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Abstract 

Time series of population density are often used to seek deviations from logistic regulation by 

testing for a non-linear decline in per capita growth rate with density. Here I show that this 

method fails when the interval between observations is not matched by the timing of density 

impacts on growth. Time series overestimate instantaneous density impacts at low density and 

underestimate them at high density. More generally, logistic growth produces a deterministically 

decelerating decline in per capita growth with density if the interval between measures of 

population size exceeds any lag in density response. Deceleration arises independently out of 

stochastic density fluctuations, and under-compensating regulation. These multiple influences 

lead to the conclusion that sequential density estimates provide insufficient information on their 

own to reveal the identity of non-logistic growth processes. They can yield estimates of density 

compensation, however, which may suggest time lags in density dependence. Analysis of an 

empirical time series illustrates the issues. 

Key-words: Beverton-Holt, Pearl-Verhulst, population regulation, theta-logistic, theta-Ricker. 

 

1. Introduction 

The logistic equation provides a simple null model of density dependent population growth, 

against which to define the processes that regulate population size. Per capita growth rate 

declines linearly with population density and is therefore characterized by fewer parameters than 

are required for a curvilinear decline, making it in this sense the simplest density-dependent 

model (Roughgarden, 1979). Deviations from logistic density dependence have frequently been 
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sought from time series of population density by testing for a non-linear decline (e.g., amongst 

many: Diserud and Engen, 2000; Sæther et al., 2000; Sæther et al., 2002; Sibly et al., 2005).   

The approach is attractive because even short time series yield replicate coordinates over 

time t of density Nt and per capita growth r = ln(Nt+1 /Nt), with which to model the form of 

density dependence and strength of density regulation, apparently without need of any life history 

information. Decelerating or accelerating declines are conventionally interpreted as revealing a 

weighting of density impacts towards low or high population density. Figure 1 shows an example 

of a passerine bird with a significantly decelerating decline, from which Sæther et al. (2002) 

inferred a stronger density regulation at low than at high density. Sibly et al. (2005) noted a 

prevalence of such decelerating patterns in time series across taxa, and concluded that many 

animals tend to over-fill their environment, with consequent implications for population 

management. 

In this paper I show that a decelerating decline of r with N is unreliable evidence of non-

logistic growth if based solely on time series data. This is because logistic growth produces a 

deterministically non-linear decline when r is estimated from interval density measures, unless 

the measurement interval matches a lag in density impact. Published tests of logistic growth in 

time series have ignored this potential bias. Moreover, an observed deceleration (or acceleration) 

can arise from various logistic or non-logistic processes that cannot be distinguished in the 

absence of more information than is provided by the time series. I will describe the response of r 

to N for several deterministic models of logistic growth, and variants on logistic growth. These 

alternatives will then be compared in an evaluation of the Great Tit dataset that also incorporates 

stochasticity.  

[FIG. 1 HERE] 



C. P. Doncaster 4/23

2. Models 

2.1. Logistic growth with instantaneous density impact 

Logistic growth in a population of density N subject to continuous birth and death processes is 

modeled deterministically in continuous time by the Pearl-Verhulst differential equation: 
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Its defining characteristic is that the instantaneous per capita growth rate r declines linearly with 

current density N, from an intrinsic rate r0 in a virgin environment at t = 0 to zero growth at the 

population carrying capacity K. Its integral with respect to time describes a sigmoidal increase in 

density from an initial N0 as the population grows monotonically over time towards carrying 
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The logistic change in density over continuous growth is illustrated in Fig. 2, using values of r0 

and K consistent with the Fig.-1 regression on the Great Tit data. The unbroken lines represent 

growth responses to density changes that are spread over a continuum of time, with an 

instantaneous response of net recruitment to density (continuous Eq.  (2)a). The filled dots on 

these lines predict the population increments (or decrements) through time from interval 

measures of continuous growth (recurrence Eq.  (2)b).  

There is no inherent difference in the underlying ecological mechanism between Eqs  (2)a-

b. Both describe populations that grow monotonically to equilibrium K under an instantaneous 
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response to density given by Eq.  (1) (Royama, 1992; but cf Eqs  (10) and  (11) below for 

applications of Eq.  (2)b to metered density responses in discrete growth). 

[FIG. 2 HERE] 

2.2. Logistic growth with metered density impact 

Two alternative models can represent logistic dynamics for populations with seasonal recruitment. 

The discrete-logistic model estimates r from ΔN given by Nt+1 – Nt, expressed per capita. This 

declines linearly with density in a discrete-time approximation to Eq.  (1):  ΔN/Nt = r0(1 – Nt /K). 

The model is considered flawed for ecological applications, however, because it predicts crashes 

to negative density at Nt+1 from any large Nt > (1 + r0)K/r0 (Turchin, 2003). 

The preferred alternative discrete-time approximation to Eq.  (1) for populations with 

more or less seasonal birth and death processes is the Ricker equation (Ricker, 1954): 
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Its linear decline in per capita growth with density assumes a metered density impact, such that 

the effect of density on growth is held over for one time unit. This means there is a lag of one 

time unit either in the growth response to density or the density response to growth (e.g., Brauer 

and Castillo-Chávez, 2001; Turchin, 2003). For the population of Great Tits, net per capita 

recruitment of yearlings into the breeding population at time t+1 may be assumed to depend on 

the number of adults at time t, for example in response to density-dependent fecundity during the 

breeding season. Alternatively, writing Eq.  (3) as rt = ln(Nt+1/Nt) = r0(1 – Nt /K), the same 

dynamics result from assuming that the population density at time t+1 depends on net per capita 

recruitment into the breeding population at current time t, for example in response to the 
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availability of unoccupied nest sites at the start of the breeding season. The metered response 

shows a sigmoidal increase in density over time, at least at low density: 
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Its dynamics are entirely controlled by r0, with monotonic sigmoidal growth for 0 < r0 ≤ 1 (e.g., 

Royama, 1992). Larger values push the population through damped oscillations to oscillations 

between finite limits and on to deterministic chaos (though never to extinction). Figure 2 shows 

the population overshooting and undershooting the equilibrium K in damped oscillations. 

2.3. Quantifying deviations from logistic growth with θ 

Linear Eq.  (1) correctly estimates r as a function of N for a logistic population with instantaneous 

density regulation of continuous growth (cf incorrect estimate by Eqs  (7) below). Deterministic 

deviations from continuous logistic growth are then conveniently captured by parameter θ in the 

generic expansion of Eq.  (1) (Gilpin and Ayala, 1973):  
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with θ < 1 modeling a decelerating decline in r with N, and θ > 1 an accelerating decline. 

Wherever r is estimated from sequential densities, it will have a relation to Nt that 

depends on the time lag in response to density relative to the time period between consecutive 

measurements of density. Ricker Eq.  (3) applies to time series in which the measurement interval 

coincides with a lag in the response to N. In the event of this coincidence, deterministic 

deviations from logistic growth are captured by parameter θ in the generic “θ-Ricker” expansion 

of Eq.  (3) (Thomas et al., 1980):  
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with θ < 1 modeling a decelerating decline in r with N, and θ > 1 an accelerating decline.  

Equation  (6) correctly models deviations from logistic growth only if density dependent impacts 

have a time lag equal to the measurement interval. Yet this model is routinely fitted without any 

knowledge of density metering, in order to seek evidence of non-logistic growth from θ ≠ 1. The 

accepted wisdom is that θ < 1 (decelerating decline of r with N) indicates density dependence 

acting most strongly far below carrying capacity whilst θ > 1 (accelerating decline) indicates the 

density response predominating close to K. 

3. Results 

3.1. Deviations from a linear decline in r with N  caused by measurement interval 

Time series cannot yield an unbiased estimate of r for populations with instantaneous density 

regulation, because its value is influenced by the interval between density measures. For example, 

a perfectly logistic growth in continuous time conforming exactly to Eq.  (1) and modeled by θ = 

1 in Eq.  (5) will yield the following erroneous estimates of r from consecutive density measures 

(from Eq.  (2)b): 
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Here, the per capita growth rate is estimated as a logged ratio (following Sibly et al. 2005 and 

others), in accordance with the discrete exponential model: ( )RrNRN tt lnwhere,1 =⋅=+ . One 

might alternatively consider estimating r from NNΔ , the per capita change in numbers over the 

sample interval, in which case a perfectly logistic growth in continuous time conforming to Eq. 
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 (1) will yield the following erroneous estimate of r from consecutive density measures (also from 

Eq.  (2)b): 
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Clearly, neither Eqs  (7)a nor b are compatible with linear Eq.  (1). In both cases, their 

estimates of r have a decelerating response to N, modeled by θ < 1 in Eq.  (5). In effect, the 

response overestimates the density impact at low densities and underestimates it at densities close 

to, or above, carrying capacity. Figure 3 contrasts the decelerating response of Eq.  (7)a (dashed 

line) to the linear declines given by both differential Eq.  (1) for continuous measurement of 

instantaneous density regulation and by Ricker Eq.  (3) for a metered density response measured 

at the lag interval. The deceleration inherent to Eqs  (7) converges towards linearity if the 

measurement interval reduces towards the continuous-time measurement of Eq.  (1). The 

seriousness of the bias is illustrated in Fig. 4 by a real example of a yeast culture, which shows 

almost perfectly logistic growth over continuous time (Fig. 4a). Even measurements taken at 1-hr 

intervals return a θ substantially less than unity when modeled by Eq.  (6) (Fig. 4b). 

[FIGS 3 AND 4 HERE] 

Likewise, for populations with metered density regulation, time series cannot yield a valid 

estimate of r unless the population is measured at the same lag interval. For example, a logistic 

population described by Ricker Eq.  (3) and modeled by θ = 1 in Eq.  (6) will yield the following 

erroneous estimate of r from consecutive density measures taken at intervals of 2 time units (from 

Eq.  (4), substituting Nt+1 = f(Nt) into Nt+2 = f(Nt+1)): 
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With the measurement interval twice the lag in density response, Eq.  (8) is not compatible with  (3) 

and its estimate of r has a decelerating response to N modeled by θ < 1 in Eq.  (6). Again, the 

response overestimates the density impact at low densities and underestimates it at densities close 

to, or above, carrying capacity. The value of θ from erroneous application of Eq.  (6) will be 

smaller the more that density impacts on the population between measures, and often the timing 

of this impact will be an unknown quantity. Exactly the same principle applies if r is measured as 

ΔN/Nt. 

Any r estimated between census intervals in time series clearly needs to be interpreted 

with respect to the metering of the density response. This caution has been made by other authors, 

notably Royama (1992), Turchin (2003), and Gurney and Nisbet (1998), though not in the 

specific context considered here of testing for evidence of non-logistic growth. The multiplicity 

of papers claiming to find evidence of non-logistic growth from time series indicate that it has not 

been understood in this context. 

3.2. Deviations from a linear decline in r with N  caused by non-logistic processes 

The conventional explanation for deceleration in the decline of r with N is stronger density 

impacts at lower density (i.e., density-dependent density dependence). This is only one of several 

possibilities, however, even if measurement interval is not a contributing factor. 

Time series can contain stochasticity in Nt, K, or r0, caused by measurement error or 

environmental fluctuations (e.g., Wolda, 1989). Deceleration in the decline of r with N arises 

from any sequence in which Nt+1 is independent of Nt. Such a time series will inevitably generate 

an average linear regression for the response of rt+1 = ln(Nt+1) – ln(Nt) to the logged density ln(Nt) 

with the form: 
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( ) ( ) ( ) ( ){ }11 lnaverageln1lnln ++ +×−=− tttt NNNN . (9)  

The regression slope of rt+1 to ln(Nt) thus takes a gradient of -1 with intercept at the within-series 

average{ln(Nt+1)}. The corresponding plot of rt+1 against Nt  therefore has an inherently 

decelerating decline. It follows that the reported predominance of θ < 1 in analyses of time series 

(e.g., Sibly et al. 2005) may be an illusory pattern, consequent only upon regressing variables 

against themselves (Doncaster, 2006; see also Nee et al. 2005). 

 Deceleration in the decline of r with N can also be induced by density under-

compensation. Time series provide evidence of density under-compensation from the negative 

slope of rt+1 regressed against ln(Nt). This response informs on the strength of density dependence, 

because the time-series estimate of rt+1 is itself a linear function of the logged density: rt+1 = 

ln(Nt+1) – ln(Nt). A regression slope γ with magnitude |γ| = 1 defines perfectly compensating 

density dependence, with average Nt+1 remaining constant regardless of Nt. Density over-

compensation is revealed by |γ| > 1, with Nt+1 overshooting the return from Nt towards the 

population mean. Conversely, density under-compensation is revealed by |γ| < 1, with Nt+1 

undershooting the return (detailed in Doncaster, 2006, following Varley and Gradwell, 1970 and 

Lande et al., 2002). The Great Tit time series in Fig. 1 has γ = -0.60, suggesting density under-

compensation. 

Although Eq.  (7)a modeled a biased estimate of r in continuous growth subject to 

instantaneous density dependence, its unlogged expression is the Beverton-Holt difference 

equation for metered density dependence (Beverton and Holt, 1957): 
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where R0 = 0re , the net per capita rate of production before density impacts. Eq.  (10) models the 

density dependence in net per capita production Rt+1 as an inverse proportion to a linear function 

of Nt (e.g., Kot, 2001). It has |γ| below unity and decreasing with lower density, which expresses 

under-compensating density impacts particularly at low density. This contrasts with the metered 

density impacts in Ricker Eq.  (3) which over-compensate as N approaches K if r0 > 1. 

The Beverton-Holt application of Eq.  (7)a has a predicted θ = 0.56 in Fig. 3 (dashed line) 

and therefore less curvature than the empirical θ = 0.44 in Fig. 1. A more strongly decelerating 

decline of r with N is modeled by modifying the denominator of Eq.  (7)a to include a power 

function, b, that controls density compensation for a given r0 and K (Maynard Smith and Slatkin, 

1973): 
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A value of b = 1 returns Beverton-Holt Eq.  (10) (after taking out of logs) with monotonic 

damping in under-compensating density dependence. Smaller values of b increase the damping in 

the monotonic return to K, with an associated increase in curvature of r against N over that shown 

in Fig. 3. Conversely, as b increases above unity, density impacts become over-compensating, 

passing through damped oscillations to stable oscillations, and eventually deterministic chaos. 

The effect on the dashed line in Fig. 3 is to reduce its deceleration, and force an accelerating 

decline at high values of b. 

3.3. Application to the Great Tit time series 

It was noted above that perfectly logistic growth in discrete time is modeled by θ < 1 in  θ-Ricker 

Eq.  (6) if the lag in density response is shorter than the measurement interval (e.g., Eq. (8)). For a 

population with the parameters of the Fig.-1 Great Tit population, however, an instantaneous 
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density response in continuous logistic growth yields θ = 0.56 (Fig. 3 dashed line). This raises the 

possibility that the smaller observed θ = 0.44 may result from stochasticity, or density under-

compensation, or a weighting on density impacts towards low densities, or some combination of 

these non-logistic processes. 

We can use simulations to test the hypothesis that the observed θ is explained by density 

under-compensation as opposed to stochasticity alone in either instantaneous or metered density 

dependence. With this objective, stochasticity was added to the deterministic models by 

calculating Nt+1 from an Nt that had fluctuated on a normal distribution either side of the loge of 

the deterministic value. The normal distribution used the empirical mean ± standard deviation of 

ln(Nt) = 3.46 ± 0.29 to simulate Nt over the empirical t = 35 years. A set of 20 time series were 

created in this way from each of three models: Ricker Eq.  (4) for metered density regulation; 

Beverton-Holt Eq.  (10) for density under-compensation; and Maynard Smith and Slatkin Eq.  (11) 

with strength of density under-compensation estimated from iteratively fitted b.  

Table 1 compares the resulting estimates of γ and θ to those of the empirical time series 

on Great Tits (Fig. 1). Discrete logistic model I retains its deterministic character of density over-

compensation (Fig. 2) despite the stochasticity, and returns fitted θ close to its deterministic value. 

Models II and III in the table simulate density under-compensation, with only Model III close to 

the empirical |γ|. The density under-compensation reduces θ, but again only the Model-III value 

matches closely to the empirical estimate. This match is contingent upon holding r0 as a fixed 

input value when fitting θ by linear regression of r against N θ. If r0 is allowed to vary freely, the 

unconstrained regression intercept results in fitted θ with much smaller values for all models 

caused by the stochasticity (e.g., simulations in Doncaster, 2006), but predicts unrealistically high 

r0 (e.g., Getz and Lloyd-Smith, 2006).  
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The model of density under-compensation provides a qualitatively different interpretation 

to the conventional explanation of θ < 1, that the density dependence decreases with density (e.g. 

in Sæther et al., 2002; Sibly et al., 2005). Density compensation can vary completely 

independently of density-dependent density dependence, as illustrated by θ-Ricker Eq.  (6) where 

r0 controls the former and θ controls the latter. Without information on population growth rates 

obtained independently of the time series, it is not possible to distinguish whether or not the 

density under-compensation is density dependent (i.e., occurs principally at high density). 

4. Discussion 

The analysis has demonstrated how time series data will show a decelerating decline of r with N 

as an expected outcome of several mutually exclusive processes. It arises with continuous logistic 

growth from erroneous estimation of r under instantaneous density impact (Eqs  (7) and Fig. 3), or 

any impact with a shorter lag than the measurement interval (Eq.  (8)); and it is a non-logistic 

density under-compensating response to a metered density impact (Beverton-Holt version of Eq. 

 (2)b and Eq.  (11)), as well as to density-dependent density dependence (Eq.  (6), the conventional 

explanation). It can also arise directly from bounded stochastic variation (Eq.  (9)). 

The multiplicity of processes that can influence the estimated θ lead inescapably to the 

conclusion that it cannot reliably distinguish how individuals interact at different densities, unless 

r is measured directly from vital rates (e.g., Fowler, 1981), or it is measured from sequential 

densities on a population with known r0 and either known lag in response to density, or known 

strength of density compensation. The θ-Ricker model is particularly unsuited to meta-

comparisons of θ across time series of different species, which can vary in all of these influences.  

To reject the null model of logistic growth simply on the basis of an observed 

predominance across taxa of θ < 1 (e.g., Diserud and Engen, 2000; Sibly et al., 2005, 2006) 
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cannot be justified without further analyses of the sort described here for the Great Tit data. 

Although sequential density measures may reveal little about density-dependent density 

dependence, they are unquestionably useful for quantifying the overall strength and timing of 

density regulation, averaged across densities. Analyses of time series by maximum likelihood and 

information theory now have the capacity to evaluate models of competing mechanisms, to 

identify lags in density dependence, and distinguish stochastic processes from measurement error 

(e.g., Dennis and Taper, 1994; Brook and Bradshaw, 2006; Dennis et al., 2006).  
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Table 1 

Outputs from stochastic simulations of models for logistic and near-logistic growth.  

γ  θ 
Model From  

Eq. mean CI  mean CI 

Empirical time-series (Fig. 1)  (6) -0.60 0.29 0.44 0.14

Simulations:      

I. Discrete logistic, metered regulation  (3) -1.34 0.08 1.01 0.06

II. Metered density under-compensation, b = 1.00  (10), (11) -0.79 0.10 0.57 0.07

III. Metered density under-compensation, b = 0.66  (11) -0.58 0.06 0.42 0.04

 

Parameter γ is the least-squares linear regression slope of r against ln(Nt) and it measures density 

under-compensation (|γ| < 1) or over-compensation (|γ| > 1). Parameter θ models the deceleration 

(θ < 1) or acceleration (θ > 1) in the decline of r with N, obtained by iterative linear regression of 

r against N θ with fixed r0 = 1.36. Each pair of means and 95% confidence intervals for models I-

III was obtained from 20 runs of the simulation.
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Figure Legends 

Fig. 1. Empirical relation of per capita population growth to population size given by a 35-year 

time series on Great Tits Parus major from Ghent, Belgium 1964 to 1998 (in Sæther et al., 2002). 

The decelerating regression line is θ-Ricker Eq.  (6), with θ = 0.44 fitted iteratively in linear 

regressions of r against N θ (following Sibly et al., 2005), and constrained to pass from intrinsic r0 

= 1.36 individuals per individual per year through carrying capacity K = 33 individuals at r = 0. 

Sæther et al. (2002) independently estimated r0 from a Leslie matrix of maximum fecundity rate 

and lowest age-specific mortality rate; the value is commensurate with other pre-density 

estimates (e.g., Kluijver, 1951). Fitting Eq.  (6) without this forcing yields higher r0 and lower θ. 

 

Fig. 2. Three models of deterministic logistic growth in population size from above and below a 

carrying capacity of K = 33 individuals, with r0 = 1.36 individuals per individual per year 

(commensurate with the Fig.-1 Great Tit population). Unbroken lines show responses to 

instantaneous density impacts measured continuously (Eq.  (2)a); filled dots joined by dashed 

lines are interval measures of these instantaneous impacts (Eq.  (2)b); open dots joined by dotted 

lines are metered density impacts measured at the lag interval (Ricker Eq.  (4)).  

 

Fig. 3. Logistic declines in per capita growth r with density N (parameters as Fig. 2). Dashed line 

joining filled dots shows deceleration caused by taking interval measures of instantaneous density 

impacts on continuous growth (Eq.  (7)a from  (2)b). Density regulation measured at the point of 

impact is modeled by the unbroken line for an instantaneous impact measured continuously (Eq. 

 (1)), and the open dots for a metered impact measured at the lag interval (Ricker Eq.  (3)). Note 
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that the filled dots also represent the Beverton-Holt model of discrete growth with density under-

compensation (Eq.  (10)). 

 

Fig. 4. Logistic growth of yeast, from time series by Carlson (1913) cited in Pearl (1927). (a) 

Logistic Eq.  (2)a fitted to continuous growth over time, measured at hourly intervals. (b) Per 

capita growth rate as a function of density and sampling interval, with regression lines given by 

θ-Ricker Eq.  (6) as in Fig. 1. Filled circles show sampling interval t = 1 hour with  θ = 0.75 

characterizing the unbroken line of best fit; open circles show t = 2 hours with θ = 0.68 

characterizing the dashed line; open triangles show t = 3 hours with θ = 0.53 characterizing the 

dotted line.
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Figure 1 
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 Figure 2 
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Figure 3 
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Figure 4(a) 
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Figure 4(b) 
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