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Direct numerical simulation is used to study the temporal development of single
vortex rings at various Reynolds numbers and core thicknesses. Qualitative differences
between the evolution of thin- and thick-core rings are observed leading to a correction
factor to the classical equation for the ring translational velocity. We compare the
obtained linear modal growth rates with previous work, highlighting the role of the
wake in triply periodic numerical simulations. The transition from a laminar to a
turbulent ring is marked by the rearrangement of the outer core vorticity into a clearly
defined secondary structure. The onset of the fully turbulent state is associated with
shedding of the structure in a series of hairpin vortices. A Lagrangian particle analysis
was performed to determine the ring entrainment and detrainment properties and to
investigate the possibility of an axial flow being generated around the circumference
of the core region prior to the onset of turbulence.

1. Introduction

Vortex rings are interesting for a number of reasons, ranging from their ubiquitous
nature to the fact that their growth, instability and breakdown represent a prototypical
turbulent flow. We focus here upon the behaviour of a single ring during this
breakdown process, as it transitions from a laminar state via linear and nonlinear
processes into the early stages of the fully turbulent regime.

The instability of vortex rings was first studied by Krutzsch (1939) who showed that
a ring is unstable, and develops stationary azimuthal waves around its circumference
prior to becoming turbulent. However, it was not until the investigation of Crow (1970)
into aircraft wakes that the full process of vortex-ring instability, growth and transition
was addressed. Maxworthy (1972, 1974, 1977), and Widnall & Sullivan (1973) then
confirmed experimentally that during the laminar phase, stationary azimuthal waves
grow in the conical surface at 45° to the axis of ring-propagation, and that their
wavenumber depends on the slenderness ratio € of core radius § to ring radius R.
Widnall & Tsai (1977) then proved that the disturbances are unstable for rings with
a uniform distribution of vorticity in their core, and found an expression for the
growth rate of the most amplified wave in the limit of very thin cores (3.3). Shariff,
Verzicco & Orlandi (1994) developed a viscous correction to this growth rate, based
on their direct numerical simulations (DNS) of single rings for a range of €. This
correction has been called into question by the experiments of Dazin, Dupont &
Stanislas (2006a), who suggest that it is too small because amongst other things the
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Shariff et al. prediction is only valid for purely Gaussian vortex cores. However, this
takes no account of the fact that in the DNS the initially Gaussian distribution quickly
equilibrates to a skewed Gaussian-like profile similar to that of the experiments (see
§3.2). One of the aims of this study is to resolve this issue. The vortex ring instability
is an example of the elliptical instability, a review of which can be found in Kerswell
(2002).

Another aim is to better understand the nonlinear growth and breakdown of the
vortex ring instability. Following the linear phase is a short period of nonlinear wave
growth, culminating in a turbulent vortex ring. Maxworthy (1977) describes the final
stages of the laminar ring as rotation and preferential breaking of the instability waves
resulting in a net (‘swirling’) flow in the form of a solitary wave propagating along
the axis of the ring circumference. The notion of an axial flow is supported by Shariff
et al. (1994) and by the experiments of Naitoh et al. (2002) (following Maxworthy,
the term ‘axial’ will be used to indicate the circumferential axis of the vortex core).
However, both these studies show that the flow is in fact initiated prior to the breaking
of the instability waves. Dazin et al. (2006a,b) used particle image velocimetry (PIV)
and novel flow visualizations to investigate the linear and nonlinear phases. They
showed that the nonlinear phase was heralded by the rapid growth of higher-order
harmonics of the most unstable linear modes. This is followed by the rapid growth
of the n = 0 mode in the azimuthal energy component corresponding to a mean
axial flow (consistent with Shariff et al. 1994), accompanied by the development
of vortical structures on the (outer) periphery of the ring, leading to ejection of
vorticity into the wake. Vortical structures then develop in the interior of the ring
immediately before the breakdown to turbulence, causing the authors to propose that
the structures are progressively wrapped around the core; this is consistent with the
vortex tubes observed in the experiments of Schneider (1980) during the latter stages
of transition. Bergdorf, Koumoutsakos & Leonard (2007) investigated the vortical
structures numerically, suggesting that they originate from locally stretched regions
of the deformed core. Their ring parameters were chosen to match the experiments of
Wiegand & Gharib (1994), which tracked vortex rings at an initial Reynolds number
(based on ring circulation I") of 7500 through the laminar into the turbulent regime.
Qualitative agreement was found between the two studies which showed that the
turbulent ring sheds vortical structure into the wake in a series of hairpin vortices.
The loss of discrete structures leads to a ‘staircase-like’ decay in time of circulation
and velocity, with the velocity lagging the circulation by a small amount. Glezer &
Coles (1990) also noted peripheral vortex structures in experimentally generated
turbulent rings, inferring that they are likely to be vortex tubes of alternating sign
wrapped around the main core, with their presence influencing the local entrainment
and detrainment dynamics.

A key feature of a vortex ring is that the core is surrounded by a co-moving mass
of fluid, known as the entrainment bubble. The size of the entrainment bubble is
not fixed and its rate of change is defined by the balance between entrainment and
detrainment. Maxworthy (1972) proposed a model for diffusive entrainment whereby
the irrotational fluid close to the vortex is contaminated by vorticity diffusing across
the vortex bubble surface. A proportion of this fluid is then entrained through the
rear of the bubble into the vortex ring, the remainder ejected into the wake. Power-
law ratios were given for the decay of both the overall ring velocity and circulation,
but these power laws were found not to be universal by Dabiri & Gharib (2004),
who considered rings propagating into both an ambient fluid and an oncoming
flow of uniform velocity. They were, however, able to confirm part of Maxworthy’s
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entrainment model, showing that vorticity is diffused across the vortex bubble and is
present in the wake.

The ability of a ring to directly entrain fluid has also been studied by Glezer &
Coles (1990), who used a streamfunction approach in similarity coordinates to predict
net entrainment of particles for the case of a fully turbulent ring. The concept
of fluid entrainment and detrainment has been further refined by the application
of stable and unstable manifolds, taken from dynamical systems theory, to the
vortex ring boundary. In a two-dimensional numerical study, Rom-Kedar, Leonard
& Wiggins (1990) perturbed a vortex pair with a time-periodic strain field, which
was found to induce lobes of entrainment and detrainment. Shariff, Leonard &
Ferziger (2006) then showed numerically that some typical features of turbulent
rings, such as the entrainment of particles placed in the path of the vortex ring and
striations in the ring wake, could be explained by the behaviour of the unstable
manifolds associated with an axisymmetric vortex ring with a rotating elliptic core.
Shadden, Dabiri & Marsden (2006) demonstrated that the dynamical systems analysis
could be extended to aperiodic flows using finite-time Lyapunov fields to identify
Lagrangian coherent structures. They analysed piston-generated vortex rings and
found that lobe dynamics developed that were consistent with regions of entrainment
and detrainment. The development of lobes suggests splitting of the heteroclinic
connection between the front and rear stagnation points which require perturbations
to the idealized steady-state vortex-ring structure. These perturbations are evident in
the experiments of Kumar, Arakeri & Shankar (1995), of rings at similar Reynolds
numbers to Shadden et al. By taking high-resolution temporal measurements, they
found that in the frame of reference attached to the ring, the translational velocity of
laminar rings oscillates in time. The oscillation was of greatest amplitude immediately
after the ring formation and reduced with time until it was within experimental
errof.

In this paper, we present results from DNS of single naturally evolving laminar
vortex rings with different relative core thicknesses and Reynolds number, and
examine their initial breakdown and transition into the early stages of turbulence.
The aim is to extend the nonlinear analysis begun by Shariff et al. (1994). After the
mathematical and numerical preliminaries are presented in § 2, the cases of interest are
introduced in § 3.1, along with energy-budget histories and their implications regarding
the numerical fidelity of the results. We next investigate the laminar evolution of the
ring (§3.2), and the wake generation, modal growth and wave breaking during the
linear (§ 3.3) and nonlinear (§ 3.4) regimes, with special attention paid to the generation
of secondary vortical structure. Finally we investigate, using Lagrangian particle-
path analysis, the relationship between the amount of entrainment or detrainment
and the various stages of the ring evolution (§3.5) and the possibility of an axial
flow generation in the core region (§3.6). A summary and conclusions are offered
in §4.

2. Mathematical background

We consider a single vortex ring of radius R and core radius 8, with circulation
I' and Reynolds number Re = I'/v, with impulse P propagating along the positive
z-direction with respect to Cartesian coordinates x = (x, y, z) and with corresponding
velocity components u = (u, v, w) (see figure 1). The vortex is initiated such that it is
centred about x = (0,0, 0) at time r = 0 and, after an initial adjustment (see §3.2),
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FIGURE 1. Schematic diagram of the vortex ring domain.
propagates at a velocity U that depends on its instantaneous parameters according to
r 8R
Uz{ln—i—C}, (2.1)
T a

where C is a function of the shape of the vorticity distribution and a is a measure
of the core radius. For a uniform distribution C = —1/4 (Lamb 1932), and for
a Gaussian core vorticity distribution C ~ —0.558 (Saffman 1970). Historically, the
speed-effective core radius a, is defined as the core radius of a vortex ring propagating
at an equivalent speed and with uniform vorticity distribution. Experimentalists also
often define a core measure a;, the distance from the core centre to the point of
maximum tangential velocity. For a Gaussian core a, = 1.36075 and a; = 1.12144.

We follow Saffman (1970) and define the vortex-ring geometry in terms of integral
parameters. For example, under the assumption of axisymmetry (reasonable for a
laminar ring), measures of the ring radius can be extracted from the first and second
radial moments of the azimuthal vorticity wg, with

1 1
Ry = T /}"(,()9 drdz, R% =T /rza)@ drdz, (2.2)
where the circulation I and impulse P take their usual forms,
I = /we drdz, P =nR3T, (2.3)

and r?> = x> + y%. Equivalent three-dimensional formulae can be derived for more
general non-axisymmetric distributions of vorticity. The ring radius Ry can be
interpreted as the radial w,-weighted average, and the core thickness 8, as the
wg-weighted measure of its spread. For a Gaussian wy distribution we have

8 =2(R3 —R;). (2.4)



Direct numerical simulation of vortex ring evolution 205

These quantities are referred to below as impulse-weighted measures of the vortex
geometry; they are particularly useful because of their close relationship to the integral
parameters. It is also convenient to define an integral measure of the ring radius Rg
based on the first moment of enstrophy via

1 2
Ro = 2Q/r|a)| dxdydz, (2.5)

where 2 = [|w*dx dydz is the total enstrophy. The effect of viscosity is to diffuse
the core, which for a core with a Gaussian profile is (Saffman 1970)

8%(t) = 8% + 4vr. (2.6)

Since the laminar ring produces a wake of shed vorticity, all characteristic ring radii
and integral properties presented in this paper have been calculated over a cubic
‘logging domain’, the top and bottom of which are two initial ring radii Ry from the
origin (see figure 1). This prevents the wake from artificially distorting measures of
the ring parameters.

2.1. Numerical approach

The incompressible Navier—Stokes equations are discretized on a conventional
staggered grid using second-order finite differences in space and the Adams—Bashforth
algorithm in time, with continuity imposed by applying pressure-correction methods
with a parallel multigrid Poisson solver (Yao et al. 2001). A uniform Cartesian
grid is employed in a cubic domain for reasons of code efficiency. The Cartesian
computation domain assumes periodic boundary conditions in the x and y directions,
so that we are, in effect, simulating an infinite array of vortices, but with the domain
widths L, and L, chosen to be sufficiently large that the effects of periodicity are
small (see below). However, because the vortex sheds a wake, the ring propagation
direction (z) cannot be treated as periodic if interactions with its own wake are
to be avoided. We therefore use inflow and outflow conditions, at z = +L,/2 and
—L./2, respectively, and perform the calculations with respect to a moving reference
frame attached to the ring. The time-dependent axial velocity Wy(¢) of this moving
reference frame is adjusted by a simple control algorithm to keep the ring at a fixed
vertical location within the domain. It thus provides the inflow boundary condition
at z = +L_ /2, with w(x, y, L;/2) = W;(¢). (This assumes that L, is large enough,
compared to the ring radius R, that the velocity induced by the ring vorticity at the
inflow plane is negligible.) In order to avoid introducing spurious vorticity into the
domain, Neumann conditions are applied to the other two components at z = +L,/2:
du/dz = dv/dz = 0. At the outflow, z = —L,/2, all three components satisfy a linear
gradient condition, with du/dz = dv/dz = dw/dz = 0.

Calculation of the reference-frame speed W; (i.e. the time-dependent inflow velocity)
requires a time-dependent measure of the vertical ring location Z. We use

1 2
Z(t) = oTe] /Zla)(t)| dx dydz, (2.7)
where 2 is the total enstrophy (cf. (2.5)). The value of W, that minimizes the difference

between Z(r) and the target location Z,. = 0 is determined by an integral-proportional
controller,

Wil) = 2020~ 2) + & [ (2(')~ Z)dr. (238)
0
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where ¢; and c¢,, respectively, set the damping and oscillation time scales. These were
chosen to give a critically damped response with ¢; = 2I/R3 and ¢, = 41,/ R3 (where
the 0 subscript indicates initial values), which locates the ring to within 107*R, of Z,
by three R}/Ip time units, and to within 5 x 107 Ry by 20R3/I. Once the ring is
locked in place, it remains in the centre of the domain throughout the computation,
despite shedding circulation and impulse, and changing its translational velocity.

Since the DNS effectively approximates the motion of a single vortex ring by
considering a periodic array of rings in x and y, it is necessary to quantify the
influence of the implied image vortices, which act to reduce the speed at which the
ring propagates, compared to the infinite-domain idealization. The amount of this
reduction can be calculated by integrating the net effect of the velocity induced by the
neighbouring rings, located at distances x = (i4, j4,,0) from the point in question,
where A, and 4, are, respectively, the x and y periods of the image array, and i and
J are integers. The velocity induced by a single image is U = V A A, where A is the
far-field velocity potential, which for |x| > R is

((0,0,R2F)>
A=VA =),
4|x|

The net induced axial velocity w is thus

_ I'R* & 2+ j2 I'R?
=— — 2~ -9.032 29
w 43 Z (i2+j2)5/2 4,3 ( )

i=1, j=1

where we assume a square array, with 2 = A, = 4,, and the i, j summation has been
evaluated numerically. This gives both a criterion for choosing the lateral sizes L,
and L, of the domain, and also allows the translational velocity exhibited by the ring
in the finite-domain simulation to be corrected and compared to the corresponding
infinite-domain experimental results. Note that since I" and R vary with time so does
the w correction, and that the ratio of w to the velocity induced by the local ring
within a square domain of size L is O(R/L)’.

2.2. Initial conditions

The vortex ring is initiated with a Gaussian distribution of vorticity, which is
positioned around a centreline path that is perturbed slightly from being perfectly
circular, so that written in terms of the distance from the local position of the
centreline R'(6) we have
r

=5 exp(—s?/8%), (2.10)
where 52 = z> + (r — R'(6))>. We suppose that the local radius R(6) can be written as
a small parameter ¢ < 1 multiplied by the sum of a set of N Fourier modes, each
with unit amplitude and random phase, so that

R'(0) = Ro[1+ cf(0)],

]

N
£(O) =Y Aysin(nd) + B, cos(nd),
n=1
where A2 4+ B2 = 1. Although this method leads naturally to a divergence-free

velocity field, the continuity of the vortex lines themselves is not guaranteed — partly
because the vorticity should be tilted slightly to follow the tangent to the path of
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Case  8/Ro /v N, X Ny x N, t'/R? T/l R;/Ry &;/Ro

Al 0.413 5500 256 x 256 x 256 40.0 0.907 1.038 0.373
A2 0413 10000 256 x 256 x 256 40.0 0911 1.038 0.360
B1 0.200 5500 256 x 256 x 256 25.0 0.992 0.999 0.243
B2 0200 10000 384 x 384 x 384 25.0 0.995 1.000 0.227
B3 0.200 7500 512 x512x 512 25.0 0.993 1.000 0.232
C1 0.140 3000 256 x 256 x 256 15.0 0.999 0.995 0.203

TaBLE 1. Run parameters. The * superscript indicates quantities at the sampling
initiation time ¢”.

the vortex centreline, and partly because the implied cross-section area of the vortex
is not perfectly constant around the ring. The above vorticity field can be corrected
to become divergence-free by superimposing the gradient of a scalar field V¢ and
requiring that ¢ satisfy a Poisson equation whose source term is the divergence error
of the original vorticity field. The complete initial field is then obtained by solving
for the vector streamfunction that is consistent with the vorticity distribution, and the
velocity field then follows directly by taking its curl. The method of perturbing the
geometry of the ring, rather than the velocity field, produces a modal energy spectrum
that decays with the second power of n.

3. Results
3.1. Cases and quality diagnostics

The parameters that define the six cases summarized in table 1 allow consideration of
the effects of both Reynolds number Re = I;/v and the slenderness ratio €y = 8¢/ Ro.
Since this study will revisit some of the issues first raised by Shariff et al. (1994),
two of our runs have been designed to match theirs. The Case Al and Bl values,
respectively, correspond to those used for their Runs 3 and 12, with Re = 5500
for both and ¢y = 0.4 and =~ 0.2, defining rings within the thick- and thin-core
regimes. Cases A2 and B2 are higher-Reynolds-number versions of Al and BI,
respectively, with Re = 10000. Case B3 defines another ¢y = 0.2 thin-core ring, at an
intermediate Reynolds number, Re = 7500. This case, with its intermediate Re and
higher spatial resolution, will be especially useful when we examine the nonlinear
breakdown and the early stages of the fully turbulent regime. Finally, Case C1 was
designed to help determine the expression for the translational velocity constant C
(see §3.2), by capturing both thin- and thick-core behaviour. The number of grid cells
employed in each direction (N, Ny, N.) is shown in table 1. The quality of the spatial
resolution is examined below. A cubic Cartesian domain was used for all cases, with
L,/Ry=L,/Ry=L,/Ry = 8. Equation (2.9) implies that this introduces differences
between the finite- and infinite-domain ring translational velocity of approximately
0.005I%/Ry. All cases also used a constant time step, with the Courant—Friedrichs—
Lewy (CFL) number, based on local velocity and grid size, always less than 0.15. A
radius perturbation of amplitude ¢ = 2 x 10~* was imposed on the first 32 azimuthal
modes for the thin-core rings (Cases Bl, B2, B3 and Cl1), while for (thick-core)
Cases Al and A2 the first 24 modes were disturbed, following the approach of Shariff
et al. (1994).

The reliability and accuracy of the present code was validated by comparing
the results of Case Al with laminar and linear-instability results obtained with an
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FIGURE 2. Numerical integrity. (a) Comparison of modal growth rates for azimuthal modes

n =5 (thin line) and n = 6 (thick line): , Case Al;---, 192 x 192 x 768 spectral DNS.
(b) History of rate of change of volume-integrated kinetic energy K for Case B3 (thin core):
---, =dK/dt; —-—, €x; ——, €x — Fk. Dissipation and flux terms shown for r > ¢*,

where t* is the sampling initiation time (see § 3.2).

in-house fully spectral third-order Runge—Kutta codet using 192 x 192 x 768 Fourier
modes}. The spectral domain was large enough (L, = 32R) in the z-direction to
prevent the ring interacting with its wake during the time considered. (Were it not
for the need to employ non-periodic boundary conditions in z, the fully spectral code
could have been used for this study.) Excellent agreement was found for the ring
translational velocity and integral measures, as well as the linear-regime growth rates
of the azimuthal disturbances, which after adjusting to a slightly different random
initialization eventually track each other (see figure 2a). A domain sensitivity study
was also undertaken whereby Case Al was repeated on two larger domains, one
expanded laterally in both x and y by 50 %, and the other increased in the z direction
by 100 %. The ring integral measures were found to differ by less than 0.5 %, and the
azimuthal growth rates by less than 1 %.

A further check of the spatial resolution is provided in figure 2(b), which shows
histories of the rate of change of the volume-integrated kinetic energy K (per unit
mass) within the simulation domain, with respect to the frame of reference attached to
the ring.§ Within an infinite domain, the rate of change of K is equal to the volume-
integrated rate of kinetic energy dissipation —eg. However, since kinetic energy is lost
to the wake and convected out of the finite domain, here the energy balance is altered
such that

dK

ds =—€K+FK, (31)

where Fy is the net volume-integrated kinetic energy flux, set by the difference between
the (unsteady) fluxes at the inlet and outlet planes. The difference between the left- and
right-hand sides of (3.1) is a measure of the spatial discretization error in resolving the

+ Written and run by Dr C. P. Yorke of University of Southampton.
1 This involved a 2883 collocation grid, to allow de-aliasing of the spatial derivatives.
€ The moving coordinate system and the associated unsteady inflow define an effective pressure
gradient of —dW,/dt, such that K = %fv(uiui — W;?)dV, where V is the volume of the DNS
domain.
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FiGUure 3. Comparison of core vorticity distributions for a thick- and a thin-core ring, at
t=1t": , Case Al (¢ = 0.41); ———, Case Bl (e = 0.20). The broken vertical line
indicates the location of the instantaneous zero streamline on the concurrent plane. Radial

locations non-dimensionalized by local R, the distance from the origin to the peak in wy.

smallest turbulence scales. For all six cases, the difference was within 1 x 10751 /R,
up to the point of transition. Transition involves stretching of the vorticity filaments
to fine scale, resulting in an enstrophy and dissipation peak. Note that the flux term
Fx is only significant after the ring breaks down and its turbulent wake reaches the
outflow boundary (compare the solid and chain dot curves in figure 2b). Even during
this most difficult to resolve phase (¢ > 80R3/I}), the accuracy is reasonable, with the
error remaining less than 2.2 x 107*I / Ry.

3.2. Laminar evolution

The initial Gaussian distribution of vorticity is only an exact steady solution in the
limit of infinitely thin cores. Since the Gaussian cores specified here have finite size
(and thus only approximately satisfy the Navier—Stokes equations) the ring initially
undergoes an ‘equilibration’ phase, during which the wy profile across the core region
relaxes towards a new equilibrium state, as noted by Shariff et al. (1994). This is
obtained after the Gaussian profile approaches the axisymmetric inviscid ideal for
which, in axes attached to the ring, wy/r is solely a function of the streamfunction .
The core profile must thus depart from the initially symmetric Gaussian distribution,
and become skewed, with w, decreasing faster toward the bubble edge than the ring
centre. The difference between the inner and outer vorticity distributions increases as
the slenderness ratio € increases (figure 3). During the equilibration phase wy is shed
from the ring, reducing the circulation and modifying the ring geometry; this process
is most severe for thick-core rings. These observations led us to define a sampling
initiation time t* at a time just after equilibration has occurred, such that the core
vorticity distribution has fully adjusted and the associated shed vorticity has left the
logging domain, thereby avoiding spurious measurements of the ring characteristics.
(The impact of the start-up wake as it passes out of the logging domain can be seen
in the local increase in circulation decay rate between t = 5 and 15RZ2/I in figure 4a).
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FIGURE 4. (a) Histories of rate of change of circulation dI"/dz: , Case Al (thicker line)

and B1 (thinner); —--, Case A2 (thicker) and B2 (thinner); —-—, Case B3. (b) Loss of
of azimuthal vorticity wg for Case Al at (t —t.)Iy/R3 = 20: , ¥ < 0 (thicker contour
denotes ¥ = 0); ——-, ¥ > 0; shaded contours show wy (darker contours show weaker
vorticity).

The initial sampling time is documented together with the ring parameters associated
with this time (indicated by an asterisk) in table 1.

Having adjusted, the w, profile extends outside the instantaneous zero streamline
(broken vertical line, see figure 3) for both the thin- and thick-core rings, but to a far
greater degree for the thick-core ring. Vorticity extending across the zero streamline
is nominally outside the entrainment bubble. It can then either be entrained back
into the bubble or cross the bubble surface and depart into the wake, as suggested by
Maxworthy’s model for diffusive entrainment (Maxworthy 1972). Figure 4(b) shows
precisely this mechanism, with weak vorticity (shaded contours on the right-hand
side) trailing into the wake over the zero streamline (thick-solid contour). The reason
why vorticity crossing the instantaneous ¥ = 0 streamline can be entrained back into
the entrainment bubble is that the zero streamline is not stationary and moves in
time to incorporate changes to the ring translational velocity and integral parameters.
Lagrangian analysis of the flow yields an entrainment bubble surface which takes
into account the moving ¢ = 0 streamline. Vorticity diffused across this boundary,
outboard of the zero streamline, passes into the wake. These arguments are explored
further in § 3.5. Whether the ‘leaked’ vorticity is recovered or not, the vorticity profile is
clipped by the presence of the entrainment bubble surface. This vorticity clipping leads
to a sharpening in the wy profile in the vicinity of the zero streamline surface, hence
increasing the skewness of the core. For both cases, the instantaneous zero streamline
surface appears at a constant distance r ~ 1.33R from the ring centreline, where Ris
the current radial location of the w, peak. The instantaneous zero streamline surface
thus expands to track radial displacement of the vorticity peak as the core diffuses,
leading to a relationship between the core thickness and the rate of decay of wy.

The loss of wy manifests itself in an overall reduction of ring circulation. Figure 4(a)
displays the rate of decay in circulation during the laminar regime. The main figure
shows the rate of decay from the start of the simulation, with the early peaks
corresponding to the vorticity shed during the core adjustment leaving the domain.
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We focus on the inner figure which presents the behaviour when the core has
adjusted its vorticity distribution, after *. Comparing Cases Al with B1 and A2 with
B2, we see that despite similar initial Reynolds numbers I"*/v, the thick-core rings
reduce in circulation faster than the thin-core rings. This can be attributed to the
increased skewness of the thick-core rings, resulting in greater wy extension across
the entrainment bubble surface. The rate of circulation loss increases with time for
the thin-core rings, which is consistent with the ongoing core diffusion, such that
they become increasingly skewed. The thick-core rings, on the other hand, exhibit a
larger but more nearly constant rate of circulation loss, since they are closer to a
quasi-steady state defined by fixed € (cf. figures Sa and 5b), and thus experience little
change to their skewness and associated relative rate of w, diffusion.

Maxworthy’s model for diffusive entrainment (Maxworthy 1972) predicts a —2/3
power law decay of I'. The decay rate was not found to be universal by Dabiri &
Gharib (2004) however, who experimentally generated rings at Reynolds numbers
between 2000 and 4000, finding that I" decayed with power laws between —0.27 and
—0.067, with the power decreasing with increasing Reynolds number. We find for
the present rings that the circulation tends to decay as I" ~ ¢ where ¢ is in the
range —0.01 to —0.002. We can account for the range of reported circulation decay
rates by the difference in Reynolds numbers across the previous and present cases.
As shown in figure 4(a), for identical initial €, the decay rate increases monotonically
with decreasing Reynold number.

The laminar evolution of the core radius measures, &y, a, and a;, normalized by
the instantaneous value of Ry, and the ring radii measures R, and Rg are shown in
figure 5, for two rings that typify the behaviour of thin and thick cores (Cases Al
and B3). To calculate a;, the core centre was first determined by linear interpolation,
then second-order polynomial extrapolation was used to find the distance from the
core centre to the location of the maximum tangential velocity on the plane z = 0
inboard and outboard of the core centre. These two lengths were then averaged to
give aj.
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Since the integral measure Ry, is weighted by |w|?, it is biased toward regions of
high vorticity and hence approximates the radial location of peak vorticity. On the
other hand, R, (being weighted by wy) effectively yields the radial location of the
centre of vorticity of the core, which during the laminar regime is always inboard
of Rg, owing to the skewness of the core wy profile. The difference between the two
measures is thus an indication of the core skewness, which is greater for thicker cores.
Note that R, for the thin-core rings is approximately constant, while R, increases
slightly with time, demonstrating the increasing skewness of the thin-core rings owing
to core diffusion. The thick-core rings behave differently, in that both Ry and R
increase with time. This shows that the ring is expanding radially while the skewness
of the core remains approximately constant.

The three dotted lines in figures 5(a) and 5(b) represent the predicted core diffusion
for an equivalent core with a Gaussian profile in accordance with (2.6). The history
of the thin-core ring follows the Saffman diffusion equation very closely, with the
exception of a./Rs, which deviates with time away from the upper dotted line.
The divergence can be attributed to the increasing core skewness. As the core wy
distribution becomes less Gaussian, the translational velocity of the ring reduces with
an associated increase in a, (cf. (2.1)). For the thick-core ring, the slenderness ratios
ai/Ry and &y/Ry remain approximately constant with time. The core expansion is
constrained by the ring geometry, as wy must equal zero on the ring centreline and
its outer extent is clipped by the zero entrainment streamline (which expands at the
same rate as the radius). Consequentially the core diffuses at a similar rate to the ring
radius, leading to a nearly constant €. With both € and hence the degree of skewness
nearly constant, the core distribution of vorticity changes little, resulting in the nearly
constant rate of decay of circulation for thick cores seen in figure 4(a).

The transitional and early turbulent behaviour of the ring is also presented in
figure 5, to give perspective to the laminar results. Transition begins near (t — ")/
Ré =095 and 55 for Cases Al and B3, respectively, with the decrease of R, as the core
distorts and the development of interior and peripheral vortical structures moves the
location of the maximum vorticity. The transitional and early turbulent behaviour
will be examined further in § 3.4.

Histories of the translational velocity U of the thick- and thin-core rings are
shown in figures 6(a) and 6(b), respectively, and compared to equivalent rings with a
Gaussian core profile. These include the periodic correction w (cf. (2.9)) to account
for the induced velocity of the periodic array of vortices, so we in effect report the
translational velocity of a single vortex ring in an unbounded domain. The Gaussian
ring velocity Ug is given by (2.1), where C = —0.558 and the instantaneous values
of I', Ry and &y are employed. The difference between Ug and the numerical results
reveal the impact of the non-Gaussian core w, distribution. The difference is greater
for the highly skewed thick-core ring and remains almost constant as the core diffusion
is limited (for reasons given above). Since for the thin-core ring the w, distribution
becomes increasingly skewed as the simulation progresses, the difference between the
Gaussian and the DNS velocity increases with time. For all cases the rings decelerated
smoothly until the onset of turbulence, whereby the translational velocity fluctuates
dramatically as it decays.

The inclusion of C in (2.1) allows for cores with finite slenderness ratios € that
possess non-Gaussian core distributions. The increasing difference between the ring
translational velocity and that of a Gaussian-core ring implies that C becomes
increasingly negative with increasing €. We might expect that the effect of increasing
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skewness would manifest itself as an even-series expansion in €2, ie. C can be
approximated as C = Ae?+ Be*+ C’, where the constant C’ must equal —0.558, since
for small finite €, C must equal —0.558. The parameter C has been extracted from the
simulations and is plotted in figure 7 against the instantaneous value of € = 8,/ R, for
all cases. The results are well approximated by C = —1.12¢% — 5.0¢* — 0.558 (dashed
curve). The generalized expression for the translation speed of a laminar vortex ring
as a function of I, R and ¢ then becomes

r

U=—
4R

8
[ln (6> + A+ Bt +C' + |, (3.2)

where A = —1.12, B = —5.0 and C' = —0.558.
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3.3. Linear growth of azimuthal instability

During the initial laminar phase, an azimuthal instability associated with the vortex
core develops, and deforms the core into a standing wave with an integer number n
of waves around the circumference. The number of modes depends on the slenderness
ratio such that n ~ 2.26/¢ (for a Gaussian core distribution of vorticity, Shariff et al.
1994). The inviscid case was examined by Widnall & Tsai (1977) and the growth rate
awr given by

r 8R ) 2
awr = s [(0.856 In ( @ > 0.9102)° — 0.4535| . (3.3)
(Note the last term differs from its original form in Widnall & Tsai (1977) to reflect
the error corrected in Shariff et al. 1994.) The growth rate for a mode n is defined
as o, = %(1/E,,)dE,,/dt, where E, is the energy of the mode. However, the numerical
work of Shariff et al. (1994) found that the effect of viscosity is to reduce the growth
rate from the inviscid value by a factor that depends on the local internal Reynolds
number of the core, and established the viscous correction factor with

ai(B )}
Res ’

as(B) = awr(B) {1 — (34)
where ay is the adjusted growth rate, @ is a non-dimensional coefficient which in
principle depends on 8 = a;/R, and the internal Reynolds number Reg = ea/v is the
ratio of the local induced strain field e to viscous damping, where Saffman’s estimate
of the strain rate (Saffman 1978)

ir | 8R 17
“= Tonk? {n<ae> 12}

is used. Shariff et al. formulated the viscous correction by comparing the measured
growth rates for a number of rings with € varying from 0.2066 to 0.4131, and across a
range of Reynolds numbers Re from 1200 to 10 000. They determined the growth rate
as being that of the most amplified azimuthal mode (i.e. the mode with the largest
growth rate at a given time, not necessarily the mode currently with the most energy)
observed at a time 717/ R2 between 52.5 and 57.5. The growth rate was averaged over
15 R3/ I, time units centred about 7. However, as the vortex ring geometry changes
slowly over time because of viscous diffusion of the core, the most amplified mode
will also slowly change. In fact, successive modes with reducing n will be selected and
amplified, so that the average growth rate measured by this method can be expected
to be slightly lower than suggested by the equation above.

Shariff et al. estimated the internal Reynolds number Reg at time ¢ using the core
measures a; and a., and assuming a Gaussian core distribution of vorticity diffusing
in accordance with (2.6) (accurate for thin cores but less so for thicker ones). Finally,
awr was calculated using the initial ring parameters and it was found that a; = 18
fitted their results well.

The main differences between our numerical investigation and the simulations of
Shariff et al. are that our boundary conditions are not periodic in the direction of ring
propagation and that we use a cubic domain rather than a cylindrical one. The latter
requires us to interpolate our velocity fields onto a cylindrical grid in order to extract
the modal energy spectrum and associated modal growth rates. An azimuthal Fourier
transform was performed over the cylindrical grid to reveal the modal energy histories
displayed in figure 8. We follow Shariff et al. and report the growth rate of the most
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Case t n(f) o o @) Re) adlt) ai(t) awr(®)  ost)

Al 52.5 6 0.072  0.090  0.897 1.173 0.65 0.44 0.081 0.069
A2 52.5 6 0.082  0.098  0.904 1.144 0.62 0.42 0.087 0.080
B1 52.5 9 0.099  0.108  0.989 1.062 0.42 0.30 0.128 0.103
B2 47.5 10 0.130  0.126  0.995 1.044 0.34 0.26 0.141 0.124
B3 52.5 9 0.112  0.119  0.989 1.056 0.39 0.28 0.133 0.113

TaBLE 2. Comparison of present growth rate o with the viscous prediction ag of Shariff et al.
(1994). Time 7 given in units of RZ/I7, growth rates in units of Iy/R3, circulation in units of
Iy and lengths in units of Ry.

amplified mode at 7 I/ R; = 52.5, averaging the growth rate over a time window of
+7.5R2/ I centred at 7. The Case B2 result, however, is reported at the earlier time
of 1Iy/R3 = 47.5 to avoid the possibility of being affected by the nonlinear regime.
The growth rate oy was calculated using the instantaneous values of a; and a, at r as
approximated by (2.6) and I and Ry in accordance with the methodology used by
Shariff et al.

A comparison between the present growth rates o and those given by the Shariff
et al. (1994) viscous correction «g is presented in table 2. It is found that «g is within
9% of « for the thin-core rings, Cases B1, B2 and B3. However, the difference is
greater for the thick-core cases, Al and A2, at approximately 25 %. The difference
in growth rates for the thick-core rings can be attributed in part to the periodicity
of the Shariff et al. simulations in the direction of ring propagation. Since we follow
essentially identical initialization procedures, the Shariff et al. rings were subject to
the same equilibrilisation phase as documented here. In Shariff et al’s triply periodic
computations; the shed vorticity associated with the vortex ring adjusting to its steady-
state vorticity profile (see § 3.2) is ejected from the ring during the equilibration phase
and cycles periodically through the domain, encountering the ring on each pass
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: !’ !
Ring op AwT,.D os.p Uyr A

A 0.78 1.36 1.00 1.39 1.02
c 0.91 1.59 1.03 1.39 0.90

TABLE 3. Experimental growth rates ap of Dazin et al. (2006a) and recorded quantities ayr p
and ag p compared to ay, and o which result from using a; in (3.3). Growth rates given in
—1
s

and providing a forcing of the ring instability. This explanation was verified using
the in-house spectral DNS code mentioned earlier, periodic in all three directions,
by initializing a thick-core ring in domains of different length. The longest domain
ensured breakdown occurred before the wake interacted with the vortex ring and
yielded a growth rate 10 % less than a domain of similar size to that used by Shariff
et al. The growth rate for thin cores is more accurate because the initial equilibration
wake shedding is negligible, thus the rings are not influenced in the same way. As
shown in § 3.2, all ring measurements vary during the laminar regime, dependent on ¢
and the Reynolds number. This led us to test the Shariff et al. viscous correction by
incorporating the instantaneous I'(f), Rq(7), a;(f) and a.(7) at 7 to estimate awr(7),
e(f) and Reg(7), with ag(f) = awr(7)[1 — @1/Res(7)]. Using this method with a@; = 8
improves the agreement to within 5% for both the thin- and thick-core cases. This
supports the validity of correcting the inviscid growth rate based on the internal
Reynolds number Reg.

Dazin et al. (2006a) used PIV to calculate the instability growth rate of two of
their experimental rings A’ and C', reporting differences with their implementation
of the Shariff et al. correction. However, they followed a slightly different method
to that proposed by Shariff et al. using a, as their core measure in place of a; in
calculating oy 7. We have followed the methodology of Shariff et al. to give a corrected
prediction for their growth rates, o, and of (see table 3). The difference between
the growth rate of ring C' and «y is reduced significantly; however, for ring A’ the
difference is still large. Another important difference between the two methods is the
sampling period over which the growth rate is calculated. Dazin et al. had access to
few sample points over the entire laminar regime with which to calculate the growth
rate. Figure 8 shows that this simplification is reasonable for mode 9, which grows at
an approximately constant rate, but much worse for modes 10 and 11, as their growth
rate changes greatly during the laminar regime. In general, the growth rate of a single
mode will not be constant throughout the laminar regime, as viscosity diffuses the
core region amplifying modes with monotonically decreasing mode number.

3.4. Nonlinear transition phase

The elliptical instability initially leads to a narrow band of modes growing
independently, which determine the number of standing waves around the core
azimuth. However, at a certain amplitude the modes begin to interact nonlinearly with
each other producing higher harmonics and lower-order intermodulation products (see
figure 8), consistent with the experiments of Dazin et al. (2006b) and the simulations of
Shariff et al. (1994). Constructive interference between neighbouring modes causes a
noticeable ‘lop-sidedness’ to the wave growth and associated core displacement, which
is represented by the rapid growth of the n = 1 mode prior to transition. The relative
dominance of the n = 1 mode varies from case to case and is largest for the thin-core
Cases B1, B2 and B3, which during the nonlinear phase have 8, 10 and 9 waves
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FIGURE 9. Contours of w, on the horizontal plane through the centre of the ring (z = 0)
for Case B3 at time (t —t*)Ip/R3 = 55: , w;, > 0; -+, w, < 0. Contour increments at
| max!/10.

around the core, respectively. An n = 0 mode also grows rapidly in the azimuthal
velocity energy component (i.e. an axial flow along the circumferential axis of the
vortex core), which corresponds to a mean azimuthal profile of opposing streams, as
documented by Shariff et al. (1994) and shown in their figure 7. A description of the
nature of this axial flow follows in § 3.6.

Here we make a distinction between the region of intense vorticity at the core centre,
which we call the ‘inner core’ and the surrounding outer-core region of lower vorticity,
which we call the ‘halo’ vorticity. The elliptical instability causes displacement of the
inner core into a stationary wave pattern, while the halo vorticity displaces in the
opposite direction, consistent with the second radial mode (Widnall 1975). In a slice
across the z = 0 plane, the signature of the second radial mode in the axial and radial
components of vorticity is three layers arranged radially (figure 9). The halo vorticity
occupies the inner and outer layers and is 180° out of phase with the inner core.
The structure is also apparent in three-dimensional isosurface plots of the second
invariant of the velocity gradient tensor II (a useful marker of vortical structure),
and isosurface plots of vorticity shown in figure 10. They show that as the inner-core
displacement becomes appreciable, the halo vorticity rolls up into an interwoven mesh
of secondary structure. The secondary structure develops first in the top left-hand
corner of figure 10(a) (bottom of figure 10b), where constructive interference between
the azimuthal modes n = 9 and n = 10 yields the greatest inner-core displacement.
It then develops around the azimuth of the ring as the local inner-core displacement
increases with time. The figures further show that the secondary structure consists of a
series of loops which encompass the inner core. The inner core weaves its way through
the centre of the loops. It is noted that neighbouring loops are of alternating signed
vorticity, consistent with the observations of Dazin et al. (2006b) and simulations
of Bergdorf et al. (2007), and are formed by tilting and reorganization of the halo
vorticity. The loops touch at saddle points positioned in azimuthal planes aligned
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FiGURE 10. Three-dimensional isosurface visualizations of the secondary structures for Case B3
at (t—1*)Iy/R§ = 65. (a) Isosurfaces of vorticity viewed from above. Dark surface corresponds

to the inner core region |w|R}/I" = 3.8; mid-grey isosurface corresponds to w,R3/I" = 0.8,
light grey to w,R}/I" = —0.8 visualizing the secondary structure. (b) Isosurface of the second
invariant of the velocity gradient tensor II, IIRS/I"* = —0.005.

with the maximum and minimum inner-core displacements, but displaced radially in
opposition to the core displacement. Two loops wrap around each azimuthal wave,
hence there are the same number of pairs of loops as there are waves around the
ring. Bergdorf et al. (2007) give a slightly different account for the generation of the
secondary structure, suggesting they originate because of stretching of the outer-rim
regions of the inner core. We also see stretching of the rims of the inner core, but
this occurs after the halo vorticity has reorganized into the secondary loops and their
magnitude of vorticity |w| has become comparable to the inner core.

The generation of the organized secondary structures coincides with deformation of
the core wy distribution. During the laminar regime, the three-dimensional geometry
of the core approximates a ring with a mildly elliptic cross-section. During transition
the cross-section is distorted to form a thin crescent shape (figure 11). The distortion
is more severe in regions of the core in the periphery of the entrainment bubble as the
local radial expansion is restricted by the instantaneous zero streamline. The stretching
of the inner core intensifies the local vorticity and is accompanied by stretching of the
secondary structure, which also intensifies in vorticity causing an overall enstrophy
peak (figure 2b). As the secondary loops stretch they begin to protrude locally outside
the entrainment bubble, trailing behind the vortex ring and into the wake. The loops
originally developed as counter rotating pairs side by side, but as they trail outside
the ring the loops detach and reattach with their neighbour at the saddle point to
form hairpin vortices that fill the wake (figure 12), as reported by Bergdorf et al.
(2007). The localized equilibrium between the inner core and the outer halo vorticity
is broken, as portions of the halo vorticity leave the entrainment bubble, and the
core becomes locally turbulent at the position of the initial hairpin vortex shedding.
The azimuthal instability wave does not rotate prior to the ring becoming turbulent,
which conflicts with the interpretation of Maxworthy (1977). The waves continue to
develop across the remainder of the ring unhindered, until the secondary structure is
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FIGURE 12. Isosurfaces of II showing the termination of the secondary structures forming
hairpin vortices in the wake for Case B3 at (a) (t —t*)I/R3 = 75.8 and (b) (t —t")[v/R} =
79.4. Surface level IIR3/I¢ = —0.25.

shed into hairpin vortices around the entire azimuth of the ring and the ring can be
considered to be fully turbulent.

The stationary coherent vortical structure found during the laminar and transitional
phases is superseded by the swirling of vorticity filaments. Two cases were simulated
and resolved through to transition and into the early turbulent regime: Case Al, a
thick-core of low Reynolds number and Case B3, a thin-core of moderate Reynolds
number. Figure 13(a) shows that the thick-core ring breaks down into a number of
interwoven vortex filaments. No well-defined coherent core persists and circulation
is shed via a continual stream of vortex filaments into the wake. The thin-core
ring, however, maintains a core region of concentrated vorticity (the dark region
in figure 13b) which is consistent with the turbulent visualizations of Wiegand &
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FIGURE 13. Double isosurface of |w| for turbulent vortex rings. (a) Case Al at time
(t —t")[h/R} = 180: dark surface level |w|R3/Io= 1.4; light surface level |w|R3/Ty= 0.7.
(b) Case B3 at time (r —t*)Ip/R? = 111.8: dark surface level |w|R3/Ih= 2.5; light surface level
lw|R3/ o= 1.25.

Gharib (1994). The core region is no longer stationary, but bends and twists with
time. Vorticity filaments, similar to the secondary structure, are continually generated,
wrapping around the turbulent core and circulating around it. Figure 13(b) shows
a number of these vorticity filaments wrapped round the core region. The filaments
have long looped tails that trail into the wake and out of the domain. Just as for
the thick-core ring, these vorticity filaments circulate around the core and gradually
pass out of the vortex bubble and into the wake as a stream of vorticity filaments
and hairpin vortices, as visualized by Glezer & Coles (1990) and Wiegand & Gharib
(1994). The ring was not simulated further into the turbulent regime; however, the
beginning of a staircase-like decay of circulation, as reported by Wiegand & Gharib
(1994) and Bergdorf et al. (2007), was noted.

3.5. Fluid entrainment /detrainment

In this section, we analyse the Lagrangian paths of fluid particles in the vicinity of
the vortex ring in order to determine its entrainment and detrainment characteristics.
The particle paths were obtained by integrating dx(¢)/dt = v[x(¢), t] with a fourth-
order Runge—Kutta method, where x(¢) is the position vector of the particle and v
is the time-dependent velocity field taken from the DNS. The sampling interval of
the velocity field was determined to ensure convergence of the path lines, ranging
between 5 and 20 time steps dependent on the complexity of the flow field.

We first examine entrainment and detrainment characteristics of the thick-core ring,
Case Al, during the laminar regime. As shown in §3.2, the laminar ring gradually
expands through radial growth and core diffusion, and decelerates to accommodate
changes in the bubble geometry and loss of circulation. This increases the distance
between the front and rear stagnation points and bubble volume. Figure 14 shows
the pathlines of particles released on the plane z/Ry, = 1.7 along the circumference
of two semi-circles (centred on the ring propagation axis) of radii 0.25R, and 0.35R,.
The particles initiated on the inner semicircle are entrained whereas the outer ones
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FIGURE 14. Laminar entrainment of tracked particles released at (r — t*)I5/R3 = 20, for
Case Al, on the z = 1.7R, plane. Particles released at equidistant azimuthal locations around
the circumference of two semicircles of radius 0.25R( (dotted), and 0.35R, (solid).

pass into the wake, implying a Lagrangian streamtube in front of the vortex ring
which separates entrained particles from the external flow. The growth of the bubble
is accompanied by molecular diffusion of the azimuthal vorticity w, across the
boundary into the external free stream. There is no detrainment of particles prior
to the development of significant secondary structure, and the wake is created solely
by vorticity diffusion. In contrast, the Lagrangian bubble interface identified by a
Lagrangian coherent structure (LCS) technique in the experiments of Shadden et al.
(2006) exhibits alternating lobes of entrainment and detrainment during the laminar
regime. Kumar et al. (1995) showed that experimentally generated rings at a similar
Reynolds number to those studied by Shadden et al. (2006) initially experience
large-scale oscillations in their translational velocity that persist for a short time
after formation. We postulate that these experimental rings may also undergo an
equilibration phase similar to that observed in our simulation, during which the core
adjusts to its steady-state profile. Changes in the distribution of vorticity within the
core are sufficient to explain the initial oscillations in the translational velocity and
associated lobe dynamics. It was necessary for Shadden et al. to use long integration
times when constructing the LCS to reveal the ring’s Lagrangian structure. This
included part of the time immediately after the ring formation, thus the initial
transient is likely to be captured within their results, leading to their observed lobe
dynamics.

The laminar entrainment process, characterized by an axisymmetric Lagrangian
surface, is significantly altered by the development of the azimuthal instability and
associated secondary vortical structure. The first effect of the secondary structure is
to deform the Lagrangian surface that defines the entrainment bubble into a wavy
interface, which follows the shape of the secondary structure as shown in figure 15(a).
The bubble deformation also changes the structure of the wake from a circular to
a ‘petal-like’ cross-section at fixed z, with the individual petals corresponding to the
azimuthal location of the peripheral secondary structure (figure 15b). This petal-like
wake structure has been visualized in the experiments of Dazin et al. (2006a). As
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FiGURE 15. Entrainment bubble distortion for Case Al: (a) Lagrangian pathlines of particles
initiated around a circle of radius 0.43 Ry on the z/ Ry = 1.9 plane released at (t—t*)I/R3 = 79.
An isosurface of II with surface level IIR}/I¢ = —0.005, at (t —t*)[y/R} = 110 is
included to aid visualization; (b) wg contours across the wake, increments of local w,, /5, at
(t —t*)Iy/R3 = 100 on the z = —1.95 plane.
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FIGURE 16. Transitional detrainment zones. Two particle pathlines were initiated on the
z/Ro = 1.9 plane at r/Ry = 0.25 at time (r —t*)I)/R3 = 10. A translucent isosurface of
11 with surface level IIRS/ I} = —0.005, at (t —t*) I/ R = 118 is included to aid visualization.

the secondary structure develops, the Lagrangian surface is folded to the extent that
‘holes’ are created through which particles can detrain. The holes are located at points
where the secondary loops meet in the outer periphery of the ring. This can be seen
by comparing the two particle paths in figure 16, both of which were initiated at the
same time and radial distance from the z-axis. Just before the onset of turbulence,
fluid that is at location A detrains into the wake. Note also the slight drift in the
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FIGURE 17. Axial core flow for thin-core ring case B3. Lagranglan pathlines from time

(t —t")[H/RE = 54.2 — 60.5 with translucent 1sosurface of |w|R5/Ip = 3.0 at t+ = 60.5.
(b) Pathlines from time (+ —t*)I/R3 = 54.2 — 73.1 with translucent isosurface of |w|R3/
Iy=3.0at (t—1t")y/R} =T73.1.

left-hand-side particle around the azimuth of the ring. On the other hand, fluid that
passes between the loops of the secondary structure, location B, continues to circulate
within the entrainment bubble throughout the period of transition. After the onset of
turbulence, the ring continually sheds loops of vortical structure, carrying fluid (such
as the right-hand-side particle) into the wake. This is the principle mechanism for
turbulent detrainment.

3.6. Axial flow

We investigate the behaviour of the core region for the possibility of an axial flow
being generated prior to the onset of turbulence. Recall that like Maxworthy (1977),
we use the term axial flow to refer to circumferential flow along the axis of the vortex
core.

The axial flow is analysed by calculating the Lagrangian paths of a number of
fluid particles that are initiated within the core along radial lines that intersect the
vortex centre at four azimuthal positions, labelled A to D in figure 17(a). The core
centre was interpolated from the local velocity field and the Lagrangian pathlines
were integrated from the start of the transitional phase to the onset of turbulence.

The thick-core ring (Case Al) shows negligible axial flow. Prior to the onset of
turbulence, the particles orbit the core centre and drift through an angle of less than
1° along the circumferential axis of the core. However, the thin-core ring (Case B3)
shows a pronounced axial flow. Figures 17(a) and 17(b) present the particle paths
during the early (54.2 < (t —t*)I/R2 < 60.5) and entire (54.2 < (1 —t*) [/ R3 < 73.1)
transitional phase. During the laminar phase, the particles simply orbit around the
centre of the vortex core. However, during the transitional phase, the orbits begin to
drift around the ring. The direction in which the particles drift depends on how close
they are to the centre of the core. Constructive interference between the azimuthal
modes causes a region of increased core stretching, labelled E in figure 17(b). The
individual pathlines indicate an inner region of axial flow directed toward E (such
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that inner particles at A and B move anticlockwise and C and D move clockwise) and
an outer region moving in the opposing direction. The axial flow in the inner-core
region is greatest at B, with particles translating 17° along the circumferential axis
of the core during the transitional period. The radius of the inner-core region is
approximately 0.078 Ry (27 % of 8, at time (t —t*)I/ R = 54.2). The inner core axial
flow is maximum at the core centre and grows approximately exponentially with time.

This type of axial flow, showing a general drift of particles near the core centre
toward point E of strongest instability development, is consistent with the m = 1
type axial flow recorded by Naitoh et al. (2002), in observations of rings generated
through a circular orifice. Naitoh et al. inferred that the axial flow was due to an
azimuthal pressure gradient caused by preferential wave growth and associated core
stretching. This is supported by our simulations as the thick-core ring undergoes
near uniform wave growth leading to negligible axial flow and the thin-core ring
experiences preferential wave growth leading to a pronounced axial flow. The thin-
core ring would be expected to develop with less uniformity as a greater number of
modes are excited by the linear instability leading to a larger n = 1 mode.

4. Summary and closing remarks

One important finding is the difference in evolution of thin- and thick-core vortex
rings. Analysis of integral measures of vortex-ring geometry has shown that the
slenderness ratio (¢ = §/R) has a strong influence on the evolution of the vortex-
ring geometry and dynamics. The diffusion of thin-core rings is described well by
Saffman’s equation (2.6) (Saffman 1970). However, the core diffusion of thick-core
rings (€ > 0.36) is limited by the ring centreline and the presence of the entrainment
bubble surface, which clips the outer edge of the vorticity distribution. It was found
that as € increases, the vorticity distribution within the core becomes increasingly
skewed with a steepening of the vorticity profile in the vicinity of the entrainment
bubble surface and greater vorticity diffusion into a laminar wake. The skewing of
the vorticity distribution also has a strong effect on the ring translational velocity,
leading us to define an expression for the constant in the classical velocity equation
(2.1) as a series expansion of e.

The simulations have shown that thick-cored laminar rings produce a substantial
wake, owing to the initial adjustment to a non-Gaussian vorticity distribution and
as a result of vorticity detrainment. This has implications for periodic computational
domains, used by Shariff et al. (1994) to establish a viscous correction to the inviscid
growth rate of Widnall & Tsai (1977), as we have shown that the interaction between
the ring and its recycled wake increases the growth rate of the linear instability. We
have presented new revised growth rates from simulations using inflow and outflow
boundary conditions in the axis of ring propagation. By modifying the viscous
correction to use instantaneous values of the ring parameters we find close agreement
for the growth rates of both thin- and thick-core rings.

Visualizing the vortex-ring transition to turbulence has highlighted the importance
of the secondary vortical structure, which develops when the inner core instability
waves are of large enough amplitude. The secondary structure is formed through
tilting and stretching of the outer or ‘halo’ core vorticity. It develops as counter-
rotating neighbouring loops of vorticity that meet one another at saddle points to
form an interwoven mesh around the inner-core region. It was shown, by analysing
Lagrangian pathlines of fluid particles entrained into the vortex ring bubble, that
the secondary structure initiates localized detrainment zones prior to the onset of
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turbulence. The latter stages of transition are marked by the protrusion of the
secondary structure outside the entrainment bubble, causing it to trail behind into
the wake. The neighbouring loops detach and reattach with their neighbour to form
hairpin vortices that are deposited into the wake. The local equilibrium between the
inner core and the halo vorticity is broken and the ring becomes locally turbulent
where the hairpin vortices were ejected. Lagrangian particle analysis of the core
region during the transitional phase has shown the generation of an inner region of
axial flow which moves along the vortex core centreline toward the region of greatest
core stretching. The outer region moves in the opposing direction consistent with the
experimental observations of Naitoh et al. (2002) for naturally evolved rings. The
dominance of the n = 1 mode during transition was found to influence the magnitude
of the axial flow. The structure of the resultant turbulent ring was found to depend
on € with thin-core rings maintaining a core region of organized vorticity. During
the turbulent phase, discrete vortical structure is shed from the ring in the form of
hairpin vortices.
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