(ω), j knows E.
Therefore, we define that ω ∈ KiKj(E) if P i(ω) ⊆ Kj(E), which means that P i(ω) ⊆ Kj

S(E)
for some state space S.

We generalize the above for higher orders of interactive reasoning among any finite num-
ber of agents. Formally, if E ′ is not an event and therefore contains states from different
state spaces, define knowledge,

Ki(E ′) = {ω ∈ Σ : ω � ω′ for some ω′ ∈ E ′ and P i(ω) ⊆ E ′},

ignorance,

¬Ki(E ′) = {ω ∈ Σ : ω � ω′ for some ω′ ∈ E ′ and P i(ω) * E ′},

awareness,

Ai(E ′) = {ω ∈ Σ : ω � ω′ for some ω′ ∈ E ′ and Ωi(ω) � ω′ for some ω′ ∈ E ′}
11Note that if S � E and Ki

S(E) is defined but empty, then ∅S ∈ Ki(E).
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and unawareness,

U i(E ′) = {ω ∈ Σ : ω � ω′ for some ω′ ∈ E ′ and Ωi(ω) � ω′ for all ω′ ∈ E ′}.

State ω belongs to Ki(E ′) if two conditions are satisfied. First, ω can describe E ′, that is,
ω � ω′ for some state ω′ ∈ E ′. Second, all the states considered possible at ω are contained
in E ′. The other operators are interpreted similarly. We make the convention that if ω ∈ S
satisfies the first condition but no state in S satisfies the second condition, then ∅S ∈ Ki(E),
and similarly for the other operators.12 Hence, the sentence “i knows that j knows that
k knows that l knows event E” is described by KiKjKkK l(E), and similarly for higher
orders or sentences that involve ignorance, awareness and unawareness. The difference of
these global operators with the local operators Ki

S, Ai
S is that Ki gives the description of i’s

knowledge in all state spaces that can describe E.

2.5 Properties of the operators

The next two Theorems verify properties that have been proposed in the literature, or are
generalizations of properties of the standard model. The first Theorem describes properties of
the local operators Ki

S, ¬Ki
S, Ai

S, U i
S, whereas the second Theorem describes the properties

of the global operators Ki, ¬Ki, Ai and U i. Note that the same properties hold in the
multi-agent model as well.

2.5.1 Local operators

Theorem 1. Suppose E, F are events and E,F � S. Then,

1. Subjective Necessitation For all ω ∈ S, ω ∈ Ki
S(Ωi(ω)).

2. Monotonicity ES(E)∨S(F ) ⊆ F S(E)∨S(F ), F � E =⇒ Ki
S(E) ⊆ Ki

S(F ).

3. Conjunction Ki
S(E) ∩Ki

S(F ) = Ki
S

(
ES(E)∨S(F ) ∩ F S(E)∨S(F )

)
.

4. The Axiom of Knowledge Ki
S(E) ⊆ ES.

5. The Axiom of Transparency ω ∈ Ki
S(E) ⇐⇒ ω ∈ Ki

S(Ki
Ωi(ω)(E)).

6. The Axiom of Wisdom ω ∈ Ai
S(E)∩¬Ki

S(E) ⇐⇒ ω ∈ Ki
S(Ai

Ωi(ω)(E)∩¬Ki
Ωi(ω)(E)).

7. Plausibility U i
S(E) ⊆ ¬Ki

S(E) ∩ ¬Ki
S¬Ki

S(E).

8. Strong Plausibility U i
S(E) ⊆ ¬Ki

S(E) ∩ ¬Ki
S¬Ki

S(E) ∩ . . . ∩ ¬Ki
S¬Ki

S . . .¬Ki
S(E).

9. AU Introspection U i
S(E) ⊆ U i

SU
i
S(E).

10. KU Introspection Ki
SU

i
S(E) = ∅S.

11. Symmetry U i
S(E) = U i

S(¬E).

12Note that if ∅S ∈ E′ and Ωi(ω) � S, then ω ∈ Ai(E′).
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12. AA-Self Reflection ω ∈ Ai
S(E) ⇐⇒ ω ∈ Ai

S(Ai
Ωi(ω)(E)).

13. AK-Self Reflection ω ∈ Ai
S(E) ⇐⇒ ω ∈ Ai

S(Ki
Ωi(ω)(E)).

14. A-Introspection ω ∈ Ai
S(E) ⇐⇒ ω ∈ Ki

S(Ai
Ωi(ω)(E)).

The first six properties are generalizations of the standard properties. Some of these
generalizations are proposed by Li (2009). Plausibility, strong plausibility, AU introspection
and KU introspection are proposed by Dekel et al. (1998). Symmetry, AA-Self reflection,
AK-Self reflection and A-Introspection are proposed by Modica and Rustichini (1999) and
Halpern (2001).

The most interesting property is the axiom of knowledge, which specifies that whenever
an agent knows an event, then this event is true. Note that the property applies to each
knowledge operator, Ki

S, for each state space S. However, what we require here is still
weaker than the equivalent property in HMS, which applies the axiom of knowledge to a
unique knowledge operator Ki. The reason is that we allow for the case (as in the Watson
example) that agent i knows ¬Kj

S(E), he is unaware of S ′ and both events ¬Kj
S(E) and

Kj
S′(E) are true.

Subjective necessitation states that at any state ω, the agent knows his state space, which
is Ωi(ω). Monotonicity says that if at ω the agent knows event E, he is aware of F and E
implies F , then he knows F . These two events may be subsets of different state spaces, so
the usual notion of implication, E ⊆ F , is not defined. Li (2009) has proposed a generalized
version of implication: The event E implies the event F if the enlargement of E to the join
of spaces S(E) and S(F ) is a subset of the respective enlargement of F . Conjunction states
that the agent knows events E and F if and only if he knows that E and F have occurred.
If E and F are subsets of different state spaces then their conjunction is the intersection of
their enlargements to the meet of state spaces S(E) and S(F ).

The next two properties generalize the axioms of transparency and wisdom. The axiom
of transparency states that the agent knows an event E at ω if and only if he knows that he
knows it at ω. Moreover, this is equivalent to knowing Ki

Ωi(ω)(E), which is the event “the
agent knows event E”, expressed in the awareness of the agent at ω. The axiom of wisdom
is similar. The agent is aware of but does not know event E if and only if he knows that he
is aware of and does not know it.

Plausibility states that if the agent is unaware of an event, then he does not know it, and
he does not know that he does not know it. Strong Plausibility extends the result for any
higher order of not knowing that he does not know. AU Introspection specifies that if the
agent is unaware of an event, then he is unaware that he is unaware of it. KU Introspection
states that the agent cannot know that he is unaware of an event E.

Symmetry states that if an agent is unaware of an event, then he is also unaware of its
negation. Properties AA-Self Reflection, AK-Self Reflection and A-Introspection say that
equivalent conditions for an agent to be aware of an event is that he is aware that he is aware
of it, he is aware that he knows it and he knows that he is aware of it.
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2.5.2 Global operators

Say that set E has a base if there exists ω ∈ E such that for all ω′ ∈ E, ω′ � ω.13 If ω
belongs to state space S we call S the base of E and denote it as b(E). An event has a
base by construction. Moreover, it is straightforward to show that if set E has a base, then
X i(E) has a base as well, where X i = Ki,¬Ki, Ai, U i. Therefore, only sets with a base
can describe interactive reasoning. For a set E with base b(E), its negation is defined as
¬E = {ω ∈ Σ : ω /∈ E and ω � b(E)}.

A set E is expanding if for state spaces S � S ′, whenever ω ∈ S ′ ∩E we have ωS ⊆ E.
If a set is expanding then whatever is described in a lower state space, it is also described
in a higher state space. Note that Ai(E) and U i(E) are always expanding sets and if E is
an event or an expanding set then Ki(E) is expanding, but ¬Ki(E) might not be.14 In the
following Theorem, when it is not specified whether E is an event, the property is proven
for both cases.

Theorem 2. Suppose that E and F have bases.15

1. Subjective Necessitation Ki(Σ) = Σ.

2. Monotonicity If E,F are not events then E ⊆ F =⇒ Ki(E) ⊆ Ki(F ). If E, F are
events then ES(E)∨S(F ) ⊆ F S(E)∨S(F ), F � E =⇒ Ki(E) ⊆ Ki(F ).

3. Conjunction If E,F are not events then Ki(E) ∩Ki(F ) = Ki(E ∩ F ). If E, F are
events then Ki(E) ∩Ki(F ) = Ki

(
ES(E)∨S(F ) ∩ F S(E)∨S(F )

)
.

4. The Axiom of Knowledge If E is an event then Ki(E) ⊆
⋃

S�E

ES. If E is not an

event then, for any j ∈ I, KiAj(E) ⊆ Aj(E) and KiU j(E) ⊆ U j(E). If it is expanding
then KiKj(E) ⊆ Kj(E).

5. The Axiom of Transparency Ki(E) = KiKi(E).

6. The Axiom of Wisdom Ai(E) ∩ ¬Ki(E) ⊆ Ki(Ai(E) ∩ ¬Ki(E)).

7. Plausibility U i(E) ⊆ ¬Ki(E) ∩ ¬Ki(¬Ki(E)).

8. Strong Plausibility U i(E) ⊆ ¬Ki(E) ∩ ¬Ki¬Ki(E) ∩ . . . ∩ ¬Ki¬Ki . . .¬Ki(E).

9. AU Introspection U i(E) ⊆ U iU i(E).

10. KU Introspection KiU i(E) = ∅.
13Note that it could be that ω = ∅S , for some S.
14 For U i(E), suppose ω ∈ U i(E) ∩ S′ and S � S′. Then, ω � ω′ for some ω′ ∈ E and P i(ω) � ω′ for all

ω′ ∈ E. Take ω′′ ∈ S � S′ such that ω′′S′ = ω and suppose P i(ω′′) � ω′ for some ω′ ∈ E. From generalized
reflexivity, ω′′Ωi(ω′′) ∈ P i(ω′′) � P i(ω). From PPA and because ω′′S′ = ω we have that P i(ω) ⊆ S′ � ω′

for some ω′ ∈ E, a contradiction. Therefore, ωS ⊆ U i(E). For Ki(E), suppose E is expanding and
ω ∈ Ki(E)∩S′, S � S′. Then, P i(ω) ⊆ E. From PPI and because E is expanding we have that P i(ω′) ⊆ E
for each ω′ ∈ ωS , therefore ωS ⊆ Ki(E).

15The fact that E, F have bases is only used in the proof of the axiom of knowledge.
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11. Symmetry U i(E) = U i(¬E).

12. AA-Self Reflection Ai(E) = AiAi(E).

13. AK-Self Reflection Ai(E) = AiKi(E).

14. A-Introspection Ai(E) = KiAi(E).

The interpretation for the properties of the global operators is similar. The most inter-
esting property is the axiom of knowledge, as it shows more clearly how this model differs
from other models of unawareness. The property says that if E is an event and agent i
knows it, then E is true. Therefore, locally the agent does not make mistakes. However,
suppose that E is not an event but has a base, so it can describe interactive reasoning. For
example, suppose E = ¬KkAiAlKj(E ′) where E ′ is an event. Then, it is not necessarily
the case that E is true, even though i knows E. For a counter example, consider Figure 2.
Set E = {ω1, ω2, ω5, ω6} contains all states that describe that Holmes does not know there
was no intruder. That is, E = ¬KH(E ′), where E ′ = {ω6}. At ω4, Watson considers ω5

and ω6 possible, as PW (ω4) = {ω5, ω6}. Hence, ω4 ∈ KW¬KH(E ′). However, ω4 /∈ ¬KH(E)
because Holmes knows E at ω4. Therefore, KW¬KH(E ′) * ¬KH(E ′). Therefore, the agent
errs in her assessment about the reasoning of others.

Does this mean that the model allows for all possible mistakes? The axiom of knowledge
shows that this is not the case, as it restricts the mistakes in interactive reasoning that
are allowed. In particular, only if we have ¬Kj somewhere in the chain of interactive
reasoning can we have failure of the axiom of knowledge, because only then the set may
not be expanding. In all other cases, when an agent knows something about the awareness,
unawareness and knowledge of others, then it is true. This result confirms the intuition
explained in the motivating example and expressed in the property Awareness Leads to
Knowledge.

3 Multi-agent model

3.1 Unawareness and reasoning about others

In a multi-agent context, the property Awareness Leads to Knowledge implies that i’s limited
awareness may impair his reasoning about j’s knowledge. For example, it may be that while
i is aware of E, he wrongly deduces that j does not know it, exactly because i is unaware
of the theorem that led j to know E. This clearly distinguishes the present approach from
that of Li (2009) and HMS, which do not allow for such information processing errors.

To illustrate, suppose that agent i’s state space is Si, while agent j’s state space is Sj and
Sj � Si, so that i is more aware than j. They are both reasoning whether agent k knows
event E. Suppose that both i and j are informed that the true state has occurred. That is,
i is informed that ω has occurred, while j is informed that ωSj has occurred, which is the
projection of ω to the more limited state space. Moreover, suppose that ω ∈ Kk

Si(E) but
ωSj /∈ Kk

Sj (E), which is permitted by the Awareness Leads to Knowledge property. Since i
knows that ω has occurred and j knows that ωSj has occurred, it is the case that i knows

16



that k knows event E, while j knows that k does not know event E! Agents i and j disagree
on what k knows.

It is important to emphasize that j’s information processing error about k’s knowledge
is due to j’s unawareness, not due to j’s logical mistakes. Agent j is not excluding the true
state, he merely perceives a limited version of the truth.

The standard model of knowledge excludes the possibility of two agents disagreeing about
what a third agent knows. To be more precise, it can never be that i knows that k knows an
event, while j knows that k does not know this event. Clearly, if this were to happen then
one agent would be wrong, and the axiom of knowledge would be violated. Li (2009) and
HMS also exclude such a possibility, because they assume that i’s view of j’s knowledge is
the projection of P j to i’s state space. On the contrary, the present model allows for such a
possibility without violating the axiom of knowledge, because knowledge is defined “locally”,
for each state space.

Consider the following example which illustrates how two agents can disagree on what a
third agent knows. Suppose that agent k is inside a basement with no windows, and that
it is raining. Agent j is informed that k is inside the basement, so he reasons that because
k cannot see what is happening outside, he does not know that it is raining, and j knows
that this is the case. On the other hand, agent i is aware of and knows the existence of a
computer in the basement, connected with a camera outside the building. If he is informed
that k is also aware of and knows this, then he can reason that k can see whether it is raining
by checking the computer. Moreover, he knows that this is the case. Concluding, the more
aware agent i knows that k knows that it is raining, while the less aware agent j knows that
k does not know whether it is raining.

It is worth emphasizing that the source of the two agents’ disagreement stems from their
different awareness, not from their different information. Had j been aware of the possibility
of a computer in the basement, even if he did not know whether it is connected with a camera
or whether k was aware of it, would enable him to say that he did not know whether k knows
that it is raining. In that case, i and j would not disagree, but i would have more information.
It is precisely the fact that j is unaware of the possibility of the computer that makes him
know that k does not know that it is raining. Moreover, j is not making any mistakes within
the bounds of his awareness, because it is true that with this limited awareness, k would
not know whether it rained. Finally, this disagreement can only occur if what one agent
is unaware of, constrains his knowledge about what he is aware of, so that the “Awareness
Leads to Knowledge” property is necessary.

3.2 Common knowledge

We define common knowledge using the global operators and show that there is an equivalent
definition using the possibility correspondences, just like in the standard model.

Definition 1. Event E � S is common knowledge among agents i = 1, . . . , I at ω ∈ S if
for any n ∈ N and any sequence of agents i1, . . . , in, ω ∈ Ki1Ki2 . . . Kin(E).

Note that in the standard model, event KiKj(E) is the set of states ω such that

P j(P i(ω)) ⊆ E, where P i(E ′) =
⋃

ω′∈E′

P i(ω′) is the set of states that i considers possible
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if the truth lies in E ′.16 In words, i knows that j knows E if and only if all the states that i
considers possible that j considers possible are contained in event E.

We provide a similar equivalence in Proposition 2. In particular, suppose E is an event
and E ′ is a set of states (not necessarily an event). Slightly abusing notation, write E ′ � E
if for every state ω ∈ E ′, {ω} � E. Moreover, if E ′ � S, write E ′S = {ωS : ω ∈ E ′} for the
set of states that project to S.17

Proposition 2. Event E � S is common knowledge among agents i = 1, . . . , I at ω ∈ S
if and only if for any n ∈ N and any sequence of agents i1, . . . , in, P in . . . P i1(ω) � E and
(P in . . . P i1(ω))S(E) ⊆ E.18

This is a direct generalization of the standard definition of common knowledge, which
specifies that, for any sequence i1 . . . in of agents, P in . . . P i1(ω) ⊆ E. It says that all the
states that i1 considers possible that i2 considers possible that . . . in considers possible are
in a higher state space than S(E) and when projected to S(E) they are contained in E.

For each state space S, the event “Event E is common knowledge”, denoted CKS(E),
is the set of states ω ∈ S such that E is common knowledge at ω. If S is the uppermost
state space then CKS(E) is the most complete description of common knowledge of E.19

If S is not the uppermost state space then CKS(E) is a subjective description of common
knowledge. In other words, CKS(E) denotes what the agent would consider as the expression
of common knowledge of E if his state space was S. One of the main results of the paper is
that more complete state spaces give a better description of one’s knowledge. Similarly, they
give a better description of common knowledge. This property is expressed in the following
Lemma.

Lemma 1. If E � S � S ′ then CKS(E) ⊆ (CKS′(E))S.

3.3 Common knowledge of awareness

Recall that Ωi(ω) is the most expressive universal event that agent i is aware of at ω (his
state space). What is i’s view of j’s most expressive universal event? Define Ωij(ω) to be
the most expressive universal event that i knows that j is aware of:

Ωij(ω) =
∧

ω′∈P i(ω)

Ωj(ω′).20

16For details, see Geanakoplos (1992).
17Note that P i(E′) =

⋃
ω∈E′

P i(ω) is not necessarily an event.

18For simplicity, we write P in . . . P i1(ω) instead of P in(P in−1(. . . P i1(ω))) from now on.
19Such a space exists because S is assumed to be a complete lattice.
20Note that we can have, for example, P i(ω) = {ω, ω′}, Ωj(ω) = S, Ωj(ω′) = S′ and S, S′ are not

comparable. Then, Ωij(ω) = S ∧S′, although i is certain that j’s awareness is higher than S ∧S′. However,
Ωij(ω) represents the most expressive universal event that i knows that j is aware of and this is S ∧S′, even
though he also knows that j is more aware than that (but cannot specify the direction). This is similar to a
situation in the standard model with non-partitional structures. For example, suppose that the state space
is S = {ω, ω1, ω2}. Agent i has the partition P i(ω) = P i(ω1) = {ω, ω1} and P i(ω2) = {ω2}. Agent j has
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Note that state ω′ ∈ Ωi(ω) specifies that the most expressive universal event that j is
aware of is Ωj(ω′). But i does not necessarily know what state has occurred - he only knows
that one state in P i(ω) has occurred. Ωij(ω) is therefore the meet of all the most expressive
universal events that, according to i’s knowledge, j could be aware of.

We can now define the most expressive universal event that, at ω, i knows that j knows
that k is aware of to be

Ωijk(ω) =
∧

ω′∈P j(P i(ω))

Ωk(ω′).

Adding more agents to the sequence can easily be accommodated. For n ≥ 2, define

Ωi1...in(ω) =
∧

ω′∈P in−1 ...P i1 (ω)

Ωin(ω′)

to be the most expressive universal event that i1 knows that i2 knows that . . . that in is aware
of at ω. The following Lemma shows that there is an equivalent definition.

Lemma 2. For any sequence i1, . . . , in,

Ωi1...in(ω) =
∧

ω′∈P i1 (ω)

Ωi2...in(ω′).

Define Ω∧(ω) to be the meet of all state spaces Ωi1...in(ω), for any sequence i1, . . . , in,
n ∈ N:

Ω∧(ω) =
∧

i1...in
n∈N

Ωi1...in(ω).

Lemma 3. Ω∧(ω) is common knowledge at ω ∈ S. Moreover, if E ∈ E is common knowledge
at ω then E � Ω∧(ω).

The Lemma states that each state ω specifies a universal event Ω∧(ω), that every agent
is aware of and this fact is common knowledge. Moreover, Ω∧(ω) is the most complete
universal event with this property, because any event E that is common knowledge at ω
can be expressed within the vocabulary of Ω∧(ω). We can therefore interpret Ω∧(ω) as the
“common” state space at ω.

In the standard model, the set of states that are reachable from ω (the union of P in . . . P i1(ω)
for any sequence i1 . . . in of agents) is partitioned by each agent’s possibility correspondence.
In the present model, the set E of states that are reachable from ω contains states from
different state spaces. But if we assume that (S,�) is well-founded, then Ω∧(ω) = Ωi1...in(ω)
for some finite sequence i1 . . . in of agents.21 The set E ∩ Ω∧(ω) is partitioned by each
agent’s possibility correspondence, just like in the standard model. Moreover, every state in
E \Ω∧(ω), when projected to Ω∧(ω), is contained in E ∩Ω∧(ω). Conversely, any state space
containing a subset which is partitioned by each agent’s possibility correspondence is equal
to Ω∧(ω) for some ω.

a non-partitional structure, so that P j(ω) = P j(ω2) = {ω, ω2} and P j(ω1) = {ω1, ω2}. Then, the smallest
event that, at ω, i knows that j knows is {ω, ω1, ω2}, even though i realizes that j knows more than that,
without being able to specify the direction.

21See Section 3.4 for an explanation of the well-founded assumption.
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3.4 Characterizing common knowledge

In the standard model an event E∗ is common knowledge at ω if and only if there is an event
E which is self evident for all agents, it contains ω and is a subset of E∗. The following
Theorem provides a similar characterization of common knowledge in an environment with
unawareness. The definition of a self evident event is given below, and it is a direct analog
of the standard definition. Recall that if E is an event then S(E) is the state space of which
it is a subset.

Definition 2. Event E is self evident for i ∈ I if E ⊆ Ki
S(E)(E). If E is self evident for all

i ∈ I, then it is called public.

An event E is self evident for agent i ∈ I if whenever it happens, the agent knows it. It is
public if everyone knows it.

The following Theorem provides necessary and sufficient conditions for event E∗ to be
common knowledge, namely that there is a public event E whose enlargement to state
space S contains ω ∈ S, it is more expressive than E∗ (E∗ � E) and it is a subset of the
enlargement of E∗ to S. To prove it we make the additional assumption that (S,�) is well-
founded, so that any non-empty subset X of S contains a �-minimal element.22 23 Meier
and Schipper (2010) was the first paper to introduce well-founded unawareness structures to
prove a no-trade theorem.

Theorem 3. Event E∗ is common knowledge at ω ∈ S if and only if there exists a public
event E such that E∗ � E � S and ω ∈ ES ⊆ E∗S.

4 No-trade theorems

The standard model of knowledge specifies that asymmetric information alone cannot explain
trade. In this section we provide, with an example and a Theorem, an explanation of why
agents with asymmetric information and asymmetric awareness can engage in trade.

The literature on no-trade theorems stems from the well known result of Aumann (1976)
that if agents have common priors and their posteriors about an event are common knowl-
edge, then these posteriors must be identical. This section shows that in an environment
with unawareness the same result is true only for common priors and posteriors which are
defined on the “common” state space, which is the state space that not only everyone is
aware of, but it is also common knowledge that everyone is aware of. However, as the prop-
erty Awareness Leads to Knowledge suggests, state spaces which carry more awareness give
a more complete description of one’s knowledge and posteriors. An example with two agents
shows that although the posteriors defined on this “common” state space are common knowl-
edge and therefore identical, there still can be trade because one agent’s higher awareness
implies that his actual posterior is different and beyond the other agent’s reasoning.

Since the result of Aumann (1976) requires a common prior, we also impose one here. In
particular, we let π be a “common” prior on the most complete state space S∗. The prior

22This means that there is a S ∈ X such that, for all S′ ∈ X, if S′ � S then S′ = S.
23I thank a referee for pointing out the well-founded assumption.
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on each state space S is then the marginal of π on S. The interpretation is that two agents,
with possibly different state spaces, always agree on the prior probability of events they are
both aware of.24

Let π be a prior on the most complete state space S∗ and assume, for simplicity, that
there are, at most, countably many states in S∗. The prior µ on state space S, where S � S∗

is the marginal of π on S. That is, for ω ∈ S, µ(ω) = π(ωS∗), where ωS∗ is the set of states
in S∗ that project to ω. Suppose that at ω′ the agent’s awareness is Ωi(ω′) = S. Let E be
an event that the agent is aware of, that is, E � S. His posterior about E is

qi(E)(ω′) =
µ(P i(ω′) ∩ ES)

µ(P i(ω′))
,

where ES is the set of states in S that project to E.
Let I = {i, j} and suppose µ is the prior on Ω∧(ω), the most complete state space that is

commonly known at ω that both agents are aware of. Let E ⊆ Ω∧(ω) be an event. Agent i’s
posterior about E at ω′ ∈ Ω∧(ω) is given by qi(E)(ω′). Event E∗ specifies that both agents
are aware of E and that i’s posterior is qi, while j’s posterior is qj:

E∗ =
{
ω′ ∈ Ω∧(ω) : qi(E)(ω′) = qi, qj(E)(ω′) = qj

}
.

The following Theorem gives conditions under which common knowledge of posteriors implies
they are equal, reproducing the result of Aumann (1976) for the common state space. We
assume, as in Aumann (1976), that µ(P i(ω′′) ∩ P j(ω′′)) > 0 for all ω′′ ∈ Ω∧(ω).

Theorem 4. Suppose that E∗ is common knowledge at ω, so that it is common knowledge
that i’s posterior is qi and j’s posterior is qj. Then, we have qi = qj.

Theorem 4 states that if the posteriors defined on the common state space are common
knowledge, they are identical. The following example shows that if an agent’s awareness
is bigger than the common one, then his actual posterior may be different and beyond the
other agent’s reasoning. Hence, agents can agree to disagree and trade.

Example

Recall the example in the introduction, depicted in Figure 3.
There are two agents, Holmes and Watson. There are two state spaces, S∗ = {ω1, ω2, ω4}

and S = {ω5, ω6}.25 The union of S and S∗ is Σ. Watson is always unaware of the extra
dimension and his possibility correspondence is such that PW (ω) = {ω5, ω6}, for all ω ∈ Σ.
Holmes’ possibility correspondence is as follows:

PH(ω1) = PH(ω2) = {ω1, ω2},

PH(ω4) = {ω4},
24For a general discussion on the interpretation of common priors in an environment with unawareness,

see section 4.1 in Heifetz et al. (2009).
25State ω3 is impossible so we do not include it in S∗.
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Figure 3: Holmes bets there was no intruder

PH(ω5) = PH(ω6) = {ω5, ω6}.

At ω4, Holmes is aware of both dimensions and because he knows the theorem “no barking
implies no intruder” and he receives information about the dog not barking, he is able to
deduce that there is no intruder. However, Watson, being unaware of the dog, reasons that
Holmes’ possibility correspondence is PH(ω5) = PH(ω6) = {ω5, ω6}.

Let the common prior π on S∗ be such that π(ω1) = 1/2 and π(ω2) = π(ω4) = 1/4. The
common state space is S. Then, the common prior µ on S is such that µ(ω5) = µ(ω6) =
1/2. Suppose that Holmes and Watson bet on whether there is an intruder, that is, on
the occurrence of event E = {ω6}. The posterior of Holmes about E at ω is qH(E)(ω),
while Watson’s is qW (E)(ω). Note that different state spaces give different descriptions of
posteriors.

As discussed in Section 3.3, an event can be common knowledge only if it is expressed
in S.26 At ω4, event {ω5, ω6} is common knowledge, specifying that Holmes’ posterior is
qH(E)(ω5) = qH(E)(ω6), while Watson’s posterior is qW (E)(ω5) = qW (E)(ω6). In accordance
with Theorem 4, qH(E)(ω5) = qH(E)(ω6) = qW (E)(ω5) = qW (E)(ω6) = 1/2.

For Watson this is the end of the story, since he is unaware of the extra dimension of
the dog not barking. However, Holmes is more aware. At ω4, he knows that there is no
intruder and hence he is willing to bet. His posterior about E at ω4 is 1. Hence, although
the posteriors described in S are common knowledge and equal, Holmes’ “actual” posterior
is different.

Discussion

Theorem 4 shows that whenever the posteriors defined on the common state space are
common knowledge, they are identical. Nevertheless, the example showed that if Holmes
is more aware, his true posterior may be different and beyond the other agent’s reasoning.

26Or a less complete state space, which does not exist in this example.

22



Hence, agents can agree to disagree and trade. Note that we could have easily specified that
also Watson was more aware in other dimensions that Holmes is unaware of. In that case,
his true posterior would also be beyond Holmes’ reasoning. But this was not necessary in
order to have trade.

Intuition for this result can be obtained if we interpret the equality of the posteriors as
the outcome of the following procedure, described in the context of the standard model of
knowledge by Geanakoplos and Polemarchakis (1982). Suppose that initially Holmes and
Watson have different posteriors about E, and in particular Holmes has a posterior above a
half and wants to buy, while Watson has a posterior below a half, and wants to sell. Suppose
that they meet and they announce their posteriors and their willingness to trade. Holmes
can then use Watson’s announcement in order to further refine what he knows, by taking
the intersection of his own information with the set of states that describe a posterior below
a half for Watson. Holmes can now announce a possibly different posterior which reflects
his new information, while Watson can use Holmes’ announcement to further refine his own
information. Geanakoplos and Polemarchakis (1982) shows that the agents will eventually
agree on the posteriors.

A necessary condition for this result is that partitions are common knowledge, which
is true in the standard model. It is also true in this model but only for state spaces that
is common knowledge that everyone is aware of. Therefore, the updating of the posteriors
that was described above can only refer to such a common state space. If Holmes is more
aware, then announcing his “true” posterior or his willingness to buy will be of no value to
Watson, because he is simply unaware of the states that would enable Holmes to make these
announcements. As a result, Watson cannot further refine his own knowledge. Updating of
information due to other agents’ actions or announcements still takes place in an environment
with unawareness, but it is constrained by what is common knowledge that everyone is aware
of. Hence, agents can engage in trade when the differences in their posteriors stem from
asymmetric information acquired by theorems that others are unaware of.27

Concluding, we need to emphasize that the purpose of the example is not to show that
there can be trade. This can easily be shown within the framework of the standard model,
by assuming that agents have different priors or that they make mistakes. Unawareness
is a special type of a mistake because the agent is completely rational within the bounds
of his awareness and he cannot recognize that he has committed one, unless his awareness
increases. Therefore, the purpose of the example is to isolate this particular type of mistake
(unawareness of theorems) and use it to provide an interesting or plausible story of why
(otherwise rational) agents might trade.

HMS and Heifetz et al. (2009) also provide alternative examples of speculative trade in
an environment with unawareness. In their setting, an owner contemplates selling his firm
to a potential buyer. The “common” state space specifies that the value of the firm can be
either 100 or 80. The owner is aware of a possible lawsuit that could decrease the firm’s

27In Galanis (2010) we construct a dynamic version of the present model and examine how agents update
their awareness, when they exchange their posteriors. The mechanism is that if an agent hears an announce-
ment that he did not expect (it was a zero probability event for him), he is able to increase his awareness as
much as necessary, so as to rationalize the announcement. We then determine the direction of the awareness
updating.
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value by 20, but not of a possible novelty that could increase its value by 20. The potential
buyer is aware of the novelty but not of the lawsuit. It is shown that “there is common
certainty of preference to trade, but each player strictly prefers to trade”.

Both examples in Heifetz et al. (2009) and in the present paper specify a “common”
state space where agents are indifferent between trading or not, but are willing to trade in
their respective, more complete, state spaces.28 But the reason is different. In the example
of Heifetz et al. (2009), differences in awareness imply differences in the perception of the
payoff relevant state space and wrong reasoning about the other agent’s perception. The
owner thinks that there are three payoff relevant states, yielding 60, 80 and 100, while the
buyer considers payoff relevant states yielding 80, 100 and 120. Both think that the other
agent’s payoff relevant states yield only 80 and 100.

In the example of the present paper, differences in awareness imply differences in poste-
riors about events of the common state space and wrong inferences about the other agent’s
posterior. But both agents agree on the deterministic payoffs of the common state space, that
is, they agree on what constitutes the payoff relevant state space, which specifies whether
there is an intruder. Watson’s posterior about the event “there is no intruder” is 1/2, while
he wrongly deduces that Holmes’ posterior about the same event is also 1/2.

A Appendix

Proof of Proposition 1.
First we prove that if S � S ′, then (Ki

S(E))S′ ⊆ Ki
S′(E). Suppose ω ∈ (Ki

S(E))S′ . Then,
ωS ∈ Ki

S(E), which implies that E � P i(ωS) and P i(ωS) ⊆ EΩi(ωS). Projections Preserve
Ignorance implies that E � P i(ωS) � P i(ω) and P i(ω) ⊆ (P i(ωS))Ωi(ω) ⊆ EΩi(ω). Hence,
ω ∈ Ki

S′(E). Finally, (Ki
S(E))S′ ⊆ Ki

S′(E) implies Ki
S(E) ⊆ (Ki

S′(E))S. Also, note that
Ki

S(E) ⊆ Ai
S(E). That the other direction is not necessarily true is shown by the main

example.

Proof of Theorem 1.

1. Subjective Necessitation Suppose ω ∈ S. Confinedness implies that P i(ω) ⊆ S ′ for
some S ′ � S. Since Ωi(ω) = S ′ we have ω ∈ Ki

S(Ωi(ω)).

2. Monotonicity Suppose ω ∈ Ki
S(E). Then, E � P i(ω) and P i(ω) ⊆ EΩi(ω). Also,

F � P i(ω) which implies S(E) ∨ S(F ) � Ωi(ω) and EΩi(ω) ⊆ FΩi(ω). Therefore,
ω ∈ Ki

S(F ).

3. Conjunction We have that E � P i(ω) and F � P i(ω) if and only if S(E) ∨ S(F ) �
P i(ω). Also, P i(ω) ⊆ EΩi(ω) and P i(ω) ⊆ FΩi(ω) if and only if P i(ω) ⊆ EΩi(ω) ∩
FΩi(ω) = (ES(E)∨S(F ) ∩ F S(E)∨S(F ))Ωi(ω). The latter equality follows because ω1 ∈
(ES(E)∨S(F ) ∩ F S(E)∨S(F ))Ωi(ω) ⇐⇒ {ω1}S(E)∨S(F ) ∈ ES(E)∨S(F ) ∩ F S(E)∨S(F ) ⇐⇒
ω1 ∈ EΩi(ω) ∩ FΩi(ω).

28In the example of this paper only one agent’s state space is more expressive than the common state
space. This can easily be extended to an example where this is true for both agents.
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4. The Axiom of Knowledge ω ∈ Ki
S(E) implies E � P i(ω) and P i(ω) ⊆ EΩi(ω).

Generalized Reflexivity implies ωΩi(ω) ∈ P i(ω). Hence, ωΩi(ω) ∈ EΩi(ω), which implies
ω ∈ ES.

5. The Axiom of Transparency Suppose ω ∈ Ki
S(E). Then, E � P i(ω) and P i(ω) ⊆

EΩi(ω). We have to show that P i(ω) ⊆ Ki
Ωi(ω)(E), or that ω1 ∈ P i(ω) implies E �

P i(ω1) and P i(ω1) ⊆ EΩi(ω1). From Stationarity we have that ω1 ∈ P (ω) implies
P i(ω1) = P i(ω) and Ωi(ω) = Ωi(ω1). Hence, E � P i(ω1) and P i(ω1) ⊆ EΩi(ω1).
Suppose ω ∈ Ki

SK
i
Ωi(ω)(E). Then, P i(ω) ⊆ Ki

Ωi(ω)(E). From Generalized Reflexivity

we have ωΩi(ω) ∈ P i(ω) and from the proof of Proposition 1 we have (Ki
Ωi(ω)(E))S ⊆

Ki
S(E). Therefore, ω ∈ Ki

S(E).

6. The Axiom of Wisdom Suppose ω ∈ Ai
S(E) ∩ ¬Ki

S(E). Then, E � P i(ω) and
P i(ω) * EΩi(ω). We need to show that P i(ω) ⊆ Ai

Ωi(ω)(E) ∩ ¬Ki
Ωi(ω)(E). Suppose

ω1 ∈ P i(ω). Stationarity implies that P i(ω1) = P i(ω). Hence, E � P i(ω1) and
P i(ω1) * EΩi(ω1), which imply that ω1 ∈ Ai

Ωi(ω)(E) ∩ ¬Ki
Ωi(ω)(E).

Suppose ω ∈ Ki
S(Ai

Ωi(ω)(E) ∩ ¬Ki
Ωi(ω)(E)). Then, P i(ω) ⊆ Ai

Ωi(ω)(E) ∩ ¬Ki
Ωi(ω)(E).

Since Ai
Ωi(ω)(E) is defined only if E � Ωi(ω), we have that ω ∈ Ai

S(E). It remains to

show that ω ∈ ¬Ki
S(E), or that P i(ω) * EΩi(ω). We know that for all ω1 ∈ P i(ω),

ω1 ∈ ¬Ki
Ωi(ω)(E), which implies that P i(ω1) * EΩi(ω). Since P i(ω) = P i(ω1), we have

that P i(ω) * EΩi(ω).

8. Strong Plausibility Suppose ω ∈ U i
S(E). By definition, we have E � S and

E � P i(ω) which imply S � P i(ω). Hence, ω ∈ ¬Ki
S(E) ∩ ¬Ki

S(¬Ki
S(E)) ∩ . . . ∩

¬Ki
S(¬Ki

S(. . .¬Ki
S(E))).

9. AU Introspection Suppose ω ∈ U i
S(E). By definition, we have E � S and E � P i(ω)

which imply S � P i(ω) and ω ∈ U i
S(U i

S(E)).

10. KU Introspection Suppose ω ∈ Ki
S(U i

S(E)). Then, S � P i(ω) and from Confined-
ness and ω ∈ S we have P i(ω) � S and P i(ω) ⊆ U i

S(E). Generalized Reflexivity
implies that ω ∈ U i

S(E), which implies E � P i(ω). But this contradicts that E � S.

11. Symmetry Follows since by definition E � ¬E if and only if ¬E � E.

12. AA-Self Reflection ω ∈ Ai
S(E) implies E � S and E � P i(ω). Therefore, Ai

S(Ai
Ωi(ω)(E))

is well defined and Ωi(ω) � P i(ω) implies ω ∈ Ai
S(Ai

Ωi(ω)(E)). For the other direction,

suppose that ω ∈ Ai
S(Ai

Ωi(ω)(E)). Since Ai
Ωi(ω)(E) is defined only if E � Ωi(ω), we

have that ω ∈ Ai
S(E).

13. AK-Self Reflection The proof is similar.

14. A-Introspection ω ∈ Ai
S(E) implies E � S and E � P i(ω), so we just have to show

that P (ω) ⊆ Ai
Ωi(ω)(E). Suppose that ω1 ∈ P (ω). Stationarity implies P i(ω) = P i(ω1),

so we have E � P i(ω1) and ω1 ∈ Ai
Ωi(ω)(E). For the other direction, suppose that
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ω ∈ Ki
S(Ai

Ωi(ω)(E)). This implies that ω ∈ Ai
S(Ai

Ωi(ω)(E)) and ω ∈ Ai
S(E) follows from

AA-Self Reflection.

Proof of Theorem 2. For ease of notation, let S = S({ω}) whenever ω is used in the proof.

1. Subjective Necessitation One direction is obvious so suppose ω ∈ Σ. Then P i(ω) ⊆
Σ and ω ∈ Ki(ω).

2. Monotonicity Suppose E, F are not events. Then, ω ∈ Ki(E) =⇒ P i(ω) ⊆ E ⊆
F =⇒ ω ∈ Ki(F ). Suppose E, F are events. From 2. of Theorem 1, we have that
ω ∈ Ki(E) implies ω ∈ Ki

S(E) ⊆ Ki
S(F ), hence ω ∈ Ki(F ).

3. Conjunction Suppose E, F are not events. Then, ω ∈ Ki(E)∩Ki(F ) ⇐⇒ P i(ω) ⊆
E ∩ F ⇐⇒ ω ∈ Ki(E ∩ F ). Suppose E, F are events. From 3. of Theorem 1 we
have that ω ∈ Ki(E) ∩Ki(F ) ⇐⇒ ω ∈ Ki

S(E) ∩Ki
S(F ) ⇐⇒ ω ∈ Ki

S(ES(E)∨S(F ) ∩
F S(E)∨S(F )) ⇐⇒ ω ∈ Ki(ES(E)∨S(F ) ∩ F S(E)∨S(F )).

4. The Axiom of Knowledge If E is an event, then from 4. of Theorem 1 we have
Ki(E) =

⋃
S�E

Ki
S(E) ⊆

⋃
S�E

ES. Suppose E is not an event but has a base and is

expanding. Suppose ω ∈ KiKj(E), which implies ω � ω′ for some ω′ ∈ Kj(E) and
P i(ω) ⊆ Kj(E). By transitivity of � we have that ω � ω′′ for some ω′′ ∈ E. By
generalized reflexivity, ωΩi(ω) ∈ Kj(E). Because E is expanding, Kj(E) is expanding
as well (see footnote 14) and ω ∈ Kj(E).

Suppose ω ∈ KiAj(E), which implies P i(ω) ⊆ Aj(E). From generalized reflexivity
we have ωΩi(ω) ∈ Aj(E) and Ωj(ωΩi(ω)) � ω′ for some ω′ ∈ E. Because Ωj(ω) �
Ωj(ωΩi(ω)) we have ω ∈ Aj(E). Suppose ω ∈ KiU j(E), which implies that P i(ω) ⊆
U j(E). Because E has a base, let ω′ ∈ S be such that ω′′ � ω′ for all ω′′ ∈ E. By
generalized reflexivity, ωΩi(ω) � S and Ωj(ωΩi(ω)) � S. Suppose Ωj(ω) � S. By PPA,
stationarity and generalized reflexivity, Ωj(ωS) = S. Because ωΩi(ω) � ωS, we must
have Ωj(ωΩi(ω)) � Ωj(ωS), which contradicts Ωj(ωΩi(ω)) � S. Therefore, Ωj(ω) � S
and ω ∈ U j(E).

5. The Axiom of Transparency If E is an event, then ω ∈ Ki(E) ⇐⇒ ω ∈ Ki
S(E).

From 5. in Theorem 1 this is equivalent to P i(ω) ⊆ Ki
Ωi(ω)(E). Because Ki

Ωi(ω)(E) ⊆
Ki(E) we have P i(ω) ⊆ Ki(E) which is equivalent to ω ∈ KiKi(E). If E is not an
event, then ω ∈ Ki(E) =⇒ P i(ω) ⊆ E. From Stationarity, we have that if ω′ ∈ P i(ω)
then P i(ω′) = P i(ω) and ω′ ∈ Ki(E). Hence, P i(ω) ⊆ Ki(E) and ω ∈ KiKi(E).
Conversely, ω ∈ KiKi(E) implies ω � ω′ for some ω′ ∈ Ki(E) and P i(ω) ⊆ Ki(E).
By transitivity of � and stationarity we have that ω � ω′′ for some ω′′ ∈ E and
P i(ω) ⊆ E, hence ω ∈ Ki(E).

6. The Axiom of Wisdom If E is an event, then ω ∈ Ai(E)∩¬Ki(E) =⇒ ω ∈ Ai
S(E)∩

¬Ki
S(E). From 6. in Theorem 1 we have ω ∈ Ki

S(Ai
Ω(ω)(E)∩¬Ki

Ω(ω)(E)) and P i(ω) ⊆
Ai

Ω(ω)(E) ∩ ¬Ki
Ω(ω)(E) ⊆ Ai(E) ∩ ¬Ki(E). Therefore, ω ∈ Ki(Ai(E) ∩ ¬Ki(E)). If
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E is not an event, then ω ∈ Ai(E) ∩ ¬Ki(E) =⇒ Ωi(ω) � ω′ for some ω′ ∈ E and
P i(ω) * E. This implies that P i(ω) ⊆ Ai(E). Moreover, for each ω′ ∈ P i(ω), from
stationarity we have P i(ω′) = P i(ω) and therefore P i(ω′) * E. Because ω′ ∈ Ai(E),
we have that ω′ � ω′′ for some ω′′ ∈ E. Therefore, ω′ ∈ ¬Ki(E) and P i(ω) ⊆ ¬Ki(E).
Hence, P i(ω) ⊆ Ai(E) ∩ ¬Ki(E) and ω ∈ Ki(Ai(E) ∩ ¬Ki(E)).

8. Strong Plausibility Suppose E is an event. ω ∈ U i(E) =⇒ ω ∈ U i
S(E) and

Ωi(ω) � E. From 8. in Theorem 1 we have ω ∈ ¬Ki
S(E) and ω ∈ ¬Ki(E). Because

Ωi(ω) � E and ω � ω′ for some ω′ ∈ E, we have that P i(ω) * ¬Ki(E). Hence,
ω ∈ ¬Ki¬Ki(E). Similarly, because Ωi(ω) ∩ ¬Ki¬Ki(E) = ∅, we have P i(ω) *
¬Ki¬Ki(E) and ω ∈ ¬Ki¬Ki¬Ki(E). The same is true for higher orders.

Suppose E is not an event. Then, ω ∈ U i(E) implies that for all ω′ ∈ E, P i(ω) � ω′

and ω � ω′ for some ω′ ∈ E. Hence, ω ∈ ¬Ki(E). Moreover, if ω′′ ∈ Ωi(ω) then
ω′′ /∈ ¬Ki(E), which implies that P i(ω) * ¬Ki(E) and ω ∈ ¬Ki¬Ki(E). Similarly
for higher orders.

9. AU Introspection Suppose E is an event. Then, ω ∈ U i(E) =⇒ Ωi(ω) � E and
ω � E. This implies that for all ω′ ∈ Ωi(ω), ω′ � E. Because for all ω′′ ∈ U i(E) we
have ω′′ � E, it must be that Ωi(ω) � ω′′. Hence, ω ∈ U iU i(E). Suppose E is not an
event. Then, ω ∈ U i(E) implies that for all ω′ ∈ E, Ωi(ω) � ω′ and ω � ω′ for some
ω′ ∈ E. First, we have ω � ω for ω ∈ U i(E). Second, suppose there exists ω′ ∈ U i(E)
such that Ωi(ω) � ω′. Because ω′ ∈ U i(E) we have ω′ � ω′′ for some ω′′ ∈ E. By
transitivity of � we have Ωi(ω) � ω′′, which is a contradiction. Therefore, Ωi(ω) � ω′

for all ω′ ∈ U i(E) and ω ∈ U iU i(E).

10. KU Introspection Suppose E is an event. Then, ω ∈ KiU i(E) =⇒ P i(ω) ⊆
U i(E) =⇒ P i(ω) ⊆ U i

Ωi(ω)(E) =⇒ ω ∈ Ki
SU

i
Ωi(ω)(E), which is a contradiction,

because we simultaneously have Ωi(ω) � E and Ωi(ω) � E. Suppose E is not an event
and ω ∈ KiU i(E). Then, P i(ω) ⊆ U i(E) and from PPA and generalized reflexivity
we have that ωΩi(ω) ∈ P i(ω). This implies that Ωi(ωΩi(ω)) � ω′ for all ω′ ∈ E and
ωΩi(ω) � ω′ for some ω′ ∈ E. This is a contradiction because ωΩi(ω) ∈ Ωi(ωΩi(ω)).

11. Symmetry Suppose E is an event. Then, ω ∈ U i(E) ⇐⇒ ω ∈ U i
S(E) = U i

S(¬E) ⇐⇒
ω ∈ U i(¬E), using 11. in Theorem 1. Suppose E is not an event. By the definition of
¬E, for any state space S, E ∩ S 6= ∅ if and only if ¬E ∩ S 6= ∅, (noting that ∅S ∈ S).
Therefore, the result is immediate.

12. AA-Self Reflection Suppose E is an event. Then, ω ∈ Ai(E) =⇒ ω ∈ Ai
S(E) =⇒

Ωi(ω) � E =⇒ ωΩi(ω) � E =⇒ ωΩi(ω) ∈ Ai(E). Because Ωi(ω) � ωΩi(ω) we have
ω ∈ AiAi(E). Conversely, ω ∈ AiAi(E) =⇒ Ωi(ω) � ω′, for some ω′ ∈ Ai(E).
Because ω′ � E we have Ωi(ω) � E and ω ∈ Ai(E). Suppose E is not an event.
Then, ω ∈ Ai(E) implies that Ωi(ω) � ω′ for some ω′ ∈ E. Because Ω(ωΩi(ω)) = Ωi(ω)
we have ωΩi(ω) ∈ Ai(E). Because Ωi(ω) � ωΩi(ω) we have ω ∈ AiAi(E). Conversely,
ω ∈ AiAi(E) implies ω � ω′ for some ω′ ∈ Ai(E), hence ω′ � ω′′, for ω′′ ∈ E. By
transitivity we have the result.
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13. AK-Self Reflection Suppose E is an event. Then, ω ∈ Ai(E) =⇒ ω ∈ Ai
S(E) =⇒

Ωi(ω) � E. Because Ki
Ωi(ω)(E) ⊆ Ki(E) (even if Ki

Ωi(ω)(E) is empty) and Ωi(ω) �
Ki

Ωi(ω)(E) we have ω ∈ AiKi(E). Conversely, ω ∈ AiKi(E) =⇒ Ωi(ω) � ω′ for some

ω′ ∈ Ki(E). This implies that Ωi(ω) � Ωi(ω′) � E and ω ∈ Ai(E). Suppose E is not
an event. Then, ω ∈ Ai(E) implies that Ωi(ω) � ω′ for some ω′ ∈ E. Let ω′ ∈ S ′.
Then, either ∅S′ ∈ Ki(E) or there exists ω′′ ∈ S ′′ ∩Ki(E). Because Ωi(ω) � ∅S′′ ∼ ω′′

we have ω ∈ AiKi(E). Conversely, ω ∈ AiKi(E) =⇒ Ωi(ω) � ω′ for ω′ ∈ Ki(E) and
Ωi(ω′) � ω′′ for ω′′ ∈ E. By transitivity, ω ∈ Ai(E).

14. A-Introspection Suppose E is an event. Then, ω ∈ Ai(E) =⇒ ω ∈ Ai
S(E) =⇒

Ωi(ω) � E =⇒ P i(ω) � E =⇒ P i(ω) ⊆ Ai
Ωi(ω)(E) ⊆ Ai(E) =⇒ ω ∈ KiAi(E).

Conversely, ω ∈ KiAi(E) =⇒ P i(ω) ⊆ Ai
S′(E) for some S ′. This implies that

P i(ω) � S ′ � E =⇒ ω ∈ Ai(E). Suppose E is not an event. Then, ω ∈ Ai(E)
implies that Ωi(ω) � ω′ for some ω′ ∈ E, which implies that Ωi(ω) ⊆ Ai(E). Because
P i(ω) ⊆ Ωi(ω) we have ω ∈ KiAi(E). Conversely, ω ∈ KiAi(E) implies P i(ω) ⊆
Ai(E) =⇒ P i(ω) � ω′ for some ω′ ∈ Ai(E) and ω′ � ω′′ for ω′′ ∈ E. By transitivity
we have ω ∈ Ai(E).

Proof of Proposition 2. We need to show that ω ∈ Ki1 . . . Kin(E) if and only if P in . . . P i1(ω) �
E and (P in . . . P i1(ω))S(E) ⊆ E. For n = 2, ω ∈ Ki1Ki2(E) ⇐⇒ P i1(ω) ⊆ Ki2(E) ⇐⇒
P i1(ω) ⊆ Ki2

Ωi(ω)
(E) ⇐⇒

⋃
ω′∈P i1 (ω)

P i2(ω′) � E and (
⋃

ω′∈P i1 (ω)

P i2(ω′))S(E) ⊆ E ⇐⇒

P i2P i1(ω) � E and (P i2P i1(ω))S(E) ⊆ E.
Suppose that for n = k, ω ∈ Ki1 . . . Kik(E) if and only if P ik . . . P i1(ω) � E and

(P ik . . . P i1(ω))S(E) ⊆ E. Then, we have ω ∈ Ki1 . . . Kik+1(E) ⇐⇒ P i1(ω) ⊆ Ki2 . . . Kik+1(E) ⇐⇒
for all ω′ ∈ P i1(ω), P ik+1 . . . P i2(ω′) � E and (P ik+1 . . . P i2(ω′))S(E) ⊆ E. This is equiva-
lent to

⋃
ω′∈P i1 (ω)

P ik+1 . . . P i2(ω) � E and (
⋃

ω′∈P i1 (ω)

P ik+1 . . . P i2(ω))S(E) ⊆ E. Finally, this is

equivalent to P ik+1 . . . P i1(ω) � E and (P ik+1 . . . P i1(ω))S(E) ⊆ E.

Lemma 4. Suppose S ′ � S, ω ∈ S ′ and take any sequence i1, . . . , in. Then, for any ω′ ∈
P in . . . P i1(ω) there exists S ′′ � ω′ such that ω′S′′ ∈ P in . . . P i1(ωS). Moreover, Ωi1...in(ω) �
Ωi1...in(ωS).

Proof. For n = 1, PPI implies that (P i1(ω))↑ ⊆ (P i1(ωS))↑ hence the result follows.
Suppose the claim is true for n = k. Recall that

P ik+1 . . . P i1(ω) =
⋃

ω′∈P ik ...P i1 (ω)

P ik+1(ω′).

Take ω′ ∈ P ik+1 . . . P i1(ω). Then, ω′ ∈ P ik+1(ω′′) for some ω′′ ∈ P ik . . . P i1(ω). From the
induction hypothesis we know that there exists S ′′ � ω′′ such that ω′′S′′ ∈ P ik . . . P i1(ωS).
From PPI we have (P ik+1(ω′′))↑ ⊆ (P ik+1(ω′′S′′))

↑. The second result follows from the defini-
tion of Ωi1...in(ω) and PPI.
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Proof of Lemma 1. We first show that (CKS(E))S′ ⊆ CKS′(E). Suppose that ω ∈ (CKS(E))S′ .
Then, ωS ∈ CKS(E) which implies that for any sequence i1, . . . , in we have P in . . . P i1(ωS) �
E and (P in . . . P i1(ωS))S(E) ⊆ E. From Lemma 4 and PPI we have P in . . . P i1(ω) � E and
(P in . . . P i1(ω))S(E) ⊆ E, hence ω ∈ CKS′(E). Finally, (CKS(E))S′ ⊆ CKS′(E) implies
CKS(E) ⊆ (CKS′(E))S. That the other direction is not necessarily true is shown by the
following example. There are two agents, equipped with possibility correspondences identical
to that of Holmes, of the original example. Then, {ω6} is common knowledge at ω4, but not
at ω6.

Proof of Lemma 2. First, note that the two definitions are equivalent for k = 2. Suppose
that the claim holds for all sequences where k = n− 1. Using this induction hypothesis we
have that ∧

ω1∈P i1 (ω)

Ωi2...in(ω1) =
∧

ω1∈P i1 (ω)

∧
ω2∈P i2 (ω1)

. . .
∧

ωn−1∈P in−1 (ωn−2)

Ωin(ωn−1)

and that, by definition,

Ωi1i2...in(ω) =
∧

ω′∈P in−1 ...P i1 (ω)

Ωin(ω′).

The result follows because the right hand sides of the two equations are identical.

Proof of Lemma 3. Take any sequence i1, . . . , in. By definition, Ω∧(ω) � Ωi1...in(ω) and
we also have (P in . . . P i1(ω))Ω∧(ω) ⊆ Ω∧(ω). For the second claim, suppose that E ∈ E
is common knowledge at ω. Then, E � Ωi1...in(ω) for any sequence i1, . . . , in and E �
Ω∧(ω).

Proof of Theorem 3. Suppose E∗ is common knowledge at ω. This means that for every
sequence i1, . . . , in, P in . . . P i1(ω) � E∗ and (P in . . . P i1(ω))S(E∗) ⊆ E∗. Because (S,�) is
well-founded, any non-empty subset of S contains a �-minimal state space. If that subset
consists of all state spaces S such that P in . . . P i1(ω) ⊆ S, for some sequence i1, . . . , in,
then the �-minimal state space is Ω∧(ω). This means that P in . . . P i1(ω) ⊆ Ω∧(ω) for some
sequence i1, . . . , in of agents and S(E∗) � Ω∧(ω). We therefore have that, for any i1, . . . , in,
P in . . . P i1(ωΩ∧(ω)) ⊆ Ω∧(ω) and (P in . . . P i1(ωΩ∧(ω)))S(E∗) ⊆ E∗. Define E to be the union
of all such P in . . . P i1(ωΩ∧(ω)). Hence, E ⊆ Ω∧(ω) is an event. By Generalized Reflexivity
we have ωΩ∧(ω) ∈ E, hence ω ∈ ES ⊆ E∗S and E∗ � E � S. To show that E is public,
suppose ω′ ∈ E and fix i ∈ I. Then, for some sequence i1, . . . , in, ω′ ∈ P in . . . P i1(ωΩ∧(ω)).
Because P iP in . . . P i1(ωΩ∧(ω)) � Ω∧(ω) and (P iP in . . . P i1(ωΩ∧(ω)))S(E∗) ⊆ E∗ we have ω′ ∈
Ki

Ω∧(ω)(E
∗).

Conversely, suppose that there exists public event E such that E∗ � E � S and ω ∈
ES ⊆ E∗S. We first prove the following Lemma.

Lemma 5. Event E is common knowledge at ω.

Proof. We need to show that for any sequence i1, . . . , in of agents, P in . . . P i1(ω) � E and
(P in . . . P i1(ω))S(E) ⊆ E. The proof is by induction.
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• For n = 1, since E is self evident for i1 and from the proof of Proposition 1 we have

ω ∈ ES ⊆
(
Ki1

S(E)(E)
)S

⊆ Ki1
S (E). Hence, E � P i1(ω) and (P i1(ω))S(E) ⊆ E.

• Suppose that for n = k, P ik . . . P i1(ω) � E and (P ik . . . P i1(ω))S(E) ⊆ E.

• For n = k+1, we need to show that P ik+1 . . . P i1(ω) � E and (P ik+1 . . . P i1(ω))S(E) ⊆ E.
By definition,

P ik+1 . . . P i1(ω) =
⋃

ω′∈P ik ...P i1 (ω)

P ik+1(ω′).

From the induction hypothesis, for any ω′ ∈ P ik . . . P i1(ω), we have ω′S(E) ∈ E ⊆
K

ik+1

S(E)(E), which, from PPI, implies that E � P ik+1(ω′) and (P ik+1(ω′))S(E) ⊆ E.

Since E∗ � E and ES ⊆ E∗S, we have that E ⊆ E∗S(E). Fix a sequence i1, . . . , in of
agents. We have E∗ � E � P in . . . P i1(ω) and (P in . . . P i1(ω))S(E) ⊆ E ⊆ E∗S(E), hence
(P in . . . P i1(ω))S(E∗) ⊆ E∗.

Proof of Theorem 4. From Theorem 3, there exists a public event E ′ such that E∗ � E ′

and ω ∈ E ′S ⊆ E∗S. Its proof (and because E∗ ⊆ Ω∧(ω)) also shows that E ′ ⊆ Ω∧(ω),

which implies that E ′ ⊆ E∗. We need to show that E ′ =
⋃

ω∈E′

P i(ω). Generalized Reflexivity

implies E ′ ⊆
⋃

ω∈E′

P i(ω). For the opposite direction, since E ′ is a public event, ω ∈ E ′ implies

P i(ω) ⊆ E ′. Therefore, E ′ =
⋃

ω∈E′

P i(ω), and by symmetry E ′ =
⋃

ω∈E′

P j(ω).

The next step is to show that E ′ is partitioned by P i. First, since E ′ is public, for any
ω′ ∈ E ′, Ω∧(ω) � Ωi(ω′) � Ω∧(ω). Generalized Reflexivity and Stationarity imply that if
ω′, ω′′ ∈ E ′ then either P i(ω′) = P i(ω′′) or P i(ω′) ∩ P i(ω′′) = ∅. The rest of the proof is
identical to that of Aumann (1976).

Agent i’s posterior at ω′ ∈ E ′ is

qi(ω′) =
µ(P i(ω′) ∩ E)

µ(P i(ω′))
.

Since qi(ω′) = qi for all ω′ ∈ E ′ we can sum over the disjoint partition cells of E ′ and derive
µ(E ′)qi = µ(E ′ ∩ E). Similarly for agent j we have µ(E ′)qj = µ(E ′ ∩ E) and therefore
qi = qj.
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