HJNIVERSITY OF

Southampton

University of Southampton Research Repository

ePrints Soton

Copyright © and Moral Rights for this thesis are retained by the author and/or other
copyright owners. A copy can be downloaded for personal non-commercial
research or study, without prior permission or charge. This thesis cannot be
reproduced or quoted extensively from without first obtaining permission in writing
from the copyright holder/s. The content must not be changed in any way or sold
commercially in any format or medium without the formal permission of the
copyright holders.

When referring to this work, full bibliographic details including the author, title,
awarding institution and date of the thesis must be given e.g.

AUTHOR (year of submission) "Full thesis title", University of Southampton, name
of the University School or Department, PhD Thesis, pagination

http://eprints.soton.ac.uk



http://eprints.soton.ac.uk/

UNIVERSITY OF SOUTHAMPTON
FACULTY OF ENGINEERING, SCIENCE AND MATHEMATICS

INSTITUTE OF SOUND AND VIBRATION RESEARCH

PREDICTION AND CONTROL OF SOUND PROPAGATION IN
TURBOFAN ENGINE BYPASS DUCTS

by
Christopher James Brooks

A thesis submitted in partial fulfilment for the degree of
Doctor of Engineering

September 2007


http://www.soton.ac.uk
http://www.soton.ac.uk
http://www.isvr.soton.ac.uk

UNIVERSITY OF SOUTHAMPTON
ABSTRACT

FACULTY OF ENGINEERING, SCIENCE AND MATHEMATICS
INSTITUTE OF SOUND AND VIBRATION RESEARCH

Doctor of Engineering

PREDICTION AND CONTROL OF SOUND PROPAGATION IN
TURBOFAN ENGINE BYPASS DUCTS

by Christopher James Brooks

This thesis contains original research into the propagaifossound in acoustically lined ducts
with flow. The motivation for this work is the requirement teegict the sound attenuation of
acoustic liners in the bypass duct of modern turbofan agioes. The liners provide the most
effective means with which to suppress the rear fan noisés therefore important to make

the best possible use of the available lined area by optigniie liner configuration. A set

of analytic and numerical methods for predicting the lingerguation performance have been
developed, which are suitable for use in intensive linemoigation studies, or as preliminary

design tools.

Eigenvalue solvers have been developed to find modal sokiiio rectangular ducts with
uniform flow and annular ducts with sheared flow. The solveesvalidated by replicating
results from the scientific literature and the Finite Eletraethod. The effect of mean core
flow radial profile and boundary layers on the mode eigenfanstand axial decay rates are
considered. It is shown that solutions for thin boundanetaiows converge to those based on
the commonly used slip flow boundary condition. It is demraist that realistic flow profiles
should be used to assess acoustic mode propagation in yetss The flow profile can have
strong effects upon low order modes and surface waves, afattrat high frequencies, the
profile can affect all the modes.

Mode-matching schemes are developed to assess the poemuaion performance and
modal scattering of finite length liners. The results of thhesnes are used to show that re-
fraction of sound by boundary layers increases attenuatibigh frequency. Power attenuation
is higher where the mean core flow gradient refracts soundrtisvthe liner. It is found that
asymmetric liners can provide improved attenuation, déimgnon the direction of the mean
flow shear gradient.

The optimisation of axially-segmented liners for singlel anulti-mode sources is demon-
strated. It is found that potentially large improvementghia attenuation of tonal noise is possi-
ble, whilst benefits for broadband noise are more difficuicbieve.
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Chapter 1

Introduction

The increasing volume of commercial air traffic across tlabglposes serious environmental
issues with regard to aircraft emissions. Noise emissimma the aircraft engines and airframe
are a chief concern when dealing with the impact of airpontgheir surrounding environment.
In light of increasingly stringent noise emissions rulé® thallenge for aeroengine manufac-
turers is that noise guarantees for future engine and migfreombinations can be met. This
requires noise prediction methods that can generate picticof the radiated sound, to a high
level of confidence.

The engine noise can be broadly categorised into tonal m@eerated by the regular cyclical
motion of the turbomachinery blades, and broadband noisergted by pressure fluctuations
associated with turbulent air flow. For early aeroenginegiss broadband noise from the ex-
haust jet was the dominant source. However, over the pasitywears design considerations
have meant the ratio of bypassed air mass to combustor ag, wrds/pass ratio has increased.
The majority of modern commercial aircraft are powered lghypass ratio (HBPR) turbofan
engines. The result has been a reduction in jet exhaustityeloa its associated noise. Con-
sequently, the contributions from other noise sourcedh siscthe fan, turbine and core, now
dominate at certain engine conditions. Since no singlecgoisrdominant over all engine con-
ditions, the contributions from all the major noise souncesst be evaluated to gain an accurate
prediction of the total engine noise.

A key method for controlling the sound field generated by titernal noise sources is the use
of acoustic treatment in the engine ducts, both inlet andgypThe most common form of the
treatment used is a perforated resistive facing sheetaidaio a honeycomb cell structure with
a rigid backing plate. The design and layout of the acousggtinent within the duct systems is
driven by its contribution to the engine achieving the dsssiEPNL (Effective Perceived Noise
Level, the 1SO standard subjective measure of aircraftenoighilst minimising the economic
penalty. This means that the treatment must have the apgi®@ttenuation characteristics,
at different engine power conditions, whilst achievingsthiithin specified length and weight
limits. Thus, the determination of the appropriate treathuesign is a complicated task, and is

1



Chapter 1 Introduction 2

often a decision heavily based on experience. The use oflfimgdt determine the optimum
design is dependent upon the accuracy of the model, andabévion the available computa-
tional resources, and is severely restricted by the numbpam@meters involved. In order to
construct an effective, yet feasible optimisation schearsémplified model must be constructed
for the acoustic propagation from the source to the far-field

The work in this thesis concerns the prediction of acoustipagation within the bypass duct,
especially the attenuation performance of acoustic treatran the duct walls. This work has
been undertaken in collaboration with the Noise DepartragRolls-Royce plc. The collabo-
ration has involved part-funding by the company, and has allswed the author to conduct a
substantial proportion of the research whilst based withinNoise Department at Rolls-Royce
plc., Derby, UK. The company’s interest in this work is thguiement to reduce the rear fan
noise contribution to the measured EPNL, which is part obiheraft noise certification criteria.
Since passive duct liner treatment provides the most afeeateans with which to reduce this
source, it is important to make the best possible use of tieel larea available in the duct. This
requires the optimisation of the liner configuration witke tse of models to predict the in-duct
sound field. Acoustic propagation in the bypass duct is a ¢amproblem involving non-
uniform viscous mean flows, three-dimensional geometaad, tonal and broadband sources
of sound. Solutions to idealised models of the problem awveldped in this work, which are
suitable for use in intensive liner optimisation studigsa® preliminary design tools.

1.1 Planning and progress

The Engineering Doctorate Scheme advocates that ressanoldertaken in close collaboration
with the industrial sponsor. Thus, over the four year pedbthis study, the author’s time has
been divided between the University Technology Centre (WihG5as Turbine Noise at the
ISVR, and the Noise Engineering department at Rolls-RoyceAn overview of the research
work time plan is shown in figure (1.1). Regular quarterly tivggs were conducted between
the author, and the academic and industrial supervisorsview and plan the research work.
The work plan shows a progression from initial investigagionto rectangular duct eigenvalue
solvers to the ultimate aim of predicting finite length liperformance in sheared flows. Work
involving optimisation and CFD was undertaken by the au#tt®olls-Royce, taking advantage
of the solution methods and computing resources avail&ielet In addition, a smaller project
covering jet noise installation effects and coaxial jetseogprediction was undertaken in three
months of Year 1 at Rolls-Royce. This work provided the authith experience in different,
but closely related, aspects of the engine exhaust noisdgono Parts of this work were reported
in the author’s mini-thesis [1], but are not reported here.
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1.2 Review of literature

The vast amount of research in the field of duct acousticedine 1960s has resulted in its
synonymous association with the aircraft engine indus®gveral reviews of the collective
research effort illustrate the depth and breadth of fieldate ¢, 3, 4]. Three broad categories
of methods developed to solve the propagation problem céstelpéfied: empirical, theoretical
and computational methods. An empirical approach was redun the early years before
theoretical models were readily available. These werecéllyi derived for low flow speed
ventilation duct applications [5]. However, this was sweeled in the 1960s and 70s by the
successful establishment of robust theoretical model&d&alised geometries and flow fields.
The majority of methods followed the pioneering work of Tyéad Sofrin [6], who considered
the sound field within the engine duct in terms of acoustic @spdhich provide solutions of the
wave equation or its variants. The ultimate success of gipsaach, which achieved surprisingly
good agreement with experimental results , [7, 8, 9, 10}tdede development of more realistic,
and thus more complex models. The development of numerigdéta since the 1970s based on
finite difference, weighted residual and finite element rodt¢hprovided capabilities that were
much better suited to modelling realistic geometries andgloHowever, the computational
speed and memory requirements for such models typicaltyiatsstheir use to the final design
stage and to low or mid frequency applications.

The typical starting point for theoretical duct propagatmodels is the simplification of the
inlet and bypass geometry to axisymmetric cylindrical anduar ducts of infinite length and
axial uniformity. Further simplification of the bypass datthigh hub-to-tip radius ratios to a
rectangular duct was used by Snow and Lowson [9], and YuckopiO]. The high speed non-
uniform flows present in the duct systems can be approxisnateldelled by a uniform radial
velocity profile [7, 8]. The inclusion of acoustic treatmeithe duct walls requires the formu-
lation of boundary conditions in terms of the acoustic ingezk of the treatment. It is widely
agreed that the correct condition at the wall is the contynaf normal particle displacement
[11]. The treatment universally used in the industry is teally reacting resonator type liner,
the complex impedance of which is typically modelled usieghsempirical relations [8, 12].
The resulting boundary-value problem reduces to a comp&stendental eigenvalue equation,
the solution of which has been the subject of many reseangbrpa

Determination of the lined duct eigenvalues is not a simak tdue to the topography of the
eigenvalue equation, and the complex arithmetic that islied. In early attempts several
researchers, such as Molloy and Honigman [13] and Morseragaid [14], focussed on the zero
mean flow problem, producing charts relating the wall impegao the eigenvalues, but without
solving the eigenvalue equation explicitly. The first afpésnat solving the equation directly
involved the use of power series expansions [15, 16], buhately more successful methods
have utilised numerical integration and iteration techieg] A simple Newton-Raphson iteration
method was implemented by Ko [8], Christie [17] and Yurkdwjit0], where the corresponding
rigid duct eigenvalues were used as initial values for thiime. The convergence of the routine



Chapter 1 Introduction 5

in certain instances is very much dependent upon the indiaks, and is known to be unreliable
due to the topography of the function, and the presence dipteubigenvalues. Motsinger et. al.
[12] based their solution on a similar iteration method, with a higher order of convergence,
termed Bailey’s method. In an attempt to ensure correctemg@nce the initial values were
chosen by dividing the modal regions into subregions udiegharts of Morse and Ingard [14],
and the iterations proceeded in incremental steps fromdheecged no flow eigenvalues. The
authors indicated that the routine is reliable, accuratefast, but also noted that the method
was not infallible. A clear disadvantage of this method & #hone-to-one relationship between
the rigid duct eigenvalues and the lined duct eigenvaludgsis Other researchers, such as
Mechel [18], have favoured the use of Muller’s method, witiels the disadvantage of requiring
three intial values, but the advantages of not requirindigrds, thereby avoiding problems with
multiple roots, and the ability to affect the direction inialnthe method searches for solutions.

In an effort to circumvent the need for analysing the modgilbms, Eversman [19, 20] developed
an integration scheme to solve the eigenvalue equation.sd@theme employed a fourth-order
Runge-Kutta integration, with a variable step size, and wtNie-Raphson routine to refine the
solutions where required. It was noted that particulamétie was still required for multiple
eigenvalues, although no indication was made of how thiddcba dealt with. The author
also noted the presence of extra solutions which were ctesised by having large imaginary
components. These solutions were identified by Tester Rignstra [22] and Rienstra and
Peake [23], as surface wave solutions, the mode eigenfunsctif which decay exponentially in
the transverse direction away from the duct walls. Rierf@2@deduced that there are at most
four surface wave solutions (eight in rectangular or anmailgcts): two acoustic surface waves
which are present both with and without flow (four in rectdiagwr annular ducts), and two
hydrodynamic surface waves which only occur with flow (fauréctangular or annular ducts).
These solutions are typically hard to find, and consequemdyoften missed using the solution
methods mentioned above. A method was described in [22]wdliowed for the surface wave
solutions to be accurately traced from the rigid duct eigares.

The acoustic surface wave was shown by Cremer [24] and TE&gto be important in the
optimisation of acoustic liners. The maximum attenuatiérine least attenuated mode, by
a uniform liner of reasonable length, was shown to occur riqpedances where the lowest
order mode pair coalesce, that is essentially a double wafjemn Approximate expressions for
optimum impedances were given. However, due to the largeofathange of attenuation rates
around the optimum value, the practical application of tkgressions is unreliable. In addition,
the short lengths of ducts typically seen in aircraft engimeans that reflections from the liner
edges will affect the optimum impedance. This was shown tardee by Unruh [26], Unruh
and Price [27], and Koch [28] who also demonstrated that @maoin finite length liner of
given impedance could in theory lead to more attenuation #éhanger length liner of the same
impedance.

Finite length liners have been investigated analyticallynerically, and experimentally by sev-
eral researchers. Two analytic techniques have been eathloyamely: mode-matching and
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Wiener-Hopf. The Wiener-Hopf technique can provide analgplutions to problems with sep-
arable geometry but mixed boundary conditions. It was ssfa#ly applied to lined rectangular
ducts with rigid side walls in the absence of flow by Koch [28}d in the presence of a uniform
flow by Koch and Mohring [29]. The authors were able to pretlietsound attenuation of finite
length uniform and two-segment liners with symmetric anghasetric linings and examine
various liner parameter variations. Although a powerfehtgque, its application to more re-
alistic aeroengine duct models, such as non-uniform orredefows and variable geometry, is
limited since it is not clear whether the necessary extassiould be carried out.

The mode-matching technique is a well known method for fdatmg boundary-value prob-
lems in waveguide theory [30]. The first application of theht@ique to aeroengine duct systems
was made by Lansing and Zorumski [31], which representefifien a series of extensive an-
alytical and experimental studies of axially-segmentadrk supported by NASA in the 1970s
[32, 33, 12, 34, 35]. The technique is more amenable than tieméi#Hopf technique to the
practical purpose of liner performance predictions, sietatively simple extensions have been
demonstrated for variable geometries [36, 37]. A poteuiishdvantage is that in contrast to the
Wiener-Hopf technique, the mode-matching formulatiorhmpresence of a mean flow does not
provide direct control over the edge conditions at the lleading and trailing edges. However,
the inclusion of a suitably high number of modes, and by sjrkpkping a check on the conver-
gence rate of the modal amplitudes, appears to suffice whaparing the experimental results
of Sawdy et. al. [34] to their corresponding mode-matchiolgt®ons. A numerical approach to
mode-matching was undertaken by Hii [38], where the eidervproblem was solved using the
Finite Element Method for ducts of arbitrary cross-secamad non-uniform impedance bound-
aries. An improved technique of matching mass and momentumea discontinuities was
demonstrated to provide better agreement with full FE 8migtthan the traditional matching of
pressure and axial particle velocity. The FEM is a much mepelile method than the analytic
approach. However, the accuracy of the method is highly nt#gr@ upon mesh resolution, and
becomes computationally expensive at high frequencies.

The incentive to use axially-segmented liners in aeroengipplications is the possibility of
obtaining extra attenuation bandwidth, not only from jumlis tuning of the liner depths, but
also by taking advantage of finite length effects, and beiaéfitodal energy redistribution at the
liner impedance discontinuities [39, 40, 34]. The optiti@aof such liners inevitably involves
an increased parameter space, and it is widely agreed thattformance of segmented liners
is heavily dependent upon the incident modal content. Thientgation study carried out by
Sawdy et. al. [34] found that local optimum impedances fdrad¢-segment liner were a strong
function of the source content. It was noted that in using froperty it may be possible to
construct a multi-segment liner that was relatively ing@rmesto the incident modal content. A
zero flow optimisation study by Baumeister [40] concludesl tvhile segmented liners were
more effective than uniform liners at high frequencies, aodld certainly outperform uniform
liners at low frequencies in plane wave mode only situafidhs practical considerations of
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uncertainty in optimum impedances mean little advantageusd. The large degradation in
performance of multisegment liners that are sensitiveeéabdal input was also demonstrated.

It is noted that most of the analytic duct propagation studited above have dealt with sym-
metric liner configurations, and all have restricted thaealgsis to even mode excitation. Little
has been published on the subject of asymmetric liners. Menvan eigenvalue solver for two
dimensional ducts with uniform mean flow was presented byeftiainid [41], and a mode-
matching procedure for a single asymmetrical liner segnrettie absence of mean flow was
given by Ochmann and Donner [42], with brief results preseéfty Ochmann [43]. The analy-
sis of Mechel [44] indicated that the favourable attenuatjoalities of odd modes compared to
even modes highlights the possibilities of using asymmaitiners to redistribute modal energy
from poorly attenuated even modes to well attenuated oddemotiherefore, the inclusion of
asymmetric liner segments in an axially-segmented linefccprovide an extra modal condi-
tioning tool. A mathematical model describing the modegahiiy technique for asymmetrical
lining configurations with uniform mean flow was presentedJoyuh [26]. However, the model
was only applied to a single lining segment with one of thersag walls being rigid, and with
a plane wave sound source. This is in fact equivalent to a smially lined duct of twice the
height, with only even modes included in the matching.

The modal methods described above, for the uniform flow orow dlases, are based on closed
form modal solutions of the convected wave equation. Theettiod of acoustic propagation
in arbitrary sheared flows requires numerical solution efgbverning Linearised Euler Equa-
tions (LEE). Currently, the only methods available for ass&y acoustic propagation in lined
ducts with rotational mean flows are specialised Finite ElenMethods (FEM) [45, 46, 47]
and LEE Computational Aeroacoustics (LEE-CAA) schemes {48. Both methods are re-
stricted to low and mid frequencies, and have a high comiputatcost which precludes them
from use in intensive optimisation studies. To obtain tine@monic modal solutions, the LEE
may be solved for a parallel sheared flow of constant densitysaund speed in the manner
described first by Pridmore-Brown [50]. Here a second ordaagon in the transverse pressure
is obtained for a specific axial wavenumber. Alternative eveariable formulations were later
highlighted by Tester [51] and Smith [52], who noted thatppposed to other wave variables,
a formulation in pressure and radial particle displacendihinot involve flow gradient terms.
Several researchers have assessed the effects of bouagarptofiles [51, 53, 54] on individ-
ual mode solutions by solving the Pridmore-Brown equatisimgi various methods. Common
conclusions were that upstream modes are more affected ag flosv shear than downstream
modes, and attenuation by acoustic liners is enhanced ¥anstceam propagation and degraded
for upstream propagation.
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1.3 Aims, motivation and claim to originality

The research presented in this thesis, and the researabspitaqutlining future work in Chapter
(9), primarily covers the subject of analytical modellingiro-duct acoustic propagation in the
bypass duct of a modern HBPR turbofan engine.

The propagation of sound in the bypass duct is a very compilalxigm. To begin with, a de-
scription of the source of sound is often unknown in detail] avill consist of both tonal and
broadband components. The geometry of the duct is highgetdimensional with a slowly
varying axial curvature accentuated by the turbine humg ream-axisymmetry due to the pres-
ence of the pylon and lower bifurcation. In addition, therayrbe abrupt changes in the type of
acoustic liner (e.g. SDOF, 2DOF), rigid splices, servicehas and heat exchangers located on
the walls. The in-duct flow field after the outlet guide van@s{/s) will generally have little
swirl, but can have significant radial non-uniformity. Balamy layer growth and the curved duct
geometry mean that significant variation in the flow field isgible along the axial length. The
character of the flow field can affect the propagation of sabineligh refraction and convection,
and ultimately affect the attenuation levels achieved luatic liners.

The key aim of this work is to provide simplified, yet represeire models of acoustic propaga-
tion in bypass ducts for use in the optimisation of acoustiatments, and as a computationally
inexpensive design tool. In this thesis, the early chaptensentrate on the development of ax-
isymmetric modal methods where the duct cross-sectionsisnasd to be axially constant and
the mean flow uniform, but the wall impedances are allowecdetdibcontinuous. Such methods
provide insight into the modal structure of the in-duct sbdield, the scattering effects of the
liner discontinuities, and here are utilised for liner agigation. The later chapters extend these
methods to deal with the effects of a radially sheared flowhenacoustic propagation in the
duct, and ultimately, the effects upon the performance dkfiength liners for the attenuation
of tonal and broadband sources.

The original contributions of this thesis are as follows:

e A robust eigenmode solver is developed for asymmetricailgd rectangular ducts with
uniform flow, using a combination of the tracking techniqoé&versman [19] and Rien-
stra [22].

¢ A semi-analytic mode-matching method is developed to ass®gnmetric liners of finite
length in rectangular ducts with uniform flow. It is showntth@ass and axial momentum
must be matched in order to accurately resolve the pres®ideafi wall impedance dis-
continuities. In addition, the suitability of hydrodynasrsurface waves in resolving wall
pressure singularities at the wall impedance discontesiis demonstrated.

e Viscous and inviscid Computational Fluid Dynamics (CFD)tinegls are used to inves-
tigate acoustic propagation in rigid walled bypass ducth wealistic flow fields. It is
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shown that scattering of modal energy is highest in the reground the turbine hump.
In addition, non-uniform inlet flows are shown to result innaacattering than uniform
inlet flows.

e A robust eigenmode solver is developed for asymmetricallyd annular ducts with ar-
bitrary sheared mean flow. It is shown that non-uniform flowafifes can strongly affect
low order modes and surface waves. Boundary layer refraetffects become stronger
with increasing frequency for all modes.

e The convergence of mode solutions for boundary layer flovikecslip flow solutions is
confirmed by solving coupled equations in pressure andlrpditicle displacement.

¢ A mode-matching method is developed for predicting acoystpagation in lined annu-
lar ducts of constant cross-section, containing invigeattallel sheared flow. This scheme
represents a simple and fast solution method for assessgrgplerformance in uniform
ducts with rotational flows, which was previously only obtle using specialised and
computationally expensive FE methods or LEE solvers.

e The presence of boundary layers is shown to increase poamsmnission loss at high
frequencies, whilst the behaviour of modal scattering mwshto vary with boundary
layer thickness.

e The effects of several flow profiles on liner attenuation asattering are investigated. It
is shown that the direction of the mean flow gradient can haseamng effect on liner
attenuation, particularly for single mode sources.

¢ Finite liner length effects upon power attenuation are shéovbe most significant for
single mode sources and differences between flow profildgw@ited to low order modes.

¢ In an optimisation study, asymmetric liners are shown tepilly provide higher at-
tenuation rates than symmetric liners, depending on tleztin of the mean flow shear
gradient.

1.4 Outline of contents

The analysis begins in Chapter (2) where the governing e#ajea equations are derived for
acoustic modes in asymmetrically lined rectangular duotgaining uniform mean flow. A
numerical scheme for obtaining the eigenvalues is predend validated. Mode solutions of
three-dimensional rectangular ducts are often used toappate the modes of annular ducts,
and this approximation is assessed here. The chapter dasclith an analysis of surface wave
modes using asymptotics.

In Chapter (3) a mode-matching scheme is developed to aseassl power attenuation and
modal scattering in axially-segmented rectangular ducgts uniform flow. The eigenmode
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solver of Chapter (2) is used to provide mode eigenfunctimmd wavenumbers for a tradi-
tional scheme, which matches pressure and axial partidteitle and an improved scheme,
which matches mass and axial momentum across liner discoiigs. Both schemes are as-
sessed against each other, the Wiener-Hopf technique ardl&tions. The issues of liner edge
conditions and hydrodynamic surface waves in the matchihgraes are discussed.

The mode-matching schemes and eigenmode solvers are uadthér optimisation study in
Chapter (4). Several optimisation algorithms are used f&@rees of cases. A single frequency
optimisation exercise is presented, aimed at determimiagptimum resistance and reactance
values for sound power attenuation of uniform and multinseqt liners. Examples of optimi-
sation of attenuation performance over a specified frequbaadwidth are presented. Here,
design parameters of resistance, liner cavity depth aed #egment length are used to optimise
up to four liner segments for single mode and multi-mode esir

In Chapter (5), high fidelity CFD methods are used to invastighe mean and acoustic flow
fields for a realistic bypass duct geometry. Inviscid andais solutions on quasi-axisymmetric
meshes are used to investigate the effects of boundary dageth, realistic inflow conditions
and duct curvature effects on acoustic propagation.

In Chapter (6) the equations governing acoustic mode padfagin lined annular ducts with
inviscid, parallel mean flow are derived for a number of waaables. A computational scheme
to solve the governing equations is described, which isdasea shooting method involving
the eigenvalue tracking procedure used in Chapter (2). Tieete of the radial flow profile
on the acoustic mode spectrum are assessed for realistiitioos. The convergence of mode
solutions in linear and one-seventh power law boundaryrléige/s to the uniform slip flow
solutions is investigated. In addition, the change witlyfiency of the mode spectrum for a
selection of boundary layers and non-uniform core flows asessed.

In Chapter (7) the mode-matching scheme of Chapter (3) sneeid in order to assess the
performance of axially-segmented liners in annular duotgaining parallel sheared flows of
arbitrary profile. The scheme is validate against FE safgtior uniform flow and the inclusion
of vortical modes in the matching is discussed.

The effects of flow profile on finite length liner attenuatior assessed in Chapter (8). The con-
vergence of linear boundary layer flow solutions to the unifelip flow case is investigated.
Boundary layer effects upon the power attenuation spectnuihmodal scattering are assessed
for thin and thick linear boundary layers. Solutions foresa core flow profiles are also in-
vestigated. Finite length effects are investigated sinoer Isegments within real aeroengine
ducts can vary significantly in length. Finally, a contoustpdptimisation exercise is carried out
to determine how the optimum liner impedance varies with fbpafile. Both symmetric and
asymmetric single segment liners are assessed for sindlmalti-mode sources.

Chapter (9) contains the conclusions of the research, afidesiareas of future work.



Chapter 2

Eigenvalue problems for rectangular
ducts with uniform flow

2.1 Theory for a two-dimensional duct

This chapter outlines the theory and methods used to c#dctiia sound field within uniform
rectangular ducts with subsonic uniform mean flow.

First, the problem of propagation of sound in a uniform twmehsional duct of heightd with

a wall lining admittances is examined. The rectangular geometry with a Cartesiandauete
system(z, y) used in this case is shown in Figure (2.1). Well-known waigsgtheory allows
a modal breakdown of the in-duct sound field into modal saicfdnarmonic time dependance
¢! that can propagate upstream and downstream.

Starting with the convected wave equation in pressure

o a071%_ 92 02
5+ ogg) 58 (g + ) P =0, .

A time harmonic pressure field is assumed, of the form
B(@.5,7) = p(@, §)e" (2.2)

and the variables are made dimensionless as follows:

z a
x d’ d 5 0 co ) b 000(2]’ u o ( )
Substituting into equation (2.1) leads to the convectedriteltz equation
_ 91° 2 8
|:Zk0+Ma_:1}:| p—<@+a—y2>p—0. (24)

11
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FIGURE 2.1: Geometry and liner impedance notation for a two-dimenditinad duct with
uniform mean flow.

Modal solutions are found by separation of variables, ardathe form
pa(,y) = W (y)e ", (2.5)
where the eigenfunction describing the transverse vanaif the mode is given by
U, (y) = Ay [Ry, cos kpy + Sy sinkpy| - (2.6)

The normalisation constant,, is determined so that

1 1
: / WU dy = G 2.7)
1

The dispersion relation between thith mode non-dimensional eigenvalkg , the correspond-
ing non-dimensional axial wavenumbky, and the non-dimensional free space wavenumber
ko, is

k2 = [ko — knM)* — k2. (2.8)

The dispersion relation can be rearranged to give the axasemumber in terms of the mode
eigenvalue

kny, 1

o~ | —M+
ko 1—M?

1
273
1—(1—M2) (I . 2.9
( ) (k0> ] (2.9)
The eigenvalues are determined following application ef wall boundary conditions. The
boundary condition ag = +1 for the case of a duct with rigid walls is that the acoustidipkr
velocity normal to the wall is zero. The boundary conditisrdéetermined by application of the
acoustic momentum equation in thalirection, and leads to

op

—~ =0 aty==+l. (2.10)
oy



Chapter 2 Eigenvalue problems for rectangular ducts witform flow 13

The mode eigenvalues, are therefore defined by
sin kpy cos kpy =0, (2.11)

where )
/{n:w for n=1,2.... (2.12)

Solutions corresponding to even and odd modes respectvely

T 3m 5w

Kp =0,m,27... Kn

The modal coefficients?,, and S,, are determined through application of the boundary condi-
tions aty = +1. For a rigid walled duct the coefficients are given by,

R, = cos (kn), y = =+1, (2.14)
Sp = Esin (ky), y==+1. (2.15)

The normalisation constamt, is given by

1 =1
Ap = e
V2 n>1.
The axial wavenumber determines the travelling wave nabfithe modal solutions, and its
value depends upof,, ko and M. The axial wave number is real for

2
1-M2) (22) <1 2.16
(1= 27%) ( ko) <1, (2.16)
where the positive sign choice in Equation (2.9) correspdoda right running mode, and the
negative sign corresponds to a left running mode. The axé@lewumber becomes complex
when

(1 M?) <@>2 > 1, (2.17)

In this case modal solutions of Equation (2.4) are evanésoedes that decay exponentially
with axial distance given by

Pu(,y) = Uy (y)e Rkn)TetShn)e. (2.18)

In Equation (2.9), by taking the principle value of the sgquewot in the lower half plane, the
significance of the sign choice in Equation (2.18) is moraightforward, as exponentially
growing solutions are avoided, by assuming the positiva Bigicates a mode propagating in
the positivez-direction, and the negative sign indicates a mode propapat the negativer-
direction. It may be shown through energy considerations tthese modes carry no acoustic
power and are referred to as beingf-off [55].
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The duct is assumed to be of infinite length in the axial dioegthence there exist uncoupled
solutions for upstream and downstream propagating mode® @srmination reflections are

permitted [56]. Therefore, the appropriate sign choicedundiion (2.9) is required to correctly

define propagation or decay in either axial direction whezuk to the designation &f or &,

to indicate solutions in the positive or negativedirection. The appropriate modal solutions
propagating in positive and negativedirections are of the form

—iktax
p(z,y) = Ut (y)e Hn® (2.19)

Py (2,y) = U, (y)e *n o (2.20)

where the general solution for the duct sound field is givethiyFourier modal sum

- —iktx - — —tkn
pla,y) =Y W (y)e T+ W (y)e (2.21)

Extension of the theory to the calculation of mode eigeresin a duct with lined walls requires
the use of more complicated wall boundary conditiong at +1. The liner is assumed to be
locally reacting with non-dimensional specific acoustipedanceZ defined as

z=_%2 =_F

= =2 aty = +1, (2.22)
poco Ty

wherew,, is the normal wall particle velocity. Continuity of partctisplacement at each wall
yields the Ingard-Myers boundary conditions [11, 57], whic terms of the non-dimensional
admittance? = 1/Z are given by

op . M 9\?
— = Fik 1—i—— aty = +£1. 2.23
=it (1-i7 ) p ety 223
Modal solutions are again of the form
Pu(,y) = A [Ry €08 iy + Sy sin piy] e (2.24)

wherey,, is the non-dimensional transverse lined duct eigenvahaog is the non-dimensional
axial lined duct wavenumber. The modal coefficieRtsand.S,, for a lined duct are given by

T . 2
R, = cos (un) + Zofﬁ <1 — M%) sin (py) , y = +1, (2.25)
n 0
) ikoBd,—d an\?
Sp=+sin(pu,) F———(1— Mk:_ cos (i) , y==+l1. (2.26)
Hn 0

Application of the boundary conditions to each modal solutyields the transcendental eigen-
value equation

(ko)

n

+\ 4 +\ 2
L tan 2417, + <1 . M%) tan 24, — 2k <1 . M—”) —0. (227

0
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Alternatively, the separate eigenvalue equations for ewehodd eigenfunctions are given by

+\ 2

(4n) tan i, — ko (1 - MO];—”> —0, (2.28)
0
+\ 2

(1) COtuy, + iBkg (1 — M?{—") =0. (2.29)
0

It should be noted that the eigenvalue equation for even matlealso apply to the problem of
a duct of height/ with one wall rigid and the other wall lined with admittange

For cases where the top wall lining admittangediffers from that of the bottom wall lining
admittance3_, the eigenvalue equation becomes

k23,8 +\ 4
Ly tan 21, + % (1 - Ma—"> tan 244,
mn

a

+\ 2 ot 2
—ikoBg |1 —M-"L) —ikofB_gql1—-—M-2) =0. (2.30)
/{0 k'O

Equation (2.30) is equivalent to Equation (2.27) witgn= (5_,4, and to Equation (2.11) when
Ba = B-qa=0.

Determination of the eigenvalues of any of the above eidaavequations is not simple because
of the complex topography of the function for which the zeamssought, and the complex arith-
metic that is involved. A numerical scheme has been devdlagere the eigenvalue problem

is transformed into a differential equation and the eigkrasare found using an initial-value-

problem approach following the type of procedure proposeBversman [19].

2.2 The numerical method applied to the two-dimensional cas

Firstly the eigenvalue:/ky and wall lining admittances are assumed to be functions of a pa-
rameter. Differentiation of the eigenvalue problem with respecttgields a single ordinary
differential equation (ODE). If the admittance functiGty)) is prescribed oved < n < 1, then
u/ko may be found by integrating the differential equation over same limits. If the value
(3(0) is prescribed as the rigid-wall admittance, then the ihitedue is determined from the
known rigid-wall eigenvalue sequence

Kn (n—1m

—_ = f =1,2.... 2.31
"o o or n , (2.31)

The solution of the ODE ag = 1 is the eigenvalue for the conditigf(1), ko, M, whereg(1)
is the given wall lining admittance.

The choice of the admittance functigiin) is determined by the value of the wall lining admit-
tance. The value of the wall lining admittance determinesrthmber and location of surface
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FIGURE 2.2: Admittance and impedance contours taken for the tracingoofen = 1 from the

rigid wall case to the asymmetrically lined casebottom wall admittance contous; top wall

admittance contours, bottom wall impedance contous; top wall impedance contoury.;, =
0.2, X5, =-3,R;_,=01,X; , =—25.

wave modes, which can be hard to find. Where surface wavesoaigresent the admittance
function is identical to that used by Eversman [19]

B(n) = npy , (2.32)

wheref; is the required admittance. However, where surface waweprasent a method sug-
gested by Rienstra [22] is used so that all surface waves mdgund. The method defines
an impedance function/(n), along a contour parallel to the imaginary axis in the comple
impedance plane starting fromd = R + ioco for M > 0, or Z = R — icc for M = 0, to
the required impedanceZ;. The proposed method uses a combination of the schemes sug-
gested by Eversman and Rienstra, where an impedance funstaefined such that both the
wall impedances for an asymmetrically lined duct are takém account, and tracking through
the impedance plane occurs in such a way that all the surfagesacan be found. The tracking
of the top and bottom wall impedances occurs sequentialyhat the gap between successive
eigenvalues is minimised, reducing the risk of instabilityhe scheme. The impedance function
must begin from a region where surface waves do not exist,jsasRa’s method must be im-
plemented for the first wall impedance by tracking frém= Ry, +iocoto Z = Ry, +iXy,, and
then for the second wall impedance by tracking frém= R; , +icoto Z = Ry , +iXy .

For computational purposes a valueXf, = +20 for the starting reactance is assumed to be
sufficiently large to represent a contour beginning-éato. This represents a change from a rigid
to a nearly rigid wall impedance for both walls, which regsithe inclusion of an additional
step in the impedance function since the initial eigenvaluged for both walls are no longer
close enough to ensure correct convergence. The step fgiohteinearly rigid wall impedance
occurs in a region where surface waves do not occur, so Ee@'smmethod is used to track the
first wall impedance from rigid t& = R, +iX,, and the second wall impedance from rigid
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toZ = Ry ,+iX. Anexample of the total impedance tracking path, with the fmmponent
paths, for an asymmetrically lined duct is presented in &ddr2a) in the impedence plane, and
in figure (2.2b) in the admittance plane.

2.3 The structure of the computational scheme

The structure of the computational scheme for the genesal chan asymmetrically lined duct
with uniform flow has five main components:

1. Calculate the rigid-wall eigenvalue.
The calculation of the eigenvalues for the case of one wgill and one wall lined is
undertaken using the even modes of a symmetrically linetlafuweight4d in order to
reduce computation time and complexity. The rigid-wallegigalues are therefore
defined as
Z—Z:% for n=1,2... . (2.33)

and the eigenvalue problem being solved is

ko [ 22 ) tan 2ko [ 22 = iBkow? (2.34)
k ko

0

NI

1+ M [1— (1— M?) (g—g)z}

1— M?

(2.35)

w =

2. Calculate the eigenvalue for the case of one wall rigid and #other with lining
impedanceZ = Ry, + iX.
The rigid-wall eigenvalues are used as initial values feritfitial-value-problem, where
the admittance function is given by

Buln) =y, where iy, = 5o (2.3)
and differentiation of Equation (2.34) yields the ODE
4 <ﬂ> - B . (237
PN iy (1) o (1) sect 2y (1) 7 220005
v=1-(1-M?) <ﬂ>2 . (2.38)
ko

3. Calculate the eigenvalue for the case of one wall rigid and #other with the
required lining impedance Z;, = Ry, +1.Xy,.
Upon integration of Equation (2.37) the computed nearlidrigall eigenvalues are used
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as initial values for the initial-value-problem where thggedance function as suggested
by Rienstra is given by

Zq(n) = Ry, +1 [Xoo =1 (Xeo — de)] : (2.39)
The ODE for the problem is then

d (u) _ w’ (Xg, — Xoo) . (2.40)

dn \ ko i2ZwM (,g—o)
Z2 tan 2k (%) + Z32ko (k—‘z) sec? 2ko (k—‘o F— 7

1
v2
which upon integration yields the eigenvalues for the cdsme wall hard and the other

with the required lining impedancé;, = Ry, +iX,. The eigenvalues are then used as
initial values for the asymmetrically lined case.

4. Calculate the eigenvalue for the case of one wall with liningmpedance
Z = Ry , +1X and the other with the required impedanceZy,.
The eigenvalue problem for the asymmetrically lined cagk wpper wall lining
admittances; and lower wall lining admittancg_ is written as

k‘o ﬂ tan2k0 ﬁ —ikowzﬁd
ko ko

kow*BaB_a

(%)

2] 2
15 M [1—(1—M2) (%) }
1— M?
The initial-value-problem is then set up where the admittafiunction for the lower wall
lining is prescribed as

—ikow?B_q + tan 2o <ﬂ> —0, (2.41)

ko

w =

(2.42)

1

- 2.43
Rf—d +iX' ( )

B-a(n) =nBs_,  Wheregy ,=

and the upper wall admittance is held at the required adneitd;, = 1/ (R, +iXy,)

yielding the ODE
d (p MNa
— =) == 2.44
T (e) -3 (2.44)

where

w4ﬁdﬁf7d tan 2ko (%)

&)

Ny = iw26f7d -
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i2wByM (£
D4 =tan 2k <ﬂ> + 2kq <ﬂ> sec? 2ko <ﬂ> ¥ A

12wp_q M ﬂo w?By6_q tan 2k %
T 7 (k ) + (u) <k’ )

ko

M 2 H M
ES () sec?2k0 (£) 1w (#) |
tan 2ko (k—‘z) (]5—0) wyv
5. Calculate the eigenvalue for the case of one wall with the ragred lining impedance
Zy ,= Ry ,+1iX; , andthe other with the required impedanceZy,.

Upon integration of Equation (2.44) the eigenvalues are@yain used as initial values
for the initial-value-problem where the lower wall impedarfunction is given by

Z_q(n) =Ry +1i [Xoo -n (XOO - Xf_d)] , (2.45)

and the upper wall is held at the required impedafigeyielding the ODE

d (p\ Ny
_ 2z 2.4
dn <k0> Dy (2.46)

where

o W Xp) i tan 2ko (f£) (Xoo = X;,) |

z2, A (,5—0)

H KB 2 I
=tan2ky | — 2ko | — 2ko | —
Dy an 0<k0>+ 0<k0>sec 0<k:0>

I

i 2 i i
2kq (ko)sec 2k0( O) - 1 j:4M (k’o)
tan 2ko (]5—0) <%) wyv
Upon integration the ODE yields the eigenvalues for the chsme wall with lining

impedanceZ;, = Ry, + 1 Xy, and the other with lining impedance
Zjg= Ry g +iXp
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FIGURE 2.3: Tracking of the positive:-direction propagating mode eigenvalues € 1, 2)

with adaptive step size, showing the four component adneitémpedance contour sections.

Colours correspond to the admittance/impedance contaufigire (2.2).ky = 18, M = 0.5,
Ry, =02, Xy, =3, Ry ,=01,X; , =—-25.

2.4 Implementation of the scheme

A fourth/fifth order Runge-Kutta-Fehlberg [58] adaptivessize integration routine has been
applied to each of the ODEs that have been derived. A simplgdteRaphson iteration has
been used after the integration of each of the ODEs to maititai accuracy of the eigenvalue
at each step during the scheme.

It was noted by Eversman [19] that Equation (2.37) beconmegitar when stepping away
from the rigid-wall eigenvalue /&y = 0, but assuming smalt; andu./k the first step away
from the eigenvalue can be made by

o [’Aﬁf«i} P1EM (2.47)

ko 2k 1— M2’
whereA is the initial step away frony = 0.
An example of the path taken by two low order mode eigenvatwes they: plane is shown in
Figure (2.3), where the four colours represent the pathlentaking the four impedance
contours. The dots indicate the value of the eigenvaluedt edegration step, whilst the
crosses indicate the eigenvalue having been refined usenigdtvton-Raphson iteration. The
smooth tracking of the eigenvalues demonstrates the ityadfithe integration scheme. The
requirement for the rigid to nearly rigid components in tiigpédance contour is shown to be
justified since the corresponding eigenvalue trackinggéth. blue dots) can constitute a
substantial amount of the total tracking pathlength.
The tracking paths of the first forty-four mode eigenvaluesmesented in Figure (2.4), where
the four tracking paths which move far away from the real axesthose of the surface wave
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FIGURE 2.4: Tracking of the first forty-four positive-direction propagating mode eigenvalues.
Colours correspond to the admittance/impedance contaufigiure (2.2).ky = 18, M = 0.5,
Ry, =02, Xy, =3, Ry ,=01,X; , =—-25.

modes. Each surface wave mode is localised to either the anrmater wall, which can be
deduced from the tracking contours, either cyan or greqrectisely.

The independent integration variablenisvhich is directly related to either the complex
admittance or the reactance, so it is possible to investitye variation in the dependant
variabley over the integration limits, and the variation in the adapintegration step size. The
two plots in Figure (2.5) show the value |pf| over the integration limits of the reactance
contours of top and bottom walls. The spacing of the dotcatds the step size chosen by the
Runge-Kutta-Fehlberg routine in order to maintain therégsaccuracy. The genuine acoustic
modes show generally smooth integration paths, with a gtetustering of integration points
for 3{Z} < 2. However, there are regions of strong changg:irover the reactance contours
where acoustic modes transition into surface wave modesdin It is noted from figure (2.5a)
that the bottom wall localised surface wave modes are Viytuaaffected by the introduction
of the top wall impedance. There is a strong clustering @&grdtion points at the transition
points of the surface wave modes and this behaviour appeaesreciprocated in the acoustic
modes in the vicinity of the surface wave modes as demoastiatfigure (2.6), which shows
the plot rangd—3 2 38 55] of figure (2.5b). These observations demonstrate that thefusn
adaptive step size integration routine is extremely udefuinaintaining stability in the
tracking methods and will prove useful for defining trackoantours in shooting methods
developed later on.

2.5 Validation of the scheme for the two-dimensional case

The numerical scheme has been validated against publigitadrdm Eversman [20], and by
comparison of results from a Finite Element (FE) code [38jisTncludes flow and no flow
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FIGURE 2.5: Mode eigenvalue and Runge-Kutta-Fehlberg integratiop stee variation over
the two reactance contours for the first 44 radial modes, witiface wave modese(d) and
dots indicate the solution at each stég.= 18, M = 0.5, Ry, = 0.2, Xy, = =3, Ry , = 0.1,
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FIGURE 2.6: Runge-Kutta-Fehlberg integration step size variationdasing impedance con-
tour showing plot range [-3 2 38 55] of figure (2.5b), with sazé wave modesdd). ko = 18,
M =05R;, =02, Xy, =3, Ry ,=0.1,X; ,=—2.5.

cases, and symmetrically and asymmetrically lined dudte. first validation case uses
published data from Eversman [20] for a flow duct with one wigid and one wall lined. Two
lining admittances were prescribed;= 0.72 4 i0.42 is located in a region where surface
waves exist , ang = 0.72 — ¢0.42 is located in a region where surface waves do not exist. The
results and validation data are presented in Tables (2dLj2a8) in terms of the axial
wavenumber and the residual achieved by substitution afdhgputed eigenvalue into
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FIGURE 2.7: Mode shapes for a rigid-wall duct (dashed line) and a ductdiron one wall
(solid line - result determined from numerical scherhe,result from FE code) with admittance
B =0.72+1i0.42, kg = 0.5, M = —0.5.

Equation (2.30). All the required modes were successfulgwdated, including surface waves,
with an accuracy of0—!!.

The first four mode shapes for the duct with lining admittafice 0.72 + 70.42 are shown in
Figure (2.7). The surface wave mode= 2 decays exponentially away from the lined wall,
whilst the other modes are slightly modified forms of the esponding rigid duct mode
shapes.

The second validation case uses results from a FE code fayamaetrically lined duct with
and without flow. The top wall admittang®; is located in a region where surface waves exist,
but the bottom wall admittancé_, is located in a region where surface waves do not exist.
The results and validation data for the flow case are pregemf&able (2.3) and for the no flow
case in Table (2.4).

2.6 Extension of the scheme to a three-dimensional duct

The analysis of the two-dimensional problem can be extetméte three-dimensional
problem of a duct of heightd and width2b, with rigid sidewalls, and asymmetric lining on top
and bottom walls, with relatively little adjustment to thengputational scheme. The
rectangular geometry with Cartesian coordinate sygtem, z) chosen for this system is
shown in Figure (2.8), where= Z/d. The governing equation is the three-dimensional
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FIGURE 2.8: Geometry and coordinate system for a three-dimensiondl duc

convected Helmholtz equation

2
[z’ko + Mﬁ} p—Vip=0, (2.48)
ox

the modal solutions of which have the form,
Pmn(T: Y, 2) = Xmn(y, 2)e” Pt (2.49)
The (y, z) transverse variation of the mode is given by
Xmn (Y 2) = Ay nWrnn(y) [Rm cos ks, z + Sy sink,, 2], (2.50)

and the normalisation constafitis determined from
b/d

d /1
T Xm,nX*m n dydz = 8(n) (mn)y’ - (2.51)
1 )y ), XX (mn) )

The dispersion relation for the problem is defined as

K2 = (ko — kmn M) — k2, — k2. (2.52)

m,n
Boundary conditions on the duct sidewalls:at +b/d are set as

Op
i 0, (2.53)
with the additional phase condition pfy, —b/d) = p(y, b/d). This phase condition is
prescribed in order to enable a rectangular duct approlaméb an axi-symmetric annular
duct, such that the transverse mode variation is directly comparable to thelanmuctd
mode variation. This transformation is described furtingihe next section (2.7).

The z transverse wave numbegg,  is given by

k, :mez for m=0,1,2... (2.54)

m
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The normalisation constant,,, ,, for a rigid walled duct is given by,

1 m=0,n=1,
Apn =13 V2 m>0n=1orm=0,n>1,
2 m>0n>1.

Application of the boundary conditions for the top and bettealls yields the eigenvalue
problem which is identical to Equation (2.30), but wheredh&l wave number is now defined

) Fim,n 1 (Mi 1—(1-M?) [<z>2+<k]§;’l>2”;> (2.55)

ko 1— M2
The theory discussed for the solution of the two-dimendipnazblem may now be applied with

the z transverse wave number included in the formulation. Thedtep away from the
rigid-wall eigenvalue</ky = 0 can now be made by

1

Rt
1F M |1 (1- M) (%)
1— M?
The method and structure of the scheme used to compute #mvalges is identical to that
used for the two-dimensional case. Validation of the schiEmthe three-dimensional case

w =

(2.57)

was made against a FE formulation, and numerical solutidgheoho flow problem in th¢y, z)
plane using the commercial partial differential equatiBDE) solver MATLAB PDE toolbox.
Validation data for an asymmetrically lined duct withouwils presented in Table (2.5), where
data from both the FE solution and PDE toolbox are providemtalor an asymmetrically

lined duct with flow is presented in Table (2.6), with datanfrthe FE solution also provided.
Comparisons of the validation results demonstrate extdedlgreement.

2.7 Rectangular approximation to an annular duct

The approximation of acoustic propagation in an annulat dsing the three-dimensional
rectangular duct model described above has been used ysbviny several researchers
[10, 59, 60, 61]. The premise of the approximation is thatigh ub-to-tip ratios:, the mode
eigenfunctions of the rectangular duct closely resemhisdtof the annular duct. The radial
mode eigenfunctions of the annular duct are a linear cortibmaf Bessel and Neumann
functions

Upn(1) = Ronndm(Emnt) + SmnYm (Emnt) (2.58)

and by observing the principal asymptotic forms of theseftions as ., ,,r) — oo ([62],
p.364) it is seen that trigonometric functions are recadeiredicating the similarity to the
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FIGURE 2.9: Comparison of rectangular (solid lines) and annular (dagHhiees) rigid duct
modesky = 21.24925, h = 0.4, M = 0.

rectangular case,

2 mnr 1
I (KmnT) ~ P— oS | KmnT 5 1)
2 mnr 1
Y, ~ i - -
m(KmnT) P— sin (/immT‘ 5 4) ,
AS Ky, — 00 . (2.59)

A comparison of rigid rectangular and annular duct moderdigections at increasing
hub-to-tip ratioh is presented in Figures (2.9), (2.10) and (2.11). It can ba feat agreement
does indeed improve ds— 1. The agreement becomes worserass increase, but improves
asn is increased.

Another important assumption is that the approximated roateoff frequencies (or cut-off
ratios) also compare better with the true annular duct gahith increasing hub-to-tip ratio.
The modal cut-off frequency for an annular geometry is deffee

keo = |k | V1= M2, (2.60)
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FIGURE 2.10: Comparison of rectangular (solid lines) and annular (dagtiaes) rigid duct
modesky = 21.24925, h = 0.6, M = 0.

whereas, for a rectangular geometry it is defined as

koo = (\/mgfn k2 | VI M2, (2.61)

The cut-off frequency in the rectangular duct is dependponuhez transverse wave number
componentfk,, which is determined using the duct width,The usual choice for the duct
width is by taking the duct circumference at an average sadiy, given by

R, =1 (2.62)
2
such that the wave number is
m
L= . 2.
Kz SR, (2.63)

However, in the annular duct the azimuthal wave number compiodoes not appear explicitly
in the cut-off frequency expression since it is inherentim annular eigenvalue;%n [63].

The error in modal cut-off frequency given by the rectangalgproximation compared to the
true annular duct value, defined @s; — k2)/k9, is shown in Figures (2.12a), (2.12b) and
(2.12c) for increasing hub-to-tip ratio. In general, a fesierror means fewer modes are
predicted to be cut-on at a given frequency, and vice vetganl be seen that the

approximation error reduces as the hub-to-tip ratio irsesalt is also noted that the error for
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FIGURE 2.11: Comparison of rectangular (solid lines) and annular (dagtiaes) rigid duct
modesky = 21.24925, h = 0.8, M = 0.

the modes: > 1 collapses faster than for the lowest radial order made, 1, which was also
seen to have the mode eigenfunction least well represestedsincreased.

It is also of interest to compare the situation for the regtdaxr approximation of lined duct
modes. In a lined duct the modal cut-off ratio no longer definbether or not a mode
transmits acoustic power, since all modes have compleXx &sgie numbers. However, it
provides an indication of how well the mode propagates. AamgXe of the error in modal
cut-off frequency for a lined duct is shown in Figures (2)132.13b) and (2.13c) for
increasing hub-to-tip ratio. As before, the error reducebub-to-tip ratio increases with the
low order modes having the greatest error.

It is possible to artificially alter the cut-off ratio of theatangular duct modes by judicious
choice of the duct widthp [59]. Equating the modal cut-off frequencies for the annalzad
rectangular geometries gives

K| = ( K2, + kim‘ : (2.64)

It is the lowest radial order mode,= 1, having the largest cut-off ratio that is of interest, so
the inequality is reduced to

(2.65)

] = o = |5
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FIGURE 2.12:Error in modal cut-off frequencies using the rectangulapagpximation for rigid
duct modesm = 0t0100,n =1to11, M = 0.
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FIGURE 2.14: Modal cut-off frequencies using the rectangular approxtiovafor lined duct
modes. Annular duct (black solid), Rectangulae 7R, (blue dashed), Rectangular= 7R,
(red dashed)kod =21.25, Z4=72_4=2—i,m=0t040,n=1t011,h=0.8, M = 0.

The duct width is now chosen, using the rigid annular ductriglue x,, o, to be

mmd

Km,0

b=nR, = (2.66)

An example of the effect this adjustment has upon the modadft@irequencies is presented in
Figure (2.14) for a lined duct with high hub-to-tip ratio.idtseen that the lowest order radial
mode approximation is improved especially at higher azmalubrders, but the approximation
is adversely affected for higher order radial modes. Thasidjent will not be used in the
examples presented here due to the inaccuracy at higherrootkes, and that annular duct
eigenvalues are required to be calculated.

2.8 Surface waves

Lined duct modes at high frequency were classified into twegtaies by Rienstra [22]:
genuine acoustic modes resulting from the finite duct gegmetnd surface waves that exist
near the impedance wall surface, independent of duct gegngirface wave dynamics are
quite different from genuine acoustic modes, and are thezehore difficult to find. For
parameters typical of aircraft engine duct problems, serfsave modes can appear at low
radial mode orders with higher than typical axial decaysatehich could have a significant
impact on acoustic liner performance. In addition, theinsural mode eigenfunctions can
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enhance mode scattering in finite length acoustic linerg;iwils the subject of discussion in
future chapters. Thus, it is important that these mode isoisitare found in a robust manner.
The implementation of Rienstra’s impedance contour meihdigde eigenvalue scheme detailed
previously was designed specifically to deal with these nsodigtions.

Surface wave modes can be identifiediby,, having a large imaginary part, and can have
large axial decay rates. Such modes can be seen in the axi@lnuenber plot in Figure (2.15),
where the majority of the modes are acoustic, forming a glpeut-on/cut-off’ family of
modes, with the surface waves located far away from the jaofihcoustic modes.
Approximate solutions for surface waves can be found in thk fiequency limit by assuming
S{wm,n } is large in the eigenvalue equations (2.27), (2.28), (2a2@) (2.30). Developing the
approximate equations following [22], we introduce the Plep corrected definitions,

. 0
c=V1-M2, X=2, k=<, =0y, a=-(c-M). (2.67)
S S

Noting thattan Qy — +i for {2y} — +o0, the odd and even mode eigenvalue equations
(2.28) and (2.29) can both be approximated by

(1-Mo)P?F3Zy=0. (2.68)

On taking the second term to the right-hand side and squhaotigsides, a quartic equation in
o is found indicating there are four surface wave solutiohthdre is no mean flow (i.e.

M = 0) then there are just two possible solutions. The odd and eigemvalue equations
produce identical approximate equations. Applying theesamalysis to the combined equation
(2.27) produces the approximate equation given by

[(1-Mo)?F3279])° =0, (2.69)

from which eight surface wave solutions are possible, hiclg multiplicity.
For the symmetrically lined duct no flow case, the approxa@matjenvalue solutions are given
by
w=kovy = ko . (2.70)
Z

The asymptotic solution is plotted against the exact smiuin figure (2.16) and demonstrates
excellent agreement. The approximate equation for an agyriwally lined duct is given by

(1= Mo FZogy] [(1—Mo)? £ Zgy] =0, (2.71)

which is identical to that found by Rienstra for an asymneatty lined annular duct [22]. The
analysis of Rienstra covering the regions and numbers &dcivaves in the impedance plane
([22], p.127) provides an explanation of the strong vasiain ;» when integrating over
reactance, noted previously in figure (2.6), for the surfaaees. The boundaries of the regions
containing additional surface wave modes, as derived bydRig, coincide with the reactances
in figure (2.6) where transition from acoustic modes to sigfaave modes occurs
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FIGURE 2.15: Example axial wave number spectrum showing genuine acomstdes and
surface wave modes:g = 6.37, 7y = 2 —4i,Z_4=1—5i,m = 0to 40, n = 1 to 61,
h=0.8, M =0.5.

(S{Z} =~ +1.4). In this example eight surface wave modes are possiblethenchode
eigenfunctions of the positive propagating modes are pteden figure (2.17). The first two
modes are acoustic surface wave modes, whilst the secoraréttydrodynamic surface wave
modes.
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2.9 Summary

¢ An eigenvalue solver for asymmetrically lined rectangualacts in the presence of a
uniform mean flow has been outlined.

e The solver uses the nonlinear initial-value-problem foatian of Eversman [19] to

obtain the eigenvalues in a robust manner.

e The capture of surface wave solutions is assured by impléngetine impedance contour
approach of Rienstra [22] in combination with the admitatracking of Eversman
[19, 20].

e The solver was validated against benchmark solutions frantiterature [20] and finite
element solutions [38].

TABLE 2.1: First ten axial wave numbers with residual values and valmadata for a two-
dimensional lined duct) = —0.5, kg = 0.5, 3 = 0.72 + 70.42.

Axial wave Axial wave
Axial wave numbewky,, numbera,,
Mode numbeky, Residual from Eversman [20] from FE [38]
0t 1.52374-71.01082  7.7826e-011 1.5241.011 1.524-:1.011
0~ —0.77164+i0.12579  9.2526e-011 —0.772+:0.126 —0.772+:0.126
1+ 0.67873-14.53837 9.4774e-011 0.6794.538 0.679-14.538
1~ 0.89692+:2.22619  8.2610e-011 0.8972.226 0.89%i2.226
2T -5.91842-i4.07768 3.2062e-011 —5.918-i4.078 —5.918-14.078
27 1.29084+i5.63647  6.6208e-011 1.2915.636 1.29%:5.636
3T 0.46488-:8.50142  1.6104e-011 0.4658.501 0.465-18.501
3~ 1.1781%49.02529  2.1832e-011 1.1789.025 1.178-19.025
4+ 0.45531-¢12.31711 2.4301e-011 0.45%12.317 0.455412.317
4- 1.04193+712.59280 9.7770e-011 1.04212.593 1.042-i12.593
5T 0.47699-:16.04607 6.9773e-011 0.47716.046 0.477-716.047
5~ 0.95539+:16.21324 9.5529e-011 0.95516.213 0.955916.214
61 0.49971-:19.73430 9.5107e-011 0.56019.734 0.506-719.736
6~ 0.89961+:19.84609 9.3339%e-011 0.90019.846 0.900-719.848
7t 0.51903-:23.40160 8.9883e-011 0.51923.402 0.519723.405
7 0.86135+:23.48153 9.1088e-011 0.86123.482 0.861-123.485
8t 0.53491-:27.05699 7.8200e-011 0.53527.057 0.535727.064
8~ 0.83366+:27.11697 8.9087e-011 0.83427.117 0.834-i27.124
9t 0.54795-:30.70505 3.5506e-012 0.54830.705 0.548430.718
9~ 0.81276+:30.75171 8.8732e-011 0.83230.752 0.813-430.765
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TABLE 2.2: First ten axial wave numbers with residual values and val@adata for a two-
dimensional lined duct} = —0.5, kg = 0.5, 8 = 0.72 — 0.42.
Axial wave Axial wave
Axial wave numbeky,, numberq,,

Mode numbeky, Residual from Eversman [20] from FE [38]
0t 1.28779-i0.53174  5.0556e-011 1.2880.532 1.288-10.532
0~ —0.6049+:0.19319 2.108e-011 —0.605+:0.193 —0.605+:0.193
1+ —0.27112-i4.6194 3.3004e-011 —0.271-i4.619 —0.271-i4.619
1~ 0.25694-:2.42175  8.2322e-011 0.2572.422 0.25%42.422
2" —1.70761-14.82454  3.4737e-011 —1.708-i4.824 —1.708-14.824
2” 0.76201:5.90588  8.1507e-011 0.7625.906 0.762-:5.906
3T 0.10895-:8.97452 8.684e-011 0.1098.975 0.109-48.975
3~ 0.85911:9.39006  1.3796e-011 0.8599.39 0.859-79.390
4+ 0.28768-:12.68452 5.5437e-011 0.28812.684 0.288712.685
4= 0.86424+:12.92002 2.4226e-011 0.86412.92 0.864-:12.920
5T 0.37928-716.33718 9.4626e-011 0.3%916.337 0.379916.338
5~ 0.84754+:16.48798 8.5933e-011 0.84816.488 0.848-116.489
6" 0.43543-719.97405 4.5898e-011 0.43%19.974 0.435419.976
6~ 0.82824+:20.07818 5.4198e-012 0.82820.078 0.848-720.080
e 0.47339-¢23.6051 2.7741e-011 0.47323.605 0.473-423.609
7 0.81088+:23.68103 1.1115e-011 0.84123.681 0.81%4:23.685
8+ 0.50076-i27.23368 7.8043e-011 0.50127.234 0.50%427.247
8~ 0.79616+:27.29138 8.8168e-011 0.79627.291 0.796-:27.298
9+ 0.52141-730.86114 7.658e-011 0.52130.861 0.52%430.874
9~ 0.78382+:30.90641 2.0792e-011 0.78430.906 0.784-:30.920

TABLE 2.3: First four axial wave numbers with residual values and vafidn data for a two-
dimensional asymmetrically lined duct/ = 0.4, ky = 9.3915, 84 = 0.2813 + i0.1210,
B_q=0.72 —i0.42.

Axial wave
Axial wave numbeky,,
Mode numbery, Residual from FE [38]

0" 13.32735-10.17745 1.0387e-010 13.3270.178
0~  —31.03822-i0.04288 9.6317e-011 —31.038+:0.043
1" 12.99759-/0.25997 1.1321e-010 12.9980.260
17 —30.21476+i0.18634 1.9798e-010 —30.215+:0.186
2+ 12.07437:0.39058 1.3303e-010 12.0730.391
27 —28.74385+i0.49013 1.4643e-010 —28.743+i0.491
3T 10.59577#:0.56321 1.5061e-010 10.5960.563
37 —26.30835-71.09528 1.9118e-010 —26.308+:1.095
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TABLE 2.4: First four axial wave numbers with residual values and vafidn data for a two-
dimensional asymmetrically lined duct without flol; = 0.0, ko = 9.3915, 84 = 0.2813 +

10.1210, B_4 = 0.72 — i0.42.

Axial wave
Axial wave numbewy,
Mode numbeky, Residual from FE [38]

0" 17.91849-/0.68213 1.1811e-010 17.9190.682
0~  —17.91849-i0.68213 1.1811e-010—17.919+:0.682
1+ 8.90489-71.70311 1.5596e-010 8.9041.704
1~ —8.90489+i1.70311 1.5596e-010 —8.904+i1.704
2t 18.23024-/0.13267 1.5731e-010 18.23@0.133
27 —18.23024-i0.13267 1.5731e-010 —18.230+:0.133
3t 17.09317#:0.51076 1.3029e-010 17.0930.511
3=  —17.0931%i0.51076 1.3029e-010 —17.093+:0.511

TABLE 2.5: Axial wave numbers in order of the first ten most accuratetsmis from the
PDE solver, with residual values and validation data, folheee-dimensional asymmetrically
lined duct without flow;M = 0.0, kg = 9.24, kob/d = 18.48, B4 = 0.2813 + i0.1210,
B_q =0.72 —i0.42.

Axial wave Axial wave

Mode Axial wave numbedy,, numbera,,

m n numberq,, Residual from numerical solution  from FE [38]
0 2 18.23024-/0.13267 1.5731e-010 18.23020.1327 18.23640.133
1 2 1816244i0.13316 1.5731e-010 18.16240.1332 18.162:0.133
2 2 17.95752i0.13468 1.5731e-010 17.95740.1349 17.95810.135
0 0 17.918490.68213 1.1811e-010 17.91880.6828 17.91810.682
1 0 17.8496-i0.68476 1.1811e-010 17.8%0.6853 17.85610.685
2 0 17.64135i0.69284 1.1811e-010 17.64190.6932 17.64210.693
3 2 17.61069-70.13733 1.5731e-010 17.61630.1377 17.61%40.137
3 0 17.28873-10.70698 1.1811e-010 17.28940.7071 17.29640.707
4 2 17.1133240.14132 71.5731e-010 17.112#.1419 17.11240.142
0 3 17.0931#:0.51076 1.3029e-010 17.09210.5117 17.093:0.511

TABLE 2.6: First five axial wave numbers, with residual values and \atliwh data, for a three-
dimensional asymmetrically lined duct with flodf = 0.4, ko = 9.3915, kob/d = 18.78,
Bq = 0.2813 + 10.1210, 6_4 = 0.72 — 10.42.

Axial wave
Mode Axial wave numbety,,
m n numbera, Residual from FE [38]
0t of 13.32735-10.17745 1.0388e-010 13.3270.178
0~ 0~ —31.03822-i0.04288 9.7054e-011 —31.038+:0.043
0t 1t 12.99759-/0.25997 1.1319e-010 12.9980.260
0~ 1 —30.21476+i0.18634 1.9818e-010—30.215+40.186
0t 2% 12.07437:0.39058 1.3303e-010 12.0730.391
0~ 27 —28.74385+i0.49013 1.4632e-010 —28.743+i0.491
1T ot 13.26049-/0.17862 1.0509e-010 13.2610.179
1= 0° —30.97165-i10.04309 9.635e-011 —30.972+:0.043
1T 1t 12.93070-:0.26156 1.1037e-010 12.9310.262

1-

1-

—30.14560-:0.18732

1.9635e-010 —30.146+:0.187




Chapter 3

Axially-segmented liners in rectangular
ducts with uniform mean flow

3.1 The mode-matching method

This chapter outlines a theoretical technique for caltugthe performance of
axially-segmented wall linings in rectangular ducts wittifarm flow. A semi-analytic method
known asmode-matchings used to analyse the propagation of sound in an infinite flogt d
which contains multiple acoustically lined segments.

The mode-matching technique is a well-known method for fdating boundary-value
problems in waveguide theory [30]. The first applicationred technique to jet engine duct
systems was made by Lansing and Zorumski [31], which reptedehe first in a series of
extensive analytical and experimental studies of axisélgmented wall linings supported by
NASA in the 1970s [32, 33, 12, 34, 35]. The geometry used irsthdies by Motsinger et al.
[12, 32] and Sawdy et al. [34, 33] was a two-dimensional regidar duct, with symmetrical
lining configurations with up to three segments alignedIgxievhilst Zorumski [35] dealt with
axisymmetric ducts. A mathematical model describing theleamatching technique for
asymmetrical lining configurations was outlined by UnruB][However, the model was only
applied to a single lining segment with one of the segmentsvining rigid, and with a plane
wave source. This is in fact equivalent to a symmetricatiedi duct of twice the height, with
only even modes included in the matching.

The geometry, as shown in Figure (3.1), considered in thé@enaatical analysis contained
here is a three dimensional rectangular flow duct, with amasgtric lining configuration. A
mode-matching method is summarised for a single lining segnthen the method is extended
to include multiple segments.

39
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FIGURE 3.1: Geometry and notation for a three dimensional duct with Byisegmented wall
linings

3.2 Mode-matching theory for a single asymmetric liner segrant

The basis of the mode-matching method described here iotigition of continuity of

acoustic pressure and axial particle velocity over thefate planes where the duct wall
impedance changes [31]. Since the pressure and axiallpargiocity can be expressed in
terms of analytic functions, for simple uniform duct georiest, a simple and computationally
fast mode-matching scheme can be constructed. The themdresisis for such a method is
presented here for a three-dimensional rectangular ddictarsingle asymmetric liner segment
located between rigid duct sections.

The basis of the analysis is the acoustic field in a three-dseal duct with uniform flow.
Since the acoustic properties of the lined sections aret@onacross the duettransverse
direction, there will be no scattering between modes o&ddfit order. Therefore, without
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loss of generality, the mode-matching scheme is restrictedfixed ordern, and the solution
for the pressure field can be expressed as a superpositioadal solutions for fixedn. The
non-dimensional harmonic pressure field is then expandadsam of left ) and right )
travelling acoustic modes in the rigid and lined duct sedimespectively as

oo
pm(l‘, Y, Z) - Z |:A;,;7n\11;%7n(y)e et + Am,nqlm,n(y)e ka’nz] oS kzmz ) (31)
n=1

pm(xa Y, Z) = Z [Art,nwrt,n(y)e_iaxmx + A;Ln\ll;l,n (y)e—ia:n,n:ﬂ] COS kzmz . (32)

n=1
For the problem of a single lined segment in a rigid duct therimal pressure field is divided
into three regiond, /1 andII1. The pressure fields in the three regions are expressed by the
following superposition of modal solutions, where #¢/ andcos k., ~ terms have been
omitted for convenience:

o0

Phz,y) =) [A%‘I%{n(y)e AT WL (y)e ’km’”z} : (3.3)
n=1

P (z,y) =Y [Aimfi\l’%{i(y)e"o‘m’”x + Aa{i\l’;{i(y)e"am’”ﬂ , (3.4)
n=1

P (,y) =) [Aifil W (y)emHmnt 4 AT g 11 (y)e"’“’”’”””] . (35)

n=1

The acoustic field within each duct section satisfies the nmbume equation, in
non-dimensional form

0 0
— L M—=—|0=-Vp 3.6
[aﬁ &Ju . (3.6)
which relates the acoustic particle velodity= {u, 0, w} to the acoustic pressuge The
current mode-matching method only requires consideratfdhe axial component of the
acoustic particle velocity fields, which for the three regi@re expressed by the following

modal expansions:

0o

ug@(xay) = Z [B:ﬁ{n‘l’:%{n(y)e hem, + Bm{n\llm{n(y)e ka’nx} ) (37)
n=1

ull(e,y) = 3 [ e ioher + Blw g)eionns] | @8)
n=1

ull(w,y) = 3 [ BRI ()= Mnns 4 BT (y)e=hone] - (3.9)

n=1
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Using the momentum equation, the time harmonic axial gartielocity can be related to the
time harmonic acoustic pressure by

N km,n L~
Umn = mpm,n . (3.10)

Therefore, the modal amplitude coefficients in the rigid limeld duct sections respectively are
related by

k* ot
25— C— . and Bf —=_— ™" At 3.11
m,n (kO o krjr:L,nM) m,n m,n (kO - Oérjr:L,nM) m,n ( )

In the present problem, continuity of pressure and axidigarvelocity is required at the
leading and trailing edges, = x’ andz!’, of the liner. The residual errors that must be
minimised are:

plth — ptl ulth — 1t at r=ux". (3.12)
The residual errors are minimised by means of the Galerkioaeof weighted residuals,
which uses the assumption that the eigenfunctions of theradg duct regions form a
complete set [26]. This ensures that the residual erroreréinegonal to each eigenfunction in
the modal expansion, and as the eigenfunctions form a coengde, the residual must be zero.
The eigenfunctions of a rigid wall section are the weighfungctions used to force the
matching residuals to zero, since they are known to be camplal orthogonal, with and
without the presence of a uniform mean flow. The modal expassdf the pressure and axial
particle velocity fields are truncated.at= N, whereN must be chosen such that the near field
in the vicinity of the matching interface planes is well resa [64]. The following matching
equations for the acoustic pressure and axial particlecitglare then obtained at the liner
leading edge interface = =/

1
/1 Wini(y) [pm (2", y) = o (2, y)] dy = 0,
1
/ Wina(y) [uh (2", y) — wh (2", y)] dy = 0. (3.13)
-1
where the weighting functiond’,,, ; are the corresponding rigid duct eigenfunctions given by

Wit = €08 (K1) €08 (K 1Y) + Sin (K1) sin (Km,1y), l=1,...N. (3.14)
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Substituting for the modal expansions, and rewriting, lisso matching equations of reduced
form, given by

] =

~ N
+11 —ia+, ! + 2 : II —iampx! —
[Amme i cln_ + A i cln

mn
n=1 n=1
N ; N .
7. — 1
=3 (A = S [ e <0 @as)

3
I
—_
3
I
—

NE

) N
|:A+Ile_ia$»"xldl+ + A II —zam nxl d :|
m,n n E m,n€

3
I
—
3
I
—

Mz

- N o
[A—i-l Koty ] S (457 e—ik;,nx’bln] —0 (3.16)

S
I
—
3
I
—

I=1,...N n=1,...N,
where )
= / Wit () ¥ 0 (y)dy , (3.17)

= / Wi () VE (y)dy . (3.18)

the above integrals are evaluated, taking advantage ofrthegmnality of the mode
eigenfunctions, and the result is given in Appendix (A). Tim@mentum equation is used to
rewrite the acoustic particle velocity modal amplitudes as

e =t (3.19)
In — (ko—kr:)l,:l’nM)aln7 .
+
(67
dif = ———cif . (3.20)

(ko — aim M) ™

It is now convenient to write the matching equations at therlieading edge = z! in a
combined matrix form

aj | a AT (e | c; AT (3.21)
bj [b; )\ AT df | d; AT

where the matrix elements are detailed in Appendix (A).
An identical analysis is applied to construct the combinedrix matching equations at the
liner trailing edger = /! which is given by

aj; ‘ ary AT _ cl ‘ Crr AT . (3.22)
bf, by ) \ AT djy [d )\ AT

The combined matrix equations (3.21) and (3.22) then forystem of4/N equations which
are used to evaluate thév unknown coefficients.

[
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3.2.1 An lterative scheme for obtaining modal amplitudes

The linear equations (3.21) and (3.22) can be solved dyr§il], however the system can
often be ill-conditioned. This is due to the potentiallygarvariation in modal axial decay
rates. In order to overcome potential problems, an itezattheme as used by Cummings [65]
and Rienstra [66] is utilised to solve the system of equationthe unknown coefficients. In
order to achieve this, the combined matrix equations argemrin a slightly altered form, with
the axial decay rates listed separately in a diagonal mathe matching equations for fixed

at the liner leading edge = 2/, and trailing edge: = «'/, are respectively

a, —Cj, e thmnt! 0 ARL
bl —d 0 e~ i0m,n (@ —!T) AT

-\ df b, AL ] (3.23)
Cl—; —a, e—iaj’n’n(xll—ml) 0 AY—tL{YIL B
dl_; _bl_n 0 e—ik;%n(xll—xlll) A;Llél =
() (A
~\bf —d; AL ) (3.24)

The combined matrix equations can be written in terms oRiNex 2N transfer matricesT ;
andT ;7, which relate the pressure and axial particle velocity atlither interfacesy = = and
x = x!! respectively, as follows:

A+II A+I

( A_I ) :TI ( A_II 5 (325)
A+III A+II

( AT =Tu A1 | (3.26)

The coefficientA !, AT/ A=IT andAT!!! are initially set to zero, whilst the coefficients
A*! are determined from the source and the coefficiént§'! are chosen according to how
the duct termination is modelled. Where an anechoic teroimés assumed, the coefficients
A~ are set to zero. The iteration proceeds by first using equéi®5) to calculate\ | ;;
andA _;, then using this result to calculate, ;;; andA_;; using (3.26). A new iteration may
then proceed by using the revised valueAar;;. The process is then repeated until the
variation in the coefficients is less than a specified tolegaGenerally it is found that very few
iterations are required for the coefficients to convergéantly.
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3.3 Mode-matching theory for multiple liner segments

The extension of the mode-matching method from single tdiptelaxial segments'is a
relatively simple exercise [26, 34]. Matching equationsdach of the; = I, I1...5 + 1 liner
segment interfaces can be written as

cte  _c(at1) e—iaJrq(qurl—zq) 0 ATa
dte —d-(eth 0 e—ia 0T (g1 —2q42) A-(e+) | =
ctletl)  _¢—q AT+
- < dt(et) _g-q ) < A1 ’ (3-27)

or in terms of the transfer matrix as

A+(q+l) Ata
( o > =T, ( Al ) . (3.28)

This leads to a coupled system(@fS + 2) NV equations witH2S + 2) IV unknown coefficients
A*?, which are solved using the iteration scheme describeckiptivious section.

3.4 Alternative mode matching method for ducts with uniform
flow

Recently, an alternative mode matching method for ducts wiiform flow was proposed by
Hii [38] and Astley et al. [67]. The basis of this method is ionity of mass and axial
momentum at the liner interface matching plane, as oppasttetpressure and axial particle
velocity formulation described previously. Continuityeisforced by taking weighted forms of
the mass and axial momentum equations over a vanishingliy somérol volume around the
matching plane. In this way, finite contributions to the rhatg from line integrals on the duct
walls at the matching plane are recovered. These conwigippear to improve the mode
matching solutions, in particular the near field at the wiatha matching plane where a
discontinuous pressure field is apparent [67].

In this section the alternative mode matching method isiegpb the case of a three
dimensional rectangular duct with uniform flow. The anay®egins with the acoustic
continuity and axial momentum equations, which in Cartesiaordinates are

0 ou Ov Ow
[zko—i— 8x]p+8x+8y+ 5% 0, (3.29)
z’k:o—i—M2 u+@:0. (3.30)
ox ox

Firstly, the weighted form of the continuity equation (3.29taken over a control volumg
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FIGURE 3.2: Geometry and notation for the matching plane axial secti®he admittance
varies smoothly between= z? _ andz = 2.

around the liner interface matching plane, as shown in fifi3), to give

/ itkoWp — va—W — wa—WdV
v oy 0z

+/ V- [WMp+ Wu, Wo, Ww]dV =0, (3.31)
1%
where the weighting function is the rigid duct mode eigenfion given by

Wm,n(yy Z) = [COS ('%m,l) COS (’@m,ly) + sin (Hm,l) sin (’@m,ly)] COs (k'zmz)y

n=1,...N. (3.32)

Applying Gauss’ divergence theorem to transform the seeoihgne integral into a surface
integral gives

/ 1koWp — va—W — wa—WdV
V4 8y 0z

+ / (WMp+ Wu,Wo, Ww| -ds=0. (3.33)
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The surface integral is split into six integrals, so thegnét over the control volume surface is
equivalent to

/[WMp + Wu, Wo, Ww| -ds=

/ WMp+ Wuds, + / WMp+ Wuds,

/ Wo dsy + / W ds,

— Wwds, + Wwds, . (3.34)

S—b/d Sb/d

The boundary conditions on the duct walls are

w =0 onz = +b/d (3.35)

vet |ikg+ 2| P2 ony = £1. (3.36)
ox ’Lk‘o
On substituting the boundary conditions foandw, the integrals over the side walls vanish,
whilst the integrals over the lined walls can be split intadace integral and a line integral in

the following manner

8 WMﬁdp
—/s_dWUdsy:/ Wﬁdpdsy+/s d% [T} ds,

b/d €
/ W Bap ds, + / [W] dz (3.37)
pal ko ] _.
B 0 |WMpB_ap
/Sdedsy—/SdWﬁ_dpdsy—l—/Sd o [ o } ds,
b/d €
- / W A_qp ds, + / [W} dz . (3.38)
54 —b/d iko —e

The full weighted form of the continuity equation over theatrol volumeV” can now be
expressed as

/ tkoWp — va—W — wa—WdV
v oy 0z

—/ WMp—FWudsz—i—/ WMp+ Wuds,

b/d TW MByp]©
+ / W Bap ds, + / [ﬂ] dz
S—d —€

—b/d iko
b/d M €
+ / WB_qp ds, + / [w} dz=0. (3.39)
Sq —b/d iko —e

In order to obtain a matching equation at the liner interfaleme the limite — 0 is applied to
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equation (3.39). In this limit the volume integral and theface integrals at the wallg= +1
will vanish, so long as any singularities in p amét (z = 0,y = +1) are less tha®(1/¢?)
andO(1/¢) respectively. Recognizing that anytransverse dependence can be dropped
without loss of generality, the weighted form of the coniipequation is then

/ W ()M [p(y)"! ] dy+ / Wy —u(y)'] dy

)M
z'k‘o

[ﬁ” M =Bl >I]+ (B (=1 = Bip(-1)'] =0. (3.40)

The next step is to take the weighted form of the axial monrargquation (3.30) over the
control volumeV/, to give

/ tkoWu dV + / V- [WMu+ Wp,0,0] dV =0. (3.41)
\4 \%

As before, the surface integral is split into six integraisl 2on taking the limit — 0 and
dropping thez transverse dependence, the resulting matching equati@xitd momentum is

1 1
/_IW(y) )™ = p(y)'] dy+/_1 W (y)M [u(y)" —u(y)'] dy=0. (3.42)

Equations (3.40) and (3.42) are the matching equations &ppked at the liner interface
matching planes. The linear system of equations can be tbimte the matrix matching
equations given by equation (3.27) in the manner detaile¢derprevious sections.

3.4.1 Liner edge conditions and hydrodynamic surface waves

It is noted that the matching equations (3.40) and (3.42)aedo those given in equations
(3.13) of the pressure and axial particle velocity matcimmeghod in the absence of a mean
flow. With mean flow, the above analysis is analogous to thMdiring and Eversman [68]
where conservation of the Blokhintzev acoustic energy géguas applied to a control volume
extending over a duct containing a finite length liner. Traul#ng energy conservation
equation contains terms local to the liner edges, which maéogous to the third and fourth
terms in equation (3.40) resulting from line integrals oWer lined duct walls. These terms are
interpreted by Mohring and Eversman as acoustic sourceisiks at the liner edges, since they
represent the difference between the summed outgoing aitteit energy fluxes, and the rate
of work done on the liner within the control volume, whichextls fromr = 21, to 2% and

y = —1to 1. However, Quinn and Howe [69] pointed out that by taking ¢hesntrol volume
limits from = = 2, tox = 21, effectively outside the liner edges, the contributiorsrfithe
edge terms disappear from the energy conservation equ#timmcannot represent sources or
sinks.

The analysis of Mohring and Eversman neglects the sinigpiarthe axial gradient of wall
normal displacemerfie,,/0x = 9(Bp/iko)/0x at the liner edges, which stems from the slip
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flow boundary condition. This singular behaviour is incldaplicitly in the mass-momentum
matching equations within integrals over the lined walfaces.

Two difficulties occur when attempting to resolve the sigitiles using the mode-matching
method. The first is that althoudh,, /Ox is singular at the liner edges,,, p andu are
generally finite and non-zero [68, 70]. In order for the votuamnd surface integrals to vanish as
assumed foe — 0, they must be no more singular th@fe~2). This is in agreement with the
wall streamline condition in the Wiener-Hopf analysis oéRstra and Peake [71] when
assuming all modes are stable. However, within the modehirag procedure there is no way
to enforce this minimum edge condition, rather it is leftiuafter the solution is computed to
check whether the modal amplitudes produce suitably cgedeliner edge displacements. In
practise, it is found that varying the number of cut-off medethe matching can assist in this
process. Highly cut-off modes are very localised, havingffiect on the field away from the
liner interface plane, and so can contribute to resolvingsamgular behaviour at the walls.
However, their contributions to the field within the ductla matching planes are highly
oscillatory and minimising the field residuals away from wWedls, whilst trying to resolve wall
singularities can prove to be troublesome. The issues atvieg higher order modes are seen
in the validation section of this chapter (in the form of Higbscillatory behaviour localised at
the matching planes) and were previously noted in a modehimgf technique by Nijboer

[72, 73].

The second difficulty involves the presence of hydrodynasniface wave modes, which occur
for certainky, M # 0 andZ. Rienstra [22] showed that, under certain conditions, dribase
modes (per impedance and azimuthal order) is a downstreammuinstability, with an
invariably large growth rate for impedances away from tta agis [74]. Whether the presence
of this mode is physically realistic is a subject for dis¢osg29, 71, 74, 75]. Rienstra and
Peake [71] found that it is possible that such a mode can heweilge acoustic effects upon the
mode scattering at a rigid-lined duct interface using a \&idtopf solution. However,

Rienstra and Tester [74] reasoned that including unstabliesnin the field description within
the lined duct section is futile, and somewhat against teeraption of small perturbations
made in the linearised model used here. In addition, therthlylyers boundary condition

[11, 57] assumes small deflections of the wall streamlings thrge deflections would be
unacceptable and, judging by the wall localised nature ®@ktirface wave modes, this may
well be the case. Here we take the approach of Rienstra ater iysassuming that all modes
decay in the direction of travel, thus the downstream rugimistability mode becomes an
upstream running damped mode.

A further difficulty encountered with the hydrodynamic swé waves is that their exponential
behaviour at the wall can cause conditioning problems witemgpting to invert the matrix on
the right-hand-side of matrix matching equation (3.27)e phoblem stems from attempting to
integrate the weighted surface wave eigenfunctions usjogtens (A.2) when

|S{pem,n }[> 1, which is often the case for hydrodynamic surface waves.vehe of the
integrands become exponentially large. In attemptingrimuonvent this problem it is possible
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to write the hydrodynamic surface wave eigenfunction asnaptex exponential for
|S{ ttm,n }[> 1 by noting that

U, (y) = Ry cos kpy + Spsinkpy ,
= COS KpY L isin kY ,

= eFirny (3.43)

The mode eigenfunctions may then be normalised to theirwadlles before integrating. This
requires the normalisation of the surface wave mode to thieowavhich it is localised, of
which prior knowledge is required. It is possible to infeistfrom the behaviour of the mode
eigenvalue in the tracking procedure of the eigenvalueesaletailed in the previous chapter
(2). A surface wave mode eigenvalue will vary rapidly alohg impedance contour of the wall
to which it is localised, and is hardly affected by the impemacontour of the opposite wall.

In parts of this work the hydrodynamic surface waves may heried for four reasons. The
first being that the unstable modes are included as decayingsnwhich may have an effect
on the scattering [71]. The second is that these modes hayédavge decay rates, so do not
contribute to the field away from the liner interface plariBse third is that the mode order of
these modes is rather hard to predict, and generally ocaarahigh mode orders, which
would require the cumbersome calculation of very many modks final reason is that, for
practical purposes, they may need to be excluded in ordegrfonm a matrix inversion in the
matching procedure. In addition, it will be seen in the falliog validation sections that, their
exclusion does not appear to have any perceptible effe¢teopdwer transmission.

3.5 Expressions for induct sound power

A convenient quantifier of the performance of acoustic Briarducts is the sound power
transmission losa pyy 1, i.e. the difference between the incident acoustic powdrthe
transmitted acoustic power. This is calculated by compaairoustic powers in rigid walled
sections either side of the lined region. Several exprasdiar sound power in flow ducts are
available in the literature [76, 77], and for this study therenwidely used definition of Morfey
[76] is chosen. The axial component of the local instantagenodal intensity is defined as

2
)] @4

The modal sound power is found by integratihgover the duct cross-section, to give

+ _ | pim,n |2
vmn 2poco

+
POCOU™ m,n
+

P mn

+
POCOU™ m,n
(1+ M?) %{ii} +M (1 +

P mmn

b d
Wi, = / b / dlmimmdy dz. (3.45)
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The average axial acoustic intensity of a duct mode is then

W:I:
(IE s = —2 (3.46)

T m,n s

wheres = 4bd is the duct cross-sectional area. The total sound pdliéris found by
summing the modal powers of all the cut-on modés

N,
db
Wt = o > emnl Al [(1+ M?) Re{wy, b+ M (1+ |@,Y)] . (347)
n=1
where
4 4 m=0,n=1
+ kmn
w , Emn = 1 m;«éO,n;«él

man = X >
’ ko — km.nM
i 2 otherwise

The sound power transmission loss, in decibels, is themdiye

(3.48)

+1
APWL = 1010g10 [m] .

3.6 Comparison with Wiener-Hopf solutions

A Wiener-Hopf solution [28] to the problem of a uniform symime liner, in the absence of
flow, with an even incident mode, was coded in Fortran 90 femthrpose of validating the
mode-matching method previously described. The Wiengfldod mode-matching methods
are known to be closely related [28] and, therefore, the éwroan provide a good indication of
the quality of solutions given by the latter. The coding oewér-Hopf solutions for other liner
configurations and flow was not attempted. For zero flow, tlais primarily due to the
mode-matching method being similar across all configunatiso the single uniform
symmetric lining solution would suffice to confirm that thethmed was valid. Where a mean
flow is present, the Wiener-Hopf solution is complicated $8uies surrounding the choice of
edge conditions and instability waves [78, 29]. For thessaas, benchmarking for other
lining configurations and flow has been done by comparisomsigaublished results from the
literature.

Extensions to the ordinary Wiener-Hopf technique [79] haeen applied by Koch [28] to
derive an analytic solution for the scattering of sound bytiple liner elements in the absence
of flow. The basic structure of this Wiener-Hopf solution imsgwith the formulation of the
generalised Wiener-Hopf equations for the problem. Thisgertaken through application of
Fourier transforms, applied with respect to the axial diog to the governing Helmholtz
equation and associated boundary conditions. The solafitre resulting generalised
Wiener-Hopf equations first requires factorisation into split functions of the Wiener-Hopf
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kernel contained within the equations. The kernel is in g&acombination of the dispersion
relation, and characteristic equations governing the drgibns, where the poles and zeros of
the kernel correspond to the axial wavenumbers of the rigilled and lined segments
respectively. Since the required wavenumbers have alrieeely evaluated for use in the
mode-matching method, no further work was necessary in ¢tadtulation. The split functions
simply separate the information for the left- and rightsiing modes, which is necessary in the
solution since the boundary conditions are different fahegirection.

The second step in the solution involves the decompositither by inspection or via a
decomposition theorem ([79], p.13), of the generalisedrifidHopf equation, firstly by
assuming the generalised equation to be an ordinary Widopf-equation for the liner leading
edge discontinuity, and secondly by concentrating on tiex lirailing edge discontinuity.
Application of the residue theorem to integrals in the degosition leads to the introduction
of correction terms due to the finite length of the liner ([38K69). The final step in the
solution is the inverse Fourier transform of the originaid mow known, transform function.
From this all acoustical quantities of interest can be caeghu

3.6.1 Wiener-Hopf solution for a uniform symmetric liner in the absence of a
mean flow

The following analysis for a uniform symmetric liner in thiesence of a mean flow with an
even incident mode uses the formulation of Koch [28]. In otdecalculate the acoustical
quantities of interest the transmission and reflectiorofact},, 2./ .2, and Ry, 95/ Erm or,
for each of theV, cut-on modes are required. These are given by the followgugions

T 2s il T2k, 0 N § )
[m.2s _ ie : Z Q2 szn  (3.49)
Epor (14 050) Okkm,2s 85 (—0k2Kim,25) | 7= 0k2km,25 — 20m,2n Epy o
Rm,2s . 7 »
Am,2r (1 + 68,0) 6kkm,2sﬁs_ (_6k2km,23)
ko (1/211) n ivz P, 2
(km,2r + 5kkm,23) ﬁi (_2km,27") n—0 0k2km,2s + 20um 20 Em,2r ’
1 S{k}=0
o = St} ) I1<r<N.+1, 1<s<N.+1. (3.50)
1 S{k} #0

The coefficients)s,, and P, the correction termé’;,, andC3,,, and the kernel functiong?.
andf?® are given in Appendix (B). If it is assumed that the sourceoisaifected by reflections,
and the exit duct is anechoically terminated, then the toalsmission and reflection
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coefficients are given by

N, N, o 2
- 2— 57‘0 - 5k: ko 2 2d Ton,2s
_ e = : 2 Mm2s 20| Smi2s | 3.51
Tm,2r SZ:(:) Tm,2r,2s 5]% kxm’27.2d SZ:(:) 2 — 53,0 .2 ( )
N, N, A 2
= 2 - 57“ 0 < 5kz ijm 2s 2d Rm 2s
Om,2r = Om,2r,2s = 7 - — (3.52)
m,2r ; m,2r,2s 5/61 ]{mm?27.2d ; 2 — 53,0 Em,gr

The sound power transmission loss for the liner is then defirséng the total transmission
coefficient by

APWL = 10|0g10 (1/7_m,2r) . (353)

3.6.2 Validation of the mode-matching method against WierreHopf solutions in
the absence of a mean flow

The first validation case is given by Koch ([28], p.473) foifarm liners of various depths,
where the source is the fundamental mode. The specific impedaf the
single-degree-of-freedom acoustic liner is modelled gigie following

Z = R+i[koM, — cot(koD)] , (3.54)

whereR is the facing sheet resistandd,. is the non-dimensional facing sheet mass inertance,
and D is the non-dimensional cavity depth. The correspondingndqower transmission loss
curves presented in figure (3.3) show that results obtaisgd)uhe mode-matching method
compare very well with those obtained using Koch’s Wienepfsolutions.

The modal reflection and transmission coefficients are itapbparameters to determine
whether the wall impedance discontinuity has been adelyuatadelled in the mode-matching
method. The singular derivatives that appear in the salutear to the interface plane at the
duct wall are not an intrinsic part of the mode-matching rodtprocedure. Instead, it is
expected that the mode-matching solution will convergééodorrect value as the number of
modesN in the procedure is increased. The above Wiener-Hopf aisgtysvides an analytic
description for the reflection and transmission coeffigewhich are compared to the
mode-matching solutions in figure (3.4). The solutions ftmoth methods compare very well,
demonstrating the adequacy of the mode-matching method wenty cut-off modes are
included in the procedure.

The calculation of the mode eigenvalues represents therityapbthe computation time for the
mode-matching solution, so it is of interest to see the efieceducing the number of modes.
The reflection coefficients obtained using two, ten and tweut-off modes are shown in
Figure (3.5). The solutions are very close, even with only ourt-off modes included, and with
ten modes the solution is indistinguishable from that ug@gnodes. The mode-matching
procedure of Sawdy et al. [34] included ten modes in totglwith the extra processing power
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Apw[dB]

14

FIGURE 3.3: Attenuation of the fundamental mo@g 1) by uniform symmetric liners of depth

D: Solid line, Wiener-Hopf solution; dots, Mode-matchinduson. — D = 0.0272; —,

D =0.054;, — D =0.108; — D = 0.162;, — D = 0.24; , D = 0.272. d = 0.09365m,
l;r = 4.34, R = 1.4, M, = 0.05475, ¢y = 345.09ms?, py = 1.21kgm'3.

now available, including all cut-on modes plus twenty cfithoodes appears adequate in terms
of processing time and solution accuracy.

The second validation case is for the realistic bypass cemingtry and frequency range of a
modern turbofan aeroengine, where the source is the blaéngarequency (BPF) mode
(24,0). The annular bypass duct is approximated using arrgatar duct [28, 10] by imposing
a periodicity condition at the side walls. Very good agrertweas achieved between the
Wiener-Hopf and mode-matching solutions for the sound pdv@@smission loss, presented in
Figure (3.6) against the Helmholtz number, where the (2&dde does not propagate below
ko = 6. Agreement between the solutions is also very good for Hiestnission and reflection
coefficients, shown in Figure (3.7), which displays residtghe first four modes only,
although the agreement is equally good over all the highgrazut-on modes.

3.7 Comparison of mode-matching methods with Finite Elemen
solutions

This section provides a comparison of the pressure-pantielocity (PU) and mass-momentum
(MM) mode-matching methods, with Finite Element (FE) sola$ for two dimensional
rectangular ducts with and without a uniform mean flow. Sohs for uniform and
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ko
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(b) Total g, 2 and modalo,,,2r 25 reflection coefficients.

FIGURE 3.4: Transmission and reflection coefficients for a uniform sytriméner in the

absence of a mean flow. Solid line, Wiener-Hopf solutionsdégiode-matching solution—

, mode (0,1);—, mode (0,3);— mode (0,5);— mode (0,7),— -, total. d = 0.09365m,
i =4.34,D = 0.272, R = 1.4, M, = 0.05475, ¢y = 345.09ms?, po = 1.21kgm°.
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0 2 4 6 8 10 12 14

FIGURE 3.5: Effect of truncation on reflection coefficients for a unif@ymmetric liner in the
absence of a mean flow. Problem parameters as Figure (3.4); 26-cut-off modes; -, 10
cut-off modes: -, 2 cut-off modes.

two-segment, symmetric and asymmetric liners are comgatragingle frequency of

ko = 6.67. Six test cases are compared here, the details of eachtarkitigables (3.1) and
(3.2). The geometry and impedances are chosen to be realistimodern high bypass ratio
turbofan engine at approach for a frequency at twice theeBRaksing Frequency (BPF). The
incident mode at the plane= 0 in each test case is a right-running plane wave made,1,

of unit intensity. The commercial finite element solver ACARRTM/2006 is used to generate
solutions of the convected wave equation on a uniform, strad grid consisting of 8-noded
guadrangular elements (quadratic interpolation orddl). [Bvo over-specified meshes are
used, for the single and two segment cases respectively,heatng 58 radial and 284 axial
elements.
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0 5 10 15 20 25 30 35 40 45
Helmholtz numberk;
FIGURE 3.6: Attenuation of the BPF mod@4, 1) by a uniform symmetric liner for realistic

aeroengine parameters: Solid line, Wiener-Hopf solutidots, Mode-matching solutiod. =
0.3m,h=0.6,l;;7 =5, R=3, M, =0.05475, D = 0.0167, M = 0.
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(a) Totalr,, 2, and modalr,, 2, 2s transmission coefficients.

0 5 10 15 20 25 30 35 40 45

(b) Total g,,, 2 and modalor, 2r 25 reflection coefficients.

FIGURE 3.7: Transmission and reflection coefficients of the first fouraumodes for a uni-

form symmetric liner in the absence of a mean flow with a péritydcondition applied at the

side walls. Solid line, Wiener-Hopf solution; dots, Modatohing solution—, mode (24,1);

—, mode (24,3);— mode (24,5):— mode (24,7)—-, total. d = 0.3 m, h = 0.6, L;; = 5,
D =0.0167, R = 3, M, = 0.05475, ¢y = 345.09 ms~ !, po = 1.21 kgm 3.
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TABLE 3.1: General conditions for 2D test cases.

Helmholtz number ko 6.6689
Duct half height d [m] 0.3175
Total duct length lauct 10.9606
Speed of sound | ¢g[ms?] 347

Density of air | po[kgm 3] 1.317
Impedance A Za 1 —9.9341
Impedance B Zp 1.5 — 1.255¢
Impedance C Zc 1.05 — 0.978i
Impedance D Zp 1.57 — 1.3144

Leading rigid duct lr 0.315

Trailing rigid duct lend 0.315

TABLE 3.2: Configurations for 2D test cases.

Casel| Case?2| Case 3| Case4| Case5| Case 6
M 0 0 0 0.278 0.278 0.278
Zé Z A Z A ZB Zc Zc Zp
Zid Y ZB ZA Zc ZD e,
zI ZA Zc
z ZB Zp
1111 10.3045 | 10.3045 | 2.0069 | 10.3045 | 10.3045 | 2.0069
[ 8.2977 8.2977

3.7.1 No flow test cases

In the absence of flow the PU and MM mode-matching methodscurigadent. TesCase lis

a single symmetric liner. Bottom and top wall pressures ftbenFE and mode-matching
solutions are plotted in figure (3.8) and demonstrate exsedigreement. The radial pressure
profiles at the matching planes= =/, z!! are plotted in figure (3.9), where the
mode-matching solution constructed from the mode eigenioms of each adjoining duct
section are plotted for comparison with the FE solution. Gtmparison is excellent except for
very slight deviations at the walls. The reflected and trattechmodal intensities are plotted in
figure (3.10) and show excellent agreement. Only the everemoé- 1, 3... are excited, since
the problem is symmetric. Scattering of energy from the @laave into higher order radial
modes occurs, with large reflected energy levels in modeasoutaff.
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(a) Top wall pressure

(b) Bottom wall pressure

FIGURE 3.8: Case 1: Comparison of 2D mode matching and finite solutionsfsingle
symmetric liner without flow. Liner interface matching péarindicated by dashed lines. Solid
line, finite element solution;, p-u mode matching solution.
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FIGURE 3.9: Case 1: Comparison of mode matching and finite element rgaéssure solu-
tions at liner interface matching planes. Solid line, firllement solutione, mode matching
solution (lefthand segment modes)mode matching solution (righthand segment modes).
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FIGURE 3.10: Case 1: Comparison of scattered modal intensities from nmdihing and
finite element methods due to an incident plane wave of uihgity. Top plot, Transmitted
modal intensity; Bottom plot, Reflected modal intensity.
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FIGURE 3.11: Case 1: Mode matching solution convergence study. Intenfagtching plane
casing wall pressure—) , N/N, = 1; (-e-), N/N. = 2; (--), N/N. = 3; (— ), N/N. = 5;
(), N/N.=9; (—), N/N, = 17; (—), finite element solution.

The convergence of the mode-matching method to the FE anligichecked by increasing the
number of modesV included in the matching process. The convergence of thegasll
pressure at the liner interface matching planes =, 2!/ is presented in figure (3.11), and it
is seen to converge to the FE solutionMass increased. The ratity/ N, is used to compare
solutions, whereV.. is the number oEut-onmodes. The convergence of the radial pressure
profile at the first matching plane= 2/ is presented in figure (3.12). The radial pressure is
constructed from both the rigid and lined duct modes, arglseen that fair number of higher
order modes must be used order to adequately reconstruetdiad pressure, especially when
using lined duct modes. Finally, the error in the transrditiad reflected total intensities
1= ij;‘l 1,, compared with the FE solution is compared in figure (3.13knelthe measure
of error is calculated from

Error= |(Ipv — Ire/IFE)]| . (3.55)

The error in the transmitted intensity is around 2 orders afnitude lower than for the
reflected intensity.

For Case 2the wall pressure solutions for a single asymmetric linghauit flow are presented
in appendix figure (C.1), with the corresponding scatteredahintensities shown in appendix
figure (C.2), and all show excellent agreement. Energy is 8eecatter into all mode orders,
since the problem is now asymmetric.

The final no flow comparisorCase 3is for a two segment, asymmetric liner. The wall
pressure plots in figure (3.14) show good agreement, exoefiid region around the second
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(b) lined duct modes

(a) rigid duct modes
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FIGURE 3.12: Case 1: Mode matching solution convergence study. Intenfagtching plane

r = z! radial pressure near the casing wall—), N/N. = 1; (-e-), N/N. = 2; (- -),

N/N. = 3; (— ), N/N. = 5; (---), N/N. = 9; (—), N/N. = 17; (—), finite element
solution.
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FIGURE 3.13: Case 1. Mode matching solution convergence study. Scdttetal intensity
error re FE solution, Error= |(Ipy — Irg) /IrE|-
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liner interface matching plane at= z'!. The radial pressure profiles shown in figure (3.15)
indicate that the pressure matchingeat ! is not as good as at the liner leading and trailing
edges. A comparison of the scattered intensities plottéidume (3.16) reveals differences of
the order of 1 percent, or a difference in the sound powesinggsion loss of around 0.05dB.
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(a) Top wall pressure

(b) Bottom wall pressure

FIGURE 3.14: Case 3. Comparison of 2D mode matching and finite solutiona tavo seg-
ment, asymmetric liner without flow. Liner interface matghplanes indicated by dashed lines.
Solid line, finite element solutior; p-u mode matching solution.
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FIGURE 3.15: Case 3: Comparison of mode matching and finite element radésisure solu-
tions at liner interface matching planes. Solid line, firllement solutiong, mode matching
solution (lefthand segment modes)mode matching solution (righthand segment modes).
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FIGURE 3.16: Case 3: Comparison of scattered modal intensities from nmdihing and
finite element methods due to an incident plane wave of ueihgity. Top plot, Transmitted
modal intensity; Bottom plot, Reflected modal intensity.
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3.7.2 Uniform flow test cases

In the presence of a uniform mean flow the mass-momentum fation provides an
alternative to the usual pressure-velocity mode-matchiethod. Therefore, in the test cases
presented here both mode-matching solutions are compgagasaFE solutions. The mean
flow speed is chosen to be at a realistic approach conditidd ef 0.278. Three test cases of
identical geometry to the no flow cases are presented hettefegit case details provided in
table (3.2).

TestCase 4is a single symmetric liner and the computed wall pressurepr@sented in figure
(3.17). The finite element model predicts pressure singigisiat the liner interface planes,
which are poorly predicted by the PU matching, but very wedldicted by the MM matching
method. The computed radial pressure profiles at the matghames are compared in figure
(3.18). Itis seen that the PU matching solution comparely faell with the FE solution across
most of the duct section, but the steeper pressure gradieatshe walls are not captured so
well. In contrast, the MM matching solution compares veryiwéh the FE solution. High
order oscillations are seen in the radial pressure profilasgsh correspond to the very high
order modes included in the matching. If the wall line int#égerms are removed from the
calculation, the result (dashed line in figure (3.18)) isitdl to that of the PU matching. This
indicates that the line integrals are essential to acdyrdtgermine the acoustic field. In figure
(3.19), the oscillations seen in the radial pressure psyfilecay rapidly away from the liner
interface planes, since the high order modes have large datsss. This occurs in the region of
the pressure singularity, indicating that high order maatesrequired to resolve the singularity.
The scattered modal intensities are compared in figure \3a2d show that the MM method
provides a much better comparison with the FE solution tharPtU method.

The convergence of the PU method against the FE solutionnischecked by increasing the
number of modesV in the matching procedure. Convergence of the casing wedigure at the
matching planes is plotted in figure (3.21) and shows that wgh many cut-off modes
included, the PU method struggles to accurately predicptissure singularity. This is
confirmed in figure (3.22), by plotting the radial pressurarriBe casing at the first matching
planez = x! using either rigid or lined duct modes. The same convergsthay was carried
out for the MM method and plots of the casing wall pressureguarg (3.23) demonstrate that
the pressure singularity is well resolved. However, cagerce plots of the radial pressure
near the casing in figure (3.24) demonstrate how the inalusigher order modes, although
helping to resolve the wall singularity, induce oscillascto the field across the matching
planes. The difference in the scattered intensities coatpuit the mode matching methods to
the FE solution are given in figure (3.25) with the MM methodkaist an order of magnitude
closer than the PU method. From this convergence study doem@ended maximum number
of modes to include in the mode matching procedur® i&V. = 10, so that radial matching
plane oscillations are minimised, and the wall pressurgusamities are at least well resolved.
It should be noted that the differences in intensity areaiagimall, so the effects upon a sound



Chapter 3 Axially-segmented liners in rectangular ducts wniform mean flow 67

|p|

(a) Top wall pressure

p|

(b) Bottom wall pressure

FIGURE 3.17: Case 4: Comparison of 2D mode matching and finite solutions feingle

symmetric liner with flow. Liner interface matching planeditated by dashed lines. Solid

line, finite element solution;, p-u Mode matching solution;, mass-momentum mode matching
solution; Dashed line, mass-momentum mode matching solatithout wall line integrals.
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FIGURE 3.18: Case 4: Comparison of mode matching and finite element radésisure solu-

tions at liner interface matching planes. (a,p)u matching; (c,d), mass-momentum matching

; Solid line, finite element solutior;, mode matching solution (lefthand segment modes);
mode matching solution (righthand segment modes).

Ip|

FIGURE 3.19: Case 4: Mass-momentum matching solution for radial pressuoundz =
' — =2 =10.6133; ——, z = z!L =10.5859; - - -, z = L = 10.6400.
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FIGURE 3.20: Case 4: Comparison of scattered modal intensities from nmodihing and
finite element methods due to an incident plane wave of ueihgity. Top plot, Transmitted
modal intensity; Bottom plot, Reflected modal intensity.
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FIGURE 3.21: Case 4: Pressure-velocity mode matching solution convesgstudy. Interface
matching plane casing wall pressuree) ; N/N. = 2,(--); N/N. =3,(— ) ; N/N. =5,
(--9); N/N.=9,(—); N/N. = 17, (—); finite element solution.

power transmission loss calculation are insignificant.ré&fuge, for practical purposes, fewer
modes may be utilised to reduce the computation time.
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(a) rigid duct modes (b) lined duct modes
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FIGURE 3.22: Case 4: Pressure-velocity mode matching solution convesgstudy. Interface
matching planer = 2/ radial pressure near the casing walkef), N/N, = 2; (- -), N/N, =
3;(—),N/N.=5;(--"),N/N. =9; (—), N/N. = 17; (—), finite element solution.
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FIGURE 3.23: Case 4: Mass-momentum mode matching solution convergrbe fnterface
matching plane casing wall pressures{), N/N. = 2; (- -), N/N. = 3; (— ), N/N. = 5;
(), N/N.=9; (—), N/N, = 17; (—), finite element solution.
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(a) rigid duct modes (b) lined duct modes
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FIGURE 3.24:Case 4: Mass-momentum mode matching solution convergtrbe fnterface
matching planer = 2/ radial pressure near the casing walkef), N/N, = 2; (- -), N/N, =
3;(—),N/N.=5;(--+),N/N. =9; (—), N/N. = 17; (—), finite element solution.

Wall pressure plots and matching plane radial pressurelgsdtr the single asymmetric liner
of testCase 5are shown in appendix figures (C.3) and (C.4). Again, the MMkcimiag proves
to be superior to the PU matching compared with the FE salptidnich is also seen in the
predictions of scattered intensities shown in appendix@&dG.5).

A final comparison against the FE solution is made for the tegmsent, asymmetric liner with
uniform flow (testCase §. The wall pressure solutions are presented in figure (2@é)show
that the MM matching compares much better with the FE soiutian the PU matching,
especially at the matching planes. A comparison of the raakéching plane pressures in
figure (3.27) confirms this. It is noted that the comparisoth@tsecond matching plane

z = z'!, between the two lined sections, appears at first to be rptaer than at the leading
and trailing matching planes, between rigid and lined sesti However, it is found that the
finite element solver struggles to provide an adequatelyarged solution, even on the
currently over-specified mesh (58 by 284 quad elements)fiAe@ mesh of 116 by 568 quad
elements (equating to 55 radial and 49 axial elements peelemgth) was used to resolve the
problem. The pressure and velocity potentiaolutions at the second matching plane- 2/
compared with the mode matching solutions are shown in fig{8&28) and (3.27). It is seen
that by refining the mesh the FE solution converges towar§/ikl mode matching solution.
The velocity potential is plotted here since the FE methddesathe governing equations in
terms of velocity potential, thus the pressure solutioreisagated in post-processing involving
the use of numerical gradients, which may introduce errdinénpressure field. The velocity
potential is calculated for the mode-matching solutiong&suming modal solutions in
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FIGURE 3.25: Case 4: Mode matching solution convergence study. Scdttetal intensity
error re FE solution, Error= |(Ipy — Irg) /Irg|. Solid line,p-u matching; Dashed line,
mass-momentum matching.

velocity potential form which are related to the pressureleneigenfunction by

Doy
v, = — . 3.56
POy (3.56)

The scattered modal intensities for the case are shown irefi{@30), and show that the
refined FE and MM matching solutions produce the most fa\maraomparison.
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(a) Top wall pressure

(b) Bottom wall pressure

FIGURE 3.26: Case 6: Comparison of 2D mode matching and finite elementispfufor a

two segment, asymmetric liner with flow. Liner interfacechatg planes indicated by dashed

lines. Solid line, finite element solutiom; p-u mode matching solution§, mass-momentum
mode matching solution.
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FIGURE 3.27:Case 6: Comparison of mode matching and finite element radésisure solu-

tions at liner interface matching planes. (a,b,g)x matching; (d,e,f), mass-momentum match-
ing ; Solid line, finite element solutior; mode matching solution (lefthand segment modes);
¢, mode matching solution (righthand segment modes).
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(b) Casing potential around = z!

FIGURE 3.28: Case 6: Comparison of 2D mode matching and finite elementisofiof

pressure and potential around = 2!/ for a two segment, asymmetric liner with flow. Liner

interface matching planes indicated by dashed lines. Daihe, finite element solution; Solid

line, refined finite element solutiom; p-u mode matching solution;, mass-momentum mode
matching solution.
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FIGURE 3.29: Case 6: Comparison of mode matching and finite element ragmbégntial

solutions at liner interface matching planes. (a,b )y matching; (d,e,f), mass-momentum

matching ; Dashed line, finite element solution; Solid linefjined finite element solution;

e, mode matching solution (lefthand segment modesinode matching solution (righthand
segment modes).
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FIGURE 3.30: Case 6: Comparison of scattered modal intensities from nmdihing and
finite element methods due to an incident plane wave of ueihgity. Top plot, Transmitted
modal intensity; Bottom plot, Reflected modal intensity.

3.7.3 Inclusion of hydrodynamic surface wave modes

In this section, the effects of including the hydrodynamidace wave modes in the MM
matching procedure are assessed. The example uSedés4 but with a rigid bottom wall.
The eigenvalues and axial wavenumbers of the surface wadesrare given in table (3.3),
where the unstable hydrodynamic surface wave mode is iadlad a decaying mode in the
left-running set of modes.

TABLE 3.3: Surface wave mode solutions for Case 4 with rigid hub wall

Surface wave type | Transverse wavenumbey, | Axial wavenumbery,
right-running acoustic 3.8848+i4.1272 10.5579-i1.1921
left-running acoustic 14.9543+i6.8932 -15.0240+i10.1510

unstable hydrodynamic  171.7040-i248.3906 254.8387+i178.5613
stable hydrodynamic 180.6213-i52.1542 -58.4615-i187.5200

A finite element solution was obtained using an over-spetifiesh (116 by 568 elements).
Mass-momentum mode matching solutions were obtained wiihaathout the hydrodynamic
surface wave modes included in the matching procedure. a$iag pressures around the
matching planes obtained from the three solutions are coedpa figure (3.31). Away from
the matching planes the mode-matching solution includieghtydrodynamic surface wave
modes provide an improved comparison with the FE solutidre rdial pressure profiles for
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the top half of the duct are compared in figure (3.32). Wherhjftzodynamic surface wave
modes are included the pressure profiles compare very wibllthe FE solutions away from
the lined wall, with a strong reduction in the high order modeillations in the lined segment
pressures. The scattered modal intensities are compafigaiia (3.33) and demonstrate that
the inclusion of the hydrodynamic surface wave modes pesviie best comparison with the
FE solution. The reflected intensity is improved by arouneitent, but the transmitted
intensity is hardly affected.

These results demonstrate that the hydrodynamic surfaee mvades must be included to
accurately reconstruct the field. The highly wall locali$edhaviour of these modes means that
they are most suitable in reconstructing the singular hiebawf the field at the wall around
the liner interface planes. Since the mode matching cantbgneted simply as an inverse
‘source location’ problem [67], if the source or observex aear the wall, they are in the
regime of the surface wave modes. So, as Rienstra and Té4terdted, if they are overlooked
the computed field may not be converged. This can prove pratile for numerical solutions
of the field by the FE method since a mesh that is highly refinédeawalls and around the
liner interface planes may be required to resolve the wadllised surface wave modes and
their effect upon scattering, which has been noted by Hij.[38is is not a problem for the
analytic solutions presented here.
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FIGURE 3.31: Comparison of mass-momentum mode matching with and withalrody-

namic surface waves, and finite element casing pressuréadiat liner interface matching

planes. —, finite element solution; mode-matching without hydrodynamic surface wave
modes:—, mode-matching with hydrodynamic surface wave modes.
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FIGURE 3.32: Comparison of mass-momentum mode matching with and withalrody-

namic surface waves, and finite element radial pressureisols at liner interface matching

planes. —, finite element solution; mode-matching without hydrodynamic surface wave
modes:— mode-matching with hydrodynamic surface wave modes.
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FIGURE 3.33: Comparison of scattered modal intensities from mass-mamemode match-

ing with and without hydrodynamic surface waves, and firlgenent method due to an inci-

dent plane wave of unit intensity. Top plot, Transmitted ahodensity, Bottom plot, Reflected
modal intensity.
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3.8 Summary

¢ A mode-matching method has been developed to model thegatipa of sound in
rectangular ducts with uniform mean flow, and a finite lengtynametric wall lining.

e By matching mass and axial momentum equations an extra mgttdrm, related to the
singularity in the axial gradient of wall displacement, asifid relative to the standard
pressure-velocity matching

e The method can use a single-mode or multi-mode descripfitirecsound source

e The method was extended to include multiple liner segmdniéfferent lengths and
impedances.

¢ A Wiener-Hopf solution by Koch [81], for a uniform symmettiner in the absence of
mean flow was outlined.

e A comparison of mode-matching and Wiener-Hopf solutionh@absence of mean flow
showed excellent agreement.

e A comparison of mode-matching results with solutions froRirdte Element method
found very good agreement. It was found that a highly refingtefelement mesh is
required to adequately resolve the field around the matghisnges.



Chapter 4

Optimisation of bypass duct acoustic
liners

Rearward propagating fan noise has become an increasimglyriant turbofan engine noise
source with the current trend of high bypass-ratio desighs. increased size of the fan and
outlet guide vanes (OGV) leads to higher tonal and broadbkancce levels, which become
dominant sources at takeoff and approach [82]. A key methodhftigating the rearward
propagating rotor-stator interaction tones [6] and fanv\dfBoadband noise [83] is the use of
passive attenuating acoustic liners in the bypass ducswHtle placement and design of the
liners must be such that the attenuation performance ismmsed over a wide frequency range,
for different operating conditions and source content. fbar of analytic (e.g. ray acoustics,
modal methods) and computational techniques (e.qg. firet@eht, time or frequency domain
LEE, finite difference, discontinuous Galerkin methods)dooustic propagation in lined flow
ducts are available for evaluating the liner attenuatiaopaance. However, computational
cost is a limiting factor in the use of computational methimdihe optimisation process. In
fact, finite element methods for the convected wave equatiercurrently the most mature of
the available methods and have only very recently begun tséd in the liner optimisation
process [84, 85]. Analytic methods have seen greater usss giey are computationally
cheap, but are limited to highly idealised models [86, 32,283. However, they can give good
approximations of attenuation performance over widerdezgy ranges, for multi-modal
source descriptions and multiple liner segments withiseaable time scales.

81
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TABLE 4.1: ISVR one-sixth scale no flow bypass duct rig geometry.

Total liner length lined/d 10
Hub radius him] 0.1191
Casing radius r[m] 0.1985
Annulus half height  d[m] 0.0397
Hub-to-tip ratio h 0.6
Speed of sound | co[ms™!] 343
Density of air | polkgm ] | 1.21

In this chapter, the optimisation of uniform and axiall\gs®ented acoustic liners for the
attenuation of fan noise in turbofan bypass ducts is dematest Parts of this work have
contributed to a Department for Trade and Industry (DTI)swoed research project, Aircraft
Noise Disturbance Alleviation by Novel TEchnology (ANDAIRJ, focusing on fan noise
propagation and control in bypass ducts [87]. The linematgion performance is calculated
using the pressure-velocity mode-matching method desttiitochapter (3). The geometry
chosen for the following studies is identical to that of tineesixth scale bypass duct rig used
at the ISVR [88], the details of which are in table (4.1). Thede-matching model is a
rectangular approximation to the actual annular geomairy,the duct widtld is determined
from the average radiug,, to be

w(1+h)

b/d=mR, = ——

= 25133 . (4.1)

The non-dimensional specific liner impedance is that fongleidegree-of-freedom liner,
which is determined using a commonly used semi-empiricaleh[89], given by

Z =R+ i[koM, — cot(koD)] | (4.2)

whereR is the facing sheet resistanadd, is the non-dimensional facing sheet mass inertance,
andD is the non-dimensional cavity depth.

4.0.1 Source assumptions

Knowledge of the fan noise source is essential to accurptelyict the noise signature of this
source that is heard by observers on the ground. The first sfeany prediction method is the
determination of in-duct propagation, for which a modalareposition of the source is
inevitably required. However, determination of the modalcure of the tonal and broadband
sources is difficult, owing to the complex source mechanignuslack of adequate
measurement techniques. Predictions for tonal noise ssinave very recently been
demonstrated [90], at considerable computational castuth full three-dimensional
nonlinear CFD calculations of the fan assembly. Also, expental determination of the
propagating modal sound field structure has recently besrodstrated [91, 92], and methods
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for separating rotor and stator-based broadband sourgesiean suggested, but not
implement as yet [93, 94].

Owing to these difficulties past researchers have sucdlysgéed rotor-stator interaction mode
theory to determine the dominant azimuthal mode ordersT[6¢ assumptions for the radial
mode breakdown of tones is rather more difficult, in the absexperimental results.
Typically, the propagating radial modes are assumed to bertelated, such that the
attenuation of each mode can be calculated separatelysaighad equal energy at the source
plane. Statistical analysis suggests that for single ahialunode orders, and where few radial
modes are cut-on, random variation of the incident radiadenghases produces a
non-Gaussian power attenuation at the duct exit [95, 96,818 implication for in-duct
propagation predictions is that, where few modes propagatechoice of the phase of the
mode is more likely to affect the power attenuation (i.e higstandard deviation). Therefore,
in the absence of a computationally expensive statistmaice description, care must be taken
when drawing conclusions from rotor-stator mode predngjavith few propagating modes,
using an uncorrelated mode assumption.

The broadband fan noise source is typically modelled byraggyexcitation of all cut-on
modes in an uncorrelated manner, with equal energy per n8@&J®9]. Statistical analysis has
shown that this is a reasonable assumption which improvdsdber frequencies

[95, 96, 97, 100]. This approach is applied to the currenkwand is compared to
experimental results from the ISVR one-sixth scale bypass$ g in figure (4.1). The
experimental sound power transmission loss is determimmed microphone measurements at
the source (reverberation chamber) and a far field polay éareechoic chamber). Further
details of the test setup and data processing can be founghim8toet al. [88]. Four different
liner configurations for an axially uniform geometry are qaared: uneven liner with three
matching planes; single symmetric liner; single casingrlisingle hub liner [101]. Finite
element solutions for the annular geometry are includeddanparison. Predictions were
made at a series of one-third octave band centre frequendgitsaround 300 propagating
modes at the highest frequency considered. The rectanguide-matching solutions provides
a good comparison with the measured data for the uneven amsaiyic linings. For builds
with inner or outer rigid walls the rectangular model underd over-predicts both the FE
solution and experimental data. This is due to differenndbe lined areas and mode
eigenfunctions between rectangular and annular ducts.

Hence, in this work multi-mode propagation is modelled bsuasing an equal energy
distribution per uncorrellated cut-on mode at each frequen

4.1 Single segment impedance optimisation

The simplest optimisation exercise for finite length linisrthat of a single, symmetric liner
with a single incident mode. A common method used to determpeak attenuation and
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FIGURE 4.1: Comparison of power transmission loss from mode matchingFdh solutions
with experimental data for lined annular ducts without fléov,a broadband noise source-,
FE end correction;:[ -, Experiment:o-, ACTRAN FE;+-, Mode-matching.

optimum liner design is the use of isocontours of attenuaatiche impedance plane, here
measured in terms of the sound power transmissionAgss ;. By determining isocontours

for a range of frequencies and Mach numbers the optimumilmeedances can be obtained as
an empirical function of frequency, and off-optimum attation sensitivity can also be easily
assessed [89]. Isocontours were obtained for the rig gegratenine one-third octave
frequencies between 300 Hz and 2500 Hz for a single incidexwtem

Results for incident modes (0,1) and (0,3) are presentedunes (4.2) and (4.3) respectively.
At low frequencies, where few modes are propagating, thetiloe of the peak attenuation
corresponds to impedances near the so-called ‘Cremer wptiof the least attenuated mode,
which is indicated on the figures, along with higher order mpdir optima. Such optima were
ascertained by Cremer [24] and Tester [25, 102] to correpobranch points in the complex
eigenvalue plane where certain modes coalesce, and mag ti#a maximum axial decay
rates according to infinite duct theory. Interestingly,rewden the incident mode is of higher
order, the optimum impedance still occurs near the first @ramode pair value. This is a
direct result of the mode scattering which occurs at the limerfaces. To demonstrate this, the
scattered amplitudes due to the second even mode are glofigdre (4.4), for the first

(Zc1 = 1.2903 — 1.0334¢) and second4c2 = 0.71252 — 0.27501¢) mode pair Cremer
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FIGURE 4.2: Isocontours ofA pyy 1, (normalised to the peak value) in the impedance plane
for an incident plane wave mode, 1). x, 1st even mode pair Cremer optimu#n; 2nd even
mode pair Cremer optimunt, 3rd even mode pair Cremer optimuty;,.,, = 10, M = 0.

TABLE 4.2: First four right-running axial wavenumbers for impedanaesar 1st and 2nd
Cremer mode pair optima &ty = 4.3634, M = 0.

Even mode numbef o™ at Z-; = 1.2903 — 1.0334¢ | ot at Zoe = 0.71252 — 0.275014
1 4.0368 — 0.5778: 2.4106 — 3.5122
2 4.0167 — 0.59941 4.0594 — 0.1172
3 0.5030 — 4.1375¢ 2.2561 — 3.6084
4 0.2538 — 8.15102 0.7298 — 8.0563
Apw 1, [dB] 32.9124 15.9640

optimum impedances at = 4.3634. Note thatZ. is close to the finite length optimum
demonstrated in figure (4.3b). For both impedances, a lampion of the incident mode
energy scatters into the Cremer mode pair. HoweverZfgrthe attenuation rate of the least
attenuated mode, as shown in table (4.2), is much lower tte@temer mode pair. Thus, by
the end of the liner the least attenuated mode contains gires$ti proportion of the energy to
be scattered at the trailing liner interface.

Returning to the isocontours, as the frequency and numbmopfgating modes increase, the
optimum impedance no longer corresponds to the Cremersaiiwas shown by Tester [25]
that the attenuation rate [dB] of the first Cremer mode pairekeses lik&0.73/ky, and that



Chapter 4 Optimisation of bypass duct acoustic liners 86

(@) ko = 3.4907, N, =3 (D) ko = 4.3634, N. =3  (c) ko = 5.4543, N, = 4
5 5 5

5 5

Reactance

Resistance

FIGURE 4.3: Isocontours ofA pyy 1, (normalised to the peak value) in the impedance plane for
an incident even mod@, 3). x, 1st even mode pair Cremer optimu#n; 2nd even mode pair
Cremer optimum(J, 3rd even mode pair Cremer optimuty;,.,, = 10, M = 0.

attenuation rates of other higher order cut-on modes attimom impedance can have
similar or even lower decay rates than the mode pair. Theidaipbn is that scattering into the
mode pair does not necessarily provide the highest powsmidh a finite length liner when
higher order modes are cut-on. The finite length optima fchare are away from the Cremer
optima, since they allow more scattering into higher ordedes in the lined section, thus a
higher power attenuation is achieved. This is demonstiatédure (4.5) by plotting the
scattered modal amplitudes for impedances near the firet€renode pair

(Zcr = 2.581 — 2.0674) and finite length X, = 2.247 — 3.4214) optima atky = 8.7268. For
Zc1, scattering in the lined section occurs mainly into the mpaie, but forZr;, a much
higher proportion occurs into higher order modes. The tiegupower loss is higher fat r1,
despite the cut-on mode decay rates being lower tha#@fgr as shown in table (4.3).

The same behaviour noted above is seen when flow is introdéecedxample of isocontours

of attenuation for a uniform flowl/ = 0.4 are presented in figure (4.6). The convection effect
of the flow increases the downstream mode cut-on ratio, heace downstream modes can
propagate and peak attenuation rates are lower than thespomnding quiescent case.

Attenuation isocontours over the impedance plane aregalotbr a multi-mode source with
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FIGURE 4.4: Scattered even mode amplitudes for a single symmetric fiesgment due to
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TABLE 4.3: First four right-running axial wavenumbers for impedanocesr 1st Cremer mode
pair and finite length optima dt, = 8.7268, M = 0.

Even mode numbef o at Zo, = 2.581 — 2.067: | a™ atZpy, = 2.247 — 3.421i
1 8.5548 — 0.27312 8.8477 — 0.21221
2 8.5406 — 0.28141 8.3830 — 0.1188:
3 6.3529 — 0.3275¢ 6.3525 — 0.1795:¢
4 0.6642 — 3.1141¢ 0.3814 — 3.0358:
Apw 1 [dB] 11.2443 15.5439
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FIGURE 4.6: Isocontours ofA pyy 1, (normalised to the peak value) in the impedance plane for
an incident plane wave modé, 1). x, 1st mode pair Cremer optimume; DHC optimum;
liiner = 10, M = 0.4.

and without flow, in figures (4.7) and (4.8) respectively. Aadiministic, gradient-based
optimisation method known as Dynamic Hill Climbing (DHCYR] was used to determine the
optimum impedances for plane wave and multi-mode sourctsfloiv, which are indicated

(e) on the isocontours in figures (4.6) and (4.7) respectivEiye variation in the optimum
impedance with frequency is shown in figure (4.9) and denatest that the multi-mode
optima do not correspond to those of the plane wave mode laftaguencies. Peak
attenuation levels, as shown in figure (4.10), are higher tha plane wave case since the
higher order incident modes are more easily attenuatedightfrequencies, the peak
attenuation level is virtually independent of frequency.
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FIGURE 4.7: Isocontours ofA pyy 1, (normalised to the peak value) in the impedance plane for
a multi-mode sourcex, 1st even mode pair Cremer optimusn, 2nd even mode pair Cremer
optimum;J, 3rd even mode pair Cremer optimum;DHC optimumj;ne, = 10, M = 0.4.
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FIGURE 4.8: Isocontours ofA pyy 1, (normalised to the peak value) in the impedance plane for
a multi-mode sourcex, 1st even mode pair Cremer optimusn, 2nd even mode pair Cremer
optimum;J, 3rd even mode pair Cremer optimufy;,... = 10, M = 0.
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FIGURE 4.9: Optimum impedance for increasing Helmholtz nunmefl4 1/3rd-octave band

centre frequencies)- e —, DHC optimum for plane wave source; e - -, DHC optimum for

multi-mode sourcey, 1st even mode pair Cremer optimurm; 2nd even mode pair Cremer
optimum;J, 3rd even mode pair Cremer optimuiy;,.,, = 10, M = 0.4.
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FIGURE 4.10: Peak power transmission loss for segmented liner optimymedances (1/3rd-
octave band centre frequencies)s —, single segment optimum for plane wave source;—,
two-segment optimum for plane wave sourees —, four-segment optimum for plane wave
source;- - o - -, single segment optimum for multi-mode source; -, two-segment optimum for
multi-mode source; e - -, four-segment optimum for multi-mode sourgg,.,, = 10, M = 0.4.
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Examples of the DHC search pattern and convergence arenpedsa appendix figure (C.6)
for the plane wave case B = 8.7268. The design parameters are constraine@ldo< R < 4
and—10 < X < 1. The algorithm is restarted at three random points, and gaehis seen to
converge to the same design point.

4.2 Two-segment impedance optimisation

The optimisation of a liner with two symmetric segments ai&@dength was undertaken using
a stochastic optimisation method called Adaptive Simdl&enealing (ASA) [104]. This
method involves random sampling of the design space, whighportant for high dimensional
optimisation problems in order to avoid convergence tollopéima [105]. The optimum
impedances at each frequency for both plane wave and matieraources are plotted in figure
(4.11). For the plane wave source, the trend shown is fordirlgasegment of low resistance,
and a trailing segment of higher resistance. This behawiasrpreviously noted by
Baumeister [40] and Sawdy et al. [34] as being due to the prefial scattering of sound in the
leading liner segment, making it susceptible to absorptidhe trailing liner segment. The
maximum improvement of the peak attenuation over the umifianer is shown in figure (4.10)
to occur at around, = 10, which corresponds well with the results of Baumeister [40]e
results for the multi-mode source show improvement in pétnaation at low frequencies,
but none at high frequencies. The optimum segment impedareevirtually equivalent to the
uniform liner configuration. This indicates that two-segmiéers are potentially very
effective for attenuating the rotor-stator interactionsecaround 2BPF, but provide no benefit
over uniform liners for multi-mode sources at discrete fiegies.

Examples of the ASA search pattern and convergence arenpeese appendix figure (C.7)
for the plane wave case & = 8.7268. The algorithm begins with a random walk over the
design space, and progresses to a downhill search invalaimdpm moves. The search
requires a large number of iterations to obtain convergerieh is a known feature, and
disadvantage, of the ASA method [105]. However, the algorits quite robust, owing to its
stochastic nature, and is statistically guaranteed toigeayiobal convergence [104].

4.3 Four-segment impedance optimisation

The optimisation of a liner consisting of four symmetric memts of equal length was
undertaken using an Adaptive Range MultiObjective Gerfglgorithm (ARMOGA)

[106, 107]. Genetic Algorithms (GA) allow for higher diménsal design spaces to be
searched in a more efficient manner. This is achieved bylsegrérom a population, rather
than a single parameter set, obtained in a manner whichgeegood coverage of the design
space. The principle behind GAs is that of Darwinian thedmyatural selection, where the
fittest’ members of a population are favoured to producspffig. Here, the cost function
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evaluations required in constructing each ARMOGA popatatvere calculated
simultaneously over a number of processors on a Linux HigheP&omputing (HPC) cluster.
A maximum of sixty generations with a population size ofyostas specified, with the cost
function again being the power transmission loss. The apgichimpedance values are plotted
in figure (4.12) where low resistances again dominate inghdihg segments for the plane
wave case. The peak attenuation levels are plotted in figut@) and it is seen that the
ARMOGA algorithm fails because levels equal to or greatantthose of the optimised
two-segment liner are not obtain in the plane wave case. higidights a common problem in
high dimensional optimisation problems where convergeadecal optima occurs due to a
variety of reasons, such as inadequate sampling of therdsgare or certain features of the
problem (such as the rapid variations seen around the Creptiera). Recent studies

[108, 100] of segmented liners have attempted to circumsech convergence problems by
using hybrid approaches that combine surrogate modelsgirtiblem, which are intelligently
constructed and updated, with a variety of search techsiques expected that future work
involving liner optimisation will utilise such techniqu@&s combination with parallel
computing methods in order to obtain populations or desigs is an efficient manner.

Reactance
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FIGURE 4.11: Two-segment liner optimum impedances for increasing Heltmimumberk

(14 1/3rd-octave band centre frequencies)o —, 1st segment ASA optimum for plane wave

source; — e —, 2nd segment ASA optimum for plane wave sowee;- -, 1st segment ASA

optimum for multi-mode source;- o - -, 2nd segment ASA optimum for multi-mode source;
liiner = 10,77y =l =5, M = 0.4.
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FIGURE 4.12: Four-segment liner optimum impedances for increasing Helta numberk,

(13 1/3rd-octave band centre frequencies)e —, ARMOGA optimum for plane wave source;

.- o - -, ARMOGA optimum for multi-mode sourég,,.,. = 10, i;; =l = lry = Iy = 2.5,
M =04.

For the multi-mode case the largest benefits over the unifgtima are seen at low
frequencies, but these are only improvements over alreadylarge attenuation rates.
Towards higher frequencies the improvement drops to ar@usdB.

Examples of the ARMOGA search pattern and convergence asepied in appendix figure
(C.8) for the plane wave casefat = 8.7268. The search appears to be converging, but more
generations are required.

4.4 Optimisation of SDOF liners

The optimisation simulations in the previous section aneeai at determining the optimum
resistance and reactance values for sound power attenwadtiodividual frequencies. A
common method to determine the best liner design paramstirsake a best fit from a
database of the calculated optimum resistances and reastawer frequency [32]. However,
in this section the optimum liner design parameters of tasce R and non-dimensional liner
depthD are determined directly, to provide the best attenuatiofopeance over a specific
frequency range. The aim of this work was to provide optimumfioum and segmented liner
designs for testing in the ISVR no flow bypass duct rig [87]e BDOF liner model given in
equation (4.2) is used to calculate the impedance, whema#ss inertance is held at

M, = 0.1259. The optimisation is constrained to realistic values oistasce).5 < R < 4



Chapter 4 Optimisation of bypass duct acoustic liners 96

and model scale liner cavity depitD02m < D x d < 0.02m. Optimisation of
axially-segmented liners was carried out for up to fourrdisegments, with variable liner
segment lengths. The segment lengths were constrainedhaidche minimum length was
0.03m, and the total lined duct length was held at,. = 10.

4.4.1 Multi-mode source

In order to optimise liner performance over a frequency badth, a cost function is

prescribed which combines the attenuation obtained atcaatiesset of frequencies. The cost
function used here is calculated by assuming a source wibimstant power spectrum across a
discrete set of frequencies. At each frequency, the soarassumed to excite all cut-on modes
with equal energy. The combined frequency cost funcfighis then obtained by comparing
the sums of incident and transmitted modal powers,

rans (43)
Zf Zm Zn Wlimmm

CF =10 loglo [

The one-third octave band centre frequencies chosen teraohthe cost function were

ko = 5.45,8.73,13.74,17.45, chosen on the basis of their importance for rotor-stator
interaction noise around 2BPF and Noy weighting curvesoptimisations are carried out
using the ARMOGA search algorithm, utilising a Linux comgutluster to compute the GA
populations.

An isocontour plot of the” F' cost function over the resistance-liner depth plane, for a
multi-mode source, is presented in figure (4.13), togettidr the ARMOGA search points.
The cost function is seen to increase towards higher resista a trend which was seen for
discrete frequency optimisation in figure (C.6), which segjg that the higher frequencies
dominate the optimisation.

Optimisation of axially-segmented liners was carried outsiymmetric and asymmetric liners.
However, the optimisation algorithm was found to be inadegdor the asymmetric problems.
Therefore, the results presented here are for the symnoes&s only, and aret considered

to represent the global optima. The optimised resistatices,depths and liner length ratios
for one, two, three and four segment liners are presenteabla {4.4). The trend seen is for at
least one long segment with similar properties to the optinsingle segment liner. The power
attenuation spectra of the four optimised liners are prtesein figure (4.14), which shows that
any benefits over the optimised uniform liner are very snaalincur a penalty at other
frequencies. A thin liner is prescribed in order that thenHigquency attenuation is maximised
(the uniform liner depth being effectively tunedig = 17.45).
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FIGURE 4.13: Isocontours of combined frequency cost functidf in the resistance-liner
depth plane for a multi-mode, multi-frequency sousg RMOGA search points;, ARMOGA
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FIGURE 4.14: Power transmission loss spectra for optimised axiallyrsegted symmetric
liner designs for a multi-mode source. —, single segmentwo segments:—, three segments;

—, four segmentdy;,.., = 10, M = 0.
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FIGURE 4.15: Power transmission loss spectra for optimised axiallyrsegted symmetric
liner designs for a rotor-stator interaction tonal sources, single segment;—, two segments;
—, three segments:-, four segments;,., = 10, M = 0.

4.4.2 Rotor-stator interaction tonal source

Optimisation for a rotor-stator interaction tonal sourcswindertaken. The source is modelled
by assuming an equal distribution of energy between uniebeek cut-on radial modes at the
relevant azimuthal order. The source is assumed to be dgeddrg a twenty-four bladed fan, at
a shaft rotation frequency of 145Hz, and fifty-two statoresnFor these conditions, the
interaction tone of most significance is generated at anwhmhorderm = —4, at 2BPF

ko = 5.06, consisting of five cut-on radial modes. The optimised |jp@rameters are presented
in table (4.5), and the trend seen is for short leading limetis low resistance followed by a
long segment with a similar liner to the optimised uniformeli. The power transmission loss
spectra for the optimised liners are shown in figure (4.15, show that the multi-segment
liners provide no benefit away from the target frequency d?EB

4.4.3 Multi-objective optimisation

A multi-objective function optimisation was implementedan effort to improve the high
frequency multi-mode attenuation performance, whilstntaning the rotor-stator interaction
tone attenuation. The noise source for this case consist$latfinput power spectrum with
equal energy per uncorrelated cut-on mode at four freqashgi= 5.06,8.73,13.74,17.45.
The level of then = —4 rotor-stator interaction tones b = 2BPF = 5.06 is set at 15dB
above the multi-mode power level. The two cost functionstlaee” F' cost function and the
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rotor-stator interaction tone power transmission lAsg;. The Arg cost function was
constrained to between 10 dB and 15dB in order to avoid sestith unmeasureable
attenuation levels. The ARMOGA algorithm was implementeds multi-objective mode, and
applied to symmetric liner configurations with mean flé¥v= 0.4. The optimised liner
configurations are presented in table (4.6), and again¢ine tseen is for at least one longer
segment with similar liner properties to the optimised amif liner. Power transmission loss
spectra are shown in figure (4.16) and demonstrate littleorgment over a uniform liner. The
spectra for the multi-mode source with and without flow ase gllotted for reference, and
show that the tuning frequency is simple adjusted to acclmurthe 2BPF tonal source.
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FIGURE 4.16: Power transmission loss spectra for multi-objective ojgéd axially-

segmented symmetric liner designs for a multi-mode sourde@tor-stator interaction tonal

source. —, single segment; -Apy 1, optimised single segmeny = 0; - - -, Apy 1 Opti-

mised single segmente— R = 0.8976, D = 0.1228 single segment—, two segments;—,
three segments:, four segmentdy;,,.,, = 10, M = 0.4.

The multi-objective search pattern is plotted for the twetdanctions in figure (C.9). The
Apgg cost function surface has a distinct optimunfat 0.8976 D = 0.1228, whilst theC'F
cost function has several local optima, but a similar glamima. The transmission loss
spectra of this global optima is shown in figure (4.16) to hawvery localised peak at 2BPF. By
constraining the\ g cost function, the final optima provides a better broadbatehaation.
The algorithm convergence is shown in figure (C.10), whesentean and standard deviation
of each cost function for each generation are also plotted. ARMOGA algorithm performs a
range adaptation every five generations, which correspionitie drops seen in the cost
functions. An upward trend is seen for every five generatafriee C'F’ cost function over the
entire optimisation period. However, this upward trengbstat around 1700 iterations for the
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Apgg cost function, indicating that by this point the algorithimshreached the upper constraint
of 15 dB, and concentrates upon maximising €h& cost function. The optimum result is
actually achieved at the 841st iteration, which indicates, tfor the successive generations, the
algorithm is rather inefficient for this problem.

4.5 Summary

e Rectangular duct mode-matching, using an uncorrelateti-molde source assumption,
compared well against experimental results for a lined Emrduct.

e Optimisation of resistance and reactance was demonsfi@tsihgle and multi-segment
liners for plane wave and multi-mode sources at discretpiracies. Segmented liners
can provide large benefits over uniform liners at relatively frequencies for tonal
sources. However, benefits for multi-mode sources were showe small.

e Optimisation of SDOF segmented liners was demonstrated) asscombined frequency
cost function, for both a tonal source and a multi-mode saugegmented liners were
seen to provide little benefit over uniform liners for a brbadd source, since the
optimisation was found to be dominated by the high frequeattgnuation levels. Large
benefits were possible for a tonal source.

¢ A multi-objective function optimisation was demonstrateda broadband source with
an interaction tone. It was found that the tonal noise atitan level needs to be
constrained in order to avoid designs that are highly Isedlito the frequency of the
tone.



TABLE 4.4: ARMOGA optimised resistance, liner depth and liner segteeigtth ratios, for a multi-modal source with combined freqay cost function} = 0.

Segments CF cost Segment length ratios R DI R DI RV DV RV DV
1 13.03 3.927| 0.05088
lll/lliner
2 13.06 0.85 3.946| 0.05088| 2.634 | 0.06071
Ur/lirr | i/ liner
3 13.63 0.28 0.165 1.306| 0.24584| 1.597| 0.19018| 3.504 | 0.05139
Ur/lirr | lar /v | v/ liner
4 13.19 0.194 0.209 0.247 1.026| 0.05189| 2.477| 0.06171| 3.825| 0.05340| 3.832 | 0.05063
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TABLE 4.5: Optimised resistance, liner depth and liner segment leragfibs, for a rotor-stator interaction tonal source with ibined frequency cost function.

M = 0.
Segmenty Apyy 1, cost [dB] Segment length ratios R D! R DI RV DV RV DV
1 38.05 1.651| 0.08741
ZII/lliner
2 42 .14 0.0951 | 0.805| 0.12494| 1.653| 0.08791
Ler/Urr | Urr/Uiner
3 48.64 0.382 0.293 0.576| 0.13098| 2.110| 0.05365| 1.497| 0.09295
Urr/Urr | lrr/lv | v/ liner
4 47.27 0.171 0.393 0.279 0.569| 0.12695| 0.997| 0.10806| 1.992| 0.07078| 1.596 | 0.09244
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TABLE 4.6: Multi-objective optimised resistance, liner depth ancttisegment length ratios, for a multi-mode source and retater interaction tonal source.

M =0.4.
Segments CF cost| Agg cost [dB] Segment length ratios R DI R DI RV DV RV DV
1 13.16 14.93 2.023| 0.08715
ZII/lliner
2 13.42 14.96 0.082 1.008 | 0.19521| 2.077| 0.08086
Lr/Urr | Uirr/Uiner
3 13.36 15.00 0.563 0.685 1.932| 0.09194| 2.198| 0.37935| 1.857| 0.09144
Ur/Urr | lrr/lv | Ly liner
4 13.48 14.86 0.440 0.366 0.614 0.704| 0.19421| 1.403| 0.10025| 2.061 | 0.08665| 2.685| 0.05290
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Chapter 5

A RANS CFD analysis of acoustic
propagation in bypass ducts with flow

Analytic methods can provide useful approximate solutfmnscoustic propagation in bypass
ducts for idealised uniform geometry and inviscid mean fldawever, the acoustic effects of
the real curved duct geometry and non-uniform, viscous fimag only be calculated using
numerical methods. Recent approaches to the problem weeel lbgoon solving the Linearised
Euler Equations (LEE) on a predetermined mean flow field basegblution of the
Navier-Stokes equations (viscous) or Euler equationss@id). Solution methods have
included time and frequency domain solutions using Finiemtent Methods (FEM)

[109, 110], and time domain, high-order finite differencéusons [48, 49].

In this chapter, the effects of realistic mean flows upon thdlct acoustic propagation of a
2BPF rotor-stator interaction tone is demonstrated, farasgaxisymmetric rigid bypass duct.
A proprietary Rolls-Royce general purpose finite volume GQiébe,HYDRA is used to solve
the governing flow equation$lYDRAIs a suite of non-linear, linear and adjoint solvers for
hybrid unstructured meshes using an efficient edge-basedsttacture [111, 112]. The flow
equations are iterated towards steady state using a fige-Biange-Kutta scheme, and a
multigrid algorithm with preconditioning is used to accele convergence. The linear solver is
obtained, using a fully-discrete approach, by linearigshmgydiscrete version of the nonlinear
flow equations.

The aim of the work is two-fold: firstly to investigate the alkand radial variation of the mean
flow, and secondly to demonstrate acoustic propagationdioctimark and realistic cases. The
interest here in non-uniform mean flows is motivated by warlaooustic propagation in
parallel sheared flows, which is documented in subsequeptiets. The radial profile of the
mean flow is required, and it is also of interest to know thelaxariation of the radial profile
due to duct curvature and boundary layer growth. Acoustigtisms obtained using the linear
solver can yield information on the acoustic scattering tdugeometry curvature, mean flow
variation, and boundary layer refraction.

104
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(a) Axially uniform duct. (b) Trent-style curved duct.
g i
T i
Bl i
(c) Axially uniform duct. Expanding grid. (d) Trent-style curved duct. Expanding grid.

FIGURE 5.1: Quasi-axisymmetric bypass duct mesh geometries used @RDestudy. Mesh
size of 300 by 100 cells, where every fifth cell edge is plotedl lines indicate radial profile
extraction planes.

5.1 Problem specification and methods

Two quasi-axisymmetric annular bypass duct geometries s&lected: an axially-uniform
geometry, and a Rolls-Royce Trent-style three-quartel geametry, which are shown in
figure (5.1). The uniform duct geometry is determined fromadkerage hub and casing wall
radii of the curved duct, with the average hub-to-tip rainig 72 = 0.62. The total duct length

is 3.28m. The CFD meshes are quasi-axisymmetric, in the sensehthazimuthal

construction of each mesh isla wedge of single cell depth. For the mean flow calculations a
simple periodic boundary condition is implemented at the &zimuthal boundary planes. For
acoustic calculations, since only individual azimuthalnhanicsm are considered, a
phase-shifted periodic boundary condition is implemeiatieithe azimuthal boundary planes,
given bye="A% whereA§ = 7/180. A four-level multigrid is used throughout.

5.2 Flow field analysis

The mean flow entering the bypass duct is known to be radialfiyuniform due to the
fan-OGV stage [113]. The OGV stage tends to negate swirltiiiemwork three incident mean
flow profiles are chosen: uniform mean flow, a realistic ragiabn-uniform mean flow with
boundary layers, and a realistic radially non-uniform mieuw with wall slip conditions. The
non-uniform incident mean flow is obtained from a nonlinstéeady CFD calculation for a
Trent-style fan-OGV stage at an approach engine power tiondil14]. The circumferentially
averaged total temperature and total pressure radialgsafiere extracted from the OGV
passage solution, at a reasonable distance downstream OGN trailing edge. The
corresponding Mach profiles are shown in figure (5.2). Thetgeg were then scaled and used
as inlet boundary conditions for the current mean flow amalyalet boundary conditions for
the uniform mean flow analysis are obtained by averagingeélstic profile values, giving a
total temperaturd’ = 307 K, total pressure’, = 123000 Pa and zero whirl angle. The outflow
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FIGURE 5.2: Realistic inflow Mach profiles.—, with boundary layers—, with wall slip
conditions;—, uniform flow.

boundary condition is static pressufe = 101325 Pa. The flow field is initialised using a
uniform flow condition with densityy = 1.279 kg/m? and velocitylUy = 145 m/s.

For both the uniform and curved geometries, both the visaodsnviscid steady flow fields
are computed for the uniform inlet flow profile, and the norfanm inlet flow profile with
boundary layers. Only the inviscid flow field was solved fag titon-uniform inlet flow profile
with slip. For viscous flows the non-linear, viscous flow solis used to solve the steady
Reynolds Averaged Navier Stokes (RANS) equations with thede@t-Allmaras turbulence
model. An expanding mesh is used when solving the viscousdtpyvations, as shown in figure
(5.1). Forinviscid flows, the non-linear, inviscid flow sehis used to solve the steady Euler
equations.

Mean flow information over the radial plane is extracted fremch solution at ten axial
locations indicated in figure (5.1).

5.2.1 Inviscid flows

Inviscid flow field Mach contours of the curved duct solutidoseach inlet flow profile are
shown in figure (5.3). For the uniform inlet flow case, the wun in duct cross-section at the
turbine hump results in higher flow speeds at the duct exit,aanegative flow profile gradient
around the hump. However, by the duct exit, the radial proéitarns to a uniform profile. This
is demonstrated in the radial flow profile plots given for t&rabstations in figure (5.4). For
the non-uniform inlet flows, a similar trend is seen with tié #ow profile remaining similar
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_— o
(a) Uniform inlet flow. (b) Non-uniform inlet flow with boundary layers.
l'
—
(c) Non-uniform inlet flow with wall slip. (d) Mach number scale.

FIGURE 5.3: Mach number contours of inviscid flow solutions for the cdreact.

to the inlet flow profile for this geometry. A distinct regiohlow flow velocity is found at the
casing around halfway down the duct where the cross-serrttmaases.

The uniform duct cases result in axially uniform flow fieldslawo are not discussed here.

5.2.2 Viscous flows

Viscous flow field Mach contours of the uniform duct solutidosuniform and non-uniform
inlet flows are presented in figure (5.5). From the radial floefifes shown in figure (5.6), itis
seen that the boundary layer thickness increases by af@ary the outlet plane.

The corresponding Mach contours for the curved duct casprasented in figure (5.7) and, as
previously, the flow region around the turbine hump cont#tiesgreatest variation in radial
flow profile as seen in figure (5.8).

5.3 Acoustic analysis

Using the linearised solver, the acoustic response of thetfidime-periodic excitation can be
determined in the frequency domain. The acoustic sourceegecpbed at the inlet plane in
terms of acoustic modes, where the axisymmetric azimutirgon is maintained through
phase-shifted periodic boundary conditions. Standardgbihfwise) characteristic boundary
conditions are prescribed at the inflow and outflow boundaiiée acoustic modes are
determined by solving the Pridmore-Brown equation [50]ichidescribes sound propagation
in a steady parallel inviscid non-uniform flow, using the lioipfinite difference scheme of
Vilenski and Rienstra [115]. The mean flow density and soyoed are assumed to be
constant.

In order to investigate the nature of acoustic mode propamg#trough the duct it is necessary
to decompose the acoustic flow into upstream and downstreapagation waves. This is
undertaken using the eigenmode analysis method of MoingGiles [116], where the
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(b) Non-uniform inlet flow with boundary layers.
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(c) Non-uniform inlet flow with wall slip.

FIGURE 5.4: Mach number profiles at 10 axial stations of inviscid flow §olus for the curved

duct. Radius normalised to inlet casing value.
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(a) Uniform inlet flow.

(b) Non-uniform inlet flow with boundary layers.

(c) Mach number scale.

FIGURE 5.5: Mach number contours of viscous flow solutions for the umfduct.

discrete linear flow equations are formed into a Generaksgdnvalue Problem (GEP), of
which the eigenvectors are the approximate three-dimeak&igenmodes. The mean flow is
assumed to be axially and circumferentially uniform. Aday®ntropy and vorticity modes
are recovered and are separated using a set of criteria.|edampositions are obtained for
each solution at the ten axial planes indicated in figure) (fJpon obtaining the modal
amplitude and eigenfunctions, the modal acoustic poweri@pproximated using the
formulation of Morfey [76].

In this study the incident acoustic perturbations are thetao radial modes of the first
rotor-stator interation tone: = —4 at 2BPF. Solutions are calculated for each incident mode in
turn, so that an incoherent sum of the scattered modal paaerbe obtained.

5.3.1 Numerical dissipation and dispersion

It is necessary to check the suitability of the mesh for penfog acoustic calculations. The
cell size must be fine enough such that dissipation (relatednplitude errors) and dispersion
(related to phase errors) of the acoustic perturbationdaaell-to-cell numerical error is

small. The unsteady solution for the propagation of modgd )-# the uniform duct with
uniform flow is used to determine the dissipation and dispersrrors on the chosen mesh. An
orthogonal mesh of 300 by 100 cells was used, which providasna 27 axial points per
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(b) Non-uniform inlet flow with boundary layers.

FIGURE5.6: Mach number profiles at 10 axial stations of viscous flow gmhstfor the uniform
duct. Radius normalised to inlet casing value.

Doppler-corrected wavelength, and 52 radial points perd®pcorrected wavelength.
Relative amplitude and phase errors along the duct axiattiom are plotted in figure (5.9),
and demonstrate an amplitude dissipation rate of arouiddB per Doppler-corrected
wavelength. This value compares well with previous didspastudies for the HYDRA code
[117]. The corresponding power loss over the duct axialréxge6 percent, or around 0.25dB.
This value is used in subsequent power calculations to cian@ansmitted powers for numerical
dissipation. Reflected powers are not corrected since tielgragth of the waves is not known
a priori.
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(a) Uniform inlet flow.

(b) Non-uniform inlet flow with boundary layers.

(c) Mach number scale.

FIGURE 5.7: Mach number contours of viscous flow solutions for the cudued.

5.3.2 Mode propagation in inviscid flows

The scattered modal powers for the curved duct case witloumiinlet flow are shown in
figure (5.10). Four modes are cut-on at the exit plane, coedpaith five at the inlet plane. A
comparison of plots of the acoustic pressure for the modes)(and (-4,5) in figure (5.11)
demonstrates the turning point of mode (-4,5) around tHgrtarhump. The modal power is
reflected, as can be seen in the bar plots.

Mode scattering results of a corresponding Finite Elemelatisn are also shown in figure
(5.10), and demonstrate very good agreement with the CRigolin the transmitted mode
powers. The reflected power levels do not compare as wellalnerherical dissipation in the
CFD solution along the path length of the reflected waves.ak variation in the individual
and summed acoustic powers of the upstream and downstreéaon coodes is plotted is
shown in figure (5.12). Mode (-4,5) is the least well cut-onrd@and therefore more prone to
reflection. The mode becomes cut-off aroune: 1.6 and is strongly reflected. Most of the
mode scattering occurs around the turbine hump region wiathethe flow field and mode
cut-off ratios vary the most rapidly. The less well cut-ondas exhibit the largest amount of
scattering.

The axial power variations for non-uniform inlet flow sotuis with and without boundary
layer velocity profiles are presented in figure (5.13) anti4brespectively. As seen for the



Chapter 5 A RANS CFD analysis of acoustic propagation in bg@hucts with flow

112

11

0.9

0.8

0.7

0.6

05
0

11

1
0.9
0.8
0.7
0.6

0.5
0

1.1

0.9
0.8

0.6

0.5
0

11

1
0.9
0.8
0.7
0.6
0.5

11

0.9

0.8

0.7

0.6

11

0.9

0.8

0.7

0.6

11

0.9

0.8

0.7

0.6

11

0.9

0.8

0.7

0.6

0.5

0.5
0.5

o

0.5
0.5

o

0.5
0

11

1
0.9
0.8
0.7
0.6

11

0.9
0.8
0.7
0.6

11

0.9
0.8
0.7
0.6

11

0.9
0.8
0.7
0.6

0.5
0.5

5 0
Mach number

0.5

(a) Uniform inlet flow.

0.5

0.5

0.5

05

0.5

0.5

11

0.9
0.8
0.7
0.6

1.1

0.9
0.8
0.7
0.6

1.1

0.9
0.8
0.7
0.6

11

0.9
0.8
0.7
0.6

0.5
05 0

0.5
0.5

o

0.5
0.5

o

0.5
0

11

1
0.9
0.8
0.7
0.6

11

0.9
0.8
0.7
0.6

11

0.9
0.8
0.7
0.6

11

0.9
0.8
0.7
0.6

0.5
0

0 0.5
Mach number

(b) Non-uniform inlet flow with boundary layers.
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FIGURE 5.8: Mach number profiles at 10 axial stations of viscous flow sahstfor the curved

duct. Radius normalised to inlet casing value.

uniform inlet flow, most of the scattering occurs around tirbine hump, but more scattering
is also seen before the turbine hump, and more prominentihéboundary layer inlet profile.
The transmitted power at the outlet plane is lowest for thendary layer profile.

5.3.3 Mode propagation in viscous flows

Axial power variations, from viscous solutions for the wmih duct with uniform and
non-uniform inlet flows, are used to assess the effects afiteny layer growth on mode

scattering, and are presented in figure (5.15) and (5.1€)entively. The less well cut-on
modes are most affected by the boundary layer growth, antreggr effect is seen for the
non-uniform inlet flow. As the boundary layer grows, the mafeergy is reflected.
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Axial power variations for the curved duct with uniform anghruniform inlet flows are shown
in figures (5.17) and (5.18), respectively. Transmitted golvels are slightly lower than the
equivalent Euler case for the less well cut-on modes. Cuakly, the scattering is very
similar for the well cut-on modes, indicating that the boaydlayer effects can be adequately
modelled by ignoring viscocity, but including a boundarydavelocity profile.
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5.4 Summary

e A series of inviscid and viscous steady flow CFD calculatimese undertaken to
investigate the characteristics of bypass duct flows. Boifotm and realistic curved
ducts with uniform and realistic inlet flow profiles were cmlesed at an approach
engine power condition.

e The duct region around the turbine hump contains higher fleloities with a negative
general flow gradient. The outlet flow velocity is higher, doenass flow continuity, but
the general outlet profile remains similar to that at thetifdethis geometry. A
boundary layer growth of 7 percent is observed for the camuitinvestigated.

e Acoustic solutions were obtained for the various base flosusgua linear CFD solver.
Incident acoustic perturbations were prescribed in terimsaales obtained from
inviscid, parallel flow equations.

e Acoustic solutions on an Euler flow with uniform inlet flow vescompared with an
equivalent Finite Element solution. Qualitatively, thedecscattering compared very
well. Transmitted modal powers must be corrected for messightion, which is not
possible for the reflected power without prior knowledge af/path lengths.

e Acoustic power flow was assessed using a decomposition @Fesolution into
eigenmodes of the Euler flow equations. The region arountutbée hump contains
the most mode scattering. Non-uniform inlet flow cases haweeracattering than for
uniform inlet flow. The growing boundary layers cause reftectvhich is most
prominent in the higher order modes.

e When comparing viscous and inviscid solutions is was foinadl the strongest
differences in the scattering were found in the higher moders. However, differences
in the more important low order modes are small. Thus, cenalle computational
savings can be achieved by using inviscid solutions withati@inlet profiles, which
will capture the most important scattering effects.



Chapter 6

Acoustic propagation in lined annular
ducts with parallel sheared flow

This chapter outlines the theory and methods used to obtaustic eigenmode solutions of an
axially uniform, lined annular duct containing an inviscmarallel subsonic mean flow. Most
of the related work on sound transmission in sheared flowamdsrtaken between the 1950s
and 1980s, see for example the reviews in references [14§, [y contrast to the case of no
flow or uniform flow, there does not appear to be a general niditroobtaining analytic
solutions to the governing linearised Euler equations foittary sheared flows (closed form
solutions exist for linearly sheared flow [119, 120, 121,]1parabolic flow [123, 124, 125]
and exponential boundary layers [126]). The most commautisol procedure is to obtain a
second order ordinary differential equation in pressieferred to as the Pridmore-Brown
equation [50]. This is derived in the following section. éthatively, the solution of two first
order coupled equations in pressure and radial partictecitglwas preferred by Tester [51],
citing better convergence properties. One problem thagésiin these formulations is the
presence of a singularity when the mean flow gradient becanfiegte, as is the case for
power law boundary layer profiles [127], or as the boundaygrahickness is reduced to slip
flow conditions at the wall [51]. An alternative formulatiomterms of pressure and particle
displacement was derived by Smith and Morfey [128] for thabpgm of sound radiation from
a wall source under a boundary layer. It is shown that the naeleity gradient can be
eliminated. The three formulations are outlined and asskissthe following sections, in light
of the problem considered here.

The eigenvalue problem formed by the governing equatiqrdyang the relevant boundary
conditions, must be solved numerically. Four popular sotumethods include shooting
methods [115, 129, 130], the Galerkin method of weightettlveds [131], finite difference
methods [132, 92, 133], and finite element or wave envelogbads [134, 135, 133]. With the
exception of shooting methods, these solutions methods greire sets of eigenvalues in one
calculation. Galerkin methods require a large basis foncsiet in order to resolve higher order

123
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modes, especially for impedance boundary conditions [13@&]. Finite difference methods
require specially modified matrix procedures in order towinvent matrix conditioning
problems [92, 133]. Shooting methods based on Runge-Katitgriation or finite difference
marching methods require iterations in flow profile and walbedance from an initial guess
starting value. A shooting method has been chosen here tordgtrate the applicability of the
eigenvalue tracking method used previously (see ChapyerT(Ris provides useful
information on the effect on the mode eigenvalues of modgfyboth the flow profile and the
wall impedances.

6.1 Governing equations

In this work, modelling of acoustic propagation is basedrufieearisation of the Euler
equations, governing the motion of an inviscid, comprdssibentropic perfect gas. Gas flow
through a prismatic circular duct of annular cross-sedsaronsidered, as shown in figure
(6.1). Using cylindrical polar coordinate(sf, 0, 5:) , Wwhere™ denotes the dimensional values.
The non-uniform, steady mean flow is assumed to be paraliet that the density, and
pressure are constant, and the velocity= (0, 0, Uy (7)) is arbitrarily nonuniform in the
radial direction. For this mean flow, the linearised Eulanaipns, in non-dimensional form,

are
, - Dop N
Acoustic continuity D—Of =-V-u, (6.1)
. Dyl N .
Acoustic momentum o T (G-V)IM=-V-p, (6.2)

non-dimensionalising as per Section (2.1), with the refeedength scale being the outer duct
radiusd. The acoustic equation of statefis= 25, and the material derivative is defined as
Dy/Dt = 0/0t + (M - V). The following subsections detail how the field equationy v
combined to obtain ordinary differential equations (ODiag)ressure, pressure and particle
velocity, and pressure and particle displacement. Wherbgwed with the wall boundary
conditions these ODEs constitute the eigenvalue problenh&duct modes.

6.1.1 The Pridmore-Brown equation

Following Goldstein [137], taking the divergence of the neartum equation gives

D dM oa
2, o N godM ou-
Vp+Dt(V a) + x2 9 n 0, (6.3)
and operating on the continuity equation witly/ Dt gives
D? D .
Dzt o (V=0 (6.4)
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Subtracting equation (6.4) from equation (6.3) results single differential equation in two
dependent unknowns given by
Doyp . _dM 0v

V23— =2 %2

The radial acoustic particle velocityis eliminated by forming the axial partial derivative of
radial momentum equation to give

Doos o
Dtz  Oxor’

(6.6)

Operating on equation (6.5) with, / Dt and substituting equation (6.6) results in a single third
order differential equation in pressure given by

Dy o, D\ . _dM 9%
Dt <V D2 )P “ar dzor (6.7)
Then, on assuming time-harmonic modes of the form
B(r.0,x) = p(r) e 0HD, (6.8)
equation (6.7) becomes
d’p 1 2k dM | dp 5 m? 9
£ e Tz — kM) - = — = )
a2 r+ko—kMdr]dr+[(k0 RM) = k=0, ©9
which is known as the Pridmore-Brown equation. The wall latauy conditions are
determined from continuity of particle displacement atwradls, i.e.
d_ (ko — kM)? at r=1 (6.10)
dr — koZg " ° b o '
dp N ) 2 N
&~ Rz (ko —kM)“p at r=h, (6.11)

whereZ;, andZ,; are the hub and casing wall impedances, respectively.

FIGURE 6.1: Geometry for a lined annular duct containing arbitrary siea flow.
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6.1.2 Pressure and particle velocity coupled ODEs

Coupled ODEs in pressure and radial particle velocity atained by eliminating axial and
azimuthal velocity components from the continuity equatihich in expanded form is

19(vr) N imw

i (ko — kM) p+ —iku=0. (6.12)

r or r

The axial and azimuthal momentum equations are rearraoggue

1 dM
- __ —— A
U o (kp+zvdr>, (6.13)
mp
S — 14
YT T (ko — kM) (6.14)
Substituting into equation (6.12), and rearranginguiogives
d(vr) s m? pr ko dM
= —kM)* — = — — — . 1
or |0 mEM) = =K S TR R — kM ar ) (6.15)
The radial momentum equation is rearrangedpftw give
dp —i(ko— kM)
L= 7 . 1
or , (vr) (6.16)

Together, equations (6.15) and (6.16) form the coupleddidr ODES to be solved forand
vr. The wall boundary conditions are determined from continaf particle displacement at
the walls, i.e.

o T
 koZy
a

ko2,

(ko — kM) p at r=1, (6.17)

ur

(ko —kEM)p at r=h. (6.18)

ur =

6.1.3 Pressure and particle displacement coupled ODEs
Coupled ODEs in pressure and particle displacemgate obtained following the analysis of
Smith [52], by eliminating radial particle velocity usiniget following expression

o — Dy (e,7)
Dt

= (1) i (ko — kM) . (6.19)

Taking the radial derivative and rearranging fpmgives

Aerr) _ 1 : o . dM
o = (o RO i(ko— kM) ar+zl~c O (vr) . (6.20)
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On substituting equation (6.15), the flow gradient termimiglated, leading to the following

(€r) m? 9 9 pr
=|—=+k"—(ko—kM)"| ——— . 6.21
ar r2 (ko ) (ko — kM)? (6:21)
Substituting equation (6.19) into the radial momentum &qoagives
_ 2
Ip _ (ko — kM) (&) (6.22)

or r

which, together with equation (6.21), form coupled ODEsresgure and particle
displacement. The wall boundary conditions are determiraed continuity of particle
displacement at the walls, i.e.

i
koZq'

wr

ko Zp P

at r=1, (6.23)

€T = —

€T = at r=nh. (6.24)
Note that the boundary conditions do not contain the eigaavaor the mean flow Mach
numberM at the wall.

6.2 Computational scheme

The eigenvalue problems set out in the previous sectionadwedsfor individual mode
eigenvalues: using a shooting method. The method for finding the eigeegisisummarised
as follows:

1. Select an initial value of.

2. Specify values of the relevant wave variables at one ofvidds which satisfy the
boundary condition.

3. Use either an integration routine or a finite differenagtiree to compute the wave
variables across the annulus, from the system of governidg<O

4. Calculate the error in the far wall boundary conditiorthé error is below a given
tolerance then the current choicefois kept, otherwise a new value bfis found using
Muller’s iteration method [138].

In general, the method marches from the hub wall to the cagaily except in the case of
hydrodynamic surface waves. In this instance, the methadhmea from the walbppositeto
that which the surface wave is attached. This is to avoid®irothe boundary condition
calculation due to the exponential behaviour of the hydnaglyic surface wave eigenfunction.
The initial value of pressure at the starting wall is set tpbe 1 + 07, and the other wave
variables are determined from the relevant boundary comdit
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The initial value ofk is determined from a tracking scheme where the eigenvalinadked

with systematic increments in mean flow profile and wall inge. The impedance tracking
method is similar to that described in Chapter (2). The iragkcheme for finding the
eigenvalues of an annular duct containing an arbitraryur@ferm flow M (r), with casing

wall impedanceZ,; and hub wall impedancg;, is summarised as follows:

1. Select an initial value of to be the eigenvalue of either the no flow or uniform flow case
with rigid walls.

2. Calculate new values éffor increments in the mean flow profile, from the no flow or
uniform flow condition to the required profile.

3. Calculate new values @ffor increments in the admittance of the wall from which the
shooting method marches. The admittance is incrementedtfre rigid wall condition
B = 0+ 0 to the nearly rigid wall conditior = 1/(R + iX ).

4. Calculate new values @ffor increments in the impedance of the wall from which the
shooting method marches. The impedance is incrementedtfremearly rigid wall
conditionZ = R + i X, to the required wall impedancé = R + i X, where the
resistancer is held constant.

5. Steps (3) and (4) are repeated for the far wall.

The initial no flow or uniform flow eigenvalues for a duct wililgid walls are obtained from
closed form solutions [136]. The mean flow profile is incretedrby either modifying the
coefficients of analytic flow profiles, or by using a windowiiagction for discrete flow
profiles. The choice of windowing function generally depengon the features of the chosen
flow profile (e.g. boundary layers, flow value range, local fipadients), and examples of
functions used here include sine curve, Hermite polynoamal uniform increments.

An addition to the impedance tracking method used here iegfireement of the reactance
contour fromX, to X, around regions where the eigenvalue changes rapidly mittedance,
as highlighted in Section (2.4). From Brambley and Peakg {fB contour is refined around
X =-2Up/ (1 - U02)3/2, 0, and2Uy/ (1 — U§)3/2, wherel, is the mean flow velocity at the
wall.

The shooting method is undertaken using a 4th order Rungexiqiegration scheme [130].
Closed form solutions for the uniform flow case are used faicgpint refinement study. The
error in the boundary condition using the exact eigenvady®dtted in figure (6.2). Errors for
solutions of the Pridmore-Brown equation, pressure analcityl ODESs, and pressure and
displacement ODEs are shown to have order of magnitudereliiées. The boundary condition
errors are measured in terms of pressure gradient, pavétdeity and particle displacement
for the three governing ODEs respectively. The order of ntada difference in error is due to
the choice of dependant variables. This is demonstratedunefi(6.3), where the error in the
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Top row, downstream modes; Bottom row, upstream modes; iehnBre-Brown equation; -

-, pressure and particle velocity ODEs; -, pressure and particle displacement ODEsg. =
30.94, M = 0.345,m = 4,n = 1106, i = 0.569.

eigenvalue obtained using each governing equation septieglagainst grid point refinement.
The exact eigenvalue is used as an initial guess, and isateuamtil the boundary condition
error tolerance is met. Here, the tolerancé(s® for each case. This tolerance level must be
set, for the velocity and displacement boundary conditrespectively, one or two orders of
magnitude lower than for the pressure gradient condition.

The error in the eigenvalues for a lined duct is presentedyurdi (6.4) where the relevant
tolerances are set. Each equation set is seen to exhibiasitnnvergence properties. The
error increases for higher order modes due to the increasinder of oscillations in the mode
eigenfunctions, which contribute larger gradient errarthe integration scheme.

6.3 Validation

Validation of the eigenvalue solver is undertaken usingltegrom the literature, and is
presented in the form of tables of eigenvalégs;.

6.3.1 Power law mean flow profile

The results of Shankar [53] and Kousen [133] for a one-sévpotver law flow profile are
used to validate solutions based on pressure and displat€Es. A fourth order
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FIGURE 6.5: Mach profile variation and rigid duct eigenvalue tracking tme-seventh power
law validation case+, initial uniform flow eigenvaluey\, final eigenvalue;x, average uni-
form flow eigenvaluekq = 70, m = 0, h = 0.85714.

Runge-Kutta integration was used by Shankar, and a speotthiod was used by Kousen. Itis
noted that formulations used by Shankar and Kousen explantain the flow gradient term
(here it is infinite at the walls), which has been eliminatexhf the current formulation. The
first case is for a rigid annular duct of hub-to-tip ratie= 0.85714, at a frequency:y = 70, for
the first eleven downstream propagating non-spinning modes0. The power law mean

flow profile is given by

I (6.25)

h rd

M(r) = 0.3 x 1—2|m +0.5 — T
with the variation in the flow profile used for tracking theeigalues shown in figure (6.5a).
The tracking of the eigenvalues from the uniform slip profife= 0.3 to the required profile is
shown in figure (6.5b), and a comparison with results fromiteeature is given in Table (6.1).
The eigenvalues compare very well. The eigenvalue traciirogvs a trend to the right
because, as the mean flow profile is varied, the mass flow regduised. Eigenvalues
calculated using the average Mach numfef,,. = 0.2621) of the final flow profile are
plotted for reference, and show that uniform flow assumggdairly good, but becomes less
accurate for higher order modes.

The second case is for a lined annular duct of hub-to-tij rat- % at a frequency:y = 30,

for the first eleven downstream propagating non-spinningesm = 0. Both hub and casing
walls have an impedance gf = 3 — 14, and a comparison of eigenvalues is presented in table
(6.2). The comparison is not as good as for the rigid casettasds thought to be due to the
effect of the flow gradient term in the reference solutionise €igenvalue tracking is shown in
figure (6.6b), where the average Mach number results argkited. The uniform flow
assumption is again fairly good, but significant differenaee found in the lowest order mode
eigenfunction as shown in figure (6.6a). Such differencesmaportant when considering

modal decomposition of in-duct sources and modal scatteydithers.
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FIGURE 6.7: Mach profile variation and rigid duct eigenvalue tracking fmear boundary
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6.3.2 Linear boundary layer mean flow profile

The case of a lined duct containing a uniform mean flow profith & linear boundary layer is
validated against the results of Joshil. [139], obtained using a Runge-Kutta based shooting
method. The Pridmore-Brown equation is solved for hubigadtio 2 = 0.4, at a frequency

ko = 14.0667, for the first six upstream and five downstream propagatingam modes

m = 1. A linear boundary layer of thicknegs= 0.01 and a wall impedanc& = 1.5 — 3i are
specified on both hub and casing walls. The freestream Magtbeuis)M = 0.2, with the
iterations in flow profile shown in figure (6.7a), and eigenedlracking is shown in figure
(6.7b). A comparison of eigenvalues from the literatured fom uniform flow M = 0.2, is
presented in table (6.3), and demonstrate very good agrégeme
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6.4 Effects of radial flow profile upon the mode spectrum

The non-uniformity of the mean flow profile affects both thgegifunction and axial decay of
the modes. In the previous chapter (5), it was demonstratea fealistic bypass duct that the
mean flow profile can be characterised into two parts: the, @@ wall boundary layers. In
the following subsections the effects of both upon the maeetsum are demonstrated for
realistic duct dimensions, mass flow rate, frequency andsiimliner impedance. The casing
Z4 and hubZ,, wall impedances are determined from the SDOF liner modelrgim equation
(4.2). The non-dimensional liner parameters used hereaaeedheet resistanée= 1,
face-sheet mass inertangé. = 0.012, and liner cavity deptlD = 0.021. The frequency
variation of the impedance is shown in figure (6.8).

6.4.1 Convergence to the slip flow case

A simplifying assumption often used in assessing acousiit performance in flow ducts is to
obtain results based on the convected wave equation fasramilow. The real flow
non-uniformity and finite thickness boundary layers arestigmored, and an unrealistic slip
flow boundary condition is prescribed. The impact of thisiagstion has been discussed by
several investigators [51, 54], with the common concluskat the uniform flow assumption
provides a good approximation in the limit of small boundinyer thickness = S/d. In this
analysis, the limi — 0 is investigated by solving ODEs in pressure and particle
displacement, since these do not involve the flow gradiéaydr- (which will tend to infinity

at the duct walls). The two flow profiles used here are linedrare-seventh power law
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boundary layer profiles with uniform core flows, defined by

1

M(r):M()(g)? 0<r<dg,
:MO (5§T§(1—5),
1
:M0<1;T>g (1-8)<r<l. (6.26)

where M, is the core flow Mach number, agddefines the power. The linear boundary layer
thickness is determined by equating the displacementribsdes of the two profiles to give

_

5 =61 =

(6.27)
In order to maintain accuracy, an expanding grid is usederbtiundary layer, and a uniform
grid in the core flow region. The lined duct eigenvalues ast fibtained for a boundary layer
thicknessi7/(d — h) = 0.4, then the eigenvalues are tracked in the lifnit> 0. The
trajectories of the first few eigenvalues calculated fohlmbfiles are shown in figures (6.9)
and (6.10). All mode eigenvalues converge to the analytioun slip flow solutions. Rigid
duct eigenfunctions in wave variables of pressure, radigigle displacement, radial and axial
particle velocity are presented in figures (6.11) and (6af2he mode (0,0) for a series of
boundary layer thicknesses @s- 0. It can be seen that the rigid duct eigenfunctions also
converge to the uniform slip flow solutions &s— 0. The wall values of the axial particle
velocity v are related to the near wall values by the Doppler faktgr(ko — M k), which is
consistent with the Ingard-Myers vortex sheet model [1], Similar plots are presented in
figure (6.13) and (6.14) for the corresponding lined walltdumlike the rigid duct case, the
axial particle velocity is undefined at the walls whelW ddr = +o00 andwv # 0. The pressure
eigenfunctions converge, and the velocity and displaceérigenfunctions are consistent,
except for the Doppler-shifted wall values. The variatiéthe wave variables through the hub
and casing boundary layers is presented in figures (6.15(6ah6). Ass — 0 the pressure
becomes uniform, and the radial particle velocity and dispient ratios at the edge of the
boundary layer converge to the Doppler-shifted uniformp 86w values. The variation of the
wave variables within the boundary layer is clearly depahdea the flow profile shape.

6.4.2 Boundary layer effects

Boundary layers affect acoustic propagation through céifsa and convection. Previous
studies have shown that, for a given boundary layer thicgkrtee profile shape has a strong
effect upon the modes which is mainly due to the differenamass flow rate and flow
gradient. Prydz [54] and Nayfeh et al. [140] demonstrated, thy correlating on boundary
layer displacement thickness, downstream propagatiossinially independent of flow
profile, but upstream propagation is still profile depend&myenvalue results obtained in the
previous section for linear and one-seventh power law @ofle plotted in figure (6.17)
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against non-dimensional displacement thickngsdt is seen that the upstream propagating
modes do indeed depend strongly upon the profile shape, ambitnstream modes correlate
fairly well just on displacement thickness. The refractffects upon mode axial decay are
fairly intuitive, where thicker boundary layers result efraction towards the liner giving
higher downstream mode decay rates, and, conversely, lgyetream mode decay rates. The
greatest variation is seen in the surface wave modes, otwvthe&cupstream modes show very
strong sensitivity to flow profile. Such modes are localiseith@ wall, and so would be
expected to depend strongly upon the boundary layer.

As the wavelength of sound becomes comparable to the boutayar thickness it is expected
that refraction effects will get stronger. This proves tdle case, as demonstrated in figure
(6.18), where the axial decay rates of the first five non-spqmodesn = 0 are plotted over
frequency up to 7BPF. Two linear boundary of thicknesses 4fl — #) = 0.0125 and0.05

are chosen, and the uniform slip flow values are plotted fi@reace. An increase in decay
rates, compared to attenuation with uniform flow, occur$witreasing frequency for the low
order downstream propagating modes, which is very stroaghanced for the thicker
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FIGURE 6.18: Modal decay rate spectra for first five non-spinning= 0 radial modes in a
lined (SDOF liner impedance model) duct withear boundary layer profiles. —, boundary
layer flow,- - -, uniform slip flowM = 0.345.

boundary layer. Conversely, the decay rates of the upstpeapagating modes decrease with
increasing frequency, and this effect is also enhancedéottticker boundary layer. These
effects are maintained for spinning modes. An examplerfee 16 modes, which are less well
cut-on, is shown in figure (6.19). Refraction effects begia Bwer frequency for upstream
propagation compared with downstream propagation duediesting of the effective
wavelength by mean flow convection.

6.4.3 General flow non-uniformity effects

The core flow profile is dependent upon flow conditions afterfdm/OGV stage, and for the
slowly varying geometry of the bypass duct, the initial cprefile is generally maintained
along the length of the duct. The greatest variation is todpeeted at the turbine hump, where
a large negative shear is seen. Two linear shear core flowssdiye and negative gradient are
assessed against the uniform flow case, with a slip flow donditrescribed at the walls as
shown in figure (6.20). The variation of the axial decay ratéh increasing frequency of
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FIGURE 6.19: Modal decay rate spectra for first five spinning= 16 radial modes in a lined
(SDOF liner impedance model) duct withear boundary layer profiles. —, boundary layer
flow, - - -, uniform slip flowM = 0.345.

non-spinning modes: = 0 relative to the uniform flow case is shown in figure (6.21). ther
downstream propagating modes, decay rates for all but theskorder mode decrease with
increasing frequency. For the upstream propagating meddbge frequency is increased, the
decay rates also decrease, but appear to become indepehétequency at high frequencies.
Both profiles produce near identical decay rates, which éstduhe two-dimensional nature of
them = 0 case, whereby the difference in hub and casing liner areadhaffect. The axial
decay rates of thes = 16 spinning modes are plotted in figure (6.22). For positiveasiiiew,
refraction of the downstream modes occurs towards the hilbwdch has a lower lined area,
and thus the low order mode decay rates are less than foromifow. The upstream modes
are refracted towards the casing wall, which has a highedlarea, and the decay rates are
higher. The opposite is observed with negatively sheared flogeneral, the low order modes
follow these expected trends, whilst the higher order madegenerally less affected by the
core mean flow shear, compared with the boundary layer.

The realistic flow fields investigated in the previous chaptere found, overall, to have a
general negative core flow shear gradient, with additionafilp features due to the fan/OGV
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FIGURE 6.20: Mean flow radial profiles—, uniform flowM = 0.345; - - -, realistic flow with

slip; —, realistic flow with boundary layers;— positively sheared linear flows—, negatively
sheared linear flow.
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(d) Negatively shear linear flow, upstream modes.

FIGURE 6.21: Modal decay rate spectra for first six non-spinnimg= 0 radial modes in a
lined (SDOF liner impedance model) duct withear flow profiles. —, linear shear flow; -,
uniform slip flowM = 0.345.
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FIGURE 6.22: Modal decay rate spectra for first six spinning= 16 radial modes in a lined
(SDOF liner impedance model) duct withear flow profiles. —, linear shear flow,-, uniform
slip flow M = 0.345.

stage. Decay rates and mode eigenfunctions for a realistfiigpobtained from the CFD
investigation, and modified to the current duct geomety,amsessed against uniform flow
solutions. The realistic profile is assessed with both acglimlition and boundary layers, as
shown in figure (6.20). Axial decay rates for the first six ehdnodes forn = 0 andm = 16

are shown in figure (6.23), and demonstrate the trends add@reviously for negatively
sheared linear flow. The downstream mode decay rates igcvatsfrequency, compared with
the uniform flow decay rates, with the lowest order modesdainst affected. Upstream mode
decay rates decrease with frequency relative to the uniftmmdecay rates, and tend to
converge at very high frequencies. The slip flow values cgaveowards a finite value, whilst
the boundary layer flow values appear to continue on a dowhtsand. The presence of the
boundary layer allows for total refraction of the upstreaimpagating waves in the limiting
case when the wavelength is comparable to the boundarytlaigkness, and with an
appropriate incident wave angle [52]. When this occurs,esaway not reach the liner and thus
no absorption occurs, which explains the downward trend 8@ethe decay rates at high
frequency with boundary layer flows. However, for slip flowawss always reach the liner,
thus some absorption should occur in the high frequency.limi
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These results demonstrate that, ideally, realistic floviilposhould be used to assess acoustic
mode propagation in ducts, in particular at high freques)Cighis is particularly important for
low order modes and surface waves, and at higher sound fregse The uniform slip flow
assumption is valid for very thin boundary layers at low freqcies.
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FIGURE 6.23: Modal decay rate spectra for first six radial modes in a lin&DQF liner
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impedance model) duct witiealistic flow profiles.— realistic shear flow with boundary lay-
ers; - - -, realistic shear flow with slip; - -, uniform slip flowM = 0.345.
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6.5 Summary

e Sets of governing equations for acoustic propagation inedlannular duct containing
an inviscid, parallel subsonic mean flow have been outlikr@st order ODESs in pressure
and particle displacement that are independent of flow gradillow for solutions to be
obtained for power law profiles typically used to descritdilent boundary layer flows.

¢ An eigenvalue tracking procedure is described for obtaitie acoustic eigenmodes of
the governing equations, and have been validated agamgtsérom literature.

e The convergence of solutions for boundary layer flows tog¢htaighe commonly used
slip flow condition is demonstrated. A Doppler-factor is iangd to the velocity and
displacement eigenmodes at the lined wall, which is comsistith the Ingard-Myers
vortex sheet model.

e The downstream mode decay rates were found to correlatowdlbundary layer
displacement thickness, but variation of the wave varg@tileough the boundary layer
was found to strongly depend upon the flow profile.

¢ Refractive effects become stronger as the wavelength ofdsbacomes comparable to
boundary layer thickness. Refractive effects upon upstreepagating modes begin to
occur at lower frequency than downstream modes due to thesing of the effective
wavelength by the mean flow convection.

e The sign of the shear flow gradient in the core mean flow is fdaridhve a strong effect
on mode decay rates. For downstream propagating spinnigigsntarger increases
were obtained for refraction towards the casing comparéil tewards the hub, due to
the higher casing lined area.

o All refraction effects were found to be strongest for thedsivorder modes and surface
waves.

e It was demonstrated that realistic flow profiles should bel ts@assess acoustic mode
propagation in bypass ducts. The flow profile can have stréfagte upon low order
modes and surface waves, and on all modes at higher freg@senci
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TABLE 6.1: First eleven downstream propagating mode4;, for a rigid duct with a one-
seventh power law flow profiléy = 70, m = 0, h = 0.85714.

Shankar [53] Kousen [133] Present
0.79293 0.79353 0.79284
0.75075 0.75292 0.75057
0.57143 0.57320 0.57128

—0.00969 0.16437 0.16268

—0.28733 — 0.73219: | —0.28357 — 0.73425¢ | —0.28771 — 0.73197:
—0.29118 — 1.217217 | —0.28622 — 1.2198; | —0.29167 — 1.21701%
—0.29248 — 1.62569: | —0.28766 — 1.6281¢ | —0.29310 — 1.62548:
—0.29519 — 2.002217 | —0.28947 — 2.0055¢ | —0.29598 — 2.00196%
—0.29768 — 2.716657 | —0.29035 — 2.3683¢ | —0.29667 — 2.364801
—0.29768 — 2.716657 | —0.29167 — 2.7209¢ | —0.29891 — 2.716241
—0.29776 — 3.064147 | —0.29243 — 3.0679¢ | —0.29928 — 3.063601

el
PEBowo~v~oorwN RS

TABLE 6.2: First eleven downstream propagating modes:, for a lined duct with a one-
seventh power law flow profiléy = 30, m = 0, h = 0.66667, Z = 3 — 1i.

Shankar [53] Kousen [133] Present
0.78698 — 0.004001 0.78093 — 0.00913: 0.79214 — 0.02899:
0.73438 — 0.02541¢ | 0.75079 — 0.03387¢ | 0.75795 — 0.05123¢
0.55840 — 0.03148: 0.57267 — 0.032461 0.59171 — 0.05639:
0.14308 — 0.07638: | 0.16875 — 0.06982¢ | 0.22225 —0.11627¢

—0.23900 — 0.74173¢ | —0.23734 — 0.727277 | —0.19659 — 0.67792¢
—0.26149 — 1.219737 | —0.25993 — 1.2120¢ | —0.24519 — 1.17372:
—0.26996 — 1.62627; | —0.26860 — 1.6207 | —0.26237 — 1.58836:
—0.27669 — 2.001927 | —0.27468 — 1.9983¢ | —0.27379 — 1.968661¢
—0.27974 — 2.36439: | —0.27813 — 2.3612¢ | —0.28003 — 2.33418:
—0.28359 — 2.71568: | —0.28147 — 2.7139¢ | —0.28625 — 2.68758¢
—0.28502 — 3.063047 | —0.28361 — 3.0610¢ | —0.28967 — 3.03649:

el
PEBowo~v~oorwN RS

TABLE 6.3: First six upstream and five downstream propagating mdgés for a lined duct
with a linear boundary layer flow profilé:g = 14.06667, m = 1,h = 0.4, Z = 1.5 — 3i.

n | Uniform flow M = 0.2 | Joshiet al. [139] Present

1+ | 0.79807 — 0.026674 0.8556 — 0.02001 0.85771 — 0.02033:
2+ | 0.85523 —0.019183 0.7969 — 0.02627 0.80106 — 0.02747:
3+ | 0.56097 — 0.033544 0.5582 — 0.03374 0.56248 — 0.03392:
4+ | —0.12492 — 0.31080¢ | —0.1308 — 0.3047¢ | —0.12450 — 0.311374
5+ | —0.20290 — 1.04009: | —0.2000 — 1.0367: | —0.20534 — 1.03813:¢
1- | —1.03765 + 0.05588; | —1.0408 + 0.0536¢ | —1.03035 + 0.055974
2- | —1.27682 4 0.075931¢ —1.26632 + 0.06888:
3- | —1.32670 + 0.095217 | —1.3206 + 0.0801¢ | —1.31128 + 0.08123:
4- | —0.34862 + 0.336857 | —0.3584 4 0.3279: | —0.34621 + 0.33552
5- | —0.26979 + 1.06720¢ | —0.2855 + 1.0593; | —0.27248 + 1.06293
6- | —0.25780 + 1.568067 | —0.2828 + 1.5578: | —0.26602 + 1.56185:




Chapter 7

Axially-segmented liners in annular
ducts with parallel sheared mean flow

In this chapter, the mode-matching theory of Chapter (3xteraled, in order to assess the
performance of axially-segmented liners in annular duisfaining parallel shear flows of
arbitrary radial profile. It was demonstrated in the presicbapters that the non-uniformity of
the mean flow can have a potentially strong effect upon theenetgenfunctions and axial
decay rates. In light of this, it is reasonable to assumethigaattenuation performance of finite
length acoustic liners may also be affected by the mean flofler

The sole example in the literature of mode-matching for sfteflows is that of Joshi et al.
[139], where approximate modal solutions for boundary ddlgevs were used in a matching
scheme based upon continuity of pressure and axial paviebtbeity across the liner interface
planes. It was shown in Chapter (3) that this type of matckoigeme does not ensure
continuity of mass and momentum, and can lead to errors oiigiesl attenuation levels and
scattering. In the scheme described here, the matchingieasiare derived from weighted
integrals of the continuity and axial momentum equationsndhmarking is undertaken against
finite element solutions for uniform flow, since comparaliieared flow solutions are not
currently available. However, at the present time, a stresgarch and development effort is
progressing in the development of finite element methods Riscontinuous Galerkin Method
[45], Galbrun’s equation [46, 47]), which are applicablestdving the current problem, and for
which the mode-matching method may provide validation €ase

7.1 Mode-matching method for annular ducts with parallel
sheared mean flow

The analysis begins with the acoustic continuity and axiainantum equations for
propagation in an inviscid, parallel sheared mean flow,rgimecylindrical coordinategr, 0, x)

147
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by
) 8 10vr 10w Ou
. o) dM  op
|:Zk0+Ma] +v W-ﬁ-a—m 0. (72)

The weighted forms of the continuity and axial momentum &quna over a control volum&
around the matching plane, respectively are

ow  woW
/VZ]C(]WP—U or — ?de
—i—/ V- [Wv,Ww,WMp+Wu] dav =0, (7.3)
1%
. dM
/ szWu+Wvd—dV+/ V10,0, WMu+ WpldV =0, (7.4)
1% T 1%

whereW = W (r, #). Following the analysis of section (3.4), six surface intdgare obtained
from the second volume integral, and on taking the linit- 0 (see Figure (3.2)) the following
final matching equations are obtained

1 1
II— TITT T T UTII—UTITT
2w/hw<r>M[p<r> p<>]d+2/hW<>[<> ("] rd

st M [yt — gy + 2 M [ty — fp)] =0,
(7.5)

271/ W (r ()]Tdr+27r/ W (r M[(T)H—u(r)l]rdr:O. (7.6)

It is assumed that the weighting functioWs are finite over the duct cross-section, and that the
flow gradient d///dr is also finite over the radial duct section, which excludesgrdaw

profiles from the analysis. The third and fourth terms of & only present for flow profiles
with wall slip conditions. The method is identical for bothiiorm and sheared flows. In the
absence of flow, the matching equations reduce to those tihady of pressure and axial
particle velocity.

7.1.1 Expressions for in-duct sound power in sheared flow

The sound power transmission la&syy 1, is used to quantify the acoustic liner performance.
For uniform flow, the form of axial intensity given by Morfey equation (3.44) is used, but in
fact is only valid for irrotational flows. The mode eigenftioas in a uniform flow are
orthogonal, and so the total sound power can be calculatdteaum of individual modal
powers. In contrast to the case of uniform flow, the mode digeaions in a sheared flow are
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not orthogonal. Therefore, the total in-duct sound powey omatain cross-term contributions
due to interactions between different modes (howevéhimg [141] suggests that such
cross-terms do not exist). However, in the course of thiskwibhas been found that the
cross-term contributions are rather small, and subselyuar ignored in the analysis. In this
work, the form of the axial intensity given by dfring [142] is used,

+ (kM 4k (1= M?)) Ipal® o -

o 1k { —ky  dMdlpy, ./
T2 (kg — kM)? | 2 (ko — kM)? dr - dr
(7.7)
The total sound power is found by integratihgover the duct cross-section and summing over
all the propagating modes, to give

wE=2r)"%" / 1 IF,, o (r)rdr. (7.8)
m n h

The sound power transmission loss and the sound power reflégss are then given by,
respectively

wH
Apwi = 101ogy [m} ; (7.9)
W-H
Apwir = 10logy, [W] ; (7.10)

where the power reflection loss is a measure of the power redlet the liner leading edge.

7.2 \Validation

Validation of the method is undertaken comparing with eiiitement (FE) solutions obtained
using the ACTRAN/TM solver, produced by Free Field Techgas [80]. The finite element
solver provides solutions of the wave equation in terms eftlocity potential, requiring a
potential mean flow to be specified. Therefore, a uniform nileawnis used for the validation
case. The mode-matching method used here is identical ttéotha uniform mean flow, the
only difference for a sheared flow is that a different set ofleware used. It is noted that the
mode eigenvalue solver has already been validated forethdlarvs, so only a brief validation
is included here.

The validation case is for a realistic geometry at approaciditions for an incident

rotor-stator interaction mode. Specifically, the paramsetsed here arkyy = 30.9435, m = 4,
n=1,h=0.56897, Z = Zy = 2.1463 — 1.073134, I; = l;;;7 = 0.06788, I;; = 0.67879, and
M = 0.345. The values of pressure at the hub and casing walls obtaingdthe FE and
mode-matching solutions are plotted in figure (7.1) overatkial extent of the duct. The
agreement between the two methods is very good, except atdtehing planes where a larger
singularity in the wall pressure at the matching planesésligted by the FE method. The
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FIGURE 7.1: Wall pressure comparison of FE and mode-matching solutiona finite length
lined duct with uniform flow. Top plot, casing wall pressuBxnttom plot, hub wall pressure;
—, FE solution;e, mode-matching solution.

radial pressure profile at the leading and trailing matclpilages is plotted in figure (7.2),
where the FE solution is compared against the mode-matculugions constructed from rigid
and also lined duct modes. The agreement is very good, ereapthe walls where
oscillations in the mode-matching solutions are more eatite. This behaviour has already
been discussed in Chapter (3). A comparison of the scattecetdl intensity is shown in figure
(7.3) where multi-mode solutions have been obtained asguegual energy per cut-on mode
atky = 30.9435. The agreement in the transmitted intensities is excelehilst small
discrepancies occur in the reflected intensities for thewes| cut-on modes.

7.3 Mode-matching with vortical modes

If the mean flow is uniform, a convenient decoupling of theustizc and hydrodynamic
(vortical) fields is possible (see Eversman [4]). Howewviehe flow is non-uniform this no
longer applies. Since the acoustic and hydrodynamic fielels@upled, this theoretically
requires both fields to be solved to form a complete solutidh@unsteady field. In this case
two distinct eigenmode spectra are present, consistingespre dominant acoustic modes,
and velocity dominant vortical modes. The only modes thapagate upstream are acoustic
modes, whilst both acoustic and vortical modes propagatmsioeam. The vortical modes
form a continuous spectrum owing to the presence of a driagar wherek, — kM (r) = 0.
The current method for solving the acoustic mode eigengakiaot suitable for obtaining
vortical mode eigenvalues since the eigenvalue equatiensirgular at the critical layer.
Recent work by Vilenski and Rienstra [143, 115, 144] sugg#sit, for mean flows with wall
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FIGURE 7.2: Matching plane radial pressure profile comparison of FE anaddermatching

solutions for a finite length duct with uniform flow. Left pletading matching plane = z’;

Right plot, trailing matching plane = z!/; —, FE solution;- - -, mode-matching solution
(rigid duct modes); - -, mode-matching solution (lined duct modes).

slip conditions, there exist two vortical modes which havmeth eigenfunctions, and
correspond to critical layers located at each wall. In adidjtthere is a continuum of vortical
modes corresponding to critical layers inside the flow negibe eigenfunctions of which are
not smooth having only two continuous derivatives at theoeti point [144].

It is of interest to investigate the effect of such modes @nttode-matching procedure, since
to obtain complete field solutions would theoretically reguheir inclusion. The inclusion of
vortical modes in triple-plane pressure matching schenassimvestigated by Vilenski [145]
for modal decomposition of unsteady CFD solutions in rigidtd. It was suggested that the
inclusion of some of the wall localised vortical modes capiiave the near wall accuracy of
the matching. The presence of a continuous spectrum meainsidual analysis is not strictly
applicable to the hydrodynamic spectrum, however, in teerdie model a set of discrete mode
solutions exist and depend upon the number of grid pointthdmliscrete model, the vortical
modes are defined &t= kq /M (r.), with possible multiplicity depending on the flow profile.
For slip flows the continuous spectrum is bounded in a regesimeld by the maximum and
minimum Mach numbers to bie)/max[M (r.)] < k < ko/min[M (r.)]. For profiles with
no-slip wall conditions, the upper limit is unbounded.

In this work, the vortical modes are solved by expanding th@nfore-Brown equation in a
small region around the critical layer [146]. This leadsnoQDE valid in the neighbouring
region, which is solved using the method of Frobenius [14H]s analytic solution is then
used to find the value of the pressure at the critical poine Mlede eigenfunction over the
whole duct section is then obtained by matching the numiesaation of the Pridmore-Brown
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FIGURE 7.3: Comparison of scattered modal intensities from FE and muodéehing solutions
for a finite length duct with uniform flowk, mode-matching solution;, FE solution.

equation (obtained using Runge-Kutta integration) at thgee of the small region bounding
the critical layer, to the analytic solution. Examples @ tlortical mode pressure and axial
particle velocity eigenfunctions are presented in figurd)(or the linear shear flow profile
shown in figure (7.5). The pressure eigenfunctions have mmeait the critical point and decay
rapidly away from there, remaining pressure-less acrassaimaining duct section. For critical
points at the wall, the pressure eigenfunctions are finiteeatvall and decay rapidly away
from the wall. However, the axial particle velocity eigenétions, which are required in the
mode-matching scheme, are discontinuous at the critidat far critical layers not located at
the walls. This poses a problem for mode-matching with suotlas, since the axial particle
velocity is undefined at the critical layers. In an attemptitoumvent this problem, the critical
points are defined to be mid-way between pairs of grid poitsexample of the pressure field
contour obtained from the mode-matching solution using tiéthod is shown in figure (7.6),
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and is compared against solutions including only acoustides, and including the two wall
vortical modes. Here, the vortical modes in the lined sestare assumed to be independent of
the wall impedance, since they are almost incompressibl&act, when the critical point is at
the wall this turns out to be true sinég — kM (r.) = 0, and from the boundary condition

dp

9 P g 2, —
4 = iz (b0~ kM (r))p =0

op

=5 =0, (7.11)

whilst the mode is pressure-less at the opposite wall. Tagspire and axial particle velocity
radial matching profiles at the matching planes are showgindi(7.7) where ten vortical
modes are included. The velocity field includes un-physsaajularities, and the pressure field
is subsequently quite different from the case without eaitmodes. Matching profile plots for
solutions when only the wall vortical modes are includedstr@wn in figure (7.8). In this case
the matching dramatically improves. Oscillations that@esent away from the walls, in the
solutions with only acoustic modes, are reduced when thewselcal modes are included.
This effect is similar to that seen in Chapter (3) when intlgdhe hydrodynamic surface wave
mode. The differences in the power transmission loss fatisols including zero, ten, and
only wall vortical modes are compared in figure (7.9). The @olesses very slightly increase
when the wall vortical modes are included, whilst largeiiatéon is seen when ten vortical
modes are included, but this result has an un-physical ¥gleld.

A case of further interest is that where the incident distade is a vortical mode. Contours of
the three pressure fields due to incident vortical modes ibfanmplitude located on both hub
and casing, on only the casing, and in mid-duct are shown umdi¢7.10). When the incident
vortical modes are located at critical points on (or neag)whalls there is scattering of energy
into acoustic modes at the liner leading and trailing edgesm a mathematical viewpoint, this
occurs due to the wall terms in the matching equation (7153datinuity of mass. Note that
for flows with no wall slip conditions this term is zero, and swattering into acoustic modes
would occur. The magnitude of the reflected and transmittedstic powers is very small.
These results demonstrate that, for a rotational flow, ttezantion of acoustic and vortical
modes occurs at the liner edges resulting in both shed itgréind a transfer of energy
between acoustic and vortical modes. Whether this repiesamet production of acoustic
power (i.e. a source) at the liner edges is unclear since laauéb calculate the acoustic power
of the pressure-coupled vortical modes is as yet unknowh [69

The results presented here show that the inclusion of @briodes is only justified for

vortical modes located at the walls, and the effect upondh#ered acoustic power is minimal
for typical applications. Therefore, in the following secis, analysis of finite length liners in
duct with sheared flows is undertaken with only acoustic madeuded in the mode-matching
scheme.
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FIGURE 7.4: Ten hydrodynamic mode pressure and axial particle velagignfunctions for
m = 0 at kg = 30.94355 for a linear shear flow (negative gradient)= 0.56.
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FIGURE 7.5: Linear shear profile with negative gradient and wall slip diions.
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FIGURE 7.6: Pressure field contours due to single mode soécé) at ky = 30.94355 for a

finite length lined duct with a linear sheared flow (negativadient). Location of the leading

and trailing edges of the liner is indicated by vertical dadHines. Top plot, acoustic modes

only; Middle plot, with 10 vortical modes; Bottom plot, wizhwall vortical modes.R = 1,
M, =0.012, D =0.021,l; = l;;1 = 0.067879, [;1 = 2.226446, h = 0.56897.
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FIGURE 7.7: Pressure and axial particle velocity matching plane prafilerm = 0 at kg =
30.94355 for a linear shear flow (negative gradient). —, acoustic ngdely; ——, including
10 vortical modesBlue lines rigid duct modesRed lineslined duct mode&.= 0.56897.
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FIGURE 7.9: Comparison of power reflection and transmission loss foglsimnd multi-mode

sourcesm = 0 at kg = 30.94355 for a linear shear flow (negative gradientll, acoustic

modes only;H, including 10 vortical modesl], including 2 wall vortical modes.R = 1,
M, =0.012,D = 0.021,1; = l;;; = 0.067879, l;; = 2.226446, h = 0.56897.
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FIGURE 7.10: Pressure field contours due to vortical mode sourcekyat 30.94355 for a

finite length lined duct with a linear sheared flow (negativadjent). Location of the leading

and trailing edges of the liner is indicated by vertical dadhines. Top plot, 2 incident vortical

modes located at hub and casing ; Middle plot, single incidentical mode located at casing;

Bottom plot, single incident vortical mode located mid-dut= 1, M, = 0.012, D = 0.021,
lr =l = 0.067879, [1; = 2.226446, h = 0.56897.
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7.4 Summary

e A mode-matching scheme for acoustic propagation in linegdikm ducts containing an
inviscid, parallel sheared flow is presented.

¢ Validation of the scheme has been successfully undertag@inst finite element
solutions for finite length liners in ducts with uniform flow.

e Solutions of the mode-matching scheme including vorticatles have been investigated
for slip flow profiles. It is found that the inclusion of vorditmodes corresponding to
critical points at the walls could improve the matching maare. The inclusion of
mid-duct vortical modes is found to produce un-physicaliltes

e The transfer of energy between incident acoustic and \@isturbances is
demonstrated to result in the transfer of energy betweenwedavortical modes and
acoustic modes.



Chapter 8

Analysis of axially-segmented liners in
annular ducts with parallel sheared
mean flow

It was demonstrated in Chapter (6) that the mean flow profiteheae a strong effect on both
the mode eigenfunctions and the mode decay rates in rigidirsediducts. In this chapter the
effects of flow profile upon the modal scattering and attenongterformance of finite length
liners are assessed. Again, realistic geometry and apgpmaitions are used where

h = 0.56897.

8.1 Convergence to the slip flow case

Full assessment of the limit— 0 is not possible in the current formulation since the flow
gradient d//dr must be finite. Here, a linear boundary layer profile is usddvestigate
convergence to the uniform slip flow case to the limit of a v@mnall boundary layer thickness
d/(1 — h) — 0.003125. The parameters used are identical to the validation casethe
source consists of equal energy per cut-on mode for azirhottarm = 4. The variation of
the power transmission logspy 7, and the power reflection logs pyy 1 g With boundary layer
thickness are presented in figure (8.1), where the correlspgi-E solution for uniform flow is
plotted for reference. The power losses are seen to contetbe uniform slip flow solutions.
With uniform flow, the difference between mode-matching Bdsolutions is very small, and
were already shown to converge with increasing number ofasadthe matching and FE
mesh refinement in Chapter (3).

160
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FIGURE 8.1: Convergence of power transmission and reflection loss fonigeflength duct
with a linear boundary layer mean flow in the lindit— 0. — ¢ —, mode-matching solutiory,
FE uniform flow solution.

8.2 Boundary layer effects

The effects of boundary layers upon modal scattering ancgepattenuation are investigated by
comparing mode-matching solutions for uniform flow withd¢bmbtained for two linear
boundary layer profiles of thicknesg(1 — ) = 0.0125 and 0.05, representing thin and thick
boundary layers, respectively. The sound power transamidess spectra for multi-mode
sources form = 0 andm = 16 are compared in figure (8.2). The low frequenky~ 2 x BPF)
attenuation peak shifts to lower frequency as the boundegmsr lthickness increases, which is
mainly due to the reduction in the mass flow rate. At highegudencies, the attenuation is seen
to increase with boundary layer thickness. Additionalyg attenuation rates for sources

m = 0 andm = 16 are comparable at high frequency where many modes are @tpgg

25 T T T T T 25

20

Apw [dB]

i i i i i i i i i i
0 20 40 60 80 100 120 0 20 40 60 80 100 120
(@ m=0. (b) m = 16.

FIGURE 8.2: Effect of boundary layer thickness upon sound power tragsion loss frequency

response for multi-mode sourcesmat= 0 andm = 16 in a lined duct of finite length- e —,

uniform flowM = 0.345; — e —, thin linear boundary layes /(1 — k) = 0.0125; — e —,

thick linear boundary layeé/(1 — k) = 0.05. R = 1, M,, = 0.012, D = 0.021,1l; = l;;1 =
0.067879, l;; = 2.226446, h = 0.56897.
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The scattered modal intensities for multi-mode sourees 0 andm = 16 are plotted in figure
(8.3) atky = 30.94, near the peak power attenuation, and in figure (8.4) at 85.09, in the
frequency region where refraction effects are strongethédiower frequency, the scattering
behaviour is consistent for each boundary layer, with nrasisimitted energy contained in
modesn = 1 andn = 3. The absolute level differences are mainly due to the changess
flow rate, resulting in less attenuation as the boundaryr ljekness increases. However, at
the higher frequency, stronger flow gradient effects upemtiode eigenfunctions and
eigenvalues cause large changes in the scattering pattethe boundary layer thickness is
increased, the least well attenuated mode changesirent ton = 3. Pressure contour plots
for the incident mode#0, 1) and(16, 1) atky = 85.09 are shown in figure (8.5) for each flow
profile. The pressure field for the uniform flow case with thengl wave incident mod@, 1) is
almost symmetric about the annulus center-line. Howevieenna boundary layer is introduced
the pressure field becomes highly asymmetric, and in fa@rbeocrery similar to the cases
with incident modeg16, 1). When a boundary layer is introduced, the incident mode
eigenfunction(0, 1) is more affected than mode6, 1), as demonstrated in figure (8.6). For the
thick boundary layer, the modés, 1) and(16, 1) are almost indistinguishable, and thus the
modal scattering patterns due to each are very similar.

8.3 General flow non-uniformity effects

The effects of general flow non-uniformity are investigalbycdcomparing mode scattering and
power attenuation calculations for the series of flow prsfijeesented in figure (8.7). The flow
profiles have been adjusted so that the mass flow rate for sagproximately equal, with an
equivalent average Mach number/af = 0.345. An SDOF liner is modelled using equation
(4.2), with identical parameters to those used previoustyite the impedance spectrum shown
in figure (6.8). The power transmission loss spectra for irmudide sources at azimuthal orders
m = 0 andm = 4 are presented in figure (8.8) for each flow profile, and for cpmétions
where there is a liner on the hub, casing or both. Power tresgon loss values are obtained at
frequency intervals ok = 0.5 x BPF = 7.74.

The inclusion of a boundary layer leads to an increase imadtigon compared with the wall
slip profiles, at frequencies greater thign= 60. When only the casing is lined, flow profiles
with negative core flow gradients produce higher attennatites since sound is refracted
towards the lined wall. Conversely, when only the hub isdirféow profiles with positive flow
gradients produce higher attenuation rates. The multiahattienuation of the spinning modes
is slightly higher than for the non-spinning modes.

The corresponding power transmission loss spectra forghesinode source = 1 are

presented in figure (8.9). It is noted that the source modgspre is more localised at the outer
wall for the spinning mode: = 4, compared with the non-spinning moge= 0. Where both
walls are lined, the attenuation rates are substantiadjiadrifor flows with non-uniform core
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FIGURE 8.3: Effect of boundary layer thickness upon modal scatteringrfiglti-mode sources

m = 0andm = 16 at kg = 30.94355 in a lined duct of finite length. M, uniform flow

M = 0.345; |, thin linear boundary layeé /(1 — i) = 0.0125; [J, thick linear boundary layer

/(1 —h) =0.05. R=1, M, =0.012, D = 0.021,l; = l;;; = 0.067879, l;; = 2.226446,
h = 0.56897.

profiles, and are again generally highest for those with tvegeore flow gradients. When only
the casing is lined, higher attenuation is obtained for [@®fivith negative core flow gradients,
and for the spinning mode source. Conversely, when only tibaslined, higher attenuation is
obtained for profiles with positive core flow gradients, aadthe non-spinning mode source.

In order to investigate the physical mechanisms behind ltiserved trends in power
attenuation, further analysis of the mode scattering andatqmower attenuation for each flow
profile is conducted for sourcesfat = 2 x BPF = 30.94, where five radial modes are
cut-on. The axial decay rates of the cut-on, downstreamaggaing modes for each flow
profile, with one or both walls lined, are given in Table (&dr)m = 0, and Table (8.2) for

m = 4. An estimate of the transmission loss is given for each @igen by

Am7n = —20%{km’n}l[[ loglo e, (81)

wherek,, ,, is the eigenvalue of the Least Attenuated Mode (LAM), gnds the
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FIGURE 8.4: Effect of boundary layer thickness upon modal scatteringrfiglti-mode sources

m = 0andm = 16 at kg = 85.094754 in a lined duct of finite length M, uniform flow

M = 0.345; |, thin linear boundary layeé /(1 — i) = 0.0125; [J, thick linear boundary layer

/(1 —h) =0.05. R=1, M, =0.012, D = 0.021,l; = l;;; = 0.067879, l;; = 2.226446,
h = 0.56897.

non-dimensional liner length. The mode ordering is suchtti@least attenuated mode is not
necessarilyx = 1. In these examples, quasi-surface waves (in the sensééhaigenfunctions
are tending to appear similar to a surface wave) are premedtare typically of low mode
order, but have higher decay rates than the lowest ordestcounodes. It is seen that, with the
exception of the quasi-surface wave modes, the decay @tdsicts lined on both walls are
much higher than for those with only one wall lined. The loieast attenuated mode decay
rates are found when one wall is lined, and the core flow gmidkesuch that sound is refracted
away from the lined wall. The surface wave mode decay ratestesngly affected by the flow
profile, but are quite insensitive to the impedance of the e@bosite to which they are
localised.

The power transmission loss due to each of the five cut-on saslendividual sources

(m,n) = (m, 1) to (m,5), and also as a multi-mode source, are given in Table (8.3héor
non-spinning moden = 0, and Table (8.4) for the spinning mode = 4. The transmission

loss values are much higher when both walls are lined sireéet#st attenuated mode changes
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(a) Pressure field0, 1).

(b) Pressure field,16, 1).

FIGURE 8.5: Pressure field contours due to single mode soyfeel) at ky = 85.094754

for a finite length lined duct with uniform and linear boungidayer flows. Location of the

leading and trailing edges of the liner is indicated by veatidashed lines. Top plot, uniform

slip flow M = 0.345; Middle plot, thin linear boundary layeé/(1 — i) = 0.0125; Bottom

plot, thick linear boundary layet/(1 — h) = 0.05. R = 1, M, = 0.012, D = 0.021,
Iy =l = 0.067879, I = 2.226446, h = 0.56897.

from either modgm, 1) or (m, 2) to (m, 3) which has a higher decay rate. In addition, the
modes(m, 1) and(m, 2) are both quasi-surface wave modes when both walls are lines,
any energy scattered into these modes is more heavily ateshu

Contour plots of the pressure fields with incident mogeg) and(4, 1) are shown in figure
(8.10) for a uniform flow. Examples are shown for configunagievith one or both walls lined.
These plots demonstrate the scattering of incident modésebgcoustic liner. When both walls
are lined a fairly symmetric sound field is seen for the plaagexnmode case, whereas higher
pressure levels are seen towards the casing for the spimodg case. Contour plots for cases
with either the hub or casing wall lined demonstrate thecttbé the liner on the pressure field,
with the blue areas, indicating low pressure values, adjdcethe lined wall. The average
modal and total intensities, (averaged over the duct gesten), of the transmitted modes for
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the case where both walls are lined are presented in figur&)(@op row). Six intensities are
plotted for each transmitted mode radial order, which gpoad (from left to right) to the
levels with a single mode sourcen, 1) to (m, 5)), and a multi-mode sourden,1 — 5). In
addition, the acoustic pressure radial eigenfunctionowfrtream propagating modes, 1)

to (m, 5), in the rigid (middle row) and lined ducts (bottom row), ane&n. From the pressure
field contour plots, it is clear that after scattering, th&dfiving to the plane wave source is
more oscillatory, indicating that a large amount of scatteoccurs. This is confirmed by
observing the transmitted intensities, where most energjys trailing duct section is contained
in modes(0, 1) and(0, 3). A similar scattering pattern is observed for the spinnirgdmcase.

Contour plots of the pressure field for cases with a positore shear flow gradient are shown
in figure (8.12). Here, there is a significant change in thegaree field when only the hub or
the casing are lined. The pressure fields are similar whénwalis are lined or only the hub is
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FIGURE 8.7: Mean flow profiles with equal mass flow rate used in the modéesizag and

power attenuation study—, uniform flowM = 0.345; — boundary layer flow;—, posi-

tively sheared linear flow;— negatively sheared linear flow:, realistic flow with wall slip
conditions.
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FIGURE 8.8: Power transmission loss spectra for multi-mode sourees= 0 andm = 4
for a finite length duct with various flow profiles. Flow profkey as figure (8.7).R = 1,
M, =0.012,D = 0.021,1; = l;;; = 0.067879, l;; = 2.226446, h = 0.56897.
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FIGURE 8.9: Power transmission loss spectra for single mode souf@ek) and (4,1) for a
finite length duct with various flow profiles. Flow profile keyfegure (8.7).R = 1, M, =
0.012, D = 0.021,ly = ly;; = 0.067879, I;; = 2.226446, h = 0.56897.
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(a) Pressure field0, 1).

(b) Pressure field4, 1).

FIGURE 8.10: Pressure field contours due to single mode sogreel) at ko = 30.94355 for

a finite length lined duct with uniform flow. Location of thading and trailing edges of the

liner is indicated by vertical dashed lines. Top plot, bothle/lined; Middle plot, only casing

lined; Bottom plot, only hub linedR = 1, M, = 0.012, D = 0.021, l; = l;;; = 0.067879,
lrr = 2.226446, h = 0.56897.

lined, because the incident wave is refracted towards theblhiuhe positive flow gradient.
When only the casing is lined, a higher pressure is mainteateng the rigid hub wall due to
the lack of absorption. The opposite is seen when the flonigmad negative, as shown in
figure (8.13).

Considering the linear shear flow with a positive gradieritemonly the casing is lined, the
predicted transmission loss for incident mdéel) is 0.48 dB, and for modé), 2) is 10.41

dB. However, when only the hub is lined, the predicted trassion loss for incident mode
(0,1) is 5.81 dB, and for mod@, 2) is 2.81 dB. The transmitted intensities and mode
eigenfunctions for these cases are presented in figure$) @il (8.15) respectively. Itis seen
that, when only the casing is lined, the mode eigenfunction$0, 1) in the rigid duct, and
(0,2) in the lined duct are very similar. Thus, for incident md@el), there is very little
scattering observed in the pressure field contour plot ofdig8.12a). In addition, since mode
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FIGURE 8.11: First five downstream mode eigenfunctions and transmittedamintensities

due to single mode sourg¢en, n) at ko = 30.94355 for a finite length lined duct with uniform

flow. Top plot, transmitted mode intensities; Middle plagid duct eigenfunctions; Bottom

plot, lined duct eigenfunctionsk = 1, M, = 0.012, D = 0.021, I; = l;;; = 0.067879,
lrr = 2.226446, h = 0.56897.
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(a) Pressure field0, 1).

(b) Pressure field4, 1).

FIGURE 8.12: Pressure field contours due to single mode sogreel) at ko = 30.94355 for

a finite length lined duct with a linear sheared flow (positijvadient). Location of the leading

and trailing edges of the liner is indicated by vertical dadHines. Top plot, both walls lined;

Middle plot, only casing lined; Bottom plot, only hub linel.= 1, M, = 0.012, D = 0.021,
Iy =l = 0.067879, I1; = 2.226446, h = 0.56897.

(0,2) is the least attenuated mode in the lined section, thereyditite attenuation of the
incident energy. In contrast, the transmission loss ofiieei mode€0, 2) is much higher due to
scattering, since the rigid duct eigenfunction does naalioresemble any of the lined duct
eigenfunctions. Also a similar pattern occurs comparirgdituation for the case where only
the hub is lined (see Figure (8.15)). Here, it is mode2) in the rigid duct and modg), 1) in
the lined section which are most similar. Thus, most of taegmitted energy remains in mode
(0,2) in the trailing rigid section, and little attenuation is ebged since the lined duct mode
(0, 1) is the least attenuated mode. The transmission loss ofeintidode(0, 1) in this case is
now higher since more scattering occurs. The same featteaxhaerved for the spinning
mode cases. When the linear flow profile has a negative shediegt a similar scenario
occurs, but the roles of the liner locations are reversed.
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(a) Pressure field0, 1).

(b) Pressure field4, 1).

FIGURE 8.13: Pressure field contours due to single mode soureel) at ko = 30.94355 for

a finite length lined duct with a linear sheared flow (negatjvadient). Location of the leading

and trailing edges of the liner is indicated by vertical dadHines. Top plot, both walls lined;

Middle plot, only casing lined; Bottom plot, only hub linel.= 1, M, = 0.012, D = 0.021,
Iy =l = 0.067879, I1; = 2.226446, h = 0.56897.

8.4 Finite length effects

The acoustically lined area within a realistic bypass dsitikely to consist of various liners of
different lengths. It was shown by Unruh [26] that liner meniance, particularly at low
frequency, can be strongly affected by finite length tuniffigots, whereby axial standing
waves are produced in short liners by strong reflectionsedliediding and trailing liner edges.
The variation of power transmission loss with liner lengtlshown in figure (8.16) for a
symmetrically lined duct aty = 2 x BPF = 30.94 for the various flow profiles in figure
(8.7). Results for both multi-mode and single mode sourcest@own. Since the gradients of
the curves in each plot are not constant, as would be exp&otadnfinite lined duct theory,
this indicates that finite length effects are significantfalet, some of the curves have strong
changes in gradient as the liner length is varied. Strorfgréifices between the flow profiles
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FIGURE 8.14: First five downstream mode eigenfunctions and transmittedamintensities

due to single mode sourde:, n) at ky = 30.94355 for a finite length duct with only casing

lined, with linear shear flow (positive gradient). Top plsansmitted mode intensities; Middle

plot, rigid duct eigenfunctions; Bottom plot, lined duagenfunctions.R = 1, M, = 0.012,
D =0.021,1; = l;7; = 0.067879, l;1 = 2.226446, h = 0.56897.
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FIGURE 8.15: First five downstream mode eigenfunctions and transmittedamintensities

due to single mode sour¢er, n) at ko = 30.94355 for a finite length duct with only hub lined,

with linear sheared flow (positive gradient). Top plot, tsamtted mode intensities; Middle

plot, rigid duct eigenfunctions; Bottom plot, lined duagenfunctions.R = 1, M, = 0.012,
D =0.021,1; = l;;; = 0.067879, l;1 = 2.226446, h = 0.56897.
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are only seen for the two lowest order modésl) and(4, 2). In both of these cases the
negatively sheared flows are distinctly different from tastr

The reflection loss for each case is plotted in figure (8.173tifxt oscillations are seen, which
reduce in strength as the liner length is increased, andrameggst for the least well cut-on
incident mod€4, 5). The wavelength of the oscillation corresponds to half theelength of
the excitation frequency. The wall slip flow profiles have sistently higher reflection losses
than the profiles without wall slip.

8.5 The effect of sheared flow upon optimum liner performance

In this section, the effect of sheared flow upon optimum byphst liner performance is

briefly assessed. In the preceding work, it was seen thatesthéaw has a potentially strong
effect, when compared with the uniform flow assumption, arttode eigenfunctions and
decay rates, and the scattering and power attenuation & kemgth liners. The low order

radial modes were most affected by the mean flow shear, whédstffects on multi-mode
propagation were not as strong. The effect of the mean flofilgsased previously, shown in
figure (8.7), on the optimum wall impedance is assessed begerhulti-mode source: = 4,

and a single mode sour¢e: = 4,n = 1). Contour plots of sound power transmission loss are
calculated for resistance valued < R < 5, and reactance values < X < 3.

The uniform flow solutionM/ = 0.345 is used as the baseline case in each comparison.
Contour plots for multi-mode and single mode sources are/shio figure (8.18) at

frequencies ofy = 2 x BPF= 30.94 andky, = 5.5 x BPF= 85.09, where there are five and
thirteen cut-on modes, respectively. Both hub and casirlg Wwave the same impedance. At

ko = 30.94 the optimum impedance for the multi-mode case- 1.32 — 1i is identical to that

for n = 1. At ky = 85.09 the optimum impedance for the multi-mode cas# is- 2.24 — 1,

and forn = 1itis Z = 1.32 — 3.44. For higher order incident modes the trend in impedance is
to higher resistance values, whilst reactance values tenelro.

8.5.1 Single impedance optimisation

Figure (8.19) shows the multi-mode power transmission ¢osgours ak, = 30.94 for a
uniform flow, realistic flow with slip, and linear shear flowsogitive and negative gradients)
with boundary layers. For each case the optimum reactancedted at around = —1,

whilst the optimum resistance slightly increases for the-aoiform flows. The attenuation
levels show only weak variation between the flow profiles. $&mme plots, but for a single
mode(4, 1) source, are shown in figure (8.20). A similar shift in the optim is seen for each
non-uniform flow to a higher resistance and lower reactanas the uniform flow case.
Differences of around 2 to 4 dB are seen in the attenuatiazlddretween the flow cases, with
the highest levels achieved for the negatively sheareddifiew profiles. The multi-mode and
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FIGURE 8.16: Variation of power transmission loss with liner length fongle mode and
multi-mode sources for various flow profiles. Flow profilefigare (8.7). kg = 30.94355,
R=1,M,=0.012,D =0.021,; = l;;; = 0.067879, h = 0.56897.
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FIGURE 8.17: Variation of power reflection loss with liner length for siagnode and multi-
mode sources for various flow profiles. Flow profiles as fig8t&)( ko = 30.94355, R = 1,
M, =0.012, D =0.021,l; = l;;1 = 0.067879, h = 0.56897.
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FIGURE 8.19: Contour plots ofApw Over resistance and reactance for a multi-mode source
at kg = 2 x BPF = 30.94355. Uniform flow optimum indicated by. m = 4, 1; = ;7 =
0.067879, l;; = 2.226446, h = 0.56897.

single mode power transmission loss contours for the bayridger flow profile are compared
with the uniform flow case in figure (8.21) at the higher freggieof ko = 5.5 x BPF= 85.09.
For the multi-mode source, the optimum resistance andaeegtare slightly higher. Stronger
differences are seen in the case of a single mode source, tHem@ptimum resistance is much
higher than the uniform flow case, at arouRd= 3.1, and the reactance is lower, at around
X = —4.1. The attenuation levels are around double those of the umiflow case.

8.5.2 Casing wall impedance optimisation

It was found in the preceding sections that the directiornefrhean flow gradient can have a
strong effect upon the attenuation performance of the hdlrasing liners. It is therefore of
interest to investigate the optimisation of the hub andngasiall impedances for the different
flow profiles. The approach taken here is to fix the hub impeelahthe values obtained for the
optimum impedance of the symmetrically lined case (in tle¥ipus subsection). The
optimisation of the casing impedance is then undertakemeasqusly using contour plots. Itis
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FIGURE 8.20: Contour plots ofApy, over resistance and reactance for a single mogld )
source atky = 2 x BPF = 30.94355. Uniform flow optimum indicated by. m = 4,
lr =1l = 0.067879, I = 2.226446, h = 0.56897.

noted that the value of impedance obtained is, in generatheaylobal optimum, but will give
indication of whether the flow profile has a strong effect ar no

Contour plots of the multi-mode power transmission losg tive casing impedance at

ko = 30.94 are shown in figure (8.22). The optimum casing reactance®tohange

drastically from the symmetrically lined optima, whilsettrends in the resistance are towards
higher resistance for negatively sheared flows, and lovgtsteence for positively sheared
flows. In addition, when comparing figures (8.19) and (8.28),attenuation levels for each
profile are seen to increase by the order of 2 to 4 dB in the astnvally lined case. The
highest attenuation levels occur for the positively she:diresar flow profile.

Contour plots of the single modé, 1) power transmission loss over the casing impedance at
ko = 30.94 are shown in figure (8.23). Here the optimum casing impedadoanot change
significantly from the symmetrically lined optimum. By ugian asymmetric liner the
attenuation levels increase over the symmetric case bydrdwB for the uniform, realistic

and negatively shear linear flow profiles. However, thiseases to between 4 and 6 dB over
the casing impedance range for the positively shearedrlitea profile.
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FIGURE 8.21: Contour plots ofApy, over resistance and reactance for a single mode )
and multi-mode sources &b = 5.5 x BPF = 85.09475. Uniform flow optimum indicated by
oe.m =417 =l = 0.067879, l;7 = 2.226446, h = 0.56897.

Finally, contour plots of the multi-mode and single mddel) power transmission loss at
ko = 5.5 x BPF= 85.09 are shown in figure (8.24) for uniform and boundary layer flow
profiles. The results show virtually no change in the optimaasing impedance and
attenuation levels compared with those of the symmetyidaled case, indicating that these
profiles may be suitably modelled using symmetrically ligkedts when undertaking
impedance optimisation.
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FIGURE 8.22: Contour plots ofApyy over casing wall resistance and reactance for a multi-
mode source aky = 2 x BPF = 30.94355. Uniform flow optimum indicated bs and hub
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FIGURE 8.23: Contour plots ofApy. over casing wall resistance and reactance for a single
mode(4, 1) source atky = 2 x BPF = 30.94355. Uniform flow optimum indicated bwand
hub impedance indicated by m = 4, I[; = l;;; = 0.067879, [;; = 2.226446, h = 0.56897.
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FIGURE 8.24: Contour plots ofApy over casing wall resistance and reactance for a single
mode(4, 1) and multi-mode sources &) = 5.5 x BPF = 85.09475. Uniform flow optimum

indicated bye and hub impedance indicated by m = 4, I = l;;; = 0.067879, I11

2.226446, h = 0.56897.
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8.6 Summary

e The convergence of solutions with thin boundary layers éostip flow case is
demonstrated.

e The presence of boundary layers is shown to increase posrenhission loss at high
frequencies. The pattern of modal scattering is shown tpwéh boundary layer
thickness.

e The effects of several flow profiles upon liner attenuatiod secattering have been
investigated. Higher power attenuation occurs where thennfiew gradient refracts
sound towards the liner. Strong variations in attenuatavetbeen noted between
individual modal sources, depending upon flow profile andrlincation, particularly for
the lowest order radial modes.

¢ |dentical trends are seen for multi-mode sources, but smelflanges in power
transmission loss occur due to the lower sensitivity of brgbrder modes to changes in
flow profile.

¢ Finite length effects upon power attenuation are found tmbst significant for single
incident mode sources. Differences between flow profile$oamned only to be significant
for the lowest order modes.

o A brief assessment of the effects of flow profile on the optimimer impedance at a
single frequency is made using contour plots, against thelin& case of uniform flow.
The change in the optimum impedance of a symmetric linerdeeal flow profiles is
found to be fairly small. It is found that asymmetric linersutd provide higher
attenuation rates, depending on the direction of the meansthear gradient.

e Attenuation levels over the impedance plane are found tambenpally much higher for
sheared flows, particularly for single mode sources. In ¥aenples used, the highest
attenuation levels are found for positively sheared flow.
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TABLE 8.1: Predicted axial decay rateS{k} of modes0,1 — 5) atky = 2 x BPF =
30.94355 in a lined annular duct with various flow profiles. The transsion loss for the least

attenuated mode (LAM) is also listed.

{k} Ay, [dB]
Mean flow profile Casing Hub (0,1) (0,2) (0,3) (0,4) (0,5) (LAM)
Uniform Lined Lined -259 -2.16 -1.04 -1.74 -2.84 20.17
Lined Rigid -2.56 -0.09 -0.51 -0.87 -1.60 1.71
Rigid Lined -0.08 -2.28 -0.59 -0.93 -1.68 1.63
Uniform with Lined Lined -293 -256 -0.92 -1.77 -2.88 17.81
boundary layer Lined Rigd -2.91 -0.07 -0.50 -0.89 -1.61 91.3
Rigid Lined -0.07 -2.61 -0.58 -0.95 -1.69 1.28
Linear shear with  Lined Lined -2.83 -3.81 -080 -1.81 -2.97 5.56
boundary layer Lined Rigid -2.83 -0.03 -0.49 -0.90 -1.64 10.5
(positive gradient) Rigid Lined -0.10 -3.81 -0.53 -0.99 74. 1.87
Linear shear with  Lined Lined -3.97 -2.81 -0.79 -1.82 -296 5.2B
boundary layer Lined Rigid -3.97 -0.09 -0.48 -0.92 -1.65 51.7
(negative gradient) Rigid Lined -0.02 -2.80 -0.54 -0.99 711. 0.38
Realistic flow with  Lined Lined -3.26 -1.97 -0.99 -1.74 -2.85 19.20
wall slip Lined Rigid -3.26 -0.10 -0.48 -0.88 -1.62 1.91
Rigid Lined -0.03 -2.05 -0.62 -0.93 -1.66 0.61

TABLE 8.2: Predicted axial decay rateS{k} of modes4,1 — 5) atky = 2 x BPF =
30.94355 in a lined annular duct with various flow profiles. The transsion loss for the least

attenuated mode (LAM) is also listed.

{k} Ap, pn [dB]
Mean flow profile Casing Hub (0,1) (0,2) (0,3) (0,4) (0,5) (LAM)
Uniform Lined Lined -2.64 -2.27 -1.05 -1.79 -2.96 20.32
Lined Rigid -2.63 -0.11 -0.51 -0.88 -1.68 2.14
Rigid Lined -0.07 -2.37 -0.62 -0.98 -1.78 1.32
Uniform with Lined Lined -3.00 -2.68 -0.92 -1.82 -3.00 17.73
boundary layer Lined Rigid -2.99 -0.09 -0.50 -0.90 -1.69 81.7
Rigid Lined -0.05 -2.72 -0.59 -1.00 -1.79 1.04
Linear shear with  Lined Lined -291 -393 -0.80 -1.85 -3.09 5.50
boundary layer Lined Rigid -291 -0.04 -0.50 -0.92 -1.72 20.7
(positive gradient) Rigid Lined -0.08 -3.94 -0.54 -1.02 84. 1.58
Linear shear with  Lined Lined -4.04 -295 -0.77 -1.87 -3.07 4.89
boundary layer Lined Rigid -4.04 -0.12 -0.48 -093 -1.72 22.2
(negative gradient) Rigid Lined -0.01 -293 -0.54 -1.03 81l. 0.29
Realistic flow with  Lined Lined -3.33 -2.06 -1.00 -1.80 -2.97 19.30
wall slip Lined Rigd -3.33 -0.12 -049 -0.89 -1.70 2.39
Rigid Lined -0.02 -2.12 -0.65 -0.98 -1.76 0.45
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TABLE 8.3: Predicted sound power transmission loss for non-spinniadesm = 0 at kg =
2 x BPF = 30.94355 in a lined annular duct with various flow profiles. Single mdigy,, ,
and multi-mode\pyy,,, transmission loss values are listed.

Incident modeﬁpWLm,n [dB] APWLm [dB]
Mean flow profile Casing Hub (0,1) (0,2) (0,3) (0,4) (0,5) (0,1 —05)
Uniform Lined Lined 17.47 3210 16.52 33.02 29.34 20.71

Lined Rigd 283 516 878 14.60 23.68 7.00
Rigid Lined 195 6.65 9.80 1546 24.22 7.02

Uniform with Lined Lined 16.46 31.71 15.80 3355 29.05 19.89
boundary layer Lined Rigid 283 478 8.74 1485 23.86 6.88
Rigid Lined 1.79 6.58 9.79 1574 24.43 6.92

Linear shear with  Lined Lined 16.07 21.45 15.00 33.72 2861 8.84
boundary layer Lined Rigid 0.48 10.41 9.13 15.22 24.58 6.42
(positive gradient) Rigid Lined 5.81 2.81 890 1593 24.17 .247

Linear shear with  Lined Lined 16.47 18.86 14.75 33.82 2842 8.44
boundary layer Lined Rigid 6.66 245 8.24 15.13 23.74 7.12
(negative gradient) Rigid Lined 0.33 11.32 9.90 16.28 25.05 6.46

Realistic flow with  Lined Lined 18.19 20.58 15.88 32.73 29.02 19.87
wall slip Lined Rigid 6.28 2.78 8.24 14.64 23.50 7.21
Rigid Lined 0.46 11.93 10.49 15.60 24.77 6.64

TABLE 8.4: Predicted sound power transmission loss for spinning medes 4 at kg =
2 x BPF = 30.94355 in a lined annular duct with various flow profiles. Single mdigy, ,
and multi-mode\pyy, transmission loss values are listed.

Incident modeﬁpWLm,n [dB] APWLm [dB]
Mean flow profile Casing Hub (0,1) (0,2) (0,3) (0,4) (0,5) (0,1 —05)
Uniform Lined Lined 17.32 25.29 16.71 33.70 29.30 20.51

Lined Rigid 397 438 867 14.70 23.77 7.26
Rigid Lined 1.26 8.60 10.37 15.99 24.75 6.96

Uniform with Lined Lined 16.46 24.63 1596 34.25 29.00 19.75

boundary layer Lined Rigid 4.03 395 8.67 1495 23.97 7.12
Rigid Lined 1.11 862 10.27 16.24 24.94 6.85
Linear shear with  Lined Lined 1542 25.07 15.07 34.84 2859 8.84
boundary layer Lined Rigid 0.84 9.07 9.23 1541 24.89 6.57

(positive gradient)  Rigid Lined 4.42 336 9.32 16.33 2455 .147

Linear shear with  Lined Lined 16.62 17.34 15.02 33.64 2845 8.32
boundary layer Lined Rigid 7.33 270 8.09 15.18 23.76 7.39
(negative gradient) Rigid Lined 0.23 11.18 10.20 16.71 5.4 6.41

Realistic flow with  Lined Lined 18.14 1856 16.16 32.88 29.00 19.56
wall slip Lined Rigd 7.08 299 8.15 14.70 2355 7.50
Rigid Lined 0.32 1254 10.97 16.15 25.32 6.61




Chapter 9

Conclusions and future work

9.1 Overall conclusions

The initial motivation for this work was the requirement tegict the performance of acoustic
liners in the bypass duct of modern high bypass ratio turbefagines. Such predictions are
required by the Noise Engineering department at Rolls-Bayorder to optimise the acoustic
liner configuration and, ultimately, to assess the impathefrear fan noise source on the total
engine noise.

In this study, a series of computationally inexpensive nhotzthods have been developed,
which are suitable for use in intensive liner optimisatitudges or as preliminary design tools.
To place this work in context, since the 1970s, predictidrisypass duct acoustic liner
performance have typically been based upon interpolatien @ables of modal decay rates
obtained from idealised uniform duct models with unifornwil@\t the present time, efforts are
being made to integrate Finite Element methods into theigifed process. These represent
the most mature of the various numerical methods, and asgllmasthe solution of the
convected Helmholtz equation for axisymmetric curved slecintaining an irrotational mean
flow. However, these methods are computationally expersiddimited to the low or mid
frequency range.

The fidelity and computational expense of the mode-matcimathods developed here are
placed in between the modal decay rate methods and FE medey advantage of the
mode-matching methods is the ability to assess the impatisobntinuities in the wall
impedance on the sound field, or from an engineering petigpette effect upon the
attenuation performance of the finite liner length. In-tiegmalysis of the scattering problem
has been possible since the methods directly calculate ddalramplitudes. To obtain this
information from FE solutions requires the use of suitabéeaevsplitting methods. The
optimisation study carried out in Chapter (4) has shown thascattering the modal power
with specific liner segments, it is possible to obtain po&diytlarge improvements in the

188
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attenuation of tonal noise. In the bypass duct, this coulddeel to improve the attenuation of
important rotor-stator interaction tones.

The prediction of broadband noise attenuation using nuwalemethods is limited by the high
propagating mode density at mid to high frequencies. Thadivand noise source is typically
modelled by assuming an equal energy distribution per walated cut-on mode, which may
number in the hundreds or thousands at the highest freqgeatinterest. This requires many
computations which means that the faster modal methodsagedehere are suitable.
Although the methods are based upon idealised geometgyhthe been shown to provide a
good approximation to experimental results for broadbasidensources. The optimisation of
liners to maximise the attenuation of broadband noise reg@ range of frequencies to be
considered. The analysis of Chapter (4) suggests thatiifiisult to obtain improvements over
the attenuation due to an optimised uniform liner by usinglgxsegmented liners, across the
frequency range of interest. Improvements are possiblesettade frequencies, but the benefits
fall off sharply with increasing frequency. This is due te thcrease in propagating mode
density at high frequency, which appears to smear out angfitefrom mode scattering by
additional liner segments.

A key problem encountered in the optimisation study of Ceaft) was the inadequacy of the
optimisation strategies used for obtaining axially-segtee liner designs. Each of the design
parameters (resistance, reactance or liner depth, anddimgth) may have a significant effect
upon the topology of the multi-dimensional objective fuotsurface, which necessitates an
efficient global search of the design space. This is a commemasio encountered in design
optimisation when searching a high dimensional parametsresfor the global optimum
design. The current method used at Rolls-Royce to obtaiagsyguct liner designs involves
the use of tables of modal decay rates and contour plots obzippate far-field SPL
attenuation for individual liner segments of fixed lengthisTmethod is effectively a series of
two dimensional optimisation problems where the liner tagre fixed, and liner scattering
and length effects are ignored. Thus obtaining the glob&étmn is very unlikely. The study
undertaken here improves both the modeling and optimisgtiocess, however, it is clear that
more work needs to be done to develop both the optimisatgorithms and the search
strategy, in order to search the design space efficientlft@imdprove confidence that the
design achieved is the global optimum. A feature of the wohlictv could be exploited in
practise is the use of optimised asymmetric liner segm@aths.work presented in section (8.5)
demonstrated that such configurations can provide attemuaénefits over symmetric liner
segments, depending upon the mean gradient of the core fibtharsource description. Such
effects are only captured by using models based on the realargeometry, and require a
higher dimensional parameter space to be searched.

The real mean flow field within the bypass duct consists of grgwoundary layers and a

non-uniform radial profile which varies with the axial cunwee of the duct walls. The region
around the turbine hump contains most variable region of iitoilve duct. Simplified acoustic
models based on the uniform slip flow assumption miss thengiatly important effects of the
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flow non-uniformity, which include changes to the scattgr@md power attenuation by the
convection and refraction of sound. The slip flow assumgtias been shown to be valid only
for very thin boundary layers, which may not be the case irbypass duct where boundary
layer thicknesses of up ®% were predicted in the CFD solutions in Chapter (5).

The sheared flow modal methods developed in this work pravidéRolls-Royce Noise
Engineering department with the means to better predidbypass duct liner attenuation
performance. Since the mean flow profile varies between erdgsigns, the methods may be
used to provide engine specific predictions. The eigenvadlheer may be used to provide
tables of modal decay rates, or the mode-matching schemdenased to replace the
interpolation methods. The mean flow profile can have a steffiegt upon the mode
eigenfunctions, particularly for low order modes. This methat the modal decomposition of
a source description, for example from a CFD solution at aal gkane, can be strongly
dependent upon the mean flow. This can have implications &cting strategies where
modal descriptions from CFD solutions are required, withipalar application to tonal noise
(e.g. buzzsaw noise) propagation predictions using hy@dAé/FE methods. An example of
the application of the sheared flow mode matching method dvoeto model the propagation
of rotor-stator interation noise in the bypass duct, whieeesburce description is obtained by
modal decomposition of a fan/OGV stage CFD calculation.

9.2 Future work

This section outlines related topics and applications irciwfurther investigation may benefit
from the work undertaken in the current study.

The methods developed here for predicting acoustic linenaation are suitable for intensive
optimisation studies. Optimisation of multiple liner segms involves, potentially, a very large
design parameter set. Such parameters include facing phresity and thickness, cavity
depth and septum height and segment length. For such a largmeter space, it is the search
algorithm process which can become the most problemattamp#re optimisation. Initial
attempts have been made to improve the search process fijplmliher segments by using
hybrid methods [108, 100], and the propagation methodslolesd here could be used in
further work in this area.

Recent work on specialised finite element methods for amopsipagation in rotational flows
[45, 46, 47] is ongoing and the sheared flow mode-matchingpodedeveloped here could be
used as a method for benchmarking purposes.

A useful extension of the current mode-matching methodddvoe to allow for circular duct
with no centre body for application to the inlet duct. The méaw field in the inlet is not as
non-uniform as the bypass duct, but the current work has sliloat the effect of sheared mean
flow is stronger for upstream propagating sound. Such amgixte would be useful in
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assessing the impact of the deep fan case liner locatedrihdfahe fan to reduce reflections
that could induce fan flutter. It is possible that the flow nomformity in this region of annular
geometry (due to the presence of the spinner) could havergsimpact upon the optimum fan
case and inlet liner design parameters.



Appendix A

Detalls of the rectangular duct
mode-matching equations

The termsay, andclj; are obtained from the integrals in equations (3.17) andj3.1
respectively. Taking advantage of the orthogonality ofrtieele eigenfunctions, the above
integrals are evaluated to give,

=1 l=n#0,
=0 L #0,
(A1)
C:t =1 =K ;é 0
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(A.2)

The combined matrix equation for the continuity of pressamd axial particle velocity at a
rigid-lined impedance discontinuity af is given by,

af |a ) (AT (e fel ) (AT (A3)
by | bf A1 df | df A-TT
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The matrix elements are given by the following
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Appendix B

Details of the Wiener-Hopf solution for
a uniform symmetric liner in the
absence of a mean flow

The mathematical formulation summarised here is from K@&j, [where a single even mode

excitation is assumed. The kernel function for even modga/én by
sin (4/2) - RO

- 7sin (3/2) ’

R () (B.1)

1/2
wherey = [(kozd)2 — (l<:z2d)2 — 52} / . The split function for left-running modes is given by

N, N
ICI 1+€/_am2n2d ]I 1+§/_am2n2d
S — S ) ’ B'Z
n= ) n=N.+1 ’
and the split function for right-running modes follows as
R () = &L (=€) /&7 (0) . (B.3)

The transmission and reflection factors given in equatiB8r9j and (3.50) are found after the
decomposition of the generalised Wiener-Hopf equatiod,application of the residue
theorem to solve all decomposition integrals. The varimedfficients that result are now
defined. The coefficient§,,, and P,, are given by

2 —4l 1T 2d 2
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n = W2 glIl
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, (B.4)
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K2 e—iln*am,QnQdﬁs_ (am,2n2d)2
P (B.5)
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_am,2n2d 1+ ZIT 2ko

The correction tern@éi) is found by solving the following complex general systemioéar
equations
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The matrix elements are given by the following
P2n
Al = B.7
" _am,2s2d - am,2n2d ’ ( )
B orko2
B — 2rko2d , (B.8)
(_am,232d + 5kz k:cm,zr 2d) ﬁj— (—Hm72r2d)
G = @on (B.9)

_am7252d - am,2n2d '
Solution of the linear system can be achieved using startdatohiques, and for the purposes
of the work here this is done computationally using the IMSIttFan Numerical Library
routine LSACG, which utilises LU factorisation and itevatirefinement routines. The
correction ternﬁéi) is then given by

c® = _gcW . (B.10)
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(a) Top wall pressure

(b) Bottom wall pressure

FIGURE C.1: Case 2: Comparison of 2D mode matching and finite solutionsa fsingle
asymmetric liner without flow. Liner interface matching és indicated by dashed lines.
Solid line, finite element solutior; p-u mode matching solution.
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FIGURE C.2: Case 2: Comparison of scattered modal intensities from mmdtehing and
finite element methods due to an incident plane wave of ueihgity. Top plot, Transmitted
modal intensity; Bottom plot, Reflected modal intensity.
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(a) Top wall pressure

(b) Bottom pressure

FIGURE C.3: Case 5: Comparison of 2D mode matching and finite solutionsa fsingle

asymmetric liner with flow. Liner interface matching planedicated by dashed lines. Solid

line, finite element solution;, p-u mode matching solution;, mass-momentum mode matching
solution.
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finite element methods due to an incident plane wave of ueih&ity. Top plot, Transmitted
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FIGURE C.6: Example of the dynamic hill climber search pattern and coymece for a single
symmetric liner segment due to incident plane wave mige: 8.7268, i;; = 10, M = 0.4.
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(a) 1st segment
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FIGURE C.7: Example of the adaptive simulated annealing search patedhconvergence
for a single symmetric liner segment due to incident planeenaode.ky = 8.7268, I;; =
lrrr =5, M =04.
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(a) 1st segment (b) 2nd segment
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and convergence for a single symmetric liner segment dugctdent plane wave modéy =
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FIGURE C.9: Adaptive range multiobjective genetic algorithm searctigra for a single sym-
metric liner segment due to multi-mode source and rototestizteraction tonal source (Con-

tours constructed using Delaunay interpolatiof),., = 10, M = 0.4.
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(a) C'F cost
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