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UNIVERSITY OF SOUTHAMPTON

ABSTRACT

FACULTY OF ENGINEERING, SCIENCE AND MATHEMATICS

INSTITUTE OF SOUND AND VIBRATION RESEARCH

Doctor of Engineering

PREDICTION AND CONTROL OF SOUND PROPAGATION IN

TURBOFAN ENGINE BYPASS DUCTS

by Christopher James Brooks

This thesis contains original research into the propagation of sound in acoustically lined ducts

with flow. The motivation for this work is the requirement to predict the sound attenuation of

acoustic liners in the bypass duct of modern turbofan aeroengines. The liners provide the most

effective means with which to suppress the rear fan noise. Itis therefore important to make

the best possible use of the available lined area by optimising the liner configuration. A set

of analytic and numerical methods for predicting the liner attenuation performance have been

developed, which are suitable for use in intensive liner optimisation studies, or as preliminary

design tools.

Eigenvalue solvers have been developed to find modal solutions in rectangular ducts with

uniform flow and annular ducts with sheared flow. The solvers are validated by replicating

results from the scientific literature and the Finite Element method. The effect of mean core

flow radial profile and boundary layers on the mode eigenfunctions and axial decay rates are

considered. It is shown that solutions for thin boundary layer flows converge to those based on

the commonly used slip flow boundary condition. It is demonstrated that realistic flow profiles

should be used to assess acoustic mode propagation in bypassducts. The flow profile can have

strong effects upon low order modes and surface waves, and infact at high frequencies, the

profile can affect all the modes.

Mode-matching schemes are developed to assess the power attenuation performance and

modal scattering of finite length liners. The results of the schemes are used to show that re-

fraction of sound by boundary layers increases attenuationat high frequency. Power attenuation

is higher where the mean core flow gradient refracts sound towards the liner. It is found that

asymmetric liners can provide improved attenuation, depending on the direction of the mean

flow shear gradient.

The optimisation of axially-segmented liners for single and multi-mode sources is demon-

strated. It is found that potentially large improvements inthe attenuation of tonal noise is possi-

ble, whilst benefits for broadband noise are more difficult toachieve.
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Chapter 1

Introduction

The increasing volume of commercial air traffic across the globe poses serious environmental

issues with regard to aircraft emissions. Noise emissions from the aircraft engines and airframe

are a chief concern when dealing with the impact of airports on their surrounding environment.

In light of increasingly stringent noise emissions rules, the challenge for aeroengine manufac-

turers is that noise guarantees for future engine and airframe combinations can be met. This

requires noise prediction methods that can generate predictions of the radiated sound, to a high

level of confidence.

The engine noise can be broadly categorised into tonal noisegenerated by the regular cyclical

motion of the turbomachinery blades, and broadband noise generated by pressure fluctuations

associated with turbulent air flow. For early aeroengine designs, broadband noise from the ex-

haust jet was the dominant source. However, over the past twenty years design considerations

have meant the ratio of bypassed air mass to combustor air mass, orbypass ratio, has increased.

The majority of modern commercial aircraft are powered by high bypass ratio (HBPR) turbofan

engines. The result has been a reduction in jet exhaust velocity and its associated noise. Con-

sequently, the contributions from other noise sources, such as the fan, turbine and core, now

dominate at certain engine conditions. Since no single source is dominant over all engine con-

ditions, the contributions from all the major noise sourcesmust be evaluated to gain an accurate

prediction of the total engine noise.

A key method for controlling the sound field generated by the internal noise sources is the use

of acoustic treatment in the engine ducts, both inlet and bypass. The most common form of the

treatment used is a perforated resistive facing sheet attached to a honeycomb cell structure with

a rigid backing plate. The design and layout of the acoustic treatment within the duct systems is

driven by its contribution to the engine achieving the desired EPNL (Effective Perceived Noise

Level, the ISO standard subjective measure of aircraft noise), whilst minimising the economic

penalty. This means that the treatment must have the appropriate attenuation characteristics,

at different engine power conditions, whilst achieving this within specified length and weight

limits. Thus, the determination of the appropriate treatment design is a complicated task, and is

1
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often a decision heavily based on experience. The use of modelling to determine the optimum

design is dependent upon the accuracy of the model, and inevitably on the available computa-

tional resources, and is severely restricted by the number of parameters involved. In order to

construct an effective, yet feasible optimisation scheme,a simplified model must be constructed

for the acoustic propagation from the source to the far-field.

The work in this thesis concerns the prediction of acoustic propagation within the bypass duct,

especially the attenuation performance of acoustic treatment on the duct walls. This work has

been undertaken in collaboration with the Noise Departmentat Rolls-Royce plc. The collabo-

ration has involved part-funding by the company, and has also allowed the author to conduct a

substantial proportion of the research whilst based withinthe Noise Department at Rolls-Royce

plc., Derby, UK. The company’s interest in this work is the requirement to reduce the rear fan

noise contribution to the measured EPNL, which is part of theaircraft noise certification criteria.

Since passive duct liner treatment provides the most effective means with which to reduce this

source, it is important to make the best possible use of the lined area available in the duct. This

requires the optimisation of the liner configuration with the use of models to predict the in-duct

sound field. Acoustic propagation in the bypass duct is a complex problem involving non-

uniform viscous mean flows, three-dimensional geometries,and tonal and broadband sources

of sound. Solutions to idealised models of the problem are developed in this work, which are

suitable for use in intensive liner optimisation studies, or as preliminary design tools.

1.1 Planning and progress

The Engineering Doctorate Scheme advocates that research is undertaken in close collaboration

with the industrial sponsor. Thus, over the four year periodof this study, the author’s time has

been divided between the University Technology Centre (UTC) in Gas Turbine Noise at the

ISVR, and the Noise Engineering department at Rolls-Royce plc. An overview of the research

work time plan is shown in figure (1.1). Regular quarterly meetings were conducted between

the author, and the academic and industrial supervisors to review and plan the research work.

The work plan shows a progression from initial investigations into rectangular duct eigenvalue

solvers to the ultimate aim of predicting finite length linerperformance in sheared flows. Work

involving optimisation and CFD was undertaken by the authorat Rolls-Royce, taking advantage

of the solution methods and computing resources available there. In addition, a smaller project

covering jet noise installation effects and coaxial jet noise prediction was undertaken in three

months of Year 1 at Rolls-Royce. This work provided the author with experience in different,

but closely related, aspects of the engine exhaust noise problem. Parts of this work were reported

in the author’s mini-thesis [1], but are not reported here.
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FIGURE 1.1: Research workplan. Tasks in dark grey undertaken at ISVR, tasks in light grey
undertaken at Rolls-Royce.
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1.2 Review of literature

The vast amount of research in the field of duct acoustics since the 1960s has resulted in its

synonymous association with the aircraft engine industry.Several reviews of the collective

research effort illustrate the depth and breadth of field to date [2, 3, 4]. Three broad categories

of methods developed to solve the propagation problem can beidentified: empirical, theoretical

and computational methods. An empirical approach was required in the early years before

theoretical models were readily available. These were typically derived for low flow speed

ventilation duct applications [5]. However, this was superceded in the 1960s and 70s by the

successful establishment of robust theoretical models foridealised geometries and flow fields.

The majority of methods followed the pioneering work of Tyler and Sofrin [6], who considered

the sound field within the engine duct in terms of acoustic modes, which provide solutions of the

wave equation or its variants. The ultimate success of this approach, which achieved surprisingly

good agreement with experimental results , [7, 8, 9, 10], ledto the development of more realistic,

and thus more complex models. The development of numerical models since the 1970s based on

finite difference, weighted residual and finite element methods provided capabilities that were

much better suited to modelling realistic geometries and flows. However, the computational

speed and memory requirements for such models typically restricts their use to the final design

stage and to low or mid frequency applications.

The typical starting point for theoretical duct propagation models is the simplification of the

inlet and bypass geometry to axisymmetric cylindrical and annular ducts of infinite length and

axial uniformity. Further simplification of the bypass ductat high hub-to-tip radius ratios to a

rectangular duct was used by Snow and Lowson [9], and Yurkovich [10]. The high speed non-

uniform flows present in the duct systems can be approximately modelled by a uniform radial

velocity profile [7, 8]. The inclusion of acoustic treatmentat the duct walls requires the formu-

lation of boundary conditions in terms of the acoustic impedance of the treatment. It is widely

agreed that the correct condition at the wall is the continuity of normal particle displacement

[11]. The treatment universally used in the industry is the locally reacting resonator type liner,

the complex impedance of which is typically modelled using semi-empirical relations [8, 12].

The resulting boundary-value problem reduces to a complex transcendental eigenvalue equation,

the solution of which has been the subject of many research papers.

Determination of the lined duct eigenvalues is not a simple task due to the topography of the

eigenvalue equation, and the complex arithmetic that is involved. In early attempts several

researchers, such as Molloy and Honigman [13] and Morse and Ingard [14], focussed on the zero

mean flow problem, producing charts relating the wall impedance to the eigenvalues, but without

solving the eigenvalue equation explicitly. The first attempts at solving the equation directly

involved the use of power series expansions [15, 16], but ultimately more successful methods

have utilised numerical integration and iteration techniques. A simple Newton-Raphson iteration

method was implemented by Ko [8], Christie [17] and Yurkovich [10], where the corresponding

rigid duct eigenvalues were used as initial values for the routine. The convergence of the routine
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in certain instances is very much dependent upon the initialvalues, and is known to be unreliable

due to the topography of the function, and the presence of multiple eigenvalues. Motsinger et. al.

[12] based their solution on a similar iteration method, butwith a higher order of convergence,

termed Bailey’s method. In an attempt to ensure correct convergence the initial values were

chosen by dividing the modal regions into subregions using the charts of Morse and Ingard [14],

and the iterations proceeded in incremental steps from the converged no flow eigenvalues. The

authors indicated that the routine is reliable, accurate and fast, but also noted that the method

was not infallible. A clear disadvantage of this method is that a one-to-one relationship between

the rigid duct eigenvalues and the lined duct eigenvalues islost. Other researchers, such as

Mechel [18], have favoured the use of Muller’s method, whichhas the disadvantage of requiring

three intial values, but the advantages of not requiring gradients, thereby avoiding problems with

multiple roots, and the ability to affect the direction in which the method searches for solutions.

In an effort to circumvent the need for analysing the modal regions, Eversman [19, 20] developed

an integration scheme to solve the eigenvalue equation. Thescheme employed a fourth-order

Runge-Kutta integration, with a variable step size, and a Newton-Raphson routine to refine the

solutions where required. It was noted that particular attention was still required for multiple

eigenvalues, although no indication was made of how this could be dealt with. The author

also noted the presence of extra solutions which were characterised by having large imaginary

components. These solutions were identified by Tester [21],Rienstra [22] and Rienstra and

Peake [23], as surface wave solutions, the mode eigenfunctions of which decay exponentially in

the transverse direction away from the duct walls. Rienstra[22] deduced that there are at most

four surface wave solutions (eight in rectangular or annular ducts): two acoustic surface waves

which are present both with and without flow (four in rectangular or annular ducts), and two

hydrodynamic surface waves which only occur with flow (four in rectangular or annular ducts).

These solutions are typically hard to find, and consequentlyare often missed using the solution

methods mentioned above. A method was described in [22] which allowed for the surface wave

solutions to be accurately traced from the rigid duct eigenvalues.

The acoustic surface wave was shown by Cremer [24] and Tester[25] to be important in the

optimisation of acoustic liners. The maximum attenuation of the least attenuated mode, by

a uniform liner of reasonable length, was shown to occur for impedances where the lowest

order mode pair coalesce, that is essentially a double eigenvalue. Approximate expressions for

optimum impedances were given. However, due to the large rate of change of attenuation rates

around the optimum value, the practical application of the expressions is unreliable. In addition,

the short lengths of ducts typically seen in aircraft engines means that reflections from the liner

edges will affect the optimum impedance. This was shown to betrue by Unruh [26], Unruh

and Price [27], and Koch [28] who also demonstrated that an optimum finite length liner of

given impedance could in theory lead to more attenuation than a longer length liner of the same

impedance.

Finite length liners have been investigated analytically,numerically, and experimentally by sev-

eral researchers. Two analytic techniques have been employed, namely: mode-matching and
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Wiener-Hopf. The Wiener-Hopf technique can provide analytic solutions to problems with sep-

arable geometry but mixed boundary conditions. It was successfully applied to lined rectangular

ducts with rigid side walls in the absence of flow by Koch [28],and in the presence of a uniform

flow by Koch and Mohring [29]. The authors were able to predictthe sound attenuation of finite

length uniform and two-segment liners with symmetric and asymmetric linings and examine

various liner parameter variations. Although a powerful technique, its application to more re-

alistic aeroengine duct models, such as non-uniform or sheared flows and variable geometry, is

limited since it is not clear whether the necessary extensions could be carried out.

The mode-matching technique is a well known method for formulating boundary-value prob-

lems in waveguide theory [30]. The first application of the technique to aeroengine duct systems

was made by Lansing and Zorumski [31], which represented thefirst in a series of extensive an-

alytical and experimental studies of axially-segmented liners supported by NASA in the 1970s

[32, 33, 12, 34, 35]. The technique is more amenable than the Wiener-Hopf technique to the

practical purpose of liner performance predictions, sincerelatively simple extensions have been

demonstrated for variable geometries [36, 37]. A potentialdisadvantage is that in contrast to the

Wiener-Hopf technique, the mode-matching formulation in the presence of a mean flow does not

provide direct control over the edge conditions at the linerleading and trailing edges. However,

the inclusion of a suitably high number of modes, and by simply keeping a check on the conver-

gence rate of the modal amplitudes, appears to suffice when comparing the experimental results

of Sawdy et. al. [34] to their corresponding mode-matching solutions. A numerical approach to

mode-matching was undertaken by Hii [38], where the eigenvalue problem was solved using the

Finite Element Method for ducts of arbitrary cross-sectionand non-uniform impedance bound-

aries. An improved technique of matching mass and momentum at liner discontinuities was

demonstrated to provide better agreement with full FE solutions than the traditional matching of

pressure and axial particle velocity. The FEM is a much more flexible method than the analytic

approach. However, the accuracy of the method is highly dependent upon mesh resolution, and

becomes computationally expensive at high frequencies.

The incentive to use axially-segmented liners in aeroengine applications is the possibility of

obtaining extra attenuation bandwidth, not only from judicious tuning of the liner depths, but

also by taking advantage of finite length effects, and beneficial modal energy redistribution at the

liner impedance discontinuities [39, 40, 34]. The optimisation of such liners inevitably involves

an increased parameter space, and it is widely agreed that the performance of segmented liners

is heavily dependent upon the incident modal content. The optimisation study carried out by

Sawdy et. al. [34] found that local optimum impedances for a three-segment liner were a strong

function of the source content. It was noted that in using this property it may be possible to

construct a multi-segment liner that was relatively insensitive to the incident modal content. A

zero flow optimisation study by Baumeister [40] concluded that while segmented liners were

more effective than uniform liners at high frequencies, andcould certainly outperform uniform

liners at low frequencies in plane wave mode only situations, the practical considerations of
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uncertainty in optimum impedances mean little advantage isfound. The large degradation in

performance of multisegment liners that are sensitive to the modal input was also demonstrated.

It is noted that most of the analytic duct propagation studies cited above have dealt with sym-

metric liner configurations, and all have restricted their analysis to even mode excitation. Little

has been published on the subject of asymmetric liners. However, an eigenvalue solver for two

dimensional ducts with uniform mean flow was presented by Abdelhamid [41], and a mode-

matching procedure for a single asymmetrical liner segmentin the absence of mean flow was

given by Ochmann and Donner [42], with brief results presented by Ochmann [43]. The analy-

sis of Mechel [44] indicated that the favourable attenuation qualities of odd modes compared to

even modes highlights the possibilities of using asymmetrical liners to redistribute modal energy

from poorly attenuated even modes to well attenuated odd modes. Therefore, the inclusion of

asymmetric liner segments in an axially-segmented liner could provide an extra modal condi-

tioning tool. A mathematical model describing the mode-matching technique for asymmetrical

lining configurations with uniform mean flow was presented byUnruh [26]. However, the model

was only applied to a single lining segment with one of the segment walls being rigid, and with

a plane wave sound source. This is in fact equivalent to a symmetrically lined duct of twice the

height, with only even modes included in the matching.

The modal methods described above, for the uniform flow or no flow cases, are based on closed

form modal solutions of the convected wave equation. The modelling of acoustic propagation

in arbitrary sheared flows requires numerical solution of the governing Linearised Euler Equa-

tions (LEE). Currently, the only methods available for assessing acoustic propagation in lined

ducts with rotational mean flows are specialised Finite Element Methods (FEM) [45, 46, 47]

and LEE Computational Aeroacoustics (LEE-CAA) schemes [48, 49]. Both methods are re-

stricted to low and mid frequencies, and have a high computational cost which precludes them

from use in intensive optimisation studies. To obtain time-harmonic modal solutions, the LEE

may be solved for a parallel sheared flow of constant density and sound speed in the manner

described first by Pridmore-Brown [50]. Here a second order equation in the transverse pressure

is obtained for a specific axial wavenumber. Alternative wave variable formulations were later

highlighted by Tester [51] and Smith [52], who noted that, asopposed to other wave variables,

a formulation in pressure and radial particle displacementdid not involve flow gradient terms.

Several researchers have assessed the effects of boundary layer profiles [51, 53, 54] on individ-

ual mode solutions by solving the Pridmore-Brown equation using various methods. Common

conclusions were that upstream modes are more affected by mean flow shear than downstream

modes, and attenuation by acoustic liners is enhanced for downstream propagation and degraded

for upstream propagation.
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1.3 Aims, motivation and claim to originality

The research presented in this thesis, and the research proposal outlining future work in Chapter

(9), primarily covers the subject of analytical modelling of in-duct acoustic propagation in the

bypass duct of a modern HBPR turbofan engine.

The propagation of sound in the bypass duct is a very complex problem. To begin with, a de-

scription of the source of sound is often unknown in detail, and will consist of both tonal and

broadband components. The geometry of the duct is highly three-dimensional with a slowly

varying axial curvature accentuated by the turbine hump, and non-axisymmetry due to the pres-

ence of the pylon and lower bifurcation. In addition, there may be abrupt changes in the type of

acoustic liner (e.g. SDOF, 2DOF), rigid splices, service hatches and heat exchangers located on

the walls. The in-duct flow field after the outlet guide vanes (OGVs) will generally have little

swirl, but can have significant radial non-uniformity. Boundary layer growth and the curved duct

geometry mean that significant variation in the flow field is possible along the axial length. The

character of the flow field can affect the propagation of soundthrough refraction and convection,

and ultimately affect the attenuation levels achieved by acoustic liners.

The key aim of this work is to provide simplified, yet representative models of acoustic propaga-

tion in bypass ducts for use in the optimisation of acoustic treatments, and as a computationally

inexpensive design tool. In this thesis, the early chaptersconcentrate on the development of ax-

isymmetric modal methods where the duct cross-section is assumed to be axially constant and

the mean flow uniform, but the wall impedances are allowed to be discontinuous. Such methods

provide insight into the modal structure of the in-duct sound field, the scattering effects of the

liner discontinuities, and here are utilised for liner optimisation. The later chapters extend these

methods to deal with the effects of a radially sheared flow on the acoustic propagation in the

duct, and ultimately, the effects upon the performance of finite length liners for the attenuation

of tonal and broadband sources.

The original contributions of this thesis are as follows:

• A robust eigenmode solver is developed for asymmetrically lined rectangular ducts with

uniform flow, using a combination of the tracking techniquesof Eversman [19] and Rien-

stra [22].

• A semi-analytic mode-matching method is developed to assess asymmetric liners of finite

length in rectangular ducts with uniform flow. It is shown that mass and axial momentum

must be matched in order to accurately resolve the pressure field at wall impedance dis-

continuities. In addition, the suitability of hydrodynamic surface waves in resolving wall

pressure singularities at the wall impedance discontinuities is demonstrated.

• Viscous and inviscid Computational Fluid Dynamics (CFD) methods are used to inves-

tigate acoustic propagation in rigid walled bypass ducts with realistic flow fields. It is
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shown that scattering of modal energy is highest in the region around the turbine hump.

In addition, non-uniform inlet flows are shown to result in more scattering than uniform

inlet flows.

• A robust eigenmode solver is developed for asymmetrically lined annular ducts with ar-

bitrary sheared mean flow. It is shown that non-uniform flow profiles can strongly affect

low order modes and surface waves. Boundary layer refraction effects become stronger

with increasing frequency for all modes.

• The convergence of mode solutions for boundary layer flows tothe slip flow solutions is

confirmed by solving coupled equations in pressure and radial particle displacement.

• A mode-matching method is developed for predicting acoustic propagation in lined annu-

lar ducts of constant cross-section, containing inviscid,parallel sheared flow. This scheme

represents a simple and fast solution method for assessing liner performance in uniform

ducts with rotational flows, which was previously only obtainable using specialised and

computationally expensive FE methods or LEE solvers.

• The presence of boundary layers is shown to increase power transmission loss at high

frequencies, whilst the behaviour of modal scattering is shown to vary with boundary

layer thickness.

• The effects of several flow profiles on liner attenuation and scattering are investigated. It

is shown that the direction of the mean flow gradient can have astrong effect on liner

attenuation, particularly for single mode sources.

• Finite liner length effects upon power attenuation are shown to be most significant for

single mode sources and differences between flow profiles arelimited to low order modes.

• In an optimisation study, asymmetric liners are shown to potentially provide higher at-

tenuation rates than symmetric liners, depending on the direction of the mean flow shear

gradient.

1.4 Outline of contents

The analysis begins in Chapter (2) where the governing eigenvalue equations are derived for

acoustic modes in asymmetrically lined rectangular ducts containing uniform mean flow. A

numerical scheme for obtaining the eigenvalues is presented and validated. Mode solutions of

three-dimensional rectangular ducts are often used to approximate the modes of annular ducts,

and this approximation is assessed here. The chapter concludes with an analysis of surface wave

modes using asymptotics.

In Chapter (3) a mode-matching scheme is developed to assesssound power attenuation and

modal scattering in axially-segmented rectangular ducts with uniform flow. The eigenmode
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solver of Chapter (2) is used to provide mode eigenfunctionsand wavenumbers for a tradi-

tional scheme, which matches pressure and axial particle velocity, and an improved scheme,

which matches mass and axial momentum across liner discontinuities. Both schemes are as-

sessed against each other, the Wiener-Hopf technique and FEsolutions. The issues of liner edge

conditions and hydrodynamic surface waves in the matching schemes are discussed.

The mode-matching schemes and eigenmode solvers are used ina liner optimisation study in

Chapter (4). Several optimisation algorithms are used for aseries of cases. A single frequency

optimisation exercise is presented, aimed at determining the optimum resistance and reactance

values for sound power attenuation of uniform and multi-segment liners. Examples of optimi-

sation of attenuation performance over a specified frequency bandwidth are presented. Here,

design parameters of resistance, liner cavity depth and liner segment length are used to optimise

up to four liner segments for single mode and multi-mode sources.

In Chapter (5), high fidelity CFD methods are used to investigate the mean and acoustic flow

fields for a realistic bypass duct geometry. Inviscid and viscous solutions on quasi-axisymmetric

meshes are used to investigate the effects of boundary layergrowth, realistic inflow conditions

and duct curvature effects on acoustic propagation.

In Chapter (6) the equations governing acoustic mode propagation in lined annular ducts with

inviscid, parallel mean flow are derived for a number of wave variables. A computational scheme

to solve the governing equations is described, which is based on a shooting method involving

the eigenvalue tracking procedure used in Chapter (2). The effects of the radial flow profile

on the acoustic mode spectrum are assessed for realistic conditions. The convergence of mode

solutions in linear and one-seventh power law boundary layer flows to the uniform slip flow

solutions is investigated. In addition, the change with frequency of the mode spectrum for a

selection of boundary layers and non-uniform core flows are assessed.

In Chapter (7) the mode-matching scheme of Chapter (3) is extended in order to assess the

performance of axially-segmented liners in annular ducts containing parallel sheared flows of

arbitrary profile. The scheme is validate against FE solutions for uniform flow and the inclusion

of vortical modes in the matching is discussed.

The effects of flow profile on finite length liner attenuation are assessed in Chapter (8). The con-

vergence of linear boundary layer flow solutions to the uniform slip flow case is investigated.

Boundary layer effects upon the power attenuation spectrumand modal scattering are assessed

for thin and thick linear boundary layers. Solutions for several core flow profiles are also in-

vestigated. Finite length effects are investigated since liner segments within real aeroengine

ducts can vary significantly in length. Finally, a contour plot optimisation exercise is carried out

to determine how the optimum liner impedance varies with flowprofile. Both symmetric and

asymmetric single segment liners are assessed for single and multi-mode sources.

Chapter (9) contains the conclusions of the research, and outlines areas of future work.



Chapter 2

Eigenvalue problems for rectangular

ducts with uniform flow

2.1 Theory for a two-dimensional duct

This chapter outlines the theory and methods used to calculate the sound field within uniform

rectangular ducts with subsonic uniform mean flow.

First, the problem of propagation of sound in a uniform two-dimensional duct of height2d with

a wall lining admittanceβ is examined. The rectangular geometry with a Cartesian coordinate

system(x̃, ỹ) used in this case is shown in Figure (2.1). Well-known waveguide theory allows

a modal breakdown of the in-duct sound field into modal sources of harmonic time dependance

eiω̃t̃ that can propagate upstream and downstream.

Starting with the convected wave equation in pressure

[

∂

∂t̃
+ U0

∂

∂x̃

]2

p̃ − c2
0

(

∂2

∂x̃2
+

∂2

∂ỹ2

)

p̃ = 0 . (2.1)

A time harmonic pressure field is assumed, of the form

p̃(x̃, ỹ, t̃) = p̂(x̃, ỹ)eiω̃t̃ , (2.2)

and the variables are made dimensionless as follows:

x =
x̃

d
, t =

c0t̃

d
, k0 =

ω̃d

c0
, p =

p̂

ρ0c
2
0

, u =
û
c0

. (2.3)

Substituting into equation (2.1) leads to the convected Helmholtz equation

[

ik0 + M
∂

∂x

]2

p −
(

∂2

∂x2
+

∂2

∂y2

)

p = 0 . (2.4)

11
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Zd = Rfd
+ iXfd

Z−d = Rf−d
+ iXf−d

ỹ = d

ỹ = −d

ỹ = 0

ỹ

x̃

U0

FIGURE 2.1: Geometry and liner impedance notation for a two-dimensional lined duct with
uniform mean flow.

Modal solutions are found by separation of variables, and are of the form

pn(x, y) = Ψn(y)e−iknx , (2.5)

where the eigenfunction describing the transverse variation of the mode is given by

Ψn(y) = Λn [Rn cos κny + Sn sin κny] . (2.6)

The normalisation constantΛn is determined so that

1

2

∫ 1

−1
ΨnΨ∗

n′dy = δnn′ . (2.7)

The dispersion relation between thenth mode non-dimensional eigenvalueκn , the correspond-

ing non-dimensional axial wavenumberkn, and the non-dimensional free space wavenumber

k0, is

κ2
n = [k0 − knM ]2 − k2

n . (2.8)

The dispersion relation can be rearranged to give the axial wavenumber in terms of the mode

eigenvalue

kn

k0
=

1

1 − M2



−M ±
[

1 −
(

1 − M2
)

(

κn

k0

)2
] 1

2



 . (2.9)

The eigenvalues are determined following application of the wall boundary conditions. The

boundary condition aty = ±1 for the case of a duct with rigid walls is that the acoustic particle

velocity normal to the wall is zero. The boundary condition is determined by application of the

acoustic momentum equation in they-direction, and leads to

∂p

∂y
= 0 at y = ±1 . (2.10)
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The mode eigenvaluesκn are therefore defined by

sin κny cos κny = 0 , (2.11)

where

κn =
(n − 1)π

2
for n = 1, 2 . . . . (2.12)

Solutions corresponding to even and odd modes respectivelyare

κn = 0, π, 2π . . . κn =
π

2
,
3π

2
,
5π

2
. . . . (2.13)

The modal coefficientsRn andSn are determined through application of the boundary condi-

tions aty = ±1. For a rigid walled duct the coefficients are given by,

Rn = cos (κn) , y = ±1, (2.14)

Sn = ± sin (κn) , y = ±1. (2.15)

The normalisation constantΛn is given by

Λn =

{

1 n = 1 ,√
2 n > 1 .

The axial wavenumber determines the travelling wave natureof the modal solutions, and its

value depends uponκn, k0 andM . The axial wave number is real for

(

1 − M2
)

(

κn

k0

)2

< 1 , (2.16)

where the positive sign choice in Equation (2.9) corresponds to a right running mode, and the

negative sign corresponds to a left running mode. The axial wavenumber becomes complex

when
(

1 − M2
)

(

κn

k0

)2

> 1 . (2.17)

In this case modal solutions of Equation (2.4) are evanescent modes that decay exponentially

with axial distance given by

pn(x, y) = Ψn(y)e−iℜ(kn)xe±ℑ(kn)x . (2.18)

In Equation (2.9), by taking the principle value of the square root in the lower half plane, the

significance of the sign choice in Equation (2.18) is more straightforward, as exponentially

growing solutions are avoided, by assuming the positive sign indicates a mode propagating in

the positivex-direction, and the negative sign indicates a mode propagating in the negativex-

direction. It may be shown through energy considerations that these modes carry no acoustic

power and are referred to as beingcut-off [55].
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The duct is assumed to be of infinite length in the axial direction, hence there exist uncoupled

solutions for upstream and downstream propagating modes asno termination reflections are

permitted [56]. Therefore, the appropriate sign choice in Equation (2.9) is required to correctly

define propagation or decay in either axial direction which leads to the designation ofk+
n or k−

n

to indicate solutions in the positive or negativex-direction. The appropriate modal solutions

propagating in positive and negativex-directions are of the form

p+
n (x, y) = Ψ+

n (y)e−ik+
n x , (2.19)

p−n (x, y) = Ψ−
n (y)e−ik−

n x , (2.20)

where the general solution for the duct sound field is given bythe Fourier modal sum

p(x, y) =
∞
∑

n=0

Ψ+
n (y)e−ik+

n x +
∞
∑

n=0

Ψ−
n (y)e−ik−

n x . (2.21)

Extension of the theory to the calculation of mode eigenvalues in a duct with lined walls requires

the use of more complicated wall boundary conditions aty = ±1. The liner is assumed to be

locally reacting with non-dimensional specific acoustic impedanceZ defined as

Z =
z

ρ0c0
=

p

±vw
at y = ±1 , (2.22)

wherevw is the normal wall particle velocity. Continuity of particle displacement at each wall

yields the Ingard-Myers boundary conditions [11, 57], which in terms of the non-dimensional

admittanceβ = 1/Z are given by

∂p

∂y
= ∓ik0β

(

1 − i
M

k0

∂

∂x

)2

p at y = ±1 . (2.23)

Modal solutions are again of the form

pn(x, y) = Λn [Rn cos µny + Sn sin µny] e−iαnx , (2.24)

whereµn is the non-dimensional transverse lined duct eigenvalue, andαn is the non-dimensional

axial lined duct wavenumber. The modal coefficientsRn andSn for a lined duct are given by

Rn = cos (µn) +
ik0βd,−d

µn

(

1 − M
αn

k0

)2

sin (µn) , y = ±1, (2.25)

Sn = ± sin (µn) ∓ ik0βd,−d

µn

(

1 − M
αn

k0

)2

cos (µn) , y = ±1. (2.26)

Application of the boundary conditions to each modal solution yields the transcendental eigen-

value equation

µn tan 2µn +
(k0β)2

µn

(

1 − M
α±

n

k0

)4

tan 2µn − i2k0β

(

1 − M
α±

n

k0

)2

= 0 . (2.27)



Chapter 2 Eigenvalue problems for rectangular ducts with uniform flow 15

Alternatively, the separate eigenvalue equations for evenand odd eigenfunctions are given by

(µn) tan µn − iβk0

(

1 − M
α±

n

k0

)2

= 0 , (2.28)

(µn) cotµn + iβk0

(

1 − M
α±

n

k0

)2

= 0 . (2.29)

It should be noted that the eigenvalue equation for even modes will also apply to the problem of

a duct of heightd with one wall rigid and the other wall lined with admittanceβ.

For cases where the top wall lining admittanceβd differs from that of the bottom wall lining

admittanceβ−d the eigenvalue equation becomes

µn tan 2µn +
k2
0βdβ−d

µn

(

1 − M
α±

n

k0

)4

tan 2µn

−ik0βd

(

1 − M
α±

n

k0

)2

− ik0β−d

(

1 − M
α±

n

k0

)2

= 0 . (2.30)

Equation (2.30) is equivalent to Equation (2.27) whenβd = β−d, and to Equation (2.11) when

βd = β−d = 0.

Determination of the eigenvalues of any of the above eigenvalue equations is not simple because

of the complex topography of the function for which the zerosare sought, and the complex arith-

metic that is involved. A numerical scheme has been developed where the eigenvalue problem

is transformed into a differential equation and the eigenvalues are found using an initial-value-

problem approach following the type of procedure proposed by Eversman [19].

2.2 The numerical method applied to the two-dimensional case

Firstly the eigenvalueµ/k0 and wall lining admittanceβ are assumed to be functions of a pa-

rameterη. Differentiation of the eigenvalue problem with respect toη yields a single ordinary

differential equation (ODE). If the admittance functionβ(η) is prescribed over0 < η < 1, then

µ/k0 may be found by integrating the differential equation over the same limits. If the value

β(0) is prescribed as the rigid-wall admittance, then the initial value is determined from the

known rigid-wall eigenvalue sequence

κn

k0
=

(n − 1)π

2k0
for n = 1, 2 . . . . (2.31)

The solution of the ODE atη = 1 is the eigenvalue for the conditionβ(1), k0, M , whereβ(1)

is the given wall lining admittance.

The choice of the admittance functionβ(η) is determined by the value of the wall lining admit-

tance. The value of the wall lining admittance determines the number and location of surface
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(b) Admittance plane.

FIGURE 2.2: Admittance and impedance contours taken for the tracing of moden = 1 from the
rigid wall case to the asymmetrically lined case.•, bottom wall admittance contour;•, top wall
admittance contour;•, bottom wall impedance contour;•, top wall impedance contour;.Rfd

=
0.2, Xfd

= −3, Rf
−d

= 0.1, Xf
−d

= −2.5.

wave modes, which can be hard to find. Where surface waves are not present the admittance

function is identical to that used by Eversman [19]

β(η) = ηβf , (2.32)

whereβf is the required admittance. However, where surface waves are present a method sug-

gested by Rienstra [22] is used so that all surface waves may be found. The method defines

an impedance function,Z(η), along a contour parallel to the imaginary axis in the complex

impedance plane starting fromZ = R + i∞ for M > 0, or Z = R − i∞ for M = 0, to

the required impedance,Zf . The proposed method uses a combination of the schemes sug-

gested by Eversman and Rienstra, where an impedance function is defined such that both the

wall impedances for an asymmetrically lined duct are taken into account, and tracking through

the impedance plane occurs in such a way that all the surface waves can be found. The tracking

of the top and bottom wall impedances occurs sequentially, so that the gap between successive

eigenvalues is minimised, reducing the risk of instabilityin the scheme. The impedance function

must begin from a region where surface waves do not exist, so Rienstra’s method must be im-

plemented for the first wall impedance by tracking fromZ = Rfd
± i∞ to Z = Rfd

+ iXfd
, and

then for the second wall impedance by tracking fromZ = Rf−d
± i∞ to Z = Rf−d

+ iXf−d
.

For computational purposes a value ofX∞ = ±20 for the starting reactance is assumed to be

sufficiently large to represent a contour beginning at±i∞. This represents a change from a rigid

to a nearly rigid wall impedance for both walls, which requires the inclusion of an additional

step in the impedance function since the initial eigenvalues used for both walls are no longer

close enough to ensure correct convergence. The step from rigid to nearly rigid wall impedance

occurs in a region where surface waves do not occur, so Eversman’s method is used to track the

first wall impedance from rigid toZ = Rfd
± iX∞, and the second wall impedance from rigid
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to Z = Rf−d
±iX∞. An example of the total impedance tracking path, with the four component

paths, for an asymmetrically lined duct is presented in figure (2.2a) in the impedence plane, and

in figure (2.2b) in the admittance plane.

2.3 The structure of the computational scheme

The structure of the computational scheme for the general case of an asymmetrically lined duct

with uniform flow has five main components:

1. Calculate the rigid-wall eigenvalue.

The calculation of the eigenvalues for the case of one wall rigid and one wall lined is

undertaken using the even modes of a symmetrically lined duct of height4d in order to

reduce computation time and complexity. The rigid-wall eigenvalues are therefore

defined as
µn

k0
=

(n − 1)π

2k0
for n = 1, 2 . . . , (2.33)

and the eigenvalue problem being solved is

k0

(

µn

k0

)

tan 2k0

(

µn

k0

)

= iβk0w
2 , (2.34)

w =

1 ∓ M

[

1 −
(

1 − M2
)

(

µn

k0

)2
] 1

2

1 − M2
. (2.35)

2. Calculate the eigenvalue for the case of one wall rigid and the other with lining

impedanceZ = Rfd
+ iX∞.

The rigid-wall eigenvalues are used as initial values for the initial-value-problem, where

the admittance function is given by

βd (η) = ηβfd
where βfd

=
1

Rfd
+ iX∞

, (2.36)

and differentiation of Equation (2.34) yields the ODE

d

dη

(

µ

k0

)

=
iω2βfd

tan 2k0

(

µ
k0

)

+ k0

(

µ
k0

)

sec2 2k0

(

µ
k0

)

∓
i2βdwM

(

µ
k0

)

√
v

, (2.37)

v = 1 −
(

1 − M2
)

(

µ

k0

)2

. (2.38)

3. Calculate the eigenvalue for the case of one wall rigid and the other with the

required lining impedanceZfd
= Rfd

+ iXfd
.

Upon integration of Equation (2.37) the computed nearly rigid wall eigenvalues are used
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as initial values for the initial-value-problem where the impedance function as suggested

by Rienstra is given by

Zd (η) = Rfd
+ i [X∞ − η (X∞ − Xfd

)] . (2.39)

The ODE for the problem is then

d

dη

(

µ

k0

)

=
w2 (Xfd

− X∞)

Z2
d tan 2k0

(

µ
k0

)

+ Z2
dk0

(

µ
k0

)

sec2 2k0

(

µ
k0

)

∓
i2ZdwM

(

µ
k0

)

v
1
2

, (2.40)

which upon integration yields the eigenvalues for the case of one wall hard and the other

with the required lining impedanceZfd
= Rfd

+ iXfd
. The eigenvalues are then used as

initial values for the asymmetrically lined case.

4. Calculate the eigenvalue for the case of one wall with liningimpedance

Z = Rf−d
+ iX∞ and the other with the required impedanceZfd

.

The eigenvalue problem for the asymmetrically lined case with upper wall lining

admittanceβd and lower wall lining admittanceβ−d is written as

k0

(

µ

k0

)

tan 2k0

(

µ

k0

)

− ik0w
2βd

−ik0w
2β−d +

k0w
4βdβ−d
(

µ
k0

) tan 2k0

(

µ

k0

)

= 0 , (2.41)

w =

1 ∓ M

[

1 −
(

1 − M2
)

(

µn

k0

)2
] 1

2

1 − M2
. (2.42)

The initial-value-problem is then set up where the admittance function for the lower wall

lining is prescribed as

β−d (η) = ηβf−d
where βf−d

=
1

Rf−d
+ iX∞

, (2.43)

and the upper wall admittance is held at the required admittanceβfd
= 1/ (Rfd

+ iXfd
)

yielding the ODE
d

dη

(

µ

k0

)

=
NA

DA
, (2.44)

where

NA = iw2βf−d
−

w4βdβf−d
tan 2k0

(

µ
k0

)

(

µ
k0

) ,
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DA =tan 2k0

(

µ

k0

)

+ 2k0

(

µ

k0

)

sec2 2k0

(

µ

k0

)

∓
i2wβdM

(

µ
k0

)

√
v

∓
i2wβ−dM

(

µ
k0

)

√
v

+
w4βdβ−d tan 2k0

(

µ
k0

)

(

µ
k0

)

·





2k0

(

µ
k0

)

sec2 2k0

(

µ
k0

)

tan 2k0

(

µ
k0

) − 1
(

µ
k0

) ±
4M

(

µ
k0

)

w
√

v



 .

5. Calculate the eigenvalue for the case of one wall with the required lining impedance

Zf−d
= Rf−d

+ iXf−d
and the other with the required impedanceZfd

.

Upon integration of Equation (2.44) the eigenvalues are once again used as initial values

for the initial-value-problem where the lower wall impedance function is given by

Z−d (η) = Rf2 + i
[

X∞ − η
(

X∞ − Xf−d

)]

, (2.45)

and the upper wall is held at the required impedanceZfd
yielding the ODE

d

dη

(

µ

k0

)

=
NZ

DZ
, (2.46)

where

NZ = −
w2
(

X∞ − Xf−d

)

Z2
−d

−
iw4 tan 2k0

(

µ
k0

)

(

X∞ − Xf−d

)

Z2
−dZfd

(

µ
k0

) ,

DZ = tan 2k0

(

µ

k0

)

+ 2k0

(

µ

k0

)

sec2 2k0

(

µ

k0

)

∓
i2wM

(

µ
k0

)

Zfd

√
v

∓
i2wM

(

µ
k0

)

Z−d
√

v
+

w4 tan 2k0

(

µ
k0

)

Zfd
Z−d

(

µ
k0

)

·





2k0

(

µ
k0

)

sec2 2k0

(

µ
k0

)

tan 2k0

(

µ
k0

) − 1
(

µ
k0

) ±
4M

(

µ
k0

)

w
√

v



 .

Upon integration the ODE yields the eigenvalues for the caseof one wall with lining

impedanceZfd
= Rfd

+ iXfd
and the other with lining impedance

Zf−d
= Rf−d

+ iXf−d
.
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FIGURE 2.3: Tracking of the positivex-direction propagating mode eigenvalues (n = 1, 2)
with adaptive step size, showing the four component admittance/impedance contour sections.
Colours correspond to the admittance/impedance contours in figure (2.2).k0 = 18, M = 0.5,

Rfd
= 0.2, Xfd

= −3, Rf
−d

= 0.1, Xf
−d

= −2.5.

2.4 Implementation of the scheme

A fourth/fifth order Runge-Kutta-Fehlberg [58] adaptive step size integration routine has been

applied to each of the ODEs that have been derived. A simple Newton-Raphson iteration has

been used after the integration of each of the ODEs to maintain the accuracy of the eigenvalue

at each step during the scheme.

It was noted by Eversman [19] that Equation (2.37) becomes singular when stepping away

from the rigid-wall eigenvalueκ/k0 = 0, but assuming smallβd andµ/k0 the first step away

from the eigenvalue can be made by

µ

k0
=

[

i△βfd

2k0

]
1
2 1 ± M

1 − M2
, (2.47)

where△ is the initial step away fromη = 0.

An example of the path taken by two low order mode eigenvaluesover theµ plane is shown in

Figure (2.3), where the four colours represent the paths taken using the four impedance

contours. The dots indicate the value of the eigenvalue at each integration step, whilst the

crosses indicate the eigenvalue having been refined using the Newton-Raphson iteration. The

smooth tracking of the eigenvalues demonstrates the stability of the integration scheme. The

requirement for the rigid to nearly rigid components in the impedance contour is shown to be

justified since the corresponding eigenvalue tracking paths (i.e. blue dots) can constitute a

substantial amount of the total tracking pathlength.

The tracking paths of the first forty-four mode eigenvalues are presented in Figure (2.4), where

the four tracking paths which move far away from the real axisare those of the surface wave
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FIGURE 2.4: Tracking of the first forty-four positivex-direction propagating mode eigenvalues.
Colours correspond to the admittance/impedance contours in figure (2.2).k0 = 18, M = 0.5,

Rfd
= 0.2, Xfd

= −3, Rf
−d

= 0.1, Xf
−d

= −2.5.

modes. Each surface wave mode is localised to either the inner or outer wall, which can be

deduced from the tracking contours, either cyan or green respectively.

The independent integration variable isη, which is directly related to either the complex

admittance or the reactance, so it is possible to investigate the variation in the dependant

variableµ over the integration limits, and the variation in the adaptive integration step size. The

two plots in Figure (2.5) show the value of|µ| over the integration limits of the reactance

contours of top and bottom walls. The spacing of the dots indicates the step size chosen by the

Runge-Kutta-Fehlberg routine in order to maintain the desired accuracy. The genuine acoustic

modes show generally smooth integration paths, with a strong clustering of integration points

for ℑ{Z} < 2. However, there are regions of strong change in|µ| over the reactance contours

where acoustic modes transition into surface wave modes (inred). It is noted from figure (2.5a)

that the bottom wall localised surface wave modes are virtually unaffected by the introduction

of the top wall impedance. There is a strong clustering of integration points at the transition

points of the surface wave modes and this behaviour appears to be reciprocated in the acoustic

modes in the vicinity of the surface wave modes as demonstrated in figure (2.6), which shows

the plot range[−3 2 38 55] of figure (2.5b). These observations demonstrate that the use of an

adaptive step size integration routine is extremely usefulfor maintaining stability in the

tracking methods and will prove useful for defining trackingcontours in shooting methods

developed later on.

2.5 Validation of the scheme for the two-dimensional case

The numerical scheme has been validated against published data from Eversman [20], and by

comparison of results from a Finite Element (FE) code [38]. This includes flow and no flow
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FIGURE 2.5: Mode eigenvalue and Runge-Kutta-Fehlberg integration step size variation over
the two reactance contours for the first 44 radial modes, withsurface wave modes (red) and
dots indicate the solution at each step.k0 = 18, M = 0.5, Rfd

= 0.2, Xfd
= −3, Rf

−d
= 0.1,

Xf
−d

= −2.5.
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FIGURE 2.6: Runge-Kutta-Fehlberg integration step size variation forcasing impedance con-
tour showing plot range [-3 2 38 55] of figure (2.5b), with surface wave modes (red). k0 = 18,

M = 0.5, Rfd
= 0.2, Xfd

= −3, Rf
−d

= 0.1, Xf
−d

= −2.5.

cases, and symmetrically and asymmetrically lined ducts. The first validation case uses

published data from Eversman [20] for a flow duct with one wallrigid and one wall lined. Two

lining admittances were prescribed;β = 0.72 + i0.42 is located in a region where surface

waves exist , andβ = 0.72 − i0.42 is located in a region where surface waves do not exist. The

results and validation data are presented in Tables (2.1) and (2.2) in terms of the axial

wavenumber and the residual achieved by substitution of thecomputed eigenvalue into
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FIGURE 2.7: Mode shapes for a rigid-wall duct (dashed line) and a duct lined on one wall
(solid line - result determined from numerical scheme,△ - result from FE code) with admittance

β = 0.72 + i0.42, k0 = 0.5, M = −0.5.

Equation (2.30). All the required modes were successfully calculated, including surface waves,

with an accuracy of10−11.

The first four mode shapes for the duct with lining admittanceβ = 0.72 + i0.42 are shown in

Figure (2.7). The surface wave moden = 2 decays exponentially away from the lined wall,

whilst the other modes are slightly modified forms of the corresponding rigid duct mode

shapes.

The second validation case uses results from a FE code for an asymmetrically lined duct with

and without flow. The top wall admittanceβd is located in a region where surface waves exist,

but the bottom wall admittanceβ−d is located in a region where surface waves do not exist.

The results and validation data for the flow case are presented in Table (2.3) and for the no flow

case in Table (2.4).

2.6 Extension of the scheme to a three-dimensional duct

The analysis of the two-dimensional problem can be extendedto the three-dimensional

problem of a duct of height2d and width2b, with rigid sidewalls, and asymmetric lining on top

and bottom walls, with relatively little adjustment to the computational scheme. The

rectangular geometry with Cartesian coordinate system(x, y, z) chosen for this system is

shown in Figure (2.8), wherez = z̃/d. The governing equation is the three-dimensional
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FIGURE 2.8: Geometry and coordinate system for a three-dimensional duct

convected Helmholtz equation

[

ik0 + M
∂

∂x

]2

p −∇2p = 0 , (2.48)

the modal solutions of which have the form,

pm,n(x, y, z) = χm,n(y, z)e−ikm,nx . (2.49)

The(y, z) transverse variation of the mode is given by

χm,n(y, z) = Λm,nΨm,n(y) [Rm cos kznz + Sm sin kznz] , (2.50)

and the normalisation constantΛ is determined from

d

4b

∫ b/d

−b/d

∫ 1

−1
χm,nχ∗

(m,n)′dydz = δ(mn)(mn)′ . (2.51)

The dispersion relation for the problem is defined as

κ2
m,n = [k0 − km,nM ]2 − k2

m,n − k2
zm

. (2.52)

Boundary conditions on the duct sidewalls atz = ±b/d are set as

∂p

∂z
= 0, (2.53)

with the additional phase condition ofp(y,−b/d) = p(y, b/d). This phase condition is

prescribed in order to enable a rectangular duct approximation to an axi-symmetric annular

duct, such that thez transverse mode variation is directly comparable to the annular ductθ

mode variation. This transformation is described further in the next section (2.7).

Thez transverse wave numberkzm is given by

kzm =
mπd

b
for m = 0, 1, 2 . . . (2.54)
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The normalisation constantΛm,n for a rigid walled duct is given by,

Λm,n =











1 m = 0, n = 1 ,√
2 m > 0, n = 1 or m = 0, n > 1 ,

2 m > 0, n > 1 .

Application of the boundary conditions for the top and bottom walls yields the eigenvalue

problem which is identical to Equation (2.30), but where theaxial wave number is now defined

as

km,n

k0
=

1

1 − M2



−M ±
[

1 −
(

1 − M2
)

[

(

κn

k0

)2

+

(

kzm

k0

)2
]]

1
2



 . (2.55)

The theory discussed for the solution of the two-dimensional problem may now be applied with

thez transverse wave number included in the formulation. The first step away from the

rigid-wall eigenvalueκ/k0 = 0 can now be made by

µ

k0
=

[

i△βf1

2k0

] 1
2

w , (2.56)

w =

1 ∓ M

[

1 −
(

1 − M2
)

(

kzm
k0

)2
]

1
2

1 − M2
. (2.57)

The method and structure of the scheme used to compute the eigenvalues is identical to that

used for the two-dimensional case. Validation of the schemefor the three-dimensional case

was made against a FE formulation, and numerical solution ofthe no flow problem in the(y, z)

plane using the commercial partial differential equation (PDE) solver MATLAB PDE toolbox.

Validation data for an asymmetrically lined duct without flow is presented in Table (2.5), where

data from both the FE solution and PDE toolbox are provided. Data for an asymmetrically

lined duct with flow is presented in Table (2.6), with data from the FE solution also provided.

Comparisons of the validation results demonstrate excellent agreement.

2.7 Rectangular approximation to an annular duct

The approximation of acoustic propagation in an annular duct using the three-dimensional

rectangular duct model described above has been used previously by several researchers

[10, 59, 60, 61]. The premise of the approximation is that at high hub-to-tip ratios~, the mode

eigenfunctions of the rectangular duct closely resemble those of the annular duct. The radial

mode eigenfunctions of the annular duct are a linear combination of Bessel and Neumann

functions

Ψm,n(r) = Rm,nJm(κm,nr) + Sm,nYm(κm,nr) , (2.58)

and by observing the principal asymptotic forms of these functions as(κm,nr) → ∞ ([62],

p.364) it is seen that trigonometric functions are recovered, indicating the similarity to the



Chapter 2 Eigenvalue problems for rectangular ducts with uniform flow 26

0.5 1

−2

0

2

P

r

m

0

4

8

16

32

n

1 2 3 4

FIGURE 2.9: Comparison of rectangular (solid lines) and annular (dashed lines) rigid duct
modes.k0 = 21.24925, ~ = 0.4, M = 0.

rectangular case,

Jm(κm,nr) ∼
√

2

πκm,nr
cos

(

κm,nr − mπ

2
− 1

4

)

,

Ym(κm,nr) ∼
√

2

πκm,nr
sin

(

κm,nr − mπ

2
− 1

4

)

,

asκm,nr → ∞ . (2.59)

A comparison of rigid rectangular and annular duct mode eigenfunctions at increasing

hub-to-tip ratio~ is presented in Figures (2.9), (2.10) and (2.11). It can be seen that agreement

does indeed improve as~ → 1. The agreement becomes worse asm is increase, but improves

asn is increased.

Another important assumption is that the approximated modal cut-off frequencies (or cut-off

ratios) also compare better with the true annular duct values with increasing hub-to-tip ratio.

The modal cut-off frequency for an annular geometry is defined as

kco =
∣

∣κ⊚
m,n

∣

∣

√

1 − M2 , (2.60)
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FIGURE 2.10: Comparison of rectangular (solid lines) and annular (dashed lines) rigid duct
modes.k0 = 21.24925, ~ = 0.6, M = 0.

whereas, for a rectangular geometry it is defined as

kco =
∣

∣

∣

√

κ�2
m,n + k2

zm

∣

∣

∣

√

1 − M2 . (2.61)

The cut-off frequency in the rectangular duct is dependent upon thez transverse wave number

component,kz , which is determined using the duct width,b. The usual choice for the duct

width is by taking the duct circumference at an average radius,Ra, given by

Ra =
~ + 1

2
, (2.62)

such that the wave number is

kzm =
m

2Ra
. (2.63)

However, in the annular duct the azimuthal wave number component does not appear explicitly

in the cut-off frequency expression since it is inherent in the annular eigenvalue,κ⊚
m,n [63].

The error in modal cut-off frequency given by the rectangular approximation compared to the

true annular duct value, defined as(k�
co − k⊚

co)/k
⊚
co, is shown in Figures (2.12a), (2.12b) and

(2.12c) for increasing hub-to-tip ratio. In general, a positive error means fewer modes are

predicted to be cut-on at a given frequency, and vice versa. It can be seen that the

approximation error reduces as the hub-to-tip ratio increases. It is also noted that the error for
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FIGURE 2.11: Comparison of rectangular (solid lines) and annular (dashed lines) rigid duct
modes.k0 = 21.24925, ~ = 0.8, M = 0.

the modesn > 1 collapses faster than for the lowest radial order mode,n = 1, which was also

seen to have the mode eigenfunction least well represented asm is increased.

It is also of interest to compare the situation for the rectangular approximation of lined duct

modes. In a lined duct the modal cut-off ratio no longer defines whether or not a mode

transmits acoustic power, since all modes have complex axial wave numbers. However, it

provides an indication of how well the mode propagates. An example of the error in modal

cut-off frequency for a lined duct is shown in Figures (2.13a), (2.13b) and (2.13c) for

increasing hub-to-tip ratio. As before, the error reduces as hub-to-tip ratio increases with the

low order modes having the greatest error.

It is possible to artificially alter the cut-off ratio of the rectangular duct modes by judicious

choice of the duct width,b [59]. Equating the modal cut-off frequencies for the annular and

rectangular geometries gives

∣

∣κ⊚
m,n

∣

∣ =
∣

∣

∣

√

κ�2
m,n + k2

zm

∣

∣

∣ . (2.64)

It is the lowest radial order mode,n = 1, having the largest cut-off ratio that is of interest, so

the inequality is reduced to
∣

∣κ⊚
m,n

∣

∣ = |kzm | =

∣

∣

∣

∣

mπd

b

∣

∣

∣

∣

. (2.65)
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duct modes.m = 0 to 100, n = 1 to 11, M = 0.
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FIGURE 2.13: Error in modal cut-off frequencies using the rectangular approximation for
lined duct modes.k0 = 21.25, Zd = Z−d = 2 − i, m = 0 to 40, n = 1 to 11, M = 0.
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(red dashed).k0d = 21.25, Zd = Z−d = 2 − i, m = 0 to 40, n = 1 to 11, ~ = 0.8, M = 0.

The duct width is now chosen, using the rigid annular duct eigenvalue,κm,0, to be

b = πRp =

∣

∣

∣

∣

mπd

κm,0

∣

∣

∣

∣

. (2.66)

An example of the effect this adjustment has upon the modal cut-off frequencies is presented in

Figure (2.14) for a lined duct with high hub-to-tip ratio. Itis seen that the lowest order radial

mode approximation is improved especially at higher azimuthal orders, but the approximation

is adversely affected for higher order radial modes. The adjustment will not be used in the

examples presented here due to the inaccuracy at higher order modes, and that annular duct

eigenvalues are required to be calculated.

2.8 Surface waves

Lined duct modes at high frequency were classified into two categories by Rienstra [22]:

genuine acoustic modes resulting from the finite duct geometry , and surface waves that exist

near the impedance wall surface, independent of duct geometry. Surface wave dynamics are

quite different from genuine acoustic modes, and are therefore more difficult to find. For

parameters typical of aircraft engine duct problems, surface wave modes can appear at low

radial mode orders with higher than typical axial decay rates, which could have a significant

impact on acoustic liner performance. In addition, their unusual mode eigenfunctions can
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enhance mode scattering in finite length acoustic liners, which is the subject of discussion in

future chapters. Thus, it is important that these mode solutions are found in a robust manner.

The implementation of Rienstra’s impedance contour methodin the eigenvalue scheme detailed

previously was designed specifically to deal with these modesolutions.

Surface wave modes can be identified byµm,n having a large imaginary part, and can have

large axial decay rates. Such modes can be seen in the axial wave number plot in Figure (2.15),

where the majority of the modes are acoustic, forming a typical ‘cut-on/cut-off’ family of

modes, with the surface waves located far away from the family of acoustic modes.

Approximate solutions for surface waves can be found in the high frequency limit by assuming

ℑ{µm,n} is large in the eigenvalue equations (2.27), (2.28), (2.29)and (2.30). Developing the

approximate equations following [22], we introduce the Doppler corrected definitions,

ς =
√

1 − M2 , X̂ =
x

ς
, k0 = ςΩ , µ = Ωγ , α =

Ω

ς
(σ − M) . (2.67)

Noting thattan Ωγ → ±i for ℑ{Ωγ} → ±∞, the odd and even mode eigenvalue equations

(2.28) and (2.29) can both be approximated by

(1 − Mσ)2 ∓ ς3Zγ = 0 . (2.68)

On taking the second term to the right-hand side and squaringboth sides, a quartic equation in

σ is found indicating there are four surface wave solutions. If there is no mean flow (i.e.

M = 0) then there are just two possible solutions. The odd and eveneigenvalue equations

produce identical approximate equations. Applying the same analysis to the combined equation

(2.27) produces the approximate equation given by

[

(1 − Mσ)2 ∓ ς3Zγ
]2

= 0 , (2.69)

from which eight surface wave solutions are possible, including multiplicity.

For the symmetrically lined duct no flow case, the approximate eigenvalue solutions are given

by

µ = k0γ =
k0

Z
. (2.70)

The asymptotic solution is plotted against the exact solution in figure (2.16) and demonstrates

excellent agreement. The approximate equation for an asymmetrically lined duct is given by

[

(1 − Mσ)2 ∓ ς3Z−dγ
] [

(1 − Mσ)2 ∓ ς3Zdγ
]

= 0 , (2.71)

which is identical to that found by Rienstra for an asymmetrically lined annular duct [22]. The

analysis of Rienstra covering the regions and numbers of surface waves in the impedance plane

([22], p.127) provides an explanation of the strong variation inµ when integrating over

reactance, noted previously in figure (2.6), for the surfacewaves. The boundaries of the regions

containing additional surface wave modes, as derived by Rienstra, coincide with the reactances

in figure (2.6) where transition from acoustic modes to surface wave modes occurs
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FIGURE 2.15: Example axial wave number spectrum showing genuine acoustic modes and
surface wave modes.k0 = 6.37, Zd = 2 − 4i, Z−d = 1 − 5i, m = 0 to 40, n = 1 to 61,

~ = 0.8, M = 0.5.

(ℑ{Z} ≈ ±1.4). In this example eight surface wave modes are possible, andthe mode

eigenfunctions of the positive propagating modes are presented in figure (2.17). The first two

modes are acoustic surface wave modes, whilst the second twoare hydrodynamic surface wave

modes.
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2.9 Summary

• An eigenvalue solver for asymmetrically lined rectangularducts in the presence of a

uniform mean flow has been outlined.

• The solver uses the nonlinear initial-value-problem formulation of Eversman [19] to

obtain the eigenvalues in a robust manner.

• The capture of surface wave solutions is assured by implementing the impedance contour

approach of Rienstra [22] in combination with the admittance tracking of Eversman

[19, 20].

• The solver was validated against benchmark solutions from the literature [20] and finite

element solutions [38].

TABLE 2.1: First ten axial wave numbers with residual values and validation data for a two-
dimensional lined duct;M = −0.5, k0 = 0.5, β = 0.72 + i0.42.

Axial wave Axial wave
Axial wave numberαn numberαn

Mode numberαn Residual from Eversman [20] from FE [38]

0+ 1.52374−i1.01082 7.7826e-011 1.524−i1.011 1.524−i1.011
0− −0.77164+i0.12579 9.2526e-011−0.772+i0.126 −0.772+i0.126
1+ 0.67873−i4.53837 9.4774e-011 0.679−i4.538 0.679−i4.538
1− 0.89692+i2.22619 8.2610e-011 0.897+i2.226 0.897+i2.226
2+ −5.91842−i4.07768 3.2062e-011−5.918−i4.078 −5.918−i4.078
2− 1.29084+i5.63647 6.6208e-011 1.291+i5.636 1.291+i5.636
3+ 0.46488−i8.50142 1.6104e-011 0.465+i8.501 0.465−i8.501
3− 1.17817+i9.02529 2.1832e-011 1.178+i9.025 1.178−i9.025
4+ 0.45531−i12.31711 2.4301e-011 0.455−i12.317 0.455−i12.317
4− 1.04193+i12.59280 9.7770e-011 1.042+i12.593 1.042+i12.593
5+ 0.47699−i16.04607 6.9773e-011 0.477−i16.046 0.477−i16.047
5− 0.95539+i16.21324 9.5529e-011 0.955+i16.213 0.955+i16.214
6+ 0.49971−i19.73430 9.5107e-011 0.500−i19.734 0.500−i19.736
6− 0.89961+i19.84609 9.3339e-011 0.900+i19.846 0.900+i19.848
7+ 0.51903−i23.40160 8.9883e-011 0.519−i23.402 0.519−i23.405
7− 0.86135+i23.48153 9.1088e-011 0.861+i23.482 0.861+i23.485
8+ 0.53491−i27.05699 7.8200e-011 0.535−i27.057 0.535−i27.064
8− 0.83366+i27.11697 8.9087e-011 0.834+i27.117 0.834+i27.124
9+ 0.54795−i30.70505 3.5506e-012 0.548−i30.705 0.548−i30.718
9− 0.81276+i30.75171 8.8732e-011 0.812+i30.752 0.813+i30.765
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TABLE 2.2: First ten axial wave numbers with residual values and validation data for a two-
dimensional lined duct;M = −0.5, k0 = 0.5, β = 0.72 − i0.42.

Axial wave Axial wave
Axial wave numberαn numberαn

Mode numberαn Residual from Eversman [20] from FE [38]

0+ 1.28779−i0.53174 5.0556e-011 1.288−i0.532 1.288−i0.532
0− −0.6049+i0.19319 2.108e-011 −0.605+i0.193 −0.605+i0.193
1+ −0.27112−i4.6194 3.3004e-011 −0.271−i4.619 −0.271−i4.619
1− 0.25691+i2.42175 8.2322e-011 0.257+i2.422 0.257+i2.422
2+ −1.70761−i4.82454 3.4737e-011−1.708−i4.824 −1.708−i4.824
2− 0.76201+i5.90588 8.1507e-011 0.762+i5.906 0.762+i5.906
3+ 0.10895−i8.97452 8.684e-011 0.109−i8.975 0.109−i8.975
3− 0.85911+i9.39006 1.3796e-011 0.859+i9.39 0.859+i9.390
4+ 0.28768−i12.68452 5.5437e-011 0.288−i12.684 0.288−i12.685
4− 0.86424+i12.92002 2.4226e-011 0.864+i12.92 0.864+i12.920
5+ 0.37928−i16.33718 9.4626e-011 0.379−i16.337 0.379−i16.338
5− 0.84754+i16.48798 8.5933e-011 0.848+i16.488 0.848+i16.489
6+ 0.43543−i19.97405 4.5898e-011 0.435−i19.974 0.435−i19.976
6− 0.82824+i20.07818 5.4198e-012 0.828+i20.078 0.848+i20.080
7+ 0.47339−i23.6051 2.7741e-011 0.473−i23.605 0.473−i23.609
7− 0.81088+i23.68103 1.1115e-011 0.811+i23.681 0.811+i23.685
8+ 0.50076−i27.23368 7.8043e-011 0.501−i27.234 0.501−i27.247
8− 0.79616+i27.29138 8.8168e-011 0.796+i27.291 0.796+i27.298
9+ 0.52141−i30.86114 7.658e-011 0.521−i30.861 0.521−i30.874
9− 0.78382+i30.90641 2.0792e-011 0.784+i30.906 0.784+i30.920

TABLE 2.3: First four axial wave numbers with residual values and validation data for a two-
dimensional asymmetrically lined duct;M = 0.4, k0 = 9.3915, βd = 0.2813 + i0.1210,

β−d = 0.72 − i0.42.
Axial wave

Axial wave numberαn

Mode numberαn Residual from FE [38]

0+ 13.32735−i0.17745 1.0387e-010 13.327−i0.178
0− −31.03822+i0.04288 9.6317e-011−31.038+i0.043
1+ 12.99759−i0.25997 1.1321e-010 12.998−i0.260
1− −30.21476+i0.18634 1.9798e-010−30.215+i0.186
2+ 12.07437−i0.39058 1.3303e-010 12.073−i0.391
2− −28.74385+i0.49013 1.4643e-010−28.743+i0.491
3+ 10.59577−i0.56321 1.5061e-010 10.596−i0.563
3− −26.30835+i1.09528 1.9118e-010−26.308+i1.095



Chapter 2 Eigenvalue problems for rectangular ducts with uniform flow 38

TABLE 2.4: First four axial wave numbers with residual values and validation data for a two-
dimensional asymmetrically lined duct without flow;M = 0.0, k0 = 9.3915, βd = 0.2813 +

i0.1210, β−d = 0.72 − i0.42.
Axial wave

Axial wave numberαn

Mode numberαn Residual from FE [38]

0+ 17.91849−i0.68213 1.1811e-010 17.919−i0.682
0− −17.91849+i0.68213 1.1811e-010−17.919+i0.682
1+ 8.90489−i1.70311 1.5596e-010 8.904−i1.704
1− −8.90489+i1.70311 1.5596e-010 −8.904+i1.704
2+ 18.23024−i0.13267 1.5731e-010 18.230−i0.133
2− −18.23024+i0.13267 1.5731e-010−18.230+i0.133
3+ 17.09317−i0.51076 1.3029e-010 17.093−i0.511
3− −17.09317+i0.51076 1.3029e-010−17.093+i0.511

TABLE 2.5: Axial wave numbers in order of the first ten most accurate solutions from the
PDE solver, with residual values and validation data, for a three-dimensional asymmetrically
lined duct without flow;M = 0.0, k0 = 9.24, k0b/d = 18.48, βd = 0.2813 + i0.1210,

β−d = 0.72 − i0.42.
Axial wave Axial wave

Mode Axial wave numberαn numberαn

m n numberαn Residual from numerical solution from FE [38]

0 2 18.23024−i0.13267 1.5731e-010 18.2302−i0.1327 18.230−i0.133
1 2 18.16244−i0.13316 1.5731e-010 18.1624−i0.1332 18.162−i0.133
2 2 17.95752−i0.13468 1.5731e-010 17.9574−i0.1349 17.958−i0.135
0 0 17.91849−i0.68213 1.1811e-010 17.9188−i0.6828 17.918−i0.682
1 0 17.8496−i0.68476 1.1811e-010 17.85−i0.6853 17.850−i0.685
2 0 17.64135−i0.69284 1.1811e-010 17.6419−i0.6932 17.642−i0.693
3 2 17.61069−i0.13733 1.5731e-010 17.6103−i0.1377 17.611−i0.137
3 0 17.28873−i0.70698 1.1811e-010 17.2894−i0.7071 17.290−i0.707
4 2 17.11332−i0.14132 71.5731e-010 17.1122−i0.1419 17.112−i0.142
0 3 17.09317−i0.51076 1.3029e-010 17.0921−i0.5117 17.093−i0.511

TABLE 2.6: First five axial wave numbers, with residual values and validation data, for a three-
dimensional asymmetrically lined duct with flow;M = 0.4, k0 = 9.3915, k0b/d = 18.78,

βd = 0.2813 + i0.1210, β−d = 0.72 − i0.42.
Axial wave

Mode Axial wave numberαn

m n numberαn Residual from FE [38]

0+ 0+ 13.32735−i0.17745 1.0388e-010 13.327−i0.178
0− 0− −31.03822+i0.04288 9.7054e-011−31.038+i0.043
0+ 1+ 12.99759−i0.25997 1.1319e-010 12.998−i0.260
0− 1− −30.21476+i0.18634 1.9818e-010−30.215+i0.186
0+ 2+ 12.07437−i0.39058 1.3303e-010 12.073−i0.391
0− 2− −28.74385+i0.49013 1.4632e-010−28.743+i0.491
1+ 0+ 13.26049−i0.17862 1.0509e-010 13.261−i0.179
1− 0− −30.97165+i0.04309 9.635e-011 −30.972+i0.043
1+ 1+ 12.93070−i0.26156 1.1037e-010 12.931−i0.262
1− 1− −30.14560+i0.18732 1.9635e-010−30.146+i0.187



Chapter 3

Axially-segmented liners in rectangular

ducts with uniform mean flow

3.1 The mode-matching method

This chapter outlines a theoretical technique for calculating the performance of

axially-segmented wall linings in rectangular ducts with uniform flow. A semi-analytic method

known asmode-matchingis used to analyse the propagation of sound in an infinite flow duct

which contains multiple acoustically lined segments.

The mode-matching technique is a well-known method for formulating boundary-value

problems in waveguide theory [30]. The first application of the technique to jet engine duct

systems was made by Lansing and Zorumski [31], which represented the first in a series of

extensive analytical and experimental studies of axially-segmented wall linings supported by

NASA in the 1970s [32, 33, 12, 34, 35]. The geometry used in thestudies by Motsinger et al.

[12, 32] and Sawdy et al. [34, 33] was a two-dimensional rectangular duct, with symmetrical

lining configurations with up to three segments aligned axially, whilst Zorumski [35] dealt with

axisymmetric ducts. A mathematical model describing the mode-matching technique for

asymmetrical lining configurations was outlined by Unruh [26]. However, the model was only

applied to a single lining segment with one of the segment walls being rigid, and with a plane

wave source. This is in fact equivalent to a symmetrically lined duct of twice the height, with

only even modes included in the matching.

The geometry, as shown in Figure (3.1), considered in the mathematical analysis contained

here is a three dimensional rectangular flow duct, with an asymmetric lining configuration. A

mode-matching method is summarised for a single lining segment, then the method is extended

to include multiple segments.

39
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FIGURE 3.1: Geometry and notation for a three dimensional duct with axially-segmented wall
linings

3.2 Mode-matching theory for a single asymmetric liner segment

The basis of the mode-matching method described here is the condition of continuity of

acoustic pressure and axial particle velocity over the interface planes where the duct wall

impedance changes [31]. Since the pressure and axial particle velocity can be expressed in

terms of analytic functions, for simple uniform duct geometries, a simple and computationally

fast mode-matching scheme can be constructed. The theoretical basis for such a method is

presented here for a three-dimensional rectangular duct with a single asymmetric liner segment

located between rigid duct sections.

The basis of the analysis is the acoustic field in a three-dimensional duct with uniform flow.

Since the acoustic properties of the lined sections are constant across the ductz transverse

direction, there will be no scattering between modes of different orderm. Therefore, without



Chapter 3 Axially-segmented liners in rectangular ducts with uniform mean flow 41

loss of generality, the mode-matching scheme is restrictedto a fixed orderm, and the solution

for the pressure field can be expressed as a superposition of modal solutions for fixedm. The

non-dimensional harmonic pressure field is then expanded asa sum of left (+) and right (−)

travelling acoustic modes in the rigid and lined duct sections respectively as

pm(x, y, z) =
∞
∑

n=1

[

A+
m,nΨ+

m,n(y)e−ik+
m,nx + A−

m,nΨ−
m,n(y)e−ik−

m,nx
]

cos kzmz , (3.1)

pm(x, y, z) =

∞
∑

n=1

[

A+
m,nΨ+

m,n(y)e−iα+
m,nx + A−

m,nΨ−
m,n(y)e−iα−

m,nx
]

cos kzmz . (3.2)

For the problem of a single lined segment in a rigid duct the internal pressure field is divided

into three regionsI,II andIII. The pressure fields in the three regions are expressed by the

following superposition of modal solutions, where theeiωt andcos kzmz terms have been

omitted for convenience:

pI
m(x, y) =

∞
∑

n=1

[

A+I
m,nΨ+I

m,n(y)e−ik+
m,nx + A−I

m,nΨ−I
m,n(y)e−ik−

m,nx
]

, (3.3)

pII
m (x, y) =

∞
∑

n=1

[

A+II
m,nΨ+II

m,n(y)e−iα+
m,nx + A−II

m,nΨ−II
m,n(y)e−iα−

m,nx
]

, (3.4)

pIII
m (x, y) =

∞
∑

n=1

[

A+III
m,n Ψ+III

m,n (y)e−ik+
m,nx + A−III

m,n Ψ−III
m,n (y)e−ik−

m,nx
]

. (3.5)

The acoustic field within each duct section satisfies the momentum equation, in

non-dimensional form
[

∂

∂t
+ M

∂

∂x

]

û = −∇p̂ , (3.6)

which relates the acoustic particle velocityû = {û, v̂, ŵ} to the acoustic pressurêp. The

current mode-matching method only requires considerationof the axial component of the

acoustic particle velocity fields, which for the three regions are expressed by the following

modal expansions:

uI
m(x, y) =

∞
∑

n=1

[

B+I
m,nΨ+I

m,n(y)e−ik+
m,nx + B−I

m,nΨ−I
m,n(y)e−ik−

m,nx
]

, (3.7)

uII
m (x, y) =

∞
∑

n=1

[

B+II
m,nΨ+II

m,n(y)e−iα+
m,nx + B−II

m,nΨ−II
m,n(y)e−iα−

m,nx
]

, (3.8)

uIII
m (x, y) =

∞
∑

n=1

[

B+III
m,n Ψ+III

m,n (y)e−ik+
m,nx + B−III

m,n Ψ−III
m,n (y)e−ik−

m,nx
]

. (3.9)
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Using the momentum equation, the time harmonic axial particle velocity can be related to the

time harmonic acoustic pressure by

ûm,n =
km,n

(k0 − km,nM)
p̂m,n . (3.10)

Therefore, the modal amplitude coefficients in the rigid andlined duct sections respectively are

related by

B±
m,n =

k±
m,n

(

k0 − k±
m,nM

)A±
m,n , and B±

m,n =
α±

m,n
(

k0 − α±
m,nM

)A±
m,n . (3.11)

In the present problem, continuity of pressure and axial particle velocity is required at the

leading and trailing edges,x = xI andxII , of the liner. The residual errors that must be

minimised are:

pII − pI , uII − uI at x = xI ,

pIII − pII , uIII − uII at x = xII . (3.12)

The residual errors are minimised by means of the Galerkin method of weighted residuals,

which uses the assumption that the eigenfunctions of the adjoining duct regions form a

complete set [26]. This ensures that the residual errors areorthogonal to each eigenfunction in

the modal expansion, and as the eigenfunctions form a complete set, the residual must be zero.

The eigenfunctions of a rigid wall section are the weightingfunctions used to force the

matching residuals to zero, since they are known to be complete and orthogonal, with and

without the presence of a uniform mean flow. The modal expansions of the pressure and axial

particle velocity fields are truncated atn = N , whereN must be chosen such that the near field

in the vicinity of the matching interface planes is well resolved [64]. The following matching

equations for the acoustic pressure and axial particle velocity are then obtained at the liner

leading edge interfacex = xI

∫ 1

−1
Wm,l(y)

[

pII
m (xI , y) − pI

m(xI , y)
]

dy = 0 ,

∫ 1

−1
Wm,l(y)

[

uII
m (xI , y) − uI

m(xI , y)
]

dy = 0 . (3.13)

where the weighting functionsWm,l are the corresponding rigid duct eigenfunctions given by

Wm,l = cos (κm,l) cos (κm,ly) + sin (κm,l) sin (κm,ly), l = 1, . . . N . (3.14)



Chapter 3 Axially-segmented liners in rectangular ducts with uniform mean flow 43

Substituting for the modal expansions, and rewriting, results in matching equations of reduced

form, given by

N
∑

n=1

[

A+II
m,ne−iα+

m,nxI
c+
ln

]

+
N
∑

n=1

[

A−II
m,ne−iα−

m,nxI
c−ln

]

−
N
∑

n=1

[

A+I
m,ne−ik+

m,nxI
aln

]

−
N
∑

n=1

[

A−I
m,ne−ik−

m,nxI
aln

]

= 0 (3.15)

N
∑

n=1

[

A+II
m,ne−iα+

m,nxI
d+

ln

]

+

N
∑

n=1

[

A−II
m,ne−iα−

m,nxI
d−ln

]

−
N
∑

n=1

[

A+I
m,ne−ik+

m,nxI
bln

]

−
N
∑

n=1

[

A−I
m,ne−ik−

m,nxI
bln

]

= 0 (3.16)

l = 1, . . . N n = 1, . . . N ,

where

aln =

∫ 1

−1
Wm,l(y)ΨI

m,n(y)dy , (3.17)

c±ln =

∫ 1

−1
Wm,l(y)Ψ±II

m,n(y)dy . (3.18)

the above integrals are evaluated, taking advantage of the orthogonality of the mode

eigenfunctions, and the result is given in Appendix (A). Themomentum equation is used to

rewrite the acoustic particle velocity modal amplitudes as

b±ln =
k±

m,n
(

k0 − k±
m,nM

)aln , (3.19)

d±ln =
α±

m,n
(

k0 − α±
m,nM

)c±ln . (3.20)

It is now convenient to write the matching equations at the liner leading edgex = xI in a

combined matrix form
(

a+
I a−I

b+
I b−

I

)(

A+I

A−I

)

=

(

c+
I c−I

d+
I d−

I

)(

A+II

A−II

)

(3.21)

where the matrix elements are detailed in Appendix (A).

An identical analysis is applied to construct the combined matrix matching equations at the

liner trailing edgex = xII which is given by

(

a+
II a−II

b+
II b−

II

)(

A+III

A−III

)

=

(

c+
II c−II

d+
II d−

II

)(

A+II

A−II

)

. (3.22)

The combined matrix equations (3.21) and (3.22) then form a system of4N equations which

are used to evaluate the4N unknown coefficients.
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3.2.1 An Iterative scheme for obtaining modal amplitudes

The linear equations (3.21) and (3.22) can be solved directly [31], however the system can

often be ill-conditioned. This is due to the potentially large variation in modal axial decay

rates. In order to overcome potential problems, an iterative scheme as used by Cummings [65]

and Rienstra [66] is utilised to solve the system of equations for the unknown coefficients. In

order to achieve this, the combined matrix equations are written in a slightly altered form, with

the axial decay rates listed separately in a diagonal matrix. The matching equations for fixedm

at the liner leading edgex = xI , and trailing edgex = xII , are respectively

(

aln −c−ln
b+

ln −d−
ln

)(

e−ik+
m,nxI

0

0 e−iα−
m,n(xI−xII)

)(

A+I
m,n

A−II
m,n

)

=

=

(

c+
ln −aln

d+
ln −b−

ln

)(

A+II
m,n

A−I
m,n

)

, (3.23)

(

c+
ln −aln

d+
ln −b−

ln

)(

e−iα+
m,n(xII−xI) 0

0 e−ik−
m,n(xII−xIII)

)(

A+II
m,n

A−III
m,n

)

=

=

(

aln −c−ln
b+

ln −d−
ln

)(

A+III
m,n

A−II
m,n

)

. (3.24)

The combined matrix equations can be written in terms of the2N × 2N transfer matrices,TI

andTII , which relate the pressure and axial particle velocity at the liner interfaces,x = xI and

x = xII respectively, as follows:

(

A+II

A−I

)

= TI

(

A+I

A−II

)

, (3.25)

(

A+III

A−II

)

= TII

(

A+II

A−III

)

. (3.26)

The coefficientsA−I , A+II , A−II andA+III are initially set to zero, whilst the coefficients

A+I are determined from the source and the coefficientsA−III are chosen according to how

the duct termination is modelled. Where an anechoic termination is assumed, the coefficients

A−III are set to zero. The iteration proceeds by first using equation (3.25) to calculateA+II

andA−I , then using this result to calculateA+III andA−II using (3.26). A new iteration may

then proceed by using the revised value forA−II . The process is then repeated until the

variation in the coefficients is less than a specified tolerance. Generally it is found that very few

iterations are required for the coefficients to converge sufficiently.
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3.3 Mode-matching theory for multiple liner segments

The extension of the mode-matching method from single to multiple axial segmentsS is a

relatively simple exercise [26, 34]. Matching equations for each of theq = I, II . . . S + 1 liner

segment interfaces can be written as

(

c+q −c−(q+1)

d+q −d−(q+1)

) (

e−iα+q(xq+1−xq) 0

0 e−iα−(q+1)(xq+1−xq+2)

) (

A+q

A−(q+1)

)

=

=

(

c+(q+1) −c−q

d+(q+1) −d−q

)(

A+(q+1)

A−q

)

, (3.27)

or in terms of the transfer matrix as
(

A+(q+1)

A−q

)

= Tq

(

A+q

A−(q+1)

)

. (3.28)

This leads to a coupled system of(2S + 2) N equations with(2S + 2) N unknown coefficients

A±q, which are solved using the iteration scheme described in the previous section.

3.4 Alternative mode matching method for ducts with uniform

flow

Recently, an alternative mode matching method for ducts with uniform flow was proposed by

Hii [38] and Astley et al. [67]. The basis of this method is continuity of mass and axial

momentum at the liner interface matching plane, as opposed to the pressure and axial particle

velocity formulation described previously. Continuity isenforced by taking weighted forms of

the mass and axial momentum equations over a vanishingly small control volume around the

matching plane. In this way, finite contributions to the matching from line integrals on the duct

walls at the matching plane are recovered. These contributions appear to improve the mode

matching solutions, in particular the near field at the wall at the matching plane where a

discontinuous pressure field is apparent [67].

In this section the alternative mode matching method is applied to the case of a three

dimensional rectangular duct with uniform flow. The analysis begins with the acoustic

continuity and axial momentum equations, which in Cartesian coordinates are

[

ik0 + M
∂

∂x

]

p +
∂u

∂x
+

∂v

∂y
+

∂w

∂z
= 0 , (3.29)

[

ik0 + M
∂

∂x

]

u +
∂p

∂x
= 0 . (3.30)

Firstly, the weighted form of the continuity equation (3.29) is taken over a control volumeV
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FIGURE 3.2: Geometry and notation for the matching plane axial section.The admittance
varies smoothly betweenx = xq

−ε andx = xq
+ε.

around the liner interface matching plane, as shown in figure(3.2), to give

∫

V
ik0Wp − v

∂W

∂y
− w

∂W

∂z
dV

+

∫

V
∇ · [WMp + Wu,Wv,Ww] dV = 0 , (3.31)

where the weighting function is the rigid duct mode eigenfunction given by

Wm,n(y, z) = [cos (κm,l) cos (κm,ly) + sin (κm,l) sin (κm,ly)] cos (kzmz),

n = 1, . . . N. (3.32)

Applying Gauss’ divergence theorem to transform the secondvolume integral into a surface

integral gives

∫

V
ik0Wp − v

∂W

∂y
− w

∂W

∂z
dV

+

∫

s
[WMp + Wu,Wv,Ww] · ds = 0 . (3.33)
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The surface integral is split into six integrals, so the integral over the control volume surface is

equivalent to

∫

s
[WMp + Wu,Wv,Ww] · ds =

−
∫

s−ǫ

WMp + Wu dsx +

∫

sǫ

WMp + Wu dsx

−
∫

s−d

Wv dsy +

∫

sd

Wv dsy

−
∫

s−b/d

Ww dsz +

∫

sb/d

Ww dsz . (3.34)

The boundary conditions on the duct walls are

w = 0 on z = ±b/d (3.35)

v = ±
[

ik0 + M
∂

∂x

]

βp

ik0
ony = ±1 . (3.36)

On substituting the boundary conditions forv andw, the integrals over the side walls vanish,

whilst the integrals over the lined walls can be split into a surface integral and a line integral in

the following manner

−
∫

s−d

Wv dsy =

∫

s−d

Wβdp dsy +

∫

s−d

∂

∂x

[

WMβdp

ik0

]

dsy

=

∫

s−d

Wβdp dsy +

∫ b/d

−b/d

[

WMβdp

ik0

]ǫ

−ǫ

dz , (3.37)

∫

sd

Wv dsy =

∫

sd

Wβ−dp dsy +

∫

sd

∂

∂x

[

WMβ−dp

ik0

]

dsy

=

∫

sd

Wβ−dp dsy +

∫ b/d

−b/d

[

WMβ−dp

ik0

]ǫ

−ǫ

dz . (3.38)

The full weighted form of the continuity equation over the control volumeV can now be

expressed as

∫

V
ik0Wp − v

∂W

∂y
− w

∂W

∂z
dV

−
∫

s−ǫ

WMp + Wu dsx +

∫

sǫ

WMp + Wu dsx

+

∫

s−d

Wβdp dsy +

∫ b/d

−b/d

[

WMβdp

ik0

]ǫ

−ǫ

dz

+

∫

sd

Wβ−dp dsy +

∫ b/d

−b/d

[

WMβ−dp

ik0

]ǫ

−ǫ

dz = 0 . (3.39)

In order to obtain a matching equation at the liner interfaceplane the limitǫ → 0 is applied to
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equation (3.39). In this limit the volume integral and the surface integrals at the wallsy = ±1

will vanish, so long as any singularities in p andu at (x = 0, y = ±1) are less thanO(1/ǫ2)

andO(1/ǫ) respectively. Recognizing that anyz transverse dependence can be dropped

without loss of generality, the weighted form of the continuity equation is then

∫ 1

−1
W (y)M

[

p(y)II − p(y)I
]

dy +

∫ 1

−1
W (y)

[

u(y)II − u(y)I
]

dy

+
W (1)M

ik0

[

βII
−dp(1)II − βI

−dp(1)I
]

+
W (−1)M

ik0

[

βII
d p(−1)II − βI

dp(−1)I
]

= 0 . (3.40)

The next step is to take the weighted form of the axial momentum equation (3.30) over the

control volumeV , to give

∫

V
ik0Wu dV +

∫

V
∇ · [WMu + Wp, 0, 0] dV = 0 . (3.41)

As before, the surface integral is split into six integrals and, on taking the limitǫ → 0 and

dropping thez transverse dependence, the resulting matching equation for axial momentum is

∫ 1

−1
W (y)

[

p(y)II − p(y)I
]

dy +

∫ 1

−1
W (y)M

[

u(y)II − u(y)I
]

dy = 0 . (3.42)

Equations (3.40) and (3.42) are the matching equations to beapplied at the liner interface

matching planes. The linear system of equations can be formed into the matrix matching

equations given by equation (3.27) in the manner detailed inthe previous sections.

3.4.1 Liner edge conditions and hydrodynamic surface waves

It is noted that the matching equations (3.40) and (3.42) reduce to those given in equations

(3.13) of the pressure and axial particle velocity matchingmethod in the absence of a mean

flow. With mean flow, the above analysis is analogous to that ofMöhring and Eversman [68]

where conservation of the Blokhintzev acoustic energy equation is applied to a control volume

extending over a duct containing a finite length liner. The resulting energy conservation

equation contains terms local to the liner edges, which are analogous to the third and fourth

terms in equation (3.40) resulting from line integrals overthe lined duct walls. These terms are

interpreted by Möhring and Eversman as acoustic sources orsinks at the liner edges, since they

represent the difference between the summed outgoing and incident energy fluxes, and the rate

of work done on the liner within the control volume, which extends fromx = xI
+ǫ to xII

−ǫ and

y = −1 to 1. However, Quinn and Howe [69] pointed out that by taking these control volume

limits from x = xI
−ǫ to x = xII

+ǫ, effectively outside the liner edges, the contributions from the

edge terms disappear from the energy conservation equation, thus cannot represent sources or

sinks.

The analysis of Möhring and Eversman neglects the singularity in the axial gradient of wall

normal displacement∂ǫw/∂x = ∂(βp/ik0)/∂x at the liner edges, which stems from the slip
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flow boundary condition. This singular behaviour is included explicitly in the mass-momentum

matching equations within integrals over the lined wall surfaces.

Two difficulties occur when attempting to resolve the singularities using the mode-matching

method. The first is that although∂εw/∂x is singular at the liner edges,εw, p andu are

generally finite and non-zero [68, 70]. In order for the volume and surface integrals to vanish as

assumed forǫ → 0, they must be no more singular thanO(ǫ−2). This is in agreement with the

wall streamline condition in the Wiener-Hopf analysis of Rienstra and Peake [71] when

assuming all modes are stable. However, within the mode-matching procedure there is no way

to enforce this minimum edge condition, rather it is left until after the solution is computed to

check whether the modal amplitudes produce suitably converged liner edge displacements. In

practise, it is found that varying the number of cut-off modes in the matching can assist in this

process. Highly cut-off modes are very localised, having noeffect on the field away from the

liner interface plane, and so can contribute to resolving any singular behaviour at the walls.

However, their contributions to the field within the duct at the matching planes are highly

oscillatory and minimising the field residuals away from thewalls, whilst trying to resolve wall

singularities can prove to be troublesome. The issues in resolving higher order modes are seen

in the validation section of this chapter (in the form of highly oscillatory behaviour localised at

the matching planes) and were previously noted in a mode-matching technique by Nijboer

[72, 73].

The second difficulty involves the presence of hydrodynamicsurface wave modes, which occur

for certaink0, M 6= 0 andZ. Rienstra [22] showed that, under certain conditions, one of these

modes (per impedance and azimuthal order) is a downstream running instability, with an

invariably large growth rate for impedances away from the real axis [74]. Whether the presence

of this mode is physically realistic is a subject for discussion [29, 71, 74, 75]. Rienstra and

Peake [71] found that it is possible that such a mode can have genuine acoustic effects upon the

mode scattering at a rigid-lined duct interface using a Wiener-Hopf solution. However,

Rienstra and Tester [74] reasoned that including unstable modes in the field description within

the lined duct section is futile, and somewhat against the assumption of small perturbations

made in the linearised model used here. In addition, the Ingard-Myers boundary condition

[11, 57] assumes small deflections of the wall streamline, thus large deflections would be

unacceptable and, judging by the wall localised nature of the surface wave modes, this may

well be the case. Here we take the approach of Rienstra and Tester by assuming that all modes

decay in the direction of travel, thus the downstream running instability mode becomes an

upstream running damped mode.

A further difficulty encountered with the hydrodynamic surface waves is that their exponential

behaviour at the wall can cause conditioning problems when attempting to invert the matrix on

the right-hand-side of matrix matching equation (3.27). The problem stems from attempting to

integrate the weighted surface wave eigenfunctions using equations (A.2) when

|ℑ{µm,n}|≫ 1, which is often the case for hydrodynamic surface waves. Thevalue of the

integrands become exponentially large. In attempting to circumvent this problem it is possible
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to write the hydrodynamic surface wave eigenfunction as a complex exponential for

|ℑ{µm,n}|≫ 1 by noting that

Ψn(y) = Rn cos κny + Sn sin κny ,

= cos κny ± i sin κny ,

= e±iκny . (3.43)

The mode eigenfunctions may then be normalised to their wallvalues before integrating. This

requires the normalisation of the surface wave mode to the wall on which it is localised, of

which prior knowledge is required. It is possible to infer this from the behaviour of the mode

eigenvalue in the tracking procedure of the eigenvalue solver detailed in the previous chapter

(2). A surface wave mode eigenvalue will vary rapidly along the impedance contour of the wall

to which it is localised, and is hardly affected by the impedance contour of the opposite wall.

In parts of this work the hydrodynamic surface waves may be ignored for four reasons. The

first being that the unstable modes are included as decaying modes, which may have an effect

on the scattering [71]. The second is that these modes have very large decay rates, so do not

contribute to the field away from the liner interface planes.The third is that the mode order of

these modes is rather hard to predict, and generally occur atvery high mode orders, which

would require the cumbersome calculation of very many modes. The final reason is that, for

practical purposes, they may need to be excluded in order to perform a matrix inversion in the

matching procedure. In addition, it will be seen in the following validation sections that, their

exclusion does not appear to have any perceptible effect on the power transmission.

3.5 Expressions for induct sound power

A convenient quantifier of the performance of acoustic liners in ducts is the sound power

transmission loss∆PWL, i.e. the difference between the incident acoustic power and the

transmitted acoustic power. This is calculated by comparing acoustic powers in rigid walled

sections either side of the lined region. Several expressions for sound power in flow ducts are

available in the literature [76, 77], and for this study the more widely used definition of Morfey

[76] is chosen. The axial component of the local instantaneous modal intensity is defined as

I±x m,n =
| p±m,n |2

2ρ0c0

[

(

1 + M2
)

ℜ
{

ρ0c0u
±

m,n

p±m,n

}

+ M

(

1 +

∣

∣

∣

∣

ρ0c0u
±

m,n

p±m,n

∣

∣

∣

∣

2
)]

. (3.44)

The modal sound power is found by integratingIx over the duct cross-section, to give

W±
m,n =

∫ b

−b

∫ d

−d
I±x m,ndy dz. (3.45)



Chapter 3 Axially-segmented liners in rectangular ducts with uniform mean flow 51

The average axial acoustic intensity of a duct mode is then

〈I±x m,n〉s =
W±

m,n

s
, (3.46)

wheres = 4bd is the duct cross-sectional area. The total sound powerW± is found by

summing the modal powers of all the cut-on modesNc

W± =
db

ρ0c0

Nc
∑

n=1

εm,n|A±I
m,n|2

[(

1 + M2
)

Re{̟±
m,n} + M

(

1 + |̟±
m,n|2

)]

, (3.47)

where

̟±
m,n =

k±
m,n

k0 − k±
m,nM

, εm,n =











4 m = 0, n = 1

1 m 6= 0, n 6= 1

2 otherwise

.

The sound power transmission loss, in decibels, is then given by

∆PWL = 10 log10

[

W+I

W+(S+1)

]

. (3.48)

3.6 Comparison with Wiener-Hopf solutions

A Wiener-Hopf solution [28] to the problem of a uniform symmetric liner, in the absence of

flow, with an even incident mode, was coded in Fortran 90 for the purpose of validating the

mode-matching method previously described. The Wiener-Hopf and mode-matching methods

are known to be closely related [28] and, therefore, the former can provide a good indication of

the quality of solutions given by the latter. The coding of Wiener-Hopf solutions for other liner

configurations and flow was not attempted. For zero flow, this was primarily due to the

mode-matching method being similar across all configurations, so the single uniform

symmetric lining solution would suffice to confirm that the method was valid. Where a mean

flow is present, the Wiener-Hopf solution is complicated by issues surrounding the choice of

edge conditions and instability waves [78, 29]. For these reasons, benchmarking for other

lining configurations and flow has been done by comparison against published results from the

literature.

Extensions to the ordinary Wiener-Hopf technique [79] havebeen applied by Koch [28] to

derive an analytic solution for the scattering of sound by multiple liner elements in the absence

of flow. The basic structure of this Wiener-Hopf solution begins with the formulation of the

generalised Wiener-Hopf equations for the problem. This isundertaken through application of

Fourier transforms, applied with respect to the axial direction, to the governing Helmholtz

equation and associated boundary conditions. The solutionof the resulting generalised

Wiener-Hopf equations first requires factorisation into two split functions of the Wiener-Hopf
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kernel contained within the equations. The kernel is in facta combination of the dispersion

relation, and characteristic equations governing the ductregions, where the poles and zeros of

the kernel correspond to the axial wavenumbers of the rigid walled and lined segments

respectively. Since the required wavenumbers have alreadybeen evaluated for use in the

mode-matching method, no further work was necessary in their calculation. The split functions

simply separate the information for the left- and right-running modes, which is necessary in the

solution since the boundary conditions are different for each direction.

The second step in the solution involves the decomposition,either by inspection or via a

decomposition theorem ([79], p.13), of the generalised Wiener-Hopf equation, firstly by

assuming the generalised equation to be an ordinary Wiener-Hopf equation for the liner leading

edge discontinuity, and secondly by concentrating on the liner trailing edge discontinuity.

Application of the residue theorem to integrals in the decomposition leads to the introduction

of correction terms due to the finite length of the liner ([28], p.469). The final step in the

solution is the inverse Fourier transform of the original, and now known, transform function.

From this all acoustical quantities of interest can be computed.

3.6.1 Wiener-Hopf solution for a uniform symmetric liner in the absence of a
mean flow

The following analysis for a uniform symmetric liner in the absence of a mean flow with an

even incident mode uses the formulation of Koch [28]. In order to calculate the acoustical

quantities of interest the transmission and reflection factors,T̂m,2s/Êm,2r andR̂m,2s/Êm,2r,

for each of theNc cut-on modes are required. These are given by the following equations

T̂m,2s

Êm,2r

=
ieilII2km,2s

(1 + δs,0) δkkm,2sK
s
+ (−δk2km,2s)

[

N
∑

n=0

Q2n

δk2km,2s − 2αm,2n

C1
2n

Êm,2r

]

, (3.49)

R̂m,2s

Êm,2r

=
i

(1 + δs,0) δkkm,2sK
s
− (−δk2km,2s)

×

[

k0

(

1/ZII
)

(km,2r + δkkm,2s) Ks
+ (−2km,2r)

+

N
∑

n=0

P2n

δk2km,2s + 2αm,2n

C2
2n

Êm,2r

]

,

δk =

{

1 ℑ{k} = 0

−1 ℑ{k} 6= 0
, 1 ≤ r ≤ Nc + 1, 1 ≤ s ≤ Nc + 1. (3.50)

The coefficientsQ2n andP2n, the correction termsC1
2n andC2

2n, and the kernel functionsKs
+

andK
s
− are given in Appendix (B). If it is assumed that the source is not affected by reflections,

and the exit duct is anechoically terminated, then the totaltransmission and reflection
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coefficients are given by

τm,2r =

Nc
∑

s=0

τm,2r,2s =
2 − δr,0

δkxkxm,2r2d

Nc
∑

s=0

δkxkxm,2s2d

2 − δs,0

∣

∣

∣

∣

∣

T̂m,2s

Êm,2r

∣

∣

∣

∣

∣

2

, (3.51)

̺m,2r =
Nc
∑

s=0

̺m,2r,2s =
2 − δr,0

δkxkxm,2r2d

Nc
∑

s=0

δkxkxm,2s2d

2 − δs,0

∣

∣

∣

∣

∣

R̂m,2s

Êm,2r

∣

∣

∣

∣

∣

2

. (3.52)

The sound power transmission loss for the liner is then defined using the total transmission

coefficient by

∆PWL = 10log10 (1/τm,2r) . (3.53)

3.6.2 Validation of the mode-matching method against Wiener-Hopf solutions in
the absence of a mean flow

The first validation case is given by Koch ([28], p.473) for uniform liners of various depths,

where the source is the fundamental mode. The specific impedance of the

single-degree-of-freedom acoustic liner is modelled using the following

Z = R + i [k0Mr − cot(k0D)] , (3.54)

whereR is the facing sheet resistance,Mr is the non-dimensional facing sheet mass inertance,

andD is the non-dimensional cavity depth. The corresponding sound power transmission loss

curves presented in figure (3.3) show that results obtained using the mode-matching method

compare very well with those obtained using Koch’s Wiener-Hopf solutions.

The modal reflection and transmission coefficients are important parameters to determine

whether the wall impedance discontinuity has been adequately modelled in the mode-matching

method. The singular derivatives that appear in the solution near to the interface plane at the

duct wall are not an intrinsic part of the mode-matching method procedure. Instead, it is

expected that the mode-matching solution will converge to the correct value as the number of

modesN in the procedure is increased. The above Wiener-Hopf analysis provides an analytic

description for the reflection and transmission coefficients, which are compared to the

mode-matching solutions in figure (3.4). The solutions fromboth methods compare very well,

demonstrating the adequacy of the mode-matching method when twenty cut-off modes are

included in the procedure.

The calculation of the mode eigenvalues represents the majority of the computation time for the

mode-matching solution, so it is of interest to see the effect of reducing the number of modes.

The reflection coefficients obtained using two, ten and twenty cut-off modes are shown in

Figure (3.5). The solutions are very close, even with only two cut-off modes included, and with

ten modes the solution is indistinguishable from that using20 modes. The mode-matching

procedure of Sawdy et al. [34] included ten modes in total but, with the extra processing power
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FIGURE 3.3: Attenuation of the fundamental mode(0, 1) by uniform symmetric liners of depth
D: Solid line, Wiener-Hopf solution; dots, Mode-matching solution. —, D = 0.0272; —,
D = 0.054; —, D = 0.108; —, D = 0.162; —, D = 0.24; —, D = 0.272. d = 0.09365m,

lII = 4.34, R = 1.4, Mr = 0.05475, c0 = 345.09ms-1, ρ0 = 1.21kgm-3.

now available, including all cut-on modes plus twenty cut-off modes appears adequate in terms

of processing time and solution accuracy.

The second validation case is for the realistic bypass duct geometry and frequency range of a

modern turbofan aeroengine, where the source is the blade passing frequency (BPF) mode

(24,0). The annular bypass duct is approximated using a rectangular duct [28, 10] by imposing

a periodicity condition at the side walls. Very good agreement was achieved between the

Wiener-Hopf and mode-matching solutions for the sound power transmission loss, presented in

Figure (3.6) against the Helmholtz number, where the (24,1)mode does not propagate below

k0 = 6. Agreement between the solutions is also very good for the transmission and reflection

coefficients, shown in Figure (3.7), which displays resultsfor the first four modes only,

although the agreement is equally good over all the higher order cut-on modes.

3.7 Comparison of mode-matching methods with Finite Element

solutions

This section provides a comparison of the pressure-particle velocity (PU) and mass-momentum

(MM) mode-matching methods, with Finite Element (FE) solutions for two dimensional

rectangular ducts with and without a uniform mean flow. Solutions for uniform and
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FIGURE 3.4: Transmission and reflection coefficients for a uniform symmetric liner in the
absence of a mean flow. Solid line, Wiener-Hopf solution; dots, Mode-matching solution.—
, mode (0,1);—, mode (0,3);—, mode (0,5);—, mode (0,7);— ·, total. d = 0.09365m,

lII = 4.34,D = 0.272, R = 1.4, Mr = 0.05475, c0 = 345.09ms-1, ρ0 = 1.21kgm-3.
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FIGURE 3.5: Effect of truncation on reflection coefficients for a uniformsymmetric liner in the
absence of a mean flow. Problem parameters as Figure (3.4): (—), 20 cut-off modes;- -, 10

cut-off modes;- -, 2 cut-off modes.

two-segment, symmetric and asymmetric liners are comparedat a single frequency of

k0 = 6.67. Six test cases are compared here, the details of each are listed in tables (3.1) and

(3.2). The geometry and impedances are chosen to be realistic of a modern high bypass ratio

turbofan engine at approach for a frequency at twice the Blade Passing Frequency (BPF). The

incident mode at the planex = 0 in each test case is a right-running plane wave mode,n = 1,

of unit intensity. The commercial finite element solver ACTRAN TM/2006 is used to generate

solutions of the convected wave equation on a uniform, structured grid consisting of 8-noded

quadrangular elements (quadratic interpolation order) [80]. Two over-specified meshes are

used, for the single and two segment cases respectively, each having 58 radial and 284 axial

elements.
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FIGURE 3.6: Attenuation of the BPF mode(24, 1) by a uniform symmetric liner for realistic
aeroengine parameters: Solid line, Wiener-Hopf solution;dots, Mode-matching solution.d =

0.3 m, ~ = 0.6, lII = 5, R = 3, Mr = 0.05475, D = 0.0167, M = 0.
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(a) Totalτm,2r and modalτm,2r,2s transmission coefficients.
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(b) Total̺m,2r and modal̺ m,2r,2s reflection coefficients.

FIGURE 3.7: Transmission and reflection coefficients of the first four cut-on modes for a uni-
form symmetric liner in the absence of a mean flow with a periodicity condition applied at the
side walls. Solid line, Wiener-Hopf solution; dots, Mode-matching solution.—, mode (24,1);
—, mode (24,3);—, mode (24,5);—, mode (24,7);— ·, total. d = 0.3 m, ~ = 0.6, LII = 5,

D = 0.0167, R = 3, Mr = 0.05475, c0 = 345.09 ms−1, ρ0 = 1.21 kgm−3.



Chapter 3 Axially-segmented liners in rectangular ducts with uniform mean flow 59

TABLE 3.1: General conditions for 2D test cases.
Helmholtz number k0 6.6689
Duct half height d [m] 0.3175
Total duct length lduct 10.9606
Speed of sound c0[ms−2] 347
Density of air ρ0[kgm−3] 1.317
Impedance A ZA 1 − 9.934i
Impedance B ZB 1.5 − 1.255i
Impedance C ZC 1.05 − 0.978i
Impedance D ZD 1.57 − 1.314i

Leading rigid duct lI 0.315
Trailing rigid duct lend 0.315

TABLE 3.2: Configurations for 2D test cases.

Case 1 Case 2 Case 3 Case 4 Case 5 Case 6
M 0 0 0 0.278 0.278 0.278
ZI

d ZA ZA ZB ZC ZC ZD

ZI
−d ZA ZB ZA ZC ZD ZC

ZII
d ZA ZC

ZII
−d ZB ZD

lII 10.3045 10.3045 2.0069 10.3045 10.3045 2.0069
lIII 8.2977 8.2977

3.7.1 No flow test cases

In the absence of flow the PU and MM mode-matching methods are equivalent. TestCase 1is

a single symmetric liner. Bottom and top wall pressures fromthe FE and mode-matching

solutions are plotted in figure (3.8) and demonstrate excellent agreement. The radial pressure

profiles at the matching planesx = xI , xII are plotted in figure (3.9), where the

mode-matching solution constructed from the mode eigenfunctions of each adjoining duct

section are plotted for comparison with the FE solution. Thecomparison is excellent except for

very slight deviations at the walls. The reflected and transmitted modal intensities are plotted in

figure (3.10) and show excellent agreement. Only the even modesn = 1, 3... are excited, since

the problem is symmetric. Scattering of energy from the plane wave into higher order radial

modes occurs, with large reflected energy levels in modes near cut-off.
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FIGURE 3.8: Case 1: Comparison of 2D mode matching and finite solutions for a single
symmetric liner without flow. Liner interface matching planes indicated by dashed lines. Solid

line, finite element solution;•, p-u mode matching solution.
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FIGURE 3.9: Case 1: Comparison of mode matching and finite element radialpressure solu-
tions at liner interface matching planes. Solid line, finiteelement solution;•, mode matching

solution (lefthand segment modes);•, mode matching solution (righthand segment modes).
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FIGURE 3.10: Case 1: Comparison of scattered modal intensities from modematching and
finite element methods due to an incident plane wave of unit intensity. Top plot, Transmitted

modal intensity; Bottom plot, Reflected modal intensity.
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FIGURE 3.11: Case 1: Mode matching solution convergence study. Interface matching plane
casing wall pressure. (—) , N/Nc = 1; (-•-), N/Nc = 2; (- -) , N/Nc = 3; (— ·), N/Nc = 5;

(· · ·), N/Nc = 9; (—), N/Nc = 17; (—), finite element solution.

The convergence of the mode-matching method to the FE solution is checked by increasing the

number of modesN included in the matching process. The convergence of the casing wall

pressure at the liner interface matching planesx = xI , xII is presented in figure (3.11), and it

is seen to converge to the FE solution asN is increased. The ratioN/Nc is used to compare

solutions, whereNc is the number ofcut-onmodes. The convergence of the radial pressure

profile at the first matching planex = xI is presented in figure (3.12). The radial pressure is

constructed from both the rigid and lined duct modes, and it is seen that fair number of higher

order modes must be used order to adequately reconstruct theradial pressure, especially when

using lined duct modes. Finally, the error in the transmitted and reflected total intensities

I =
∑Nc

n=1 In compared with the FE solution is compared in figure (3.13), where the measure

of error is calculated from

Error = |(IPU − IFE/IFE) | . (3.55)

The error in the transmitted intensity is around 2 orders of magnitude lower than for the

reflected intensity.

For Case 2the wall pressure solutions for a single asymmetric liner without flow are presented

in appendix figure (C.1), with the corresponding scattered modal intensities shown in appendix

figure (C.2), and all show excellent agreement. Energy is seen to scatter into all mode orders,

since the problem is now asymmetric.

The final no flow comparison,Case 3, is for a two segment, asymmetric liner. The wall

pressure plots in figure (3.14) show good agreement, except for the region around the second
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FIGURE 3.12: Case 1: Mode matching solution convergence study. Interface matching plane
x = xI radial pressure near the casing wall. (—), N/Nc = 1; (-•-), N/Nc = 2; (- -),
N/Nc = 3; (— ·), N/Nc = 5; (· · ·), N/Nc = 9; (—), N/Nc = 17; (—), finite element

solution.
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liner interface matching plane atx = xII . The radial pressure profiles shown in figure (3.15)

indicate that the pressure matching atx = xII is not as good as at the liner leading and trailing

edges. A comparison of the scattered intensities plotted infigure (3.16) reveals differences of

the order of 1 percent, or a difference in the sound power transmission loss of around 0.05dB.
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FIGURE 3.14: Case 3: Comparison of 2D mode matching and finite solutions for a two seg-
ment, asymmetric liner without flow. Liner interface matching planes indicated by dashed lines.

Solid line, finite element solution;•, p-u mode matching solution.
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FIGURE 3.15:Case 3: Comparison of mode matching and finite element radialpressure solu-
tions at liner interface matching planes. Solid line, finiteelement solution;•, mode matching

solution (lefthand segment modes);•, mode matching solution (righthand segment modes).
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FIGURE 3.16: Case 3: Comparison of scattered modal intensities from modematching and
finite element methods due to an incident plane wave of unit intensity. Top plot, Transmitted

modal intensity; Bottom plot, Reflected modal intensity.
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3.7.2 Uniform flow test cases

In the presence of a uniform mean flow the mass-momentum formulation provides an

alternative to the usual pressure-velocity mode-matchingmethod. Therefore, in the test cases

presented here both mode-matching solutions are compared against FE solutions. The mean

flow speed is chosen to be at a realistic approach condition ofM = 0.278. Three test cases of

identical geometry to the no flow cases are presented here, with test case details provided in

table (3.2).

TestCase 4is a single symmetric liner and the computed wall pressures are presented in figure

(3.17). The finite element model predicts pressure singularities at the liner interface planes,

which are poorly predicted by the PU matching, but very well predicted by the MM matching

method. The computed radial pressure profiles at the matching planes are compared in figure

(3.18). It is seen that the PU matching solution compares fairly well with the FE solution across

most of the duct section, but the steeper pressure gradientsnear the walls are not captured so

well. In contrast, the MM matching solution compares very well with the FE solution. High

order oscillations are seen in the radial pressure profiles,which correspond to the very high

order modes included in the matching. If the wall line integral terms are removed from the

calculation, the result (dashed line in figure (3.18)) is identical to that of the PU matching. This

indicates that the line integrals are essential to accurately determine the acoustic field. In figure

(3.19), the oscillations seen in the radial pressure profiles, decay rapidly away from the liner

interface planes, since the high order modes have large decay rates. This occurs in the region of

the pressure singularity, indicating that high order modesare required to resolve the singularity.

The scattered modal intensities are compared in figure (3.20), and show that the MM method

provides a much better comparison with the FE solution than the PU method.

The convergence of the PU method against the FE solution is now checked by increasing the

number of modesN in the matching procedure. Convergence of the casing wall pressure at the

matching planes is plotted in figure (3.21) and shows that even with many cut-off modes

included, the PU method struggles to accurately predict thepressure singularity. This is

confirmed in figure (3.22), by plotting the radial pressure near the casing at the first matching

planex = xI using either rigid or lined duct modes. The same convergencestudy was carried

out for the MM method and plots of the casing wall pressure in figure (3.23) demonstrate that

the pressure singularity is well resolved. However, convergence plots of the radial pressure

near the casing in figure (3.24) demonstrate how the inclusion higher order modes, although

helping to resolve the wall singularity, induce oscillations to the field across the matching

planes. The difference in the scattered intensities computed via the mode matching methods to

the FE solution are given in figure (3.25) with the MM method atleast an order of magnitude

closer than the PU method. From this convergence study the recommended maximum number

of modes to include in the mode matching procedure isN/Nc = 10, so that radial matching

plane oscillations are minimised, and the wall pressure singularities are at least well resolved.

It should be noted that the differences in intensity are rather small, so the effects upon a sound
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FIGURE 3.17: Case 4: Comparison of 2D mode matching and finite solutions for a single
symmetric liner with flow. Liner interface matching planes indicated by dashed lines. Solid
line, finite element solution;•, p-u mode matching solution;•, mass-momentum mode matching
solution; Dashed line, mass-momentum mode matching solution without wall line integrals.
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FIGURE 3.18:Case 4: Comparison of mode matching and finite element radialpressure solu-
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; Solid line, finite element solution;•, mode matching solution (lefthand segment modes);•,

mode matching solution (righthand segment modes).
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FIGURE 3.20: Case 4: Comparison of scattered modal intensities from modematching and
finite element methods due to an incident plane wave of unit intensity. Top plot, Transmitted

modal intensity; Bottom plot, Reflected modal intensity.
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FIGURE 3.21:Case 4: Pressure-velocity mode matching solution convergence study. Interface
matching plane casing wall pressure. (-•-) ; N/Nc = 2, (- -) ; N/Nc = 3, (— ·) ; N/Nc = 5,

(· · ·) ; N/Nc = 9, (—); N/Nc = 17, (—); finite element solution.

power transmission loss calculation are insignificant. Therefore, for practical purposes, fewer

modes may be utilised to reduce the computation time.
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FIGURE 3.22:Case 4: Pressure-velocity mode matching solution convergence study. Interface
matching planex = xI radial pressure near the casing wall. (-•-), N/Nc = 2; (- -), N/Nc =
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FIGURE 3.23:Case 4: Mass-momentum mode matching solution convergence study. Interface
matching plane casing wall pressure. (-•-), N/Nc = 2; (- -), N/Nc = 3; (— ·), N/Nc = 5;

(· · ·), N/Nc = 9; (—), N/Nc = 17; (—), finite element solution.



Chapter 3 Axially-segmented liners in rectangular ducts with uniform mean flow 71

10 15 20
0.9

0.91

0.92

0.93

0.94

0.95

0.96

0.97

0.98

0.99

1

10 15 20
0.9

0.91

0.92

0.93

0.94

0.95

0.96

0.97

0.98

0.99

1

|p||p|
yy

(a) rigid duct modes (b) lined duct modes

FIGURE 3.24:Case 4: Mass-momentum mode matching solution convergence study. Interface
matching planex = xI radial pressure near the casing wall. (-•-), N/Nc = 2; (- -), N/Nc =

3; (— ·), N/Nc = 5; (· · ·), N/Nc = 9; (—), N/Nc = 17; (—), finite element solution.

Wall pressure plots and matching plane radial pressure profiles for the single asymmetric liner

of testCase 5are shown in appendix figures (C.3) and (C.4). Again, the MM matching proves

to be superior to the PU matching compared with the FE solution, which is also seen in the

predictions of scattered intensities shown in appendix figure (C.5).

A final comparison against the FE solution is made for the two segment, asymmetric liner with

uniform flow (testCase 6). The wall pressure solutions are presented in figure (3.26)and show

that the MM matching compares much better with the FE solution than the PU matching,

especially at the matching planes. A comparison of the radial matching plane pressures in

figure (3.27) confirms this. It is noted that the comparison atthe second matching plane

x = xII , between the two lined sections, appears at first to be ratherpoorer than at the leading

and trailing matching planes, between rigid and lined sections. However, it is found that the

finite element solver struggles to provide an adequately converged solution, even on the

currently over-specified mesh (58 by 284 quad elements). A refined mesh of 116 by 568 quad

elements (equating to 55 radial and 49 axial elements per wavelength) was used to resolve the

problem. The pressure and velocity potentialφ solutions at the second matching planex = xII

compared with the mode matching solutions are shown in figures (3.28) and (3.27). It is seen

that by refining the mesh the FE solution converges towards the MM mode matching solution.

The velocity potential is plotted here since the FE method solves the governing equations in

terms of velocity potential, thus the pressure solution is generated in post-processing involving

the use of numerical gradients, which may introduce error inthe pressure field. The velocity

potential is calculated for the mode-matching solutions byassuming modal solutions in
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velocity potential form which are related to the pressure mode eigenfunction by

Ψn = −ρ0
Dφn

Dt
. (3.56)

The scattered modal intensities for the case are shown in figure (3.30), and show that the

refined FE and MM matching solutions produce the most favourable comparison.
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FIGURE 3.26: Case 6: Comparison of 2D mode matching and finite element solutions for a
two segment, asymmetric liner with flow. Liner interface matching planes indicated by dashed
lines. Solid line, finite element solution;•, p-u mode matching solution;•, mass-momentum

mode matching solution.
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3.7.3 Inclusion of hydrodynamic surface wave modes

In this section, the effects of including the hydrodynamic surface wave modes in the MM

matching procedure are assessed. The example used isCase 4, but with a rigid bottom wall.

The eigenvalues and axial wavenumbers of the surface wave modes are given in table (3.3),

where the unstable hydrodynamic surface wave mode is included as a decaying mode in the

left-running set of modes.

TABLE 3.3: Surface wave mode solutions for Case 4 with rigid hub wall

Surface wave type Transverse wavenumberµn Axial wavenumberαn

right-running acoustic 3.8848+i4.1272 10.5579-i1.1921
left-running acoustic 14.9543+i6.8932 -15.0240+i10.1510

unstable hydrodynamic 171.7040-i248.3906 254.8387+i178.5613
stable hydrodynamic 180.6213-i52.1542 -58.4615-i187.5200

A finite element solution was obtained using an over-specified mesh (116 by 568 elements).

Mass-momentum mode matching solutions were obtained with and without the hydrodynamic

surface wave modes included in the matching procedure. The casing pressures around the

matching planes obtained from the three solutions are compared in figure (3.31). Away from

the matching planes the mode-matching solution including the hydrodynamic surface wave

modes provide an improved comparison with the FE solution. The radial pressure profiles for
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the top half of the duct are compared in figure (3.32). When thehydrodynamic surface wave

modes are included the pressure profiles compare very well with the FE solutions away from

the lined wall, with a strong reduction in the high order modeoscillations in the lined segment

pressures. The scattered modal intensities are compared infigure (3.33) and demonstrate that

the inclusion of the hydrodynamic surface wave modes provides the best comparison with the

FE solution. The reflected intensity is improved by around 7 percent, but the transmitted

intensity is hardly affected.

These results demonstrate that the hydrodynamic surface wave modes must be included to

accurately reconstruct the field. The highly wall localisedbehaviour of these modes means that

they are most suitable in reconstructing the singular behaviour of the field at the wall around

the liner interface planes. Since the mode matching can be interpreted simply as an inverse

‘source location’ problem [67], if the source or observer are near the wall, they are in the

regime of the surface wave modes. So, as Rienstra and Tester [74] noted, if they are overlooked

the computed field may not be converged. This can prove problematic for numerical solutions

of the field by the FE method since a mesh that is highly refined at the walls and around the

liner interface planes may be required to resolve the wall localised surface wave modes and

their effect upon scattering, which has been noted by Hii [38]. This is not a problem for the

analytic solutions presented here.
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FIGURE 3.31: Comparison of mass-momentum mode matching with and withouthydrody-
namic surface waves, and finite element casing pressure solutions at liner interface matching
planes. —, finite element solution;—, mode-matching without hydrodynamic surface wave

modes;—, mode-matching with hydrodynamic surface wave modes.
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3.8 Summary

• A mode-matching method has been developed to model the propagation of sound in

rectangular ducts with uniform mean flow, and a finite length asymmetric wall lining.

• By matching mass and axial momentum equations an extra matching term, related to the

singularity in the axial gradient of wall displacement, is found relative to the standard

pressure-velocity matching

• The method can use a single-mode or multi-mode description of the sound source

• The method was extended to include multiple liner segments of different lengths and

impedances.

• A Wiener-Hopf solution by Koch [81], for a uniform symmetricliner in the absence of

mean flow was outlined.

• A comparison of mode-matching and Wiener-Hopf solutions inthe absence of mean flow

showed excellent agreement.

• A comparison of mode-matching results with solutions from aFinite Element method

found very good agreement. It was found that a highly refined finite element mesh is

required to adequately resolve the field around the matchingplanes.



Chapter 4

Optimisation of bypass duct acoustic

liners

Rearward propagating fan noise has become an increasingly important turbofan engine noise

source with the current trend of high bypass-ratio designs.The increased size of the fan and

outlet guide vanes (OGV) leads to higher tonal and broadbandsource levels, which become

dominant sources at takeoff and approach [82]. A key method for mitigating the rearward

propagating rotor-stator interaction tones [6] and fan-OGV broadband noise [83] is the use of

passive attenuating acoustic liners in the bypass duct walls. The placement and design of the

liners must be such that the attenuation performance is maximised over a wide frequency range,

for different operating conditions and source content. A number of analytic (e.g. ray acoustics,

modal methods) and computational techniques (e.g. finite element, time or frequency domain

LEE, finite difference, discontinuous Galerkin methods) for acoustic propagation in lined flow

ducts are available for evaluating the liner attenuation performance. However, computational

cost is a limiting factor in the use of computational methodsin the optimisation process. In

fact, finite element methods for the convected wave equationare currently the most mature of

the available methods and have only very recently begun to beused in the liner optimisation

process [84, 85]. Analytic methods have seen greater use, since they are computationally

cheap, but are limited to highly idealised models [86, 32, 33, 25]. However, they can give good

approximations of attenuation performance over wider frequency ranges, for multi-modal

source descriptions and multiple liner segments within reasonable time scales.

81
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TABLE 4.1: ISVR one-sixth scale no flow bypass duct rig geometry.

Total liner length llined/d 10
Hub radius h[m] 0.1191

Casing radius r[m] 0.1985
Annulus half height d[m] 0.0397

Hub-to-tip ratio ~ 0.6
Speed of sound c0[ms−1] 343
Density of air ρ0[kgm−3] 1.21

In this chapter, the optimisation of uniform and axially-segmented acoustic liners for the

attenuation of fan noise in turbofan bypass ducts is demonstrated. Parts of this work have

contributed to a Department for Trade and Industry (DTI) sponsored research project, Aircraft

Noise Disturbance Alleviation by Novel TEchnology (ANDANTE), focusing on fan noise

propagation and control in bypass ducts [87]. The liner attenuation performance is calculated

using the pressure-velocity mode-matching method described in chapter (3). The geometry

chosen for the following studies is identical to that of the one-sixth scale bypass duct rig used

at the ISVR [88], the details of which are in table (4.1). The mode-matching model is a

rectangular approximation to the actual annular geometry,and the duct widthb is determined

from the average radiusRa to be

b/d = πRa =
π(1 + ~)

2
= 2.5133 . (4.1)

The non-dimensional specific liner impedance is that for a single-degree-of-freedom liner,

which is determined using a commonly used semi-empirical model [89], given by

Z = R + i [k0Mr − cot(k0D)] , (4.2)

whereR is the facing sheet resistance,Mr is the non-dimensional facing sheet mass inertance,

andD is the non-dimensional cavity depth.

4.0.1 Source assumptions

Knowledge of the fan noise source is essential to accuratelypredict the noise signature of this

source that is heard by observers on the ground. The first stage of any prediction method is the

determination of in-duct propagation, for which a modal decomposition of the source is

inevitably required. However, determination of the modal structure of the tonal and broadband

sources is difficult, owing to the complex source mechanismsand lack of adequate

measurement techniques. Predictions for tonal noise sources have very recently been

demonstrated [90], at considerable computational cost, through full three-dimensional

nonlinear CFD calculations of the fan assembly. Also, experimental determination of the

propagating modal sound field structure has recently been demonstrated [91, 92], and methods
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for separating rotor and stator-based broadband sources have been suggested, but not

implement as yet [93, 94].

Owing to these difficulties past researchers have successfully used rotor-stator interaction mode

theory to determine the dominant azimuthal mode orders [6].The assumptions for the radial

mode breakdown of tones is rather more difficult, in the absence experimental results.

Typically, the propagating radial modes are assumed to be uncorrelated, such that the

attenuation of each mode can be calculated separately, and assigned equal energy at the source

plane. Statistical analysis suggests that for single azimuthal mode orders, and where few radial

modes are cut-on, random variation of the incident radial mode phases produces a

non-Gaussian power attenuation at the duct exit [95, 96, 97]. The implication for in-duct

propagation predictions is that, where few modes propagate, the choice of the phase of the

mode is more likely to affect the power attenuation (i.e. higher standard deviation). Therefore,

in the absence of a computationally expensive statistical source description, care must be taken

when drawing conclusions from rotor-stator mode predictions, with few propagating modes,

using an uncorrelated mode assumption.

The broadband fan noise source is typically modelled by assuming excitation of all cut-on

modes in an uncorrelated manner, with equal energy per mode [98, 99]. Statistical analysis has

shown that this is a reasonable assumption which improves for higher frequencies

[95, 96, 97, 100]. This approach is applied to the current work, and is compared to

experimental results from the ISVR one-sixth scale bypass duct rig in figure (4.1). The

experimental sound power transmission loss is determined from microphone measurements at

the source (reverberation chamber) and a far field polar array (anechoic chamber). Further

details of the test setup and data processing can be found in Sugimotoet al. [88]. Four different

liner configurations for an axially uniform geometry are compared: uneven liner with three

matching planes; single symmetric liner; single casing liner; single hub liner [101]. Finite

element solutions for the annular geometry are included forcomparison. Predictions were

made at a series of one-third octave band centre frequencies, with around 300 propagating

modes at the highest frequency considered. The rectangularmode-matching solutions provides

a good comparison with the measured data for the uneven and symmetric linings. For builds

with inner or outer rigid walls the rectangular model under-and over-predicts both the FE

solution and experimental data. This is due to differences in the lined areas and mode

eigenfunctions between rectangular and annular ducts.

Hence, in this work multi-mode propagation is modelled by assuming an equal energy

distribution per uncorrellated cut-on mode at each frequency.

4.1 Single segment impedance optimisation

The simplest optimisation exercise for finite length linersis that of a single, symmetric liner

with a single incident mode. A common method used to determine peak attenuation and
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FIGURE 4.1: Comparison of power transmission loss from mode matching and FE solutions
with experimental data for lined annular ducts without flow,for a broadband noise source.-·-,

FE end correction;-�-, Experiment;-⋄-, ACTRAN FE;-+-, Mode-matching.

optimum liner design is the use of isocontours of attenuation in the impedance plane, here

measured in terms of the sound power transmission loss∆PWL. By determining isocontours

for a range of frequencies and Mach numbers the optimum linerimpedances can be obtained as

an empirical function of frequency, and off-optimum attenuation sensitivity can also be easily

assessed [89]. Isocontours were obtained for the rig geometry at nine one-third octave

frequencies between 300 Hz and 2500 Hz for a single incident mode.

Results for incident modes (0,1) and (0,3) are presented in figures (4.2) and (4.3) respectively.

At low frequencies, where few modes are propagating, the location of the peak attenuation

corresponds to impedances near the so-called ‘Cremer optimum’ of the least attenuated mode,

which is indicated on the figures, along with higher order mode pair optima. Such optima were

ascertained by Cremer [24] and Tester [25, 102] to correspond to branch points in the complex

eigenvalue plane where certain modes coalesce, and may obtain their maximum axial decay

rates according to infinite duct theory. Interestingly, even when the incident mode is of higher

order, the optimum impedance still occurs near the first Cremer mode pair value. This is a

direct result of the mode scattering which occurs at the liner interfaces. To demonstrate this, the

scattered amplitudes due to the second even mode are plottedin figure (4.4), for the first

(ZC1 = 1.2903 − 1.0334i) and second (ZC2 = 0.71252 − 0.27501i) mode pair Cremer
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FIGURE 4.2: Isocontours of∆PWL (normalised to the peak value) in the impedance plane
for an incident plane wave mode(0, 1). ×, 1st even mode pair Cremer optimum;+, 2nd even

mode pair Cremer optimum;�, 3rd even mode pair Cremer optimum;lliner = 10, M = 0.

TABLE 4.2: First four right-running axial wavenumbers for impedancesnear 1st and 2nd
Cremer mode pair optima atk0 = 4.3634, M = 0.

Even mode number α+ atZC1 = 1.2903 − 1.0334i α+ atZC2 = 0.71252 − 0.27501i

1 4.0368 − 0.5778i 2.4106 − 3.5122
2 4.0167 − 0.5994i 4.0594 − 0.1172
3 0.5030 − 4.1375i 2.2561 − 3.6084
4 0.2538 − 8.1510i 0.7298 − 8.0563

∆PWL [dB] 32.9124 15.9640

optimum impedances atk0 = 4.3634. Note thatZC1 is close to the finite length optimum

demonstrated in figure (4.3b). For both impedances, a large proportion of the incident mode

energy scatters into the Cremer mode pair. However, forZC2 the attenuation rate of the least

attenuated mode, as shown in table (4.2), is much lower than the Cremer mode pair. Thus, by

the end of the liner the least attenuated mode contains the highest proportion of the energy to

be scattered at the trailing liner interface.

Returning to the isocontours, as the frequency and number ofpropagating modes increase, the

optimum impedance no longer corresponds to the Cremer values. It was shown by Tester [25]

that the attenuation rate [dB] of the first Cremer mode pair decreases like20.73/k0, and that
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FIGURE 4.3: Isocontours of∆PWL (normalised to the peak value) in the impedance plane for
an incident even mode(0, 3). ×, 1st even mode pair Cremer optimum;+, 2nd even mode pair

Cremer optimum;�, 3rd even mode pair Cremer optimum;lliner = 10, M = 0.

attenuation rates of other higher order cut-on modes at the optimum impedance can have

similar or even lower decay rates than the mode pair. The implication is that scattering into the

mode pair does not necessarily provide the highest power loss with a finite length liner when

higher order modes are cut-on. The finite length optima foundhere are away from the Cremer

optima, since they allow more scattering into higher order modes in the lined section, thus a

higher power attenuation is achieved. This is demonstratedin figure (4.5) by plotting the

scattered modal amplitudes for impedances near the first Cremer mode pair

(ZC1 = 2.581 − 2.067i) and finite length (ZFL = 2.247 − 3.421i) optima atk0 = 8.7268. For

ZC1, scattering in the lined section occurs mainly into the modepair, but forZFL a much

higher proportion occurs into higher order modes. The resulting power loss is higher forZFL

despite the cut-on mode decay rates being lower than forZC1, as shown in table (4.3).

The same behaviour noted above is seen when flow is introduced. An example of isocontours

of attenuation for a uniform flowM = 0.4 are presented in figure (4.6). The convection effect

of the flow increases the downstream mode cut-on ratio, hencemore downstream modes can

propagate and peak attenuation rates are lower than the corresponding quiescent case.

Attenuation isocontours over the impedance plane are plotted, for a multi-mode source with
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(a) Near 1st mode pair Cremer optimum impedanceZC1 = 1.2903 − 1.0334i.
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(b) Near 2nd mode pair Cremer optimum impedanceZC2 = 0.71252 − 0.27501i.

FIGURE 4.4: Scattered even mode amplitudes for a single symmetric linersegment due to
incident 2nd even mode.lII = 10, M = 0.
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(a) Near 1st mode pair Cremer optimum impedanceZC1 = 2.581 − 2.067i.
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(b) Near finite length optimum impedanceZC2 = 2.247 − 3.421i.

FIGURE 4.5: Scattered even mode amplitudes for a single symmetric linersegment due to
incident plane wave mode.lII = 10, M = 0.
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TABLE 4.3: First four right-running axial wavenumbers for impedancesnear 1st Cremer mode
pair and finite length optima atk0 = 8.7268, M = 0.

Even mode number α+ atZC1 = 2.581 − 2.067i α+ atZFL = 2.247 − 3.421i

1 8.5548 − 0.2731i 8.8477 − 0.2122i
2 8.5406 − 0.2814i 8.3830 − 0.1188i
3 6.3529 − 0.3275i 6.3525 − 0.1795i
4 0.6642 − 3.1141i 0.3814 − 3.0358i

∆PWL [dB] 11.2443 15.5439
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(a)k0 = 1.3090, Nc = 1 (b) k0 = 2.1817, Nc = 2 (c) k0 = 2.7490, Nc = 2

(d) k0 = 3.4907, Nc = 3 (e)k0 = 4.3634, Nc = 4 (f) k0 = 5.4543, Nc = 4

(g) k0 = 6.9815, Nc = 5 (h) k0 = 8.7268, Nc = 7 (i) k0 = 10.9086, Nc = 8

FIGURE 4.6: Isocontours of∆PWL (normalised to the peak value) in the impedance plane for
an incident plane wave mode(0, 1). ×, 1st mode pair Cremer optimum;•, DHC optimum;

lliner = 10, M = 0.4.

and without flow, in figures (4.7) and (4.8) respectively. A deterministic, gradient-based

optimisation method known as Dynamic Hill Climbing (DHC) [103] was used to determine the

optimum impedances for plane wave and multi-mode sources with flow, which are indicated

(•) on the isocontours in figures (4.6) and (4.7) respectively.The variation in the optimum

impedance with frequency is shown in figure (4.9) and demonstrates that the multi-mode

optima do not correspond to those of the plane wave mode at high frequencies. Peak

attenuation levels, as shown in figure (4.10), are higher than the plane wave case since the

higher order incident modes are more easily attenuated. At high frequencies, the peak

attenuation level is virtually independent of frequency.
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(a)k0 = 1.3090, Nc = 6 (b) k0 = 2.1817, Nc = 18 (c) k0 = 2.7490, Nc = 23

(d) k0 = 3.4907, Nc = 39 (e)k0 = 4.3634, Nc = 56 (f) k0 = 5.4543, Nc = 83

(g) k0 = 6.9815, Nc = 131 (h) k0 = 8.7268, Nc = 204 (i) k0 = 10.9086, Nc = 312

FIGURE 4.7: Isocontours of∆PWL (normalised to the peak value) in the impedance plane for
a multi-mode source.×, 1st even mode pair Cremer optimum;+, 2nd even mode pair Cremer
optimum;�, 3rd even mode pair Cremer optimum;•, DHC optimum;lliner = 10, M = 0.4.
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(a)k0 = 1.3090, Nc = 6 (b) k0 = 2.1817, Nc = 16 (c) k0 = 2.7490, Nc = 21

(d) k0 = 3.4907, Nc = 34 (e)k0 = 4.3634, Nc = 48 (f) k0 = 5.4543, Nc = 72

(g) k0 = 6.9815, Nc = 115 (h) k0 = 8.7268, Nc = 174 (i) k0 = 10.9086, Nc = 259

FIGURE 4.8: Isocontours of∆PWL (normalised to the peak value) in the impedance plane for
a multi-mode source.×, 1st even mode pair Cremer optimum;+, 2nd even mode pair Cremer

optimum;�, 3rd even mode pair Cremer optimum;lliner = 10, M = 0.
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FIGURE 4.9: Optimum impedance for increasing Helmholtz numberk0 (14 1/3rd-octave band
centre frequencies).− • −, DHC optimum for plane wave source;· · • · ·, DHC optimum for
multi-mode source;×, 1st even mode pair Cremer optimum;+, 2nd even mode pair Cremer

optimum;�, 3rd even mode pair Cremer optimum;lliner = 10, M = 0.4.
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FIGURE 4.10:Peak power transmission loss for segmented liner optimum impedances (1/3rd-
octave band centre frequencies).−•−, single segment optimum for plane wave source;−•−,
two-segment optimum for plane wave source;− • −, four-segment optimum for plane wave
source;· · • · ·, single segment optimum for multi-mode source;· · • · ·, two-segment optimum for
multi-mode source;· ·•··, four-segment optimum for multi-mode source.lliner = 10, M = 0.4.
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Examples of the DHC search pattern and convergence are presented in appendix figure (C.6)

for the plane wave case atk0 = 8.7268. The design parameters are constrained to0.3 ≤ R ≤ 4

and−10 ≤ X ≤ 1. The algorithm is restarted at three random points, and eachtime is seen to

converge to the same design point.

4.2 Two-segment impedance optimisation

The optimisation of a liner with two symmetric segments of equal length was undertaken using

a stochastic optimisation method called Adaptive Simulated Annealing (ASA) [104]. This

method involves random sampling of the design space, which is important for high dimensional

optimisation problems in order to avoid convergence to local optima [105]. The optimum

impedances at each frequency for both plane wave and multi-mode sources are plotted in figure

(4.11). For the plane wave source, the trend shown is for a leading segment of low resistance,

and a trailing segment of higher resistance. This behaviourwas previously noted by

Baumeister [40] and Sawdy et al. [34] as being due to the preferential scattering of sound in the

leading liner segment, making it susceptible to absorptionin the trailing liner segment. The

maximum improvement of the peak attenuation over the uniform liner is shown in figure (4.10)

to occur at aroundk0 = 10, which corresponds well with the results of Baumeister [40]. The

results for the multi-mode source show improvement in peak attenuation at low frequencies,

but none at high frequencies. The optimum segment impedances are virtually equivalent to the

uniform liner configuration. This indicates that two-segment liners are potentially very

effective for attenuating the rotor-stator interaction noise around 2BPF, but provide no benefit

over uniform liners for multi-mode sources at discrete frequencies.

Examples of the ASA search pattern and convergence are presented in appendix figure (C.7)

for the plane wave case atk0 = 8.7268. The algorithm begins with a random walk over the

design space, and progresses to a downhill search involvingrandom moves. The search

requires a large number of iterations to obtain convergencewhich is a known feature, and

disadvantage, of the ASA method [105]. However, the algorithm is quite robust, owing to its

stochastic nature, and is statistically guaranteed to provide global convergence [104].

4.3 Four-segment impedance optimisation

The optimisation of a liner consisting of four symmetric segments of equal length was

undertaken using an Adaptive Range MultiObjective GeneticAlgorithm (ARMOGA)

[106, 107]. Genetic Algorithms (GA) allow for higher dimensional design spaces to be

searched in a more efficient manner. This is achieved by searching from a population, rather

than a single parameter set, obtained in a manner which provides good coverage of the design

space. The principle behind GAs is that of Darwinian theory of natural selection, where the

‘fittest’ members of a population are favoured to produce offspring. Here, the cost function
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evaluations required in constructing each ARMOGA population were calculated

simultaneously over a number of processors on a Linux High Power Computing (HPC) cluster.

A maximum of sixty generations with a population size of forty was specified, with the cost

function again being the power transmission loss. The optimised impedance values are plotted

in figure (4.12) where low resistances again dominate in the leading segments for the plane

wave case. The peak attenuation levels are plotted in figure (4.10) and it is seen that the

ARMOGA algorithm fails because levels equal to or greater than those of the optimised

two-segment liner are not obtain in the plane wave case. Thishighlights a common problem in

high dimensional optimisation problems where convergenceto local optima occurs due to a

variety of reasons, such as inadequate sampling of the design space or certain features of the

problem (such as the rapid variations seen around the Cremeroptima). Recent studies

[108, 100] of segmented liners have attempted to circumventsuch convergence problems by

using hybrid approaches that combine surrogate models of the problem, which are intelligently

constructed and updated, with a variety of search techniques. It is expected that future work

involving liner optimisation will utilise such techniquesin combination with parallel

computing methods in order to obtain populations or design sets in an efficient manner.
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FIGURE 4.11: Two-segment liner optimum impedances for increasing Helmholtz numberk0

(14 1/3rd-octave band centre frequencies).− ◦ −, 1st segment ASA optimum for plane wave
source;− • −, 2nd segment ASA optimum for plane wave source;· · ◦ · ·, 1st segment ASA
optimum for multi-mode source;· · • · ·, 2nd segment ASA optimum for multi-mode source;

lliner = 10, lII = lIII = 5, M = 0.4.
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FIGURE 4.12: Four-segment liner optimum impedances for increasing Helmholtz numberk0

(13 1/3rd-octave band centre frequencies).− • −, ARMOGA optimum for plane wave source;
· · • · ·, ARMOGA optimum for multi-mode source.lliner = 10, lII = lIII = lIV = lV = 2.5,

M = 0.4.

For the multi-mode case the largest benefits over the uniformoptima are seen at low

frequencies, but these are only improvements over already very large attenuation rates.

Towards higher frequencies the improvement drops to around1.5dB.

Examples of the ARMOGA search pattern and convergence are presented in appendix figure

(C.8) for the plane wave case atk0 = 8.7268. The search appears to be converging, but more

generations are required.

4.4 Optimisation of SDOF liners

The optimisation simulations in the previous section are aimed at determining the optimum

resistance and reactance values for sound power attenuation at individual frequencies. A

common method to determine the best liner design parametersis to take a best fit from a

database of the calculated optimum resistances and reactances over frequency [32]. However,

in this section the optimum liner design parameters of resistanceR and non-dimensional liner

depthD are determined directly, to provide the best attenuation performance over a specific

frequency range. The aim of this work was to provide optimum uniform and segmented liner

designs for testing in the ISVR no flow bypass duct rig [87]. The SDOF liner model given in

equation (4.2) is used to calculate the impedance, where themass inertance is held at

Mr = 0.1259. The optimisation is constrained to realistic values of resistance0.5 ≤ R ≤ 4
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and model scale liner cavity depth0.002m ≤ D × d ≤ 0.02m. Optimisation of

axially-segmented liners was carried out for up to four liner segments, with variable liner

segment lengths. The segment lengths were constrained suchthat the minimum length was

0.03m, and the total lined duct length was held atlliner = 10.

4.4.1 Multi-mode source

In order to optimise liner performance over a frequency bandwidth, a cost function is

prescribed which combines the attenuation obtained at a discrete set of frequencies. The cost

function used here is calculated by assuming a source with a constant power spectrum across a

discrete set of frequencies. At each frequency, the source is assumed to excite all cut-on modes

with equal energy. The combined frequency cost functionCF is then obtained by comparing

the sums of incident and transmitted modal powers,

CF = 10 log10

[
∑

f

∑

m

∑

n W inc
k0,m,n

∑

f

∑

m

∑

n W trans
k0,m,n

]

. (4.3)

The one-third octave band centre frequencies chosen to construct the cost function were

k0 = 5.45, 8.73, 13.74, 17.45, chosen on the basis of their importance for rotor-stator

interaction noise around 2BPF and Noy weighting curves. Alloptimisations are carried out

using the ARMOGA search algorithm, utilising a Linux computer cluster to compute the GA

populations.

An isocontour plot of theCF cost function over the resistance-liner depth plane, for a

multi-mode source, is presented in figure (4.13), together with the ARMOGA search points.

The cost function is seen to increase towards higher resistances, a trend which was seen for

discrete frequency optimisation in figure (C.6), which suggests that the higher frequencies

dominate the optimisation.

Optimisation of axially-segmented liners was carried out for symmetric and asymmetric liners.

However, the optimisation algorithm was found to be inadequate for the asymmetric problems.

Therefore, the results presented here are for the symmetriccases only, and arenot considered

to represent the global optima. The optimised resistances,liner depths and liner length ratios

for one, two, three and four segment liners are presented in table (4.4). The trend seen is for at

least one long segment with similar properties to the optimum single segment liner. The power

attenuation spectra of the four optimised liners are presented in figure (4.14), which shows that

any benefits over the optimised uniform liner are very small,or incur a penalty at other

frequencies. A thin liner is prescribed in order that the high frequency attenuation is maximised

(the uniform liner depth being effectively tuned tok0 = 17.45).



Chapter 4 Optimisation of bypass duct acoustic liners 97

0.5 1 1.5 2 2.5 3 3.5 4
0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

0.018

0.02

3

4

5

6

7

8

9

10

11

Resistance

M
o
d
e
ls

ca
le

lin
e
r

d
e
p
th[

m
]

CF [dB]

FIGURE 4.13: Isocontours of combined frequency cost functionCF in the resistance-liner
depth plane for a multi-mode, multi-frequency source.•, ARMOGA search points;•, ARMOGA

optimum;lliner = 10, M = 0.
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FIGURE 4.14: Power transmission loss spectra for optimised axially-segmented symmetric
liner designs for a multi-mode source. —, single segment;—, two segments;—, three segments;

—, four segments;lliner = 10, M = 0.
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FIGURE 4.15: Power transmission loss spectra for optimised axially-segmented symmetric
liner designs for a rotor-stator interaction tonal source.—, single segment;—, two segments;

—, three segments;—, four segments;lliner = 10, M = 0.

4.4.2 Rotor-stator interaction tonal source

Optimisation for a rotor-stator interaction tonal source was undertaken. The source is modelled

by assuming an equal distribution of energy between uncorrelated cut-on radial modes at the

relevant azimuthal order. The source is assumed to be generated by a twenty-four bladed fan, at

a shaft rotation frequency of 145Hz, and fifty-two stator vanes. For these conditions, the

interaction tone of most significance is generated at an azimuthal orderm = −4, at 2BPF

k0 = 5.06, consisting of five cut-on radial modes. The optimised linerparameters are presented

in table (4.5), and the trend seen is for short leading linerswith low resistance followed by a

long segment with a similar liner to the optimised uniform liner. The power transmission loss

spectra for the optimised liners are shown in figure (4.15), and show that the multi-segment

liners provide no benefit away from the target frequency of 2BPF.

4.4.3 Multi-objective optimisation

A multi-objective function optimisation was implemented in an effort to improve the high

frequency multi-mode attenuation performance, whilst maintaining the rotor-stator interaction

tone attenuation. The noise source for this case consists ofa flat input power spectrum with

equal energy per uncorrelated cut-on mode at four frequenciesk0 = 5.06, 8.73, 13.74, 17.45.

The level of them = −4 rotor-stator interaction tones atk0 = 2BPF = 5.06 is set at 15dB

above the multi-mode power level. The two cost functions aretheCF cost function and the
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rotor-stator interaction tone power transmission loss∆RS . The∆RS cost function was

constrained to between 10 dB and 15dB in order to avoid results with unmeasureable

attenuation levels. The ARMOGA algorithm was implemented in its multi-objective mode, and

applied to symmetric liner configurations with mean flowM = 0.4. The optimised liner

configurations are presented in table (4.6), and again the trend seen is for at least one longer

segment with similar liner properties to the optimised uniform liner. Power transmission loss

spectra are shown in figure (4.16) and demonstrate little improvement over a uniform liner. The

spectra for the multi-mode source with and without flow are also plotted for reference, and

show that the tuning frequency is simple adjusted to accountfor the 2BPF tonal source.
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FIGURE 4.16: Power transmission loss spectra for multi-objective optimised axially-
segmented symmetric liner designs for a multi-mode source and rotor-stator interaction tonal
source. —, single segment; - -,∆PWL optimised single segment,M = 0; · · ·, ∆PWL opti-
mised single segment; -•-, R = 0.8976, D = 0.1228 single segment;—, two segments;—,

three segments;—, four segments;lliner = 10, M = 0.4.

The multi-objective search pattern is plotted for the two cost functions in figure (C.9). The

∆RS cost function surface has a distinct optimum atR = 0.8976 D = 0.1228, whilst theCF

cost function has several local optima, but a similar globaloptima. The transmission loss

spectra of this global optima is shown in figure (4.16) to havea very localised peak at 2BPF. By

constraining the∆RS cost function, the final optima provides a better broadband attenuation.

The algorithm convergence is shown in figure (C.10), where the mean and standard deviation

of each cost function for each generation are also plotted. The ARMOGA algorithm performs a

range adaptation every five generations, which correspondsto the drops seen in the cost

functions. An upward trend is seen for every five generationsof theCF cost function over the

entire optimisation period. However, this upward trend stops at around 1700 iterations for the
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∆RS cost function, indicating that by this point the algorithm has reached the upper constraint

of 15 dB, and concentrates upon maximising theCF cost function. The optimum result is

actually achieved at the 841st iteration, which indicates that, for the successive generations, the

algorithm is rather inefficient for this problem.

4.5 Summary

• Rectangular duct mode-matching, using an uncorrelated multi-mode source assumption,

compared well against experimental results for a lined annular duct.

• Optimisation of resistance and reactance was demonstratedfor single and multi-segment

liners for plane wave and multi-mode sources at discrete frequencies. Segmented liners

can provide large benefits over uniform liners at relativelylow frequencies for tonal

sources. However, benefits for multi-mode sources were shown to be small.

• Optimisation of SDOF segmented liners was demonstrated using a combined frequency

cost function, for both a tonal source and a multi-mode source. Segmented liners were

seen to provide little benefit over uniform liners for a broadband source, since the

optimisation was found to be dominated by the high frequencyattenuation levels. Large

benefits were possible for a tonal source.

• A multi-objective function optimisation was demonstratedfor a broadband source with

an interaction tone. It was found that the tonal noise attenuation level needs to be

constrained in order to avoid designs that are highly localised to the frequency of the

tone.
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TABLE 4.4: ARMOGA optimised resistance, liner depth and liner segmentlength ratios, for a multi-modal source with combined frequency cost function.M = 0.

Segments CF cost Segment length ratios RII DII RIII DIII RIV DIV RV DV

1 13.03 3.927 0.05088
lII/lliner

2 13.06 0.85 3.946 0.05088 2.634 0.06071
lII/lIII lIII/lliner

3 13.63 0.28 0.165 1.306 0.24584 1.597 0.19018 3.504 0.05139
lII/lIII lIII/lIV lIV /lliner

4 13.19 0.194 0.209 0.247 1.026 0.05189 2.477 0.06171 3.825 0.05340 3.832 0.05063
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TABLE 4.5: Optimised resistance, liner depth and liner segment lengthratios, for a rotor-stator interaction tonal source with combined frequency cost function.
M = 0.

Segments ∆PWL cost [dB] Segment length ratios RII DII RIII DIII RIV DIV RV DV

1 38.05 1.651 0.08741
lII/lliner

2 42.14 0.0951 0.805 0.12494 1.653 0.08791
lII/lIII lIII/lliner

3 48.64 0.382 0.293 0.576 0.13098 2.110 0.05365 1.497 0.09295
lII/lIII lIII/lIV lIV /lliner

4 47.27 0.171 0.393 0.279 0.569 0.12695 0.997 0.10806 1.992 0.07078 1.596 0.09244
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TABLE 4.6: Multi-objective optimised resistance, liner depth and liner segment length ratios, for a multi-mode source and rotor-stator interaction tonal source.
M = 0.4.

Segments CF cost ∆RS cost [dB] Segment length ratios RII DII RIII DIII RIV DIV RV DV

1 13.16 14.93 2.023 0.08715
lII/lliner

2 13.42 14.96 0.082 1.008 0.19521 2.077 0.08086
lII/lIII lIII/lliner

3 13.36 15.00 0.563 0.685 1.932 0.09194 2.198 0.37935 1.857 0.09144
lII/lIII lIII/lIV lIV /lliner

4 13.48 14.86 0.440 0.366 0.614 0.704 0.19421 1.403 0.10025 2.061 0.08665 2.685 0.05290



Chapter 5

A RANS CFD analysis of acoustic

propagation in bypass ducts with flow

Analytic methods can provide useful approximate solutionsfor acoustic propagation in bypass

ducts for idealised uniform geometry and inviscid mean flow.However, the acoustic effects of

the real curved duct geometry and non-uniform, viscous flowsmay only be calculated using

numerical methods. Recent approaches to the problem were based upon solving the Linearised

Euler Equations (LEE) on a predetermined mean flow field basedon solution of the

Navier-Stokes equations (viscous) or Euler equations (inviscid). Solution methods have

included time and frequency domain solutions using Finite Element Methods (FEM)

[109, 110], and time domain, high-order finite difference solutions [48, 49].

In this chapter, the effects of realistic mean flows upon the in-duct acoustic propagation of a

2BPF rotor-stator interaction tone is demonstrated, for a quasi-axisymmetric rigid bypass duct.

A proprietary Rolls-Royce general purpose finite volume CFDcode,HYDRA, is used to solve

the governing flow equations.HYDRAis a suite of non-linear, linear and adjoint solvers for

hybrid unstructured meshes using an efficient edge-based data structure [111, 112]. The flow

equations are iterated towards steady state using a five-stage Runge-Kutta scheme, and a

multigrid algorithm with preconditioning is used to accelerate convergence. The linear solver is

obtained, using a fully-discrete approach, by linearisingthe discrete version of the nonlinear

flow equations.

The aim of the work is two-fold: firstly to investigate the axial and radial variation of the mean

flow, and secondly to demonstrate acoustic propagation for benchmark and realistic cases. The

interest here in non-uniform mean flows is motivated by work on acoustic propagation in

parallel sheared flows, which is documented in subsequent chapters. The radial profile of the

mean flow is required, and it is also of interest to know the axial variation of the radial profile

due to duct curvature and boundary layer growth. Acoustic solutions obtained using the linear

solver can yield information on the acoustic scattering dueto geometry curvature, mean flow

variation, and boundary layer refraction.

104
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(a) Axially uniform duct. (b) Trent-style curved duct.

(c) Axially uniform duct. Expanding grid. (d) Trent-style curved duct. Expanding grid.

FIGURE 5.1: Quasi-axisymmetric bypass duct mesh geometries used in theCFD study. Mesh
size of 300 by 100 cells, where every fifth cell edge is plotted. Red lines indicate radial profile

extraction planes.

5.1 Problem specification and methods

Two quasi-axisymmetric annular bypass duct geometries were selected: an axially-uniform

geometry, and a Rolls-Royce Trent-style three-quarter cowl geometry, which are shown in

figure (5.1). The uniform duct geometry is determined from the average hub and casing wall

radii of the curved duct, with the average hub-to-tip ratio being~ = 0.62. The total duct length

is 3.28m. The CFD meshes are quasi-axisymmetric, in the sense that the azimuthal

construction of each mesh is a1◦ wedge of single cell depth. For the mean flow calculations a

simple periodic boundary condition is implemented at the two azimuthal boundary planes. For

acoustic calculations, since only individual azimuthal harmonicsm are considered, a

phase-shifted periodic boundary condition is implementedat the azimuthal boundary planes,

given bye−im∆θ, where∆θ = π/180. A four-level multigrid is used throughout.

5.2 Flow field analysis

The mean flow entering the bypass duct is known to be radially non-uniform due to the

fan-OGV stage [113]. The OGV stage tends to negate swirl. Forthis work three incident mean

flow profiles are chosen: uniform mean flow, a realistic radially non-uniform mean flow with

boundary layers, and a realistic radially non-uniform meanflow with wall slip conditions. The

non-uniform incident mean flow is obtained from a nonlinear,steady CFD calculation for a

Trent-style fan-OGV stage at an approach engine power condition [114]. The circumferentially

averaged total temperature and total pressure radial profiles were extracted from the OGV

passage solution, at a reasonable distance downstream of the OGV trailing edge. The

corresponding Mach profiles are shown in figure (5.2). These values were then scaled and used

as inlet boundary conditions for the current mean flow analysis. Inlet boundary conditions for

the uniform mean flow analysis are obtained by averaging the realistic profile values, giving a

total temperatureT = 307 K, total pressurePt = 123000 Pa and zero whirl angle. The outflow
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FIGURE 5.2: Realistic inflow Mach profiles.—, with boundary layers;—, with wall slip
conditions;—, uniform flow.

boundary condition is static pressurePs = 101325 Pa. The flow field is initialised using a

uniform flow condition with densityρ0 = 1.279 kg/m3 and velocityU0 = 145 m/s.

For both the uniform and curved geometries, both the viscousand inviscid steady flow fields

are computed for the uniform inlet flow profile, and the non-uniform inlet flow profile with

boundary layers. Only the inviscid flow field was solved for the non-uniform inlet flow profile

with slip. For viscous flows the non-linear, viscous flow solver is used to solve the steady

Reynolds Averaged Navier Stokes (RANS) equations with the Spalart-Allmaras turbulence

model. An expanding mesh is used when solving the viscous flowequations, as shown in figure

(5.1). For inviscid flows, the non-linear, inviscid flow solver is used to solve the steady Euler

equations.

Mean flow information over the radial plane is extracted fromeach solution at ten axial

locations indicated in figure (5.1).

5.2.1 Inviscid flows

Inviscid flow field Mach contours of the curved duct solutionsfor each inlet flow profile are

shown in figure (5.3). For the uniform inlet flow case, the reduction in duct cross-section at the

turbine hump results in higher flow speeds at the duct exit, and a negative flow profile gradient

around the hump. However, by the duct exit, the radial profilereturns to a uniform profile. This

is demonstrated in the radial flow profile plots given for ten axial stations in figure (5.4). For

the non-uniform inlet flows, a similar trend is seen with the exit flow profile remaining similar
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(a) Uniform inlet flow. (b) Non-uniform inlet flow with boundary layers.

(c) Non-uniform inlet flow with wall slip. (d) Mach number scale.

FIGURE 5.3: Mach number contours of inviscid flow solutions for the curved duct.

to the inlet flow profile for this geometry. A distinct region of low flow velocity is found at the

casing around halfway down the duct where the cross-sectionincreases.

The uniform duct cases result in axially uniform flow fields and so are not discussed here.

5.2.2 Viscous flows

Viscous flow field Mach contours of the uniform duct solutionsfor uniform and non-uniform

inlet flows are presented in figure (5.5). From the radial flow profiles shown in figure (5.6), it is

seen that the boundary layer thickness increases by around7% by the outlet plane.

The corresponding Mach contours for the curved duct case arepresented in figure (5.7) and, as

previously, the flow region around the turbine hump containsthe greatest variation in radial

flow profile as seen in figure (5.8).

5.3 Acoustic analysis

Using the linearised solver, the acoustic response of the flow to time-periodic excitation can be

determined in the frequency domain. The acoustic source is prescribed at the inlet plane in

terms of acoustic modes, where the axisymmetric azimuthal variation is maintained through

phase-shifted periodic boundary conditions. Standard 1D (pointwise) characteristic boundary

conditions are prescribed at the inflow and outflow boundaries. The acoustic modes are

determined by solving the Pridmore-Brown equation [50], which describes sound propagation

in a steady parallel inviscid non-uniform flow, using the implicit finite difference scheme of

Vilenski and Rienstra [115]. The mean flow density and sound speed are assumed to be

constant.

In order to investigate the nature of acoustic mode propagation through the duct it is necessary

to decompose the acoustic flow into upstream and downstream propagation waves. This is

undertaken using the eigenmode analysis method of Moinier and Giles [116], where the
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(a) Uniform inlet flow.
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(b) Non-uniform inlet flow with boundary layers.
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(c) Non-uniform inlet flow with wall slip.

FIGURE 5.4: Mach number profiles at 10 axial stations of inviscid flow solutions for the curved
duct. Radius normalised to inlet casing value.
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(a) Uniform inlet flow.

(b) Non-uniform inlet flow with boundary layers.

(c) Mach number scale.

FIGURE 5.5: Mach number contours of viscous flow solutions for the uniform duct.

discrete linear flow equations are formed into a GeneralisedEigenvalue Problem (GEP), of

which the eigenvectors are the approximate three-dimensional eigenmodes. The mean flow is

assumed to be axially and circumferentially uniform. Acoustic, entropy and vorticity modes

are recovered and are separated using a set of criteria. Modal decompositions are obtained for

each solution at the ten axial planes indicated in figure (5.1). Upon obtaining the modal

amplitude and eigenfunctions, the modal acoustic power flowis approximated using the

formulation of Morfey [76].

In this study the incident acoustic perturbations are the 5 cut-on radial modes of the first

rotor-stator interation tonem = −4 at 2BPF. Solutions are calculated for each incident mode in

turn, so that an incoherent sum of the scattered modal powerscan be obtained.

5.3.1 Numerical dissipation and dispersion

It is necessary to check the suitability of the mesh for performing acoustic calculations. The

cell size must be fine enough such that dissipation (related to amplitude errors) and dispersion

(related to phase errors) of the acoustic perturbations dueto cell-to-cell numerical error is

small. The unsteady solution for the propagation of mode (-4,1) in the uniform duct with

uniform flow is used to determine the dissipation and dispersion errors on the chosen mesh. An

orthogonal mesh of 300 by 100 cells was used, which provides around 27 axial points per
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(a) Uniform inlet flow.
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(b) Non-uniform inlet flow with boundary layers.

FIGURE 5.6: Mach number profiles at 10 axial stations of viscous flow solutions for the uniform
duct. Radius normalised to inlet casing value.

Doppler-corrected wavelength, and 52 radial points per Doppler-corrected wavelength.

Relative amplitude and phase errors along the duct axial direction are plotted in figure (5.9),

and demonstrate an amplitude dissipation rate of around0.05 dB per Doppler-corrected

wavelength. This value compares well with previous dissipation studies for the HYDRA code

[117]. The corresponding power loss over the duct axial extent is 6 percent, or around 0.25dB.

This value is used in subsequent power calculations to correct transmitted powers for numerical

dissipation. Reflected powers are not corrected since the path length of the waves is not known

a priori.
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(a) Uniform inlet flow.

(b) Non-uniform inlet flow with boundary layers.

(c) Mach number scale.

FIGURE 5.7: Mach number contours of viscous flow solutions for the curvedduct.

5.3.2 Mode propagation in inviscid flows

The scattered modal powers for the curved duct case with uniform inlet flow are shown in

figure (5.10). Four modes are cut-on at the exit plane, compared with five at the inlet plane. A

comparison of plots of the acoustic pressure for the modes (-4,1) and (-4,5) in figure (5.11)

demonstrates the turning point of mode (-4,5) around the turbine hump. The modal power is

reflected, as can be seen in the bar plots.

Mode scattering results of a corresponding Finite Element solution are also shown in figure

(5.10), and demonstrate very good agreement with the CFD solution in the transmitted mode

powers. The reflected power levels do not compare as well due to numerical dissipation in the

CFD solution along the path length of the reflected waves. Theaxial variation in the individual

and summed acoustic powers of the upstream and downstream cut-on modes is plotted is

shown in figure (5.12). Mode (-4,5) is the least well cut-on mode and therefore more prone to

reflection. The mode becomes cut-off aroundx = 1.6 and is strongly reflected. Most of the

mode scattering occurs around the turbine hump region whereboth the flow field and mode

cut-off ratios vary the most rapidly. The less well cut-on modes exhibit the largest amount of

scattering.

The axial power variations for non-uniform inlet flow solutions with and without boundary

layer velocity profiles are presented in figure (5.13) and (5.14) respectively. As seen for the
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(a) Uniform inlet flow.
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(b) Non-uniform inlet flow with boundary layers.

FIGURE 5.8: Mach number profiles at 10 axial stations of viscous flow solutions for the curved
duct. Radius normalised to inlet casing value.

uniform inlet flow, most of the scattering occurs around the turbine hump, but more scattering

is also seen before the turbine hump, and more prominently for the boundary layer inlet profile.

The transmitted power at the outlet plane is lowest for the boundary layer profile.

5.3.3 Mode propagation in viscous flows

Axial power variations, from viscous solutions for the uniform duct with uniform and

non-uniform inlet flows, are used to assess the effects of boundary layer growth on mode

scattering, and are presented in figure (5.15) and (5.16), respectively. The less well cut-on

modes are most affected by the boundary layer growth, and a stronger effect is seen for the

non-uniform inlet flow. As the boundary layer grows, the modal energy is reflected.
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FIGURE 5.9: Relative error in modulus and phase of mode(−4, 1) complex amplitude in duct
axial direction.

Axial power variations for the curved duct with uniform and non-uniform inlet flows are shown

in figures (5.17) and (5.18), respectively. Transmitted power levels are slightly lower than the

equivalent Euler case for the less well cut-on modes. Qualitatively, the scattering is very

similar for the well cut-on modes, indicating that the boundary layer effects can be adequately

modelled by ignoring viscocity, but including a boundary layer velocity profile.
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(a) CFD; transmitted modal powers.
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(c) FE; transmitted modal powers.
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FIGURE 5.10: Scattered modal powers from FE and CFD acoustic solutions onEuler mean
flow fields, with a uniform inlet flow profile.

(a) (−4, 1) (b) (−4, 5)

FIGURE 5.11: Acoustic pressure (real part) contours for incident modes(−4, 1) and(−4, 5)
for uniform inlet flow.
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(c) Total transmitted (—) and reflected (- -) powers.

FIGURE 5.12:Axial variation in individual and summed modal powers from curved duct CFD
acoustic solutions on an Euler mean flow field, with a uniform inlet flow profile.
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(c) Total transmitted (—) and reflected (- -) powers.

FIGURE 5.13:Axial variation in individual and summed modal powers from curved duct CFD
acoustic solutions on an Euler mean flow field, with a non-uniform inlet flow profile with bound-

ary layers.
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(c) Total transmitted (—) and reflected (- -) powers.

FIGURE 5.14:Axial variation in individual and summed modal powers from curved duct CFD
acoustic solutions on an Euler mean flow field, with a non-uniform inlet flow profile with wall

slip.
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(c) Total transmitted (—) and reflected (- -) powers.

FIGURE 5.15: Axial variation in individual and summed modal powers from uniform duct
CFD acoustic solutions on a viscous mean flow field, with a uniform inlet flow.
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(c) Total transmitted (—) and reflected (- -) powers.

FIGURE 5.16: Axial variation in individual and summed modal powers from uniform duct
CFD acoustic solutions on a viscous mean flow field, with a non-uniform inlet flow.
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(c) Total transmitted (—) and reflected (- -) powers.

FIGURE 5.17:Axial variation in individual and summed modal powers from curved duct CFD
acoustic solutions on a viscous mean flow field, with a uniforminlet flow.
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(c) Total transmitted (—) and reflected (- -) powers.

FIGURE 5.18:Axial variation in individual and summed modal powers from curved duct CFD
acoustic solutions on a viscous mean flow field, with a non-uniform inlet flow.
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5.4 Summary

• A series of inviscid and viscous steady flow CFD calculationswere undertaken to

investigate the characteristics of bypass duct flows. Both uniform and realistic curved

ducts with uniform and realistic inlet flow profiles were considered at an approach

engine power condition.

• The duct region around the turbine hump contains higher flow velocities with a negative

general flow gradient. The outlet flow velocity is higher, dueto mass flow continuity, but

the general outlet profile remains similar to that at the inlet for this geometry. A

boundary layer growth of 7 percent is observed for the conditions investigated.

• Acoustic solutions were obtained for the various base flows using a linear CFD solver.

Incident acoustic perturbations were prescribed in terms of modes obtained from

inviscid, parallel flow equations.

• Acoustic solutions on an Euler flow with uniform inlet flow were compared with an

equivalent Finite Element solution. Qualitatively, the mode scattering compared very

well. Transmitted modal powers must be corrected for mesh dissipation, which is not

possible for the reflected power without prior knowledge of wave path lengths.

• Acoustic power flow was assessed using a decomposition of theCFD solution into

eigenmodes of the Euler flow equations. The region around theturbine hump contains

the most mode scattering. Non-uniform inlet flow cases have more scattering than for

uniform inlet flow. The growing boundary layers cause reflection which is most

prominent in the higher order modes.

• When comparing viscous and inviscid solutions is was found that the strongest

differences in the scattering were found in the higher mode orders. However, differences

in the more important low order modes are small. Thus, considerable computational

savings can be achieved by using inviscid solutions with realistic inlet profiles, which

will capture the most important scattering effects.



Chapter 6

Acoustic propagation in lined annular

ducts with parallel sheared flow

This chapter outlines the theory and methods used to obtain acoustic eigenmode solutions of an

axially uniform, lined annular duct containing an inviscid, parallel subsonic mean flow. Most

of the related work on sound transmission in sheared flows wasundertaken between the 1950s

and 1980s, see for example the reviews in references [118, 2,4]. In contrast to the case of no

flow or uniform flow, there does not appear to be a general method for obtaining analytic

solutions to the governing linearised Euler equations for arbitrary sheared flows (closed form

solutions exist for linearly sheared flow [119, 120, 121, 122], parabolic flow [123, 124, 125]

and exponential boundary layers [126]). The most common solution procedure is to obtain a

second order ordinary differential equation in pressure, referred to as the Pridmore-Brown

equation [50]. This is derived in the following section. Alternatively, the solution of two first

order coupled equations in pressure and radial particle velocity was preferred by Tester [51],

citing better convergence properties. One problem that arises in these formulations is the

presence of a singularity when the mean flow gradient becomesinfinite, as is the case for

power law boundary layer profiles [127], or as the boundary layer thickness is reduced to slip

flow conditions at the wall [51]. An alternative formulationin terms of pressure and particle

displacement was derived by Smith and Morfey [128] for the problem of sound radiation from

a wall source under a boundary layer. It is shown that the meanvelocity gradient can be

eliminated. The three formulations are outlined and assessed in the following sections, in light

of the problem considered here.

The eigenvalue problem formed by the governing equations, applying the relevant boundary

conditions, must be solved numerically. Four popular solution methods include shooting

methods [115, 129, 130], the Galerkin method of weighted residuals [131], finite difference

methods [132, 92, 133], and finite element or wave envelope methods [134, 135, 133]. With the

exception of shooting methods, these solutions methods yield entire sets of eigenvalues in one

calculation. Galerkin methods require a large basis function set in order to resolve higher order

123
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modes, especially for impedance boundary conditions [131,136]. Finite difference methods

require specially modified matrix procedures in order to circumvent matrix conditioning

problems [92, 133]. Shooting methods based on Runge-Kutta integration or finite difference

marching methods require iterations in flow profile and wall impedance from an initial guess

starting value. A shooting method has been chosen here to demonstrate the applicability of the

eigenvalue tracking method used previously (see Chapter (2)). This provides useful

information on the effect on the mode eigenvalues of modifying both the flow profile and the

wall impedances.

6.1 Governing equations

In this work, modelling of acoustic propagation is based upon linearisation of the Euler

equations, governing the motion of an inviscid, compressible, isentropic perfect gas. Gas flow

through a prismatic circular duct of annular cross-sectionis considered, as shown in figure

(6.1). Using cylindrical polar coordinates
(

r̃, θ̃, x̃
)

, where˜ denotes the dimensional values.

The non-uniform, steady mean flow is assumed to be parallel, such that the densityρ0 and

pressurep0 are constant, and the velocityU = (0, 0, U0(r̃)) is arbitrarily nonuniform in the

radial direction. For this mean flow, the linearised Euler equations, in non-dimensional form,

are

Acoustic continuity
D0p̂

Dt
= −∇ · û , (6.1)

Acoustic momentum
D0û
Dt

+ (û · ∇) M = −∇ · p̂ , (6.2)

non-dimensionalising as per Section (2.1), with the reference length scale being the outer duct

radiusd. The acoustic equation of state isp̂ = c2
0ρ̂, and the material derivative is defined as

D0/Dt = ∂/∂t + (M · ∇). The following subsections detail how the field equations may be

combined to obtain ordinary differential equations (ODEs)in pressure, pressure and particle

velocity, and pressure and particle displacement. When combined with the wall boundary

conditions these ODEs constitute the eigenvalue problem for the duct modes.

6.1.1 The Pridmore-Brown equation

Following Goldstein [137], taking the divergence of the momentum equation gives

∇2p̂ +
D0

Dt
(∇ · û) + x̂2

dM

dr

∂û

∂x
= 0 , (6.3)

and operating on the continuity equation withD0/Dt gives

D2p̂

Dt2
+

D

Dt
(∇ · û) = 0 . (6.4)
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Subtracting equation (6.4) from equation (6.3) results in asingle differential equation in two

dependent unknowns given by

∇2p̂ − D0p̂

Dt
+ x̂2

dM

dr

∂v̂

∂x
= 0 . (6.5)

The radial acoustic particle velocitŷv is eliminated by forming the axial partial derivative of

radial momentum equation to give

D0

Dt

∂v̂

∂x
= − ∂p̂

∂x∂r
. (6.6)

Operating on equation (6.5) withD0/Dt and substituting equation (6.6) results in a single third

order differential equation in pressure given by

D0

Dt

(

∇2 − D2
0

Dt2

)

p̂ − 2
dM

dr

∂2p̂

∂x∂r
= 0 . (6.7)

Then, on assuming time-harmonic modes of the form

p̂ (r, θ, x) = p (r) e−i(mθ+kx) , (6.8)

equation (6.7) becomes

d2p

dr2
+

[

1

r
+

2k

k0 − kM

dM

dr

]

dp

dr
+

[

(k0 − kM)2 − m2

r2
− k2

]

p = 0 , (6.9)

which is known as the Pridmore-Brown equation. The wall boundary conditions are

determined from continuity of particle displacement at thewalls, i.e.

dp

dr
= − i

k0Zd
(k0 − kM)2 p at r = 1 , (6.10)

dp

dr
=

i

k0Zh
(k0 − kM)2 p at r = h , (6.11)

whereZh andZd are the hub and casing wall impedances, respectively.

x

r

θ

Zd

Zh

M(r)

h

d

FIGURE 6.1: Geometry for a lined annular duct containing arbitrary sheared flow.
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6.1.2 Pressure and particle velocity coupled ODEs

Coupled ODEs in pressure and radial particle velocity are obtained by eliminating axial and

azimuthal velocity components from the continuity equation, which in expanded form is

i (k0 − kM) p +
1

r

∂(vr)

∂r
+

imw

r
− iku = 0 . (6.12)

The axial and azimuthal momentum equations are rearranged to give

u =
1

k0 − kM

(

kp + iv
dM

dr

)

, (6.13)

w =
mp

r (k0 − kM)
. (6.14)

Substituting into equation (6.12), and rearranging forvr gives

∂(vr)

∂r
=

[

(k0 − kM)2 − m2

r2
− k2

]

pr

i (k0 − kM)
− k

k0 − kM

dM

dr
(vr) . (6.15)

The radial momentum equation is rearranged forp to give

∂p

∂r
=

−i (k0 − kM)

r
(vr) . (6.16)

Together, equations (6.15) and (6.16) form the coupled firstorder ODEs to be solved forp and

vr. The wall boundary conditions are determined from continuity of particle displacement at

the walls, i.e.

vr =
r

k0Zd
(k0 − kM) p at r = 1 , (6.17)

vr = − r

k0Zh
(k0 − kM) p at r = h . (6.18)

6.1.3 Pressure and particle displacement coupled ODEs

Coupled ODEs in pressure and particle displacementǫr are obtained following the analysis of

Smith [52], by eliminating radial particle velocity using the following expression

vr =
D0 (ǫrr)

Dt
= (ǫrr) i (k0 − kM) . (6.19)

Taking the radial derivative and rearranging forǫr gives

∂(ǫrr)

∂r
= − 1

(k0 − kM)2

[

i (k0 − kM)
∂

∂r
+ ik

dM

dr

]

(vr) . (6.20)



Chapter 6 Acoustic propagation in lined annular ducts with parallel sheared flow 127

On substituting equation (6.15), the flow gradient term is eliminated, leading to the following

∂(ǫrr)

∂r
=

[

m2

r2
+ k2 − (k0 − kM)2

]

pr

(k0 − kM)2
. (6.21)

Substituting equation (6.19) into the radial momentum equation gives

∂p

∂r
=

(k0 − kM)2

r
(ǫrr) , (6.22)

which, together with equation (6.21), form coupled ODEs in pressure and particle

displacement. The wall boundary conditions are determinedfrom continuity of particle

displacement at the walls, i.e.

ǫrr = − ir

k0Zd
p at r = 1 , (6.23)

ǫrr =
ir

k0Zh
p at r = h . (6.24)

Note that the boundary conditions do not contain the eigenvalue k or the mean flow Mach

numberM at the wall.

6.2 Computational scheme

The eigenvalue problems set out in the previous section are solved for individual mode

eigenvaluesk using a shooting method. The method for finding the eigenvalues is summarised

as follows:

1. Select an initial value ofk.

2. Specify values of the relevant wave variables at one of thewalls which satisfy the

boundary condition.

3. Use either an integration routine or a finite difference routine to compute the wave

variables across the annulus, from the system of governing ODEs.

4. Calculate the error in the far wall boundary condition. Ifthe error is below a given

tolerance then the current choice ofk is kept, otherwise a new value ofk is found using

Muller’s iteration method [138].

In general, the method marches from the hub wall to the casingwall, except in the case of

hydrodynamic surface waves. In this instance, the method marches from the walloppositeto

that which the surface wave is attached. This is to avoid errors in the boundary condition

calculation due to the exponential behaviour of the hydrodynamic surface wave eigenfunction.

The initial value of pressure at the starting wall is set to bep = 1 + 0i, and the other wave

variables are determined from the relevant boundary condition.
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The initial value ofk is determined from a tracking scheme where the eigenvalue istracked

with systematic increments in mean flow profile and wall impedance. The impedance tracking

method is similar to that described in Chapter (2). The tracking scheme for finding the

eigenvalues of an annular duct containing an arbitrary non-uniform flowM(r), with casing

wall impedanceZd and hub wall impedanceZh is summarised as follows:

1. Select an initial value ofk to be the eigenvalue of either the no flow or uniform flow case

with rigid walls.

2. Calculate new values ofk for increments in the mean flow profile, from the no flow or

uniform flow condition to the required profile.

3. Calculate new values ofk for increments in the admittance of the wall from which the

shooting method marches. The admittance is incremented from the rigid wall condition

β = 0 + i0 to the nearly rigid wall conditionβ = 1/(R + iX∞).

4. Calculate new values ofk for increments in the impedance of the wall from which the

shooting method marches. The impedance is incremented fromthe nearly rigid wall

conditionZ = R + iX∞ to the required wall impedanceZ = R + iX, where the

resistanceR is held constant.

5. Steps (3) and (4) are repeated for the far wall.

The initial no flow or uniform flow eigenvalues for a duct with rigid walls are obtained from

closed form solutions [136]. The mean flow profile is incremented by either modifying the

coefficients of analytic flow profiles, or by using a windowingfunction for discrete flow

profiles. The choice of windowing function generally depends upon the features of the chosen

flow profile (e.g. boundary layers, flow value range, local flowgradients), and examples of

functions used here include sine curve, Hermite polynomialand uniform increments.

An addition to the impedance tracking method used here is therefinement of the reactance

contour fromX∞ to X, around regions where the eigenvalue changes rapidly with impedance,

as highlighted in Section (2.4). From Brambley and Peake [75], the contour is refined around

X = −2U0/
(

1 − U2
0

)3/2, 0, and2U0/
(

1 − U2
0

)3/2, whereU0 is the mean flow velocity at the

wall.

The shooting method is undertaken using a 4th order Runge-Kutta integration scheme [130].

Closed form solutions for the uniform flow case are used for a grid point refinement study. The

error in the boundary condition using the exact eigenvalue is plotted in figure (6.2). Errors for

solutions of the Pridmore-Brown equation, pressure and velocity ODEs, and pressure and

displacement ODEs are shown to have order of magnitude differences. The boundary condition

errors are measured in terms of pressure gradient, particlevelocity and particle displacement

for the three governing ODEs respectively. The order of magnitude difference in error is due to

the choice of dependant variables. This is demonstrated in figure (6.3), where the error in the
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FIGURE 6.2: Boundary condition error due to exact uniform flow, rigid duct eigenvalueke.
Top row, downstream modes; Bottom row, upstream modes; —, Pridmore-Brown equation; -
-, pressure and particle velocity ODEs;· · ·, pressure and particle displacement ODEs.k0 =

30.94, M = 0.345, m = 4, n = 1 to 6, ~ = 0.569.

eigenvalue obtained using each governing equation set is plotted against grid point refinement.

The exact eigenvalue is used as an initial guess, and is iterated until the boundary condition

error tolerance is met. Here, the tolerance is10−8 for each case. This tolerance level must be

set, for the velocity and displacement boundary conditionsrespectively, one or two orders of

magnitude lower than for the pressure gradient condition.

The error in the eigenvalues for a lined duct is presented in figure (6.4) where the relevant

tolerances are set. Each equation set is seen to exhibit similar convergence properties. The

error increases for higher order modes due to the increasingnumber of oscillations in the mode

eigenfunctions, which contribute larger gradient errors in the integration scheme.

6.3 Validation

Validation of the eigenvalue solver is undertaken using results from the literature, and is

presented in the form of tables of eigenvaluesk/k0.

6.3.1 Power law mean flow profile

The results of Shankar [53] and Kousen [133] for a one-seventh power law flow profile are

used to validate solutions based on pressure and displacement ODEs. A fourth order
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FIGURE 6.3: Eigenvalue error for a rigid duct. Top row, downstream modes; Bottom row,
upstream modes; —, Pridmore-Brown equation; - -, pressure and particle velocity ODEs;· · ·,
pressure and particle displacement ODEs.k0 = 30.94, M = 0.345, m = 4, n = 1 to 6,

~ = 0.569.
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FIGURE 6.4: Eigenvalue error for a lined duct. Top row, downstream modes; Bottom row,
upstream modes; —, Pridmore-Brown equation; - -, pressure and particle velocity ODEs;· · ·,
pressure and particle displacement ODEs.k0 = 30.94, M = 0.345, m = 4, n = 1 to 6,

~ = 0.569, Z = 1 − 0.93i.
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FIGURE 6.5: Mach profile variation and rigid duct eigenvalue tracking for one-seventh power
law validation case.+, initial uniform flow eigenvalue;△, final eigenvalue;×, average uni-

form flow eigenvalue.k0 = 70, m = 0, ~ = 0.85714.

Runge-Kutta integration was used by Shankar, and a spectralmethod was used by Kousen. It is

noted that formulations used by Shankar and Kousen explicitly contain the flow gradient term

(here it is infinite at the walls), which has been eliminated from the current formulation. The

first case is for a rigid annular duct of hub-to-tip ratio~ = 0.85714, at a frequencyk0 = 70, for

the first eleven downstream propagating non-spinning modesm = 0. The power law mean

flow profile is given by

M(r) = 0.3 ×
[

1 − 2| h

d − h
+ 0.5 − rd

d − h
|
]

1
7

, (6.25)

with the variation in the flow profile used for tracking the eigenvalues shown in figure (6.5a).

The tracking of the eigenvalues from the uniform slip profileM = 0.3 to the required profile is

shown in figure (6.5b), and a comparison with results from theliterature is given in Table (6.1).

The eigenvalues compare very well. The eigenvalue trackingshows a trend to the right

because, as the mean flow profile is varied, the mass flow rate isreduced. Eigenvalues

calculated using the average Mach number(Mave = 0.2621) of the final flow profile are

plotted for reference, and show that uniform flow assumptionis fairly good, but becomes less

accurate for higher order modes.

The second case is for a lined annular duct of hub-to-tip ratio ~ = 2
3 , at a frequencyk0 = 30,

for the first eleven downstream propagating non-spinning modesm = 0. Both hub and casing

walls have an impedance ofZ = 3 − 1i, and a comparison of eigenvalues is presented in table

(6.2). The comparison is not as good as for the rigid case, andthis is thought to be due to the

effect of the flow gradient term in the reference solutions. The eigenvalue tracking is shown in

figure (6.6b), where the average Mach number results are alsoplotted. The uniform flow

assumption is again fairly good, but significant differences are found in the lowest order mode

eigenfunction as shown in figure (6.6a). Such differences are important when considering

modal decomposition of in-duct sources and modal scatteredby liners.
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(b) Eigenvalue tracking.

FIGURE 6.6: Mode eigenfunctions and lined duct eigenvalue tracking forone-seventh power
law validation case.+, initial uniform flow eigenvalue;△, final rigid duct eigenvalue;×, final
lined duct eigenvalue;×, average uniform flow eigenvalue; —, sheared flow;· · ·, uniform flow.

k0 = 30, m = 0, ~ = 0.66667, Z = 3 − 1i.
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(b) Eigenvalue tracking.

FIGURE 6.7: Mach profile variation and rigid duct eigenvalue tracking for linear boundary
layer validation case.+, initial uniform flow eigenvalue;△, final rigid duct eigenvalue;×,

final lined duct eigenvalue;×, uniform flow eigenvalue.k0 = 14.06667, m = 1, ~ = 0.4.

6.3.2 Linear boundary layer mean flow profile

The case of a lined duct containing a uniform mean flow profile with a linear boundary layer is

validated against the results of Joshiet al. [139], obtained using a Runge-Kutta based shooting

method. The Pridmore-Brown equation is solved for hub-to-tip ratio ~ = 0.4, at a frequency

k0 = 14.0667, for the first six upstream and five downstream propagating spinning modes

m = 1. A linear boundary layer of thicknessδ = 0.01 and a wall impedanceZ = 1.5 − 3i are

specified on both hub and casing walls. The freestream Mach number isM = 0.2, with the

iterations in flow profile shown in figure (6.7a), and eigenvalue tracking is shown in figure

(6.7b). A comparison of eigenvalues from the literature, and for uniform flowM = 0.2, is

presented in table (6.3), and demonstrate very good agreement.
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FIGURE 6.8: Single-degree-of-freedom liner impedance. - -, face-sheet resistance;· · ·, reac-
tance.R = 1, Mr = 0.012, D = 0.021.

6.4 Effects of radial flow profile upon the mode spectrum

The non-uniformity of the mean flow profile affects both the eigenfunction and axial decay of

the modes. In the previous chapter (5), it was demonstrated for a realistic bypass duct that the

mean flow profile can be characterised into two parts: the core, and wall boundary layers. In

the following subsections the effects of both upon the mode spectrum are demonstrated for

realistic duct dimensions, mass flow rate, frequency and acoustic liner impedance. The casing

Zd and hubZh wall impedances are determined from the SDOF liner model given in equation

(4.2). The non-dimensional liner parameters used here are face-sheet resistanceR = 1,

face-sheet mass inertanceMr = 0.012, and liner cavity depthD = 0.021. The frequency

variation of the impedance is shown in figure (6.8).

6.4.1 Convergence to the slip flow case

A simplifying assumption often used in assessing acoustic liner performance in flow ducts is to

obtain results based on the convected wave equation for uniform flow. The real flow

non-uniformity and finite thickness boundary layers are thus ignored, and an unrealistic slip

flow boundary condition is prescribed. The impact of this assumption has been discussed by

several investigators [51, 54], with the common conclusionthat the uniform flow assumption

provides a good approximation in the limit of small boundarylayer thicknessδ = δ̂/d. In this

analysis, the limitδ → 0 is investigated by solving ODEs in pressure and particle

displacement, since these do not involve the flow gradient dM/dr (which will tend to infinity

at the duct walls). The two flow profiles used here are linear and one-seventh power law
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boundary layer profiles with uniform core flows, defined by

M(r) = M0

(r

δ

)
1
g

0 ≤ r ≤ δ ,

= M0 δ ≤ r ≤ (1 − δ) ,

= M0

(

1 − r

δ

)
1
g

(1 − δ) ≤ r ≤ 1 . (6.26)

whereM0 is the core flow Mach number, andg defines the power. The linear boundary layer

thickness is determined by equating the displacement thicknesses of the two profiles to give

δg = δ1 =
δ7

4
. (6.27)

In order to maintain accuracy, an expanding grid is used in the boundary layer, and a uniform

grid in the core flow region. The lined duct eigenvalues are first obtained for a boundary layer

thicknessδ7/(d − h) = 0.4, then the eigenvalues are tracked in the limitδ → 0. The

trajectories of the first few eigenvalues calculated for both profiles are shown in figures (6.9)

and (6.10). All mode eigenvalues converge to the analytic uniform slip flow solutions. Rigid

duct eigenfunctions in wave variables of pressure, radial particle displacement, radial and axial

particle velocity are presented in figures (6.11) and (6.12)of the mode (0,0) for a series of

boundary layer thicknesses asδ → 0. It can be seen that the rigid duct eigenfunctions also

converge to the uniform slip flow solutions asδ → 0. The wall values of the axial particle

velocity u are related to the near wall values by the Doppler factork0/ (k0 − Mk), which is

consistent with the Ingard-Myers vortex sheet model [11, 57]. Similar plots are presented in

figure (6.13) and (6.14) for the corresponding lined wall duct. Unlike the rigid duct case, the

axial particle velocity is undefined at the walls when dM/dr = ±∞ andv 6= 0. The pressure

eigenfunctions converge, and the velocity and displacement eigenfunctions are consistent,

except for the Doppler-shifted wall values. The variation of the wave variables through the hub

and casing boundary layers is presented in figures (6.15) and(6.16). Asδ → 0 the pressure

becomes uniform, and the radial particle velocity and displacement ratios at the edge of the

boundary layer converge to the Doppler-shifted uniform slip flow values. The variation of the

wave variables within the boundary layer is clearly dependent on the flow profile shape.

6.4.2 Boundary layer effects

Boundary layers affect acoustic propagation through refraction and convection. Previous

studies have shown that, for a given boundary layer thickness, the profile shape has a strong

effect upon the modes which is mainly due to the difference inmass flow rate and flow

gradient. Prydz [54] and Nayfeh et al. [140] demonstrated that, by correlating on boundary

layer displacement thickness, downstream propagation is essentially independent of flow

profile, but upstream propagation is still profile dependent. Eigenvalue results obtained in the

previous section for linear and one-seventh power law profiles are plotted in figure (6.17)
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against non-dimensional displacement thicknessδ∗. It is seen that the upstream propagating

modes do indeed depend strongly upon the profile shape, and the downstream modes correlate

fairly well just on displacement thickness. The refractiveeffects upon mode axial decay are

fairly intuitive, where thicker boundary layers result in refraction towards the liner giving

higher downstream mode decay rates, and, conversely, lowerupstream mode decay rates. The

greatest variation is seen in the surface wave modes, of which the upstream modes show very

strong sensitivity to flow profile. Such modes are localised at the wall, and so would be

expected to depend strongly upon the boundary layer.

As the wavelength of sound becomes comparable to the boundary layer thickness it is expected

that refraction effects will get stronger. This proves to bethe case, as demonstrated in figure

(6.18), where the axial decay rates of the first five non-spinning modesm = 0 are plotted over

frequency up to 7BPF. Two linear boundary of thicknesses ofδ1/(1 − ~) = 0.0125 and0.05

are chosen, and the uniform slip flow values are plotted for reference. An increase in decay

rates, compared to attenuation with uniform flow, occurs with increasing frequency for the low

order downstream propagating modes, which is very stronglyenhanced for the thicker
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(a) Downstream modes,δ1/(1 − ~) = 0.0125.
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(b) Upstream modes,δ1/(1 − ~) = 0.0125.
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(c) Downstream modes,δ1/(1 − ~) = 0.05.
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(d) Upstream modes,δ1/(1 − ~) = 0.05.

FIGURE 6.18: Modal decay rate spectra for first five non-spinningm = 0 radial modes in a
lined (SDOF liner impedance model) duct withlinear boundary layer profiles. —, boundary

layer flow,· · ·, uniform slip flowM = 0.345.

boundary layer. Conversely, the decay rates of the upstreampropagating modes decrease with

increasing frequency, and this effect is also enhanced for the thicker boundary layer. These

effects are maintained for spinning modes. An example form = 16 modes, which are less well

cut-on, is shown in figure (6.19). Refraction effects begin at a lower frequency for upstream

propagation compared with downstream propagation due to shortening of the effective

wavelength by mean flow convection.

6.4.3 General flow non-uniformity effects

The core flow profile is dependent upon flow conditions after the fan/OGV stage, and for the

slowly varying geometry of the bypass duct, the initial coreprofile is generally maintained

along the length of the duct. The greatest variation is to be expected at the turbine hump, where

a large negative shear is seen. Two linear shear core flows of positive and negative gradient are

assessed against the uniform flow case, with a slip flow condition prescribed at the walls as

shown in figure (6.20). The variation of the axial decay rateswith increasing frequency of
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(a) Downstream modes,δ1/(1 − ~) = 0.0125.
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(b) Upstream modes,δ1/(1 − ~) = 0.0125.
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(c) Downstream modes,δ1/(1 − ~) = 0.05.
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(d) Upstream modes,δ1/(1 − ~) = 0.05.

FIGURE 6.19:Modal decay rate spectra for first five spinningm = 16 radial modes in a lined
(SDOF liner impedance model) duct withlinear boundary layer profiles. —, boundary layer

flow, · · ·, uniform slip flowM = 0.345.

non-spinning modesm = 0 relative to the uniform flow case is shown in figure (6.21). Forthe

downstream propagating modes, decay rates for all but the lowest order mode decrease with

increasing frequency. For the upstream propagating modes,as the frequency is increased, the

decay rates also decrease, but appear to become independentof frequency at high frequencies.

Both profiles produce near identical decay rates, which is due to the two-dimensional nature of

them = 0 case, whereby the difference in hub and casing liner area hasno effect. The axial

decay rates of them = 16 spinning modes are plotted in figure (6.22). For positive shear flow,

refraction of the downstream modes occurs towards the hub wall, which has a lower lined area,

and thus the low order mode decay rates are less than for uniform flow. The upstream modes

are refracted towards the casing wall, which has a higher lined area, and the decay rates are

higher. The opposite is observed with negatively sheared flow. In general, the low order modes

follow these expected trends, whilst the higher order modesare generally less affected by the

core mean flow shear, compared with the boundary layer.

The realistic flow fields investigated in the previous chapter were found, overall, to have a

general negative core flow shear gradient, with additional profile features due to the fan/OGV
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(a) Positively shear linear flow, downstream modes.

0 20 40 60 80 100 120
10

−3

10
−2

10
−1

10
0

10
1

10
2

k0

ℑ{
k
}

(b) Positively shear linear flow, upstream modes.
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(c) Negatively shear linear flow, downstream modes.
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(d) Negatively shear linear flow, upstream modes.

FIGURE 6.21: Modal decay rate spectra for first six non-spinningm = 0 radial modes in a
lined (SDOF liner impedance model) duct withlinear flow profiles. —, linear shear flow,· · ·,

uniform slip flowM = 0.345.
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(a) Positively shear linear flow, downstream modes.
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(b) Positively shear linear flow, upstream modes.
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(c) Negatively shear linear flow, downstream modes.
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(d) Negatively shear linear flow, upstream modes.

FIGURE 6.22: Modal decay rate spectra for first six spinningm = 16 radial modes in a lined
(SDOF liner impedance model) duct withlinear flow profiles. —, linear shear flow,· · ·, uniform

slip flowM = 0.345.

stage. Decay rates and mode eigenfunctions for a realistic profile obtained from the CFD

investigation, and modified to the current duct geometry, are assessed against uniform flow

solutions. The realistic profile is assessed with both a slipcondition and boundary layers, as

shown in figure (6.20). Axial decay rates for the first six radial modes form = 0 andm = 16

are shown in figure (6.23), and demonstrate the trends observed previously for negatively

sheared linear flow. The downstream mode decay rates increase with frequency, compared with

the uniform flow decay rates, with the lowest order modes being most affected. Upstream mode

decay rates decrease with frequency relative to the uniformflow decay rates, and tend to

converge at very high frequencies. The slip flow values converge towards a finite value, whilst

the boundary layer flow values appear to continue on a downward trend. The presence of the

boundary layer allows for total refraction of the upstream propagating waves in the limiting

case when the wavelength is comparable to the boundary layerthickness, and with an

appropriate incident wave angle [52]. When this occurs, waves may not reach the liner and thus

no absorption occurs, which explains the downward trend seen for the decay rates at high

frequency with boundary layer flows. However, for slip flows waves always reach the liner,

thus some absorption should occur in the high frequency limit.
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These results demonstrate that, ideally, realistic flow profiles should be used to assess acoustic

mode propagation in ducts, in particular at high frequencies. This is particularly important for

low order modes and surface waves, and at higher sound frequencies. The uniform slip flow

assumption is valid for very thin boundary layers at low frequencies.
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(a) Downstream modes,m = 0.

0 20 40 60 80 100 120
10

−3

10
−2

10
−1

10
0

10
1

10
2

k0
ℑ{

k
}

(b) Upstream modes,m = 0.
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(c) Downstream modes,m = 16.

0 20 40 60 80 100 120
10

−3

10
−2

10
−1

10
0

10
1

10
2

k0

ℑ{
k
}

(d) Upstream modesm = 16.

FIGURE 6.23: Modal decay rate spectra for first six radial modes in a lined (SDOF liner
impedance model) duct withrealistic flow profiles.—, realistic shear flow with boundary lay-

ers; · · ·, realistic shear flow with slip;· · ·, uniform slip flowM = 0.345.
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6.5 Summary

• Sets of governing equations for acoustic propagation in a lined annular duct containing

an inviscid, parallel subsonic mean flow have been outlined.First order ODEs in pressure

and particle displacement that are independent of flow gradient allow for solutions to be

obtained for power law profiles typically used to describe turbulent boundary layer flows.

• An eigenvalue tracking procedure is described for obtaining the acoustic eigenmodes of

the governing equations, and have been validated against results from literature.

• The convergence of solutions for boundary layer flows to those of the commonly used

slip flow condition is demonstrated. A Doppler-factor is imparted to the velocity and

displacement eigenmodes at the lined wall, which is consistent with the Ingard-Myers

vortex sheet model.

• The downstream mode decay rates were found to correlate wellon boundary layer

displacement thickness, but variation of the wave variables through the boundary layer

was found to strongly depend upon the flow profile.

• Refractive effects become stronger as the wavelength of sound becomes comparable to

boundary layer thickness. Refractive effects upon upstream propagating modes begin to

occur at lower frequency than downstream modes due to the shortening of the effective

wavelength by the mean flow convection.

• The sign of the shear flow gradient in the core mean flow is foundto have a strong effect

on mode decay rates. For downstream propagating spinning modes, larger increases

were obtained for refraction towards the casing compared with towards the hub, due to

the higher casing lined area.

• All refraction effects were found to be strongest for the lowest order modes and surface

waves.

• It was demonstrated that realistic flow profiles should be used to assess acoustic mode

propagation in bypass ducts. The flow profile can have strong effects upon low order

modes and surface waves, and on all modes at higher frequencies.
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TABLE 6.1: First eleven downstream propagating modesk/k0 for a rigid duct with a one-
seventh power law flow profile.k0 = 70, m = 0, ~ = 0.85714.

n Shankar [53] Kousen [133] Present
1 0.79293 0.79353 0.79284
2 0.75075 0.75292 0.75057
3 0.57143 0.57320 0.57128
4 −0.00969 0.16437 0.16268
5 −0.28733 − 0.73219i −0.28357 − 0.73425i −0.28771 − 0.73197i
6 −0.29118 − 1.21721i −0.28622 − 1.2198i −0.29167 − 1.21701i
7 −0.29248 − 1.62569i −0.28766 − 1.6281i −0.29310 − 1.62548i
8 −0.29519 − 2.00221i −0.28947 − 2.0055i −0.29598 − 2.00196i
9 −0.29768 − 2.71665i −0.29035 − 2.3683i −0.29667 − 2.36480i
10 −0.29768 − 2.71665i −0.29167 − 2.7209i −0.29891 − 2.71624i
11 −0.29776 − 3.06414i −0.29243 − 3.0679i −0.29928 − 3.06360i

TABLE 6.2: First eleven downstream propagating modesk/k0 for a lined duct with a one-
seventh power law flow profile.k0 = 30, m = 0, ~ = 0.66667, Z = 3 − 1i.

n Shankar [53] Kousen [133] Present
1 0.78698 − 0.00400i 0.78093 − 0.00913i 0.79214 − 0.02899i
2 0.73438 − 0.02541i 0.75079 − 0.03387i 0.75795 − 0.05123i
3 0.55840 − 0.03148i 0.57267 − 0.03246i 0.59171 − 0.05639i
4 0.14308 − 0.07638i 0.16875 − 0.06982i 0.22225 − 0.11627i
5 −0.23900 − 0.74173i −0.23734 − 0.72727i −0.19659 − 0.67792i
6 −0.26149 − 1.21973i −0.25993 − 1.2120i −0.24519 − 1.17372i
7 −0.26996 − 1.62627i −0.26860 − 1.6207i −0.26237 − 1.58836i
8 −0.27669 − 2.00192i −0.27468 − 1.9983i −0.27379 − 1.96866i
9 −0.27974 − 2.36439i −0.27813 − 2.3612i −0.28003 − 2.33418i
10 −0.28359 − 2.71568i −0.28147 − 2.7139i −0.28625 − 2.68758i
11 −0.28502 − 3.06304i −0.28361 − 3.0610i −0.28967 − 3.03649i

TABLE 6.3: First six upstream and five downstream propagating modesk/k0 for a lined duct
with a linear boundary layer flow profile.k0 = 14.06667, m = 1, ~ = 0.4, Z = 1.5 − 3i.

n Uniform flow M = 0.2 Joshiet al. [139] Present
1+ 0.79807 − 0.02667i 0.8556 − 0.0200i 0.85771 − 0.02033i
2+ 0.85523 − 0.01918i 0.7969 − 0.0262i 0.80106 − 0.02747i
3+ 0.56097 − 0.03354i 0.5582 − 0.0337i 0.56248 − 0.03392i
4+ −0.12492 − 0.31080i −0.1308 − 0.3047i −0.12450 − 0.31137i
5+ −0.20290 − 1.04009i −0.2000 − 1.0367i −0.20534 − 1.03813i
1- −1.03765 + 0.05588i −1.0408 + 0.0536i −1.03035 + 0.05597i
2- −1.27682 + 0.07593i −1.26632 + 0.06888i
3- −1.32670 + 0.09521i −1.3206 + 0.0801i −1.31128 + 0.08123i
4- −0.34862 + 0.33685i −0.3584 + 0.3279i −0.34621 + 0.33552i
5- −0.26979 + 1.06720i −0.2855 + 1.0593i −0.27248 + 1.06293i
6- −0.25780 + 1.56806i −0.2828 + 1.5578i −0.26602 + 1.56185i



Chapter 7

Axially-segmented liners in annular

ducts with parallel sheared mean flow

In this chapter, the mode-matching theory of Chapter (3) is extended, in order to assess the

performance of axially-segmented liners in annular ducts,containing parallel shear flows of

arbitrary radial profile. It was demonstrated in the previous chapters that the non-uniformity of

the mean flow can have a potentially strong effect upon the mode eigenfunctions and axial

decay rates. In light of this, it is reasonable to assume thatthe attenuation performance of finite

length acoustic liners may also be affected by the mean flow profile.

The sole example in the literature of mode-matching for sheared flows is that of Joshi et al.

[139], where approximate modal solutions for boundary layer flows were used in a matching

scheme based upon continuity of pressure and axial particlevelocity across the liner interface

planes. It was shown in Chapter (3) that this type of matchingscheme does not ensure

continuity of mass and momentum, and can lead to errors in predicted attenuation levels and

scattering. In the scheme described here, the matching equations are derived from weighted

integrals of the continuity and axial momentum equations. Benchmarking is undertaken against

finite element solutions for uniform flow, since comparable sheared flow solutions are not

currently available. However, at the present time, a strongresearch and development effort is

progressing in the development of finite element methods (e.g. Discontinuous Galerkin Method

[45], Galbrun’s equation [46, 47]), which are applicable tosolving the current problem, and for

which the mode-matching method may provide validation cases.

7.1 Mode-matching method for annular ducts with parallel

sheared mean flow

The analysis begins with the acoustic continuity and axial momentum equations for

propagation in an inviscid, parallel sheared mean flow, given in cylindrical coordinates(r, θ, x)

147
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by
[

ik0 + M
∂

∂x

]

p +
1

r

∂vr

∂r
+

1

r

∂w

∂θ
+

∂u

∂x
= 0 , (7.1)

[

ik0 + M
∂

∂x

]

u + v
dM

dr
+

∂p

∂x
= 0 . (7.2)

The weighted forms of the continuity and axial momentum equations over a control volumeV

around the matching plane, respectively are

∫

V
ik0Wp − v

∂W

∂r
− w

r

∂W

∂θ
dV

+

∫

V
∇ · [Wv,Ww,WMp + Wu] dV = 0 , (7.3)

∫

V
ik0Wu + Wv

dM

dr
dV +

∫

V
∇ · [0, 0,WMu + Wp] dV = 0 , (7.4)

whereW = W (r, θ). Following the analysis of section (3.4), six surface integrals are obtained

from the second volume integral, and on taking the limitε → 0 (see Figure (3.2)) the following

final matching equations are obtained

2π

∫ 1

~

W (r)M
[

p(r)II − p(r)I
]

r dr + 2π

∫ 1

~

W (r)
[

u(r)II − u(r)I
]

r dr

+2π~
W (~)M(~)

ik0

[

βII
2 p(~)II − βI

2p(~)I
]

+ 2π
W (1)M(1)

ik0

[

βII
1 p(1)II − βI

1p(1)I
]

= 0 ,

(7.5)

2π

∫ 1

~

W (r)
[

p(r)II − p(r)I
]

r dr + 2π

∫ 1

~

W (r)M
[

u(r)II − u(r)I
]

r dr = 0 . (7.6)

It is assumed that the weighting functionsW are finite over the duct cross-section, and that the

flow gradient dM/dr is also finite over the radial duct section, which excludes power law

profiles from the analysis. The third and fourth terms of (7.5) are only present for flow profiles

with wall slip conditions. The method is identical for both uniform and sheared flows. In the

absence of flow, the matching equations reduce to those of continuity of pressure and axial

particle velocity.

7.1.1 Expressions for in-duct sound power in sheared flow

The sound power transmission loss∆PWL is used to quantify the acoustic liner performance.

For uniform flow, the form of axial intensity given by Morfey in equation (3.44) is used, but in

fact is only valid for irrotational flows. The mode eigenfunctions in a uniform flow are

orthogonal, and so the total sound power can be calculated asthe sum of individual modal

powers. In contrast to the case of uniform flow, the mode eigenfunctions in a sheared flow are
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not orthogonal. Therefore, the total in-duct sound power may contain cross-term contributions

due to interactions between different modes (however, Möhring [141] suggests that such

cross-terms do not exist). However, in the course of this work, it has been found that the

cross-term contributions are rather small, and subsequently are ignored in the analysis. In this

work, the form of the axial intensity given by M̈ohring [142] is used,

I±x m,n =
1

2

k0

(k0 − kM)2

{

−k0

2 (k0 − kM)2
dM

dr

d|p±m,n|2
dr

+
(

kM + k
(

1 − M2
))

|p±m,n|2
}

.

(7.7)

The total sound power is found by integratingIx over the duct cross-section and summing over

all the propagating modes, to give

W± = 2π
∑

m

∑

n

∫ 1

~

I±x m,n(r)rdr. (7.8)

The sound power transmission loss and the sound power reflection loss are then given by,

respectively

∆PWL = 10 log10

[

W+I

W+(S+1)

]

, (7.9)

∆PWLR = 10 log10

[

W+I

(W+I + W−I)

]

, (7.10)

where the power reflection loss is a measure of the power reflected at the liner leading edge.

7.2 Validation

Validation of the method is undertaken comparing with Finite Element (FE) solutions obtained

using the ACTRAN/TM solver, produced by Free Field Technologies [80]. The finite element

solver provides solutions of the wave equation in terms of the velocity potential, requiring a

potential mean flow to be specified. Therefore, a uniform meanflow is used for the validation

case. The mode-matching method used here is identical to that for a uniform mean flow, the

only difference for a sheared flow is that a different set of modes are used. It is noted that the

mode eigenvalue solver has already been validated for sheared flows, so only a brief validation

is included here.

The validation case is for a realistic geometry at approach conditions for an incident

rotor-stator interaction mode. Specifically, the parameters used here arek0 = 30.9435, m = 4,

n = 1, ~ = 0.56897, Z1 = Z2 = 2.1463 − 1.07313i, lI = lIII = 0.06788, lII = 0.67879, and

M = 0.345. The values of pressure at the hub and casing walls obtained from the FE and

mode-matching solutions are plotted in figure (7.1) over theaxial extent of the duct. The

agreement between the two methods is very good, except at thematching planes where a larger

singularity in the wall pressure at the matching planes is predicted by the FE method. The



Chapter 7 Axially-segmented liners in annular ducts with parallel sheared mean flow 150

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

0.4

0.6

0.8

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
0.6

0.8

1

1.2

|p
|

|p
|

x

x

FIGURE 7.1: Wall pressure comparison of FE and mode-matching solutionsfor a finite length
lined duct with uniform flow. Top plot, casing wall pressure;Bottom plot, hub wall pressure;

—, FE solution;•, mode-matching solution.

radial pressure profile at the leading and trailing matchingplanes is plotted in figure (7.2),

where the FE solution is compared against the mode-matchingsolutions constructed from rigid

and also lined duct modes. The agreement is very good, exceptnear the walls where

oscillations in the mode-matching solutions are more noticeable. This behaviour has already

been discussed in Chapter (3). A comparison of the scatteredmodal intensity is shown in figure

(7.3) where multi-mode solutions have been obtained assuming equal energy per cut-on mode

atk0 = 30.9435. The agreement in the transmitted intensities is excellent, whilst small

discrepancies occur in the reflected intensities for the less well cut-on modes.

7.3 Mode-matching with vortical modes

If the mean flow is uniform, a convenient decoupling of the acoustic and hydrodynamic

(vortical) fields is possible (see Eversman [4]). However, if the flow is non-uniform this no

longer applies. Since the acoustic and hydrodynamic fields are coupled, this theoretically

requires both fields to be solved to form a complete solution of the unsteady field. In this case

two distinct eigenmode spectra are present, consisting of pressure dominant acoustic modes,

and velocity dominant vortical modes. The only modes that propagate upstream are acoustic

modes, whilst both acoustic and vortical modes propagate downstream. The vortical modes

form a continuous spectrum owing to the presence of a critical layer wherek0 − kM(r) = 0.

The current method for solving the acoustic mode eigenvalues is not suitable for obtaining

vortical mode eigenvalues since the eigenvalue equations are singular at the critical layer.

Recent work by Vilenski and Rienstra [143, 115, 144] suggests that, for mean flows with wall
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FIGURE 7.2: Matching plane radial pressure profile comparison of FE and mode-matching
solutions for a finite length duct with uniform flow. Left plot, leading matching planex = xI ;
Right plot, trailing matching planex = xII ; —, FE solution;· · ·, mode-matching solution

(rigid duct modes);· · ·, mode-matching solution (lined duct modes).

slip conditions, there exist two vortical modes which have smooth eigenfunctions, and

correspond to critical layers located at each wall. In addition, there is a continuum of vortical

modes corresponding to critical layers inside the flow region, the eigenfunctions of which are

not smooth having only two continuous derivatives at the critical point [144].

It is of interest to investigate the effect of such modes on the mode-matching procedure, since

to obtain complete field solutions would theoretically require their inclusion. The inclusion of

vortical modes in triple-plane pressure matching schemes was investigated by Vilenski [145]

for modal decomposition of unsteady CFD solutions in rigid ducts. It was suggested that the

inclusion of some of the wall localised vortical modes can improve the near wall accuracy of

the matching. The presence of a continuous spectrum means that modal analysis is not strictly

applicable to the hydrodynamic spectrum, however, in the discrete model a set of discrete mode

solutions exist and depend upon the number of grid points. Inthe discrete model, the vortical

modes are defined atk = k0/M(r∗), with possible multiplicity depending on the flow profile.

For slip flows the continuous spectrum is bounded in a region defined by the maximum and

minimum Mach numbers to bek0/max[M(r∗)] ≤ k ≤ k0/min[M(r∗)]. For profiles with

no-slip wall conditions, the upper limit is unbounded.

In this work, the vortical modes are solved by expanding the Pridmore-Brown equation in a

small region around the critical layer [146]. This leads to an ODE valid in the neighbouring

region, which is solved using the method of Frobenius [147].This analytic solution is then

used to find the value of the pressure at the critical point. The mode eigenfunction over the

whole duct section is then obtained by matching the numerical solution of the Pridmore-Brown
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(b) Transmitted modal intensity.

FIGURE 7.3: Comparison of scattered modal intensities from FE and mode-matching solutions
for a finite length duct with uniform flow.×, mode-matching solution;•, FE solution.

equation (obtained using Runge-Kutta integration) at the edges of the small region bounding

the critical layer, to the analytic solution. Examples of the vortical mode pressure and axial

particle velocity eigenfunctions are presented in figure (7.4) for the linear shear flow profile

shown in figure (7.5). The pressure eigenfunctions have maxima at the critical point and decay

rapidly away from there, remaining pressure-less across the remaining duct section. For critical

points at the wall, the pressure eigenfunctions are finite atthe wall and decay rapidly away

from the wall. However, the axial particle velocity eigenfunctions, which are required in the

mode-matching scheme, are discontinuous at the critical point for critical layers not located at

the walls. This poses a problem for mode-matching with such modes, since the axial particle

velocity is undefined at the critical layers. In an attempt tocircumvent this problem, the critical

points are defined to be mid-way between pairs of grid points.An example of the pressure field

contour obtained from the mode-matching solution using this method is shown in figure (7.6),
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and is compared against solutions including only acoustic modes, and including the two wall

vortical modes. Here, the vortical modes in the lined sections are assumed to be independent of

the wall impedance, since they are almost incompressible. In fact, when the critical point is at

the wall this turns out to be true sincek0 − kM (r∗) = 0, and from the boundary condition

dp

dr
= ± i

k0Z
(k0 − kM (r∗))

2 p = 0 ⇒ ∂p

∂r
= 0 , (7.11)

whilst the mode is pressure-less at the opposite wall. The pressure and axial particle velocity

radial matching profiles at the matching planes are shown in figure (7.7) where ten vortical

modes are included. The velocity field includes un-physicalsingularities, and the pressure field

is subsequently quite different from the case without vortical modes. Matching profile plots for

solutions when only the wall vortical modes are included areshown in figure (7.8). In this case

the matching dramatically improves. Oscillations that arepresent away from the walls, in the

solutions with only acoustic modes, are reduced when the wall vortical modes are included.

This effect is similar to that seen in Chapter (3) when including the hydrodynamic surface wave

mode. The differences in the power transmission loss for solutions including zero, ten, and

only wall vortical modes are compared in figure (7.9). The power losses very slightly increase

when the wall vortical modes are included, whilst larger variation is seen when ten vortical

modes are included, but this result has an un-physical velocity field.

A case of further interest is that where the incident disturbance is a vortical mode. Contours of

the three pressure fields due to incident vortical modes of unit amplitude located on both hub

and casing, on only the casing, and in mid-duct are shown in figure (7.10). When the incident

vortical modes are located at critical points on (or near) the walls there is scattering of energy

into acoustic modes at the liner leading and trailing edges.From a mathematical viewpoint, this

occurs due to the wall terms in the matching equation (7.5) for continuity of mass. Note that

for flows with no wall slip conditions this term is zero, and noscattering into acoustic modes

would occur. The magnitude of the reflected and transmitted acoustic powers is very small.

These results demonstrate that, for a rotational flow, the interaction of acoustic and vortical

modes occurs at the liner edges resulting in both shed vorticity and a transfer of energy

between acoustic and vortical modes. Whether this represents a net production of acoustic

power (i.e. a source) at the liner edges is unclear since a method to calculate the acoustic power

of the pressure-coupled vortical modes is as yet unknown [69].

The results presented here show that the inclusion of vortical modes is only justified for

vortical modes located at the walls, and the effect upon the scattered acoustic power is minimal

for typical applications. Therefore, in the following sections, analysis of finite length liners in

duct with sheared flows is undertaken with only acoustic modes included in the mode-matching

scheme.
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FIGURE 7.4: Ten hydrodynamic mode pressure and axial particle velocityeigenfunctions for
m = 0 at k0 = 30.94355 for a linear shear flow (negative gradient).~ = 0.56.
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FIGURE 7.5: Linear shear profile with negative gradient and wall slip conditions.
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FIGURE 7.6: Pressure field contours due to single mode source(0, 1) at k0 = 30.94355 for a
finite length lined duct with a linear sheared flow (negative gradient). Location of the leading
and trailing edges of the liner is indicated by vertical dashed lines. Top plot, acoustic modes
only; Middle plot, with 10 vortical modes; Bottom plot, with2 wall vortical modes.R = 1,

Mr = 0.012, D = 0.021, lI = lIII = 0.067879, lII = 2.226446, ~ = 0.56897.
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(c) Axial particle velocity matching atx = xI .
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FIGURE 7.7: Pressure and axial particle velocity matching plane profiles for m = 0 at k0 =
30.94355 for a linear shear flow (negative gradient). —, acoustic modes only;−−, including

10 vortical modes;Blue lines, rigid duct modes;Red lines, lined duct modes.~ = 0.56897.
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FIGURE 7.8: Pressure and axial particle velocity matching plane profiles for m = 0 at k0 =
30.94355 for a linear shear flow (negative gradient). —, acoustic modes only;−−, including
2 wall vortical modes;Blue lines, rigid duct modes;Red lines, lined duct modes.~ = 0.56897.
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FIGURE 7.9: Comparison of power reflection and transmission loss for single and multi-mode
sourcesm = 0 at k0 = 30.94355 for a linear shear flow (negative gradient).�, acoustic
modes only;�, including 10 vortical modes;�, including 2 wall vortical modes.R = 1,

Mr = 0.012, D = 0.021, lI = lIII = 0.067879, lII = 2.226446, ~ = 0.56897.
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FIGURE 7.10: Pressure field contours due to vortical mode sources atk0 = 30.94355 for a
finite length lined duct with a linear sheared flow (negative gradient). Location of the leading
and trailing edges of the liner is indicated by vertical dashed lines. Top plot, 2 incident vortical
modes located at hub and casing ; Middle plot, single incident vortical mode located at casing;
Bottom plot, single incident vortical mode located mid-duct. R = 1, Mr = 0.012, D = 0.021,

lI = lIII = 0.067879, lII = 2.226446, ~ = 0.56897.
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7.4 Summary

• A mode-matching scheme for acoustic propagation in lined annular ducts containing an

inviscid, parallel sheared flow is presented.

• Validation of the scheme has been successfully undertaken against finite element

solutions for finite length liners in ducts with uniform flow.

• Solutions of the mode-matching scheme including vortical modes have been investigated

for slip flow profiles. It is found that the inclusion of vortical modes corresponding to

critical points at the walls could improve the matching procedure. The inclusion of

mid-duct vortical modes is found to produce un-physical results.

• The transfer of energy between incident acoustic and vortical disturbances is

demonstrated to result in the transfer of energy between near wall vortical modes and

acoustic modes.



Chapter 8

Analysis of axially-segmented liners in

annular ducts with parallel sheared

mean flow

It was demonstrated in Chapter (6) that the mean flow profile can have a strong effect on both

the mode eigenfunctions and the mode decay rates in rigid andlined ducts. In this chapter the

effects of flow profile upon the modal scattering and attenuation performance of finite length

liners are assessed. Again, realistic geometry and approach conditions are used where

~ = 0.56897.

8.1 Convergence to the slip flow case

Full assessment of the limitδ → 0 is not possible in the current formulation since the flow

gradient dM/dr must be finite. Here, a linear boundary layer profile is used toinvestigate

convergence to the uniform slip flow case to the limit of a verysmall boundary layer thickness

δ/(1 − ~) → 0.003125. The parameters used are identical to the validation case, and the

source consists of equal energy per cut-on mode for azimuthal orderm = 4. The variation of

the power transmission loss∆PWL and the power reflection loss∆PWLR with boundary layer

thickness are presented in figure (8.1), where the corresponding FE solution for uniform flow is

plotted for reference. The power losses are seen to convergeto the uniform slip flow solutions.

With uniform flow, the difference between mode-matching andFE solutions is very small, and

were already shown to converge with increasing number of modes in the matching and FE

mesh refinement in Chapter (3).

160
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(b) Power transmission loss.

FIGURE 8.1: Convergence of power transmission and reflection loss for a finite length duct
with a linear boundary layer mean flow in the limitδ → 0. −•−, mode-matching solution;×,

FE uniform flow solution.

8.2 Boundary layer effects

The effects of boundary layers upon modal scattering and power attenuation are investigated by

comparing mode-matching solutions for uniform flow with those obtained for two linear

boundary layer profiles of thicknessδ/(1 − ~) = 0.0125 and 0.05, representing thin and thick

boundary layers, respectively. The sound power transmission loss spectra for multi-mode

sources form = 0 andm = 16 are compared in figure (8.2). The low frequency (k ∼ 2×BPF)

attenuation peak shifts to lower frequency as the boundary layer thickness increases, which is

mainly due to the reduction in the mass flow rate. At higher frequencies, the attenuation is seen

to increase with boundary layer thickness. Additionally, the attenuation rates for sources

m = 0 andm = 16 are comparable at high frequency where many modes are propagating.
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(b) m = 16.

FIGURE 8.2: Effect of boundary layer thickness upon sound power transmission loss frequency
response for multi-mode sources atm = 0 andm = 16 in a lined duct of finite length.− • −,
uniform flowM = 0.345; − • −, thin linear boundary layerδ/(1 − ~) = 0.0125; − • −,
thick linear boundary layerδ/(1 − ~) = 0.05. R = 1, Mr = 0.012, D = 0.021, lI = lIII =

0.067879, lII = 2.226446, ~ = 0.56897.
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The scattered modal intensities for multi-mode sourcesm = 0 andm = 16 are plotted in figure

(8.3) atk0 = 30.94, near the peak power attenuation, and in figure (8.4) atk0 = 85.09, in the

frequency region where refraction effects are stronger. Atthe lower frequency, the scattering

behaviour is consistent for each boundary layer, with most transmitted energy contained in

modesn = 1 andn = 3. The absolute level differences are mainly due to the changein mass

flow rate, resulting in less attenuation as the boundary layer thickness increases. However, at

the higher frequency, stronger flow gradient effects upon the mode eigenfunctions and

eigenvalues cause large changes in the scattering pattern.As the boundary layer thickness is

increased, the least well attenuated mode changes fromn = 1 to n = 3. Pressure contour plots

for the incident modes(0, 1) and(16, 1) atk0 = 85.09 are shown in figure (8.5) for each flow

profile. The pressure field for the uniform flow case with the plane wave incident mode(0, 1) is

almost symmetric about the annulus center-line. However, when a boundary layer is introduced

the pressure field becomes highly asymmetric, and in fact become very similar to the cases

with incident modes(16, 1). When a boundary layer is introduced, the incident mode

eigenfunction(0, 1) is more affected than mode(16, 1), as demonstrated in figure (8.6). For the

thick boundary layer, the modes(0, 1) and(16, 1) are almost indistinguishable, and thus the

modal scattering patterns due to each are very similar.

8.3 General flow non-uniformity effects

The effects of general flow non-uniformity are investigatedby comparing mode scattering and

power attenuation calculations for the series of flow profiles presented in figure (8.7). The flow

profiles have been adjusted so that the mass flow rate for each is approximately equal, with an

equivalent average Mach number ofM = 0.345. An SDOF liner is modelled using equation

(4.2), with identical parameters to those used previously to give the impedance spectrum shown

in figure (6.8). The power transmission loss spectra for multi-mode sources at azimuthal orders

m = 0 andm = 4 are presented in figure (8.8) for each flow profile, and for configurations

where there is a liner on the hub, casing or both. Power transmission loss values are obtained at

frequency intervals ofk0 = 0.5 × BPF = 7.74.

The inclusion of a boundary layer leads to an increase in attenuation compared with the wall

slip profiles, at frequencies greater thank0 = 60. When only the casing is lined, flow profiles

with negative core flow gradients produce higher attenuation rates since sound is refracted

towards the lined wall. Conversely, when only the hub is lined, flow profiles with positive flow

gradients produce higher attenuation rates. The multi-modal attenuation of the spinning modes

is slightly higher than for the non-spinning modes.

The corresponding power transmission loss spectra for a single mode sourcen = 1 are

presented in figure (8.9). It is noted that the source mode pressure is more localised at the outer

wall for the spinning modem = 4, compared with the non-spinning modem = 0. Where both

walls are lined, the attenuation rates are substantially higher for flows with non-uniform core
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(b) Transmitted modal intensity,m = 0.
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(c) Reflected modal intensity,m = 16.
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(d) Transmitted modal intensity,m = 16.

FIGURE 8.3: Effect of boundary layer thickness upon modal scattering for multi-mode sources
m = 0 and m = 16 at k0 = 30.94355 in a lined duct of finite length.�, uniform flow
M = 0.345; �, thin linear boundary layerδ/(1−~) = 0.0125; �, thick linear boundary layer
δ/(1 − ~) = 0.05. R = 1, Mr = 0.012, D = 0.021, lI = lIII = 0.067879, lII = 2.226446,

~ = 0.56897.

profiles, and are again generally highest for those with negative core flow gradients. When only

the casing is lined, higher attenuation is obtained for profiles with negative core flow gradients,

and for the spinning mode source. Conversely, when only the hub is lined, higher attenuation is

obtained for profiles with positive core flow gradients, and for the non-spinning mode source.

In order to investigate the physical mechanisms behind the observed trends in power

attenuation, further analysis of the mode scattering and modal power attenuation for each flow

profile is conducted for sources atk0 = 2 × BPF = 30.94, where five radial modes are

cut-on. The axial decay rates of the cut-on, downstream propagating modes for each flow

profile, with one or both walls lined, are given in Table (8.1)for m = 0, and Table (8.2) for

m = 4. An estimate of the transmission loss is given for each case,given by

∆m,n = −20ℑ{km,n}lII log10 e , (8.1)

wherekm,n is the eigenvalue of the Least Attenuated Mode (LAM), andlII is the
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(a) Reflected modal intensity,m = 0.
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(b) Transmitted modal intensity,m = 0.
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(c) Reflected modal intensity,m = 16.
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(d) Transmitted modal intensity,m = 16.

FIGURE 8.4: Effect of boundary layer thickness upon modal scattering for multi-mode sources
m = 0 and m = 16 at k0 = 85.094754 in a lined duct of finite length.�, uniform flow
M = 0.345; �, thin linear boundary layerδ/(1−~) = 0.0125; �, thick linear boundary layer
δ/(1 − ~) = 0.05. R = 1, Mr = 0.012, D = 0.021, lI = lIII = 0.067879, lII = 2.226446,

~ = 0.56897.

non-dimensional liner length. The mode ordering is such that the least attenuated mode is not

necessarilyn = 1. In these examples, quasi-surface waves (in the sense that the eigenfunctions

are tending to appear similar to a surface wave) are present,and are typically of low mode

order, but have higher decay rates than the lowest order acoustic modes. It is seen that, with the

exception of the quasi-surface wave modes, the decay rates for ducts lined on both walls are

much higher than for those with only one wall lined. The lowest least attenuated mode decay

rates are found when one wall is lined, and the core flow gradient is such that sound is refracted

away from the lined wall. The surface wave mode decay rates are strongly affected by the flow

profile, but are quite insensitive to the impedance of the wall opposite to which they are

localised.

The power transmission loss due to each of the five cut-on modes as individual sources

(m,n) = (m, 1) to (m, 5), and also as a multi-mode source, are given in Table (8.3) forthe

non-spinning modem = 0, and Table (8.4) for the spinning modem = 4. The transmission

loss values are much higher when both walls are lined since the least attenuated mode changes
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(a) Pressure field,(0, 1).

(b) Pressure field,(16, 1).

FIGURE 8.5: Pressure field contours due to single mode source(m, 1) at k0 = 85.094754
for a finite length lined duct with uniform and linear boundary layer flows. Location of the
leading and trailing edges of the liner is indicated by vertical dashed lines. Top plot, uniform
slip flowM = 0.345; Middle plot, thin linear boundary layerδ/(1 − ~) = 0.0125; Bottom
plot, thick linear boundary layerδ/(1 − ~) = 0.05. R = 1, Mr = 0.012, D = 0.021,

lI = lIII = 0.067879, lII = 2.226446, ~ = 0.56897.

from either mode(m, 1) or (m, 2) to (m, 3) which has a higher decay rate. In addition, the

modes(m, 1) and(m, 2) are both quasi-surface wave modes when both walls are lined,thus

any energy scattered into these modes is more heavily attenuated.

Contour plots of the pressure fields with incident modes(0, 1) and(4, 1) are shown in figure

(8.10) for a uniform flow. Examples are shown for configurations with one or both walls lined.

These plots demonstrate the scattering of incident modes bythe acoustic liner. When both walls

are lined a fairly symmetric sound field is seen for the plane wave mode case, whereas higher

pressure levels are seen towards the casing for the spinningmode case. Contour plots for cases

with either the hub or casing wall lined demonstrate the effect of the liner on the pressure field,

with the blue areas, indicating low pressure values, adjacent to the lined wall. The average

modal and total intensities, (averaged over the duct cross-section), of the transmitted modes for
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FIGURE 8.6: Comparison of incident mode eigenfunctions atk0 = 85.094754. —, uniform
slip flowM = 0.345; −−, thin linear boundary layerδ/(1 − ~) = 0.0125; · · ·, thick linear

boundary layerδ/(1 − ~) = 0.05. ~ = 0.56897.

the case where both walls are lined are presented in figure (8.11) (top row). Six intensities are

plotted for each transmitted mode radial order, which correspond (from left to right) to the

levels with a single mode source ((m, 1) to (m, 5)), and a multi-mode source(m, 1 → 5). In

addition, the acoustic pressure radial eigenfunctions of downstream propagating modes(m, 1)

to (m, 5), in the rigid (middle row) and lined ducts (bottom row), are shown. From the pressure

field contour plots, it is clear that after scattering, the field owing to the plane wave source is

more oscillatory, indicating that a large amount of scattering occurs. This is confirmed by

observing the transmitted intensities, where most energy in the trailing duct section is contained

in modes(0, 1) and(0, 3). A similar scattering pattern is observed for the spinning mode case.

Contour plots of the pressure field for cases with a positive core shear flow gradient are shown

in figure (8.12). Here, there is a significant change in the pressure field when only the hub or

the casing are lined. The pressure fields are similar when both walls are lined or only the hub is
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FIGURE 8.7: Mean flow profiles with equal mass flow rate used in the mode scattering and
power attenuation study.—, uniform flowM = 0.345; —, boundary layer flow;—, posi-
tively sheared linear flow;—, negatively sheared linear flow;—, realistic flow with wall slip

conditions.
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(a) Hub and casing lined,m = 0.
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(b) Hub and casing lined,m = 4.
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(c) Casing lined,m = 0.
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(d) Casing lined,m = 4.
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(e) Hub lined,m = 0.
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(f) Hub lined,m = 4.

FIGURE 8.8: Power transmission loss spectra for multi-mode sourcesm = 0 and m = 4
for a finite length duct with various flow profiles. Flow profilekey as figure (8.7).R = 1,

Mr = 0.012, D = 0.021, lI = lIII = 0.067879, lII = 2.226446, ~ = 0.56897.
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(a) Hub and casing lined,(0, 1).
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(b) Hub and casing lined,(4, 1).
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(c) Casing lined,(0, 1).
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(d) Casing lined,(4, 1).

0 20 40 60 80 100 120
0

5

10

15

20

25

k0

∆
P

W
L

[d
B

]

(e) Hub lined,(0, 1).
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(f) Hub lined,(4, 1).

FIGURE 8.9: Power transmission loss spectra for single mode sources(0, 1) and(4, 1) for a
finite length duct with various flow profiles. Flow profile key as figure (8.7).R = 1, Mr =

0.012, D = 0.021, lI = lIII = 0.067879, lII = 2.226446, ~ = 0.56897.
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(a) Pressure field,(0, 1).

(b) Pressure field,(4, 1).

FIGURE 8.10: Pressure field contours due to single mode source(m, 1) at k0 = 30.94355 for
a finite length lined duct with uniform flow. Location of the leading and trailing edges of the
liner is indicated by vertical dashed lines. Top plot, both walls lined; Middle plot, only casing
lined; Bottom plot, only hub lined.R = 1, Mr = 0.012, D = 0.021, lI = lIII = 0.067879,

lII = 2.226446, ~ = 0.56897.

lined, because the incident wave is refracted towards the hub by the positive flow gradient.

When only the casing is lined, a higher pressure is maintained along the rigid hub wall due to

the lack of absorption. The opposite is seen when the flow gradient is negative, as shown in

figure (8.13).

Considering the linear shear flow with a positive gradient, when only the casing is lined, the

predicted transmission loss for incident mode(0, 1) is 0.48 dB, and for mode(0, 2) is 10.41

dB. However, when only the hub is lined, the predicted transmission loss for incident mode

(0, 1) is 5.81 dB, and for mode(0, 2) is 2.81 dB. The transmitted intensities and mode

eigenfunctions for these cases are presented in figures (8.14) and (8.15) respectively. It is seen

that, when only the casing is lined, the mode eigenfunctionsfor (0, 1) in the rigid duct, and

(0, 2) in the lined duct are very similar. Thus, for incident mode(0, 1), there is very little

scattering observed in the pressure field contour plot of figure (8.12a). In addition, since mode
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(a) Incident mode,(0, n).
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(b) Incident mode,(4, n).

FIGURE 8.11: First five downstream mode eigenfunctions and transmitted modal intensities
due to single mode source(m, n) at k0 = 30.94355 for a finite length lined duct with uniform
flow. Top plot, transmitted mode intensities; Middle plot, rigid duct eigenfunctions; Bottom
plot, lined duct eigenfunctions.R = 1, Mr = 0.012, D = 0.021, lI = lIII = 0.067879,

lII = 2.226446, ~ = 0.56897.
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(a) Pressure field,(0, 1).

(b) Pressure field,(4, 1).

FIGURE 8.12: Pressure field contours due to single mode source(m, 1) at k0 = 30.94355 for
a finite length lined duct with a linear sheared flow (positivegradient). Location of the leading
and trailing edges of the liner is indicated by vertical dashed lines. Top plot, both walls lined;
Middle plot, only casing lined; Bottom plot, only hub lined.R = 1, Mr = 0.012, D = 0.021,

lI = lIII = 0.067879, lII = 2.226446, ~ = 0.56897.

(0, 2) is the least attenuated mode in the lined section, there is very little attenuation of the

incident energy. In contrast, the transmission loss of incident mode(0, 2) is much higher due to

scattering, since the rigid duct eigenfunction does not closely resemble any of the lined duct

eigenfunctions. Also a similar pattern occurs comparing the situation for the case where only

the hub is lined (see Figure (8.15)). Here, it is mode(0, 2) in the rigid duct and mode(0, 1) in

the lined section which are most similar. Thus, most of the transmitted energy remains in mode

(0, 2) in the trailing rigid section, and little attenuation is observed since the lined duct mode

(0, 1) is the least attenuated mode. The transmission loss of incident mode(0, 1) in this case is

now higher since more scattering occurs. The same features are observed for the spinning

mode cases. When the linear flow profile has a negative shear gradient a similar scenario

occurs, but the roles of the liner locations are reversed.
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(a) Pressure field,(0, 1).

(b) Pressure field,(4, 1).

FIGURE 8.13: Pressure field contours due to single mode source(m, 1) at k0 = 30.94355 for
a finite length lined duct with a linear sheared flow (negativegradient). Location of the leading
and trailing edges of the liner is indicated by vertical dashed lines. Top plot, both walls lined;
Middle plot, only casing lined; Bottom plot, only hub lined.R = 1, Mr = 0.012, D = 0.021,

lI = lIII = 0.067879, lII = 2.226446, ~ = 0.56897.

8.4 Finite length effects

The acoustically lined area within a realistic bypass duct is likely to consist of various liners of

different lengths. It was shown by Unruh [26] that liner performance, particularly at low

frequency, can be strongly affected by finite length tuning effects, whereby axial standing

waves are produced in short liners by strong reflections at the leading and trailing liner edges.

The variation of power transmission loss with liner length is shown in figure (8.16) for a

symmetrically lined duct atk0 = 2 × BPF = 30.94 for the various flow profiles in figure

(8.7). Results for both multi-mode and single mode sources are shown. Since the gradients of

the curves in each plot are not constant, as would be expectedfrom infinite lined duct theory,

this indicates that finite length effects are significant. Infact, some of the curves have strong

changes in gradient as the liner length is varied. Strong differences between the flow profiles
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(b) Incident mode,(4, n).

FIGURE 8.14: First five downstream mode eigenfunctions and transmitted modal intensities
due to single mode source(m, n) at k0 = 30.94355 for a finite length duct with only casing
lined, with linear shear flow (positive gradient). Top plot,transmitted mode intensities; Middle
plot, rigid duct eigenfunctions; Bottom plot, lined duct eigenfunctions.R = 1, Mr = 0.012,

D = 0.021, lI = lIII = 0.067879, lII = 2.226446, ~ = 0.56897.
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(b) Incident mode,(4, n).

FIGURE 8.15: First five downstream mode eigenfunctions and transmitted modal intensities
due to single mode source(m, n) at k0 = 30.94355 for a finite length duct with only hub lined,
with linear sheared flow (positive gradient). Top plot, transmitted mode intensities; Middle
plot, rigid duct eigenfunctions; Bottom plot, lined duct eigenfunctions.R = 1, Mr = 0.012,

D = 0.021, lI = lIII = 0.067879, lII = 2.226446, ~ = 0.56897.
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are only seen for the two lowest order modes(4, 1) and(4, 2). In both of these cases the

negatively sheared flows are distinctly different from the rest.

The reflection loss for each case is plotted in figure (8.17). Distinct oscillations are seen, which

reduce in strength as the liner length is increased, and are strongest for the least well cut-on

incident mode(4, 5). The wavelength of the oscillation corresponds to half the wavelength of

the excitation frequency. The wall slip flow profiles have consistently higher reflection losses

than the profiles without wall slip.

8.5 The effect of sheared flow upon optimum liner performance

In this section, the effect of sheared flow upon optimum bypass duct liner performance is

briefly assessed. In the preceding work, it was seen that sheared flow has a potentially strong

effect, when compared with the uniform flow assumption, on the mode eigenfunctions and

decay rates, and the scattering and power attenuation of finite length liners. The low order

radial modes were most affected by the mean flow shear, whilstthe effects on multi-mode

propagation were not as strong. The effect of the mean flow profiles used previously, shown in

figure (8.7), on the optimum wall impedance is assessed here for a multi-mode sourcem = 4,

and a single mode source(m = 4, n = 1). Contour plots of sound power transmission loss are

calculated for resistance values0.4 ≤ R ≤ 5, and reactance values−5 ≤ X ≤ 3.

The uniform flow solutionM = 0.345 is used as the baseline case in each comparison.

Contour plots for multi-mode and single mode sources are shown in figure (8.18) at

frequencies ofk0 = 2 × BPF= 30.94 andk0 = 5.5 × BPF= 85.09, where there are five and

thirteen cut-on modes, respectively. Both hub and casing walls have the same impedance. At

k0 = 30.94 the optimum impedance for the multi-mode caseZ = 1.32 − 1i is identical to that

for n = 1. At k0 = 85.09 the optimum impedance for the multi-mode case isZ = 2.24 − 1i,

and forn = 1 it is Z = 1.32 − 3.4i. For higher order incident modes the trend in impedance is

to higher resistance values, whilst reactance values tend to zero.

8.5.1 Single impedance optimisation

Figure (8.19) shows the multi-mode power transmission losscontours atk0 = 30.94 for a

uniform flow, realistic flow with slip, and linear shear flows (positive and negative gradients)

with boundary layers. For each case the optimum reactance islocated at aroundX = −1,

whilst the optimum resistance slightly increases for the non-uniform flows. The attenuation

levels show only weak variation between the flow profiles. Thesame plots, but for a single

mode(4, 1) source, are shown in figure (8.20). A similar shift in the optimum is seen for each

non-uniform flow to a higher resistance and lower reactance than the uniform flow case.

Differences of around 2 to 4 dB are seen in the attenuation levels between the flow cases, with

the highest levels achieved for the negatively sheared linear flow profiles. The multi-mode and
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FIGURE 8.16: Variation of power transmission loss with liner length for single mode and
multi-mode sources for various flow profiles. Flow profiles asfigure (8.7). k0 = 30.94355,

R = 1, Mr = 0.012, D = 0.021, lI = lIII = 0.067879, ~ = 0.56897.
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FIGURE 8.17: Variation of power reflection loss with liner length for single mode and multi-
mode sources for various flow profiles. Flow profiles as figure (8.7). k0 = 30.94355, R = 1,

Mr = 0.012, D = 0.021, lI = lIII = 0.067879, ~ = 0.56897.
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(b) Realistic flow with slip.
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(c) Linear shear flow (positive gradient) with boundary lay-
ers.
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(d) Linear shear flow (negative gradient) with boundary lay-
ers.

FIGURE 8.19: Contour plots of∆PWL over resistance and reactance for a multi-mode source
at k0 = 2 × BPF = 30.94355. Uniform flow optimum indicated by•. m = 4, lI = lIII =

0.067879, lII = 2.226446, ~ = 0.56897.

single mode power transmission loss contours for the boundary layer flow profile are compared

with the uniform flow case in figure (8.21) at the higher frequency ofk0 = 5.5 × BPF= 85.09.

For the multi-mode source, the optimum resistance and reactance are slightly higher. Stronger

differences are seen in the case of a single mode source. Here, the optimum resistance is much

higher than the uniform flow case, at aroundR = 3.1, and the reactance is lower, at around

X = −4.1. The attenuation levels are around double those of the uniform flow case.

8.5.2 Casing wall impedance optimisation

It was found in the preceding sections that the direction of the mean flow gradient can have a

strong effect upon the attenuation performance of the hub and casing liners. It is therefore of

interest to investigate the optimisation of the hub and casing wall impedances for the different

flow profiles. The approach taken here is to fix the hub impedance at the values obtained for the

optimum impedance of the symmetrically lined case (in the previous subsection). The

optimisation of the casing impedance is then undertaken as previously using contour plots. It is
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(b) Realistic flow with slip.
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(c) Linear shear flow (positive gradient) with boundary lay-
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(d) Linear shear flow (negative gradient) with boundary lay-
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FIGURE 8.20: Contour plots of∆PWL over resistance and reactance for a single mode(4, 1)
source atk0 = 2 × BPF = 30.94355. Uniform flow optimum indicated by•. m = 4,

lI = lIII = 0.067879, lII = 2.226446, ~ = 0.56897.

noted that the value of impedance obtained is, in general, not the global optimum, but will give

indication of whether the flow profile has a strong effect or not.

Contour plots of the multi-mode power transmission loss over the casing impedance at

k0 = 30.94 are shown in figure (8.22). The optimum casing reactances do not change

drastically from the symmetrically lined optima, whilst the trends in the resistance are towards

higher resistance for negatively sheared flows, and lower resistance for positively sheared

flows. In addition, when comparing figures (8.19) and (8.22),the attenuation levels for each

profile are seen to increase by the order of 2 to 4 dB in the asymmetrically lined case. The

highest attenuation levels occur for the positively sheared linear flow profile.

Contour plots of the single mode(4, 1) power transmission loss over the casing impedance at

k0 = 30.94 are shown in figure (8.23). Here the optimum casing impedances do not change

significantly from the symmetrically lined optimum. By using an asymmetric liner the

attenuation levels increase over the symmetric case by around 2 dB for the uniform, realistic

and negatively shear linear flow profiles. However, this increases to between 4 and 6 dB over

the casing impedance range for the positively sheared linear flow profile.
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(b) Multi-mode source, boundary layer flow.
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(c) Single mode(4, 1) source, uniform flow.
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(d) Single mode(4, 1) source, boundary layer flow.

FIGURE 8.21: Contour plots of∆PWL over resistance and reactance for a single mode(4, 1)
and multi-mode sources atk0 = 5.5 × BPF = 85.09475. Uniform flow optimum indicated by

•. m = 4, lI = lIII = 0.067879, lII = 2.226446, ~ = 0.56897.

Finally, contour plots of the multi-mode and single mode(4, 1) power transmission loss at

k0 = 5.5 × BPF= 85.09 are shown in figure (8.24) for uniform and boundary layer flow

profiles. The results show virtually no change in the optimumcasing impedance and

attenuation levels compared with those of the symmetrically lined case, indicating that these

profiles may be suitably modelled using symmetrically linedducts when undertaking

impedance optimisation.
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(b) Realistic flow with slip.
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(c) Linear shear flow (positive gradient) with boundary lay-
ers.
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(d) Linear shear flow (negative gradient) with boundary lay-
ers.

FIGURE 8.22: Contour plots of∆PWL over casing wall resistance and reactance for a multi-
mode source atk0 = 2 × BPF = 30.94355. Uniform flow optimum indicated by• and hub

impedance indicated by•. m = 4, lI = lIII = 0.067879, lII = 2.226446, ~ = 0.56897.
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(b) Realistic flow with slip.
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(c) Linear shear flow (positive gradient) with boundary lay-
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(d) Linear shear flow (negative gradient) with boundary lay-
ers.

FIGURE 8.23: Contour plots of∆PWL over casing wall resistance and reactance for a single
mode(4, 1) source atk0 = 2 × BPF = 30.94355. Uniform flow optimum indicated by• and
hub impedance indicated by•. m = 4, lI = lIII = 0.067879, lII = 2.226446, ~ = 0.56897.
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(a) Multi-mode source, uniform flow.
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(b) Multi-mode source, boundary layer flow.
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(c) Single mode(4, 1) source, uniform flow.
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(d) Single mode(4, 1) source, boundary layer flow.

FIGURE 8.24: Contour plots of∆PWL over casing wall resistance and reactance for a single
mode(4, 1) and multi-mode sources atk0 = 5.5 × BPF = 85.09475. Uniform flow optimum
indicated by• and hub impedance indicated by•. m = 4, lI = lIII = 0.067879, lII =

2.226446, ~ = 0.56897.
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8.6 Summary

• The convergence of solutions with thin boundary layers to the slip flow case is

demonstrated.

• The presence of boundary layers is shown to increase power transmission loss at high

frequencies. The pattern of modal scattering is shown to vary with boundary layer

thickness.

• The effects of several flow profiles upon liner attenuation and scattering have been

investigated. Higher power attenuation occurs where the mean flow gradient refracts

sound towards the liner. Strong variations in attenuation have been noted between

individual modal sources, depending upon flow profile and liner location, particularly for

the lowest order radial modes.

• Identical trends are seen for multi-mode sources, but smaller changes in power

transmission loss occur due to the lower sensitivity of higher order modes to changes in

flow profile.

• Finite length effects upon power attenuation are found to bemost significant for single

incident mode sources. Differences between flow profiles arefound only to be significant

for the lowest order modes.

• A brief assessment of the effects of flow profile on the optimumliner impedance at a

single frequency is made using contour plots, against the baseline case of uniform flow.

The change in the optimum impedance of a symmetric liner for several flow profiles is

found to be fairly small. It is found that asymmetric liners could provide higher

attenuation rates, depending on the direction of the mean flow shear gradient.

• Attenuation levels over the impedance plane are found to be potentially much higher for

sheared flows, particularly for single mode sources. In the examples used, the highest

attenuation levels are found for positively sheared flow.
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TABLE 8.1: Predicted axial decay ratesℑ{k} of modes(0, 1 → 5) at k0 = 2 × BPF =
30.94355 in a lined annular duct with various flow profiles. The transmission loss for the least

attenuated mode (LAM) is also listed.

ℑ{k} ∆m,n [dB]
Mean flow profile Casing Hub (0, 1) (0, 2) (0, 3) (0, 4) (0, 5) (LAM )

Uniform Lined Lined -2.59 -2.16 -1.04 -1.74 -2.84 20.17
Lined Rigid -2.56 -0.09 -0.51 -0.87 -1.60 1.71
Rigid Lined -0.08 -2.28 -0.59 -0.93 -1.68 1.63

Uniform with Lined Lined -2.93 -2.56 -0.92 -1.77 -2.88 17.81
boundary layer Lined Rigid -2.91 -0.07 -0.50 -0.89 -1.61 1.39

Rigid Lined -0.07 -2.61 -0.58 -0.95 -1.69 1.28
Linear shear with Lined Lined -2.83 -3.81 -0.80 -1.81 -2.97 15.56
boundary layer Lined Rigid -2.83 -0.03 -0.49 -0.90 -1.64 0.51

(positive gradient) Rigid Lined -0.10 -3.81 -0.53 -0.99 -1.76 1.87
Linear shear with Lined Lined -3.97 -2.81 -0.79 -1.82 -2.96 15.23
boundary layer Lined Rigid -3.97 -0.09 -0.48 -0.92 -1.65 1.75

(negative gradient) Rigid Lined -0.02 -2.80 -0.54 -0.99 -1.71 0.38
Realistic flow with Lined Lined -3.26 -1.97 -0.99 -1.74 -2.85 19.20

wall slip Lined Rigid -3.26 -0.10 -0.48 -0.88 -1.62 1.91
Rigid Lined -0.03 -2.05 -0.62 -0.93 -1.66 0.61

TABLE 8.2: Predicted axial decay ratesℑ{k} of modes(4, 1 → 5) at k0 = 2 × BPF =
30.94355 in a lined annular duct with various flow profiles. The transmission loss for the least

attenuated mode (LAM) is also listed.

ℑ{k} ∆m,n [dB]
Mean flow profile Casing Hub (0, 1) (0, 2) (0, 3) (0, 4) (0, 5) (LAM )

Uniform Lined Lined -2.64 -2.27 -1.05 -1.79 -2.96 20.32
Lined Rigid -2.63 -0.11 -0.51 -0.88 -1.68 2.14
Rigid Lined -0.07 -2.37 -0.62 -0.98 -1.78 1.32

Uniform with Lined Lined -3.00 -2.68 -0.92 -1.82 -3.00 17.73
boundary layer Lined Rigid -2.99 -0.09 -0.50 -0.90 -1.69 1.78

Rigid Lined -0.05 -2.72 -0.59 -1.00 -1.79 1.04
Linear shear with Lined Lined -2.91 -3.93 -0.80 -1.85 -3.09 15.50
boundary layer Lined Rigid -2.91 -0.04 -0.50 -0.92 -1.72 0.72

(positive gradient) Rigid Lined -0.08 -3.94 -0.54 -1.02 -1.86 1.58
Linear shear with Lined Lined -4.04 -2.95 -0.77 -1.87 -3.07 14.89
boundary layer Lined Rigid -4.04 -0.12 -0.48 -0.93 -1.72 2.22

(negative gradient) Rigid Lined -0.01 -2.93 -0.54 -1.03 -1.81 0.29
Realistic flow with Lined Lined -3.33 -2.06 -1.00 -1.80 -2.97 19.30

wall slip Lined Rigid -3.33 -0.12 -0.49 -0.89 -1.70 2.39
Rigid Lined -0.02 -2.12 -0.65 -0.98 -1.76 0.45
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TABLE 8.3: Predicted sound power transmission loss for non-spinning modesm = 0 at k0 =
2×BPF = 30.94355 in a lined annular duct with various flow profiles. Single mode∆PWL0,n

and multi-mode∆PWL0 transmission loss values are listed.

Incident mode∆PWLm,n [dB] ∆PWLm [dB]
Mean flow profile Casing Hub (0, 1) (0, 2) (0, 3) (0, 4) (0, 5) (0, 1 → 5)

Uniform Lined Lined 17.47 32.10 16.52 33.02 29.34 20.71
Lined Rigid 2.83 5.16 8.78 14.60 23.68 7.00
Rigid Lined 1.95 6.65 9.80 15.46 24.22 7.02

Uniform with Lined Lined 16.46 31.71 15.80 33.55 29.05 19.89
boundary layer Lined Rigid 2.83 4.78 8.74 14.85 23.86 6.88

Rigid Lined 1.79 6.58 9.79 15.74 24.43 6.92
Linear shear with Lined Lined 16.07 21.45 15.00 33.72 28.61 18.84
boundary layer Lined Rigid 0.48 10.41 9.13 15.22 24.58 6.42

(positive gradient) Rigid Lined 5.81 2.81 8.90 15.93 24.17 7.24
Linear shear with Lined Lined 16.47 18.86 14.75 33.82 28.42 18.49
boundary layer Lined Rigid 6.66 2.45 8.24 15.13 23.74 7.12

(negative gradient) Rigid Lined 0.33 11.32 9.90 16.28 25.05 6.46
Realistic flow with Lined Lined 18.19 20.58 15.88 32.73 29.02 19.87

wall slip Lined Rigid 6.28 2.78 8.24 14.64 23.50 7.21
Rigid Lined 0.46 11.93 10.49 15.60 24.77 6.64

TABLE 8.4: Predicted sound power transmission loss for spinning modesm = 4 at k0 =
2×BPF = 30.94355 in a lined annular duct with various flow profiles. Single mode∆PWL4,n

and multi-mode∆PWL4 transmission loss values are listed.

Incident mode∆PWLm,n [dB] ∆PWLm [dB]
Mean flow profile Casing Hub (0, 1) (0, 2) (0, 3) (0, 4) (0, 5) (0, 1 → 5)

Uniform Lined Lined 17.32 25.29 16.71 33.70 29.30 20.51
Lined Rigid 3.97 4.38 8.67 14.70 23.77 7.26
Rigid Lined 1.26 8.60 10.37 15.99 24.75 6.96

Uniform with Lined Lined 16.46 24.63 15.96 34.25 29.00 19.75
boundary layer Lined Rigid 4.03 3.95 8.67 14.95 23.97 7.12

Rigid Lined 1.11 8.62 10.27 16.24 24.94 6.85
Linear shear with Lined Lined 15.42 25.07 15.07 34.84 28.59 18.89
boundary layer Lined Rigid 0.84 9.07 9.23 15.41 24.89 6.57

(positive gradient) Rigid Lined 4.42 3.36 9.32 16.33 24.55 7.14
Linear shear with Lined Lined 16.62 17.34 15.02 33.64 28.45 18.32
boundary layer Lined Rigid 7.33 2.70 8.09 15.18 23.76 7.39

(negative gradient) Rigid Lined 0.23 11.18 10.20 16.71 25.48 6.41
Realistic flow with Lined Lined 18.14 18.56 16.16 32.88 29.00 19.56

wall slip Lined Rigid 7.08 2.99 8.15 14.70 23.55 7.50
Rigid Lined 0.32 12.54 10.97 16.15 25.32 6.61



Chapter 9

Conclusions and future work

9.1 Overall conclusions

The initial motivation for this work was the requirement to predict the performance of acoustic

liners in the bypass duct of modern high bypass ratio turbofan engines. Such predictions are

required by the Noise Engineering department at Rolls-Royce in order to optimise the acoustic

liner configuration and, ultimately, to assess the impact ofthe rear fan noise source on the total

engine noise.

In this study, a series of computationally inexpensive modal methods have been developed,

which are suitable for use in intensive liner optimisation studies or as preliminary design tools.

To place this work in context, since the 1970s, predictions of bypass duct acoustic liner

performance have typically been based upon interpolation over tables of modal decay rates

obtained from idealised uniform duct models with uniform flow. At the present time, efforts are

being made to integrate Finite Element methods into the prediction process. These represent

the most mature of the various numerical methods, and are based on the solution of the

convected Helmholtz equation for axisymmetric curved ducts containing an irrotational mean

flow. However, these methods are computationally expensiveand limited to the low or mid

frequency range.

The fidelity and computational expense of the mode-matchingmethods developed here are

placed in between the modal decay rate methods and FE methods. A key advantage of the

mode-matching methods is the ability to assess the impact ofdiscontinuities in the wall

impedance on the sound field, or from an engineering perspective, the effect upon the

attenuation performance of the finite liner length. In-depth analysis of the scattering problem

has been possible since the methods directly calculate the modal amplitudes. To obtain this

information from FE solutions requires the use of suitable wave-splitting methods. The

optimisation study carried out in Chapter (4) has shown that, by scattering the modal power

with specific liner segments, it is possible to obtain potentially large improvements in the

188
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attenuation of tonal noise. In the bypass duct, this could beused to improve the attenuation of

important rotor-stator interaction tones.

The prediction of broadband noise attenuation using numerical methods is limited by the high

propagating mode density at mid to high frequencies. The broadband noise source is typically

modelled by assuming an equal energy distribution per uncorrelated cut-on mode, which may

number in the hundreds or thousands at the highest frequencies of interest. This requires many

computations which means that the faster modal methods developed here are suitable.

Although the methods are based upon idealised geometry, they have been shown to provide a

good approximation to experimental results for broadband noise sources. The optimisation of

liners to maximise the attenuation of broadband noise requires a range of frequencies to be

considered. The analysis of Chapter (4) suggests that it is difficult to obtain improvements over

the attenuation due to an optimised uniform liner by using axially-segmented liners, across the

frequency range of interest. Improvements are possible at discrete frequencies, but the benefits

fall off sharply with increasing frequency. This is due to the increase in propagating mode

density at high frequency, which appears to smear out any benefits from mode scattering by

additional liner segments.

A key problem encountered in the optimisation study of Chapter (4) was the inadequacy of the

optimisation strategies used for obtaining axially-segmented liner designs. Each of the design

parameters (resistance, reactance or liner depth, and liner length) may have a significant effect

upon the topology of the multi-dimensional objective function surface, which necessitates an

efficient global search of the design space. This is a common scenario encountered in design

optimisation when searching a high dimensional parameter space for the global optimum

design. The current method used at Rolls-Royce to obtain bypass duct liner designs involves

the use of tables of modal decay rates and contour plots of approximate far-field SPL

attenuation for individual liner segments of fixed length. This method is effectively a series of

two dimensional optimisation problems where the liner lengths are fixed, and liner scattering

and length effects are ignored. Thus obtaining the global optimum is very unlikely. The study

undertaken here improves both the modeling and optimisation process, however, it is clear that

more work needs to be done to develop both the optimisation algorithms and the search

strategy, in order to search the design space efficiently andto improve confidence that the

design achieved is the global optimum. A feature of the work which could be exploited in

practise is the use of optimised asymmetric liner segments.The work presented in section (8.5)

demonstrated that such configurations can provide attenuation benefits over symmetric liner

segments, depending upon the mean gradient of the core flow and the source description. Such

effects are only captured by using models based on the real annular geometry, and require a

higher dimensional parameter space to be searched.

The real mean flow field within the bypass duct consists of growing boundary layers and a

non-uniform radial profile which varies with the axial curvature of the duct walls. The region

around the turbine hump contains most variable region of flowin the duct. Simplified acoustic

models based on the uniform slip flow assumption miss the potentially important effects of the



Chapter 9 Conclusions and future work 190

flow non-uniformity, which include changes to the scattering and power attenuation by the

convection and refraction of sound. The slip flow assumptionhas been shown to be valid only

for very thin boundary layers, which may not be the case in thebypass duct where boundary

layer thicknesses of up to7% were predicted in the CFD solutions in Chapter (5).

The sheared flow modal methods developed in this work providethe Rolls-Royce Noise

Engineering department with the means to better predict thebypass duct liner attenuation

performance. Since the mean flow profile varies between engine designs, the methods may be

used to provide engine specific predictions. The eigenvaluesolver may be used to provide

tables of modal decay rates, or the mode-matching scheme maybe used to replace the

interpolation methods. The mean flow profile can have a strongeffect upon the mode

eigenfunctions, particularly for low order modes. This means that the modal decomposition of

a source description, for example from a CFD solution at an axial plane, can be strongly

dependent upon the mean flow. This can have implications for matching strategies where

modal descriptions from CFD solutions are required, with particular application to tonal noise

(e.g. buzzsaw noise) propagation predictions using hydridCAA/FE methods. An example of

the application of the sheared flow mode matching method would be to model the propagation

of rotor-stator interation noise in the bypass duct, where the source description is obtained by

modal decomposition of a fan/OGV stage CFD calculation.

9.2 Future work

This section outlines related topics and applications in which further investigation may benefit

from the work undertaken in the current study.

The methods developed here for predicting acoustic liner attenuation are suitable for intensive

optimisation studies. Optimisation of multiple liner segments involves, potentially, a very large

design parameter set. Such parameters include facing sheetporosity and thickness, cavity

depth and septum height and segment length. For such a large parameter space, it is the search

algorithm process which can become the most problematic part of the optimisation. Initial

attempts have been made to improve the search process for multiple liner segments by using

hybrid methods [108, 100], and the propagation methods developed here could be used in

further work in this area.

Recent work on specialised finite element methods for acoustic propagation in rotational flows

[45, 46, 47] is ongoing and the sheared flow mode-matching method developed here could be

used as a method for benchmarking purposes.

A useful extension of the current mode-matching methods would be to allow for circular duct

with no centre body for application to the inlet duct. The mean flow field in the inlet is not as

non-uniform as the bypass duct, but the current work has shown that the effect of sheared mean

flow is stronger for upstream propagating sound. Such an extension would be useful in
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assessing the impact of the deep fan case liner located in front of the fan to reduce reflections

that could induce fan flutter. It is possible that the flow non-uniformity in this region of annular

geometry (due to the presence of the spinner) could have a strong impact upon the optimum fan

case and inlet liner design parameters.



Appendix A

Details of the rectangular duct

mode-matching equations

The termsaln andc±ln are obtained from the integrals in equations (3.17) and (3.18),

respectively. Taking advantage of the orthogonality of themode eigenfunctions, the above

integrals are evaluated to give,

aln = 2 l = n = 0,

= 1 l = n 6= 0,

= 0 l 6= 0,

(A.1)

c±ln = 1 µm,n = κm,l 6= 0 ,

= R±II
m,n

2 sin (µm,n)

µm,n
κm,l = 0, µm,n 6= κm,l ,

= cos (κm,l)R
±II
m,n

[

sin (κm,l + µm,n)

κm,l + µm,n
+

sin (κm,l − µm,n)

κm,l − µm,n

]

+ sin (κm,l)S
±II
m,n

[

sin (κm,l − µm,n)

κm,l − µm,n
− sin (κm,l + µm,n)

κm,l + µm,n

]

µm,n 6= κm,l .

(A.2)

The combined matrix equation for the continuity of pressureand axial particle velocity at a

rigid-lined impedance discontinuity atxI is given by,

(

a+
1 a+

1

b+
1 b+

1

)(

A+I

A−I

)

=

(

c+
1 c+

1

d+
1 d+

1

)(

A+II

A−II

)

. (A.3)

192



Appendix A Details of the rectangular duct mode-matching equations 193

The matrix elements are given by the following
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Details of the Wiener-Hopf solution for

a uniform symmetric liner in the

absence of a mean flow

The mathematical formulation summarised here is from Koch [28], where a single even mode

excitation is assumed. The kernel function for even modes isgiven by

K
s (ξ) =

γ̂ sin (γ̂/2) − ik02d cos (γ̂/2)
ZII

γ̂ sin (γ̂/2)
, (B.1)

whereγ̂ =
[

(k02d)2 − (kz2d)2 − ξ2
]1/2

. The split function for left-running modes is given by

K
s
+ (ξ) = K

s (0)
Nc
∏

n=0

1 + ξ/ − αm,2n2d

1 − ξ/δkxkxm,2n2d

N
∏

n=Nc+1

1 + ξ/ − αm,2n2d

1 + ξ/δkxkxm,2n2d
, (B.2)

and the split function for right-running modes follows as

K
s
− (ξ) = K

s
+ (−ξ) /Ks (0) . (B.3)

The transmission and reflection factors given in equations (3.49) and (3.50) are found after the

decomposition of the generalised Wiener-Hopf equation, and application of the residue

theorem to solve all decomposition integrals. The various coefficients that result are now

defined. The coefficientsQ2n andP2n are given by

Q2n =
κ2

m,2ne−ilII∗αm,2n2d
K

s
+ (−αm,2n2d)2

−αm,2n2d

[

1 + ik0d
ZII +

κ2
m,2nZII

i2k0

] , (B.4)
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P2n =
κ2
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The correction termC(1)
2n is found by solving the following complex general system of linear

equations
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The matrix elements are given by the following

As
n =

P2n

−αm,2s2d − αm,2n2d
, (B.7)

Bs = − Êm,2rk02d
(

−αm,2s2d + δkxkxm,2r2d
)

Ks
+ (−κm,2r2d)

, (B.8)

Gs
n =

Q2n

−αm,2s2d − αm,2n2d
. (B.9)

Solution of the linear system can be achieved using standardtechniques, and for the purposes

of the work here this is done computationally using the IMSL Fortran Numerical Library

routine LSACG, which utilises LU factorisation and iterative refinement routines. The

correction termC
(2)
2n is then given by

C
(2) = −GC

(1) . (B.10)
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FIGURE C.1: Case 2: Comparison of 2D mode matching and finite solutions for a single
asymmetric liner without flow. Liner interface matching planes indicated by dashed lines.

Solid line, finite element solution;•, p-u mode matching solution.
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FIGURE C.2: Case 2: Comparison of scattered modal intensities from modematching and
finite element methods due to an incident plane wave of unit intensity. Top plot, Transmitted

modal intensity; Bottom plot, Reflected modal intensity.
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FIGURE C.3: Case 5: Comparison of 2D mode matching and finite solutions for a single
asymmetric liner with flow. Liner interface matching planesindicated by dashed lines. Solid
line, finite element solution;•, p-u mode matching solution;•, mass-momentum mode matching

solution.
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FIGURE C.5: Case 5: Comparison of scattered modal intensities from modematching and
finite element methods due to an incident plane wave of unit intensity. Top plot, Transmitted

modal intensity; Bottom plot, Reflected modal intensity.
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FIGURE C.6: Example of the dynamic hill climber search pattern and convergence for a single
symmetric liner segment due to incident plane wave mode.k0 = 8.7268, lII = 10, M = 0.4.
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(b) ASA convergence.

FIGURE C.7: Example of the adaptive simulated annealing search patternand convergence
for a single symmetric liner segment due to incident plane wave mode.k0 = 8.7268, lII =

lIII = 5, M = 0.4.
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(b) ARMOGA convergence.

FIGURE C.8: Example of the adaptive range multiobjective genetic algorithm search pattern
and convergence for a single symmetric liner segment due to incident plane wave mode.k0 =

8.7268, lII = lIII = lIV = lV = 2.5, M = 0.4.
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FIGURE C.9: Adaptive range multiobjective genetic algorithm search pattern for a single sym-
metric liner segment due to multi-mode source and rotor-stator interaction tonal source (Con-

tours constructed using Delaunay interpolation).lliner = 10, M = 0.4.
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