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HYPERSONIC BLUNT-FIN INTERACTIONS

By Sameera.J.Vithana

The three-dimensional numerical simulation of a Mach 6.7 perfect gas, with a unit

Reynolds number of 7.6× 106m−1, over several configurations of a blunt-fin attached to a

flat plate are carried out. The resulting interference flowfield is reported in this thesis.

The laminar Navier-Stokes code developed by Navarro-Martinez [47] has been modified

to solve any general three-dimensional problem, and the complete Navier-Stokes equations.

The numerical scheme is operator split, allowing independent numerical schemes to be used

on each of the individual contributions to the Navier-Stokes, which can be combined later

to advance the entire solution in time. The inviscid part uses a first order Godunov method

with a HLLC approximate Riemann solver; second order accuracy is achieved through the

MUSCL approach. The viscous contribution is modeled by a centered difference scheme.

An iterative matrix solver is used to advance the implicit solution in time. To handle large

three-dimensional grids, the code is implicit and run on a parallel computer cluster.

The three-dimensional results from the various blunt-fins simulated show a complex rich

three-dimensional structure, with several horseshoe vortices formed within the separated

flow. Extremely large heat transfer rates have been measured along the path of these

vortices on the plate surface, and on the leading edge of the unswept blunt-fin. In particular

cases heat transfer rates as high as (h/hu) ' 60 were measured for the 5mm diameter fin.

The 5mm fin results show remarkable similarity to the experimental results obtained by

Schuricht [53]. The results obtained using a swept fin, and a fin of doubled fin diameter

also show good agreement with the trends observed by Schuricht and others for a laminar

interaction.
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Chapter 1

General Introduction

The work described in this thesis concern the numerical simulation of a hypersonic inter-

ference flowfield involving a blunt-fin on a flat plate. Particular emphasis is made of the

resultant heating distribution on the flat plate and blunt-fin.

The significance of hypersonic interference heating and its implications on hypersonic

vehicle design was demonstrated by the catastrophic failure of a pylon on the X-15

rocket/ramjet during the final stages of flight trials in the X-15 program. For this partic-

ular flight a dummy ramjet was attached to the lower fuselage surface by a pylon. During

hypersonic flight, a shock wave from the ramjet nacelle intersected the bow shock which

had developed on the pylon, and the resulting shock/shock interaction lead to a hole be-

ing burned in to the Inconel pylon skin surface (Inconel has a melting temperature of

2800 degrees Fahrenheit) causing it to fail. It was later discovered that the pylon-fuselage

interaction also caused local heating damage to the bottom surface of the X-15 [65].

The surface of a hypersonic vehicle is basically exposed to two heating sources, energy from

the propulsion system and aerodynamic heating, of which the latter is usually far more

significant. Modern hypersonic vehicles generally carry sensitive electronic equipment,

a valuable payload, and possibly human occupants. For example, a hypersonic vehicle

traveling above Mach 10 in the stratosphere will have an adiabatic wall temperature - the

temperature the vehicle surface will asymptote to in the absence of any heat loss - that

exceeds 3430 ◦C (assuming constant γ). This is above the melting point of all metals
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(e.g. the melting point of Tungsten is 3411 ◦C ). Although it is unlikely that the surface

would actually reach this temperature (due to radiative heat losses to the surroundings),

it is quite clear that steps have to be taken to protect the contents of the vehicle and the

structure from such temperature levels which could result in material destruction.

On a modern hypersonic vehicle there exists many regions which are prone to interference

heating effects such as shock/boundary layer and shock/shock interactions which must be

accounted for in the design of a vehicle,(see Figure 1.1). The areas usually of most concern

are stagnation regions and areas of flow reattachment.

Shock/Shock Interaction

Shock/Boundary Layer Interaction

Figure 1.1: Illustration of a reentry vehicle showing regions of interaction between shocks and

boundary layers [52]

Flow separation is of great importance for hypersonic flight: it causes adverse effects on

vehicle control and performance as well as contributions to thermal loading caused by

subsequent flow reattachment. The configurations of fin-body or wing-body junctions are

particularly prone to flow separation because of the interaction of the fin or wing bow

shock wave with the boundary layer on the surface of the body. As well as producing

high levels of heating, these interference effects can also significantly modify the pressure

profiles of a lifting surfaces and control surfaces, and may adversely affect their aerody-

namic performance, [43]. Following the experience from the X-15 program, designers of

hypersonic vehicles have treated regions prone to interference heating effects with a con-
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siderable amount of conservatism. Unlike stagnation regions, where the positions of the

localised peaks in heat transfer are almost intuitive, the ”hot spots” caused by interfer-

ence flowfields are not as straightforward to identify or locate, [30]. This is largely due to

the fact that they are extremely localised and move around as the attitude of the vehicle

changes during flight.

Due to the complexity of the phenomena involved, elucidation of the mechanisms and

accurate estimation of the pressure and heating levels generated in interference flowfields

is extremely difficult, but necessary. The conservative approach taken by designers on

thermal protection has invariably resulted in over protection of hypersonic vehicles, lead-

ing to reduced payload capacity, reduced performance, and higher costs, [30]. This is

exemplified by the shuttle orbiter design where the thermal protection system accounts

for approximately 10% of the vehicle dry mass [53]. Alternatively, under design of the

thermal protection systems could lead to disastrous consequences, failure or inability of

the vehicle to adequately accomplish its mission. A tragic demonstration of this occurred

in February 2003, when the space shuttle Colombia exploded after a heat insulation tile on

the wing was blown away by debris. This resulted in the wing being exposed to the intense

atmospheric heating on the leading edge, which led to a catastrophic chain of events that

resulted in the loss of the shuttle and its crew 1.

Over the last thirty years many experimentalists and theoreticians have studied all manner

of interference flowfields and have now understood some of the basic flow phenomena and

have developed empirical and computational methods to estimate heat transfer rates,

predict flow structures, and pressure profiles.

These empirical methods can give reasonable approximate estimates for the locations and

magnitudes of peak heating and pressure levels on the surface or on a section of the flow

but, can not yield results for the full interaction region. On the other hand, a numerical

solution has the advantage in being able to provide the values of the various parameters in

space (more particularly at the grid points of the computational domain). This data can

then be transformed into images of the flowfield by applying post-processing techniques.

Computational Fluid Dynamics (CFD) codes over the years have become increasingly
1- The following reference is taken from the official NASA site on the world wide web: www.nasa.gov
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sophisticated, and the accuracy achieved by these CFD codes has brought about a new

dimension in the solution of these problems. Numerical simulations in hypersonic dynam-

ics, specially with CFD codes, are often cheaper than wind tunnel testing. The flexibility

of computers allows savings in experimental measurements and reduces the final cost of

design; furthermore, it is possible to simulate a more realistic environment. However,

these numerical techniques are only asymptotical approximations of reality and they can

have a lot of uncertainties and inaccuracies. Nevertheless, the computational methods

have progressively gained respect and increased in accuracy.

Figure 1.2: (top) Illustration of how CFD is used in the X-43 design - Pressure contours around

the vehicle structure at Mach 7 [46] (bottom) Illustration of an un-structured computational grid

built around a model of the X-33 [31]

Development of future hypersonic platforms like the terminated X-33 program and current

X-43 program have used extensive computational resources in their design and develop-
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ment [52] (see Figure 1.2). Considerable attention has been given to reconstruction of the

flow around and near control surfaces like flaps and wings, and fin-body junctions like

wing-fuselage or tail-fuselage areas on the vehicle. The flow around these junctures is very

complex and is illustrated well by the fact that current experimental data from wind tun-

nels and reentry measurements do not show great agreement with CFD results for these

cases. These discrepancies have been attributed to turbulence associated with the flow and

the three-dimensional effects which are not taken into account in most two-dimensional

simulated results [23].

The need to improve these simulation tools, whilst simultaneously reducing the computa-

tional cost has been challenging to designers and programmers alike. In order to alleviate

the costs associated with extensive use of computational resources, newer faster processors

are being developed and intensive parallel algorithms created.

The objective of this work is to accurately predict the interference heating effects around

a blunt-fin on a flat plate in a hypersonic flow, mainly along the regions of separation and

reattachments in the vicinity of the fin. Particular attention is paid to laminar boundary

layer interactions which, as will be discussed in Chapter 2, have been largely ignored in

past works. Laminar interactions generally produce more complex and extensive interfer-

ence flowfields compared to turbulent flows, and it also avoids the uncertainty associated

with the use of turbulence models which may not have been validated for hypersonic

conditions. However the heating levels associated with laminar interactions are generally

lower than those seen in fully turbulent interaction flowfields. The blunt-fin interaction is

an important case to study because fins are one of the primary methods of stability and

control for many atmospheric high speed vehicles and missiles. As mentioned previously,

the interference flowfield created by the fin bow shock-boundary layer interaction creates

regions of increased heat transfer close to the fin which must be allowed for in the thermal

protection system design. Local peaks in heating rate in the interaction region can be

orders of magnitude greater than the stagnation value [16] [56].

In the current work, the laminar-Navier-Stokes code developed by Navarro-Martinez [47]

has been modified and improved to solve the blunt-fin flowfield, which is highly three-

dimensional. The current code uses an implicit Godunov method with the HLLC Rie-
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mann solver as the basic inviscid method. Special features include higher order schemes

(MUSCL, minmod) to improve accuracy. The scheme was validated for a basic lami-

nar flat plate configuration and a three-dimensional cylinder case. The final improved

scheme is able to handle any generic three-dimensional problem. Coupled with a full

three-dimensional viscous solver, the method is applied to the three-dimensional analysis

of fin-plate situations.

This thesis has six Chapters. Following the introductory remarks made in this first Chap-

ter, an overview of the physics involved in hypersonic interference flowfields is presented

in Chapter 2 with reference to previous published work by other researchers. In Chapter

3 a detailed explanation of the methods used in the current numerical scheme is provided.

The results of the validation test cases are presented in Chapter 4. Chapter 5 contains

the results from the various blunt-fin/plate models simulated, with an extensive detailed

study of the unswept 5mm diameter blunt-fin. Chapter 6 contains the conclusion of this

work along with a number of suggestions for future work and improvements that could be

made to the current numerical algorithm. The Appendices contain extra detail about the

numerical scheme and supplementary results to complement Chapter 5.
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Chapter 2

Literature Review

There are many disciplines involved in studying the physics of hypersonic flow, which

basically deals with a compressible fluid flow at high speed, high temperature and in

some specific circumstances low density. From an engineering point of view however the

definition of the hypersonic regime arises from the differences of design criteria between

a supersonic aircraft and a hypersonic vehicle. Although the flow phenomena are similar,

there are large differences of behaviour which are strongly dependent on the speed leading

to difficulties in the design of hypersonic compared to supersonic vehicles.

Due to the wide scope of this subject area, it is not possible here to detail all the physical

aspects relating to hypersonic flow conditions. For example we will not discuss ionisation

problems, chemical reactions of gases or low density situations common to many hypersonic

flows since these do not form part of the investigation in this present work. However, it

is important to discuss some basic detail about the flow regime primarily because these

definitions will be used later when analyzing the related numerical results.

The initial part of this Chapter will give a general overview of the physical phenomena

affecting hypersonic flows. Then some consideration is given to the mechanisms which lead

to heating enhancements on hypersonic vehicles like viscous interaction, shock/boundary

layer and shock/shock interactions. This then leads to a review of the current knowledge

on blunt-fin interactions with emphasis on previous computational work in the field and

some discussion on the scope of the present study.
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2.1 Fundamentals of Hypersonic Flow

As a basic definition it is generally accepted that the hypersonic region of flight begins at

Mach numbers greater than about 5. The free stream Mach number is defined as the ratio

between the stream velocity (U∞) and the sound speed in this medium (c∞).

M∞ =
U∞
c∞

(2.1)

This is not a definitive physical limit, Mach numbers as low as 3 and as high 10 can be also

considered as the limit of supersonic-hypersonic transition. Rather, it is better to say that

the hypersonic regime is where certain physical phenomena become progressively more

important as the Mach number is increased [2]. These hypersonic effects include strong

shock waves, thin shock layers, entropy layers, viscous interactions, high temperature

phenomena and low density conditions. All these phenomena are intimately coupled and

reinforce each other, increasing the difficulty in analyzing hypersonic flows.

The region between the bow shock wave and the body is called the shock layer. It can

be shown analytically that, as the Mach number increases, the angle between the shock

wave and the body becomes smaller [3]. If high-temperature, chemically reacting effects

are included, the shock wave angle will be even smaller [3]. It is a basic characteristic

of hypersonic flows that shock waves lie close to the body, and that the shock layer is

thin. In turn, this can create some physical complications, such as the merging of the

shock wave itself with a thick, viscous boundary layer growing from the body surface - a

problem which becomes important at low Reynolds numbers. However, at high Reynolds

numbers, where the shock layer is essentially inviscid, its thinness can be used can be used

to theoretical advantage, leading to a general analytical approach called ”thin shock layer

theory” (see [2]). Highly curved shock waves, like those around the nose of blunt bodies,

generate entropy gradients resulting in an entropy layer with strong vorticity associated.

The boundary layer lies inside this entropy layer and is strongly affected by it, modifying

the conditions of analysis. This effect is known more commonly as vorticity interaction.

As previously stated a large amount of kinetic energy is dissipated either by shock waves

8
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or through viscous effects (which is discussed later), causing an increase in the stream flow

temperature. This dissipation process can produce very high thermal energies, reaching

even above molecule dissociation energy levels. At the same time at high enough tempera-

tures, a chemically reacting layer is developed within the boundary layer. For example, in

the Apollo mission since the vehicle re-enters the earth’s atmosphere at Mach numbers in

excess of thirty, the temperatures in the shock layer exceeded 6600K and gas temperatures

behind the leading bow shock reached 11000K [18]. The vehicle’s surface was exposed to

radiative and convective heating. At such temperatures the air ionises and the flow be-

haves like a partially ionised plasma. Furthermore, at this temperature radiation effects

become important, increasing the thermal load on the hypersonic vehicle. The radiative

heating becomes more severe for some planetary entries due to even higher velocities and

can be the major contribution to the total heat transfer. An example is the Galileo mission

to Jupiter, in which the radiative contribution to the probes heating was larger than the

convective contribution [18]. However, for most Earth re-entry situations, the convective

contribution is normally greater than the radiative as illustrated in Figure 2.1.
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Figure 2.1: Convective vs Radiative heating [23]

The high temperature reached in hypersonic regimes modifies the behaviour of the flow,

altering the gas model initially considered. The ideal gas assumptions no longer holds

and more realistic models need to be introduced. Also all the transport properties vis-
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cosity, conductivity etc. are strongly affected by the temperature, differing from ambient

conditions. Simulating these high temperature conditions in ground based wind tunnel

facilities, whilst also matching the Mach number and Reynolds number is practically im-

possible, and is another reason why CFD has been increasingly used as a design tool for

the development of hypersonic vehicles in recent years.

In the upper layers of the atmosphere, the air is rarefied. Under these conditions the air

is no longer a continuum fluid and it behaves under a free molecular regime described by

the kinetic theory. The transition from the usual continuum level to the free molecular

regime is controlled by the Knudsen number, (Kn), which is the ratio between the mean

free path of the gas (λ) and a characteristic length associated with the body (L).

Kn =
λ

L
(2.2)

The Knudsen number indicates the regime of application of the different flow equations.

For low (Kn¿ 1), the continuum hypothesis holds and the fluid mechanics equations (Eu-

ler or Navier-Stokes) may be applied. When (Kn) becomes large (Kn > 1) the Boltzmann

equations come into play, and in the limit (Kn → ∞), the collisionless Boltzmann equa-

tions are applicable. At this point, the flow is so rarefied, with very few non-interacting

molecules, that it can for all intents and purposes be described as that seen in outer space.

2.2 Viscous Effects in Hypersonic Flow

The designers of vehicles that are to fly at hypersonic speeds have long recognized that the

locally severe heating rates produced by viscous interactions and by shock/shock interac-

tions can cause catastrophic failures, as noted in the example X-15 in Chapter 1. The

interaction between a shock wave and a boundary layer is a problem of many practical

hypersonic flows. As an example Figure 1.1 shows regions on a reentry vehicle that are

typical for problems of shock boundary layer interactions and shock/shock interactions.

Consider a flat plate exposed to a hypersonic freestream, near the leading edge, the bound-

ary layer grows rapidly where the region outside the boundary layer is assumed to be

10
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inviscid and the viscous effects are confined to the boundary layer. The presence of the

boundary layer causes the hypersonic flow to decelerate creating a shock wave on the

leading edge (see Figure 2.2).

Μ >> 1

Boundary Layer

Leading Edge
Shock

Figure 2.2: schlieren image of a hypersonic flow over a flat plate [27]

For a hypersonic freestream Mach number of (M∞), the compressible laminar boundary

layer thickness, (δ), increases over a flat surface approximately as [3],

δ

x
∝ M2∞√

Rex
(2.3)

where the Reynolds number at distance x is defined as,

Rex =
ρ∞U∞x

µ∞
(2.4)

where (ρ∞), (U∞) and (µ∞) are the density, velocity and viscosity respectively of the free

stream flow. The Reynolds number is a well known parameter characterizing the ratio

of the viscous forces in the gas to the inertial forces. In hypersonic applications, unit

Reynolds number (Re/l) ranges from extremely low values on entry to the outer regions

of the atmosphere up to ∼ 108/m for low altitude hypervelocity missiles. This range

of Reynolds number encompass the full range of boundary layer flows from full laminar,

through transitional, to fully turbulent.

Another useful parameter used when discussing hypersonic flows is the Prandtl number,

(Pr).

11
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Pr =
Cpµ

κ
(2.5)

where (Cp) is the specific heat at constant pressure and (κ) is thermal conductivity. The

Prandtl number is commonly described as being the ratio of momentum diffusivity (kine-

matic viscosity) to thermal diffusivity. It can be related to the thickness of the thermal

and velocity boundary layers, where it is actually the ratio of the velocity boundary layer

to thermal boundary layer. In cases where (Pr > 1) the thermal boundary layer is thinner

than the velocity boundary layer and vice versa for (Pr < 1). When (Pr) is small it means

that heat diffuses very quickly compared to velocity (momentum).

From examining Eqn 2.3 it is clear that boundary layers under hypersonic flows are rel-

atively thick compared to supersonic or subsonic cases due to the Mach number square

dependence. The reason for this is that high velocity hypersonic flows lose a considerable

amount of kinetic energy when slowed down due viscous effects in the boundary layer. A

significant amount of the kinetic energy of the flow is converted to internal thermal energy

via viscous dissipation. As a result this increases the local temperature but, because the

pressure in the normal direction is constant across the boundary layer, the density falls.

Consequently, in order to pass the required mass flow through the boundary layer at re-

duced density, the boundary layer enlarges. Due to this rapid boundary layer growth the

inviscid flow is strongly affected, increasing the interaction between them and modifying

the aerothermodynamics loads. This phenomena is known as viscous interaction and is

discussed later in this section.

Looking at Figure 2.2 again, the shock wave compresses the flow throughout the surface

of the plate and affects the fluid variables in the inviscid region of the flow. The increase

in pressure past the shock immediately in-front of the flat plate leading edge changes the

profile of the compressible boundary layer near the shock wave leading edge, reducing its

thickness and increasing the local heat transfer and the skin friction. Within the boundary

layer the local surface shear stress - skin friction - (τw) can be defined as,

τw = µ
∂u

∂ζ

∣∣∣∣∣
ζ=0

(2.6)
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where (u) is the tangential flow velocity and (ζ) is a direction perpendicular to the surface.

The rate of heat transfer per unit area - heat flux - (q̇w) is given by:

q̇w = κ
∂T

∂ζ

∣∣∣∣∣
ζ=0

(2.7)

The surface shear stress and heat flux are commonly presented using non-dimensional

coefficients, the skin friction coefficient (Cf ) and the Stanton number (St) given by:

Cf =
τw

1
2ρ∞U2∞

(2.8)

and

St =
q̇w

Cpρ∞U∞(Tr − Tw)
(2.9)

here (Tr) and (Tw) are the recovery and surface temperatures respectively. The recovery

temperature (Tr) is a function of the conditions at the boundary layer edge and on the

boundary layer state.

To predict the surface shear stress and heat flux in high speed flows Eckert [19] proposed an

empirical approach called the ”reference temperature method”, which is widely accepted

for its simplicity and general good agreement with the boundary layer theory. This ap-

proximation is based on correcting the results for classical incompressible boundary layer

by incorporating compressibility effects defined at a reference temperature (T ∗) given by:

T ∗ =
1
2
(T∞ + Tw) + 0.22(Tr + T∞) (2.10)

where (Te) is the temperature at the outer edge of the boundary layer, (Tw) and (Tr)

were defined earlier as the wall temperature and recovery temperature respectively. (Tr)

is given by:

Tr = Te +
rU2

e

2Cp
(2.11)
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The recovery temperature is identical to the adiabatic wall temperature. For a laminar

boundary layer the recovery factor, (r), is taken as,

r =
√

Pr (2.12)

Eckert assumed the same functional dependence on the skin friction coefficient (Cf ) and

the Stanton number (St) number with the Reynolds and Prandtl numbers as for incom-

pressible boundary layer theory. The Stanton number and skin friction coefficient are now

evaluated as,

Cf =
0.664√

Re∗x

√
ρ∗µ∗

ρ∞µ∞
(2.13)

and

St = 0.5CfPr∗−2/3 (2.14)

Variables with the asterisk indicates quantities evaluated at the reference temperature, (ρ∗)

can be obtained through the equation of state assuming that the pressure remains constant

across the boundary layer. The Eckert relationship for Stanton number in Eqn 2.14 will

be used throughout this work to compare with our numerical approximation for hyper-

sonic flows over a flat plate. The heat transfer may then be obtained from Eqn 2.9, where

(Cp) is obtained from a polynomial fit or perfect gas assumptions. The reference temper-

ature method agrees well with solutions obtained from the integration of the compressible

boundary layer equations, especially in the flat plate case.

The boundary layer analysis carried out by Eckert [19] to predict the skin friction and

heat flux did not take viscous interaction into account. It is therefore not expected to

provide reliable estimates in the region of strong interactions which occur near the leading

edge as highlighted by Figure 2.2. Further downstream of the leading edge, the growth of

the boundary layer is smaller and as a result has a diminished effect on the inviscid outer

flow. In these areas, as highlighted earlier Eckert’s comparison for heat transfer and skin

friction should agree with compressible boundary layer theory [25].
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2.2.1 Interaction parameters

When regarding the flat plate at hypersonic Mach numbers as depicted in Figure 2.2, it is

noticed that the pressure over the plate is significantly influenced by the rapid boundary

layer development over the plate (the boundary layer thickness develops according to

Eqn 2.3). Due to the boundary layer growth the leading edge shock is curved near the

plate which considerably influences the flow properties on the plate. This can be described

by applying the tangent-wedge formula to an effective body described by the local slope of

the displacement thickness
(

dδ∗
dx

)
. Results and derivation of the viscous interaction theory

are summarized in [2]. The viscous interaction can be divided into two cases: a strong

interaction where
(

dδ∗
dx

)
is large so

(
K2 =

(
M∞ dδ∗

dx

)2
À 1

)
and a weak interaction where

(
dδ∗
dx

)
is moderate so

(
K2 =

(
M∞ dδ∗

dx

)2
¿ 1

)
. In both interactions the equation for

the pressure depends solely on one governing similarity parameter which controls laminar

viscous interaction. This parameter is called the viscous-interaction parameter, (χ), which

in a characteristic length is defined by:

χ̄ = M3
∞

√
Cw

Re/x
(2.15)

where (Re/x) is the Reynolds number based on a specified reference length (Lref ), and

(Cw ) is the Chapman-Rubesin constant. As before, subscripts (∞) and (w) refer to

freestream and wall conditions respectively, where the Chapman-Rubesin constant is given

by [26].

Cw =
ρwµw

ρ∞µ∞
(2.16)

It is obvious that the viscous interaction grows very rapidly with the cube of the Mach

number. For large values of (χ̄), there is a strong interaction between the viscous and

inviscid flow, while for small values of (χ̄) the interaction is called weak, and the inviscid

flow is practically unaltered. Following equations Eqn 2.4 and Eqn 2.15 (χ̄) decays as

(x−1/2), giving a strong interaction near the edge and a weaker one when (x ) increases

along the flat plate. A practical limit of (χ̄ ≈ 3) is considered to distinguish between
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strong and weak interactions. The transition from a domain of strong interaction to a

region of low interaction can be seen schematically in Figure 2.3.

boundary layer

leading edge shock-wave
M >> 1∞

region of STRONG
interaction

X

region of WEAK
interaction

Y

Figure 2.3: Illustration of viscous interaction of a hypersonic flow over a flat plate [47]
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Figure 2.4: Schematic diagram of distribution of the surface pressure of a hypersonic flow over

the flat plate

The effect of the viscous interaction can be seen in the distribution of the pressure displayed

in Figure 2.4. In the strong interaction region, the induced pressure follows a linear

function of (χ̄) [2].

p

p∞
= 1 + a1χ̄ (2.17)

while, in the weak interaction region the pressure variation becomes quadratic.

16



2.3 Shock/Boundary Layer Interaction S.J.VITHANA

p

p∞
= 1 + b1χ̄ + b1χ̄

2 (2.18)

with (a1), (b1) and (b2) constants which depend on the gas properties [2].

The reference temperature method can be corrected taking into account the pressure

difference along the flat plate [2]. The pressure corrected Stanton number (St) and skin

friction coefficient (Cf ) were given earlier in Eqn 2.13 and Eqn 2.14.

2.3 Shock/Boundary Layer Interaction

As described earlier, shock/boundary layer interactions are unavoidable on hypersonic

vehicles, due to the necessity of using control mechanisms such as flaps, fins and jets. Ini-

tially, for the basic purpose of identifying the mechanisms involved in a shock/boundary

layer interactions, a two-dimensional shock/boundary interaction is described, as this con-

tains many of the features found in the more complex three-dimensional interactions. The

qualitative physical aspects of a general two-dimensional shock wave/boundary layer in-

teraction are shown in Figure 2.5.
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boundary layer
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Figure 2.5: A two-dimensional swept shock/boundary layer interaction [53]

In the configuration illustrated an incident shock wave impinges on a flat plate boundary
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layer downstream of the leading edge. The large pressure rise associated with the shock

imposes a severe adverse pressure gradient, and this causes the boundary layer to separate.

As the subsonic portion of the boundary layer allows the higher pressure in the post

shock region to feed upstream, the separation point is located ahead of the incident shock

impingement point. Separation of the boundary layer compresses the freestream flow above

it, creating an induced separation shock. Subsequently the separated boundary layer turns

back towards the flat plate and reattaches, creating an enclosed region of locally separated

flow. Expansion waves are generated between separation and reattachment points as the

flow turns back towards the surface compression waves are generated and further away

from the flat plate surface these merge to form the reflected shock wave predicted by

inviscid theory. The latter is known as the reattachment shock.

At the reattachment point a local thinning of the boundary layer and high pressure result

in a region of high local heat transfer. The incoming boundary layer state affects the

extent and severity of the interaction region. Laminar boundary layers separate more

readily than their turbulent counterparts, due to the less full velocity profile. Thus, for a

given shock strength a laminar shock/boundary layer interaction will be larger in extent

than a turbulent interaction.

In laminar interactions, thickening of the boundary layer due to the adverse pressure gra-

dient creates a reduction in heat transfer around the separation point, due to the reduction

in convective currents. This heat transfer reduction reaches a marked minimum before

rising to a peak associated with the reattachment. In contrast, for an oncoming turbulent

boundary layer the heat transfer rises at separation and reaches a plateau through the

separation region, rising again near the rear of the separation region to a peak associated

with the reattachment. This rise at separation is therefore opposite to that exhibited by

the laminar case. Stollery [56] suggested that the effect may be due to the large increase

in turbulent intensity occurring in the vicinity of the separation point. The large eddies

which then form can promote energy exchanges between the wall region and the outer

high enthalpy flow, thus leading to an increase in heat transfer to the surface.

It should be noted that even if the oncoming boundary layer is laminar the impingement of

an incident shock is sometimes usually enough to trip the boundary layer into transition,

18



2.3 Shock/Boundary Layer Interaction S.J.VITHANA

and therefore, after laminar separation, heat transfer levels may be higher than expected

at the reattachment point, due to the reattachment of a turbulent boundary layer.

2.3.1 Three-Dimensional Separation

Three-dimensional separation is radically different from two-dimensional separation which

was described earlier. In two-dimensional flows separation is identified by a region of

backflow, and at the wall by a zero shear stress solution. This difference is illustrated in

Figure 2.6: in two-dimensional separation the separation point and reattachment point are

connected by a (u = 0) velocity line and a dividing streamline. The region is closed and

the streamlines inside are closed. In a three-dimensional separation, the separation and

reattachment points cannot be connected by a streamline to form a closed vortex [13].

The concepts of separation and reattachment points, recirculation regions or dividing

streamlines as mentioned above need careful redefinition.

( b )
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secondary
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Figure 2.6: (a) A flow which exhibits two-dimensional separation (b) A flow with three-

dimensional separation [45]

To identify three-dimensional separated regions, one focuses on the shear stress at the

wall, which is a vector field in three-dimensional flows. The trajectories of this field are

the skin friction lines, sometimes called limiting streamlines because they are the limit

of a streamline when the distance to the wall becomes zero. The set of the skin friction

lines covering a body constitutes a skin friction line pattern, and separation is defined from
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examination of this pattern. However, the sole inspection of the skin friction line pattern is

far from being sufficient to define and describe three-dimensional separation. Considering

orthogonal coordinates in the two-dimensional space (x, z) of the body surface, we denote
(

τx(x, z)
)

and
(

τz(x, z)
)

the components of the skin friction vector
(
τx

)
along (x ) and

(z ) respectively. The skin friction lines are defined by the following (time independent)

differential equation:

dx

τx(x, z)
=

dz

τz(x, z)
(2.19)

These equations define an infinity of solution curves called characteristic lines or trajecto-

ries that are associated with the skin friction lines introduced above. In general, one and

only one trajectory passes through a point on the surface. The only points that do not

satisfy this rule are the singular points of the system where the skin friction vanishes, that

is, where we simultaneously have

τx(x, z) = τz(x, z) = 0 (2.20)

Around such singularities, the shape of the skin friction lines are evaluated through a first

order Taylor series expansion, written in tensorial form as

τ = Ax (2.21)

where
(

τ = (τx, τz)
)

and
(

x = (x, z)
)
, (A) is the Jacobian of the above transformation.

Depending on the values of (A) it is possible to classify the different types of singular

points. One method of classification is according to the eigenvalues of the Jacobian, where

real eigenvalues produces (nodes) if
(
|A| > 0

)
, saddles if

(
|A| < 0

)
or a combination

of both if
(
|A| = 0

)
. The most common singular points are presented in Figure 2.7.

Singular points may be classified as two types: nodes and saddle points (see Fig-

ure 2.7:(a) and 2.7:(b)). When the skin friction lines converge to, or diverge from a

point, the point is called node - nodal point of separation or attachment - respectively
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Figure 2.7: Most typical patterns near critical points [13] (a) Attachment node (b) Separation

saddle (c) focus (d) Nodal point of attachment (e) Nodal point of separation

(see Figure 2.7:(e) and 2.7:(d)). Nodal points can have one line to which all skin friction

lines are tangent to, or none. In the latter case the node is called focus - of separation

or attachment (see Figure 2.7:(c)). Nodal points of separation and attachment can be

viewed as sinks and sources of skin friction, respectively. Nodal points of attachment are

typically stagnation points on a forward facing surface (like a blunt nose).

There are cases where the skin friction lines deviate from a point as from a stagnation

point. There are only two lines (normal to each other) through the point, which is called

saddle. Skin friction lines diverging from nodal points cannot cross, due to the presence

of a saddle point between them. One of the lines through the saddle is a separation line.

Nodal points of separation and attachment have other interesting features: they become

edges of vortex cores. In some cases there is also a distinction between primary and sec-

ondary lines of separation. Devices most commonly used for the study of three-dimensional

separation include prolate spheroids, blunt and pointed cones at incidence, where non-

axisymmetric vortex formation appear (all axisymmetric bodies at incidence are very

prone to flow separation with consequent instability).
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The existence of these critical points in the surface indicates the presence and types of

separation. A flow is separated if the skin friction lines configuration contain at least one

saddle point [58]. Accordingly, a separation line would form a separation surface which

usually rolls up in a vortical structure, as demonstrated in Figure 2.8. A combination of

saddle and nodes in the surface would give rise to the different types of separation, like

the bubble of the horseshoe vortex type (1 saddle and 1 node).

boundary layer

separation surface

separated
region

surface
streamlines

trailing vortex

boundary layer at
"reattachment"

external
streamline

N

Y

separation line

Z

X

S

Figure 2.8: Horseshoe or bubble separation. S marks the saddle point at separation and N denotes

the node point at reattachment [47]

A topological rule has been developed for streamlines on a vertical plane cutting a surface

that extends to infinity both upstream and downstream [58].

(∑
N

+
1
2

∑
N ′

)
−

(∑
S

+
1
2

∑
S′

)
= 0 (2.22)

The singular points in this rule are defined as half-nodes (N
′
), half-saddles (S

′
), saddles

(S), and nodes (N). This rule has been used to describe the upstream plane of symmetry

for an obstacle mounted on a wall [58].
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2.4 Shock/Shock Interaction

Edney [20] in 1968 presented one of the most comprehensive studies of shock/shock in-

terference effects, concentrating on the mechanisms by which these interactions arise, and

how they generate severe heating and pressure levels on nearby aerodynamic surfaces. His

study involved measurement of the heating and pressure levels on a hemisphere/cylinder

model injected into Mach 4.6 - 7 flow. An impinging shock from a wedge was traversed

across the bow shock from the hemisphere, encompassing the full geometric range of

shock/shock interactions possible. A sketch illustrating the approximate relation between

the location where the impinging shock wave intersects the bow shock on the hemisphere

and the shock/shock interference patterns is reproduced in Figure 2.9:(left).

bow
shock-wave

impinging
shock-wave

Type IV:
supersoni jet
impingement

Type VI:
expansion wave
impingement

Type III: shear
layer attachment

sonic point

Type I: shock
impingement

Type V: shock
impingement

Type II: shock
impingement

Hemisphere

sonic point
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shear layer

bow shock

wedge shock

bow shock

supersonic jetlarge vortex

flow separation

( M < 1 )

( M > 1 )

Figure 2.9: (left) Approximate relation of the shock/shock geometry and the type of interference

pattern [20] (right) Supersonic jet and vortex pattern from a Type IV interference [28]

Edney observed that there were 6 different types of shock/shock interference of varying

degrees of severity and complexity. The interference heating types were categorised as

types I to V I. He explained that the enhanced heating and pressure levels were produced

by shock/boundary layer interactions for types I, II, IV and V , stability and attachment

of free shear layers for type III, impingement of a supersonic jet for types IV and V .

Edney discussed the practical implications of his work mentioning that blunt fins attached

to a fuselage would experience one of three types of interference, IV, V, or V I depending
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on their degree of sweep as shown in Figure 2.9:(left). At zero or small angles of sweep,

type IV will prevail, at around 30◦ sweep, type V will take over and further sweep will

yield type V I interference.

Edney predicted that the most severe levels of heating and pressure would be produced

by a type IV interaction. This interaction arises when an oblique shock is incident close

to the normal region of the bow shock, as illustrated in Figure 2.9:(right). In high

Reynolds number flows, shock/shock interaction produces an essentially inviscid slipstream

- which Edney termed a ”jet” - in which the supersonic flow is efficiently compressed by

a series of compression and expansion waves. This jet, which is bounded by shear layers,

is terminated by a normal shock just ahead of the surface to produce a narrow stagnation

region. The path of the jet is such as to maintain the same pressure either side in the

subsonic regime and the jet can curl upwards, downwards or even divide before it impinges

on the body.

The region of flow surrounding the embedded supersonic jet is largely subsonic and the flow

is unsteady and highly rotational, and results in the formation of several small vortices, as

indicated in Figure 2.9:(right). The efficient compression process produces high localised

pressures, and very large velocity gradients in the small stagnation region that can cause

large heating rates relative to the heating generated by undisturbed flow. These surface

thermal and pressure stresses for a laminar flow can be 30 times greater than stagnation

conditions [28]. Edney also observed that for the type IV interaction, the peak pressure,

heat transfer rates and pressure distributions are sensitive to upstream thermodynamic

flow conditions, shock strength, and Mach number. It was also observed that the heating

rates derived from the type IV interaction vary widely depending on whether the flow

is laminar, transitional or turbulent as well as whether the gas is considered perfect or

real [64].
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2.5 Fin Interference Flow fields

Fin/plate interference flow fields, which are simplified examples of fin-fuselage interference

configurations - particularly because they avoid additional three-dimensional effects that

would otherwise be present on curved surfaces, such as a fin-fuselage configuration - are

of great practical importance in the design and operation of hypersonic vehicles. Due to

the complex nature of three-dimensional interference flowfields, experimentalists and CFD

code developers alike initially confined their studies to simpler two-dimensional interference

flows, such as ramp type flows. Numerous studies of various two-dimensional interaction

flow fields [8] were made, and these flows became reasonably well understood; researchers

then directed their attention to three dimensional flows where research has continued from

the early 1960’s right up until the present day. Excellent review papers on experimental

results have been presented by [30, 43] on the different types of fin interference flow fields.

Broadly, there exists two types of fin/plate interaction: the sharp-fin interaction and the

blunt-fin interaction, the latter being the configuration investigated in this study. The

complexities in both these flow fields arise when the fin shockwave interacts with the on-

coming boundary layer growing on the plate. This interaction generates shock/boundary

layer and shock/shock interaction effects. For most fin/plate interactions, flat plate heat-

ing rates well in excess of undisturbed values have been measured in the region of flow

reattachment lines by many researchers. The characteristics of these interactions depend

on numerous geometric and flow parameters such as: Mach number, Reynolds number,

state of the undisturbed boundary layer on the plate, local boundary layer thickness, pro-

tuberance height, fin leading edge diameter (for blunt-fin interactions only), fin incidence,

and fin sweep. An excellent review encompassing all aspects of blunt-fin type interactions

can be found in [56, 37, 14, 17, 16, 54, 15].

It is noted that in certain regions of the interference zone the flowfield for a blunt-fin

resembles that of a sharp-fin, as a result a brief description of this type of interaction is

given.
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2.5.1 Sharp-fin Interaction

The simplest example of a swept shock/laminar boundary layer interaction, also commonly

classified as ”corner configurations”, consists of a sharp-fin attached normally to a flat plate

at a certain distance behind its leading edge. The oblique swept shock generated by the

sharp-fin is attached at the fin leading edge as shown in Figure 2.10.
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Figure 2.10: Sharp-fin/plate configuration

Impingement of the shockwave on the flat plate surface creates a pressure rise in the

flat plate boundary layer. Provided the fin angle of incidence is small the flow does

not separate. However, if the angle of incidence is sufficiently large the adverse pressure

gradient is such that the flow separates ahead of the shock forming an oblique separation

shock, with the flow reattaching further downstream. As a result of the shock interaction a

”lambda” shock profile is formed which is overlaid over a quasi-conical flattened separation

vortex. The vortical flow, starting from the fin apex and growing as it travels downstream,

dominates the separated flow region. The conical vortex carries high-energy air from the

external flow to its reattachment region, causing the appearance of peak heating and high

values of pressure in this region. A small corner vortex is observed close to the fin/plate

junction. A flow model containing the following features was put forward by Kubota and

Stollery [44] and is illustrated in Figure 2.11.

In general, the interaction domain in this type of flow is quasi-conical; i.e., it grows almost
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Figure 2.11: Fin/plate configuration flow model suggested by Kubota and Stollery [44]

linearly in the downstream direction 1. According to experimental results, a small region

close to the fin leading edge appears to deviate from the standard conical behaviour. This

area is called the ”inception zone” [13], and is characterised by a curved separation line.

Downstream of the inception zone the surface features follow rays from a virtual common

origin located upstream of the fin leading edge.
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Figure 2.12: (left) Swept-shock quasi-conical interaction flowfield [49] (right) A schematic of the

features observed in corner flows [49]

1This feature has been observed experimentally by many researchers, but it is also a conclusion of a

theoretical study by Inger [39]. More specifically, through an order-of-magnitude analysis of the governing

equations, Inger found that a swept interaction can approach a quasi-conical state at a large distance from

the origin of the flow.
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A typical flowfield cross-section of a sharp-fin interaction is illustrated in Figure 2.12, and

the dominant features of the flow are:

• A main shock, a separation shock and a rear shock all meeting at the triple point.

• A slip line caused by the velocity difference in streamlines passing above and below

the triple point.

• Transonic shocklets in the expansion region which terminates with a normal shock.

• A primary separation and vortex core.

• An impinging jet structure defined on the outer edge by the slip line and on the

inner edge by the primary separation bubble.

• For moderate interaction strengths, an apparent secondary separation occurs inside

the primary separation bubble but the exact nature of this feature is still unclear

Tests have shown that for sharp-fins the interaction scale, in both streamwise and spanwise

directions, depends on δ, the incoming boundary layer thickness. The sharp-fin interaction

shares quite a few common flow features with the blunt-fin example, primarily in regions

downstream of the leading edge. In general, the interaction generated by the blunt-fin

is stronger and far more severe than the sharp-fin interaction and always leads to flow

separation well ahead of the fin protuberance.

2.5.2 Blunt-fin Interaction

The earliest known investigations of blunt-fin/plate interactions were carried out in the

1960’s [50] and involved heat transfer measurements using thermocouples in the inter-

ference regions generated by the blunt-fin attached to a flat plate. Since then interest in

this type of interference flowfield has grown and more research into this area has been

undertaken. The schematic in Figure 2.13 illustrates the general physical features seen

to occur in a blunt-fin interaction. The following section will attempt to describe the

processes that lead to the creation of this flow structure and their effects.
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Figure 2.13: General features occurring around a blunt-fin on a flat plate

When a hypersonic flow field first interacts with the blunt-fin/plate model, two initial

structures are produced. The first is a bow shock wave that forms in front of the blunt-fin

so that the hypersonic flow can slow down and change direction. The second important

structure is the boundary layer that forms on the flat plate in front of the fin. A portion

of this layer contains subsonic flow, which allows information about the presence of the

fin to travel upstream and influence the boundary layer; in particular its separation from

the surface. In the initial stages of the development of this shock-wave/boundary-layer

interaction, the pressure gradient caused by the bow shock travels upstream through the

subsonic section of the boundary layer. This causes the boundary layer to separate from

the plate and form an oblique shock, known as shock induced boundary layer separation

shock. As a result of the boundary layer separating, a large disturbed flow pattern appears

which covers covers a significant part of the flow upstream and downstream of the inviscid

shock position.

Across the separation shock an equilibrium condition is reached that allows the mass of air

entering the separated region to equal the mass of air exiting it. Downstream of the oblique

separation shock the flow remains supersonic, and when this oblique shock intersects the

leading edge bow shock an Edney Type IV shock-shock interaction occurs, and a third
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resultant reflected shock. This shock structure creates a ”lambda” type profile in the

centerline plane (see Figure 2.15), and the point at which the three shocks meet is know

as the ”triple point”. The separated region is bounded downstream by the reattachment

of the boundary layer. As a result of the Edney Type IV shock-shock interaction, a

supersonic jet is produced as described in Section 2.4. The impingement point of this jet

on the fin produces very high pressure and heating rates on the fin surface [28].

The flow below the separation shock can be subdivided into two main regions, which are

separated by a shear layer. Between the separation shock and the shear layer, the flow

is effectively inviscid and travelling at supersonic speeds. Between the shear layer and

the flat plate, the flow is viscous, subsonic and highly rotational, containing one or more

”horseshoe” vortices. If the Reynolds number - based on the reference length, which is the

distance from the leading edge of the flat plate to the front leading edge of the blunt-fin -

is much less than the transitional Reynolds number the separated flow region is expected

to exhibit laminar behaviour. However, if the Reynolds number is much greater, the

separated flow is expected to exhibit fully turbulent behaviour. Under the latter conditions

the separated region is expected to fluctuate in size and shape. Because of the large

perturbations caused by the flow separation, the separated flow region may exhibit some

unsteadiness below the transitional Reynolds number. However, this unsteadiness will be

of lower frequency when compared with the fully turbulent case [32]. The transitional

Reynolds number for this flow is assumed to be
(
Retrans = 1.3× 106

)
[32].

Separation shock

Fin bow shock

Shock from flat plate LE

Figure 2.14: schlieren image of the interaction for a blunt-fin [53]
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Figure 2.15: Representation of hypersonic flow over a blunt-fin on a flat plate in the plane of

symmetry [32]

The schlieren image in Figure 2.14, which highlights the distribution of density gradients

within a transparent medium, clearly captures the major features described above, such as

the leading edge shock, fin bow shock and boundary layer separation shock. A graphical

representation of the schlieren image in the plane of symmetry is shown in Figure 2.15, and

indicates that the salient inviscid features produce some geometrical parameters which can

be measured and be used as the basis of comparison between experimental and theoretical

results. These parameters are: the shock standoff distance (∆); the angle (θS) that the

separation shock makes with the surface of the plate; the height (Ktp) measured from the

plate to the triple point of the shocks; and the distance (xS) measured from the foot of

the separation shock to the fin root. These parameters will depend on the prevailing flow

conditions and the geometry of the model. Since these conditions can be recreated in the

numerical model, they turn out to be good variables for comparison.

The height of the triple point is an important parameter in blunt-fin interactions as it

controls the approximate height for the impingement of the supersonic jet generated by

this interaction which, as shown by Edney [20], results in localised regions of extremely high

pressure and heat transfer. Using an un-swept cylinder mounted on a flat plate - cylinder

examples are commonly used to study this type of interference flowfield because ahead of

protuberance they produce the same interaction features found in blunt-fin interactions -

Westkaemper [66] deduced an expression for estimating the height of the triple point using

simple geometric considerations. This relationship was expressed in terms of the shock

stand off distance, the angle of the separation shock and the primary separation distance.

The relationship showed good agreement for a Mach number range of 2.0 - 5.0:
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Ktp = (xS −∆)tanθS (2.23)

From the above expression, (∆) the shock stand-off distance in diameters can be estimated

using the equation from [28] for an unswept cyclinder, as shown below:

∆
D

= 0.76 +
4.8

(M2∞ − 1)
+

2.8
(M2∞ − 1)2

(2.24)

The shock angle (θS) can be found from knowledge of (M ) and the pressure rise across

the bow shock wave (δP ) using shockwave tables.

Bogdonoff [15] and other experimentalists reasoned from experimental evidence that the

shock structure was responsible in governing the scale of the interaction upstream of the

fin. Consequently, changes to parameters such as fin leading edge diameter (D), fin height

(K ), leading edge sweep (Λ), boundary layer state and unit Reynolds number (Re/l) can

affect the fin bow and oblique separation shock locations, and as a result alter the scale

of the interaction. This interaction zone or length is generally measured in terms of the

distance (xS), which is measured from the initial boundary layer separation point to the

fin leading edge.

• Effects of Leading edge Diameter (D)

Price et al [50] was one of first researchers to study the effects of leading edge

diameter on the scale of the interaction zone in blunt-fin interactions. It was found

that for a fixed sweep, the fin leading edge diameter controlled the extent of upstream

influence and the levels of subsequent interference heating on the plate and the fin.

The relationship between the upstream influence and the leading edge diameter

was approximately linear and apparently independent of boundary layer thickness.

In addition the pressure in the disturbed flow region increased with increased fin

diameter. Further work by Dolling [17] showed that in the case of the blunt obstacle,

one has to distinguish two regions: Close to the obstacle in a region 2 - 3 fin diameters

from the fin root, coined the ”inner region”, is a domain where the flow is dominated

by the leading edge influence, and the flow is similar to that of a circular cylinder;
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outside of this region there exists an ”outer region” where the interaction properties

are independent of the fin bluntness and are essentially the same as those for a sharp

fin. Within the inner region, the flow properties are dictated purely by the diameter

(D) of the leading edge and are nearly independent on the incoming boundary-layer

thickness (δ). In particular, the upstream influence length, defined as the distance

between the obstacle and the onset of the pressure rise, is particularly unaffected by

a change of (δ/D). Thus, the upstream influence is a function of (D) only, nearly

independent of (M ) and (δ). Sedney and Kitchens [55] further demonstrated that

for a cylinder obstacle the primary separation length (xS), depends mainly on the

diameter (D) and height (K ) of the cylinder, and to a lesser extent the Mach number

(M ) and (δ).

• Effects of Leading edge Sweep (Λ)

Haq [28] did extensive tests with swept blunt-fins with turbulent boundary layers

and Schuricht [53] using laminar boundary layers. Both showed that sweeping the fin

was found to dramatically reduce the extent of the disturbed flow and significantly

reduced overall levels of heating on the flat plate and swept-fin especially around

the fin root. The pressures generally reduced throughout the entire interaction

region. Overall the shock stand-off distance was observed to reduce and hence the

upstream influence decreased. All the features on the interaction were observed to

be compressed in to a smaller disturbed flow region.

• Effects of Reynolds Number (Re/l)

The variation of the surface flow structures with unit Reynolds number was reported

in detail by Özcan & Holt [11] 2. It was observed from their experiments that a del-

icate balance existed between the vortical structures in the separated flow, and the

unit Reynolds number. Özcan & Holt reported that several vortical structures could

be observed, with transition from one structure to the other, occurring for small

changes in the unit Reynolds number, and being perfectly reproducible. They re-

ported that the number of separation lines dropped from 3 to 2 and from 2 to 1 as

(Re/l) was increased from 1.9× 105 to 2.3× 106. Young et al. [70] reported similar
2The unit Reynolds number of the freestream was altered by changing the tunnel stagnation pressure

while keeping the other freestream conditions constant. Reynolds number dependency was tested for a

constant (D/δ)
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findings for laminar flows past fins at (M = 3) and 5. This behaviour suggests a

delicate balance in the separated flow, which is easily modified by slight changes

in the initial conditions. Sedney and Kitchens. [55] observed for a given obstacle

height, and a fixed upstream Mach number (M ), the separated flow structure can

change considerably with unit Reynolds number [55]. For a given boundary layer

type, the effect of increasing the unit Reynolds number was seen to move the loca-

tion of the pressure rise, following separation, further upstream of the fin leading

edge. Furthermore, it was observed in all the experiments that the separation length

increased with increasing Reynolds number.

• Effects of Boundary Layer State

The state of the incoming boundary layer has a large effect on the physical scale of the

interference interaction. When exposed to an adverse pressure gradient, a laminar

boundary layer will separate far more readily than its turbulent counterpart because

the flow in the boundary layer has very low energy (relative to the freestream) and

is more easily driven by changes in pressure. Thus, for a laminar boundary layer

blunt-fin interaction the initial separation point is further upstream of the fin leading

edge than in the equivalent turbulent interaction. This was verified by Hung and

Clauss [36] who showed that upstream separation points changing from 2.0 - 3.0

diameters in turbulent cases to 8.0 - 9.0 diameters in corresponding laminar cases;

the test example was a cylinder mounted on flat plate in a (M = 5.3) flow. As a

consequence of a larger separated region, laminar interactions have a more extensive,

and complex flow structure associated with the separated region, when compared to

the same region in turbulent flows.

The distributed pressure profile measured along the centerline on the plate surface ahead

of the blunt-fin appears to show similarities to the profile observed over a two-dimensional

forward facing step, however there are distinct differences as highlighted in Figure 2.16.

Both profiles show a rise in pressure just ahead of the separation point but, for a step flow

the surface pressure typically reaches a plateau behind the separation pressure rise before

final compression, however this plateau does not occur in the three-dimensional case. The

range of upstream influence is dependent on the Mach number and Reynolds number [33],
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Figure 2.16: Two-dimensional vs three-dimensional pressure profile [45]

and the level of the plateau pressure is based on the free-interaction theory discussed by

Chapman, Kuehn & Larson [9]. If there is a low pressure region behind the separation

pressure rise in two-dimensional flow, one would expect a secondary separation in that

region in response to the favourable pressure gradient. In contrast to the two-dimensional

case, three-dimensional flow exhibits low pressure behind the separation pressure rise, due

to a reversed high-speed flow in the primary vortex. In addition, near the junction, there

exists a second peak due to flow reattachment attributed to the existence of a secondary

vortex. Also, it is observed that the peak pressures encountered in the three-dimensional

interactions were generally less than equivalent two-dimensional interactions due to the

pressure relief present in the three-dimensional blunt-fin, allowing the compressed flow to

escape around the sides.

As a result of strong entropy gradients in the shear layer of the separated region, the

separated flow contains a high degree of vorticity that causes the formation of one or more

horseshoe vortices depending on the geometric and flow parameters. The primary up-

stream separation point (S1), caused by the adverse pressure gradient as described above,

results in the formation of a single vortex along the centerline with a strong reattachment

occurring at the foot of the fin, this reattachment (R1) is often accompanied by large sur-

face heat fluxes [32]. The reverse flow within this vortex initially encounters a favorable

pressure gradient but, upon encountering the upstream flow is forced to separate also.

This secondary separation along the centerline leads to the formation of several secondary

35



2.5 Fin Interference Flow fields S.J.VITHANA

vortices [28]. Flowfields with 2, 4 and 6 vortices have been observed (see Figure 2.17),

with the number of vortices dependent on the Reynolds number (Re/l), the Reynolds

number depending on the diameter of the fin or cylinder [55]. For steady vortex systems

the relative position of the vortices on the plate can be determined from the pressure dis-

tribution on the plane of symmetry upstream of the fin, which shows a pressure minima

at the vortex locations.

R

Blunt Fin

∞M

1S S RRS1 3 3 2 2

Figure 2.17: A schematic of a suggested vortex profile in the separated region for a blunt-fin [28]

Figure 2.18: (left) Separation and reattachment lines for a blunt-fin [28] (right) Vortex skeleton

presentation [28]

Examination of available experimental evidence reveals that, as the Reynolds number in-

creases, the topology of the three-dimensional separation evolves from a single primary

vortex to multiple vortices with further increases in the unit Reynolds number leading to

unsteady laminar horseshoe vortex behaviour [61]. Tobak [58] hypothesized that the loca-

tions of the vortex centres in these unsteady cases are time dependent, but the streamline
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pattern given in Figure 2.17 can be considered as one of the possible streamlines which

succeed each other in time, thus giving a cyclic vortex structure [11].

A schematic of a suggested vortex pattern found in the separated region is shown in

Figure 2.17 and the locations of the separation and reattachment lines
(
labelled (S1), (S2)

and (R1), (R2), respectively
)

on the plate surface are shown in Figure 2.18.

The flowfield downstream of the blunt leading edge, which is within this large disturbed

region, is dominated by effects of the fin-sidewall/plate junction. The flow structure near

this junction is very similar to the observations made for a sharp-fin and exhibit the

features shown in Figure 2.12. The bow shock generated at blunt leading edge intersects

an oblique separation shock and as indicated a Edney Type IV shock-shock interaction

occurs. The interaction point is characterised by the slip line that bounds several reflected

shocklets which terminate with a normal shock as indicated in Figure 2.12. The separated

region contains one or two vortices and additionally the junction of the blunt-fin/flat plate

also contains a corner vortex as was found in sharp-fins.

Stollery [56] showed through oil streaks on the side of the fin several distinct features.

An attachment line was observed along the windward side on the fin; emerging from the

leading edge of the fin in the vicinity of the triple point shock interaction. Stollery implied

that the attachment line was generated by the supersonic jet produced by these types of

shock interactions. He also detected two other separation lines, one of which was thought

to be related to the high pressure jet of gas trapped at the root leading edge of the fin due

to the presence of a supersonic jet.

Three-dimensional fin interference heating

For thermal design purposes the peak heating in front of blunt-fin/plate junctions is of

particular interest. Hung and Clauss [36] reasoned that in general, the peak interference

heat factor, (h/hu)max which is the heat flux on the plate or fin surface normalised with

the respective undisturbed flow heat flux, can be assumed as a function of (D), (K ),

boundary layer thickness (δ) and free stream Mach number (M∞). A typical dimensional

anaylsis will yield:
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(h/hu)max = f(D/δ,K/δ,M∞) (2.25)

Hung and Clauss [36] discovered that a heating increase with (K ) was obvious until (K )

reached a certain value where further increase in (K ) caused no significant heating in-

crease. They stated that this could as a result be used as a criteria for defining short

and long protuberances (such as fins and cylinders). Since then many authors have at-

tempted to classify protuberances in a supersonic/hypersonic flow as either large/long

or small/short, depending on certain parametric relationships generally involving the fin

height (K ), and to relate the interaction scale to other flow and protuberance properties.

It is generally considered that a protuberance is large/long if it produces an ”asymptotic

result”; a condition where an increase in the fin height no longer produces an increase in

the interaction extent. This limit is generally accepted to be reached when the (K/D)

ratio is greater 2.5.

For short protuberances in laminar flow 3, the largest (h/hu) ratio can be estimated from

the following relations,

h/hu = (2.5 ∼ 4.25)(K/δ)1.5 (2.26)

and in turbulent flow

h/hu = (5.2 ∼ 7.3)(K/δ)0.863 (2.27)

where (h) is heat transfer coefficient for the interference flowfield and (hu) is the local

undisturbed (no protuberance) heat transfer coefficient. For a long cylinder, the observed

heating trend for both laminar and turbulent flows is,

h/hu = (4.2)(D/δ)1.38 (2.28)
3- The following relations are referenced from the work of Haq [28]
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The boundary between small and large protuberances depends on the boundary layer

state, and the conditions set by Hung and Clauss [36] are (D/δ ∼ 2) for a turbulent

layer and (D/δ ∼ 6) for a laminar flow. The expressions appear to highlight a significant

difference between small and large protuberances. It appears that for a small protuberance

(h/hu) depends on (K/δ) whilst for a long protuberance (h/hu) is scaled by (D/δ).

2.6 Overview of Previous Computational Work

With a considerable database of experimental results available for turbulent and laminar

blunt-fin flowfields, the development of numerical schemes to compute these flowfields has

grown steadily throughout the years. Initially all computational methods developed were

for solving turbulent boundary layers, this bias is partly based on the fact that at the

time there was a greater volume of available data for turbulent cases compared to laminar

flows. Reflecting this trend in history in the following section, outlined are three different

cases of blunt-fin turbulent interactions studied and, two laminar cases from the last thirty

years.

2.6.1 Turbulent Computational Work

One of the earliest successful computations of the blunt-fin interaction was presented by

Hung and Buning [33] in 1984, and was achieved by solving the Reynolds averaged Navier-

Stokes equations for a turbulent flow. The flow was supersonic (M = 2.95), with a (Re/l

= 6.3×107) using a (κ−ε) turbulence model over a blunt hemi-cylindrical fin with a (D/δ

= 7) at zero incidence. They compared their computations to the experimental results of

Dolling and Bogdonoff [16].

Predictions of the pressure field on the nose of the blunt-fin correlated well with the ex-

perimental data, but the peak pressure on the stagnation line (related to the impingement

of the supersonic jet) was under predicted. Comparison of the streamwise pressure distri-

bution on the plate ahead of the fin and at two outboard stations correlated well within

experimental data and all the main features such as the upstream influence, the pressure
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rise due to the separation shock, and the double pressure peak (see Figure 2.16), were well

simulated.

Corner VortexPrimary Vortex

Figure 2.19: Horseshoe vortex flowfield, particle paths in the plane of symmetry [34]

Calculated particle paths in the plane of symmetry of the interaction (see Figure 2.19)

indicated the presence of a large flattened horseshoe vortex structure well ahead of the fin

and another smaller secondary corner vortex close to the fin-plate junction. For the case

calculated, the separation shock was very weak and was smeared out over several mesh

points, therefore, a sharp triple point at the intersection of the bow shock and separation

shock was not observed. A strong Mach number variation in the region behind the bow

shock close to the predicted pressure peak was not apparent, and so the computations

had failed to predict the presence of the supersonic jet which is characteristic of this

type of interaction. However the computations indicated that the size and location of

the horseshoe vortices is dominated by the inviscid characteristics of the interaction, in

particular the bow shock. As a result they summarised the effect (D) has on the flow.

The researchers concluded that agreement between the computed results and measured

pressure distribution was very good despite the limited mesh resolution. However, the

computational techniques needed refining particularly in the areas of shock capturing

and, an improved resolution via increased density of mesh points.

In 1994 Tutty et al [60] simulated a turbulent flow over a blunt-fin/flat plate configuration,

and specifically looked at the heat flux on the flat plate and fin. The flow was hypersonic

(M = 6.85), with a (Re/l = 5.4×107) and a (K/D = 2.8) at zero incidence. The code used
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was termed SPIKE, a Navier-Stokes code developed by Fluid Gravity Engineering con-

taining a Baldwin-Lomax turbulence model. The computational model was built around

a blunt-fin with a diameter of 10mm at zero incidence and sweep. Contour maps of the

heating distribution around the fin for both experiment and computation were presented.

General agreement on the shape of the features was noted. However, the numerical cal-

culations overpredicted the location of the initial rise in heat flux upstream of the fin.

This discrepancy was thought to be due to the rather coarse grid used in this preliminary

study. Reasonable agreement was also shown for the centerline heating distribution, al-

though the computation predicted that, close to the fin leading edge, the heat transfer

coefficient peaks at 25 times the undisturbed value at the fin leading edge location. Com-

parison of experimental oil flow and heat transfer data with the numerical results indicate

that the peak in heat transfer close to the fin is due to the impingement of the small corner

vortex on the flat plate, and that the peaks and valleys in heat transfer correspond to the

local reattachment and separations of the vortical flow structure.

Since then several turbulent numerical studies have been undertaken in hypersonic blunt-

fin interactions. A very detailed study of swept and unswept blunt-fin interactions using a

turbulent boundary layer were undertaken in 1998 by Yamamoto et al [68]. The flow was

hypersonic (M = 3.92), with a (Re/l = 1.26×107) and a (D/δ = 10). The numerical scheme

was a high-resolution finite-difference method based on a fourth order compact MUSCL

,TVD scheme with a modified AUSM and the maximum second-order LU-SGS scheme was

employed to simulate unsteady flows associated with shock/shock and shock/turbulent

boundary layer interactions.

The results obtained for the unswept blunt-fin showed a cyclic system associated with

a system of separation shocks produced by several separation bubbles in the separated

region. These produce multiple shock/shock interactions with a resultant mixture of

several supersonic jets which combine to influence the characteristics of the separated flow

(see Figure 2.20). Finally a flow accelerated by the jets becomes a large-scale supersonic

jet. The jet streams into the separation bubbles and disturbs them, which causes the

number of bubbles to change according to the strength and direction of the jet. This

cyclic system was found to dominate the unsteady flow mechanism of the shock/turbulent
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Figure 2.20: (left) Mach contours in the plane of symmetry of the flow [68] (right) Streamline

vortex core paths around the blunt-fin [68]

boundary layer interaction. The results also appeared to indicate that the locations of the

vortex centers were time dependent, but the time-averaged surface locations where the

vortices are shed remain approximately constant.

Yamamoto also looked at swept blunt-fins and concluded that sweeping the fin from 0◦−30◦

degrees resulted in a dramatic reduction in the upstream influence, a sharp decline in the

final peak pressure levels, and generally reduced pressures throughout the entire interaction

region. The streamlines in the symmetry plane confirmed that the horseshoe vortices were

progressively weakened and reduced in size with increasing sweep.

2.6.2 Laminar Computational Work

In 1994 Lakshmanan and Tiwari [45] analysed a supersonic laminar boundary layer blunt-

fin/flat plate junction through computation. They employed a three-dimensional Navier-

Stokes code utilising the MacCormacks time-split, finite volume technique and investigated

the effect of Mach number and Reynolds number on the flow. The flow was supersonic (M

= 2.36), with a (Re/l = 2.7× 106) and a (D/δ = 7-30) at zero incidence.

They reported that increasing the freestream Mach number, decreased the extent of sepa-

ration ahead of the fin. This was caused due to the subsequent reduction in the bow shock

stand-off distance, which would be expected to reduce the size of the interaction region.
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The parametric study also revealed a dependency of the number of vortices with the flow

Mach and unit Reynolds number. Moreover, with an increase in the freestream Mach and

unit Reynolds numbers, the primary horseshoe vortex bifurcated into two vortices rotating

in the same direction (see Figure 2.21). Increasing the Mach number is also reported to

reduce the maximum reverse flow velocity close to the plate and in addition lower the

height of the reverse flow region.

Primary Vortex Primary Vortices Corner VortexCorner Vortex

Figure 2.21: Horseshoe vortex flowfield, particle paths in the plane of symmetry [34] (left) Re/l

= 1.2× 106 (right) Re/l = 5.0× 106

The most recent numerical studies to date using laminar boundary layers was done by

Houwing et al [32]. However the numerical simulations were used mainly as a supple-

mentary tool and for some comparative correlations with experimental results. The flow

was hypersonic (M = 6.1 - 6.9), with a (Re/l = 4.5 × 106) and a (K/D = 2.63) at zero

incidence.

3000

T

4000

300

1000

2000

90 mm

Figure 2.22: Temperature field in the plane of symmetry of the flow [32]
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Nevertheless some good detail was obtained from the simulations. For example, Figure 2.22

shows the contour profiles for temperature in the centerline symmetry plane. Clearly

visible are the shear layer, the separated boundary layer beneath and fin bow shock.

These CFD results provide insight into the complexity of the separated flow region, which

because of the limited experimental data available, had previously remained as conjecture.

2.7 Motivation for Present Study

The review of past published work covering hypersonic blunt fin interactions has shown

that recent computational work has focused mainly on the study of turbulent boundary

layer/fin plate interactions, leaving the laminar boundary layer flowfield under-studied.

The scope of the present study is therefore to advance the knowledge of hypersonic laminar

boundary layer/fin plate interactions and to compare with or corroborate laminar hyper-

sonic experimental data obtained at the University of Southampton by Schuricht [53].

From the numerical simulations it is hoped to observe the following points:

• The complex three-dimensional nature and major flow features associated with lam-

inar blunt-fin interactions, in particular mapping the path of the horseshoe vortices

present in the separated region of the flow.

• The effects of blunt-fin diameter and height on the general scale of the interaction

including for example correlation of separation lengths.

• The effects of fin sweep on the general scale of interaction, including correlation of

separation lengths.

The primary interest would be to explore the similarities/differences in flat plate heating

profiles between the numerical analysis and the experimental data. If there are differences,

possible mechanisms for the differences will be postulated.
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Chapter 3

The Numerical Method

3.1 Introduction

Computational Fluid Dynamics (CFD) is the numerical simulation of flowfields through

the approximate solution of the governing partial differential equations for mass, momen-

tum, and energy conservation coupled with the appropriate relations for thermodynamic

and transport properties. The approximate solution of the governing equations requires

that the domain be subdivided into many small control volumes. The accuracy of the

solution depends upon a variety of factors; the most critical factors are the size of each

control volume, the orientation of its boundaries relative to a variety of flow features, and

the order of accuracy of the discretization.

Although CFD methods have recently become a popular tool in engineering design to

complement experimental data, the nature of hypersonic flows which routinely involve

extremes of pressure, density, and temperature separated by shocks, expansions, shear

layers, and boundary layers; these extremes in conditions and topology of flow structure

complicate and present significantly larger challenges in the development of computational

capabilities for analyzing hypersonic flows compared to subsonic or supersonic flows.

The main problems in hypersonic continuum CFD are the physical-chemical modelling of

non-equilibrium flows, surface treatments (catalytic effects) and shock capturing - however

45



3.1 Introduction S.J.VITHANA

in present study these issues are ignored.

Solving the equations in a supersonic/hypersonic regime produce shocks and sonic lines, i.e.

”discontinuities”. These discontinuities can be described as extremely thin regions with

sudden changes in flow properties, and the modelling of such discontinuities is disturbed

by local losses of accuracy and smearing out, related to the numerical discretization of the

hyperbolic inviscid Navier-Stokes (or Euler) equations.

In addition, the ability to orient a grid with evolving flow structures is another partic-

ularly challenging feature of hypersonic flows. For example, accurate simulation of heat

transfer requires adequate resolution of the boundary-layer and accurate representation

of conditions at the boundary layer edge. In turn, conditions at the boundary-layer edge

particularly in the stagnation region of hypersonic flows are dependent on entropy car-

ried along streamlines from the shock. Any irregularities in the captured shock create

associated irregularities in entropy that feed the rest of the domain.

Taking into account some of the difficulties highlighted above, the inconsistencies in re-

sults produced by various computational methods because of inherent differences in the

numerical technique has not promoted confidence in hypersonic CFD codes.

However, due to the lack of available ground facilities for realistic testing at high Mach

numbers and due to the complex and integrated nature of the flowfield, traditional wind-

tunnel based design and analysis techniques are not adequate. Further complicating ex-

perimental analysis of such flows is the limited range of experimental diagnostic techniques

available for ”probing” flows, particularly at high Mach numbers. This becomes an impor-

tant issue for complex flows such as those considered here. Consequently, CFD methods

for simulating hypersonic flows have received considerable attention in the recent past and

have been pushed forward to become an important asset in understanding and highlight-

ing key problem areas of complex flows. CFD methods also provide considerable benefits

in terms of cost and time efficiency, due to the ability of performing computations at

vastly reduced time scales compared to setting up and running an experimental facility.

In addition, results obtained by CFD and experimental data are generally complementary

and help improve our understanding of the flow physics involved, and are proving to be

a promising alternative for analysis, design, and even optimization of hypersonic vehicles
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and propulsion systems.

The following points highlight the properties essential to any numerical algorithm used in

fluid dynamics; these being ”consistency”, ”accuracy”, ”stability” and ”convergence”.

Consistency

- Discretization should become exact as the grid spacing (or time step) tends to zero.

- Truncation error −→ 0 as (∆x → 0) and (∆t → 0).

- Truncation error (τh): difference between the differential conservation equation (=) and

the corresponding discretized algebraic equation (Lh) on grid level h:[
=(Φ) = Lh(Φ) + τh

]
where (Φ) is the exact solution of the differential equation (=).

Accuracy

- Accuracy of a solution means how close the solution is to the actual physical field.

- Most of the errors produced in the numerical simulation of a system can be removed by

careful programming but systematic errors are always present.

- Many sources of error contribute to reduced accuracy:

Modelling error : difference between exact solution of mathematical model (conservation

equations) and actual physical flow.

Discretization error : as defined above.

Convergence error : difference between the iterative solution and the exact solution of the

algebraic system of equations.

- If exact (physical) solution is not known, absolute accuracy can only be estimated.

Stability

- Solution is called stable (bounded) when the method does not magnify the errors from

iteration to iteration.

- Despite the accumulation of errors (truncation or discretization errors, and round-off

errors caused by machine precision) solution should not diverge.

- The most common approach to stability of an algorithm is the von Neumann’s linear

method which gives the domain of stability of the solution, relating flow properties with

grid spacing (∆x) and time step (∆t).
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Convergence

- Solution is called convergent when the exact solution of the discretized equation tends

to the exact solution of the differential equation as (∆x), (∆t) tend to zero.

- Discretization error −→ 0 as (∆x → 0) and (∆t → 0).

- Discretization error (εdh ): difference between exact solution of the mathematical model

(Φ) and exact solution of the discretized algebraic system (φh):
[
Φ = φh + εdh

]
.

- ”In a well-posed problem, consistency and stability are necessary and sufficient conditions

for convergence.”

3.2 The Numerical Scheme

The current numerical method in its initial form was developed and implemented by

Navarro-Martinez [47], on the basis of the work of Amaratunga [1]. For a detailed back-

ground on the numerical preliminaries to the numerical method, see [47]. The author

has modified the algorithm accordingly to account for the present characteristics of the

problem. However for completeness, a general description of the workings of the entire

numerical method shall be outlined.

This Chapter shall give a basic overview of the characteristics of the numerical algorithm.

In the numerical scheme, a brief description is given of the two different time stepping

methods; the explicit and implicit method used in this study. Which is followed by a

description of the methodology for evaluating both the Inviscid and Viscous contributions

to the Navier-Stokes equations. The formulation of the explicit and implicit boundary

conditions for the numerical method is then outlined along with the methodology for

solving the non-linear equations in the implicit method. This is then followed with a

description of how the numerical scheme was modified to run on a parallel platform to allow

for large three-dimensional calculations. Finally, the methods used to generate the different

computational grids used in the simulation and the convergence criteria for the different

simulations runs is followed by the Interpolation schemes used to save computational time.

It is important to note that, due to the actual complexity of the real flowfield, viscous

forces cannot be neglected and in hypersonic flow viscous forces play an important part,
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particularly near body surfaces and separated regions. Under these conditions it is nec-

essary to integrate in time the full set of Navier-Stokes equations until a steady-state (if

existent) is reached. A full description of the Navier-Stokes equations and their underlying

assumptions can be found in Appendix B.

Outlined below are the two numerical schemes implemented in the existing code. The first

section looks at the explicit formulation and the implicit method is then described in the

following section.

3.2.1 Explicit Method

To take into account the multi-dimensional nature of the flow, the Navier-Stokes equations

found in Appendix A are written in their integral form. Here we introduce the vectors

(U), (F) and (Fv), which are the vectors of m-conserved variables
(

ui(x, t)
)

and fluxes

of the inviscid and viscous components (F, G, H ) and (Fv, Gv, Hv) respectively.

∂U

∂t
+∇F = ∇Fv (3.1)

Upon integrating the above Eqn 3.1 over a control volume (V ), we obtain the following

relation

∫

V

∂U

∂t
dV +

∮

S
F.n dS =

∮

S
Fv.n dS (3.2)

where (n) is defined as the outward normal vector of the surface (S ) limiting the volume

(V ). At this point we introduce the definition of an average state (Ū) as

Ū =
1
V

∫

V
UdV (3.3)

Substituting the above expression into Eqn 3.2 we obtain the following semi-integral form

49



3.2 The Numerical Scheme S.J.VITHANA

V
∂Ū

∂t
=

∮

S
(Fv − F).n dS (3.4)

Discretising the computational domain into a collection of polyhedral cells, the control

volume (V ) is replaced by the volume of the i -th cell which is bounded by (Nf ) faces,

thus making it possible to split Eqn 3.4 into an expression that is the sum of the surface

integrals over the faces

Vi
∂Ūi

∂t
=

Nf∑

k

∮

Sk

(Fv − F).n dSk (3.5)

and averaging the flux in the k -surface

F̂k =
1

∆Sk

∫

Sk

(Fv − F).n dSk (3.6)

By collating the viscous and inviscid contributions, the governing equations written in a

semi-discrete form are

∂Ūi

∂t
=

Nf∑

k

F̂k∆Sk

Vi
(3.7)

The equation is averaged in space, but not in time. A further average of the above expres-

sion between the time levels (n) and (n + 1 ) gives the following equation in conservative

form

Ūn+1
i = Ūn

i + ∆t

Nf∑

k

F̃k∆Sk

Vi
(3.8)

where
(
∆t = tn+1 − tn

)
is the time step and

(
F̃n

k

)
is the space and time average of the

flux over the k -surface at the (n) time level

F̃n
k =

1
∆t

∫ tn+1

tn
F̂k(t)dt (3.9)
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Following a couple of numerical steps, the time averaged explicit backward Euler finite

volume scheme is defined as

Ūn+1
i = Ūn

i + ∆t

Nf∑

k

F̂n
k ∆Sk

Vi
(3.10)

Linear stability conditions, like the von Neumann method, impose restrictions on the

allowable time step (∆t). This time step is strongly dependent on the wave speed propa-

gation of hyperbolic conservation laws and grid size. Diffusion and source terms usually

have smaller time scales and they can further reduce the allowable time step. The most

famous condition, the Courant-Friedrich-Levy (CFL) restriction which comes out of the

stability analysis, is the idea that the ”numerical” domain of dependence of the solution

should contain the ”physical” domain of convergence. For an ordinary one-dimensional

conservative method, this condition may be expressed as

∆tCFL = CFL

∣∣∣∣∣
∆xi

Max(Si− 1
2
, Si+ 1

2
)

∣∣∣∣∣ (3.11)

where CFL is called the Courant number (or simply the CFL number) and is implemented

as a user-given security factor. In steady situations, the desired results are obtained in

the limiting state when (t → ∞), thus small time steps are a big restriction in marching

schemes, consuming an excess of computational effort. In order to circumvent the CFL

restriction and speed up the solution process we introduce the ”implicit” method.

3.2.2 Implicit Method

Explicit schemes as expressed above have very limiting constraints on the allowable time

step (∆t) used by the viscous solver (see Batten et al [6]). An estimate for the viscous

time step (∆tC) was quoted by Turkel [59] as being

∆tC ≤ ρPr∆ξ2

4γµ
(3.12)
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where (∆ξ) is a characteristic dimension of the cell. In addition, the CFL condition in

Eqn 3.11 also restricts the time step (∆tCFL), due to the inviscid part of the equations.

Usually for highly viscous flux (∆tc << ∆tCFL). To bypass such restrictions an implicit

approach is adopted, where the time-averaged flux
(
F̃n

)
of Eqn 3.8 is replaced by the

space-averaged flux at time level (n + 1 ) -
(
F̂n+1

)
, thus giving a new conservative scheme

Ūn+1
i = Ūn

i + ∆t

Nf∑

k

F̂n+1
k ∆Sk

Vi
(3.13)

The inviscid and viscous average fluxes are approximated at the new time level by a

truncated Taylor expansion [6] as

F̂n+1 ≈ F̂n +

(
∂F̂

∂U

)n

δU (3.14)

where (δU) states for the difference between the vector of conserved variables at time

levels (n) and (n + 1):
(
δU = Ūn+1 − Ūn

)
. Throughout the remainder of this work, the

average variable (Ū) will be referred as (U), in the same manner the space average flux

(F̂ ) will be replaced by (F ). Substituting Eqn 3.14 in Eqn 3.13 eventually results in an

Implicit semi-discretisation of the mass-averaged Navier-Stokes equations as

[
Vi

∆t
I−

Nf∑

k

(
∂F

∂U

)

k

∆Sk

]
δU =

Nf∑

k

Fn
k ∆Sk (3.15)

Further detail on the intermediate numerical steps in the above analysis can be found in

the works of Batten et al [6].

The implicit scheme presented above does not have the CFL restrictions on time step

as compared to the explicit scheme, this is because the numerical domain of dependence

is much larger and therefore it is possible to use a time step (∆t) which is larger than

in the explicit scheme. However, because of the iterative methods used to solve for the

linear system of equations in the implicit method as described in Section 3.6, there is

an associated overall computational cost increase per time step. Therefore in all cases

the implicit method is more expensive per time step than the explicit method, but this
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drawback is overcome by being able to use much larger time steps and hence be more

efficient in finding a steady state solution.

3.2.3 B2 scheme

The B2 scheme, proposed by Batten et al [6], was developed to dampen or dissipate

the oscillatory effects between alternative time steps, of using slope limiters, which are

described in Section 3.3.3, in the Godunov method. This oscillation had the effect of

preventing convergence of the numerical scheme to machine zero, and the phenomenon

is associated with the artificial non-linearity introduced through the slope limiter in the

discretisation scheme. Batten et al [6] proposed a temporal first order two-step integration

implicit model, denoted B2:

Un+1 = Un +
∆t

2Vi

( Nf∑

k

F
n+ 1

2
k +

Nf∑

k

F
n+ 3

2
k

)
(3.16)

The use of this scheme can be easily implemented by two successive backward Euler steps.

δU = B1(Un, ∆t) (3.17)

Un+1 = Un + δU (3.18)

there after the B2 scheme is implemented as follows

δU∗ = B1(Un, ∆t/2) (3.19)

U∗ = Un + δU∗ (3.20)

δU∗∗ = B1(U∗, ∆t) (3.21)

Un+1 = U∗ + δU∗∗/2 (3.22)
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3.3 Inviscid Compressible Flow

The inviscid contribution of the Navier-Stokes equations are governed by the Euler equa-

tions

δU

δt
+

δF

δx
+

δG

δy
+

δH

δz
= 0 (3.23)

where (F ), (G) and (H ) are defined in Appendix A. To compute the inviscid contribution

to the flux a Godunov method is used, which involves the solution of a local Riemann

problem.

3.3.1 Godunov Method

In the Godunov method, the average inviscid flux of Eqn 3.6 is defined by

F̂k =
1

∆Sk

∫

Sk

F.n dSk (3.24)

where each face of the cell (Sk) is obtained as a solution to a one-dimensional Riemann

problem between two states, (UL) and (UR). These states are approximated by cell values

in the first order extrapolation or by interpolated values in higher order extensions. The

average flux may be redefined as

F̂k = FRP = F(URP ).n (3.25)

where (URP ) is the solution obtained with the Riemann solver which is a function of (UL)

and (UR).

The Riemann solver used in the present study is the HLLC type. The choice of solver

is based primarily on the following points: the HLLC type does not require artificial

correction parameters compared to other Riemann solvers and its demonstrated success-

ful implementation in compressible flows. In addition this solver incorporates the most
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detailed physics while there is no need for artificial entropy correction and, due to its

robustness, allows the use of implicit schemes.

3.3.2 HLLC Rieman solver

The value of (U ) at the interface (i + 1
2) is defined by

UHLLC
i+ 1

2

=





UL if aL > 0

U∗
L if aL ≤ 0 < aM

U∗
R if aM ≤ 0 ≤ aR

UR if aR < 0

(3.26)

and the corresponding interface normal numerical flux (F ) at (i + 1
2), for Eqn 3.26, is

defined as

FHLLC
RP =





FL if aL > 0

F ∗
L = FL + aL(U∗

L − UL) if aL ≤ 0 < aM

F ∗
R = FR + aR(U∗

R − UR) if aM ≤ 0 ≤ aR

FR if aR < 0

(3.27)

where
(
F∗ = F (U ∗)). For more details on estimating the average state (U ∗) see Appendix

B.

To implement the HLLC Riemann solver in the Godunov method the following steps are

performed :

Step I: Compute the wave speeds aL, a∗ and aR

Step II: Compute the states for U ∗
L and U ∗

R

Step III: Compute the HLLC flux according to Eqn 3.27 and use it in the conservative

formula un+1
i = un

i + ∆t
∆x

[
fn

i− 1
2

− fn
i+ 1

2

]
.
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The Average State Jacobians

For the implementation of implicit method Eqn 3.15, the jacobians for the inviscid and

viscous fluxes have to determined. Batten et al [7] defined the average-state inviscid

Jacobians for the flux at level (n + 1) on the Riemann problem as

Fn+1
RP =





FL + ∂FL
∂UL

δUL if aL > 0

F ∗
L + ∂F ∗L

∂UL
δUL + ∂F ∗L

∂UR
δUR if aL ≤ 0 < aM

F ∗
R + ∂F ∗R

∂UL
δUL + ∂F ∗R

∂UR
δUR if aM ≤ 0 ≤ aR

FR + ∂FR
∂UR

δUR if aR < 0

(3.28)

where
(

∂F ∗
∂UR

)
and

(
∂F ∗
∂UL

)
are the average state Jacobians. A complete description of how

these jacobians are calculated is found in Appendix B.

3.3.3 MUSCL Slope Limiting

A MUSCL linear reconstruction scheme is used to obtain formal second order accuracy.

As a second order extension to the Godunov method the Minmod scheme given by Ama-

ratunga [1] is used. Defining the following,
(
∆Ui+ 1

2
= Ui+1 − Ui

)
,
(
∆Ui− 1

2
= Ui − Ui−1

)
,

and
(
∆i,j = xi− xj

)
as the right and left derivatives with the respective slopes defined as(

φl =
∆U

i− 1
2

∆i,j−1

)
and

(
φl =

∆U
i+1

2
∆i+1,j

)
.

The Minmod Slope limiter states the slope in the i-th cell, (φi) as

φi =





0 if φlφr ≤ 0

min
{

k
∣∣∣

∆U
i+1

2
2∆

i+1
2 ,i

∣∣∣, k
∣∣∣

∆U
i− 1

2
2∆

i,i− 1
2

∣∣∣
}

sgn(φl) otherwise
(3.29)

Where the control parameter (k) offers the possibility to use slope limiters more or less

”diffusive”. For (k = 0) the slope limiting process switch off and recover the first order

scheme.
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Multi-dimensional MUSCL

To take into account the conservation of the variables across the whole volume of an

arbitrary cell, the equation
(

ui = 1
∆x

∫ x
i+1

2
x

i− 1
2

ũi(x, t)dx

)
is transformed to

Ui =
1
Vi

∫
Ũ(x, y, z, tn)dV (3.30)

where (Vi) is the volume of the cell. For a tri-dimensional centered grid, the MUSCL

distribution can be expressed as

Ui+ 1
2

= Ui +
∆ξmin

2

√
V −

V +
φi (3.31)

Ui− 1
2

= Ui − ∆ξmin

2

√
V +

V −φi (3.32)

where (φi) is again the slope limiter function, (∆ξmin) is the minimum distance in the

(ξ) directions from the cell centre to either (i + 1
2) or (i − 1

2) interface. The tetrahedra

volume balances in Eqns 3.31and 3.32 are required to preserve conservativity with the slope

limiting process. This is evident by the fact that the new distribution of (U ) satisfies

(Ui+ 1
2
− Ui)V − − (Ui − Ui− 1

2
)V + = 0 (3.33)

and therefore reaverages to the original cell averaged value (see Figure 3.1).

As a result the new interpolation values used in the HLLC Riemann solver are

Ul = Ui + δUi

Ur = Ui+1 + δUi+1

(3.34)

where (δUi) and (δUi+1) are slope corrections in the cell (i) and (i + 1), respectively,

obtained from Eqns 3.31and 3.32.
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η
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-
+

Figure 3.1: MUSCL slope limiting reconstruction in a three dimensional arbitrary cell, with V +

and V − the corresponding volumes in the ξ direction

Three-dimensional Metric Calculations

Calculating the volume balance, (V +) or (V −) respectively in each arbitrarily cell is an

important pre-requisite to using the MUSCL method. One of the attractive features of the

finite-volume approach is its ability to be used on any generalized orientated coordinate

system. The only information about the mesh that we transmit to the method is the

three curvilinear coordinates of the eight vertices of every cell in the mesh, as shown in

Figure 3.2. With this information, we can calculate the metric coefficients strictly by the

principles of geometry.

S

η

S

S
S

S

S

i, j+1, k+1
i, j+1, k

i+1, j+1, k

i+1, j+1, k+1

i+1, j, k+1

i, j, k+1

i+1, j, k

i, j, k

i

k

j+1

i+1

k+1

j

ζ

ξ

Figure 3.2: A typical computational cell i, j, k
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With information on the four vertices the surface area is given exactly by one half the

cross product of its diagonal line segments (see [40, 42]). With reference to Figure 3.3.

S5678 = 0.5(r75×r85 + r65×r75) = 0.5(r75×r86) (3.35)

The volume (V +,−
i ) is computed in the following way. Without restriction a general hexa-

hedron is composed of five tetrahedra (see Figure 3.3) each of whose volume is determined

exactly by

VT1236 =
1
6

∣∣∣∣∣∣∣∣∣∣∣∣

x1 y1 z1 1

x2 y2 z2 1

x3 y3 z3 1

x6 y6 z6 1

∣∣∣∣∣∣∣∣∣∣∣∣

(3.36)

where the integer subscripts on (VT1236) refer to the four vertices that define the tetra-

hedron. The volume of the hexahedron then is the sum of the volumes of these five

tetrahedra.

5

1

2

3

4

6

7

8

Figure 3.3: The volume of a hexahedronal cell is the sum of the five constituent tetrahedra:

VT1236 + VT3867 + VT1685 + VT1348 + VT3816 [24]

The existing multi-dimensional MUSCL method takes advantage of the symmetry in (ζ)

to equate the tetrahedra volume balance to an area weighting. However to account for

a truer three-dimensional curvilinear grid, as used in the current study, the tetrahedra

volume balance for the (i th) cell is considered.

59



3.4 Viscous Compressible Flow S.J.VITHANA

3.4 Viscous Compressible Flow

The discretisation of the viscous fluxes requires the evaluation of derivatives in each coor-

dinate direction. This makes the viscous fluxes quite laborious to compute and therefore

various assumptions are often made to eliminate the less significant viscous terms. For

high Reynolds number flows with which we are primarily concerned, the viscous effects are

generally confined to the near wall region and are dominated by the viscous strain rates

normal to the wall; the viscous terms associated with the strain rates along the body are

comparatively small and negligible. This was first realised by Prandtl in the development

of boundary-layer theory, and later let to the thin layer approximation of Baldwin and

Lomax [4], which neglects the cross derivative terms in the unsteady viscous fluxes and

retains only those terms which are dominant for a general coordinate system.

The thin layer terms are often applied only to the coordinate direction normal to the body

surface (see Yee [69]). Hung & Kuraski [35] successfully implemented an extension of this

approximation in two directions, (ζ) and (ξ), where they considered the dominant normal

diffusive terms and also the major streamwise diffusive terms and used it to solve for a

supersonic flow over an axial corner. The present code has been designed to allow these

terms to be switched on in all three directions simultaneously, normal, streamwise, and

spanwise enabling the code to deal easily with general geometries. This amounts to an

implementation of the full Navier-Stokes equations without the viscous cross derivatives

terms. In some instances the neglected cross-derivatives can be of the same order of

magnitude as the retained normal derivatives very near the junction of two walls, but in

the present scenario the flow contains comparatively very low momentum hence the these

viscous terms will be of negligible magnitude in comparison to the dominant terms, as a

result neglecting the cross derivatives will not significantly affect the general solution.

Accordingly, the viscous flux for a generic direction (ξ) is given by
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F̄v = J




0

ξxτxx + ξyτxy + ξzτxz

ξxτyx + ξyτyy + ξzτyz

ξxτzx + ξyτzy + ξzτzz

uτxx + vτxy + wτxz + qx




(3.37)

where (J ) is the transformation Jacobian (which corresponds to the volume of the cell

in physical space). The vectors (Ḡv) and (H̄v) follow from (F̄v) using the substitution

(ξ → η) and (ξ → ζ). respectively.

The viscous flux terms are obtained in the general curvilinear coordinate system by split-

ting the flux (F̄v) into subfluxes,
(
F̄

(ξ)
v

)
,
(
F̄

(η)
v

)
and

(
F̄

(ζ)
v

)
such that

F̄v = F̄ (ξ)
v + F̄ (η)

v + F̄ (ζ)
v (3.38)

where
(
F̄

(ξ)
v

)
,
(
F̄

(η)
v

)
and

(
F̄

(ζ)
v

)
involve only derivatives of (ξ), (η) and (ζ) respectively.

When computing fluxes normal to the (ξ) coordinate line, only terms in the subflux
(
F̄

(ξ)
v

)

are retained in the approximation.

After some manipulation eliminating the non essential terms, leaves us with the following

revised viscous flux vector for
(
F̄

(ξ)
v

)

F̄ (ξ)
v = µJ




0

α1uξ + β1vξ + β3wξ

β1uξ + α2vξ + β2wξ

β3uξ + β2vξ + α3wξ

τ ξ
5




(3.39)

the corresponding (α) and (β) coefficients are given by
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α1 = 4
3n2

x + n2
y + n2

z

α2 = n2
x + 4

3n2
y + n2

z

α3 = n2
x + n2

y + 4
3n2

z

β1 = 1
3nxny

β2 = 1
3nynz

β3 = 1
3nznx

α4 = Cp
Pr (n2

x + n2
y + n2

z)

τE = α1(u2

2 )η + α2(u2

2 )η + α3(w2

2 )η + β1(uv)η + β2(vw)η + β3(wu)η + α4Tη

(3.40)

Similarly, the viscous flux vector
(
F̄

(η)
v

)
and

(
F̄

(ζ)
v

)
can be obtained by replacing (ξ) with

(η) or (ζ) and taking the projections of (nx), (ny) and (nz) unit vectors in the (η) and (ζ)

directions.

The method outlined above greatly simplifies the computation of the viscous fluxes and

means that a dimensional operator split code need only carry one level of storage, even for

time accurate calculations. In addition to the method described above, another variant of

the viscous solver was also tried. The secondary method included some additional cross

derivative terms in the viscous flux of Eqns 3.37 to mimic a solution which matched a more

complete Navier-Stokes solution. These additional terms were mainly computed for the

(ζ) direction, which is normal to flow direction and hence the most dominant. A listing of

the explicit viscous fluxes solved in the second explicit method can be found in Appendix

B.

All the above derivatives have been discretised in a centred scheme over the cell interface

∂u

∂ξ

∣∣∣∣∣
i+ 1

2

≈ ui+1 − ui

ξi+1 − ξi
(3.41)

This also applies to the primitive variables (v, w, T ). The viscous contribution is com-

puted with an error
(
O(∆ξ2/Re/l)

)
which is much smaller than the inviscid one which
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determines the overall accuracy of the scheme. Once the viscous terms are determined,

they can be incorporated into the scheme Eqn3.10.

3.4.1 The Viscous Jacobians

In a similar fashion to the way the inviscid Jacobians were implemented in the implicit

scheme the corresponding viscous Jacobians also have to be calculated, and as instructed

by Batten et al [7] this is done in the following way

Fn+1
v = Fn

v +
∂Fv

∂Ui
δUi +

∂Fv

∂Ui+1
δUi+1 (3.42)

where
(

∂Fv
∂Ui

)
and

(
∂Fv

∂Ui+1

)
are the viscous Jacobians, a complete listing is obtained in

Appendix B.

3.5 Boundary Conditions

In general, all boundary conditions are imposed by controlling the flux through boundary

interfaces. For this purpose, an extra row of dummy grid points is required at each bound-

ary to store information which is used in the flux calculation. The conserved variables

assigned to these dummy grid points are then manipulated to mimic the true interface

boundary conditions.

For the Implicit scheme it is possible to find a relation between (∂UBC), the ghost cell

conserved variable vector, and (∂Ui) the conserved variable vector for the flow. These two

variables can be expressed through a matrix (CBC) as

∂UBC = CBC∂Ui (3.43)

The way of evaluating of (CBC) will depend on the boundary itself. A listing of the

boundary conditions appropriate to this study can be found in Appendix B.
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3.6 Implicit Numerical Implementation

Batten et al. [6] developed a series of implicit Godunov methods, based on the linearization

in time of the fluxes obtained from the solution of the local Riemann problems. The

implicit method applied in this study is based on the work done by Batten et al. [6]

and the resultant implicit scheme is built around the HLLC Riemann solver described

in section 3.3.2, which uses frozen acoustic speeds to construct average state Jacobians.

Moreover the way of constructing the Jacobians allows a simpler introduction of further

contributions, as turbulence models or chemical species. One of the attractive features of

this method over the explicit scheme is vastly reduced number of iterations required to

achieve a converged solution.

However the current implicit method does have certain limitations. One important point

is the need to increase the time step gradually, which allows the wave speeds to settle

down and also the positivity of preservation condition is not guaranteed for the implicit

method operating at extremely large CFL numbers. This produces an upper limit for the

maximum allowable Courant number in the implicit method (however this limit should be

much greater than one).

The resultant implicit scheme in Eqn 3.15 can be regarded in the differential form as a

linear system of equations which can be expressed as:

AijδUj = bi (3.44)

where (Aij) is a (N ∗ N) matrix, (N ) being the number of unknowns that creates the

influence of the time level (n+1 ) over the previous one (n) and is derived from the implicit

discretisation to keep the scheme stable and (bi) is the vector sum of fluxes over a time step.

The total number of unknowns (NT ) for a three-dimensional system is (NT = 5×Ncells).

As a result (NT ) is very large in three-dimensional calculations, around∼ 107 in the present

study with (Aij) reaching ∼ 1014 elements, too large to be handled by any computer at

present.

For the specialist case when (A = I) the method is reduced to the explicit scheme. To
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advance the solution in time the implicit method needs to solve the system of equations

expressed in Eqn 3.44. In the case of multi-dimensional problems, where matrix (Aij)

is a very large sparse non-symmetric linear system, it is impossible to solve Eqn 3.44

exactly. As a consequence the use of iterative methods is the only alternative to achieve

a solution. The methodology used in the current scheme is through implementation of

the Bi-CGSTAB(l = 1, 2) method. A complete description of the Bi-CGSTAB(l = 1, 2)

algorithm can be found in the works of Navarro-Martinez [47]. In the present code the

matrix solver is the most CPU consuming process as a result the use of iterative methods

has an increased overall cost penalty per time step.

Once the vector of variation of the conserved variables (δUj) has been computed, the

variables are updated in a simple manner as follows

Un+1
j = Un

j + δUj (3.45)

The system of equations in Eqn 3.44 is solved at every time step, until a stopping criteria

is met. The density is usually the variable with the slowest convergence, therefore the

density residual at the (n) time level (Resn
ρ ) defined with the (L1) norm as

Resn
ρ =

Ncells∑

i=1

| ρn
i − ρn−1

i |
Ncells

(3.46)

is used to monitor convergence. A steady solution is found when (Resn
ρ ) drops below 10−7

in the implicit calculations.

3.7 Parallel Processing

The use of multiple processors for running three-dimensional codes considerably reduces

the computational time consumed to achieve a converged solution. This time saving occurs

because the tasks are split between processors which in turn reduces the RAM memory load

per node. Therefore an additional benefit of using parallel codes is the ability to use more

densely packed grids, which has great benefits because this increases the overall accuracy
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of the final solution. Flow structures and features are more clearly defined as a result

and it also allows the smaller flow structures to be captured. Using multiple processors is

necessary in three dimensional cases, because the large number of cells makes the use of

single processor machines impractical at present.

The parallel version of the three-dimensional C-code uses MPI subroutines to permit

communication between nodes. It is important to minimise the exchange of informa-

tion between processors to increase the overall speed of the code. Correct management

of these subroutines is compulsory to fulfil the memory requirements. Moreover, an ex-

cess of packages passed between nodes produce delays when running the program due to

communication processes.

N-1
P

P

P

P
1

2

N

ξ

ζ
η

Figure 3.4: Distribution of computer nodes over the three-dimensional space (ξ, η, ζ) [47]

For the present three-dimensional problem the computational block (ξ, η, ζ) is equally split

in the (ζ)-spanwise direction (see Figure 3.4). Every node interacts with its neighboring

processors by updating the dummy cells after each iteration. For a first order scheme only

one row of cells is required in each boundary for the communication process however, in

a second order case like the MUSCL scheme, two rows are required to reconstruct the

solution properly across processors.

The numerical simulations were carried out using a Beowulf type Linux cluster at the

University of Southampton. The code was run using Pentium III 800 MHz processors,
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each with 512 MB RAM or P4 1500 MHz processors, each with 1 GB RAM.

Parallelization efficiency is measured as the optimum number of processors required to

give a steady state solution in the least amount of time. For the coarse and intermediate

grids studied, for the average explicit three-dimensional run, it was found that using 12

processors was the optimum setup and a steady state solution was achieved in ∼ 300 hours

of CPU time. For the fine grid studies however, it turned out that using 20 processors was

the optimum, with a steady state solution achieved in around ∼ 720 hours of CPU time.

The jobs were submitted to the computer cluster via a job queue, which was often quite

long. This resulted in the actual run times (real time) of the simulations being very long.

The (real time) required to run a three-dimensional simulation for a grid 232× 204× 180

to convergence was approximately 50 days.

3.8 Numerical Grid Generation

In CFD simulations the computational grid plays a decisive role in determining the ac-

curacy of the numerically generated solution. Broadly there are two types of meshes,

”structured” and ”unstructured”. Unstructured girds are composed of non-ordered dis-

tributions of irregular polyhedra cells that cover the domain, and adapt well to complex

geometries. Despite the good performance of these grids, they are affected by spurious

errors associated with the viscous terms [57] and are difficult to handle because they need

a complex connectivity matrix to locate each cell and its interacting neighbours. Struc-

tured grids consist of completely ordered cells, preferably orthogonal, that fill the domain

and are usually indexed (i,j,k). The referencing system is much simpler when compared

to unstructured grids, and furthermore the method is computationally inexpensive to im-

plement. In addition, this type of grid produces less instabilities and deals better with

viscous contributions.

Taking advantage of the robustness and stability of the current numerical scheme, the

numerical code solves the discretised equations on a structured computational grid. Part

of the grid generation procedure is undertaken using a commercial grid generation package

called GRIDGEN.V.14 [38]. Throughout this work GRIDGEN.V.14 is used initially to
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generate two-dimensional grids in the (ξ, η) plane. These grids are later extended to the

third dimension (ζ) by simple stretching functions. For the unswept grids, the function

assumes
(

ζ = ζ(z)
)

only, and for the swept-fin example assumes
(

ζ = ζ(x, y, z)
)
.

z’ = z’

y

x

(ξ )
η

η

ξ

ξ

’

Figure 3.5: Sketch of the physical (x,y) and computational (ξ, η) space

To study the effect the grid type has on the numerical solution; two types of grid were

generated using an algebraic method, the H -type and C -type. For both grid types the

physical space (x,y,z ) is mapped into the computational space (ξ, η, ζ), retaining the or-

dered structure and the orthogonal properties (see Figure 3.5).

3.8.1 Grid clustering

Grid stretching is the ratio of distances between adjacent grid points along a grid line.

i+1, j

i

i, j

ξ∆ξ∆

i-1, j

i-1

Figure 3.6: Illustration of grid stretching

S =
max(4ξi,4ξi−1)
min(4ξi,4ξi−1)

(3.47)

Stretching is defined so that (S ≥ 1), this parameter can also be expressed as a percentage

(S% = (S − 1) ∗ 100%).
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One-dimensional hyperbolic tangent stretching [38] is used in all regions to distribute the

cells along the grid connectors. This type of stretching has been used in several numerical

works, since it provides an effective way to smoothly vary the cell spacing along a line.

On the current series of grids, grid clustering is implemented in all three spatial directions

of the computational domain (ξ, η, ζ). In the (ξ, ζ) plane, points are clustered towards

the plate surface in order to resolve the laminar boundary layer and to get an accurate

measurement of heat flux on the plate. In the (η, ζ) plane, points are clustered near

the leading edge in order to accurately resolve the leading edge shock, and also clustered

towards the fin edge so the flow is accurately resolved in the separated region. Points

in the (ξ, η) plane are clustered towards the plane of symmetry so that features close to

the centerline of the fin are accurately captured. Taking advantage of the symmetry that

exists on the fin/plate, only half of the configuration is used to construct a computational

domain.

Grid stretching during the clustering process can lead to the presence of skewed cells in var-

ious quadrants in the computational domain. This can subsequently lead to the generation

of perturbations during the simulation that may partially or completely destroy the numer-

ical solution. A general rule is to keep stretching below 15− 20% to keep numerical errors

within bounds. This is especially important in regions with strong flow gradients [48].

As a result of using individual explicit and implicit numerical algorithms independently

to attain the final converged solution, considerable care is taken when implementing the

clustering criteria. This is mainly because the implicit algorithm is particularly sensitive

to instabilities due to large time steps.

θ

i, j+1

i, j-1

i-1, j
i, j+1

i, j

Figure 3.7: Illustration of grid Orthogonality

An elliptic solver is run on the (ξ, η) plane of the grid block in the physical domain. The

elliptic solver improves the orthogonality of the mesh, especially in those regions where
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the cells intersect with sharp or convex corners. Grid orthogonality (see Figure 3.7) is the

angle that a grid line makes with the other grid lines intersecting at a grid point.

Orthogonality is defined so that (θ ≤ 90◦). General rule is to keep orthogonality as close

to 90◦ as possible, especially normal to solid surfaces to provide accurate estimates of

the normal to the walls for wall boundary conditions. A minimum angle is probably 45◦.

Orthogonality is also very important on the plane of symmetry since skewing will create

a strong grid dependence on this plane.

3.8.2 Three-Dimensional Extension

For the unswept-fin computational grid, the third dimensional variable of the computa-

tional grid (ζ) has been chosen to be a function of (z ) only. A simple compression technique

through a control function (ψ) is performed [57].

z = ψ(ζ, C
′
) (3.48)

(ψ) stretches the grid towards the (z )-edge or the flat plate. (C
′
) is a user given constant

that increases or decreases the degree of stretching. In the present work, (ψ) is a function

in the form

ψ =
eC

′
ζ̄ − 1

eC′ − 1
ζ (3.49)

where (ζ̄) is the coordinate (ζ) normalized to have values between 0 and 1.

The following figures illustrate the type of grids generated using the methods outlined in

this section. Figure 3.8:(top) is an example of a H-type grid with Figure 3.8:(middle) illus-

trating a C-type grid. A modified version of theC-type grid is shown in Figure 3.8:(bottom)
1.

1- The (x,y,z ) physical coordinate system shown is transformed to (ξ, η, ζ) in the computational coor-

dinate system
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Figure 3.8: (top)H-type grid (middle) C-type grid (bottom) C-type Hybrid grid
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3.8.3 Grid Properties

When computing flows which have boundary layers growing over walls or flat surfaces,

require the grid to be clustered normal to the wall or flat surface in order to resolve the

large gradients present through the boundary layer. As a consequence, it is important to

define a set of variables that can used to quantify grid ”quality” so that it is possible to

measure the ability of a selected grid in being able to give an accurate solution to the flow

problem.

One such factor is the ”Reynolds number per cell”, (Reh) defined as,

Reh =
ρ∞U∞h

µ∞
(3.50)

where (h) is the height of the cell and (∞) denote free stream conditions. The (Reh)

coefficient is a measure of the number of grid points across the boundary layer, and is

representative of the grids ability to capture the inner deck of the ”triple deck theory” 2.

Generally, the smaller the (Reh) coefficient, the better the grid is in being able to capture

the low deck of the boundary layer. The minimum (Reh) is located in cells next to the

blunt-fin and the leading edge.

Another important parameter is the cell dimension ratio (4x/4y), which due to mesh

stretching reaches its maximum next to the plate. Very large or small ratios increase the

oscillatory effects in second order schemes. Best results are obtained with values close to

unity. Unfortunately, there are no analytic forms to determine the optimum ratios and

empirical tests should be done. The coefficients for different grids evaluated at the leading

edge are shown in Table 3.1.

The recommended grid parameters of Katzer [41] for Shock-Boundary Layer Interactions,

near separation, (4x/4y ≤ 20) and (Reh << 100) are followed to accurately capture the

low deck displacement.
2- Triple deck theory states that there are three decks within the boundary layer: the outer deck is largely

potential flow, the middle deck covers most of the boundary layer profile and is comprised of rotational,

inviscid, disturbance flow, and finally the inner deck close to the surface contains viscous disturbance flow.

72



3.8 Numerical Grid Generation S.J.VITHANA

The quality of the grid is also assessed against an additional set of criteria usually used on

flows with turbulent boundary layers. The parameter (y+) is a non-dimensional distance

measured normal to the wall measured across the turbulent boundary layer. This variable

is defined as:

y+ = y

√
ρwτw

µw
(3.51)

where the variables with the (w) subscript represent the values at the wall. The general

rule is that the first grid point off the wall should have (y+ < 1) to accurately define a

turbulent velocity profile. It can go up to (y+ = 5) for less accuracy. Resolution of heat

fluxes requires (y+) to be about 0.1 [48].

The grids used in the following simulations will use all three parameters defined to measure

grid quality, therefore assuring that the grids are effective in determining the most accurate

solution.

H-Type vs C-Type

To assess the merits or shortcomings of both the grid types to yield an accurate solution

to the problem in terms of numerical accuracy and time dependency, two test grids with

identical grid densities (43× 40× 36) were run, and the solutions compared.

From the resulting simulations the following observations were made. When using the

explicit method under a first-order scheme, it was observed that when using the H-type

grid it was possible to run the scheme using higher explicit CFL numbers when compared

to using the C-type grid. As a direct consequence the H-type grid gave a faster converged

solution to the flowfield. However, due to the grid mapping technique the grid cells near the

curved blunt section of the fin were highly skewed, even though an elliptic solver was used

to smooth out these regions. This had a direct adverse affect on the numerical solution.

This was expressed as numerical irregularities in the final solution. These irregularities

were localised near the line of symmetry close to the blunt fin section, and manifested as

”kinks” in the contour results of the solution parameters. In contrast the C-type grid did
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not appear to suffer from this problem.

As a result of these observations, and taking into account the competing factors; it was

decided that all subsequent numerical simulations of the blunt-fin were to use the C-type

grid.

To better mimic the leading edge properties of the flat plate a modified C-type Hybrid was

also tested. It was found that the new grid gave improved resolutions in the leading edge

shock and the subsequent boundary layer.

Grid Studies

For this case two baseline grids (labelled A1 and A2) were generated, (43 × 40 × 36)

and (58 × 51 × 45) respectively. To obtain finer grids these two grids were doubled and

redoubled to obtain grids type B and C. Properties of these grids are shown in Table 3.1:

Grid Type ∆x/∆y ∆x of smallest cell Reh y+

(×fin diameter)

43× 40× 36 A1 15 0.008D 88 6.61

58× 51× 45 A2 15 0.008D 82 5.35

86× 80× 72 B1 10 0.004D 65 3.67

116× 102× 90 B2 8 0.004D 44 1.16

172× 160× 144 C1 6 0.002D 17 0.92

232× 204× 180 C2 4 0.002D 8 0.73

Table 3.1: Grid properties for 5mm diameter blunt-fin

From preliminary tests, it was found that a higher resolution of grid points was necessary

in the boundary layer region in order to obtain a suitably well converged surface heat

transfer rate solution. As a result of the grid clustering process, the shorter cell lengths

close to the surface necessitate a shorter time step hence requiring a significantly higher

number of time steps to reach a prescribed time level. Therefore using very fine grids for

all three-dimensional simulations was not practical due to excessive computational and

74



3.8 Numerical Grid Generation S.J.VITHANA

time demands. As a result of these restrictions very fine grid-dependent studies were only

undertaken for the unswept 5mm diameter fin case.

It was found that grid type B2 was the minimum requirement as a standard to give

reasonably well defined surface heat transfer profiles. Hence from Table 3.1 it is clear that

grid types B2, C1 and C2 would give the best solutions to the flow problem.

In a similar fashion, for the 10mm diameter fin two baseline grids were generated, (58×
51× 45) and (78× 72× 60). To obtain finer grids these two grids were doubled to obtain

grid type B. Properties of these grids are shown in Table 3.2:

Grid Type ∆x/∆y ∆x of smallest cell Reh y+

(×fin diameter)

58× 51× 45 A1 15 0.008D 82 5.35

78× 72× 60 A2 10 0.004D 71 3.89

116× 102× 90 B1 8 0.004D 44 1.16

156× 144× 1204 B2 5 0.002D 22 0.98

Table 3.2: Grid properties for 10mm diameter blunt-fin

The simulations carried out for the 5mm diameter fin with 30◦ sweep are mainly for

comparison purposes, hence fine grid studies were not necessary. The properties of this

grid are shown in Table 3.3:

Grid Type ∆x/∆y ∆x of smallest cell Reh y+

(×fin diameter)

58× 51× 45 A1 15 0.008D 82 5.35

116× 102× 90 B1 8 0.004D 44 1.16

Table 3.3: Grid properties for 5mm diameter blunt-fin with 30◦sweep
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3.9 Three-Dimensional Linear Interpolation

When using very fine three-dimensional grids to simulate complex flowfields like the present

blunt-fin/plate example, starting the simulation from the beginning to achieve a steady

state solution takes a considerable length of time. For an explicit scheme, this is primarily

due to the small time step as a result of small grid cells in fine meshes. Experience

has taught that for a complex flow like the blunt-fin/plate, the time taken to establish

the inviscid flow structure could account for 50% of the total time taken to achieve a

converged solution [47]. As a result, cutting out the time taken to reach this inviscid flow

state could save considerable CPU time, and computational resources when attempting

to attain a steady state solution for a fine grid simulation.

To solve this problem a pre-established flowfield result from a coarse grid is interpolated

to the finer grid using a linear interpolation scheme. The interpolated result is then used

as a starting point solution for the fine grid to start the final simulation.
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0, 1

1, 1

h
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j

j+1
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xi
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Figure 3.9: (left) Reference system (right) illustration of interpolation scheme

From Figure 3.9, the reference system for the large grid shows that points (0, 0) and (0, 1)

correspond to cell centres (i, j) and (i + 1, j) for the coarse grid, similarly (1, 0) and (1, 1)

correspond to cell centres (i, j + 1) and (i + 1, j + 1).

We define the finer grid cell centre locations with the lower case (xp, yp) coordinates. Next

we define parameters (hx) and (hy) for a generic cell as
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hx = xp −X[0][0][k] (3.52)

hy = yp − Y [0][0][k] (3.53)

where (xp, yp) are the coordinates for a generic cell on the finer grid and
(
X[0][0][k], Y [0][0][k]

)

represents the cell centre for a generic cell on the coarser grid, in accordance with the ref-

erence system shown in Figure 3.9.

If we define points
(

(x1, y1); (x2, y2); (x3, y3); (x4, y4)
)

as the locations of the cell cen-

tres according to the reference system shown in Figure 3.9 and the variables (f1; f2; f3; f4)

which can represent anyone of solution variables (e.g. ρ, p, u, v, w, T, Mach number), at

the corresponding cell centre locations.

x1 = X[0][0][k]; x2 = X[1][0][k];x3 = X[0][1][k]; x4 = X[1][1][k] (3.54)

y1 = Y [0][0][k]; y2 = Y [1][0][k]; y3 = Y [0][1][k]; y4 = Y [1][1][k] (3.55)

f1 = f [0][0][k]; f2 = f [1][0][k]; f3 = f [0][1][k]; f4 = f [1][1][k] (3.56)

defining the variable gradients as

∆f

∆x
=

f2− f1
x2− x1

(3.57)

∆f

∆y
=

f3− f1
y3− y1

(3.58)

The interpolated solution variable for the finer grid is given as
(
F [i][j][k]

)
, where it rep-

resents any one of the solution variables like (ρ, p, u, v, w, T, Mach number).

F [i][j][k] = f1 +
∆f

∆x
hx +

∆f

∆y
hy (3.59)

The benefits of using the interpolation scheme can be seen when comparing the residual

convergence histories in Figure 3.10 with Figure 3.11.
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Figure 3.10: Convergence history for the density residual using an interpolated solution (left)

with respect to non-dimensional time units (right) number of iterations
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Figure 3.11: Convergence history for the density residual using a standard solution(left) with

respect to non-dimensional time units (right) number of iterations

Figure 3.10 shows the convergence history for a grid of (86× 80× 72) which was run with

a first-order scheme, using an interpolated solution from grid (43× 40× 36). Figure 3.11

shows the convergence history for the same grid of (86× 80 × 72) run using a first order

scheme, however this example was started from the beginning, and run till convergence was

achieved. The time it took to reach a pre-defined converged separation length of (xS/D

= -7.229) was compared for both grids. The interpolated (86×80×72) grid took ∼30,000

iterations to achieve the desired separation length, whilst the normal (86× 80× 72) grid

took ∼60,000 iterations to attain the same separation length. Therefore it is quite clear to
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see the potential benefits in using the interpolation method to give considerable savings

in CPU time. As a result, grids B1, B2, C1 and C2 were all simulated using interpolated

solutions.

3.10 Three-Dimensional Grid Convergence Studies

In the present study, the numerical solution was assumed to be convergent when the

separation length (xS), defined as the length from the base of the blunt-fin to the point

of boundary layer separation, did not appear to change with time. One unit of time is

characterized as the ratio of the reference length to free stream speed (Lref/U∞). The

reduction of the density residual to a predefined value of 10−12 in the explicit calculations

and 10−7 in the implicit scheme was also considered to be an additional condition for a

converged solution. The residual is a comparison of density with the iteration number,

and is defined in Eqn 3.46

3.10.1 General Criteria

In the present study we are only interested in the final steady state solution. The following

convergence criteria is found to be generic to all the test cases.

Extensive test case simulations showed that the numerical scheme was very sensitive to

the initial time step. Although it might be expected that the implicit approach would

circumvent such restrictions, in practice starting the simulation using an initial implicit

time step resulted in the numerical solution becoming unstable and eventually collapsing

with the code exiting prematurely with an error. The problem manifests itself when the

wavespeeds in the Riemann solver grew exponentially until they could not be handled by

the inviscid solver. It is important to note that physically inconsistent initial conditions

lead to problems in the implicit boundary conditions even for small initial time steps. The

explicit scheme is less sensitive to the initial conditions.

In this case, the viscous and inviscid time constraints are of the same magnitude and a

pure explicit scheme with a (CFL = 0.6) was found to be convergent. Shown in Figure 3.12
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is the convergence history for grid B1 (86× 80× 72) for a converged solution in first and

second-order.

Non Dimensional Time

Lo
g

R
es

id
ua

lD
en

si
ty

0 2 4 6 8 10
10-10

10-9

10-8

10-7

10-6

10-5

10-4

10-3

Muscl ( k ) = First order (explicit)

Muscl ( k ) = 0.6 (explicit)

Number of iterations

Lo
g

R
es

id
ua

lD
en

si
ty

0 10000 20000 30000 40000 50000 60000
10-10

10-9

10-8

10-7

10-6

10-5

10-4

10-3

Muscl ( k ) = First order (explicit)

Muscl ( k ) = 0.6 (explicit)

Figure 3.12: Density residual convergence history for grid 86 × 80 × 72 using different MUSCL

(k) factors (left) with respect to non-dimensional time units (right) number of iterations

As shown in Figure 3.12 the first-order solution required the least number of iterations

and expense in time to achieve convergence according to the residual criteria. Although

the residual in the second order method appears to flatten out, this does not imply that

the solution has converged or that the solution is wrong. This point is considered in more

detail later in this section. An important observation to make is the large number of

iterations required under the explicit scheme to achieve convergence, as a result it is clear

that using the explicit method on the higher density grids, grid types B2, C1 and C2 is

impractical primarily due to time restrictions.

To navigate this problem a mixed explicit/implicit method is used. For the three grid types

mentioned earlier, after obtaining a linear interpolated solution from its respective lower

grid density counterpart, the flowfield solution is used as a starting point in the explicit

scheme, using an initial explicit (CFL = 0.4). Once the explicit flowfield solution neared a

state where the flow features had established themselves, usually after 1∼2 units of time,

the explicit solution was used as re-start solution under the implicit method starting with

an initial (CFL = 0.4), progressively increasing at a ratio of 1.1 to a (CFL = 14) until the

solution converged, as shown in Figure 3.13. The MUSCL factor used is (k = 0.6).
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Figure 3.13: Convergence history for mixed a explicit/implicit scheme for grid 86× 80× 72

3.10.2 Criteria for 5mm diameter blunt-fin

To accurately resolve the inviscid and viscous flow features, the MUSCL minmod slope

limiter is used. Table 3.4 gives an indication of the maximum allowable MUSCL factor

(k) that would give a converged result for each of the grids used, and Table 3.5 gives the

resulting impact of various MUSCL factors on separation length.

Relative oscillation-free results were obtainable using a MUSCL factor (k '0.5) for all the

grids. However it was discovered that considerably more detail of the flowfield could be

captured at the higher MUSCL factors. For grid types B1, B2 and C1 using a MUSCL,

(k ' 0.7), the residual convergence was observed to be unsteady and oscillates at a value

of ∼ 10−5, much higher than the pre-set convergence limit. However, the primary marker

stipulated for convergence - the separation point upstream of the fin on the plane symmetry

- was observed to reach a stationary value. Using MUSCL factor values of (k > 0.7) was

found to give highly unstable oscillations in the residuals and produced features which

were deemed non-physical. These were numerical effects and not necessarily a measure of

the instability of the flowfield.
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Grid Type Maximum MUSCL (k)

43× 40× 36 A1 0.7 - 0.8

58× 51× 45 A2 0.7 - 0.8

86× 80× 72 B1 0.6 - 0.7

116× 102× 90 B2 0.6 - 0.7

172× 160× 144 C1 0.6 - 0.7

232× 204× 180 C2 0.5 - 0.6

Table 3.4: Various grids with maximum MUSCL(k) factor

Grid Type First Order MUSCL (k)= 0.5 MUSCL (k)= 0.7

43× 40× 36 A1 -6.887 -6.851 -6.823

58× 51× 45 A2 -6.978 -6.927 -6.907

86× 80× 72 B1 -7.229 -7.157 -7.117

116× 102× 90 B2 -7.461 -7.389 -7.345

172× 160× 144 C1 -7.664 -7.574 -7.531

232× 204× 180 C2 -7.648 -7.582 -7.533

Table 3.5: Various grids with the maximum MUSCL(k) factor possible, and variation of final

separation length (xS/D)

Another competing factor that appeared while running the simulations was that, as the

grid densities increased, the maximum allowable MUSCL factor to give a converged so-

lution decreased. As a result of the above observation, the maximum value of (k) which

can be applied to give a converged solution is somewhere between 0.6 and 0.7 for grid

types A1, A2, B1, B2 and C1 apart from grid C2. For grid C2 the maximum MUSCL,

(k = 0.6) to give a converged solution. The results between grid C1 and C2 were found

to be nearly indistinguishable because it was found for these two grid types the MUSCL

step had a negligible effect on the surface heat transfer rate solution. This is due to the

boundary layer solution being sufficiently resolved by the grid clustering alone. This also
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suggests that, in this case, the sharpening of flow features away from the surface has little

effect on the boundary layer flow. After consideration for the sake of consistency, a value

of (k = 0.6) is used throughout the set.

The code was run using a number of individual runs ”sub-runs” before convergence was

achieved, (this was because of the time and processor limitations associated with running

the code on the computer cluster). The residual plot in Figure 3.14 - which represents the

residual convergence for an unswept 5mm diameter blunt-fin on a flat plate, simulated

under a (M∞ = 6.7) flow with a unit Reynolds number of (Re/l = 7.6 × 106m−1) - was

started using a preliminary converged solution, at the end of each run the separation

point is noted and indicated on the convergence plot. Convergence was attained when

the location of the separation point remained unchanged between runs. As can be seen in

the case illustrated, the separation point stays constant at a value of 7.117 diameters (see

Figure 3.14).
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Figure 3.14: Convergence history for 86× 80× 72 and tracking the separation point
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3.10.3 Criteria for 10mm diameter blunt-fin

The 10mm diameter blunt-fin was plagued with serious convergence difficulties when using

MUSCL factors (k > 0.6), primarily due to the increased interaction zone - separated

region - present due to the larger fin diameter. As a result, for these simulations the

maximum allowable MUSCL was limited to (k = 0.6). Although the residuals oscillated

a lot at values of (10−4 - 10−5 ), convergence was achieved through an eventual constant

separation length.

The convergence plot for a grid (156× 144× 120) is shown in Figure 3.15
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Figure 3.15: Convergence history for 156× 144× 120 and tracking the separation point

The residual plot in Figure 3.15 was started using a preliminary converged solution. As

was mentioned in the earlier 5mm case, the discontinuities or ”spikes” in the convergence

plot are a result of either changing the MUSCL (k) factor, or the CFL number for that

particular run.

84



3.11 Three-Dimensional Grid Convergence Error S.J.VITHANA

3.10.4 Criteria for 5mm diameter blunt-fin with 30◦sweep

The 5mm diameter blunt-fin with 30◦sweep had no difficulty in achieving a converged

solution when using MUSCL factors, (k > 0.6), however to maintain consistency in the

results the maximum MUSCL was limited to a (k = 0.6). The residual convergence for

a grid (58× 51× 45) using the explicit method is shown in Figure 3.16. The data in the

Figure is for a first order scheme, after 8 units of time the simulation was restarted with

a MUSCL factor (k = 0.6) till convergence was achieved.
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Figure 3.16: Convergence history for 58× 51× 55

3.11 Three-Dimensional Grid Convergence Error

The most widespread and reliable methods to asses the grid convergence for complex

numerical problems are based on the Richardson extrapolation [51]. The starting point is

a grid refinement study with at least a converged solution on two grid sequences, the ratio

85



3.11 Three-Dimensional Grid Convergence Error S.J.VITHANA

between the number of cells on the two sequences being variable. In its general form, the

Richardson extrapolation uses the solution on the two grid sequences and the knowledge

of the nominal order of accuracy of the numerical scheme to produce an error estimate

in the numerical solution. However, this approach can be misleading in that the nominal

order of accuracy can be quite different from the real or observed order of accuracy. This

discrepancy between the nominal and observed order of accuracy is particularly large for

high-speed compressible flows that have shocks. In most numerical codes, the numerical

methods used to tackle high-speed compressible flows are second order, upwind schemes,

mainly due to their accuracy and stability properties. However, in order to avoid non-

physical oscillations around shocks, limiters are used. Limiters reduce the order of accuracy

of the scheme to first-order in the regions across the shock (see Chapter 3, Section 3.3.3).

As a result, it is necessary to use a generalised Richardson extrapolation by Roache [51]

that employs the discrete solutions on three different grid sequences called the ”Mixed 1st

+ 2nd Order Extrapolation”.

3.11.1 Mixed 1st + 2nd Order Extrapolation

The Richardson extrapolation procedure is based on a series expansion of the discretization

error, (DE ), on the grid level (i):

DEi = fi − fexact (3.60)

where (fexact) is the exact solution to a predicted value of some function and (fi) is the

solution on grid level (i). On a uniform grid the series expansion for the solution may be

written as,

fi = fexact +O(ab) (3.61)

where ( O(ab) ) represents higher order terms (similar to the Richardson extrapolation [51]).

Here
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a '
√

(dxdy) (3.62)

where (dx) and (dy) is the cell spacing in the (x ) and (y)-directions respectively. Eqn 3.61

can also be written as,

fi = fexact + C(ab) (3.63)

where (C ) and (b) are constants. If this expression is used on three successive grids with

the assumption that the finest grid would have the closet solution to an exact solution, an

estimate of the error may be obtained. The value of (b) is the formal order of accuracy of

the algorithm and is given by:

b =
(ln(fi3 − fi2)− ln(fi2 − fi1)

ln(r)
(3.64)

where (fi1 , fi2 , fi3) are the results for a solution parameter at a location (i) from three

successive grids, and (r) is the refinement factor. In the grid sequencing performed in this

study, (r) is theoretically constant since the number of grid points is halved/doubled in

each spatial direction between two consecutive grid levels. Thus, the overall refinement

factor is 8 (2× 2× 2) between two grid levels.

According to Viti [62] the ”Mixed 1st + 2nd Order Extrapolation” produces the best

error estimation for non-monotonic solutions by best implying it is the most conservative

and that it is the closest to the true error. Therefore the discretization error given by

Roache [51] for a predicted solution variable (f ) between the fine grid1 compared to a

coarser grid2 is given by:

DEfine =
fi3 − fi2

1− rb
(3.65)

Note (fi) can be the solution of any flow parameter at a point in the domain. In the

present study, this error analysis is conducted for the (St) number and (Cf ) coefficient for

successive grids in the grid refinement section.
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Chapter 4

Numerical Test Cases

4.1 Introduction

The stability and accuracy of the original three-dimensional numerical scheme was throughly

tested and validated against several three dimensional 1 test cases by Navarro-Martinez [47].

However, to test the stability and accuracy of the current code after the new modifications,

two fully three-dimensional test problems are computed.

In the primary test the code is validated for a three-dimensional flat plate exposed to a

hypersonic flow with the Reynolds number controlled to ensure the formation of a laminar

boundary layer over the flat plate.

The primary objective of the second test was to check the accuracy and functionality of

the new method implemented to calculate the three-dimensional metrics. For this purpose

the code is used to solve for a supersonic flow over a cylinder/flat-plate configuration. The

numerical results are compared against the experimental results of Özcan & Holt [11] for

the same configuration.

1- Orthogonal in the (z) direction of the physical domain, or (ζ) the direction in the computational

domain
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4.2 Three-Dimensional Laminar Flow over a Flat Plate

4.2.1 Introduction

The primary test aims at simulating a hypersonic flow over a three-dimensional sharp flat

plate, paying close attention to the formation of the leading edge shock and the growth of

the viscous boundary layer. The current analysis will only focus on aspects of the three-

dimensional flow along the plane of symmetry on the centerline of the plate. Effects of

the three-dimensional flow structure due to the side edge of the plate are ignored.

The flat plate used to model the computational grid is based on the dimensions of the

blunt-fin attached flat plate used by Schuricht [53]. The plate has a total length (Ltotal=

205mm), with a reference length (Lref ) of 145mm, and a width (Lwidth) of 102mm. The

length scale on the computational grid is non-dimensionalized with respect to the reference

length (Lref ). The computational grid will only simulate half of the plate taking advantage

of the symmetry that exists. The grid used for the flat plate simulation is a C-type Hybrid

grid, and is identical to the grid used to study the blunt-fin.

Selecting the C-type Hybrid grid for this simulation will serve two purposes. For the

primary case, it will a give an indication of how well the C-type Hybrid grid is able to

accurately solve the flat plate problem, secondly the heat transfer results obtained from the

current simulation will represent a heat transfer solution from an undisturbed flat plate

and will be used to normalize the heat transfer data obtained from the blunt-fin/plate

simulations, as done by Schuricht [53] in his experimental results.

It is noteworthy that, while all fluid problems are governed by the same equations, namely

the full Navier-Stokes equations, what distinguishes one flow from another are the bound-

ary conditions and the Mach number. Therefore although the current C-type Hybrid grid

is generated using the geometric dimensions of the blunt-fin on a flat plate, the defini-

tion of the flat plate boundary conditions in three-dimensions for the C-type Hybrid grid

are modified accordingly so that the presence of the blunt-fin is effectively erased to the

incoming flow. An example of the flat plate C-type Hybrid grid is shown in Figure 4.1.

The plate configuration is exposed to freestream Mach number of 6.7 with a unit Reynolds
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Figure 4.1: three-dimensional flat plate grid

number of (Re/l = 7.6 × 106m−1). The initial conditions for the three-dimensional test

simulation are a gas at rest in thermal equilibrium with the the plate surface. To allow

for quick propagation of the incoming shock wave, the initial density was chosen to be 5%

of the freestream density. In the present study we are only interested in the final steady

state solution.

4.2.2 Numerical Results

The leading edge of the flat plate is the initial source of disturbance to the freestream and

the grid resolution in this area could have a significant effect on the solution at the leading

edge and, therefore, the flow downstream. Similarly, the grid resolution in the boundary

layer region could be critical to the accuracy of the boundary layer solution and affect the

prediction of surface quantities.

To demonstrate that the grid clustering implemented on the C-type Hybrid grid near the
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leading edge and near the plate surface is optimized to capture the leading edge shock

and laminar boundary layer, a comparison is made with the empirical correlations of

Eckert [19] for skin friction coefficient and Stanton number. The definition of both these

parameters can be found in (Chapter 2, Section 2.2). The resultant comparison is shown

in Figure 4.2. It is important to stress however, that the grid clustering in the blunt-fin

grid is dictated by features associated with separation well downstream of the leading

edge. As a result this will account for some of the discrepancies observed near the leading

edge in the numerical results, however this should be quite minimal. The numerical results

are obtained with a first order scheme using a (172× 160× 144) grid. Five grid cells are

allowed between the inflow and the leading edge of the flat plate to allow the freestream

flow to establish and to avoid boundary influence.

The Stanton number and skin friction coefficient profiles shown in Figure 4.2 display an

initial decay in the downstream direction away from the leading edge which follows the

(x−
1
2 ) curve associated with laminar flat plate flow. Theoretically, the heat transfer rate

is infinite at the leading edge, although this is not actually determined as the leading

edge lies between two grid points. As the boundary layer growth rate eases and the

boundary layer thickness increases at a more moderate pace, a slowly decaying distribution

can be observed. All correlations produce an excellent agreement for (x/Lref > 0.2).

However, slight differences appear in the calculated values for skin friction coefficient and

Stanton number in the region (x/Lref < 0.2), near the leading edge of the flat plate. This

discrepancy in the calculated values in this region is most likely the result of strong viscous

interaction, as discussed in (Chapter 2, Section 2.2). The reference temperature method

of Eckert does not take into account viscous interaction [47, 19].

In (Chapter 2, Section 2.2) it was discussed that a region of strong interaction is assumed

to exist for (χ̄ > 3) [2], (χ̄) is defined in Eqn 2.15. A distance (xv) may be associated

with the threshold from strong to weak interaction, given by:

xv =
M6∞
9Re/l

C (4.1)

where
(
Re/l = ρ∞U∞

µ∞

)
is the Reynolds number per unit length. In the present case this
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Figure 4.2: (top) Comparison of skin friction coefficient between flat-plate grid of 172×160×144

and Eckert [19] (bottom) Comparison of Stanton number between flat-plate grid of 172×160×144

and Eckert [19]
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distance is estimated to be (xv/Lref = 0.05). As a result Eckert’s empirical predictions

for Skin friction coefficient and Stanton number are unlikely to produce accurate results

in the strong interaction region where (x < xv), which is where the major discrepancies

are observed in Figure 4.2.
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Figure 4.3: Density contours from symmetry plane

The density contours in the symmetry plane are shown in Figure 4.3. The weak leading

edge shock and laminar boundary layer on the flat plate appear to be clearly resolved by the

grid, and this profile is very similar to density profiles obtained by Navarro-Martinez [47]

and Amaratunga [1] for equivalent flat plate simulations using two-dimensional grids with

the same grid density. For a means of comparison, the leading edge shock angle measured

by Navarro-Martinez [47] for a flat plate using the same freestream conditions, and using

a H-type grid is ∼ 10 degrees. The same angle measured from the current simulation using

the C-type Hybrid is ∼ 11 degrees. The comparison appears to be reasonably good.

4.3 Cylinder Test Case

4.3.1 Introduction

The three-dimensional test scenario used to validate the new methodology for calculating

the three-dimensional metrics in the new code, is a supersonic flow over a cylinder/plate

configuration.
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Experimental data from tests undertaken by Özcan & Holt [11] for this configuration will

be used to compare the numerical results obtained from the simulation. Also available

for comparison is additional independent numerical data from tests carried out by Lak-

shmanam & Tiwari [45] on the same configuration. The numerical algorithm used by

Lakshmanam & Tiwari was the MacCormack explicit predictor corrector, time split, finite

volume method.

4.3.2 Experimental Conditions

L

L = 150.8 mm
136.5 mm

229 mm

L

X Y
Z

C

Figure 4.4: experimental rig [45]

The experiments undertaken by Özcan & Holt were carried out in 15 × 15 cm supersonic

wind tunnel at the University of California Berkeley [11]. The overall dimensions of the

flat plate on which the cylinder is mounted is given in Figure 4.4, which also shows the

coordinate system chosen for data presentation.

The wind tunnel was operated nominally at a Mach number of 2.36. Laminar flow test

conditions were obtained by controlling the tunnel stagnation pressure. The tunnel stag-

nation values for pressure and temperature were (p0 = 24,000N/m2) and (T0 = 294K)

respectively.
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4.3.3 Numerical Modelling

The freestream velocity, temperature and pressure used in this numerical investigation are

(U∞ = 567.3ms−1, T∞ = 139.1K) and (p∞ = 1747.4Pa) respectively. These conditions

correspond to a freestream Mach number of 2.36 and a freestream unit Reynolds number

of the order 2.7× 105m−1. The constant used for the ratio of specific heat (γ) is 1.4. The

Sutherland model for viscosity is used for this simulation.

X

Z

Y

Figure 4.5: Numerical grid

The mesh was generated using GRIDGEN.V.14 as described in (Chapter 3, Section 3.8).

The grid is a standard C-type grid with the grid clustered near the flat plate and in the

region surrounding the cylinder/flat plate junction. The geometric dimensions for the

mesh were taken from Figure 4.4. An example of the grid (58 × 56 × 50) is shown in

Figure 4.5.

The grid generated only models the front section of the cylinder, primarily because our

interests are only concerned with what is happening to the flow in front of the leading edge

of the cylinder, and its assumed that information concerning downstream effects do not

affect the flow upstream. The grid is based on a reference length (Lref ) of 150.8mm, a fin

diameter (D = 6.35mm) and a fin height of 50mm. Table 4.1 gives some grid properties.
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Grid Type ∆x/∆y xS/D ∆x of smallest cell

(×fin diameter)

58× 56× 50 A 15 7.4 0.006D

116× 112× 100 B 8 8.1 0.004D

Table 4.1: Grid properties for 6.35mm cylinder

The grids used for this study was an initial (58 × 56 × 50) coarse grid (Type-A), and a

doubled (116 × 112 × 100) fine grid (Type-B), (see Table 4.1). For the initial simulation

the coarser mesh was used to generate a quick solution for the flow field, once a near

converged solution was established the flow properties were interpolated to the doubled

grid and allowed to converge to yield a more accurate solution. The size of the first and

last (ξ) mesh cells are the smallest cells used in the domain, and are non-dimensionalized

with reference to the cylinder diameter (D), and is set to ensure sufficient resolution of

the viscous effects near the plate surface. For this test, grid properties similar to the ones

defined by Lakshmanam & Tiwari [45] are used. According to them the first mesh cell

off the wall is equal to 0.005D and was found to be sufficient to ensure resolution of the

viscous effects. Only two grid studies were undertaken mainly because the objective was

to check the three dimensional metrics and not the accuracy of solver.

Taking advantage of the symmetry that exits for the configuration at the symmetry plane

(j = 1 ), only half of the cylinder is solved. The boundary conditions imposed are: zero-

gradients exist for all primary variables at the outer boundaries in the (j = max ) and (k

= max ) directions. The cylinder has zero incidence, and a symmetry condition is imposed

at the plane of symmetry. The wall is also assumed impermeable, and no-slip boundary

conditions are applied. The wall is also assumed to be adiabatic, and the pressure gradient

normal to the wall is set to zero. The grid block has five cells ahead of the inflow boundary

to allow the freestream flow to establish and avoid boundary influence on the flow at the

leading edge. Freestream conditions are used to initialise the flow domain. The simulation

was run using 5 Pentium III 800 MHz processors on the Beowulf type Linux cluster, and

took one week to achieve a converged result.

For comparative studies, streamline contours, pressure profiles and velocity profiles in the
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symmetry plane and at several (x/D) locations are presented against the experimental

results of Özcan & Holt [11] and the numerical results from a (40 × 100 × 50) grid by

Lakshmanam & Tiwari [45]. Additional results will show plate surface skin patterns.

4.3.4 Numerical Results

The salient inviscid features observed for this type of configuration exhibit all the char-

acteristics of a blunt-fin/plate type interaction. This type of interaction is described in

considerable detail in (Chapter 2, Section 2.5.2). The presence of shocks are indicated by

steep gradients in the density contours above the surface boundary layer, which in Fig-

ure 4.6 is highlighted by contour lines compressed together. Clearly seen is a weak plate

leading edge shock, a shock induced boundary layer separation shock, a bow shock formed

infront of the cylinder and a point where a shock/shock interaction occurs as a result of

the separation shock and bow shock intersecting. The ripple like characteristics as seen

on the leading edge shock further downstream of the leading edge is caused as a result of

poor grid resolution due to large coarse cells in the affected region.
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Figure 4.6: Density contours from the plane of symmetry, indicating the structure of the inter-

ference interaction

This phenomenon is common to structured grids that are not always orientated in the

direction of an incoming shock, where grid oblique shock are modelled by pairs of grid-

aligned shocks. As a result, shock resolution would suffer in areas where the grid density

is low. A similar observation was made by Navarro-Martinez [47].
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Underneath the separation shock the separated flow turns into a vortex system which

develops downstream and in the span direction to produce a horseshoe vortex system

(refer to Chapter 2, Section 2.5.2).

Figure 4.7: Streamline contours in symmetry plane by Lakshmanam & Tiwari [45]
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Figure 4.8: (top) Computed streamline contours in symmetry plane grid 58× 56× 50 (bottom)

Computed streamline contours in symmetry plane grid 116× 112× 100
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This vortex structure is clearly illustrated in the computed velocity streamlines shown

in Figures 4.7 and 4.8. The streamlines obtained by Lakshmanam & Tiwari [45] in

Figure 4.7, taken from the plane of symmetry along the centerline, show a two vortex

structure, with a primary core vortex and a smaller corner vortex. The present numerical

results identify a very similar structure as seen in Figure 4.8 with the main vortex core

and the corner vortex well captured. However, the results from the higher density grid

(see Figure 4.8:(bottom)) also indicates a second vortex localised at the plate surface.

This feature does not appear in the numerical results of Lakshmanam & Tiwari. However,

a closer observation of Figure 4.7 indicates a region just underneath the main vortex core

where there is a large deviation in the streamline paths close to the plate surface. This

could be indicative of a localised vortex, but as a result of poor grid resolution in this

region of Lakshmanam & Tiwari’s grid, this feature does not appear to be captured by

the numerical scheme.
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Figure 4.9: Computed skin friction streamline on plate surface of grid 116× 112× 100

The study of separation phenomena requires the visualization of the near-wall flow field.

A representation of the flow near the wall may be obtained from the numerical flow field
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by use of skin friction lines as shown in Figure 4.9.

The extent of the separation is characterized by the separation distance (xS), which is

measured from the primary separation line to the cylinder leading edge along the symmetry

axis. For laminar flow past long protuberances the extent of the separation correlates with

Reynolds number based on (Lref ), which is the distance between the flat plate leading

edge and the cylinder leading edge. This relationship was reported in (Chapter 2, Section

2.5.2).

Based on surface measurements by Özcan & Holt [11] for the Reynolds number reported

in this study of 2.7 × 105m−1, they observed two distinct separation lines as shown in

Figure 4.9. In addition the observed streamline pattern in Figure 4.8 is consistent with

the presence of two separation lines ahead of the cylinder.

x/D

P
/P

o

-12 -10 -8 -6 -4 -2 0

0.75

1

1.25

1.5

Numerical (Tiwari, 1994)
(Ozcan & Holt, 1984)
58 x 56 x 50
116 x 112 x 100

Figure 4.10: pressure profile in symmetry plane [45]

The pressure distribution along the axis of symmetry is shown in Figure 4.10. It is apparent

that, in the experiment, the pressure begins to rise at about (x/D = -9) upstream of the fin
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leading edge. The pressure reaches a valley downstream of the plateau and then increases

across the detached bow shock.

There appears to be considerable differences in the computed pressure profiles when com-

pared with the experimental results of Özcan & Holt; however there appears to be a good

agreement with the numerical pressure profile obtained by Lakshmanam & Tiwari [45].

The peak pressure point is accurately estimated, experimental values indicate a peak of

around 1.24, whereas computed values reach around 1.25, similarly the experimental pres-

sure peak appears to be ' 3 diameters from the cylinder, this is well matched by both

computed results.

The computed results using the fine mesh, slightly underpredict the extent of separation.

Experimentally initial separation was observed to be at (xS/D = -8.5), the computed

separation point was at (xS/D = -8.1), which is a equal to the separation length calculated

by Lakshmanam & Tiwari [45]. The reasons given by Lakshmanam & Tiwari [45] for

the failure to match the experimental results, (e.g. like the predicted the length of the

pressure plateau region observed in the experimental data) is due to the flow going through

transition to turbulence in this region.

The computed and experimentally measured streamwise velocity profiles along the line of

symmetry are shown in Figure 4.11. The streamwise velocity component is nondimension-

alized with reference to the velocity (ue) at the edge of the boundary layer. In general,

the agreement between the computation and the experiment is quite good, except the

location and height of the separated flow region at (x/D = -2.4) are slightly underpre-

dicted by the numerical code. In the experiments, streamwise and vertical velocities (u

and (w) were measured by a single-component, forward scatter, differential (dual) beam

laser-velocimeter [11].

4.3.5 Viscous Cross-Derivatives

To physically quantify the impact on the numerical solution, by way of including the

viscous cross derivatives , two cases of the cylinder on a plate flate was simulated. The

first case just took into account the normal derivatives in all three spatial directions (ξ,
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Figure 4.11: (top) Streamwise velocity profile at x/D=-8 (middle) Streamwise velocity profile

at x/D=-4 (bottom) Streamwise velocity profile at x/D=-2.4

102



4.3 Cylinder Test Case S.J.VITHANA

η and ζ). The second test looked at incorporating the additional cross derivatives mainly

the (ζ) related derivatives, normal to the flow direction.

From the results it is revealed that the computation of the additional cross derivative

terms took about 4% more CPU -time/cycle than when computing just the same thin

layer terms. The effect this has on the numerical convergence is illustrated in Figure 4.12,

where it can be observed that the extra terms considerable increase the time required to

achieve a converged solution.
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Figure 4.12: Convergence history for cylinder with and without including the cross derivatives in

the viscous fluxes

Viscous Method Cf at Cf at

(x/D = -0.5) (x/D = -1.0)

TSL -0.02216 -0.01428

Cross derivatives -0.02211 -0.01425

Table 4.2: Skin friction coefficient at various x/D locations for different viscous solvers
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Table 4.2 gives the calculated skin friction coefficients at two locations near the cylin-

der/flat plate junction, (x/D = -0.5) and (x/D = -1.0), the corner of two surfaces is where

the cross derivative terms might affect the numerical solution.

As the results indicate, inclusion of the viscous cross derivative terms has no appreciable

impact on the skin friction coefficient, and hence on the final numerical solution.

4.4 Summary of Test Results

The numerical results from the test simulations has shown that the numerical scheme using

a C-type grid is capable of accurately simulating a flat plate flow and the more complex

cyclinder/plate flow.

The flat plate results indicate that the C-type grid is able to accurately resolve the laminar

boundary layer and leading edge shock, thus making it suitable for use in blunt-fin simula-

tions. The numerical code has demonstrated that the accuracy achieved in the simulations

is quite sufficient and the results are comparable to those found by Navarro-Martinez [47]

and Amaratunga [1].

The results from the cylinder/plate flow show that the three-dimensional metrics are

working and are capable of solving a generic three-dimensional flowfield. The numerical

results show favourable comparisons with the experimental results and with further grid

refinement studies more accurate results could be obtained however, this was not the

primary aim of these initial tests. In addition, a comparison of the computed results

between Lakshmanam & Tiwari [45] and the current simulation show superior comparisons

to the experimental results and more detail about the flow field using the current numerical

method for the same grid densities.

Inclusion of the viscous cross derivatives in the cylinder simulations did not appear to

change the final result drastically, coupled with the additional increase in CPU time per

time step, does not warrant its inclusion in the viscous solver. As a result all subsequent

simulations will only compute the full thin layer terms in all three spatial directions.
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Chapter 5

Three-Dimensional Numerical

Results

5.1 Introduction

This chapter will present and discuss the results obtained from numerically modelling

several types of blunt-fin attached to a flat plate, exposed to a hypersonic freestream of

nitrogen gas. Experimental data obtained by Schuricht [53] for blunt-fins, particularly

from the unswept 5mm diameter blunt-fin on a flat plate, will be used as a reference

in the present study. The experiments carried out by Schuricht were conducted in the

Southampton University Light Piston Isentopic Compression (SULPICT) hypersonic wind

tunnel facility.

5.2 Experimental Details

The (SULPICT) wind tunnel facility uses nitrogen as the test gas. The running time is ap-

proximately 0.5 secs, long enough to consider to the flow to be steady. In the experiments

performed by Schuricht [53] the freestream Mach number in the working section was 6.7

with a unit Reynolds number of 7.6×106m−1. Schuricht believed that the subsequent flow
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in the interference region surrounding the fin remained laminar, however that turbulent

transition cannot be completely ruled out.

The stagnation temperature is approximately 600K, and results in local absolute temper-

atures which remain sufficiently low for the assumption of perfect gas flow to remain valid

throughout the domain of interest. The experimental run time is sufficiently short for

changes in the surface temperature to be considered as negligible, (typically ∆Tw/Tw ≤
0.03).

30 deg

205 mm

5 mm

145 mm
76.5 mm

102 mm

10 mm
5 mm

Figure 5.1: A schematic of the experimental rig used by Schuricht [53]

The experimental model consisted of a flat plate section 205mm in length and 102mm in

width. The width of the plate was limited by the core of the test section; this is 150mm in

diameter. A single blunt-fin, 60mm in length, was attached approximately 145mm from

the leading edge of the plate (to allow a substantial boundary layer to develop ahead of

the fin) and offset from the centerline by approximately 25.5mm (to allow a large heating

footprint to be observed. The fin had a height of 25mm and for a 0◦ sweep angle two

fin diameters are considered, (D = 5mm) and (D = 10mm). Additionally a fin with a

diameter (D = 5mm) with a sweep angle of 30◦ is also considered. A schematic of the

various blunt-fin configurations considered is illustrated in Figure 5.1.
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The transitional Reynolds number for this flow is assumed to be
(
Retrans = 1.3× 106

)
, as

a result transition should occur approximately 171mm from the leading edge of the flat

plate. This would appear to lie within the domain interest looked at in this study. However

it is clear that this region is well behind the blunt-fin leading edge and the separated region

of interest ahead of the fin. While transition might affect the heat transfer results from

171mm onwards the flow in the separated region ahead of the blunt-fin and the flow up to

(x/D = +5) would appear to be laminar. Therefore in conclusion the Reynolds number

is sufficiently low for the attached flow ahead of the blunt-fin to remain laminar as well as

the flow in the separated region ahead of the blunt-fin.

The surface measurements recorded by Schuricht consisted of heat transfer maps obtained

by liquid crystal thermography, surface oil flow visualization and schlieren photography.

Apart from full heat transfer maps of the plate surface, heat transfer measurements were

also taken along the plate which coincided with the fin centerline or symmetry line and

at several points normal to the fin surface, coinciding at (x/D = +1), (x/D = +5) and

(x/D = +10) downstream of the fin leading edge. Oil flow and schlieren photographs

allowed estimates of the separation and reattachment lengths to be made. Schuricht

estimated that in regions where the liquid crystals have responded correctly the overall

uncertainty in the deduced value of the heat transfer coefficient to be in the region of

(±10%). For more detail on the experimental heat transfer measurement technique and

the related equipment refer to Schuricht [53].

5.3 Numerical Modelling

Numerical simulations of the three basic blunt-fin configurations described above are per-

formed using a constant specific heat ratio (γ = 1.4) and a constant Prandtl number of

(Pr = 0.704). The transport properties ”viscosity” and ”thermal conductivity” are based

on the Lennard-Jones model [47]. A length scale based on the diameter of the blunt-fin

(D = 5mm) is used as a characteristic length for non-dimensionalising distances. The

resultant coordinate system is centered with
(

(x, y) = 0
)

set at the base of fin leading

edge. As a result distances upstream of fin leading edge are negative; downstream are

positive.
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Freestream quantities are calculated based on a Mach number of (M∞ = 6.7), a unit

Reynolds number of
(
Re/l = 7.6×106m−1

)
and a stagnation temperature of (To = 600K).

The freestream temperature is obtained via the adiabatic relationship for temperature

given by

T∞ = T0

(
1 +

γ − 1
2

M2
∞

)−1

(5.1)

The freestream velocity is given by

U∞ = M∞
√

γRT∞ = M∞

√
γRNT∞

mN2

(5.2)

where (R) is the universal gas constant, (RN ) is the gas constant for nitrogen and (mN2) is

the molecular mass of nitrogen. The freestream density is obtained from the unit Reynolds

number:

ρ∞ =
Re/lµ∞

U∞
(5.3)

with (µ∞) obtained from the Lennard-Jones model [47]. The freestream pressure is de-

termined through the equation of state for an ideal gas. The calculated freestream tem-

perature, velocity and pressure are (T∞ = 56.6K, U∞ = 1050ms−1) and (p∞ = 430Pa).

Due to the small time scales involved, the plate is considered to be isothermal at a tem-

perature of 300K, similar to the mean wall temperature in the experiments performed by

Schuricht [53].

An example of the C-type Hybrid grid of type B1 described in Table 3.1 for the 5mm

unswept blunt-fin is shown in Figure 5.3, with an additional view of the symmetry plane

in Figure 5.2. The dimensions of the grid shown are based on the 5mm unswept blunt-fin,

in the upstream streamise direction from the base of the fin, the grid extends the length

of the plate surface, 29 diameters. A minimum of five grid points are placed ahead of the

leading edge to avoid inflow boundary influence on the leading edge of the flow, and to

properly resolve the leading edge shock. In the downstream streamwise direction the grid
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extends to 8.5 diameters. Spanwise, the grid stretches to 29 diameters.
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Figure 5.2: View of symmetry plane
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Figure 5.3: A three-dimensional view of a C-type Hybrid grid used in the computations, example

grid B1, 172× 160× 144
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5.3.1 Boundary Conditions

Fixed, hypersonic, inflow boundary conditions are imposed along the outer (i = 1 ) bound-

ary, and fin sweep (Λ) is varied depending on the model simulated, going from 0 for the

5mm and 10mm fins to 30◦ for the 5mm swept fin. A symmetry condition is imposed on

the plane which is along the fin centerline at (j = 1 ).

The flat plate and blunt-fin wall surfaces are assumed to be impermeable, and no-slip

boundary conditions are applied. The flat plate and blunt-fin walls are assumed to be

isothermal with the pressure gradient normal to the walls set to zero.

The outer outflow boundaries at (j = max ) and (k = max ) are assumed to be distant

enough from the blunt-fin not to interfere with the flowfield of interest. Therefore, a first-

order extrapolation boundary condition was applied to these surfaces, where the ghost cells

at the boundary interface mimic the boundary cells inside the computational domain. This

way the gradients are always zero.

A listing of the boundary conditions appropriate to this study can be found in Appendix

B.

The height of the blunt-fin is small enough to avoid impingement of the flat plate leading

edge shock, while still being large enough to lead to an asymptotic behaviour, which

means that any further increase of its height does not change the interaction extent. In

particular, once the asymptotic height (z/D = ha) is reached, then the upstream influence

length, the primary separation distance and location of the triple point are independent

of (z/D). Dolling & Bogdonoff [15] stated that for the asymptotic behaviour condition

to be fulfilled, (z/D > 2.5). The current ratio of (z/D = 5), would appear to fulfil the

asymptotic criterion set by Dolling & Bogdonoff [15].
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5.4 5mm blunt-fin simulations

This section will present the results from the numerical simulations of the unswept 5mm

blunt-fin. Experimental data obtained by Schuricht [53] for the same fin configuration will

be used for referencing wherever needed.

5.4.1 Grid Refinement Study

To determine a means of quantifying the effect the grid has on the numerical solution,

a series of different size grids are studied and their effect on specific variables examined.

Table 5.1 shows the grids used in this grid dependency study. To ensure consistency

the parameters used to define grid clustering on all the grids studied are kept the same,

with only the number of grid cells in the (ξ, η, ζ) directions being varied. The primary

aim of the mesh dependency study is to determine whether a grid independent solution

could be obtained given the limitations of the available computational resources; which

are described in Chapter 3, Section.

Grid Type

43× 40× 36 A1

58× 51× 45 A2

86× 80× 72 B1

116× 102× 90 B2

172× 160× 144 C1

232× 204× 180 C2

Table 5.1: The grids used in the mesh dependency tests

A quantitative analysis is made on the variation of numerical separation length, plate skin

friction coefficient, Stanton number and pressure ratio on the plate surface. All variables

are measured along the line of symmetry or fin centerline on the grid. In addition to the

quantitative analysis, a qualitative study is made of the effect grid refinement has on the

structure of the general flowfield. This is achieved by examining the density contours and
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particle streamlines taken from the plane of symmetry.

For the purpose of easily identifying clear differences in the simulated results, the plots

for skin friction coefficient, Stanton number and pressure ratio will only show variation in

properties from (x/D = -25) to (x/D = 0). In a similar manner, only the salient features

in the contour profiles are noted and compared with in this grid dependency study. A

detailed analysis of the flow structure is made later in this chapter, but for the current

grid refinement study only the effects the grid has on these features is noted.

The various density contour profiles in Figure 5.4 clearly show the inviscid characteristics

described in Chapter 2, Section 2.5.2 specific to blunt-fin/plate type interactions. Features

like the plate leading edge shock, shock induced boundary-layer separation shock and de-

tached fin bow shock are clearly visible in Figures 5.4:(B)- 5.4:(D). Although the features

of the interaction flowfield appear in all the grids studied, their locations within the flow-

field and resolution varies considerably in all but the finest grids. This is clearly illustrated

when comparing the shock positions/angles between Figure 5.4:(B) & 5.4:(D). The shock

structure in the coarse grid shown in Figure 5.4:(B) is poorly resolved and the angle of the

leading edge shock is comparatively smaller when compared with Figure 5.4:(D), which

represents the solution from the fine grid. Poor shock resolution is directly related to the

number of grid points and the grid clustering criteria imposed on the grid. The stipulated

requirement of accurately capturing and resolving the laminar boundary layer results in

stretching the grid towards the plate surface. This in turn leads to a poor distribution

of cells near the upper boundary with small (∆x/∆z) ratios. A direct consequence is the

subsequent loss in resolution of the shock which has to be spread across several cells in

this region. This loss in shock resolution is notably present in only the coarsest grids, such

as grids A1 and A2.

Grid resolution also affects the flow structures captured in the separated region as seen

in the particle streamline plots in Figure 5.5. The coarsest grid in the set shown in

Figure 5.5:(A) appears to lack a considerable amount of detail about the vortical flow

structure when compared to the other grid solutions. The root recirculation region and

the recirculation regions on the plate surface upstream of the fin root are not captured at

all in grid (43×40×36). However, systematic improvement in grid density appears to yield
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Figure 5.4: Density contours in the plane of symmetry for a range of (ρ) values: 0.0056 - 0.023

in increments of 0.001 (A) 43× 40× 36 (B) 86× 80× 72 (C) 116× 102× 90 (D) 172× 160× 144
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Figure 5.5: (A) Velocity streamlines 43 × 40 × 36 (B) Velocity streamlines 86 × 80 × 72 (C)

Velocity streamlines 116× 102× 90 (D) Velocity streamlines 172× 160× 144
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more detail of the vortical flow structure, with greater detail present in each increment.

Overall mesh refinement clearly gives sharper more resolved inviscid features, like shocks

and clearer definition of flow structures therefore giving a more accurate description of the

flowfield. The most significant feature is the capture of further ”secondary” vortices near

the plate surface.

The variation in Stanton number along the line of symmetry for the various grid densities is

shown in Figure 5.6, along with a comparison with Eckert’s correlation for an undisturbed

flat plate. The profiles initially show a strong decay away from the leading edge, similar

to the (x−
1
2 ) decay observed on the flat plate, (see Figure 4.2). Further downstream

of the leading edge there is a decrease relative to the Eckert comparison consistent with

laminar separation, followed by an increase in Stanton number as the fin base is approached

with a succession of peaks and valleys downstream of separation. It is evident that any

discrepancies in the profiles are highlighted near the leading edge where, as described in

Chapter 2, Section 2.2, there is a region of strong viscous interaction and where the rate

of change in the Stanton number is greatest.

Table 5.2 gives the values for Stanton number at discrete points on the centerline for the

three grids outlined.

Grid Location, x/D Cf × 10−3 St× 10−3

58× 51× 45 -27 4.7 4.0

-25 2.3 1.6

-20 1.7 0.9

116× 102× 90 -27 2.9 2.4

-25 2.07 1.34

-20 1.55 0.78

232× 204× 180 -27 2.8 2.25

-25 2.0 1.28

-20 1.52 0.757

Table 5.2: Measured quantities, location and grid density
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Figure 5.6: (top) Stanton number comparison for different grid densitites (bottom) Skin friction

coefficient comparison for different grid densitites

116



5.4 5mm blunt-fin simulations S.J.VITHANA

The three stations are just downstream of the plate leading edge (in the region of high

viscous interaction). Using these values as input parameters in the equations for evaluating

the numerical convergence error (see Chapter 3, Section 3.11), generates the error results

found in Table 5.3.

Location, x/D -27D -25D -20D

Error in Cf × 10−3 0.0333 0.0233 0.01

% Error in Cf 3.57 3.50 1.97

Error in St× 10−3 0.05 0.02 0.0077

% Error in St 6.67 4.69 3.04

Table 5.3: Error analysis between grid 232 × 204 × 180 and 116 × 102 × 90 using method by

Roache [51]

The results in Table 5.3 represent a comparison for Stanton number made between grid B2

(116× 102× 90) and C2 (232× 204× 180), because as assumed earlier it is taken that the

results from the finest grid, in this case C2, represent the ”true” value for Stanton number

and skin friction coefficient. At station (x/D = -27) the value for Stanton number in grid

B2 is approximately +6.67% higher than the corresponding value for grid C2. Further

downstream, at station (x/D = -20) this drops to +3.04%. Figure 5.6 clearly indicates

that for (x/D > -20) from the leading edge, all the profiles produce nearly equivalent

results apart from the baseline grids of (43 × 40 × 36) and (58 × 51 × 45). All the error

percentages in Table 5.3 are within the standard limits of experimental error (±10%). The

general trend observed in the results in Table 5.3 verifies the statements made earlier, that

the greatest difference occurs at the leading edge. The process of grid refinement indicates

that the Stanton number profile tends toward the Eckert solution upstream of separation,

and within the separated region the number and absolute value of the successive peaks

in the Stanton number profile increase with increasing grid resolution. The coarser grids

clearly overpredict the Stanton number values near the leading edge, indicating that there

is a significant impact of the cell size on the calculated Stanton number. In addition, the

plot indicates that apart from the final peak, grid refinement has the effect of decreasing

the magnitude of the minor peaks. As a rule of thumb for an accurate calculation of
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the Stanton number on the plate surface, the grid cells on the surface must satisfy the

following condition: (∆x/∆z ≤ 8).

A comparison of the skin friction coefficient on the plate
(

Cf = τw/1
2ρ∞U2∞

)
measured

along the centerline also illustrated in Figure 5.6, appears to show similarities to the pat-

terns observed in the Stanton number profile. The profiles show a strong decay away from

the leading edge, again similar to the decay observed on a flat plate, (see Figure 4.2).

Further downstream of the leading edge there is a decrease relative to the Eckert com-

parison, which is consistent with laminar separation; this is followed by a succession of

peaks and valleys in the profile as the fin base is approached. The coarser grids clearly

overpredict the (Cf ) values near the leading edge, indicating a similar relationship to cell

size as found with the Stanton number comparison in Figure 5.6. Table 5.3 also shows

the grid convergence error for the calculated skin friction coefficient, and even though the

skin friction coefficient wasnt measured experimentally by Schuricht the associated errors

are within the (±10%) limit of standard experimental error. It is also apparent from Ta-

ble 5.3 that the skin friction coefficient is less sensitive to grid convergence compared to

the Stanton number. In general it is shown that as the number of grid points increase

along the centerline, the improvement in the results and tendency for the skin friction

profile to match the Eckert solution upstream of separation is clearly observed.

Grid Type xS/D

43× 40× 36 A1 -6.821

58× 51× 45 A2 -7.118

86× 80× 72 B1 -7.236

116× 102× 90 B2 -7.487

172× 160× 144 C1 -7.533

232× 204× 180 C2 -7.534

Table 5.4: Separation lengths for different 5mm diameter blunt-fin grids

The separation point on the current skin friction profile, which is measured along a two-

dimensional plane taken along the line of symmetry, is determined by the location at which
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a zero wall shear stress solution is obtained (τw = 0), however it is important to note that

this is not true for three-dimensional separation as explained in Chapter 2, Section 2.3.1.

The skin friction profile shows that (τw = 0) occurs at six distinct points, as a result the

flow separates and reattaches at three points along the line of symmetry. The variation

in the primary non-dimensionalized separation length for the different grids is shown in

Table 5.4. The results indicate that the primary separation point moves upstream as the

grid is made finer. This compares favourably with Navarro-Martinez’s [47] experiences

with ramp simulations. A pattern of upstream scaling in the numerical separation length

with successive grid refinement was observed in the three-dimensional compression ramp

simulations by Navarro-Martinez [47], and three-dimensional circular jet simulations by

Dixon [12].

Schuricht [53] estimated using the limited available experimental results, that separation

would occur around ' −7D, measured from the root of the blunt-fin. The experimental

separation length appears to correlate well with the value obtained from the numerical

results.
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Figure 5.7: Detail of Pressure comparison for different grid densitites
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The pressure distribution along the line of symmetry is shown in Figure 5.7 for the six grids.

The profile shows a rapid rise in pressure just prior to separation, this rise in pressure is

followed by a pressure plateau, which then exhibits a series of peaks and valleys attributed

to regions of flow separation and reattachment, with the maximum peak occurring near the

base of the fin. Similar to the previous observations for Stanton number and skin friction

coefficient, the process of grid refinement produces a sharper profile with a relative decrease

in the overall pressure ratio upstream of separation as the grid is refined, with the values

at the peaks increasing in magnitude.

In conclusion, the grid refinement study indicates that the process of grid refinement

yields a more accurate solution to the flowfield with each increment. Although the general

structure of the flowfield appears to remain constant in the finest grids the separation

length, Stanton number and skin friction coefficient still appear to be changing, albeit at

a much slower rate. It has to be concluded that although the results are tending towards

a grid independent solution the present set of grids studied will not yield a totally grid

independent solution.

Further grid refinement is beyond the limits of the available computational resources. It

is unlikely that further grid refinement will change the flowfield structure significantly.

5.4.2 General Flow Features of 5mm blunt-fin

The general structure of the computed fin interference flowfield, which includes the invis-

cid outer flowfield and the inviscid/viscous features associated with the fin interference

interaction, can be obtained by examining the contour profiles for density, static pressure

and temperature.

These indicate that the flowfield is dominated by the region of separated flow ahead

of the fin. Bearing this in mind the contour profiles are taken from a two-dimensional

plane located on the fin centerline or grid symmetry line upstream of the fin. A detailed

analysis of the features present in this region can be made by examining the various density,

temperature, and pressure contours.
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The contour profiles shown in Figures 5.8- 5.10 are results obtained from grid type C2

(232× 204× 180).
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Figure 5.8: Density contours from the plane of symmetry, indicating the structure of the inter-

ference interaction

The density contours indicate a wave pattern generally consistent with the features ob-

served in the schlieren photographs taken by Schuricht [53] for the same configuration, (see

Figure 2.14). A complex shock pattern is clearly observed with a well defined leading edge

shock, shock induced boundary layer separation shock, fin bow shock and a shock/shock

interaction point as a result of the separation shock intersecting the fin bow shock. Steep

gradients in density can be seen at the edge of the boundary layer where the density de-

creases due to a rise in temperature with an approximately constant pressure across the

boundary layer. Steep density gradients are also present very close to the plate surface,

which are the result of increases in density caused by the low surface temperature on the

plate in comparison to the peak temperature within the boundary layer.

The flow in the separated region appears to indicate further complexities in its structure.

Straddled between top of the separation bubble and primary separation shock is band of
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high density changes. This appears to be caused by the formation of a second oblique

shock, which is confirmed later by observing the boundary layer profile taken at this

location. Interestingly this feature does not appear to be captured in the schlieren image

in Figure 2.14. A region of flow just behind the shock/shock interaction point appears to

indicate a zone where there is large variation in density values; this pattern of clustering in

the density contours is also observed when an Edney type IV interaction with a localised

supersonic jet [67] is seen to occur. A similar region with a large variation in the density

gradients appears very close to the root of the fin/plate attachment location.
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Figure 5.9: Temperature contours from the plane of symmetry

The temperature contours shown in Figure 5.9 clearly outline the extent of the thermal

boundary layer and shear layers. The contours indicate that most of the changes in

temperature occur close to the wall and in the separated region with comparatively smaller

changes occurring across the shock wave. The largest changes in temperature appears to

occur within the boundary layer where the kinetic energy is dissipated and very close to

the surface where the temperature drops to the value at the plate surface. Also indicated

in the temperature contours, embedded within the hot shear layer are two bubbles of

relatively cooler gas, close to the leading edge of the blunt-fin. The presence of the second

oblique shock is weakly outlined in the temperature contours. The temperature gradients

in the shock layer (region between the bow shock and the blunt-fin) are relatively small

except in the thin boundary layer where the temperature drops sharply to the blunt-fin

surface temperature of 300K.
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Figure 5.10: Pressure contours from the plane of symmetry

The contours for pressure in Figure 5.10 clearly show the three main shock structures,

leading edge, separation and detached bow shock. Also indicated by the clustered contour

lines is the suspected second oblique shock, just below the primary separation shock.

The almost orthogonal contour lines near the wall show the constant pressure in the

boundary layer. The pressure profile also indicates a region of high pressure behind the

shock interaction point, this is consistent with observations made earlier which cited the

presence of a supersonic jet as a result of Edney type IV interaction.

The image sets in Figure 5.11 show a selection of Mach number contours in the separated

region for the (x/D) range indicated. For the purpose of identifying the relevant features

the Mach contours plotted in Figure 5.11 have filtered out the higher Mach numbers and

only show Mach numbers within a defined range. In Figure 5.11:(A), Mach numbers (M

> 1) are filtered out and appear as blue regions in the image. From Figure 5.11:(B), Mach

numbers (M > 2) are filtered out and again appear as blue regions in the image.

What is revealed as a result of filtering regions greater than Mach 1 is the appearance of

two supersonic bubbles embedded within the predominantly subsonic shear layer. These

feature also appear in the temperature contour profile in Figure 5.9 which highlighted the

existence of two bubbles of low temperature surrounded by higher temperature gas, one

within the shear layer, and a second just behind the bow shock.

Hung & Buning [33] tried to elucidate a possible mechanism for the presence of similar
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Figure 5.11: (A) Mach contours in symmetry plane highlighting supersonic zones (B) Mach

contours highlighting supersonic jets caused by a Type IV interaction (C) Velocity streamlines

superimposed on Mach contours in symmetry plane (D) Density contours highlighting separation

shocks
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embedded supersonic zones in turbulent separated flow they discovered in their numerical

simulations. They concluded that the horseshoe vortex brings an abundance of fresh high-

momentum fluid into the separation region. As this high-momentum fluid accelerates, it

results in two reversed-flow supersonic zones; one on the fin, and another on the plate.

Since then several other theories have been put forward for the existence of these supersonic

bubbles, one school of thought suggested by Yamamoto [68] appears to correlate well with

the evidence present in the current simulation.

Yamamoto suggested that between the primary separation shock and the surface of the

shear layer a second oblique shock is formed. This is indicated in Figure 5.11:(right)

and it originates from the separated region. This oblique shock intersects the bow shock,

and as a result a second Edney Type IV shock/shock interaction occurs. This point is

marked in Figure 5.11:(B) by the second arrow near the plate; the first arrow indicates

the first Edney Type IV shock-shock interaction. As a result of the second Edney Type

IV interaction, a jet of very high speed fluid bounded by a shear layer is produced; as

described in Chapter 2, Section 2.4.1. This feature can be seen in the Mach contour plot

in Figure 5.11:(B), where a jet of high speed fluid appears to form at the shock interaction

point. This jet of fluid is accelerated further by the presence of the vortices as indicated

by looking at the subsequent particle velocity vectors in Figure 5.11:(C). This leads to

pockets of supersonic flow below the subsonic shear layer in the separated region. There

is strong evidence to support the second separation shock theory by looking at the density

contours in one of the images in Figure 5.11:(D), where there appears to be a second

oblique shock produced in the separated region, and there is a pronounced deflection in

the bow shock at the point of interaction, indicative of a shock/shock interaction.

The existence of two reversed-flow supersonic zones was also observed by Voitenko et

al. [63] in their experiments, when they studied a (M = 3.11) turbulent flow over a

cylinder. It was argued that a similar shock/shock interaction leading to a supersonic

jet was the cause of the supersonic zones observed; however, both Voitenko’s experiments

and Yamamoto’s simulations were undertaken with turbulent boundary layers. The results

from the present simulations seems to indicate a similar phenomenon occurs with laminar

boundary layers.
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Figure 5.12: Velocity vectors in region of separated flow in the axis of symmetry

In Chapter2, Section 2.5.2 we introduced several physical parameters that could be mea-

sured from the blunt-fin flowfield which can be used for comparing experimental observa-

tions with similar numerical predictions. The contour profiles in Figure 5.8 - 5.10 give

us an opportunity to quantify the numerical results by being able to compare these pa-

rameters to the experimental observations. The first comparison that can be made is for

the leading edge shock angle. The leading edge shock angle measured from the schlieren

photo in Figure 2.14 is ∼ 11 degrees. The numerical shock angle can be measured from

the density contours in Figure 5.8, and the resultant numerical shock angle appears to be

in the range of 10 to 13 degrees. The coarseness of the grid near the upper boundary, and

numerical diffusion causes the shock solution to be spread over a wide area which makes it

difficult to obtain more accurate measurement of the numerical shock angle. However, the

comparison indicates that the numerical shock angle appears to be within the same range

as the experimental result. A further form of comparison can be made for the calculated

pressure ratio across the oblique shock. Using the expression for (p2/p1) from oblique

shock theory [3],

p2

p1
=

2γ

γ + 1

(
M2

1 sin2β1 − 1
)

+ 1 (5.4)
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Using the experimental value for (β1 = 10.5◦) and (M1 = 6.7), using Eqn 5.4 gives an

experimental (p2/p1 = 1.508). The equivalent numerical pressure ratio calculated from

the pressure profile in Figure 5.10 is (p2/p1 = 1.52). Once again the comparison appears

to be very good.

From the schlieren images Schuricht [53] estimated certain geometrical non-dimensional

constants for the flow; these parameters were also calculated from the numerical data, and

the comparisons are shown in Table 5.5. From analysing the velocity profile on the flat

plate and the density contours in Figure 4.3, the height of the flat plate boundary layer

at 145mm, which represents the location of the blunt-fin root is (δ = 3.48mm), (z/D =

0.696).

Type D/δ K/δ K/D K/Ktp

5mm - Schuricht 1.5 7.6 5 3.4

5mm - Numerical 1.44 7.18 5 3.24

Table 5.5: Fin dimension relationships

Under the classification of Hung and Clauss [36], the current blunt-fin would be classed

as a ”short” protuberance (see Chapter 2, Section 2.5.2) because (D/δ < 6). As a result

the heating distribution will be primarily dictated by the ratio (K/δ).

The most important parameter to note in Table 5.5 is the ratio (K/Ktp), which is defined as

the ratio of fin height (K) to the height of the triple point (Ktp). This result is important

because it controls and gives an indication of the level of interaction in the separated

region. Large discrepancies in (Ktp) will alter the size and scale of the separated region

thus affecting the vortical structures within the separated region. This, in turn will, affect

the heating solution on the flat plate.

The numerical value obtained from the density profile in Figure 5.8 is (Ktp = 7.35mm).

The value Schuricht [53] measured for (Ktp) was ' 7.7mm. Taking into consideration that

the experimental value for (Ktp) was measured from a Schlieren photo, accounting for a

measurement error of around (±5%), the numerical prediction appears to be well within

the error range therefore showing good agreement with the experimental prediction.
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Boundary Layer Profiles

To get more detail about the variation in density, temperature and velocity within the

separated region, profiles of these following variables across the boundary layer normal

to the flat plate are taken at the following points along the plate centerline, (x/D = -7),

(x/D = -3) and (x/D = -1). To clearly differentiate any differences observed within the

separated layer the profiles in Figures 5.13- 5.15 only extend to (z/D = +3), above the

plate surface.
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Figure 5.13: (left) Velocity profile at x/D = -7 (middle) Temperature profile at x/D = -7

(right) Density profile at x/D = -7

Analysing the velocity profiles within the boundary layer in Figures 5.13- 5.15, indicate

that the boundary layer has just separated at (xS/D '-7) - (see Table 5.4) - as indicated

by the regions of reverse flow in the near-wall region.

The velocity profile at (x/D = -3), Figure 5.14, indicates a very small region of positive

flow velocity very near the plate surface within the reverse flow region. However the flow

direction changes back to reverse flow further away from the plate (z/D > 0.05). This

is clearly indicative of the presence of a small secondary recirculation region, and this

is shown to be case by inspecting the particles paths in Figures 5.5, where a separation

bubble vortex is present at (x/D = -3).

The observed peak in the temperature profiles in Figures 5.13- 5.14 at (z/D ∼ 0.2− 0.4)
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Figure 5.14: (left) Velocity profile at x/D = -3 (middle) Temperature profile at x/D = -3

(right) Density profile at x/D = -3
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Figure 5.15: (left) Velocity profile at x/D = -1 (middle) Temperature profile at x/D = -1

(right) Density profile at x/D = -1

is caused by the dissipation of kinetic energy into thermal energy within the shear layer

and this peak is close to the stagnation temperature of the flow which is 600K. Since

the pressure is approximately constant across the boundary layer, the rise in temperature

from the edge of the boundary layer towards the surface gives a corresponding decrease

in density as seen in the density profiles in Figures 5.13- 5.14. The peak is followed by

a decrease in temperature closer towards the plate surface which is comparatively cooler,

being kept at 300K. A corresponding increase in density can be seen as the temperature
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decreases from the peak value to the cooler surface value. The temperature increase

due to the dissipation of kinetic energy and the corresponding decrease because of the

cooler plate surface temperature can be seen in the equivalent temperature contours in

Figure 5.9. However, the rapid changes in density at the minimum mask the variation

across the boundary layer in the density contours shown in Figure 5.8.

The pocket of low temperature as seen in Figure 5.15 at (x/D = -1) near the plate surface

at (z/D ∼ 0.1), when compared to the surface plate temperature of 300K, is due to the

embedded supersonic zone seen and described in Figure 5.11. The region of flow below

(z/D ∼ 0.05) is hotter because it appears to be within a small separation bubble as

indicated in the particle streamlines in Figure 5.5.

The density variation at (x/D = -1) in Figure 5.15 clearly shows the presence of the second

oblique shock, indicated by the double peak in the density profile in the region (z/D '
1). Correlating this with the density contours in Figure 5.8 clearly shows the region where

the second separation shock occurs.

Station, x/D NBL NTBL

-28.5 35 42

-26 39 45

-7 42 47

Table 5.6: Number of points in velocity and thermal boundary at several x/D locations

The edges of the velocity and temperature boundary layers is usually taken to be the

point where the flow achieves 0.99 of the respective free stream value. Table 5.6 shows the

number of grid points in the velocity boundary layer (NBL) and the thermal boundary

layer (NTBL) at several station (x/D) locations along the line of symmetry.

Upon careful analysis of the temperature and velocity profiles it is clear that the thermal

boundary layer is slightly thicker than the velocity boundary layer at the same location.

This is expected since (Pr < 1), the Prandtl number can be considered to be a measure of

the ratio of the velocity boundary layer thickness to the thermal boundary layer thickness
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[2]. Additionally for good simulation of laminar boundary layers it is recommended that

there are (≥ 25) points in the boundary layer [48], and from Table 5.6 it is clear that this

criterion is satisfied.

Vorticity Contours

In Chapter2, Section 2.5.2 it was indicated that the separated flow in front of the fin

was a region that contained a high level of vorticity. As a result the streamwise vorticity

distribution can be used to investigate the presence of vortices and other structures within

this region of flow. In addition to the vorticity present in the separated flow the presence

of highly curved shocks produce a considerable amount of vorticity as a result of large

entropy gradients [3], according to Crocco’s theorem. The present interference flowfield

has several curved shocks like the fin bow shock and the reflected shock from the separation

shock/bow shock interaction.

The transport equation for vorticity in compressible flow is given as:

∂ω

∂t
+ (v.∇)ω = (ω.∇)v − ω(∇.v)−∇×

−→∇p

ρ
−−−→V D (5.5)

where the vorticity vector is defined by (ω = ∇×v), the velocity vector
(

v = (u, v, w)
)

and
(−−→
V D

)
represents terms associated with viscous dissipation forces with

(
∇×

−→∇p
ρ

)
rep-

resenting baroclinic terms. Usually the vortex stretching term
(

(ω.∇)v
)

is the most

dominant factor in vorticity generation.

To observe any vortices in the separated flow region, the vorticity field is projected along

the separation region into a plane defined by its normal (n) as

ωn = ω.n (5.6)

The distribution of (ωy) in a plane perpendicular to the flat plate along the line of symme-

try as shown in Figure 5.16 outlines the iso-vorticity contours. For clarity, the iso-contour

legend in Figure 5.16 will only indicate the maxima and minima of vorticity, and the plot
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area will be restricted to show the region (x/D = -4 to 0) and (y/D = 3 to 0) 1.
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Figure 5.16: Detail of Iso-vorticity contours of (ωn) in symmetry plane with the separated region

highlighted

Figure 5.16 indicates that a majority of the flow in the separated region is of positive

vorticty, much higher than the corresponding vorticity of the outer flowfield, with the

maxima occuring in regions where there are horseshoe vortices which are rotating in a

positive direction in line with the freestream flow. The peak vorticity appears to occur in

a region of flow just behind the fin bow shock at the location where the fin bow shock and

boundary layer separation shock intersect. A region on the plate surface near the base

of the blunt-fin (−1 ≤ x/D ≤ −0.4) exhibits an area of negative vorticity, and features

associated with this negative vorticity are counter-rotating horseshoe vortices on the plate

surface.

The detached curved bow shock of the fin shows a region of varying positive and negative

vorticity. In particular, the maximum in positive vorticity occurs near the point where the

separation shock intersects the fin bow shock, as illustrated in Figure 5.16. This region is

characterized by a vortex as seen in Figure 5.17. The concentrated vorticity just above the

point of interaction as shown in Figure 5.16 results in the formation of vortex as shown in
1- In the current projection the plane is pointing in the negative y-direction which puts the rotation in

Figure 5.16 in the opposite sense to the usual sigh convention ie. positive is clockwise as you look into the

plane and negative anticlocwise.
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Figure 5.17: (left) Vortex structure formed from Type IV interaction (right) Enlargement of

vortex structure

Figure 5.17. For clarity and to observe the location of the vortex, density contours have

been superimposed so that the location of the vortex can be seen in relation to the point

of shock/shock interaction. The presence of such a vortex system was shown to exist in

Chapter 2, Section 2.1.1.

The initial analysis of the separated region from the observations made from examining

the iso-contour profiles for density, pressure and temperature in addition to looking at

the boundary layer profiles and iso-vorticity contours in the symmetry plane indicate

that the flow in the separated region is more complicated than initially revealed from

reviewing past experimental and numerical work on laminar fin/plate interactions. The

existence of a second oblique shock within the primary separated flow and the presence

of vortices behind the bow shock has not been reported in previous laminar experimental

and numerical studies.

Flow and Shear Stress Topology

The previous section has shown that as a result of the complex shock/boundary layer and

shock/shock interactions the flow within the separated region reorganizes itself into vor-

tical structures which dominate the separated region. These are fully three-dimensional
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structures that develop downstream and spread out in the spanwise direction to produce

a horseshoe vortex system which wraps around the blunt-fin. Along the paths of these

vortices the most outstanding consequence is an important increase in heat flux, skin fric-

tion coefficient and pressure at the plate surface in correspondence with the reattachment

of the separated flow (see Chapter 2, Section 2.5.2). It is well established that flow reat-

tachment points and regions of high shear result in local increases in heat transfer due to

the local thinning of the boundary layer [18]. The latter creates steeper velocity and tem-

perature gradients at the plate surface, resulting in increased skin friction and enhanced

heat transfer. Although Schuricht’s experimental work has provided a great deal of in-

formation about various aspects of laminar blunt-fin interactions, questions still remain

regarding the precise flow topology and the horseshoe vortex phenomena. For instance,

discrepancies in the horseshoe vortex system topology upstream of the blunt-fin/plate

junction are apparent when comparing the inferred streamline patterns of Schuricht [53]

and Hung [36]. Both studies were conducted using very similar unit Reynolds number,

which is an important dimensional parameter that controls the number of vortices in the

separated shear layer, (see chapter 2, section 2.5.2) for more detail.

It has been reported that insufficient spatial resolution and numerical or experimental er-

rors may easily lead to misinterpretation of the vortex patterns or even to the impossibility

of a unique identification of the topological structures [5]. Ballio [5] reported that the use

of experimental oil-flow visualization as a tool to map flow structures from interpreting

the surface shear stress lines is subject to considerable debate. As a result, obtaining an

accurate description of the flow in the three-dimensional separated region via numerical

simulation and deducing the resulting impact on surface flow topology is very important

in understanding the true extent of thermal heating on the surface of the plate.

In order to compare the numerical flowfield with the corresponding experimental solution,

one has to visualize the near-wall flowfield. The direction of a flow velocity is visualized

using particle streamlines. In simulations with viscous continuous flows the velocity of

the flow at a solid wall is zero by definition, as a result this prevents the calculation

of steamlines directly on the walls. The aim would be to find the limiting streamline

at locations where the velocity goes to zero while the direction of the velocity vector is

determined by the direction of the velocity near the wall. Consequently skin friction lines
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on the plate surface are used instead of near-wall particle traces. The skin friction lines

as described in Chapter 2, Section 2.3.1 use the wall shear stress vector for visualization

purposes. The wall shear stress vector (−→τw) is the derivative normal to the wall of the

velocity vector (−→v ). In general it is nonzero and points in the direction of the near-

wall velocity vectors when projected normal to the wall. The skin friction lines provide

global information about the near-wall flowfield and show the location of separation and

reattachment of the flow at the wall.

To build a three dimensional picture of the flowfield structure planar sections normal to

the plate surface are taken at the illustrated locations as shown in Figure 5.18. The table

in Figure 5.18 shows the locations of the different profiles on the plate surface, where (φ)

is measured on the plate surface in a clockwise direction.

X

Y

Z

F

A

B

D
E

C

φPROFILE

+8F

A
B
C
D
E

x/D

0 -29
0 -27
0 -15

+4

+1

o90

0
o20
o45
o90
o90

Figure 5.18: Schematic of section profiles and their locations

The particle streamline pattern in the symmetry plane and skin friction lines on the flat

plate surface are significant two-dimensional ”footprints” of the complex three-dimensional

flow around the blunt-fin. The skin friction line pattern over the plate surface for the 5mm
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blunt-fin is shown in Figure 5.19, for clarity the plot area is restricted to (x/D = -15 to

+8) and (y/D = ± 7).

Because of their definition, the no-slip singularities of the velocity flowfield are also singular

points for the wall shear stress or skin friction field, but of course the nature of the

singularities is not the same for the two fields; nodes, saddles and foci will be identified with

capital letters (N,S,F ) for the velocity field in the symmetry plane and with small letters

(n,s,f ) for the shear stress field on the solid surface with (R) denoting a reattachment line

and (S) a separation line.

A saddle of separation exists on the centreline well upstream of the blunt-fin. The sad-

dle, (sA), is highlighted as the point furthest outward from the root of the blunt-fin in

Figure 5.19. Through (sA) goes the separation line (SA) towards which the skin friction

lines converge. The separation line is strongly deflected when it encounters the freestream

as shown in Figure 5.19 along with the resultant horseshoe vortex as shown in Figure 2.8

in Chapter 2, Section 2.3.2. There is a node of reattachment right at the base of the

blunt-fin (n1). Through (n1) goes the attachment line (R1) from which the skin friction

lines diverge. In addition there are two other distinct pairs of separation saddles and

reattachment nodes (s2), (s3) and (n2), (n3), originating from the centreline. Also present

is a nodal point of separation and reattachment (s′2), (n′2) that originate close to the reat-

tachment line (R1). In addition there is another nodal point of separation (s4) near the

side surface of the fin. The number of saddles and nodes follows the topology suggested

by Tobak [58] for a flat plate with an attached normal plate, and agree with eqn 2.22 - 3

saddles and 3 nodes.

The particle streamlines in the symmetry plane of the computed flowfield (Profile A in

Figure 5.18), show that the streamwise vorticity of the incoming separated boundary layer

is organised into several vortices. Two primary vortices with (foci F1 and F2) concentrate

positive vorticity (see Figure 5.20) into 3 cores. Secondary vortices with (foci F1a, F2a

and F3a) separate from the plate surface and concentrate the vorticity of opposite sign

which is generated on the plate surface by the reverse flow.

The streamline profile in Figure 5.20 exhibit features which are consistent with a three-

dimensional separated flow as shown in Figure 2.6 in Chapter 2, Section 2.1.1. The flow
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Figure 5.19: Surface skin friction streamlines on flat plate, with lines of separation and reattach-

ment highlighted. A separation saddle is denoted by (s) and a reattachment node by (n)
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Figure 5.20: (top) Particle streamlines in profile plane at location A (bottom) Plate surface

pressure

topology can be explained using the pressure distribution along the line of symmetry, as

shown in Figure 5.20. Upstream flow separation (SA) is caused by the strong adverse

pressure gradient generated by impingement of the strong fin bow shock on the flat plate

boundary layer, resulting in the formation of a single vortex along the centreline. Reat-

tachment (NA) of the primary separated flow (SA) occurs at around (z/D = +1.5) on

the blunt-fin, measured from the base. The formation of the root vortex with foci (F1a)

is the result of separation at (S1) with a strong reattachment occurring near the foot of
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the fin. This reattachment (N1) is responsible for the final peak heating observed on the

centreline at the foot of the fin. This phenomenon shall be discussed in more detail later

in this chapter. The reverse flow at the plate surface within this large separated region ini-

tially encounters a favorable pressure gradient but, upon encountering the upstream flow

is forced to undergo a second separation, (S2). As a result of this secondary separation,

it induces the primary vortex to bifurcate to form two separate cores, (F1) and (F2) as

seen in Figure 5.20. From the resultant bifurcation process the separated flow near the

surface encounters a favorable pressure gradient and as a consequence reattaches at node

(N2), this is clearly shown in the pressure profile in Figure 5.20. Upon reattachment, as

discussed above, the flow undergoes tertiary separation at (S3) similar to the process that

caused secondary separation. The flow reattaches itself further upstream at node (N3).

These secondary and tertiary separations and reattachments leads to the formation of two

additional secondary vortices with foci (F2a) and (F3a). The pressure distribution profile

in Figure 5.20 indicates that the location of the vortices appear to correspond to minima

in the pressure profile as discussed in Chapter 2, Section 2.5.2.

Frame 006

0

0.5

1

1.5

-7 -6 -5 -4 -3 -2 -1 0

0

Y

Z

Z - Streamline trace

Y - Skin Friction trace

Figure 5.21: Superimposed streamlines and shear stress lines
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Superimposing the symmetry plane streamline profile in Figure 5.20 with the surface skin

friction profile in Figure 5.19 clearly shows that the locations of the vortices agree with

their respective separation and reattachment points as seen in Figure 5.21.

Comparing the flow features found in the planar section profiles taken at (φ = 0◦) with

(φ = 20◦) in Figure 5.22, appears to show that the structure of the inviscid flowfield is

maintained in the region that is bounded by the two profiles.

The two main vortices which are embedded in the separated region appear to spiral around

the fin as would be expected, and the same applies to the two smaller vortices localised

on the plate surface and the root vortex at the base of the fin. The shock structure also

appears to duplicate itself, with little change to the leading edge, separation, bow shocks

and the shock interaction point. It is interesting to note how small in size the vortical

structure is in relation to the height of the blunt-fin

Analysing the profiles taken at locations (φ = 45◦) to (φ = 90◦, x/D = 8) show several

differences in the shock and particle streamline structure when compared to those observed

in profiles taken at locations (φ = 0◦) and (φ = 20◦).

The flow structure observed from analysing the Mach and density contours in Figure 5.23

appear to share a lot in common with features observed for a sharp-fin flow configuration

as described by Délery [13]. These features are best explained by studying a schematic

representation of this type of interaction as shown in Figure 2.12 from Chapter 2, Section

2.5.2. The main dominant features of the flowfield consist of a near normal shock that

intersects an oblique separation shock, and the resulting reflected shock all meet at a

defined triple point. The shock/shock interaction leads to the formation of a slip line

which forms at the triple point, and bounds several reflected shocklets ending in a near

normal shock. The separated region contained within the separation shock contains a

conical vortex, with one or two more separation saddles.

The features described above can be readily identified in the density and Mach contours in

Figure 5.23. The interaction between the separation shock and the bow shock is present

throughout the profiles, however the resulting triple point is poorly resolved at each of the

locations where profiles D,E and F are taken, this is partially due to the grid becoming
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Figure 5.22: (A) Density contours and Velocity streamlines in profile at point A (B) Density

contours and Velocity streamlines in profile at point B
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Figure 5.23: Cross plane density (left) and Mach number (right) contours at locations C − F
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increasingly coarser at each of these locations. This fact is clearly illustrated in profile

F where the captured bow and separation shocks are quite thick. The presence of a

supersonic shear layer, slip line and normal shock can be seen in the Mach contour profiles

taken at locations (C → F) in Figure 5.23, however the reflected shocklets within the

bounded slip line are not evident from the Mach or density contours. A schematic of the

flow structure in profile F is illustrated in Figure 5.24 and the comparison looks strikingly

similar to the schematic in Figure 2.12 in Chapter 2, Section 2.5.2 which represents the

interaction for a sharp-fin.
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Figure 5.24: A schematic of the features observed in profile at location F

Analyzing the streamline traces in the various profiles in Figure 5.25 clearly indicates that

the vortex structures formed in front of the blunt-fin leading edge spread out laterally

away from the fin as they flow around it downstream of the blunt-fin leading edge. This

is clearly seen when comparing profiles taken at locations C and F. The vortex with focus

(F2) observed in profile C approximately at (y/D ' 6.5), has spread out to around (y/D

' 8.0) from the fin edge by the time this feature is observed at profile F. The vortices with

foci (F1a) and (F3a) in Figure 5.20 are clearly seen in Figure 5.25 profile F. The vortices

with foci (F1) and (F2) as seen in Figure 5.20 appear to merge into one single vortex with

foci (F2) further downstream as seen in Figure 5.25 profile F. The vortex with foci (F2a)

is a notable absentee in all of the profiles.

The root vortex at the base of the blunt-fin, foci (F1a) in Figure 5.20, grows in size as it

evolves and flows downstream of the fin root as shown in Figure 5.25. The growth of this
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Figure 5.25: Cross plane particle streamlines from profiles at locations C − F
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feature can be clearly seen by examining the skin friction lines on the unwrapped fin-side

surface in Figure 5.26. The root vortex originates from a separation saddle at (s1) which

occurs at (z/D ' 0.3) on the fin. The subsequent separation line (S1) which forms the

separated surface, grows downstream on the fin surface until it reaches the end of the fin

at (x/D = 8.5). The separated region at the end of the fin surface has eventually grown

to (z/D ' 2) on the fin. What is also apparent within this large separated region on

the fin-side surface is the presence of secondary separation and reattachment lines. There

appears to be three other singularities on the fin-side surface: a separation saddle (s5) and

reattachment node (n5) pair and a reattachment node (n4) associated with the separation

saddle (s4) that occurs on the plate surface as seen in Figure 5.19. The reattachment line

(R5) which runs through the node (n5) is quite smeared although its existence can be

seen; the second reattachment line (R4) which runs through node (n4) is more distinct

and its path is quite clear. The vortices associated with the separated surfaces on the

fin-side surface can be clearly identified from the streamlines shown in Figure 5.27. From

Figure 5.26 it appears the small root vortex at the fin/plate junction is first formed at

(x/D ∼ 0.5) which is at the shoulder of the fin, and the second vortex on the fin-side

surface first originates at (x/D ∼ 3).
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Figure 5.26: Skin friction lines on unwrapped fin-side surface
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Figure 5.27: Enlargement of Streamlines near fin edge in profile plane at location F

Analyzing the different profiles (D → F), presented in Figures 5.23 and 5.25, coupled

with the enlarged view of the corner of profile F in Figure 5.27, it is possible to sug-

gest a mechanism that will lead to the formation of separation line (S’2), and its paired

reattachment line (R’2) shown in Figure 5.19. The separation saddle first appears in the

profile taken at location D, in Figure 5.25. It appears to be formed near the vicinity of

the large re-circulation region of the root vortex, foci (F1a). This region is bounded with

low momentum flow which contains large positive density and pressure gradients, and it

appears that the flow separates as a result of the adverse pressure gradients. However the

flow reattaches further out as a result of a more favourable pressure gradient due to a drop

in pressure which is a result of the flow accelerating. In addition, the separated surface

as a result of (S’2), and (R’2) does not appear to show a distinct vortex core judging by

analysing the particle streamline traces in Figure 5.25.

The impingement point of the supersonic jet on the blunt-fin surface as a result of the

Edney Type IV interaction, can be seen in the pressure and skin friction coefficient

contours on the fin-side surface in Figure 5.28 and Figure 5.29.

This impingement point correlates well with the indicated position of the jet as seen in

Figure 5.11 at (z/D ∼ 2). This region is characterised by very high coefficients of friction

(Cf ∼ 0.01), the result of high shear stresses and large pressure gradients as indicated in

Figure 5.28. The magnitude of the (Cf ) values in this region of the fin-side are comparable
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Figure 5.29: Skin friction coefficient on fin-side surface

to the (Cf ) values recorded at the base of the blunt-fin/plate junction (see Figure 5.6). The

primary reattachment of the upstream separation point is also indicated on the surface of

the blunt-fin, this area at (z/D ∼ 1.5) is highlighted by large pressure values and positive

values of skin friction coefficient. The pressure contours reveal that the impacting jet

on the leading edge of the blunt-fin surface fans higher pressure fluid generally over the

upper surface of the fin, with the leading edge region recording some of the highest values.

A bubble of low pressure occurs near the lower part of the fin this is due to the fluid

expanding as it flows over the shoulder of the fin.
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Figure 5.30: Mach contours taken at profile F for three different Mach number ranges (top left)
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Studying the section profiles for Mach number, density and particle stream traces in

Figures 5.23 and 5.25 highlight several salient features worth mentioning.

A closer examination of the Mach contours and the subsequent shear layer in Figure 5.30

reveals that a large portion of this shear layer is inherently supersonic. This is in contrast

quite different to what was observed earlier in Figure 5.11, where the flow within the shear

layer in the symmetry plane was observed to be mainly subsonic. As a result, it appears

that most of the vortical structures observed in profile F lie within this supersonic region.

Foci (F1), (F1a), (F2) in Figure 5.11 are embedded in a region of subsonic flow, whereas in

Figure 5.30 the flow within these foci are clearly supersonic. This clearly indicates that the

flow within the vortical structures accelerates as they form and flow around the blunt-fin

structure.

The density contours in the section profiles indicate a complex topology of varying pockets

of high and low density. Embedded in this flow region is the presence of a normal shock

straddled between two pockets of varying density which occur at (y/D ' 3 - 4). In

addition, it appears the conical vortices in the separated flow are embedded in regions of

low density, this fact is similar to what is observed in profile A.

What appears to emerge from analysing the section profiles is that upstream of the root

of the blunt-fin the flow is dictated by the presence of the fin, therefore the flow exhibits

the characteristics of a protuberance type flow, however downstream of the fin root the

effects of the fin-side/plate junction become more dominant and the flow is dictated by

this structure which can be characterised as a corner type flow.

Up to now, only results from planar sections have been presented, but nothing has been

shown to give a general idea of the three-dimensional evolution of the flow over the blunt-

fin. Collating all the information about the flow from various section profiles, it is possible

to construct a three-dimensional picture of the flow structure surrounding the blunt-fin,

and this is illustrated in Figures 5.31- 5.37.
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Figure 5.32: Three-dimensional vortex structure around blunt-fin
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Figure 5.33: Plan view of streamline trace
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Figure 5.34: (top) three-dimensional stream ribbon trace, view 1 (middle) three-dimensional

stream ribbon trace, view 2 (bottom) three-dimensional stream ribbon trace, view 3
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Figure 5.36: (top) isometric surface of constant density within horseshoe vortex system (ρ =

0.004) (middle) isometric surface of constant density depicting bow shock (ρ = 0.05) and density

band within horseshoe vortex system (ρ = 0.005) (bottom) Three-dimensional shock structure,

showing bow shock and separation shock surfaces using constant isometric density surface (ρ =

0.032)
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Figure 5.37: (top) isometric surface of constant Mach number, M = 0.9 (middle) isometric

surface of constant velocity, w = 200 m/s (bottom) isometric surface of constant velocity, w = 50

m/s
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Figure 5.31 shows how the streamlines in the two-dimensional symmetry plane evolve into

three-dimensional vortex features as indicated in Figure 5.32. From Figure 5.31 it appears

that most of the rotational velocity in the particles in the vortices (F1), (F1a), (F2), (F2a)

and (F3a) is concentrated in the central core, and it is this core feature that appears to

evolve around the fin scavenging flow from the surrounding area. Clearly indicated in

Figure 5.33 is the subsequent paths taken by the horseshoe vortex patterns around the

blunt-fin. Figure 5.33 appears to show that the vortices associated with foci (F1), (F2a),

(F2) and (F3a) evolve almost in parallel with each other around the fin. Also clearly

illustrated is the growth of the root vortex on the blunt-fin as it flows around the fin. It

appears the root vortex further downstream has the biggest core when compared to the

other vortices and as indicated the high energy fluid in the little vortex scavenges and

draws into itself the surrounding flow, increasing in size as it flows downstream.

A closer examination of Figure 5.33 appears to show that the vortex with foci (F2a)

disappears shortly after it evolves from the symmetry plane when compared to the other

vortices that can be clearly traced back downstream to the edge of plate boundary. This is

significant because it indicates that this vortex has substantially lower rotational velocity

in its core compared to the other vortices, and as a result it is unable to entrain enough

flow from the outer flowfield to evolve further downstream. As a result the vortex diffuses

into the surrounding flowfield further downstream. This observation is unique because,

as shown in the plot it highlights the fact that this vortex is actually absorbed into the

surrounding flow and disappears hence its associated heat transfer footprint also disappears

and this is not attributed to vortex lifting as was suggested by Schuricht [53].

This theory is further supported by examining the particle stream traces in Figures 5.34-

5.35. The images indicate that most of the flow in the separated region is swallowed by

the primary vortex cores of (F1) and (F2). It appears most of the spanwise flow in ’layer

1 ’ is entrained into vortex (F2), with flow near the symmetry plane being entrained into

vortex (F1). In ’layer 2 ’ the flow is entrained into the the combined recirculation region

that contains vortex cores (F1) and (F2). ’layer 3 ’ indicates that the flow passes over

the combined core of (F1) and (F2), and flows down towards the plate surface. What

this implies is that because (F2a) and (F3a) are localised on the plate surface, rotating in

counter clockwise direction to the primary vortex cores (F1) and (F2), it appears there is a
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considerably smaller volume of fluid available to scavenge and entrain into these vortices.

The stream trace ribbons in Figure 5.34:(bottom) clearly highlights the reduced level of

flow entrainment into vortex cores (F3a) and (F2a). In addition, an analysis of the velocity

vector plot in Figure 5.12 highlights another point, the flow directly above vortex (F2a)

is travelling considerably faster than the flow in the vortex core, as a result is unlikely to

be drawn into it. However the flow surrounding vortex core (F3a) is travelling at a much

reduced speed, thus is more able to be drawn into its core. More importantly, because

vortex (F2a) is considerably smaller than vortex (F3a), it is plausible that even less fluid

is consumed by it. Therefore the evidence clearly indicates why vortex (F2a) is unable to

evolve the complete length downstream.

Figure 5.36 and Figure 5.37 plots isometric surfaces of a selected constant variable. The

isometric density surfaces in Figure 5.36 clearly show the bow shock and constant density

surfaces within the separated flow. Figure 5.36:(top) indicates the primary vortex cores

of (F1) and (F2) are embedded in a region of low density. Figure 5.36:(middle) gives the

position of the bow shock and the low density band within the separated region containing

the primary vortex cores. The deflection of the bow shock as a result of the interaction

with the oblique separation shock is clearly seen. Figure 5.36:(bottom) indicates the

extent of the separation shock/bow shock interaction. What is evident is the spreading of

the separated region in a more spanwise direction further downstream of the fin root. This

primarily impacts the triple point which travels further up the fin as the flow progresses

downstream.

The isometric Mach and (w) 2 velocity surfaces in Figure 5.37 indicate regions of a con-

stant value. The (Mach = 0.9) surface highlights the three-dimensional extent of the

subsonic layer within the separated flow and behind the bow shock. The layer within

the recirculation region is confined to the line of symmetry and the surrounding flow

near it. The vortices that form at the centerline in the subsonic layer will become em-

bedded in regions of supersonic flow further downstream as shown in Figure 5.37:(top).

The constant (w)-vertical velocity surface depicted in Figure 5.37:(middle) and Fig-

ure 5.37:(bottom) highlights a isometric surface for two constant speeds. The higher

velocity surface, (w = 200ms−1), highlights a section of flow that is accelerated by the
2- Velocity components: (u)-streamwise; (v)-spanwise; (w)-vertical
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impacting supersonic jet on the fin surface and the vortex core within vortex (F1a). The

lower velocity surface, (w = 50ms−1), highlights the low velocity within vortex (F2a), and

the region of flow encased within the bow shock and fin surface.

5.4.3 Surface Heating on Plate

The surface heat transfer profiles give us the first real opportunity to compare quantitative

data obtained from the experiments conducted by Schuricht [53] with results obtained from

the numerical simulations undertaken in this study.

The surface heat flux from the numerical results is calculated using first order surface

temperature gradients:

q̇w = κ
∂T

∂ζ
(5.7)

This is used to calculate the Stanton number defined by Eqn 2.9 in Chapter 2, the non-

dimensional parameter usually used to define heat flux.

St =
q̇w

Cpρ∞U∞(Tr − Tw)
(5.8)

From this we can define the heat transfer coefficient (h) as

h =
q̇w

(Tr − Tw)
(5.9)

where,

h = Stρ∞U∞cp (5.10)

For the remainder of this section, the surface heat fluxes will be compared using the

respective heat transfer coefficients.
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Following the procedure in Schuricht’s work, the numerical heat transfer coefficient (h)

has been normalized with respect to the undisturbed heat transfer coefficient (hu) for a

flat plate. The flat plate was simulated earlier, and the results are described in Chapter

4, Section 4.2. The resultant heat transfer coefficient (h/hu) will be used to compare the

heat transfer profiles. Therefore regions where the normalised value (h/hu) is less than

one represents a region of reduced heat flux while a region where (h/hu > 1) represents a

region of enhanced heat flux.

Figure 5.38 shows the spatial distribution of normalized heat transfer contours (h/hu)

obtained by Schuricht for the 5mm unswept blunt-fin; Figure 5.39 is the equivalent contour

profile obtained from the numerical simulation. Comparing the distribution patterns of

the two images show very strong similarities. Both heat transfer images indicate that

regions of high heat transfer follow the shape of horseshoe bands around the blunt-fin.

This observation is consistent with earlier suggestions that heating enhancements occur

along the horseshoe shaped vortex paths.

From observation, the experimental heat transfer images in Figure 5.38 indicate four dis-

tinct regions of enhanced heating. The outer-most feature is a high heat flux band where

(h/hu ' 4); further inward, closer to the root of the blunt-fin shows a thicker band where

(h/hu) is between 4 to 5 times the undisturbed value. The region closest to the blunt-fin

root has two distinct traces where the heat flux (h/hu) is ' 8 to 10 times the undisturbed

value. The regions that appear white in Figure 5.38 are areas where no valid data were

obtained. Schuricht [53] concluded that in these areas the liquid crystal layer had cleared,

and the surface temperature is therefore in excess of the liquid crystal colourplay band-

width. It was also suggested that close to the blunt-fin root at (x/D ' -1) is region where

the liquid crystals had ablated due to high shear and heat transfer locally. As a result,

Schuricht had to estimate the heat transfer coefficient in these regions by knowing the

approximate temperature rise that occurred within the time interval. Schuricht concluded

that as a lower band estimate, (h/hu > 10).

Comparing with Figure 5.39; the numerical profile also demonstrates four distinct regions

of enhanced heating with the spatial location of each band a offering good correlation

to the experimental data. The higher heat flux bands in the numerical contour profile
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Figure 5.38: Experimental heat transfer contours on plate surface Schuricht [53]
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Figure 5.39: Numerical heat transfer contours on plate surface
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are more clearly resolved than in the experimental results, and more significant as will

be shown later, the root of the blunt-fin indicates considerably higher heat transfer rates,

approximately 60 times the equivalent undisturbed flat plate value. As highlighted earlier,

a direct comparison with the available experimental results in this region is not possible,

because the liquid crystal technique employed by Schuricht could not provide reliable

results at such high heat fluxes.

The numerical results indicate that the maximum heat transfer coefficient (h/hu)max,

which occurs near the root of the blunt-fin, is around 5 times greater than the maximum

value estimated by Schuricht from the experiments. The calculated numerical (h/hu)max is

also considerably larger than the value estimated from Eqn 2.28 in Chapter 2, Section 2.5.2,

which is calculated to be around 7. However similar findings have been reported by Tutty

et .al [60] for turbulent blunt-fin interactions where there has been large discrepancies

between the numerical and experimentally calculated (h/hu)max. In these simulations

the available experimental data suffered from similar losses as a result of liquid crystal

ablation, but when comparisons were made between the predicted values for heat transfer

coefficient and the equivalent numerical values, differences with similar orders of magnitude

were observed.

An important difference that has emerged between the experimental and numerical results

concern the outer heating band: in the numerical results the heat flux associated with the

outer band near the line of symmetry, is around (h/hu ' 3.5). However, as this feature

wraps around the blunt-fin, (h/hu) decreases to ' 3. This trend appears to occur in the

opposite direction in the experimental results in Figure 5.38. The experimental heat flux

associated with this feature near the line of symmetry is approximately ' 2, increasing to

(h/hu ' 4) as the heating band wraps around the blunt-fin. A more detailed examination

of this difference is made later by inspecting crossflow and centerline (h/hu) profiles.

Figure 5.40:(top) shows the actual oil-flow and liquid crystal response obtained by Schuricht

for the 5mm unswept blunt-fin. The regions on the liquid crystal response highlighted by

a blue/black band represents an area of enhanced heating and, as indicated, there appear

to be four distinct horseshoe shaped bands surrounding the blunt-fin. The enhanced heat-

ing band closest to the root appears to split in two as the feature evolves downstream of
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Figure 5.40: (top) Liquid crystal response and oil-flow over plate surface by Schuricht [53]

(bottom) Heat transfer distribution and skin friction streamlines on plate surface
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the fin root. The oil-flow image reveals the location of any separation or reattachment

lines present on the surface. As discussed in Chapter 4, Section 5.1.5, regions of low shear

signifies flow separation, and on the oil-flow in Figure 5.40:(top) is indicated by regions

where the oil accumulates as streaky white lines. The areas on the plate where flow reat-

tachment occurs, regions of high shear, are indicated by an absence of oil. It is clear

that distinguishing unique separation and reattachment lines close to the fin root is quite

difficult due to poor visual resolution and smearing. This highlights the difficulty in using

oil-flow images alone to ascertain a separation topology for such configurations.

The equivalent numerical comparison, which shows the plate skin friction streamlines mir-

rored against the heat transfer contours for the plate, is illustrated in Figure 5.40:(bottom).

The comparison shows similarities with the experimental results, and as indicated the four

distinct enhanced heating bands correspond with four reattachment lines expressed by a

divergent herringbone pattern. Regions where flow separation occurs is indicated by a

convergent pattern in the streamlines and is highlighted by the cooler bands, which in

Figure 5.40:(bottom) is shown to be areas that are either red/orange. A closer inspection

of the region near the blunt-fin wall indicates a line of separation very tightly packed near

the fin edge. This feature was noted earlier when examining the lateral section profiles,

where a very small corner vortex is observed at the base of the fin, (see Figure 5.26). This

result is similar to observations made for a sharp-fin in Chapter 2, Section 2.5.1.

One of the most pronounced features highlighted by the numerical results is the extremely

large heat fluxes calculated at the flow reattachment node (n1), (see Figure 5.40 and

Figure 5.19). Studying the localised Mach number and density field near this reattachment

node in Figure 5.41, it is possible to postulate a mechanism that could be responsible for

the observed large heat flux associated at (n1).

The Mach contours indicate that the reattachment node (n1) is straddled between two

supersonic zones, with one supersonic pocket located near the corner vortex with foci

(F1a). A closer inspection of Figure 5.41:(left) reveals that the flow at the reattachment

node (n1) is itself subsonic. The localised density contours in Figure 5.41:(right) reveal

that the reattachment location is a region of higher density when compared to the flow

regions neighbouring the reattachment location. Figure 5.12 highlights the most important
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Figure 5.41: (left) Enlarged view of Mach contours near the root vortex (right) Enlarged view

of Density contours near the root vortex

fact, as indicated by the velocity vectors, the flow is accelerated considerably down towards

the plate surface by the surrounding supersonic regions to form a near vertical supersonic

jet like feature. The boundary layer on the plate at (n1) is extremely thin as a result

of flow reattachment, the near vertical supersonic jet appears to be concentrated at the

reattachment point. Sudden retardation of the flow because of the jet of high speed flow

striking the plate surface causes a large transfer of kinetic energy to thermal energy. The

increased density of particles and high pressures correspond to a greater mass of high

speed particles striking the surface, and as a result gives a clear indication on why the

heat transfer rate at the reattachment point (n1) is so high.

Although Schuricht did not take any heat flux measurements on the fin-side surface of the

blunt-fin, the numerical results obtained from the present simulation allows for a detailed

analysis of the heat flux distribution on the blunt-fin side surface. The heat transfer

coefficient distribution indicates three distinct regions of enhanced heating on the side

surface of the fin as shown in Figure 5.42. The heat flux contour field on the fin-side

surafce has been normalised with respect to the undisturbed (no fin) heat flux coefficient

estimated from Eckerts reference enthalpy method at a position 145mm downstream of

the plate leading edge (the fin/plate junction), this was estimated to be 2217Wm−1K−1.

The most distinct region occurs on the fin leading edge, (x/D = 0), and two secondary

regions span the entire chord of the fin side surface. The region which records the most
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Figure 5.42: Heat transfer distribution on the side surface of blunt-fin

dramatic heating is likely caused by the impacting supersonic jet on the fin surface, which

produces the most distinct impression on the surface heating profile as indicated in Fig-

ure 5.42. At the jet impingement point, (h/hu ' 30), with the surrounding area around

the jet also experiencing elevated levels of heating. The contour map reveals that the im-

pacting supersonic jet appears to cause two distinct jet flow features. The first jet seems

to follow a path initially upwards away from the triple point along the fin leading edge

similar to findings of Fomison [21], and is the more distinct of the two, causing significant

heating enhancement. The second jet, much weaker, passes on either side of the fin and

traverses across the side surface of the fin causing a relatively minor heating increase,

(h/hu ' 1.8). The two regions on the fin side surface surface are localised near the base of

the fin, and are the result of conical vortices that were highlighted in Figure 5.27, formed

inside the large separated region of vortex (F1a). The heating levels as a result of these

vortices is relatively low by comparison (h/hu ' 1.8).

Inspection of the heat transfer profiles along discrete lines on the plate surface is more

beneficial and reveals more detail about the characteristics of the heating profile, and

enable further comparisons to be made with the experimental data obtained by Schuricht.

To simplify comparison with Schuricht’s results the notation used in Figure 5.43 has been

changed so that the nodal points (n) are replaced with (R), signifying the reattachment

line that flows through the reattachment nodes. For example (R1) is associated with node

(n1).

165



5.4 5mm blunt-fin simulations S.J.VITHANA

x/D

h/
hu

-10 -9 -8 -7 -6 -5 -4 -3 -2 -1 0
0

5

10

15

20

25

30

35

40

45

50

55

60

65

70

Numerical (2007)
Experimental (Schuricht 1999)

R1

R3

R2

Sa S3 S2

x/D

h/
hu

-10 -9 -8 -7 -6 -5 -4 -3 -2 -1 0

20

40

60
80

100

Numerical (2007)
Experimental (Schuricht 1999)

R1

S2

R2

R3

Sa

S3

Figure 5.43: (top) Normalized linear heat transfer coefficient (h/hu) along centerline (bottom)

Normalized logarithmic heat transfer coefficient (h/hu) along centerline
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The numerical centerline heat transfer profile shown in Figure 5.43 in both linear and

logarithmic form, reveals three distinct peaks associated with three reattachment points

on the surface of the plate. The location of these peaks and valleys are consistent with

the flow topology suggested by the surface skin friction streamlines in Figure 5.19, and

symmetry plane velocity streamlines of Figure 5.20. The flow reattachment nodes in the

skin friction topology map were labelled (n1 = R1), (n2 = R2) and (n3 = R3) respectively,

with (n1) equating to the location where (h/hu)max occurs, closest to the blunt-fin root.

The magnitude of the peaks increase as the fin root is approached. The highest heating

coefficient occurs at (R1), where (h/hu)max ' 63. This value is significantly higher than

the value (h/hu > 10) estimated by Schuricht from his experimental data, as highlighted

earlier.

Comparing the two data sets in Figure 5.43, shows that the numerical results over predict

the heat transfer coefficient at each reattachment point along the centerline. The difference

between the numerical and experimental (h/hu) increases as the root of the blunt-fin is

approached. Starting upstream of the separation point; the numerical profile shows a more

pronounced decrease in the heat transfer coefficient at primary separation which occurs at

(xS/D ' -7.5), compared to the experimental results which show no appreciable change in

(h/hu). The heat transfer coefficient associated with (R3) is similar in both data sets, with

(h/hu ' 3.5). The coefficient associated with (R2) in the numerical profile increases to

around ∼ 2 times greater than the equivalent experimental value. The greatest difference

occurs at (R1), where the associated heat transfer coefficient is approximately ∼ 6 times

greater than the equivalent experimental value at (R1).

The numerical results do however show a very favorable comparison with the experimental

data in the undisturbed regions and in the general spatial distribution of the peaks and

valleys. Clear points of similarity to observe between the numerical and experimental

data concern the location of separation point (S2) and the reattachment points (R2) and

(R1). According to the numerical results, separation point (S2) and reattachment node

(R1) occur at around (x/D ' -1.2) and (x/D ' -0.2) respectively; these appear to agree

well with the experimental data, where Schuricht estimated that the reattachment node

(R1) would occur at (x/D ' -0.15). Further similarities appear with the location of

reattachment node (R2) which is around (x/D ' -1.6) in both data sets. In addition both
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data sets indicate that the heating rise begins to occur just over (x/D ' -5) upstream of

the blunt-fin root.

Schuricht reasoned that the centerline (h/hu) profile contained four distinct peaks which,

he concluded, corresponded to four reattachment points. In contrast the numerical cen-

terline profile only indicates three distinct reattachment peaks. The missing peak appears

to occur between (R1) and (R3) in Schuricht’s terminology (see Figure 5.46), which in

the numerical profile is between (R2) and (R3). The existence of a fourth peak, which

implies the presence of a fourth reattachment node on the centerline is very difficult to

distinguish from the experimental centerline heat transfer profile in Figure 5.43. As the

evidence is not conclusive, its existence is questionable.

To analyse the spanwise distribution in the surface heating due to flow reattachment on

the plate, lateral or crossflow plots of (h/hu) are taken at (x/D = +1), (x/D = +5)

and (x/D = +8) downstream of the fin root, and shown in Figures 5.44 (linear scale)

and 5.45 (logarithmic scale). Initial observations clearly show the lateral spread in the

heating footprint with increasing distance downstream as seen earlier in Section 5.1.5. A

comparison with the experimental results in Figures 5.44 and 5.45 clearly show an excellent

agreement in spatial distribution of the peaks and valleys, but significant discrepancies

exist in the magnitudes of the peaks.

At (x/D = +1) and (x/D = +5) it has to be highlighted that from the available exper-

imental data the high heat flux associated with peak (R1) was unable to be measured

because of limitations in the measurement technique and, the peak associated with (R2)

in Figure 5.44:(top) and (R’2) in Figure 5.44:(middle) is an approximation, due to cor-

ruption in the data gathered [53].

The lateral heating profile at (x/D = +1) appears to show a near identical pattern to that

observed on the centerline upstream of the fin. The peaks associated with (R1), (R2) and

(R3) are matched in magnitude with the centerline result; however the peaks have moved

apart when compared with the same centerline peak locations. A comparison cannot be

made at (R1) because the peak could not be measured experimentally. The peak at (R2)

appears to be over predicted and the peak at (R3) is underpredicted. However, a realistic

comparison cannot be made for (R2) because, as highlighted earlier, the experimental
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Figure 5.44: (top) Normalized linear heat transfer coefficient (h/hu) laterally at x/D = 1
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data associated with (R2) is an approximation.

A similar examination of the peaks at (x/D = +5) show a dramatic shift in the magnitude

of the heat transfer coefficients. The most significant change is the decrease in surface

heating at (R1), which records a 64% drop in magnitude whilst the second peak records a

75% increase. The peak at (R3) appears to be unchanged. The most severe surface heating

due to (R1) is localised near the nose of the blunt-fin, after which further downstream,

tends to decay considerably. This is most likely due to the strength of the supersonic jet

impacting on the plate surface diminishing away from the blunt section of the fin. Secondly,

the second peak at (y/D = +3) is no longer caused by the reattachment line (R2), because

as discussed earlier in Section 5.4.2 this reattachment line disappears after (x/D > +2).

This peak is now attributed to a new reattachment line (R’2) which was formed at (x/D =

+4) as a result of flow separation due to a swept-shock interaction. Making a comparison

with the experimental data at (x/D = +5) highlights similar differences to those observed

at (x/D = +1). The peak at (R1) is still not captured experimentally, and the peak at

(R’2) is again an approximation due to data corruption. However, as previously found,

(R’2) is overestimated, and (R3) is still slightly underpredicted when compared to the

experimental values. Experimentally the heat flux at (R3) was measured to be around

(h/hu ' 3.5), whilst the numerically calculated value for heat flux at (R3) is around

(h/hu ' 2.5). Similarly, at (R’2), the experimental heat flux was approximated to be

around (h/hu ' 7), and numerically the heat flux at (R3) is around (h/hu ' 14).

Station (x/D = +8) represents the furthest point downstream of the blunt-fin leading

edge modelled by the computational domain. The heating profile shows that the heat flux

at (R1) has reduced considerably at (x/D = +8), when compared with (R1) at (x/D

= +5) and (x/D = +1). In addition the heat flux at (R’2) appears to have increased

in magnitude further downstream. The peak at (R3) appears to be the same as before.

Comparing the heating profiles at (x/D = +8 and +5) indicate the existence of three

distinct peaks associated with flow reattachment at (R1), (R’2) and (R3), very similar

to the profile at (x/D = +1) in Figure 5.44:(top). A direct comparison cannot be made

with the available experimental data since the experimental measurements were taken at

(x/D = +10). However, to facilitate a comparison, extrapolating from the regression

trend observed from previous heat flux profiles at other locations gives us an approximate
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numerical profile at (x/D = +10) and this is indicated in Figure 5.44:(bottom).

The comparison at (x/D = +10), as shown in Figure 5.44:(bottom) appears to show

the greatest variation in the heat flux between the measured experimental data and the

calculated numerical results. However, as in the previous results at the centerline, (x/D

= +1) and at (x/D = +5) the spatial distribution of the peaks and valleys is quite well

matched. The numerical results at (x/D = +10) overpredicts the heat flux at (R’2), but

gives a closer match at peaks (R1) and (R3). The experimentally heat flux at (R1) was

measured to be around (h/hu ' 7), whilst the numerical value for heat flux at (R1) is

around (h/hu ' 8). Similarly, at (R3), the experimental heat flux was approximated to be

around (h/hu ' 2), and numerically the heat flux at (R3) is also around (h/hu ' 2). The

heat flux at (R’2) from the experimental data is around (h/hu) ' 8 and the same peak

from the numerical results is around (h/hu ' 12). This represents a 33% increase between

the numerical and experimental heat flux measured at (R’2). The experimental results

in Figure 5.44:(bottom) appear to show a fourth peak in the heat flux profile at (y/D '
6.5). In the numerical results there appears to be an observed rise in heat flux after (S3)

which occurs around (y/D ' 8.5), but its exact characteristics cannot be determined, and

the profile is quite diffused.

A significant factor that could lead to overprediction of the heat flux at (x/D = +10), is

the grid resolution at that location. A similar behaviour in the calculated heat flux is also

observed in the grid dependency study in Section 5.1.4. It was shown that the cell size

had a strong impact on the calculated Stanton number which was overpredicted near the

leading edge and with most of the coarse grids studied. As a result it was concluded that

the minimum grid cell (∆x/∆y) required for an accurate measurement of Stanton number,

was (≤ 8). The current ratio of (∆x/∆y) is (≥ 11) in the grid cells at (x/D = +10) for

distances of (y/D > +5). As a result an accurate comparison for the peak strength at

(R3) may not be possible and is the probable reason for the difference in magnitude.

Schuricht, after examining the centerline, lateral crossflow and plate surface heat trans-

fer data along with the oil flow experiments, proposed a complex flowfield model con-

taining eight horseshoe vortices, in four counter counter rotating pairs as shown in Fig-

ure 5.46:(top). The resultant separation and reattachment path of the flow on the plate
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surface due to these vortices is shown in Figure 5.47:(top). The equivalent numerical mod-

els are also shown in Figure 5.46:(bottom) and Figure 5.47:(bottom) respectively. For

the ease of comparison the notation used by Schuricht for labelling the vortices and sub-

sequent separation and reattachment lines on the experimental results have been adopted

on the numerical model. It is clear to see by comparing the two models that they share

quite a significant amount of detail, however there also appear to have distinct differences.

The most significant difference between the two models is the presence of vortex pairs

(SV2) and (PV2) as proposed by Schuricht. In the following analysis it was shown that

the presence of this vortex pair could not be ascertained with any degree of certainty from

the experimental centerline and (y/D = +5) heat transfer data. The possible existence of

this vortex pair was indicated by the reattachment point seen in the (y/D = +10) lateral

crossflow heating profile. However, this result is unique because Schuricht was unable to

duplicate this finding with the 2.5mm diameter, and 7.5mm diameter blunt-fins that were

also tested. This phenomenon could have come about as a result of subtle variations in

flow (Re/l) in the tunnel, which causes the vortex arrangement in the separated flow to

change from one structure to another; (see Chapter 2, Section 2.5.2 ). Variations in flow

models put forward from conjecture through experimental data, and ones obtained through

numerical analysis is common place. Further examples of conflicting models derived from

experimental, and numerical methods can be seen in various other studies [45], [11], [60]

and [5].
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Figure 5.46: (top) Vortex profile suggested by Schuricht [53] on centerline (bottom) Numerically
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5.5 10mm blunt-fin simulations

The effect of fin leading edge diameter on the relative scale of the interference interaction

for laminar as well as turbulent flows is well documented (see [17], [15]), with details of

the salient effects described in Chapter 2 Section 2.5.2. However all the available data from

previous parametric studies regarding effects of leading edge diameter are in the form of

surface measurements, which can only indicate changes to surface variables and as a result

only give an idea of changes to the relative size of the surface interaction footprint. These

methods were unable to document the changes that would occur to the three-dimensional

flow field structure, and as a result there is no available data describing such changes.

Therefore, to investigate the impact doubling the leading edge diameter has on the three-

dimensional interference flow field, simulations are carried out using an unswept 10mm

diameter blunt-fin. The initial boundary conditions used for the numerical simulation are

identical to that used for the 5mm diameter fin simulation. Length scales in the current

set of simulations are non-dimensionalised with respect to (D = 10mm). Heat transfer

coefficients are non-dimensionalised with respect to the undisturbed flat plate. With the

fin height maintained at 25mm, the ratio of fin height to fin diameter is (K/D = 2.5).

It was earlier stated that for the asymptotic behaviour condition to be fulfilled, (K/D >

2.5). The current ratio is on this limit, and as a result there is a strong possibility the

asymptotic condition might not be fulfilled for the 10mm diameter fin.

5.5.1 Grid Refinement Study

A grid dependency study similar to the one carried out for the 5mm diameter fin was

undertaken for the 10mm diameter fin. The grids studied are shown in Table 5.7.

The effects on skin friction coefficient, Stanton number and pressure ratio on the plate

surface along the line of symmetry for the different grids are presented. In addition,

changes in the general flowfield structure as a result of grid refinement are also examined.

For the purpose of easily identifying clear differences in the simulated results the plots

for skin friction coefficient, Stanton number and Pressure ratio will only show variation in

properties from (x/D = -25) to (x/D = 0).
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Grid Type

58× 51× 45 A1

78× 72× 60 A2

116× 102× 90 B1

156× 144× 120 B2

Table 5.7: The grids used in the mesh dependency tests

The density contours, and velocity streamlines from the plane of symmetry, for a selection

of different grids are shown in Figures 5.48 & 5.49. As observed in the 5mm fin grid

refinement study, successive grid refinement yields sharper inviscid and viscous features,

such as shocks and boundary layer structures. The results indicate, as observed for the

5mm fin, a similar smearing in the leading edge shock as a result of the clustering criterion

imposed. Primarily this loss in shock resolution is notably present in only the coarsest

grids, A1 and A2, therefore accounting for the visibly lower leading edge shock angle in

Figure 5.48:(A) compared to Figure 5.48:(D).

The variation in Stanton number along the line of symmetry, for the various grid densities

is shown in Figure 5.50:(top). Also included in the plot is the theoretical Eckert solution

for a flat plate. The dominant features of the profile are an (x−
1
2 ) decay away from the

leading edge, followed by a pronounced dip at flow separation followed directly by a rapid

rise with a range of peaks and troughs. This profile follows a similar pattern of variation

to the one observed for the 5mm diameter fin. However, it is important to note distinctive

differences between the 10mm and 5mm diameter fin result. In the 10mm results there

appear to be 4 distinct peaks and troughs compared to 3 in the 5mm study. Furthermore,

the drop in Stanton number at separation is far less pronounced in the 10mm result when

compared to its 5mm counterpart. In addition, it is observed from the current set of

simulations that there appears to be a larger difference between the finest 10mm grid

results and the Eckert solution upstream of the separation point when compared with

similar 5mm diameter fin results in the same range. For example, the Eckert value for

Stanton number at a point (x/D = -20) is 0.0007, the value obtained from the finest 5mm

grid at that location is 0.00074. This represents an approximately ∼5% increase. At the
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Figure 5.48: Density contours in the plane of symmetry for a range of (ρ) values: 0.0056 - 0.023

in increments of 0.001 (A) 58× 51× 45 (B) 78× 72× 60 (C) 116× 102× 90 (D) 156× 144× 120
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Figure 5.49: (A) Velocity streamlines 58 × 51 × 45 (B) Velocity streamlines 78 × 72 × 60 (C)
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same location, the value obtained from the 10mm grid is 0.0008, which represents a ∼13%

increase. This would imply that the heat flux results obtained from the current crop of

simulations will not be truly representative of the final state of the heat flux distribution

on the flat plate for a 10mm diameter fin interaction. This is clearly visible from the

Stanton number plot where they clearly overpredict the Stanton number near the leading

edge, and at positions close to the fin root there still appears to be some variation in the

magnitudes of the recorded peaks between the two finest grids studied, the (116×102×90)

and (156× 144× 120). This clearly indicates the significant impact of the cell size on the

calculated Stanton number as found in the 5mm diameter fin study.

A comparison of the skin friction coefficient along the line of symmetry Figure 5.50:(bottom),

appears to show a similar variation to the pattern observed in the Stanton number pro-

file and previous skin friction coefficient profiles for the 5mm diameter fin. The main

differences in the current profile is the larger separation length and the lower values of

skin friction in the peaks and troughs, specifically close to the fin root. Similar to the

results of the 5mm fin, (Cfw) is overpredicted near the leading edge indicating a similar

relationship to cell size as found with the Stanton number comparison in Figure 5.50:(top)

and previous results. The skin friction profile only indicates three distinct separation and

reattachment points when compared to the Stanton number profile in Figure 5.50:(top).

The location of the fourth peak in Figure 5.50:(top) occurs at (x/D = -4), looking at

the equivalent point in Figure 5.50:(bottom) appears to indicate an increase in (Cfw),

however since (Cfw 6= 0) it cannot be definitively characterised as a further singularity.

As a result it is not considered to be another separation/reattachment point.

Grid Type xs/D

58× 51× 45 A1 -5.575

78× 72× 60 A2 -5.760

116× 102× 90 B1 -6.130

156× 144× 120 B2 -6.250

Table 5.8: Separation lengths for different 10mm diameter blunt-fin grids
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The variation in the non-dimensionalized primary separation length for the different grids

is shown in Table 5.8. The expected scaling in separation length with successive grid

refinement is clearly visible from Table 5.8. The results from the table clearly show that

the separation length has not converged with finest grid simulated.

A comparison of the non-dimensionalzied separation length (xS/D), between the 10mm

and 5mm fin interaction reveals some notable differences. Comparing the separation

lengths from 10mm grid B1 (116 × 102 × 90) and B2 (156 × 144 × 120), with the re-

spective separation lengths from 5mm grid B2 (116×102×90) and C1 (172×160×144),

reveals a 18.1% and 17.04% decrease in (xS/D). The result appears to indicate a decrease

in the non-dimensionalized separation length with an increase in fin diameter. A similar

decrease in the non-dimensionalzied separation lengths in the 5mm and 7.5mm diameter

unswept fin interaction was observed by Schuricht [53] in his experiments.

However, it has to be noted that the final separation length from the current crop of 10mm

grids have not yielded a converged value. Further complicating the matter is the possibility

that the asymptotic criterion might not have been met in the current simulation, and the

final separation length could change with a change in fin height (K). To verify the theory

of a decrease in the non-dimensionalized separation length with an increase in fin diameter,

further investigation with a finer grid is recommended.

The pressure profile shown in Figure 5.51 is very similar to that observed in the 5mm

case, the only difference being that the pressure rise appears to begin further upstream of

the fin root at (x/D = -15), compared to (x/D = -10) in the 5mm case. This observation

is consistent with the earlier finding of an increased separation distance. Also highlighted

in Figure 5.51 is the additional localised but small pressure peak at (x/D = -4).

The grid dependency study has shown that the present set of grids used will not produce

a grid independent solution for the 10mm blunt-fin. It is clear that with further grid

refinement there is the potential to get a more accurate solution. It would appear that

the following sets of type B grids, might have to be doubled to get a set of type C grids

to really offer the chance of achieving a grid independent solution.

However for the purpose of qualitatively comparing surface heat transfer distribution and
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Figure 5.51: Detail of Pressure comparison for different grid densitites

any differences attributed to fin diameter in the scale of the interaction between the 5mm

and 10mm diameter fins, the numerical results from grid (156× 144× 120) will be able to

provide a reasonably accurate comparison.

5.5.2 General Flow Features of 10mm blunt-fin

The structure of the flowfield in the axis of symmetry for the 10mm blunt-fin interaction

bears remarkable similarity to the flow structure observed in the 5mm study.

The shock structure from analysing the density contours (see Figure 5.52), clearly capture

the leading edge shock, shock induced boundary layer separation shock, and fin bow

shock. The magnitude of the non-dimesionalized bow shock stand-off distance (∆/D)

for the 10mm interaction is very similar to what is observed in the 5mm fin interaction,

(∆/D ' 0.3).
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Figure 5.52: (top) Density contours (middle) Temperature contours (bottom) Pressure contours
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The kinks in the bow shock are a good indicator of shock/shock interaction points, and

from Figure 5.52 it is clear to see two distinct points of interaction at (z/D ' 2.75) and

(z/D ' 1.25). The flow in the separated region appears to indicate further complexities

in its structure with large density gradients visible throughout the separation bubble. A

region of flow just behind the primary shock/shock interaction point at (z/D ' 2.75)

appears to indicate an area where there is large variation in density. This is very similar

to what was observed for the 5mm fin where it was discovered that these large density

gradients were caused by an impacting supersonic jet, the result of an Edney type IV

interaction. A similar region of large density gradients exist very close to the root of the

fin/plate attachment location.

The temperature contours in Figure 5.52 clearly outline the extent of the thermal bound-

ary and shear layers. The two bubbles of relatively cooler gas, close to the leading edge of

the blunt-fin highlight the the embedded supersonic zones similar to the 5mm fin study.

The presence of the second separation shock is barely visible in the temperature con-

tours. The pressure contours clearly show the three main shock structures, leading edge,

separation and detached bow shock. Also indicated by the clustered contour lines is the

second separation shock, just below the primary separation shock. The pressure profile

also indicates a region of high pressure behind the primary shock separation/bow shock

interaction point.

A table with some geometrical constants for the 10mm diameter fin flow field is shown

in Table 5.9. The boundary layer height used for comparison in the table below is the

undisturbed boundary layer height measured 145mm from the leading edge, (δ = 3.48mm),

(z/D = 0.696).

Type D/δ K/δ K/D K/Ktp

5mm - Numerical 1.44 7.18 5 3.24

10mm - Numerical 2.87 7.18 2.5 1.85

Table 5.9: Fin dimension relationships

Given the height of the fin remains constant at 25mm, the (Ktp) for the 10mm fin is
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calculated to be (Ktp = 13.51). Comparing this with the 5mm fin which has a (Ktp =

7.72), reveals a 43% increase in the height of the triple point. This appears to show that

although the non-dimensional separation length is smaller in the 10mm fin interaction, the

physical size of the separated region in relation to the flat plate and model is larger than

the 5mm fin. As highlighted earlier, the current (K/D) ratio is very close to the minimum

value quoted for asymptotic behaviour. To verify the fact that the criterion holds for the

current analysis, it is necessary to analyze the surface heat transfer rates; this is carried

out later in this chapter. With a (D/δ = 2.87) the 10mm fin would still be classed as a

’short’ protuberance (see Chapter 2, Section 2.5.2), and the heating distribution dictated

by the ratio (K/δ). Since the (K/δ) ratio in Table 5.9 is the same as the ratio for the

5mm fin, it is expected that both heating distributions would be very similar.
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Figure 5.53: Embedded supersonic zones within the separated region in the 10mm interference

flowfield

Figure 5.53 shows the Mach contours for the (x/D) range indicated. For the purpose

of identifying the relevant features the Mach contours plotted in Figure 5.53 only show

regions below (M < 1); regions where the Mach number is > 1 are highlighted in a

dark blue colour. Clearly outlined are the two supersonic bubbles embedded within the
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recirculation zone. The second supersonic jet from the second shock/shock interaction can

be clearly seen, with the path of the high speed gas outlined by the black arrows. The

primary supersonic jet does not appear to be well captured; however the path of the gas

can be seen from analysing Figure 5.53, and is marked by the black arrow.

Pattern of Separated Flow

The plate surface skin friction lines for the 10mm fin interaction describe a field very

similar to the surface skin friction field observed for the 5mm fin. The primary separation

saddle, (sA), is highlighted as the point furthest outward from the root of the blunt-fin in

Figure 5.54. Through (sA) goes the separation line towards which the skin friction lines

converge. The separation line is strongly deflected when it encounters the freestream as

shown in Figure 5.54. There is a node of reattachment right at the base of the blunt-fin

(n1). Through (n1) goes the attachment line from which the skin friction lines diverge.

In addition their are two other distinct pairs of separation saddles and reattachment

nodes (s2, s3) and (n2, n3), originating from the centreline Figure 5.54. A nodal point of

separation and reattachment (s′2, n′2) originates close to the reattachment line (R1). In

addition there is another nodal point of separation (s4) near the side surface of the fin.

The number of saddles and nodes is identical to the 5mm fin (3 saddles and 3 nodes).

The main difference between the two surface topologies is the relative spacing between

the sets of separation and reattachment pairs. In the 5mm surface skin friction field in

Figure 5.19 the primary separation point (sA) is located considerably further upstream

compared to separation points (s2, s3) which are relatively much closer together and nearer

the fin. When a similar comparison is made in the 10mm surface skin friction field, it is

clearly evident that all separation points are evenly spaced, in particular (s3) which has

moved further upstream.

The streamlines in the symmetry plane for the 10mm flowfield are shown in Figure 5.55:

the diffused spanwise vorticity of the incoming boundary layer is organised in three primary

vortices (foci F1, F2 and F3); and secondary vortices (foci F1a, F2a and F3a) separate from

the bottom surface, and concentrate the vorticity of opposite sign generated on the bottom

surface by the reverse flow.
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The vortex structure within the separation bubble is very similar to the structure observed

in the 5mm fin study. The primary difference is the bifurication of vortex (F2), found

within the recirculation zone of the 5mm interaction (see Figure 5.20). This main vortex

breaks into vortices (F2) and (F3) as observed in Figure 5.55. The main reason for this

bifurication would appear to be the presence of a pressure rise at (x/D ' -4) as shown

in the wall pressure profile. The flow encountering this adverse pressure gradient induces

the primary vortex to bifurcate to form two separate cores, as seen in Figure 5.55. As the

pressure rise increases in the upstream direction, it results in tertiary separation at (S3)
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seen at (x/D ' -6) similar to the process that caused secondary separation. The flow

reattaches itself further upstream at node (N3). These secondary and tertiary separation

and reattachments leads to the formation of two secondary vortices.

Cross flow section profiles, (Profile D - F) taken at (x/D = +1, +2.5 and +4) shows the

flow structure in the lateral extent of the 10mm interaction. Examining the Mach, density

and streamline profiles in Figures 5.56- 5.57 indicate a very similar flow field structure to

the one observed in the 5mm fin study. The main shock features which consist of the

normal bow shock, separation shock and reflected shock are well captured. The normal

shock which was clearly defined in the 5mm case at (x/D = +4) is poorly resolved in the

10mm fin at the same location. However its presence is indicated by the streamlines in

Figure 5.57:(F). The most outstanding difference between the two different fin diameter

interactions is the lateral extent of the separated region, and the separation shock/normal

shock interaction point, which for the 10mm fin is larger than in the 5mm case. The flow

within the separated region close to the flat plate exhibits similar characteristics to the

features discovered in the 5mm case. The presence of a supersonic zone in an other wise

subsonic flow is present in Figure 5.56.

The streamline profiles in sections (Profile D - F) indicate the growth of the corner root

vortex as this feature evolves downstream from its inception point at the junction of the

fin leading edge. A noticeable omission in the section streamlines is the presence of the

vortices that originated from the fin centerline. The most probable cause for the loss of

detail in the inviscid/viscous structures found in the regions (y/D > 5) is the lack of grid

points, beyond (y/D > 5) the grid becomes very coarse with the cell size exceeding the

size of some the features themselves, and since these structures are quite small, the grid

clustering in that region will be unable to resolve such fine features.

Figures 5.59 and 5.58 give a good representation of the three-dimensional vortex structure

surrounding the 10mm fin. The similarities in the vortex flow field between the present

10mm interaction and the 5mm interaction (see Figures 5.32 and 5.33) can clearly be seen

in the following Figures. A close examination of Figure 5.58 appears to show that vortex

with foci (F2a) suffers a similar fate as its counterpart in the 5mm interaction, where

this feature diffuses into the surrounding incoming flow due to its inability to entrap
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Figure 5.56: Cross plane density and Mach number contours in profile planes D - F
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additional gas because of low rotational momentum. Another important observation that

can be made from Figure 5.58 is that vortex (F2) appears to merge with vortex (F3)

further away from the fin symmetry line, to form a single core, and does not appear to

evolve around the fin as an independent vortex. In addition, it appears that the primary

vortex core is considerably larger in the 10mm study when compared to its 5mm twin,

this is an expected result given the fact that the separated region is considerably larger in

the 10mm case.

X

Y

Z

Figure 5.59: Three-dimensional horseshoe vortex paths around the fin

5.5.3 Surface Heating on Plate

In order to investigate the interaction scaling effects of fin diameter, the non-dimensionalised

heat transfer coefficient maps for the 5mm, 10mm and 7.5mm fin interaction are compared

in Figure 5.60. The 5mm and 10mm (h/hu) maps in Figure 5.60 have been numerically

generated whilst the 7.5mm (h/hu) heat transfer coefficient map is obtained from the

experimental results of Schuricht [53]. As with the (h/hu) map of the 5mm interaction,
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distances on the 10mm (h/hu) map have been non-dimensionalised with respect to the

10mm fin.

A qualitative comparison of the surface heating distributions in Figure 5.60 confirms that

all the unswept fin types generate a very similar heat flux profile. Clear similarities in the

general shape and location of the increased heating bands are visible. The most dominant

difference that appears between the 10mm, 7.5mm and 5mm fin diameter interactions

is the increasing size of the thermal interaction footprint with increasing diameter. Fig-

ure 5.60:(top) which shows the 10mm fin displays the largest, broadest surface interaction.

The three profiles in Figure5.60 clearly show that the fin leading edge diameter is the

major scaling factor for the blunt-fin interaction as the extent is approximately similar in

each profile. This confirms the experimental observations of Schuricht [53] and, Hung and

Clauss [36]. The heating profile from the 10mm interaction appears to indicate that the

height of the 10mm fin is sufficient to produce an asymptotic result.

A quantitative analysis of the heat transfer coefficient field in Figures 5.60:(top) and

5.60:(bottom), appear to show considerable similarity in the range of values measured

across the interference zone. Apart from the maximum recorded value for the 10mm

case; which at the base of the fin plate junction is around (h/hu)max ' 50, the general

magnitude of the enhanced heating bands surrounding the fin are generally similar to what

was found in the 5mm interaction.

The maximum for the 10mm fin is somewhat lower than the (h/hu)max ' 60 recorded for

the 5mm fin. Although the limitations of the current grid were highlighted in Section 5.1.1

in the current chapter, it is unlikely to be the reason for this discrepancy. It has to be noted

that Schuricht [53] observed a similar difference between the 5mm and 7.5mm results in

his experimental work. A possible reason could be that the supersonic jet impacting the

plate surface, which is partly responsible for the extremely high values being recorded,

could be weaker in the 10mm interaction.

An overall synopsis of the surface results in Figures 5.60 leads to the conclusion that,

changes in fin leading edge diameter do not appear to significantly influence the magnitude

of heat transfer within the interference zone. This agrees with the findings of Hung and
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Figure 5.60: (top) Numerical normalised plate surface heat flux for 10mm fin (middle) Exper-
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Clauss [36], where the heating distribution will be primarily dictated by the ratio (K/δ),

since this ratio is the same for both fin types it was expected that the heating rates too

would be the same.

A closer examination of Figure 5.60:(bottom) also appears to show, straddled between

the two outer enhanced heating bands, the presence of another possible increased heat

flux band slightly upstream of the increased heat flux band attributed to (R2). A better

understanding about the origins of this feature can be found by examining the centerline

and crossflow (h/hu) profiles.
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Figure 5.61: Normalized linear heat transfer coefficient (h/hu) along the axis of symmetry

The numerical centerline (h/hu) profile, shown here in Figure 5.61, reveals three distinct

increased heating peaks associated with three flow reattachment points on the surface of

the plate. The location of these peaks and valleys are consistent with the flow topology

suggested by the surface skin friction streamlines in Figure 5.54, and symmetry plane

velocity streamlines of Figure 5.55. The reattachment nodes in the skin friction topology

map were labelled (n1), (n2) and (n3) respectively, with (n1) equating to the location where

(h/hu)max occurs, closest to the blunt-fin root. The magnitude of the peaks increase as

the fin root is approached. The highest heating coefficient occurs at (n1), where (h/hu)max

' 52.
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The crossflow spanwise distribution in surface heating at (x/D = +1) and (x/D = +4)

for the 10mm interaction is shown in Figure 5.62. The profiles exhibit close similarities

to what was observed on the 5mm interaction at (x/D = +1) and (x/D = +5) (see

Figure 5.45).

y/D

h/
hu

0 2 4 6 8

20

40

60
80

100

156 x 144 x 120R1
R2

R3

S2

S3
S1

y/D

h/
hu

0 2 4 6 8

20

40

60
80

100

156 x 144 x 120

R1

R2’

R3

S2’

S3

S1

Figure 5.62: (left) Normalized linear heat transfer coefficient (h/hu) laterally at x/D = +1

(right) Normalized linear heat transfer coefficient (h/hu) laterally at x/D = +4

The lateral extent of the interaction does not appear to scale exactly with fin leading edge

diameter. In particular, it can be observed that, at (x/D = +1), the peak in heat flux

associated with the reattachment points (R2) and (R3) for the 10mm interaction appear at

(y/D ' 1) and (y/D ' 3). The same reattachment points on the 5mm interaction appear

at (y/D ' 2) and (y/D ' 4) respectively. Secondary factors which might influence the

lateral scale of the interaction (which include the effect of boundary layer growth over the

fin and asymptotic height of the fin) suggest that the lateral scale ought to be greatest for

the small fin and least for the largest fin (turbulent-boundary layer fin flow by Haq [28]

confirms this). It appears the crossflow numerical results between the 5mm and 10mm

fins support this theory.

The centerline profile also suggests the existence of a fourth peak (indicated by the hollow

arrows) at (x/D = -2.3). This location corresponds with the enhanced heating band seen

earlier on Figure 5.60:(top). Although this feature is clearly visible on the centerline heat-

ing profile, its physical manifestation in the interference flowfield, primarily a separation

and reattachment point, are missing in the surface skin friction streamlines in Figure 5.54,
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and symmetry plane velocity streamlines of Figure 5.55. The absence of a separation bub-

ble on the plate surface is further corroborated when the centreline skin friction profile is

analysed in Figure 5.63.
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Figure 5.63: Skin friction coefficient along the axis of symmetry

Figure 5.63 clearly shows that the skin friction coefficient in the region of interest does

not reach or equal zero at any point. A skin friction value of zero along the centerline is

the usual indicator of a separation point. The absence of a separation point reveals the

concurrent absence of a reattachment point in the localised region. As a result, it would

be safe to assume that the enhanced heating bad localised round the region (x/D = -2.3)

is not the result of a reattachment point.

An increase in heat transfer in the region of interest can only be caused by a deceleration

in the flow at that location; loss of kinetic energy in the flow is transformed into thermal

potential. The surface pressure profile along the centreline in Figure 5.55:(bottom) shows

a gradual increase in pressure and temperature in the region (x/D = -2.3) as a result

of the flow losing momentum. The adverse pressure gradient is however insufficiently

severe to force separation as indicated in Figure 5.63. The loss of flow momentum with a

corresponding increase in pressure and temperature appears to be the likely cause of the

increase in heat transfer seen in Figure 5.61.
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5.5.4 Comparison of 10mm and 5mm blunt-fin Flow

The heat transfer coefficient map in Figure 5.60 gives a good illustration of how the

interaction foot print scale with fin diameter.

However, to fully appreciate the physical size of the interaction zone with respect to each

diameter, the centerline (h/hu) profile, and the centerline skin fiction profile have been

plotted together with respect to distance from the leading edge of the plate. These plots

are illustrated in Figure 5.64(top) and Figure 5.64(bottom).
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Figure 5.64: (top) Comparison of the centerline Stanton number profile for the 5mm and 10mm

fin (bottom) Comparison of the centerline Skin friction coefficient profile for the 5mm and 10mm

fin
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A close examination of Figure 5.64:(top) clearly shows the increased size of the separated

zone in the 10mm interaction with respect to the 5mm result. This is an expected result

considering that the interference flowfield is largely governed by the fin bow shock inter-

acting with the boundary layer growing over the flat plate. Physical reasoning suggests

that, for a given flow Mach number, the bow shock shape and location will be primarily

be determined by the leading edge diameter (see Chapter 2, Section 2.5.2). Clearly visible

are the similarities in the heat flux values at each corresponding reattachment point.

A look at the Skin friction coefficient profile along the centerline in Figure 5.64:(bottom)

paints a similar picture. The increased physical size of the separated region can be seen by

the early onset of separation in the 10mm interaction compared to the 5mm interaction.

The two results also clearly show the increased heat flux and skin friction observed in the

5mm interaction at the (R1) reattachment point, when compared to the same point on

the 10mm interaction.
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5.6 5mm blunt-fin with 30◦ sweep simulations

To investigate the effects of fin leading edge sweep, a 5mm diameter blunt-fin with (Λ =

30◦) sweep is simulated using the same flow conditions as the unswept 5mm diameter

blunt-fin. The grid generated is an algebraically mapped C -type grid, shown here in

Figure 5.65. The two grids studied are shown in Table 5.10.

Grid Type

58× 51× 45 A1

116× 102× 90 B1

Table 5.10: The two grids studied for the swept fin
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Figure 5.65: Swept fin grid, 116× 102× 90

The primary purpose of this simulation was to observe the scaling effects on the interaction

due to fin sweep, to analyze any distinct three-dimensional features that are present in

swept fin interactions, and to compare the effects of sweep on the heat flux distribution
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on the flat plate. The numerical heat flux results are also compared with experimental

heat transfer data for a 30◦ swept fin conducted by Schuricht [53]

5.6.1 General Flow Features of blunt-fin with 30◦ sweep

The effect fin sweep has on the subsequent scale of interaction has been documented

before by Schuricht [53] and Hiers and Loubsky [29] to name a few. However, all these

were experimental results and no numerical simulations of the three-dimensional flow field

were conducted.

The general trends observed were a dramatic decrease in the scale of the interaction, both

in a streamwise and spanwise direction. Surface measurements indicate a reduction in the

complexity of the interaction in the separated boundary layer. This is primarily caused

by the reduction in the bow shock strength, and the reduced stand-off distance as a result

of sweeping the fin. To observe these effects, density, temperature, pressure and Mach

contour profiles are recorded from the plane of symmetry.

The density, temperature and pressure contours describe a flow structure within the sep-

arated region very similar to what was observed for the unswept 5mm diameter fin, but

at a much reduced scale. The density contours indicate less complexities in the separated

boundary layer, but clearly outlined is the shock structure with the bow shock, separation

shock and reflected shock all well defined. Important observations to be made from the

density plot is the reduced stand off distance between the bow shock and swept fin leading

edge, and the lower separation shock angle compared to the unswept 5mm diameter fin

interaction. The separation shock appears to originate at (x/D ' -4), which appears to

agree with the separation distance recorded by Schuricht [53].

From examining the temperature contours within the separated layer, it is evident that

the supersonic recirculation regions seen in the unswept 5mm diameter fin also appear to

occur in the swept fin. This is more clearly identifiable in the Mach contours in Figure 5.67.

A table with some geometrical constants for the (Λ = 30◦) swept fin flow field is shown in

Table 5.11. The boundary layer height used for comparison in the table below is taken to

be (δ = 3.48mm), (z/D = 0.696).
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Figure 5.66: (top) Density contours (middle) Temperature contours (bottom) Pressure contours

in the symmetry plane
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Figure 5.67: Mach contours in the symmetry plane

As Table 5.11 indicates, the decreased interaction zone is revealed by the (K/Ktp) ratio.

For the swept fin, (Ktp = 4), comparing this with the unswept 5mm fin which has a (Ktp =

7.72), reveals a 48% reduction in the height of the triple point which would also translate

to similar order of reduction in the separation length.

Type D/δ K/δ K/D K/Ktp

5mm - Numerical (Λ = 30◦) 1.44 7.18 5 6.25

Table 5.11: Fin dimension relationships

Figure 5.68 presents the particle streamlines in the symmetry plane for the swept fin

interaction. The plot indicates that separation occurs at (xS/D = -4), and the separated

flow rolls into one primary vortex, with an additional root vortex as expected at the

junction of the fin/plate. The separated flow reattaches further up the swept fin at (z/D

= +0.8). Comparing the relative sizes of the recirculation regions of the swept fin and

upswept fin, confirms the reduced size of the swept fin interaction. For example the height

of the separated layer for the swept fin is (z/D ' +2.5), whereas for the unswept fin it is
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(z/D ' +4). The size of the root vortex is also much smaller for the swept fin than the

unswept fin.
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Figure 5.68: Particle streamlines in the symmetry plane

Following the particle streamline trace is a map of the skin friction lines on the flat plate

surface as indicated in Figure 5.69. The skin friction streamline map clearly identifies the

primary separation line, (SA), and the root vortex reattachment line (R1).

The primary separation line for the swept fin is more curved than the equivalent separation

line on the unswept fin interaction. This clearly indicates that the spanwise extent of the

interaction is also considerably smaller than the equivalent unswept example. The skin

friction lines also indicate secondary separation and reattachment lines on the plate surface.

Lines (S’2) and (R’2) look very similar to the secondary separation and reattachment

lines observed for the unswept fin. This signifies that the strength of the bow shock is

sufficient to initiate secondary separation on the fin side surface as a result of a swept

shock interaction, is observed in unswept finside interactions.

The three-dimensional plot of the vortex paths in Figure 5.70 indicates that the primary
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Figure 5.69: Surface skin friction streamlines on flat plate with highlighted separation and reat-

tachment lines. A separation saddle is denoted by (s) and a reattachment node by (n)
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Figure 5.70: View of three-dimensional vortex paths around swept-fin
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Figure 5.71: Plan view of vortices formed on a swept-fin
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vortex entrains quite a considerable quantity of the surrounding flow into its core, however,

unlike in the case of the unswept fin, the root vortex is considerably smaller and appears

to entrain very little from the surrounding fluid. Figure 5.71 highlights how small the root

vortex is in comparison to the primary vortex.

5.6.2 Surface Heating on Plate

The heat flux contour pattern on the flat plate, shown here in Figure 5.73, displays simi-

larities to the unswept case, with the features seeming to be compressed together within

the smaller disturbed flow region.

The numerical distribution shows the two distinct bands of increased heat flux surrounding

the fin. The maximum heat transfer occurs along a thin band surrounding the leading

edge, with (h/hu)max ' 8. This is a considerable reduction in (h/hu)max when compared

with the unswept fin for which peak values ' 60 times the equivalent undisturbed flat

plate value were observed. The reduced bow shock strength leads to lower pressures and

hence lower heating rates downstream of the shock. However, it appears the primary cause

for the reduced heat transfer at (R1) is due to the reduced strength of the supersonic jet

within the recirculation region striking the plate surface.

The comparison between the experimental heat flux contours in Figure 5.72 and the numer-

ical set in Figure 5.73 appear to show reasonable agreement in general spatial distribution

and the magnitudes of the contours; however, as with the unswept fin some differences

exist. The experimental result does not appear to indicate a second heat flux band that

borders the band closest to the fin as indicated in the numerical result in Figure 5.73. This

result could be due to poor illumination of the crystals, an explanation put forward by

Schuricht [53] for the poor resolution. As a result a comparison is made of the centerline

and crossflow, at (x/D = +1), heat flux profiles to get a better indication of the surface

heating.

As Figure 5.74 indicates the comparison between the numerical and experimental results

is quite favourable. Both data sets appear to indicate the same number of peaks and

valleys, with a good correlation of spatial features. The numerical centerline profile shows
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Figure 5.72: Experimental heat transfer contours on plate surface Schuricht [53]

0

6

1

2

3

4

5

x/D

y/
D

-5 0 5

-10

-5

0
5.23

4.98

4.72

4.47

4.21

3.96

3.70

3.45

3.20

2.94

2.69

2.43

2.18

1.92

1.67

4

1

8

7

3

2

5

6

h/hu

Figure 5.73: Normalized heat transfer contours on plate surface

210



5.6 5mm blunt-fin with 30◦ sweep simulations S.J.VITHANA

x/D

h/
hu

-10 -5 0
0

1

2

3

4

5

6

Experimental (Schuricht 1999)
Numerical (2004)

R1

Sa

y/D

h/
hu

0 5 10
0

1

2

3

4

5

6

7

8

9

10

Experimental (Schuricht 1999)
Numerical (2004)

S2

R1

R2’

Sa
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good agreement upto primary separation, whereupon the numerical data produce a more

pronounced decrease in surface heating compared to the experimental data. The subse-

quent rise in heat flux appears to occur at similar points in both result sets, at around

(x/D ' -3). The numerical profile records a higher peak heating value at (R1), (h/hu '
5.5), compared to the experimental value of (h/hu ' 3.5). This appears to be a recurring

theme thus far in the numerical results.

The crossflow profile at (x/D = +1) shows excellent agreement with the experimental

results. The calculated numerical maximum heat flux is (h/hu)max ' 8, and the equivalent

experimental maximum is (h/hu)max ' 7. The experimental results appear to show a

plateau at the location of (R’2) which could be indicative of a reattachment point, thus

it would appear that the numerical heat flux contour profile is correct.
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Chapter 6

Conclusions and

Recommendations for Future

Work

6.1 Conclusion

The numerical simulation of a three-dimensional laminar hypersonic Mach 6.7, blunt-fin

interference flowfield produced by several configurations of a fin attached to a flat plate

were presented.

The numerical calculations solved the compressible Navier-Stokes equations using an Im-

plicit and Explicit finite volume code developed at the University of Southampton. The

numerical scheme has been adapted to accept any generic three-dimensional geometry,

and has the ability to accommodate additional explict viscous cross-derivative terms to

offer the potential of giving a full Navier-Stokes solution. In the present study the influ-

ence of these cross-derivatives terms was demonstrated to be negligible and were therefore

omitted from the solution to speed up the calculation. Several three-dimensional configu-

rations have been simulated, including an unswept blunt-fin, fins of various diameters and

a circular cylinder.
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6.1.1 Results

The three-dimensional results of the unswept 5mm diameter blunt-fin interaction show a

rich, complex three-dimensional structure within the separated flow caused by the interac-

tion of the bow shock with the advancing boundary layer. The horseshoe vortices formed

inside the separation bubble appear to be stable, with no fluctuation in shape or location

with the passage of time. The path of these vortices around the blunt-fin are clearly

mapped, and the mechanism of flow entrapment into these vortices is clearly indicated.

The results indicate that the side wall of the blunt-fin plays a dominant role in determin-

ing the flow structure beyond the leading edge dominated section of the blunt-fin. The

result of this is additional separation and reattachment of the flow as a result of pressure

gradients downstream of the fin root. The increased heat flux spikes are solely the result of

flow reattachment caused by the vortices that originate from the fin centerline, upstream

of the fin root. The exception to this is the additional separation and reattachment due

effects of the fin side wall. The supersonic jet formed as a result of an Edney type IV

shock-shock interaction due the oblique separation shock intersecting the fin bow shock is

documented. The impact the jet has on the heat flux on the fin-side surface is described,

with measured levels around (h/hu ' 30).

The surface topological features, and surface heat flux profiles observed on the flat plate

from the numerical simulation indicate good agreement with the experimental results ob-

tained by Schuricht for the same blunt-fin configuration. The numerical simulation was

able to obtain data in regions that were unable to be measured experimentally due to lim-

itations in the liquid crystal thermography thermal mapping method used by Schuricht.

The numerical results indicate vastly increased highly localised heat transfer rates when

compared to predictions made from the experimental data. From the numerical results it

was possible to elucidate a mechanism responsible for the extremely large heat transfer

rates close to the blunt-fin root. It appeared that as a result of a shock/shock interaction

inside the separated region, a supersonic jet is formed by another Edney type IV interac-

tion. This jet is accelerated towards the plate surface by the rotating horseshoe vortices,

and upon impacting the plate releases a considerable amount of energy which results in

highly elevated levels of heat transfer, around 60 times the undisturbed flat plate value at

that location.
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Studies of fin sweep and variable fin diameter on the scale of the interaction reveal distinct

changes to the flow structure, with the trends observed consistent with the findings of

Schuricht and others. The results indicate that the leading edge diameter has a measurable

impact on the extent of the interaction, the resulting change in the size of the separated

region effects the vortex structure insider the separation bubble. The separation bubble

in the 10mm diameter fin simulation indicates further bifurication of the primary vortex

into two smaller vortices. This impacts on the relative placement of the secondary vortices

which, in turn, affects the heat flux distribution on the flat plate. Fin diameter does

appear to have an effect on the maximum heat flux on the flat plate. The maximum

heat transfer rate appears to be lower than that observed for the 5mm diameter blunt-fin.

However, apart from the localised maximum heat transfer rate, changes in fin leading edge

diameter do not appear to significantly influence the magnitude of heat transfer within

the interference zone.

The swept fin simulation indicates a dramatic reduction in the size of the separation

bubble, with a simultaneous reduction in the peak surface heat transfer rate on the flat

plate (h/hu ' 8). The separation bubble only contains a large single primary vortex

core, with an additional root vortex. This is compared with the 5mm unswept blunt-fin,

which has four vortices excluding the root vortex in the separated region. Overall, the

swept fin interference flowfield is considerably smaller than the same unswept fin. The

impact of incorporating sweep in vehicle design is quite obvious. As the present study

has shown sweeping the fin by 30◦ dramatically removes ”hot spots” on the fin leading

edge and plate surface. These ”hot spots” are caused by shock/shock and shock/boundary

layer interactions. They are extremely localised as seen in this study, and generally very

difficult to insulate against efficiently. Incorporating fin sweep considerably reduces the

heating distribution and the extent of the disturbed flow on the plate surface and could

also possibly reduce the weight of any control surface.

6.2 Recommendations for Future Work

As a result of the work carried out in this thesis, the following topics are recommended

for further study:
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• The effects of variation in Reynolds number on the fin interaction should be studied

in more detail, with the main emphasis on the effect it has on the vortex structure

within the separation bubble, and the stability of resulting structure.

• An appropriate turbulence model should be incorporated into the code to allow for

a comparison with past experimental results obtained by Haq [28] and others, and

to enable a comparison of the surface heat transfer profiles between the turbulent

and laminar flowfields.

• The grid dependence study has shown that the current solution is not fully grid

independent: a higher number of grid points offers the possibility of capturing finer

flow features and generating a more accurate surface heat transfer profile. In order

to maximise the potential of the current computational platform it is possible to

increase the parallelization efficiency of the parallel numerical scheme by parallelizing

in all three spatial coordinates directions (ξ, η, and ζ) instead of the current single

(ζ) direction.

• A future improvement to the current viscous solver would be to incorporate the

additional jacobian terms of the cross derivative terms in the implicit method. This

is purely for the benefit of having the option of a complete Navier-Stokes solver using

the implicit method.

• For the benefit of future comparisons between experimental and numerical results

a more comprehensive collection of experimental results of the flowfield away from

the flat plate surface is required, in particular a description of the vortex flowfield

in the separated region. The use of non-intrusive flowfield measurement techniques

such as planar laser induced fluorescence [22] could offer the possibility of further

detailed comparisons.
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Appendix A

Non-dimensionalisation

To derive non-dimensional quantities the physical magnitudes have been scaled by the

corresponding free stream values which are denoted by the subscript (∞) while (Lref ) is

the characteristic length of the flat plate.

Length
x

Lref
,

y

Lref
,

z

Lref
(A.1)

Velocity
u

U∞
,

v

V∞
,

w

W∞
(A.2)

Time
t

Lref/U∞
(A.3)

Density
ρ

ρ∞
(A.4)

Pressure
p

ρ∞U2∞
(A.5)

Temperature
T

T∞
(A.6)
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Specific energy
E

U2∞
(A.7)

Viscosity
µ

µ∞
(A.8)

Specific heats
Cp

U2∞/T∞
,

Cv

U2∞/T∞
(A.9)
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Appendix B

Numerics for Chapter 4

B.1 Navier Stokes equations

The Navier Stokes equations that describe the behavior of a compressible fluid can be

written in conservative form as:

δU

δt
+

δF

δx
+

δG

δy
+

δH

δz
=

δFv

δx
+

δGv

δy
+

δHv

δz
(B.1)

where (U) is the vector of conserved variables:

U =




ρ

ρu

ρv

ρw

ρE




(B.2)

and (F ), (G) and (H) are the advection fluxes given by

225



B.1 Navier Stokes equations S.J.VITHANA

F =




ρu

ρu2 + p

ρuv

ρuw

u(ρE + p)




(B.3)

G =




ρv

ρuv + p

ρv2 + p

ρvw

v(ρE + p)




(B.4)

H =




ρw

ρuw

ρvw

ρw2 + p

w(ρE + p)




(B.5)

Here (ρ) represents the density (u), (v) and (w) are the components of the velocity field,

(E) is the total specific energy and (p) stands for pressure. To close the above set of

relations, the pressure should be related with other thermodynamical properties through

an equation of state. For the current study the relation is the ideal gas equation

p = (γ − 1)
(
ρE − 1

2
ρ(u2 + v2 + w2)

)
(B.6)

where (γ) stands for the specific heat ratio which is a constant when dealing with perfect

gases, the value of which for diatomic molecules is 1.4. From (Eqn B.1) (Fv), (Gv) and

(Hv) represent the viscous fluxes given by

226



B.1 Navier Stokes equations S.J.VITHANA

Fv =




0

ξxτxx + ξyτxy + ξzτxz

ξxτxy + ξyτyy + ξzτyz

ξxτxz + ξyτyz + ξzτzz

uτxx + vτxy + wτxz + qx




(B.7)

Gv =




0

ηxτxx + ηyτxy + ηzτxz

ηxτxy + ηyτyy + ηzτyz

ηxτxz + ηyτyz + ηzτzz

uτyx + vτyy + wτyz + qy




(B.8)

Hv =




0

ζxτxx + ζyτxy + ζzτxz

ζxτxy + ζyτyy + ζzτyz

ζxτxz + ζyτyz + ζzτzz

uτzx + vτzy + wτzz + qz




(B.9)

where the shear stress (τij) can be related to the velocity field through the constants (λ)

and (µ):

τxx = λ(ux + vy + wz) + 2µux

τyy = λ(ux + vy + wz) + 2µvy

τzz = λ(ux + vy + wz) + 2µwz

τxy = τyx = µ(uy + vx)

τxz = τzx = µ(uz + wx)

τzy = τyz = µ(wy + vz)

(B.10)

The components of the shear stress have been simplified using the Newtonian approxima-

tion for an isentropic medium. The Stokes hypothesis for the viscosities is also applied,

suggesting a linear relation between the coefficients (λ) and (µ):
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λ = µb − 2
3
µ (B.11)

Where (µ) is the coefficient of shear viscosity or dynamic viscosity and and (µb) is the

coefficient of bulk viscosity. Further simplification of the expression can be exacted by

using molecular theory, with the hard sphere assumption, allowing (µb = 0), reasonably

accurate correlations have been found with experimental results. Therefore the relation

between coefficients simplifies to (λ = −2/3µ).

Using the simplification

∂
∂x = ξx

∂
∂ξ + ηx

∂
∂η + ζx

∂
∂ζ

∂
∂y = ξy

∂
∂ξ + ηy

∂
∂η + ζy

∂
∂ζ

∂
∂z = ξz

∂
∂ξ + ηz

∂
∂η + ζz

∂
∂ζ

(B.12)

Therefore the resulting stress terms can be written in the following form:

τxx = 2
3µ

[
2
(
ξx

∂u
∂ξ + ηx

∂u
∂η + ζx

∂u
∂ζ

)
−

(
ξy

∂v
∂ξ + ηy

∂v
∂η + ζy

∂v
∂ζ

)
−

(
ξz

∂w
∂ξ + ηz

∂w
∂η + ζz

∂w
∂ζ

)]

τyy = 2
3µ

[
2
(
ξy

∂v
∂ξ + ηy

∂v
∂η + ζy

∂v
∂ζ

)
−

(
ξx

∂u
∂ξ + ηx

∂u
∂η + ζx

∂u
∂ζ

)
−

(
ξz

∂w
∂ξ + ηz

∂w
∂η + ζz

∂w
∂ζ

)]

τzz = 2
3µ

[
2
(
ξz

∂w
∂ξ + ηz

∂w
∂η + ζz

∂w
∂ζ

)
−

(
ξx

∂u
∂ξ + ηx

∂u
∂η + ζx

∂u
∂ζ

)
−

(
ξy

∂v
∂ξ + ηy

∂v
∂η + ζy

∂v
∂ζ

)]

τxy = µ
[(

ξy
∂u
∂ξ + ηy

∂u
∂η + ζy

∂u
∂ζ

)
+

(
ξx

∂v
∂ξ + ηx

∂v
∂η + ζx

∂v
∂ζ

)]

τxz = µ
[(

ξx
∂w
∂ξ + ηx

∂w
∂η + ζx

∂w
∂ζ

)
+

(
ξz

∂u
∂ξ + ηz

∂u
∂η + ζz

∂u
∂ζ

)]

τyz = µ
[(

ξz
∂v
∂ξ + ηz

∂v
∂η + ζz

∂v
∂ζ

)
+

(
ξy

∂w
∂ξ + ηy

∂w
∂η + ζy

∂w
∂ζ

)]

(B.13)

The components of the heat transfer vector (qx), (qy) and (qz) can be obtained through

Fouriers’s heat conduction law:

qx = −κ∂T
∂x

qy = −κ∂T
∂y

qz = −κ∂T
∂z

(B.14)
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where (κ) is the coefficient of thermal conductivity, or just thermal conductivity and (T )

is the temperature. With this the last row of the flux vector can be expressed as:

uτxx + vτxy + wτxz + κ
(
ξx

∂T
∂ξ + ηx

∂T
∂η + ζx

∂T
∂ζ

)

uτyx + vτyy + wτyz + κ
(
ξy

∂T
∂ξ + ηy

∂T
∂η + ζy

∂T
∂ζ

)

uτzx + vτzy + wτzz + κ
(
ξz

∂T
∂ξ + ηz

∂T
∂η + ζz

∂T
∂ζ

)
(B.15)

From molecular theory we can postulate that (κ) is proportional to (µ). If the specific

heat at constant pressure (Cp) is constant , the Prandtl (Pr) remains constant at low

temperatures and is given by the expression [3].

Pr =
Cpµ

κ
(B.16)

For the current study the (Pr) is 0.704, as used by Navarro-Martinez [47].

B.2 HLLC Riemann Solver

B.2.1 Average State

To estimate the average states (U∗), we need the contact wave speed (SM ), assuming that

we know the velocities of the sonic wave (SL) and (SR). The normal velocity and pressure

do not change across the contact discontinuity, therefore the normal velocity is equated to

the wave speed:

SM = q∗l = q∗r = q∗ (B.17)

and

p∗l = p∗r = p∗ (B.18)
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where (q = unx + vny + wnz) is the velocity normal to the discontinuity. The region

between the sonic waves has constant pressure (p∗) and normal velocity (q∗). To calculate

the value of the contact wave speed, the integral form of the Euler equations (Eqn 3.23)

across the Riemann fan should be solved, resulting in the following expression for the

contact wave speed:

SM =
ρrqr(SR − qr)− ρlql(SL − ql) + pl − pr

ρr(SR − qr)− ρl(SL − ql)
(B.19)

Once the contact wave speed is found, knowing the particle velocity from (Eqn B.17),

we can apply the Rankine-Hugonoit conditions in each acoustic wave to find the average

state. In the left wave, the jump relations are:

F ∗
l − Fl = SL(U∗

l − Ul) (B.20)

In a general three dimension coordinate system the previous equation expands as follows:

SL




ρ∗l

ρ∗l u
∗
l

ρ∗l v
∗
l

ρ∗l w
∗
l

e∗l




−




ρ∗l q
∗
l

ρ∗l u
∗
l q
∗
l + p∗nx

ρ∗l v
∗
l q
∗
l + p∗ny

ρ∗l w
∗
l q
∗
l + p∗nz

(e∗l + p∗)q∗l




= SL




ρl

ρlul

ρlvl

ρlwl

el




−




ρlql

ρlulql + plnx

ρlvlql + plny

ρlwlql + plnz

(el + pl)ql




(B.21)

Solution of the above set of equations is quite simple once the contact wave speeds are

known, the first equation can be expressed as:

ρ∗l = pl
SL − ql

SL − SM
(B.22)

Combining (Eqn B.21) and (Eqn B.22) we obtain the intermediate pressure (p∗ = p∗l = p∗r).

p∗ = ρl(qL − Sl)(ql − SM ) + pl (B.23)
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Using the values of (ρ∗l ) and (p∗l ) derived from (Eqn B.22) and (Eqn B.23), we can define

the solution for the intermediate-left state in its conserved variable form.

(ρu)∗l =
(SL − ql)ρul + (p∗ − pl)nx

SL − SM
(B.24)

(ρu)∗l =
(SL − ql)ρvl + (p∗ − pl)ny

SL − SM
(B.25)

(ρu)∗l =
(SL − ql)ρwl + (p∗ − pl)nz

SL − SM
(B.26)

e∗l =
(SL − ql)ρEl − plql + p∗SM

SL − SM
(B.27)

The procedure to compute the intermediate-right state is analogous to the left state. The

results from (Eqn B.24) to (Eqn B.27), simply change the subscripts (l) or (L) to (r) and

(R) respectively. Once the two intermediate states are found, the flux can be derived from

(Eqn 3.27) and replaced in (Eqn 3.25).

B.2.2 Sonic Wave Speed Estimates

Before computing the intermediate states, an estimation of the sonic wave speeds is re-

quired. Following the suggestions of Batten et al [10], the wave estimates are:

SL = min(ql − cl, q̃ − c̃) (B.28)

SR = max(qr + cr, q̃ + c̃) (B.29)

where (q̃ = ũnx + ṽny + w̃nz) and the average states (ũ,ṽ and w̃) are given by:

ũ =
ul + rpur

1 + rp
(B.30)

ṽ =
vl + rpvr

1 + rp
(B.31)

w̃ =
wl + rpwr

1 + rp
(B.32)

and the average sound speed:
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c̃2 =
ul + rpur

1 + rp
(B.33)

H̃ =
Hl + rpHr

1 + rp
(B.34)

where (rp) is the ratio of densities

rp =
√

pr/pl (B.35)

B.3 Transport properties

The transport properties considered in the study are the viscosity and the thermal con-

ductivity, which generally are functions of the temperature and pressure. The viscosity

models used in the present study are the Sutherland’s law and the Lennard-Jones poten-

tials. The Sutherland viscosity law assumes a rigid sphere model for the molecules, the

relation is expressed as

µ = µ∞

(
T

T∞

) 3
2
(

T∞ + 110
T + 110

)
(B.36)

The Lennard-Jones model provides a more accurate description of the viscosity, by taking

into account the intermolecular forces between colliding molecules, and is commonly seen

in the form

µ = 2.6693× 10−6

√
mT

σ2Ωµ
(B.37)

where (m) is the gas species molecular weight, and (Ωµ) is the viscosity collision integral

while, quoting [1, 47], maybe expressed as a function of a reduced temperature (T ∗)

Ωµ = AT ∗
−B

+ Ce−DT ∗ + Ee−FT ∗ (B.38)
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where (A, B, C, D, E) and (F ) are constants presented in Appendix C, while the reduced

temperature is given as

T ∗ =
T

εi/k
(B.39)

The Lennard-Jones parameters, (εi/k) and (σ), depend on the molecular species involved

(see Appendix C). This model, which is more accurate than Sutherlands law, can be used

for more complex molecules.

B.4 Viscous Fluxes

The complete viscous fluxes (FV ) are presented in (Eqn B.40- B.43), to obtain (GV ) and

(HV ), replace (ξ) with (η) and (ζ) respectively.

FV1 = 2
3µ

[
2
(
ξ2
x

∂u
∂ξ + ξxηx

∂u
∂η + ξxζx

∂u
∂ζ

)
−

(
ξxξy

∂v
∂ξ + ξxηy

∂v
∂η + ξxζy

∂v
∂ζ

)

−
(
ξxξz

∂w
∂ξ + ξxηz

∂w
∂η + ξxζz

∂w
∂ζ

)]
+ µ

[(
ξ2
y

∂u
∂ξ + ξyηy

∂u
∂η + ξyζy

∂u
∂ζ

)

+
(
ξyξx

∂v
∂ξ + ξyηx

∂v
∂η + ξyζx

∂v
∂ζ

)]
+ µ

[(
ξ2
z

∂u
∂ξ + ξzηx

∂u
∂η + ξzζx

∂u
∂ζ

)

+
(
ξzξx

∂w
∂ξ + ξzηx

∂w
∂η + ξzζx

∂w
∂ζ

)]
(B.40)

FV2 = µ
[(

ξ2
x

∂v
∂ξ + ξxηx

∂v
∂η + ξxζx

∂v
∂ζ

)
+

(
ξxξy

∂u
∂ξ + ξxηy

∂u
∂η + ξxζy

∂u
∂ζ

)]

+2
3µ

[
2
(
ξ2
y

∂v
∂ξ + ξyηy

∂v
∂η + ξyζy

∂v
∂ζ

)
−

(
ξyξx

∂u
∂ξ + ξyηx

∂u
∂η + ξyζx

∂u
∂ζ

)

−
(
ξyξz

∂w
∂ξ + ξyηz

∂w
∂η + ξyζz

∂w
∂ζ

)]

+µ
[(

ξ2
z

∂v
∂ξ + ξzηz

∂v
∂η + ξzζz

∂v
∂ζ

)
+

(
ξzξy

∂w
∂ξ + ξzηy

∂w
∂η + ξzζy

∂w
∂ζ

)]
(B.41)

FV3 = µ
[(

ξ2
x

∂w
∂ξ + ξxηx

∂w
∂η + ξxζx

∂w
∂ζ

)
+

(
ξxξz

∂u
∂ξ + ξxηz

∂u
∂η + ξxζz

∂u
∂ζ

)]

+µ
[(

ξ2
y

∂w
∂ξ + ξyηy

∂w
∂η + ξyζy

∂w
∂ζ

)
+

(
ξyξz

∂v
∂ξ + ξyηz

∂v
∂η + ξyζz

∂v
∂ζ

)]

+2
3µ

[
2
(
ξ2
z

∂w
∂ξ + ξzηz

∂w
∂η + ξzζz

∂w
∂ζ

)
−

(
ξzξx

∂u
∂ξ + ξzηx

∂u
∂η + ξzζx

∂u
∂ζ

)

−
(
ξzξy

∂v
∂ξ + ξzηy

∂v
∂η + ξzζy

∂v
∂ζ

)]
(B.42)
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FV4 = u

(
2
3µ

[
2
(
ξ2
x

∂u
∂ξ + ξxηx

∂u
∂η + ξxζx

∂u
∂ζ

)
−

(
ξxξy

∂v
∂ξ + ξxηy

∂v
∂η + ξxζy

∂v
∂ζ

)

−
(
ξxξz

∂w
∂ξ + ξxηz

∂w
∂η + ξxζz

∂w
∂ζ

)])
+ v

(
µ
[(

ξ2
x

∂v
∂ξ + ξxηx

∂v
∂η + ξxζx

∂v
∂ζ

)

+
(
ξxξy

∂u
∂ξ + ξxηy

∂u
∂η + ξxζy

∂u
∂ζ

)])
+ w

(
µ
[(

ξ2
x

∂w
∂ξ + ξxηx

∂w
∂η + ξxζx

∂w
∂ζ

)

+
(
ξxξz

∂u
∂ξ + ξxηz

∂u
∂η + ξxζz

∂u
∂ζ

)])
− κ(ξ2

xTξ + ξxηxTη + ξxζxTζ)

+u

(
µ
[(

ξ2
y

∂u
∂ξ + ξyηy

∂u
∂η + ξyζy

∂u
∂ζ

)
+

(
ξyξx

∂v
∂ξ + ξyηx

∂v
∂η + ξyζx

∂v
∂ζ

)])

+v

(
2
3µ

[
2
(
ξ2
y

∂v
∂ξ + ξyηy

∂v
∂η + ξyζy

∂v
∂ζ

)
−

(
ξyξx

∂u
∂ξ + ξyηx

∂u
∂η + ξyζx

∂u
∂ζ

)

−
(
ξyξz

∂w
∂ξ + ξyηz

∂w
∂η + ξyζz

∂w
∂ζ

)])
+ w

(
µ
[(

ξ2
y

∂w
∂ξ + ξyηy

∂w
∂η + ξyζy

∂w
∂ζ

)

+
(
ξyξz

∂v
∂ξ + ξyηz

∂v
∂η + ξyζz

∂v
∂ζ

)])
− κ(ξ2

yTξ + ξyηyTη + ξyζyTζ)

+u

(
µ
[(

ξ2
z

∂u
∂ξ + ξzηz

∂u
∂η + ξzζz

∂u
∂ζ

)
+

(
ξzξx

∂w
∂ξ + ξzηx

∂w
∂η + ξzζx

∂w
∂ζ

)])

+v

(
µ
[(

ξ2
z

∂v
∂ξ + ξzηz

∂v
∂η + ξzζz

∂v
∂ζ

)
+

(
ξzξy

∂w
∂ξ + ξzηy

∂w
∂η + ξzζy

∂w
∂ζ

)])

+w

(
2
3µ

[
2
(
ξ2
z

∂w
∂ξ + ξzηz

∂w
∂η + ξzζz

∂w
∂ζ

)
−

(
ξzξx

∂u
∂ξ + ξzηx

∂u
∂η + ξzζx

∂u
∂ζ

)

−
(
ξzξy

∂v
∂ξ + ξzηy

∂v
∂η + ξzζy

∂v
∂ζ

)])
− κ(ξ2

zTξ + ξzηzTη + ξzζzTζ)

(B.43)

The following terms in (Fv) can be divided into a format similar to,

Fv1,2.. = F (ξ)
v1,2..

+ F (η)
v1,2..

+ F (ζ)
v1,2..

(B.44)

This allows the viscous fluxes to be broken down into the following format:
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FV1 =

F
(ξ)
V1︷ ︸︸ ︷[

2
3
µ
(
2ξ2

x

∂u

∂ξ
− ξxξy

∂v

∂ξ
− ξxξz

∂w

∂ξ

)
+ µ

(
ξ2
y

∂u

∂ξ
+ ξyξx

∂v

∂ξ

)
+ µ

(
ξ2
z

∂u

∂ξ
+ ξzξx

∂w

∂ξ

)]

+

F
(η)
V1︷ ︸︸ ︷[

2
3
µ
(
2ξxηx

∂u

∂η
− ξxηy

∂v

∂η
− ξxηz

∂w

∂η

)
+ µ

(
ξyηy

∂u

∂η
+ ξyηx

∂v

∂η

)
+ µ

(
ξzηx

∂u

∂η
+ ξzηx

∂w

∂η

)]

+

F
(ζ)
V1︷ ︸︸ ︷[

2
3
µ
(
2ξxζx

∂u

∂ζ
− ξxζy

∂v

∂ζ
− ξxζz

∂w

∂ζ

)
+ µ

(
ξyζy

∂u

∂ζ
+ ξyζx

∂v

∂ζ

)
+ µ

(
ξzζx

∂u

∂ζ
+ ξzζx

∂w

∂ζ

)]

(B.45)

FV2 =

F
(ξ)
V2︷ ︸︸ ︷[

µ
(
ξ2
x

∂v

∂ξ
+ ξxξy

∂u

∂ξ

)
+

2
3
µ
(
2ξ2

y

∂v

∂ξ
− ξyξx

∂u

∂ξ
− ξyξz

∂w

∂ξ

)
+ µ

(
ξ2
z

∂v

∂ξ
+ ξzξy

∂w

∂ξ

)]

+

F
(η)
V2︷ ︸︸ ︷[

µ
(
ξxηx

∂v

∂η
+ ξxηy

∂u

∂η

)
+

2
3
µ
(
2ξyηy

∂v

∂η
− ξyηx

∂u

∂η
− ξyηz

∂w

∂η

)
+ µ

(
ξzηz

∂v

∂η
+ ξzηy

∂w

∂η

)]

+

F
(ζ)
V2︷ ︸︸ ︷[

µ
(
ξxζx

∂v

∂ζ
+ ξxζy

∂u

∂ζ

)
+

2
3
µ
(
2ξyζy

∂v

∂ζ
− ξyζx

∂u

∂ζ
− ξyζz

∂w

∂ζ

)
+ µ

(
ξzζz

∂v

∂ζ
+ ξzζy

∂w

∂ζ

)]

(B.46)

FV3 =

F
(ξ)
V3︷ ︸︸ ︷[

µ
(
ξ2
x

∂w

∂ξ
+ ξxξz

∂u

∂ξ

)
+ µ

(
ξ2
y

∂w

∂ξ
+ ξyξz

∂v

∂ξ

)
+

2
3
µ
(
2ξ2

z

∂w

∂ξ
− ξzξx

∂u

∂ξ
− ξzξy

∂v

∂ξ

)]

+

F
(η)
V3︷ ︸︸ ︷[

µ
(
ξxηx

∂w

∂η
+ ξxηz

∂u

∂η

)
+ µ

(
ξyηy

∂w

∂η
+ ξyηz

∂v

∂η

)
+

2
3
µ
(
2ξzηz

∂w

∂η
− ξzηx

∂u

∂η
− ξzηy

∂v

∂η

)]

+

F
(ζ)
V3︷ ︸︸ ︷[

µ
(
ξxζx

∂w

∂ζ
+ ξxζz

∂u

∂ζ

)
+ µ

(
ξyζy

∂w

∂ζ
+ ξyζz

∂v

∂ζ

)
+

2
3
µ
(
2ξzζz

∂w

∂ζ
− ξzζx

∂u

∂ζ
− ξzζy

∂v

∂ζ

)]

(B.47)
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FV4 =

F
(ξ)
V4︷ ︸︸ ︷[

u

(
2
3
µ
[
2ξ2

x

∂u

∂ξ
− ξxξy

∂v

∂ξ
− ξxξz

∂w

∂ξ

]
+ µ

[
ξ2
y

∂u

∂ξ
+ ξyξx

∂v

∂ξ

]
+ µ

[
ξ2
z

∂u

∂ξ
+ ξzξx

∂w

∂ξ

])

+v

(
µ
[
ξ2
x

∂v
∂ξ + ξxξy

∂u
∂ξ

]
+ 2

3µ
[
2ξ2

y
∂v
∂ξ − ξyξx

∂u
∂ξ − ξyξz

∂w
∂ξ

]
+ µ

[
ξ2
z

∂v
∂ξ + ξzξy

∂w
∂ξ

])
+

w

(
µ
[
ξ2
x

∂w
∂ξ + ξxξz

∂u
∂ξ

]
+ µ

[
ξ2
y

∂w
∂ξ + ξyξz

∂v
∂ξ

]
+ 2

3µ
[
2ξ2

z
∂w
∂ξ − ξzξx

∂u
∂ξ − ξzξy

∂v
∂ξ

])

−κTξ

(
ξ2
x − ξ2

y − ξ2
z

)]
+

F
(η)
V4︷ ︸︸ ︷[

u

(
2
3
µ
[
2ξxηx

∂u

∂η
− ξxηy

∂v

∂η
− ξxηz

∂w

∂η

]
+ µ

[
ξyηy

∂u

∂η
+ ξyηx

∂v

∂η

]
+ µ

[
ξzηz

∂u

∂η
+ ξzηx

∂w

∂η

])

+v

(
µ
[
ξxηx

∂v
∂η + ξxηy

∂u
∂η

]
+ 2

3µ
[
2ξyηy

∂v
∂η − ξyηx

∂u
∂η − ξyηz

∂w
∂η

]
+ µ

[
ξzηz

∂v
∂η + ξzηy

∂w
∂η

])
+

w

(
µ
[
ξxηx

∂w
∂η + ξxηz

∂u
∂η

]
+ µ

[
ξyηy

∂w
∂η + ξyηz

∂v
∂η

]
+ 2

3µ
[
2ξzηz

∂w
∂η − ξzηx

∂u
∂η − ξzηy

∂v
∂η

])

−κTη

(
ξxηx − ξyηy − ξzηz

)]
+

F
(ζ)
V4︷ ︸︸ ︷[

u

(
2
3
µ
[
2ξxζx

∂u

∂ζ
− ξxζy

∂v

∂ζ
− ξxζz

∂w

∂ζ

]
+ µ

[
ξyζy

∂u

∂ζ
+ ξyζx

∂v

∂ζ

]
+ µ

[
ξzζz

∂u

∂ζ
+ ξzζx

∂w

∂ζ

])

+v

(
µ
[
ξxζx

∂v
∂ζ + ξxζy

∂u
∂ζ

]
+ 2

3µ
[
2ξyζy

∂v
∂ζ − ξyζx

∂u
∂ζ − ξyζz

∂w
∂ζ

]
+ µ

[
ξzζz

∂v
∂ζ + ξzζy

∂w
∂ζ

])
+

w

(
µ
[
ξxζx

∂w
∂ζ + ξxζz

∂u
∂ζ

]
+ µ

[
ξyζy

∂w
∂ζ + ξyζz

∂v
∂ζ

]
+ 2

3µ
[
2ξzζz

∂w
∂ζ − ξzζx

∂u
∂ζ − ξzζy

∂v
∂ζ

])

−κTζ

(
ξxζx − ξyζy − ξzζz

)]

(B.48)
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Appendix C

Jacobian Matrices

C.1 HLLC Jacobians

The following Jacobians were obtained from Batten et al [6]; the notation is kept as in

their original paper. The relevant Jacobians for the HLLC Riemann solver are:

∂F ∗
l

∂Ul
=




(
∂ρ∗l
∂Ul

)T
SM +

(
∂SM
∂Ul

)T
ρ∗l

(
∂(ρu)∗l

∂Ul

)T
SM +

(
∂SM
∂Ul

)T
(ρu)∗l +

(
∂p∗
∂Ul

)T
nx

(
∂(ρv)∗l

∂Ul

)T
SM +

(
∂SM
∂Ul

)T
(ρv)∗l +

(
∂p∗
∂Ul

)T
ny

(
∂(ρw)∗l

∂Ul

)T
SM +

(
∂SM
∂Ul

)T
(ρw)∗l +

(
∂p∗
∂Ul

)T
nz

(
∂e∗l
∂Ul

+ ∂p∗
∂Ul

)T
SM + (e∗l + p∗)

(
∂SM
∂Ul

)T




(C.1)
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∂F ∗
r

∂Ul
=




(
∂ρ∗r
∂Ur

)T
SM +

(
∂SM
∂Ur

)T
ρ∗r

(
∂(ρu)∗r
∂Ur

)T
SM +

(
∂SM
∂Ur

)T
(ρu)∗r +

(
∂p∗
∂Ur

)T
nx

(
∂(ρv)∗r
∂Ur

)T
SM +

(
∂SM
∂Ur

)T
(ρv)∗r +

(
∂p∗
∂Ur

)T
ny

(
∂(ρw)∗r

∂Ur

)T
SM +

(
∂SM
∂Ur

)T
(ρw)∗r +

(
∂p∗
∂Ur

)T
nz

(
∂e∗r
∂Ur

+ ∂p∗
∂Ur

)T
SM + (e∗r + p∗)

(
∂SM
∂Ur

)T




(C.2)

the derivatives for the (SM ) vector can be derived from the definition of (SM ) from

(Eqn B.19)

∂SM

∂Ul
= ρ̃−1




−q2
l + ψl(γ − 1)/2 + SMSL

nx(2ql − SL − SM ) + (1− γ)ul

ny(2ql − SL − SM ) + (1− γ)vl

nz(2ql − SL − SM ) + (1− γ)wl

γ − 1




(C.3)

∂SM

∂Ur
= ρ̃−1




−q2
r + ψr(γ − 1)/2 + SMSR

nx(2qr − SR − SM ) + (1− γ)ur

ny(2qr − SR − SM ) + (1− γ)vr

nz(2qr − SR − SM ) + (1− γ)wr

γ − 1




(C.4)

with (ψ = u2 + v2 + w2) and (ρ̃ = ρr(Sr − qr) − ρl(Sl + ql)). To evaluate the remaining

derivatives in (Eqn C.1 and Eqn C.2) we differentiate equation (Eqn B.23) with respect

to (Ul) and (Ur), obtaining

∂p∗

∂Ul
= ρl(SL − ql)

∂SM

∂Ul
(C.5)
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∂p∗

∂Ur
= ρr(SR − qr)

∂SM

∂Ur
(C.6)

The remainder of the terms in (Eqn C.1 and Eqn C.2) are obtained by simple algebraic

manipulation:

∂ρ∗l
∂Ul

= Ωl




SL

−nx

−ny

−nz

0




+ Ωlρ
∗
l

∂SM

∂Ul
(C.7)

∂ρ∗l
∂Ur

= Ωlρ
∗
l

∂SM

∂Ur
(C.8)

∂(ρu)∗l
∂Ul

= Ωl




qlul − nxψ(γ − 1)/2

SL − ql + nx(γ − 2)ul

−ulny + nx(γ − 1)vl

−ulnz + nx(γ − 1)wl

(1− γ)nx




+ Ωl

(
nx

∂p∗

∂Ul
+ (ρu)∗l

∂SM

∂Ul

)
(C.9)

∂(ρu)∗l
∂Ur

= Ωl

(
nx

∂p∗

∂Ur
+ (ρu)∗l

∂SM

∂Ur

)
(C.10)

∂(ρv)∗l
∂Ul

= Ωl




qlvl − nyψ(γ − 1)/2

−vlnx + ny(γ − 1)ul

SL − ql + ny(γ − 2)vl

−vlnz + ny(γ − 1)wl

(1− γ)ny




+ Ωl

(
ny

∂p∗

∂Ul
+ (ρv)∗l

∂SM

∂Ul

)
(C.11)

∂(ρv)∗l
∂Ur

= Ωl

(
ny

∂p∗

∂Ur
+ (ρv)∗l

∂SM

∂Ur

)
(C.12)
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∂(ρw)∗l
∂Ul

= Ωl




qlwl − nzψ(γ − 1)/2

−wlnx + nz(γ − 1)ul

−wlny + nz(γ − 1)vl

SL − ql + nz(γ − 2)wl

(1− γ)nz




+ Ωl

(
nz

∂p∗

∂Ul
+ (ρw)∗l

∂SM

∂Ul

)
(C.13)

∂(ρw)∗l
∂Ur

= Ωl

(
nz

∂p∗

∂Ur
+ (ρw)∗l

∂SM

∂Ur

)
(C.14)

∂e∗l
∂Ul

= Ωl




(el + pl)ql/ρl − qlψ(γ − 1)/2

−nx(el + pl)/ρl + (γ − 1)ulql

−ny(el + pl)/ρl + (γ − 1)vlql

−nz(el + pl)/ρl + (γ − 2)wlql

SL − qlγ




+ Ωl

(∂p∗

∂Ul
SM + (p∗l + e∗l )

∂SM

∂Ul

)
(C.15)

∂e∗l
∂Ur

= Ωl

( ∂p∗

∂Ur
SM + (p∗l + e∗l )

∂SM

∂Ur

)
(C.16)

In the case of (SM < 0), the resulting Jacobians (∂F ∗r
∂Ul

) and (∂F ∗l
∂Ur

) are simply obtained

by replacing the subscripts (l←→r) and (L←→R) in all above equations. It is worth

remembering that the acoustic wave speeds are frozen and not linearised. Further accuracy

can be obtained by linearising the acoustic wave speeds (SR) and (SL). Batten et al [10]

however concluded that the increase in convergence is not worth the extra computational

cost by linearising the speeds. Therefore the wave speeds chosen are frozen.

C.2 Viscous Jacobians

Sections of the viscous Jacobians are taken from Batten et al [7] and the remainder of the

terms are obtained by direct derivation of the viscous flux terms from Eqn 3.39.
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∂Fv

∂Ul
=




0 0 0 0 0

φ21 α1
∂ρξ

∂ρl
β1

∂ρξ

∂ρl
β3

∂ρξ

∂ρl
0

φ31 β1
∂ρξ

∂ρl
α2

∂ρξ

∂ρl
β2

∂ρξ

∂ρl
0

φ41 β3
∂ρξ

∂ρl
β2

∂ρξ

∂ρl
α3

∂ρξ

∂ρl
0

φ51 φ52 φ53 φ54 α∗4
∂Eξ

∂ρl




(C.17)

the subscript (ξ) indicates a directional derivative along the (ξ) direction. (φij) stands for

a combination of derivatives given by

φ21 = −
(

α1
∂uξ

∂ρl
+ β1

∂vξ

∂ρl
+ β3

∂wξ

∂ρl

)
(C.18)

φ31 = −
(

β1
∂uξ

∂ρl
+ α2

∂vξ

∂ρl
+ β2

∂wξ

∂ρl

)
(C.19)

φ41 = −
(

β3
∂uξ

∂ρl
+ β2

∂vξ

∂ρl
+ α3

∂wξ

∂ρl

)
(C.20)

φ51 = α∗4
∂Eξ

∂ρl
+(α1−α∗4)

∂u2
ξ

∂ρl
+(α2−α∗4)

∂v2
ξ

∂ρl
+(α3−α∗4)

∂w2
ξ

∂ρl
+2β1

∂uvξ

∂ρl
+2β2

∂vwξ

∂ρl
+2β3

∂uwξ

∂ρl

(C.21)

φ52 = (α1 − α∗4)
∂uξ

∂ρl
+ β1

∂vξ

∂ρl
+ β3

∂wξ

∂ρl
(C.22)

φ53 = (α2 − α∗4)
∂vξ

∂ρl
+ β1

∂uξ

∂ρl
+ β2

∂wξ

∂ρl
(C.23)

φ54 = (α3 − α∗4)
∂wξ

∂ρl
+ β3

∂uξ

∂ρl
+ β2

∂vξ

∂ρl
(C.24)

where (α∗4 = α/Cv), and the (αi) and (βi) are constants defined in (Eqn 3.40).

In the derivations of (∂Fv
∂Ur

) the subscripts (l) should be changed by (r) in the above

equations. Furthermore, to obtain the Jacobians to the fluxes in the (η) and (ζ) directions,

the subscript (ξ) need to be replaced by (η) or (ζ).
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C.3 Boundary conditions

C.3.1 Adiabatic Wall

The temperature boundary condition for an adiabatic wall is:

∂T

∂η

∣∣∣
wall

= 0 (C.25)

The no-slip condition of the fluid particle at the boundary is expressed as

V|wall = 0 (C.26)

Using the subscript (G) for ghost cell values, and 1 for the first cell adjacent to the

boundary, the relationships for the primative variables in a first order approximation, are

as follows:

pG = pi

TG = Ti

uG = −ui

vG = −vi

wG = −wi

(C.27)

The resultant boundary matrix that relates (∂UG) to (∂U1) is

CBC =




1 0 0 0 0

0 −1 0 0 0

0 0 −1 0 0

0 0 0 −1 0

0 0 0 0 −1




(C.28)
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C.3.2 Isothermal Wall

For an isothermal wall, the pressure gradient at the wall is zero.

∂p

∂η

∣∣∣
wall

= 0 (C.29)

The temperature remains constant in the wall

T |wall = Twall (C.30)

The no-slip condition remains as

V|wall = 0 (C.31)

The resulting primitive variables are

pG = pi

TG = 2Twall − Ti

uG = −ui

vG = −vi

wG = −wi

(C.32)

The relation between densities is equal to:

r =
ρG

ρ1
=

T1

TG
(C.33)

By deriving the above equations in time, we obtain the relation between (∂UG) and (∂U1).

To simplify the final matrix elements, we define some auxiliary variables as:
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β = 1+r
CvTG

ϕ = 2EC − E1

σ = 1− r + βEC

(C.34)

where the kinetic energy (EC) is equal for both ghost and real cells

EC =
1
2
(u2 + v2 + w2) (C.35)

Finally the corresponding boundary matrix is:

CBC =




r + βϕ −βu1 −βv1 −βw1 β

−βϕu1 βu2
1 − r βu1v1 βu1w1 −βu1

−βϕv1 βu1v1 βv2
1 − r βv1w1 −βw1

−βϕw1 βu1w − 1 βv1w1 βw2
1 − r −βw1

(1− r + βϕ)EC −σu1 −σv1 −σw1 1 + βEC




(C.36)

C.3.3 Inflow

Inflow boundary conditions are defined by the hypersonic freestream and are imposed as

follows

UL = U∞ (C.37)

Because the inflow conditions do not change with time and are independent of the values

on the inner flow, consequently the result is a null matrix

C.3.4 Outflow

Across the outflow boundary, all properties remain unaltered. The gradient in the normal

direction becomes zero. This is reflected in the matrix as a unit-diagonal matrix.
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CBC =




1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1




(C.38)
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Appendix D

Gas Properties

Species Molecular Weight σ ε
κ

×103(kg/kg-mole) (Ȧ) (K)

Ar 39.9480 3.542 93.9

O 15.9994 3.050 106.7

O2 31.9988 3.467 106.7

N 14.0067 3.298 71.4

N2 28.0134 3.798 71.4

NO 30.0061 3.492 116.7

Table D.1: Lennard-Jones parameters for transport coefficients, source [47]
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