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ON THE APPLICATION OF FINITE ELEMENT ANALYSIS TO WAVE MOTION 

IN ONE-DIMENSIONAL WAVEGUIDES 
 

by Yoshiyuki Waki 
 

This thesis considers issues concerning the application of the wave finite element (WFE) method to 
the free and forced vibrations of one-dimensional waveguides. A short section of the waveguide is 
modelled using conventional finite element (FE) methods. A periodicity condition is applied and the 
resulting mass and stiffness matrices are post-processed to yield the dispersion relations and so on. 
    First, numerical issues are discussed and methods to reduce the errors are proposed. FE 
discretisation errors and errors due to round-off of inertia terms are described. A method using 
concatenated elements is proposed to reduce those round-off errors. Conditioning of the eigenvalue 
problem is discussed. An application of singular value decomposition is proposed to reduce errors in 
numerically determining eigenvectors together with Zhong’s formulation of the eigenvalue problem. 
Effects of the modelling of the cross-section on conditioning are shown. Three methods for 
numerically determining the group velocity are compared and the power and energy relationship is 
seen to be reliable.  
    The WFE method is then applied to complicated structures and its accuracy evaluated. Dispersion 
curves are shown including purely real, purely imaginary and complex wavenumbers. Free wave 
propagation in a plate strip with free edges, a ring and a cylindrical strip is predicted and the results 
compared with analytical or numerical solutions to the analytical dispersion equations. In particular, 
dispersion curves for freely propagating flexural waves, including attenuating waves, are presented. 
Complicated phenomena such as curve veering, non-zero cut-on phenomena and bifurcations are 
observed as results of wave coupling in the wave domain. A method of decomposition of the power 
is proposed to reduce the size of the system matrices and to investigate the wave characteristics of 
each wave mode. 
    The wave approach is then used to predict the forced response. A well-conditioned formulation for 
determining the amplitudes of directly excited waves is proposed. The forced response is determined 
by considering wave propagation and subsequent reflection at boundaries. Numerical examples of a 
beam, a plate and a cylinder are shown. Inclusion of rapidly decaying waves is discussed. 
     As a practical application, free and forced vibrations of a tyre are analysed. The complicated 
cross-section of a tyre is modelled using a commercial FE package. Frequency dependent material 
properties of rubber are included. Free wave propagation is shown including attenuating waves and 
predicted responses are compared with experiment. Effects of the size of the excited region are 
discussed. 
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Chapter 1 

INTRODUCTION 
 

 

1.1 Introduction 

Analysis of wave propagation in a medium is of great concern for acoustical, electrical, 

electromagnetical and structural engineers. Examples include sound propagation in air, the 

transmission of radio waves, the transmission of seismic tremors in the earth and structure-

borne sound. In particular, analysis of waves in structural waveguides is of concern in this 

thesis. Many structures are uniform in one-direction and can hence be regarded as one-

dimensional waveguides along which mechanical disturbances propagate. Examples of such 

waveguides include a rod, a beam, a plate, a cylinder, a railway track and a tyre. Throughout 

this thesis, waveguides are assumed to be uniform such that the material properties and the 

cross-section geometry are invariant along the axis of the waveguide. 

    Analytical solutions for wave propagation can in general be found only for simple 

waveguides. Consider for example a beam in bending. If the beam is uniform and thin 

enough compared to the wavelength, Euler-Bernoulli theory can be used: the plane of the 

cross-section is assumed to remain plane and perpendicular to the neutral axis during 

bending, e.g. [1,2]. The equation of motion is given by a relatively simple partial differential 

equation for the Euler-Bernoulli beam and the analytical solution can be obtained for time- 

and space-harmonic motion. However the assumption breaks down at high frequencies 

where the wavelength becomes comparable to the thickness. The dynamics of the beam 

might then be described by Rayleigh theory [1] which includes rotary inertia, or Timoshenko 

theory [1] which includes both rotary inertia and shear deformation. Alternatively, the beam 

might be composed of various layers such as a sandwich beam. For a sandwich beam, the 

equation of motion and associated analytical solution may be approximately found by 

modelling the sandwich beam as an equivalent Timoshenko beam. The distributions of the 

displacements and stresses across the cross-section may be more accurately expressed using 

the first order shear deformation theory or higher order theories [3,4]. However, the 

equations of motion and analytical solutions become far more complicated. It should be 
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noted that analytical solutions involve assumptions and the model might become 

complicated in various circumstances, especially when the construction of the structure 

becomes complicated or at high frequencies.  

    For two-dimensional waveguides analytical solutions are available only for specific cases 

such as an isotropic thin plate with simply-supported boundary conditions in which the 

displacement can be decomposed into harmonic components, e.g. [1]. Analytical dispersion 

equations may be transcendental for general waveguides such as a plate strip with free edges. 

Solutions to the transcendental analytical equation need to be found numerically and the 

exact solutions cannot be obtained. The similar discussion holds for other analytical methods 

such as the dynamic stiffness method [5] or the transfer matrix method [6].  

    In summary, therefore, the analytical solutions may involve approximations of unknown 

validity and they may be difficult or impossible to obtain for general waveguides with 

arbitrary complicated cross-sections and boundary conditions. Examples include a railway 

track and a tyre for both of which the geometry is complicated. To investigate the dynamics 

of general waveguides numerical methods have been proposed, such as the spectral finite 

element method [7] and the wave finite element (WFE) method [8,9].  

    The present work concerns the WFE method. A small section of the waveguide is 

modelled using finite element analysis (FEA). This yields the mass, damping and stiffness 

matrices, which are subsequently post-processed in conjunction with a periodicity condition 

to form the eigenvalue problem. The eigenvalues and eigenvectors represent the free wave 

propagation characteristics. Since the existing element libraries and commercial finite 

element (FE) packages can be utilised to model complicated structures, the WFE method is a 

powerful tool to investigate the dynamics of such structures.  

    The objectives of the present work are to extend the WFE method for the prediction of 

vibrational behaviour of structures in terms of wave motion. In particular it concerns the 

applications to one-dimensional waveguide structures with arbitrary complexities in the 

cross-section or complicated dispersion characteristics. The particular contributions concern 

numerical issues, the forced response and various applications including the forced response 

of an automotive tyre. 

    First, there are numerical issues concerning the predicted results due to FE approximations, 

ill-conditioning and so on, e.g. [8-10]. Numerical issues are therefore discussed in detail and 

methods are proposed to reduce the errors occurring in the WFE results. Formulations to 

calculate both free wave propagation and forced response are then described so that the WFE 
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method can be applied to any one-dimensional waveguides with arbitrary complexities in 

their cross-sections. Applications to a plate strip and an automotive tyre are presented. In the 

latter, frequency dependent material properties are involved and predictions are compared 

with experiment. 

    In the remainder of this chapter existing methods are reviewed and the WFE method is 

described in detail. The contents and original contributions of this thesis are then described. 

 

 

1.2 Review of Analysis Methods for Dynamics of Waveguides 

In this section analysis methods for the dynamics of waveguides are reviewed. In subsection 

1.2.1 the classical analytical approach is first described. The analytical solutions are found 

from the analytical equation of motion. The general wave approach is also reviewed to give 

wave motion in general waveguides. Other analytical methods such as the dynamic stiffness 

method and the transfer matrix method are reviewed in subsection 1.2.2. However, such 

analytical approaches are in general applicable only to simple waveguides. Numerical 

methods such as the spectral finite element method and the WFE method are then needed to 

investigate waves in general waveguides. These numerical methods are described in 

subsection 1.2.3.  

 

1.2.1 Analytical Method (Wave Approach) 

In this subsection the classical analytical method for determining wave motion in structural 

waveguides is reviewed. Analytical determinations for free wave propagation, reflection and 

transmission, and forced response are described. The general wave approach is reviewed in 

which wave propagation, reflection and transmission are considered.  

 

Free Wave Propagation 

Simple waveguides, e.g. a rod and a beam, are amenable to exact analysis. For such 

waveguides the analytical solutions are available for the wavenumber, the group velocity, 

etc., e.g. [1]. As an example, for a thin beam where the Euler-Bernoulli theory holds, the 

governing equation for free vibration is given in form, e.g. [1], 
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∂ ∂
 (1.1) 

 

where w  is the translational displacement, x  is the direction along the axis of the beam, t  is 

time and C  is the constant given from its material properties and geometry of the cross-

section.  Assuming time- and space-harmonic motion, the displacement is written as 

 

 jkx j tw ae e ω−=  (1.2)   

 

where k  is the wavenumber, ω  is the angular frequency, a  is a wave amplitude and 

1j = − . Substituting the displacement (1.2) into the governing equation gives the analytical 

dispersion equation of the beam as 

 

 4 2k Cω= . (1.3) 

 

The beam holds four freely propagating waves with their wavenumbers being 24k Cω= ± , 

24j Cω± . The first two wavenumbers describe propagating waves and the latter two are 

nearfield waves. The positive real and negative imaginary wavenumbers are associated with 

the positive-going waves so that the waves propagate in the positive direction of the beam 

and the other wavenumbers are associated with the negative-going waves. Once the 

dispersion equation, e.g. equation (1.3), is obtained, the phase velocity kω  and the group 

velocity kω∂ ∂  can be calculated. The same approach can be used to waveguides where the 

analytical equations of motion are available. 

 

Reflection and Transmission  

When waves propagate along a waveguide, the waves might impinge on such as a boundary, 

a discontinuity and so on. The incident waves will reflect at boundaries and may reflect and 

transmit at discontinuities, e.g. [1,2,11]. 

    Consider a case when a propagating wave in the beam impinges on a boundary. The 

displacement at the boundary can be expressed as 
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 ( )jkx jkx kx j t
i rP rNw a e a e a e e ω−= + +  (1.4) 

 

where ia , rPa , rNa  are the amplitudes of the incident, reflected propagating and reflected 

nearfield waves, respectively. Depending on the boundary condition, a combination of 

displacements and forces is given at the boundary such that the reflection coefficients, 

rP ia a  and rN ia a , can be calculated. For a free boundary condition for the beam, for 

example, the reflection coefficients are given by rP ia a j= −  and 1rN ia a j= −  [1]. The 

complex values of the coefficient indicate that phase shifts occur in the reflected waves 

relative to the incident wave. In this case both propagating and nearfield waves are generated 

for one incident propagating wave such that wave mode conversion occurs. Knowledge of 

the phase change at boundaries enables one to determine the natural frequencies of a finite 

waveguide. When the total phase change of the propagating wave along the waveguide 

satisfies certain condition, system motion intensifies. Such an approach is termed as the 

phase closure principle [3] or phase coincidence [12]. 

    When a wave impinges on a discontinuity such as a point mass, both reflected and 

transmitted waves may be generated. The continuity of displacement at the discontinuity and 

force equilibrium at the discontinuity give the reflection coefficients and transmission 

coefficients [1,2,11]. For the beam the propagating and nearfield waves may be generated for 

both the reflected and transmitted waves such that four waves in total can be generated. The 

reflection and transmission coefficients are frequency dependent in general.   

 

Forced Response 

When an excitation is applied to a waveguide, waves are generated and start propagating. 

The amplitudes of directly excited waves can be determined for an infinite waveguide by 

considering continuity of displacement and force equilibrium in conjunction with the applied 

excitation. Some examples of the amplitudes of directly excited waves in infinite and semi-

infinite one-dimensional waveguides are tabulated in [13] for point force and moment 

excitation. Forced response can then be calculated using the general wave approach 

considering the free wave propagation and subsequent reflection and transmission, e.g. [14].  
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General Wave Approach 

The approach described above can be applied to other cases where the equation of motion 

can be analytically expressed. The examples include the Timoshenko beam, a beam 

subjected to in-plane tension and on an elastic foundation, a general rod, a ring and plates, 

e.g. [1]. For waveguides in which there are many wave modes, wave motion is conveniently 

expressed in matrix form. Formulation for the dynamic behaviour of waveguides using the 

wave approach is well-conditioned. This is important for general waveguides for which 

numerical issues are likely to occur. 

    Several works about the general wave approach are reviewed here. Mace [14] studied the 

vibrational behaviour of a beam based on propagation, reflection and transmission of waves 

including the flexural nearfield waves. Inclusion of nearfield waves is particularly important 

when the local behaviour around a discontinuity or an excitation is of concern and when two 

nearfield waves propagate in opposite directions, since they can carry power [15,16]. The 

amplitudes of the waves and the excitation are expressed in vector forms and wave 

propagation, reflection and transmission are described in matrix forms. Consequences of 

reciprocity were shown for the reflection coefficient matrix [17] and the transmission 

coefficient matrix [18] including nearfield waves. 

    Many applications of the wave approach can be found in the literature. Miller and Von 

Flotow [15] used the wave approach to investigate the power in an assemblage of one-

dimensional members. The coupling power between two end-coupled beams was presented 

by Mace [19] and that between two plates was shown by Wester and Mace [20]. Lee et al 

[21] analysed the power reflection and transmission for two beams connected with a U-shape 

beam. Yong and Lin [22] used the wave approach to calculate the forced response of a 

periodically supported beam. Harland et al [23] demonstrated the systematic implementation 

of the wave approach for arbitrary waveguides and considered in detail the cases of a 

sandwich beam, jointed beams and a beam with a local discontinuity.  

    In this thesis, the wave approach is used to give the forced response of general 

complicated waveguides. The approach used in this thesis is in particular close to the work 

done by Harland et al [23].   
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1.2.2 Other Analytical Methods 

To investigate the dynamics of waveguides some other methods have been proposed, e.g. 

[24]. In this subsection some of these other analytical methods are reviewed. They include 

the dynamic stiffness method, the transfer matrix method, the receptance method and the 

spectral element method. 

 

Dynamic Stiffness Method: 

The dynamic stiffness method [5] is sometimes termed the dynamic stiffness matrix method 

[25] or the dynamic element method [26]. A section of a structure is modelled by the 

analytical relationships between displacements and forces applied at the ends or edges of the 

section. The equation of motion for time-harmonic behaviour is expressed as 

 

 LL LR L L

RL RR R R

⎡ ⎤ ⎡ ⎤ ⎡ ⎤
=⎢ ⎥ ⎢ ⎥ ⎢ ⎥

⎣ ⎦ ⎣ ⎦ ⎣ ⎦

D D q f
D D q f

 (1.5) 

 

where D  is the dynamic stiffness matrix, the subscripts L and R represent the left and right 

hands of the section, q  and f  are the displacement and force vectors respectively. The 

matrix D  is given in the frequency domain and its elements are frequency dependent.  

    Some applications can be seen in literature. Langley [27] analysed power in a beam and a 

truss structure. Lee and Thompson [28] applied the method to helical springs. A series of 

works by Banerjee present the dynamic stiffness matrix for various one-dimensional 

waveguides, e.g. [29,30]. Langley [31,32] applied the method to investigate free and forced 

vibrations of the two-dimensional structures but only for simply-supported edges where the 

displacement along one-dimension can be decomposed into harmonic components.  

    The dynamic stiffness matrix can be expanded into a power series in terms of ω  [26] such 

that 

 

 ( ) ( )2

0

i
i

i
ω ω

∞

=

=∑D D . (1.6) 
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The resulting matrices ( )2i
i ωD  can be regarded as the consistent stiffness matrix (i=0), the 

consistent mass matrix (i=1) and higher order correction terms ( )2i ≥ .  

 

Transfer Matrix Method: 

The transfer matrix method [6], or Holzer’s method [33], describes the change of wave 

modes, or the state vector, at two different locations (cross-sections) along the waveguide. 

The equation of motion of the waveguide are in general expressed as 

 

 11 12

21 22

L R

L R

⎡ ⎤ ⎡ ⎤ ⎡ ⎤
=⎢ ⎥ ⎢ ⎥ ⎢ ⎥

⎣ ⎦ ⎣ ⎦ ⎣ ⎦

T T q q
T T f f

. (1.7) 

 

The analytical derivation of the transfer matrix T  is summarised in [6]. Extensive examples 

for series of spring/mass and one-dimensional waveguides can be found in [6].  

    Applications to one-dimensional periodic structures and continuous waveguides joined 

together were studied by Lin and Donaldson [34]. The response to a point force is also 

considered in [34]. Lin and Yang considered free vibration of a disordered periodic beam 

[35]. It should be noted that the transfer matrix method can suffer from numerical ill-

conditioning when solutions are to be found numerically [24,34].  

 

Receptance Method: 

Mead et al developed the receptance method mainly to analyse waves in periodic structures, 

e.g. [3,36]. The method starts from the equation of motion using the receptance matrix, i.e. 

reciprocal of the dynamic stiffness matrix, formed in the same manner as equation (1.5). A 

periodicity condition [37] 

 

 
,R L

R L

λ
λ
=
=

q q
f f

 (1.8) 

 

is then applied to the equation motion to give the polynomial eigenvalue problem in the form, 

e.g. [3], 

 

 ( ) ( ) ( )( ) ( )2
LR LL RR RL Lλ ω λ ω ω ω⎡ ⎤− + + =⎣ ⎦α α α α f 0  (1.9) 
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where α  is the receptance matrix. The values of λ  may be calculated for each given ω  and 

indicate how waves propagate or decay at a particular frequency. 

    An application to a beam with periodic supports can be seen in [36] and also [38] where 

effects of the damping are considered. Waves in periodic structures are considered for mono-

coupled systems in [39] and for multi-coupled systems in [40] where the complex conjugate 

wavenumbers are described. Effects of a point discontinuity on waves in periodic structures 

were considered in [41] and the response to convected loadings was reported in [42]. 

Coupling of the in-plane and flexural waves in a layered beam is described in [43]. The 

receptance matrix may be formed using FEA [44,45] but details are omitted here. 

 

Spectral Element Method: 

The spectral element method starts from writing the displacement along the uniform (x-) 

direction in the form of equation (1.2). Substituting the displacements (1.2) into the 

analytical governing equations gives the relationships between displacements and forces at a 

location. The spectral element for a segment of the waveguide between two nodes then 

follows. The spectral element can also be defined for a section of a waveguide extending to 

infinity. Such a semi-infinite spectral element is termed as a single-noded or throw-off 

element in [11]. Doyle [11] summarised the method and showed applications to simple 

waveguides.  

 

1.2.3 Numerical Methods 

Various analytical methods have been reviewed in subsections 1.2.1 and 1.2.2. The methods, 

however, require that the equation of motion of the waveguide is known and can be solved 

analytically. General complicated waveguides are not amenable to analytical solutions such 

that numerical methods have been then proposed, e.g. the spectral finite element method and 

the WFE method. These numerical methods are reviewed in this subsection.   

 

Finite Element Method (FEM): 

Although the finite element method (FEM), e.g. [46,47], does not directly provide wave 

properties of a waveguide, the method is briefly reviewed here. The FEM may be most 

commonly used to model the dynamic behaviour of structures, especially for geometrically 

complicated structures. Systems are discretised using finite elements (FEs). The shape 
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functions are defined to describe the motion of the system. These are in general low-order 

polynomials, e.g. [46,47]. Higher order shape functions such as p-elements, e.g. [47], may be 

defined. The system motion is then described in the time domain in terms of a discrete 

number of nodal degrees of freedom (DOFs) such that 

 

 ( )t+ + =Kq Cq Mq f& &&  (1.10) 

 

where K , C , M  are the stiffness, damping and mass matrices and q&  is the derivative of q  

with respect to time. Since the size of elements should be small enough, e.g. [46], the size of 

the FE model, and hence the calculation cost, is larger at higher frequencies.  

 

Spectral Finite Element method: 

To analyse wave motion in general waveguides, the most common approach is perhaps the 

spectral finite element method, e.g. [11,48], or sometimes termed the waveguide finite 

element method [7]. Displacements are separately expressed in the direction of wave 

propagation, x,  and over the cross-section, (y, z) such that [7,11,48] 

 

 ( ) ( ), , , , jkx j tw x y z t a y z e e ωϑ −=  (1.11) 

 

where ( ),y zϑ  is in general defined using polynomial shape functions. The displacement 

(1.11) is substituted into the equation of motion such that so-called spectral (finite) elements 

or waveguide elements [7] are formed. The equation of motion is then projected into the 

wave domain [7,11,48] 

 

 ( ) 2i
i

i

jk ω⎡ ⎤− − =⎢ ⎥⎣ ⎦
∑ K M q f  (1.12) 

 

where K  and M  are the spectral matrices and i is an integer. The solutions may be found 

for given k  to give real ω  for the standard eigenvalue problem. Alternatively, solutions of 

k  might be found for given real ω  solving the polynomial eigenvalue problem. 

    Many applications can be found in the literature. Gavric [49] analysed waves in a thin 

structure and showed an implementation to improve ill-conditioning occurring around cut-
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off frequencies. Finnveden [48] also applied the method to analyse wave motion in a thin 

wall structure and the results were used as input parameters to a statistical energy analysis 

model [50]. The spectral finite element method was also applied to laminated composite 

plates by Datta et al [51] and viscoelastic laminates by Shorter [52]. Extensive works were 

reported by Nilsson [7] where the spectral finite element method is applied to a thin wall 

structures, a fluid-filled pipe and a tyre. 

    However, a drawback of the spectral finite element method is the fact that the method 

needs appropriate spectral elements to be derived on demand for general waveguides, which 

is not an insignificant task.  

 

Wave Finite Element (WFE) Method: 

The WFE method is an alternative to investigate wave motion in general complicated 

waveguides. The method starts from modelling a short section of a waveguide using 

conventional FEs such that the equation of motion is given in terms of a discrete finite 

number of DOFs, as in equation (1.10). For time-harmonic motion equation (1.10) gives the 

same form as the dynamic stiffness method, i.e. equation (1.5). The transfer matrix (1.7) can 

be formed using elements of the dynamic stiffness matrix and applying a periodicity 

condition (1.8) to the equation (1.7) gives the eigenvalue problem.  

    The eigenvalues and eigenvectors represent the free wave propagation characteristics such 

as the wavenumbers and wave modes. This thesis concerns the WFE method and the method 

is specifically reviewed in detail in the next section. 

 

 

1.3 Wave Finite Element Method 
In this section, the WFE method, e.g. [8,9], is reviewed in detail. The method starts from an 

FE model of only a short section of the waveguide. The method involves forming the 

dynamic stiffness matrix using the conventional mass and stiffness matrices of the short 

section of the waveguide, post-processing the dynamic stiffness matrix to formulate the 

transfer matrix, and hence the eigenvalue problem, in conjunction with a periodicity 

condition. Since FEA can be used for the modelling of a cross-section, existing element 

libraries and commercial FE packages can be fully utilised. Since the method needs only a 

short section of the waveguide to be modelled, computational cost is cheap. Computational 
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efficiency is described in [53] where the method is termed the scale independent element 

method. 

 

1.3.1 Analysis of Waves using Finite Elements for Periodic Structures 

The WFE method grew out of research concerning FEA of periodic structures done by Orris 

and Petyt [44,45]. They used the finite elements to model periodic structures and applied the 

receptance method proposed by Mead, e.g. [3,36]. Extensive work has been done by Abdel-

Rahmen [54]. Free wave propagation in one-, two- and three-dimensions was analysed for 

periodic structures using an FE model of a single periodic section. A periodicity condition 

was applied to the equation of motion formed from the FE model and the eigenvalue 

problem was formulated. Free wave propagation characteristics were determined from 

solutions to the eigenvalue problem. Forced responses to convected random pressure field 

excitation were considered. 

    The similar approach was applied to predict free wave propagation in truss beam 

structures by Signorelli and Von Flotow [55] where the complex wave modes are described. 

Accorsi and Bennett [56] analysed free wave propagation in a stiffened cylinder and Bennett 

and Accorsi investigated effects of the curvature along the axis of the cylinder [57].  

 

1.3.2 Free Wave Propagation 

Perhaps the first application to continuous structures was the work of Thompson [58] 

concerning railway tracks. For simple waveguides, Mace et al [8] showed free wave 

propagation in a rod, a beam and a plate strip with simply-supported edges using the WFE 

method. They also presented the free wave propagation in a layered sandwich beam.  

    Applications of the WFE method to more complicated waveguides are reviewed. Houillon 

et al [59] analysed free wave propagation in thin-walled structures in which an approach of 

evaluating the same wave modes at two different discretised frequencies is proposed. The 

approach is implicitly used throughout this thesis. Thompson [58] analysed the free wave 

propagation in a railway track. Thompson formulated the eigenvalue problem exploiting the 

symmetric nature of the waveguide. Gry [60] also analysed the dynamic behaviour of a 

railway track using a similar methodology to the WFE method. Mencik and Ichchou [61] 

investigated free wave propagation in a fluid-filled pipe considering acoustical-structural 

coupling. They also predicted the coupling power between two different waveguides using 
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the WFE method [62]. Free wave propagation in a fluid-filled pipe was also presented by 

Maess et al [63]. They formulated an eigenvalue problem using elements of the transfer 

matrix and numerical solutions were found with initial estimates. The WFE method was 

extended to analyse free wave propagation in two-dimensional waveguides by Manconi and 

Mace [64,65]. 

 

1.3.3 Forced Response 

Forced response is of interest when an excitation is applied to a waveguide. Only a few 

papers describe the forced response using the WFE method. Duhamel et al [9] presented the 

formulation for calculating the forced response using a recurrence relationship. Thompson 

[58] calculated the forced response based on the receptance approach for the railway track. A 

similar, but different approach was used to analyse the forced response of a railway track by 

Gry [60]. However, all the approaches have ill-conditioning problems for general 

waveguides in which there are many wave modes. 

 

1.3.4 Numerical Issues 

In predictions using the WFE method various numerical issues occur. However, only a few 

papers describe such numerical issues. Several papers describe the ill-conditioning of the 

eigenvalue problem using the transfer matrix and reformulate the eigenvalue problem in a 

different form. A novel formulation for improving the conditioning of the eigenvalue 

problem was proposed using the symplectic relationship of the transfer matrix by Zhong and 

Williams [66]. Several papers used the method, called Zhong’s method in this thesis, to 

improve the conditioning [8,60,62,67,68].  

    Since the WFE method starts from the FE model of a section of a waveguide, FE 

discretisation errors occur. Duhamel et al [67] and Mace et al [8] demonstrated FE 

discretisation errors occurring in the WFE method. The aliasing effect due to the 

discretisation and the spatial periodicity was reported by Ichchou et al [10].  

    However, such numerical issues have not been reported in detail. In this thesis, numerical 

issues are discussed in detail and methods are proposed to reduce numerical errors. 
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1.4 Outline of the Thesis 

The thesis is outlined in this section. This thesis concerns formulation of the WFE method 

and its application to free wave propagation and the forced response of waveguides of 

arbitrary complexity in their cross-sections. Causes of numerical errors in the predicted 

results using the WFE method are investigated and methods for reducing errors are proposed. 

Applications of the WFE method to complicated structures are then presented. The forced 

response is calculated using the wave approach with well-conditioned formulations and 

numerical examples are shown. Free and forced vibrations of a tyre are then predicted and 

the predicted forced response is compared with experiment. Throughout this thesis, ANSYS 

7.1 [69] is used to model sections of waveguides. All the subsequent calculations were 

performed using MATLABTM 7.0.4. 

    In chapter 1 the introduction is given and relevant literature is reviewed. The thesis is 

outlined and contributions of this thesis are then described. 

    In chapter 2, formulations of the WFE method are introduced. Numerical errors occurring 

in the WFE results are discussed. FE discretisation error and error due to round-off of inertia 

terms are described with particular reference to the example of an Euler-Bernoulli beam. A 

method of concatenating elements is proposed to reduce the round-off of inertia terms. 

Approximate expressions for the dynamic condensation of DOFs associated with internal 

nodes are derived to reduce calculation cost. Errors occurring in numerically solving the 

eigenvalue problem are also described. Zhong’s method is used for improving the 

conditioning of the eigenvalue problem. An application of singular value decomposition 

(SVD) is proposed to reduce errors in numerically determining eigenvectors. An illustrative 

example of free wave propagation in a plate strip with simply-supported edges is shown 

considering numerical issues. Effects of how the cross-section is modelled are investigated. 

Methods of predicting the group velocity are described and use of the power and energy 

relationship is shown to be reliable. 

    In chapter 3, applications of the WFE method to more complicated waveguides are shown. 

Dispersion curves are shown including purely real, purely imaginary and complex 

wavenumbers. Freely propagating in-plane and flexural waves in a plate strip with free edges 

are presented. Analytical dispersion equations are numerically solved using the WFE results 

as initial estimates. Decomposition of power is proposed to reduce the size of matrices by 

retaining only important DOFs. Free wave propagation in a ring and a cylindrical strip are 

also shown where waves, e.g. longitudinal and flexural waves, couple due to the curvature. 
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Complicated wave behaviour is seen. Curve veering between two different purely real or two 

different imaginary wavenumbers is observed. Non-zero cut-on phenomena are observed 

where complex conjugate wavenumbers become purely real non-zero wavenumbers. Waves 

for which the directions of the phase and group velocities are of opposite signs are seen. 

Bifurcations from complex conjugate to two different purely imaginary wavenumbers or two 

imaginary to complex conjugate wavenumbers are observed. Decomposition of power is 

used to investigate characteristics of each wave mode in a cylindrical strip.   

    In chapter 4, formulations of forced response calculation are described. A well-

conditioned formulation for numerically determining the amplitudes of directly excited 

waves is proposed using the orthogonality relationship between the left and right 

eigenvectors. Wave amplitudes are calculated considering wave propagation and subsequent 

reflection at boundaries. The response is then determined by superimposing the wave 

amplitudes at the response point. The formulations to determine responses are explicitly 

described. Forced responses of a beam, a plate and a cylinder are shown. Inclusion of rapidly 

decaying nearfield waves is discussed.   

    In chapter 5, the WFE method is used to predict free and forced vibrations of a tyre as an 

example of a practical application. Frequency dependent material properties of rubber are 

included. Free wave propagation is shown including attenuating waves for the tyre with and 

without internal pressure. Results of the forced response are compared with experiment. 

Effects of the size of the region of excitation are described. This strongly affects the power 

injected into wave modes, especially at high frequencies, and contribution of the finite shear 

stiffness to the response.  

    In chapter 6, some conclusions are drawn. Possible further work is suggested. 

 

 

1.5 Contributions of this Thesis 

The original contributions of this thesis are as follows. 

 

• Causes of numerical errors are critically discussed. For simple waveguides, there are 

mainly two causes: FE discretisation error and error due to round-off of inertia terms. 

A method using concatenating elements is proposed to reduce the round-off of inertia 
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terms. Approximate expressions for dynamic condensation of DOFs associated with 

internal nodes are derived [70].  

 

• Numerical issues remain even when Zhong’s method is used to reformulate the 

eigenvalue problem. An application of SVD is proposed to reduce errors in 

numerically determining eigenvectors [70,71].  

 

• Three methods for predicting the group velocity are described and relative errors in 

the group velocity compared. Use of the power and energy relationship is then shown 

to be reliable [70,71]. 

 

• Freely propagating flexural waves are predicted including attenuating waves and 

results are compared with numerical solutions to the analytical dispersion equation. 

Bifurcations from the complex conjugate to purely imaginary wavenumbers and from 

purely imaginary to complex conjugate wavenumbers are observed [72].  

 

• Decomposition of the power is proposed. The approach can be used for determining 

the DOFs to be condensed or to be removed. Such manipulation can improve the 

conditioning due to the smaller size of matrices. The approach is also applied to 

investigate wave characteristics of each wave mode.  

 

• The wave approach is applied to calculate forced response. A well-conditioned 

formulation for determining the amplitudes of directly excited waves is proposed 

using the orthogonality relationship between the left and right eigenvectors [73,74].  

 

• The WFE method is applied to predict free and forced vibrations of a tyre as a 

practical application [73,74]. Frequency dependent material properties of rubber are 

included. Predictions are compared with experiment. 
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Chapter 2 

 FREE WAVE PROPAGATION 
 

 

2.1 Introduction 

Many waveguides are uniform in one-direction while their cross-sections may have a 

complicated construction. The dynamic properties of such waveguides can be expressed in 

terms of wave properties such as the wavenumbers and wave modes. In this chapter, the 

theory and formulations of the WFE method are introduced to predict their wave properties. 

Only a short section of a waveguide is modelled using a conventional FEA. A complicated 

cross-section can be straightforwardly modelled using existing FE libraries and FE 

commercial packages. The dynamic stiffness matrix of a short section of a waveguide is 

obtained and the matrix rearranged and partitioned to form the transfer matrix. The free 

wave propagation characteristic may be obtained from the transfer matrix by applying a 

periodicity condition [37].  

    In this chapter, various numerical issues involved in obtaining accurate results using the 

WFE method are discussed. Causes of numerical errors are investigated and implementations 

of the WFE method to reduce these errors are proposed. The discussions include a method 

using concatenating elements and conditioning of the eigenvalue problem to reduce 

numerical errors. The group velocity is numerically estimated in three ways and the accuracy 

is investigated. Some outcomes shown in this chapter have been presented in [70,71]. 

 

 

2.2 Transfer Matrix 

In this section, the basis of the WFE method is described. The dynamic stiffness matrix of 

only a short section of a waveguide is first formed and the matrix post-processed. The 

transfer matrix is formed using the elements of the dynamic stiffness matrix and the 

eigenvalue problem is then formulated applying a periodicity condition. The eigenvalues and 
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eigenvectors of the eigenvalue problem represent phase or magnitude changes of waves over 

the section and associated wave modes respectively.  

 

2.2.1 Dynamic Stiffness Matrix of a Section of a Waveguide 

Consider a short of section of length Δ  of a uniform waveguide as shown in Figure 2.1. The 

equation of motion of the section can be written as 

 

 =Dq f  (2.1) 

where 

 2jω ω= + −D K C M  (2.2) 

 

is the dynamic stiffness matrix, q  is the nodal displacement vector, f  is the vector of nodal 

forces, K , C , M  are the stiffness, damping and mass matrices (termed the element 

matrices), which may be formed using a commercial FE package, 1j = −  and ω  is angular 

frequency. Time harmonic motion j te ω  is implicit throughout this thesis and suppressed for 

brevity. Equation (2.1) can be expressed in matrix form as 

 

 LL LR L L

RL RR R R

⎡ ⎤ ⎡ ⎤ ⎡ ⎤
=⎢ ⎥ ⎢ ⎥ ⎢ ⎥

⎣ ⎦ ⎣ ⎦ ⎣ ⎦

D D q f
D D q f

 (2.3) 

 

where the subscripts L  and R  represent the left and right hand side of the section. The WFE 

method starts from equation (2.3) and the eigenvalue problem is formulated using the 

elements of equation (2.3). For uniform waveguides, the following relationships hold: 

 

 T T T, ,LL LL RR RR LR RL= = =D D D D D D  (2.4) 

and 

 ,RRij LLij RLij LRijD D D D= ± = ±  (2.5) 

 

where T⋅  indicates the transpose and the signs in equations (2.5) depend on whether the 

degrees of freedom (DOFs) at the element interface are symmetric or anti-symmetric for the 

( ),i j  element [46,58]. 
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    If the section has internal nodes as shown in Figure 2.2, the associated DOFs can be 

condensed. When no external force is applied to the internal nodes the equation of motion 

may be expressed as 

 

 E EEE EI

IIE II

⎡ ⎤ ⎡ ⎤ ⎡ ⎤
=⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎣ ⎦⎣ ⎦⎣ ⎦

q fD D
q 0D D

% %

% %
 (2.6) 

where 

 , , , ,L LLL LR LI
EE EI IE IL IR E E

R RRL RR RI

⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎡ ⎤= = = = =⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎣ ⎦ ⎣ ⎦

q fD D D
D D D D D q f

q fD D D

% % %
% % % % %

% % %
 (2.7) 

 

and the superscript 
~
⋅  denotes that the section has internal nodes and is not condensed. The 

subscript E or I represents that DOFs are associated with edge nodes or internal nodes of the 

section. The DOFs associated with the internal nodes can be condensed as [75] 

 

 T
E E=R DRq f% % %  (2.8) 

where 

 1
II IE
−

⎡ ⎤
= ⎢ ⎥−⎣ ⎦

I
R

D D
%

% %  (2.9) 

 

and I  is the identity matrix. The matrix R%  transforms the original basis into the condensed 

basis. Expanding equation (2.8) gives 

 

 1
EE EI II IE E E

−⎡ ⎤− =⎣ ⎦D D D D q f% % % % . (2.10) 

 

Equation (2.8) can similarly be used to condense the element matrices by expanding 
2ω= −D K M% % %  [75]. It should be noted that the dynamically condensed element matrices 

become frequency dependent. 

    When the section has internal nodes, the DOFs associated with the internal nodes are 

always condensed and the resulting equation has the form of equation (2.3). 
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2.2.2 Transfer Matrix 

Consider a series of sections of the waveguide as shown in Figure 2.3. The continuity of 

displacement and force equilibrium of adjacent sections read 

 

 
( 1) ( )

( 1) ( )

n n
L R
n n

L R

+

+

⎡ ⎤ ⎡ ⎤
=⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎣ ⎦

q q
f f

. (2.11) 

 

For each section the transfer matrix can be defined as [37] 

 

 
( ) ( 1)

( ) ( 1)

n n
L L
n n

L L

+

+

⎡ ⎤ ⎡ ⎤
=⎢ ⎥ ⎢ ⎥

⎣ ⎦ ⎣ ⎦

q q
T

f f
. (2.12) 

 

    A periodicity condition [37] represents a relationship of displacements and forces over the 

section such that  

 

 
( 1) ( )

( 1) ( )

n n

n n
λ

+

+

⎡ ⎤ ⎡ ⎤
=⎢ ⎥ ⎢ ⎥

⎣ ⎦ ⎣ ⎦

q q
f f

 (2.13) 

 

and λ  describes the amplitude and phase change over a section. Free wave motion over any 

section of length Δ  is therefore described in the form of an eigenvalue problem such that 

 

 λ
⎡ ⎤ ⎡ ⎤

=⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦

q q
T

f f
.  (2.14) 

 

The transfer matrix T is formed using the elements of the dynamic stiffness matrix (2.3). The 

first row of equation (2.3) can be written as 

 

 1 1
R LR LL L LR L

− −= − +q D D q D f  (2.15) 

 

and the second row of equation (2.3) gives 
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 ( )1 1
R RL RR LR LL L RR LR L

− −= − +f D D D D q D D f . (2.16) 

 

From equations (2.15) and (2.16) the transfer matrix T  can be expressed as 

 

 
1 1

1 1
LR LL LR

RL RR LR LL RR LR

− −

− −

⎡ ⎤−
= ⎢ ⎥− + −⎣ ⎦

D D D
T

D D D D D D
. (2.17) 

 

2.2.3 Eigenvalues and Eigenvectors 

If the number of DOFs associated with one side of the section is n, the size of the transfer 

matrix T  is then 2 2n n×  and 2n sets of the eigenvalues and eigenvectors are obtained from 

equation (2.14). The eigenvalue iλ  in equation (2.14) relates to wave propagation over the 

distance Δ  such that [37] 

 

 ijk
i eλ − Δ=  (2.18) 

 

where ik  represents the wavenumber for the ith wave. The wavenumber can be purely real, 

purely imaginary or complex, associated with a propagating, a nearfield (evanescent) or an 

oscillating decaying wave respectively. The right eigenvector corresponding to the ith 

eigenvalue can be written as 

 

 i
i

i

⎡ ⎤
= ⎢ ⎥
⎣ ⎦

q
φ

f
. (2.19) 

 

The eigenvector represents a wave mode and contains information about both the nodal 

displacements iq  and associated internal forces if  under the propagation of the ith wave.  

    The transfer matrix is symplectic and the eigenvalues come in pairs and are of the form 
ijk

i eλ ± Δ± =  which represent positive- and negative-going wave pairs. The eigenvalues and 

associated eigenvectors are then expressed as ( ),i iλ +φ  and ( )1 ,i iλ −φ . More characteristics 

of the symplectic matrix are described in Appendix 1.1. Positive-going waves are those for 

which the magnitude of the eigenvalues is less than 1, i.e. 1iλ <  or if 1iλ = , the power 
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(energy flow) is positive, i.e. { }HRe 0i i >f q&  [8,67] where ( )H⋅  represents the complex 

conjugate transpose, or Hermitian, and iq&  represents the partial derivative of the 

displacement vector iq  with respect to time.  

 

2.2.4 Orthogonality Relationships between the Left and Right Eigenvectors 

The right eigenvalues and eigenvectors of the transfer matrix are defined as 

 

 i i iλ=Tφ φ  (2.20) 

 

for the ith eigenvalue and associated eigenvector. Similarly, the left eigenvalues and 

eigenvectors can be expressed as 

 

 i i iλ=ψ T ψ  (2.21) 

 

and iψ  is a row vector of the left eigenvector and given by [9]  

 

 ( ) ( ) ( )T T1 1i i RR i LR iλ λ λ⎡ ⎤= +⎣ ⎦ψ q D D q  (2.22) 

 

which is in the form of T T
i i i⎡ ⎤= ⎣ ⎦ψ f q . From equations (2.20) and (2.21) the relationships  

 

 i j j i j i i jλ λ= =ψ Tφ ψ φ ψ φ  (2.23) 

 

follow. This leads to 

 

 ( ) 0i j i jλ λ− =ψ φ  (2.24) 

 

such that if i jλ λ≠ , 0i j =ψ φ . Thus the orthogonality relationship between the left and right 

eigenvectors can in general be expressed as 
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 i j i ijd δ=ψ φ  (2.25) 

 

where ijδ  is the Kronecker delta and id  is arbitrary. The orthogonality relationships will be 

utilised in chapter 4 to reduce ill-conditioning in calculating the forced response.  

 

 

2.3 Example of an Euler-Bernoulli Beam 

In this section free wave propagation in an Euler-Bernoulli beam, e.g. [1], is investigated as 

an illustrative example. The analytical solution is first described. The wavenumbers and 

wave modes are then predicted from a single FE of the beam. No damping is assumed.  

 

2.3.1 Analytical Solution 

Consider an Euler-Bernoulli beam as shown in Figure 2.4. In the figure, w  is the 

translational displacement, θ  is the rotational displacement, m  is the moment and τ  is the 

shear force. The beam holds four freely propagating waves and the wavenumbers are, e.g. 

[1], 

 

 ,B Bk k jk= ± ±  (2.26) 

where 

 
2

4
B

Ak
EI

ρ ω
=  (2.27) 

 

is the bending wavenumber of the beam. Here ρ  is the mass density, A  is the cross-

sectional area, E  is the Young’s modulus and I  is the second moment of the cross-sectional 

area. Each wave propagates as jkxe− . The wavenumbers ,B Bk k jk= −  represent the positive-

going propagating and nearfield waves while ,B Bk k jk= −  are the negative-going 

propagating and nearfield waves.  

    Using the sign convention in Figure 2.4, the wave modes associated with ,B Bk k jk= ± m  

are, e.g. [1],  
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 3 3 3 3

2 2 2 2

1 1

,

B B

B B B B
B

B B B B

B B B B

w w
w x jk k

EI w x jEIk EIk
m EI w x EIk EIk

θ
τ

⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥∂ ∂⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥= = =
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥∂ ∂ ±
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥− ∂ ∂ −⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦

φ
m m

m
 (2.28) 

 

where the subscript B represents the analytical solution of the beam. 

 

2.3.2 WFE Estimates 

The WFE method starts from a conventional FEA of a single beam element. For the beam 

element of the length Δ , the mass and stiffness matrices, using a cubic polynomial shape 

function, are [46] 

 

 

2 2

3

2

2 2

2

12 6 12 6
4 6 2

,
. 12 6

4

156 22 54 13
4 13 3

.
. 156 22420

4

EI
sym

A
sym

ρ

Δ − Δ

Δ − Δ Δ
=

− ΔΔ

Δ

Δ − Δ

Δ Δ − ΔΔ
=

− Δ

Δ

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦
⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

K

M

 (2.29) 

 

The dynamic stiffness matrix, 2ω= −D K M , becomes 

 

( ) ( ) ( ) ( )

( ) ( ) ( )

( ) ( )

( )

4 4 4 4

4 4 42 2

3
4 4

42

156 22 54 13
12 6 12 6

420 420 420 420
4 13 3

4 6 2
420 420 420

156 22
. 12 6

420 420
4

4
420

B B B B

B B B

B B

B

k k k k

k k k
EI

sym k k

k

− Δ Δ − Δ − − Δ Δ + Δ

Δ − Δ Δ − − Δ Δ + Δ

=
Δ

− Δ Δ − + Δ

Δ − Δ

⎡⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎢⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎢
⎢ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞

⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠

⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

⎛ ⎞
⎜ ⎟
⎝ ⎠⎣

D

⎤
⎥
⎥
⎥

⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎦

.  

(2.30) 
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The analytical dynamic stiffness matrix can be found in [76]. It involves various 

trigonometric and hyperbolic functions of Bk Δ . If the analytical dynamic stiffness matrix is 

expressed as a power series in Bk Δ , it is found that equation (2.30) is exact up to ( ){ }4
BO k Δ . 

    The transfer matrix for the section can be found from equation (2.30) as [67,70] 

 

 

( ) ( )

( ) ( ) ( ) ( )( )
( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

( )

4 8

4 8 4 8

4 8
4 8

4 8 12 4 8 12

3 2

4

1

302400 720

302400 13320 26 302400 3240 2

50400 120
302400 13320 10

7 1
302400 2820 151200 570

2 4

151200 570

B B

B B B B

B B
B B

B B B B B B

B

k k

k k k k

k k
k k

EI k k k EI k k k

EI k k

= ×
+ Δ + Δ

+ Δ + Δ Δ + Δ + Δ

Δ + Δ
+ Δ + Δ

Δ

Δ + Δ + Δ Δ + Δ + Δ

Δ Δ

− Δ −

⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

T

( ) ( ) ( ) ( ) ( )

( )( ) ( )( )

( )( ) ( )( )

( ) ( ) ( ) ( )

( )

8 12 4 8 12

2

4 43 2

4 42

4 8
4 8

4

1 1
50400 78

4 60

50400 180 151200 780

151200 780 302400 3240

50400 120
302400 13320 26

302400 3240

B B B B B

B B

B B

B B
B B

B

k EI k k k

k k

EI EI

k k

EI EI
k k

k k

k

Δ − Δ − Δ − Δ − Δ

Δ Δ

Δ + Δ Δ − − Δ

Δ + Δ Δ − − Δ

− Δ − Δ
+ Δ + Δ

Δ

Δ − − Δ

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢ ⎛ ⎞ ⎛ ⎞⎢ ⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠⎢
⎢⎣

( )( ) ( ) ( )8 4 8

.

2 302400 13320 10B B Bk k k− Δ + Δ + Δ

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥⎦

(2.31) 

  

The characteristic equation can be derived from the transfer matrix (2.31) and the 

eigenvalues are given by   

 

   
( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

2 3 4 5 6
1,2

2 3 4 5 6
3,4

1 1 23 11 ,
2 6 24 2880 960

1 1 1 23 11 .
2 6 24 2880 960

B B B B B B

B B B B B B

j jj k k k k k k

k k k k k k

λ

λ

= Δ − Δ ± Δ + Δ Δ − Δ ±

= Δ + Δ Δ + Δ Δ + Δ

m m L

m m m mL

 (2.32) 
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The eigenvalues 1,2λ  of the transfer matrix are related to the propagating waves while 3,4λ  

are related to the nearfield waves. These solutions are exact to ( ){ }4
BO k Δ  with relative 

errors being ( ){ }5
BO k Δ . The predicted wavenumbers, ( ) ( )logi ik jλ= − Δ , are therefore 

 

 
( ) ( ){ }

( ){ }

4 5
1,2

4
3,4

1 2880 2880 ,

1 2880

B B B

B B

k k k j k

k jk k

= ± Δ − × Δ

= − ± Δ +

m L

m L
 (2.33) 

such that the relative error in the wavenumbers are ( ){ }4
BO k Δ . The eigenvectors associated 

with 1,2λ  are  

 

 
( ) ( ){ }
( ) ( ){ }
( ) ( ){ }

4 6

4 63

4 62

1

1 2880 10800

1 960 13 302400

1 1440 18900

B B B

B B B

B B B

w

jk k k

jEIk k k

EIk k km

θ

τ

⎡ ⎤⎡ ⎤
⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥ Δ ± Δ⎢ ⎥⎢ ⎥
⎢ ⎥=⎢ ⎥
⎢ ⎥± Δ Δ ±⎢ ⎥
⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥ − Δ − Δ −⎢ ⎥⎣ ⎦ ⎣ ⎦

m m mL

m m L

L

. (2.34) 

 

The relative errors in the elements of the eigenvectors (2.34) predicted by the WFE method 

are ( ){ }4
BO k Δ , compared to the analytical solution (2.28). Similar expression holds for 3,4λ  

with the relative error in the elements of the eigenvectors being ( ){ }4
BO k Δ . 

 

2.3.3 Numerical Example 

In this subsection numerical examples of the beam are presented. The dynamic stiffness 

matrix and the transfer matrix were formed at each frequency and the WFE results obtained. 

MATLAB was used to give the results and the double precision calculation was chosen such 

that 16 digit numbers are effective. The numerically predicted wavenumbers for the positive-

going waves are shown in Figure 2.5. The abscissa shows the non-dimensional frequency 

( )2
Bk Δ  which is proportional to frequency. Figure 2.5(a) shows the predicted propagating 

wavenumber and the analytical solution. Good agreement can be seen for small Bk Δ  but 
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discrepancy becomes large above ( )2 210Bk πΔ > ≈  and the predicted result completely 

breaks down around ( ) ( )2 240 2Bk πΔ > ≈ .  

    For the nearfield wavenumber in Figure 2.5(b) similar trends can be seen and the errors 

become large above ( )2 10Bk Δ > . The similar discussion for rod vibration can be found in  

[67,70]. 

 

 

2.4 Numerical Errors Occurring in the WFE Method 

In section 2.3 the predicted wavenumbers for the Euler-Bernoulli beam were shown. In this 

section, causes of numerical errors occurring in the WFE results, i.e. FE discretization error 

and error due to round-off of inertia terms, are first discussed. The relative errors in the 

wavenumber and the wave mode of the beam are then illustrated.  

 

2.4.1 FE Discretization Error  

When the phase change over the length of an element Δ  becomes large, the FE 

discretization error becomes large. Since the FE modelling is an approximation to represent a 

system, there are always numerical errors. In usual application of FEA, 6 or more FEs are 

generally needed for each wavelength to represent a system motion accurately, e.g. [46]. In 

the WFE method the criterion can be expressed as 2 6 1.05k πΔ ≤ ≈ . Hence the phase 

change over an element is recommended to be 

 

 1kΔ ≤  (2.35) 

 

where ⋅  is the magnitude. In general, the wavenumbers may be purely real, purely 

imaginary or complex. For complex wavenumbers, either equation (2.35) or  

 

 ( ) ( )Re 1, Im 1k kΔ ≤ Δ ≤  (2.36) 

 

could be recommended. The criterion should be satisfied in both the directions of wave 

propagation and across the cross-section of a waveguide for small FE discretisation errors. 
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    Even if large numerical errors are permitted, at least 3 FEs are needed to express one 

wavelength [46]. In the WFE method, this criterion can be expressed as 

 

 ( )Re 2 3k πΔ ≤ . (2.37) 

 

When the phase change over a section exceeds 2 3π  or so, the result can break down 

[10,67,70] and examples are shown in the next section for the beam case.  

    It should be mentioned that the FE discretisation errors depend on the shape function of an 

element, e.g. [46,47]. Even if the values of kΔ  are same, errors in the WFE results using a 

cubic polynomial shape function is smaller than those using a linear shape function, for 

example. Equations (2.35) and (2.36) are thus an estimate or a guideline for ‘small’ 

numerical errors in predicted results. 

    Propagating waves carry power and it is important to predict propagating waves 

accurately. The length of the section Δ  should therefore be determined to satisfy the 

criterion, e.g. equation (2.35), at a maximum frequency of interest where a propagating 

wavenumber often takes the maximum value. In this and later chapters where accurate 

prediction are shown using the WFE method, the length of the section Δ  is chosen to satisfy 

this criterion such that all propagating wavenumbers can predicted accurately enough. 

 

2.4.2 Error due to Round-off of Inertia Terms 

The upper bound to the length Δ  of the element can be decided from the FE discretization 

error, e.g. equation (2.35), considering the maximum wavenumber of interest in the 

frequency range analysed.  

    On the other hand, the lower bound of Δ  may be defined considering round-off of inertia 

terms. For finite precision of arithmetic operations, some effective digit numbers are lost in 

addition, subtraction and so on. In the WFE method, the round-off error can be significant 

specifically when 2ω= −D K M  is numerically calculated. For very small Δ , and in 

particular at low frequencies, some effective digits of the inertia terms will be rounded-off 

since ijK  might be very large compared to 2
ijMω , e.g. equations (2.29). 

    The number of the effective digits lost in the subtraction which yields 2
ij ij ijD K Mω= −  

can be estimated from ( )2
10logij ij ijK Mα ω=  for non-zero ω  and ijM , where ijα  is the 
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number of the effective digits lost. For double precision calculations an inertia term is 

completely rounded off if 16ijα > . The diagonals of the element matrices could be 

particularly important considering, e.g., the lumped mass matrix formulation [46,77]. The 

criteria for the smallest permissible value of Δ  could be therefore determined to satisfy 

 

 ( )2
10log ii ii iiK Mω α<  (2.38) 

 

and 16iiα <  at the minimum frequency of interest using the double precision calculations for 

accurate results. For frequency independent ijK  and ijM ,  2
ij ijK Mω  is proportional to 2ω− .  

 

2.4.3 Relative Errors in the Predicted Results of the Euler-Bernoulli Beam  

The relative error in the predicted propagating wavenumber (i.e. Figure 2.5), ( )B Bk k k− , is 

shown in Figure 2.6. The relative error is minimum at around 0.04Bk Δ = . Above 

0.04Bk Δ =  the relative error increases due to the FE discretisation error at a rate 

proportional to ( )4
Bk Δ , see equation (2.33). Below 0.04Bk Δ = , the relative error increases 

as Bk Δ  decreases due to the round-off of the inertia terms. For the element matrices of the 

beam, i.e. equation (2.29), the asymptote of the relative error for small Bk Δ  is proportional 

to 2ω−  and hence to ( ) 4
Bk −Δ . For the beam case, { } ( )42max 420ii ii BK M kω = Δ  for 2,4i =  

and the inertia terms are completely rounded-off if 44 10Bk −Δ < ⋅  or so.  

    The relative error in the wave mode shows similar trends. The relative error in the 

rotational DOF per unit displacement, Bθ  in equation (2.28), is shown for the positive-going 

propagating wave in Figure 2.7. The relative error in Bθ  is also minimum at about 

0.04Bk Δ =  and changes above and below 0.04Bk Δ =  in proportional to ( ) 4
Bk ±Δ , which is 

the same as the relative error in the wavenumber, as described in equation (2.34). A similar 

discussion holds for a rod vibration but the asymptote of the relative error is ( ) 2k ±Δ  [70].  
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2.5 FE Modelling using Concatenating Elements 

In section 2.4, two causes of numerical errors were described. There is a trade-off between 

the FE discretisation errors and the errors due to round-off of inertia terms such that the 

frequency range analysed is limited. To reduce the low frequency limit imposed by the 

element length Δ , a method in which a number of elements are concatenated is proposed in 

this section.  

 

2.5.1 Condensations of the Dynamic Stiffness Matrix 

In this subsection, a method of concatenating identical elements is described to reduce the 

round-off errors of inertia terms. Numerical errors due to the round-off of inertia terms occur 

when ijij MK 2ω>> , i.e. the stiffness of the section is much greater than the inertia. This can 

be improved using a section with larger length Δ  but FE discretisation errors become larger. 

An alternative way is a method using concatenating elements as shown in Figure 2.8. This 

method does not need re-modelling of a section since the global stiffness and mass matrices 

can be formed from those of an original section, e.g. [46]. 

    The internal DOFs may be dynamically condensed using e.g. equation (2.10). However 

calculation cost increases because 1
IIII
−D%  must be evaluated at each frequency. Alternative 

condensation methods are described here. 

 

2.5.2 Approximate Expressions 

In this subsection, approximate expressions for the condensation are found in order to reduce 

the calculation cost. The inverse of the dynamic stiffness matrix associated with internal 

DOFs can be expressed as 

 

 ( ) ( )1 11 2 2 1 1
II II II II II IIω ω

− −− − −= − = −D K M I K M K% % % % % % . (2.39) 

 

For small 1
II II
−K M% % , equation (2.39) may be approximated as 

 

 ( )1 1 2 1 1
II II II II IIO ω− − − −= +D K K M K% % % % %  (2.40) 

 



 
Chapter 2: Free Wave Propagation 

 
 

31 

which is same as static condensation [75]. For the static condensation of IID% , the condensed 

dynamic matrix is evaluated as 

 

 ( )
1 1

2 1 1 .
EE EI II IE EE EI II IE

EE EI II IE EI II IEω

− −

− −

= − ≈ −

− − −

D D D D D K K K K

M K K M M K K

% % % % % % % %

% % % % % % %
 (2.41) 

 

To calculate equation (2.41) 1
II
−K%  and the matrix products need to be evaluated only once so 

that the calculation cost is small. In addition, the large terms associated with the stiffness and 

the small terms associated with the inertia are appropriately grouped such that round-off 

errors in the arithmetic operations are reduced.  

    For the condensed element, the equivalent stiffness and mass matrices can be similarly 

calculated from equation (2.8), i.e. T
E E=R DRq f% % % , by expanding 2ω= −D K M% % % . This may be 

important to derive the potential and kinetic energy densities and the group velocity 

described later in this chapter. For small ω , the associated condensed stiffness and mass 

matrices are, from equation, 

 

 
T 1

T 1 1

,

.
EE EI II IE

EE EI II IE EI II IE

−

− −

= ≈ −

= ≈ − −

K R KR K K K K

M R MR M K K M M K K

% % % % % % %

% % % % % % % % % %
 (2.42) 

 

Equations (2.40)-(2.42) describe the static condensation. However static condensation is 

accurate only at very low frequencies [70] since the inertia associated with IID%  is excluded.  

    Alternatively, the second order approximation of the condensation of IID%  is here proposed. 

Equation (2.39) can be expanded to the second order as 

 

 ( ) ( )1 2 1 1 4 1 1 1
II II II II II II II II IIOω ω− − − − − −= + +D I K M K K M K M K% % % % % % % % %  (2.43) 

 

and D  can be evaluated after some calculations as  
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 ( )
( )

1

2 1 1 1 1

4 1 1 1 1 1 .

EE EI II IE

EE EI II IE EI II IE EI II II II IE

EI II IE EI II II II IE EI II II II IE

ω

ω

−

− − − −

− − − − −

≈ −

− − − +

− − −

D K K K K

M K K M M K K K K M K K

M K M K K M K M M K M K K

% % % %

% % % % % % % % % % % %

% % % % % % % % % % % % %

 (2.44) 

 

    By using the second order approximation (2.43), the condensed stiffness and mass 

matrices can be calculated from equation (2.8) in the same manner as equations (2.42). After 

some calculations the resulting condensed element matrices are such that    

 

 
( )

1

4 1 1 1 1 1

1 1 1 1

2 1 1 1

,

2

EE EI II IE

EI II IE EI II II II IE EI II II II IE

EE EI II IE EI II IE EI II II II IE

EI II IE EI II II II IE EI

ω

ω

−

− − − − −

− − − −

− − −

≈ −

+ − −

≈ − − +

+ − −

K K K K K

M K M K K M K M M K M K K

M M K K M M K K K K M K K

M K M K K M K M M K

% % % %

% % % % % % % % % % % % %

% % % % % % % % % % % %

% % % % % % % % % %( )1 1 .II II II IE
− −M K K% % %

 (2.45) 

 

Using the second order approximation, numerical results are much more accurate than the 

static condensation for wide range of frequency [70].  

 

2.5.3 FE Discretisation Error Associated with Concatenated Elements 

For a series of N concatenated elements of length Δ , the eigenvalues associated with N 

concatenated elements become ( )jk Neλ − Δ= .  

    For a single element, the FE discretisation criterion may be expressed as 1kΔ ≤  as in 

equation (2.35). For N concatenated elements, the criterion therefore becomes 

 

 kN NΔ ≤ . (2.46) 

 

2.5.4 Illustrative Example of the Beam 

In this subsection, an illustrative example for a method using concatenating elements is 

shown for the beam. The global stiffness and mass matrices using two concatenated elements 

can be formed from the element matrices (2.29) and are 
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2 2

2 23

2

2 2

2 2

2

12 6 12 6 0 0
4 6 2 0 0

24 0 12 6
8 6 2

. 12 6
4

156 22 54 13 0 0
4 13 3 0 0

312 0 54 13
8 13 3420

. 156 22
4

,

.

EI

sym

A

sym

ρ

Δ − Δ

Δ − Δ Δ

− Δ
=

Δ − Δ ΔΔ

− Δ

Δ

Δ − Δ

Δ Δ − Δ

− ΔΔ
=

Δ Δ − Δ

− Δ

Δ

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦
⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

K

M

%

%

 (2.47) 

 

    The condensed stiffness and mass matrices are better-conditioned in terms of 

{ }2max ii iiK Mω . The stiffness and mass matrices of equations (2.47) are, after static 

condensation (2.42), 

 

     

2 2

3

2

2 2

2

1.5 1.5 1.5 1.5
2 1.5

. 1.5 1.5
2

229.5 47.5 34.5 14.5
12 14.5 5

. 229.5 47.5420
12

,

.

EI
sym

A
sym

ρ

Δ − Δ

Δ − Δ Δ
=

− ΔΔ

Δ

Δ − Δ

Δ Δ − ΔΔ
=

− Δ

Δ

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦
⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

K

M

 (2.48) 

 

For the original single element, { } ( )42max 420ii ii BK M kω = Δ  while the value for equation 

(2.48) is { } ( )42max 70ii ii BK M kω = Δ  such that the conditioning is improved.  

    The relative error in the bending wavenumber, Bk , using two concatenated elements is 

compared with that using one element in Figure 2.9. The result was obtained using the 

dynamic condensation. The relative error below 0.04Bk Δ =  is marginally improved. The 

relative error for 0.04Bk Δ >  is more-or-less identical except for 2 Bk πΔ ≈  where the 

eigenvalue problem using the transfer matrix, e.g. equation (2.31), is ill-conditioned.  
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    The improvements are greater, if more than 2 elements are concatenated as long as 1
II
−D  is 

accurately evaluated. The improvements are also greater for structures for which there are 

more DOFs per node. For general waveguides a number of elements are used to model a 

section of the waveguides. The round-off errors can therefore occur for each element and 

such errors could be accumulated and magnified through matrix operations such as matrix 

inverse. A numerical example of a plate strip is shown later. 

 

 

2.6 Conditioning of the Eigenvalue Problem 

The eigenvalue problem using the transfer matrix (2.14) may be used to predict free wave 

propagation in simple waveguides. However, results may be inaccurate for general 

waveguides because of the ill-conditioning of the eigenvalue problem. In this section, 

numerical errors occurring in the ill-conditioned eigenvalue problem are discussed. Methods 

for improving the conditioning of the eigenvalue problem are then described. In particular, 

Zhong’s method [66] is introduced as the conditioned eigenvalue problem, which will be 

used throughout this thesis for general waveguides. 

 

2.6.1 Numerical Issues in Accuracy of the Eigenvalue Problem  

Apart from the FE discretization error and error due to the round-off of inertia terms 

described in section 2.4, numerical errors occur when the eigenvalue problem is numerically 

formed and solved. When the eigenvalue problem (2.14) is formed, numerical errors arise 

mainly because of the inversion of LRD . Numerical errors also occur when the ill-

conditioned eigenvalue problem is to be solved.  

    A matrix inverse is needed to formulate the eigenvalue problem, i.e. 1
LR
−D  in equation 

(2.14) and 1
II
−D%  in equation (2.10). When a general matrix A  is numerically inverted, the 

maximum resulting errors in the matrix inverse 1−A  are the order of ( )ε κ⋅ A  where ε  is the 

machine precision,  

 

 ( ) max minκ σ σ=A  (2.49) 
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is the condition number and maxσ  and minσ  are the largest and smallest singular values [78]. 

The condition number is likely to increase as the size of the matrix increases and/or there are 

off-diagonal elements with comparatively large magnitudes, e.g.[78,79]. For a matrix for 

which κ  is large, use of the matrix pseudo inverse (e.g. [78]) can be evaluated to reduce 

numerical errors. 

    Even if the eigenvalue problem is accurately formulated, numerical errors can still occur 

when the eigenvalue problem is to be solved. Since the matrix of the eigenvalue problem in 

the WFE method is square, non-symmetric and the elements could be complex, Schur 

factorisation is in general used [78]. This is the case in commonly-used software packages 

such as MATLABTM and MathematicaTM.  

    When the eigenvalue problem λ=Aφ φ  is solved using Schur factorisation, the matrix A 

is factorised into the form H = +Q AQ S N  where Q  is unitary, S  is diagonal and N  is 

strictly upper-triangular [78,79]. The resulting errors for the eigenvalue problem are 

estimated from N  or ( )κ Q  [79] where ⋅  is the 2-norm. 

    Large N  indicates that the matrix of the eigenvalue problem is far from normal since 

0=N  for the normal matrix A. The columns of the unitary matrix Q  are called the Schur 

vectors which have certain relationships with the eigenvectors [79]. Large ( )κ Q  then means 

that the matrix composed of the Schur vectors is almost singular. This may imply that when 

each (right) eigenvector is far from orthogonal to each other, numerical errors can be large. 

    The eigenvalue problem using the transfer matrix (2.14) is in general far from normal and 

each (right) eigenvector is also far from orthogonal to each other. The reason is mainly 

because the eigenvectors contain both displacement and force components which often have 

very different magnitudes.  

     The above discussion provides some mathematical considerations. However it is less easy 

to evaluate the values of N  and ( )κ Q . In practice, the condition number of the matrix of 

the eigenvalue problem may be used instead to assess the conditioning. 
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2.6.2 Polynomial Eigenvalue Problem  

In this and following subsections, the eigenvalue problem using the transfer matrix (2.14) is 

reformulated. The first row of equation (2.14) gives the relationship between the 

displacement and the force elements of the eigenvectors such that 

 

 ( )LL LRλ= +f D D q . (2.50) 

 

Substituting equation (2.50) into the second row of equation (2.14) gives, after some 

manipulation [67], 

 

 ( )2
LR LL RR RLλ λ⎡ ⎤+ + + =⎣ ⎦D D D D q 0 . (2.51) 

 

Equation (2.51) can be written as 

 

 ( ) ( )2 2 2
LR LL RR RL LR LL RR RLλ λ ω λ λ⎡ ⎤ ⎡ ⎤+ + + = + + +⎣ ⎦ ⎣ ⎦K K K K q M M M M q . (2.52) 

 

The eigenvalue problem (2.52) can be solved for a given value of jkeλ − Δ=  such that the 

associated real values of ω  are determined. For wavenumbers k  which are purely real or 

purely imaginary, the solutions can be easily found. To calculate equations (2.52) there is no 

round-off of inertia terms described previously. However, the wavenumbers could be 

complex to give real values of ω  for damped or undamped waveguides. For such cases, it is 

generally very difficult to find the complex wavenumbers which give real-valued solutions 

for ω  from equation  (2.52). In general, then, it is preferable to specify a real value of ω  and 

calculate the (complex) solutions λ  to the eigenvalue problem of equation (2.51). 

    A polynomial eigenvalue problem (2.51) therefore needs to be solved to find all the 

wavenumbers for a given real ω . The eigenvalue problem of equation (2.51) can be 

converted into the standard linear eigenvalue problem [80] such that 

 

 ( )1 1
LR RL LR LL RR

λ
λ λ− −

⎡ ⎤ ⎡ ⎤ ⎡ ⎤
=⎢ ⎥ ⎢ ⎥ ⎢ ⎥− − + ⎣ ⎦ ⎣ ⎦⎣ ⎦

0 I q q
D D D D D q q

. (2.53) 
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Equation (2.53) is better-conditioned than equation (2.14) as the eigenvectors are associated 

with only the displacement components such that ( )κ Q  discussed in subsection 2.6.1 can be 

particularly smaller. The associated force eigenvector can be determined from the 

displacement eigenvector from equation (2.50). 

 

2.6.3 Zhong’s Method 

Several previous works [8,60,62,67,68] used Zhong’s method [66] to formulate the 

eigenvalue problem. Also in this thesis the method is applied to solve free wave propagation 

for general waveguides. In this subsection, the method is first briefly described. An 

application of singular value decomposition (SVD) is proposed to determine the 

eigenvectors more accurately.  

    The details of Zhong’s method can be found in [66,81,82]. The method starts from a 

reformulation of equation (2.12) into the relationships for the displacement vectors alone: 

 

 
,

.

L L

L LL LR R

R L

R RL RR R

⎡ ⎤ ⎡ ⎤ ⎡ ⎤
=⎢ ⎥ ⎢ ⎥ ⎢ ⎥

⎣ ⎦ ⎣ ⎦ ⎣ ⎦
⎡ ⎤ ⎡ ⎤ ⎡ ⎤

=⎢ ⎥ ⎢ ⎥ ⎢ ⎥− − −⎣ ⎦ ⎣ ⎦ ⎣ ⎦

q I 0 q
f D D q

q 0 I q
f D D q

 (2.54) 

 

After some matrix operations using the periodicity condition and the symplectic relationship 

[66], the general eigenvalue problem  

 1 2μ
λ λ
⎡ ⎤ ⎡ ⎤

=⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦

q q
Z Z

q q
 (2.55) 

is formed with 

 
( ) ( )
( ) ( )

1

2

,LR

RL

LR RL LL RR

LL RR LR RL

⎡ ⎤
= ⎢ ⎥−⎣ ⎦

− − +⎡ ⎤
= ⎢ ⎥+ −⎣ ⎦

0 D
Z

D 0

D D D D
Z

D D D D

 (2.56) 

and 

 1μ λ
λ

= + . (2.57) 
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More details of the formulation are given in Appendix 1.2. Equation (2.55) may be 

expressed in the form of the standard eigenvalue problem as 

 

 'μ
λ λ
⎡ ⎤ ⎡ ⎤

=⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦

q q
Z

q q
 (2.58) 

 

where 1
1 2
−=Z Z Z  or 1

2 1
−=Z Z Z  and the matrix with the smaller condition number is inverted 

and  'μ μ=  or 1 μ  respectively.  

    The eigenvalue problem (2.58) is better-conditioned than the other eigenvalue problems. 

The eigenvectors are related to only the displacement components (smaller ( )κ Q  discussed 

in subsection 2.6.1) and the matrix Z  is relatively close to normal (smaller N  discussed in 

subsection 2.6.1). In addition, since 1μ λ λ= + , the eigenvalues are such that the range of 

the magnitude of the eigenvalues becomes roughly ke Δ  if rapidly decaying nearfield waves 

exist while that for the original eigenvalue problems is 2ke Δ . Furthermore, the smallest 

eigenvalues of μ  are those of most interest. For these reasons, Zhong’s method is 

numerically better-conditioned and is used throughout this thesis. 

    Equation (2.55) has repeated eigenvalues of μ  since both iλ  and 1 iλ  are solutions of 

equation of equation (2.14). The original eigenvalues ,1i iλ λ  can be determined from the 

eigenvalue 1i i iμ λ λ= +  by solving a quadratic equation or by noting that 

( )2cosi ijk jk
i ie e kμ − Δ Δ= + = Δ . In practice one might be interested in those wave modes for 

which the magnitudes of the wavenumbers are smallest.  

     Corresponding to the repeated eigenvalues μ , there are two independent eigenvectors 1φ  

and 2φ . These are given by 

 

 1,2
1,2

1,2λ
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

q
φ

q
 (2.59) 
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where T T
1,2 1,2λ⎡ ⎤⎣ ⎦q q  are the eigenvectors associated with the repeated eigenvalues. The 

eigenvectors associated with the original eigenvalues iλ  and 1 iλ  can be found from a linear 

combination of 1φ  and 2φ  [8,66,67], i.e., 

 

 1 1 2 2α α
λ
⎡ ⎤

= +⎢ ⎥
⎣ ⎦

q
φ φ

q
. (2.60) 

 

Substituting equations (2.59) and (2.60) into the equation (A1.9) in Appendix 1.2, i.e. 

 

 RL LL RR LR

RL RL

λ
λ λ

− − −⎡ ⎤ ⎡ ⎤⎡ ⎤ ⎡ ⎤
=⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥− −⎣ ⎦ ⎣ ⎦⎣ ⎦ ⎣ ⎦

D D D 0 Dq q
0 D D 0q q

, (A1.9) 

gives 

 1 2
1 2

1 2

RL LL RR LR

RL RL

λ
α α

λ λ λ
⎧ ⎫− − − −⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎪ ⎪+ =⎨ ⎬⎢ ⎥ ⎢ ⎥ ⎢ ⎥− ⎪ ⎪⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎩ ⎭

D D D D q q
0

D D q q
. (2.61) 

 

Premultiplying by H H
1 1λ⎡ ⎤⎣ ⎦q q  leads to a relationship between 1α  and 2α  such that [67] 

 

 

1H H
1 1

12

2H H1
1 1

2

RL LL RR LR

RL RL

RL LL RR LR

RL RL

λ
λ

λ λα
λα

λ
λ λ

− − − −⎡ ⎤ ⎡ ⎤
⎡ ⎤ ⎢ ⎥ ⎢ ⎥⎣ ⎦ −⎣ ⎦ ⎣ ⎦= −

− − − −⎡ ⎤ ⎡ ⎤
⎡ ⎤ ⎢ ⎥ ⎢ ⎥⎣ ⎦ −⎣ ⎦ ⎣ ⎦

D D D D q
q q

D D q
D D D D q

q q
D D q

. (2.62) 

 

    Although equation (2.62) is algebraically exact, there may be difficulties when calculating 

it numerically as the denominator can be close to zero and round-off errors can accumulate 

for a large size matrix. An application of SVD is therefore proposed to avoid numerical 

difficulties. Equation (2.61) can be alternatively written as 

 

 1 2 1

1 2 2

RL LL RR LR

RL RL

λ α
λ λ λ α
− − − −⎡ ⎤ ⎡ ⎤ ⎡ ⎤

=⎢ ⎥ ⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎣ ⎦ ⎣ ⎦

D D D D q q
0

D D q q
. (2.63) 
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After the multiplication of the first two matrices, equation (2.63) has the form 

[ ]T1 2α α =A 0  with A being an 2n×  rectangular matrix, where n is the length of the 

eigenvector. The problem is equivalent to that of solving an overdetermined set of 

simultaneous equations if 3n ≥ . Performing SVD on A gives 

 

 H=A USV . (2.64) 

 

Equation (2.64) can be then written as  

 

 
T

111 12

21 22

0 0 0
0 0 0

v v
v v ε

σ
σ

⎡ ⎤⎡ ⎤
= ⎢ ⎥⎢ ⎥

⎣ ⎦ ⎣ ⎦
A U

L

L
 (2.65) 

 

where 0εσ ≈ . The matrix S contains two singular values on its leading diagonal and one of 

these is almost zero. Taking the second column of equation (2.65) and using A as the 

expression in equation (2.63) gives 

 

 1 2 12

1 2 22

RL LL RR LR

RL RL

v
v

λ
λ λ λ
− − − −⎡ ⎤ ⎡ ⎤ ⎡ ⎤

≈⎢ ⎥ ⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎣ ⎦ ⎣ ⎦

D D D D q q
0

D D q q
 (2.66) 

 

such that [ ]T1 2α α  are given by  

 

 2 22

1 21

v
v

α
α

= . (2.67) 

 

The orders of 21 22,v v  in equation (2.67) are typically ( )1O  while 1α  in equation (2.62) may 

be nearly zero. Such an application of SVD to solve an overdetermined linear equation can 

be found in [83]. After determining the displacement eigenvector, q , the associated force 

eigenvector, f , can be calculated from equation (2.50) to form the original eigenvector 

(2.19). 

    Another approach which is worth noting is Thompson’s method [58]. Formulations are 

described in Appendix 1.3. Although the method can form smaller size of a matrix for an 
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eigenvalue problem, results may suffer numerical problems when 0k → . Zhong’s method 

was therefore used in this thesis. 

 

 

2.7 Numerical Example of a Plate Strip with Simply-supported 

Edges 

Free flexural wave propagation in a plate strip with simply-supported edges is studied to 

illustrate the WFE method. To improve conditioning Zhong’s method described in 

subsection 2.6.3 is used. The effects of the number of elements across the strip and the 

aspect ratio of the elements on the conditioning are illustrated. Numerical errors occurring in 

the free wave propagation characteristics are shown and reduction of numerical errors using 

concatenating element is illustrated. No damping is assumed. 

 

2.7.1 Analytical Solution 

A plate strip of width yL , shown in Figure 2.10(a), is considered. The plate is thin and 

isotropic with simply-supported boundary conditions, e.g. [1], along the y-wise plate edges. 

For such plate strip, the analytical wavenumber is given by [1] 

 

 2 2 2
x y

hk k k
D
ρ ω= + = ±  (2.68) 

 

where ( )3 212 1D Eh ν= −  is the bending rigidity, h is the thickness of the plate strip and ν  

is Poisson’s ratio. For the simply supported boundary condition along the plate edges 

0, yy L= , the wave modes have displacements proportional to ( )sin yi y Lπ  where i is an 

integer. The wavenumbers in the x-direction are then given by 

 

 ( )
2

2 1, 2,xi
y

h ik i
D L
ρ πω

⎛ ⎞
= ± − =⎜ ⎟⎜ ⎟

⎝ ⎠
L . (2.69) 

 

Substituting 0xik =  into equation (2.69) gives the cut-off frequency for the ith wave mode as 
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2

,c i
y

D i
h L

πω
ρ

⎛ ⎞
= ⎜ ⎟⎜ ⎟

⎝ ⎠
. (2.70) 

 

2.7.2 WFE Results 

The plate is assumed to be steel with 0.18yL = , 112.0 10E = ⋅ , 7800ρ = , 0.30ν =  and 

31.8 10h −= ⋅ , all in SI units. The element matrices are formed using ANSYS 7.1. A four node 

plane strain shell element (SHELL63) was chosen. The SHELL63 element has 6 DOFs at 

each node. Consider a plate strip model comprising 4 elements as shown in Figure 2.10(b) 

with 18x mmΔ = , 45y mmΔ = . After removing the in-plane DOFs and DOFs on the 

boundaries which are zero because of the conditions, there are 22 resulting DOFs for the 

model. Since the y-wise wavenumber is y yk i Lπ=  for the ith wave mode, only the 

wavenumber for the i=1 wave mode could be expected to be accurately evaluated since 

( )4 1y yk πΔ = < . 

    The dispersion curves for the i=1 mode are shown in Figure 2.11. There are two waves 

associated with the i=1 mode; one is for a wave which propagates above its cut-off 

frequency and another is for a nearfield wave. Figure 2.11(a) shows the dispersion curves 

calculated from the eigenvalue problem using the transfer matrix (2.14) and Figure 2.11(b) 

shows those from the conditioned eigenvalue problem (2.55). The abscissa represents the 

non-dimensional frequency 

 

 
2

2
yL h

D
ρ ω

π
Ω = . (2.71) 

 

The cut-off frequency for the ith mode occurs at 2iΩ = . The ordinate shows the non-

dimensional wavenumber, x yk L π , which becomes ji−  for the ith wave mode at 0Ω = . 

    It can be seen that the results using the transfer matrix (Figure 2.11(a)) show poor 

agreement around the cut-off frequency. This is a typical example of deterioration due to the 

ill-conditioning of the eigenvalue problem. For the plate strip, the condition number of the 

eigenvalue problem using the transfer matrix is ( ) ( )1310Oκ =T  while that of Zhong’s 

method is ( ) ( )510Oκ =Z . For a larger matrix (with more DOFs), results using the transfer 



 
Chapter 2: Free Wave Propagation 

 
 

43 

matrix can completely break down. On the other hand the result using Zhong’s method 

shows reasonable agreement.  

    The dispersion curves using 18 elements ( )10x y mmΔ = Δ =  are shown in Figure 2.12. 

Hereafter only the results using Zhong’s method are shown. In the frequency range analysed, 

6 wave modes cut-on. Reasonable agreement can be seen between the analytical solutions 

and the WFE results on the whole. Discrepancies become larger for higher wave modes and 

for large wavenumbers due to the FE discretization errors. Complex conjugate wavenumbers 

of the form k jα β= ± −  can be seen for the n=4 ( )0.75Ω ≤  and the n=5 wave modes 

( )2Ω ≤  mainly because of the FE discretisation errors. The errors can be reduced by 

increasing the number of elements across the plate as long as the conditioning is not a 

problem.  

 

2.7.3 Wave Assurance Criterion Value 

    In subsection 2.7.2 the dispersion curves are shown. For general waveguides in which 

there are many wave modes, many eigenvalues and associated eigenvectors are calculated at 

each discretised frequency step. To draw dispersion curves from predicted results at each 

discrete frequency step, an additional procedure should be employed in order to check the 

correlation of the resulting dispersion branches. In this thesis, a wave assurance criterion 

(WAC) value is applied [59].  

    The idea is that if the wave characteristic is similar from one frequency to another, the 

eigenvectors, which represent the wave mode, should have a certain relationship such that 

one eigenvector is close to just a scalar multiple of the other. The value is defined as 

 

 ( )
( )

( )( )
1

1 1

2H

1 H H
, n n

n n n n

n nWAC ω ω

ω ω ω ω

ω ω −

− −

− =
φ φ

φ φ φ φ
 (2.72) 

 

where 1,n nω ω −  is the frequency at nth and (n-1)th discrete frequency step, 
nω

φ  is the vector 

of the eigenvector associated with nth step. The WAC value can be calculated from two 

complex eigenvectors associated with two distinct eigenvalues. In practice only the nodal 

displacements vector, q , can be applied instead of φ  which contains both the displacement 

and force components. If the WAC value is close to unity, two eigenvectors calculated at 
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two consecutive steps correspond to the same wave mode. This procedure helps to allow the 

propagation branch as to be consistently found as well as to identify the cut-off frequencies 

efficiently. 

 

2.7.4 Effect of Modelling of the Cross-section on the Conditioning 

Even for the conditioned eigenvalue problem, the conditioning is still of concern. In this 

subsection, the effects of the matrix size and the aspect ratio of elements on the conditioning 

are discussed. To formulate the conditioned eigenvalue problem (2.58), either 1Z  or  2Z  

must be inverted and large values of ( )1κ Z  and ( )2κ Z  can cause an inaccurate formulation. 

Also a large value of ( )1κ Z  is in general correlated with large values of ( )2κ Z  and ( )κ Z . 

Here, ( )1κ Z , i.e. ( )LRκ D  (see equation (2.56)), is investigated for various FE models of the 

plate strip.  

    Figure 2.13 shows the relationship between ( )LRκ D  and the size of the matrix LRD  at a 

particular frequency, 7.48Ω = , using various different elements. The aspect ratio of an 

element is defined as 

 

 x yγ = Δ Δ . (2.73) 

 

It can be seen that the condition number deteriorates as the size of the matrix increases. The 

relationship between the condition number and the size of the matrix, n, is approximately 

 

 2nκ ∝  (2.74) 

 

for the same γ . Figure 2.14 shows the relationship between κ  and γ  for a given matrix size. 

The relationship is approximately such that 

 

 
( )
( )

1.6
1

1.2
1

1 ,

1 .
γ

γ

κ κ γ γ

κ κ γ γ

−
=

=

∝ <

∝ >
 (2.75) 
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A square element for which 1γ =  gives the minimum value of κ  for a given matrix size. If 

the aspect ratio significantly differs from 1, the conditioning deteriorates. This is because the 

magnitudes of elements in LRD  can be very different if 1>>γ  or 1<<γ , e.g. [46].  

    Although these results are just for one example of the plate strip, a similar discussion 

holds for general problems. For a poorly conditioned eigenvalue problem, re-meshing of the 

FE model is needed. Decreasing the matrix size and using elements with 1γ ≈  to form 

similar magnitude of elements in LRD  are recommended to improve conditioning.  

 

2.7.5 Relative Errors in the Eigenvalues and Eigenvectors 

The relative errors in the eigenvalues and eigenvectors are discussed using various FE 

models. The relative errors in the propagating wavenumber associated with the i=1 wave 

mode are shown in Figure 2.15. The subscript WFE shows the predicted result using the 

WFE method. The results are shown for three FE models, which are the 18 element 

( )10x y mmΔ = Δ = , 36 element ( )5x y mmΔ = Δ =  and 90 element ( )2x y mmΔ = Δ =  plate strip 

models. For the 90 element model, 1x xk Δ ≈  around 900Ω = . The peaks at the cut-off 

frequency ( )1Ω =  occur because the denominator approaches 0 ( )1 0xk → . The FE 

discretisation errors become smaller for the FE models with smaller values of xΔ  and yΔ . 

However, the errors due to the round-off of inertia terms increase at low frequencies for very 

small Δ  (i.e. the 90 element model). The relative errors in the eigenvector, the rotational 

displacement along the y-direction per unit displacement ( )y wθ , associated with the i=1 

wave mode are shown in Figure 2.16. A trend similar to that for the eigenvalue can be seen.  

    The shear force is next evaluated using the SVD approach (2.67). The analytical 

expression for the shear force is [1] 

 

 ( )( )2 22xz x x yw jDk k kτ ν= + −  (2.76) 

 

where xzτ  is the shear force in the x-z plane. The relative errors in the calculated shear force 

per unit translational displacement ( )xz wτ  are shown in Figure 2.17. The relative errors 

associated with the 18 and 36 element models are similar to those for the wavenumbers and 
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eigenvectors. However, the error associated with the 90 element model is large because (1) 

x xk Δ  is small such that 1λ ≈  in equation (2.50) which causes round-off errors in arithmetic 

calculations and (2) the matrix size is large such that round-off errors may accumulate. The 

relative error in the force components of the eigenvector is generally larger than that in the 

eigenvalue for a large matrix size. 

    The SVD approach for numerically determining the eigenvector was proposed in 

subsection 2.6.3. Figure 2.18 shows the relative errors in xz wτ  using the original approach 

(2.62) and the SVD approach (2.67) for the 36 element model. It can be seen that the relative 

error associated with the SVD approach is generally smaller especially at low frequencies 

where round-off errors through the matrix operations in the original approach (2.62) are 

likely to occur. 

 

2.7.6 Reducing Numerical Errors using Concatenating Elements 

In Figure 2.17 the relative error associated with the 90 element model is large compared to 

other models at low frequencies. To reduce the error the conditioning using concatenating 

elements as described in section 2.5 can be used. Two strips of the FE model with 90 

element ( )2x y mmΔ = Δ =  were concatenated in the direction of wave propagation to form a 

new FE model. Figure 2.19 shows the relative errors in xz wτ  using the 90 element model 

and the concatenated model. The result using 90 rectangular elements ( )4 , 2x ymm mmΔ = Δ =  

is also shown. It can be seen that the model using the concatenating elements greatly 

improves the numerical error especially at low frequencies. The condition number of 

( )IIκ D%  may be of concern for the condensation and in this specific case ( ) ( )1310II Oκ ≈D% . 

Even for such large value of ( )IIκ D% , it was observed that the relative error in xz wτ  can be 

smaller. The relative error using the rectangular element model is large at both low and high 

frequencies compared to that using concatenating elements. 

    The approximate expression of the condensation was formulated in section 2.5.2. For the 

90 element model, the maximum value of 2
ii iiK Mω  as a function of Ω  is shown in Figure 

2.20. The maximum value of 2
ii iiK Mω  is about 810  at 2Ω =  such that the second order 

approximation (2.44) can be expected to be accurate enough for 2Ω <  for the double 

precision calculation. Figure 2.21 compares the relative errors in xz wτ  using the dynamic 
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condensation and the second order approximation. The result using the second order 

approximation is even better for small Ω . At high frequencies 2Ω > , where 

( )2max ii iiK Mω  become small, the relative error increases due to the second order 

approximation error.  

 

 

2.8 Numerical Estimation of Group Velocity 

The group velocity is an important wave property, for example when an application of SEA, 

e.g. [50], or the active control of a waveguide, e.g. [84], is of concern. In this section 

methods for numerically predicting the group velocity are illustrated. The accuracy of each 

method is evaluated for the plate strip with simply-supported edges. 

 

2.8.1 Formulations 

The group velocity is the velocity at which the energy propagates. The group velocity is 

defined by, e.g. [2,85], 

 

 gc
k
ω∂

=
∂

. (2.77) 

 

Three methods for numerically calculating the group velocity are described. Each method is 

shown and the accuracy is evaluated in the next subsection.  

 

(1) Power and energy relationship 

The group velocity can be calculated from the power and energy relationship [2] as 

 

 ,
,

i
g i

tot i

Pc
E

=  (2.78) 

 

where Pi is the time-averaged power transmission thorough the cross-section of a waveguide 

for the ith wave mode and Etot is the total energy density per unit length. These values are 

given by [2,8] 
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2 2i i i i iP ω

= = −f q f q&  (2.79) 

and 
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where Ek,i and Ep,i represent the kinetic and potential energy densities for the ith wave mode. 

The dissipated power follows from the imaginary part of K and/or the damping matrix C. 

 

(2) Finite difference method 

This method estimates the group velocity from a finite difference approximation such as 

 

 
( ){ } ( ){ }, Re 2 Re 2g i

i i

c
k k

ω
ω ω ω ω

Δ
=

+ Δ − −Δ
 (2.81) 

 

where ωΔ  is a sufficiently small increment of frequency. Equation (2.81) is formulated by 

the central finite difference (the second order approximation). Other definitions are possible, 

e.g. the first order forward or backward finite difference approximation [86].  

 

(3) Differentiation of the eigenvalue problem 

The group velocity may be determined directly by differentiating the eigenproblem [48]. The 

group velocity can be expressed as 

 

 
21

2gc
k k
ω ω

ω
∂ ∂

= =
∂ ∂

 (2.82) 

 

and 2k ω∂ ∂  is found from the differentiation of the eigenvalue problem (2.14) such that 

 

 
( ) ( ){ }2

λ
ω
∂

− =
∂

T I φ 0 . (2.83) 
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Expanding equation (2.83), using equations (2.18), (2.82) and premultiplying by the left 

eigenvector ψ  leads to 

 

 
( )2

0
2
j kλ
ω ωω

⎛ ⎞∂ Δ ∂⎜ ⎟+ =
⎜ ⎟∂∂⎝ ⎠

ψ T I φ . (2.84) 

 

Recalling equation (2.17), noting the differentiation of the matrix inverse [87] such that 

 

 
( )

1 1 1
2 LR LR LR LRω

− − −∂
= −

∂
D D M D , (2.85) 

 

( )2ω∂ ∂T  in equation (2.84) can be evaluated as 
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. (2.86) 

 

From the above equations the group velocity is given by  

 

 

( )
,

2
2

i i i
g i

i i

jc λ
ω

ω

Δ
= −

∂
∂

ψ φ

ψ Tφ
. (2.87) 

 

2.8.2 Numerical Example of the Plate Strip 

The three formulations illustrated in the previous subsection are evaluated by estimating the 

group velocity of the plate strip considered in section 2.7. For the plate strip the 

wavenumbers are given by equation (2.69) and the group velocity for the ith wave mode is 

therefore analytically given as 

 

 , ,2 ,g i xi c i
xi

Dc k
k h
ω ω ω

ρ
∂

= = ≥
∂

. (2.88) 
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The group velocities are numerically determined using the three methods. The relative error 

in the group velocity associated with the i=1 wave mode is evaluated for the 18 element 

model and the results shown in Figure 2.22. A frequency increment of 37.5 10−ΔΩ = ⋅  

[ ]( )2 rad sω πΔ =  is chosen for the finite difference method.  

    On the whole, the power and energy relationship shows reasonable accuracy for the 

frequency range shown. The finite difference method also shows good accuracy but the error 

becomes large where the wavenumber rapidly changes. The accuracy of the finite difference 

method depends on the value of ΔΩ  and small ΔΩ  generally gives more accurate results. 

However, too small ΔΩ  can cause significant round-off errors in calculating equation (2.81) 

as an example can be seen in [70].  

    The result from differentiation of the eigenvalue problem has poor accuracy. This is 

because 1
LR
−D  in equation (2.86) can be poorly conditioned and numerical errors are likely to 

accumulate through the many matrix operations. The differentiation of the eigenvalue 

problem could therefore be inappropriate for general problems where the matrix can be ill-

conditioned. 

    As a result, either use of the power and energy relationship or the finite difference method 

could be recommended. When both the eigenvalues and eigenvectors are accurately 

calculated, the power and energy relationship seems an appropriate approach. The approach 

is also typically reliable for damped waveguides, e.g. [88].  

 

 

2.9 Conclusions 

The WFE method starts from the dynamic stiffness matrix of a short section of a waveguide 

which can be formed using conventional FEA and commercial FE packages. The eigenvalue 

problem using the transfer matrix can be formed from the elements of the dynamic stiffness 

matrix in conjunction with the periodicity condition. An illustrative example was shown for 

the Euler-Bernoulli beam. Causes of numerical errors occurring in the WFE results, i.e. FE 

discretisation error and error due to the round-off of inertia terms, were discussed. There is a 

trade-off between these two causes and the method using concatenating elements followed 

by condensation was proposed to alleviate this compromise. Approximate expressions for 

the dynamic condensation were derived to reduce the calculation cost.  
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    For general problems, conditioning of the eigenvalue problem is of concern and this was 

also discussed. The eigenvalue problem of the transfer matrix was reformulated using 

Zhong’s method. An application of SVD was proposed to reduce numerical errors in 

determining the eigenvectors. The conditioning problem was illustrated using an example of 

the plate strip. The effects of the size and the aspect ratio of elements on the conditioning 

were also shown to give a guideline for the meshing of an FE model. It was seen that the 

method using concatenating elements can greatly improve numerical errors in the WFE 

results, in particular, for general problems. 

    Three methods for numerically estimating the group velocity were described, i.e. the 

power and energy relationship, the finite difference method and the differentiation of the 

eigenvalue problem. The accuracies of these methods were shown using the example of the 

plate strip with simply-supported edges. A method using the power and energy relationship 

is recommended with respect to accuracy and calculation cost.  
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Figure 2.1: A section of a uniform waveguide. 

 

 

 

 

 

 

 

 

Figure 2.2: A section with an internal node. 

 

 

 

 

 

 

 

 

 

Figure 2.3: A series of sections. 
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Figure 2.4: Sign convention of an Euler-Bernoulli beam. 
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Figure 2.5: Predicted wavenumbers for the beam: (a) the propagating wave; (b) the nearfield wave; 
― real part, −− imaginary part, ···· analytical solution. 
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Figure 2.6: Relative error in the propagation wavenumber of the beam; ···· ( )4 2880kΔ . 
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Figure 2.7: Relative error in Bθ  of the beam. 
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Figure 2.8: (a) Single element; (b) concatenated elements. 
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Figure 2.9: Relative error in the propagation wavenumber of the beam: ― using one concatenated 
element; ···· using one element. 
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Figure 2.10: (a) Plate strip with simply-supported boundaries; (b) 4 element model. 
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Figure 2.11: Flexural waves in a plate strip with simply-supported edges. Dispersion curves:            
― analytical solution; ···· the WFE result using (a) the transfer matrix approach; (b) the 
conditioned eigenvalue problem. 
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Figure 2.12: Flexural waves in a plate strip with simply-supported edges. Dispersion curves using 

the 18 element plate strip ( )10x y mmΔ = Δ = : ― analytical solution, – – WFE result. 
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Figure 2.13: Condition numbers ( )LRκ D  as a function of a matrix size. 
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Figure 2.14: Ratio of κ  for the same matrix size as a function of the aspect ratio of an element. 
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Figure 2.15: Relative errors in the wavenumber for the i=1 wave mode: ― the 18 element; −·− 36 
element;  – – 90 element plate strip model with simply-supported edges.  
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Figure 2.16: Relative errors in y wθ  for the plate strip with simply-supported edges. Notation is 
same as Figure 2.15. 
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Figure 2.17: Relative errors in xz wτ  for the plate strip with simply-supported edges. Notation 
is same as Figure 2.15. 
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Figure 2.18: Relative errors in xz wτ  for the plate strip with simply-supported edges: ― the 
SVD approach; ····· the original approach. 
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Figure 2.19: Relative errors in xz wτ  for the plate strip with simply-supported edges: ····· the FE 
model with 90 elements; ― the concatenated FE model;  – – rectangular FE model. 



 
Chapter 2: Free Wave Propagation 

 
 

61 

10-2 10-1 100 101 102
102

104

106

108

1010

1012

1014

Ω

m
ax

 ( 
K ii / 

ω2 M
ii )

 

Figure 2.20: Maximum value of 2
ii iiK Mω  as a function of Ω  for the 90 element model of the 

plate strip with simply-supported edges. 
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Figure 2.21: Relative errors in xz wτ  for the plate strip with simply-supported edges:               
― dynamic condensation;  – – the second order approximation. 
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Figure 2.22: Relative errors in the estimates of the group velocity associated with the i=1 wave mode 
in the plate strip with simply-supported edges: ― power and energy relationship;      
– – finite difference;  −·− differentiation of the eigenproblem. 
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Chapter 3 

APPLICATION TO COMPLICATED 

STRUCTURES 
 

 

3.1 Introduction 

In this chapter, the WFE method described in chapter 2 is applied to determine free wave 

propagation characteristics in more complex structures. Complexities of waveguides are 

gradually increasing. Freely propagating waves in plate strips, a ring and cylindrical strips 

are considered. The WFE results are compared with analytical solutions or numerical 

solutions to analytical dispersion equations. There are two aims for this chapter. The first is 

to investigate the accuracy of the WFE predictions for more complicated structures. The 

second is to estimate the dispersion relations for situations in which analytical dispersions 

are difficult or impossible to obtain. 

    Complicated dispersion curves with such phenomena as curve veering, non-zero cut-off 

phenomena and bifurcations are illustrated. In-plane waves in plate strips are first analysed. 

Plate strips with mixed and free boundaries are considered. A method of decomposition of 

the power is introduced to reduce the size of matrices. Free flexural wave propagation in a 

plate strip with free boundaries is shown next including purely real, purely imaginary and 

complex wavenumbers. Predicted results are used to give initial estimates of solutions to a 

transcendental analytical dispersion equation, where numerical solutions are found to 

compare with the WFE results.  

    Freely propagating waves in a ring are then considered. The WFE modelling for curved 

structures used in this thesis is described. Free wave propagation in cylindrical strips is also 

considered. For cylindrical strips, waves in both the axial and the circumferential directions 

are described. The decomposition of the power is used to investigate wave characteristics. 

No damping is assumed throughout this chapter. 
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3.2 Qualitative Features of Dispersion Curves 

Complicated dispersion curves are illustrated in this chapter. Before presenting such 

dispersion curves some examples of qualitative behaviour of the wavenumbers, which will 

be shown in the successive sections, are described in this section. Figure 3.1 shows the 

behaviour of the wavenumbers associated with various phenomena in the complex k-plane in 

a particular frequency range. In the figures, the arrows represent the behaviour of the 

wavenumbers as frequency increases. The positive- and negative-going waves are illustrated 

and they exist in pairs for uniform waveguides. Although such an indication of the behaviour 

in the complex k-plane may not be common, it is helpful to understand behaviour of 

wavenumbers. 

    For the undamped beam described in chapter 2, the magnitudes of the four wavenumbers 

increase as shown in Figure 3.1(a). Two are real representing propagating waves, while the 

other two are imaginary representing evanescent waves. For the plate strip with simply-

supported boundaries, the wavenumbers are imaginary at 0ω =  and the magnitudes of two 

wavenumbers increase while the other two decrease as shown in Figure 3.1(b). Two 

wavenumbers become real at its cut-off frequency.  

    The wavenumbers may be initially complex (conjugates) as shown in Figures 3.1(c) and 

(d). The imaginary parts of the four complex wavenumbers may become zero with frequency 

as shown in Figure 3.1(c). This is the non-zero cut-on phenomena and four propagating 

waves cut-on at the cut-off frequency with non-zero real wavenumbers. The magnitudes of 

two real wavenumbers increase with frequency and those of the other two decrease. The 

wave for which the magnitude of real wavenumber decreases with frequency has a negative 

group velocity, i.e. although the phase velocity is positive the energy propagates in the 

negative direction.  

    Alternatively the real parts of complex wavenumbers may become zero instead as shown 

in Figure 3.1(d) and all the wavenumbers then become imaginary. The magnitudes of two 

imaginary wavenumbers increase while the other two decrease in the same manner as Figure 

3.1(b). 
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3.3 In-plane Waves in a Plate Strip with Mixed Edges 

In this section in-plane waves in a plate strip whose edges have mixed boundary conditions, 

e.g. [1], are considered. Longitudinal and shear wave modes are described.  

 

3.3.1 Analytical Dispersion Equation 

Consider a plate strip as shown in Figure 3.2. If the plane strain condition holds across the 

plate thickness, the governing equations for in-plane motion of a plate strip can be 

conveniently expressed in terms of potentials [1] such that 

 

 

2 2 2

1 12 2 2 2

2 2 2

2 22 2 2 2
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H H
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H H
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 (3.1) 

 

are the wave equations where 1H  and 2H  are potentials and 

 

 
( )21 ,L

S

c E

c G

ρ ν

ρ

= −

=
 (3.2) 

 

are the phase velocity associated with the longitudinal and shear waves respectively and G  

is the shear modulus.. The displacements are expressed by [1] 

 

 

1 2

1 2

,H Hu
x y

H Hv
y x

∂ ∂
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∂ ∂
∂ ∂

= −
∂ ∂

 (3.3) 

 

where ,u v  are the displacements in the x- and y-directions. Trial functions are assumed for 

the potentials such that the displacements and stresses can be obtained [1]. The in-plane 

displacements in the plate strip can in general be expressed as [1] 
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and A, B, C and D in equation (3.4) are constant. Various boundary conditions can be applied 

along the edges y b= ± . 

    Along the edges y b= ± , the mixed boundary conditions [1] are given by 

 

 
0,

0.xy
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u vG
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τ
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 (3.6) 

 

After substituting the boundary conditions (3.6) into equations (3.4) and writing the 

equations in matrix form in terms of the constants A, B, C and D, the determinant of the 

matrix gives analytical solutions to the dispersion equations such that [1] 
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The first equation of (3.7) is the analytical dispersion equation for the longitudinal wave 

( )0,1, 2m = L  and the second is for the shear wave ( )1, 2n = L . The m=0 wave mode is 

such that the x-wise motion across the plate strip has the same amplitude and is in phase. The 

wave mode is a rigid body motion at 0ω = . The m=1 and n=1 wave modes are associated 

with the half sine or cosine motion across the plate strip and higher wave modes are 

associated with higher order shapes across the plate strip [1]. The cut-off frequencies are 

given by equations (3.7) with 0xk =  such that  
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The group velocities associated with the longitudinal and shear waves are 
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3.3.2 WFE Results 

Freely propagating in-plane waves in the plate strip are predicted using the WFE method. 

The material properties and the dimensions such as the plate width, 2 0.18b = (m), were the 

same as those described in subsection 2.7.2 for the simply-supported condition. 36 elements 

( )5x y mmΔ = Δ =  were used across the plate strip. The DOFs associated with out-of-plane 

motion and the DOFs which are zero because of the boundary condition were removed. For 

the in-plane waves in a plate strip, the DOFs associated with zθ  (‘drilling stiffness DOFs’) 

were also removed to improve conditioning. 

     The dispersion curves of both the analytical solutions (3.7) and the WFE results are 

shown in Figure 3.3. The abscissa represents non-dimensional frequency  

 

 , 1c nω ω =Ω =  (3.10) 

 

and the cut-off frequencies occur at 1, 2,Ω = L  for the shear wave modes and 

( ) 0,1, 2, 1.7 0,1, 2,L Sc cΩ = × ≈ ×L L  for the longitudinal wave modes. The ordinate 

denotes the non-dimensional wavenumber 

 

 2 xk bξ π=  (3.11) 
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and wavenumbers for the mth and nth wave modes become jm−  and jn−  at 0Ω = . The 

value of 4ξ =  is such that 0.35x xk Δ =  and 0.43y yk Δ =  for the n=5 wave mode. In the 

frequency range of interest, three longitudinal and six shear wave modes cut-on. Good 

agreement can be seen between the analytical solutions and the WFE results especially at 

low frequencies and for lower ξ .  

    The group velocities calculated using the power and energy relationship are shown in 

Figure 3.4 for the first two longitudinal (m=0,1) and shear wave (n=1,2) modes. The ordinate 

represents the non-dimensional group velocity normalised by Sc  such that the group 

velocities of the shear wave modes tend to 1 while those of the longitudinal wave modes 

tend to 1.7L Sc c ≈  as frequency increases. Good agreement can be seen.  

 

3.3.3 Decomposition of Power  

It is of interest to determine how much power in a given wave mode is associated with each 

variable. This enables characteristics of a wave mode to be determined. It is also useful to 

determine the power to assist in selecting DOFs which might be removed or condensed. For 

the WFE results shown in the previous subsection, the DOFs associated with zθ  were 

removed. The smaller size of the matrix and removing matrix elements with largely different 

magnitudes in general improve conditioning. However, determination of those DOFs that 

can be removed or condensed is in general difficult. In this subsection a method of 

decomposition of the power is proposed.  

     The power associated with each wave mode can be numerically determined by 

{ }H1 Re
2

P = f q&  as shown in section 2.8. The value of Hf q  is a summation of the product of 

Hf  and q  for each DOF. If the value of Hf q  is nearly zero for a propagating wave, such a 

DOF can be considered to be less significant. Alternatively, Hf q  can be expressed as 

 

 H H
i iq q

i
=∑f q f q  (3.12) 
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where the subscript iq  denotes a group of DOFs associated with a certain variable such as u , 

v  and zθ . The value of H
i iq qf q  could represent them to what extent each variable contributes 

to the total power. 

    Figure 3.5 shows examples of the power decomposition for the m=0 and n=1 wave modes. 

The normalised power, H H
i iq qf q f q , is plotted for iq u= , v  and zθ . For the m=0 wave mode, 

the wave motion is dominated by only the longitudinal motion, u . The other two variables 

give powers that are of the order of machine precision and are very small. For the n=1 

(shear) wave mode, u  and v  are both significant in the frequency range shown. However, 

the power associated with zθ  is again very small. The values of H H
z zθ θf q f q  are very small 

also for higher wave modes. This implies that the DOFs associated with zθ  can be removed 

or condensed from the original dynamic stiffness matrix since they contribute to wave 

motions insignificantly. The reduction can be used if off-diagonal terms of the element 

matrices between the DOFs to be reduced and the other DOFs are zero. In other cases the 

dynamic condensation is recommended. For the element matrices formed in ANSYS, the 

off-diagonal terms between u , v  and zθ  were zero such that DOFs associated with zθ  can 

be removed.  

 

 

3.4 In-plane Waves in a Plate Strip with Free Edges 

In this section freely propagating in-plane waves in a plate strip with free edges are 

considered. The analytical dispersion equations are called the Rayleigh-Lamb frequency 

equations, e.g. [1,89,90]. The analytical dispersion equations are transcendental such that 

roots must be found numerically. The WFE results are used to predict the wavenumbers. 

These predictions are used as initial estimates for numerical solutions to the analytical 

dispersion equations so that the accuracy of the WFE results can be investigated. Muller’s 

method [91] is used to find numerical solutions to the analytical equations.  

 

3.4.1 Analytical Dispersion Equations 

Consider the plate strip shown in Figure 3.2. The free boundary conditions along the plate 

edges, y b= ± , are 
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where yσ  is the normal stress in the y-direction. The analytical dispersion equations can be 

derived in the same manner as that for the mixed boundary condition and are [1]  
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 (3.14) 

 

where 1+  corresponds to symmetric waves and 1−  corresponds to asymmetric waves and 

where α  and β  are defined by equations (3.5). These equations are transcendental and must 

be solved numerically. The cut-off frequencies for 0xk =  are given by equations (3.8), i.e. 

the same as the mixed boundary condition. For the free boundary condition, however, the 

n=0 wave mode can propagate such that , 0,1, 2m n = L .  

 

3.4.2 Dispersion Curves 

The plate strip was modelled in the same way as described in subsection 2.7.2 in which the 

material properties are also given. The number of elements was 90 ( )2x y mmΔ = Δ = . The 

DOFs associated with u  and v  were retained and the resulting number of DOFs was 364. 

Free wave propagation was predicted using the WFE method and the WFE results were also 

used to give initial estimates for numerical solutions to the analytical equations (3.14).  

     The wavenumbers can be purely real, purely imaginary or complex. To find numerical 

solutions to the analytical dispersion equation Muller’s method [91] or the argument 

principle [92] may be used. These methods are described in Appendix 2. Muller’s method is 

an interpolation method that uses quadratic interpolation. A complex root is found using a 

quadratic equation that passes through three points in the vicinity of an initial estimate. The 

method can be used to give numerical solutions with relatively cheap calculation cost when 

the initial estimates are close to the desired solutions. An alternative is the argument 

principle. This is related to the residue theorem and the number of roots in a region of the 

complex plane can be found by calculating the Cauchy integral along a contour enclosing the 
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initial estimate. In this subsection, Muller’s method is used to give numerical estimates to 

the analytical equations (3.14). The argument principle is used in the next section. 

    Dispersion curves for the plate strip with free edges are shown in Figures 3.6 and 3.7. 

Figure 3.6 shows the purely real and purely imaginary wavenumbers. In the figure, Ai or Si 

represents the asymmetric or the symmetric waves for the ith mode. Figure 3.7 shows the 

complex conjugate wavenumbers and Aij or Sij represents the asymmetric or symmetric wave 

mode associated with the i and jth pair of wave modes. The WFE results show very good 

agreement with numerical solutions to the analytical equations. Several important 

phenomena can be observed such as (1) curve veering, (2) non-zero cut-on and a 

corresponding negative phase velocity and (3) bifurcations from complex conjugate 

wavenumbers to two different purely imaginary wavenumbers. These are described in the 

next subsection. 

 

3.4.3 Physical Interpretation of Behaviour of Wavenumbers 

Curve veering occurs when two wave modes in the wave domain are not orthogonal to each 

other. The veering phenomena has been observed in many applications, e.g. [9397]. It can be 

seen that the dispersion curves for the symmetric and the asymmetric waves can cross each 

other but the dispersion curves for the symmetric waves never cross those for other 

symmetric waves due to veering. The same is true for the asymmetric waves. All the 

longitudinal wave modes change to shear wave modes at high enough frequencies and the 

phase speeds asymptote to that of the shear wave. It should be noted that the phase speeds of 

the first two waves, the 0S  and 0A  waves, however, approach that of the Rayleigh wave [98]. 

The Rayleigh wave is characterised by the displacements near free edges being large.  

    The displacements of the 0A  and 1A  wave modes at different frequencies are shown in 

Figure 3.8. It should be noted that the y-wise motion is 2π  out of phase from the x-wise 

motion. The wave mode in general changes with frequency especially when curve veering is 

observed. The 0A  wave mode can propagate over all frequencies. For the 0A  wave mode the 

plate strip deforms with transverse shear motion as shown in Figure 3.8(a). Displacements 

near the edges for the 0A  wave mode become large at high frequencies as shown in Figure 

3.8(b). The deformation, mainly in the longitudinal direction, is large only near the edges so 

that the wave mode approaches to the Rayleigh wave. Figure 3.8(c) shows the displacement 
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of the A1 wave mode at its cut-off frequency, 1Ω = . The shape of the A1 wave mode also 

varies with frequency as shown in Figure 3.8(d). 

    Non-zero cut-on phenomena can be seen at 1.59,2.95Ω ≈ . The wavenumbers change with 

frequency in the manner depicted in Figure 3.1(c), i.e. complex conjugate wavenumbers 

become two real wavenumbers at the cut-off frequency. Bifurcations from complex 

conjugate wavenumbers to two imaginary wavenumbers are observed at 3.96,4.76Ω ≈ . 

Such behaviour was illustrated in Figure 3.1(d). Figure 3.9 shows the loci of two 

wavenumbers against frequency in the complex ξ -plane. In Figure 3.9(a) complex conjugate 

wavenumbers (one of the wavenumbers with ( )Im ξ >0 is suppressed) become two purely 

real non-zero wavenumbers at 1.59Ω = . One of the real wavenumbers increases while 

another decreases. The latter becomes purely imaginary at 1.70Ω =  and the magnitude 

increases up to 1.82Ω = . The magnitude then starts decreasing and the wavenumber 

becomes 0 at 1.99Ω =  above which the wave propagates. Figure 3.9(b) represents the 

bifurcation around 3.96Ω =  where two imaginary wavenumbers arise. Complex conjugate 

wavenumbers (one of the wavenumber with negative ( )Re ξ  is suppressed) become purely 

imaginary non-zero wavenumbers. The magnitude of one of the wavenumbers increases 

while that of another decreases. The former then cuts-on at 4.00Ω = . The magnitude of the 

latter increases up to 4.23Ω =  then starts decreasing. The wavenumber becomes 0 at 

5.1Ω =  and the wave starts propagating.     

    Figure 3.10 magnifies the dispersion curves around the non-zero cut-off of the S1, S2 wave 

modes at around 1.59Ω = . The S1 wave has a bifurcation at point A and has a negative 

group velocity on the curve between points A and B. It should be noted that such a wave has 

a positive phase velocity but a negative group velocity. The positive-going wave has a 

positive group velocity but may have a negative phase velocity.  

    The group velocities predicted using the power and energy relationship are shown in 

Figure 3.11 for the symmetric wave modes and in Figure 3.12 for the asymmetric wave 

modes. The group velocities are normalised with respect to the shear wave speed and the 

longitudinal wave speed is such that 1.7L Sc c ≈ . The group velocities of the 0S  and 0A  

wave modes asymptote to that of the Rayleigh wave [89] which is 0.928R Sc c=  for 0.3ν =  

[2]. The group velocities of the other waves asymptote to that of the shear wave, Sc , at high 

enough frequencies. 
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3.5 Flexural Waves in a Plate Strip with Free Edges 

Free flexural waves in a plate strip with simply-supported edges were described in section 

2.7. Free flexural waves in a plate strip with free edges are considered in this section. In the 

literature, approximate solutions for the flexural vibration of a plate with free edges were 

determined using beam functions [99,100]. Waves propagating along the free edge, termed 

flexural Rayleigh edge waves, were discussed in [101105]. In particular, free wave 

propagation in a plate strip with free edges was described in [106] but only for propagating 

waves. The complete dispersion diagram including attenuating waves cannot be found in the 

literature to the author’s knowledge. The analytical dispersion equation is transcendental 

[106] and the solutions can be complex. The argument principle [92] was used to give 

numerical solutions of the analytical dispersion equation, using the WFE results as initial 

estimates, to compare the WFE results with those to the analytical dispersion equation. 

Outcome of this section has been presented in [72]. 

  

3.5.1 Analytical Dispersion Equation 

Consider the same plate strip shown in Figure 3.2. The out-of-plane displacement of the 

plate strip can be expressed as [106] 

 

 ( ) ( ) ( ){ }, yP yP yN yNx jk y jk y k b y k b yjk x
N Nw x y e a e a e a e a e− + − + − −− + − + −= + + +  (3.15) 

 

where a± , Na±  are wave amplitudes,  

 

 
2 2

2 2

,yP x
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k k

k k

γ

γ
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= +
 (3.16) 

and 

 2 2h Dγ ρ ω= . (3.17) 

 

The free boundary condition along the edges, y b= ± , are such that both the shear force and 

moment are zero [1] 
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( )

3 3

3 2

2 2

2 2

2 0,

0.

w w
y x y
w w

y x

ν

ν

∂ ∂
+ − =

∂ ∂ ∂

∂ ∂
+ =

∂ ∂

 (3.18) 

 

The first term contains the information about the shear force combined with the twisting 

moment (i.e. the Kirchhoff shear force [1]) and the second term gives the bending moment. 

Substituting the boundary conditions (3.18) into equation (3.15) gives  

 

 

2
1 1 2 2

2
1 1 2 2

2
2 2 1 1

2
2 2 1 1

0
0
0
0

yP yP yN

yP yP yN

yP yP yN

yP yP yN

jk b jk b k b

jk b jk b k b

jk b jk b k b
NyP yP yN yN

jk b jk b k b
NyP yP yN yN

e e e a
e e e a

ajk e jk e k e k
ajk e jk e k k e

μ μ μ μ

μ μ μ μ

μ μ μ μ

μ μ μ μ

− −
+

− − −

+− −

−− −

⎡ ⎤− − ⎡ ⎤ ⎡ ⎤⎢ ⎥ ⎢ ⎥ ⎢ ⎥− −⎢ ⎥ ⎢ ⎥ ⎢=⎢ ⎥ ⎢ ⎥ ⎢− −⎢ ⎥ ⎢ ⎥ ⎢⎢ ⎥ ⎢ ⎥ ⎣ ⎦⎣ ⎦− −⎣ ⎦

⎥
⎥
⎥

 (3.19) 

where 

 
( )
( )

2 2
1

2 2
2

1 ,

1 .
x

x

k

k

μ γ ν

μ γ ν

= − −

= + −
 (3.20) 

 

The analytical dispersion equation is derived by setting the determinant of the matrix (3.19) 

to zero such that, after some calculations, 

 

 ( ) ( ) ( ) ( )
2 2
2 1
2 2
1 2

sin 2 sinh 2 2cos 2 cosh 2 2 0yP yN
yP yN yP yN

yN yP

k k
k b k b k b k b

k k
μ μ
μ μ

⎛ ⎞
− + − =⎜ ⎟⎜ ⎟

⎝ ⎠
. (3.21) 

 

This expression, separated into symmetric and asymmetric motions, was described in [106].  

 

3.5.2 Purely Real Wavenumbers 

The same plate strip model used for predicting in-plane waves in section 3.4 was used. The 

number of elements across the plate strip was 90 ( )2x y mmΔ = Δ =  and the DOFs associated 

with in-plane motions were removed. The resulting number of DOFs was 546. The argument 

principle [92] was used to find numerical solutions to equation (3.21) with the WFE results 

being used as initial estimates. A criterion for the convergence was set to be within 0.1%  
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relative accuracy for both the real and imaginary parts of the wavenumbers xk  or within 

0.01  if the magnitude of either ( )Re xk  or ( )Im xk  is less than 0.01.  

    Figure 3.13 shows the dispersion curves for purely real wavenumbers. The abscissa is 

non-dimensional frequency  

 

 
2

2

4b h
D
ρ ω

π
Ω = . (3.22) 

 

The cut-off frequencies occur when ( ){ }22 2
, 0, 0,1.51 , 2.50 , 2 1 4c n nΩ = + L  ( )3, 4,5n = L  

[106]. The ordinate is the normalized wavenumber 

 

 2 xbkξ π= . (3.23) 

 

The WFE results agree very well with numerical solutions to the analytical dispersion 

equation. The wave modes can be categorised into symmetric and asymmetric motions, 

represented by iS  and iA  ( )0,1, 2i = L  respectively. For each wave mode, there are two 

waves associated with the same wave mode; one is for a wave which propagates at high 

frequencies and another is for a nearfield wave. Two wave modes associated with rigid body 

motions cut-on at 0Ω = . One is the symmetric mode (S0) and the other is the asymmetric 

mode (A0). They broadly represent translational (S0) and rotational (A0) motions of the cross-

section and bending and twisting wave modes respectively. The first six wave modes at 

37.4Ω =  are illustrated in Figure 3.14. The wave modes change with frequency. Figure 3.15 

shows the wave modes for the S0 and A0 modes at different frequencies. It can be seen that 

the displacements change with frequency especially near the plate strip edge. 

    The group velocities are shown in Figure 3.16. The group velocity is normalised with 

respect to that of the longitudinal wave, Lc . The group velocities are similar to those for the 

simply-supported edges except that the S0 and A0 wave modes. Referring to equations (2.88)

and (3.2), g L Lc c h cω≈  for cωω >>  and asymptotes to ω  at enough high frequencies. 
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3.5.3 Complex and Purely Imaginary Wavenumbers 

The dispersion curves for purely imaginary and complex wavenumbers are shown in Figure 

3.17. Only the wavenumbers with relatively small value of ( )Im ξ  are shown. Figure 

3.17(a) shows the dispersion curves for the symmetric wave modes and 3.17(b) for the 

asymmetric wave modes. The frequencies where a pair of purely imaginary wavenumbers 

bifurcates into a complex conjugate pair or vice versa are denoted by the dotted lines. The 

results using the WFE method show very good agreement with numerical solutions to the 

analytical dispersion equation. 

    Complex conjugate wavenumbers occur when two different wavenumbers get close and 

their wave modes in the wave domain are not orthogonal. Consider two wave modes iS , jS  

( )i j< . When 1, 2i j≥ ≥  and 1j i= +  (e.g. 1,2S  in Figure 3.17(a)), the two wave modes are 

associated with the complex conjugate wavenumber pairs at low frequencies (e.g. 3.1Ω < ). 

As frequency increases, the complex conjugate wavenumbers become two different purely 

imaginary wavenumbers at the bifurcation point (e.g. 3.1Ω = ). Above the bifurcation point 

the imaginary part of the iS  wave mode increases and is a rapidly decaying wave while that 

of the jS  wave mode decreases (e.g. 3.1 4.3< Ω < ). Eventually the propagating wave mode 

cuts-on at its cut-on frequency (e.g. 12.3Ω > ). The behaviour of the wavenumbers of the 

positive-going waves in the complex ξ -plane is illustrated in Figure 3.18(a).  

    Another case occurs for the two wave modes iS , jS  with 0, 2i j≥ ≥  and 2j i≥ +  (e.g. 

the 0,2S  wave mode). At very low frequencies, the wavenumbers associated with both the iS  

and jS  wave modes may be purely imaginary (with different wavenumbers, e.g. 

3.1 4.3< Ω < ). At the bifurcation point two pure imaginary wavenumbers become a complex 

conjugate pair (e.g. 4.3Ω = ). The complex conjugate wavenumbers again become purely 

imaginary at another bifurcation point (e.g. 5.2Ω = ). Above the bifurcation point, the same 

behaviour as that described in the previous case ( 1j i= + ) is observed. This phenomenon in 

the complex ξ -plane is illustrated in Figure 3.18(b). 

    The same discussion holds for the asymmetric wave modes, iA , jA . It should be noted 

that such phenomena occur only when both wave types are symmetric or asymmetric. Since 

the symmetric and asymmetric wave modes are orthogonal to each other in the wave domain, 

they are uncoupled. 
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    The shapes of the wave modes change rapidly around the bifurcation points. The wave 

modes indicated by i,ii, ,vL  in Figure 3.17(a) are illustrated in Figure 3.19. The wave modes 

below the bifurcation point 4.3Ω =  are associated with the S0 and S2 wave modes (Figure 

3.19(a)). At transition frequencies, 4.3 5.2< Ω < , the wavenumbers are complex and 

elements of the associated wave modes are also complex. That is, the displacements and 

forces are complex values, i.e. of the form jα β±  or jα β± + , associated with the complex 

conjugate wavenumber pairs. The real and imaginary parts of the displacements associated 

with the complex conjugate wavenumbers are therefore shown in Figure 3.19(b). The 

displacements were normalised such that the displacements are in the form jα β± . Above 

the other bifurcation point 5.2Ω = , the two wave modes are similar to their original shapes 

(Figure 3.19(c)).  

    The change of the S2 wave mode is now described. At low frequencies where the S2 wave 

mode is associated with purely imaginary ξ , antinodes are located around 0, 0.66y b= ±  

(Figure 3.19(a)). At the transition frequencies where the wavenumber ξ  becomes complex, 

antinodes are observed along 0,y b= ±  and also 0.64y b= ±  with phase difference (Figure 

3.19(b)). The wavenumber again becomes purely imaginary above the transition frequencies 

and antinodes are observed along 0, 0.6 ,y b b= ± ±  (Figure 3.19(c)). Above the cut-off 

frequency where the S2 wave mode propagates with purely real wavenumber, the antinodes 

are along 0, 0.53 ,y b b= ± ±  with the maximum displacement being at the edges of the plate 

strip, y b= ±  as shown in Figure 3.14(a). 

 

 

3.6 Waves in a Ring 
In this section, freely propagating waves in a thin ring are considered. FE modelling of a 

curved structure is discussed. The WFE results are compared with analytical solutions. 

Coupling between the wave modes due to curvature is described. 

 

3.6.1 Analytical Expressions 

The analytical dispersion equation for a ring as shown in Figure 3.20 is derived. In the figure 

R is the mean radius of the ring, ,r s  are the axes of the coordinates and w  and u  are the 

translational displacements in the r - and s -directions. 
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    According to Flugge’s theory [107,108], the equation of motion is 

 

 

4 2 2
2

4 2 2 4 2

2 2

2 2

2 ,

1

w w w EA w u wEA A
s R s R R R s t

u w uEA A
s R s t

γ ρ

ρ

⎛ ⎞∂ ∂ ∂ ∂⎛ ⎞− + + − + =⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠⎝ ⎠
⎛ ⎞∂ ∂ ∂

+ =⎜ ⎟∂ ∂ ∂⎝ ⎠

 (3.24) 

 

where I Aγ =  is the radius of gyration of the cross-section of the ring. Substituting the 

translational displacements  

 

 
,jks j t

w
jks j t

u

w C e e

u C e e

ω

ω

−

−

=

=
 (3.25) 

 

into equation (3.24) gives 

 

 ( )
2 22 2 2 2

12

2 2 2 2
1

01 1
0

wL

u
L

Ck R k R jkR
R CjkR k R k R

γ⎡ ⎤
⎡ ⎤ ⎡ ⎤− + − −⎢ ⎥ =⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎣ ⎦⎣ ⎦−⎢ ⎥⎣ ⎦

 (3.26) 

 

where 2 2
1Lk Eρω=  is the quasi-longitudinal wavenumber [1]. The analytical dispersion 

equation can be obtained by setting the determinant of the matrix (3.26) to zero and is [109] 

 

 ( ) ( ) ( )6 2 2 4 4 4 2 2 2 4 2 2 4 2 4
1 1 1 12 2 0L B L L B L Bk k k k k k k k k kκ κ κ κ κ− + + − + − + − =  (3.27) 

 

where 1 Rκ =  is the curvature and 4 2
Bk A EIρ ω=  is the bending wavenumber for a straight 

beam. The cubic frequency equation (3.27) can be solved analytically [110]. For the limiting 

case 0κ → , equation (3.27) becomes 

 

 ( )( )( )2 2 2 2 2 2
1 0L B Bk k k k k k− − + =  (3.28) 

 

such that the resulting wavenumbers are same as those in a straight Euler-Bernoulli beam. 
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    The ring frequency for the curved beam, rbω , is determined from equation (3.27) for 

0k =  such that 

 

 2 2
1 1rb Lcω κ γ κ= +  (3.29) 

 

where 1Lc E ρ=  is the phase speed of the quasi-longitudinal wave. The waves approach 

those of a straight beam above the ring frequency and curvature typically affects wave 

behaviours for rbω ω<  [1,11,107]. As 0ω → , the wavenumbers asymptote to 

 

 0, 1k k R= = ±  (3.30) 

 

and there are two non-zero wavenumbers. For 1k R= ± , the wavelength is 2 Rλ π=  and 

these describe the rigid body motion of the ring. 

 

3.6.2 WFE Modelling of Curved Structures 

There are several ways to model curved structures using conventional FE. The most common 

approach is to use many small flat (straight) elements to represent the curvature of structures. 

This approach is used in this thesis.  

    For general FEA curved elements may be used instead, e.g. [77]. However, curved 

elements may not be available for general elements such as shell or solid elements due to 

effects such as the locking problem [111]. The use of mid-side nodes elements is an 

alternative but some numerical problems are reported although the reasons are not fully 

understood in terms of  the application of the mid-side node elements to the analysis of the 

wave propagation [69,112]. If the conditioning is not a matter, single element can be used by 

rotating its local coordinates at both ends [65]. 

    Flat or straight elements are therefore used to model curved structures in this thesis. For 

the ring, two, straight, thin beam elements can be connected with their local coordinates 

being rotated through an angle ( )s RφΔ = Δ  (rad) as shown in Figure 3.21. The DOFs 

associated with internal nodes can be dynamically condensed in the same manner as that 

described in subsections 2.2.1 and 2.5.2. This WFE modelling using the internal nodes can 
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improve the conditioning at low frequencies as described in chapter 2 as round-off of inertia 

terms can be improved. 

    For curved structures, cylindrical coordinates may be used. The change of basis from 

Cartesian to cylindrical coordinates is given by 

 

 
T

LL LR L LL LR L

RL RR R RL RR Rcy Ca

⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤
=⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥

⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦

D D Θ 0 D D Θ 0
D D 0 Θ D D 0 Θ

 (3.31) 

 

where the subscripts cy and Ca represent the cylindrical and Cartesian coordinates 

respectively and ,L RΘ  is the transformation (rotation) matrix whose elements contain either 

trigonometric functions, 0 or 1. For the WFE model shown in Figure 3.21, the 

transformation of [ ]Tu w θ  at the left hand side of the section can be expressed as 

 

 
( ) ( )
( ) ( )

cos sin 0
sin cos 0

0 0 1
L

φ φ
φ φ

Δ Δ⎡ ⎤
⎢ ⎥= − Δ Δ⎢ ⎥
⎢ ⎥⎣ ⎦

Θ  (3.32) 

 

and RΘ  for the right hand side of the section is formed in the same manner by replacing φΔ  

with  φ−Δ . 

  

3.6.3 WFE results 

The ring is modelled using a one-dimensional, straight, thin beam element, BEAM3, which 

has 3 DOFs at each node. A section subtending an angle 2 10( )s mmΔ =  ( )2 1.9s RΔ = °  at 

the centre of the ring was modelled using two elements as shown in Figure 3.21. The 

material properties of the ring are chosen such that 112.0 10E = ⋅ , 7800ρ = , 0.3,R =  

31.8 10h −= ⋅  and 118.748 10I −= ⋅  ( )45.2 10γ −= ⋅ , all in SI units. 

    The dispersion curves are predicted using the WFE method and the results are compared 

with the analytical solutions as shown in Figure 3.22. The abscissa represents the non-

dimensional frequency  
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 rbω ωΩ =  (3.33) 

 

and the ordinate shows the non-dimensional wavenumber kR . Figure 3.22(a) shows the 

magnitude of the real part of kR  and Figure 3.22(b) shows that of the imaginary part. The 

wave modes i=1,2,3 are associated with predominantly longitudinal, flexural propagating 

and flexural nearfield wave modes respectively. The WFE results using the straight elements 

show good agreement with the analytical solutions. At low frequencies, the i=1,3 waves 

couple due to the curvature and the wavenumbers become a complex conjugate pair. At the 

ring frequency ( 1Ω = ), the longitudinal wave (i=1) cuts-on. Above the ring frequency two 

waves (i=1,2) can propagate and one wave (i=3) is a nearfield. 

    The relative error is shown in Figure 3.23. Figure 3.23(a) shows the relative error in the 

i=1 wavenumber and (b) shows that in the i=2 wavenumber. The relative errors are 

compared with those for a straight beam. The abscissa for the straight beam was normalised 

using equation (3.33) using the same ring frequency for the purpose of comparison. The 

relative error in the bending wavenumber was shown in subsection 2.4.3 and that in the 

quasi-longitudinal wavenumber can be found in [70]. It can be seen that at high frequencies 

where the wave coupling becomes small ( )1Ω > , the relative errors for a curved beam 

asymptote to those for a straight beam. Three peaks in Figure 3.23(a) are associated with the 

two bifurcations and the cut-off frequency. At low frequencies, where the waves are strongly 

coupled, the relative errors for a curved beam are relatively large due to geometry 

approximation using straight elements but the relative errors are still at the most 1% and are 

very small.  

 

 

3.7 Waves in Cylindrical Strips 

Free wave propagation in thin, isotropic cylindrical strips is considered in this section. 

Waves in both the longitudinal and the circumferential directions are considered. Flugge’s 

theory [11,108] is used to give the analytical equations. Dispersion curves are found using 

both the WFE method and the analytical dispersion equations. The decomposition of the 

power described previously is used to investigate wave characteristics.  
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3.7.1 Analytical Equations for Waves in the Axial Direction 

Consider the cylinder shown in Figure 3.24. The Kirchhoff-Love assumption [108] is used 

for a thin cylinder. Based on the Flugge’s theory, the equation of motion can be expressed in 

matrix form as [108] 

 

 
u
v
w

⎡ ⎤
⎢ ⎥ =⎢ ⎥
⎢ ⎥⎣ ⎦

L 0  (3.34) 
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with 

 
2

2
2

,

.
12

x
R

h
R

ξ

χ

=

=
 (3.36) 

 

Substituting the displacements of the cylinder [113] 

 

 

( ) ( )

( )
( )

*

*

*

2cos ,

sin ,

cos

jk j j t
u

jk j t
v

jk j t
w

u C n e e
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ξ π ω

ξ ω

ξ ω

φ

φ

φ

− +

−

−

=

=

=

 (3.37) 
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where *k kR=  into equation (3.34) gives 
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  (3.38) 

 

where 

 rω ωΩ =  (3.39) 

and 

 
( )2

1
1r
E

R
ω

ρ ν
=

−
 (3.40) 

 

is the ring frequency. 

    The dispersion equation can be found by setting the determinant of the matrix in equation 

(3.38) to zero and it becomes  

 

 *8 *6 *4 *2
3 2 1 0 0k a k a k a k a+ + + + =  (3.41) 

 

where ia  are coefficients determined from equation (3.38). This quartic equation in *2k  can 

be solved analytically [11,110] such that the dispersion relationships can be determined for 

each value of n ( )0,1, 2n = L  which describes the wave mode of the cross-section or the 

circumferential mode order. The wave modes are separated into three groups, breathing 

(n=0), bending (n=1) and circumferential ( )2n ≥  modes [114]. 

    There are 8 roots of the frequency equation (3.41) for each n and these are 4 positive- and 

negative-going wave pairs. At high enough frequencies, the waves become flexural 
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propagating (i=1), shear (i=2), extensional (i=3) and flexural nearfield (i=4) wave pairs 

[113,114]. 

 

3.7.2 WFE Results 

A short section of the cylinder with an axial length xΔ =5mm was modelled as shown in 

Figure 3.25. The SHELL63 element was used to model the cylindrical strip. 36 elements 

were used to model the cross-section and the length of elements in the φ -direction, 

φΔ =17.5mm. The properties of the cylinder are assumed to be 112.0 10E = ⋅ , 0.3ν = , 

7800ρ = , 31.8 10h −= ⋅  and 0.1R =  ( )0.018h R = , all in SI units.  

    The dispersion curves for purely real wavenumbers of the predominantly flexural 

propagating (i=1) wave modes are shown in Figure 3.26. Only the n=0,1,2,3,6,10,14 wave 

modes are plotted for clarity. Reasonable agreement for small n can be seen. The value of 

20kR =  is associated with 1x xk Δ =  such that the wave change over the section is small 

( )1x xk Δ < . The FE discretisation error across the cross-section is, however, large for higher 

wave modes. For the n=6 wave mode, the number of elements per the wavelength in the 

circumferential direction is 6 so that the accuracy could be expected to be reasonably good 

for the wave modes associated with 6n ≤ . For higher wave circumferential order modes the 

number of elements per wavelength decreases so that FE discretisation error increases. For 

example, for the n=10 wave mode there are only 3.6 elements in one wavelength and 

relatively larges error can be seen.  

    The behaviour of the wavenumbers changes drastically around the ring frequency, 1Ω = , 

where the wavelength of an extensional wave equals the circumference of the cylinder. 

Above the ring frequency, 1Ω > , the response of the cylinder is similar to that of a flat thin 

plate while below the ring frequency the response is far more complicated due to the 

increasing effect of the curvature of the cylinder [114]. The cut-off frequencies of the 

flexural waves are approximately [114,115] 

 

 2
, , 2c n n nχΩ ≈ ≥  (3.42) 

 

where χ  is defined in equation (3.36) and in this example 35.2 10χ −= ⋅ . 
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    Figure 3.27 shows the dispersion curves for purely real wavenumbers of the shear (i=2) 

and extensional (i=3) wave modes. The i=2, n=0 wave mode propagates for all frequencies 

and the i=3, n=0 wave mode cuts-on at the ring frequency, 1Ω = . Higher wave modes cut-

on at higher frequencies. 

    Figure 3.28 shows various imaginary and complex dispersion curves for the flexural 

propagating (i=1) and shear (i=2) wave modes. All the i=1,2 type wavenumbers for 1n ≥  are 

complex below the bifurcation points (e.g. 0.18Ω =  for the n=6 wave mode). Above the 

bifurcation points the complex wavenumbers become two different purely imaginary 

wavenumbers and the i=1,2 wave modes cut-on at their cut-off frequencies (e.g. 0.19Ω =  

for the i=1, n=6 wave mode).  

    Figure 3.29 shows similar dispersion curves for the predominantly extensional (i=3) and 

flexural nearfield (i=4) wave modes. All the i=3,4 types wave numbers are complex 

conjugate pairs below the bifurcation points. Similar bifurcations as in Figure 3.28 can be 

seen but only the i=3 wave modes cut-on as the i=4 modes are the flexural nearfield waves. 

For example, for the i=3,4 (n=0) wave mode, complex conjugate wavenumbers bifurcate to 

two purely imaginary wavenumbers at 0.96Ω =  and the i=3 type wavenumber becomes 

purely real at 1.0Ω = . The WFE results are seen to be less accurate especially at around the 

bifurcations. The curve which is not close to the bifurcation shows better agreement even if 

kR  is larger than that at the bifurcation. The large errors around the bifurcations are believed 

to be due to both the FE discretisation and geometrical approximation errors. Although the 

contribution of each cause is not clear, it is believed that such approximations associated 

with the WFE modelling dominate the error around the bifurcation points.  

 

3.7.3 Investigation of Wave Modes using Decomposition of Power 

The group velocities using the power and energy relationship for the predominantly flexural 

(i=1) wave modes are shown in Figure 3.30. The group velocities are normalised with 

respect to that of the extensional wave, Lc . It can be seen that the flexural waves associated 

with lower order wave modes show extensional or torsional behaviour at low frequencies 

due to the wave coupling. This is because the wavelengths both in the axial and 

circumferential directions are long such that vibrational energy is associated not only with 

the flexural motion but also with the extensional and torsional motions. For higher wave 

modes and at high frequencies for lower wave modes, the flexural motion become dominant 
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as the wavelength becomes shorter, which can be typically seen above the ring frequency. 

Figure 3.31 shows the group velocities for the predominantly shear (i=2) and extensional 

(i=3) waves. For the purely shear waves in an isotropic plate, the group velocity 

( )1 2 0.59s Lc c ν= − ≈ . The group velocities illustrate the change of wave characteristics 

with frequency and the coupling behaviour. At enough high frequencies 1>>Ω  the group 

velocities associated with the i=2 wave modes asymptote to that of the shear wave, 

0.59g Lc c ≈  and the group velocities associated with the i=3 wave modes asymptote to that 

of the longitudinal wave, 1g Lc c = . 

    Such changes of the wave characteristics may be also investigated by evaluating the 

power associated with various kinds of variables. The power associated with the flexural, 

torsional and extensional motions are analytically discussed in [113]. The total time-

averaged power can be expressed as [113] 

 

 f ex toP P P P= + +  (3.43) 

where 
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∫

 (3.44) 

 

are the powers associated with the flexural, extensional and torsional motions respectively. 

The superscript *⋅  is the complex conjugate and xm  is the moment along the x-axis. In 

reference [113] a simplified Flugge’s equation [116], which neglects stress distribution over 

the thickness in the stress-strain relationship, is used. Instead, Flugge’s equation including 

stress distribution over the thickness [116] is used here to give more accurate results even for 

higher order wave modes. Following the same procedure as that in [113], each power 

component can be obtained for the n=0 wave mode, after some calculations, as 
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where the two terms represent flexural and extensional contributions and where 
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and 
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 (3.47) 

 

for the 0n ≠  wave modes, the final term involving the torsion contribution.  

    Figure 3.32 shows the magnitude of power ratios associated with , ,f ex toP P P  to the total 

power P  of the i=1 (n=0-3) wave modes calculated using equations (3.45) and (3.47). The 

figures clearly show that the wave characteristics change around the ring frequency. For the 

n=0 (breathing) mode (Figure 3.32(a)), extensional motion dominates the wave motion at 

low frequencies while torsional (shear) motion dominates the wave for the 1n ≥  (bending 

and circumferential) modes. For all the flexural propagating waves, the flexural motion 

dominates above the ring frequency. It should be noted that although the total power is 

positive for a positive-going wave, an individual contribution to the total power may be 

negative. This is the reason why the power ratio sometimes exceeds unity in Figure 3.32. 

    To numerically investigate the changes of the wave characteristics found from WFE 

analysis, the decomposition of the power described in subsection 3.3.3 was used. The power 

ratios associated with each displacement component are shown in Figure 3.33. Each power 

component is normalised with respect to the total power. If the flexural motion dominates 
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the power, the powers associated with ,rq qφ , ,r φθ θ  are likely to be dominant. For the 

extensional motion, only xq  is generally substantial. For the torsional motion, , ,r xq qφ θ  are 

associated with the motion but only ,rq qφ  are often significant. “Noise” in the plots is 

believed to be due to numerical errors. It can be observed that the decomposition of the 

power can broadly describe the characteristics of each wave. 

 

3.7.4 Analytical Equations for Waves in the Circumferential Direction 

In this section, a strip along the axis of the cylinder is modelled and free wave propagation in 

the circumferential direction of the cylindrical strip is considered as shown in Figure 3.34. 

The cylinder is assumed to be finite and of length yL . The boundary conditions along the 

edges of the strip 0, yy L=  are taken to be [117] 

 

 0y yw m u σ= = = = . (3.48) 

 

    For these boundary conditions, the displacements along the length of the cylinder are 

approximately expressed as [117] 
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 (3.49) 

where 

 s Rφ =  (3.50) 

 

is the non-dimensional parameter for the direction of wave propagation and 

 

 y yk n Lπ=  (3.51) 

 

is the wavenumber in the y-direction for the nth wave mode. It should be noted that the 

displacements (3.49) are approximate expressions and the displacements do not exactly 
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satisfy the stress and displacement fields at the boundaries [117]. Substituting equation 

(3.49) into the governing equation (3.34) gives 

 

( ) ( ) ( ) ( )

( )
( ) ( )

( )

( )
( )

2 2 2

2 2
2

2

2 32 2

2
2 22

2

2 2 4 2 22 3

2 2

2 2

1
1 3 1 32

2 2

1
11 2

12
2

2
3

12
2

y
y

y y

y

y

y

y
y

y

y

k k jk
j kk j Rk k

R
R

k Rkk
Rj kk

Rkkk
R

k R k k k kRkjk Rj Rkk
R

Rkk

ν
χ ν ν

χ

νν χχν
ν

χ

ν χχν
χ

ν
χ

⎛ − ⎞
− − +⎜ ⎟ + −
⎜ ⎟ − − −
⎜ ⎟Ω

+⎜ ⎟
⎝ ⎠

⎛ − ⎞ ⎛ ⎞− −− +⎜ ⎟ ⎜ ⎟+
⎜ ⎟ ⎜ ⎟

−⎜ ⎟Ω ⎜ ⎟+− + ⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠
⎛ ⎞ + ++⎜ ⎟−
⎜ ⎟− −

−⎜ ⎟−⎜ ⎟
⎝ ⎠

( )
( )

4

2 2
2 2

2 2

0
0
0

1
2

u

v

w

y

y

C
C
C

k
R R
χ

χ

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥

⎧ ⎫ ⎧ ⎫⎢ ⎥⎪ ⎪ ⎪ ⎪⎢ ⎥ =⎨ ⎬ ⎨ ⎬⎢ ⎥⎪ ⎪ ⎪ ⎪⎢ ⎥⎩ ⎭ ⎩ ⎭
⎢ ⎥
⎢ ⎥⎛ ⎞⎢ ⎥⎜ ⎟⎢ ⎥⎜ ⎟+ Ω⎢ ⎥⎜ ⎟+ − −⎢ ⎥⎝ ⎠⎣ ⎦

    (3.52) 

 

The analytical dispersion equation can be derived by setting the determinant of the matrix in 

equation (3.52) to zero and has the same form as equation (3.41). The dispersion equation 

can be solved for each value of ( )yk n . 

 

3.7.5 WFE Results 

The WFE model was formed as shown in Figure 3.35. The properties of the cylinder are the 

same as in subsection 3.7.2 with 0.18yL = . A section subtending an angle 2 1.9φΔ = °  at the 

centre of the cylinder was modelled. The SHELL63 element was used and the number of the 

elements along the length of the cylinder was 36. The length of each element was such that 

5y mmφΔ ≈ Δ = . The series of elements was connected using a rotation of local coordinate 

systems to represent the curvature as described in subsection 3.6.2.  

    The dispersion curves for purely real wavenumbers are shown in Figure 3.36. The 

abscissa is the non-dimensional frequency rω ωΩ = , equation (3.39), and the ordinate is 

( )Re kR . The value of 20kR =  is associated with 1k φΔ = . Seven flexural (n=1-7) and two 

shear (n=0,1) wave modes cut-on in the frequency range analysed. Good agreement between 

the (approximate) analytical solutions and the WFE results can be seen especially for small n. 

Below the ring frequency, 1Ω < , complicated behaviour is observed because of wave 
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coupling due to the curvature. Frequency region in which the group velocity is negative can 

be found for all the flexural waves shown. Such behaviour was also reported by Langley 

[118,119]. 

    It could be worth noting that kR n=  ( )0,1, 2n = L  is associated with the nth 

circumferential wave modes. For the n=1, i=1 wave mode the first natural frequency is 

associated with the fifth circumferential mode. It is of interest to investigate the 

characteristics of each wave mode. Figure 3.37 shows the power ratio associated with each 

displacement component for the i=1, n=1 flexural propagating wave mode. Figure 3.37(a) 

shows the power associated with each displacement component for the branch of the 

dispersion curve between points A and B in Figure 3.36 and (b) shows the same results for 

the branch between points A and C. Between points A and B, the wave is inherently flexural 

because the power is mainly associated with rq  and yθ . On the other hand, shear motion 

dominates the behaviour of the wave between points A and C where the powers associated 

with qφ  and yq  are significant. Physically, a flexural wave couples with the in-plane motion 

in curved structures when the wavelength is long (small k ). As the wavelength becomes 

shorter (large k ), the coupling effect becomes smaller and the wave approaches a purely 

flexural wave.  

    Figure 3.38 shows the purely imaginary and complex conjugate wavenumbers associated 

with the predominantly flexural propagating (i=1) waves for n=1-3, the predominantly 

extensional (i=3) wave for n=1 and the predominantly flexural nearfield (i=4) wave for n=1. 

For the i=1,2 wave modes, the imaginary part of the complex conjugate wavenumbers 

becomes 0 at the cut-off frequency and two propagating waves cut-on (e.g. at 0.17Ω =  for 

the i=1, n=1 wave mode). The real part of the wavenumber is not zero at this cut-off 

frequency (e.g. 4.5kR = ). The i=3 and i=4 wave modes are also complex conjugate pairs at 

low frequencies (e.g. at 0.18Ω =  for the i=3,4, n=1 wave mode) and bifurcate into two 

different purely imaginary wavenumbers.  

    Figure 3.39 shows the dispersion curves for purely imaginary and complex wavenumbers 

associated with the i=2 (n=1,3,5) and the i=3 (n=1) wave modes, which have symmetric 

motion across the length of the cylinder. The bifurcations of the complex conjugate and 

imaginary wavenumbers can be seen between wave modes associated with different values 

of n. The approximate analytical solutions cannot express such behaviour because they 
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assume that wave modes associated with different values of n are orthogonal, see equation 

(3.49). Only the WFE results are therefore shown.  

    Similarly, Figure 3.40 shows the dispersion curves associated with the asymmetric wave 

modes. The waves for i=2 (n=2,4,6) and i=3 (n=2) are shown. In addition to the bifurcations, 

curve veering between two different purely imaginary wavenumbers can be observed. Such 

curve veering and bifurcations can occur between two different purely imaginary 

wavenumbers whose wave modes are not orthogonal to each other in the wave domain.  

 

 

3.8 Conclusions 

In this chapter, the WFE method was used to predict free wave propagation in complicated 

structures. The dispersion curves were shown for purely real, purely imaginary and complex 

wavenumbers. The WFE results were compared with either analytical solutions or numerical 

solutions to analytical dispersion equations. Good agreements were observed and the 

accuracy of the WFE results was evaluated.  

    Freely propagating in-plane waves were analysed for plate strips with mixed and free 

edges. In particular, numerical solutions to the Rayleigh-Lamb frequency equations were 

calculated using Muller’s method using the WFE results as initial estimates. Complicated 

behaviour of the wavenumbers was observed including phenomena such as non-zero cut-on 

and curve veering. A method of decomposition of the power was proposed to reduce the size 

of the matrix and to reveal the nature of energy flow associated with each wave mode.  

    Freely propagating flexural waves in a plate strip with free edges were also described. The 

analytical dispersion equation is transcendental and the argument principle was used to give 

numerical solutions to the analytical equation using the WFE results as accurate initial 

estimates. Bifurcations associated with purely imaginary and complex conjugate 

wavenumbers were seen. Changes of wave modes around the transition frequencies were 

also illustrated.  

    The WFE modelling of curved structures was described using straight or flat elements. 

Free wave propagation in a ring was considered and wave coupling due to the curvature was 

described. Free wave propagation in a cylinder was also analysed for strips cut from the 

cylinder in either the axial or circumferential direction. Decomposition of the power was 

used to investigate wave characteristics.  
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Figure 3.1: Loci of wavenumbers in the complex k-plane.  
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Figure 3.2: Coordinates of a plate strip.  

 

 

0 1 2 3 4 5 6
−4

−3

−2

−1

0

1

2

3

4

Ω

Im
(ξ

) 
   

   
   

   
   

   
   

   
   

 R
e(

ξ)

 

Figure 3.3: In-plane waves in a plate strip with mixed edges. Dispersion curves: ― analytical 

solutions; – – WFE results. 
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Figure 3.4: In-plane waves in a plate strip with mixed edges. Group velocities: ― analytical 
solutions; – – WFE results. 
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Figure 3.5: In-plane waves in a plate strip with mixed edges. Normalised power associated with      

―: u , – –: v , ······: zθ  for (a) the m=0; (b) the n=1 wave mode. 
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Figure 3.6: In-plane waves in a plate strip with free edges. Dispersion curves for purely real and 
purely imaginary wavenumbers: ― WFE results; numerical solutions to the analytical 
equations for ○ symmetric; △ asymmetric wave modes. 
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Figure 3.7: In-plane waves in a plate strip with free edges. Dispersion curves for complex 
wavenumbers: ― WFE results; numerical solutions to the analytical equations for         
○ symmetric; △ asymmetric wave modes. 
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Figure 3.8: In-plane waves in a plate strip with free edges. Displacements across the plate strip for  
(a) A0  ( )0Ω ≈ , (b) A0 ( )4Ω ≈ , (c) A1 ( )1Ω ≈ , (d) A1 ( )4Ω ≈  wave modes: ― y-wise;      
– – x-wise displacement. y-wise motion is 2π  out of phase from the x-wise motion. 
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Figure 3.9: In-plane waves in a plate strip with free edges. Wavenumbers in the complex ξ -plane,     
(a) S1,2 waves and non-zero wavenumber cut-on, (b) S3,4 waves and bifurcation to two purely 
imaginary wavenumbers. 
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Figure 3.10: In-plane waves in a plate strip with free edges. Dispersion curves around the non-zero 

cut-off frequency for the S1, S2 wave modes: ― purely real; – – purely imaginary;               

−·− complex wavenumbers. 
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Figure 3.11: In-plane waves in a plate strip with free edges. Group velocities for the symmetric wave 

modes, – –: ( )0.928 0.3R Sc c ν≈ = . 
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Figure 3.12: In-plane waves in a plate strip with free edges. Group velocities for the asymmetric 

wave modes, – –: ( )0.928 0.3R Sc c ν≈ = . 
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Figure 3.13: Flexural waves in a plate strip with free edges. Dispersion curves for purely real 

wavenumbers for ― symmetric and – – asymmetric wave modes; ○ numerical solutions to 
the dispersion equation. 
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Figure 3.14: Flexural waves in a plate strip with free edges. Displacements across the plate strip at 
37.4Ω =  for (a) symmetric, (b) asymmetric motions: ― the S0, A0; – – the S1, A1; ···· the S2, 

A2 wave modes. 

 

−1 0   −0.5
0.3

1

1.3

y/b

di
sp

la
ce

m
en

t

−1 0   −0.5
0

0.5

1

y/b

di
sp

la
ce

m
en

t

 

Figure 3.15: Flexural waves in a plate strip with free edges. Displacements in a half of the plate strip 
at ― 0.7Ω = ; – –  37.4Ω =  for: (a) the S0, (b) A0 wave modes.  
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Figure 3.16: Flexural waves in a plate strip with free edges. Group velocities for ― symmetric;          

– – asymmetric wave modes. 
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Figure 3.17: Flexural waves in a plate strip with free edges. Dispersion curves for purely imaginary 

and complex conjugate wavenumbers: (a) symmetric; (b) asymmetric wave modes;              

○ numerical solutions to the dispersion equation. 
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Figure 3.18: Flexural waves in a plate strip with free edges. Loci of the wavenumbers for positive 

going waves in the complex ξ -plane for the ,i jS  mode: (a) 1, 2, 1i j j i≥ ≥ = + ;                  

(b) 0, 2, 2i j j i≥ ≥ ≥ + . Arrows indicate loci of wavenumbers as frequency increases. 
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Figure 3.19: Flexural waves in a plate strip with free edges. Displacements along the plate width at 
various frequencies: (a) ― i, – – ii at 3.59Ω = ; (b) −·− (real part), ···· (imaginary part) 
for iii at 4.71Ω = ; (c), – – iv, ― v at 6.28Ω = . 
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Figure 3.20: Coordinates of a ring. 
 

 

 

 

 

 

 

 

 

 

Figure 3.21: Modelling of the ring using straight elements. 
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Figures 3.22: Waves in a ring. Dispersion curves for the modulus of (a) the real part, (b) the 
imaginary part: ― analytical solutions; ···· WFE results. 
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Figures 3.23: Waves in a ring. Relative errors in (a) the i=1; (b) the i=2 wavenumbers for ― a 
curved beam; – – a straight beam. 
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Figure 3.24: Coordinates of a cylinder. 
 

 

 

  
Figure 3.25: WFE model of an axial section of the cylinder. 
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Figure 3.26: Dispersion curves for the predominantly flexural (i=1) waves in a cylinder, 

n=0,1,2,3,6,10,14: ― analytical solutions; – – WFE results. 
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Figure 3.27: Dispersion curves for the predominantly shear (i=2) and extensional (i=3) waves in a 

cylinder: ― analytical solutions; – – WFE results. 
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Figure 3.28: Dispersion curves for purely imaginary and complex wavenumbers of the i=1,2 
(n=1,2,3,6) wave modes in a cylinder: ― analytical solutions; – – WFE results. 
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Figure 3.29: Dispersion curves for purely imaginary and complex wavenumbers of the i=3,4 
(n=0,1,2) wave modes in a cylinder: ― analytical solutions; – – WFE results. 
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Figure 3.30: Group velocities associated with the i=1 (n=0,1,2,3,6,10,14) wave modes in a cylinder. 
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Figure 3.31: Group velocities associated with ― the i=2 (n=0,1,2); – – the i=3 (n=0) wave modes in 

a cylinder. 
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Figures 3.32: Power ratio for the i=1 wave modes in a cylinder calculated by analytical expressions:  
(a) n=0; (b) n=1; (c) n=2; (d) n=3. ― f sP P , – – ex sP P ,−·− to sP P . 
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Figures 3.33: Power ratio associated with each variable for the i=1 wave modes in a cylinder using 
WFE results: (a) n=0; (b) n=1; (c) n=2; (d) n=3. −·− xq ,  ― rq , – – qφ , −·− xθ , ― rθ ,            
– – φθ . 

 

 

 

 

 

 

,rq qφ  

,r φθ θ  

xθ

xq

qφ  

xθ

rθ  

rq

xq  

φθ  

,rq qφ  

xq  

,r φθ θ  
xθ

xθ

,r φθ θ

,rq qφ  

xq



 
Chapter 3: Application to Complicated Structures 

 
 

112 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.34: Section of a cylinder with finite length. 
 

 

 

 

 
 
 
 
 
 
 
 

Figures 3.35: WFE model of a circumferential section of the cylinder using two series of the sections. 
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Figure 3.36: Dispersion curves for the propagating waves in a cylinder: ― analytical solutions;         
– – WFE results. 
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Figures 3.37: Power ratio associated with each variable for the i=1, n=1 wave mode in a cylinder:       

(a) between points A and B; (b) between points A and C. −·− qφ , – – yq ,  ― rq , −·− φθ ,      

   – – yθ , ― rθ . 
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Figure 3.38: Dispersion curves for purely imaginary and complex conjugates wavenumbers for the 
i=1, n=1-3; i=3, n=1; i=4, n=1 wave modes in a cylinder:  ― analytical solutions; – – WFE 
results. 
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Figure 3.39: Dispersion curves for purely imaginary and complex conjugate wavenumbers for the 
i=2, n=1,3,5; i=3, n=1 (symmetric) wave modes in a cylinder.   Only WFE results are shown. 
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Figure 3.40: Dispersion curves for purely imaginary and complex conjugate wavenumbers for the 
i=2, n=2,4,6; i=3, n=2 (asymmetric) wave modes in a cylinder. Only WFE results are shown. 
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Chapter 4 

FORCED RESPONSE CALCULATION  

USING THE WAVE APPROACH 
 

 

4.1 Introduction 

The forced response can be calculated from knowledge of the properties of freely 

propagating waves. In this chapter the wave approach is applied to calculate the forced 

response. The approach comprises three steps, i.e., (1) determining the amplitudes of directly 

excited waves of an infinite waveguide by excitation, (2) calculating the reflection 

coefficient matrix for boundaries and (3) superimposing wave amplitudes at a response point 

considering wave propagation and subsequent reflection. The procedure is illustrated in 

Figure 4.1. A numerical implementation for determining the amplitudes of the directly 

excited waves is proposed to reduce ill-conditioning. 

    Only a few papers describe the forced response of a waveguide using the wave properties, 

e.g. [14,22]. An approach based on the dynamic stiffness method was applied to a rod and an 

isotropic plate [9] and to a fluid filled pipe [61]. However, the approach might be ill-

conditioned for general structures in which there are many wave modes. Another approach 

based on the modal decomposition method was applied to a tyre [7] but this approach is 

limited to specific boundary conditions for which the phase closure principle [3,12] can be 

explicitly drawn.  

    On the other hand, the wave approach illustrated in this chapter can be applied for any 

boundary conditions. The formulations, including a numerical implementation to reduce ill-

conditioning, are first introduced. Illustrative examples of a beam, a plate and a cylinder are 

then presented. The case of a tyre is considered in chapter 5. 
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4.2 Formulations 

Formulation by which the forced response is calculated using the wave approach is described 

in this section. The amplitudes of the directly excited waves are first determined. A 

numerical implementation to reduce ill-conditioning is proposed. The reflection coefficient 

matrix for boundaries is then derived. The total wave amplitude can then be formed by 

superposition. It should be noted that the wave approach is not a unique approach to the 

WFE method. As long as wavenumbers and associated wave modes in a waveguide are 

available, either analytical results or numerical results from, e.g., the spectral finite element 

methods can be used to find the forced response. 

 

4.2.1 Forced Wave Amplitude: Wave Decomposition 

An external force in the physical domain is first decomposed into the wave domain. When an 

external force is applied to an infinite waveguide shown in Figure 4.2, continuity of 

displacement and force equilibrium give in matrix form 

 

 q q

extf f

+ − +

+ − −

⎡ ⎤− ⎡ ⎤ ⎡ ⎤
=⎢ ⎥ ⎢ ⎥ ⎢ ⎥−⎢ ⎥ ⎣ ⎦⎣ ⎦⎣ ⎦

0Φ Φ e
fΦ Φ e

 (4.1) 

 

where ±e  are column vectors of directly excited wave amplitudes, extf  is the external force 

vector and the matrices q
±Φ , f

±Φ  contain the displacement and force eigenvectors, i.e. 

1q n
± ± ±⎡ ⎤= ⎣ ⎦Φ q qL  and n  is the number of wave modes. The excited wave amplitudes, ±e , 

may be directly determined from equation (4.1) as 

 

 
1

q q

extf f

−+ −+

+ −−

⎡ ⎤−⎡ ⎤ ⎡ ⎤
= ⎢ ⎥⎢ ⎥ ⎢ ⎥−⎢ ⎥ ⎣ ⎦⎣ ⎦ ⎣ ⎦

0Φ Φe
fΦ Φe

. (4.2) 

 

However, numerical problems are likely to occur for general structures because of ill-

conditioning of the matrix to be inverted.  
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4.2.2 Forced Wave Amplitude: Numerical Implementation 

A numerical implementation is here proposed which exploits the orthogonality of the left 

and right eigenvectors of the transfer matrix, i.e. equation (2.25). Premultiplying the left 

eigenvector matrix ±Ψ  (equation (2.21)), where T T T
1 n

± ± ±⎡ ⎤= ⎣ ⎦Ψ ψ ψL , by equation (4.1) 

gives 

 

 f q q q f q

extf q f f f q

+ + + − + ++

− − + − − −−

⎡ ⎤ ⎡ ⎤ ⎡ ⎤− ⎡ ⎤ ⎡ ⎤
=⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥−⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎣ ⎦⎣ ⎦⎣ ⎦ ⎣ ⎦ ⎣ ⎦

0Ψ Ψ Φ Φ Ψ Ψe
fΨ Ψ Φ Φ Ψ Ψe

, (4.3) 

 

which gives 

 

 q ext

q ext

++ + +

−− − −

⎡ ⎤⎡ ⎤ ⎡ ⎤
= ⎢ ⎥⎢ ⎥ ⎢ ⎥− ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

Ψ fΨ Φ 0 e
Ψ f0 Ψ Φ e

. (4.4) 

 

When all the eigenvalues are distinct, the orthogonality relationship (2.25) implies that 

 

 ( )1 ndiag d d± ± =Ψ Φ L  (4.5) 

 

is the diagonal matrix. The eigenvectors can be normalised so that 1id =  and hence 

± ± =Ψ Φ I . With these normalised eigenvectors, equation (4.4) becomes 

 

 
,

.
q ext

q ext

+ +

− −

=

= −

e Ψ f

e Ψ f
 (4.6) 

 

Equations (4.6) are always well-conditioned. Even if all the eigenvalues are not distinct, 

ΨΦ  is a block diagonal matrix and the ill-conditioning in equation (4.2) can be removed.  

    In practice, only the first ( )m n≤  waves might be retained, these being waves for which 

( )Im k  are sufficiently small. The rapidly decaying waves often have a small contribution to 

the response. Numerical examples are shown in the subsequent sections.  
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4.2.3 Reflection Coefficient Matrix 

The directly excited waves propagate along the waveguide. When the waveguide has 

boundaries, waves are reflected at the boundaries (see Figure 4.3). The wave change at the 

boundaries can be expressed by the reflection coefficient matrix r  such that 

 

 − +=a ra  (4.7) 

 

where ±a  is the wave amplitude vector. A boundary condition at a boundary can be in 

general written as [23] 

 

 + =Af Bq 0  (4.8) 

 

where A and B are matrices whose element may involve stiffness, damping, etc. and are in 

general complex and frequency dependent. The displacement and force vectors in equation 

(4.8) are expressed in terms of wave properties as 

 

 
,

.
q q

f f

+ + − −

+ + − −

= +

= +

q Φ a Φ a

f Φ a Φ a
 (4.9) 

 

Equations (4.7)-(4.9) lead to the reflection coefficient matrix as 

 

 ( ) ( )1

f q f q

−− − + += − + +r AΦ BΦ AΦ BΦ . (4.10) 

 

The reflection coefficient matrix r  gives the amplitudes of the reflected waves in terms of 

those of the incident waves. If r  is a diagonal matrix, each wave mode reflects at the 

boundary without wave mode conversion. Finite, perhaps complex, off-diagonal terms in r  

represent wave mode conversion such that one type of incident wave will be scattered to 

other wave modes. In equation (4.10) pseudo matrix inverse is used to give matrix inverse if 

only m wave modes ( )m n<  are retained. 
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4.2.4 Wave Propagation Matrix 

The wave amplitudes will change as waves freely propagate in a waveguide as described by 

the wave propagation matrix. Using the notation in Figure 4.4, the wave propagation matrix 

τ  is such that 

 

 
( )
( )

,l

l

+ +

− −

=

=

b τ a

a τ b
 (4.11) 

and 

 ( ) ( )1 2, , , njk ljk l jk ll diag e e e−− −=τ L  (4.12) 

 

when waves propagate over a distance l in space and the waveguide has n wave components. 

 

4.2.5 Total Wave Amplitude: Wave Superposition 

The displacement of the waveguide is in general expressed as 

 

 ( )
1

n

i qi i qi
i

a a+ + − −

=

= +∑q φ φ . (4.13) 

 

The wave amplitudes ia±  can be determined considering the wave propagation and 

subsequent reflection. Consider a finite waveguide shown in Figure 4.5. The input response, 

r ex x= , is first determined where ,r ex  are the points where the response is calculated and the 

excitation is applied respectively. The wave amplitudes ±a  are given from the sum of the 

directly excited waves and the travelling waves from left or right side, hence 

 

 
,
.

+ + +

− − −

= +

= +

a e g
g e a

 (4.14) 

 

Using the wave propagation and reflection coefficient matrices, +a  in equations (4.14) can 

be expressed as 
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 ( ) ( )e L ex x+ + −= +a e τ r τ g  (4.15) 

such that 

 ( ) ( ) ( ) ( ) ( )e L R e e L ex L L x x x+ + + −= + − +a e τ r τ r τ a τ r τ e , (4.16) 

hence 

 ( ) ( ) ( ){ } ( ) ( ){ }1
e L R e e L ex L L x x x

−+ + −= − − +a I τ r τ r τ e τ r τ e  (4.17) 

 

where L  is the total length of a waveguide. The negative going wave amplitude −a  can be 

obtained similarly as 

 

 ( ) ( ) ( ){ } ( ) ( ){ }1
e R L e e R eL x L x L x L x

−− − + −= − − + − − −a I τ r τ r τ e τ r τ e e  (4.18) 

 

or using +a  as 

 ( ) ( )e R eL x L x− += − −a τ r τ a . (4.19) 

 

The total displacement at the excitation point can then be obtained by substituting equations 

(4.17) and (4.19) together with the wave modes q
±φ  into equation (4.13). 

    The transfer response may be obtained from +a  as 

 

 ( )r ex x+ += −b τ a  (4.20) 

and 

 ( ) ( )r R rL x L x− += − −b τ r τ b . (4.21) 

 

    When the waveguide is closed such as a ring shown in Figure 4.6, there is no reflection 

coefficient matrix. The polar wavenumber (the phase change per unit radian) may be used 

for convenience. The polar wavenumber is defined as 

 

 *k kR=  (4.22) 

 

where R  is the radius of the waveguide. By using the polar wavenumbers, the input 

response ±a  can be expressed as 
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( ){ }
( ){ }

1*

1*

2 ,

2

π

π

−+ +

−− − −

= −

= − −

a I τ e

a I τ e e
 (4.23) 

 

where ( ) ( )** *
1 2* , , , njkjk jkdiag e e e φφ φφ −− −=τ L  is the wave propagation matrix for the polar 

wavenumbers instead of equation (4.12). Transfer responses are given as 

 

 
( )
( )( )

*

*

,

2
r

r

φ

π φ

+ +

− − −

=

= − +

b τ a

b τ a e
 (4.24) 

 

where rφ  is the angle between the excitation and the response point. 

 

 

4.3 Numerical Examples 

The forced response is calculated for simple waveguides using the wave approach described 

in the previous section. The response of a beam, a plate and a cylinder are considered where 

either an analytical solution or an explicit formulation using modal decomposition can be 

found. Throughout this section, proportional damping is assumed such that the Young’s 

modulus becomes ( )1E jη+ . The value of 0.03η =  is applied. The wavenumbers and wave 

modes then become complex. 

 

4.3.1 Euler-Bernoulli Beam with Sliding Boundary Conditions 

As an illustrative example, the forced response of the Euler-Bernoulli beam with sliding 

boundary conditions at both ends shown in Figure 4.7 is considered. The sliding boundary 

condition constrains the rotation and the shear force to be zero and the beam has a rigid body 

mode.  

    The procedures of the wave approach are followed to give the forced response. The 

method starts from determining the amplitudes of directly excited waves, i.e. equation (4.6). 

For the beam, + +Ψ Φ  becomes, i.e. from equations (2.28) , 
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Ψ Φ . (4.25) 

 

The first element of the vector of the wave amplitudes is associated with the propagating 

wave and the second with the nearfield wave. Similarly, ( )3 34 , 4B Bdiag jEIk EIk− − = −Ψ Φ  

for the negative-going waves. For a point force excitation such that [ ]T 1 0=f , equations 

(4.6) then give 
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e Ψ

e Ψ
 (4.26) 

 

using the normalised eigenvectors. The positive- and negative-going waves with the same 

amplitudes are generated by the external force. The results (4.26) are same as those given 

analytically [13]. 

    The reflection coefficient at the boundary is next calculated. For the sliding condition, 

both the rotation and the shear force are zero at the boundaries so that equation (4.8) 

becomes 

 

 
0 0 0 1 0
1 0 0 0 0

f w
m θ

⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤
+ =⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥

⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦
. (4.27) 

 

The reflection coefficient matrix in equation (4.10) then becomes 
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and both the propagating and nearfield waves reflect with the same amplitude, without phase 

change at the boundaries and without wave mode conversion.  

    For the input response r ex x= , + −+a a  in equations (4.17) and (4.19) becomes, after some 

calculations, 
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a a . (4.29) 

 

The first row is the amplitude of the propagating wave while the second row is that of the 

nearfield wave. The sum of the first and the second row gives the displacement at the input 

point. It should be noted that 0, 2 , 4Bk L π π= ± ± L  gives an infinite response. This is 

equivalent to the phase closure principle and the response becomes infinity for undamped 

waveguides. 

    These procedures are now numerically evaluated using the WFE method and the results 

compared with the analytical solution (4.29). The properties are set to be 1EI = , 1Aρ =  and 

0.44ex L= . Figures 4.8 and 4.9 show the input mobility of the beam using the different 

element length 6LΔ =  and 410LΔ =  respectively. The abscissa is the non-dimensional 

frequency ( )2
Bk L  which is proportional to frequency and resonances occur at 

( ) ( )2 2
Bk L nπ=  for 0,1,2n = L .  

    Consequences of the numerical errors discussed in section 2.4 can be seen. When the 

length of the FE is large ( 6LΔ = , Figure 4.8), the discrepancy becomes large at high 

frequencies due to the FE discretisation error but good agreement can be seen at low 
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frequencies. By using a small element length ( 410LΔ = , Figure 4.9), the response at low 

frequencies breaks down because of the error due to round-off of inertia terms.  

 

4.3.2 Thin Plate with Simply-supported Boundaries 

The forced response of a thin plate with all edges simply-supported shown in Figure 4.10 is 

considered. The locations where the point excitation is applied and the response is calculated 

are ( ),e ex y  and ( ),r rx y  respectively. The response using the modal decomposition method 

can be expressed as [120] 

 

 ( ) ( ) ( )
( ){ }2 2

1 1

, ,4,
1

mn r r mn e eext
r r

m nx y mn

x y x yfw x y
hL L j

φ φ
ρ ω η ω

∞ ∞

= =

=
+ −

∑∑  (4.30) 

where 

 ( ) ( ) ( ), sin sinmn x yx y m x L n y Lφ π π=  (4.31) 

and 

 ( ) ( ){ }222
mn x yD h m L n Lω π ρ= + . (4.32) 

 

The plate is assumed to be steel ( )112.0 10 , 7800, 0.3E ρ ν= ⋅ = =  with 0.6, 0.18x yL L= =  

and the thickness 0.0018h = , all in SI units.  

    The plate strip model with 18 elements across the cross-section ( )10x y mmΔ = Δ =  is used. 

Since the model has 106 DOFs, 106 wave modes can be obtained at each given frequency. In 

practice, only some wave modes with sufficiently small ( )Im xk  are retained to calculate the 

forced response. It should be noted that all propagating waves should be retained by 

carefully choosing xΔ  as stated in subsection 2.4.1. Most wave modes are strongly decaying 

waves at each frequency and the contribution of such wave modes to the forced response is 

often very small. In addition, such wave modes are likely to be numerically inaccurate 

because of the FE discretisation error.  

    Figure 4.11 shows the magnitude of the input mobility (at the point A in Figure 4.10) 

calculated by both the wave approach and the modal decomposition method. The abscissa is 

the non-dimensional frequency 2 2
yL h Dπ ρ ωΩ = .  
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    The waves associated with ( )Re 1kΔ <  and ( )Im 1kΔ <  are retained for the WFE result, 

which are all propagating waves and few nearfield waves with small ( )Im k . In the 

frequency range shown, only about 8 (positive- and negative-going wave) pairs of wave 

modes are retained, which are all the propagating waves and some of the nearfield waves. 

On the other hand for the modal solution, the number of the modes included is about 1000. 

Reasonable agreement can be seen for the frequency range analysed. The first wave mode 

cuts-on at 1Ω =  and successive peaks for 1 4< Ω <  are associated with the first wave mode. 

At 4Ω =  the second wave mode cuts-on. The response asymptotes to 

1 8 0.0032Y D hρ∞ = ≈  [2] at high enough frequencies. Figure 4.12 shows the input 

mobility calculated in the same manner over a wide frequency range. The 10th wave mode 

cuts-on at 100Ω = , for example, and only 3.6 elements are associated with one wavelength 

for the wave mode across the plate strip. Above 30Ω =  or so a consistent discrepancy can 

be therefore seen due to the FE discretisation error, however, the frequency averaged 

response still shows more-or-less reasonable agreement. 

    If all the wave modes are included to calculate the response, the result breaks down as 

shown in Figure 4.13. This is because rapidly decaying nearfield waves are inaccurately 

estimated and such waves can contaminate the whole predicted response. It is therefore 

crucial to retain only the wave modes which are reasonably accurately predicted.  

    On the other hand, Figure 4.14 shows the input mobility calculated by retaining only the 

waves associated with Re 1x xk Δ < , Im 0.2x xk Δ <  such that at most 5 pairs of wave modes 

are retained. Regardless of such small numbers of wave modes, the response still shows 

reasonable agreement. Discrepancies can be seen at anti-resonances and below the first 

resonance 1Ω <  where the stiffness dominates the system.  

    When the transfer response is of concern, the effect of the nearfield waves is much smaller 

than that for the input response. Figure 4.15 shows the transfer mobility at the response point 

B (Figure 4.10) using the same wave modes, i.e. ( )Re 1x xk Δ < , ( )Im 0.2x xk Δ < . Good 

agreement can be seen. As the amplitude of the nearfield wave decays to 0.1% in one 

wavelength, the transfer response is dominated by propagating waves. This result implies 

that only a few nearfield waves with small ( )Im k  are important in determining the transfer 

response. 
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    The forced response of the plate at 21.8Ω =  are shown for different proportional damping 

η . The case of 0.01, 0.03, 0.1η =  are shown in Figures 4.16-4.18. The results are calculated 

using wave modes for which ( )Re 1x xk Δ < , ( )Im 1x xk Δ < . It can be seen that when the 

damping is small as shown in Figure 4.16, the response is dominated by the response of the 

mode for which ( ) ( ), 8, 4m n = . As the damping increases, the modal overlap becomes large 

and more modes contribute to the response. For 0.03η =  as shown in Figure 4.17, the 

response becomes significant around the excitation. For 0.1η =  as shown in Figure 4.18, the 

response approaches that in an infinite plate [13].  

     

4.3.3 Finite Cylinder 

The forced response of a cylinder is considered as shown in Figure 4.19. The boundary 

conditions along the edges are taken to be same as those defined in subsection 3.7.4 such that 

0y yw m u σ= = = = , equation (3.48).  

    Under the boundary conditions, approximate analytical mode shapes can be obtained and 

the response in the r-direction for point force excitation can be calculated using modal 

decomposition [120] as 

 

 ( ) ( ) ( ) ( )
( ){ }2 2

1 0

sin sin cos2,
1

e y res y e resext
res res

m ny n mn

m y L m y L nfw y
hRL j

π π ϕ ϕ
ϕ

ρ π ε ω η ω

∞ ∞

= =

−
=

+ −
∑∑  (4.33) 

 

and ( )0 2, 1 0n nε ε= = ≠ . The subscript ‘res’ is used here to represent the response point for 

clarity. The same material properties as the plate in the previous subsection are assumed for 

the cylinder with 0.18yL =  and 0.1R = .  

    The cylinder is uniform in two directions, i.e. in the circumferential (ϕ -) and the axial (y-) 

directions. The WFE model can therefore be formed in either direction as shown in Figure 

4.20. For a short cylinder a WFE model in the ϕ -direction as shown in Figure 4.20(a) might 

be preferable as the number of DOF can be smaller considering the FE discretisation error. 

The WFE model shown in subsection 3.7.5 was also used here and the number of element 

along the axis of the cylinder was 36. It should be noted that the modal solution is 

approximate since the displacement do not exactly satisfy the stress and displacement at 
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boundaries [117] as discussed in subsection 3.7.5. The WFE method may therefore provide 

more accurate results. 

    The input mobility calculated by the wave approach and the modal decomposition is 

shown in Figure 4.21. The waves associated with ( )*Re 1k ϕΔ <  and ( )*Im 1k ϕΔ <  are 

retained and the number of (positive- and negative-going) wave mode pairs is about 75. For 

the modal solution about 4000 modes were used for convergence. The abscissa represents 

the non-dimensional frequency rω ωΩ = , equation (3.39). For a cylinder, the modal density 

becomes high around the ring frequency, 1Ω = . At high enough frequencies 1Ω � , the 

response asymptotes to that of a flat plate such that 1 8 0.0032Y D hρ∞ = ≈  [2].  

    It is of interest to see the input mobility using limiting number of waves. Figure 4.22 

shows the input mobility using waves for which ( )*Re 1k ϕΔ <  and ( )*Im 0.75k ϕΔ < . Only 

about 60 pairs of wave modes are retained and about 15 pairs of rapidly decaying wave 

modes are excluded compared to the result using waves for which ( )*Im 1k ϕΔ < . Although 

the number of the wave modes decreases, such implementation seems reasonable because 

some wave modes around ( )*Im 1k ϕΔ ≈  are inaccurately predicted.  

    The well-conditioned formulation for determining the amplitudes of the directly excited 

waves proposed in equation (4.6) are used to reduce numerical results. Figure 4.23 shows an 

example of the input mobility calculated using the original formulation (4.2). It can be seen 

that the results using the original formulation (4.2) are very inaccurate because of the ill-

conditioning. Use of the well-conditioned formulation (4.6) is therefore necessarily for 

general waveguides. 

 

 

4.4 Conclusions 

In this chapter the formulation of calculating the forced response using the wave approach 

was described. In particular the well-conditioned formulation for determining the amplitudes 

of directly excited waves was proposed using the orthogonality relationship between the left 

and right eigenvectors. The wave amplitude in finite structures was explicitly shown using 

the wave propagation, reflection coefficient matrices. 
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    Numerical examples of a beam, a plate and a cylinder were shown. For the beam vibration 

the analytical solution holds and the predicted response was compared with the analytical 

solution. The effects of numerical errors occurring in the WFE results have been shown. For 

the plate vibration, there are inherently an infinite numbers of wave modes. Since the plate 

strip was modelled using FEs only a finite number of wave modes are considered in which 

there are a few propagating and some nearfield waves. The effect of the inclusion of rapidly 

decaying nearfield waves with large ( )Im k  was discussed. In general, the rapidly decaying 

waves contribute to the response insignificantly, in particular for the transfer response. The 

inclusion of the rapidly decaying waves may even break down the whole response because 

the rapidly decaying waves are likely to be inaccurately predicted. Similar effects were 

observed for the cylinder vibration. The well-conditioned formulation for determining the 

amplitudes of directly excited waves was evaluated for the cylinder example. 
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Figure 4.1: Procedure of forced response calculation using the wave approach. 
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Figure 4.2: Waves directly excited by local harmonic excitation applied at a point. 

 

 

 

 

 

Figure 4.3: Wave reflection at a boundary. 

 

 

 

 

 

 

 

Figure 4.4: Wave propagation in a waveguide. 
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Figure 4.5: Wave amplitudes in a finite structure. 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.6: Wave amplitudes in a ring. 
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Figure 4.7: The beam with sliding boundary conditions at both ends. 
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Figure 4.8: Magnitude of the input mobility of the beam: ― WFE result ( )6LΔ = ; ···· analytical 

solution. 
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Figure 4.9: Magnitude of the input mobility of the beam over wide frequency range: ― WFE result 

( )410LΔ = ; ···· analytical solution. 

 

 

 

 

 

 

 

Figure 4.10: A thin plate with all edges simply-supported.  
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Figure 4.11: Magnitude of the input mobility of the plate: ― WFE result with ( )Re 1x xk <Δ , 

( )Im 1x xk <Δ ; ···· modal solution. 
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Figure 4.12: Magnitude of the input mobility of the plate over wide frequency range: ― WFE result 

with ( )Re 1x xk <Δ , ( )Im 1x xk <Δ ; ···· modal solution. 
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Figure 4.13: Magnitude of the input mobility of the plate: ― WFE result using all waves; ···· modal 

solution. 
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Figure 4.14: Magnitude of the input mobility of the plate: ― WFE result with ( )Re 1x xk <Δ , 

( )Im 0.2x xk <Δ ; ···· modal solution. 
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Figure 4.15: Magnitude of the transfer mobility of the plate: ― WFE result with ( )Re 1x xk <Δ , 

( )Im 0.2x xk <Δ ; ···· modal solution. 

 

 

Figure 4.16: The forced response of the plate with 0.01η =  at 21.8Ω = . 
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Figure 4.17: The forced response of the plate with 0.03η =  at 21.8Ω = . 

 

 

 

Figure 4.18: The forced response of the plate with 0.1η =  at 21.8Ω = . 
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Figure 4.19: Cylinder with a finite length.  

 

 

 

     
 

 

 

Figures 4.20: WFE models of the cylinder (a) in the ϕ -direction; (b) in the y-direction. 
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Figure 4.21: (a) Magnitude and (b) phase of the input mobility of the cylinder: ― WFE result with 

( ) ( )* *Re 1, Im 1k kϕ ϕ< <Δ Δ ; ···· modal solution. 
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Figure 4.22: (a) Magnitude and (b) phase of the input mobility of the cylinder: ― WFE result with 

( ) ( )* *Re 1, Im 0.75k kϕ ϕ< <Δ Δ ; ···· modal solution. 
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Figure 4.23: Magnitude of the input mobility of the cylinder: ― the WFE result using equation (4.2) 

with ( ) ( )* *Re 1, Im 0.75k kϕ ϕ< <Δ Δ ; ···· modal solution. 
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Chapter 5 

APPLICATION OF THE WFE METHOD 

TO A TYRE 
 

 

5.1 Introduction 

Tyre noise is becoming a significant source for traffic noise [121,122]. Understanding the 

vibrational behaviour of a tyre is thus becoming more important. Measured spectra of tyre 

noise show a broad peak around 1 kHz at which frequency the wavelengths in the tyre are 

short. At such high frequencies the computational cost of FEA becomes impractically large 

[123126] and knowledge of wave properties is of interest. 

    In this chapter, the WFE method is applied to analyse tyre vibrations as a practical 

application. No analytical solution is available. The approaches previously described are 

used. A segment of a tyre is modelled using ANSYS 7.1. Frequency dependent material 

properties of rubber are included. Free and forced vibrations are considered. Free wave 

propagation is illustrated for purely real, purely imaginary and complex wavenumbers. The 

effects of curvature and internal pressure are analysed. The forced response is predicted and 

compared with experimental data. The outcomes of this chapter have been presented in 

[73,74]. 

 

 

5.2 Overview of Tyre Analysis 
A tyre is a complicated structure composed from steel and textile fibre reinforced rubber 

sheets and several different rubbers (see details in Appendix 3.1). A cross-section of a 

commercial tyre and terminology are illustrated in Figure 5.1.  

    Several analytical wave models have been proposed to investigate waves in a tyre. The 

classical and simple one-dimensional model using a curved beam subjected to in-plane 

tension and lying on an elastic foundation was proposed by Böhm [127]. Pinnington 

extended the one-dimensional model to include the shear stiffness and the rotary inertia of 
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the tread and considered both the shear and rotational waves [128]. Two-dimensional models 

have been proposed by several researchers. Kropp et al developed a model for a layered flat 

plate on an elastic foundation [129,130]. They also investigated the contact model [131] and 

the noise radiation from a tyre [131]. Their extensive work is summarised in [132,133]. 

Pinnington modelled a tyre as a curved plate on a sidewall impedance [134,135]. Muggleton 

et al modelled a tyre as three flat plates joined by springs [136]. However, it is difficult or 

impossible to include structural details in these analytical models, hence numerical solutions 

are desired. 

    Relatively few works have investigated waves in a tyre using numerical methods. Bolton 

et al estimated the dispersion curves from a FE model of a cylinder representing a tyre 

[137,138], but this approach provides only rough estimates of predicting propagating 

wavenumbers from natural frequencies. A notable work was that of Nilsson [7] using the 

spectral finite element method. He modelled a tyre using spectral elements and showed good 

agreements between the calculated forced response and experimental results. However, the 

method needs special elements to model a tyre as stated in subsection 1.2.3. 

    These works focus on only propagating waves. In this chapter, the WFE method is applied 

to a tyre. Propagating, evanescent and oscillating decaying waves are considered and results 

for free and forced vibrations are presented.  

 

 

5.3 Tyre Model 
A ‘slick’ tyre attached to an aluminium rim (see Figure 5.2) together with material data was 

provided by Bridgestone Corporation. Details are given in Appendix 3.1. In this section, a 

WFE model of the tyre is briefly described. Frequency dependent material properties of 

rubber are considered.  

 

5.3.1 WFE Model 

A short section of the tyre was modelled using ANSYS 7.1 as shown in Figure 5.3. The 

coordinates and dimensions are shown in Figure 5.4. Cylindrical coordinates were used. The 

eight node solid element SOLID 46, which generates equivalent anisotropic material 

properties for a layered structure, was used. The element has three translational DOFs at 

each node. A segment of the tyre subtending an angle of 2 1.8ϕΔ = o  was modelled. To 
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represent the curvature of the tyre, adjacent segments of the tyre are connected together with 

their local coordinates being rotated through ( )0.9ϕ±Δ o . This models the curved tyre as 

being composed of piecewise-plane elements as described in subsection 3.6.2. An internal 

pressure of 200 kPa was simulated by the application of surface loads on the elements (see 

Appendix 3.2). Boundary conditions at the bottom of the section were imposed by setting the 

DOFs to be zero. The number of DOFs was 324 after the condensation of interior DOFs. 

More details are given in Appendix 3.2. 

 

5.3.2 Inclusion of Frequency Dependent Material Properties of Rubber 

Material properties of rubber depend on frequency [139]. To include the frequency 

dependent properties of rubber, the stiffness matrix was decomposed as 

 

 ( ) ( )fibre rubber tensionf f= + +K K K K  (5.1) 

 

where 2f ω π=  is frequency in Hz. The stiffness matrices fibreK  and tensionK  represent the 

frequency independent contributions of the fibres and the in-plane tension due to the internal 

pressure. The latter was derived from the difference between two stiffness matrices 

associated with FE models with and without the internal pressure. The stiffness matrix of the 

rubber elements is frequency dependent. If Poisson’s ratio is assumed constant, the stiffness 

matrix is proportional to the Young’s modulus E . The frequency dependent stiffness matrix 

( )rubber fK  at frequency f  is then given by 

 

 ( ) ( )
( ) ( ) ( ){ }0

0

1rubber rubber

E f
f f j f

E f
η= +K K  (5.2) 

 

where ( )fη  is the frequency dependent loss factor and 0f  is a reference frequency at which 

the stiffness matrix ( )0rubber fK  is evaluated (neglecting damping). 

    To determine ( )E f  and ( )fη  in equation (5.2), the rubbers were assumed to behave like 

the American National Standards Institute (ANSI) standard polymer for which data is 
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available in the literature [140]. In the frequency range of interest ( )0 2kHz, 30 Cf< ≤ ° , 

( )E f  and ( )fη  may be approximated by [140] 

 

 ( )( ) ( )log logE EE f fα β= ⋅ + , (5.3) 

 ( ) ( )2logf fη ηη α β= ⋅ + . (5.4) 

 

The coefficients were estimated from the literature [140] to be 0.1, 0.01, 0.1E η ηα α β= = =  

and Eβ  was determined from given material data for each rubber. The data used to estimate 

the coefficients are given in Appendix 3.3 and the values of Eβ  are tabulated in Appendix 

3.1. For the tyre model, the effect of the change in the stiffness of the rubber is relatively 

small in the frequency range analysed because the magnitudes of the elements of fibreK  (and 

tensionK ) are much larger than the changes in the elements of ( )rubber fK . 

 

 

5.4 Free Wave Propagation 

In this section the dispersion curves are numerically determined for an undamped tyre 

including purely real, purely imaginary and complex wavenumbers. To investigate the 

effects of the tyre curvature and internal pressure, three models are analysed. These are (I) a 

straight section without internal pressure, (II) a curved section without internal pressure and 

(III) a curved section with internal pressure. Complicated dispersion curves including the 

bifurcations and the existence of a negative group velocity discussed in chapter 3 are seen. 

The curvature and the in-plane tension increase the stiffness especially at low frequencies. 

No damping is assumed throughout this section for the sake of clarity.  

 

5.4.1 Straight Section without Internal Pressure 

A straight section of the tyre ( )R = ∞  is first analysed to illustrate the effect of curvature. A 

straight segment is modelled so that there is no rotation of the coordinate system at the end 

of the segment. The dispersion curves below 450 Hz are shown in Figure 5.5 for the 

asymmetric (Ai) modes and in Figure 5.6 for the symmetric modes (Si). Results for purely 
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real, purely imaginary and complex (conjugate) wavenumbers are shown. Only 

wavenumbers for which ( )Im k  is small are shown for clarity. Wave modes in which the 

wave is characterised by predominantly transverse shear motion are described as iT  where 

the subscript i denotes the associated wave modes (Ai, Si). 

    The asymmetric A1 mode cuts-on first at about 25Hz (Figure 5.5). This mode comprises 

side-to-side motion of the tread as illustrated in Figure 5.5(a). The A1 mode (Figure 5.5(a)) 

and the symmetric S1 (Figure 5.6(a)) mode are bouncing modes where the tread mass is 

vibrating on the sidewall stiffness. The A2 (Figure 5.5(c)), S2 (Figure 5.6(b)) and higher 

modes are cross-sectional modes where the cross-sectional deformation becomes more 

complex, with more nodes along the cross-section.  

    All wavenumbers at low frequencies are purely imaginary or complex (conjugate). 

Complex conjugate wavenumbers bifurcate into two purely imaginary or purely real 

numbers. In Figure 5.6 a bifurcation into two real wavenumbers can be seen at around 200 

Hz. For a general structure, the flexural and shear wave modes in general couple even if the 

structure is straight due to finite shear stiffness and Poisson contraction effect. Curve veering 

between two propagating wavenumbers represents that two wave modes are not orthogonal 

in the wave domain. The shape of the wave mode changes around the frequency where the 

veering occurs. An example is depicted in Figure 5.5(b) for the A1 mode.  

 

5.4.2 Curved Section without Internal Pressure 

The dispersion curve of a curved segment below 450 Hz is shown in Figure 5.7. The 

asymmetric modes are illustrated in Figure 5.7(a) and the symmetric modes in Figure 5.7(b). 

The polar wavenumber (rad/rad), *k kR= ( )0.3185R = , is used. The value of 10k =  for the 

straight section in Figures 5.5 and 5.6 is associated with * 3.185k = . Natural frequencies 

occur at * 1, 2k = L  associated with circumferential mode orders and also at * 0k =  for a 

breathing mode. The wave mode shapes are similar to those in Figures 5.5 and 5.6.  

    The curvature increases the stiffness due to the coupling between flexural and in-plane 

motions especially at low frequencies (below the ring frequency). The curvature therefore 

increases the cut-off frequencies and decreases ( )*Re k . However, the cut-off frequency of 

the A1 mode remains the same because the wave mode relates to side-to-side motion of the 

tread and is irrelevant to curvature. Apart from the stiffening effect, the curvature introduces 
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the non-zero cut-on phenomena and one wave has a negative group velocity as discussed in 

subsection 3.7.5. Such phenomena are clearly seen for the A2 and S2 modes.  

 

5.4.3 Curved Section with Internal Pressure 

A tyre is subjected to internal pressure. Internal pressure causes in-plane tension both in the 

circumferential direction and across the tread and sidewall. The in-plane tension increases 

the stiffness especially at low frequencies [1] such that the effects are similar to those of the 

curvature. The dispersion curves below 600 Hz is shown in Figure 5.8(a) for the asymmetric 

modes and (b) for the symmetric modes. The polar wavenumber *k kR=  is again shown. 

Internal pressure increases the cut-off frequencies especially of the lower order wave modes 

and decreases ( )*Re k . 

    The dispersion curves of the cut-off of the S2 mode is shown in Figure 5.9 for a narrow 

frequency range around the cut-off frequency. The non-zero cut-off of the S2 mode occurs at 

around 326.8 Hz above which frequency there are two propagating waves. One wavenumber 

increases with frequency and the other decreases and becomes complex (conjugate) around 

327.0 Hz where the S2 and TS1 modes couple. The complex conjugate waves again become 

two propagating waves at around 332.8 Hz.  

    All propagating wavenumbers associated with the symmetric modes in the frequencies of 

interest, i.e. up to 2 kHz, are shown in Figure 5.10. The value of * 60k =  is associated with 
* 1k φΔ = . In total 16 waves propagate at 2 kHz and there are 8 Si and 8 Ti modes. Since there 

are only 28 elements across the cross-section, a relatively large FE discretisation error may 

occur. Another model using 50 elements was formed to investigate the error. The details are 

shown in Appendix 3.4. Although results using 28 and 50 elements differ such that the result 

using 28 elements is not converged, it was observed that the 28 element model gives a 

reasonable response. The difference between 28 and 50 element models at lower frequencies 

is believed that 50 element model can represent geometry of cross-section of a tyre more 

accurately.  

    The group velocity can be numerically calculated using the power and energy relationship. 

The group velocities associated with the S1, S2, TS1 modes are shown in Figure 5.11. The 

group velocities predominantly associated with the flexural motion (S1, S2) are about 

typically 80 m/s (25 rad/s) and that with the shear motion (TS1) is about 240 m/s (76 rad/s). 
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These values are similar to results in [138]. Figures 5.12 and 5.13 focus on the frequencies 

where the S2 mode cuts-on. Three waves propagate in the frequencies between 333 Hz and 

341 Hz (Figure 5.12) and between 326.8 Hz and 327.0 Hz where there is one wave 

propagating with a negative group velocity. The power and energy relationship can be used 

even if the damping is included, i.e. equation (5.4). The group velocities of the damped S1, S2, 

TS1 modes are illustrated in Figure 5.14. The distinct peaks and troughs in Figure 5.11 

disappear due to the damping. The group velocities at relatively high frequencies shown are 

the same as those of the undamped case but the details of the curves differ. 

 

 

5.5 Forced Response 
The forced response of the tyre is calculated using the wave approach described in chapter 4 

and the results compared with experimental data. Excitation is applied to the centre of the 

tread. The effect of the size of the region over which the excitation is applied is numerically 

analysed. This affects the response especially at high frequencies.  

 

5.5.1 Experimental Setup 

The tyre attached to the rim was suspended using flexible rubber strings as shown in Figure 

5.15. The excitation was a random signal applied by a shaker attached to the tread centre 

through a relatively rigid metal disc of diameter, 23.5 mmd =  and 1 mm thickness as shown 

in Figure 5.16. The equipment used is summarised in Table 5.1. Measured signals were 

analysed using the Hanning window and averaged (at least 30 averages). The room 

temperature was about 30 ˚C throughout the measurement. Mass cancellation [141] was 

applied by post-processing the measured data to cancel the mass effect of the force 

transducer and the accelerometer. An example of a measured input mobility of the tyre 

without internal pressure is shown in Figure 5.17. The response below 30 Hz is dominated 

by the boundary conditions (i.e. free) and a resonance of the experimental rig occurs around 

2.7 kHz. Reliable measured data is therefore expected to be roughly between 30 Hz and 2 

kHz. 

 

 

 



 
Chapter 5: Application of the WFE Method to a Tyre 

 
 

150 

5.5.2 Forced Response of a Tyre with Finite Area Excitation 

The forced response is calculated using the wave approach.   A frequency dependent loss 

factor for rubber ( )fη  in equation (5.4) was included. Waves for which ( )Im 0.75k ϕΔ ≤  

were retained to calculate the response based on the discussion in chapter 4. For the tyre 

without internal pressure, the number of the positive- and negative going wave pairs was 

about 80 in the frequency range analysed while about 70 wave mode pairs were retained for 

the tyre with internal pressure.  The region of the excitation was modelled as shown in 

Figure 5.18. Because of the element size of the model, the circle area over which the 

excitation was applied in the experiment was modelled as an oval shape such that the area of 

the excitation is same. The weighted average responses from 5 different excitation points 

corresponding to nodes in the FE model were found. The weights were chosen such that at 

the centre is 2 and the other points are 1 by considering the representative area of each 

excitation point.  

    The predicted and measured forced responses of the tyre without and with internal 

pressure are shown in Figures 5.19 and 5.20, respectively. In both figures, the maximum 

frequency is approximately the frequency where the S8 mode cuts-on. Reasonable 

agreements between the predicted results and the measured data can be seen in both figures. 

    For the response of the tyre without internal pressure (Figure 5.19), there are broad peaks 

because of the large damping. The predicted natural frequencies are larger than those in the 

experiment such that the stiffness associated with the FE model is expected to be greater 

than that of the real tyre. Differences of the magnitude of the response below the first 

resonance are believed to be due to the boundary conditions, i.e. the WFE results assumed 

the fixed boundary condition but the real tyre was attached to a rim and has a rigid body 

motion.     The peak occurring at frequencies around 170 Hz in the numerical result, which is 

associated with the shear mode Ts1, cannot be clearly seen in the measured result. The 

deformation of the whole tyre corresponds to a breathing mode at this frequency. The reason 

for the discrepancy is believed to be the effect of the internal cavity since the bulk modulus 

of the internal air can resist the breathing deformation, which is neglected in the numerical 

results. At high frequencies, the predicted and measured results asymptote to a similar 

magnitude.  

    For the tyre with internal pressure (Figure 5.20), the response shows several maxima and 

minima below 300 Hz. These correspond to individual resonances. The response of the tyre 
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can be categorised into three regions. Below the first resonance at around 90 Hz where the S1 

mode cuts-on, the sidewall stiffness is dominant. Above the first resonance there are several 

peaks associated with vibrational modes of the tyre around the circumferential deformation 

across the tread and sidewall in the S1 mode. The response is similar to that of the beam on 

an elastic foundation. Above 350 Hz where the S2 mode cuts-on, the response becomes more 

or less constant. At high frequencies the response tends to that of a plate with finite shear 

stiffness or that of an elastic half space with excitation applied over finite area. This is 

discussed further in the next subsection.  

    The predicted frequency of the first resonance is smaller than the measured result. But the 

frequency difference between successive peaks is larger. This implies that the stiffness 

across the tread and sidewall is smaller than that of the real tyre but that in the 

circumferential direction is larger. A complete set of the data for the FE model could 

improve such discrepancy.  

 

5.5.3 Effect of the Size of the Excited Area 

The structural response is particularly sensitive to the spatial distribution of the excitation at 

high frequencies where the wavelengths become small. For example, considering an 

excitation of uniform force 0f  per unit length, applied along a line of length 2r. The force 

injected into each wave mode can be expressed as 

 

 ( ) ( ) ( )0 0
0

sin
exp

2

r

r

krf f rf k f jkr dr
krπ π−

= =∫ . (5.5) 

 

For 1<<kr , equation (5.5) gives ( ) 0f k f r π≈  and the value is independent of k . But for 

( )1kr O=  or larger, the effective force injected to the wave decreases and the wave is not 

excited as much.  

    In addition, if the thickness of the structure, h, is not thin enough compared to the radius 

of excitation, typically when 5h r ≥ , the response of the structure approaches that of an 

elastic half space so that the shear stiffness and local stiffness become more important [142]. 

    To illustrate the effect of the spatial distribution of the excitation, the responses of the tyre 

with internal pressure for both the finite area excitation and point excitation are shown in 
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Figure 5.21. At low and moderate frequencies the responses are almost the same but their 

asymptotes at high frequencies differ. The shear deformation becomes more important for 

the point force excitation and the response becomes reactive. These numerical results show 

that the dynamic behaviour of a tyre at high frequencies can be strongly affected by the 

distribution of the excitation. 

    In the previous subsection the external force is assumed to be applied uniformly over a 

region. However, in the experiment the force distribution was not uniform and, instead, the 

velocity over the excitation region was more or less uniform. The nodal forces ef  for nodal 

velocities ev  can be calculated from the mobility of the tyre such that 

 

 1
e e e

−=f Y v  (5.6) 

 

where the subscript e  represents that the vectors and the matrix are associated with the nodal 

DOFs within the excited region. The force vector ef   is determined from velocity vector 

[ ]T1 1e =v L . It should be noted that the matrix eY  could be ill-conditioned but that was 

not found to be the case here. The response for the uniformly distributed force and velocity 

are shown in Figure 5.22. Because the force along the edge of the excited region is likely to 

be greater than that inside the excited region, the response at high frequencies tends to be 

more mass-like. The size of the region as well as the distribution of the force over the excited 

region is therefore important for high frequency response.  

    In the experiment, there was small gap between edges of the metal disc and the tyre due to 

the curvature of the tyre. The response for uniform force distribution might therefore 

represent the experimental condition better. 

 

5.5.4 Response in the Circumferential and Lateral Directions 

In the previous subsections, the response of the tread centre in the radial direction was 

considered. However, the response to be calculated and the excitation to be applied can be 

any DOFs. As an example, the input mobility of the centre of the tyre in the circumferential 

direction is shown in Figure 5.23. It can be seen that the response of the circumferential 

direction at high frequencies rises at 10 dB/decade (proportional to f). Above 600 Hz or so 

the response in the circumferential direction is greater than that in the radial direction so that 
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the response in the circumferential direction can be also important to reduce tyre noise 

[130,143]. 

 

 

5.6 Conclusions 
The WFE method was applied to tyre vibrations as a practical application. The segment of 

the tyre with internal pressure was modelled in ANSYS 7.1 and the resulting number of 

DOFs was only 324. Frequency dependent material properties of rubber were included.  

    Free wave propagation was calculated and the effects of the curvature and internal 

pressure were illustrated. Complicated dispersion curves were observed. Curve veering 

occurs and rapid changes of the wavenumber together with wave mode shape were observed. 

The non-zero cut-on phenomena was also seen for waves in which the flexural and shear 

waves couple. Associated with the non-zero cut-on phenomena, a wave with a negative 

group velocity was observed.  

    The forced response was calculated using the wave approach. The predicted results were 

compared with experiment results and reasonable agreement was seen. At high frequencies 

the response approaches that of a plate with finite shear stiffness or that of an elastic half 

space. The size of region of and spatial distribution of the excitation were discussed. The 

excitation force injected into a wave mode was described and the effect of finite shear 

stiffness was mentioned. These were seen to be particularly important at high frequencies.  
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Figure 5.1: Cross-section of a tyre. 

 

 

 

 
 

Figure 5.2: A tyre with an aluminium rim (195/65R15). 
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Figure 5.3: Segment of the WFE tyre model: (a) in the tyre cross-section; (b) in the circumferential 

direction. 

 

 
 

 
 

 
 
 
 

 
 

Figure 5.4: Coordinates and a WFE model of the tyre section. 
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Figure 5.5: Dispersion curves of a straight segment for asymmetric modes: ― purely real; ···· purely 

imaginary; −·− complex conjugate wavenumbers. Ti denotes the shear wave mode. Small 

figure (a)-(d) illustrates the deformation associated with each wave mode. The solid line is 

the original shape and the dashed line is the deformed shape. 
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Figure 5.6: Dispersion curves of a straight segment for symmetric modes: ― purely real; ···· purely 

imaginary; −·− complex conjugate wavenumbers. Ti denotes the shear wave mode. Small 

figure (a)-(c) illustrates the deformation associated with each wave mode. The solid line is 

the original shape and the dashed line is the deformed shape. 
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Figure 5.7: Dispersion curves of a curved segment for (a) the asymmetric, (b) symmetric modes:       

― purely real; ···· purely imaginary; −·− complex conjugate wavenumbers. Ti denotes 

the shear wave mode. 
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Figure 5.8: Dispersion curves of a curved segment with internal pressure for (a) the asymmetric,     

(b) symmetric modes: ― purely real; ···· purely imaginary; −·− complex conjugate 

wavenumbers. Ti denotes the shear wave mode. 
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Figure 5.9: Dispersion curves around the cut-on of the S2 mode: ― purely real; ···· purely 

imaginary; −·− complex conjugate wavenumbers 
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Figure 5.10: Dispersion curves for propagating waves of the symmetric modes. 
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Figure 5.11: Group velocities for the S1, S2, Ts1 modes. 
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Figure 5.12: Group velocities for the S2, Ts1 modes. 
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Figure 5.13: Group velocities for the S2, Ts1 modes around the bifurcation. 
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Figure 5.14: Group velocities for the damped S1, S2, Ts1 modes. 

S2 

TS1 

S2

S1 

S2

TS1 



 
Chapter 5: Application of the WFE Method to a Tyre 

 
 

163 

 
Figure 5.15: Experimental setup. 

 

 

 
 

Figure 5.16: Excitation arrangement. 
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 Manufacturer Model No. Serial No. 

Accelerometer PCB Piezotronics 352C22 70096 

Exciter LDS Dynamics systems Lab. V201 54587.43 

Force transducer PCB Piezotronics 208C01 20824 

Amplifier H/H Electronic TPA50D - 

FFT Analyzer Data Physics Signal Mobilyzer 2 - 

 

Table 5.1: Summary of equipment. 
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Figure 5.17: Typical measured input mobility of the tyre. 

 

Reliable 
frequency range 



 
Chapter 5: Application of the WFE Method to a Tyre 

 
 

165 

 

 

 

 

 

 

 

Figure 5.18: Modelling of the excitation region: ― experimental; −− numerical modelling. Dots 

represent nodes where excitations applied. Dashed grid lines (····) represent FE. 
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Figure 5.19: (a) Magnitude and (b) phase of the input mobility at the tread centre of the tyre without 

internal pressure: ― the WFE result; ···· experiment. 

 

(a) 

(b) 



 
Chapter 5: Application of the WFE Method to a Tyre 

 
 

166 

10
2

10
3

10
−3

10
−2

Frequency [Hz]

Y
 [m

/N
s]

10
2

10
3

−180

−90 

0   

90  

180 

Frequency [Hz]

P
ha

se
 [d

eg
re

e]

 
Figure 5.20: (a) Magnitude and (b) phase of the input mobility at the tread centre of the tyre with 

internal pressure: ― the WFE result; ···· experiment. 
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Figure 5.21: (a) Magnitude and (b) phase of the predicted input mobility of the tyre for ― the finite 

area excitation; −− a point excitation. 
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Figure 5.22: (a) Magnitude and (b) phase of the predicted input mobility of the tyre for ― the 

uniform force excitation; ···· uniform velocity excitation. 
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Figure 5.23: (a) Magnitude and (b) phase of the predicted input mobility of the tyre in ― the radial 

direction; −− the circumferential direction. 
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Chapter 6 

CONCLUDING REMARKS 
 

 

6.1 Summary of Present Work 

In this thesis, free wave propagation and forced response for general waveguides with 

arbitrary complexities in the cross-sections using the WFE method were considered.  

    In chapter 2 the WFE formulation was presented and numerical issues were discussed. It 

was seen that reformulating the eigenvalue problem using Zhong’s method improves the 

conditioning. However, numerical issues remain. An application of SVD was proposed for 

reducing errors for numerically determining the eigenvectors. FE discretisation errors 

become large if the change in the phase or magnitude of the wave over the length of the 

section modelled becomes large. Use of a shorter section for modelling the waveguide 

reduces FE discretisation errors but there are large errors due to round-off of inertia terms 

because the stiffness terms of the section can become much greater than the inertia terms. A 

method of concatenating elements was thus proposed to reduce the round-off errors. The 

DOFs associated with internal nodes are dynamically condensed at each discrete frequency. 

Approximate expressions for the condensation were derived to reduce calculation cost. Three 

methods for predicting the group velocity were compared and the power and energy 

relationship was shown to be reliable to predict the group velocity. 

    The WFE method was then applied to complicated structures. Dispersion curves were 

shown including purely real, purely imaginary and complex wavenumbers. Freely 

propagating in-plane waves were considered for a plate strip with free edges and 

complicated phenomena such as non-zero cut-off phenomena and curve veering were 

described in section 3.4. A wave having a negative group velocity was observed to be 

associated with the non-zero cut-off phenomena. The WFE results were compared with 

numerical solutions to the analytical dispersion equations, i.e. the Rayleigh-Lamb frequency 

equations, using the WFE results as initial estimates. Freely propagating flexural waves in a 

plate strip with free edges were also presented including attenuating waves in section 3.5 and 

the results were compared with numerical solutions to the analytical dispersion equation 
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using the WFE results as initial estimates. Bifurcations from purely imaginary to complex 

wavenumbers or vice versa were described. 

    Free wave propagation in curved structures was then described. In curved structures, wave 

modes couple due to the curvature, especially below the ring frequency, and characteristics 

of wave modes change rapidly around the ring frequency. Dispersion curves for a ring were 

presented in section 3.6 and wave coupling due to the curvature was described. Free wave 

propagation in a cylindrical strip was considered in section 3.7 and waves in both the axial 

and circumferential directions were analysed. 

    The characteristics of the wave modes change rapidly around the frequencies where curve 

veering and bifurcation occur, and also around the ring frequency for the curved structures. 

Such wave mode change may be illustrated by their wave shapes as described in section 3.4 

for in-plane wave modes, for which the longitudinal and shear wave modes couple, and in 

section 3.5 for flexural waves, for which two different orders of flexural wave modes couple. 

A method of decomposition of power was proposed which can be applied to general 

waveguides. The power associated with each DOF was analysed using this method for waves 

in a cylindrical strip to investigate the change of characteristics of wave modes with 

frequency in section 3.7. The method was also used to determine the DOFs which can be 

condensed or removed if power associated with a variable or a DOF is negligible. Such 

implementation was used in sections 3.3 and 3.4 for improving conditioning.  

    The method for determining the forced response of a finite waveguide using the wave 

approach was described in chapter 4. A well-conditioned formulation for determining the 

amplitudes of directly excited waves was proposed. Wave amplitudes were calculated 

considering the wave propagation and subsequent reflection at boundaries and the response 

was then determined by superimposing the wave amplitudes at the response point. 

Numerical examples for a beam, a plate and a cylinder were shown in section 4.2. The 

rapidly decaying nearfield waves often show insignificant contribution to the response. 

Inclusion of the rapidly decaying wave modes was discussed for a plate and a cylinder.  

    The method was also applied to a tyre in which the frequency dependent material 

properties of rubber were included into the WFE model. Freely propagating waves in a tyre 

were presented including attenuating waves. The predicted forced response was compared 

with experiment and reasonable agreement was seen. The size of the region of excitation was 

described. It was shown that the power injected into each wave mode and the effect of the 
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shear stiffness become important especially at high frequencies where the wavelengths 

become small. 

    In summary the WFE method provides a strong basis for the analysis of free and forced 

vibrations of waveguides of arbitrary complexity. Free wave propagation characteristics such 

as the wavenumber, the wave mode and the group velocity describe the dynamics of the 

waveguides. Such variables can be used as input parameters for, e.g., statistical energy 

analysis. 

 

 

6.2 Conclusions 

The following general conclusions can be drawn from this thesis.  

• The WFE method is an accurate and powerful approach to the analysis of free and 

forced vibrations of waveguide structures. 

• Commercial FE packages can be exploited. 

• Computational cost is very low. 

 

There are various issues concerning numerical errors. 

• 1kΔ <  or so (as discussed in subsection 2.4.1) is recommended to avoid FE 

discretisation errors. 

• ( )10log 16ii iiK M <  in order that round-off errors of inertia terms are not substantial 

in double precision calculations. 

• The method of concatenating elements described in section 2.5 can be used to reduce 

the round-off errors. 

• The internal DOFs should be reduced at each frequency or using the approximate 

expression described in subsection 2.5.2. 

• Zhong’s formulation should be used to improve conditioning of the eigenvalue 

problem. 

•  The SVD procedure described in subsection 2.6.3 should be used when the 

eigenvectors are numerically determined. 

• The power and energy relationship provides reliable estimates of the group velocity. 
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• Power associated with individual DOFs should be evaluated to indicate the 

characteristics of the wave motion and to indicate which DOFs can be condensed. 

• The forced response of structures can be calculated using the wave approach. It is 

recommended that all propagating waves are included and some attenuating waves 

which decay least rapidly. As rule of thumb, attenuating waves for which Im 1kΔ <  

should be included.  

• Forced wave amplitudes should be estimated using the orthogonality relationship 

between the left and right eigenvectors as described in subsection 4.2.2. 

 

The WFE method was applied to various waveguide structures. In particular the application 

to analysis of tyre vibrations was shown. The following were observed. 

• Shapes of wave modes rapidly change around frequencies at which the bifurcation 

occurs. 

• The area over which the excitation is applied affects the response at high frequencies. 

• With regard to response of a tyre, modes are dominant at low frequencies but waves 

are dominant at high frequencies. 

 

 

6.3 Suggestions for Further Research 

Throughout this thesis, the WFE method has been shown to be reliable and a powerful tool 

to investigate the wave properties in and dynamics of waveguides. In this section possible 

further research related to the WFE method are proposed. 

    The cases may be listed as: 

 

• Use of higher order FEs, mid-side nodes FEs and curved FEs are of interest 

especially for curved structures. Single straight FEs could be also possible to 

represent curved structures by rotating the coordinates at its edges.  

 

• For rotating structures such as a tyre in the operating condition, the effects of the 

rotation such as Coriolis effect and centrifugal force may be included into the WFE 

model. The change in the phase velocity can be post-processed for positive- and 

negative-going waves by adding or subtracting the rotational velocity respectively. 
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• Inclusion of deterministic change in a cross-section along the waveguide could be 

considered. Examples include tread pattern of a tyre or a periodically stiffened panel.  

The forced response may be calculated considering the reflection and transmission at 

discontinuities. 

 

• The effect of small variation along the waveguide can be another topic, for example a 

waveguide composed of Honeycomb structure. The WFE modelling and the 

limitation of the analysis in terms of wavelengths compared to the variation is of 

consideration.  
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Appendix 1 

SUPPLEMENTS TO  

THE EIGENVALUE PROBLEMS 
 

 

A1.1 Transfer Matrix Approach 

This section gives supplementary explanations of the transfer matrix T  in equation (2.14). 

The matrix T  is a symplectic matrix [66,82,144] such that 

 

 T =T JT J  (A1.1) 

 

or equivalently, T =TJT J  where 

 

 
T 1

= ,

.−

⎡ ⎤
⎢ ⎥−⎣ ⎦
= = −

0 I
J

I 0

J J J

 (A1.2) 

 

The eigenvalues of symplectic matrices occur in reciprocal pairs, i.e. if λ  is an eigenvalue 

so is 1λ− . This characteristic is sometimes termed symplectic adjoint, e.g. [145]. The 

eigenvectors of T , ±φ , associated with λ±  have the symplectic orthogonality relationship 

[82] such that 

 

 ( )T 0i k i k+ − = ≠φ Jφ  (A1.3) 

and 

 
T

T

1,

1.
i i

i i

+ −

− +

=

= −

φ Jφ

φ Jφ
 (A1.4) 
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Discussions about the similarity between the symplectic orthogonality relationship and the 

Betti reciprocal theorem can be seen in [146]. More mathematical characteristics of the 

symplectic matrix and its decomposition are illustrated in [144].  

    The symplectic matrix arises in applications of such as the discrete linear-quadratic 

regulator problem, discrete Kalman filtering, the solution of discrete-time algebraic Ricatti 

equations and certain large, sparse quadratic eigenvalue problems [147]. Mathematical 

difficulties about solving the eigenvalue problem of the symplectic matrix can be also found 

in [147]. Zhong and Williams [82] showed the analogy of wave propagation in a periodic 

structure to optimal control. They also showed the application of symplectic mathematics to 

such problems [82]. 

    It may be worth noting that the matrix inverse of the symplectic matrix can be found from 

equation (A1.1) to be 1 T T− =T J T J , which is generally better-conditioned if the matrix needs 

to be inverted. 

 

 

A1.2 Derivation of Zhong’s Method 

This section describes details of the derivation of the conditioned eigenvalue problem (2.55), 

i.e. Zhong’s method [66]. The method starts from rearranging the equation of motion (2.3) as 

 

 
,L L

L LL LR R

R L

R RL RR R

⎡ ⎤ ⎡ ⎤ ⎡ ⎤
=⎢ ⎥ ⎢ ⎥ ⎢ ⎥

⎣ ⎦ ⎣ ⎦ ⎣ ⎦
⎡ ⎤ ⎡ ⎤ ⎡ ⎤

=⎢ ⎥ ⎢ ⎥ ⎢ ⎥− − −⎣ ⎦ ⎣ ⎦ ⎣ ⎦

q I 0 q
f D D q

q 0 I q
f D D q

 (2.54) 

 

such that, using the periodicity condition (2.13), 

 

 
RL RR LL LR

λ
λ λ

⎡ ⎤ ⎡ ⎤⎡ ⎤ ⎡ ⎤
=⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥− − ⎣ ⎦ ⎣ ⎦⎣ ⎦ ⎣ ⎦

0 I I 0q q
D D D Dq q

. (A1.5) 

 

From equation (A1.5), the transfer matrix T  can be alternatively expressed as  

 

 1−=T L N  (A1.6) 
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where 

 
,

.

LL LR

RL RR

⎡ ⎤
= ⎢ ⎥
⎣ ⎦
⎡ ⎤

= ⎢ ⎥− −⎣ ⎦

I 0
L

D D

0 I
N

D D

 (A1.7) 

 

For the matrices ,L N  the relationship  

 

 T T LR

RL

⎡ ⎤
= = ⎢ ⎥−⎣ ⎦

0 D
L JL N JN

D 0
 (A1.8) 

 

holds [66]. Premultiplying equation (A1.5) by TL J  and by TN J  in turn gives 

 

 RL LL RR LR

RL RL

λ
λ λ

− − −⎡ ⎤ ⎡ ⎤⎡ ⎤ ⎡ ⎤
=⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥− −⎣ ⎦ ⎣ ⎦⎣ ⎦ ⎣ ⎦

D D D 0 Dq q
0 D D 0q q

 (A1.9) 

and 

 1 .LR LR

RR LL LR RLλ λλ
⎡ ⎤ ⎡ ⎤⎡ ⎤ ⎡ ⎤

=⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥+ −⎣ ⎦ ⎣ ⎦⎣ ⎦ ⎣ ⎦

D 0 0 Dq q
D D D D 0q q

 (A1.10) 

 

Adding these two equations (A1.9) and (A1.10) gives the conditioned eigenvalue problem, 

equations (2.55)-(2.57), i.e. 

 

 
( ) ( )
( ) ( )

1 LR RL LL RRLR

LL RR LR RLRL

λ
λ λλ

− − +⎡ ⎤⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎛ ⎞+ = ⎢ ⎥⎜ ⎟ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥+ −−⎝ ⎠ ⎣ ⎦ ⎣ ⎦⎣ ⎦ ⎣ ⎦

D D D D0 D q q
D D D DD 0 q q

. (A1.11) 

 

 

A1.3 Thompson’s Method 

Another method for improving the conditioning of the eigenvalue problem, which is worth 

noting, is Thompson’s method [58]. The conditioning starts from the polynomial eigenvalue 

problem, i.e.  
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 ( )2
LR LL RR RLλ λ⎡ ⎤+ + + =⎣ ⎦D D D D q 0 . (2.51) 

 

For uniform waveguides all the elements of the dynamic stiffness matrix have certain 

relationships depending on whether the DOFs at element interface are symmetric (S) or 

asymmetric (A) between adjoint sections, i.e. equation (2.5) [58]. 

    After partitioning the dynamic stiffness matrix associated with the force components 

being symmetric at the interface and the displacement components being symmetric (S-S) 

vice versa, the matrix operation in equation (2.51) can be expressed for elements associated 

with S-S or A-A DOFs as 

 

 ( ) ( ){ }1 2 coshLR LL RR RL LR LLλ μ
λ

+ + + = +D D D D D D  (A1.12) 

for 0λ ≠  and  

 eμλ = . (A1.13) 

 

Similarly, the matrix operation for elements associated with the S-A and the A-S DOFs can 

be expressed as 

 

 ( ) ( )1 2sinhLR LL RR RL LRλ μ
λ

+ + + =D D D D D . (A1.14) 

 

From equations (A1.12) and (A1.14), equation (2.51) can be reformulated as 

 

 
( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

( )

( )

cosh sinh

sinh cosh

SS SS SA S
LR LL LR

AS AA AA A
LR LR LL

μ μ

μ μ

⎡ ⎤ ⎡ ⎤+
=⎢ ⎥ ⎢ ⎥

+⎢ ⎥ ⎢ ⎥⎣ ⎦⎣ ⎦

D D D q
0

D D D q
 (A1.15) 

 

where the superscript S denotes the symmetric DOF and A is the anti-symmetric DOF. After 

some manipulations, equation (A1.15) becomes the general eigenvalue problem  

 

  
( ) ( )

( ) ( )

( )( ) ( )

( ) ( )
( )

( ) ( )

( ) ( )

( )( ) ( )

( ) ( )

cosh 1 cosh 1
cosh

sinh sinh

S SSS SA SS SA
LL LR LR LR

AS AA AS AAA A
LR LL LR LR

μ μ
μ

μ μ

⎡ ⎤ ⎡ ⎤⎡ ⎤ ⎡ ⎤+ +
⎢ ⎥ ⎢ ⎥= −⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥−⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦⎣ ⎦ ⎣ ⎦

q qD D D D

D D D Dq q
. (A1.16) 
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The matrix of the eigenvalue problem in equation (A1.16) is only half the size of Zhong’s 

method and its eigenvectors are associated with only the displacement components such that 

the conditioning may be expected to be better than Zhong’s method.  

    Physically asymmetric DOFs such as the moment is zero at the cut-off frequency, 0μ = . 

However numerical difficulties arise when the eigenvalue problem (A1.16) is numerically 

solved and the original eigenvector is numerically determined. The coefficients of the 

eigenvectors, ( )sinh μ  in equation (A1.16) approaches 0 and ( )cosh 1μ +  approaches to 2 

when 0μ → . Even small errors in ( )Aq  can be magnified when ( )Aq  is numerically 

evaluated divided by ( )sinh μ . Zhong’s method was therefore applied throughout this thesis 

and the method worked well for the problems.  
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Appendix 2 

NUMERICAL METHODS FOR SOLVING  

A TRANSCENDENTAL EQUATION 
 

 

A2.1 Muller’s Method 

Muller’s method is an interpolation method that uses quadratic interpolation [91]. A complex 

root, z x jy= + , is found using a quadratic equation that passes through three complex 

values in the vicinity of an initial estimate as shown in Figure A2.1. Suppose that it is 

desired to find the solutions to ( ) 0f z = . Approximating ( )f z  as a quadratic in z gives 

( ) 2f z az bz c= + + . Let 1 1 0h z z= −  and 2 2 0h z z= −  thus 

 

 

( ) ( )
( ) ( )
( ) ( )

2
0

2
1 1 1

2
2 2 1

0 0 ,

,

.

a b c f

a h b h c f

a h b h c f

+ + =

+ + =

− + =

 (A2.1) 

 

The coefficients are evaluated such that 

 

 

( )
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1 0 2
2

1

2
1 0 1

1

1
,

1
f f f
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h

f f ahb
h

γ γ
γ γ
− + +

=
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 (A2.2) 

 

where 2 1h hγ = . The trial quadratic equation is solved to give the estimate, ẑ , 

 

 0 2

2ˆ
4

cz z
b b ac

= −
± −

. (A2.3) 
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The sign in the denominator is taken so as to give the larger absolute value. The calculation 

is repeated till the root converges. In this thesis the threshold value for convergence is set as 

( ) 3ˆ 10f z −< .  

    In practice, the root finding process (A2.3) may be applied to ( )f z  or both ( ){ }Re f z  

and ( ){ }Im f z . Figure A2.2 shows an example of the solution space of ( )f z . An initial 

estimate is represented by ∗  and an arrow denotes to the direction of an approximate 

solution from the initial estimate. It can be seen that in this case the solution space is more 

sensitive to ( )Re z  than ( )Im z . In such a case, it may be difficult for the method to 

converge to the right answer, especially for obtaining an accurate estimate of ( )Im z . 

Alternatively if the cost function is chosen as both ( ){ }Re f z  and ( ){ }Im f z , as in Figure 

A2.3, such difficulties for convergence may be reduced. After the root finding process 

(A2.3) is repeated both for ( ){ }Re f z  and ( ){ }Im f z , the next initial estimate is given as a 

superposition of each result. Figure A2.3 illustrates the root finding procedure for each of 

( ){ }Re f z  and ( ){ }Im f z . Adding each change, ( ) ( )Re Imz zΔ + Δ , is then used to give 

the next estimate of ẑ . 

 

 

 

A2.2 Argument Principle 

Complex roots of the function ( )f z  can be also estimated using the argument principle [92]. 

Consider ( )f z  in some region of the complex z-plane enclosed by a contour γ . If ( )f z  

has no singularity within γ , the number of zeros of ( )f z  within the contour γ  is given by 

[92] 

 

 ( )
( )

'1
2

f z
N dz

j f zγπ
= ∫  (A2.4) 

 



 
Appendix 2: Numerical Methods for Solving a Transcendental Equation 

 
 

182 

where N is the number of zeros of ( )f z  in γ . Numerical integration, e.g. the trapezoidal 

rule, may be applied to give the calculation (A2.4) such that [148] 
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∫

∑
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 (A2.5) 

 

where nS  is the numerical value of the integral and nR  is the residual. In this thesis the 

number of discrete points n  is taken to be such that 410nR −≤ . 

    It should be noted that the finite difference approximation in the last equation in equations 

(A2.5) is derived from Taylor series expansion. The distance between two discrete numerical 

integration points therefore needs to be equal to satisfy Taylor series expansion.   

    The shape of γ  is chosen as a rectangle in the complex z-plane. The region γ  is chosen to 

be relatively large for the first integral around a contour enclosing an initial estimate of a 

root. Bisection of this region is then used to give a better estimate of the solution. The 

calculations are repeated until γ  converges to be smaller than some chosen values.  

    In this thesis the method was used to give N=1 with the criteria of the convergence as 

0.1%±  of the estimation for both ( )ˆRe z  and ( )ˆIm z  such that ( ) ( ){ ˆRe 1 0.001 ,zγ ⊆ × ±  

( ) ( )}ˆIm 1 0.001z × ± . If either ( )ˆRe z  or ( )ˆIm z  of an estimation is close to zero, 0.01±  is 

applied such that ( ) ( ) ( ){ }ˆRe 1 0.001 , 0.01zγ ⊆ × ± ±  if ( )ˆIm 0.01z < . The region γ  can 

determine the error bound of an estimated solution. 
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Figure A2.1: Muller’s method using a quadratic function. 
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Figure A2.2: Example of a contour plot for ( )f z . 
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Figure A2.3: Contour plot of (a) ( ){ }Re f z ; (b) ( ){ }Im f z . 
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Appendix 3 

MODELLING AND MATERIAL PROPERTIES 

OF A TYRE 
 

 

A3.1 Cross-section of a Tyre 

This section gives supplementary details about the tyre. A ‘slick’ tyre without tread design 

(tyre size: 195/65R15) was provided by Bridgestone Corporation. An illustration of the 

cross-section of the tyre is shown in Figure A3.1. The structure of the cross-section of the 

tyre is simpler than general commercial tyres but similar. A tyre is composed of steel and 

textile fibre reinforced rubber (FRR) sheets and several different rubbers.  

    Material properties provided are given in Table A3.1 for rubber and A3.2 for the FRR 

sheets. In Table A3.1, Eβ  represent the coefficients of the frequency dependent stiffness in 

equation (5.3). All properties were measured at about 30°C. For rubber, material properties 

were measured under the condition of 1% strain, 50 Hz. Poisson’s ratio ν  is assumed to be 

0.49 for rubber [149]. In Table A3.2, LE  and TE  are the Young’s modulus in the direction 

of the fibre and in the transverse direction of the fibre respectively. The angle is that between 

the fibre extending in the tyre and the circumferential direction of the tyre. There are two 

steel belts and one has an angle of 22 degrees and another has that of -22 degrees.  

    The rubber at the lower part of the sidewall is relatively stiff and the upper part is more 

flexible. The FRR sheets termed ‘carcass ply’ extend to the inside of the tyre and turn up 

enclosing the bead wire locate being at the bottom of the sidewall. The bead wire fixes the 

tyre to a rim. This is not modelled and the fixed boundary conditions were imposed. The 

steel and textile FRR sheets, termed belt and cap/layer, extend only over the tread region. 

The belt and cap/layer will be referred as the ‘belt package’ in this appendix. 

    Because the two steel belts have different angles, they show the same characteristics as a 

composite layer or a laminate. A laminate shows behaviour depending on the angles of the 

layers due to the coupling between the in-plane and out-of-plane deformation even for a flat 

composite layer, e.g. [150]. Such deformation is particularly obvious only around the edge of 
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the composite layer. This behaviour brings asymmetry of the structure and causes 

complicated phenomena. Inclusion of such behaviour is beyond the scope of this thesis and 

the two steel belts were modelled as a single orthotropic plate. The equivalent material 

properties were derived using formulas described in [150]. For a laminate illustrated in 

Figure A3.2, the Young’s modulus can be expressed as 
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and the shear modulus is given by 

 

 

 2 2 21sin cos cos 2
4xy L TG E Eθ θ θ= + . (A3.2) 

 

Poisson’s ratio xyν  is assumed to be 0.3 for simplicity and the Maxwell-Betti relationship 

gives xy yx x yE Eν ν = .  

 

 

A3.2 FE Modelling of the Cross-section of the Tyre 

This section describes details of the FE model shown in Figures 5.3 and 5.4. The segment of 

the tyre was modelled using SOLID46 elements in ANSYS 7.1. The element generates 

equivalent material properties for a layered structure in a single element. The values given in 

equations (A3.1) and (A3.2) were used for the properties of the belt.  

    A tyre is subjected to internal pressure and this pressure stiffens the tyre due to the in-

plane tension it produces. In particular, the stiffening effect is significant in the 

circumferential direction for the tread region and in the cross-sectional direction for the 

sidewall region. To represent the phenomena, surface loads were applied as shown in Figure 

A3.3(a). In the sidewall regions (both the left and right hand sides), uniform pressure of 
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200P =  kPa was applied. In the tread regions (both the fore and aft sides) the value of 

pressure was determined by the equivalent in-plane tension associated with the belt package. 

From the classical membrane theory e.g. [151] the membrane force (the tensile force per unit 

thickness), T  (N/m), is expressed as 

 

 T PR=  (A3.3) 

 

where R  is the representative radius of the belt package. The equivalent pressure over the 

element surfaces is thus given by T h  where h  is the thickness of the tread including the 

rubber and belt package. Since the in-plane tension is mostly subjected to the belt package in 

the tread region, the surface loads were applied as distributed pressure across the tread 

thickness as Figure A3.3(b). The pressure distribution was modelled as a triangular shape 

such that the value of pressure was 2P h  along the bottom of the tread region and there is 

no pressure along the top of the tread region. Necessary constraints such as the 

circumferential deformation of the sidewall region and the lateral deformation of the tread 

region were imposed.  

 

 

A3.3 Inclusion of Frequency Dependent Material Properties of 

Rubber 

Frequency dependent material properties of rubber were included using equations (5.3) and 

(5.4). Since the details of the frequency dependent properties were not available, they were 

approximated using the available data in literature [140]. The literature provides the data of 

the ANSI standard polymer. Although the polymer may not always represent all different 

rubbers in the tyre, the trend is assumed to be same. Figures A3.4 and A3.5 show the 

frequency dependencies of the Young’s modulus and the loss factor, respectively [140]. The 

abscissa is the reduced frequency in which the temperature effect is included at the reference 

temperature of 25 ºC. The shift factor with temperature, Tα , is shown in Figure A3.6. The 

reduced frequency redf  is defined as 

 

 red Tf fα= . (A3.4) 
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This implies that the material properties of the rubber at 1 Hz, -14.5 ºC are equivalent to 

those at 510  Hz, 25 ºC. This is a reason why such wide range of the reduced frequency is 

illustrated in Figures A3.4 and A3.5. 

    Since the measured material properties provided were measured around 30 ºC, 0.1Tα =  

( )log 1Tα = −  was read from Figure A3.6 such that the frequency range of interest is 

1 200redf = �  ( )10 2000f = �  Hz for the tyre vibration analysis. The values 

0.1, 0.01, 0.1E η ηα α β= = =  in equations (5.3) and (5.4) were determined from Figures A3.4 

and A3.5.  

 

 

A3.4 Forced Response using Different FE Models 

As an illustrative example of the WFE method, the free and forced vibrations of the tyre are 

described in chapter 5. At high frequencies (around 2 kHz) the highest order of the 

propagating wave is the S8 mode in which there are about 8.5 wavelengths across the cross-

section. The model with 28 elements used in Chapter 5 (see Figure A3.7(a)) may be not 

enough to represent such high wave modes. To investigate the FE discretisation error, 

another ‘fine’ FE model was formed as Figure A3.7(b). The FE model contains 50 elements 

in the cross-section such that there are about 6 elements per wavelength for the S8 mode and 

the FE discretisation error can be expected to be smaller.  

    The forced response for the point excitation applied to the tread centre is shown in Figure 

A3.8. Each resonance peak at low frequencies differs because the ‘fine’ model can model 

more details of the distributions of the stiffness and mass of the tyre as well as the shape of 

the cross-section. However, the trend is the same for both FE models especially for low and 

middle frequencies. At high frequencies the slope of the asymptote differs but the magnitude 

increases with frequency and the response is rather stiffness-like (reactive). The discussion 

in chapter 5 therefore holds for both FE models and the simple FE model was used because 

the conditioning of the eigenvalue problem is better and the calculation cost is much cheaper. 

As an illustrative example of a practical application, it can be seen that such small FE model 

(computational cost) can give good estimates of the dynamic behaviours of a complicated 

structure using the WFE method.  
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A3.5 Operational Deflection Shape 

The input mobilities are shown in Chapter 5. The transfer responses can be similarly 

calculated. The forced response of the whole tyre can therefore be calculated at each 

discretised frequency.  

    The responses, i.e. the operational deflection shape, of the tyre with internal pressure are 

shown. The point force excitation is applied at the centre of the tyre. Figure A3.9 shows the 

operational deflection shape at 93 Hz, which is associated with the first natural frequency. At 

the frequency the tread mass is vibrating on the sidewall stiffness such that the tyre vibrates 

as the single degree of freedom system. At middle frequencies where higher wave modes 

cut-on, the tyre deforms in a more complicated shape. The deformation at 374 Hz is shown 

in Figure A3.10. It can be seen that as the wavelengths in a tyre become shorter, the waves 

decay more quickly compared to Figure A3.9 due to the damping of rubber. Figure A3.11 

shows the deformation at 1209 Hz. At such high frequencies, the deformation localized only 

around the excitation. One can understand that the response can be well expressed in terms 

of waves at such high frequencies. 
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Figure A3.1: Cross-section of the tyre. Right hand side exaggerates the structure for clarity.  

 

 

  E  Eβ  (Eq. 5.3) ρ  

Top 71 10⋅  7  1000  

Base 64 10⋅  6  1100  

Cushion 71 10⋅  7  1100  

Side 64 10⋅  7  1100  

Chafer 72 10⋅  7  1200  

Filler 81 10⋅  8  1200  

 

Table A3.1: Material properties of rubber in SI units. Numerical values are rounded to 1 significant 

figure because they are commercially sensitive. 
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LE  TE  LTν  ρ  angle 

(degree) 

 Carcass ply 92 10⋅  71 10⋅  0.4  1200  90 

 Belt (steel) 105 10⋅  72 10⋅  0.4  3100  ±22 

 Cap/Layer (textile) 91 10⋅  71 10⋅  0.4  1100  0 

 

Table A3.2: Material properties of FRR sheets in SI units. Numerical values are rounded to 1 

significant figure because they are commercially sensitive. 

 

 

 

 
 

 

Figure A3.2: Laminate of two FRR sheets with angle of θ± . 

 

              
 
 

Figure A3.3: Modelling of internal pressure using surface loads: (a) regions where the loads applied 

(masked regions); (b) pressure distribution in the tread region. 
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Figure A3.4: Relationship between the Young’s modulus and the reduced frequency [140]. 

 
 

 
 

Figure A3.5: Relationship between the loss factor and the reduced frequency [140]. 

 
 

 
 

Figure A3.6: Relationship between temperature and the shift factor [140]. 
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Figure A3.7: FE model of a tyre using (a) 28 FEs; (b) 50 FEs in the cross-section. 
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Figure A3.8: (a) Magnitude and (b) phase of the predicted input mobilities of the tyre using ― 28 

elements; −− 50 elements in the cross-section. 
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Figure A3.9: Operational deflection shape at 93 Hz. Deformations of (a) a whole tyre; (b) the cross-

section at which the excitation is applied and that at the right opposite side; (c) a ring 

along the tyre centre. 

 

 

 

Figure A3.10: Operational deflection shape at 374 Hz. Notation is the same as Figure A3.9 
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Figure A3.11: Operational deflection shape at 1209 Hz. Notation is the same as Figure A3.9 

 

 

 

 

 

 

(a) (b) 

(c) 

extf



 
References 

 
 

196 

References  
 

1. K. F. Graff 1975 Wave Motion in Elastic Solids. Dover. 
  

2. L. Cremer, M. Heckl, B. A. T. Petersson 2005 Structure-Borne Sound (Third edition). 
Springer-Verlag. 

  
3. D. J. Mead 2000 Passive Vibration Control. John Wiley & Sons. 

  
4. J. N. Reddy 1996 Mechanics of Laminated Composite Plates: Theory and Analysis. 

CRC Press. 
  

5. G. B. Warburton 1976 The Dynamical Behaviour of Structures, Second edition. 
Pergamon Press. 

  
6. E. C. Pestel, F. A. Leckie 1963 Matrix Methods in Elastomechanics. McGRAW-

HILL. 
  

7. C. M. Nilsson 2004 Waveguide Finite Elements Applied on a Car Tyre. Doctoral 
thesis, Department of Aeronautical and Vehicle Technology, Royal Institute of 
Technology, Sweden. 

  
8. B. R. Mace, D. Duhamel, M. J. Brennan, L. Hinke 2005 Journal of the Acoustical 

Society of America 117 (5), 2835-2843. Finite element prediction of wave motion in 
structural waveguides. 

  
9. D. Duhamel, B. R. Mace, M. J. Brennan 2006 Journal of Sound and Vibration 294, 

205-220. Finite element analysis of the vibrations of waveguides and periodic 
structures. 

  
10. M. N. Ichchou, S. Akrout, J. M. Mencik 2007 Journal of Sound and Vibration 305, 

931-944. Guided Waves Group Velocity and Energy Velocities via Finite Elements. 
  

11. J. F. Doyle 1997 Wave Propagation in Structures, Second edition. Springer-Verlag. 
  

12. F. Fahy, P. Gardonio 2007 Sound and Structural Vibration, Second edition. Elsevier. 
  

13. F. Fahy, J. W. (ed.) 2004 Advanced Applications in Acoustics, Noise and Vibration. 
Spon Press. 

  
14. B. R. Mace 1984 Journal of Sound and Vibration 97, 237-246. Wave Reflection and 

Transmission in Beams. 
  

15. D. W. Miller, A. H. Von Flotow 1989 Journal of Sound and Vibration 128 (1), 145-
162. A Travelling Wave Approach to Power Flow in Structural Networks. 

  
16. Y. I. Bobrovnitskii 1992 Journal of Sound and Vibration 152 (1), 175-176. On the 

Energy Flow in Evanescent Waves. 



 
References 

 
 

197 

  
17. H. K. Milne 1986 Journal of Sound and Vibration 114 (1), 149-151. A Note on 

Beam Reflection Matrices and Reciprocity. 
  

18. B. R. Mace 1992 Journal of Sound and Vibration 155 (2), 375-381. Reciprocity, 
Conservation of Energy and Some Properties of Reflection and Transmission 
Coefficients. 

  
19. B. R. Mace 1992 Journal of Sound and Vibration 159 (2), 303-325. Power Flow 

between Two Coupled Beams. 
  

20. E. C. N. Wester, B. R. Mace 2005 Journal of Sound and Vibration 285, 209-227. 
Wave Component Analysis of Energy Flow in Complex Structures - Part 1: A 
Deterministic Model. 

  
21. S. K. Lee, B. R. Mace, M. J. Brennan 2007 Journal of Sound and Vibration 306, 

636-656. Wave Propagation, Reflection and Transmission in Curved Beams. 
  

22. Y. Yong, Y. K. Lin 1989 Journal of Sound and Vibration 129 (2), 99-118. 
Propagation of Decaying Waves in Periodic and Piecewise Periodic Structures of 
Finite Length. 

  
23. N. R. Harland, B. R. Mace, P. W. Jones 2001 Journal of Sound and Vibration 241 

(5), 735-754. Wave Propagation, Reflection and Transmission in Tunable Fluid-
Filled Beams. 

  
24. D. J. Mead 1996 Journal of Sound and Vibration 190 (3), 495-524. Wave 

Propagation in Continuous Periodic Structures: Research Contributions from 
Southampton 1964-1995. 

  
25. A. Y. T. Leung, S. P. Zeng 1994 Journal of Sound and Vibration 177 (4), 555-564. 

Analytical Formulation of Dynamic Stiffness. 
  

26. N. J. Fergusson, W. D. Pilkey 1993 The Shock and Vibration Digest 25, 3-10. 
Literature Review of Variants of the Dynamic Stiffness Method, Part 1: The 
Dynamic Element Method. 

  
27. R. S. Langley 1990 Journal of Sound and Vibration 136 (3), 439-452. Analysis of 

Power Flow in Beams and Frameworks using the Direct-Dynamic Stiffness Matrix 
Method. 

  
28. J. Lee, D. J. Thompson 2001 Journal of Sound and Vibration 239 (2), 297-320. 

Dynamic Stiffness Formulation, Free Vibration and Wave Motion of Helical Springs. 
  

29. J. R. Banerjee 1997 Computers & Structures 63 (1), 101-103. Dynamic Stiffness 
Formulation for Structural Elements: A General Approach. 

  
30. J. R. Banerjee 2003 Computers & Structures 81 (18-19), 1915-1922. Free Vibration 

of Sandwich Beams using the Dynamic Stiffness Method. 



 
References 

 
 

198 

  
31. R. S. Langley 1989 Journal of Sound and Vibration 135 (2), 319-331. Application of 

the Dynamic Stiffness Method to the Free and Forced Vibrations of Aircraft Panels. 
  

32. R. S. Langley 1992 Journal of Sound and Vibration 156 (3), 521-540. A Dynamic 
Stiffness Technique for the Vibration Analysis of Stiffened Shell Structures. 

  
33. L. Meirovitch 1997 Principles and Techniques of Vibrations. Prentice-Hall. 

  
34. Y. K. Lin, B. K. Donaldson 1969 Journal of Sound and Vibration 10 (1), 103-143. A 

Brief Survey of Transfer Matrix Techniques with Special Reference to the Analysis 
of Aircraft Panels. 

  
35. Y. K. Lin, J. N. Yang 1974 Trans. of ASME, Journal of Applied Mechanics June, 

383-391. Free Vibration of a Disordered Periodic Beam. 
  

36. D. J. Mead 1971 Journal of Engineering for Industry August, 783-792. Vibration 
Response and Wave Propagation in Periodic Structures. 

  
37. L. Brillouin 1953 Wave Propagation in Periodic Structures (Second edition). Dover. 

  
38. D. J. Mead 1973 Journal of Sound and Vibration 27 (2), 235-260. A General Theory 

of Harmonic Wave Propagation in Linear Periodic Systems with Multiple Coupling. 
  

39. D. J. Mead 1975 Journal of Sound and Vibration 40 (1), 1-18. Wave Propagation 
and Natural Modes in Periodic Systems: 1. Mono-Coupled Systems. 

  
40. D. J. Mead 1975 Journal of Sound and Vibration 40 (1), 19-39. Wave Propagation 

and Natural Modes in Periodic Systems: 2. Multi-Coupled Systems, With and 
Without Damping. 

  
41. D. J. Mead, A. D. Bansal 1978 Journal of Sound and Vibration 61 (4), 481-496. 

Mono-Coupled Periodic Systems with a Single Disorder: Free Wave Propagation. 
  

42. D. J. Mead, A. D. Bansal 1978 Journal of Sound and Vibration 61 (4), 497-515. 
Mono-Coupled Periodic Systems with a Single Disorder: Response to Convected 
Loadings. 

  
43. D. J. Mead, S. Markus 1983 Journal of Sound and Vibration 90 (1), 1-24. Coupled 

Flexural-Longitudinal Wave Motion in a Periodic Beam. 
  

44. R. M. Orris, M. Petyt 1974 Journal of Sound and Vibration 33 (2), 223-236. A Finite 
Element Study of Harmonic Wave Propagation in Periodic Structures. 

  
45. R. M. Orris, M. Petyt 1975 Journal of Sound and Vibration 43 (1), 1-8. Random 

Response of Periodic Structures by a Finite Element Technique. 
  

46. M. Petyt 1990 Introduction to Finite Element Vibration Analysis. Cambridge 
University Press. 



 
References 

 
 

199 

  
47. K. J. Bathe 1996 Finite Element Procedures. Prentice-Hall Inc. 

  
48. S. Finnveden 2004 Journal of Sound and Vibration 273, 51-75. Evaluation of modal 

density and group velocity by a finite element method. 
  

49. L. Gavric 1994 Journal of Sound and Vibration 173 (1), 113-124. Finite Element 
Computation of Dispersion Properties of Thin-Walled Waveguides. 

  
50. R. H. Lyon, R. G. Dejong 1995 Theory and Application of Statistical Energy 

Analysis, Second edition. Butterworth-Heinamann. 
  

51. S. K. Datta, A. H. Shah, R. L. Bratton, T. Chakraborty 1988 Journal of the 
Acoustical Society of America 83 (6), 2020-2026. Wave Propagation in Laminated 
Composite Plates. 

  
52. P. J. Shorter 2004 Journal of Acoustical Society of America 115 (5), 1917-1925. 

Wave Propagation and Damping in Linear Viscoelastic Laminates. 
  

53. M. M. Ettouney, R. P. Daddazio, N. N. Abboud 1997 Computers and Structures 65 
(3), 423-432. Some Practical Applications of the Use of Scale Independent Elements 
for Dynamic Analysis of Vibrating Systems. 

  
54. A. Y. A. Abdel-Rahmen 1980 Matrix Analysis of Wave Propagation in Periodic 

Systems. Ph.D. thesis, ISVR, University of Southampton. 
  

55. J. Signorelli, A. H. Von Flotow 1988 Journal of Sound and Vibration 126 (1), 127-
144. Wave Propagation, Power Flow and Resonance in a Truss Beam. 

  
56. M. L. Accorsi, M. S. Bennett 1991 Journal of Sound and Vibration 148 (2), 279-292. 

A Finite Element Based Method for the Analysis of Free Wave Propagation in 
Stiffened Cylinders. 

  
57. M. S. Bennett, M. L. Accorsi 1994 Journal of Sound and Vibration 171 (1), 49-66. 

Free Wave Propagation in Periodically Ring Stiffened Shells. 
  

58. D. J. Thompson 1993 Journal of Sound and Vibration 161 (3), 421-446. Wheel-Rail 
Noise Generation, Part 3: Rail Vibration. 

  
59. L. Houillon, M. N. Ichchou, L. Jezequel 2005 Journal of Sound and Vibration 281, 

483-507. Wave Motion in Thin-Walled Structures. 
  

60. L. Gry 1996 Journal of Sound and Vibration 195 (3), 477-505. Dynamic Modelling 
of Railway Track Based on Wave Propagation. 

  
61. J. M. Mencik, M. N. Ichchou 2007 International Journal of Solids and Structures 44, 

2148-2167. Wave Finite Elements in Guided Elastodynamics with Internal Fluid. 
  



 
References 

 
 

200 

62. J. M. Mencik, M. N. Ichchou 2005 European Journal of Mechanics, A/Solids 24 (5), 
877-898. Multi-Mode Propagation and Diffusion in Structures through Finite 
Elements. 

  
63. M. Maess, N. Wagner, L. Gaul 2006 Journal of Sound and Vibration 296, 264-276. 

Dispersion Curves of Fluid Filled Elastic Pipes by Standard FE Models and 
Eigenpath Analysis. 

  
64. E. Manconi, B. R. Mace 2007 ISVR Technical Memorandum No:966. Modelling 

Wave Propagation in Two-dimensional Structures using a Wave/Finite Element 
Technique. 

  
65. E. Manconi, B. R. Mace 2007 19th International Congress on Acoustics, Madrid, 

CD-ROM. Modelling Wave Propagation in Cylinders using a Wave/Finite Element 
Technique. 

  
66. W. X. Zhong, F. W. Williams 1995 Journal of Sound and Vibration 181 (3), 485-501. 

On the Direct Solution of Wave Propagation for Repetitive Structures. 
  

67. D. Duhamel, B. R. Mace, M. J. Brennan 2003 ISVR Technical Memorandum No:922. 
Finite Element Analysis of the Vibrations of Waveguides and Periodic Structures. 

  
68. L. Hinke, B. R. Mace, M. J. Brennan 2004 ISVR Technical Memorandum No:932. 

Finite Element Analysis of Waveguides. 
  

69. ANSYS Inc. Corporate 2003 ANSYS 7.1 Manual Documentation. 
  

70. Y. Waki, B. R. Mace, M. J. Brennan 2006 ISVR Technical Memorandum No:964. On 
Numerical Issues for the Wave/Finite Element Method. 

  
71. Y. Waki, B. R. Mace, M. J. Brennan 2006 Proceedings of ISMA2006, Leuven, 2435-

2449. Waveguide finite element modelling: numerical issues and application to 
simple waveguides. 

  
72. Y. Waki, B. R. Mace, M. J. Brennan 2007 INTER-NOISE 2007, Istanbul, CD-ROM. 

Flexural Wave Propagation in a Plate Strip with Free Boundaries using the Wave 
Finite Element Method. 

  
73. Y. Waki, B. R. Mace, M. J. Brennan 2007 19th International Congress on Acoustics, 

Madrid, CD-ROM. Vibration Analysis of a Tyre Model using the Wave Finite 
Element Method. 

  
74. Y. Waki, B. R. Mace, M. J. Brennan 2007 INTER-NOISE 2007, Istanbul, CD-ROM. 

Vibration Analysis of a Tyre using the Wave Finite Element Method. 
  

75. M. I. Friswell, J. E. Mottershead 1995 Finite Element Model Updating in Structural 
Dynamics. Kluwer Academic Publishers. 

  



 
References 

 
 

201 

76. J. R. Banerjee 2003 Journal of Vibration and Acoustics, Trans. of ASME 125, 351-
358. Dynamic Stiffness Formulation and Its Application for a Combined Beam and a 
Two Degree-of-Freedom System. 

  
77. O. C. Zienkiewicz, R. L. Taylor 1994 The Finite Element Method, Volume 1 (Fourth 

edition). McGRAW-HILL. 
  

78. L. N. Trefethen, D. BauIII 1997 Numerical Linear Algebra. Society for Industrial 
and Applied Mathematics. 

  
79. G. H. Golub, C. F. V. Loan 1996 Matrix Computations (Third edition). Johns 

Hopkins University Press. 
  

80. J. H. Wilkinson 1965 The Algebraic Eigenvalue Problem. Oxford University Press. 
  

81. W. X. Zhong, G. Cheng 1991 Proceedings of the Asia-Pacific Conference on 
Computational Mechanics, Blakema, Rotterdam, 373-378. Regularization of 
Singular Control and Stiffness Shifting. 

  
82. W. X. Zhong, F. W. Williams 1992 Proceedings of the Institution of Mechanical 

Engineers, Part C 206, 371-379. Wave Problems for Repetitive Structures and 
Symplectic Mathematics. 

  
83. V. C. Klema, A. J. Laub 1980 IEEE Transactions on Automatic Control AC-25 (2), 

164-176. The Singular Value Decomposition: Its Computation and Some 
Applications. 

  
84. C. R. Fuller, S. J. Elliott, P. A. Nelson 1996 Active Control of Vibration. Academic 

Press. 
  

85. M. A. Biot 1957 The Physical Review 105 (4), 1129-1137. General Theorem on the 
Equivalence of Group Velocity and Energy Transport. 

  
86. K. A. Stroud, D. J. Booth 2003 Advanced Engineering Mathematics, Fourth edition. 

Palgrave Macmillan. 
  

87. L. A. Pipes 1963 Matrix Methods for Engineering. Prentice-Hall Inc. 
  

88. A. Bernard, M. J. S. Lowe, M. Deschamps 2001 Journal of the Acoustical Society of 
America 110 (1), 186-196. Guided waves energy velocity in absorbing and non-
absorbing plates. 

  
89. F. Ahmad 2004 Archives of Mechanics 56 (2), 157-165. Shape of Dispersion Curves 

in the Rayleigh-Lamb Spectrum. 
  

90. J. N. Goodier, N. J. Hoff 1960 Structural Mechanics. Pergamon Press. 
  

91. C. F. Gerald 1980 Applied Numerical Analysis (second edition). Addison-Wesley 
Publishing Company. 



 
References 

 
 

202 

  
92. K. Knopp 1996 Theory of functions: Parts 1 and 2. Dover. 

  
93. J. R. Kutter, V. G. Sigillito 1981 Journal of Sound and Vibration 75 (4), 585-588. 

On Curve Veering. 
  

94. N. C. Perkins, C. D. Mote 1986 Journal of Sound and Vibration 106 (3), 451-463. 
Comments on Curve Veering in Eigenvalue Problems. 

  
95. C. Pierre 1988 Journal of Sound and Vibration 126 (3), 485-502. Mode Localization 

and Eigenvalue Loci Veering Phenomena in Disordered Structures. 
  

96. P. T. Chen, J. H. Ginsberg 1992 Journal of the Acoustical Society of America 92 (3), 
1499-1508. Modal Properties and Eigenvalue Veering Phenomena in the 
Axisymmetric Vibration of Spheroidal Shells. 

  
97. X. L. Liu 2002 Journal of Sound and Vibration 256 (3), 551-564. Behaviour of 

Derivative of Eigenvalues and Eigenvectors in Curve Veering and Mode Localization 
and Their Relation to Close Eigenvalues. 

  
98. A. W. Leissa 1974 Journal of Applied Mathematics and Physics 25, 99-111. On a 

curve veering aberration. 
  

99. G. B. Warburton 1954 Proceedings of the Institution of Mechanical Engineering 168, 
371-384. The Vibration of Rectangular Plates. 

  
100. W. Leissa 1969 Vibration of Plates, NASA SP-160. National Technical 

Information Service. 
  

101. Y. K. Konenkov 1960 Soviet Physics Acoustics 6, 122-123. A Rayleigh-Type 
Flexural Wave. 

  
102. B. K. Sinha 1974 Journal of the Acoustical Society of America 56 (1), 16-18. 

Some Remarks on Propagation Characteristics of Ridge Guides for Acoustic Surface 
Waves at Low Frequencies. 

  
103. R. N. Thurston, J. McKenna 1974 IEEE Transactions on Sonics and Ultrasonics 

SU-21 (4), 296-297. Flexural Acoustic Waves Along the Edge of a Plate. 
  

104. U. Orrenius, S. Finnveden 1996 Journal of Sound and Vibration 198 (2), 203-224. 
Calculation of Wave Propagation in Rib-Stiffened Structures. 

  
105. A. N. Norris, V. V. Krylov, I. D. Abrahams 2000 Journal of Acoustical Society of 

America 107 (3), 1781-1784. Flexural Edge Waves and Comments on "A New 
Bending Wave Solution for the Classical Plate Equation". 

  
106. A. N. Norris 2003 Journal of Acoustical Society of America 113 (5), 2647-2658. 

Flexural Waves on Narrow Plates. 
  



 
References 

 
 

203 

107. S. J. Walsh, R. G. White 2000 Journal of Sound and Vibration 233 (3), 455-488. 
Vibrational Power Transmission in Curved Beams. 

  
108. W. Leissa 1973 Vibration of Shells, NASA SP-288. National Technical 

Information Service. 
  

109. S. K. Lee 2006 Wave Reflection, Transmission and Propagation in Structural 
Waveguides. Ph.D. thesis, ISVR, University of Southampton. 

  
110. M. Abramowitz, I. A. S. (Ed.) 1972 Handbook of Mathematical Functions. Dover 

Publications. 
  

111. H. Stolarski, T. Belytschko 1982 Journal of Applied Mechanics, Transaction of 
ASME 49, 172-176. Membrane Locking and Reduced Integration for Curved 
Elements. 

  
112. S. P. Shone 2006 A Flexural Wave Scattering Method for Damage Detection in 

Beams. Ph.D. thesis, ISVR, University of Southampton. 
  

113. C. R. Fuller 1981 Journal of Sound and Vibration 75 (2), 207-228. The Effects of 
Wall Discontinuities on the Propagation of Flexural Waves in Cylindrical Shells. 

  
114. F. Fahy 1985 Sound and Structural Vibration. Academic Press. 

  
115. W. Variyart, M. J. Brennan 2002 Journal of Sound and Vibration 256 (5), 955-967. 

Simplified Dispersion Relationships for In-Vacuo Pipes. 
  

116. W. Flugge 1973 Stresses in Shells, Second edition. Springer-Verlag. 
  

117. A. W. Leissa, A. S. Kadi 1971 Journal of Sound and Vibration 16 (2), 173-187. 
Curvature Effects on Shallow Vibrations. 

  
118. R. S. Langley 1994 Journal of Sound and Vibration 169 (1), 29-42. Wave Motion 

and Energy Flow in Cylindrical Shells. 
  

119. R. S. Langley 1996 Journal of Sound and Vibration 169 (1), 43-53. The Modal 
Density and Mode Count of Thin Cylinders and Curved Panels. 

  
120. W. Soedel 1981 Vibrations of shells and plates. MARCEL DEKKER. 

  
121. U. Sandberg, J. A. Ejsmont 2002 Tyre/Road Noise Reference Book. Informex. 

  
122. U. Sandberg 2001 Proceedings of INTER-NOISE 2001, Hague, The Netherlands, 

35-56. Tyre/road noise- Myths and realities. 
  

123. T. L. Richards 1991 Journal of Sound and Vibration 149 (2), 235-243. Finite 
Element Analysis of Structural-Acoustic Coupling in Tyres. 

  



 
References 

 
 

204 

124. Y. Nakajima, Y. Inoue, H. Ogawa 1993 Tire Science & Technology, 67-90. 
Application of the Boundary Element Method and Modal Analysis to Tire Acoustics 
Problems. 

  
125. R. Gunda, S. Gau, C. Dohrmann 2000 Tire Science & Technology, 33-49. 

Analytical Model of Tire Cavity Resonance and Coupled Tire/Cavity Modal Model. 
  

126. T. Saguchi, T. Tomida, S. Urata, K. Kato 2006 Proceedings of INTER-NOISE 
2006, Honolulu, ID264. Tire Radiation-Noise Prediction Using FEM. 

  
127. F. Böhm 1966 Ingenieru Archiv 35, 82-101. Mechanik des Gürtelreifens. 

  
128. R. J. Pinnington 2006 Journal of Sound and Vibration 290, 101-132. A Wave 

Model of a Circular Tyre. Part 1: Belt Modelling. 
  

129. W. Kropp 1989 Applied Acoustics 26, 181-192. Structure-Borne Sound on a 
Smooth Tyre. 

  
130. K. Larsson, W. Kropp 2002 Journal of Sound and Vibration 253 (4), 889-908. A 

High-Frequency Three-Dimensional Tyre Model Based on Two Coupled Elastic 
Layers. 

  
131. F. Wullens, W. Kropp 2004 Acta Acustica United with Acustica 90, 702-711. A 

Three-Dimensional Contact Model for Tyre/Road Interaction in Rolling Conditions. 
  

132. W. Kropp, K. Larsson, F. Wullens, P. Andersson 2004 Proceedings of the Institute 
of Acoustics 26 (2), 1-12. Tyre/Road Noise Generation - Modelling and 
Understanding. 

  
133. P. Andersson, K. Larsson, F. Wullens, W. Kropp 2004 Acta Acustica United with 

Acustica 90 (445-456). High Frequency Dynamic Behaviour of Smooth and 
Patterned Passenger Cars. 

  
134. R. J. Pinnington 2006 Journal of Sound and Vibration 290, 133-168. A Wave 

Model of a Circular Tyre. Part 2: Side-wall and Force Transmission Modelling. 
  

135. R. J. Pinnington, A. R. Briscoe 2002 Journal of Sound and Vibration 253 (5), 941-
959. A Wave Model for a Pneumatic Tyre Belt. 

  
136. J. M. Muggleton, B. R. Mace, M. J. Brennan 2003 Journal of Sound and Vibration 

264, 929-950. Vibrational response prediction of a pneumatic tyre using an 
orthotropic two-plate wave model. 

  
137. J. S. Bolton, H. J. Song, Y. K. Kim, Y. J. Kang 1998 Proceedings of NOISE-CON 

98, 97-102. The Wave Number Decomposition Approach to the Analysis of Tire 
Vibration. 

  
138. Y. J. Kim, J. S. Bolton 2001 Proceedings of Inter-Noise 2001, Hague, Netherlands, 

2605-2610. Modeling of Tire Treadband Vibration. 



 
References 

 
 

205 

  
139. A. D. Nashif, D. I. G. Jones, J. P. Henderson 1985 Vibration Damping. John 

Wiley & Sons. 
  

140. W. M. Madigosky, G. F. Lee, J. M. Niemiec 2006 Journal of the Acoustical 
Society of America 119 (6), 3760-3765. A method for modeling polymer viscoelastic 
data and the temperature shift function. 

  
141. D. J. Ewins 2000 Modal Testing, Second edition. Research Studies Press. 

  
142. B. A. T. Petersson, M. Heckl 1996 Journal of Sound and Vibration 196 (3), 295-

321. Concentrated Excitation of Structures. 
  

143. P. Andersson, K. Larsson 2005 Acta Acustica United with Acustica 91, 121-131. 
Validation of a High Frequency Three-Dimensional Tyre Model. 

  
144. H. Xu 2003 Linear Algebra and its Applications 368, 1-24. An SVD-Like Matrix 

Decomposition and Its Applications. 
  

145. W. X. Zhong, F. W. Williams, A. Y. T. Leung 2003 Journal of Sound and 
Vibration 267, 227-244. Symplectic Analysis for Periodical Electro-magnetic 
Waveguides. 

  
146. W. Zhong, F. W. Williams 1993 Computers & Structures 49 (4), 749-750. 

Physical Interpretation of the Symplectic Orthogonality of the Eigensolutions of a 
Hamilton or Symplectic Matrix. 

  
147. H. Fassbender, D. Kressner 2006 GAMM Mitteilungen, Themenheft Applied and 

Numerical Linear Algebra (Part 2) 29 (2), 297-318. Structured Eigenvalue Problems. 
  

148. J. A. Carrilho 2006 The thirteenth International Congress on Sound and Vibration 
(ICSV 13), Vienna. A Reliable Root Finder for Systems of Coupled Equations: 
Application to Eigenvalues in Duct Acoustics. 

  
149. A. Rinde 1970 Journal of Applied Polymer Science 14, 1913-1926. Poisson's ratio 

for rigid plastic foams. 
  

150. T. Akasaka 1998 Textile Structural Composite. Elsevier Science. 
  

151. S. Timochenko, S. Woinowsky-Kreiger 1959 Theory of Plates and Shells, second 
edition. McGraw-Hill. 

  
 
 


