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The three-dimensional numerical simulation of a Mach 6.7 perfect gas, with a unit
Reynolds number of 7.6 x 10m ™!, over several configurations of a blunt-fin attached to a

flat plate are carried out. The resulting interference flowfield is reported in this thesis.

The laminar Navier-Stokes code developed by Navarro-Martinez [47] has been modified
to solve any general three-dimensional problem, and the complete Navier-Stokes equations.
The numerical scheme is operator split, allowing independent numerical schemes to be used
on each of the individual contributions to the Navier-Stokes, which can be combined later
to advance the entire solution in time. The inviscid part uses a first order Godunov method
with a HLLC approximate Riemann solver; second order accuracy is achieved through the
MUSCL approach. The viscous contribution is modeled by a centered difference scheme.
An iterative matrix solver is used to advance the implicit solution in time. To handle large

three-dimensional grids, the code is implicit and run on a parallel computer cluster.

The three-dimensional results from the various blunt-fins simulated show a complex rich
three-dimensional structure, with several horseshoe vortices formed within the separated
flow. Extremely large heat transfer rates have been measured along the path of these
vortices on the plate surface, and on the leading edge of the unswept blunt-fin. In particular
cases heat transfer rates as high as (h/h,) =~ 60 were measured for the 5mm diameter fin.
The 5mm fin results show remarkable similarity to the experimental results obtained by
Schuricht [53]. The results obtained using a swept fin, and a fin of doubled fin diameter
also show good agreement with the trends observed by Schuricht and others for a laminar

interaction.
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Chapter 1

General Introduction

The work described in this thesis concern the numerical simulation of a hypersonic inter-
ference flowfield involving a blunt-fin on a flat plate. Particular emphasis is made of the

resultant heating distribution on the flat plate and blunt-fin.

The significance of hypersonic interference heating and its implications on hypersonic
vehicle design was demonstrated by the catastrophic failure of a pylon on the X-15
rocket /ramjet during the final stages of flight trials in the X-15 program. For this partic-
ular flight a dummy ramjet was attached to the lower fuselage surface by a pylon. During
hypersonic flight, a shock wave from the ramjet nacelle intersected the bow shock which
had developed on the pylon, and the resulting shock/shock interaction lead to a hole be-
ing burned in to the Inconel pylon skin surface (Inconel has a melting temperature of
2800 degrees Fahrenheit) causing it to fail. It was later discovered that the pylon-fuselage

interaction also caused local heating damage to the bottom surface of the X-15 [65].

The surface of a hypersonic vehicle is basically exposed to two heating sources, energy from
the propulsion system and aerodynamic heating, of which the latter is usually far more
significant. Modern hypersonic vehicles generally carry sensitive electronic equipment,
a valuable payload, and possibly human occupants. For example, a hypersonic vehicle
traveling above Mach 10 in the stratosphere will have an adiabatic wall temperature - the
temperature the vehicle surface will asymptote to in the absence of any heat loss - that

exceeds 3430 °C (assuming constant «). This is above the melting point of all metals
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(e.g. the melting point of Tungsten is 3411 °C ). Although it is unlikely that the surface
would actually reach this temperature (due to radiative heat losses to the surroundings),
it is quite clear that steps have to be taken to protect the contents of the vehicle and the

structure from such temperature levels which could result in material destruction.

On a modern hypersonic vehicle there exists many regions which are prone to interference
heating effects such as shock/boundary layer and shock/shock interactions which must be
accounted for in the design of a vehicle,(see Figure 1.1). The areas usually of most concern

are stagnation regions and areas of flow reattachment.

Shock/Shock Interaction

Shock/Boundary Layer Interaction

Figure 1.1: Tllustration of a reentry vehicle showing regions of interaction between shocks and

boundary layers [52]

Flow separation is of great importance for hypersonic flight: it causes adverse effects on
vehicle control and performance as well as contributions to thermal loading caused by
subsequent flow reattachment. The configurations of fin-body or wing-body junctions are
particularly prone to flow separation because of the interaction of the fin or wing bow
shock wave with the boundary layer on the surface of the body. As well as producing
high levels of heating, these interference effects can also significantly modify the pressure
profiles of a lifting surfaces and control surfaces, and may adversely affect their aerody-
namic performance, [43]. Following the experience from the X-15 program, designers of

hypersonic vehicles have treated regions prone to interference heating effects with a con-
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siderable amount of conservatism. Unlike stagnation regions, where the positions of the
localised peaks in heat transfer are almost intuitive, the “hot spots” caused by interfer-
ence flowfields are not as straightforward to identify or locate, [30]. This is largely due to
the fact that they are extremely localised and move around as the attitude of the vehicle

changes during flight.

Due to the complexity of the phenomena involved, elucidation of the mechanisms and
accurate estimation of the pressure and heating levels generated in interference flowfields
is extremely difficult, but necessary. The conservative approach taken by designers on
thermal protection has invariably resulted in over protection of hypersonic vehicles, lead-
ing to reduced payload capacity, reduced performance, and higher costs, [30]. This is
exemplified by the shuttle orbiter design where the thermal protection system accounts
for approximately 10% of the vehicle dry mass [53]. Alternatively, under design of the
thermal protection systems could lead to disastrous consequences, failure or inability of
the vehicle to adequately accomplish its mission. A tragic demonstration of this occurred
in February 2003, when the space shuttle Colombia exploded after a heat insulation tile on
the wing was blown away by debris. This resulted in the wing being exposed to the intense
atmospheric heating on the leading edge, which led to a catastrophic chain of events that

resulted in the loss of the shuttle and its crew 1.

Over the last thirty years many experimentalists and theoreticians have studied all manner
of interference flowfields and have now understood some of the basic flow phenomena and
have developed empirical and computational methods to estimate heat transfer rates,

predict flow structures, and pressure profiles.

These empirical methods can give reasonable approximate estimates for the locations and
magnitudes of peak heating and pressure levels on the surface or on a section of the flow
but, can not yield results for the full interaction region. On the other hand, a numerical
solution has the advantage in being able to provide the values of the various parameters in
space (more particularly at the grid points of the computational domain). This data can

then be transformed into images of the flowfield by applying post-processing techniques.

Computational Fluid Dynamics (CFD) codes over the years have become increasingly

L. The following reference is taken from the official NASA site on the world wide web: www.nasa.gov
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sophisticated, and the accuracy achieved by these CFD codes has brought about a new
dimension in the solution of these problems. Numerical simulations in hypersonic dynam-
ics, specially with CFD codes, are often cheaper than wind tunnel testing. The flexibility
of computers allows savings in experimental measurements and reduces the final cost of
design; furthermore, it is possible to simulate a more realistic environment. However,
these numerical techniques are only asymptotical approximations of reality and they can
have a lot of uncertainties and inaccuracies. Nevertheless, the computational methods

have progressively gained respect and increased in accuracy.

Figure 1.2: (top) Illustration of how CFD is used in the X-43 design - Pressure contours around
the vehicle structure at Mach 7 [46] (bottom) Illustration of an un-structured computational grid

built around a model of the X-33 [31]

Development of future hypersonic platforms like the terminated X-33 program and current

X-48 program have used extensive computational resources in their design and develop-
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ment [52] (see Figure 1.2). Considerable attention has been given to reconstruction of the
flow around and near control surfaces like flaps and wings, and fin-body junctions like
wing-fuselage or tail-fuselage areas on the vehicle. The flow around these junctures is very
complex and is illustrated well by the fact that current experimental data from wind tun-
nels and reentry measurements do not show great agreement with CFD results for these
cases. These discrepancies have been attributed to turbulence associated with the flow and
the three-dimensional effects which are not taken into account in most two-dimensional

simulated results [23].

The need to improve these simulation tools, whilst simultaneously reducing the computa-
tional cost has been challenging to designers and programmers alike. In order to alleviate
the costs associated with extensive use of computational resources, newer faster processors

are being developed and intensive parallel algorithms created.

The objective of this work is to accurately predict the interference heating effects around
a blunt-fin on a flat plate in a hypersonic flow, mainly along the regions of separation and
reattachments in the vicinity of the fin. Particular attention is paid to laminar boundary
layer interactions which, as will be discussed in Chapter 2, have been largely ignored in
past works. Laminar interactions generally produce more complex and extensive interfer-
ence flowfields compared to turbulent flows, and it also avoids the uncertainty associated
with the use of turbulence models which may not have been validated for hypersonic
conditions. However the heating levels associated with laminar interactions are generally
lower than those seen in fully turbulent interaction flowfields. The blunt-fin interaction is
an important case to study because fins are one of the primary methods of stability and
control for many atmospheric high speed vehicles and missiles. As mentioned previously,
the interference flowfield created by the fin bow shock-boundary layer interaction creates
regions of increased heat transfer close to the fin which must be allowed for in the thermal
protection system design. Local peaks in heating rate in the interaction region can be

orders of magnitude greater than the stagnation value [16] [56].

In the current work, the laminar-Navier-Stokes code developed by Navarro-Martinez [47]
has been modified and improved to solve the blunt-fin flowfield, which is highly three-

dimensional. The current code uses an implicit Godunov method with the HLLC Rie-
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mann solver as the basic inviscid method. Special features include higher order schemes
(MUSCL, minmod) to improve accuracy. The scheme was validated for a basic lami-
nar flat plate configuration and a three-dimensional cylinder case. The final improved
scheme is able to handle any generic three-dimensional problem. Coupled with a full
three-dimensional viscous solver, the method is applied to the three-dimensional analysis

of fin-plate situations.

This thesis has six Chapters. Following the introductory remarks made in this first Chap-
ter, an overview of the physics involved in hypersonic interference flowfields is presented
in Chapter 2 with reference to previous published work by other researchers. In Chapter
3 a detailed explanation of the methods used in the current numerical scheme is provided.
The results of the validation test cases are presented in Chapter 4. Chapter 5 contains
the results from the various blunt-fin/plate models simulated, with an extensive detailed
study of the unswept 5mm diameter blunt-fin. Chapter 6 contains the conclusion of this
work along with a number of suggestions for future work and improvements that could be
made to the current numerical algorithm. The Appendices contain extra detail about the

numerical scheme and supplementary results to complement Chapter 5.



Chapter 2

Literature Review

There are many disciplines involved in studying the physics of hypersonic flow, which
basically deals with a compressible fluid flow at high speed, high temperature and in
some specific circumstances low density. From an engineering point of view however the
definition of the hypersonic regime arises from the differences of design criteria between
a supersonic aircraft and a hypersonic vehicle. Although the flow phenomena are similar,
there are large differences of behaviour which are strongly dependent on the speed leading

to difficulties in the design of hypersonic compared to supersonic vehicles.

Due to the wide scope of this subject area, it is not possible here to detail all the physical
aspects relating to hypersonic flow conditions. For example we will not discuss ionisation
problems, chemical reactions of gases or low density situations common to many hypersonic
flows since these do not form part of the investigation in this present work. However, it
is important to discuss some basic detail about the flow regime primarily because these

definitions will be used later when analyzing the related numerical results.

The initial part of this Chapter will give a general overview of the physical phenomena
affecting hypersonic flows. Then some consideration is given to the mechanisms which lead
to heating enhancements on hypersonic vehicles like viscous interaction, shock/boundary
layer and shock/shock interactions. This then leads to a review of the current knowledge
on blunt-fin interactions with emphasis on previous computational work in the field and

some discussion on the scope of the present study.
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2.1 Fundamentals of Hypersonic Flow

As a basic definition it is generally accepted that the hypersonic region of flight begins at
Mach numbers greater than about 5. The free stream Mach number is defined as the ratio

between the stream velocity (Us) and the sound speed in this medium (coo).

My = Ve (2.1)

Coo
This is not a definitive physical limit, Mach numbers as low as 3 and as high 10 can be also
considered as the limit of supersonic-hypersonic transition. Rather, it is better to say that
the hypersonic regime is where certain physical phenomena become progressively more
important as the Mach number is increased [2]. These hypersonic effects include strong
shock waves, thin shock layers, entropy layers, viscous interactions, high temperature

phenomena and low density conditions. All these phenomena are intimately coupled and

reinforce each other, increasing the difficulty in analyzing hypersonic flows.

The region between the bow shock wave and the body is called the shock layer. It can
be shown analytically that, as the Mach number increases, the angle between the shock
wave and the body becomes smaller [3]. If high-temperature, chemically reacting effects
are included, the shock wave angle will be even smaller [3]. It is a basic characteristic
of hypersonic flows that shock waves lie close to the body, and that the shock layer is
thin. In turn, this can create some physical complications, such as the merging of the
shock wave itself with a thick, viscous boundary layer growing from the body surface - a
problem which becomes important at low Reynolds numbers. However, at high Reynolds
numbers, where the shock layer is essentially inviscid, its thinness can be used can be used
to theoretical advantage, leading to a general analytical approach called ”thin shock layer
theory” (see [2]). Highly curved shock waves, like those around the nose of blunt bodies,
generate entropy gradients resulting in an entropy layer with strong vorticity associated.
The boundary layer lies inside this entropy layer and is strongly affected by it, modifying

the conditions of analysis. This effect is known more commonly as vorticity interaction.

As previously stated a large amount of kinetic energy is dissipated either by shock waves
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or through viscous effects (which is discussed later), causing an increase in the stream flow
temperature. This dissipation process can produce very high thermal energies, reaching
even above molecule dissociation energy levels. At the same time at high enough tempera-
tures, a chemically reacting layer is developed within the boundary layer. For example, in
the Apollo mission since the vehicle re-enters the earth’s atmosphere at Mach numbers in
excess of thirty, the temperatures in the shock layer exceeded 6600K and gas temperatures
behind the leading bow shock reached 11000K [18]. The vehicle’s surface was exposed to
radiative and convective heating. At such temperatures the air ionises and the flow be-
haves like a partially ionised plasma. Furthermore, at this temperature radiation effects
become important, increasing the thermal load on the hypersonic vehicle. The radiative
heating becomes more severe for some planetary entries due to even higher velocities and
can be the major contribution to the total heat transfer. An example is the Galileo mission
to Jupiter, in which the radiative contribution to the probes heating was larger than the
convective contribution [18]. However, for most Earth re-entry situations, the convective

contribution is normally greater than the radiative as illustrated in Figure 2.1.

105-
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o
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Figure 2.1: Convective vs Radiative heating [23]

The high temperature reached in hypersonic regimes modifies the behaviour of the flow,

altering the gas model initially considered. The ideal gas assumptions no longer holds

and more realistic models need to be introduced. Also all the transport properties vis-
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cosity, conductivity etc. are strongly affected by the temperature, differing from ambient
conditions. Simulating these high temperature conditions in ground based wind tunnel
facilities, whilst also matching the Mach number and Reynolds number is practically im-
possible, and is another reason why CFD has been increasingly used as a design tool for

the development of hypersonic vehicles in recent years.

In the upper layers of the atmosphere, the air is rarefied. Under these conditions the air
is no longer a continuum fluid and it behaves under a free molecular regime described by
the kinetic theory. The transition from the usual continuum level to the free molecular
regime is controlled by the Knudsen number, (Kn), which is the ratio between the mean

free path of the gas (A) and a characteristic length associated with the body (L).

Kn = (2.2)

A
L
The Knudsen number indicates the regime of application of the different flow equations.
For low (K'n < 1), the continuum hypothesis holds and the fluid mechanics equations (Eu-
ler or Navier-Stokes) may be applied. When (Kn) becomes large (Kn > 1) the Boltzmann
equations come into play, and in the limit (Kn — oo), the collisionless Boltzmann equa-
tions are applicable. At this point, the flow is so rarefied, with very few non-interacting

molecules, that it can for all intents and purposes be described as that seen in outer space.

2.2 Viscous Effects in Hypersonic Flow

The designers of vehicles that are to fly at hypersonic speeds have long recognized that the
locally severe heating rates produced by viscous interactions and by shock/shock interac-
tions can cause catastrophic failures, as noted in the example X-15 in Chapter 1. The
interaction between a shock wave and a boundary layer is a problem of many practical
hypersonic flows. As an example Figure 1.1 shows regions on a reentry vehicle that are

typical for problems of shock boundary layer interactions and shock/shock interactions.

Consider a flat plate exposed to a hypersonic freestream, near the leading edge, the bound-

ary layer grows rapidly where the region outside the boundary layer is assumed to be

10
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inviscid and the viscous effects are confined to the boundary layer. The presence of the
boundary layer causes the hypersonic flow to decelerate creating a shock wave on the

leading edge (see Figure 2.2).

Figure 2.2: schlieren image of a hypersonic flow over a flat plate [27]

For a hypersonic freestream Mach number of (M), the compressible laminar boundary

layer thickness, (9), increases over a flat surface approximately as [3],

MZ,
x TRe. (2.3)

8>

where the Reynolds number at distance z is defined as,

Re, = Pocloc (2.4)

oo
where (poo), (Uso) and (f100) are the density, velocity and viscosity respectively of the free
stream flow. The Reynolds number is a well known parameter characterizing the ratio
of the viscous forces in the gas to the inertial forces. In hypersonic applications, unit
Reynolds number (Re/l) ranges from extremely low values on entry to the outer regions
of the atmosphere up to ~ 10%/m for low altitude hypervelocity missiles. This range

of Reynolds number encompass the full range of boundary layer flows from full laminar,

through transitional, to fully turbulent.

Another useful parameter used when discussing hypersonic flows is the Prandtl number,

(Pr).

11
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Pr= Cott (2.5)

K
where (C)) is the specific heat at constant pressure and (x) is thermal conductivity. The
Prandtl number is commonly described as being the ratio of momentum diffusivity (kine-
matic viscosity) to thermal diffusivity. It can be related to the thickness of the thermal
and velocity boundary layers, where it is actually the ratio of the velocity boundary layer
to thermal boundary layer. In cases where (Pr > 1) the thermal boundary layer is thinner

than the velocity boundary layer and vice versa for (Pr < 1). When (Pr) is small it means

that heat diffuses very quickly compared to velocity (momentum).

From examining Eqn 2.3 it is clear that boundary layers under hypersonic flows are rel-
atively thick compared to supersonic or subsonic cases due to the Mach number square
dependence. The reason for this is that high velocity hypersonic flows lose a considerable
amount of kinetic energy when slowed down due viscous effects in the boundary layer. A
significant amount of the kinetic energy of the flow is converted to internal thermal energy
via viscous dissipation. As a result this increases the local temperature but, because the
pressure in the normal direction is constant across the boundary layer, the density falls.
Consequently, in order to pass the required mass flow through the boundary layer at re-
duced density, the boundary layer enlarges. Due to this rapid boundary layer growth the
inviscid flow is strongly affected, increasing the interaction between them and modifying
the aerothermodynamics loads. This phenomena is known as viscous interaction and is

discussed later in this section.

Looking at Figure 2.2 again, the shock wave compresses the flow throughout the surface
of the plate and affects the fluid variables in the inviscid region of the flow. The increase
in pressure past the shock immediately in-front of the flat plate leading edge changes the
profile of the compressible boundary layer near the shock wave leading edge, reducing its
thickness and increasing the local heat transfer and the skin friction. Within the boundary

layer the local surface shear stress - skin friction - (7,,) can be defined as,
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where (u) is the tangential flow velocity and (¢) is a direction perpendicular to the surface.

The rate of heat transfer per unit area - heat flux - () is given by:

oT
quw = o (2.7)

¢=0

The surface shear stress and heat flux are commonly presented using non-dimensional

coefficients, the skin friction coefficient (Cy) and the Stanton number (St) given by:

-
Cp=+—""r (2.8)
/ %pooUgo

and

Guw
St = 2.9
CPPOOUOO(TT —Tw) (2:9)
here (7,) and (T},) are the recovery and surface temperatures respectively. The recovery
temperature (7)) is a function of the conditions at the boundary layer edge and on the

boundary layer state.

To predict the surface shear stress and heat flux in high speed flows Eckert [19] proposed an
empirical approach called the "reference temperature method”, which is widely accepted
for its simplicity and general good agreement with the boundary layer theory. This ap-
proximation is based on correcting the results for classical incompressible boundary layer

by incorporating compressibility effects defined at a reference temperature (7%) given by:

1
T = §(TOO +Ty) +0.22(T, + Two) (2.10)

where (T,) is the temperature at the outer edge of the boundary layer, (T,,) and (7))
were defined earlier as the wall temperature and recovery temperature respectively. (7;.)

is given by:

T. =T, € 2.11
A e+20p (2.11)

13
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The recovery temperature is identical to the adiabatic wall temperature. For a laminar

boundary layer the recovery factor, (), is taken as,

r=Pr (2.12)

Eckert assumed the same functional dependence on the skin friction coefficient (C) and
the Stanton number (St) number with the Reynolds and Prandtl numbers as for incom-
pressible boundary layer theory. The Stanton number and skin friction coefficient are now

evaluated as,

. 4 kg k
cp = 2004 [P (2.13)

\/ Re; Poo oo

and

St = 0.5C; Pr*=2/3 (2.14)

Variables with the asterisk indicates quantities evaluated at the reference temperature, (p*)
can be obtained through the equation of state assuming that the pressure remains constant
across the boundary layer. The Eckert relationship for Stanton number in Eqn 2.14 will
be used throughout this work to compare with our numerical approximation for hyper-
sonic flows over a flat plate. The heat transfer may then be obtained from Eqn 2.9, where
(Cp) is obtained from a polynomial fit or perfect gas assumptions. The reference temper-
ature method agrees well with solutions obtained from the integration of the compressible

boundary layer equations, especially in the flat plate case.

The boundary layer analysis carried out by Eckert [19] to predict the skin friction and
heat flux did not take viscous interaction into account. It is therefore not expected to
provide reliable estimates in the region of strong interactions which occur near the leading
edge as highlighted by Figure 2.2. Further downstream of the leading edge, the growth of
the boundary layer is smaller and as a result has a diminished effect on the inviscid outer
flow. In these areas, as highlighted earlier Eckert’s comparison for heat transfer and skin

friction should agree with compressible boundary layer theory [25].

14



2.2 Viscous Effects in Hypersonic Flow S.J.VITHANA

2.2.1 Interaction parameters

When regarding the flat plate at hypersonic Mach numbers as depicted in Figure 2.2, it is

noticed that the pressure over the plate is significantly influenced by the rapid boundary

layer development over the plate (the boundary layer thickness develops according to

Eqn 2.3). Due to the boundary layer growth the leading edge shock is curved near the

plate which considerably influences the flow properties on the plate. This can be described

by applying the tangent-wedge formula to an effective body described by the local slope of
do*

the displacement thickness <%> Results and derivation of the viscous interaction theory

are summarized in [2]. The viscous interaction can be divided into two cases: a strong

* * 2
interaction where (%) is large so <K2 = (Moo dd‘sx ) >1 ) and a weak interaction where

* * 2
(%) is moderate so <K2 = (MOO%> <1 ) In both interactions the equation for
the pressure depends solely on one governing similarity parameter which controls laminar
viscous interaction. This parameter is called the viscous-interaction parameter, (), which

in a characteristic length is defined by:

| C
v = M3 w 2.1

where (Re/x) is the Reynolds number based on a specified reference length (L,.f), and

(Cy) is the Chapman-Rubesin constant. As before, subscripts (co) and (w) refer to
freestream and wall conditions respectively, where the Chapman-Rubesin constant is given

by [26].

c, = Lutw (2.16)

Poofboo
It is obvious that the viscous interaction grows very rapidly with the cube of the Mach
number. For large values of (), there is a strong interaction between the viscous and
inviscid flow, while for small values of () the interaction is called weak, and the inviscid
flow is practically unaltered. Following equations Eqn 2.4 and Eqn 2.15 () decays as
(z~1/2), giving a strong interaction near the edge and a weaker one when (z) increases

along the flat plate. A practical limit of (xy & 3) is considered to distinguish between
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strong and weak interactions. The transition from a domain of strong interaction to a

region of low interaction can be seen schematically in Figure 2.3.

Y
A M >>1

‘,: leading edge shock-wave

boundary layer

v
X

region of STRONG | region of WEAK
interaction { interaction

Figure 2.3: Illustration of viscous interaction of a hypersonic flow over a flat plate [47]

induced pressure

surface pressure

Figure 2.4: Schematic diagram of distribution of the surface pressure of a hypersonic flow over

the flat plate

The effect of the viscous interaction can be seen in the distribution of the pressure displayed
in Figure 2.4. In the strong interaction region, the induced pressure follows a linear

function of () [2].

P _1tax (2.17)

P

while, in the weak interaction region the pressure variation becomes quadratic.
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Lyt by (2.18)

Poo

with (a1), (b1) and (by) constants which depend on the gas properties [2].

The reference temperature method can be corrected taking into account the pressure
difference along the flat plate [2]. The pressure corrected Stanton number (St) and skin

friction coefficient (C'y) were given earlier in Eqn 2.13 and Eqn 2.14.

2.3 Shock/Boundary Layer Interaction

As described earlier, shock/boundary layer interactions are unavoidable on hypersonic
vehicles, due to the necessity of using control mechanisms such as flaps, fins and jets. Ini-
tially, for the basic purpose of identifying the mechanisms involved in a shock/boundary
layer interactions, a two-dimensional shock/boundary interaction is described, as this con-
tains many of the features found in the more complex three-dimensional interactions. The
qualitative physical aspects of a general two-dimensional shock wave/boundary layer in-

teraction are shown in Figure 2.5.

incident

shock-wave

rettachment
shock-wave

Mg >>1

s

boundary layer
boundary layer thickness

reattachment
point

locally separated flow

I—> X separation point

Figure 2.5: A two-dimensional swept shock/boundary layer interaction [53]

In the configuration illustrated an incident shock wave impinges on a flat plate boundary
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layer downstream of the leading edge. The large pressure rise associated with the shock
imposes a severe adverse pressure gradient, and this causes the boundary layer to separate.
As the subsonic portion of the boundary layer allows the higher pressure in the post
shock region to feed upstream, the separation point is located ahead of the incident shock
impingement point. Separation of the boundary layer compresses the freestream flow above
it, creating an induced separation shock. Subsequently the separated boundary layer turns
back towards the flat plate and reattaches, creating an enclosed region of locally separated
flow. Expansion waves are generated between separation and reattachment points as the
flow turns back towards the surface compression waves are generated and further away
from the flat plate surface these merge to form the reflected shock wave predicted by

inviscid theory. The latter is known as the reattachment shock.

At the reattachment point a local thinning of the boundary layer and high pressure result
in a region of high local heat transfer. The incoming boundary layer state affects the
extent and severity of the interaction region. Laminar boundary layers separate more
readily than their turbulent counterparts, due to the less full velocity profile. Thus, for a
given shock strength a laminar shock/boundary layer interaction will be larger in extent

than a turbulent interaction.

In laminar interactions, thickening of the boundary layer due to the adverse pressure gra-
dient creates a reduction in heat transfer around the separation point, due to the reduction
in convective currents. This heat transfer reduction reaches a marked minimum before
rising to a peak associated with the reattachment. In contrast, for an oncoming turbulent
boundary layer the heat transfer rises at separation and reaches a plateau through the
separation region, rising again near the rear of the separation region to a peak associated
with the reattachment. This rise at separation is therefore opposite to that exhibited by
the laminar case. Stollery [56] suggested that the effect may be due to the large increase
in turbulent intensity occurring in the vicinity of the separation point. The large eddies
which then form can promote energy exchanges between the wall region and the outer

high enthalpy flow, thus leading to an increase in heat transfer to the surface.

It should be noted that even if the oncoming boundary layer is laminar the impingement of

an incident shock is sometimes usually enough to trip the boundary layer into transition,
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and therefore, after laminar separation, heat transfer levels may be higher than expected

at the reattachment point, due to the reattachment of a turbulent boundary layer.

2.3.1 Three-Dimensional Separation

Three-dimensional separation is radically different from two-dimensional separation which
was described earlier. In two-dimensional flows separation is identified by a region of
backflow, and at the wall by a zero shear stress solution. This difference is illustrated in
Figure 2.6: in two-dimensional separation the separation point and reattachment point are
connected by a (u = 0) velocity line and a dividing streamline. The region is closed and
the streamlines inside are closed. In a three-dimensional separation, the separation and
reattachment points cannot be connected by a streamline to form a closed vortex [13].
The concepts of separation and reattachment points, recirculation regions or dividing

streamlines as mentioned above need careful redefinition.

(a) (b)
dividing streamline
an I
Ny
b S)
o
/g » vd g N 74
. 1 2
1 primary secondary =
separation separation

Figure 2.6: (a) A flow which exhibits two-dimensional separation (b) A flow with three-

dimensional separation [45]

To identify three-dimensional separated regions, one focuses on the shear stress at the
wall, which is a vector field in three-dimensional flows. The trajectories of this field are
the skin friction lines, sometimes called limiting streamlines because they are the limit
of a streamline when the distance to the wall becomes zero. The set of the skin friction

lines covering a body constitutes a skin friction line pattern, and separation is defined from
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examination of this pattern. However, the sole inspection of the skin friction line pattern is
far from being sufficient to define and describe three-dimensional separation. Considering
orthogonal coordinates in the two-dimensional space (z, z) of the body surface, we denote
(72(z,2) ) and ( 7:(x,2) ) the components of the skin friction vector (7) along () and
(z) respectively. The skin friction lines are defined by the following (time independent)

differential equation:

da dz
To(2,2)  Ta(w,2) (2.19)

These equations define an infinity of solution curves called characteristic lines or trajecto-
ries that are associated with the skin friction lines introduced above. In general, one and
only one trajectory passes through a point on the surface. The only points that do not
satisfy this rule are the singular points of the system where the skin friction vanishes, that

is, where we simultaneously have

Tu(2,2) = T2(2,2) =0 (2.20)

Around such singularities, the shape of the skin friction lines are evaluated through a first

order Taylor series expansion, written in tensorial form as

T=Ax (2.21)

where (7 = (72,7:) ) and (2 = (z,2) ), (A) is the Jacobian of the above transformation.
Depending on the values of (A) it is possible to classify the different types of singular
points. One method of classification is according to the eigenvalues of the Jacobian, where
real eigenvalues produces (nodes) if (|A| > O), saddles if (|.A| < 0) or a combination

of both if <\A\ = 0). The most common singular points are presented in Figure 2.7.

Singular points may be classified as two types: nodes and saddle points (see Fig-
ure 2.7:(a) and 2.7:(b)). When the skin friction lines converge to, or diverge from a

point, the point is called node - nodal point of separation or attachment - respectively
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separator

(a) Attachment node i
(b) Saddle point (€) Focus

(d) Nodal Point of (e) Nodal Point of
Attachment Separation

Figure 2.7: Most typical patterns near critical points [13] (a) Attachment node (b) Separation
saddle (c) focus (d) Nodal point of attachment (e) Nodal point of separation

(see Figure 2.7:(e) and 2.7:(d)). Nodal points can have one line to which all skin friction
lines are tangent to, or none. In the latter case the node is called focus - of separation
or attachment (see Figure 2.7:(c)). Nodal points of separation and attachment can be
viewed as sinks and sources of skin friction, respectively. Nodal points of attachment are

typically stagnation points on a forward facing surface (like a blunt nose).

There are cases where the skin friction lines deviate from a point as from a stagnation
point. There are only two lines (normal to each other) through the point, which is called
saddle. Skin friction lines diverging from nodal points cannot cross, due to the presence

of a saddle point between them. One of the lines through the saddle is a separation line.

Nodal points of separation and attachment have other interesting features: they become
edges of vortex cores. In some cases there is also a distinction between primary and sec-
ondary lines of separation. Devices most commonly used for the study of three-dimensional
separation include prolate spheroids, blunt and pointed cones at incidence, where non-
axisymmetric vortex formation appear (all axisymmetric bodies at incidence are very

prone to flow separation with consequent instability).
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The existence of these critical points in the surface indicates the presence and types of
separation. A flow is separated if the skin friction lines configuration contain at least one
saddle point [58]. Accordingly, a separation line would form a separation surface which
usually rolls up in a vortical structure, as demonstrated in Figure 2.8. A combination of
saddle and nodes in the surface would give rise to the different types of separation, like

the bubble of the horseshoe vortex type (1 saddle and 1 node).

boundary layer at
separated "reattachment"

region

external
streamline

separation surface

boundary layer

trailing vortex

separation line

\ surface

z streamlines
N

Y

Figure 2.8: Horseshoe or bubble separation. S marks the saddle point at separation and N denotes

the node point at reattachment [47]

A topological rule has been developed for streamlines on a vertical plane cutting a surface

that extends to infinity both upstream and downstream [58].

(ZN + %ZM) - (ZS + %Zs’) =0 (2.22)

The singular points in this rule are defined as half-nodes (N'), half-saddles ('), saddles
(S), and nodes (V). This rule has been used to describe the upstream plane of symmetry

for an obstacle mounted on a wall [58].
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2.4 Shock/Shock Interaction

Edney [20] in 1968 presented one of the most comprehensive studies of shock/shock in-
terference effects, concentrating on the mechanisms by which these interactions arise, and
how they generate severe heating and pressure levels on nearby aerodynamic surfaces. His
study involved measurement of the heating and pressure levels on a hemisphere/cylinder
model injected into Mach 4.6 - 7 flow. An impinging shock from a wedge was traversed
across the bow shock from the hemisphere, encompassing the full geometric range of
shock/shock interactions possible. A sketch illustrating the approximate relation between
the location where the impinging shock wave intersects the bow shock on the hemisphere

and the shock/shock interference patterns is reproduced in Figure 2.9:(left).

Type VI: bow
expansion wave shock-wave bow shock

impingement ~
sonic point \

Type V: shock
impingement

flow separation
Type IV:

supersoni jet
Moo impingement

Ae IIl: shear _~
/ layer attachment

impinging
shock-wave Type IIl: shock
impingement

large vortex supersonic jet

(M>1)

wedge shock
sonic point shear layer

Type I: shock/

impingement bow shock

Figure 2.9: (left) Approximate relation of the shock/shock geometry and the type of interference
pattern [20] (right) Supersonic jet and vortex pattern from a Type IV interference [28]

Edney observed that there were 6 different types of shock/shock interference of varying
degrees of severity and complexity. The interference heating types were categorised as
types I to VI. He explained that the enhanced heating and pressure levels were produced
by shock/boundary layer interactions for types I, II, IV and V, stability and attachment
of free shear layers for type I11, impingement of a supersonic jet for types IV and V.
Edney discussed the practical implications of his work mentioning that blunt fins attached

to a fuselage would experience one of three types of interference, IV, V, or VI depending
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on their degree of sweep as shown in Figure 2.9:(left). At zero or small angles of sweep,
type IV will prevail, at around 30° sweep, type V will take over and further sweep will

yield type VI interference.

Edney predicted that the most severe levels of heating and pressure would be produced
by a type I'V interaction. This interaction arises when an oblique shock is incident close
to the normal region of the bow shock, as illustrated in Figure 2.9:(right). In high
Reynolds number flows, shock/shock interaction produces an essentially inviscid slipstream
- which Edney termed a ”jet” - in which the supersonic flow is efficiently compressed by
a series of compression and expansion waves. This jet, which is bounded by shear layers,
is terminated by a normal shock just ahead of the surface to produce a narrow stagnation
region. The path of the jet is such as to maintain the same pressure either side in the
subsonic regime and the jet can curl upwards, downwards or even divide before it impinges

on the body.

The region of flow surrounding the embedded supersonic jet is largely subsonic and the flow
is unsteady and highly rotational, and results in the formation of several small vortices, as
indicated in Figure 2.9:(right). The efficient compression process produces high localised
pressures, and very large velocity gradients in the small stagnation region that can cause
large heating rates relative to the heating generated by undisturbed flow. These surface
thermal and pressure stresses for a laminar flow can be 30 times greater than stagnation
conditions [28]. Edney also observed that for the type IV interaction, the peak pressure,
heat transfer rates and pressure distributions are sensitive to upstream thermodynamic
flow conditions, shock strength, and Mach number. It was also observed that the heating
rates derived from the type IV interaction vary widely depending on whether the flow
is laminar, transitional or turbulent as well as whether the gas is considered perfect or

real [64].
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2.5 Fin Interference Flow fields

Fin/plate interference flow fields, which are simplified examples of fin-fuselage interference
configurations - particularly because they avoid additional three-dimensional effects that
would otherwise be present on curved surfaces, such as a fin-fuselage configuration - are
of great practical importance in the design and operation of hypersonic vehicles. Due to
the complex nature of three-dimensional interference flowfields, experimentalists and CFD
code developers alike initially confined their studies to simpler two-dimensional interference
flows, such as ramp type flows. Numerous studies of various two-dimensional interaction
flow fields [8] were made, and these flows became reasonably well understood; researchers
then directed their attention to three dimensional flows where research has continued from
the early 1960’s right up until the present day. Excellent review papers on experimental

results have been presented by [30, 43] on the different types of fin interference flow fields.

Broadly, there exists two types of fin/plate interaction: the sharp-fin interaction and the
blunt-fin interaction, the latter being the configuration investigated in this study. The
complexities in both these flow fields arise when the fin shockwave interacts with the on-
coming boundary layer growing on the plate. This interaction generates shock/boundary
layer and shock/shock interaction effects. For most fin/plate interactions, flat plate heat-
ing rates well in excess of undisturbed values have been measured in the region of flow
reattachment lines by many researchers. The characteristics of these interactions depend
on numerous geometric and flow parameters such as: Mach number, Reynolds number,
state of the undisturbed boundary layer on the plate, local boundary layer thickness, pro-
tuberance height, fin leading edge diameter (for blunt-fin interactions only), fin incidence,
and fin sweep. An excellent review encompassing all aspects of blunt-fin type interactions

can be found in [56, 37, 14, 17, 16, 54, 15].

It is noted that in certain regions of the interference zone the flowfield for a blunt-fin
resembles that of a sharp-fin, as a result a brief description of this type of interaction is

given.
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2.5.1 Sharp-fin Interaction

The simplest example of a swept shock/laminar boundary layer interaction, also commonly
classified as ” corner configurations”, consists of a sharp-fin attached normally to a flat plate
at a certain distance behind its leading edge. The oblique swept shock generated by the
sharp-fin is attached at the fin leading edge as shown in Figure 2.10.

wedge

oblique
shock-shock

Figure 2.10: Sharp-fin/plate configuration

Impingement of the shockwave on the flat plate surface creates a pressure rise in the
flat plate boundary layer. Provided the fin angle of incidence is small the flow does
not separate. However, if the angle of incidence is sufficiently large the adverse pressure
gradient is such that the flow separates ahead of the shock forming an oblique separation
shock, with the flow reattaching further downstream. As a result of the shock interaction a
”lambda” shock profile is formed which is overlaid over a quasi-conical flattened separation
vortex. The vortical flow, starting from the fin apex and growing as it travels downstream,
dominates the separated flow region. The conical vortex carries high-energy air from the
external flow to its reattachment region, causing the appearance of peak heating and high
values of pressure in this region. A small corner vortex is observed close to the fin/plate
junction. A flow model containing the following features was put forward by Kubota and

Stollery [44] and is illustrated in Figure 2.11.

In general, the interaction domain in this type of flow is quasi-conical; i.e., it grows almost
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Figure 2.11: Fin/plate configuration flow model suggested by Kubota and Stollery [44]

linearly in the downstream direction '. According to experimental results, a small region

close to the fin leading edge appears to deviate from the standard conical behaviour. This

area is called the "inception zone” [13], and is characterised by a curved separation line.

Downstream of the inception zone the surface features follow rays from a virtual common

origin located upstream of the fin leading edge.

swept-shock
generator

lambda
shock
inviscid
shock
Moo
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separatiori :
shock

swept shock
generator

flat plate

Figure 2.12: (left) Swept-shock quasi-conical interaction flowfield [49] (right) A schematic of the

features observed in corner flows [49]

!This feature has been observed experimentally by many researchers, but it is also a conclusion of a

theoretical study by Inger [39]. More specifically, through an order-of-magnitude analysis of the governing

equations, Inger found that a swept interaction can approach a quasi-conical state at a large distance from

the origin of the flow.
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A typical flowfield cross-section of a sharp-fin interaction is illustrated in Figure 2.12, and

the dominant features of the flow are:

e A main shock, a separation shock and a rear shock all meeting at the triple point.

A slip line caused by the velocity difference in streamlines passing above and below

the triple point.
e Transonic shocklets in the expansion region which terminates with a normal shock.
e A primary separation and vortex core.

e An impinging jet structure defined on the outer edge by the slip line and on the

inner edge by the primary separation bubble.

For moderate interaction strengths, an apparent secondary separation occurs inside

the primary separation bubble but the exact nature of this feature is still unclear

Tests have shown that for sharp-fins the interaction scale, in both streamwise and spanwise
directions, depends on J, the incoming boundary layer thickness. The sharp-fin interaction
shares quite a few common flow features with the blunt-fin example, primarily in regions
downstream of the leading edge. In general, the interaction generated by the blunt-fin
is stronger and far more severe than the sharp-fin interaction and always leads to flow

separation well ahead of the fin protuberance.

2.5.2 Blunt-fin Interaction

The earliest known investigations of blunt-fin/plate interactions were carried out in the
1960’s [50] and involved heat transfer measurements using thermocouples in the inter-
ference regions generated by the blunt-fin attached to a flat plate. Since then interest in
this type of interference flowfield has grown and more research into this area has been
undertaken. The schematic in Figure 2.13 illustrates the general physical features seen
to occur in a blunt-fin interaction. The following section will attempt to describe the

processes that lead to the creation of this flow structure and their effects.
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supersonic jet

separation shock
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Cross-view

Figure 2.13: General features occurring around a blunt-fin on a flat plate

When a hypersonic flow field first interacts with the blunt-fin/plate model, two initial
structures are produced. The first is a bow shock wave that forms in front of the blunt-fin
so that the hypersonic flow can slow down and change direction. The second important
structure is the boundary layer that forms on the flat plate in front of the fin. A portion
of this layer contains subsonic flow, which allows information about the presence of the
fin to travel upstream and influence the boundary layer; in particular its separation from
the surface. In the initial stages of the development of this shock-wave/boundary-layer
interaction, the pressure gradient caused by the bow shock travels upstream through the
subsonic section of the boundary layer. This causes the boundary layer to separate from
the plate and form an oblique shock, known as shock induced boundary layer separation
shock. As a result of the boundary layer separating, a large disturbed flow pattern appears
which covers covers a significant part of the flow upstream and downstream of the inviscid

shock position.

Across the separation shock an equilibrium condition is reached that allows the mass of air
entering the separated region to equal the mass of air exiting it. Downstream of the oblique
separation shock the flow remains supersonic, and when this oblique shock intersects the

leading edge bow shock an Edney Type I'V shock-shock interaction occurs, and a third
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resultant reflected shock. This shock structure creates a ”lambda” type profile in the
centerline plane (see Figure 2.15), and the point at which the three shocks meet is know
as the ”triple point”. The separated region is bounded downstream by the reattachment
of the boundary layer. As a result of the Edney Type IV shock-shock interaction, a
supersonic jet is produced as described in Section 2.4. The impingement point of this jet

on the fin produces very high pressure and heating rates on the fin surface [28].

The flow below the separation shock can be subdivided into two main regions, which are
separated by a shear layer. Between the separation shock and the shear layer, the flow
is effectively inviscid and travelling at supersonic speeds. Between the shear layer and
the flat plate, the flow is viscous, subsonic and highly rotational, containing one or more
"horseshoe” vortices. If the Reynolds number - based on the reference length, which is the
distance from the leading edge of the flat plate to the front leading edge of the blunt-fin -
is much less than the transitional Reynolds number the separated flow region is expected
to exhibit laminar behaviour. However, if the Reynolds number is much greater, the
separated flow is expected to exhibit fully turbulent behaviour. Under the latter conditions
the separated region is expected to fluctuate in size and shape. Because of the large
perturbations caused by the flow separation, the separated flow region may exhibit some
unsteadiness below the transitional Reynolds number. However, this unsteadiness will be
of lower frequency when compared with the fully turbulent case [32]. The transitional

Reynolds number for this flow is assumed to be (Retmns =13x 106) [32].

Fin bow shock

Shock from flat plate LE

Separation shock

Figure 2.14: schlieren image of the interaction for a blunt-fin [53]
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Figure 2.15: Representation of hypersonic flow over a blunt-fin on a flat plate in the plane of

symmetry [32]

The schlieren image in Figure 2.14, which highlights the distribution of density gradients
within a transparent medium, clearly captures the major features described above, such as
the leading edge shock, fin bow shock and boundary layer separation shock. A graphical
representation of the schlieren image in the plane of symmetry is shown in Figure 2.15, and
indicates that the salient inviscid features produce some geometrical parameters which can
be measured and be used as the basis of comparison between experimental and theoretical
results. These parameters are: the shock standoff distance (A); the angle (6g) that the
separation shock makes with the surface of the plate; the height (K,) measured from the
plate to the triple point of the shocks; and the distance (rg) measured from the foot of
the separation shock to the fin root. These parameters will depend on the prevailing flow
conditions and the geometry of the model. Since these conditions can be recreated in the

numerical model, they turn out to be good variables for comparison.

The height of the triple point is an important parameter in blunt-fin interactions as it
controls the approximate height for the impingement of the supersonic jet generated by
this interaction which, as shown by Edney [20], results in localised regions of extremely high
pressure and heat transfer. Using an un-swept cylinder mounted on a flat plate - cylinder
examples are commonly used to study this type of interference flowfield because ahead of
protuberance they produce the same interaction features found in blunt-fin interactions -
Westkaemper [66] deduced an expression for estimating the height of the triple point using
simple geometric considerations. This relationship was expressed in terms of the shock
stand off distance, the angle of the separation shock and the primary separation distance.

The relationship showed good agreement for a Mach number range of 2.0 - 5.0:
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Ky, = (vs — A)tanbs (2.23)

From the above expression, (A) the shock stand-off distance in diameters can be estimated

using the equation from [28] for an unswept cyclinder, as shown below:

A 4.8 2.8
5= G = T e 17

(2.24)

The shock angle (fg) can be found from knowledge of (M) and the pressure rise across

the bow shock wave (0P) using shockwave tables.

Bogdonoff [15] and other experimentalists reasoned from experimental evidence that the
shock structure was responsible in governing the scale of the interaction upstream of the
fin. Consequently, changes to parameters such as fin leading edge diameter (D), fin height
(K), leading edge sweep (A), boundary layer state and unit Reynolds number (Re/l) can
affect the fin bow and oblique separation shock locations, and as a result alter the scale
of the interaction. This interaction zone or length is generally measured in terms of the
distance (zg), which is measured from the initial boundary layer separation point to the

fin leading edge.

e Effects of Leading edge Diameter (D)
Price et al [50] was one of first researchers to study the effects of leading edge
diameter on the scale of the interaction zone in blunt-fin interactions. It was found
that for a fixed sweep, the fin leading edge diameter controlled the extent of upstream
influence and the levels of subsequent interference heating on the plate and the fin.
The relationship between the upstream influence and the leading edge diameter
was approximately linear and apparently independent of boundary layer thickness.
In addition the pressure in the disturbed flow region increased with increased fin
diameter. Further work by Dolling [17] showed that in the case of the blunt obstacle,
one has to distinguish two regions: Close to the obstacle in a region 2 - 3 fin diameters
from the fin root, coined the ”inner region”, is a domain where the flow is dominated

by the leading edge influence, and the flow is similar to that of a circular cylinder;
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outside of this region there exists an ”outer region” where the interaction properties
are independent of the fin bluntness and are essentially the same as those for a sharp
fin. Within the inner region, the flow properties are dictated purely by the diameter
(D) of the leading edge and are nearly independent on the incoming boundary-layer
thickness (§). In particular, the upstream influence length, defined as the distance
between the obstacle and the onset of the pressure rise, is particularly unaffected by
a change of (/D). Thus, the upstream influence is a function of (D) only, nearly
independent of (M) and (4). Sedney and Kitchens [55] further demonstrated that
for a cylinder obstacle the primary separation length (rg), depends mainly on the
diameter (D) and height (K) of the cylinder, and to a lesser extent the Mach number
(M) and (9).

e Effects of Leading edge Sweep (A)
Haq [28] did extensive tests with swept blunt-fins with turbulent boundary layers
and Schuricht [53] using laminar boundary layers. Both showed that sweeping the fin
was found to dramatically reduce the extent of the disturbed flow and significantly
reduced overall levels of heating on the flat plate and swept-fin especially around
the fin root. The pressures generally reduced throughout the entire interaction
region. Overall the shock stand-off distance was observed to reduce and hence the
upstream influence decreased. All the features on the interaction were observed to

be compressed in to a smaller disturbed flow region.

e Effects of Reynolds Number (Re/])
The variation of the surface flow structures with unit Reynolds number was reported
in detail by Ozcan & Holt [11] 2. It was observed from their experiments that a del-
icate balance existed between the vortical structures in the separated flow, and the
unit Reynolds number. Ozcan & Holt reported that several vortical structures could
be observed, with transition from one structure to the other, occurring for small
changes in the unit Reynolds number, and being perfectly reproducible. They re-
ported that the number of separation lines dropped from 3 to 2 and from 2 to 1 as

(Re/l) was increased from 1.9 x 10° to 2.3 x 10°. Young et al. [70] reported similar

2The unit Reynolds number of the freestream was altered by changing the tunnel stagnation pressure
while keeping the other freestream conditions constant. Reynolds number dependency was tested for a

constant (D/4d)
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findings for laminar flows past fins at (M = 3) and 5. This behaviour suggests a
delicate balance in the separated flow, which is easily modified by slight changes
in the initial conditions. Sedney and Kitchens. [55] observed for a given obstacle
height, and a fixed upstream Mach number (M), the separated flow structure can
change considerably with unit Reynolds number [55]. For a given boundary layer
type, the effect of increasing the unit Reynolds number was seen to move the loca-
tion of the pressure rise, following separation, further upstream of the fin leading
edge. Furthermore, it was observed in all the experiments that the separation length

increased with increasing Reynolds number.

e Effects of Boundary Layer State
The state of the incoming boundary layer has a large effect on the physical scale of the
interference interaction. When exposed to an adverse pressure gradient, a laminar
boundary layer will separate far more readily than its turbulent counterpart because
the flow in the boundary layer has very low energy (relative to the freestream) and
is more easily driven by changes in pressure. Thus, for a laminar boundary layer
blunt-fin interaction the initial separation point is further upstream of the fin leading
edge than in the equivalent turbulent interaction. This was verified by Hung and
Clauss [36] who showed that upstream separation points changing from 2.0 - 3.0
diameters in turbulent cases to 8.0 - 9.0 diameters in corresponding laminar cases;
the test example was a cylinder mounted on flat plate in a (M = 5.3) flow. As a
consequence of a larger separated region, laminar interactions have a more extensive,
and complex flow structure associated with the separated region, when compared to

the same region in turbulent flows.

The distributed pressure profile measured along the centerline on the plate surface ahead
of the blunt-fin appears to show similarities to the profile observed over a two-dimensional

forward facing step, however there are distinct differences as highlighted in Figure 2.16.

Both profiles show a rise in pressure just ahead of the separation point but, for a step flow
the surface pressure typically reaches a plateau behind the separation pressure rise before
final compression, however this plateau does not occur in the three-dimensional case. The

range of upstream influence is dependent on the Mach number and Reynolds number [33],

34



2.5 Fin Interference Flow fields S.J.VITHANA

surface pressure

Figure 2.16: Two-dimensional vs three-dimensional pressure profile [45]

and the level of the plateau pressure is based on the free-interaction theory discussed by
Chapman, Kuehn & Larson [9]. If there is a low pressure region behind the separation
pressure rise in two-dimensional flow, one would expect a secondary separation in that
region in response to the favourable pressure gradient. In contrast to the two-dimensional
case, three-dimensional flow exhibits low pressure behind the separation pressure rise, due
to a reversed high-speed flow in the primary vortex. In addition, near the junction, there
exists a second peak due to flow reattachment attributed to the existence of a secondary
vortex. Also, it is observed that the peak pressures encountered in the three-dimensional
interactions were generally less than equivalent two-dimensional interactions due to the
pressure relief present in the three-dimensional blunt-fin, allowing the compressed flow to

escape around the sides.

As a result of strong entropy gradients in the shear layer of the separated region, the
separated flow contains a high degree of vorticity that causes the formation of one or more
horseshoe vortices depending on the geometric and flow parameters. The primary up-
stream separation point (S;), caused by the adverse pressure gradient as described above,
results in the formation of a single vortex along the centerline with a strong reattachment
occurring at the foot of the fin, this reattachment (Rq) is often accompanied by large sur-
face heat fluxes [32]. The reverse flow within this vortex initially encounters a favorable
pressure gradient but, upon encountering the upstream flow is forced to separate also.

This secondary separation along the centerline leads to the formation of several secondary
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vortices [28]. Flowfields with 2, 4 and 6 vortices have been observed (see Figure 2.17),
with the number of vortices dependent on the Reynolds number (Re/l), the Reynolds
number depending on the diameter of the fin or cylinder [55]. For steady vortex systems
the relative position of the vortices on the plate can be determined from the pressure dis-
tribution on the plane of symmetry upstream of the fin, which shows a pressure minima

at the vortex locations.

Meo

E—

Blunt Fin

Figure 2.18: (left) Separation and reattachment lines for a blunt-fin [28] (right) Vortex skeleton

presentation [28]

Examination of available experimental evidence reveals that, as the Reynolds number in-
creases, the topology of the three-dimensional separation evolves from a single primary
vortex to multiple vortices with further increases in the unit Reynolds number leading to
unsteady laminar horseshoe vortex behaviour [61]. Tobak [58] hypothesized that the loca-

tions of the vortex centres in these unsteady cases are time dependent, but the streamline
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pattern given in Figure 2.17 can be considered as one of the possible streamlines which

succeed each other in time, thus giving a cyclic vortex structure [11].

A schematic of a suggested vortex pattern found in the separated region is shown in
Figure 2.17 and the locations of the separation and reattachment lines (labelled (S1), (S2)

and (Rq), (Rq), respectively) on the plate surface are shown in Figure 2.18.

The flowfield downstream of the blunt leading edge, which is within this large disturbed
region, is dominated by effects of the fin-sidewall/plate junction. The flow structure near
this junction is very similar to the observations made for a sharp-fin and exhibit the
features shown in Figure 2.12. The bow shock generated at blunt leading edge intersects
an oblique separation shock and as indicated a Edney Type IV shock-shock interaction
occurs. The interaction point is characterised by the slip line that bounds several reflected
shocklets which terminate with a normal shock as indicated in Figure 2.12. The separated
region contains one or two vortices and additionally the junction of the blunt-fin/flat plate

also contains a corner vortex as was found in sharp-fins.

Stollery [56] showed through oil streaks on the side of the fin several distinct features.
An attachment line was observed along the windward side on the fin; emerging from the
leading edge of the fin in the vicinity of the triple point shock interaction. Stollery implied
that the attachment line was generated by the supersonic jet produced by these types of
shock interactions. He also detected two other separation lines, one of which was thought
to be related to the high pressure jet of gas trapped at the root leading edge of the fin due

to the presence of a supersonic jet.

Three-dimensional fin interference heating

For thermal design purposes the peak heating in front of blunt-fin/plate junctions is of
particular interest. Hung and Clauss [36] reasoned that in general, the peak interference
heat factor, (h/hy)maz Which is the heat flux on the plate or fin surface normalised with
the respective undisturbed flow heat flux, can be assumed as a function of (D), (K),
boundary layer thickness (0) and free stream Mach number (My). A typical dimensional

anaylsis will yield:
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(h/hu)max - f(D/(5, K/67 Moo) (2.25)

Hung and Clauss [36] discovered that a heating increase with (K) was obvious until (K)
reached a certain value where further increase in (K) caused no significant heating in-
crease. They stated that this could as a result be used as a criteria for defining short
and long protuberances (such as fins and cylinders). Since then many authors have at-
tempted to classify protuberances in a supersonic/hypersonic flow as either large/long
or small/short, depending on certain parametric relationships generally involving the fin
height (K), and to relate the interaction scale to other flow and protuberance properties.
It is generally considered that a protuberance is large/long if it produces an ”asymptotic
result”; a condition where an increase in the fin height no longer produces an increase in
the interaction extent. This limit is generally accepted to be reached when the (K/D)

ratio is greater 2.5.

For short protuberances in laminar flow 3, the largest (h/h,) ratio can be estimated from

the following relations,

h/hy = (2.5 ~ 4.25)(K/8)"® (2.26)

and in turbulent flow

h/hy = (5.2 ~ 7.3)(K/5)863 (2.27)
where (h) is heat transfer coefficient for the interference flowfield and (h,,) is the local

undisturbed (no protuberance) heat transfer coefficient. For a long cylinder, the observed

heating trend for both laminar and turbulent flows is,

h/hy, = (4.2)(D/6)'38 (2.28)

3- The following relations are referenced from the work of Haq [28]

38



2.6 Overview of Previous Computational Work S.J.VITHANA

The boundary between small and large protuberances depends on the boundary layer
state, and the conditions set by Hung and Clauss [36] are (D/J ~ 2) for a turbulent
layer and (D/§ ~ 6) for a laminar flow. The expressions appear to highlight a significant
difference between small and large protuberances. It appears that for a small protuberance

(h/hy) depends on (K/J) whilst for a long protuberance (h/h,,) is scaled by (D/J).

2.6 Overview of Previous Computational Work

With a considerable database of experimental results available for turbulent and laminar
blunt-fin flowfields, the development of numerical schemes to compute these flowfields has
grown steadily throughout the years. Initially all computational methods developed were
for solving turbulent boundary layers, this bias is partly based on the fact that at the
time there was a greater volume of available data for turbulent cases compared to laminar
flows. Reflecting this trend in history in the following section, outlined are three different
cases of blunt-fin turbulent interactions studied and, two laminar cases from the last thirty

years.

2.6.1 Turbulent Computational Work

One of the earliest successful computations of the blunt-fin interaction was presented by
Hung and Buning [33] in 1984, and was achieved by solving the Reynolds averaged Navier-
Stokes equations for a turbulent flow. The flow was supersonic (M = 2.95), with a (Re/I
= 6.3 x107) using a (k —¢) turbulence model over a blunt hemi-cylindrical fin with a (D/§
= T7) at zero incidence. They compared their computations to the experimental results of

Dolling and Bogdonoff [16].

Predictions of the pressure field on the nose of the blunt-fin correlated well with the ex-
perimental data, but the peak pressure on the stagnation line (related to the impingement
of the supersonic jet) was under predicted. Comparison of the streamwise pressure distri-
bution on the plate ahead of the fin and at two outboard stations correlated well within

experimental data and all the main features such as the upstream influence, the pressure
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rise due to the separation shock, and the double pressure peak (see Figure 2.16), were well

simulated.

Primary Vortex Corner Vortex

Figure 2.19: Horseshoe vortex flowfield, particle paths in the plane of symmetry [34]

Calculated particle paths in the plane of symmetry of the interaction (see Figure 2.19)
indicated the presence of a large flattened horseshoe vortex structure well ahead of the fin
and another smaller secondary corner vortex close to the fin-plate junction. For the case
calculated, the separation shock was very weak and was smeared out over several mesh
points, therefore, a sharp triple point at the intersection of the bow shock and separation
shock was not observed. A strong Mach number variation in the region behind the bow
shock close to the predicted pressure peak was not apparent, and so the computations
had failed to predict the presence of the supersonic jet which is characteristic of this
type of interaction. However the computations indicated that the size and location of
the horseshoe vortices is dominated by the inviscid characteristics of the interaction, in

particular the bow shock. As a result they summarised the effect (D) has on the flow.

The researchers concluded that agreement between the computed results and measured
pressure distribution was very good despite the limited mesh resolution. However, the
computational techniques needed refining particularly in the areas of shock capturing

and, an improved resolution via increased density of mesh points.

In 1994 Tutty et al [60] simulated a turbulent flow over a blunt-fin/flat plate configuration,
and specifically looked at the heat flux on the flat plate and fin. The flow was hypersonic
(M = 6.85), with a (Re/l = 5.4x107) and a (K/D = 2.8) at zero incidence. The code used
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was termed SPIKE, a Navier-Stokes code developed by Fluid Gravity Engineering con-
taining a Baldwin-Lomax turbulence model. The computational model was built around
a blunt-fin with a diameter of 10mm at zero incidence and sweep. Contour maps of the

heating distribution around the fin for both experiment and computation were presented.

General agreement on the shape of the features was noted. However, the numerical cal-
culations overpredicted the location of the initial rise in heat flux upstream of the fin.
This discrepancy was thought to be due to the rather coarse grid used in this preliminary
study. Reasonable agreement was also shown for the centerline heating distribution, al-
though the computation predicted that, close to the fin leading edge, the heat transfer
coefficient peaks at 25 times the undisturbed value at the fin leading edge location. Com-
parison of experimental oil flow and heat transfer data with the numerical results indicate
that the peak in heat transfer close to the fin is due to the impingement of the small corner
vortex on the flat plate, and that the peaks and valleys in heat transfer correspond to the

local reattachment and separations of the vortical flow structure.

Since then several turbulent numerical studies have been undertaken in hypersonic blunt-
fin interactions. A very detailed study of swept and unswept blunt-fin interactions using a
turbulent boundary layer were undertaken in 1998 by Yamamoto et al [68]. The flow was
hypersonic (M = 3.92), with a (Re/l = 1.26x107) and a (D/§ = 10). The numerical scheme
was a high-resolution finite-difference method based on a fourth order compact MUSCL
,TVD scheme with a modified AUSM and the maximum second-order LU-SGS scheme was
employed to simulate unsteady flows associated with shock/shock and shock/turbulent

boundary layer interactions.

The results obtained for the unswept blunt-fin showed a cyclic system associated with
a system of separation shocks produced by several separation bubbles in the separated
region. These produce multiple shock/shock interactions with a resultant mixture of
several supersonic jets which combine to influence the characteristics of the separated flow
(see Figure 2.20). Finally a flow accelerated by the jets becomes a large-scale supersonic
jet. The jet streams into the separation bubbles and disturbs them, which causes the
number of bubbles to change according to the strength and direction of the jet. This

cyclic system was found to dominate the unsteady flow mechanism of the shock/turbulent
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Figure 2.20: (left) Mach contours in the plane of symmetry of the flow [68] (right) Streamline

vortex core paths around the blunt-fin [68]

boundary layer interaction. The results also appeared to indicate that the locations of the
vortex centers were time dependent, but the time-averaged surface locations where the

vortices are shed remain approximately constant.

Yamamoto also looked at swept blunt-fins and concluded that sweeping the fin from 0°—30°
degrees resulted in a dramatic reduction in the upstream influence, a sharp decline in the
final peak pressure levels, and generally reduced pressures throughout the entire interaction
region. The streamlines in the symmetry plane confirmed that the horseshoe vortices were

progressively weakened and reduced in size with increasing sweep.

2.6.2 Laminar Computational Work

In 1994 Lakshmanan and Tiwari [45] analysed a supersonic laminar boundary layer blunt-
fin/flat plate junction through computation. They employed a three-dimensional Navier-
Stokes code utilising the MacCormacks time-split, finite volume technique and investigated
the effect of Mach number and Reynolds number on the flow. The flow was supersonic (M

= 2.36), with a (Re/l = 2.7 x 10%) and a (D/§ = 7-30) at zero incidence.

They reported that increasing the freestream Mach number, decreased the extent of sepa-
ration ahead of the fin. This was caused due to the subsequent reduction in the bow shock

stand-off distance, which would be expected to reduce the size of the interaction region.
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The parametric study also revealed a dependency of the number of vortices with the flow
Mach and unit Reynolds number. Moreover, with an increase in the freestream Mach and
unit Reynolds numbers, the primary horseshoe vortex bifurcated into two vortices rotating
in the same direction (see Figure 2.21). Increasing the Mach number is also reported to
reduce the maximum reverse flow velocity close to the plate and in addition lower the

height of the reverse flow region.

Primary Vortex Corner Vortex Primary Vortices Corner Vortex

Figure 2.21: Horseshoe vortex flowfield, particle paths in the plane of symmetry [34] (left) Re/l
= 1.2 x 10° (right) Re/l = 5.0 x 10°

The most recent numerical studies to date using laminar boundary layers was done by
Houwing et al [32]. However the numerical simulations were used mainly as a supple-
mentary tool and for some comparative correlations with experimental results. The flow
was hypersonic (M = 6.1 - 6.9), with a (Re/l = 4.5 x 10°) and a (K/D = 2.63) at zero

incidence.

3000

Figure 2.22: Temperature field in the plane of symmetry of the flow [32]
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Nevertheless some good detail was obtained from the simulations. For example, Figure 2.22
shows the contour profiles for temperature in the centerline symmetry plane. Clearly
visible are the shear layer, the separated boundary layer beneath and fin bow shock.
These CFD results provide insight into the complexity of the separated flow region, which

because of the limited experimental data available, had previously remained as conjecture.

2.7 Motivation for Present Study

The review of past published work covering hypersonic blunt fin interactions has shown
that recent computational work has focused mainly on the study of turbulent boundary

layer/fin plate interactions, leaving the laminar boundary layer flowfield under-studied.

The scope of the present study is therefore to advance the knowledge of hypersonic laminar
boundary layer/fin plate interactions and to compare with or corroborate laminar hyper-

sonic experimental data obtained at the University of Southampton by Schuricht [53].

From the numerical simulations it is hoped to observe the following points:

e The complex three-dimensional nature and major flow features associated with lam-
inar blunt-fin interactions, in particular mapping the path of the horseshoe vortices

present in the separated region of the flow.

e The effects of blunt-fin diameter and height on the general scale of the interaction

including for example correlation of separation lengths.

e The effects of fin sweep on the general scale of interaction, including correlation of

separation lengths.

The primary interest would be to explore the similarities/differences in flat plate heating
profiles between the numerical analysis and the experimental data. If there are differences,

possible mechanisms for the differences will be postulated.
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Chapter 3

The Numerical Method

3.1 Introduction

Computational Fluid Dynamics (CFD) is the numerical simulation of flowfields through
the approximate solution of the governing partial differential equations for mass, momen-
tum, and energy conservation coupled with the appropriate relations for thermodynamic
and transport properties. The approximate solution of the governing equations requires
that the domain be subdivided into many small control volumes. The accuracy of the
solution depends upon a variety of factors; the most critical factors are the size of each
control volume, the orientation of its boundaries relative to a variety of flow features, and

the order of accuracy of the discretization.

Although CFD methods have recently become a popular tool in engineering design to
complement experimental data, the nature of hypersonic flows which routinely involve
extremes of pressure, density, and temperature separated by shocks, expansions, shear
layers, and boundary layers; these extremes in conditions and topology of flow structure
complicate and present significantly larger challenges in the development of computational

capabilities for analyzing hypersonic flows compared to subsonic or supersonic flows.

The main problems in hypersonic continunum CFD are the physical-chemical modelling of

non-equilibrium flows, surface treatments (catalytic effects) and shock capturing - however
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in present study these issues are ignored.

Solving the equations in a supersonic/hypersonic regime produce shocks and sonic lines, i.e.
”discontinuities”. These discontinuities can be described as extremely thin regions with
sudden changes in flow properties, and the modelling of such discontinuities is disturbed
by local losses of accuracy and smearing out, related to the numerical discretization of the

hyperbolic inviscid Navier-Stokes (or Euler) equations.

In addition, the ability to orient a grid with evolving flow structures is another partic-
ularly challenging feature of hypersonic flows. For example, accurate simulation of heat
transfer requires adequate resolution of the boundary-layer and accurate representation
of conditions at the boundary layer edge. In turn, conditions at the boundary-layer edge
particularly in the stagnation region of hypersonic flows are dependent on entropy car-
ried along streamlines from the shock. Any irregularities in the captured shock create

associated irregularities in entropy that feed the rest of the domain.

Taking into account some of the difficulties highlighted above, the inconsistencies in re-
sults produced by various computational methods because of inherent differences in the

numerical technique has not promoted confidence in hypersonic CFD codes.

However, due to the lack of available ground facilities for realistic testing at high Mach
numbers and due to the complex and integrated nature of the flowfield, traditional wind-
tunnel based design and analysis techniques are not adequate. Further complicating ex-
perimental analysis of such flows is the limited range of experimental diagnostic techniques
available for ”probing” flows, particularly at high Mach numbers. This becomes an impor-
tant issue for complex flows such as those considered here. Consequently, CF'D methods
for simulating hypersonic flows have received considerable attention in the recent past and
have been pushed forward to become an important asset in understanding and highlight-
ing key problem areas of complex flows. CFD methods also provide considerable benefits
in terms of cost and time efficiency, due to the ability of performing computations at
vastly reduced time scales compared to setting up and running an experimental facility.
In addition, results obtained by CFD and experimental data are generally complementary
and help improve our understanding of the flow physics involved, and are proving to be

a promising alternative for analysis, design, and even optimization of hypersonic vehicles
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and propulsion systems.

The following points highlight the properties essential to any numerical algorithm used in

fluid dynamics; these being ” consistency”, ”accuracy”, ”stability” and ”convergence”.

Consistency

- Discretization should become exact as the grid spacing (or time step) tends to zero.

- Truncation error — 0 as (Az — 0) and (At — 0).

- Truncation error (13,): difference between the differential conservation equation () and
the corresponding discretized algebraic equation (L) on grid level h:

[%(@) = Ly(?) + Th] where (@) is the exact solution of the differential equation ().

Accuracy

- Accuracy of a solution means how close the solution is to the actual physical field.

- Most of the errors produced in the numerical simulation of a system can be removed by
careful programming but systematic errors are always present.

- Many sources of error contribute to reduced accuracy:

Modelling error: difference between exact solution of mathematical model (conservation
equations) and actual physical flow.

Discretization error: as defined above.

Convergence error: difference between the iterative solution and the exact solution of the
algebraic system of equations.

- If exact (physical) solution is not known, absolute accuracy can only be estimated.

Stability

- Solution is called stable (bounded) when the method does not magnify the errors from
iteration to iteration.

- Despite the accumulation of errors (truncation or discretization errors, and round-off
errors caused by machine precision) solution should not diverge.

- The most common approach to stability of an algorithm is the von Neumann’s linear
method which gives the domain of stability of the solution, relating flow properties with

grid spacing (Az) and time step (At).
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Convergence

- Solution is called convergent when the exact solution of the discretized equation tends
to the exact solution of the differential equation as (Ax), (At) tend to zero.

- Discretization error — 0 as (Az — 0) and (At — 0).

- Discretization error (eff): difference between exact solution of the mathematical model
(®) and exact solution of the discretized algebraic system (¢p): |€ = ¢p, + eg]

- ”In a well-posed problem, consistency and stability are necessary and sufficient conditions

for convergence.”

3.2 The Numerical Scheme

The current numerical method in its initial form was developed and implemented by
Navarro-Martinez [47], on the basis of the work of Amaratunga [1]. For a detailed back-
ground on the numerical preliminaries to the numerical method, see [47]. The author
has modified the algorithm accordingly to account for the present characteristics of the
problem. However for completeness, a general description of the workings of the entire

numerical method shall be outlined.

This Chapter shall give a basic overview of the characteristics of the numerical algorithm.
In the numerical scheme, a brief description is given of the two different time stepping
methods; the explicit and implicit method used in this study. Which is followed by a
description of the methodology for evaluating both the Inviscid and Viscous contributions
to the Navier-Stokes equations. The formulation of the explicit and implicit boundary
conditions for the numerical method is then outlined along with the methodology for
solving the non-linear equations in the implicit method. This is then followed with a
description of how the numerical scheme was modified to run on a parallel platform to allow
for large three-dimensional calculations. Finally, the methods used to generate the different
computational grids used in the simulation and the convergence criteria for the different

simulations runs is followed by the Interpolation schemes used to save computational time.

It is important to note that, due to the actual complexity of the real flowfield, viscous

forces cannot be neglected and in hypersonic flow viscous forces play an important part,
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particularly near body surfaces and separated regions. Under these conditions it is nec-
essary to integrate in time the full set of Navier-Stokes equations until a steady-state (if
existent) is reached. A full description of the Navier-Stokes equations and their underlying

assumptions can be found in Appendix B.

Outlined below are the two numerical schemes implemented in the existing code. The first
section looks at the explicit formulation and the implicit method is then described in the

following section.

3.2.1 Explicit Method

To take into account the multi-dimensional nature of the flow, the Navier-Stokes equations
found in Appendix A are written in their integral form. Here we introduce the vectors
(U), (F) and (F,), which are the vectors of m-conserved variables (u;(z,t) ) and fluxes

of the inviscid and viscous components (F, G, H) and (F,, G,, H,) respectively.

U
& T VF=VF, (3.1)

Upon integrating the above Eqn 3.1 over a control volume ( V'), we obtain the following

relation

U v+ f F.ndS = }'{ F,.n dS (3.2)
v ot s s

where (n) is defined as the outward normal vector of the surface (S) limiting the volume

(V). At this point we introduce the definition of an average state (U) as

_ 1
U=—= | UdV 3.3
/| (33

Substituting the above expression into Eqn 3.2 we obtain the following semi-integral form
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ou
Voo = ji(FV ~F)ndS (3.4)

Discretising the computational domain into a collection of polyhedral cells, the control
volume (V) is replaced by the volume of the i-th cell which is bounded by (Ny) faces,
thus making it possible to split Eqn 3.4 into an expression that is the sum of the surface

integrals over the faces

o; L

Vit = Fy —F)ndS 3.5
5 =2 f, (R - Fhmasi (35
and averaging the flux in the k-surface

A 1

B=— | (Fy—F). .
= 25 [, (B - Fimasi (3.6

By collating the viscous and inviscid contributions, the governing equations written in a

semi-discrete form are

N A~
_ L ELAS, (3.7)
ot - v '

The equation is averaged in space, but not in time. A further average of the above expres-
sion between the time levels (n) and (n + 1) gives the following equation in conservative

form

Ny
_ _ L EA
e Sk (3.8)

where (At = t"T1 — ¢") is the time step and (F") is the space and time average of the
k

flux over the k-surface at the (n) time level
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Following a couple of numerical steps, the time averaged explicit backward Euler finite

volume scheme is defined as

EPASy
V;

)

N
UMttt = UM + At Zf: (3.10)

k
Linear stability conditions, like the von Neumann method, impose restrictions on the
allowable time step (At). This time step is strongly dependent on the wave speed propa-
gation of hyperbolic conservation laws and grid size. Diffusion and source terms usually
have smaller time scales and they can further reduce the allowable time step. The most
famous condition, the Courant-Friedrich-Levy (CFL) restriction which comes out of the
stability analysis, is the idea that the ”"numerical” domain of dependence of the solution
should contain the ”physical” domain of convergence. For an ordinary one-dimensional

conservative method, this condition may be expressed as

Aﬂ?i

Max(SF%,S

Atop, = CFL
z+%)

(3.11)

where C'F'L is called the Courant number (or simply the C F'L number) and is implemented
as a user-given security factor. In steady situations, the desired results are obtained in
the limiting state when (¢ — o), thus small time steps are a big restriction in marching
schemes, consuming an excess of computational effort. In order to circumvent the CF'L

restriction and speed up the solution process we introduce the ”implicit” method.

3.2.2 Implicit Method

Explicit schemes as expressed above have very limiting constraints on the allowable time
step (At) used by the viscous solver (see Batten et al [6]). An estimate for the viscous

time step (At¢) was quoted by Turkel [59] as being

pPTA§2

Atc <
dyp

(3.12)
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where (A) is a characteristic dimension of the cell. In addition, the CFL condition in
Eqn 3.11 also restricts the time step (Atcrr), due to the inviscid part of the equations.
Usually for highly viscous flux (At. << Atcpr). To bypass such restrictions an implicit
approach is adopted, where the time-averaged flux (F ”) of Eqn 3.8 is replaced by the

space-averaged flux at time level (n + 1) - (F ”+1), thus giving a new conservative scheme

Ny n+1
_ _ F'TAS,
grtt = gr At§ “k _— 78 3.13
7 7 + - ‘/:L ( )

The inviscid and viscous average fluxes are approximated at the new time level by a

truncated Taylor expansion [6] as

~ n
. . OF
S A 3 3.14
+(55) an
where (0U) states for the difference between the vector of conserved variables at time
levels (n) and (n+ 1): (6U = U™ — U™). Throughout the remainder of this work, the
average variable (U) will be referred as (U), in the same manner the space average flux
(F) will be replaced by (F). Substituting Eqn 3.14 in Eqn 3.13 eventually results in an

Implicit semi-discretisation of the mass-averaged Navier-Stokes equations as

Vi L (oF ali
A Zk: <8U> kASk oU = zk: FI'ASy (3.15)

Further detail on the intermediate numerical steps in the above analysis can be found in

the works of Batten et al [6].

The implicit scheme presented above does not have the CF L restrictions on time step
as compared to the explicit scheme, this is because the numerical domain of dependence
is much larger and therefore it is possible to use a time step (At) which is larger than
in the explicit scheme. However, because of the iterative methods used to solve for the
linear system of equations in the implicit method as described in Section 3.6, there is
an associated overall computational cost increase per time step. Therefore in all cases

the implicit method is more expensive per time step than the explicit method, but this
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drawback is overcome by being able to use much larger time steps and hence be more

efficient in finding a steady state solution.

3.2.3 B2 scheme

The B2 scheme, proposed by Batten et al [6], was developed to dampen or dissipate
the oscillatory effects between alternative time steps, of using slope limiters, which are
described in Section 3.3.3, in the Godunov method. This oscillation had the effect of
preventing convergence of the numerical scheme to machine zero, and the phenomenon
is associated with the artificial non-linearity introduced through the slope limiter in the
discretisation scheme. Batten et al [6] proposed a temporal first order two-step integration

implicit model, denoted B2:

it AE[RA el QA na
Ut = U+ o ng +§Fk (3.16)

The use of this scheme can be easily implemented by two successive backward Euler steps.

§U = B1(U", At) (3.17)

Ut = U 46U (3.18)

there after the B2 scheme is implemented as follows

SU* = B1(U", At/2) (3.19)

U*=U"+6U" (3.20)
SU™ = B1(U*, At) (3.21)
U™t = U* + 65U )2 (3.22)
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3.3 Inviscid Compressible Flow

The inviscid contribution of the Navier-Stokes equations are governed by the Euler equa-

tions

U [ OF 6G  6H

b Iy T 2
5t "ox Ty o 0 (3.23)

where (F'), (G) and (H) are defined in Appendix A. To compute the inviscid contribution
to the flux a Godunov method is used, which involves the solution of a local Riemann

problem.

3.3.1 Godunov Method

In the Godunov method, the average inviscid flux of Eqn 3.6 is defined by

A 1
= — Fnd .24
] ASk/Sk n dsS; (3.24)

where each face of the cell (S;) is obtained as a solution to a one-dimensional Riemann
problem between two states, (Ur) and (Ug). These states are approximated by cell values
in the first order extrapolation or by interpolated values in higher order extensions. The

average flux may be redefined as

Fk = FRP = F(URP).II (325)

where (Ugp) is the solution obtained with the Riemann solver which is a function of (Uy)

and (Ug).

The Riemann solver used in the present study is the HLLC type. The choice of solver
is based primarily on the following points: the HLLC type does not require artificial
correction parameters compared to other Riemann solvers and its demonstrated success-

ful implementation in compressible flows. In addition this solver incorporates the most
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detailed physics while there is no need for artificial entropy correction and, due to its

robustness, allows the use of implicit schemes.

3.3.2 HLLC Rieman solver

The value of (U) at the interface (i + 3) is defined by

Uprp if ap >0

Uz if ar, <0< ay
UL = (3.26)

UI*% if CLMSOSGR

Ur if ar<0

and the corresponding interface normal numerical flux (F) at (i + 1), for Eqn 3.26, is

defined as

Fy, if ar >0

FgﬁLC: Fz:FLqLaL(Uz*UL) if ap <0<ay (3.27)
FE:FR—FCLR(UE—UR) if apy <0<ap

Fr if ap <0

where (F x=F(U *)) For more details on estimating the average state (U*) see Appendix
B.

To implement the HLLC Riemann solver in the Godunov method the following steps are

performed :

Step I: Compute the wave speeds ay, ax and ag
Step 1I: Compute the states for U; and Up
Step III: ~ Compute the HLLC flux according to Eqn 3.27 and use it in the conservative

ntl _ny At|en _ fn
formula u;/™" = ui’ + R [fi_% fﬂ_%]'
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The Average State Jacobians

For the implementation of implicit method Eqn 3.15, the jacobians for the inviscid and
viscous fluxes have to determined. Batten et al [7] defined the average-state inviscid

Jacobians for the flux at level (n + 1) on the Riemann problem as

Fi + §546UL if ap >0
o) Fi OLLSUL + 9pksUR i ap <0 < ay 5.28)
RP F}, OF;: . '
FE—Fﬁ(SUL—FﬁéU}{ if ay <0<ag
Fr+ §20Ug if ap <0

where (g%;) and (g%) are the average state Jacobians. A complete description of how

these jacobians are calculated is found in Appendix B.

3.3.3 MUSCL Slope Limiting

A MUSCL linear reconstruction scheme is used to obtain formal second order accuracy.
As a second order extension to the Godunov method the Minmod scheme given by Ama-
ratunga [1] is used. Defining the following, (AUH% =Ujy1 — Ui), (AUZ»_% =U; — Uifl),
and (Ai,j =x; — xj) as the right and left derivatives with the respective slopes defined as

AU, 1 AU,+1
_ 3 _ T3
¢ = A1 and | ¢ = Ait1y )7

The Minmod Slope limiter states the slope in the i-th cell, (¢;) as

¢; = AU, AU, (3.29)
min{k‘QA Z | ‘
it

2A. .

ihi—5

}sgn(qbl) otherwise

Where the control parameter (k) offers the possibility to use slope limiters more or less
"diffusive”. For (k = 0) the slope limiting process switch off and recover the first order

scheme.
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Multi-dimensional MUSCL

To take into account the conservation of the variables across the whole volume of an

itd

x
arbitrary cell, the equation (uz = ﬁ Jo 2 a(x, t)dm) is transformed to
-3

1 [ -
U, = V/U(x,y,z,t")dv (3.30)

where (V;) is the volume of the cell. For a tri-dimensional centered grid, the MUSCL

distribution can be expressed as

Agmzn V-

Uit =Ui+t ——\/ 77 ¢ (3.31)
Agmzn v+

Uiy =Ui— —5 1\ =% (3.32)

where (¢;) is again the slope limiter function, (A&pin) is the minimum distance in the
(€) directions from the cell centre to either (i + 3) or (i — 3) interface. The tetrahedra
volume balances in Eqns 3.31and 3.32 are required to preserve conservativity with the slope

limiting process. This is evident by the fact that the new distribution of (U) satisfies

Ui =U)V™ = (Ui =U;_))V" =0 (3.33)

and therefore reaverages to the original cell averaged value (see Figure 3.1).

As a result the new interpolation values used in the HLLC Riemann solver are

U =U; +6U;
Ur=Uiy1 4+ 0U;11

(3.34)

where (6U;) and (0U;4+1) are slope corrections in the cell (i) and (i + 1), respectively,

obtained from Eqns 3.31and 3.32.
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Figure 3.1: MUSCL slope limiting reconstruction in a three dimensional arbitrary cell, with V'

and V'~ the corresponding volumes in the £ direction

Three-dimensional Metric Calculations

Calculating the volume balance, (V) or (V) respectively in each arbitrarily cell is an
important pre-requisite to using the MUSCL method. One of the attractive features of the
finite-volume approach is its ability to be used on any generalized orientated coordinate
system. The only information about the mesh that we transmit to the method is the
three curvilinear coordinates of the eight vertices of every cell in the mesh, as shown in
Figure 3.2. With this information, we can calculate the metric coefficients strictly by the

principles of geometry.

i+1

S
i+l,j,k/g

i+1, j+1, k+1

Figure 3.2: A typical computational cell i, j, k
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With information on the four vertices the surface area is given exactly by one half the

cross product of its diagonal line segments (see [40, 42]). With reference to Figure 3.3.

Sse78 = 0.5(7”75 Xres + 7“65><7”75) = 0.5(7‘75><?”86) (3.35)

The volume (V;“*) is computed in the following way. Without restriction a general hexa-
hedron is composed of five tetrahedra (see Figure 3.3) each of whose volume is determined

exactly by

1 oy oz 1

1|2 y2 22 1

VT1236 = (336)

I3 Y3z z3

T6 Yo 26 1

where the integer subscripts on (Vry,4,) refer to the four vertices that define the tetra-
hedron. The volume of the hexahedron then is the sum of the volumes of these five

tetrahedra.

Figure 3.3: The volume of a hexahedronal cell is the sum of the five constituent tetrahedra:

VT1235 + VT3867 + VT1685 + VT1348 + VTSSIS [24]

The existing multi-dimensional MUSCL method takes advantage of the symmetry in (¢)
to equate the tetrahedra volume balance to an area weighting. However to account for
a truer three-dimensional curvilinear grid, as used in the current study, the tetrahedra

volume balance for the (i) cell is considered.
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3.4 Viscous Compressible Flow

The discretisation of the viscous fluxes requires the evaluation of derivatives in each coor-
dinate direction. This makes the viscous fluxes quite laborious to compute and therefore
various assumptions are often made to eliminate the less significant viscous terms. For
high Reynolds number flows with which we are primarily concerned, the viscous effects are
generally confined to the near wall region and are dominated by the viscous strain rates
normal to the wall; the viscous terms associated with the strain rates along the body are
comparatively small and negligible. This was first realised by Prandtl in the development
of boundary-layer theory, and later let to the thin layer approximation of Baldwin and
Lomax [4], which neglects the cross derivative terms in the unsteady viscous fluxes and

retains only those terms which are dominant for a general coordinate system.

The thin layer terms are often applied only to the coordinate direction normal to the body
surface (see Yee [69]). Hung & Kuraski [35] successfully implemented an extension of this
approximation in two directions, (¢) and (), where they considered the dominant normal
diffusive terms and also the major streamwise diffusive terms and used it to solve for a
supersonic flow over an axial corner. The present code has been designed to allow these
terms to be switched on in all three directions simultaneously, normal, streamwise, and
spanwise enabling the code to deal easily with general geometries. This amounts to an
implementation of the full Navier-Stokes equations without the viscous cross derivatives
terms. In some instances the neglected cross-derivatives can be of the same order of
magnitude as the retained normal derivatives very near the junction of two walls, but in
the present scenario the flow contains comparatively very low momentum hence the these
viscous terms will be of negligible magnitude in comparison to the dominant terms, as a

result neglecting the cross derivatives will not significantly affect the general solution.

Accordingly, the viscous flux for a generic direction () is given by

60



3.4 Viscous Compressible Flow S.J.VITHANA

0
CaoTaw + EyTay + EoTaz
Fo=J| &rys+ &yy + &7y (3.37)
§aTox + &yTay + §2T2z

| UTea + VTgy + WTy + qx |

where (J) is the transformation Jacobian (which corresponds to the volume of the cell

in physical space). The vectors (G,) and (H,) follow from (F,) using the substitution
(& — n) and (£ — (). respectively.

The viscous flux terms are obtained in the general curvilinear coordinate system by split-

ting the flux (F,) into subfluxes, (E@), (Fén)) and (Féo) such that

B = F© 4 5 4 O (3.38)

where (E@), (Fén)> and (FU(O) involve only derivatives of (£), (n) and (¢) respectively.
When computing fluxes normal to the (£) coordinate line, only terms in the subflux (Fég))

are retained in the approximation.

After some manipulation eliminating the non essential terms, leaves us with the following

revised viscous flux vector for (E@)

0
aque + Brve + Bawe
F® = pJ Prug + azvg + Pawe (3-39)
Baug + Bave + azwe

%

the corresponding () and (/) coefficients are given by
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4
alzgng+n§+nz
agzni—l—%ng—i—nz

4
az =n2 +n; + 5n2

pr = %na:ny

1
B2 = gyt (3.40)
B3 = %nznz

oy = %(ni + ng +n?2)

75 = 01(% )y + a2(" )y + (), + Br(uv)y + Bo(vw)y + Bs(wnr), + ouT,

Similarly, the viscous flux vector (F’én)> and <F1§O> can be obtained by replacing (£) with
(n) or (¢) and taking the projections of (n;), (ny) and (n.) unit vectors in the (1) and (()

directions.

The method outlined above greatly simplifies the computation of the viscous fluxes and
means that a dimensional operator split code need only carry one level of storage, even for
time accurate calculations. In addition to the method described above, another variant of
the viscous solver was also tried. The secondary method included some additional cross
derivative terms in the viscous flux of Eqns 3.37 to mimic a solution which matched a more
complete Navier-Stokes solution. These additional terms were mainly computed for the
(¢) direction, which is normal to flow direction and hence the most dominant. A listing of
the explicit viscous fluxes solved in the second explicit method can be found in Appendix

B.

All the above derivatives have been discretised in a centred scheme over the cell interface

ou

Ui+l — Uy
— = 41
o (3.41)

i &iv1 — &

This also applies to the primitive variables (v, w, T). The viscous contribution is com-

puted with an error ( O(AE?/Re)) ) which is much smaller than the inviscid one which
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determines the overall accuracy of the scheme. Once the viscous terms are determined,

they can be incorporated into the scheme Eqn3.10.

3.4.1 The Viscous Jacobians

In a similar fashion to the way the inviscid Jacobians were implemented in the implicit
scheme the corresponding viscous Jacobians also have to be calculated, and as instructed

by Batten et al [7] this is done in the following way

OF, OF,

Pl =Fr 4

where (g%) and ( 8%%1) are the viscous Jacobians, a complete listing is obtained in

Appendix B.

3.5 Boundary Conditions

In general, all boundary conditions are imposed by controlling the flux through boundary
interfaces. For this purpose, an extra row of dummy grid points is required at each bound-
ary to store information which is used in the flux calculation. The conserved variables
assigned to these dummy grid points are then manipulated to mimic the true interface

boundary conditions.

For the Implicit scheme it is possible to find a relation between (OUpc), the ghost cell
conserved variable vector, and (OU;) the conserved variable vector for the flow. These two

variables can be expressed through a matrix (Cpc) as

oUpgc = CcdU; (3.43)

The way of evaluating of (Cpc) will depend on the boundary itself. A listing of the

boundary conditions appropriate to this study can be found in Appendix B.
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3.6 Implicit Numerical Implementation

Batten et al. [6] developed a series of implicit Godunov methods, based on the linearization
in time of the fluxes obtained from the solution of the local Riemann problems. The
implicit method applied in this study is based on the work done by Batten et al. [6]
and the resultant implicit scheme is built around the HLLC Riemann solver described
in section 3.3.2, which uses frozen acoustic speeds to construct average state Jacobians.
Moreover the way of constructing the Jacobians allows a simpler introduction of further
contributions, as turbulence models or chemical species. One of the attractive features of
this method over the explicit scheme is vastly reduced number of iterations required to

achieve a converged solution.

However the current implicit method does have certain limitations. One important point
is the need to increase the time step gradually, which allows the wave speeds to settle
down and also the positivity of preservation condition is not guaranteed for the implicit
method operating at extremely large CFL numbers. This produces an upper limit for the
maximum allowable Courant number in the implicit method (however this limit should be

much greater than one).

The resultant implicit scheme in Eqn 3.15 can be regarded in the differential form as a

linear system of equations which can be expressed as:

Aij(SUj = (3.44)

where (A;j) is a (N * N) matrix, (N) being the number of unknowns that creates the
influence of the time level (n+1) over the previous one (n) and is derived from the implicit
discretisation to keep the scheme stable and (b;) is the vector sum of fluxes over a time step.
The total number of unknowns (Np) for a three-dimensional system is (Np =5 X Neeyis)-
As aresult (N7) is very large in three-dimensional calculations, around ~ 107 in the present

014

study with (A;;) reaching ~ 10** elements, too large to be handled by any computer at

present.

For the specialist case when (A = I) the method is reduced to the explicit scheme. To
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advance the solution in time the implicit method needs to solve the system of equations
expressed in Eqn 3.44. In the case of multi-dimensional problems, where matrix (A4;;)
is a very large sparse non-symmetric linear system, it is impossible to solve Eqn 3.44
exactly. As a consequence the use of iterative methods is the only alternative to achieve
a solution. The methodology used in the current scheme is through implementation of
the Bi-CGSTAB(I = 1,2) method. A complete description of the Bi-CGSTAB(l = 1,2)
algorithm can be found in the works of Navarro-Martinez [47]. In the present code the
matrix solver is the most CPU consuming process as a result the use of iterative methods

has an increased overall cost penalty per time step.

Once the vector of variation of the conserved variables (6U;) has been computed, the

variables are updated in a simple manner as follows

Uttt = U7 + 0U; (3.45)

The system of equations in Eqn 3.44 is solved at every time step, until a stopping criteria
is met. The density is usually the variable with the slowest convergence, therefore the

density residual at the (n) time level (Res}) defined with the (L1) norm as

(’PllG -1 |

Res Z

(3.46)
cells
is used to monitor convergence. A steady solution is found when (Res ) drops below 10~7

in the implicit calculations.

3.7 Parallel Processing

The use of multiple processors for running three-dimensional codes considerably reduces
the computational time consumed to achieve a converged solution. This time saving occurs
because the tasks are split between processors which in turn reduces the RAM memory load
per node. Therefore an additional benefit of using parallel codes is the ability to use more

densely packed grids, which has great benefits because this increases the overall accuracy
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of the final solution. Flow structures and features are more clearly defined as a result
and it also allows the smaller flow structures to be captured. Using multiple processors is
necessary in three dimensional cases, because the large number of cells makes the use of

single processor machines impractical at present.

The parallel version of the three-dimensional C-code uses MPI subroutines to permit
communication between nodes. It is important to minimise the exchange of informa-
tion between processors to increase the overall speed of the code. Correct management
of these subroutines is compulsory to fulfil the memory requirements. Moreover, an ex-
cess of packages passed between nodes produce delays when running the program due to

communication processes.

Z
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Figure 3.4: Distribution of computer nodes over the three-dimensional space (£,7,¢) [47]

For the present three-dimensional problem the computational block (&, n, ¢) is equally split
in the (¢)-spanwise direction (see Figure 3.4). Every node interacts with its neighboring
processors by updating the dummy cells after each iteration. For a first order scheme only
one row of cells is required in each boundary for the communication process however, in
a second order case like the MUSCL scheme, two rows are required to reconstruct the

solution properly across processors.

The numerical simulations were carried out using a Beowulf type Linux cluster at the

University of Southampton. The code was run using Pentium III 800 MHz processors,
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each with 512 MB RAM or P4 1500 MHz processors, each with 1 GB RAM.

Parallelization efficiency is measured as the optimum number of processors required to
give a steady state solution in the least amount of time. For the coarse and intermediate
grids studied, for the average explicit three-dimensional run, it was found that using 12
processors was the optimum setup and a steady state solution was achieved in ~ 300 hours
of CPU time. For the fine grid studies however, it turned out that using 20 processors was
the optimum, with a steady state solution achieved in around ~ 720 hours of CPU time.
The jobs were submitted to the computer cluster via a job queue, which was often quite
long. This resulted in the actual run times (real time) of the simulations being very long.
The (real time) required to run a three-dimensional simulation for a grid 232 x 204 x 180

to convergence was approximately 50 days.

3.8 Numerical Grid Generation

In CFD simulations the computational grid plays a decisive role in determining the ac-
curacy of the numerically generated solution. Broadly there are two types of meshes,
"structured” and ”unstructured”. Unstructured girds are composed of non-ordered dis-
tributions of irregular polyhedra cells that cover the domain, and adapt well to complex
geometries. Despite the good performance of these grids, they are affected by spurious
errors associated with the viscous terms [57] and are difficult to handle because they need
a complex connectivity matrix to locate each cell and its interacting neighbours. Struc-
tured grids consist of completely ordered cells, preferably orthogonal, that fill the domain
and are usually indexed (i,7,k). The referencing system is much simpler when compared
to unstructured grids, and furthermore the method is computationally inexpensive to im-
plement. In addition, this type of grid produces less instabilities and deals better with

viscous contributions.

Taking advantage of the robustness and stability of the current numerical scheme, the
numerical code solves the discretised equations on a structured computational grid. Part
of the grid generation procedure is undertaken using a commercial grid generation package

called GRIDGEN.V.14 [38]. Throughout this work GRIDGEN.V.1} is used initially to
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generate two-dimensional grids in the (§,7n) plane. These grids are later extended to the
third dimension (¢) by simple stretching functions. For the unswept grids, the function

assumes (¢ = ((z) ) only, and for the swept-fin example assumes ( ¢ = ((z,y,2) ).

7 =2

Figure 3.5: Sketch of the physical (z,y) and computational (£, 7) space

To study the effect the grid type has on the numerical solution; two types of grid were
generated using an algebraic method, the H-type and C-type. For both grid types the
physical space (z,y,z) is mapped into the computational space (&, 7, (), retaining the or-

dered structure and the orthogonal properties (see Figure 3.5).

3.8.1 Grid clustering

Grid stretching is the ratio of distances between adjacent grid points along a grid line.

EA EA i

.)0/4
L i+1, ]

i,
-1, )

Figure 3.6: Tllustration of grid stretching

max (A&, A1)

Stretching is defined so that (S > 1), this parameter can also be expressed as a percentage

(S% = (S — 1) * 100%).
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One-dimensional hyperbolic tangent stretching [38] is used in all regions to distribute the
cells along the grid connectors. This type of stretching has been used in several numerical
works, since it provides an effective way to smoothly vary the cell spacing along a line.
On the current series of grids, grid clustering is implemented in all three spatial directions
of the computational domain (&,7,¢). In the (£, () plane, points are clustered towards
the plate surface in order to resolve the laminar boundary layer and to get an accurate
measurement of heat flux on the plate. In the (n,() plane, points are clustered near
the leading edge in order to accurately resolve the leading edge shock, and also clustered
towards the fin edge so the flow is accurately resolved in the separated region. Points
in the (£,n) plane are clustered towards the plane of symmetry so that features close to
the centerline of the fin are accurately captured. Taking advantage of the symmetry that
exists on the fin/plate, only half of the configuration is used to construct a computational

domain.

Grid stretching during the clustering process can lead to the presence of skewed cells in var-
ious quadrants in the computational domain. This can subsequently lead to the generation
of perturbations during the simulation that may partially or completely destroy the numer-
ical solution. A general rule is to keep stretching below 15 — 20% to keep numerical errors
within bounds. This is especially important in regions with strong flow gradients [48].
As a result of using individual explicit and implicit numerical algorithms independently
to attain the final converged solution, considerable care is taken when implementing the
clustering criteria. This is mainly because the implicit algorithm is particularly sensitive

to instabilities due to large time steps.

i, j+1

i, j-1

Figure 3.7: Tllustration of grid Orthogonality

An elliptic solver is run on the (£,7) plane of the grid block in the physical domain. The

elliptic solver improves the orthogonality of the mesh, especially in those regions where
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the cells intersect with sharp or convex corners. Grid orthogonality (see Figure 3.7) is the

angle that a grid line makes with the other grid lines intersecting at a grid point.

Orthogonality is defined so that (§ < 90°). General rule is to keep orthogonality as close
to 90° as possible, especially normal to solid surfaces to provide accurate estimates of
the normal to the walls for wall boundary conditions. A minimum angle is probably 45°.
Orthogonality is also very important on the plane of symmetry since skewing will create

a strong grid dependence on this plane.

3.8.2 Three-Dimensional Extension

For the unswept-fin computational grid, the third dimensional variable of the computa-
tional grid (¢) has been chosen to be a function of (z) only. A simple compression technique

through a control function (¢) is performed [57].

z=1((,C) (3.48)

(1)) stretches the grid towards the (z)-edge or the flat plate. (C”) is a user given constant
that increases or decreases the degree of stretching. In the present work, (¢) is a function

in the form

c'¢c
p= 1 (3.49)

e —1
where () is the coordinate (¢) normalized to have values between 0 and 1.

The following figures illustrate the type of grids generated using the methods outlined in
this section. Figure 3.8:(top) is an example of a H-type grid with Figure 3.8:(middle) illus-

trating a C-type grid. A modified version of the C-type grid is shown in Figure 3.8:(bottom)
1

L. The (z,y,2) physical coordinate system shown is transformed to (£, 7,¢) in the computational coor-

dinate system

70



S.J.VITHANA

3.8 Numerical Grid Generation

0 N
i
g
IR
IR
IR

==

/)
W

7
7

3

\\\“\\g%.."....? x > 5
N , o
RN (i o
RN ol )
e g
il ga
N 2ot o
L i o
e _
i .
il -
ey
il -
\\\gg&s Ny =S
Ll \ NN e
G N N SasSs
sy I ONNNN NN NS
R U NS
RN
'// II'..
QRN

=

/
{ N
RN /// '01\\
W N
N

O
%

(top) H-type grid (middle) C-type grid (bottom) C-type Hybrid grid
71

Figure 3.8



3.8 Numerical Grid Generation S.J.VITHANA

3.8.3 Grid Properties

When computing flows which have boundary layers growing over walls or flat surfaces,
require the grid to be clustered normal to the wall or flat surface in order to resolve the
large gradients present through the boundary layer. As a consequence, it is important to
define a set of variables that can used to quantify grid ”quality” so that it is possible to
measure the ability of a selected grid in being able to give an accurate solution to the flow

problem.

One such factor is the "Reynolds number per cell”, (Rej,) defined as,

Rey, = Lol (3.50)

where (h) is the height of the cell and (co) denote free stream conditions. The (Rep)
coefficient is a measure of the number of grid points across the boundary layer, and is
representative of the grids ability to capture the inner deck of the ”triple deck theory” 2.
Generally, the smaller the (Rey,) coefficient, the better the grid is in being able to capture
the low deck of the boundary layer. The minimum (Rep,) is located in cells next to the

blunt-fin and the leading edge.

Another important parameter is the cell dimension ratio (Axz/Ay), which due to mesh
stretching reaches its maximum next to the plate. Very large or small ratios increase the
oscillatory effects in second order schemes. Best results are obtained with values close to
unity. Unfortunately, there are no analytic forms to determine the optimum ratios and
empirical tests should be done. The coefficients for different grids evaluated at the leading

edge are shown in Table 3.1.

The recommended grid parameters of Katzer [41] for Shock-Boundary Layer Interactions,
near separation, (Az/Ay < 20) and (Rej, << 100) are followed to accurately capture the

low deck displacement.

2_ Triple deck theory states that there are three decks within the boundary layer: the outer deck is largely
potential flow, the middle deck covers most of the boundary layer profile and is comprised of rotational,

inviscid, disturbance flow, and finally the inner deck close to the surface contains viscous disturbance flow.
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The quality of the grid is also assessed against an additional set of criteria usually used on
flows with turbulent boundary layers. The parameter (y+) is a non-dimensional distance
measured normal to the wall measured across the turbulent boundary layer. This variable

is defined as:

y+ = yi“prw (3.51)

w

where the variables with the (w) subscript represent the values at the wall. The general
rule is that the first grid point off the wall should have (y+ < 1) to accurately define a
turbulent velocity profile. It can go up to (y+ = 5) for less accuracy. Resolution of heat

fluxes requires (y+) to be about 0.1 [48].

The grids used in the following simulations will use all three parameters defined to measure
grid quality, therefore assuring that the grids are effective in determining the most accurate

solution.

H-Type vs C-Type

To assess the merits or shortcomings of both the grid types to yield an accurate solution
to the problem in terms of numerical accuracy and time dependency, two test grids with

identical grid densities (43 x 40 x 36) were run, and the solutions compared.

From the resulting simulations the following observations were made. When using the
explicit method under a first-order scheme, it was observed that when using the H-type
grid it was possible to run the scheme using higher explicit CFL numbers when compared
to using the C-type grid. As a direct consequence the H-type grid gave a faster converged
solution to the flowfield. However, due to the grid mapping technique the grid cells near the
curved blunt section of the fin were highly skewed, even though an elliptic solver was used
to smooth out these regions. This had a direct adverse affect on the numerical solution.
This was expressed as numerical irregularities in the final solution. These irregularities
were localised near the line of symmetry close to the blunt fin section, and manifested as

”kinks” in the contour results of the solution parameters. In contrast the C-type grid did
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not appear to suffer from this problem.

As a result of these observations, and taking into account the competing factors; it was
decided that all subsequent numerical simulations of the blunt-fin were to use the C-type

grid.

To better mimic the leading edge properties of the flat plate a modified C-type Hybrid was
also tested. It was found that the new grid gave improved resolutions in the leading edge

shock and the subsequent boundary layer.

Grid Studies

For this case two baseline grids (labelled A1 and A2) were generated, (43 x 40 x 36)
and (58 x 51 x 45) respectively. To obtain finer grids these two grids were doubled and
redoubled to obtain grids type B and C. Properties of these grids are shown in Table 3.1:

Grid Type | Ax/Ay | Az of smallest cell | Rep | y+
(x fin diameter)

43 x 40 x 36 Al 15 0.008D 88 | 6.61
58 x 51 x 45 A2 15 0.008D 82 | 5.35
86 x 80 x 72 B1 10 0.004D 65 | 3.67
116 x 102 x 90 | B2 8 0.004D 44 | 1.16
172 x 160 x 144 | C1 6 0.002D 17 10.92
232 x 204 x 180 | C2 4 0.002D 8 10.73

Table 3.1: Grid properties for 5mm diameter blunt-fin

From preliminary tests, it was found that a higher resolution of grid points was necessary
in the boundary layer region in order to obtain a suitably well converged surface heat
transfer rate solution. As a result of the grid clustering process, the shorter cell lengths
close to the surface necessitate a shorter time step hence requiring a significantly higher
number of time steps to reach a prescribed time level. Therefore using very fine grids for

all three-dimensional simulations was not practical due to excessive computational and

74



3.8 Numerical Grid Generation S.J.VITHANA

time demands. As a result of these restrictions very fine grid-dependent studies were only

undertaken for the unswept 5mm diameter fin case.

It was found that grid type B2 was the minimum requirement as a standard to give
reasonably well defined surface heat transfer profiles. Hence from Table 3.1 it is clear that

grid types B2, C'1 and C2 would give the best solutions to the flow problem.

In a similar fashion, for the 10mm diameter fin two baseline grids were generated, (58 X
51 x 45) and (78 x 72 x 60). To obtain finer grids these two grids were doubled to obtain

grid type B. Properties of these grids are shown in Table 3.2:

Grid Type | Ax/Ay | Az of smallest cell | Rep, | y+

(x fin diameter)

58 x 51 x 45 Al 15 0.008D 82 | 5.35
78 X 72 x 60 A2 10 0.004D 71 | 3.89
116 x 102 x 90 B1 8 0.004D 44 | 1.16
156 x 144 x 1204 | B2 ) 0.002D 22 | 0.98

Table 3.2: Grid properties for 10mm diameter blunt-fin

The simulations carried out for the 5mm diameter fin with 30° sweep are mainly for
comparison purposes, hence fine grid studies were not necessary. The properties of this

grid are shown in Table 3.3:

Grid Type | Ax/Ay | Ax of smallest cell | Rey, | y+

(X fin diameter)

58 x 51 x 45 Al 15 0.008D 82 | 5.35

116 x 102 x 90 | B1 8 0.004D 44 | 1.16

Table 3.3: Grid properties for 5mm diameter blunt-fin with 30°sweep
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3.9 Three-Dimensional Linear Interpolation

When using very fine three-dimensional grids to simulate complex flowfields like the present
blunt-fin/plate example, starting the simulation from the beginning to achieve a steady
state solution takes a considerable length of time. For an explicit scheme, this is primarily
due to the small time step as a result of small grid cells in fine meshes. Experience
has taught that for a complex flow like the blunt-fin/plate, the time taken to establish
the inviscid flow structure could account for 50% of the total time taken to achieve a
converged solution [47]. As a result, cutting out the time taken to reach this inviscid flow
state could save considerable CPU time, and computational resources when attempting

to attain a steady state solution for a fine grid simulation.

To solve this problem a pre-established flowfield result from a coarse grid is interpolated
to the finer grid using a linear interpolation scheme. The interpolated result is then used

as a starting point solution for the fine grid to start the final simulation.
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Figure 3.9: (left) Reference system (right) illustration of interpolation scheme

From Figure 3.9, the reference system for the large grid shows that points (0,0) and (0, 1)
correspond to cell centres (4,7) and (i + 1, j) for the coarse grid, similarly (1,0) and (1, 1)
correspond to cell centres (i,7 + 1) and (i + 1,5 + 1).

We define the finer grid cell centre locations with the lower case (x,y,) coordinates. Next

we define parameters (h;) and (h,) for a generic cell as
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hy = xp — X[0][0][K] (3.52)

hy = yp — Y[0][0][£] (3.53)

where (2, yp) are the coordinates for a generic cell on the finer grid and (X[0][0][k], Y'[0][0][k])
represents the cell centre for a generic cell on the coarser grid, in accordance with the ref-

erence system shown in Figure 3.9.

If we define points ( (z1,y1); (22,y2); (23,y3); (x4,y4) ) as the locations of the cell cen-
tres according to the reference system shown in Figure 3.9 and the variables (f1; f2; f3; f4)
which can represent anyone of solution variables (e.g. p, p, u, v, w, T, Mach number), at

the corresponding cell centre locations.

21 = X[O]0)[k]; @2 = X[][0)[K); 3 = X[O)[1]K]; =4 = X[[K] (3.54)
yl = YOJO)[k; y2 = YOk 93 = YIOJUI [k ya = YUK (3.55)
F1 = FION0K]; £2 = FOIOK]; £3 = FONNIK]; £4 = FOMIK (3.56)

defining the variable gradients as

Af B f2—f1
Az 22—zl (3.57)
Af 311
Ay = 33 (3.58)

The interpolated solution variable for the finer grid is given as (F[i][j][k]), where it rep-

resents any one of the solution variables like (p, p, u, v, w, T, Mach number).

FULIK = £1+ b + o0, (359

The benefits of using the interpolation scheme can be seen when comparing the residual

convergence histories in Figure 3.10 with Figure 3.11.
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Figure 3.10: Convergence history for the density residual using an interpolated solution (left)

with respect to non-dimensional time units (right) number of iterations
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Figure 3.11: Convergence history for the density residual using a standard solution(left) with

respect to non-dimensional time units (right) number of iterations

Figure 3.10 shows the convergence history for a grid of (86 x 80 x 72) which was run with
a first-order scheme, using an interpolated solution from grid (43 x 40 x 36). Figure 3.11
shows the convergence history for the same grid of (86 x 80 x 72) run using a first order
scheme, however this example was started from the beginning, and run till convergence was
achieved. The time it took to reach a pre-defined converged separation length of (zg/D
= -7.229) was compared for both grids. The interpolated (86 x 80 x 72) grid took ~30,000
iterations to achieve the desired separation length, whilst the normal (86 x 80 x 72) grid

took ~60,000 iterations to attain the same separation length. Therefore it is quite clear to
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see the potential benefits in using the interpolation method to give considerable savings
in CPU time. As a result, grids B1, B2, C'1 and C2 were all simulated using interpolated

solutions.

3.10 Three-Dimensional Grid Convergence Studies

In the present study, the numerical solution was assumed to be convergent when the
separation length (xg), defined as the length from the base of the blunt-fin to the point
of boundary layer separation, did not appear to change with time. One unit of time is
characterized as the ratio of the reference length to free stream speed (Lyef/Ux). The
reduction of the density residual to a predefined value of 107!2 in the explicit calculations
and 1077 in the implicit scheme was also considered to be an additional condition for a
converged solution. The residual is a comparison of density with the iteration number,

and is defined in Eqn 3.46

3.10.1 General Criteria

In the present study we are only interested in the final steady state solution. The following

convergence criteria is found to be generic to all the test cases.

Extensive test case simulations showed that the numerical scheme was very sensitive to
the initial time step. Although it might be expected that the implicit approach would
circumvent such restrictions, in practice starting the simulation using an initial implicit
time step resulted in the numerical solution becoming unstable and eventually collapsing
with the code exiting prematurely with an error. The problem manifests itself when the
wavespeeds in the Riemann solver grew exponentially until they could not be handled by
the inviscid solver. It is important to note that physically inconsistent initial conditions
lead to problems in the implicit boundary conditions even for small initial time steps. The

explicit scheme is less sensitive to the initial conditions.

In this case, the viscous and inviscid time constraints are of the same magnitude and a

pure explicit scheme with a (CFL = 0.6) was found to be convergent. Shown in Figure 3.12
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is the convergence history for grid B1 (86 x 80 x 72) for a converged solution in first and

second-order.
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Figure 3.12: Density residual convergence history for grid 86 x 80 x 72 using different MUSCL

(k) factors (left) with respect to non-dimensional time units (right) number of iterations

As shown in Figure 3.12 the first-order solution required the least number of iterations
and expense in time to achieve convergence according to the residual criteria. Although
the residual in the second order method appears to flatten out, this does not imply that
the solution has converged or that the solution is wrong. This point is considered in more
detail later in this section. An important observation to make is the large number of
iterations required under the explicit scheme to achieve convergence, as a result it is clear
that using the explicit method on the higher density grids, grid types B2, C'1 and C?2 is

impractical primarily due to time restrictions.

To navigate this problem a mixed explicit/implicit method is used. For the three grid types
mentioned earlier, after obtaining a linear interpolated solution from its respective lower
grid density counterpart, the flowfield solution is used as a starting point in the explicit
scheme, using an initial explicit (CFL = 0.4). Once the explicit flowfield solution neared a
state where the flow features had established themselves, usually after 1~2 units of time,
the explicit solution was used as re-start solution under the implicit method starting with
an initial (CFL = 0.4), progressively increasing at a ratio of 1.1 to a (CFL = 14) until the
solution converged, as shown in Figure 3.13. The MUSCL factor used is (k = 0.6).
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3.10.2 Criteria for 5mm diameter blunt-fin

To accurately resolve the inviscid and viscous flow features, the MUSCL minmod slope
limiter is used. Table 3.4 gives an indication of the maximum allowable MUSCL factor
(k) that would give a converged result for each of the grids used, and Table 3.5 gives the

resulting impact of various MUSCL factors on separation length.

Relative oscillation-free results were obtainable using a MUSCL factor (k ~0.5) for all the
grids. However it was discovered that considerably more detail of the flowfield could be
captured at the higher MUSCL factors. For grid types BI, B2 and C1 using a MUSCL,
(k =~ 0.7), the residual convergence was observed to be unsteady and oscillates at a value
of ~ 107°, much higher than the pre-set convergence limit. However, the primary marker
stipulated for convergence - the separation point upstream of the fin on the plane symmetry
- was observed to reach a stationary value. Using MUSCL factor values of (k > 0.7) was
found to give highly unstable oscillations in the residuals and produced features which
were deemed non-physical. These were numerical effects and not necessarily a measure of

the instability of the flowfield.

81



3.10 Three-Dimensional Grid Convergence Studies S.J.VITHANA

Grid Type | Maximum MUSCL (k)
43 x 40 x 36 Al 0.7-0.8
o8 x 51 x 45 A2 0.7-0.8
86 x 80 x 72 B1 0.6 - 0.7
116 x 102 x 90 B2 0.6 - 0.7
172 x 160 x 144 | C1 0.6 - 0.7
232 x 204 x 180 | C2 0.5-0.6

Table 3.4: Various grids with maximum MUSCL(k) factor

Grid Type | First Order | MUSCL (k)= 0.5 | MUSCL (k)= 0.7
43 x 40 x 36 Al -6.887 -6.851 -6.823
o8 x 51 x 45 A2 -6.978 -6.927 -6.907
86 x 80 x 72 B1 -7.229 -7.157 -7.117
116 x 102 x 90 B2 -7.461 -7.389 -7.345
172 x 160 x 144 | C1 -7.664 -7.574 -7.531
232 x 204 x 180 | C2 -7.648 -7.582 -7.533

Table 3.5: Various grids with the maximum MUSCL(k) factor possible, and variation of final
separation length (xs/D)

Another competing factor that appeared while running the simulations was that, as the
grid densities increased, the maximum allowable MUSCL factor to give a converged so-
lution decreased. As a result of the above observation, the maximum value of (k) which
can be applied to give a converged solution is somewhere between 0.6 and 0.7 for grid
types A1, A2, B1, B2 and C1 apart from grid C2. For grid C2 the maximum MUSCL,
(k = 0.6) to give a converged solution. The results between grid C1 and C2 were found
to be nearly indistinguishable because it was found for these two grid types the MUSCL
step had a negligible effect on the surface heat transfer rate solution. This is due to the

boundary layer solution being sufficiently resolved by the grid clustering alone. This also
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suggests that, in this case, the sharpening of flow features away from the surface has little
effect on the boundary layer flow. After consideration for the sake of consistency, a value

of (k = 0.6) is used throughout the set.

The code was run using a number of individual runs ”sub-runs” before convergence was
achieved, (this was because of the time and processor limitations associated with running
the code on the computer cluster). The residual plot in Figure 3.14 - which represents the
residual convergence for an unswept 5mm diameter blunt-fin on a flat plate, simulated
under a (My = 6.7) flow with a unit Reynolds number of (Re/l = 7.6 x 10°m~!) - was
started using a preliminary converged solution, at the end of each run the separation
point is noted and indicated on the convergence plot. Convergence was attained when
the location of the separation point remained unchanged between runs. As can be seen in
the case illustrated, the separation point stays constant at a value of 7.117 diameters (see

Figure 3.14).
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Figure 3.14: Convergence history for 86 x 80 x 72 and tracking the separation point
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3.10.3 Criteria for 10mm diameter blunt-fin

The 10mm diameter blunt-fin was plagued with serious convergence difficulties when using
MUSCL factors (k > 0.6), primarily due to the increased interaction zone - separated
region - present due to the larger fin diameter. As a result, for these simulations the
maximum allowable MUSCL was limited to (k = 0.6). Although the residuals oscillated
a lot at values of (107% - 107° ), convergence was achieved through an eventual constant

separation length.

The convergence plot for a grid (156 x 144 x 120) is shown in Figure 3.15
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Figure 3.15: Convergence history for 156 x 144 x 120 and tracking the separation point

The residual plot in Figure 3.15 was started using a preliminary converged solution. As
was mentioned in the earlier 5mm case, the discontinuities or ”spikes” in the convergence
plot are a result of either changing the MUSCL (k) factor, or the CFL number for that

particular run.
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3.10.4 Ceriteria for 5mm diameter blunt-fin with 30°sweep

The 5mm diameter blunt-fin with 30°sweep had no difficulty in achieving a converged
solution when using MUSCL factors, (k > 0.6), however to maintain consistency in the
results the maximum MUSCL was limited to a (kK = 0.6). The residual convergence for
a grid (58 x 51 x 45) using the explicit method is shown in Figure 3.16. The data in the
Figure is for a first order scheme, after 8 units of time the simulation was restarted with

a MUSCL factor (k = 0.6) till convergence was achieved.
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Figure 3.16: Convergence history for 58 x 51 x 55

3.11 Three-Dimensional Grid Convergence Error
The most widespread and reliable methods to asses the grid convergence for complex
numerical problems are based on the Richardson extrapolation [51]. The starting point is

a grid refinement study with at least a converged solution on two grid sequences, the ratio
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between the number of cells on the two sequences being variable. In its general form, the
Richardson extrapolation uses the solution on the two grid sequences and the knowledge
of the nominal order of accuracy of the numerical scheme to produce an error estimate
in the numerical solution. However, this approach can be misleading in that the nominal
order of accuracy can be quite different from the real or observed order of accuracy. This
discrepancy between the nominal and observed order of accuracy is particularly large for
high-speed compressible flows that have shocks. In most numerical codes, the numerical
methods used to tackle high-speed compressible flows are second order, upwind schemes,
mainly due to their accuracy and stability properties. However, in order to avoid non-
physical oscillations around shocks, limiters are used. Limiters reduce the order of accuracy
of the scheme to first-order in the regions across the shock (see Chapter 3, Section 3.3.3).
As a result, it is necessary to use a generalised Richardson extrapolation by Roache [51]
that employs the discrete solutions on three different grid sequences called the ” Mixed 15

+ 27@ Order Extrapolation”.

3.11.1 Mixed 1% 4+ 2" Order Extrapolation

The Richardson extrapolation procedure is based on a series expansion of the discretization

error, (DE), on the grid level (7):

DE@ = fz - fexact (360)

where (fezact) is the exact solution to a predicted value of some function and (f;) is the
solution on grid level (7). On a uniform grid the series expansion for the solution may be

written as,

fi = fea:act + O(ab) (361)

where ( O(a®) ) represents higher order terms (similar to the Richardson extrapolation [51]).

Here

86



3.11 Three-Dimensional Grid Convergence Error S.J.VITHANA

a ~ +/(dzdy) (3.62)

where (dx) and (dy) is the cell spacing in the (z) and (y)-directions respectively. Eqn 3.61

can also be written as,

fi = fewact + C(a") (3.63)

where (C) and (b) are constants. If this expression is used on three successive grids with
the assumption that the finest grid would have the closet solution to an exact solution, an
estimate of the error may be obtained. The value of (b) is the formal order of accuracy of

the algorithm and is given by:

(ln(fls - f22) - ln(flz — fll)

b= In(r)

(3.64)

where (fi,, fiy, fis) are the results for a solution parameter at a location (i) from three
successive grids, and (r) is the refinement factor. In the grid sequencing performed in this
study, (r) is theoretically constant since the number of grid points is halved/doubled in
each spatial direction between two consecutive grid levels. Thus, the overall refinement

factor is 8 (2 x 2 x 2) between two grid levels.

According to Viti [62] the "Mixed 1% 4 2"¢ Order Extrapolation” produces the best
error estimation for non-monotonic solutions by best implying it is the most conservative
and that it is the closest to the true error. Therefore the discretization error given by
Roache [51] for a predicted solution variable (f) between the fine grid; compared to a

coarser grids is given by:

DEfine = % (3.65)

Note (f;) can be the solution of any flow parameter at a point in the domain. In the
present study, this error analysis is conducted for the (St) number and (C) coefficient for

successive grids in the grid refinement section.
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Chapter 4

Numerical Test Cases

4.1 Introduction

The stability and accuracy of the original three-dimensional numerical scheme was throughly
tested and validated against several three dimensional ! test cases by Navarro-Martinez [47).
However, to test the stability and accuracy of the current code after the new modifications,

two fully three-dimensional test problems are computed.

In the primary test the code is validated for a three-dimensional flat plate exposed to a
hypersonic flow with the Reynolds number controlled to ensure the formation of a laminar

boundary layer over the flat plate.

The primary objective of the second test was to check the accuracy and functionality of
the new method implemented to calculate the three-dimensional metrics. For this purpose
the code is used to solve for a supersonic flow over a cylinder/flat-plate configuration. The
numerical results are compared against the experimental results of Ozcan & Holt [11] for

the same configuration.

L. Orthogonal in the (z) direction of the physical domain, or (¢) the direction in the computational

domain
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4.2 Three-Dimensional Laminar Flow over a Flat Plate

4.2.1 Introduction

The primary test aims at simulating a hypersonic flow over a three-dimensional sharp flat
plate, paying close attention to the formation of the leading edge shock and the growth of
the viscous boundary layer. The current analysis will only focus on aspects of the three-
dimensional flow along the plane of symmetry on the centerline of the plate. Effects of

the three-dimensional flow structure due to the side edge of the plate are ignored.

The flat plate used to model the computational grid is based on the dimensions of the
blunt-fin attached flat plate used by Schuricht [53]. The plate has a total length (Lipta=
205mm), with a reference length (L) of 145mm, and a width (Lyiag) of 102mm. The
length scale on the computational grid is non-dimensionalized with respect to the reference
length (Lycr). The computational grid will only simulate half of the plate taking advantage
of the symmetry that exists. The grid used for the flat plate simulation is a C-type Hybrid
grid, and is identical to the grid used to study the blunt-fin.

Selecting the C-type Hybrid grid for this simulation will serve two purposes. For the
primary case, it will a give an indication of how well the C-type Hybrid grid is able to
accurately solve the flat plate problem, secondly the heat transfer results obtained from the
current simulation will represent a heat transfer solution from an undisturbed flat plate
and will be used to normalize the heat transfer data obtained from the blunt-fin/plate

simulations, as done by Schuricht [53] in his experimental results.

It is noteworthy that, while all fluid problems are governed by the same equations, namely
the full Navier-Stokes equations, what distinguishes one flow from another are the bound-
ary conditions and the Mach number. Therefore although the current C-type Hybrid grid
is generated using the geometric dimensions of the blunt-fin on a flat plate, the defini-
tion of the flat plate boundary conditions in three-dimensions for the C-type Hybrid grid
are modified accordingly so that the presence of the blunt-fin is effectively erased to the

incoming flow. An example of the flat plate C-type Hybrid grid is shown in Figure 4.1.

The plate configuration is exposed to freestream Mach number of 6.7 with a unit Reynolds
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Figure 4.1: three-dimensional flat plate grid

number of (Re/l = 7.6 x 10%n~1). The initial conditions for the three-dimensional test
simulation are a gas at rest in thermal equilibrium with the the plate surface. To allow
for quick propagation of the incoming shock wave, the initial density was chosen to be 5%
of the freestream density. In the present study we are only interested in the final steady

state solution.

4.2.2 Numerical Results

The leading edge of the flat plate is the initial source of disturbance to the freestream and
the grid resolution in this area could have a significant effect on the solution at the leading
edge and, therefore, the low downstream. Similarly, the grid resolution in the boundary
layer region could be critical to the accuracy of the boundary layer solution and affect the

prediction of surface quantities.

To demonstrate that the grid clustering implemented on the C-type Hybrid grid near the
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leading edge and near the plate surface is optimized to capture the leading edge shock
and laminar boundary layer, a comparison is made with the empirical correlations of
Eckert [19] for skin friction coefficient and Stanton number. The definition of both these
parameters can be found in (Chapter 2, Section 2.2). The resultant comparison is shown
in Figure 4.2. It is important to stress however, that the grid clustering in the blunt-fin
grid is dictated by features associated with separation well downstream of the leading
edge. As a result this will account for some of the discrepancies observed near the leading
edge in the numerical results, however this should be quite minimal. The numerical results
are obtained with a first order scheme using a (172 x 160 x 144) grid. Five grid cells are
allowed between the inflow and the leading edge of the flat plate to allow the freestream

flow to establish and to avoid boundary influence.

The Stanton number and skin friction coefficient profiles shown in Figure 4.2 display an
initial decay in the downstream direction away from the leading edge which follows the
(x_%) curve associated with laminar flat plate flow. Theoretically, the heat transfer rate
is infinite at the leading edge, although this is not actually determined as the leading
edge lies between two grid points. As the boundary layer growth rate eases and the
boundary layer thickness increases at a more moderate pace, a slowly decaying distribution
can be observed. All correlations produce an excellent agreement for (z/L,ey > 0.2).
However, slight differences appear in the calculated values for skin friction coefficient and
Stanton number in the region (x/L,.y < 0.2), near the leading edge of the flat plate. This
discrepancy in the calculated values in this region is most likely the result of strong viscous
interaction, as discussed in (Chapter 2, Section 2.2). The reference temperature method

of Eckert does not take into account viscous interaction [47, 19].

In (Chapter 2, Section 2.2) it was discussed that a region of strong interaction is assumed
to exist for (xy > 3) [2], (x) is defined in Eqn 2.15. A distance (x,) may be associated

with the threshold from strong to weak interaction, given by:

M6
Ty = 0

= 4.1
9R€/l ( )

where (Re Jl = %) is the Reynolds number per unit length. In the present case this
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Figure 4.2: (top) Comparison of skin friction coefficient between flat-plate grid of 172 x 160 x 144
and Eckert [19] (bottom) Comparison of Stanton number between flat-plate grid of 172 x 160 x 144
and Eckert [19]
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distance is estimated to be (2,/Lyey = 0.05). As a result Eckert’s empirical predictions
for Skin friction coefficient and Stanton number are unlikely to produce accurate results
in the strong interaction region where (x < x,), which is where the major discrepancies

are observed in Figure 4.2.

Figure 4.3: Density contours from symmetry plane

The density contours in the symmetry plane are shown in Figure 4.3. The weak leading
edge shock and laminar boundary layer on the flat plate appear to be clearly resolved by the
grid, and this profile is very similar to density profiles obtained by Navarro-Martinez [47]
and Amaratunga [1] for equivalent flat plate simulations using two-dimensional grids with
the same grid density. For a means of comparison, the leading edge shock angle measured
by Navarro-Martinez [47] for a flat plate using the same freestream conditions, and using
a H-type grid is ~ 10 degrees. The same angle measured from the current simulation using

the C-type Hybrid is ~ 11 degrees. The comparison appears to be reasonably good.

4.3 Cylinder Test Case

4.3.1 Introduction

The three-dimensional test scenario used to validate the new methodology for calculating
the three-dimensional metrics in the new code, is a supersonic flow over a cylinder/plate

configuration.
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Experimental data from tests undertaken by Ozcan & Holt [11] for this configuration will
be used to compare the numerical results obtained from the simulation. Also available
for comparison is additional independent numerical data from tests carried out by Lak-
shmanam & Tiwari [45] on the same configuration. The numerical algorithm used by
Lakshmanam & Tiwari was the MacCormack explicit predictor corrector, time split, finite

volume method.

4.3.2 Experimental Conditions

L =150.8 mm

Figure 4.4: experimental rig [45]

The experiments undertaken by Ozcan & Holt were carried out in 15 X 15 em supersonic
wind tunnel at the University of California Berkeley [11]. The overall dimensions of the
flat plate on which the cylinder is mounted is given in Figure 4.4, which also shows the

coordinate system chosen for data presentation.

The wind tunnel was operated nominally at a Mach number of 2.36. Laminar flow test
conditions were obtained by controlling the tunnel stagnation pressure. The tunnel stag-
nation values for pressure and temperature were (py = 24,000N/m?) and (Ty = 294K)

respectively.
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4.3.3 Numerical Modelling

The freestream velocity, temperature and pressure used in this numerical investigation are
(Uso = 567.3ms 1, Ty = 139.1K) and (poo = 1747.4Pa) respectively. These conditions
correspond to a freestream Mach number of 2.36 and a freestream unit Reynolds number
of the order 2.7 x 105m~!. The constant used for the ratio of specific heat () is 1.4. The

Sutherland model for viscosity is used for this simulation.
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Figure 4.5: Numerical grid

The mesh was generated using GRIDGEN.V.14 as described in (Chapter 3, Section 3.8).
The grid is a standard C-type grid with the grid clustered near the flat plate and in the
region surrounding the cylinder/flat plate junction. The geometric dimensions for the

mesh were taken from Figure 4.4. An example of the grid (58 x 56 x 50) is shown in

Figure 4.5.

The grid generated only models the front section of the cylinder, primarily because our
interests are only concerned with what is happening to the flow in front of the leading edge
of the cylinder, and its assumed that information concerning downstream effects do not
affect the flow upstream. The grid is based on a reference length (L;.r) of 150.8mm, a fin
diameter (D = 6.35mm) and a fin height of 50mm. Table 4.1 gives some grid properties.

95



4.3 Cylinder Test Case S.J.VITHANA

Grid Type | Azx/Ay | zg/D | Az of smallest cell

(X fin diameter)

58 x 56 x 50 A 15 7.4 0.006D

116 x 112 x 100 B 8 8.1 0.004D

Table 4.1: Grid properties for 6.35mm cylinder

The grids used for this study was an initial (58 x 56 x 50) coarse grid (Type-A), and a
doubled (116 x 112 x 100) fine grid (Type-B), (see Table 4.1). For the initial simulation
the coarser mesh was used to generate a quick solution for the flow field, once a near
converged solution was established the flow properties were interpolated to the doubled
grid and allowed to converge to yield a more accurate solution. The size of the first and
last (£) mesh cells are the smallest cells used in the domain, and are non-dimensionalized
with reference to the cylinder diameter (D), and is set to ensure sufficient resolution of
the viscous effects near the plate surface. For this test, grid properties similar to the ones
defined by Lakshmanam & Tiwari [45] are used. According to them the first mesh cell
off the wall is equal to 0.005D and was found to be sufficient to ensure resolution of the
viscous effects. Only two grid studies were undertaken mainly because the objective was

to check the three dimensional metrics and not the accuracy of solver.

Taking advantage of the symmetry that exits for the configuration at the symmetry plane
(j = 1), only half of the cylinder is solved. The boundary conditions imposed are: zero-
gradients exist for all primary variables at the outer boundaries in the (j = maz) and (k
= maz) directions. The cylinder has zero incidence, and a symmetry condition is imposed
at the plane of symmetry. The wall is also assumed impermeable, and no-slip boundary
conditions are applied. The wall is also assumed to be adiabatic, and the pressure gradient
normal to the wall is set to zero. The grid block has five cells ahead of the inflow boundary
to allow the freestream flow to establish and avoid boundary influence on the flow at the
leading edge. Freestream conditions are used to initialise the flow domain. The simulation
was run using 5 Pentium III 800 MHz processors on the Beowulf type Linux cluster, and

took one week to achieve a converged result.

For comparative studies, streamline contours, pressure profiles and velocity profiles in the
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symmetry plane and at several (z/D) locations are presented against the experimental
results of Ozcan & Holt [11] and the numerical results from a (40 x 100 x 50) grid by

Lakshmanam & Tiwari [45]. Additional results will show plate surface skin patterns.

4.3.4 Numerical Results

The salient inviscid features observed for this type of configuration exhibit all the char-
acteristics of a blunt-fin/plate type interaction. This type of interaction is described in
considerable detail in (Chapter 2, Section 2.5.2). The presence of shocks are indicated by
steep gradients in the density contours above the surface boundary layer, which in Fig-
ure 4.6 is highlighted by contour lines compressed together. Clearly seen is a weak plate
leading edge shock, a shock induced boundary layer separation shock, a bow shock formed
infront of the cylinder and a point where a shock/shock interaction occurs as a result of
the separation shock and bow shock intersecting. The ripple like characteristics as seen
on the leading edge shock further downstream of the leading edge is caused as a result of

poor grid resolution due to large coarse cells in the affected region.

Figure 4.6: Density contours from the plane of symmetry, indicating the structure of the inter-

ference interaction

This phenomenon is common to structured grids that are not always orientated in the
direction of an incoming shock, where grid oblique shock are modelled by pairs of grid-
aligned shocks. As a result, shock resolution would suffer in areas where the grid density

is low. A similar observation was made by Navarro-Martinez [47].

97



4.3 Cylinder Test Case S.J.VITHANA

Underneath the separation shock the separated flow turns into a vortex system which
develops downstream and in the span direction to produce a horseshoe vortex system

(refer to Chapter 2, Section 2.5.2).

PRIMARY VORTEX CORNER VORTEX —/

Figure 4.7: Streamline contours in symmetry plane by Lakshmanam & Tiwari [45]

Secondary Vortex Primary Vortex Corner Vortex

Figure 4.8: (top) Computed streamline contours in symmetry plane grid 58 x 56 x 50 (bottom)

Computed streamline contours in symmetry plane grid 116 x 112 x 100
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This vortex structure is clearly illustrated in the computed velocity streamlines shown
in Figures 4.7 and 4.8. The streamlines obtained by Lakshmanam & Tiwari [45] in
Figure 4.7, taken from the plane of symmetry along the centerline, show a two vortex
structure, with a primary core vortex and a smaller corner vortex. The present numerical
results identify a very similar structure as seen in Figure 4.8 with the main vortex core
and the corner vortex well captured. However, the results from the higher density grid
(see Figure 4.8:(bottom)) also indicates a second vortex localised at the plate surface.
This feature does not appear in the numerical results of Lakshmanam & Tiwari. However,
a closer observation of Figure 4.7 indicates a region just underneath the main vortex core
where there is a large deviation in the streamline paths close to the plate surface. This
could be indicative of a localised vortex, but as a result of poor grid resolution in this
region of Lakshmanam & Tiwari’s grid, this feature does not appear to be captured by

the numerical scheme.
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Figure 4.9: Computed skin friction streamline on plate surface of grid 116 x 112 x 100

The study of separation phenomena requires the visualization of the near-wall flow field.

A representation of the flow near the wall may be obtained from the numerical flow field

99



4.3 Cylinder Test Case S.J.VITHANA

by use of skin friction lines as shown in Figure 4.9.

The extent of the separation is characterized by the separation distance (rg), which is
measured from the primary separation line to the cylinder leading edge along the symmetry
axis. For laminar flow past long protuberances the extent of the separation correlates with
Reynolds number based on (L,.r), which is the distance between the flat plate leading
edge and the cylinder leading edge. This relationship was reported in (Chapter 2, Section
2.5.2).

Based on surface measurements by Ozcan & Holt [11] for the Reynolds number reported
in this study of 2.7 x 10°m ™!, they observed two distinct separation lines as shown in
Figure 4.9. In addition the observed streamline pattern in Figure 4.8 is consistent with

the presence of two separation lines ahead of the cylinder.
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Figure 4.10: pressure profile in symmetry plane [45]

The pressure distribution along the axis of symmetry is shown in Figure 4.10. It is apparent

that, in the experiment, the pressure begins to rise at about (z/D = -9) upstream of the fin
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leading edge. The pressure reaches a valley downstream of the plateau and then increases

across the detached bow shock.

There appears to be considerable differences in the computed pressure profiles when com-
pared with the experimental results of Ozcan & Holt; however there appears to be a good
agreement with the numerical pressure profile obtained by Lakshmanam & Tiwari [45].
The peak pressure point is accurately estimated, experimental values indicate a peak of
around 1.24, whereas computed values reach around 1.25, similarly the experimental pres-
sure peak appears to be ~ 3 diameters from the cylinder, this is well matched by both

computed results.

The computed results using the fine mesh, slightly underpredict the extent of separation.
Experimentally initial separation was observed to be at (zg/D = -8.5), the computed
separation point was at (xg/D = -8.1), which is a equal to the separation length calculated
by Lakshmanam & Tiwari [45]. The reasons given by Lakshmanam & Tiwari [45] for
the failure to match the experimental results, (e.g. like the predicted the length of the
pressure plateau region observed in the experimental data) is due to the flow going through

transition to turbulence in this region.

The computed and experimentally measured streamwise velocity profiles along the line of
symmetry are shown in Figure 4.11. The streamwise velocity component is nondimension-
alized with reference to the velocity (ue) at the edge of the boundary layer. In general,
the agreement between the computation and the experiment is quite good, except the
location and height of the separated flow region at (z/D = -2.4) are slightly underpre-
dicted by the numerical code. In the experiments, streamwise and vertical velocities (u
and (w) were measured by a single-component, forward scatter, differential (dual) beam

laser-velocimeter [11].

4.3.5 Viscous Cross-Derivatives

To physically quantify the impact on the numerical solution, by way of including the
viscous cross derivatives , two cases of the cylinder on a plate flate was simulated. The

first case just took into account the normal derivatives in all three spatial directions (&,
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Figure 4.11: (top) Streamwise velocity profile at z/D=-8 (middle) Streamwise velocity profile
at /D=-4 (bottom) Streamwise velocity profile at x/D=-2.4
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n and (). The second test looked at incorporating the additional cross derivatives mainly

the (¢) related derivatives, normal to the flow direction.

From the results it is revealed that the computation of the additional cross derivative
terms took about 4% more CPU -time/cycle than when computing just the same thin
layer terms. The effect this has on the numerical convergence is illustrated in Figure 4.12,
where it can be observed that the extra terms considerable increase the time required to

achieve a converged solution.
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Figure 4.12: Convergence history for cylinder with and without including the cross derivatives in

the viscous fluxes

Viscous Method Cy at Cy at
(x/D =-0.5) | (x/D = -1.0)
TSL -0.02216 -0.01428
Cross derivatives -0.02211 -0.01425

Table 4.2: Skin friction coefficient at various x/D locations for different viscous solvers
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Table 4.2 gives the calculated skin friction coefficients at two locations near the cylin-
der/flat plate junction, (x/D = -0.5) and (x/D = -1.0), the corner of two surfaces is where

the cross derivative terms might affect the numerical solution.

As the results indicate, inclusion of the viscous cross derivative terms has no appreciable

impact on the skin friction coefficient, and hence on the final numerical solution.

4.4 Summary of Test Results

The numerical results from the test simulations has shown that the numerical scheme using
a C-type grid is capable of accurately simulating a flat plate flow and the more complex

cyclinder/plate flow.

The flat plate results indicate that the C-type grid is able to accurately resolve the laminar
boundary layer and leading edge shock, thus making it suitable for use in blunt-fin simula-
tions. The numerical code has demonstrated that the accuracy achieved in the simulations
is quite sufficient and the results are comparable to those found by Navarro-Martinez [47]

and Amaratunga [1].

The results from the cylinder/plate flow show that the three-dimensional metrics are
working and are capable of solving a generic three-dimensional flowfield. The numerical
results show favourable comparisons with the experimental results and with further grid
refinement studies more accurate results could be obtained however, this was not the
primary aim of these initial tests. In addition, a comparison of the computed results
between Lakshmanam & Tiwari [45] and the current simulation show superior comparisons
to the experimental results and more detail about the flow field using the current numerical

method for the same grid densities.

Inclusion of the viscous cross derivatives in the cylinder simulations did not appear to
change the final result drastically, coupled with the additional increase in CPU time per
time step, does not warrant its inclusion in the viscous solver. As a result all subsequent

simulations will only compute the full thin layer terms in all three spatial directions.
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Chapter 5

Three-Dimensional Numerical

Results

5.1 Introduction

This chapter will present and discuss the results obtained from numerically modelling
several types of blunt-fin attached to a flat plate, exposed to a hypersonic freestream of
nitrogen gas. Experimental data obtained by Schuricht [53] for blunt-fins, particularly
from the unswept 5mm diameter blunt-fin on a flat plate, will be used as a reference
in the present study. The experiments carried out by Schuricht were conducted in the
Southampton University Light Piston Isentopic Compression (SULPICT) hypersonic wind

tunnel facility.

5.2 Experimental Details

The (SULPICT) wind tunnel facility uses nitrogen as the test gas. The running time is ap-
proximately 0.5 secs, long enough to consider to the flow to be steady. In the experiments
performed by Schuricht [53] the freestream Mach number in the working section was 6.7

with a unit Reynolds number of 7.6 x 106m~!. Schuricht believed that the subsequent flow
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in the interference region surrounding the fin remained laminar, however that turbulent

transition cannot be completely ruled out.

The stagnation temperature is approximately 600K, and results in local absolute temper-
atures which remain sufficiently low for the assumption of perfect gas flow to remain valid
throughout the domain of interest. The experimental run time is sufficiently short for
changes in the surface temperature to be considered as negligible, (typically AT, /T, <
0.03).

Figure 5.1: A schematic of the experimental rig used by Schuricht [53]

The experimental model consisted of a flat plate section 205mm in length and 102mm in
width. The width of the plate was limited by the core of the test section; this is 150mm in
diameter. A single blunt-fin, 60mm in length, was attached approximately 145mm from
the leading edge of the plate (to allow a substantial boundary layer to develop ahead of
the fin) and offset from the centerline by approximately 25.5mm (to allow a large heating
footprint to be observed. The fin had a height of 25mm and for a 0° sweep angle two
fin diameters are considered, (D = 5mm) and (D = 10mm). Additionally a fin with a
diameter (D = 5mm) with a sweep angle of 30° is also considered. A schematic of the

various blunt-fin configurations considered is illustrated in Figure 5.1.
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The transitional Reynolds number for this flow is assumed to be (Retmns =13x 106), as
a result transition should occur approximately 171mm from the leading edge of the flat
plate. This would appear to lie within the domain interest looked at in this study. However
it is clear that this region is well behind the blunt-fin leading edge and the separated region
of interest ahead of the fin. While transition might affect the heat transfer results from
171mm onwards the flow in the separated region ahead of the blunt-fin and the flow up to
(/D = +5) would appear to be laminar. Therefore in conclusion the Reynolds number
is sufficiently low for the attached flow ahead of the blunt-fin to remain laminar as well as

the flow in the separated region ahead of the blunt-fin.

The surface measurements recorded by Schuricht consisted of heat transfer maps obtained
by liquid crystal thermography, surface oil flow visualization and schlieren photography.
Apart from full heat transfer maps of the plate surface, heat transfer measurements were
also taken along the plate which coincided with the fin centerline or symmetry line and
at several points normal to the fin surface, coinciding at (/D = +1), (/D = +5) and
(x/D = 410) downstream of the fin leading edge. Oil flow and schlieren photographs
allowed estimates of the separation and reattachment lengths to be made. Schuricht
estimated that in regions where the liquid crystals have responded correctly the overall
uncertainty in the deduced value of the heat transfer coefficient to be in the region of
(£10%). For more detail on the experimental heat transfer measurement technique and

the related equipment refer to Schuricht [53].

5.3 Numerical Modelling

Numerical simulations of the three basic blunt-fin configurations described above are per-
formed using a constant specific heat ratio (y = 1.4) and a constant Prandtl number of
(Pr = 0.704). The transport properties ”viscosity” and ”thermal conductivity” are based
on the Lennard-Jones model [47]. A length scale based on the diameter of the blunt-fin
(D = 5mm) is used as a characteristic length for non-dimensionalising distances. The
resultant coordinate system is centered with ( (r,y) = O) set at the base of fin leading
edge. As a result distances upstream of fin leading edge are negative; downstream are

positive.
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Freestream quantities are calculated based on a Mach number of (My = 6.7), a unit
Reynolds number of (Re/l = 7.6x10°n ') and a stagnation temperature of (T, = 600K ).
The freestream temperature is obtained via the adiabatic relationship for temperature

given by
) -1
To = Tp (1 + '72M§O> (5.1)
The freestream velocity is given by

mn,

Use = Moor/7RT = Mo (5.2)
where (R) is the universal gas constant, (Ry) is the gas constant for nitrogen and (my,) is
the molecular mass of nitrogen. The freestream density is obtained from the unit Reynolds

number:

_ Re/lpso

= 5.3
p . (5.3)

with (pso) obtained from the Lennard-Jones model [47]. The freestream pressure is de-
termined through the equation of state for an ideal gas. The calculated freestream tem-
perature, velocity and pressure are (T, = 56.6K, Uy, = 1050ms~!) and (poo = 430Pa).
Due to the small time scales involved, the plate is considered to be isothermal at a tem-
perature of 300K, similar to the mean wall temperature in the experiments performed by

Schuricht [53].

An example of the C-type Hybrid grid of type Bl described in Table 3.1 for the 5mm
unswept blunt-fin is shown in Figure 5.3, with an additional view of the symmetry plane
in Figure 5.2. The dimensions of the grid shown are based on the 5mm unswept blunt-fin,
in the upstream streamise direction from the base of the fin, the grid extends the length
of the plate surface, 29 diameters. A minimum of five grid points are placed ahead of the
leading edge to avoid inflow boundary influence on the leading edge of the flow, and to

properly resolve the leading edge shock. In the downstream streamwise direction the grid
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extends to 8.5 diameters. Spanwise, the grid stretches to 29 diameters.
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Figure 5.3: A three-dimensional view of a C-type Hybrid grid used in the computations, example

grid B1, 172 x 160 x 144
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5.3.1 Boundary Conditions

Fixed, hypersonic, inflow boundary conditions are imposed along the outer (¢ = 1) bound-
ary, and fin sweep (A) is varied depending on the model simulated, going from 0 for the
5mm and 10mm fins to 30° for the 5mm swept fin. A symmetry condition is imposed on

the plane which is along the fin centerline at (j = 1).

The flat plate and blunt-fin wall surfaces are assumed to be impermeable, and no-slip
boundary conditions are applied. The flat plate and blunt-fin walls are assumed to be

isothermal with the pressure gradient normal to the walls set to zero.

The outer outflow boundaries at (j = max) and (k = maz) are assumed to be distant
enough from the blunt-fin not to interfere with the flowfield of interest. Therefore, a first-
order extrapolation boundary condition was applied to these surfaces, where the ghost cells
at the boundary interface mimic the boundary cells inside the computational domain. This

way the gradients are always zero.

A listing of the boundary conditions appropriate to this study can be found in Appendix
B.

The height of the blunt-fin is small enough to avoid impingement of the flat plate leading
edge shock, while still being large enough to lead to an asymptotic behaviour, which
means that any further increase of its height does not change the interaction extent. In
particular, once the asymptotic height (z/D = h,) is reached, then the upstream influence
length, the primary separation distance and location of the triple point are independent
of (z/D). Dolling & Bogdonoff [15] stated that for the asymptotic behaviour condition
to be fulfilled, (2/D > 2.5). The current ratio of (z/D = 5), would appear to fulfil the

asymptotic criterion set by Dolling & Bogdonoff [15].
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5.4 5mm blunt-fin simulations

This section will present the results from the numerical simulations of the unswept 5mm
blunt-fin. Experimental data obtained by Schuricht [53] for the same fin configuration will

be used for referencing wherever needed.

5.4.1 Grid Refinement Study

To determine a means of quantifying the effect the grid has on the numerical solution,
a series of different size grids are studied and their effect on specific variables examined.
Table 5.1 shows the grids used in this grid dependency study. To ensure consistency
the parameters used to define grid clustering on all the grids studied are kept the same,
with only the number of grid cells in the (£,7,() directions being varied. The primary
aim of the mesh dependency study is to determine whether a grid independent solution
could be obtained given the limitations of the available computational resources; which

are described in Chapter 3, Section.

Grid Type

43 x 40 x 36 Al

58 x 51 x 45 A2

86 x 80 x 72 B1

116 x 102 x 90 B2

172 x 160 x 144 | C1

232 x 204 x 180 | C2

Table 5.1: The grids used in the mesh dependency tests

A quantitative analysis is made on the variation of numerical separation length, plate skin
friction coefficient, Stanton number and pressure ratio on the plate surface. All variables
are measured along the line of symmetry or fin centerline on the grid. In addition to the
quantitative analysis, a qualitative study is made of the effect grid refinement has on the

structure of the general flowfield. This is achieved by examining the density contours and

111



5.4 5mm blunt-fin simulations S.J.VITHANA

particle streamlines taken from the plane of symmetry.

For the purpose of easily identifying clear differences in the simulated results, the plots
for skin friction coefficient, Stanton number and pressure ratio will only show variation in
properties from (x/D = -25) to (z/D = 0). In a similar manner, only the salient features
in the contour profiles are noted and compared with in this grid dependency study. A
detailed analysis of the flow structure is made later in this chapter, but for the current

grid refinement study only the effects the grid has on these features is noted.

The various density contour profiles in Figure 5.4 clearly show the inviscid characteristics
described in Chapter 2, Section 2.5.2 specific to blunt-fin/plate type interactions. Features
like the plate leading edge shock, shock induced boundary-layer separation shock and de-
tached fin bow shock are clearly visible in Figures 5.4:(B)- 5.4:(D). Although the features
of the interaction flowfield appear in all the grids studied, their locations within the flow-
field and resolution varies considerably in all but the finest grids. This is clearly illustrated
when comparing the shock positions/angles between Figure 5.4:(B) & 5.4:(D). The shock
structure in the coarse grid shown in Figure 5.4:(B) is poorly resolved and the angle of the
leading edge shock is comparatively smaller when compared with Figure 5.4:(D), which
represents the solution from the fine grid. Poor shock resolution is directly related to the
number of grid points and the grid clustering criteria imposed on the grid. The stipulated
requirement of accurately capturing and resolving the laminar boundary layer results in
stretching the grid towards the plate surface. This in turn leads to a poor distribution
of cells near the upper boundary with small (Az/Az) ratios. A direct consequence is the
subsequent loss in resolution of the shock which has to be spread across several cells in
this region. This loss in shock resolution is notably present in only the coarsest grids, such

as grids Al and A2.

Grid resolution also affects the flow structures captured in the separated region as seen
in the particle streamline plots in Figure 5.5. The coarsest grid in the set shown in
Figure 5.5:(A) appears to lack a considerable amount of detail about the vortical flow
structure when compared to the other grid solutions. The root recirculation region and
the recirculation regions on the plate surface upstream of the fin root are not captured at

all in grid (43 x40 x 36). However, systematic improvement in grid density appears to yield
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Figure 5.4: Density contours in the plane of symmetry for a range of (p) values: 0.0056 - 0.023
in increments of 0.001 (A) 43 x 40 x 36 (B) 86 x 80 x 72 (C) 116 x 102 x 90 (D) 172 x 160 x 144
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Figure 5.5: (A) Velocity streamlines 43 x 40 x 36 (B) Velocity streamlines 86 x 80 x 72 (C)
Velocity streamlines 116 x 102 x 90 (D) Velocity streamlines 172 x 160 x 144
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more detail of the vortical flow structure, with greater detail present in each increment.
Overall mesh refinement clearly gives sharper more resolved inviscid features, like shocks
and clearer definition of flow structures therefore giving a more accurate description of the
flowfield. The most significant feature is the capture of further ”secondary” vortices near

the plate surface.

The variation in Stanton number along the line of symmetry for the various grid densities is
shown in Figure 5.6, along with a comparison with Eckert’s correlation for an undisturbed
flat plate. The profiles initially show a strong decay away from the leading edge, similar
to the (m_%) decay observed on the flat plate, (see Figure 4.2). Further downstream
of the leading edge there is a decrease relative to the Eckert comparison consistent with
laminar separation, followed by an increase in Stanton number as the fin base is approached
with a succession of peaks and valleys downstream of separation. It is evident that any
discrepancies in the profiles are highlighted near the leading edge where, as described in
Chapter 2, Section 2.2, there is a region of strong viscous interaction and where the rate

of change in the Stanton number is greatest.

Table 5.2 gives the values for Stanton number at discrete points on the centerline for the

three grids outlined.

Grid Location, /D | Cy x 1073 | St x 1073
58 x 51 x 45 =27 4.7 4.0
-25 2.3 1.6
-20 1.7 0.9
116 x 102 x 90 -27 2.9 24
-25 2.07 1.34
-20 1.55 0.78
232 x 204 x 180 -27 2.8 2.25
-25 2.0 1.28
-20 1.52 0.757

Table 5.2: Measured quantities, location and grid density
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Figure 5.6: (top) Stanton number comparison for different grid densitites (bottom) Skin friction

coefficient comparison for different grid densitites
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The three stations are just downstream of the plate leading edge (in the region of high
viscous interaction). Using these values as input parameters in the equations for evaluating
the numerical convergence error (see Chapter 3, Section 3.11), generates the error results

found in Table 5.3.

Location, z/D -27D -25D -20D

Error in Cy x 1073 | 0.0333 | 0.0233 | 0.01

% Error in Cf 3.57 3.50 1.97

Error in St x 1073 0.05 0.02 0.0077

% Error in St 6.67 4.69 3.04

Table 5.3: Error analysis between grid 232 x 204 x 180 and 116 x 102 x 90 using method by
Roache [51]

The results in Table 5.3 represent a comparison for Stanton number made between grid B2
(116 x 102 x 90) and C2 (232 x 204 x 180), because as assumed earlier it is taken that the
results from the finest grid, in this case C2, represent the ”true” value for Stanton number
and skin friction coefficient. At station (x/D = -27) the value for Stanton number in grid
B2 is approximately +6.67% higher than the corresponding value for grid C2. Further
downstream, at station (x/D = -20) this drops to +3.04%. Figure 5.6 clearly indicates
that for (z/D > -20) from the leading edge, all the profiles produce nearly equivalent
results apart from the baseline grids of (43 x 40 x 36) and (58 x 51 x 45). All the error
percentages in Table 5.3 are within the standard limits of experimental error (+10%). The
general trend observed in the results in Table 5.3 verifies the statements made earlier, that
the greatest difference occurs at the leading edge. The process of grid refinement indicates
that the Stanton number profile tends toward the Eckert solution upstream of separation,
and within the separated region the number and absolute value of the successive peaks
in the Stanton number profile increase with increasing grid resolution. The coarser grids
clearly overpredict the Stanton number values near the leading edge, indicating that there
is a significant impact of the cell size on the calculated Stanton number. In addition, the
plot indicates that apart from the final peak, grid refinement has the effect of decreasing

the magnitude of the minor peaks. As a rule of thumb for an accurate calculation of
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the Stanton number on the plate surface, the grid cells on the surface must satisfy the

following condition: (Az/Az < 8).

A comparison of the skin friction coefficient on the plate ( Cr = Tw/ % PocUZ ) measured
along the centerline also illustrated in Figure 5.6, appears to show similarities to the pat-
terns observed in the Stanton number profile. The profiles show a strong decay away from
the leading edge, again similar to the decay observed on a flat plate, (see Figure 4.2).
Further downstream of the leading edge there is a decrease relative to the Eckert com-
parison, which is consistent with laminar separation; this is followed by a succession of
peaks and valleys in the profile as the fin base is approached. The coarser grids clearly
overpredict the (Cy) values near the leading edge, indicating a similar relationship to cell
size as found with the Stanton number comparison in Figure 5.6. Table 5.3 also shows
the grid convergence error for the calculated skin friction coefficient, and even though the
skin friction coefficient wasnt measured experimentally by Schuricht the associated errors
are within the (£10%) limit of standard experimental error. It is also apparent from Ta-
ble 5.3 that the skin friction coefficient is less sensitive to grid convergence compared to
the Stanton number. In general it is shown that as the number of grid points increase
along the centerline, the improvement in the results and tendency for the skin friction

profile to match the Eckert solution upstream of separation is clearly observed.

Grid Type | zg/D

43 x 40 x 36 Al | -6.821

98 x 51 x 45 A2 | -7.118

86 x 80 x 72 Bl |-7.236

116 x 102 x 90 B2 | -7.487

172 x 160 x 144 | C1 | -7.533

232 x 204 x180 | C2 |-7.534

Table 5.4: Separation lengths for different 5mm diameter blunt-fin grids

The separation point on the current skin friction profile, which is measured along a two-

dimensional plane taken along the line of symmetry, is determined by the location at which
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a zero wall shear stress solution is obtained (7, = 0), however it is important to note that
this is not true for three-dimensional separation as explained in Chapter 2, Section 2.3.1.
The skin friction profile shows that (7, = 0) occurs at six distinct points, as a result the
flow separates and reattaches at three points along the line of symmetry. The variation
in the primary non-dimensionalized separation length for the different grids is shown in
Table 5.4. The results indicate that the primary separation point moves upstream as the
grid is made finer. This compares favourably with Navarro-Martinez’s [47] experiences
with ramp simulations. A pattern of upstream scaling in the numerical separation length
with successive grid refinement was observed in the three-dimensional compression ramp
simulations by Navarro-Martinez [47], and three-dimensional circular jet simulations by

Dixon [12].

Schuricht [53] estimated using the limited available experimental results, that separation
would occur around ~ —7D, measured from the root of the blunt-fin. The experimental

separation length appears to correlate well with the value obtained from the numerical

results.
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Figure 5.7: Detail of Pressure comparison for different grid densitites
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The pressure distribution along the line of symmetry is shown in Figure 5.7 for the six grids.
The profile shows a rapid rise in pressure just prior to separation, this rise in pressure is
followed by a pressure plateau, which then exhibits a series of peaks and valleys attributed
to regions of flow separation and reattachment, with the maximum peak occurring near the
base of the fin. Similar to the previous observations for Stanton number and skin friction
coefficient, the process of grid refinement produces a sharper profile with a relative decrease
in the overall pressure ratio upstream of separation as the grid is refined, with the values

at the peaks increasing in magnitude.

In conclusion, the grid refinement study indicates that the process of grid refinement
yields a more accurate solution to the flowfield with each increment. Although the general
structure of the flowfield appears to remain constant in the finest grids the separation
length, Stanton number and skin friction coefficient still appear to be changing, albeit at
a much slower rate. It has to be concluded that although the results are tending towards
a grid independent solution the present set of grids studied will not yield a totally grid

independent solution.

Further grid refinement is beyond the limits of the available computational resources. It

is unlikely that further grid refinement will change the flowfield structure significantly.

5.4.2 General Flow Features of 5mm blunt-fin

The general structure of the computed fin interference flowfield, which includes the invis-
cid outer flowfield and the inviscid/viscous features associated with the fin interference
interaction, can be obtained by examining the contour profiles for density, static pressure

and temperature.

These indicate that the flowfield is dominated by the region of separated flow ahead
of the fin. Bearing this in mind the contour profiles are taken from a two-dimensional
plane located on the fin centerline or grid symmetry line upstream of the fin. A detailed
analysis of the features present in this region can be made by examining the various density,

temperature, and pressure contours.
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The contour profiles shown in Figures 5.8- 5.10 are results obtained from grid type C2
(232 x 204 x 180).

. . 0.2878

1 -- Leading Edge Shock 0.2364
2 -- Boundary Layer Edge 0.1850
3 -- Primary Separation Shock 0.1336
0.0822

4 -- Fin Bow Shock 0.0319
5 -- Shock/Shock Interaction point 0.0307
. I 0.0300

6 -- Secondary Separation Shock 0.0037

Figure 5.8: Density contours from the plane of symmetry, indicating the structure of the inter-

ference interaction

The density contours indicate a wave pattern generally consistent with the features ob-
served in the schlieren photographs taken by Schuricht [53] for the same configuration, (see
Figure 2.14). A complex shock pattern is clearly observed with a well defined leading edge
shock, shock induced boundary layer separation shock, fin bow shock and a shock/shock
interaction point as a result of the separation shock intersecting the fin bow shock. Steep
gradients in density can be seen at the edge of the boundary layer where the density de-
creases due to a rise in temperature with an approximately constant pressure across the
boundary layer. Steep density gradients are also present very close to the plate surface,
which are the result of increases in density caused by the low surface temperature on the

plate in comparison to the peak temperature within the boundary layer.

The flow in the separated region appears to indicate further complexities in its structure.

Straddled between top of the separation bubble and primary separation shock is band of
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high density changes. This appears to be caused by the formation of a second oblique
shock, which is confirmed later by observing the boundary layer profile taken at this
location. Interestingly this feature does not appear to be captured in the schlieren image
in Figure 2.14. A region of flow just behind the shock/shock interaction point appears to
indicate a zone where there is large variation in density values; this pattern of clustering in
the density contours is also observed when an Edney type I'V interaction with a localised
supersonic jet [67] is seen to occur. A similar region with a large variation in the density

gradients appears very close to the root of the fin/plate attachment location.

T 21 58 60 61 62 82 124 227 268 330 371 453 494 536 577
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Figure 5.9: Temperature contours from the plane of symmetry

The temperature contours shown in Figure 5.9 clearly outline the extent of the thermal
boundary layer and shear layers. The contours indicate that most of the changes in
temperature occur close to the wall and in the separated region with comparatively smaller
changes occurring across the shock wave. The largest changes in temperature appears to
occur within the boundary layer where the kinetic energy is dissipated and very close to
the surface where the temperature drops to the value at the plate surface. Also indicated
in the temperature contours, embedded within the hot shear layer are two bubbles of
relatively cooler gas, close to the leading edge of the blunt-fin. The presence of the second
oblique shock is weakly outlined in the temperature contours. The temperature gradients
in the shock layer (region between the bow shock and the blunt-fin) are relatively small
except in the thin boundary layer where the temperature drops sharply to the blunt-fin

surface temperature of 300K.
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Figure 5.10: Pressure contours from the plane of symmetry

The contours for pressure in Figure 5.10 clearly show the three main shock structures,
leading edge, separation and detached bow shock. Also indicated by the clustered contour
lines is the suspected second oblique shock, just below the primary separation shock.
The almost orthogonal contour lines near the wall show the constant pressure in the
boundary layer. The pressure profile also indicates a region of high pressure behind the
shock interaction point, this is consistent with observations made earlier which cited the

presence of a supersonic jet as a result of Edney type I'V interaction.

The image sets in Figure 5.11 show a selection of Mach number contours in the separated
region for the (/D) range indicated. For the purpose of identifying the relevant features
the Mach contours plotted in Figure 5.11 have filtered out the higher Mach numbers and
only show Mach numbers within a defined range. In Figure 5.11:(A), Mach numbers (M
> 1) are filtered out and appear as blue regions in the image. From Figure 5.11:(B), Mach

numbers (M > 2) are filtered out and again appear as blue regions in the image.

What is revealed as a result of filtering regions greater than Mach 1 is the appearance of
two supersonic bubbles embedded within the predominantly subsonic shear layer. These
feature also appear in the temperature contour profile in Figure 5.9 which highlighted the
existence of two bubbles of low temperature surrounded by higher temperature gas, one

within the shear layer, and a second just behind the bow shock.

Hung & Buning [33] tried to elucidate a possible mechanism for the presence of similar
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Figure 5.11: (A) Mach contours in symmetry plane highlighting supersonic zones (B) Mach

contours highlighting supersonic jets caused by a Type IV interaction (C) Velocity streamlines

superimposed on Mach contours in symmetry plane (D) Density contours highlighting separation

shocks
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embedded supersonic zones in turbulent separated flow they discovered in their numerical
simulations. They concluded that the horseshoe vortex brings an abundance of fresh high-
momentum fluid into the separation region. As this high-momentum fluid accelerates, it
results in two reversed-flow supersonic zones; one on the fin, and another on the plate.
Since then several other theories have been put forward for the existence of these supersonic
bubbles, one school of thought suggested by Yamamoto [68] appears to correlate well with

the evidence present in the current simulation.

Yamamoto suggested that between the primary separation shock and the surface of the
shear layer a second oblique shock is formed. This is indicated in Figure 5.11:(right)
and it originates from the separated region. This oblique shock intersects the bow shock,
and as a result a second Edney Type IV shock/shock interaction occurs. This point is
marked in Figure 5.11:(B) by the second arrow near the plate; the first arrow indicates
the first Edney Type IV shock-shock interaction. As a result of the second Fdney Type
IV interaction, a jet of very high speed fluid bounded by a shear layer is produced; as
described in Chapter 2, Section 2.4.1. This feature can be seen in the Mach contour plot
in Figure 5.11:(B), where a jet of high speed fluid appears to form at the shock interaction
point. This jet of fluid is accelerated further by the presence of the vortices as indicated
by looking at the subsequent particle velocity vectors in Figure 5.11:(C). This leads to
pockets of supersonic flow below the subsonic shear layer in the separated region. There
is strong evidence to support the second separation shock theory by looking at the density
contours in one of the images in Figure 5.11:(D), where there appears to be a second
oblique shock produced in the separated region, and there is a pronounced deflection in

the bow shock at the point of interaction, indicative of a shock/shock interaction.

The existence of two reversed-flow supersonic zones was also observed by Voitenko et
al. [63] in their experiments, when they studied a (M = 3.11) turbulent flow over a
cylinder. It was argued that a similar shock/shock interaction leading to a supersonic
jet was the cause of the supersonic zones observed; however, both Voitenko’s experiments
and Yamamoto’s simulations were undertaken with turbulent boundary layers. The results
from the present simulations seems to indicate a similar phenomenon occurs with laminar

boundary layers.
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Figure 5.12: Velocity vectors in region of separated flow in the axis of symmetry

In Chapter2, Section 2.5.2 we introduced several physical parameters that could be mea-
sured from the blunt-fin flowfield which can be used for comparing experimental observa-
tions with similar numerical predictions. The contour profiles in Figure 5.8 - 5.10 give
us an opportunity to quantify the numerical results by being able to compare these pa-
rameters to the experimental observations. The first comparison that can be made is for
the leading edge shock angle. The leading edge shock angle measured from the schlieren
photo in Figure 2.14 is ~ 11 degrees. The numerical shock angle can be measured from
the density contours in Figure 5.8, and the resultant numerical shock angle appears to be
in the range of 10 to 13 degrees. The coarseness of the grid near the upper boundary, and
numerical diffusion causes the shock solution to be spread over a wide area which makes it
difficult to obtain more accurate measurement of the numerical shock angle. However, the
comparison indicates that the numerical shock angle appears to be within the same range
as the experimental result. A further form of comparison can be made for the calculated
pressure ratio across the oblique shock. Using the expression for (p2/p1) from oblique

shock theory [3],

2
% _ TL(Mfsm?ﬁl - 1) +1 (5.4)
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Using the experimental value for (5, = 10.5°) and (M; = 6.7), using Eqn 5.4 gives an
experimental (pa/p; = 1.508). The equivalent numerical pressure ratio calculated from
the pressure profile in Figure 5.10 is (p2/p1 = 1.52). Once again the comparison appears

to be very good.

From the schlieren images Schuricht [53] estimated certain geometrical non-dimensional
constants for the flow; these parameters were also calculated from the numerical data, and
the comparisons are shown in Table 5.5. From analysing the velocity profile on the flat
plate and the density contours in Figure 4.3, the height of the flat plate boundary layer
at 145mm, which represents the location of the blunt-fin root is (§ = 3.48mm), (z/D =
0.696).

Type D/6 | K/6 | K/D | K/Ky,

Smm - Schuricht 1.5 7.6 5 3.4

5mm - Numerical | 1.44 | 7.18 5 3.24

Table 5.5: Fin dimension relationships

Under the classification of Hung and Clauss [36], the current blunt-fin would be classed
as a "short” protuberance (see Chapter 2, Section 2.5.2) because (D/d < 6). As a result
the heating distribution will be primarily dictated by the ratio (K/J).

The most important parameter to note in Table 5.5 is the ratio (K /K}y), which is defined as
the ratio of fin height (K) to the height of the triple point (Ky,). This result is important
because it controls and gives an indication of the level of interaction in the separated
region. Large discrepancies in (/Ky,) will alter the size and scale of the separated region
thus affecting the vortical structures within the separated region. This, in turn will, affect

the heating solution on the flat plate.

The numerical value obtained from the density profile in Figure 5.8 is (K, = 7.35mm).
The value Schuricht [53] measured for (Ky,) was ~ 7.7mm. Taking into consideration that
the experimental value for (Kj,) was measured from a Schlieren photo, accounting for a
measurement error of around (+5%), the numerical prediction appears to be well within

the error range therefore showing good agreement with the experimental prediction.
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Boundary Layer Profiles

To get more detail about the variation in density, temperature and velocity within the
separated region, profiles of these following variables across the boundary layer normal
to the flat plate are taken at the following points along the plate centerline, (x/D = -7),
(x/D = -3) and (z/D = -1). To clearly differentiate any differences observed within the
separated layer the profiles in Figures 5.13- 5.15 only extend to (z/D = +3), above the

plate surface.
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Figure 5.13: (left) Velocity profile at /D = -7 (middle) Temperature profile at z/D = -7
(right) Density profile at z/D = -7

Analysing the velocity profiles within the boundary layer in Figures 5.13- 5.15, indicate
that the boundary layer has just separated at (zg/D ~-7) - (see Table 5.4) - as indicated

by the regions of reverse flow in the near-wall region.

The velocity profile at (z/D = -3), Figure 5.14, indicates a very small region of positive
flow velocity very near the plate surface within the reverse flow region. However the flow
direction changes back to reverse flow further away from the plate (z/D > 0.05). This
is clearly indicative of the presence of a small secondary recirculation region, and this
is shown to be case by inspecting the particles paths in Figures 5.5, where a separation

bubble vortex is present at (z/D = -3).

The observed peak in the temperature profiles in Figures 5.13- 5.14 at (z/D ~ 0.2 — 0.4)
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Figure 5.14: (left) Velocity profile at /D = -3 (middle) Temperature profile at z/D = -3
(right) Density profile at z/D = -3
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Figure 5.15: (left) Velocity profile at /D = -1 (middle) Temperature profile at /D = -1
(right) Density profile at /D = -1

is caused by the dissipation of kinetic energy into thermal energy within the shear layer
and this peak is close to the stagnation temperature of the flow which is 600K. Since
the pressure is approximately constant across the boundary layer, the rise in temperature
from the edge of the boundary layer towards the surface gives a corresponding decrease
in density as seen in the density profiles in Figures 5.13- 5.14. The peak is followed by
a decrease in temperature closer towards the plate surface which is comparatively cooler,

being kept at 300K. A corresponding increase in density can be seen as the temperature
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decreases from the peak value to the cooler surface value. The temperature increase
due to the dissipation of kinetic energy and the corresponding decrease because of the
cooler plate surface temperature can be seen in the equivalent temperature contours in
Figure 5.9. However, the rapid changes in density at the minimum mask the variation

across the boundary layer in the density contours shown in Figure 5.8.

The pocket of low temperature as seen in Figure 5.15 at (z/D = -1) near the plate surface
at (z/D ~ 0.1), when compared to the surface plate temperature of 300K, is due to the
embedded supersonic zone seen and described in Figure 5.11. The region of flow below
(z/D ~ 0.05) is hotter because it appears to be within a small separation bubble as

indicated in the particle streamlines in Figure 5.5.

The density variation at (z/D = -1) in Figure 5.15 clearly shows the presence of the second
oblique shock, indicated by the double peak in the density profile in the region (z/D ~
1). Correlating this with the density contours in Figure 5.8 clearly shows the region where

the second separation shock occurs.

Station, x/D | Ngr | NrprL

-28.5 35 42
-26 39 45
-7 42 47

Table 5.6: Number of points in velocity and thermal boundary at several x/D locations

The edges of the velocity and temperature boundary layers is usually taken to be the
point where the flow achieves 0.99 of the respective free stream value. Table 5.6 shows the
number of grid points in the velocity boundary layer (Npr) and the thermal boundary

layer (N7pr) at several station (z/D) locations along the line of symmetry.

Upon careful analysis of the temperature and velocity profiles it is clear that the thermal
boundary layer is slightly thicker than the velocity boundary layer at the same location.
This is expected since (Pr < 1), the Prandtl number can be considered to be a measure of

the ratio of the velocity boundary layer thickness to the thermal boundary layer thickness
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[2]. Additionally for good simulation of laminar boundary layers it is recommended that
there are (> 25) points in the boundary layer [48], and from Table 5.6 it is clear that this

criterion is satisfied.

Vorticity Contours

In Chapter2, Section 2.5.2 it was indicated that the separated flow in front of the fin
was a region that contained a high level of vorticity. As a result the streamwise vorticity
distribution can be used to investigate the presence of vortices and other structures within
this region of flow. In addition to the vorticity present in the separated flow the presence
of highly curved shocks produce a considerable amount of vorticity as a result of large
entropy gradients [3], according to Crocco’s theorem. The present interference flowfield
has several curved shocks like the fin bow shock and the reflected shock from the separation

shock/bow shock interaction.

The transport equation for vorticity in compressible flow is given as:

—

0 \Y
a—iﬂv Vv = (@.V)o —w(V.) - Vx~L — VD (5.5)

p
where the vorticity vector is defined by (w = Vxwv), the velocity vector (v (u, v, w) )
and (VD) represents terms associated with viscous dissipation forces with ( —> rep-
resenting baroclinic terms. Usually the vortex stretching term ( ) is the most

dominant factor in vorticity generation.

To observe any vortices in the separated flow region, the vorticity field is projected along

the separation region into a plane defined by its normal (n) as

Wp = w.n (5.6)

The distribution of (wy) in a plane perpendicular to the flat plate along the line of symme-
try as shown in Figure 5.16 outlines the iso-vorticity contours. For clarity, the iso-contour

legend in Figure 5.16 will only indicate the maxima and minima of vorticity, and the plot
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area will be restricted to show the region (z/D = -4 to 0) and (y/D = 3 to 0) 1.

3 by
i L 9800
bow shock I
2.5 -
] I 0
2 |

separation shock

shear layer

-4500

Figure 5.16: Detail of Iso-vorticity contours of (wy,) in symmetry plane with the separated region

highlighted

Figure 5.16 indicates that a majority of the flow in the separated region is of positive
vorticty, much higher than the corresponding vorticity of the outer flowfield, with the
maxima occuring in regions where there are horseshoe vortices which are rotating in a
positive direction in line with the freestream flow. The peak vorticity appears to occur in
a region of flow just behind the fin bow shock at the location where the fin bow shock and
boundary layer separation shock intersect. A region on the plate surface near the base
of the blunt-fin (—1 < /D < —0.4) exhibits an area of negative vorticity, and features
associated with this negative vorticity are counter-rotating horseshoe vortices on the plate

surface.

The detached curved bow shock of the fin shows a region of varying positive and negative
vorticity. In particular, the maximum in positive vorticity occurs near the point where the
separation shock intersects the fin bow shock, as illustrated in Figure 5.16. This region is
characterized by a vortex as seen in Figure 5.17. The concentrated vorticity just above the

point of interaction as shown in Figure 5.16 results in the formation of vortex as shown in

L_ In the current projection the plane is pointing in the negative y-direction which puts the rotation in
Figure 5.16 in the opposite sense to the usual sigh convention ie. positive is clockwise as you look into the

plane and negative anticlocwise.
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z/D

Figure 5.17: (left) Vortex structure formed from Type IV interaction (right) Enlargement of

vortex structure

Figure 5.17. For clarity and to observe the location of the vortex, density contours have
been superimposed so that the location of the vortex can be seen in relation to the point
of shock/shock interaction. The presence of such a vortex system was shown to exist in

Chapter 2, Section 2.1.1.

The initial analysis of the separated region from the observations made from examining
the iso-contour profiles for density, pressure and temperature in addition to looking at
the boundary layer profiles and iso-vorticity contours in the symmetry plane indicate
that the flow in the separated region is more complicated than initially revealed from
reviewing past experimental and numerical work on laminar fin/plate interactions. The
existence of a second oblique shock within the primary separated flow and the presence
of vortices behind the bow shock has not been reported in previous laminar experimental

and numerical studies.

Flow and Shear Stress Topology

The previous section has shown that as a result of the complex shock/boundary layer and
shock/shock interactions the flow within the separated region reorganizes itself into vor-

tical structures which dominate the separated region. These are fully three-dimensional
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structures that develop downstream and spread out in the spanwise direction to produce
a horseshoe vortex system which wraps around the blunt-fin. Along the paths of these
vortices the most outstanding consequence is an important increase in heat flux, skin fric-
tion coeflicient and pressure at the plate surface in correspondence with the reattachment
of the separated flow (see Chapter 2, Section 2.5.2). It is well established that flow reat-
tachment points and regions of high shear result in local increases in heat transfer due to
the local thinning of the boundary layer [18]. The latter creates steeper velocity and tem-
perature gradients at the plate surface, resulting in increased skin friction and enhanced
heat transfer. Although Schuricht’s experimental work has provided a great deal of in-
formation about various aspects of laminar blunt-fin interactions, questions still remain
regarding the precise flow topology and the horseshoe vortex phenomena. For instance,
discrepancies in the horseshoe vortex system topology upstream of the blunt-fin/plate
junction are apparent when comparing the inferred streamline patterns of Schuricht [53]
and Hung [36]. Both studies were conducted using very similar unit Reynolds number,
which is an important dimensional parameter that controls the number of vortices in the

separated shear layer, (see chapter 2, section 2.5.2) for more detail.

It has been reported that insufficient spatial resolution and numerical or experimental er-
rors may easily lead to misinterpretation of the vortex patterns or even to the impossibility
of a unique identification of the topological structures [5]. Ballio [5] reported that the use
of experimental oil-flow visualization as a tool to map flow structures from interpreting
the surface shear stress lines is subject to considerable debate. As a result, obtaining an
accurate description of the flow in the three-dimensional separated region via numerical
simulation and deducing the resulting impact on surface flow topology is very important

in understanding the true extent of thermal heating on the surface of the plate.

In order to compare the numerical flowfield with the corresponding experimental solution,
one has to visualize the near-wall flowfield. The direction of a flow velocity is visualized
using particle streamlines. In simulations with viscous continuous flows the velocity of
the flow at a solid wall is zero by definition, as a result this prevents the calculation
of steamlines directly on the walls. The aim would be to find the limiting streamline
at locations where the velocity goes to zero while the direction of the velocity vector is

determined by the direction of the velocity near the wall. Consequently skin friction lines
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on the plate surface are used instead of near-wall particle traces. The skin friction lines
as described in Chapter 2, Section 2.3.1 use the wall shear stress vector for visualization
purposes. The wall shear stress vector (7,) is the derivative normal to the wall of the
velocity vector (v'). In general it is nonzero and points in the direction of the near-
wall velocity vectors when projected normal to the wall. The skin friction lines provide
global information about the near-wall flowfield and show the location of separation and

reattachment of the flow at the wall.

To build a three dimensional picture of the flowfield structure planar sections normal to
the plate surface are taken at the illustrated locations as shown in Figure 5.18. The table
in Figure 5.18 shows the locations of the different profiles on the plate surface, where (¢)

is measured on the plate surface in a clockwise direction.

PROFILE x/D 0]
A 0— -29 0
B 0— -27 20°
C 0— -15 45°
D +1 90°
E +4 90°
F +8 90°

Figure 5.18: Schematic of section profiles and their locations

The particle streamline pattern in the symmetry plane and skin friction lines on the flat
plate surface are significant two-dimensional ”footprints” of the complex three-dimensional

flow around the blunt-fin. The skin friction line pattern over the plate surface for the 5mm
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blunt-fin is shown in Figure 5.19, for clarity the plot area is restricted to (z/D = -15 to
+8) and (y/D = £ 7).

Because of their definition, the no-slip singularities of the velocity flowfield are also singular
points for the wall shear stress or skin friction field, but of course the nature of the
singularities is not the same for the two fields; nodes, saddles and foci will be identified with
capital letters (N,S,F) for the velocity field in the symmetry plane and with small letters
(n,s,f) for the shear stress field on the solid surface with (R) denoting a reattachment line

and (S) a separation line.

A saddle of separation exists on the centreline well upstream of the blunt-fin. The sad-
dle, (sa), is highlighted as the point furthest outward from the root of the blunt-fin in
Figure 5.19. Through (s4) goes the separation line (Sa) towards which the skin friction
lines converge. The separation line is strongly deflected when it encounters the freestream
as shown in Figure 5.19 along with the resultant horseshoe vortex as shown in Figure 2.8
in Chapter 2, Section 2.3.2. There is a node of reattachment right at the base of the
blunt-fin (n1). Through (n1) goes the attachment line (R1) from which the skin friction
lines diverge. In addition there are two other distinct pairs of separation saddles and
reattachment nodes (s2), (s3) and (n2), (n3), originating from the centreline. Also present
is a nodal point of separation and reattachment (s}), (nf) that originate close to the reat-
tachment line (R1). In addition there is another nodal point of separation (s4) near the
side surface of the fin. The number of saddles and nodes follows the topology suggested
by Tobak [58] for a flat plate with an attached normal plate, and agree with eqn 2.22 - 3

saddles and 3 nodes.

The particle streamlines in the symmetry plane of the computed flowfield (Profile A in
Figure 5.18), show that the streamwise vorticity of the incoming separated boundary layer
is organised into several vortices. Two primary vortices with (foci F} and F») concentrate
positive vorticity (see Figure 5.20) into 3 cores. Secondary vortices with (foci Fia, Faa
and Fsa) separate from the plate surface and concentrate the vorticity of opposite sign

which is generated on the plate surface by the reverse flow.

The streamline profile in Figure 5.20 exhibit features which are consistent with a three-

dimensional separated flow as shown in Figure 2.6 in Chapter 2, Section 2.1.1. The flow
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Figure 5.19: Surface skin friction streamlines on flat plate, with lines of separation and reattach-

ment highlighted. A separation saddle is denoted by (s) and a reattachment node by (n)

137



5.4 5mm blunt-fin simulations S.J.VITHANA

Pw /P (fp)

x/D

Figure 5.20: (top) Particle streamlines in profile plane at location A (bottom) Plate surface

pressure

topology can be explained using the pressure distribution along the line of symmetry, as
shown in Figure 5.20. Upstream flow separation (S4) is caused by the strong adverse
pressure gradient generated by impingement of the strong fin bow shock on the flat plate
boundary layer, resulting in the formation of a single vortex along the centreline. Reat-
tachment (N4) of the primary separated flow (S4) occurs at around (z/D = +1.5) on
the blunt-fin, measured from the base. The formation of the root vortex with foci (Fia)

is the result of separation at (S7) with a strong reattachment occurring near the foot of
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the fin. This reattachment (N7) is responsible for the final peak heating observed on the
centreline at the foot of the fin. This phenomenon shall be discussed in more detail later
in this chapter. The reverse flow at the plate surface within this large separated region ini-
tially encounters a favorable pressure gradient but, upon encountering the upstream flow
is forced to undergo a second separation, (S2). As a result of this secondary separation,
it induces the primary vortex to bifurcate to form two separate cores, (F1) and (F3) as
seen in Figure 5.20. From the resultant bifurcation process the separated flow near the
surface encounters a favorable pressure gradient and as a consequence reattaches at node
(N2), this is clearly shown in the pressure profile in Figure 5.20. Upon reattachment, as
discussed above, the flow undergoes tertiary separation at (S3) similar to the process that
caused secondary separation. The flow reattaches itself further upstream at node (V3).
These secondary and tertiary separations and reattachments leads to the formation of two
additional secondary vortices with foci (Fya) and (F3a). The pressure distribution profile
in Figure 5.20 indicates that the location of the vortices appear to correspond to minima

in the pressure profile as discussed in Chapter 2, Section 2.5.2.

Z - Streamline trace
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Figure 5.21: Superimposed streamlines and shear stress lines
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Superimposing the symmetry plane streamline profile in Figure 5.20 with the surface skin
friction profile in Figure 5.19 clearly shows that the locations of the vortices agree with

their respective separation and reattachment points as seen in Figure 5.21.

Comparing the flow features found in the planar section profiles taken at (¢ = 0°) with
(¢ = 20°) in Figure 5.22, appears to show that the structure of the inviscid flowfield is

maintained in the region that is bounded by the two profiles.

The two main vortices which are embedded in the separated region appear to spiral around
the fin as would be expected, and the same applies to the two smaller vortices localised
on the plate surface and the root vortex at the base of the fin. The shock structure also
appears to duplicate itself, with little change to the leading edge, separation, bow shocks
and the shock interaction point. It is interesting to note how small in size the vortical

structure is in relation to the height of the blunt-fin

Analysing the profiles taken at locations (¢ = 45°) to (¢ = 90°,z/D = 8) show several
differences in the shock and particle streamline structure when compared to those observed

in profiles taken at locations (¢ = 0°) and (¢ = 20°).

The flow structure observed from analysing the Mach and density contours in Figure 5.23
appear to share a lot in common with features observed for a sharp-fin flow configuration
as described by Délery [13]. These features are best explained by studying a schematic
representation of this type of interaction as shown in Figure 2.12 from Chapter 2, Section
2.5.2. The main dominant features of the flowfield consist of a near normal shock that
intersects an oblique separation shock, and the resulting reflected shock all meet at a
defined triple point. The shock/shock interaction leads to the formation of a slip line
which forms at the triple point, and bounds several reflected shocklets ending in a near
normal shock. The separated region contained within the separation shock contains a

conical vortex, with one or two more separation saddles.

The features described above can be readily identified in the density and Mach contours in
Figure 5.23. The interaction between the separation shock and the bow shock is present
throughout the profiles, however the resulting triple point is poorly resolved at each of the

locations where profiles D,E and F are taken, this is partially due to the grid becoming
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Figure 5.22: (A) Density contours and Velocity streamlines in profile at point A (B) Density

contours and Velocity streamlines in profile at point B
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Figure 5.23: Cross plane density (left) and Mach number (right) contours at locations C — F
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increasingly coarser at each of these locations. This fact is clearly illustrated in profile
F where the captured bow and separation shocks are quite thick. The presence of a
supersonic shear layer, slip line and normal shock can be seen in the Mach contour profiles
taken at locations (C — F) in Figure 5.23, however the reflected shocklets within the
bounded slip line are not evident from the Mach or density contours. A schematic of the
flow structure in profile F is illustrated in Figure 5.24 and the comparison looks strikingly
similar to the schematic in Figure 2.12 in Chapter 2, Section 2.5.2 which represents the

interaction for a sharp-fin.

z/D

Figure 5.24: A schematic of the features observed in profile at location F

Analyzing the streamline traces in the various profiles in Figure 5.25 clearly indicates that
the vortex structures formed in front of the blunt-fin leading edge spread out laterally
away from the fin as they flow around it downstream of the blunt-fin leading edge. This
is clearly seen when comparing profiles taken at locations C and F. The vortex with focus
(F») observed in profile C approximately at (y/D ~ 6.5), has spread out to around (y/D
~ 8.0) from the fin edge by the time this feature is observed at profile F. The vortices with
foci (Fia) and (Fsa) in Figure 5.20 are clearly seen in Figure 5.25 profile F. The vortices
with foci (F1) and (F3) as seen in Figure 5.20 appear to merge into one single vortex with
foci (Fy) further downstream as seen in Figure 5.25 profile F. The vortex with foci (Faa)

is a notable absentee in all of the profiles.

The root vortex at the base of the blunt-fin, foci (Fia) in Figure 5.20, grows in size as it

evolves and flows downstream of the fin root as shown in Figure 5.25. The growth of this
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Figure 5.25: Cross plane particle streamlines from profiles at locations C — F
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feature can be clearly seen by examining the skin friction lines on the unwrapped fin-side
surface in Figure 5.26. The root vortex originates from a separation saddle at (s1) which
occurs at (z/D =~ 0.3) on the fin. The subsequent separation line (S;) which forms the
separated surface, grows downstream on the fin surface until it reaches the end of the fin
at (x/D = 8.5). The separated region at the end of the fin surface has eventually grown
to (/D ~ 2) on the fin. What is also apparent within this large separated region on
the fin-side surface is the presence of secondary separation and reattachment lines. There
appears to be three other singularities on the fin-side surface: a separation saddle (s5) and
reattachment node (ns) pair and a reattachment node (n4) associated with the separation
saddle (s4) that occurs on the plate surface as seen in Figure 5.19. The reattachment line
(Rs) which runs through the node (ns5) is quite smeared although its existence can be
seen; the second reattachment line (R4) which runs through node (n4) is more distinct
and its path is quite clear. The vortices associated with the separated surfaces on the
fin-side surface can be clearly identified from the streamlines shown in Figure 5.27. From
Figure 5.26 it appears the small root vortex at the fin/plate junction is first formed at
(x/D ~ 0.5) which is at the shoulder of the fin, and the second vortex on the fin-side

surface first originates at (x/D ~ 3).

shoulder

0 1 2 3 4 5 6 7 8
~ Line of Reattachment

Line of Separation

Figure 5.26: Skin friction lines on unwrapped fin-side surface
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Figure 5.27: Enlargement of Streamlines near fin edge in profile plane at location F'

Analyzing the different profiles (D — F'), presented in Figures 5.23 and 5.25, coupled
with the enlarged view of the corner of profile F in Figure 5.27, it is possible to sug-
gest a mechanism that will lead to the formation of separation line (S’2), and its paired
reattachment line (R’2) shown in Figure 5.19. The separation saddle first appears in the
profile taken at location D, in Figure 5.25. It appears to be formed near the vicinity of
the large re-circulation region of the root vortex, foci (Fyja). This region is bounded with
low momentum flow which contains large positive density and pressure gradients, and it
appears that the flow separates as a result of the adverse pressure gradients. However the
flow reattaches further out as a result of a more favourable pressure gradient due to a drop
in pressure which is a result of the flow accelerating. In addition, the separated surface
as a result of (S’2), and (R’2) does not appear to show a distinct vortex core judging by

analysing the particle streamline traces in Figure 5.25.

The impingement point of the supersonic jet on the blunt-fin surface as a result of the
Edney Type IV interaction, can be seen in the pressure and skin friction coefficient

contours on the fin-side surface in Figure 5.28 and Figure 5.29.

This impingement point correlates well with the indicated position of the jet as seen in
Figure 5.11 at (z/D ~ 2). This region is characterised by very high coefficients of friction
(C¢ ~ 0.01), the result of high shear stresses and large pressure gradients as indicated in

Figure 5.28. The magnitude of the (Cy) values in this region of the fin-side are comparable
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Figure 5.28: Normalized pressure contours on fin-side surface
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Figure 5.29: Skin friction coefficient on fin-side surface

to the (Cf) values recorded at the base of the blunt-fin/plate junction (see Figure 5.6). The
primary reattachment of the upstream separation point is also indicated on the surface of
the blunt-fin, this area at (z/D ~ 1.5) is highlighted by large pressure values and positive
values of skin friction coefficient. The pressure contours reveal that the impacting jet
on the leading edge of the blunt-fin surface fans higher pressure fluid generally over the
upper surface of the fin, with the leading edge region recording some of the highest values.
A bubble of low pressure occurs near the lower part of the fin this is due to the fluid

expanding as it flows over the shoulder of the fin.
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Figure 5.30: Mach contours taken at profile F' for three different Mach number ranges (top left)
Mach no. 0.1 - 1.0 (top right) Mach no. 1.0 - 2.0 (bottom) Mach no. 2.0 - 4.0
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Studying the section profiles for Mach number, density and particle stream traces in

Figures 5.23 and 5.25 highlight several salient features worth mentioning.

A closer examination of the Mach contours and the subsequent shear layer in Figure 5.30
reveals that a large portion of this shear layer is inherently supersonic. This is in contrast
quite different to what was observed earlier in Figure 5.11, where the flow within the shear
layer in the symmetry plane was observed to be mainly subsonic. As a result, it appears
that most of the vortical structures observed in profile F lie within this supersonic region.
Foci (F1), (Fia), (F3) in Figure 5.11 are embedded in a region of subsonic flow, whereas in
Figure 5.30 the flow within these foci are clearly supersonic. This clearly indicates that the
flow within the vortical structures accelerates as they form and flow around the blunt-fin

structure.

The density contours in the section profiles indicate a complex topology of varying pockets
of high and low density. Embedded in this flow region is the presence of a normal shock
straddled between two pockets of varying density which occur at (y/D ~ 3 - 4). In
addition, it appears the conical vortices in the separated flow are embedded in regions of

low density, this fact is similar to what is observed in profile A.

What appears to emerge from analysing the section profiles is that upstream of the root
of the blunt-fin the flow is dictated by the presence of the fin, therefore the flow exhibits
the characteristics of a protuberance type flow, however downstream of the fin root the
effects of the fin-side/plate junction become more dominant and the flow is dictated by

this structure which can be characterised as a corner type flow.

Up to now, only results from planar sections have been presented, but nothing has been
shown to give a general idea of the three-dimensional evolution of the flow over the blunt-
fin. Collating all the information about the flow from various section profiles, it is possible
to construct a three-dimensional picture of the flow structure surrounding the blunt-fin,

and this is illustrated in Figures 5.31- 5.37.
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Figure 5.31: (left) Streamline traces taken along the symmetry plane (right) Streamline traces

and three-dimensional vortex formation

Figure 5.32: Three-dimensional vortex structure around blunt-fin
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F3a

Figure 5.33: Plan view of streamline trace
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Figure 5.34: (top) three-dimensional stream ribbon trace, view 1 (middle) three-dimensional

stream ribbon trace, view 2 (bottom) three-dimensional stream ribbon trace, view 3
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Figure 5.35: Three-dimensional stream ribbon trace, at three different z/D layers
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Figure 5.36: (top) isometric surface of constant density within horseshoe vortex system (p =
0.004) (middle) isometric surface of constant density depicting bow shock (p = 0.05) and density
band within horseshoe vortex system (p = 0.005) (bottom) Three-dimensional shock structure,

showing bow shock and separation shock surfaces using constant isometric density surface (p =

0.032)
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Figure 5.37: (top) isometric surface of constant Mach number, M = 0.9 (middle) isometric
surface of constant velocity, w = 200 m/s (bottom) isometric surface of constant velocity, w = 50

m/s
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Figure 5.31 shows how the streamlines in the two-dimensional symmetry plane evolve into
three-dimensional vortex features as indicated in Figure 5.32. From Figure 5.31 it appears
that most of the rotational velocity in the particles in the vortices (F1), (Fia), (Fa), (Faa)
and (F3a) is concentrated in the central core, and it is this core feature that appears to
evolve around the fin scavenging flow from the surrounding area. Clearly indicated in
Figure 5.33 is the subsequent paths taken by the horseshoe vortex patterns around the
blunt-fin. Figure 5.33 appears to show that the vortices associated with foci (F}), (Faa),
(F») and (F3a) evolve almost in parallel with each other around the fin. Also clearly
illustrated is the growth of the root vortex on the blunt-fin as it flows around the fin. It
appears the root vortex further downstream has the biggest core when compared to the
other vortices and as indicated the high energy fluid in the little vortex scavenges and

draws into itself the surrounding flow, increasing in size as it flows downstream.

A closer examination of Figure 5.33 appears to show that the vortex with foci (Fya)
disappears shortly after it evolves from the symmetry plane when compared to the other
vortices that can be clearly traced back downstream to the edge of plate boundary. This is
significant because it indicates that this vortex has substantially lower rotational velocity
in its core compared to the other vortices, and as a result it is unable to entrain enough
flow from the outer flowfield to evolve further downstream. As a result the vortex diffuses
into the surrounding flowfield further downstream. This observation is unique because,
as shown in the plot it highlights the fact that this vortex is actually absorbed into the
surrounding flow and disappears hence its associated heat transfer footprint also disappears

and this is not attributed to vortex lifting as was suggested by Schuricht [53].

This theory is further supported by examining the particle stream traces in Figures 5.34-
5.35. The images indicate that most of the flow in the separated region is swallowed by
the primary vortex cores of (F;) and (Fy). It appears most of the spanwise flow in ’layer
1’ is entrained into vortex (Fy), with flow near the symmetry plane being entrained into
vortex (F1). In ’layer 2’ the flow is entrained into the the combined recirculation region
that contains vortex cores (F) and (F3). ’layer 3’ indicates that the flow passes over
the combined core of (F;) and (F3), and flows down towards the plate surface. What
this implies is that because (Fya) and (F3a) are localised on the plate surface, rotating in

counter clockwise direction to the primary vortex cores (F}) and (F3), it appears there is a

156



5.4 5mm blunt-fin simulations S.J.VITHANA

considerably smaller volume of fluid available to scavenge and entrain into these vortices.
The stream trace ribbons in Figure 5.34:(bottom) clearly highlights the reduced level of
flow entrainment into vortex cores (F3a) and (Faa). In addition, an analysis of the velocity
vector plot in Figure 5.12 highlights another point, the flow directly above vortex (Fha)
is travelling considerably faster than the flow in the vortex core, as a result is unlikely to
be drawn into it. However the flow surrounding vortex core (F3a) is travelling at a much
reduced speed, thus is more able to be drawn into its core. More importantly, because
vortex (Fha) is considerably smaller than vortex (Fza), it is plausible that even less fluid
is consumed by it. Therefore the evidence clearly indicates why vortex (Faa) is unable to

evolve the complete length downstream.

Figure 5.36 and Figure 5.37 plots isometric surfaces of a selected constant variable. The
isometric density surfaces in Figure 5.36 clearly show the bow shock and constant density
surfaces within the separated flow. Figure 5.36:(top) indicates the primary vortex cores
of (F1) and (F3) are embedded in a region of low density. Figure 5.36:(middle) gives the
position of the bow shock and the low density band within the separated region containing
the primary vortex cores. The deflection of the bow shock as a result of the interaction
with the oblique separation shock is clearly seen. Figure 5.36:(bottom) indicates the
extent of the separation shock/bow shock interaction. What is evident is the spreading of
the separated region in a more spanwise direction further downstream of the fin root. This
primarily impacts the triple point which travels further up the fin as the flow progresses

downstream.

The isometric Mach and (w) ? velocity surfaces in Figure 5.37 indicate regions of a con-
stant value. The (Mach = 0.9) surface highlights the three-dimensional extent of the
subsonic layer within the separated flow and behind the bow shock. The layer within
the recirculation region is confined to the line of symmetry and the surrounding flow
near it. The vortices that form at the centerline in the subsonic layer will become em-
bedded in regions of supersonic flow further downstream as shown in Figure 5.37:(top).
The constant (w)-vertical velocity surface depicted in Figure 5.37:(middle) and Fig-
ure 5.37:(bottom) highlights a isometric surface for two constant speeds. The higher

velocity surface, (w = 200ms~!), highlights a section of flow that is accelerated by the

2_ Velocity components: (u)-streamwise; (v)-spanwise; (w)-vertical
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impacting supersonic jet on the fin surface and the vortex core within vortex (Fja). The
lower velocity surface, (w = 50ms~1), highlights the low velocity within vortex (Fha), and

the region of flow encased within the bow shock and fin surface.

5.4.3 Surface Heating on Plate

The surface heat transfer profiles give us the first real opportunity to compare quantitative
data obtained from the experiments conducted by Schuricht [53] with results obtained from

the numerical simulations undertaken in this study.

The surface heat flux from the numerical results is calculated using first order surface

temperature gradients:

quw = “?9? (5.7)

This is used to calculate the Stanton number defined by Eqn 2.9 in Chapter 2, the non-

dimensional parameter usually used to define heat flux.

Guw
t = )
5 CPPOOUOO(TT —Tw) (5:8)

From this we can define the heat transfer coefficient (h) as

Gw

=@ -1 (5:9)

where,

h = StpecUsocyp (5.10)

For the remainder of this section, the surface heat fluxes will be compared using the

respective heat transfer coefficients.
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Following the procedure in Schuricht’s work, the numerical heat transfer coefficient (h)
has been normalized with respect to the undisturbed heat transfer coefficient (h,,) for a
flat plate. The flat plate was simulated earlier, and the results are described in Chapter
4, Section 4.2. The resultant heat transfer coefficient (h/h,,) will be used to compare the
heat transfer profiles. Therefore regions where the normalised value (h/h,,) is less than
one represents a region of reduced heat flux while a region where (h/h, > 1) represents a

region of enhanced heat flux.

Figure 5.38 shows the spatial distribution of normalized heat transfer contours (h/h,,)
obtained by Schuricht for the 5mm unswept blunt-fin; Figure 5.39 is the equivalent contour
profile obtained from the numerical simulation. Comparing the distribution patterns of
the two images show very strong similarities. Both heat transfer images indicate that
regions of high heat transfer follow the shape of horseshoe bands around the blunt-fin.
This observation is consistent with earlier suggestions that heating enhancements occur

along the horseshoe shaped vortex paths.

From observation, the experimental heat transfer images in Figure 5.38 indicate four dis-
tinct regions of enhanced heating. The outer-most feature is a high heat flux band where
(h/hy ~ 4); further inward, closer to the root of the blunt-fin shows a thicker band where
(h/hy) is between 4 to 5 times the undisturbed value. The region closest to the blunt-fin
root has two distinct traces where the heat flux (h/h,,) is ~ 8 to 10 times the undisturbed
value. The regions that appear white in Figure 5.38 are areas where no valid data were
obtained. Schuricht [53] concluded that in these areas the liquid crystal layer had cleared,
and the surface temperature is therefore in excess of the liquid crystal colourplay band-
width. It was also suggested that close to the blunt-fin root at (/D ~ -1) is region where
the liquid crystals had ablated due to high shear and heat transfer locally. As a result,
Schuricht had to estimate the heat transfer coefficient in these regions by knowing the
approximate temperature rise that occurred within the time interval. Schuricht concluded

that as a lower band estimate, (h/h, > 10).

Comparing with Figure 5.39; the numerical profile also demonstrates four distinct regions
of enhanced heating with the spatial location of each band a offering good correlation

to the experimental data. The higher heat flux bands in the numerical contour profile
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Figure 5.38: Experimental heat transfer contours on plate surface Schuricht [53]
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Figure 5.39: Numerical heat transfer contours on plate surface
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are more clearly resolved than in the experimental results, and more significant as will
be shown later, the root of the blunt-fin indicates considerably higher heat transfer rates,
approximately 60 times the equivalent undisturbed flat plate value. As highlighted earlier,
a direct comparison with the available experimental results in this region is not possible,
because the liquid crystal technique employed by Schuricht could not provide reliable

results at such high heat fluxes.

The numerical results indicate that the maximum heat transfer coefficient (h/hy)maz,
which occurs near the root of the blunt-fin, is around 5 times greater than the maximum
value estimated by Schuricht from the experiments. The calculated numerical (h/hy)maz iS
also considerably larger than the value estimated from Eqn 2.28 in Chapter 2, Section 2.5.2,
which is calculated to be around 7. However similar findings have been reported by Tutty
et.al [60] for turbulent blunt-fin interactions where there has been large discrepancies
between the numerical and experimentally calculated (h/hy)maz- In these simulations
the available experimental data suffered from similar losses as a result of liquid crystal
ablation, but when comparisons were made between the predicted values for heat transfer
coefficient and the equivalent numerical values, differences with similar orders of magnitude

were observed.

An important difference that has emerged between the experimental and numerical results
concern the outer heating band: in the numerical results the heat flux associated with the
outer band near the line of symmetry, is around (h/h, ~ 3.5). However, as this feature
wraps around the blunt-fin, (h/h,) decreases to ~ 3. This trend appears to occur in the
opposite direction in the experimental results in Figure 5.38. The experimental heat flux
associated with this feature near the line of symmetry is approximately ~ 2, increasing to
(h/hy ~ 4) as the heating band wraps around the blunt-fin. A more detailed examination

of this difference is made later by inspecting crossflow and centerline (h/h,) profiles.

Figure 5.40:(top) shows the actual oil-flow and liquid crystal response obtained by Schuricht
for the 5mm unswept blunt-fin. The regions on the liquid crystal response highlighted by
a blue/black band represents an area of enhanced heating and, as indicated, there appear
to be four distinct horseshoe shaped bands surrounding the blunt-fin. The enhanced heat-

ing band closest to the root appears to split in two as the feature evolves downstream of
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Figure 5.40: (top) Liquid crystal response and oil-flow over plate surface by Schuricht [53]
(bottom) Heat transfer distribution and skin friction streamlines on plate surface
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the fin root. The oil-flow image reveals the location of any separation or reattachment
lines present on the surface. As discussed in Chapter 4, Section 5.1.5, regions of low shear
signifies flow separation, and on the oil-flow in Figure 5.40:(top) is indicated by regions
where the oil accumulates as streaky white lines. The areas on the plate where flow reat-
tachment occurs, regions of high shear, are indicated by an absence of oil. It is clear
that distinguishing unique separation and reattachment lines close to the fin root is quite
difficult due to poor visual resolution and smearing. This highlights the difficulty in using

oil-flow images alone to ascertain a separation topology for such configurations.

The equivalent numerical comparison, which shows the plate skin friction streamlines mir-
rored against the heat transfer contours for the plate, is illustrated in Figure 5.40:(bottom).
The comparison shows similarities with the experimental results, and as indicated the four
distinct enhanced heating bands correspond with four reattachment lines expressed by a
divergent herringbone pattern. Regions where flow separation occurs is indicated by a
convergent pattern in the streamlines and is highlighted by the cooler bands, which in
Figure 5.40:(bottom) is shown to be areas that are either red/orange. A closer inspection
of the region near the blunt-fin wall indicates a line of separation very tightly packed near
the fin edge. This feature was noted earlier when examining the lateral section profiles,
where a very small corner vortex is observed at the base of the fin, (see Figure 5.26). This

result is similar to observations made for a sharp-fin in Chapter 2, Section 2.5.1.

One of the most pronounced features highlighted by the numerical results is the extremely
large heat fluxes calculated at the flow reattachment node (ni), (see Figure 5.40 and
Figure 5.19). Studying the localised Mach number and density field near this reattachment
node in Figure 5.41, it is possible to postulate a mechanism that could be responsible for

the observed large heat flux associated at (np).

The Mach contours indicate that the reattachment node (np) is straddled between two
supersonic zones, with one supersonic pocket located near the corner vortex with foci
(Fia). A closer inspection of Figure 5.41:(left) reveals that the flow at the reattachment
node (n;) is itself subsonic. The localised density contours in Figure 5.41:(right) reveal
that the reattachment location is a region of higher density when compared to the flow

regions neighbouring the reattachment location. Figure 5.12 highlights the most important
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Figure 5.41: (left) Enlarged view of Mach contours near the root vortex (right) Enlarged view

of Density contours near the root vortex

fact, as indicated by the velocity vectors, the flow is accelerated considerably down towards
the plate surface by the surrounding supersonic regions to form a near vertical supersonic
jet like feature. The boundary layer on the plate at (n1) is extremely thin as a result
of flow reattachment, the near vertical supersonic jet appears to be concentrated at the
reattachment point. Sudden retardation of the flow because of the jet of high speed flow
striking the plate surface causes a large transfer of kinetic energy to thermal energy. The
increased density of particles and high pressures correspond to a greater mass of high
speed particles striking the surface, and as a result gives a clear indication on why the

heat transfer rate at the reattachment point (n;) is so high.

Although Schuricht did not take any heat flux measurements on the fin-side surface of the
blunt-fin, the numerical results obtained from the present simulation allows for a detailed
analysis of the heat flux distribution on the blunt-fin side surface. The heat transfer
coefficient distribution indicates three distinct regions of enhanced heating on the side
surface of the fin as shown in Figure 5.42. The heat flux contour field on the fin-side
surafce has been normalised with respect to the undisturbed (no fin) heat flux coefficient
estimated from FEckerts reference enthalpy method at a position 145mm downstream of

the plate leading edge (the fin/plate junction), this was estimated to be 2217Wm 1K1

The most distinct region occurs on the fin leading edge, (z/D = 0), and two secondary

regions span the entire chord of the fin side surface. The region which records the most
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Figure 5.42: Heat transfer distribution on the side surface of blunt-fin

dramatic heating is likely caused by the impacting supersonic jet on the fin surface, which
produces the most distinct impression on the surface heating profile as indicated in Fig-
ure 5.42. At the jet impingement point, (h/h, ~ 30), with the surrounding area around
the jet also experiencing elevated levels of heating. The contour map reveals that the im-
pacting supersonic jet appears to cause two distinct jet flow features. The first jet seems
to follow a path initially upwards away from the triple point along the fin leading edge
similar to findings of Fomison [21], and is the more distinct of the two, causing significant
heating enhancement. The second jet, much weaker, passes on either side of the fin and
traverses across the side surface of the fin causing a relatively minor heating increase,
(h/hy ~ 1.8). The two regions on the fin side surface surface are localised near the base of
the fin, and are the result of conical vortices that were highlighted in Figure 5.27, formed
inside the large separated region of vortex (Fia). The heating levels as a result of these

vortices is relatively low by comparison (h/h, ~ 1.8).

Inspection of the heat transfer profiles along discrete lines on the plate surface is more
beneficial and reveals more detail about the characteristics of the heating profile, and
enable further comparisons to be made with the experimental data obtained by Schuricht.
To simplify comparison with Schuricht’s results the notation used in Figure 5.43 has been
changed so that the nodal points (n) are replaced with (R), signifying the reattachment

line that flows through the reattachment nodes. For example (Ry) is associated with node

(n1).
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Figure 5.43: (top) Normalized linear heat transfer coefficient (h/h,,) along centerline (bottom)

Normalized logarithmic heat transfer coefficient (h/h,,) along centerline
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The numerical centerline heat transfer profile shown in Figure 5.43 in both linear and
logarithmic form, reveals three distinct peaks associated with three reattachment points
on the surface of the plate. The location of these peaks and valleys are consistent with
the flow topology suggested by the surface skin friction streamlines in Figure 5.19, and
symmetry plane velocity streamlines of Figure 5.20. The flow reattachment nodes in the
skin friction topology map were labelled (n; = R1), (n2 = R2) and (n3 = Rg) respectively,
with (n1) equating to the location where (h/hy)mas Occurs, closest to the blunt-fin root.
The magnitude of the peaks increase as the fin root is approached. The highest heating
coefficient occurs at (Ry), where (h/hy)maz =~ 63. This value is significantly higher than
the value (h/h, > 10) estimated by Schuricht from his experimental data, as highlighted

earlier.

Comparing the two data sets in Figure 5.43, shows that the numerical results over predict
the heat transfer coefficient at each reattachment point along the centerline. The difference
between the numerical and experimental (h/h,) increases as the root of the blunt-fin is
approached. Starting upstream of the separation point; the numerical profile shows a more
pronounced decrease in the heat transfer coefficient at primary separation which occurs at
(xg/D ~ -7.5), compared to the experimental results which show no appreciable change in
(h/hy). The heat transfer coefficient associated with (Rg) is similar in both data sets, with
(h/hy =~ 3.5). The coefficient associated with (Rz2) in the numerical profile increases to
around ~ 2 times greater than the equivalent experimental value. The greatest difference
occurs at (Ry), where the associated heat transfer coefficient is approximately ~ 6 times

greater than the equivalent experimental value at (Rq).

The numerical results do however show a very favorable comparison with the experimental
data in the undisturbed regions and in the general spatial distribution of the peaks and
valleys. Clear points of similarity to observe between the numerical and experimental
data concern the location of separation point (Sz) and the reattachment points (Rg) and
(R1). According to the numerical results, separation point (S2) and reattachment node
(R1) occur at around (z/D ~ -1.2) and (z/D =~ -0.2) respectively; these appear to agree
well with the experimental data, where Schuricht estimated that the reattachment node
(R1) would occur at (z/D ~ -0.15). Further similarities appear with the location of
reattachment node (Rg) which is around (z/D =~ -1.6) in both data sets. In addition both
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data sets indicate that the heating rise begins to occur just over (z/D ~ -5) upstream of

the blunt-fin root.

Schuricht reasoned that the centerline (h/h,,) profile contained four distinct peaks which,
he concluded, corresponded to four reattachment points. In contrast the numerical cen-
terline profile only indicates three distinct reattachment peaks. The missing peak appears
to occur between (Rp) and (Rg) in Schuricht’s terminology (see Figure 5.46), which in
the numerical profile is between (Rg) and (Rg). The existence of a fourth peak, which
implies the presence of a fourth reattachment node on the centerline is very difficult to
distinguish from the experimental centerline heat transfer profile in Figure 5.43. As the

evidence is not conclusive, its existence is questionable.

To analyse the spanwise distribution in the surface heating due to flow reattachment on
the plate, lateral or crossflow plots of (h/h,) are taken at (z/D = +1), (x/D = +5)
and (z/D = +8) downstream of the fin root, and shown in Figures 5.44 (linear scale)
and 5.45 (logarithmic scale). Initial observations clearly show the lateral spread in the
heating footprint with increasing distance downstream as seen earlier in Section 5.1.5. A
comparison with the experimental results in Figures 5.44 and 5.45 clearly show an excellent
agreement in spatial distribution of the peaks and valleys, but significant discrepancies

exist in the magnitudes of the peaks.

At (/D = +1) and (/D = +5) it has to be highlighted that from the available exper-
imental data the high heat flux associated with peak (R;) was unable to be measured
because of limitations in the measurement technique and, the peak associated with (Rz)
in Figure 5.44:(top) and (R’2) in Figure 5.44:(middle) is an approximation, due to cor-
ruption in the data gathered [53].

The lateral heating profile at (z/D = +1) appears to show a near identical pattern to that
observed on the centerline upstream of the fin. The peaks associated with (R1), (Rz2) and
(R3) are matched in magnitude with the centerline result; however the peaks have moved
apart when compared with the same centerline peak locations. A comparison cannot be
made at (Ry1) because the peak could not be measured experimentally. The peak at (Rg)
appears to be over predicted and the peak at (Rg) is underpredicted. However, a realistic

comparison cannot be made for (Rgz) because, as highlighted earlier, the experimental
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Figure 5.44: (top) Normalized linear heat transfer coefficient (h/h,) laterally at /D = 1
(middle) Normalized linear heat transfer coefficient (h/h,) laterally at /D = 5 (bottom) Nor-
malized linear heat transfer coefficient (h/h,,) laterally at /D = 8
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Figure 5.45: (top) Normalized logarithmic heat transfer coefficient (h/h,,) laterally at z/D =1

(middle) Normalized logarithmic heat transfer coefficient (h/h,) laterally at /D =5 (bottom)

Normalized logarithmic heat transfer coefficient (h/h,,) laterally at /D = 8

170



5.4 5mm blunt-fin simulations S.J.VITHANA

data associated with (Rg) is an approximation.

A similar examination of the peaks at (/D = +5) show a dramatic shift in the magnitude
of the heat transfer coefficients. The most significant change is the decrease in surface
heating at (Rq), which records a 64% drop in magnitude whilst the second peak records a
75% increase. The peak at (Rg) appears to be unchanged. The most severe surface heating
due to (Rq) is localised near the nose of the blunt-fin, after which further downstream,
tends to decay considerably. This is most likely due to the strength of the supersonic jet
impacting on the plate surface diminishing away from the blunt section of the fin. Secondly,
the second peak at (y/D = +3) is no longer caused by the reattachment line (Rg), because
as discussed earlier in Section 5.4.2 this reattachment line disappears after (z/D > +2).
This peak is now attributed to a new reattachment line (R’2) which was formed at (z/D =
+4) as a result of flow separation due to a swept-shock interaction. Making a comparison
with the experimental data at (z/D = +5) highlights similar differences to those observed
at (x/D = +1). The peak at (Rj) is still not captured experimentally, and the peak at
(R’2) is again an approximation due to data corruption. However, as previously found,
(R’2) is overestimated, and (Rg) is still slightly underpredicted when compared to the
experimental values. Experimentally the heat flux at (Rg) was measured to be around
(h/hy ~ 3.5), whilst the numerically calculated value for heat flux at (Rg) is around
(h/hy ~ 2.5). Similarly, at (R’2), the experimental heat flux was approximated to be
around (h/h, ~ 7), and numerically the heat flux at (Rg) is around (h/h, =~ 14).

Station (z/D = +8) represents the furthest point downstream of the blunt-fin leading
edge modelled by the computational domain. The heating profile shows that the heat flux
at (Ri) has reduced considerably at (z/D = +8), when compared with (Ry) at (x/D
= +5) and (x/D = +1). In addition the heat flux at (R’2) appears to have increased
in magnitude further downstream. The peak at (Rg) appears to be the same as before.
Comparing the heating profiles at (z/D = +8 and +5) indicate the existence of three
distinct peaks associated with flow reattachment at (Ry), (R’2) and (Rg), very similar
to the profile at (z/D = +1) in Figure 5.44:(top). A direct comparison cannot be made
with the available experimental data since the experimental measurements were taken at
(x/D = +10). However, to facilitate a comparison, extrapolating from the regression

trend observed from previous heat flux profiles at other locations gives us an approximate
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numerical profile at (x/D = +10) and this is indicated in Figure 5.44:(bottom).

The comparison at (z/D = +10), as shown in Figure 5.44:(bottom) appears to show
the greatest variation in the heat flux between the measured experimental data and the
calculated numerical results. However, as in the previous results at the centerline, (x/D
= +1) and at (z/D = +5) the spatial distribution of the peaks and valleys is quite well
matched. The numerical results at (/D = +10) overpredicts the heat flux at (R’2), but
gives a closer match at peaks (R1) and (Rg). The experimentally heat flux at (Rq) was
measured to be around (h/h, =~ 7), whilst the numerical value for heat flux at (Rq) is
around (h/h, ~ 8). Similarly, at (Rg), the experimental heat flux was approximated to be
around (h/h,, ~ 2), and numerically the heat flux at (Rg) is also around (h/h, ~ 2). The
heat flux at (R’2) from the experimental data is around (h/h,) ~ 8 and the same peak
from the numerical results is around (h/h, ~ 12). This represents a 33% increase between
the numerical and experimental heat flux measured at (R’2). The experimental results
in Figure 5.44:(bottom) appear to show a fourth peak in the heat flux profile at (y/D ~
6.5). In the numerical results there appears to be an observed rise in heat flux after (S3)
which occurs around (y/D ~ 8.5), but its exact characteristics cannot be determined, and

the profile is quite diffused.

A significant factor that could lead to overprediction of the heat flux at (z/D = +10), is
the grid resolution at that location. A similar behaviour in the calculated heat flux is also
observed in the grid dependency study in Section 5.1.4. It was shown that the cell size
had a strong impact on the calculated Stanton number which was overpredicted near the
leading edge and with most of the coarse grids studied. As a result it was concluded that
the minimum grid cell (Axz/Ay) required for an accurate measurement of Stanton number,
was (< 8). The current ratio of (Az/Ay) is (> 11) in the grid cells at (z/D = +10) for
distances of (y/D > +5). As a result an accurate comparison for the peak strength at

(R3) may not be possible and is the probable reason for the difference in magnitude.

Schuricht, after examining the centerline, lateral crossflow and plate surface heat trans-
fer data along with the oil flow experiments, proposed a complex flowfield model con-
taining eight horseshoe vortices, in four counter counter rotating pairs as shown in Fig-

ure 5.46:(top). The resultant separation and reattachment path of the flow on the plate
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surface due to these vortices is shown in Figure 5.47:(top). The equivalent numerical mod-
els are also shown in Figure 5.46:(bottom) and Figure 5.47:(bottom) respectively. For
the ease of comparison the notation used by Schuricht for labelling the vortices and sub-
sequent separation and reattachment lines on the experimental results have been adopted
on the numerical model. It is clear to see by comparing the two models that they share

quite a significant amount of detail, however there also appear to have distinct differences.

The most significant difference between the two models is the presence of vortex pairs
(SV2) and (PV3) as proposed by Schuricht. In the following analysis it was shown that
the presence of this vortex pair could not be ascertained with any degree of certainty from
the experimental centerline and (y/D = +5) heat transfer data. The possible existence of
this vortex pair was indicated by the reattachment point seen in the (y/D = +10) lateral
crossflow heating profile. However, this result is unique because Schuricht was unable to
duplicate this finding with the 2.5mm diameter, and 7.5mm diameter blunt-fins that were
also tested. This phenomenon could have come about as a result of subtle variations in
flow (Re/l) in the tunnel, which causes the vortex arrangement in the separated flow to
change from one structure to another; (see Chapter 2, Section 2.5.2 ). Variations in flow
models put forward from conjecture through experimental data, and ones obtained through
numerical analysis is common place. Further examples of conflicting models derived from
experimental, and numerical methods can be seen in various other studies [45], [11], [60]

and [5].
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Figure 5.46: (top) Vortex profile suggested by Schuricht [53] on centerline (bottom) Numerically

obtained Vortex profile along centerline
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Figure 5.47: (top) Surface skin friction map suggested by Schuricht [53] on the flat plate (bottom)

Numerically obtained Surface skin friction map on the flat plate

175



5.5 10mm blunt-fin simulations S.J.VITHANA

5.5 10mm blunt-fin simulations

The effect of fin leading edge diameter on the relative scale of the interference interaction
for laminar as well as turbulent flows is well documented (see [17], [15]), with details of
the salient effects described in Chapter 2 Section 2.5.2. However all the available data from
previous parametric studies regarding effects of leading edge diameter are in the form of
surface measurements, which can only indicate changes to surface variables and as a result
only give an idea of changes to the relative size of the surface interaction footprint. These
methods were unable to document the changes that would occur to the three-dimensional
flow field structure, and as a result there is no available data describing such changes.
Therefore, to investigate the impact doubling the leading edge diameter has on the three-
dimensional interference flow field, simulations are carried out using an unswept 10mm
diameter blunt-fin. The initial boundary conditions used for the numerical simulation are
identical to that used for the 5mm diameter fin simulation. Length scales in the current
set of simulations are non-dimensionalised with respect to (D = 10mm). Heat transfer
coefficients are non-dimensionalised with respect to the undisturbed flat plate. With the
fin height maintained at 25mm, the ratio of fin height to fin diameter is (K/D = 2.5).
It was earlier stated that for the asymptotic behaviour condition to be fulfilled, (K/D >
2.5). The current ratio is on this limit, and as a result there is a strong possibility the

asymptotic condition might not be fulfilled for the 10mm diameter fin.

5.5.1 Grid Refinement Study

A grid dependency study similar to the one carried out for the 5mm diameter fin was

undertaken for the 10mm diameter fin. The grids studied are shown in Table 5.7.

The effects on skin friction coefficient, Stanton number and pressure ratio on the plate
surface along the line of symmetry for the different grids are presented. In addition,
changes in the general flowfield structure as a result of grid refinement are also examined.
For the purpose of easily identifying clear differences in the simulated results the plots
for skin friction coefficient, Stanton number and Pressure ratio will only show variation in

properties from (z/D = -25) to (z/D = 0).
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Grid Type

58 x 51 x 45 Al
78 x 72 x 60 A2
116 x 102 x 90 B1

156 x 144 x 120 | B2

Table 5.7: The grids used in the mesh dependency tests

The density contours, and velocity streamlines from the plane of symmetry, for a selection
of different grids are shown in Figures 5.48 & 5.49. As observed in the 5mm fin grid
refinement study, successive grid refinement yields sharper inviscid and viscous features,
such as shocks and boundary layer structures. The results indicate, as observed for the
5mm fin, a similar smearing in the leading edge shock as a result of the clustering criterion
imposed. Primarily this loss in shock resolution is notably present in only the coarsest
grids, Al and A2, therefore accounting for the visibly lower leading edge shock angle in
Figure 5.48:(A) compared to Figure 5.48:(D).

The variation in Stanton number along the line of symmetry, for the various grid densities
is shown in Figure 5.50:(top). Also included in the plot is the theoretical Eckert solution
for a flat plate. The dominant features of the profile are an (a:_%) decay away from the
leading edge, followed by a pronounced dip at flow separation followed directly by a rapid
rise with a range of peaks and troughs. This profile follows a similar pattern of variation
to the one observed for the 5mm diameter fin. However, it is important to note distinctive
differences between the 10mm and 5mm diameter fin result. In the 10mm results there
appear to be 4 distinct peaks and troughs compared to 3 in the 5mm study. Furthermore,
the drop in Stanton number at separation is far less pronounced in the 10mm result when
compared to its bmm counterpart. In addition, it is observed from the current set of
simulations that there appears to be a larger difference between the finest 10mm grid
results and the Eckert solution upstream of the separation point when compared with
similar 5mm diameter fin results in the same range. For example, the Eckert value for
Stanton number at a point (x/D = -20) is 0.0007, the value obtained from the finest 5mm

grid at that location is 0.00074. This represents an approximately ~5% increase. At the
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Figure 5.48: Density contours in the plane of symmetry for a range of (p) values: 0.0056 - 0.023
in increments of 0.001 (A) 58 x 51 x 45 (B) 78 x 72 x 60 (C) 116 x 102 x 90 (D) 156 x 144 x 120
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z/ID

Figure 5.49: (A) Velocity streamlines 58 x 51 x 45 (B) Velocity streamlines 78 x 72 x 60 (C)
Velocity streamlines 116 x 102 x 90 (D) Velocity streamlines 156 x 144 x 120
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Figure 5.50: (top) Stanton number comparison for different grid densitites (bottom) Skin friction

coefficient comparison for different grid densitites
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same location, the value obtained from the 10mm grid is 0.0008, which represents a ~13%
increase. This would imply that the heat flux results obtained from the current crop of
simulations will not be truly representative of the final state of the heat flux distribution
on the flat plate for a 10mm diameter fin interaction. This is clearly visible from the
Stanton number plot where they clearly overpredict the Stanton number near the leading
edge, and at positions close to the fin root there still appears to be some variation in the
magnitudes of the recorded peaks between the two finest grids studied, the (116 x 102 x 90)
and (156 x 144 x 120). This clearly indicates the significant impact of the cell size on the

calculated Stanton number as found in the 5mm diameter fin study.

A comparison of the skin friction coefficient along the line of symmetry Figure 5.50:(bottom),
appears to show a similar variation to the pattern observed in the Stanton number pro-
file and previous skin friction coefficient profiles for the 5mm diameter fin. The main
differences in the current profile is the larger separation length and the lower values of
skin friction in the peaks and troughs, specifically close to the fin root. Similar to the
results of the 5mm fin, (Cy,,) is overpredicted near the leading edge indicating a similar
relationship to cell size as found with the Stanton number comparison in Figure 5.50:(top)
and previous results. The skin friction profile only indicates three distinct separation and
reattachment points when compared to the Stanton number profile in Figure 5.50:(top).
The location of the fourth peak in Figure 5.50:(top) occurs at (z/D = -4), looking at
the equivalent point in Figure 5.50:(bottom) appears to indicate an increase in (Cfy,),
however since (C,, # 0) it cannot be definitively characterised as a further singularity.

As a result it is not considered to be another separation/reattachment point.

Grid Type | xs/D

58 x 51 x 45 Al | -5.575

78 X 72 % 60 A2 | -5.760

116 x 102 x 90 Bl |-6.130

156 x 144 x 120 | B2 | -6.250

Table 5.8: Separation lengths for different 10mm diameter blunt-fin grids
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The variation in the non-dimensionalized primary separation length for the different grids
is shown in Table 5.8. The expected scaling in separation length with successive grid
refinement is clearly visible from Table 5.8. The results from the table clearly show that

the separation length has not converged with finest grid simulated.

A comparison of the non-dimensionalzied separation length (xg/D), between the 10mm
and 5mm fin interaction reveals some notable differences. Comparing the separation
lengths from 10mm grid B1 (116 x 102 x 90) and B2 (156 x 144 x 120), with the re-
spective separation lengths from 5mm grid B2 (116 x 102 x 90) and C1 (172 x 160 x 144),
reveals a 18.1% and 17.04% decrease in (xg/D). The result appears to indicate a decrease
in the non-dimensionalized separation length with an increase in fin diameter. A similar
decrease in the non-dimensionalzied separation lengths in the 5mm and 7.5mm diameter

unswept fin interaction was observed by Schuricht [53] in his experiments.

However, it has to be noted that the final separation length from the current crop of 10mm
grids have not yielded a converged value. Further complicating the matter is the possibility
that the asymptotic criterion might not have been met in the current simulation, and the
final separation length could change with a change in fin height (K). To verify the theory
of a decrease in the non-dimensionalized separation length with an increase in fin diameter,

further investigation with a finer grid is recommended.

The pressure profile shown in Figure 5.51 is very similar to that observed in the 5mm
case, the only difference being that the pressure rise appears to begin further upstream of
the fin root at (z/D = -15), compared to (x/D = -10) in the 5mm case. This observation
is consistent with the earlier finding of an increased separation distance. Also highlighted

in Figure 5.51 is the additional localised but small pressure peak at (z/D = -4).

The grid dependency study has shown that the present set of grids used will not produce
a grid independent solution for the 10mm blunt-fin. It is clear that with further grid
refinement there is the potential to get a more accurate solution. It would appear that
the following sets of type B grids, might have to be doubled to get a set of type C grids

to really offer the chance of achieving a grid independent solution.

However for the purpose of qualitatively comparing surface heat transfer distribution and
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Figure 5.51: Detail of Pressure comparison for different grid densitites

any differences attributed to fin diameter in the scale of the interaction between the 5mm

and 10mm diameter fins, the numerical results from grid (156 x 144 x 120) will be able to

provide a reasonably accurate comparison.

5.5.2 General Flow Features of 10mm blunt-fin

The structure of the flowfield in the axis of symmetry for the 10mm blunt-fin interaction

bears remarkable similarity to the flow structure observed in the 5mm study.

The shock structure from analysing the density contours (see Figure 5.52), clearly capture

the leading edge shock, shock induced boundary layer separation shock, and fin bow

shock. The magnitude of the non-dimesionalized bow shock stand-off distance (A/D)

for the 10mm interaction is very similar to what is observed in the b5mm fin interaction,

(A/D =~ 0.3).
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Figure 5.52: (top) Density contours (middle) Temperature contours (bottom) Pressure contours
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The kinks in the bow shock are a good indicator of shock/shock interaction points, and
from Figure 5.52 it is clear to see two distinct points of interaction at (z/D ~ 2.75) and
(z/D ~ 1.25). The flow in the separated region appears to indicate further complexities
in its structure with large density gradients visible throughout the separation bubble. A
region of flow just behind the primary shock/shock interaction point at (z/D ~ 2.75)
appears to indicate an area where there is large variation in density. This is very similar
to what was observed for the b5mm fin where it was discovered that these large density
gradients were caused by an impacting supersonic jet, the result of an Edney type IV
interaction. A similar region of large density gradients exist very close to the root of the

fin/plate attachment location.

The temperature contours in Figure 5.52 clearly outline the extent of the thermal bound-
ary and shear layers. The two bubbles of relatively cooler gas, close to the leading edge of
the blunt-fin highlight the the embedded supersonic zones similar to the b5mm fin study.
The presence of the second separation shock is barely visible in the temperature con-
tours. The pressure contours clearly show the three main shock structures, leading edge,
separation and detached bow shock. Also indicated by the clustered contour lines is the
second separation shock, just below the primary separation shock. The pressure profile
also indicates a region of high pressure behind the primary shock separation/bow shock

interaction point.

A table with some geometrical constants for the 10mm diameter fin flow field is shown
in Table 5.9. The boundary layer height used for comparison in the table below is the
undisturbed boundary layer height measured 145mm from the leading edge, (6 = 3.48mm),
(z/D = 0.696).

Type D/6 | K/6 | K/D | K/Ky,

Smm - Numerical | 1.44 | 7.18 5 3.24

10mm - Numerical | 2.87 | 7.18 2.5 1.85

Table 5.9: Fin dimension relationships

Given the height of the fin remains constant at 25mm, the (Ky,) for the 10mm fin is
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calculated to be (K, = 13.51). Comparing this with the 5mm fin which has a (K, =
7.72), reveals a 43% increase in the height of the triple point. This appears to show that
although the non-dimensional separation length is smaller in the 10mm fin interaction, the
physical size of the separated region in relation to the flat plate and model is larger than
the 5mm fin. As highlighted earlier, the current (K/D) ratio is very close to the minimum
value quoted for asymptotic behaviour. To verify the fact that the criterion holds for the
current analysis, it is necessary to analyze the surface heat transfer rates; this is carried
out later in this chapter. With a (D/é = 2.87) the 10mm fin would still be classed as a
'short’” protuberance (see Chapter 2, Section 2.5.2), and the heating distribution dictated
by the ratio (K/0). Since the (K/§) ratio in Table 5.9 is the same as the ratio for the

5mm fin, it is expected that both heating distributions would be very similar.

Mach
Leading edge bow shock —=
g 1.01
Primary shock/shock interaction point — \ " [
Primary separation shock — 3 0.88
15 e N
Reflected shock —=
Q1
=
N 0.45
Secondary shock/shock interaction point
Secondary separation shock —
0.5
0.17
0

Figure 5.53: Embedded supersonic zones within the separated region in the 10mm interference

flowfield

Figure 5.53 shows the Mach contours for the (z/D) range indicated. For the purpose
of identifying the relevant features the Mach contours plotted in Figure 5.53 only show
regions below (M < 1); regions where the Mach number is > 1 are highlighted in a

dark blue colour. Clearly outlined are the two supersonic bubbles embedded within the
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recirculation zone. The second supersonic jet from the second shock/shock interaction can
be clearly seen, with the path of the high speed gas outlined by the black arrows. The
primary supersonic jet does not appear to be well captured; however the path of the gas

can be seen from analysing Figure 5.53, and is marked by the black arrow.

Pattern of Separated Flow

The plate surface skin friction lines for the 10mm fin interaction describe a field very
similar to the surface skin friction field observed for the 5mm fin. The primary separation
saddle, (s4), is highlighted as the point furthest outward from the root of the blunt-fin in
Figure 5.54. Through (s4) goes the separation line towards which the skin friction lines
converge. The separation line is strongly deflected when it encounters the freestream as
shown in Figure 5.54. There is a node of reattachment right at the base of the blunt-fin
(n1). Through (ny) goes the attachment line from which the skin friction lines diverge.
In addition their are two other distinct pairs of separation saddles and reattachment
nodes (s2, s3) and (ng, ng), originating from the centreline Figure 5.54. A nodal point of
separation and reattachment (s}, nj) originates close to the reattachment line (Rq). In
addition there is another nodal point of separation (s4) near the side surface of the fin.

The number of saddles and nodes is identical to the 5mm fin (3 saddles and 3 nodes).

The main difference between the two surface topologies is the relative spacing between
the sets of separation and reattachment pairs. In the 5mm surface skin friction field in
Figure 5.19 the primary separation point (s4) is located considerably further upstream
compared to separation points (s2, s3) which are relatively much closer together and nearer
the fin. When a similar comparison is made in the 10mm surface skin friction field, it is
clearly evident that all separation points are evenly spaced, in particular (s3) which has

moved further upstream.

The streamlines in the symmetry plane for the 10mm flowfield are shown in Figure 5.55:
the diffused spanwise vorticity of the incoming boundary layer is organised in three primary
vortices (foci Fy, Fy and F3); and secondary vortices (foci Fla, Foa and Fsa) separate from
the bottom surface, and concentrate the vorticity of opposite sign generated on the bottom

surface by the reverse flow.
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Figure 5.54: Surface skin friction streamlines on flat plate with highlighted separation and reat-

tachment lines. A separation saddle is denoted by (s) and a reattachment node by (n)
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Figure 5.55: (top) Particle streamlines in profile plane at location A (bottom) Plate surface

pressure

The vortex structure within the separation bubble is very similar to the structure observed
in the 5mm fin study. The primary difference is the bifurication of vortex (F»), found
within the recirculation zone of the 5mm interaction (see Figure 5.20). This main vortex
breaks into vortices (F3) and (F3) as observed in Figure 5.55. The main reason for this
bifurication would appear to be the presence of a pressure rise at (x/D ~ -4) as shown
in the wall pressure profile. The flow encountering this adverse pressure gradient induces
the primary vortex to bifurcate to form two separate cores, as seen in Figure 5.55. As the

pressure rise increases in the upstream direction, it results in tertiary separation at (S3)
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seen at (z/D ~ -6) similar to the process that caused secondary separation. The flow
reattaches itself further upstream at node (/N3). These secondary and tertiary separation

and reattachments leads to the formation of two secondary vortices.

Cross flow section profiles, (Profile D - F) taken at (/D = 41, +2.5 and +4) shows the
flow structure in the lateral extent of the 10mm interaction. Examining the Mach, density
and streamline profiles in Figures 5.56- 5.57 indicate a very similar flow field structure to
the one observed in the 5mm fin study. The main shock features which consist of the
normal bow shock, separation shock and reflected shock are well captured. The normal
shock which was clearly defined in the 5mm case at (z/D = +4) is poorly resolved in the
10mm fin at the same location. However its presence is indicated by the streamlines in
Figure 5.57:(F). The most outstanding difference between the two different fin diameter
interactions is the lateral extent of the separated region, and the separation shock/normal
shock interaction point, which for the 10mm fin is larger than in the 5mm case. The flow
within the separated region close to the flat plate exhibits similar characteristics to the
features discovered in the 5mm case. The presence of a supersonic zone in an other wise

subsonic flow is present in Figure 5.56.

The streamline profiles in sections (Profile D - F) indicate the growth of the corner root
vortex as this feature evolves downstream from its inception point at the junction of the
fin leading edge. A noticeable omission in the section streamlines is the presence of the
vortices that originated from the fin centerline. The most probable cause for the loss of
detail in the inviscid/viscous structures found in the regions (y/D > 5) is the lack of grid
points, beyond (y/D > 5) the grid becomes very coarse with the cell size exceeding the
size of some the features themselves, and since these structures are quite small, the grid

clustering in that region will be unable to resolve such fine features.

Figures 5.59 and 5.58 give a good representation of the three-dimensional vortex structure
surrounding the 10mm fin. The similarities in the vortex flow field between the present
10mm interaction and the 5mm interaction (see Figures 5.32 and 5.33) can clearly be seen
in the following Figures. A close examination of Figure 5.58 appears to show that vortex
with foci (Fya) suffers a similar fate as its counterpart in the 5mm interaction, where

this feature diffuses into the surrounding incoming flow due to its inability to entrap
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Figure 5.56: Cross plane density and Mach number contours in profile planes D - F
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Figure 5.58: Top-plan view of horseshoe vortices
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additional gas because of low rotational momentum. Another important observation that
can be made from Figure 5.58 is that vortex (F») appears to merge with vortex (F%)
further away from the fin symmetry line, to form a single core, and does not appear to
evolve around the fin as an independent vortex. In addition, it appears that the primary
vortex core is considerably larger in the 10mm study when compared to its 5mm twin,
this is an expected result given the fact that the separated region is considerably larger in

the 10mm case.

Figure 5.59: Three-dimensional horseshoe vortex paths around the fin

5.5.3 Surface Heating on Plate

In order to investigate the interaction scaling effects of fin diameter, the non-dimensionalised
heat transfer coefficient maps for the 5mm, 10mm and 7.5mm fin interaction are compared
in Figure 5.60. The 5mm and 10mm (h/h,) maps in Figure 5.60 have been numerically
generated whilst the 7.5mm (h/h,) heat transfer coefficient map is obtained from the

experimental results of Schuricht [53]. As with the (h/h,) map of the 5mm interaction,
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distances on the 10mm (h/h,) map have been non-dimensionalised with respect to the

10mm fin.

A qualitative comparison of the surface heating distributions in Figure 5.60 confirms that
all the unswept fin types generate a very similar heat flux profile. Clear similarities in the
general shape and location of the increased heating bands are visible. The most dominant
difference that appears between the 10mm, 7.5mm and 5mm fin diameter interactions
is the increasing size of the thermal interaction footprint with increasing diameter. Fig-

ure 5.60:(top) which shows the 10mm fin displays the largest, broadest surface interaction.

The three profiles in Figure5.60 clearly show that the fin leading edge diameter is the
major scaling factor for the blunt-fin interaction as the extent is approximately similar in
each profile. This confirms the experimental observations of Schuricht [53] and, Hung and
Clauss [36]. The heating profile from the 10mm interaction appears to indicate that the

height of the 10mm fin is sufficient to produce an asymptotic result.

A quantitative analysis of the heat transfer coefficient field in Figures 5.60:(top) and
5.60:(bottom), appear to show considerable similarity in the range of values measured
across the interference zone. Apart from the maximum recorded value for the 10mm
case; which at the base of the fin plate junction is around (h/hy)maz =~ 50, the general
magnitude of the enhanced heating bands surrounding the fin are generally similar to what

was found in the 5mm interaction.

The maximum for the 10mm fin is somewhat lower than the (h/hy)maz =~ 60 recorded for
the 5mm fin. Although the limitations of the current grid were highlighted in Section 5.1.1
in the current chapter, it is unlikely to be the reason for this discrepancy. It has to be noted
that Schuricht [53] observed a similar difference between the 5mm and 7.5mm results in
his experimental work. A possible reason could be that the supersonic jet impacting the
plate surface, which is partly responsible for the extremely high values being recorded,

could be weaker in the 10mm interaction.

An overall synopsis of the surface results in Figures 5.60 leads to the conclusion that,
changes in fin leading edge diameter do not appear to significantly influence the magnitude

of heat transfer within the interference zone. This agrees with the findings of Hung and
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Figure 5.60: (top) Numerical normalised plate surface heat flux for 10mm fin (middle) Exper-
imental normalised plate surface heat flux for 7.5mm fin (bottom) Numerical normalised plate

surface heat flux for 5mm fin
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Clauss [36], where the heating distribution will be primarily dictated by the ratio (K/J),
since this ratio is the same for both fin types it was expected that the heating rates too

would be the same.

A closer examination of Figure 5.60:(bottom) also appears to show, straddled between
the two outer enhanced heating bands, the presence of another possible increased heat
flux band slightly upstream of the increased heat flux band attributed to (Rg). A better
understanding about the origins of this feature can be found by examining the centerline

and crossflow (h/h,,) profiles.
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Figure 5.61: Normalized linear heat transfer coefficient (h/h,) along the axis of symmetry

The numerical centerline (h/h,) profile, shown here in Figure 5.61, reveals three distinct
increased heating peaks associated with three flow reattachment points on the surface of
the plate. The location of these peaks and valleys are consistent with the flow topology
suggested by the surface skin friction streamlines in Figure 5.54, and symmetry plane
velocity streamlines of Figure 5.55. The reattachment nodes in the skin friction topology
map were labelled (n1), (n2) and (ns) respectively, with (n;) equating to the location where
(h/hy)maz occurs, closest to the blunt-fin root. The magnitude of the peaks increase as
the fin root is approached. The highest heating coefficient occurs at (n;), where (h/hy)max
~ H2.
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The crossflow spanwise distribution in surface heating at (/D = +1) and (x/D = +4)
for the 10mm interaction is shown in Figure 5.62. The profiles exhibit close similarities

to what was observed on the 5mm interaction at (r/D = +1) and (z/D = +5) (see

Figure 5.45).
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Figure 5.62: (left) Normalized linear heat transfer coefficient (h/h,) laterally at /D = +1
(right) Normalized linear heat transfer coefficient (h/h, ) laterally at /D = +4

The lateral extent of the interaction does not appear to scale exactly with fin leading edge
diameter. In particular, it can be observed that, at (z/D = +1), the peak in heat flux
associated with the reattachment points (Rz) and (Rg) for the 10mm interaction appear at
(y/D ~ 1) and (y/D ~ 3). The same reattachment points on the 5mm interaction appear
at (y/D ~ 2) and (y/D ~ 4) respectively. Secondary factors which might influence the
lateral scale of the interaction (which include the effect of boundary layer growth over the
fin and asymptotic height of the fin) suggest that the lateral scale ought to be greatest for
the small fin and least for the largest fin (turbulent-boundary layer fin flow by Haq [28]

confirms this). It appears the crossflow numerical results between the 5mm and 10mm

fins support this theory.

The centerline profile also suggests the existence of a fourth peak (indicated by the hollow
arrows) at (x/D = -2.3). This location corresponds with the enhanced heating band seen
earlier on Figure 5.60:(top). Although this feature is clearly visible on the centerline heat-
ing profile, its physical manifestation in the interference flowfield, primarily a separation

and reattachment point, are missing in the surface skin friction streamlines in Figure 5.54,
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and symmetry plane velocity streamlines of Figure 5.55. The absence of a separation bub-
ble on the plate surface is further corroborated when the centreline skin friction profile is

analysed in Figure 5.63.
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Figure 5.63: Skin friction coefficient along the axis of symmetry

Figure 5.63 clearly shows that the skin friction coefficient in the region of interest does
not reach or equal zero at any point. A skin friction value of zero along the centerline is
the usual indicator of a separation point. The absence of a separation point reveals the
concurrent absence of a reattachment point in the localised region. As a result, it would
be safe to assume that the enhanced heating bad localised round the region (z/D = -2.3)

is not the result of a reattachment point.

An increase in heat transfer in the region of interest can only be caused by a deceleration
in the flow at that location; loss of kinetic energy in the flow is transformed into thermal
potential. The surface pressure profile along the centreline in Figure 5.55:(bottom) shows
a gradual increase in pressure and temperature in the region (x/D = -2.3) as a result
of the flow losing momentum. The adverse pressure gradient is however insufficiently
severe to force separation as indicated in Figure 5.63. The loss of flow momentum with a
corresponding increase in pressure and temperature appears to be the likely cause of the

increase in heat transfer seen in Figure 5.61.
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5.5.4 Comparison of 10mm and 5mm blunt-fin Flow

The heat transfer coefficient map in Figure 5.60 gives a good illustration of how the

interaction foot print scale with fin diameter.

However, to fully appreciate the physical size of the interaction zone with respect to each
diameter, the centerline (h/h,,) profile, and the centerline skin fiction profile have been
plotted together with respect to distance from the leading edge of the plate. These plots
are illustrated in Figure 5.64(top) and Figure 5.64(bottom).
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Figure 5.64: (top) Comparison of the centerline Stanton number profile for the 5mm and 10mm

fin (bottom) Comparison of the centerline Skin friction coefficient profile for the 5mm and 10mm

fin
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A close examination of Figure 5.64:(top) clearly shows the increased size of the separated
zone in the 10mm interaction with respect to the 5mm result. This is an expected result
considering that the interference flowfield is largely governed by the fin bow shock inter-
acting with the boundary layer growing over the flat plate. Physical reasoning suggests
that, for a given flow Mach number, the bow shock shape and location will be primarily
be determined by the leading edge diameter (see Chapter 2, Section 2.5.2). Clearly visible

are the similarities in the heat flux values at each corresponding reattachment point.

A look at the Skin friction coefficient profile along the centerline in Figure 5.64:(bottom)
paints a similar picture. The increased physical size of the separated region can be seen by

the early onset of separation in the 10mm interaction compared to the 5mm interaction.

The two results also clearly show the increased heat flux and skin friction observed in the
5mm interaction at the (Rj) reattachment point, when compared to the same point on

the 10mm interaction.
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5.6 5mm blunt-fin with 30° sweep simulations

To investigate the effects of fin leading edge sweep, a 5mm diameter blunt-fin with (A =
30°) sweep is simulated using the same flow conditions as the unswept 5mm diameter
blunt-fin. The grid generated is an algebraically mapped C-type grid, shown here in
Figure 5.65. The two grids studied are shown in Table 5.10.

Grid Type

58 x 51 x 45 Al

116 x 102 x 90 | B1

Table 5.10: The two grids studied for the swept fin
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Figure 5.65: Swept fin grid, 116 x 102 x 90

The primary purpose of this simulation was to observe the scaling effects on the interaction
due to fin sweep, to analyze any distinct three-dimensional features that are present in

swept fin interactions, and to compare the effects of sweep on the heat flux distribution
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on the flat plate. The numerical heat flux results are also compared with experimental

heat transfer data for a 30° swept fin conducted by Schuricht [53]

5.6.1 General Flow Features of blunt-fin with 30° sweep

The effect fin sweep has on the subsequent scale of interaction has been documented
before by Schuricht [53] and Hiers and Loubsky [29] to name a few. However, all these
were experimental results and no numerical simulations of the three-dimensional flow field

were conducted.

The general trends observed were a dramatic decrease in the scale of the interaction, both
in a streamwise and spanwise direction. Surface measurements indicate a reduction in the
complexity of the interaction in the separated boundary layer. This is primarily caused
by the reduction in the bow shock strength, and the reduced stand-off distance as a result
of sweeping the fin. To observe these effects, density, temperature, pressure and Mach

contour profiles are recorded from the plane of symmetry.

The density, temperature and pressure contours describe a flow structure within the sep-
arated region very similar to what was observed for the unswept 5mm diameter fin, but
at a much reduced scale. The density contours indicate less complexities in the separated
boundary layer, but clearly outlined is the shock structure with the bow shock, separation
shock and reflected shock all well defined. Important observations to be made from the
density plot is the reduced stand off distance between the bow shock and swept fin leading
edge, and the lower separation shock angle compared to the unswept 5mm diameter fin
interaction. The separation shock appears to originate at (z/D ~ -4), which appears to

agree with the separation distance recorded by Schuricht [53].

From examining the temperature contours within the separated layer, it is evident that
the supersonic recirculation regions seen in the unswept 5mm diameter fin also appear to
occur in the swept fin. This is more clearly identifiable in the Mach contours in Figure 5.67.
A table with some geometrical constants for the (A = 30°) swept fin flow field is shown in
Table 5.11. The boundary layer height used for comparison in the table below is taken to
be (0 = 3.48mm), (z/D = 0.696).
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z/D

z/D

z/D

0.2450
0.2124
0.1797
0.1470
0.1144
0.0817
0.0490
0.0231
0.0069
0.0051

575
511
448
320
224
160
96

32

33182
29034
24886
20738
16591
12443
8295
4148
748
602

Figure 5.66: (top) Density contours (middle) Temperature contours (bottom) Pressure contours

in the symmetry plane
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Figure 5.67: Mach contours in the symmetry plane

As Table 5.11 indicates, the decreased interaction zone is revealed by the (K/Kjyy) ratio.
For the swept fin, (K}, = 4), comparing this with the unswept 5mm fin which has a (Ky, =
7.72), reveals a 48% reduction in the height of the triple point which would also translate

to similar order of reduction in the separation length.

Type D/6 | K/6 | K/D | K/Ky,

5mm - Numerical (A =30°) | 1.44 | 7.18 5 6.25

Table 5.11: Fin dimension relationships

Figure 5.68 presents the particle streamlines in the symmetry plane for the swept fin
interaction. The plot indicates that separation occurs at (xg/D = -4), and the separated
flow rolls into one primary vortex, with an additional root vortex as expected at the
junction of the fin/plate. The separated flow reattaches further up the swept fin at (z/D
= +0.8). Comparing the relative sizes of the recirculation regions of the swept fin and
upswept fin, confirms the reduced size of the swept fin interaction. For example the height

of the separated layer for the swept fin is (z/D ~ 42.5), whereas for the unswept fin it is
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(z/D ~ +4). The size of the root vortex is also much smaller for the swept fin than the

unswept fin.

z/D

Figure 5.68: Particle streamlines in the symmetry plane

Following the particle streamline trace is a map of the skin friction lines on the flat plate
surface as indicated in Figure 5.69. The skin friction streamline map clearly identifies the

primary separation line, (S4), and the root vortex reattachment line (Ry).

The primary separation line for the swept fin is more curved than the equivalent separation
line on the unswept fin interaction. This clearly indicates that the spanwise extent of the
interaction is also considerably smaller than the equivalent unswept example. The skin
friction lines also indicate secondary separation and reattachment lines on the plate surface.
Lines (S’2) and (R’;) look very similar to the secondary separation and reattachment
lines observed for the unswept fin. This signifies that the strength of the bow shock is
sufficient to initiate secondary separation on the fin side surface as a result of a swept

shock interaction, is observed in unswept finside interactions.
The three-dimensional plot of the vortex paths in Figure 5.70 indicates that the primary
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Figure 5.69: Surface skin friction streamlines on flat plate with highlighted separation and reat-

tachment lines. A separation saddle is denoted by (s) and a reattachment node by (n)
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Figure 5.70: View of three-dimensional vortex paths around swept-fin

Figure 5.71: Plan view of vortices formed on a swept-fin
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vortex entrains quite a considerable quantity of the surrounding flow into its core, however,
unlike in the case of the unswept fin, the root vortex is considerably smaller and appears
to entrain very little from the surrounding fluid. Figure 5.71 highlights how small the root

vortex is in comparison to the primary vortex.

5.6.2 Surface Heating on Plate

The heat flux contour pattern on the flat plate, shown here in Figure 5.73, displays simi-
larities to the unswept case, with the features seeming to be compressed together within

the smaller disturbed flow region.

The numerical distribution shows the two distinct bands of increased heat flux surrounding
the fin. The maximum heat transfer occurs along a thin band surrounding the leading
edge, with (h/hy)maez =~ 8. This is a considerable reduction in (h/hy)maer When compared
with the unswept fin for which peak values ~ 60 times the equivalent undisturbed flat
plate value were observed. The reduced bow shock strength leads to lower pressures and
hence lower heating rates downstream of the shock. However, it appears the primary cause
for the reduced heat transfer at (Ry) is due to the reduced strength of the supersonic jet

within the recirculation region striking the plate surface.

The comparison between the experimental heat flux contours in Figure 5.72 and the numer-
ical set in Figure 5.73 appear to show reasonable agreement in general spatial distribution
and the magnitudes of the contours; however, as with the unswept fin some differences
exist. The experimental result does not appear to indicate a second heat flux band that
borders the band closest to the fin as indicated in the numerical result in Figure 5.73. This
result could be due to poor illumination of the crystals, an explanation put forward by
Schuricht [53] for the poor resolution. As a result a comparison is made of the centerline
and crossflow, at (z/D = +1), heat flux profiles to get a better indication of the surface

heating.

As Figure 5.74 indicates the comparison between the numerical and experimental results
is quite favourable. Both data sets appear to indicate the same number of peaks and

valleys, with a good correlation of spatial features. The numerical centerline profile shows
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Figure 5.73: Normalized heat transfer contours on plate surface
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Figure 5.74: (top) Normalized linear heat transfer coefficient (h/h,,) along the axis of symmetry
(bottom) Normalized linear heat transfer coefficient (h/h,,) laterally at /D = +1
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good agreement upto primary separation, whereupon the numerical data produce a more
pronounced decrease in surface heating compared to the experimental data. The subse-
quent rise in heat flux appears to occur at similar points in both result sets, at around
(/D =~ -3). The numerical profile records a higher peak heating value at (Rq), (h/h, ~
5.5), compared to the experimental value of (h/h, ~ 3.5). This appears to be a recurring

theme thus far in the numerical results.

The crossflow profile at (z/D = +1) shows excellent agreement with the experimental
results. The calculated numerical maximum heat flux is (h/hy)maz ~ 8, and the equivalent
experimental maximum is (h/hy)maez =~ 7. The experimental results appear to show a
plateau at the location of (R’y) which could be indicative of a reattachment point, thus

it would appear that the numerical heat flux contour profile is correct.
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Chapter 6

Conclusions and

Recommendations for Future

Work

6.1 Conclusion

The numerical simulation of a three-dimensional laminar hypersonic Mach 6.7, blunt-fin
interference flowfield produced by several configurations of a fin attached to a flat plate

were presented.

The numerical calculations solved the compressible Navier-Stokes equations using an Im-
plicit and Explicit finite volume code developed at the University of Southampton. The
numerical scheme has been adapted to accept any generic three-dimensional geometry,
and has the ability to accommodate additional explict viscous cross-derivative terms to
offer the potential of giving a full Navier-Stokes solution. In the present study the influ-
ence of these cross-derivatives terms was demonstrated to be negligible and were therefore
omitted from the solution to speed up the calculation. Several three-dimensional configu-
rations have been simulated, including an unswept blunt-fin, fins of various diameters and

a circular cylinder.
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6.1.1 Results

The three-dimensional results of the unswept 5mm diameter blunt-fin interaction show a
rich, complex three-dimensional structure within the separated flow caused by the interac-
tion of the bow shock with the advancing boundary layer. The horseshoe vortices formed
inside the separation bubble appear to be stable, with no fluctuation in shape or location
with the passage of time. The path of these vortices around the blunt-fin are clearly
mapped, and the mechanism of flow entrapment into these vortices is clearly indicated.
The results indicate that the side wall of the blunt-fin plays a dominant role in determin-
ing the flow structure beyond the leading edge dominated section of the blunt-fin. The
result of this is additional separation and reattachment of the flow as a result of pressure
gradients downstream of the fin root. The increased heat flux spikes are solely the result of
flow reattachment caused by the vortices that originate from the fin centerline, upstream
of the fin root. The exception to this is the additional separation and reattachment due
effects of the fin side wall. The supersonic jet formed as a result of an Edney type IV
shock-shock interaction due the oblique separation shock intersecting the fin bow shock is
documented. The impact the jet has on the heat flux on the fin-side surface is described,

with measured levels around (h/h, ~ 30).

The surface topological features, and surface heat flux profiles observed on the flat plate
from the numerical simulation indicate good agreement with the experimental results ob-
tained by Schuricht for the same blunt-fin configuration. The numerical simulation was
able to obtain data in regions that were unable to be measured experimentally due to lim-
itations in the liquid crystal thermography thermal mapping method used by Schuricht.
The numerical results indicate vastly increased highly localised heat transfer rates when
compared to predictions made from the experimental data. From the numerical results it
was possible to elucidate a mechanism responsible for the extremely large heat transfer
rates close to the blunt-fin root. It appeared that as a result of a shock/shock interaction
inside the separated region, a supersonic jet is formed by another Edney type I'V interac-
tion. This jet is accelerated towards the plate surface by the rotating horseshoe vortices,
and upon impacting the plate releases a considerable amount of energy which results in
highly elevated levels of heat transfer, around 60 times the undisturbed flat plate value at

that location.
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Studies of fin sweep and variable fin diameter on the scale of the interaction reveal distinct
changes to the flow structure, with the trends observed consistent with the findings of
Schuricht and others. The results indicate that the leading edge diameter has a measurable
impact on the extent of the interaction, the resulting change in the size of the separated
region effects the vortex structure insider the separation bubble. The separation bubble
in the 10mm diameter fin simulation indicates further bifurication of the primary vortex
into two smaller vortices. This impacts on the relative placement of the secondary vortices
which, in turn, affects the heat flux distribution on the flat plate. Fin diameter does
appear to have an effect on the maximum heat flux on the flat plate. The maximum
heat transfer rate appears to be lower than that observed for the 5mm diameter blunt-fin.
However, apart from the localised maximum heat transfer rate, changes in fin leading edge
diameter do not appear to significantly influence the magnitude of heat transfer within

the interference zone.

The swept fin simulation indicates a dramatic reduction in the size of the separation
bubble, with a simultaneous reduction in the peak surface heat transfer rate on the flat
plate (h/h, ~ 8). The separation bubble only contains a large single primary vortex
core, with an additional root vortex. This is compared with the 5mm unswept blunt-fin,
which has four vortices excluding the root vortex in the separated region. Overall, the
swept fin interference flowfield is considerably smaller than the same unswept fin. The
impact of incorporating sweep in vehicle design is quite obvious. As the present study
has shown sweeping the fin by 30° dramatically removes "hot spots” on the fin leading
edge and plate surface. These "hot spots” are caused by shock/shock and shock/boundary
layer interactions. They are extremely localised as seen in this study, and generally very
difficult to insulate against efficiently. Incorporating fin sweep considerably reduces the
heating distribution and the extent of the disturbed flow on the plate surface and could

also possibly reduce the weight of any control surface.

6.2 Recommendations for Future Work

As a result of the work carried out in this thesis, the following topics are recommended

for further study:
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e The effects of variation in Reynolds number on the fin interaction should be studied
in more detail, with the main emphasis on the effect it has on the vortex structure

within the separation bubble, and the stability of resulting structure.

e An appropriate turbulence model should be incorporated into the code to allow for
a comparison with past experimental results obtained by Haq [28] and others, and
to enable a comparison of the surface heat transfer profiles between the turbulent

and laminar flowfields.

e The grid dependence study has shown that the current solution is not fully grid
independent: a higher number of grid points offers the possibility of capturing finer
flow features and generating a more accurate surface heat transfer profile. In order
to maximise the potential of the current computational platform it is possible to
increase the parallelization efficiency of the parallel numerical scheme by parallelizing
in all three spatial coordinates directions (£, 7, and () instead of the current single

(¢) direction.

e A future improvement to the current viscous solver would be to incorporate the
additional jacobian terms of the cross derivative terms in the implicit method. This
is purely for the benefit of having the option of a complete Navier-Stokes solver using

the implicit method.

e For the benefit of future comparisons between experimental and numerical results
a more comprehensive collection of experimental results of the flowfield away from
the flat plate surface is required, in particular a description of the vortex flowfield
in the separated region. The use of non-intrusive flowfield measurement techniques
such as planar laser induced fluorescence [22] could offer the possibility of further

detailed comparisons.
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Appendix A

Non-dimensionalisation

To derive non-dimensional quantities the physical magnitudes have been scaled by the
corresponding free stream values which are denoted by the subscript (co) while (Lyey) is

the characteristic length of the flat plate.

Length
T Yy z
Lyes’ Lyef’ Lref (A1)
Velocity
%, VUTO Wﬂm (A.2)
Time
t
m (A.3)
Density
p% (A.4)
Pressure
ﬁ (A.5)
Temperature
T
T (A.6)
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Specific energy

i (A.7)
Viscosity
M% (A.8)
Specific heats
G G (A.9)

U2 /T’ U2 /T

224



Appendix B

Numerics for Chapter 4

B.1 Navier Stokes equations

The Navier Stokes equations that describe the behavior of a compressible fluid can be

written in conservative form as:

57U+57F+§+57H_6Fv
st dx Sy 6z  Ox

where (U) is the vector of conserved variables:

P
pU
U= |pv
pw
pE

0G, N 0H,
oy 6z

(B.1)

(B.2)

and (F), (G) and (H) are the advection fluxes given by

225



B.1 Navier Stokes equations

S.J.VITHANA

U
pu? +p
pUV
pUW

(uw(pE +p)|

pU
puv +p
pv® +p

pUW

|v(pE +p) |

pw
puw
pUW

pw? + p

| w(pE + p) |

(B.3)

(B.4)

(B.5)

Here (p) represents the density (u), (v) and (w) are the components of the velocity field,

(E) is the total specific energy and (p) stands for pressure. To close the above set of

relations, the pressure should be related with other thermodynamical properties through

an equation of state. For the current study the relation is the ideal gas equation

p=(r=1)(pE ~ 5ol +0” + )

(B.6)

where (vy) stands for the specific heat ratio which is a constant when dealing with perfect

gases, the value of which for diatomic molecules is 1.4. From (Eqn B.1) (F,), (G,) and

(H,) represent the viscous fluxes given by
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0
§oTax + &yTay + E:Taz
By = | &Tay + &Tyy + &Tye (B.7)
SaTuz + &yTyz + &:T2z

| UTzx + Uy + WTz + 4z |

0
NaxTaz + MyTay + NaTaz
Go = | NaTay + NyTyy +0:7y- (B.8)
NaTaz T NyTyz + Na2Tzz

| UTyz + UTyy + WTy, + Qy |

0
CaTaa + CyTay + CeTaz
Hy = | CaTay + CyTyy + CTyz (B.9)
CaTaz + CyTyz + CoTaz

| UTza + UTzy + WT, + qz |

where the shear stress (7;5) can be related to the velocity field through the constants (\)
and (p):

Toz = MUz + vy + w2) + 2puy
Tyy = Mug + vy +w;) + 2uvy
Toz = Mg + vy + w;) + 2pw, (B.10)
Toy = Tye = W(Uy + Vz)

Tez = Tzx = M(uz + wx)

Tzy = Tyz = N(wy + vs)

The components of the shear stress have been simplified using the Newtonian approxima-
tion for an isentropic medium. The Stokes hypothesis for the viscosities is also applied,

suggesting a linear relation between the coefficients (\) and (p):
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2
A=y — gﬂ (B.11)
Where (u) is the coefficient of shear viscosity or dynamic viscosity and and (uy) is the
coefficient of bulk viscosity. Further simplification of the expression can be exacted by
using molecular theory, with the hard sphere assumption, allowing (i, = 0), reasonably
accurate correlations have been found with experimental results. Therefore the relation

between coefficients simplifies to (A = —2/3u).

Using the simplification

% = gza% +77:v,% +<,.x£%
9 9 o) o)
a3y :fyafgﬂ‘nyafnﬁ‘gyafg (B.12)

% :éz%"i‘nza@n +<z§<

Therefore the resulting stress terms can be written in the following form:

ro = dnf2(e 8 -y + B ) - (65 + il + O%) - (65 Hneli + B
= (e e 62 - (6 el G) - (2 e v )]
Tzz = %M |:2( za@% +772%% + gz%%) - (gx%g +7]:(:%z +ng%) - (gygig +77y% +Cy%z)}
o t](68 418 2 6R) 6 2 -8

dw dw dw Ou Ou Ou
(e o) (o -0 - )

(B.13)

The components of the heat transfer vector (¢z), (gy) and (g.) can be obtained through

Fouriers’s heat conduction law:

dx = _/{g%
R—. (B.14)
q> = _5%%
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where (k) is the coefficient of thermal conductivity, or just thermal conductivity and (T)

is the temperature. With this the last row of the flux vector can be expressed as:

UTgpy + VTgy + WTgy + K(gx%% + 773:%% + Cxaa%)
UTyz + VTyy + WTys + n(gy%% + 1y G + Cy%%) (B.15)
UTzg + VTzy + WTz, + ’{<£za% + Uz%% + Cz%%)

From molecular theory we can postulate that (k) is proportional to (u). If the specific
heat at constant pressure (Cp) is constant , the Prandtl (Pr) remains constant at low

temperatures and is given by the expression [3].

pr— ot (B.16)

For the current study the (Pr) is 0.704, as used by Navarro-Martinez [47].

B.2 HLLC Riemann Solver

B.2.1 Average State

To estimate the average states (U*), we need the contact wave speed (Sys), assuming that
we know the velocities of the sonic wave (Sr,) and (Sg). The normal velocity and pressure
do not change across the contact discontinuity, therefore the normal velocity is equated to

the wave speed:

Su=q =q-=¢" (B.17)

and

P =pr=p" (B.18)
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where (¢ = un, + vny, + wn;) is the velocity normal to the discontinuity. The region
between the sonic waves has constant pressure (p*) and normal velocity (¢*). To calculate
the value of the contact wave speed, the integral form of the Euler equations (Eqn 3.23)
across the Riemann fan should be solved, resulting in the following expression for the

contact wave speed:

prQr(SR - QT) - plQl(SL - QZ) +pi — pr
G — B.19
M o(Sr—ar) — (St —a) (B.19)

Once the contact wave speed is found, knowing the particle velocity from (Eqn B.17),
we can apply the Rankine-Hugonoit conditions in each acoustic wave to find the average

state. In the left wave, the jump relations are:

Ff — Fy = Sp(Uf — U) (B.20)

In a general three dimension coordinate system the previous equation expands as follows:

| [ e ol | ma ]
prug prufq; +png pru Pl + ping
St | pjof | = | pivigr vy | = S0 | pror| — | prog + piny, (B.21)
prwy prwrq; + pn; pLW] prwqr + pin.
el | L g+ ] e | | (a+p)a |

Solution of the above set of equations is quite simple once the contact wave speeds are

known, the first equation can be expressed as:

X SL—a
=p— B.22
Pr =D S, — Sy ( )

Combining (Eqn B.21) and (Eqn B.22) we obtain the intermediate pressure (p* = p; = pj).

p* = pilgr — Si)(@ — Sm) +pi (B.23)
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Using the values of (p}) and (p}) derived from (Eqn B.22) and (Eqn B.23), we can define

the solution for the intermediate-left state in its conserved variable form.

(St — @) pw + (P* — pr)na

(pu)f = e (B.24)
(puyy = B2 qz)g;lj 552 — )y (B.25)
(puy = L=l T = (B.26)
o = (S = 0o prr S B

The procedure to compute the intermediate-right state is analogous to the left state. The
results from (Eqn B.24) to (Eqn B.27), simply change the subscripts (I) or (L) to (r) and
(R) respectively. Once the two intermediate states are found, the flux can be derived from

(Eqn 3.27) and replaced in (Eqn 3.25).

B.2.2 Sonic Wave Speed Estimates

Before computing the intermediate states, an estimation of the sonic wave speeds is re-

quired. Following the suggestions of Batten et al [10], the wave estimates are:

Sy = min(q — ¢, G — &) (B.28)

Sk = max(%“ +e,q+ 5) (B'29)

where (¢ = un, + Uny + wn;) and the average states (4,0 and W) are given by:

5 Wl (B.30)
1+,

P B (B.31)
1+,

i = WL Tt (B.32)
1+mr,

and the average sound speed:
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= —=— B.
¢ 1+mr, (B-33)
= b (B.34)
1+m

where (7},) is the ratio of densities

Tp = \/ Dr/Di (B.35)

B.3 Transport properties

The transport properties considered in the study are the viscosity and the thermal con-
ductivity, which generally are functions of the temperature and pressure. The viscosity
models used in the present study are the Sutherland’s law and the Lennard-Jones poten-
tials. The Sutherland viscosity law assumes a rigid sphere model for the molecules, the

relation is expressed as

3
T \?(Tsx+110
= — T B.36
a “OO<TOO> <T+110> (B-36)
The Lennard-Jones model provides a more accurate description of the viscosity, by taking

into account the intermolecular forces between colliding molecules, and is commonly seen

in the form

mT

o2Q,

1= 2.6693 x 1076 (B.37)

where (m) is the gas species molecular weight, and (£2,,) is the viscosity collision integral

while, quoting [1, 47], maybe expressed as a function of a reduced temperature (7)

Q, = AT* " 4 CePT" 4 EeFT" (B.38)
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where (A, B, C, D, E) and (F') are constants presented in Appendix C, while the reduced

temperature is given as

T

T =
El/k

(B.39)

The Lennard-Jones parameters, (¢;/k) and (o), depend on the molecular species involved
(see Appendix C). This model, which is more accurate than Sutherlands law, can be used

for more complex molecules.

B.4 Viscous Fluxes

The complete viscous fluxes (Fy/) are presented in (Eqn B.40- B.43), to obtain (Gy) and
(Hy), replace (§) with () and () respectively.

By = 3u[2(2% + &mde + 66 %) - (&6 % +an B +66G3%)

(@@ a8 4 £,G 2 ﬂ+ﬂK§$+@% +66,%)

(@@ e+ &Gl )| + ] (5 + Em B + 665 (B.40)
+(&tdg +em e +663)]

=u[(8% +en +662) + (662 +and +66%)]

2ul2(82% +&my 32 + 6,65 ) — (8B + Emede + 665 )
@@ + 632 + 6652 (B.41)
u[(gggg +en Qe +eG) + (669 +en e +66%)]

=n[(8% +endE + 660 + (Ge L +end + 663
+u|(2% +em% +66%) + (G6R +an +aGS ﬂ
[%g%+§%ﬁ+&éy> @@ + et + 66 %) (B.42)
(&@%+&@ +6:0, % ﬂ

233



B.4 Viscous Fluxes S.J.VITHANA

szu(gu[z(ggggmnx +6G3E) - (663 + Em B + &G %)

(65 +an B +§xczdc)}>+v<u[(§£§§+@nx + 665

+(&t B +an B +66%)] +w<u[(§§%§+5xnx + G2 )

(&0 + &m 3t + &G0 )] ) - AETe + &nTy + &G TY)

tul p[(2% +em P +6,65) + (665 +&m + 6,02 )})

ol 2u[2(2% +em B + a6 R) - (GkedE +Em B + 663
(B.43)

(802 +em e + 6,5 )]>+w<u[(£§%?+syny +6,6,%2)

(662 +Em 2+ 6,2 )]>—n(ngw&ynyTw&ycch)

tul n[ (% +en 2+ 60 ) + (665 +EmdE + 603 )})

ol n[(@% +end + e 3) + (6658 +ende + 60 % )])

+w(§u[2(§3%g+5znz +6632) - (eel +en + 60 3)

- <£z£y%§ + 5277y% + ngygTC))]) - H(ngg + gznzTn + €zCzTg)

The following terms in (F3) can be divided into a format similar to,

Fy, =FY +FD +F9, (B.44)

U1,2.. U1,2.. v1,2..

This allows the viscous fluxes to be broken down into the following format:
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F)
Fo = | 2n(2625 — 6a6 g — a6 5g ) + (€5 + ey + (€155 + 667 5)]
FyY
+ 2 (éwxa §xnygn &ma:) +u<£ynygz+€ynwg7i) +M(§znxa +£znm82})]
| o
+_§u(2§z<xg§—sx<yag &0 C)w(gycyacwycx C)M(@cx g TEG C)]
i (B.45)
By
P = (25 +&tugg) + 5n(26 58 — Gbogg — 66 5¢) 4 (5282+§z£y65)]
Py
+ _ (ﬁxnxan +5x77ygu) + 2#( gynyg fynxgn fynz&;) ‘I‘M(fznzan + &y gZU)]
_ o
up (6o + &etuge) + a(26tuge — 6oy - 6650 ) + (6. 58 + fszcyf;?)]
] (B.46)
g
Ry = (@5 +&tgp) + (85 +6tgr) + an(22 57 — 6 @fygg)]
F
up (ema e+ &one o) + (e + o) + 2s(26en 5 — e fznyg”)]
| .
+: (6eta g + & 57 ) + (660 +6bege) + an (26657 @@Z?—%ZE)]

(B.47)
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(&)
FV4

<2 2857 - et g - 6t Tp ] + [y + 6ey] + [y + et J)
+ (M (€258 + a2 ] + 3 |263% — 6B — 66| + u[e2Be + 5zfy%g}>+
w(ﬂ (2% + 66,3 ] +u[2%8 + 6,65 + 3u[262%8 -G8 % - @&,3@})

T (- - )|+

Fy, =

FyY

A

( g 2&% &myan SUE 677] + u[éynyg +€ynxg:ﬂ + M[Szma +Ene ‘;‘;D

+v (u [ﬁznx + Eumy G2 } 3u[2£yny — &yt — &y 8,7] +,Uf|:€z"7z + &y 52 ]>+
w (u [€oneB2 + &on B8] + uleym 28 + €. + Bu[26m. 98 — Enn Bt — a3 })

—rTy <§ac77:v —&yy — &m) +

(9]
FV4

A

u(i/ﬁ[%x@cgz - 6alygp — e g |+l gy + 6] + et + e CD
o (u (€GB + 6aC B8] + 30 (26,0 % — 606 B — 6602 ] + w6 B + gzgy%szJr

w (u (6Go 2 + 632 ] + 1|66 5 + 60| + 3ul260. 52 - 603 - @@22})
KT (&aCo = 46 - fzcz)]

(B.48)
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Appendix C

Jacobian Matrices

C.1 HLLC Jacobians

The following Jacobians were obtained from Batten et al [6]; the notation is kept as in

their original paper. The relevant Jacobians for the HLLC Riemann solver are:

opp\ T 08y "
(BUZZ> SM*’(aé:[) P

aouy \T T o\ T
(505 s (5 o (3

?}ﬁ(}j = (afap&)?)TSM + (%SUAf)T(pv)? + (ga)Tny (C.1)

o)\ T T o\ T
(5 s () (36

dge; | opm\© o5y \ "
() s ()
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gﬁ = (8(6%)3:)TSM + (%%?)T(pv): + (ggj)Tny (C.2)

T T
der | op* oS,
I (affr a&) SMWL(ei*p*)(aUAf)

the derivatives for the (Sps) vector can be derived from the definition of (Sjs) from

(Eqn B.19)

—qi +hi(y = 1)/2+ SuSt

05 ne (20 — Sp — Su) + (1 = 7)w

B0, ~ 7 | w2 =S Su) + (1= u (C.3)
n:(2qr — Sp — Su) + (1 = y)w

v—1

—g; +¢r(y = 1)/2+ SuSr
ng(2¢r — Sr — Sm) + (1 = y)u,

oS N,
8UM =p ! ny(QQT - SR - SM) + (1 - V)UT (C4)
nz(2QT —Sg— SM) + (1 — ’Y)wr
v—1

with (¢ = u? +v? + w?) and (p = p.(Sy — @) — p1(S; + q)). To evaluate the remaining
derivatives in (Eqn C.1 and Eqn C.2) we differentiate equation (Eqn B.23) with respect
to (U;) and (U,), obtaining

op*
oU;

- 05
= p(SL — @) v, (C.5)
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o S
ou., = pr(SR - QT)TUT (CG)

The remainder of the terms in (Eqn C.1 and Eqn C.2) are obtained by simple algebraic
manipulation:

St
—ny,
op; B 0SSy
90, = Y | —ny | +p ot (C.7)
- O -
o _ ) .05
qru — ng(y —1)/2
S SL—aq+nz(vy—2)y ) )
pu) p* «OSM
v Q| —wny +ng(y — Do | +8 <”$07Ul + (pu); Tm) (C.9)
—un, + ny(y — Dy
L (1 —=)ng |
puw)] _ op* LOSm
qror — nyb(y —1)/2
8(p) —ung + ny(y — Dy ) )3
pU p* * M
aUll = | S, —q +ny(y—2)v | T (nyﬁ + (pv); U, > (C.11)
—un, + ny(7 — 1)’[1)[
(1 —=)ny
d(pv); op «95m
=0 _— — 12
aUr l(ny 8Ur + (P'U)l 8U7~ ) (C )
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qw; —np(y —1)/2
(o) —wing + ny(y — Dy
o(pw ! ap* LOSM
au; =y —winy +n(y— 1y | + Q (nz U, + (pw); TUZ> (C.13)
St —aq +n(y —2)w
( )nz
Ipw); op* LO0Sy
ou, (” v, TPy, ) (C.14)
(et +p)a/pi — (v —1)/2
e —ng(er +p1)/pt+ (v — Dwg 5 5
(& p* * * M
86;1 =W | —nyler +p)/pr+ (v = Duigr | + (TUZSM + (o[ +ef )TUI) (C.15)
—nz(e;+p)/pi + (v = 2)wiq
i SL —ary |
Oef _ o (9P o 008
ou, Ql(@Ur (i +ei) 8Ur) (C.16)

In the case of (Sy; < 0), the resulting Jacobians (%g:) and (g—gl:) are simply obtained
by replacing the subscripts (l«—7) and (L«—R) in all above equations. It is worth
remembering that the acoustic wave speeds are frozen and not linearised. Further accuracy
can be obtained by linearising the acoustic wave speeds (Sgr) and (Sr). Batten et al [10]
however concluded that the increase in convergence is not worth the extra computational

cost by linearising the speeds. Therefore the wave speeds chosen are frozen.

C.2 Viscous Jacobians

Sections of the viscous Jacobians are taken from Batten et al [7] and the remainder of the

terms are obtained by direct derivation of the viscous flux terms from Eqn 3.39.
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(0 0 0o 0 0|
P21 gf,f 531 ?T/;f B3 g’;f 0
TR T Ot 17
Pa1 533% 52% 043225 0
[$51 P52 P53 P QZ%_

the subscript (§) indicates a directional derivative along the (§) direction. (¢;;) stands for

a combination of derivatives given by

19} 3 81)5 8w5
- _ b S Z5 —< 1
P21 (al 90 B an + B3 an ) (C.18)
— (5,2 o, 0% 5,0
P31 = (ﬁl i + g o + B2 an ) (C.19)
— %% 5,0% 0w
Pa1 = (ﬂs am + Ba o T, ) (C.20)
L OF¢ . 5“? . 31}2 L ow 2 ouv g (%wg Buwg
¢51 = o, +(1—aj) o +(a2—a4)a—pl+(a3 aj) o +2ﬁ1 +2ﬁ2 +205
(C.21)
61}5 8w§
P52 = (a1 — oq)— + B apl o (C.22)
N % Oug Owg
P53 = (a2 044)8 + 5 o + o o (C.23)
% 811)5 8u§ 8@5
P54 = ( 064)7(% + P+ ey > o0 (C.24)

where (o) = a/C,), and the (a;) and (f;) are constants defined in (Eqn 3.40).

In the derivations of (3 OF, ) the subscripts (I) should be changed by (r) in the above

equations. Furthermore, to obtain the Jacobians to the fluxes in the (1) and ({) directions,

the subscript (§) need to be replaced by (1) or ({).
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C.3 Boundary conditions

C.3.1 Adiabatic Wall

The temperature boundary condition for an adiabatic wall is:

aT
— = (C.25)
87] wall
The no-slip condition of the fluid particle at the boundary is expressed as
V’wall =0 (C26)

Using the subscript (G) for ghost cell values, and 1 for the first cell adjacent to the
boundary, the relationships for the primative variables in a first order approximation, are

as follows:

PG = pi

Te=T1;

uG = —u; (C.27)
v = —v;

we = —w;

The resultant boundary matrix that relates (0Ug) to (9U;) is

1 0 0 0 0]
0 -1 0 0 0
Cee=10 0 -1 0 0 (C.28)
00 0 -1 0
0 0 0 0 -1
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C.3.2 Isothermal Wall

For an isothermal wall, the pressure gradient at the wall is zero.

0
L (C.29)
877 wall
The temperature remains constant in the wall
T|wall = Twall (030)
The no-slip condition remains as
V’wall =0 (0.31)
The resulting primitive variables are
bG = pi
TG = 2Twall - Tz
ug = —u; (C.32)
vGg = —U;
wG = —W;
The relation between densities is equal to:
T
r=PG _ 11 (C.33)
p Tag

By deriving the above equations in time, we obtain the relation between (0U¢q) and (0U7).

To simplify the final matrix elements, we define some auxiliary variables as:
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1
ﬁ - C’j—TTG
¢ =2Ec — Ey (C.34)
oc=1—-r+pBEc
where the kinetic energy (E¢) is equal for both ghost and real cells
1
Ec = §(u2 + 0?2 4+ w?) (C.35)
Finally the corresponding boundary matrix is:
T+ By —Puy —pvr —puy B
—Bpur pui—r  Puvr  Puiwy  —Pu
Cpo = —pBpur Puivr  Poi—r  Puiw —pwy (C.36)
—Bow; fuiw—1 Powr Puwi—r —fuw
_(1 —r+ ﬁSO)EC —oul —ov1 —owq 1+ ,BEC_

C.3.3 Inflow

Inflow boundary conditions are defined by the hypersonic freestream and are imposed as

follows

Up =Ux

(C.37)

Because the inflow conditions do not change with time and are independent of the values

on the inner flow, consequently the result is a null matrix

C.3.4 Outflow

Across the outflow boundary, all properties remain unaltered. The gradient in the normal

direction becomes zero. This is reflected in the matrix as a unit-diagonal matrix.
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(C.38)

—_

Cpc =

o o o o
o o o =
o O )
o = O O O
= o O O O
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Appendix D

Gas Properties

Species | Molecular Weight o -
x103(kg/kg-mole) | (A) (K)
Ar 39.9480 3.542 | 93.9
0O 15.9994 3.050 | 106.7
0 31.9988 3.467 | 106.7
N 14.0067 3.298 | 714
No 28.0134 3.798 | 714
NO 30.0061 3.492 | 116.7

Table D.1: Lennard-Jones parameters for transport coefficients, source [47]
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