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MATRIX ANALYSIS OF WAVE PROPAGATION IN PERIODIC SYSTEMS

by Ahmed Y.A. ABDEL-RAHMAN

This work presents a method for studying the dynamical behaviour of
periodic systems in one, two and three dimensions by matrix formulation

which can exploit digital computer techniques for the analysis of complex

structures.

It is shown that free and forced wave-propagation in periodic systems
can be understood by examining the variation of their characteristic
propagation constants with frequency. General computer programs have
been written to represent an arbitrary periodic system by a finite element
model and to determine the variation of its propagation constants with
frequency of propagation. The natural frequencies of some finite

periodic systems are calculated from the propagation constants/frequency

curves.

The response of periodic systems to homogeneous random pressure fields
is examined using periodic structure theory and finite elements. Examples
of typical aircraft substructures and other engineering structures have
been used throughout, and graphs showing the variation of the propagation
constants with frequency and associated wave—forms and the response of

these structures to random loading are presented.

The response of general structures to random pressure fields using finite
element techniques and the standard modal analysis is also presented.
Examples of finite periodic structures are used and the results are com~

pared with those obtained using the periodic structure method.

This analysis provides an automatic means of investigating the vibration
characteristics of any complex periodic structure by making use of exist-—

ing finite element programs.
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NOTATION

Most of the symbols used in this text are listed below. Other notation

are defined where they appear.

General.

i E Matrix

L j Row matrix

I} Column matrix

[ Eg Transpose of a matrix

{ EQT inverse of the transpose of a matrix
z }* Conjugate of a complex matrix

[ El Imaginary part of a complex matrix
[1* Real part of a complex matrix

EE} Unit matrix

[*x .,] Diagonal matrix

B

Absolute value of a

al
|1 Reference number i
iCE Damping matrix
EKE Stiffness matrix
[M] Inertia matrix
{q} Column matrix of generalised degrees of freedom
{F} Column matrix of generalised nodal forces
as B Angles
v Frequency in Hz
w Angular frequency
9] Non~dimensional angular frequency
o Poisson's ratio
) Propagation property
o Density
Ew Wave-length
%S Shortest wave~length
8X§9y982 Rotations about the x, v, 2z axes
a Wave-number
D Modulus of rigidity

(4ii)



Young's modulus
Plate thickness
V=1

Second moment of area of cross—section about the 2z axis
through the centroid

Rotational stiffness

Translational stiffness

fime

Displacements along the %, y, z directions

First derivatives of u, v, w with respect to v

1, II.

Propagation constant

Real part of yu

Imaginary part of y

Displacement field within an element

Matrix of shape functions for an element
Strain components for an element
Differential of the element shape functiouns
Matrix of material constants

Stiffness matrix for an element

Mass matrix for an element

Column matrix of nodal forces for an element

£
R|,[a],[T] Transformation matrices

Periodic length

Lagrangian

Kinetic energy

Potential energy

Generalised non-congervative forces

Volume

1T, 1v.

Propagation constants along the dl’ d25 d3 directions

Components of the wave-number a along the éi’ é2§ dE directions

Periodic distances (dimensions of a cell) along the d., dys QB
directions -
2 2
Operator = §-~+ 2
2 2
9x 3y

(iv)



Chapter V

[€p]

o

Power spectral density of a response guantity ¢

Power spectral density of the pressure field

Convection velocity (phase velocity) of the pressure field
Non~dimensional convection velocity of the pressure field
Free wave speed (phase velocity)

Non~dimensional free wave speed

Mean square response

Angular wave-number

C?mpcﬂénts of the wave-number k along the dl and dz
directions

= -k,

ﬁ»klgizg a;kzeﬁz

Material loss factor

Modal damping

Pressure field

Column matrix of generalised degrees of freedom
Transformation matrix

Periodic length (length of a cell) for one-dimensional systems

Periodic lengths (dimensions of a cell) along the d, and d,
directions

(v)



CHAPTER I

1.1 Introduction

A periodic system consists of identical cells, where a cell represents
one period of the system, joined together in identical manner in one, two
or three dimensions. There are many examples of such systems in physical
and engineering structures: crystal lattices in solid state physics, a
tall building having identical storeys, a flat or curved plate with
stiffeners or supports at regular intervals in one or two dimensions (e.g.,
in aircraft and ship structures), a pipe~line system with stiffeners and
supports placed at equal spacings, etc. Modular type multi-storey build-

ings can be regarded as three-~dimensional periodic structures.

Such structures are considered as finite periodic systems. Their
natural frequencies fall into groups {405, and the number of frequencies
in each group equals the number of periods in the structure. When the
number of periods is large, the natural frequencies are closely spaced.
Calculating the response of these structures to dynamic excitation using
the modal method of solution |35], f37[ requires modelling the whole
structure and finding a large number of natural frequencies and associated
normal modes. Such a procedure needs a lot of time for modelling and
data preparation. Also the computer time and storage needed for the
analysis can be very large. High modal density and some types of damping

add further complications to the modal analysis |35|, |37].

The dynamical behaviour of such systems can be studied with great
simplicity and accurately if we consider them as infinitely periodic and
apply the periodic structure theory. For one-dimensional systems it
can be stated as follows,

A property ¢ can propagate as a wave in an infinite one-dimensional

periodic system if the physical problem admits a solution of the type
AeZﬁl(Ut“&ﬂZ}

i +
el(wt ny)
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where a = —— _ y = —Zyag, w = 27v

W

(1.2

a 1is the wave—number, ,Aw is the wave-length



¢ is the value of the property ¢ associated with cell
number 11,
. is the freguency, % the periodic length,

w the angular frequency and A 1is a constant.

The quantity u is known as the propagation constant. It represents the
change in phase in passing from one cell n to its neighbouring cell

n o+ 1:

¢ = g M (1.3)

&

Relations (1.1) and (1.3) can be used to describe attenuating waves |3
In this case y  will be a complex quantity. Its real part represents
the change in phase while the imaginary part represents the attenuation
in passing from one cell to the next. This theorem can be generalised
for two and three-dimensional periodic systems. This will be investigated

in Chapters III and IV.

The study of wave propagation in periodic systems dates back to the
eighteenth century, as Brillouin has discussed in his classic work fBI
on the mathematical physics of wave propagation. His work covers a wide
range of problems that occur in solid state physics, optics, electronics

and electrical engineering.

The dynamical behaviour of periodic systems that consist of beams
and plates has been recently investigated by employing the periodic
structure theory. Heckel |19|, Ungar |60| and Bobrovnitskii and Maslov
|5| studied the flexural wave motion in periodic beam structures. Mead
and Wilby fZ?E considered the effects of damping on such structures.

Mead |28, 31|, Sen Gupta |55, 56| and Mead and Sen Gupta |29, 30| studied
the free and forced vibration of periodic beams and rib-skin structures.
They showed that the response of one-dimensional periodic structures of

five bays or more to random pressure fields is close to the response of

infinite structures. Similar results have been obtained experimentally
|43].

Approximate methods of solution have been employed by Abrashamson El}
and Mead fSZf. They used an extension of the Rayleigh Method and the

Rayleigh~Ritz method to study the nature of waves propagating in non-—



uniform periodic structuves. Lindberg and Clson 5245 and Orris and
Petyt |46 , 47| used the finite element method to study free wave propa=
gation and the response of one-dimensional pericdic structures to con~

vected random pressure fields.

The purpose of this work is to present a general method to study
the dynamical characteristics of any periodic system in one, two or
three dimensions using the finite element method and the periodic structure
theory. First the structure is divided into cells, where a cell repre-
sents one period of the structure. One cell is represented by a finite
element model with interior and boundary degrees of freedom. The linear

equation of motion of the cell is given by

cl{q} + [R]{q} = {F} O (1.4)

Ty

[m]{q} +

where

k], [M] and [C] are the stiffness, inertia and damping matrices

respectively,
{q} and {F} are the generalised nodal degrees of freedom and forces.

Free and forced waves propagating in the structure can be investigated by
solving equation (1.4) after applying the appropriate constraint
relations between the boundary degrees of freedom and forces given by

equation (1.3).

Chapters II, III and IV deal with free wave propagation in one, two
and three-dimensional periodic systems. In Chapter V the response of
one and two-dimensional periodic systems to random pressure fields is
investigated. Also the response of general structures to random forces
using the standard modal method of solution is presented and examples of
finite periodic structures in one and two dimensions are used. Conclusions,

general discussion and suggestions for future work are presented in

Chapter VI.

1.2 Theoretical Background to the Finite Element Method

The equations of motion of systems composed of particles and rigid

bodies can be formulated using Newton's laws of motion, where physical



coordinates and forces acting on the individual components of the system
are employed. A more general approach referred to as Variational
Mechanics can be used to investigate the dynamical characteristics of

any system whether discrete or continuous. It considers the system as

a whole instead of its individual components, and formulates its equations
of motion by considering two scalar quantities only, namely the kinetic

and potential energies, and using Lagrange's equations which can be written

as

d oL oL .
a G - - = Q 1 =1,2,0.., n) (1.5
i iq

where L 1is known as the Lagrangian of the system and is defined by

L = T-107 , (1.6)

T and U are the kinetic and potential energies of the system,
q; are the generalised degrees of freedom in the system,
n  is the number of degrees of freedom,

Qi represents the generalised nonconservative forces in the system.

In order to derive the equation of motion of complex continuous
structures some approximate methods must be employed. One of the most
reliable methods is the Finite Element Technique, which is in fact an

extension of the Rayleigh-Ritz method.

The main idea behind the finite element method is to represent any
system by a mathematical model that can exploit the capacities of digital
computers. It regards any continuocus system as an assemblage of finite
number of discrete elements, where each element is a continuous part of
the system. These elements are joined together at a selected number of
node points. At these nodes the displacements should be compatible and
the internal forces be in equilibrium. The basic features of the method

can be summarised in the following steps.

i) The structure is divided into a number of eleménts, where each
element is defined by a set of node points. These node points

can be shared by several elements.

i1} The stiffness, inertia and consistent load matrices are calcu-

lated for each element.



iii) The system stiffness, inertia and consistent load matrices

are formed by assembling the individual matrices for each

element.

iv) The physical boundary conditions are applied on the system

matrices.
The element matrices are calculated as follows.

a) Define the element by a set of node points (usually Sited on
the element's boundary) with a certain number of degrees of

freedom at each node.

b) Represent the displacement field in the element by a set of
functions such that each one corresponds to a unit value of

one of the degrees of freedom at the nodes.

The displacement field u at any point r within an element i can

be written as
fu(z, 0}, = NO] (a0}, (1.7)

where
[N<£)]i is a matrix containing the element shape functioms,

'{q(t)}i is a vector of the element nodal degrees of freedom.

The element strain components can be written in the form

{e(z, 0)}; = [B®];{a()}; (1.8)

where
[B(E)]i is a differential of the element shape functions.

The element kinetic and strain energies can be written in the form

i1 - ] ' T i 1 .()
L, = 2 j pi{u}i {u}i dv (1.9
v,
i
U, =} |{e}. [D].{e}, dv (1.10)
i 2 i iteld
V.
i
where
o; is the density, v ig the volume and {D}i is a matrix of

material constants for element 1.



Substituting (1.7) into (1.9) gives

or

Similarly,

or

. R T B r’; )
3 J pi{cz&);i {h(g)fil{z\:(z)]i{q@}}i av
V.
1
118} T[ 1. 1a)
214s, (M iiQJi (1.11)

is known as the element consictent inertia matrix where

[w], = j o, V@], @], av (1.12)

V.
1

gubstituting (1.8) into (1.10) gives

; [ {q(t>}iT[B<;_)}iT[D]i[B(;_)]i{q(t)}i dv

v,
1

o
$a}; [K] {a}, (1.13)

is known as the element consistent stiffness matrix, where

[]; = | @], 0] av (1.14)
V.

1

If external forces P(r, t) exist, then the virtual work dome by the

external forces is given by

v, = J tou(z, 03, (B, O} dv (1.15)

V.
1

Introducing (1.7) into (1.15) gives

or

(£}

Tt T N
sw, = j fea(0)},  [N@].” P, )}, dv
V.
i
sw, = {6q(t)}. {£] (1.16)
Wi T orodiBlig by 0

is known as the element consistent lcad vector, where



No], e, vl av (1.17)

T = 43 ] {4} (1.18)
U= ${q} [K]{q} (1.19)

where
{q} 1is a vector of the system nodal degrees of freedom

[Rﬂ and [K} are the system inertia and stiffness matrices, where

[R] iT [m] . [R]. (1.20)

]

]
[ e B

N
] ) [&], " [x], [R], (1.21)

N is the total number of elements in the system

(R}i is a transformation matrix given by

[R}i = [Iﬂi[RB}i[a}i (1.22)

[aji is a Boolean matrix relating the degrees of freedom of the

individual elements to the degrees of freedom of the complete system.

[RB}i is a transformation matrix for the application of the physical
boundary condition.

[T}i is a transformation matrix to transform the element matrices

from the element local coordinates to the system global coordinates.

The generalised nodal forces can be obtained by considering the virtual

work done by the external forces. This can be written in the form
T an
§w = {8q} {F}. (1.23;
{F} 1is the system consistent load vector, where

{F} =

il ot 2

[R], 5}, . (1.24)
i=1

Introducing (1.18), (1.19) and (1.24) into Lagrange's equations,



equations (1.5), yields the equations of motion for the undamped system
in the form

M {q} + [K]{q} = {F} (1.25)

This equation can be solved for free and forced motion of the structure
using standard matrix techniques.

For detailed analysis of the finite element method see Zienkiewicz
.
169].



CHAPTER IT

FREE WAVE PROPAGATION IN ONE-DIMENSIONAL PERIODIC SYSTEMS

2.1 General

There are many structures in engineering that can be regarded as one-
dimensional periodic systems. Examples of such structures are: a tall
building consisting of identical storeys, a flat or curved plate with
stiffeners at regular spacings, a pipe~line system with supports at equal
intervals, electric transmission lines, etc. Recently, as mentioned in
the previous chapter, the literature has contained a large number of papers
on the wave propagation in one-dimensional periodic structures and their
response to dynamic loads. These structures can be considered as an
assemblage of identical cells (periods) joined together in identical
manner. Their dynamical characteristics can be easily and quickly inves—
tigated 1f their periodic nature is utilised. This can be achieved by
considering such structures as infinitely periodic and studying the nature
of waves propagating in them using the periodic structure theory. This
theorem was mentioned in Chapter I and will be repeated here since the

whole mathematical formulation in this work is based on it. For one-

dimensional systems it can be stated as follows:

A property ¢ can propagate as a wave in an infinite one-dimensional

periodic system if the physical problem admits a solution of the type

- Ae2w1(vt - anf)

(2.1)
or 5 = Aei(wt+nu)

where ¢ is the value of the property ¢ at a given point in cell number
n (the origin of the system is chosen at the cell defined by =n = 0). The
definitions of the other variables in equation (2.1) were given in Chapter
I, Sec. 1.1. This means that the property én at a given point in cell
n can be related to ®n+1 at the corresponding point in cell =n + 1 by

the relation



~2mial
e

<g)n-él = 4)n
(2.2}
or = iu
¢n+1 ¢ne
u is known as the propagation constant, where
u = =27al {(2.3)

which represents the change in phase in passing from one cell to the next.

Attenuating waves can be described by relations (2.1) and (2.2) but
in this case the wave~number a (and hence the propagation constant u)
will be a complex quantity. The real part of u represents the change
in phase while the imaginary part represents the attenuation in passing

from one cell n to its neighbouring cell n + 1.

In this chapter a matrix formulation for studying the free wave propa-
gation in any one-dimensional periodic system using the finite element
technique and the periodic structure method is presented and discussed in
detail, The variation of the propagation constant with frequency is
obtained by solving the equations of motion of one periodic section (cell)
of the system. Examples of simple one-dimensional periodic systems will
be discussed first to illustrate the general behaviour of these systems,
then the method will be used to study some typical aircraft substructures
guch as flat and curved stiffened plates. The determination of the
natural frequencies of some finite periodic structures from the propagation

constant/frequency curves is also investigated.

This analysis provides an automatic means of studying any periodic

system by making use of existing finite element routines.

2.2 Mathematical Formulation

Consider a one-dimensional periodic system composed of an infinite
number of identical cells (periods) joined together in identical manner as
shown in figure (2.l1a). Using the finite element technique, a cell can
be represented by a model with interior and boundary degrees of freedom.
Each cell is coupled to its meighbours on each side (left and right) by a

certain number of degrees of freedom and forces. Let {qI},‘{FI}, {qL}s

10.



{FL} and /{qR}, {FR} be the degrees of freedom and forces at the nodes
on the interior, left and right of the cell considered. The linear

equation of motion of an undamped cell is given by

(k] - w?MDiqr = (7} (2.4)
where
Hab o= (e = [E (2.5)
q F,
= )

{K} and [M] are the stiffness and inertia matrices for the cell. They
can be partitioned according to the interior, left and right degrees of

freedom in the cell. Hence

[x] = 1 % Kro M = M Mo Mg
1 N KL,R‘ Moo Mo Mo
oo R XRer Mot Mo MR

(2.6)

The forces {F} are due to the external forces acting on the system and
the forces of interaction between the cell and its neighbours. For free
wave-motion, i.e., no external forces exist, {Fi} equal to zero;
however, ’{FL} and /{FR} are not zero since they transmit the wave-
motion from one cell to the next. This wave-motion is characterised by
relating the degrees of freedom and equivalent nodal forces in ome cell

to the corresponding degrees of freedom and forces in adjacent cell by

the following relations.

: ) in

(2.7)

]

iy
{FL}n+1 e {FL}n

where 1 is the propagation constant.

At the common boundaries between cell n and the neighbouring cell
n + 1, the displacements must be equal and the interconnecting forces

must be in equilibrium. Hence,

11.



{q, } = {qp}

n+l n
and (2.8)
iFLjn+1 * tFR}n = 0.
Substituting (2.7) into (2.8) gives
RCRURE el“{qL}n (2.9)
AFY +etE} = 0 (2.10)

Since relations (2.9) and (2.10) are the same for any cell, the suffix

n can be dropped.

Relation (2.9) can be used to write the relation between the degrees

of freedom in the cell in the matrix form:

‘I - I
(qﬂ = (W] [q) (2.11)
!
|
q, |
L RJ
where
Wl = [ 1 o ] (2.12)
o 1 I ]
e
LO : et? >

] )ff}l = 0 (2.13)
17
EN
L R)
where
W] = I 0 i 0 ] (2.14)
it i S
o + I . e lu&J

Substituting (2.11) and (2.13) into (2.4) results in an equation of the

form

12.



= 0 (2.15)

where E i(u) } and [ ﬁ(u) ] are complex matrices given by

& = g, R - 1D,

] = ”MLL woo] o= W] ] [w] (2.16)

Yoo Mg

Equation (2.15) represents an eigenvalue problem in w for a given value

of . For propagating (unattenuated) waves u 1is real. In this case
equation (2.15) can be rearranged to give a real symmetric eigenvalue
problem in w for a given value of . This will be discussed in Section
2.3. Also, equation (2.15) can be reformulated to give an eigenvalue
problem in u for a given frequency w, where u will be generally a

complex quantity. This will be discussed in Section 2.5.

2.3 Formulation for the Real Propagation Constant

Free waves can propagate (without attenuation) in one-dimensional
undamped periodic systems within certain frequency bands only (called the
propagation bands) iSE. In these bands the wave-number a, and hence
the propagation comstant u, 1is a real quantity. In this section a
formulation is presented to study the variation of the real propagation
constant [ with frequency for any one-dimensional linear undamped

periodic system.

Before proceeding to the mathematical formulation, some of the pro-
perties of one~dimensional periodic systems will be briefly discussed.

Detailed discussion can be found in fB{.

As explained in section 2.1, the relation between a propagation
property én at any point in cell n and ¢n+1 at the corresponding
point in the neighbouring cell =n + 1 at any instant of time is given

by equation (2.2), namely

13,



5 - e~2wiaﬁ
n+l @n

or i
o .. =6 e’

n+1 n

where 1y 1s the propagation constant and is given by relation (2.3},

namely,

u = —27al

% is the periodic length (length of the cell) and

a 1s the wave-number.

For propagating waves (non-attenuating) the wave-number a (and hence u)

is a regl quantity where

a = I/AW (2.17)

kw is the wave~length.

The relations (2.2) can be satisfied by using a' and ' instead of a
and 1y where

a' = a + m/2

(2.18)

u' = u o+ 2mm

where m 1is an integer number.

Solving the equation of motion of the system given by (2.15) must
yield the same values of the frequency w and the corresponding values of
the vectors {q} for every equivalent gy and u'. This means that the
propagation property ¢ (the vectors {q} in equation (2.15))and its
frequency w are periodic functions of yu with period Zw. Therefore
it is sufficient to examine the relation between w and u within one

period only. The period given by

i

A
T
A

=}

or (2.19)

é—~< a < i*
2% = 2%

is chosen and is called the fundamental (first) zone of the one-dimensional

system. This zone contains a complete period of w(u) allowing us to
examine all the frequencies that can be propagated. Negative values of y
means a wave travelling to the right (see Figure(2.1a)) while positive u

means a wave travelling to the left. Since a wave propagates to the left

14.



or to the right in the same manner, the curve relating w to u (or a)
must be symmetrical about the origin with a maximum (or minimum) at ¥ = O
{(or a = 0). Also due to the periodicity of the curve there will be another
maximum {(or minimum) at u = 1 (or a = i.%}a' Restricting the values of
a and u inside the zone given by (2.19) means that the wave~length Aw

varies between

0) (2.20)

]

>
it

© (at u =0; a
and _
A=24 (atu=+m ; a = j,l“ﬂo (2.21)

3]

The wave-length given by (2.21) is the shortest wave-~length for any wave
travelling in the system. See Brillouin 33} for relevant discussion.
Frequencies corresponding to u = 0 (a = 0) and p = +71 (a = if%@ are
called eritical frequencies. They are characteristic of the periodic

system and depend on its physical properties.

Now for a given value of 1y (real quantity) the matrices [E] and

[M} in equation (2.11) can be written as

ko] = [ +i[£],
(2.22)
Ma] = [M7] + i[M].
Substituting (2.22) into (2.15) gives
(R + 1[]Y] - W2([WF] + i[M])) ©qr + i{3d*} = o (2.23)
—-r ~-1i { i
where {a"} = qu r, {q"} = |d7 (2.24)
o Ta 1

Separating the real and imaginary parts of (2.23) and combining the two

gsete of equations together gives

{ 7T _iil _ wZ [ v ~%i 1 jar -0 (2.25)
. EE YA

From (2.12) and (2.13) it is clear that for real values of u we can write

15.



-

W] = [w]T (2.26)

. ; . =1
where * denotes the complex conjugate, and hence the matrices [K} and

{ﬁj (given by (2.16)) are Hermitian, i.e.,

(2.27)
] *

it
ey
=
FuNE

Therefore, equation (2.25) represents a real symmetric eigenvalue problem

since,
®] = - &5
. . (2.28)
] = - @7

This equation can be solved to find the variation of the frequency w with
the propagation constant u (where u 1is real). For each value of u
equation (2.25) will give a set of frequencies occurring in equal pairs.
The corresponding eiligenvectors will define the wave motion in the system

at these frequencies. The method used in solving this eigenvalue problem

is discussed in Appendix A.

2.3.1 Computer programs

A general computer program has been written to represent ome period
(cell) of any periodic system by a finite element model and to form the
matrices in equation (2.25) for different values of the real propagation
constant . For each value of u 'the eigenvalue problem (2.25) is
solved to find the corresponding values of the frequency w and associated
wave-forms. The basic flow diagram for the computational procedure is

given in Appendix B.

2.3.2 Illustrative examples

This example will be used to explain and illustrate some of the pro-
perties of one-dimensional periodic systems discussed at the begimming of

this section.

Consider the transverse wave motion in an infinite beam resting on
simple supports at regular intervals as shown in figure (2.2a). One cell

is represented by a finite element model, figure (2.2b). The beam element

16.



and the data values used in the analysis are given in Appendix D1. The
length of the cell ¢ (distance between the supports) is taken equal to
unity. The cell is divided into ten beam elements. The degrees of free-—
dom considered at the nodes are the transverse motion v and the rotation

® , and hence at the supports only ez exists. Figures (2.2b, ¢ and d)
show different choices for the basic cell representing the system. Although
any one of these choices can be used for the analysis, it is advantageous

to choose the cell with the minimum coupling degrees of freedom to its
neighbours (figure (2.2b)) since this will, in general, simplify the analysis.
Also it should be noted that the number of independent waves that can exist
at any frequency equals twice the minimum number of coupling degrees of
freedom between the cells 232[ (only the rotation ez in this case). Each
pair of these waves represents two identical waves travelling in opposite
directions. The problem is solved for various wvalues of the real propaga-
tion constant u to find the corresponding frequencies of propagation.
Figure (2.8) shows the variation of the non-dimensional frequency & with

the propagation constant u for values of u varying between —-37 amd +37

where

pot
EL
ZZ

)% (2.29)

Q= w

p 1is the beam density per unit length,
L the periodic length,

1 : the second moment of area of the cross-section about the local z axis

®

(see Appendix DI1) .

E: Young's modulus.

From the graph it can be seen that the structure allows propagation
within some frequency bands only (where the curves Q(u) exist). These
are called the propagation bands and hence the beam acts as a pass-—band
filter. Waves with frequencies outside these bands are strongly attenuated.
This will be discussed in a later section. Also it is clear that the fre-
quency is a periodic function of 1y, with period 27w, and symmetrical about
the frequency axis (line u = 0.0). Figures (2.9) and (2.10) show the
frequencies of propagation and the corresponding wave-forms in the first

and second propagation bands for various values of the propagation constant

17.



W These wave~forms are the eigenvectors obtained by solving equation
(2.25). 1t should be noted here that these eigenvectors are complex quan—
tities and only the real part of the solution

(5 + igh).etlwtrnw (2.30)

should be considered.

When u = O the corresponding wave~form represents a standing wave
where adjacent cells are vibrating in phase with one another. In the first
band (upper bound) the frequency and the corresponding wave-form coincide
with the fundamental natural frequency and associated normal mode of vibra-—
tion of the single cell with its coupling degrees of freedom {62 at the
left and right supports in this case) constrained, while in the second band
(lower bounding frequency of the band) they coincide with the second natural
frequency and associated normal mode of the single cell with its coupling

degrees of freedom unconstrained. The wavelength for these waves is given

by

= 1 a =
since the wave-number a 1is equal to zero. As the absolute value of u
increases the wave-length decreases until it reaches the shortest wave-length

1
As when yu =+7 (or as= i-EEJ where

AS = 72;; = 2%

which can be regarded as a wave travelling to the right (corresponding to
u = =7} or to the left (y = +7) or even as a standing wave where adjacent
cells are vibrating in counter-phase with one another. In the first band
(lower bounding frequency of the first band) the frequency of propagation
and the corresponding wave~form coincide with the fundamental natural fre-
quency and associated normal mode of vibration of the single cell with its
coupling degrees of freedom unconstrained, while in the second band (upper
bounding frequency) they coincide with the second natural frequency and

normal mode of the single cell with its coupling degrees of freedom const—

. . . ; 1 .
rained. For intermediate values of yu (0 < [u| <7 ; 0 < |a] < §EJ the

corresponding waves are travelling waves to the right for negative yu and
to the left for positive yu. These results were demonstrained on a movie

film produced by the computer showing clearly the standing and travelling

18.



waves. Changing the values of 1y (or a) to u' f{or a') in the analysis

such that

m
ut o= oy o+ Z2ow or g' =23 Ly
where m 1is any integer number will result in the same waves obtained for

the corresponding values of yu (or a) with a wave—length always given by

W

and direction of propagation determined by the sign of u. This shows that

the restriction on the values of 1y inside the fundamental zone given by

(2.19) should be observed when determining the wave—~length and the direction
of propagation.

To check the accuracy of the finite element results produced here, the
single cell representing the system is idealised using different numbers of
elements and the results are compared with those produced using closed
form solution |31, 55|. Table 2.1 shows a comparison of the bounding fre-
quencies for the first three propagation bands obtained using the exact
gsolution and using different finite element idealisation for the cell
(frequencies corresponding to p =0 or a =0 and u =+r or a = 53
From the table it is clear that even when the cell is idealised with four

elements only the finite element results are very close to the exact ones.

The same accuracy is obtained for intermediate values of u (0 <juj] < m).

The effect of adding rotational stiffness at the supports, figure (2.3a),
on the propagation constant/frequency curve is investigated by considering
a single cell with half the rotational stiffness at each support, figure
(2.3b). The cell is divided into ten beam elements. The beam element and
data values used are the same as before. The results are shown in figure
(2.11) for values of the rotational stiffness Kr = 0, 4, 10 and e,

The propagation constant u i1s varied between 0 and -7 only. As can
be seen from this graph increasing the value of Kr has the effect of
narrowing the width of the propagation bands (only the first two bands are
shown) . Similar to the beam on simple supports (Kr = (0}, frequencies
corresponding to values of 1 equal to zero or +r (bounding frequencies
for the various propagation bands) coincide with the natural frequencies

of the cell with its coupling degrees of freedom unconstrained or constrained
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and hence, as can be seen from figure (2.11), the addition of the rotational
stiffness at the supports affects only the bounding frequencies coinciding
with the natural frequencies of the unconstrained cell, At the limit when
Kr = = the propagation bands disappear completely and no propagation

occurs in the beam. Similar results were produced in iBO, 31 and 55§

using closed form solution.

2.3.3 Two examples of typical aircraft substructures

Most aircraft substructures are composed of flat or curved plates with

stiffeners at regular spacings. The following two examples are typical of

such structures.

a. Stringer stiffened flat panel, figure (2.4a).

Figure (2.4b) shows a finite element idealisation for omne cell. The
elements and data values used in the analysis are given in Appendix DZ.
The cell is represented by four flat strip elements and one thin-walled
open section beam element. The degrees of freedom considered at each
node are the transverse motion w ‘and the rotation SX. The variation
of the propagation constant with the non-dimensional frequency ( 1is shown
in figure (2.12) for the first two propagation bands, where yu 1is restricted
between zero and -y  only. Similar toc the beam on simple supports the
panel allows propagation within some frequency bands only. The upper and
lower bounding frequencies for the bands occur at values of u equal to
Zero oY ~f. Waves with frequencies outside these bands attenuate rapidly

and the panel acts as a pass-band filter.

b. Stringer stiffened curved panel, figure (2.5a)-

Figure (2.5b) shows a finite element idealisation for a single cell.
The elements and data values used in the analysis are given in Appendix D3.
One cell is represented by four curved strip elements for the panel and one
open section beam element for the stringer. The degrees of freedom at the
nodes are u, uy, V, Vy’ W, Wy‘ At the stringers only u, v, w and wy
re retained. Figure (2.13) shows the variation of the propagation constant
with the non—dimensional frequency ¢ in the first two propagation bands.
From the graph it is clear that the lower bounding frequency of the second
band does not occur at values of 3 equal to zero or +7. Otherwise the

panel shows similar behaviour to the beam example discussed in Section 2.3.2.
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The results obtained here for these two examples are in full agreement,
within the readings taken from the plotted results, with those produced in
fi&i using transfer matrix analysis. The accuracy of the results produced
here can be increased by simply increasing the number of elements represent—

ing the cell or by using more accurate elements.

2.4 Transition from Non-Periodic to Periodic Systems

In this section, the effect of adding periodic perturbation to a con=

tinuous medium on the variation of its propagation constant with frequency

is investigated.

Consider the transverse wave-motion in an infinite beam resting on
spring supports at regular spacings as shown in figure (2.6a). One cell
is represented by a finite element model with ten beam elements, figure
(2.6b). The length of the cell (distance between the supports) is taken
equal to unity. The beam element and data values used in the analysis are
given in Appendix DI. The degrees of freedom at the nodes are the trans-
verse displacement v and the rotation GZ and hence each cell is coupled
to its neighbours on each side by two degrees of freedom. The problem is
solved for different values of the spring supports stiffness Kt' For each
case the real propagation constant u 1is plotted as a function of the non-
dimensional frequency § as shown in figure (2.14). For Kt = 0 the beam
allows propagation at all frequencies and the curve relating u to £ 1is
the same as the one obtained by considering the equation for the transverse

wave motilon in an infinite beam given by

34 82
g1 22X+ P2l = ¢ (2.31)
zz 4 2
9% 3t
and considering
vi{x) = *\70927116\)t - ax) (2,32)

as a solution to (2.31) results in the relation

EL
vz = 4@2 22 a4 (2.33)
P
but
W i mﬁﬁé :
B v e P 2 I's 7,
v 5 a 57 and 0 (EIZZ) {(2.34)
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Substituting (2.34) into (2.33) gives

Q = u? (2.35)

where

x is the distance along the beam and v is a constant.

Table 2.2 shows a comparison between the finite element results and the
exact solution obtained by (2.35) where, as can be seen from the table, the

finite element results are very close to the exact ones.

Non=-zero values for Kt makes the function Q{u) discontinuous and
the beam starts to act as a pass—band filter allowing propagation within
some frequency bands only. Increasing the values of Kt simply increases
the discontinuity in the curve. The width of the various propagation bands
can be varied by varying the value of Kt. For Kt = 100 the first band is
very narrow while for Kt = 1000 the second band occurs at almost a single
frequency only. When K, = o the beam acts as the beam on simple supports

t
giving Q(u) similar to the one obtained for the example in Section 2.3.2,

figure (2.8).

The effect of periodic perturbation in the form of point masses placed
at equal intervals on the beam, figure (2.7a), on the propagation constant/
frequency curve is shown in figure (2.15) for various values of the mass u.
A finite element idealisation of one cell is shown in figure (2.7b). The
same beam element and data values used in the previous example are used
here. The distance between the masses % (periodic length) is taken
equal to unity. Here increasing the value of the point mass m increases
the discontinuity in the propagation constant/frequency curve and hence
narrowing the propagation bands until the limit when m = » where the
results are equivalent to those obtained in Section 2.3.2 for the beam on

simple supports.

It is interesting to compare the difference between the effects of
~adding translational spring supports or point masses on the propagation
constant/frequency curve. This can be explained by the fact that the
motion of each cell is due to the forces of interaction with its neighbour-
ing cells and the forces tending to return the cell to its equilibrium

position. The latter increases only by the addition of the tramslational

stiffness and not by the point masses.
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2.5 Formulation for the Complex Propagation Constant

In Section 2.3 equation {(2.15) was solved by considering that the
propagation coustant 1y is a real quantity and the problem was formulated
to give an eigenvalue problem in the frequency w corresponding to a
given value of u. A more general way to solve equation (2.15) is to formu-
late it to give an eigenvalue problem in u for a given value of w. This
formulation has the advantage of giving the values of u  at any frequency
w, where u will be generally complex, enabling us to study the dynamical
behaviour of the periodic system at all frequencies. However, it is more
complicated to formulate and requires solving an eigenvalue problem with
unsymmetric matrices, but on the other hand this eigenvalue problem can,
in some cases, be of much smaller order than the one obtained in the formu-

lation for the real propagation constant.

Now for a given value of the frequency w equation (2.15) can be

written in the form

D] {QIT =0 (2.36)
9L
where
W] = Rw] - WEW] = BT (2.37)
i Dyt Dpgl
The first relation in equation (2.36) gives
-1 } (2.38)

fag} = -Dp Drp tag)
Relation (2.38) can be used to eliminate {qI} from equation (2.36). This

results in an equation of the form
DG ]ig} = o (2.39)

where
5] = [r'][o][z]. (2.40)

The matrices éT] and {?’] are given by

[t] = [-p'.p 1 (2.41)
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[1'] = [-D, .D I] (2.42)

Examination of (2.12, (2.13) and (2.16) shows that the propagation constant

: M - . PR Sl | P -
u appears 1in the elements of the matrices LKE and |M|, and hence in

[D} and {D}, only in the form

+iy
e H
- o : ) 1 -}— PR ii;}
{notice that the matrix DK I* and hence DI 1’ does not contain e J
% F
Therefore equation (2.39) can be written in the form

+e N[B] + [B]){q} = 0 (2.43)

r -

. “ 1 | g
The matrices [81]3 ngj and £B3j are of the same order as {D] where

each matrix contains only the elements of [5} which are multiplied by
elu, e "M and those that do not contain e,
Multiplying equation (2.43) by e and putting et = A results in
an equation of the form
21, 7 Fo _
(W [B] + A[BS] + [B,D{g} = 0 (2.44)

Equation (2.44) represents a generalised eigenvalue problem of the form

n n~-1 .
(A X"+ A _ ) oot A){x} = 0 (2.45)

where n = 2 1in this case.
Appendix A gives the different methods for converting equation (2.45)
into a linear eigenvalue problem of the form
I e
([6] = aD){¥} = o0 (2.46)
. . . . . Fal | .
if either An or AO is a non-singular matrix, where | G| 1is a real

unsymmetric matrix. Or to the general form

([a] - A[BD{Y} = o0 (2.47

\,..
[SO—Y

P

. . - ra i -
1f both An and AO are singular, where |A] and é are real unsym~

1

i
metric singular matrices. The matrices A and Ao will be singular if
the number of coupling degrees of freedom of the single cell chosen to
v that can be obtained

1]

represent the system is more than the minimum numb:
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by a different choice of the cell. For example, in the case of the beam

jo

on multiple supports discussed in Section 2.3.2, choices of the cell shown

ey

in figures (2.2c) and (2.2d) will result in singula y

A and AO matrices.
While the choice shown in figure (2.2b) (cell with miaiﬁum,coapliﬁg degrees
of freedom to its neighbours) will result in non-singular matrices. For
some complex periodic structures it can be more convenient to represent

the structure by a cell with coupling degrees of freedom more than the
minimum number that can be obtained by a different choice of the cell.
Methods of solving these eigenvalue problems are also discussed in Appendix

A
Lis

The eigenvalue problem {(2.45) can be formulated and solved for given
values of w to obtain the corresponding values of A, and hence u,

which will, in general, be a complex quantity.

2.5.1 Computer programs

A general finite element computer program has been written to represent
a single ceii of the periodic system by a finite element model and form the
matrices in equation (2.45) for a given frequency w. Then the eigenvalue
problem (2.46) or {(2.47) is formed and solved to find the corresponding

propagation constants . The basic flow diagram for the computational

procedure is given in Appendix B.

2.5.2 TIilustrative example

The same example used in Section 2.3.2, that is the infinite beanm on
simple supports, is used here again to illustrate the general behaviour of
one-dimensional periodic systems at any freguency. The same finite element
idealisation for the single cell is used here, figure (2.2b). In this
system each cell is coupled to its neighbours on each side by one degree of
freedom only, namely the rotation %2 at the supports, and hence only two

independent waves can exist at any frequency §32§e {The number of inde-
pendent waves that can exist at any freguency equals twice the number of
coupling degrees of freedom betwsen the cells.) These will be twe identical
waves but travelling in opposite directions. Figure {(2.16) shows the
variation of the real and imaginary parts of u with frequency for the

wave travelling to the right where the rezl part of u is negative. As

can be seen from the graph there are bands of frequencies within which the
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imaginary part of u {pi} is alternately positive and zero. When e is
non-zero (attenuation bands) the corresponding real part M is either

zero or +rm (in some cases, as will be shown in the next sub-section, M
can take any value within the attenuatiocn bands). Waves with frequencies
within these bands are attenuated waves where the real part of u (zero or

+7 in this case) represents the change in phase while the imaginary part
represents the attenuation in gﬁssing from one cell to the next (the ampli~
tude of the wave reduces by e i per cell). The bands of frequencies
where L is zero are called the propagation bands since within these bands
waves can propagate (without attenuation). It is clear that these propaga-
tion bands coincide with the results obtained in Section 2.3.2, figure
(2.8). Figure (2.17) shows the attenuating wave-form corresponding to
frequencies below the propagation band (where B +7) and above it (where
o= 0). Under these conditions, as mentioned above, adjacent cells will

T
vibrate in counter phase or in phase with one another while the amplitude

reduces by e * per cell.

2.5.3 Applications

The same two examples used in Section 2.3.3 are used here. These are
the flat and curved stringer stiffened panels. The same finite element
idealisation for the cells representing the panels is used. Figures (2.18)
and (2.19) show the variation of the real and imaginary parts of the propa—
gation constant with the non-dimensional frequency & for the flat and

curved panels respectively.

For the flat panel case, the coupling degrees of freedom between the
cells are the lateral displacement w and the rotation @X and hence
there are two independent pairs of waves that can exist simultaneously at
any freQuency (curves numbered 1 and 2 in figure (2.18)). For the first
wave (curve 1) there are bands of frequencies where the imaginary part of
1 is zero (propagation bands}. These bands coincide with the results ob-
tained in Section 2.3.3, figure (2.12). Outside these bands the real part
of u 1is either zero or +n while the imaginary part is non-zero
(attenuation bands). The second wave (curve 2) has a non-zero imaginary

art while the real part is +7. This represents an asttenuating wave. AS
P

can be seen from these results the behaviour of the f£lat panel shows great
similarity to the behaviour of the beam on multiple supports discussed in

Section 2.5.2. For the curved panel case, there are four coupling degrees
of freedom between the cells (degrees of freedom at the stringers). These

are u, v, w and w_. Therefore there are four independent pairs of waves
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that can exist at any frequency {curves numbered 1 to 4 in figure (2.19)).
Each pair of these waves represents two identical waves travelling in
opposite directions. For wave 1 there are bands where the imaginary part
of u is zero (propagation bands). These bands coincide with the results
produced in Section 2.3.3, figure (2.13). For waves 2 and 3 there are
bands of frequencies where the imaginary part of u 1is non=-zero while the
real part is neither zero mor +r. These are attenuated waves |33|. Wave

4 has a non-zero imaginary part while the real part is +7 which represents
an attenuating wave. These results are in agreement (within the accuracy
of the graphs) with the results produced in |14| using the transfer matrix

method.

2.6 Natural Frequencies of a Single Periodic Cell

If the single cell representing one period of any one-dimensional
periodic system is symmetrical, about a plane through its centre and parallel
to its left and right sides, and having only one type of degree of freedom
coupling it to its neighbouring cells (say rotation only or translation only)
then its natural frequencies with these degrees of freedom constrained or
unconstrained can be associated with the propagation frequencies correspond-
ing to propagation constants yu = 0.0 or p = +r (or wave-numbers a = 0.0
or a = i—%E where § is the periodic length). To prove this, consider
the equation of motion of the cell when vibrating freely. This can be

written in a matrix form as

([x] - wZ[M}){g} = 0
or
= 0 (2.48)

M
2
i

K K k] - Y M.
K1 ¥

Krr & K

sh

R

;
bﬁaz Moo Mir

where [Kj and éM} are the stiffness and inertia matrices of the cell.

{q} 1is a vector of the generalised degrees of freedom in the cell.
The matrices [K], EM} and {q} are partitioned according to the interior,

left and right degrees of freedom in the cell, figure (2.1b).
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Let N_, NL and NR (N, = NR} be the number of interior, left and
e St

right degrees of freedom in the cell.

Since the cell is symmetrical then its natural modes of vibration will
be either symmetrical or anti-symmetrical about the centre plane of symmetry.
In these modes the degrees of freedom {QL} and {qg} will be either of
the same sign or of opposite sign depending on the nature of the degrees of
freedom and the mode of vibration. For example iﬁr{qi} and {qR} are
rotations (say at the supports of a simply supported beam or plate), then
they will be of the same sign in anti-symmetric modes and of opposite sign
in symmetric modes. While if they are transverse displacements they will
be of the same sign in symmetric modes and of opposite sign in anti~symmet-
ric modes. Therefore when the cell is vibrating freely we can write

{a;} = *{ag} (2.49)
Relations (2.49) can be substituted in equation (2.48) to eliminate g -

This results in an equation of the form

([R] w%mqg& - o (2.50)
)
where
= raTroq
H - B -
B = [W][R] W]
where
[w] = FI~‘OE (2.52)
101 Ay

The two sets of equations represented by (2.50) are eigenvalue problems of

order N._ + N.. Their solution will give Z(NI + SL} eigenvalues and

I L
eigenvectors satisfying condition (2.49). However, it should be noticed

that this condition is also satisfied when

{qL} = i{qg} = 0.0 (2.53)

The original equation (2.48) has only NI + NL + KR or NE + ZNL (since

NL = NR due to the symmetry of the cell) eigenvalues. Their associated

normal modes give all the possible modes of vibration such that
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{qL} = ijR} # 0.0. Therefore the two soclutions of (2.530) give Nl extra
eigenvalues whose eigenvectors must satisfy the condition (2.53). These are
the natural frequencies and normal modes of the cell with its boundary degrees
of freedom {qL} and {qg} constrained. Now the two sets of equations (2.50)
are the same equations obtained from the equation of free-wave propagation

in the infinite periodic system given by equation (2.15) corresponding to
values of the propagation constant u givenby u =0 or pu =7 (or =-m
regpectively.

From the above discussion it is clear that the frequencies of propagation
corresponding to u = 0.0 and p = +7 are indeed the natural frequencies of
the periodic section (cell) with its coupling degrees of freedom.({qL} and
{qR}) constrained or unconstrained. Inspection of the wave-forms (eigen—

vectors) obtained when solving equation (2.15) for u = 0 or u = =7 can
determine which frequency corresponds to the unconstrained cell and which
corresponds to the constrained cell. However, in some cases, like the beam
on simple supports, the natural frequencies of the unconstrained cell alter-
nate with the natural frequencies of the constrained cell and the lowest

frequency corresponds to the unconstrained cell {25, 31, 6Z§e

The above analysis can be extended to periodic systems with symmetric
cells having more than one type of coupling degree of freedom (say rotation
and translation) such as beams on spring supports or stiffened plates. In
such cases we will find that the frequencies of propagation corresponding
to u = 0.0, where {qL} = +{qR}, and ¢ = +m, where {QL} = “{qg},
will coincide with the natural frequencies of the cell while its boundary
degrees of freedom satisfy the conditions (2.49) or (2.53). This can be
proved by a similar procedure as above. But in this case {qL} and {QR}
will be divided into degrees of freedom that will have the same sign when
the cell is vibrating in a symmetrical mode and degrees of freedom that will
have oppogite sign. Then condition (2.49) is satisfied if the cell is
vibrating in a mode such that the degrees of freedom having the same sign
are constrained while the degrees of freedom having opposite sign are uncon-
strained, or vice versa, or when all of them are constrained {(condition
(2.51)3, The resulting eigenvalue problems in these cases will coincide

with the equation of free wave propagation (2.15) when substituting u = 0.0

or U =i,
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2.7 Natural Frequencies of Finite Periodic Systems

In this section we will show that the natural frequencies of finite
periodic structures of N identical cells, where each cell is symmetrical
(about a plane through its centre and parallel to its sides) and coupled
to its neighbouring cells by one type of degree of freedom only, can be

obtained from the propagation constant/frequency curve.

As explained in the previocus section, if we consider a single cell,
of length %, as one period of the infinite structure, then frequencies

corresponding to values of the propagation comstant u (or wave-number a)

given by

u = 0.0 or a = 0.0

and (2.54)

o= T or a = +

NP“
o

will coincide with the natural frequencies of the chosen period with its

coupling degrees of freedom unconstrained or constrained.

Now if we consider N cells together as one period, of length N&, of
the infinite structure then, according to the discussion given in the
previous section, the natural frequencies of this period with the degrees
of freedom at its ends unconstrained or constrained will coincide with the

frequencies of propagation corresponding to values of the wavenumber a'

given by
a' = 0.0 or a' =+ L {(2.55)
— 2N%
where Nf& is the periodic length in this case. Since the frequency of

propagation is a periodic function of the wave-number a', with period

1/N2, then condition (2.55) can be written as

a' = 0.0 i-%f or a' = j‘zéﬁ ﬁ'%z
where m 1is any integer number or zero.
Or in general
a' =4 ——  (m=0,1,2,...) (2.56)
— 2N4
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Regardless of the choice of the period representing the infinite structure,
the wave-number/frequency variation must be the same for the same values of
the wave—number since such variation is characteristic of the periodic

system, and hence frequencies corresponding to values of the wave-number a

equal to a' (where a' 1is given by (2.56)) i.e.,

I
204

t

a=a =+ (m= 0, 1, 2, ...)

or (2.57)

m! 2
i‘~%~ (since y = =2wal)

=
It

are indeed the natural frequencies of the N cell period with its end

degrees of freedom ({qL} and {qR}) constrained or unconstrained.

To illustrate this consider the case of an infinite beam on simple
supports at unit distances apart. This is the illustrative example used
in Section 2.3.2. Figure (2.20) shows the variation of the frequency of
propagation with the wave-number a in the first two bands when only one
cell (figure (2.2b)) is chosen as the period representing the structure
(curves JE and KL in figure (2.20)). The wave-number a 1is restricted

inside the first zone, hence

(or =7 < u < 7)

o] e
<

L cac
2%
or
-i < a < (since & = 1.0).
Only the positive values of a are considered due to the symmetry of the
curve.

Now consider 4 cells together as one period of the structure. The

periodic length in this case will be 44 = 4.0 and the first zone is given

by

1 , 1
TINg S Y W
or (2.58)
-t < at <} (since N = 4; 2 = 1.0)

Let us call this zone the sub-zone and the corresponding propagation bands
are the sub-bands. As can be seen from figure (2.20),due to the fact

that the frequency of propagation is a periodic function of the wave-number
a' with period 1/N% and symmetrical about the x axis (line a = 0.0 or

u = 0.0) it follows that section AB (which is the first sub-band)

31.



in figure (2.20) is a mirror image of BC and BC is a mirror image of CD
and also CD is a mirror image of DE where section DE must coincide with
part of the first band JE since in this part (third sub-zone) a’' = a.
This is because, as explained before, the wave-number/frequency variation
must be the same for the same values of the wave-number regardless of the
choice of the period representing the infinite structure. Similarly the
sub-band FI is a mirror image of IG and finally the fourth sub=-band JI

coincides with part of the first band JE.

Now, according to the previous section, frequencies corresponding to

values of a' = 0.0 (points A, F and J) and af =-§§E = | (points B and I)
are the natural freqguencies of the 4 cell period with its boundary degrees
of freedom unconstrained or constrained. But frequencies at points A, B
and F are the same frequencies at points E, D and G, respectively. There-

fore, frequencies corresponding to values of the wave~number a given by

m

- m s =
NI or b= E (since u 2ral)

a =+

where £ = 1.0, N =4 and m = 0, 1, 2, 3, 4 in this case, points J, I, G,
D and E)
are the natural frequencies of the four cell period with its boundary degrees

of freedom (BL and SR) unconstrained or constrained.

Therefore calculation of the curves JE and KL obtained by choosing
a single cell only to represent the infinite system can be used to calcul-

ate the natural frequencies of the finite system.
From the above discussion we can conclude the following:

a. The lower bounding frequency of the first sub~band is the lower
bounding frequency of the first band while the upper bounding frequency
of the Nth sub~band (fourth in the above example) is the upper bound-
ing frequency of the first band. Also the upper, or lower, bounding
frequencies of any of the intermediate sub-bands (second and third in

this example) are the lower, or upper, bounding frequencies of the

neighbouring sub-bands. Similar conclusions can be drawn in higher
bands.
b. The natural frequencies of a finite periodic structure of N symmetric

cells, where each cell is coupled to its neighbours by one type of

32,



degree of freedom, with its boundary degrees of freedom constrained
or unconstrained can be obtained from the propagation comstant/
frequency curve at values of the propagation comstant u given by

(2.57), namely

L=+ (@m=0,1, 2, ..., N)

For the case of a finite periodic beam on simple supports, its natural fre-

quencies with the boundary degrees of freedom (rotations at the supports)

unconstrained alternate with its natural frequencies with the boundary

degrees of freedom constrained f25, 33{. For this system, and similar
systems, the natural frequencies of the finite structure can be obtained
from the propagation constant/frequency curve at values of u given by

(2.57), namely

= + 2T
HEITR
where N is the number of periods in the structure. The values of m

taken as follows.

(i) If the boundary degrees of freedom are unconstrained
m=1, 2, ..., N for the odd-numbered bands and

m=0, 1, ..., N1 for the even-numbered bands.

(ii) If the boundary degrees of freedom are constrained
m=0, 1, ..., N1 for the odd~numbered bands and

m=1, 2,..., N for the even~-numbered bands.

(1ii) If one boundary (say {qL}) is constrained while the other boundary

({qR}) is unconstrained then the natural frequencies are in fact
the natural frequencies corresponding to the symmetric modes (or

unsymmetric modes depending on the type of the coupling degree of

freedom) of a structure having 2N periods with its boundary degrees

of freedom ({qL} and {qR}) unconstrained. In this case it should

are

be noticed that the symmetric modes alternate with the antisymmetric

modes }251.

For finite periodic systems with unsymmetric cells, Mead |33| has shown

that their natural frequencies (except the first one) can be obtained by a

similar procedure as above.
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4 elements 10 elements Exact
idealisation idealisation results
First band 9.8722 9.8697 9.8696
22.403 22.374 22.373

Second band 39.634 39.483 39.478
62.243 61.689 61.622

Third band 90.449 88.874 88.838
123.49 121.02 120.903

Table 2.1

Comparison of the bounding frequencies of the first three
propagation bands for an infinite multi-supported beam using

exact and finite element solutions.

Upper figures: Lower bounding frequencies.

Lower figures: Upper bounding frequencies.



Propagation Frequency of Propagation

Constant Finite Elements| Exact
0.0 0.0 0.0
O0.1lw 0.09870 0.09870
.27 0.39478 0.39478
0.3m 0.88826 0.88826
O.4m 1.5791 1.5791
0.57 2.4674 2.4674
0.67 3.5531 3.5531
0.7m 4.8361 4.8361
O.8w' 6.3166 6.3165
0.9% 7.9944 7.9944
i 9.8697 9.8696

Table 2.2

Comparison of finite element results (10 beam elements
per cell) and exact solution of the propagation constant/
frequency variation for the transverse wave motion in an

infinite beam.
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Figure 2.1.(a)Schematic diagram of part of a one-dimensional periodie
system; (b)forces on,and degrees of freedom of a single cell.
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Figure 2.2.(a)Infinite beam on equally spaced simple supports;(b),(c)

and(d)various choices for the single cell representing the system.
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Figure 2.3. (a)Infinite beam on equally spaced supports with rotational

stiffness s{b)single cell representing the system.



(b)

Figure 2.4.(a)Stringer stiffened flat panel;(b)finite element idealisation

of one cell.



(a)

(b)

Figure 2.5.(a)Stringer stiffened curved panel;(b)finite element idealisation
of one cell,



(b)

Figure 2.6.(a)Infinite beam on equally spaced tranmslational spring supports,

(b)single cell representing the system.
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Figure 2.7.(a)Infinite beam with point masses at equal distances,

(b)single cell representing the system.
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H“ :77/4 ’ Q = 19.92

K—w
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B o= 3n/bh Q= 11.51
o= 0 = 9@87

Figure 2.9, Standing and propagating wavea of a beam on periedic

simple aupports. First propagal lon band
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Figure 2.70. Standing and propagating waves of a beam on periocdic

simple supports . Second propagation band .
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(a)

Figure 2.17. Attenuating waves of a beam on periodic simple supports
(a)at a frequency below the first propagation band;

(b)at a frequency above the first propagation band.
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CHAPTER IIT

TWO~-DIMENSIONAL PERIODIC SYSTEMS

3.1 General

In this chapter a general formulation for studying the free wave pro-
pagation in two-dimensional periodic systems is presented. Such systems
can be considered as an assemblage of cells (periods) joined together on all
sides and corners as shown in figure (3.1a), where a cell represents one

repeating period of the system, figure (3.1b).

Waves can propagate in such systems in two different manners, either
as circular waves or plane waves depending on the type of forces generating
them. Circular waves could be generated by a point force driving a certain
point in the system and spreading a circular wave motion, while plane waves
could be generated by a line force acting at any angle across the system.

This analysis considers only plane wave motion in two-dimensional periodic
systems.

Consider a two-dimensional periodic system defined by the two independ-
ent directions dl and dz parallel to the directions of the system's
periodicity. Each cell (period) in the system is identified by two numbers
0y and n, defining its position along the dl and éz directions, where
the origin of the system is taken at the cell defined by n, =n, = 0. A
property ¢ can propagate as a wave, with wave-number a and frequency v,

if the physical system admits a solution of the type

2ri{vt - nlalfc1 - nzazzz)

¢ = Ae
Bty
ilwt + n oy, + n,u,)
- ae LSRR G
where
¢n1,n2 is the value of the property ¢ at cell n, n,.

A is a constant, t the time, @ the angular frequency, 21, QZ and
a;, a, are the dimensions of the cell and the components of the wave-number
a along the dl and do directions, respectively.

Hy and W, are known as the propagation comstants in the d1 and dz

directions, where

3k,



]

ul —2walﬁl

(3.2)

UZ ~2ﬂ3222

il

Free waves can propagate, without attenuation, when the propagation constants
Hy and w, are real quantities. They represent the change in phase between

adjacent cells in the dl and éz directions respectively.

Attenuating waves can be described by (3.1) but in this case the pro-
. Their

pagation constants ] and o will be complex quantities %3
real parts represent the change in phase while the imaginary parts represent
the attenuation of the wave between adjacent cells in the dl and dz
directions. From the relation (3.1) it can be seen that the relation
between the values of the property ¢ at any point in one cell (nl, nz}

and the corresponding points in adjacent cells can be written as

iul
¢n1+1, n, - ¢n1,n2 €
iy
2
= 3.3
QSnl,nz-i-l ¢n1,nze ( )
i(u1+u2)

¢ = ¢ e
nl+1,n2+1 0,0,

For unattenuated waves, where Hy and w, are real quantities,
relations (3.1) and (3.3) can be satisfied by using ul' and “2' instead

of Hy and 1y where

f e
Hy Hy j'Zmlﬂ,
(3.4)
v —4
Hy o T Hp X 2mym
where my and m, are any integer numbers.

Equations of motion of the system (equation (3.19) in Section 3.3)
must yield the same values for ¢ and « for a given Hy and By OT
equivalent p1? and pz’. This means that the propagating property ¢,
and its frequency w are periodic functions of the real Uy and Uy
with periods 2n. Therefore it is sufficient to examine the variation of
the frequency of propagation w with the real My and oy within one

period {zone) only. The most suitable choice is

35



(3.5)

< 1
1 289

P
2£2 2 222

Now it remains to determine the boundaries to which the wave-number a is
to be restricted to allow examining all possible propagating waves in all
directions and at the same time satisfy the restrictions {(3.5). These
restrictions on Hy and B, are for the same reasons discussed in Chapter
II, Section 2.3 on restricting the propagation constant for one-dimensional
systems inside the fundamental zone. This will be discussed in the next

section.

3.2 Direct Cells, Recriprocal Cells and Zones in Two Dimensions

In this section we will describe briefly how to construct the zones to
which the real wave-number a (and hence Hy and pz} will be confined
for any two-dimensional periodic system. This restriction should be
observed when determining the direction of propagation or the wave-length

A where
W

A, = 1/]al.

W

o

Full details and discussions for the zones can be found in {3

First we must define what we mean by direct cells and reciprocal cells.
One period (cell) of the periodic system is referred to as the direct cell.
It describes the periodicity of the medium in space. The reciprocal cell
is geometrically identical to the direct cell but of dimensions that are
the reciprocal of the corresponding dimensions of the direct cell. it
describes the periodicity of the frequency of propagation in the wave-number
domain. The direct system is constructed by joining the direct cells
together and the reciprocal system is constructed by joining the reciprocal
cells together in identical manner to the direct system. To illustrate

the meaning of reciprocal cells we will consider first the one-dimensional



systems discussed in Chapter II.

In the one-dimensional case we found that the frequency of propagation
is a periodic function of the wave-number a with period 1/2 where &
is the length of the cell and we restricted the values of a within the
first zone given by relation (2.19), namely

_L<{a=<_§...
22 S &L = 3y

In other words we can say that the periodicity of the frequency in the
wave-number domain can be described by a reciprocal cell of length 1/2.
Therefore the first (fundamental) zone for one-dimensional systems as given
by (2.19) can be constructed by taking its origin at the centre of one of
the reciprocal cells in the reciprocal system, figure (3.2). The first
zone is bounded by the perpendicular bisectors of the lines drawn from the

origin of the zone to the centres of neighbouring reciprocal cells as shown
in figure (3.2).

Now we can proceed to find the analogous zones for two-dimensional

systems. Zones will be areas in two dimensions and can be constructed as
follows:

First define the direct cell and the reciprocal cell for the system.
Figure (3.3) shows the reciprocal system corresponding to the oblique two-
dimensional system shown in figure (3.1). Taking the centre of one of the
reciprocal cells as the origin of the zone, then the boundaries of the
first zone are defined by the smallest closed polygon formed by drawing
perpendicular bisectors to all the lines drawn from the origin of the zone

to the centres of neighbouring reciprocal cells as illustrated in figure
(3.3).

The first zone for two-dimensional periodic systems with rectangular

cells of dimensions 21 and 22 will be another rectangle of dimensions
1/5&1 and 1/%2 with the origin at its centre as shown in figure (3.4).
Higher zones can be constructed in a similar manner. However, for the
purpose of this work it is enough to discuss the construction of the first
zone only.

Similar to the one-dimensional periodic systems, frequencies corres-—

37.



ponding to values of

a

on the boundaries of the first zone for two-

dimensional periodic systems are characteristic of the medium and

depend on its physical properties.

some frequency bands only with possible overlapping of the bands.

Also propagation will occur within

The

width of these bands will vary with the direction of propagation.

Solving the system's equations of motion for values of the wave-number

a outside the fundamental (first) zone will always result in a wave—

motion that can be obtained with a wave-number inside the fundamental zone.

The shortest wave-length for any wave travelling in a two-dimensional

periodic system will correspond to the wave with the largest absolute

value of the wave-number

a inside the first zone since

3.3 Mathematical Formulation

Consider a two-dimensional periodic system composed of an infinite

number of identical cells joined together in identical manner as shown in

figure (3.5a).

A cell contains one period of the system, figure (3.5b).

Using the finite element technique, a cell can be represented by a model
Fach cell is coupled

with interior and boundary degrees of freedom.

to its neighbours on all sides and corners.

and right top corners of the cell.

undamped cell is given by

[¥]

and [M}

(€] - «*MD{q} =

{F}

Let {q’I},’ {?I} be the
degrees of freedom and forces at the interior nodes of the cell,

freedom and forces at the left, right, bottom and top sides of the cell,
degrees of freedom and forces at the left bottom, right bottom, left top

{q} and {F} are the nodal degrees of freedom and forces, where

{q}

{F}

I

i T
lag 9y 9z 95 9 %y Y Yr Ygrl

F

T

F

LB

F

T
RB FLT FRT—I ’

The linear equation of motion of an

(3.6)

are the stiffness and inertia matrices for the cell,

(3.7)



e . [ - " s . . . B
The matrices {Ké and [Mj can be partitioned according to the interior

left, right, bottom, top and corners degrees of freedom, hence

K = . K K K ’
=% 1 .. “r,r %13 fr,r %r,is Xoes %roir Kome (3.8)

KRT,I T - o mTmmmomEmmmEmE o m T KRT,RT

A similar expression can be written for [M].

The nodal forces {F} are due to any external forces acting on the
system and the forces of interaction between the cell and its neighbour—
ing cells. For free wave motion, i.e., no external forces exist, then
'{FI} = 0, However the forces on the boundaries of the cell {(forces of
interaction between the cell and its neighbouring cells) are not zero
since they transmit the wave motion from one cell to its neighbours.
This wave motion is characterised by relating the degrees of freedom and
equivalent nodal forces in omne cell (n19 nz) to the corresponding
degrees of freedom and forces in adjacent cells, figure {(3.5). The

relations between the nodal forces can be written as follows:

, iny
{F_} = e F
L n1+1,n2 { L}nl,nz
{F_} iy
B nl,n2+1 = e {FB}n - (3.9)
1’72
, iy
F_ ..} = e F
{ LT n1+1,n2 { LT}nl,nz
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iuz
{F .} = e “{F__}
RB nl,n2+1 RB .0,

i+ u,)
(F._} = e I ¥ip o3

LB n, +1l,n.+1 LB n

172

1°™

For equilibrium of the interconnecting forces between cell (nl, nz) and

the neighbouring cells, the following conditions must be satisfied

(3.9)

A{F ) + {F.} = 0 (left and right)
R 50, L n1+1,n2 |
{FT}n . + {FB}n o+ = 0 (bottom and top) (3.10)
1°™2 1°™
{F, 3 + {F. .} ‘ ] . -
RT"n; .m0, LTng+1,n, + (Fppd g+ Fpd o0 0
1772 1 2
(corner)
Substituting (3.9) into (3.10) gives
« iﬂl
{F_} +e {F } = 0
R nl,nz L n15n2
E) 2 (3.11)
F + e “{F_} =0 .
T n1,n2 B nl’nz
iy ip iuqytu,)
. 1 2 1 r2
F + F + F + F =
{ RT}nl,nz e LT}nl,nz e A RB}nl,nz e { LB}nl,nz
Also the degrees of freedom can be related as follows
iul
{q,} =e “{q1}
L n1+1,n2 L ni,nz
| iu,
{qB}nl,n2+1 Bl {qB}nl,nz
iu (3.12)
aggly 41, =@ 1{qLB}n n
1 772 1772
. » i u
{q, .} PN
LB nl,n2+1 - e {qLBIn 511
1772
i {u_ +
{q o} = el<IJl u2>{q }
LB nl+1,n2+1 LB nl,nz
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At the common boundaries between cell n, 0, and its neighbouring cells

the displacements must be equal, hence,

} =
{qL n1+19n2 {qR}nl,nZ
{qB}n15n2+l {qunl,nz
} =
fog n +1,n, {QRB}nl,nz (3.13)
{q. 5} = {q .}
LB nl,n2+1 LT nl,nz
{a, o} = {q,}
LB n1+1,n2+1 RT )
Substituting (3.13) into (3.12) gives
} uy
{q,} = e {q}
RAnl,nz L o, .0,
iuz
{q.} = e “{q,}
Tnl,nz Bnl.’nz
{a..} 1 (3.14)
q = e “{g .} . 3.14
RB nl,nz LB nl,nz
} 2
{q = e "{q. !}
LT nl,nz . LB nl,nz
{qRT}n n = elCBl+U2){qLB}n 1
1*72 1*72

Relations (3.11) and (3.14) are the same for any cell and hence the suffix

ng;, 0, can be dropped. Relations (3.14) can be used to write the

relation between the degrees of freedom in the cell in the matrix form

{q} = [w]{q} (3.15)
where
: N T
_ T
far = lag 9 g4 a5l "

4.



- H ' t
W] = ‘o ' 0 . O (3.16)
U OO
I L e B o
...__..AT_A.:.L%I_.;.,._,.__E _______
! 1 o
R T
o ! o 1 0
SR - ““iﬁu“z"f ________
o I 0 e b0
I AR X1
0 I
__,__~:..____.,___,._‘K__i.,__.,_
L0 0 _ L0 _1e’l o
* | A
4__0_._L._Q-_;_Q_‘T.e., e T2
| ; B 1(u1+u}
0O : 0 | 0 e 2
' : H =i

Also the equilibrium conditions (3.11) and the condition

{F} o= 0,

can be written in the matrix form,

[W’]{F} = 0 (3.17)

- ' | I ] ! !
W] = | I_0Lo0_ lolo 10} 0 [0  0___ _. (3.18)
o T o | |
0!I e %0,0 10, 0_ ' 0 1 0O
A R e i It e
; Lo 2 ! ' '
0! 0. 0 iIle A0’ 0 L0 . 0 ____
Co T ey ey TGy ey)
0.0, 0 0,0 I e Ne = J

Substituting (3.15) and (3.17) into equation (3.6) results in an equation

of the form
([Reups ] - o’ [y, upD) @ = 0 (3.19)

where {IZ} and [ﬁ] are complex matrices given by
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= W]kl [w], (3.20)

=i
| S—
u
.
b
Pl |
&
bl
wf

I,I I,L I,B I,LB

il
=

%1
ngB,I XB,1B
] = M1 ﬁI,L MI,B ﬁI,LB = [w][M] [W]

Mo
My
_MLB,I MB,18

[k] and [MM] are the stiffness and inertia matrices in equation (3.6).

Equation (3.19) represents an eigenvalue problem in w for given
values of Hy and Hye When g and H, are real quantities,
equation (3.19) can be rearranged to give a real symmetric eigenvalue
problem in w. This will be discussed in Section 3.4. Alsc this
equation can be reformulated to give an eigenvalué problem in Hy and Hy
for given values of w, where My and Hy will be generally complex

quantities. This will be discussed in Section 3.5.

3.4 Formulation for the Real Propagation Constants

As mencioned in Section 3.1, waves can propagate in two-dimensional
periodic systems, without attenuation, when the propagation constants
1y and u, are real quantities. In this case the frequency of propagation
is a periodic function of Hy and My with periods 27 and hence the
variation of the frequency with the real propagation constants can be

examined by solving equation (3.19) for given values of By and My

within one period only. In this case equation (3.19) can be reformulated
to give a real symmetric eigenvalue problem in w for given real values
of My and Hoe

Now the matrices [K(pl, pz)} and [M(ul, uz)] in equation (3.19)

can be written as
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R, ] = [ + i[8 1
’ (3.21)
[M(ul, uz)} = [M] + i[M']
Substituting (3.21) into (3.19) gives
- e 2 = . r=is - L =i
(K] + i[KY] - o ([M] + 1[M']) ") + i{g 3} = o (3.22)
where
RO LT T {9 o= ()t (3.23)
q q
L L
3 > 1 >
g g
913 93
o 4 L 4

Separating the real and imaginary parts of (3.22) and combining the two

equations together gives

wo&] - [w #]) [F] - o 3. 26)
| K K J Vol Ve / q

From (3.16) and (3.18) it is clear that for real values of Hy and Hy

we can write

W] = [w]”
where * denotes the complex conjugate, and hence the matrices [i} and
[ﬁ} (given by (3.20)) are Hermitian, i.e.,
[&]" = []
(3.25)
[F]" = (3]

Therefore equation (3.24) represents a real symmetric eigenvalue problem

since

ey
~i
I
[ S
it
I
ey
=i
b
f S—
3

(3.26)

=i
| S
I
i
ey



This equation can be solved for different values of the propagation
constants ul and Hy (where My and Wy are real) to find the

corresponding frequencies of propagation and associated wave forms.

3.4.1 Computer programs

A general computer program has been written to analyse any two-
dimensional periodic system. One period (cell) of the system is repre-
sented by a finite element model and the matrices in equation (3.24) are
formed for given real values of g and Hye Then the problem is
solved as a standard eigenvalue problem. The basic flow diagram for the
computational procedure is given in Appendix B. The method used to

solve the eigenvalue problem (3.24) is given in Appendix A,

3.4.2 Illustrative examples

Two examples are used here to i1illustrate the general behaviour of

two-dimensional periodic systems, and to explain some of the points dis-

cussed in Section 3.1.

Consider the flexural wave-motion in an infinite plate resting on
simple line supports along orthogonal, equally spaced lines, figure
(3.6a). In this case the system can be defined by the cartesian axes

x and y. Let a be the wave-number for a wave travelling across the

plate at a direction meking an angle o to the x—axis, then the compo~

nents of the wave-number a along the x and y directions are

a, = |z cosa

(3.27)

I

ay = |a| sin

If %y and §_ are the dimensions of the cell representing one period
of the plate (distances between the supports), figure (3.5b), then, from
relations (3.2), we can write

' H = .‘ZTFaXQ’X 5
(3.28)

= =Dma g
My Ty

where My, and py are the propagation constants along the x and y

directions respectively.
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The first zone to which the wave number a (and hence the
propagation constants ¥y and uz} will be restricted is a rectangle
of dimensions 1/2X and 1/5&y as shown in figure (3.4). This was
discussed in Section 3.2. The shortest wave~length for a wave travelling

along the x direction will correspond to a wave-number g = a = 1/22X

and hence

D T
Ax = TEI- = sz (3.28)
Similarly the shortest wave-length for a wave travelling along the y
direction is
A= 24, (3.30)

The shortest wave—length As for any wave travelling in the system will
correspond to a wave having the largest absolute value of a inside the

zone as its wave-number, hence

1 1
}L = =
° 0 e Va2 o+ e )l
% ' max v imax
or
1 22x£
A, = = L (3.31)
1.2 1.2 V3 i + 4
/(22 AT, X y
x
The directiors of propagation for this wave are given by
-1 2 -1, *x
o = tan ng) = tan (i-5~0 (3.32)
% v

Propagation bands will be surfaces in the a, ay (or o py) domain. The
width of the first propagation band, as will be shown later, is largest
élong the directions given by (3.32) and hence these directions can be
called the preferred directions of propagation. These are directions
normal to the diagonals of the cells. Frequencies corresponding to waves
with wave-length given by (3.29), (3.30) and (3.31) are characteristic

of the periodic system. They depend on the dimensions of the cells and
their physical properties.

Now consider a plate with square cells of dimensions .zx = zy = 1,0
(distances between the line supports). One cell (a square plate simply

supported along its sides) is represented by a finite element model,



figure (3.6b). The cell is divided into 16 plate elements. The plate
element and the data values used in the analysis are given in Appendix
D4, The degrees of freedom at the nodes are the transverse displace-
ment w and the two rotations GX and Sy, and hence at the left and
right sides only ey exists while at the bottom and top sides only Sx
exists. No degrees of freedom exist at the corners. The problem is
solved for different values of the propagation constants [ and py.
Figure (3.13) shows the variation of the non-dimensional frequency @,

in the first propagation band, for values of Hy and uy in the range

b < <
3 g N 3

-3rgu_ £ 37w
b

The non—dimensional frequency ( is defined as

- 2 ,ph
Q = wzx ( D)

[S1E

(3.33)

where
Eh/12(1 - ¢2).

[}
it

w is the angular frequency, p,h, D, E, ¢ are the density, the thickness,

the modulus of rigidity, Young's modulus and Poisson's ratio of the plate.

As can be seen from the graph, the propagation band is a surface with
periodic variation in the Hos py domain of periods 27 and symmetrical
about the lines n, = 0 and py = 0, Therefore it must terminate at
the boundaries of the first zone (a square bounded by w, = m and
Uy = +7) with zero normal derivatives. Also shown on the graph the
values of the components of the wave-number a (aX and ay) alongside

Hy and uy. Due to the periodicity of the frequency with U and uy’
as explained in Section 3.3, it is enough to examine the variation of

the frequency with o and uy inside the first zone only. Figures
(3.14), (3.15) and (3.16) show the first, second and third propagation
bands where o and uy are restricted within the first zons only.
Cross—sections along the x direction (uy = 0.0) or the y direction

(px = 0.0) or along a direction given by By = Uy {a direction making

45 degrees to the x axis in this case) will yield curves similar to those
obtained for one~dimensional systems. This is shown in figure (3.17)

for the first three propagation bands.

The limiting (cut-off) frequencies for the propagation bands depend

on the direction of propagation and occur at the centre of the zone

L7,



(ux =y = (0.0) and at the boundaries of the zone (gx = +1 and/or
uy = + m). However in some cases, as will be shown later, the limiting
frequencies for the propagation bands can occur at different values for

My and uy,
Another way of showing the variation of the frequency of propagation

inside the first zone can be obtained in a polar plot by drawing lines

joining the frequencies corresponding to wave-numbers drawn from the

centre of the zone at all directions and terminating on the boundaries

of one of the concentric polygons drawn inside the zone with sides parallel

to the boundaries of the zone (squares in this case) as shown in figure

(3.7). Figure (3.18) shows the first three propagation bands in the

polar plot for the plate with square cells. This representation has the

advantage of showing clearly the variation in the width of the different

bands and the limiting (cut off) frequenecies with the direction of propa—

gation. It also shows that the width of the first band is largest alomg

a direction of propagation making an angle 45 degrees to the x axis

which is the preferred direction of propagation. Also the overlapping

of the second and third bands is very clear on this plot.

Figures (3.19 a, b), (3.20 a, b), (3.21a, b) and {(3.22a, b) show
the frequencies of propagation and the associated wave—forms (These are
the eigenvectors in equation (3.24))in the first and second propagation
bands corresponding to some values of My and uy (bnly 5 x 5 cells are
shown.) For My equal to O or +m the corresponding wave components
along the x direction are standing waves with wave—length equal to =
or ZQX respectively. Similarly for “y equal to O or +m the
corresponding wave components along the y direction are standing waves
with wave~length equal to = or 22y. Frequencies corresponding to
Hy = 0.0 or +1 and yu_ = 0.0 or +7 are the bounding frequencies for
the propagation bands along the x direction, the v direction and the pre-
ferred direction of propagation. These frequencies and associated wave-
forms, as can be seen from figures (3.19) to (3.21), can be associated
with the natural frequencies of the single cell with various boundary

conditioris. This will be discussed in detail in Section 3.6.

For O < fuxé <7 or 0 < fgy{ < 7  the corresponding wave components
are travelling waves along the x~direction or the y-direction respectively.

The shortest wave-length and the corresponding direction of propagation



are obtained from relations (3.31) and (3.32), hence

Zixi
A, = = /2
ARV 2
xx + Ry
and . RX
o = tan (sz = 45°
J

which is the preferred direction of propagation. This wave corresponds
to the lowest frequency of propagation in the first band (cut—off fre=-

quency) .

The second example is similar to the previous one except that the

distances between the supports are taken as
2 = 1.0, L, = 2.0

and hence the basic cell representing the system is a rectangular plate
of dimension Rx = 1.0, ZY = 2.0 with simply supported edges. Figures
(3.23) and (3.24) show the variation of the frequency of propagation in
the first two propagation bands where M and Hy are restricted within
the fundamental zone (uX and uy vary between +m). Figure (3.25)
shows cross—sections in these bands along the x direction, the y direction
and the preferred direction of propagation (a direction making an angle
equal to 26.56 degrees to the x axis in this case, where by = py).
Figure (3.26) shows a polar plot for the frequency variation in the
first two bands. Comparing this graph with the one for the plate with
square cells (figure (3.18)) it can be seen how the dimensions of the
cells affect the variation in the width of the various propagation bands
with direction of propagation. Also it is clear that the first and
gecond bands overlap in this case. Figures (3.27), (3.28), (3.29) and
(3.30) show the frequencies of propagation and the associated wave-forms
in the first and second propagation bands corresponding to values of #ix
and # equai to 0 ortm. 1Inspection of these figures shows that these
frequencies and associated wave-forms coincide with the natural frequencies
and associated normal modes of the cell with various boundary conditions.
This will be discussed in Section 3.6. The shortest wave-length and
the corresponding direction of propagation (preferred direction of propa-

gation) are obtained from relations (3.31) and (3.32), hence
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A, o= ==L = 4//5
S 2 2
2 + £
X ¥
and _ QX
o = tan <§“J = 26.56°
y

This corresponds to the lowest frequency of propagation in the first band

(cut-off frequency).

A movie film showing clearly the standing and propagating waves

described above has been produced using the computer.

3.4.3 Transition from non-periodic to periodic two-dimensional systems

To illustrate the effect of periodic discontinuities on the propagation
of waves in a homogeneous two-dimensional medium, consider the transverse
wave-motion in an infinite plate resting on orthogonal, equally spaced
line spring supports (translational only) as shown in figure (3.8a). A
finite element idealisation of one cell is shown in figure (3.8b). The

dimensions of the cell (distances between the line supports) are

The plate element and data values used in the analysis are given in
Appendix D4, Figure (3.31a, b) shows the variation of the frequency of
propagation with My and py in the first two propagation bands where
the spring supports stiffness Kt is taken equal to zero. The values
of M and u are restricted inside the first zone (a square bounded
by n, = Am and uy = +7). Similar to the one-dimensional case dis-
cussed in Section 2.4 it is clear from the figure that if we plot the
propagation surfaces for larger values of Mo and uy (say

-31 < Hes Mo S 37, similar to the one-dimensional case shown in figure
(2.14)) then we will find that the propagation bands (surfaces) will
join together to form continuous surfaces (paraboloids) allowing pro-
pagation at all frequencies and in all directions,. These surfaces are

the same as those obtained by considering the equation of two—dimensional

transverse wave motion w in an infinite plate given by

4 Bzw
DVw + ph —s = O (3.34)

ot
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where

Vé = VZ.VZ 2
2 8? ) 32
V = ""‘2" Cfy —
ox ay

and considering

wix, y) = W e

as a solution to (3.34) where v is a constant,
a and &a_ are the components of the wave-number in the x and y

directions, p and D are the density and the modulus of rigidity of

the plate.

Substituting (3.35) into (3.34) gives

2 2 D 2 2.2
v o= 47, = {a " + a
ph( Y)
or
2 2
Q--px -é—uy
where
ux = —Zwaxlx ,
U= =27a 4 = =27a & (g
v yy y X X

2  is the non-dimensional Irequency given by
- 2 phy;
Q = w%x { D)
w 1s the angular frequency where

W = 27rv.

2ri{vt - a X - ay.y)

ig the frequency,

(3.34)

(3.35)

(3.36)

Table 3.1 shows a comparison between the finite element results plotted

in figure (3.31) and the exact solution (3.36).

non-dimensional frequency § corresponding to various values of

and uy. From these results it is clear that the finite element
lations are very close to the exact ones. More accurate results
obtained by increasing the number of elements representing the cell.

Non-zero values for the translational spring supports stiffness

51.
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simply introduce discontinuities into these surfaces allowing propagation
in some frequency bands only. t the limit when Kt is equal to =
the propagation bands are the same ss those obtained for the simply

supported plate with square cells discussed in Section 3.4.2.

3.4.4 Oblique two-dimensional periodic systems

In some two—~dimensional periodic structures the cell describing the
periodicity of the system can be in the form of a parallelogram. These
can be found in some aircraft substructures such as stringer stiffened
plates in two dimensions where the stringers are not orthogonal. Such
systems are referred to as oblique systems. To illustrate how waves
propagate in these systems consider the transverse wave motion in an
infinite plate resting on simple line supports at equally spaced parallel
lines in two directions making a 60° angle between them as shown in
figure (3.9a). A finite element idealisation of the cell representing
one period of the system is shown in figure (3.9b). The dimensions of

the cell sides along the directions dl and dz defining the system are

21 = 1.0, 22 = 1.0,

The plate element and data values used in the analysis are given in
Appendix D5. As described in Section 3.2, the first zone, to which the
wave-number a (and hence 1y and uz) is to be restricted, for this
system will be a hexagon with the origin at its centre as shown in

figure (3.10). Figure (3.32) shows a polar plot for the first propaga-
tion band. Each curve in this plot corresponds to wave-numbers drawn
from the centre of the zone in all directions and terminating at ome of
the concentric polygons drawn inside the zone with sides parallel to the
boundaries of the zone as i1llustrated in figure (3.10). From the graph
it is clear that the width of the propagation band is largest at a
direction of propagation along the shorter diagonal of the cell (normal
to the longer diagonal) and the lowest bounding frequency for the first
band occurring along that direction (preferred direction of propagation).
Figure (3.33) shows cross-sections in the first and second propagation
bands forvwaves travelling along the d1 and d2 directions (where

Hy # 0, by = 0 and My = o, Ho # 0 respectively), and dlong the longer

and shorter diagonals of the cell (these are directions making 30° to

524



. _ . o . o
the éi axis where Hy = QZ and 120~ to the dl axis where yl uz).
From this graph it is clear that the upper bounding frequency for the

first band does not correspond to zero wave-number (ﬁl =, = o).

A comparison between these results and those obtained in Section
3.4.2 for the plate with square cells, figures (3.17) and (3.18), shows
that the propagation bands for the oblique system occur at higher frequen-
cies and the width of the first band is very narrow along the dl and éz

directions.

3.4.5 Wave propagation in two-dimensional point supported
periodic plates

In many building structures the floors are supported on columns which
are generally located in a regular pattern. Understanding the vibration
characteristics of such structures is important if they are subjected to
dynamic loads such as machinery resting upon Cthem. This can be easily
and quickly estimated if the periodic nature of the structure is utilised.
To illustrate this, consider a two~dimensional plate resting on point
supports at regular intervals parallel to the x and vy directions as shown
in figure (3.1la). A finite element idealisation of one cell with point
supports at its corners is shown in figure (3.11b). The plate element
and data values used in the anaglysis are given in Appendix D4, The
dimensions of the cell (distances between the supports) in the x and y
directions are

g =1.0, & =1.0.
X y

The degrees of freedom at the nodes are: the transverse displacement w
and the two rotations GX and 6 , and hence at the supports only ex
and 6 exist., Figures (3.34a, b) show the variation of the frequency
of propagation in the first and second propagation bands where the
propagation constants . and uy are restricted inside the first zone
(a square bounded by By = Fm and uy = +1). Figure (3.34c) shows
cross—sections in the first, second and third propagation bands along

the x direction (px # 0.0, Hy = 0.0) and along the diagonal of the cells
(a direction making an angle 45° to the x axis) which is the preferred
direction of propagation in this case (uX = py). From these graphs it
can be seen that the bounding frequencies for the bands at some directions
(e.g., preferred direction of propagation) do not mecessarily correspond

to wave-numbers at the centre or the boundaries of the zone.
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A comparison between these results and those obtained in Section
3.4.2 for the plate on line supports with square cells, figures (3.14),
(3.15), (3.16) and (3.17) showsthat the propagation bands for the point
supported plate occur at lower frequencies. Alsc it is clear that the
highest bounding frequency for the first band (along the preferred direc—
tion of propagation) is the lowest bounding frequency for the second
band and hence, contrary to the plate on line supports, there is no
stopping band between the first and second bands along the preferred direc-

tion of propagation.

3.4.6 Wave propagation in periodically stiffened plates

Many aircraft substructures are composed of flat or curved plates
stiffened at regular spacings in one or two directions. Here we will
consider the transverse wave motion in a two-dimensional flat plate
stiffened with frames and stringers at equally spaced orthogonal lines
as shown in figure (3.12a). The structural data and elements used in
the analysis are given in Appendix D6. A finite element idealisation of
one cell is shown in figure (3.12b). The dimensions of the cell

(distances between the stringers or the frames) are
. =11.43 cm, 0 = 22.86 cm .
X Yy

The cell is divided into 16 plate elements, 4 frame elements and &

stringer elements. First the problem was analysed assuming zero transverse
motion at the frames and the stringers (this is due to their high transverse
rigidity in comparison to the plate). The variation of the frequency of
propagation in the first two bands is shown in figures (3.35a, b) where

u_ and uy are restricted within the first zone. Figure (3.35c) shows
cross-sections in the first, second and third propagation bands for waves
travelling along the x direction, the y direction and the preferred
direction of propagation (a direction making an angle a to the x axis

where

%

I "= o
= 26.567).

o = tan

A

Figures (3.36a, b, c¢) show similar results for the same structure
considering non—zero transverse motion at the frames and the stringers.
In this case the first propagation band starts from zero frequency. Wave
motion corresponding to the first part of the first band, where the wave-
number is small, represents waves of large wave-length compared to the

distances between the stiffeners, and hence waves are propagated as if
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the structure is non-periodic. The rest of the first band is very close
to the first band for the plate when considering zero transverse displace-

ment at the stiffeners.

The results obtained here when considering zero transverse displace—
ment at the stiffeners shows great similarity with the results obtained
in Section 3.4.2 for the plate on line supports and rectangular cells

(RX = 1.0, zy = 2.0).

3.5 Formulation for the Complex Propagation Constant

Following the formulation for the one-dimensional systems given in
Section 2.5, equation (3.19) can be rearranged to give an eigenvalue
problem in My and M, for a given value of the frequency w, where
Hq and Ho will be generally complex, This formulation has the advant-
age of giving the values of the propagation constants Hy and H, at any
frequency. Also, in some cases, it produces an eigenvalue problem of
smaller order than the eigenvalue problem obtained in the formulation
for the real propagation constantsdiscussed in the previous section.

However it is more complicated to formulate.

Equation (3.19) can be written in the form

PG u] (o] =0 (3.37)
T
4
quBJ
where
o] = [p,; D, D5 D . | = [K]- w?[¥] (3.38)
, ) , ,
Dt Pui Py DL
by Pgn Dez Dms
D, Pue,n Pue,3 Pim,is
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The submatrices Di 5 are given by

D. . = K, .- M.
153 1’3 }-93

. e

where Ki . and ﬁi . are the submatrices of [K] and
% ¥

first relation in equation (3.37) gives

, -1 : :
fagb = =Dy 1 @p plagt + Dy plagd + Dp ;plqgh)

Relation (3.39) can be used to eliminate l{qI} from equation (3.37).

This results in an equation of the form

[ 5(u1’ uz)] q, 1 =0

where
[ 5(u15 “2) ] = [T‘][D(ul, uz)][T]

The matrices [T} and {T'] are given by

-1 -1 -1
7] = DI,IDI,L DI,IDI,B ‘ DI,IDI,LB
I
0
0
,‘7=r__ -1 "
[T7] DL’IDI’I I 0 0
-1
DB’IDI’I 0 I 0
-1
DLB’IDISI 0 0 I

Examination of (3.16), (3.18) and (3.20) shows that the propagation

constants My and M, appear in the elements of the matrices

[ﬁ}, and hence in [D] and [5}, only in the form

+1 +3 | +1 + 1
=t —tH2 ThHp Mg
e 5 e and e

(notice that the matrix D and hence Dglz, is a real symmetric
]

I,1°
matrix).
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(3.39)

(3.40)

(3.41)

(3.42)

(3.43)

and



Therefore eqgu ation (3.37) can be written in the form

iu iu i -iu 1, +u,)
e lre By re “B]ee Z[B]lre ' P[]
iu,—u,) i(,~u,) =i(u,+u,) ¢
1 72 VAR § 172 3
+ e [B] + e [57} + [38} + [39]} EqL =0

dp }
|
i
qLBJ (3.44)
The matrices [Bi] are of the same order as { D ] where each matrix con-
= iy, -iy
tains only the elements of [D} which are multiplied by e +, e 1, etec.

Now if the ratio between Hy and Uy gives a rational number, then they

can be written in the form

UI - nlU

(3.45)
UZ = nzu

where oy and n, are integer numbers or zero.

Substituting (3.45) into (3.44) and putting et = ) gives

-1 11 n1-n

T, - i -1 11
N I N I N N S S £ B Nl 1 W I S
n,—n ' 8

-n
oy 2 1[37}+l

“8g] + [BgD) [q, | = O (3.46)

|

LqLB

1

dg

If the largest negative power of X in (3.46) is -m, then multiplying
{(3.46) by 2 will eliminate all negative powers of A, Therefore
(3.46) can be written in the form (after multiplying by ,Km and rearrang~

ing terms)

(™ + [a 1w [a D) (qL (3.47)

jo
LqLB)

where n 1is an integer positive number.
r . 9 oo i
LAi] are the sum of the matrices [Bjj that are multiplied by A".

Equation (3.47) represents a general eigenvalue problem of order n.

This can be solved for various values of the frequency w and a certain
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direction of propagation such that the ratio between My and Hy is

a rational number. For example, along the dl direction where Hy # 0
and Ho = 0 or along the éz direction where ﬂiz = (0 and #2 # 0 or
along directions such that H] T My OT g = 2#2 ete. Different

techniques for solving the eigenvalue problem (3.44) are given in Appendix A.

3.5.1 Computer programs

A general computer program has been written to represent one period
(cell) of any two-dimensional periodic system by a finite element model
and to formulate the eigenvalue problem given by equation (3.47). This
eigenvalue problem is then reformulated to give a standard eigenvalue

problem of the form

It
o

([e] - A[1])ix}

or

]
Q

([a] - A[B]){x}

where various eigenvalue solutions can be used. This is discussed in

Appendix A. The basic flow diagram for the computational procedure is

given in Appendix B.

3.5.2 Applications

Some of the cases used in Section 3.4 will be used here to show that
this formulation produces results similar to those obtained using the
formulation for the real propagation constants (when Hy and W, are
real quantities), and also to investigate the behaviour of two-dimensional
periodic systems at frequencies outside the propagation bands where the

propagation constants will be generally complex.
The following cases are considered.

a. Transverse wave-motion in infinite plates resting on orthogonal,
equally spaced simple line supports.

This is the same example used in Section 3.4.2, figure (3.6a). A

similar finite element idealisation is used here, figure (3.6b). For
the case of square cells (2X = zy = 1.0) two directions of propagation
are considered, along the x axis and at a direction normal to the
diagonal of the cells (preferred direction of propagation). When the

waves are propagating along the x direction, relations (3.45) can be
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written in the form
U""}llzﬁ

uy = uz = (.0,

Therefore the eigenvalue problem (3.47) will be of the form

2

([, ]2 + [A]x + [a D} = o.

This has been solved for various values of the non—dimensional frequency
Q. The resulting A will give conjugate pairs for u. Each pair
represents two identical waves travelling in opposite directions. Figure
(3.37) shows the variation of the real and imaginary parts of u (where
b = 1) with the non-dimensional frequency Q. Three different waves
are shown (numbered 1, 2 and 3). The imaginary parts of u (attenuation
factor) are plotted as positive quantities while the real parts are plotted
as negative quantities. It is clear from this figure that the range of
frequencies where u 1is real (propagation bands for waves 1 and 2)
coincide with the results obtained in Section 3.4.2, figure (3.17). Out~
side this range the real parts of u are either zero or +m, while the
imaginary parts are non-zero. Waves corresponding to these values of 1
will attenuate at a rate depending on the values of the imaginary parts
of m (the amplitude of the wave will attenuate by a factor ; ' from
one cell to the next). Wave 3 has a large imaginary part within the

plotted frequency range and hence it is a heavily attenuated wave.

For waves travelling normal to the diagonal of the cell (a direction

making 45° to the x axis), we can write

and hence relation (3.45) can be written as

IJX“ U}_“M

“y* UZ:M

and the eigenvalue problem (3.47) will be of the form

r 3 AT ‘ =
([A4]A A e A+ (A s [a ] {a} = 0.
However since there are no degrees of freedom at the corners of the cell

in this case we will find that the matrices [A4] and {A3} are zero.
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Figure (3.38) shows six possible waves that can exist at any
frequency (numbered 1 to 6 in the figure). The propagation constants
for waves 1 and 2 are purely real within some frequency bands {propaga-
tion bands). These bands coincide with those produced in figure (3.17)
outside these bands the imaginary parts of U are non-zero and hence
waves 1 and 2 will attenuate at these frequenciles. The propagation
constants corresponding to waves 3, 4, 5 and 6 have non-zero imaginary

parts and hence they represent attenuating waves.

Figures (3.39) and (3.40) show similar results for the plate with
rectangular cells (%X = 1.0, zy = 2,0). This is the second example used
in Section (3.4.2). These graphs correspond to waves travelling along
the x direction and the preferred direction of propagation (a direction
making an angle 26.56° to the x axis in this case). In figure (3.39)
three waves are shown (numbered 1, 2 and 3), while in figure (3.40) six
waves are shown (numbered 1 to 6). Similar to the previous example,
within the range of frequencies where the propagation constants for some
of these waves are real quantities (propagation bands) coincide with those

produced in Section 3.4.2, figure (3.25).

b. Stringer stiffened flat plate.

This example was used in Section 3.4.6, figure (3.12a). The same
finite element idealisation for the cell is used here. This 1s shown in
figure (3.12b). Figure (3.41) shows the variation of the complex propa~
gation constants with frequency for waves travelling along the preferred
direction of propagation (a direction making an angle 26.56° to the
X axis, H = uy = u). The transverse displacements at the stiffeners
were considered equal to zero (due to the high transverse rigidity of the
stiffeners). Four possible waves are shown in figure (3.41) (numbered 1
to 4). Here again it is clear that the range of frequencies where the
propagation constants u are real quantities (propagation bands for waves

1 and 2) coincide with the results obtained in Section 3.4.6, figure

(3.35).
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3.6 Natural Frequencies of g Single Two~dimensional Periodic Cell

If the single cell of a two~dimensional periodic system is symmetrical
(about two planes through its centre and parallel to its sides) and having
only one type of degree of freedom coupling it to its mneighbouring cells
on opposite sides, then its natural frequencies, while some or all of
the boundary degrees of freedom are constrained or uncounstrained, can
be associated with the frequencies of propagation corresponding to wave-—

numbers (or propagation constants) given by

X X

or
a=+-—-—1-— W=
x =24 ° x -

X

and
3y = (0.0, uy = 0.0

or
a::-{--....}.'.-_ '[.,t"""""ﬂ”
y “25&y’ y -

where ags @ s Hos M and QX, Zy are the components of the wave-number,

v v
the propagation comnstants and the dimensions of the cell along the two

directions x and vy defining the system, figure (3.6).

To prove this, consider the transverse wave-motion in two-dimensional
plates resting on orthogonal, equally spaced line supports as shown in
figure (3.6). This is the illustrative example used in Section 3.4.2.
This example is chosen to simplify the proof (since there are no degrees
of freedom at the corners of the cell in this case). However, the same

procedure can be carried out for other cases.

Now consider a single cell, figure (3.6b), vibrating freely. The
degrees of freedom at the left and right boundaries ({qL} and‘{qR}) are
the rotation ey, while at the bottom and top boundaries ({qB} and {qT})
only GX exist. No degrees of freedom exist at the corners of the cell

, X Lol _ ] ' . ‘
({QLB} {qLTf LqRB} {qRT} 0). The linear equation of motion

of the undamped cell is given by

(K] - wzg{bﬂ'){q} = 0 (3.48)

where [K] and [M] are the stiffness and inertia matrices for the cell ,
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{q}

These matrices can be partitioned according to the interior,

right, bottom and top degrees of freedom in the cell.

KI,I )

KL,I KL’L symmetric

1 i R

KB,I KB,L KB,R KB,B
KT,I KT,L KT,R KT,B ]

is a vector of generalised degrees of freedom in the cell.

Hence

; {q} =

A similar expression can be written for the matrix [Ml,

Let N

at the interior, left, right, bottom and top of the cell (notice that

Since the cell is symmetrical

NL = NR and

then its normal modes of vibration will be either symmetrical or anti-

symmetrical about lines through the cell's centre and parallel to the x
For each

and v axis.

symmetry condition, the degrees of freedom ’{qL},l{qR},){qB} and'{qT}

can be related to each other as given in table 3.2 (notice that these

degrees of

N and N
kS

N R> "B

N

I’

N, = N

B T due to symmetry).

Four possible combinations

freedom are rotations only).

be the number of degrees of freedom

of symmetry can exist,

leftr,

(3.49)

symmetry about centre line

symmetry about centre line
parallel to the y axis

Relation between the degrees of freedom on the boundaries of a simply
supported rectangular plate in free vibration

parallel to the x axis
E} 2 ’ :_-_-._ e -'-‘-"“ 3
1 Symmetric {qB} {qT} Symmetric {QL} {qRJ
2 Symmetric {qj} = ~{qT} Anti-symmetric {qL} = {qp}
3 Anti~symmetric'{q8} =’{qT} Anti—symmetric‘{qL} ='{qR}
4 Anti~symmetric {qB} = {qT} Symmetric {qL} = “{qR}
Table 3.2

(figure(3.6B)).

Now the first relations in table (3.2), that is

>{QB} ”{QT} and

RCA ~{qg}

can be used to eliminate '{qT} and {qR} from equation (3.48).

will give a

n equation of the form
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(R] - ") [q) = © : (3.50)
| |
oy
;
)
where
& = [WTx][W) o
(3.51)
(1] = [w]" [ [W]

[W} is a transformation matrix given by

wl= [1: 0 0]
o 1. 0
SN
0 T O
0.0 I
S
L0 0 0 -1y

It is clear that the matrices {E} and [&ﬂ are of the same form as

{ﬁ} and {ﬁ} in equation (3.19) when substituting Hy =My =T (notice
that there are no degrees of freedom at the corners of the cell and hence
the rows and columns corresponding to {qLB} in equation (3.19) are

eliminated).

Similarly we can use the second, third or fourth relations in table
3.2 to eliminate ‘{qR} and {qT} from equation (3.48). In each case
we will obtain an eigenvalue problem similar to (3.50) where the matrices
{i} and [ﬁ} will be the same as the matrices obtained in equations

(3.19) when substituting the following values for the propagation constants

y and Uy
(1) My T 7T, Hy = 0.0
(i1) My = 0.0, My = =T
(1i1) uy = 0.0, Hy = 0.0

The eigenvalue problem (3.50) is of order NI + NL + NB. Its solution

gives all the eigenvalues and eigenvectors satisfying the condition

Hggt = -{q;} and '{qL} = 4{qR}
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However it should be noticed that

-if ‘..-:——5 1z < ' :.—.r,N =
LqB} (9 0.0 and/or {qL} iqgj 0.0

are other possible solutions to (3.50).

Similar conclusions can be drawn for the other eigenvalue problems
obtained from equation (3.48) when substituting the second, third and
fourth relations in table 3.2. Each of these eigenvalue problems is of
order NI + NL + NB and hence solving these four eigenvalue problems
gives 4(NI + NL + NB) eigenvalues and eigenvectors. However, the
original equation (3.48) has only NI + NL + NRA+ NB + N, or
NI + 2NL + ZNB (since NR = NL and NT = NB) eigenvalues and eigen~
vectors which are all the possible solutions such that

{q ) =+l } #0.0 and {qy} = +lq) # 0.0

Therefore all the other eigenvalues and eigenvectors obtained by solving
the four eigenvalue problems mentioned above (4(NI + NL + NB) -

NI + ZNL + ZNB)) must be solutions satisfying the conditions

{q;} = #{qp} = 0.0 and/or {qg} = +{q;} = 0.0 .

From the above discussion it can be concluded that the natural frequen—

cies of the single cell, while one of the conditions

(1) {qL} = quR} # 0.0 and {qB} = j{qT} # 0.0
(i1) {q;} = +{q,} = 0.0 and {g.} = +{q..} # 0.0
| L° 7 —="°R | B — T (3.52)
(iii) {q} = +{qp} # 0.0  and  {q,} = +{gz} = 0.0
(iv) {q;} = +{qp} = 0.0 and {qgt = #{q;} = 0.0

is satisfied coincide with the frequencies of propagation corresponding to

values of the propagation constants M1 and Hy equal to zero or +7

{or wave-numbers a_ and ay equal to zero or j_l/ZﬁX and i_le%y).

Tables 3.3 and 3.4 show the propagation frequencies for the plate

with square cells (QX = g = 1,0) and rectangular cells (&X = 1,0,

£y = 2.0) corresponding to values of e and uy equal to zero or *nx
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and the boundary condition imposed on the cell such that one of its
natural frequencies coincides with that propagation frequency. This is
shown for the first three propagation bands. Also shown in the tables
are the values of the natural frequencies obtained using Warburton's

expressions |61| for comparison.

3.7 Natural Frequencies of Finite Two-dimensional Periodic Systems

In this section we will show that the natural frequencies of finite
two~dimensional periodic structures, where each period (cell) is symmetri=-
cal (about two planes through its centre and parallel to its sides) and
coupled to its neighbours on opposite sides by one type of degree of

freedom only, can be obtained from the propagation constants/frequency

curves.

Following the same proof given in Section 2.7 for one-dimensional
finite periodic systems, consider the case of two-dimensional periodic
plates resting on equally spaced orthogonal line supports. As explained
in the previous section, if we choose a single cell of dimensions zx, Qy
(distances between the line supports) as one period of the infinite plate,
then frequencies corresponding to values of the propagation constants Mo

and u_, or wave-numbers a and ay, given by

u,. = 0.0, a = 0.0
X X
or L =tn o, a =+ 1/28
and (3.53)
= 0.0, = (0,0
My %y
or = a = + 1/24
Uy 75 s v x / y

will coincide with the natural frequencies of the chosen period with its
coupling degrees of freedom satisfying one of the conditions given by
(3.52}. Now if we choose the period representing the infinite system as
a plate consisting of N1 cells along the x direction and NZ cells along
the y direction then, according to the discussion given in the previous
section, the natural frequencies of this period with its coupling degrees

of freedom ({qL},'{qR},4{qB} and '{qT}) satisfying one of the conditions
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given by (3.52) will coincide with the frequencies of propagation corres—

ponding to wave-numbers given by

a; = 0.0

1 e “ T

or a i.L/zhiﬁ
(3.54)

and a; = 0.0

4 = e J |
or ay __E/ZNzﬁy
where lex and Nzly are the dimensions of the chosen period represent-

ing the system (periodic lengths). Since the frequency of propagation is

7

a periodic function of the wave-number components a_ and a% with

periods 1/N12X and 1/N22y then (3.54) can be written as

!
H o
&% T X W1 g
17x
(3.55)
)
a' = +
s ZNZRY

(ml, m, = 0, 1, 2, ooce)

Regardless of the choice of the period representing the infinite system,
the wave-number/frequency variation must be the same for the same values
of the wave-number since such variation is a characteristic of the
periodic system and does not depend on the choice of the period. There-
fore, frequencies corresponding to values of the wave—number components
a and ay (when choosing one cell only representing the system) equal

to a; and a; given by (3.55), i.e.,

- 1 -
a =+ Zle (ml =0, 1, 2,,.,N1)J
® (3.56)
)
a_ =+ = {(m, =0, 1, 2... N,)
v 2N2£y 2 2
or propagation constants
m,m
1
U B e s
x = Npoo (3.57)
m,T
2
v, o= o
y N,

{since W = —Zwaxzx and py = —Zwayﬁy)



are indeed the natural frequencies of the NE X NZ cell period with
its boundary degrees of freedom ({QL},‘{QQ}, 4{qB} and ‘{QT}) satisfy~
ing one of the conditions given by (3.52).

Similar to the one~dimensional case, the choice of Nl X Nz cells as
one period of the system will result in sub-zones and sub-bands. The

first sub~zone is given by

_ 1 a . 1 ,
ZNli b4 ZNIQX
(3.58)
_ 1 < &l o« 1
2N2,Qy v 2N2£y
while if we choose one cell only of dimensions RX, Ry as the period
representing the system will result in zones and propagation bands. The
first zone is given by
D T
ZJLX”X“ ZQIX
(3.59)
..__}_._...(aq.—-};..
28~ v~ 24
y y

Sub-bands corresponding to (3.58) will construct the bands corresponding to
(3.59) in a similar manner as discussed in Section 2.7 for the one~

dimensional case.

Inspection of tables 3.3 and 3.4 showing the propagation frequencies
corresponding to values of M and py equal to zero or w and the
boundary conditions imposed on the period representing the system such that
one of its mnatural frequencies coincides with that propagation frequency,
and also inspection of the various wave—forms corresponding to different
values of My and uy (some of these wave~forms are shown in figures
(3.19) to (3.22) and (3.27) to (3.30)). It is found (without proof) that
the values of my and m, in relation (3.57) can be chosen as given in
table 3.5 to calculate the natural frequencies corresponding to the various
boundary conditions given by (3.52). This table is for the cases of
periodic plates with square cells and rectangular cells (Qxliy = 0.5).
Tables 3.6 and 3.7 give the variation of the frequency of propagation with
the propagation constants o and uy, within the first propagation band,

for the above two cases. The natural frequencies of finite periodic plates
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can be calculated either from these tables or graphically from the propa-
gation constants/frequency surfaces. (The figures in these tables are
calculated by idealising a single cell by 25 plate elements of the type
given in Appendix D5). The values of iy and ., in table 3.5 havebeen
checked by calculating the natural frequencies of some finite periodic
plates (2 x 2 cells and 5 x 5 cells) with various boundary conditions as
given by (3.52). In each case the finite periodic plate is idealised

by a finite element model and the natural frequencies are calculated using
standard eigenvalue routines. The calculated natural frequencies coin-
cided with the frequencies of propagation corresponding to values of by

and uy given by (3.57) when substituting values of my and m, as

given in table 3.5.
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liy
0 0,27 O.47 0.67 0,87 T
0
o 2m 0.39478 | 0.79038
0.39478 | 0.7896
1.5791 1.9772 3.1713
0.4m 1.5791 1.9739 3.1583
3.5532 3.9552 5.1615 7.1725
0.6m 3.5531 3.9478 5.1322 7.1061
6.3173 6.7249 7.9481 9.9875 12.843
0.8w 6.3165 6.7113 7.8957 9.8696 12.633
9.8724 | 10.287 11.532 13.608 16.515 20.255
m 9.8696 | 10.264 11.449 13.423 16.186 19.739

Table 3.1 Comparison between finite element results and the exact solution of the propagation constants/
frequency variation for the transverse wave motion in an infinite plate.
Upper figures: Finite element solution

Lower figures: Exact solution



Hos py First propagation band Second propagation band Third propagation band
A £, y A, £
37.437 1 58.095 ' 58.095 { !
0. o 37.073 X 57.088 ¢ 57.088 ; :
’ 36.468 ‘ 55.723 ] 55.723 ; ;
36.133 T 55.065 A= 55.065 7T
30.043 SRR 51.574 D 77.453 y
0. n 29.695 ¢ 50.722 g : 76.253
’ 29.252 E 49.864 L ! 74.673 y 4
29.011 49,348 ‘ 72.205 T
30.045 A 51.574 = T 77.453 o
5. 0 29.695 ; { 50.722 ! ‘ 76.253 y
’ 29.252 ! 2 49.864 ! i 74.673 y 4
29.011 ror s 49.348 trmamns - 72.205 Lo rrrriret
20.255 — 72.652 (ot 72.652 S
o 20.068 i . 71.496 i ! 71.496
’ 19.867 : % 70.176 : ; 70.176 3
19.739 A 69.354 ot 69.354 Aoz oo
Table 3.3 Frequencies of propagation corresponding to values of u_ =0, 1 and p_ =0, +1 for plates with

square cells and the boundary condition imposed on the c811 such that one’of its natural frequencies
coincides with that propagation frequency.

Upper figures: finite element results using 16, 25 and 64 elements per cell,

Lower figures: natural frequencies calculated using Warburton's expressions.

======8imply supported edges; mwrm clamped edges.




Hos “y First propagation band Second propagation band Third propagation band
Y [~ f H
25.402 31.402 44,158 .
0. o 25.193 . 30.618 4 43.743 o
’ 24,862 29.629 43,130 L
24.663 . 29.011 S 42.813 e
24,321 S 34,646 g 43.064 7
0. w 24,145 34,151 42,626
? 23.974 ‘ 32.990 40.909
23.832 S 31.969 : 39.259 L
14.575 ocst 21.713 s 41.646 '
T. O 14.349 S 21.027 Co 42.781 4
’ 13.976 Lo 20.240 Co 40.936 1
13.766 | 19.739 SR 44,987 ;-
12.658 T 26.113 - 37.460 T
p 12.542 L 25.792 Lo 35.851 Co
’ 12.417 o 24.690 o 33.500 Lo
12.337 . 23.709 - 32.076 !
Table 3.4  Frequencies of propagation corresponding to values of H = O, 1 and p_ =0, +n for plates with
rectangular cells (zx/z = 0.5) and the boundary conditlon imposed on th¥ cell such that one of its

natural frequencies cdindides with that propagation frequency.

Upper figures: finite element results using 16, 25 and 64 elements per cell
Lower figures: natural frequencies calculated using Warburton's expressions.
=== Simply supported edges; werrrr clamped edges.




Boundary First band Second band Third band
Condition my m, my m, my m,
T [ L2 L2, N, O;l, Nyml 1 1,2,...0, o o
! ! 1,2,. N1 O,l....N2~1
! 1
LN 1,2...N1 1,2.... N2 1,2,..N1 0,1,...N. -1 1,2,..N1 1,2,..N2
:” E 1,2...0, 0,1....N,-1 1,2...N, 1,2....N, 0,1...N,=1/0,1,..N,-1
" 1
1 . 1,2,..8; 0,1....N-1 1,2...N; 1,2....N, 0,1...N-1]0,1,..N,-1
ST 0,1,..N1“1 1,2,@..N2 O,l...lel O,l....N2-1 1,2,..N1 1,2,...N2
~~~~~~ 0,1,..N-111,2,...N, 0,1...Ny=1 | 0,1....N,~1 0,1.. N1} 1,2,...N,
0,1..¢Nlm1 O,lu...Nzwl L O,l.g.N1~1 1,2,...N2
' 1,2,..N7 O,l...nN2~1
iy O,l...lel 0,1,;.,N2~1 0,1...N1~1 1,2,,..N2 1,2.,.1\11 0,1,.. szl

Table 3.5 Values of m, and m, for the calculation of the natural frequencies of finite periodic plates
on simple lifie suppor%s.
Upper figures for plates with square cells
Loyer figures for plates with rectangular cells (zx/z = 0.5).
wewe=e  5imply supported edge; T clampeg edges,




X\ U 0.0 0.1m 0.2m 0. 3w O.4m 0.57 0.6 0.7%w 0.87 0.9 T

0.0 |36.101
0.17 | 35.832|35.562
0.27 |34.106|34.830|34.084
0.31 | 34.100{33.816|33.047|31.978 sympetric
0.4 | 32.986|32.693(31.898/30.792| 29.563
0.57 | 31.895|31.591(30.76929.624| 28.349]27.088
0.6m | 30.913|30.599|29.751|28.569| 27.250|25.942| 24.751
0.7 | 30.099|29.777|28.905|27.690| 26.332| 24.983| 23.750| 22.712
0.8m | 29.492| 29.164|28.274|27.032| 25.643| 24.261|22.996] 21.927|21.117
0.97 | 29.119| 28.786| 27.884|26.626) 25.217| 23.814| 22.527| 21.438| 20.612|20.096
m 28.992| 28.658| 27.752|26.488 25.073| 23.662| 22.367| 21.272| 20.440|19.920 | 19.743

Table 3.6 Non~dimensional frequencies of propagation for periodic plates with square cells.



0.0 O.1w O.2m 0.37m 0.4 0.5n 0.6m 0.7w 0.8n 0.97 T

0.0 24.672| 24.644 | 24.567 | 24.456 | 24.329 | 24,201 | 24.084 | 23.987 | 23.913 | 23.868 | 23.853
O0.1m | 24.263| 24.235| 24,157 | 24.045 | 23.915| 23.785 | 23.666 | 23.567 | 23.492 | 23.446 | 23.431
0.2w | 23.176 | 23.147 | 23.066 | 22.948 | 22.814 | 22,678 | 22.553 | 22.449 | 22,371 | 22.323 | 22.307
0.3m | 21.690| 21.659 | 21.573 | 21.448 | 21.305| 21.161 |21.029 | 20.918 | 20.835 | 20.784 | 20.767
O.4m | 20.045| 20.012 | 19.920 | 19.787 | 19.634 | 19.479 {19.338 | 19.219 | 19.130| 19.076 | 19.057
0.5w | 18,408 | 18.372{ 18.273 | 18.130 | 17.965| 17.799 |17.647 | 17.519 | 17.424 | 17.365 | 17.345
O.6r | 16.893| 16.854 | 16.748 | 16.593 | 16.416 | 16.237 | 16.073 | 15.936 | 15.833 | 15.769 | 15.747
O7m | 15.592 | 15.551 | 15.436 | 15.270 | 15.080 | 14.888 | 14.712 | 14.564 | 14.453 | 14.384 | 14.361
0.8m | 14.586 | 14.542 | 14.420 | 14.245 | 14,042 | 13.838 | 13.651 | 13.493 | 13.375 | 13.302 | 13.277
0.9m | 13.947| 13.901 | 13.774 | 13.591 | 13.380 | 13.167 | 12.972 | 12.807 | 12.684 | 12.607 | 12.581

v 13.727 | 13.681 | 13.552 | 13.366 | 13.152 | 12.936 | 12.737 | 12.570 | 12.445 | 12.367 | 12.341

Table 3.7 Non-dimensional frequencies of propagation for periodic plates

with rectangular cells (%xflj = 0.5)




(a)

Figure 3.%.(a) Schematic diagram of part of a two-dimensional periodic
system 3 (b) single cell representing the system.
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Figure 3.2. Reciprocal cells and first zone for one-=dimensional periocdic

systems.

Figure 3.3. Reciprocal system and first zone for the oblique two-dimensional
periodic system shown in figure(3.1.).
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Figure 3.4. First zone for two=dimensional periodic systems with rectangular
cells.
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Figure 3.5. (a) Idealisation of a two-dimensional periodic system as
an assembly of cells joined together on all sides and
corners ;(b)forces on and degrees of freedom of a

single cell .



Ly e iy w“-%“iy -‘»-Lw-ly i

SRR N SR S [ e

(a)

®
O
®
&

G
&
S
©

™
©
®
®

©
©
©
®

(b)

Pigure 3.6. (a) Part of two=dimensional periodic plates on simple .
drthogonal line supports; (b) finite element idealisation

of one cell.
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Figure 3.7. Divisions inside the first zone of a two-dimensional periodic
system with rectangular cells for polar plotting of the

propagation constants~frequency variation.
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Figure 3.8. (a) Part of two-dimensional periodic plate on orthogonal

line spring supports ; (b) finite element idealisation of

one cell,
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Figure 3.9. (&) part of two-dimensional periodic plate on oblique gimple
line supports 3 (b) finite element idealisation of one cell.



Figure 3.10. Divisions inside the first zone of the two-dimensional
periodic system shown in figure (3.9)for polar plotting

of the propagation constants-frequency variation.
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Figure 3.11. (a) Part of a two-dimensional periodic point supported

plates ; (b) finite element idealisation of one cell.
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Figure 3.12. (a) Part of a two=-dimensional periocdically stiffened plate;
(b) finite element idealisation of one cell 3 (¢) stringer

cross=section ; (d) frame cross-section.Dimensions in centimeters.



7,3 7T

3

5

5,41

4
i

st band of the propagation surfaces for a

=
=
o

Figure 3%.13. Extended £

ine supports with square cells.

=

late on simpls 1

ic v

d

perio



%ﬂf’”’.%@.,&@;@%g
; A A T SRR IR RNEXS
T I T R R RS
L 1T 1 A R RRIRRDDILNIBRS
_ RIS REKS
A R R RN

9, S S
A e O S SIS

Km»m_
e

1t

o N

o

o

N

Figure 3.14. First band of the propagation surfaces for a periodic
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Figure 3.18. Polar representation of the real propagation constants-
frequency variation for two-dimensional periodic plates
on simple line supports with square cells;first band:black;

second band:red;third band:blue .
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Figure 3.19. Standing waves of the two-dimensional periodic plate
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gure 3.20. standing waves of the two=dimensional periodic plate
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(a) first band ; (b) second band
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Figure 3.21. Propagating waves of the two-dimensional periodic plate
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Figure 3.27. Standing waves of the two~dimensional periodic plate
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Figure 3.28, Standing waves of the two-dimensional periodic plate
shown in figure(3.6) , "i}/ly:(}efj g/,zxz(}@gg/ayzﬂ :
(a) first band ;5 (b) second band .
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Figure 3.30. Standing waves of the two=dimensional periodic plate
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(a) first band ; (b) second band .
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Figure 3.40. Variation of the real and imaginary parts of the propagation
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CHAPTER IV

THREE~-DIMENSIONAL PERIODIC SYSTEMS

4.1 General

Periodic systems in three dimensions can be considered as an assemblage
of cells (periods) joined together on all faces, edges and corners in
identical ways to form the whole system as shown in figure (4.1). Typical
examples of such systems are crystal structures in solid state physics and
the modern modular type buildings. Waves can travel in these systems in
two different manners, either as spherical waves or plame waves depending
on the type of forces generating them. This analyéis considers only

plane wave-motion in three-dimensional periodic systems.

Consider a three-dimensional periodic system defined by three indepen-—

dent directions dl’ d2 and d3 parallel to the directionsof the system's
periodicity. Each cell (period) in the system can be identified by
three numbers 0., 0, and ng defining its position along the dl’ d2 and
d, directions respectively, where the origin of the system is taken at

3
the cell defined by n; =0, =0, = 0. A property ¢ can propagate as
a wave, with wave number a and frequency v, if the physical system

admits a solution of the type

2ri(vt -~ n.d, L. - nzdzlz - n3d323)

N, M0, Ae S
1’7 72°73
i{wt + ooy, + n .y, + 0.4,
- Ae 171 272 373 (4.1)
where
¢n non is the value of the property ¢ associated with cell
1’72°73

ny, 0y, 05

A is a comstant, t the time, v the frequency, w the angular

frequency, where
w = 2wy

Rl, 22, 23 and ars 35, a3 are the dimensions of the cell and the
components of the wave-number a along the dl’ d2 and d3 directions

respectively.
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His Hy and By are known as the propagation constants in the dl’ dz

and dB directions, where

Hy = -Zwalﬁl R
Hy = *2Wa2 9 2 ' (4.2)
Mg = -2ﬂ3323

For propagating waves, without attenuation, the propagation constants Hys
Uy and ny are real quantities. They represent the change in phase
between adjacent cells in the dl’ dz and d3 directions., Attenuating
waves can be described by (4.1) where in this case Hys Hy and Hy will
be complex quantities. Their real parts represent the change in phase
while the imaginary parts represent the attenuation of the wave as it
travels from one cell to the next in the dl’ d2 and d3' directions

respectively.
From relation (4.1) it can be seen that the relation between the

value of the property ¢ at any point in one cell Ny Dy, T and at

the corresponding points in adjacent cells can be written as

iy
1
¢ = ¢ e
ni+l, nz,n3 nl,nz,n3 P)
iy
2
¢ = ¢ e ’ (4.3)
nl,n2+?,n3 nl,nz,n3 )
¢ n, 0. +% = ¢ 1. 511 elU3
fyefgsfig Bpofgsfig

For unattenuated waves, where Hys Hy and Mg are real quantities,
relations (4.1) and (4.3) can be satisfied by using ul', “27 and u3'

instead of My Hy and Mg where

| .
ul = ul + Zml’rr P
uz’ =y * 2mym s (4.4)
I
Hy = Mg X 2mgm

my s M, and my are any integer numbers.
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The equation. of motion of the system (equation. (4.21), Section
4.3) must yield the same values for ¢ and w for given ui, uz and
My or equivalent Uif’ uz’ and ug'. This means that the property ¢
and its frequency « are periodic functions of the real Hys Hy and s
with periods 2m.  Therefore it is sufficient to examine the variation
of the frequency of propagation w with the real His My and Hy along
the directions di’ d2 and d3 inside one period (2m) only. The most

suitable choice is

£ T o (4.5)
~T £ MB g7

Similar to the one and two-dimensional systems, we must determine the
boundaries to which the wave number a (and hence His My and UB) ig

to be confined to allow examining all possible propagating waves in all
directions in the system and at the same time satisfy the condition (4.5).
These restrictions on His Mo and My are for the same reasons discussed
in Chapters II and III for the one and two-dimensional systems and should
be observed when determining the Wave-length or the direction of propaga-

tion. This will be discussed in the next section.

4.2 Reciprocal Cells and Zones in Three Dimensions

The discussion of reciprocal cells and zones given in Chapter III for

the two-dimensional systems will be extended here to cover the three-
dimensional case.

Zones to which the wave-number a (and hence Hys Wos and ug) is to
be confined will be volumes in three dimensions and can be constructed in

a similar manner as for the two-~dimensional systems. This restriction

should be observed when determining the direction of propagation or the

wave~length Aw, where

i

1/|al.

It

A
W

To construct the first {(fundamental) zone for a three~dimensional

system we will follow the procedure given in Section 3.2 for two-
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dimensional systems. First construct the reciprocal cells and the
reciprocal system for the three-dimensional system considered. The
reciprocal cell is geometrically identical to the direct (original) cell
describing the periodicity of the direct (original) system, but of
dimensions that are the reciprocal of the corresponding dimensions in the
direct cell. The reciprocal system is comstructed by joining the recip-
rocal cells together such that the reciprocal system is geometrically
identical to the direct system. Now taking the centre of one of the
reciprocal cells as the origin of the zone, then the first zone is the
smallest volume bounded by plane perpendicular bisectors of the lines from
the origin to the centres of all neighbouring reciprocal cells. To
illustrate this, consider a three-dimensional system having rectangular
parallelpiped cells, figure (4.2a). Let zx, Zy and iz be the
dimensions of the cell along the three directions x, y and z defining
the system. The first zone will be another rectangular parallelpiped
with dimensions 1/zx, 1/2y and 1/52,z with the origin at its centre as
shown in figure (4.2b). The wave-number components, and hence the
propagation constants Hyos uy and Mo along the three directions x,

y and z will be restricted as follows

1 1
ECTI fga s T N
X x
1 1
- 5— £as 5 — -m £y £T (4.6)
23 29 °
y 7 y 7
1 1
B T TSy S
z z
since Wy = —2ﬁaXzX, o= —Zﬁayzy and n, = —ZWaZQZ, The shortest wave—

length for waves travelling along the x, y or z directions will be

- 1 -
1
A= = 2% (4.7)
v {ayl g
A= = 2%
Z Eaz Z

and the shortest wave-length AS for any wave travelling in the system
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will correspond to a wave associated with the largest absolute value

of the wave-number a inside the zone, hence

2 2, 2
/€1/21X) + (1/2zy) +(1/28)

22X£ Qz
= b (4.8)

J/z 2 + 4 z + 2 2
p:e v z

The directions of propagation of this wave can be defined by two angles

o« and B as shown in figure (4.3) where

e -1 %
o = + tan = +tan = ——
- a - 2
X y
(4.9)
and —1 aXZ + a 2 ) QXZ g 2
B= + tan = ————J" = +tan L
— a —
z £
£ ¥
4,3 Mathematical Formulation
Following the analysis for one and two-dimensional periodic

systems, & three~dimensional periodic system can be considered as an assemb-
lage of infinite number of identical cells joined together in identical
manner on all sides, edges and corners, as shown in figure (4.1). 4 cell
contains one period of the system. Using the finite element technique, a
cell can be represented by a model with interior and boundary degrees of
freedom. Let ‘{qz},‘{FI} be the degrees of freedom and forces at the
interior of the cell,
adh (B}, daghs {Fph, {qgh, {R), {agh, {Fp}, {apds {Fp} and {q},{F}
be the degrees of freedom and forces at the left, right, bottom, top,

far and near faces of the cell; also let
’{qLB};{FLB}, es., ekc., and }{qLBN}"{FLBN} vee., €tc. be the degrees of
freedom and forces at the edges and corners (common boundaries between the

different faces of the cell) degrees of freedom as shown in figure {(4.1b).

The linear equation of motion of the undamped cell is given by
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(K] - ?[M]){q} = {F} (4.10)

L

where [K] and [M] are the stiffness and inertia matrices for the cell.

{q} and {F} are the nodal degrees of freedom and forces. The
matrices [K] and [M] and the vectors {q} and {F} can be partitioned
according to the interior, left, right, bottom, toé, edges and corners

degrees of freedom, hence,

- r 3
[x]-= Ry p o K eeees Kpopmy , (¢} = |q (4.11)

k1 Nt 4y,
Re,1 9r
Rg,1 g
Kro1 dp
%1 9F
XN, Ay
KB.1 91

,I s
KLT,I symmetric U g
Rpr,1 g
Rer,1 Qg
Krw,1 < Arp .
Kpw,1 gy
Krw,1 4y
Kir,1 Iip
KN, 1 SN
Ker,1 dgr
Kew, 1 IRy
Kimr,1 dy BF
Keer,1 Qy7r
Krr,1 IRpF
KN, 1 91BN
Rprr,1 AgTF
KeeN, T 9RBN
Rorw, 1 dpN
Ken, 1 KRon,RTN | \ qRTNJ

Similar expressions can be written for {M} and {F}.
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Free waves propagate through infinite three-dimensional periodic
systems (no external forces) when ‘{FE} equal to zero. However the
forces on the boundaries of the cell (forces of interaction between the
cell and its neighbours) are mot zero since they transmit the wave-motion
from one cell to its neighbouring cells. This wave-motion is character—
ised by relating the degrees of freedom and equivalent nodal forces in one
cell to the corresponding degrees of freedom and forces in adjacent cells.
Let the suffix Ny, Ty T define the position of the cell along the

three directions dl’ d2 and d3 defining the system, then we can write

iy
' 1
{F_} =e “{F }
L n1+1, nz,n3 L nl,nz,n3
‘ 1
{q,} =e “{q} ,
L n1+1,n2,n3 L N0, 0,
{F.} 1y
B'n,,n +l,n, =e “{F_}
1°72 3 B nl,nz,n3
ip
2
{q } o= e {q } g
B nl,n2+1,n3 B 0,0y
iu
' 3
{F_} = @ {F_} s
F nl,nz,n3+1 F nl,nz,n3
) (4.12)
{q.} tH3
Fn ,n,,n.+1 =e “{q.} >
1272°73 F nl,nz,n3
E ) RIS
F . = g F 2
LB n1+1,n2+l,n3 LB 00,0,
, ; i(ug+,)
{qLB n1+1,n2+1,n3 - {qLB nl,nz,n3
, , i(u1+u2+n3){ :
{F = @ F ?
LBF n1+1,n2+1,n3+1 LBF nl,nz,n3
, (g +u, i)
{qLBF}n1+1,n2+l,n3+l = e qLBF}nl,nz,n3
etCusoe

For equilibrium of the interconnecting forces between cell 0, Oy, Og
and neighbouring cells, the sum of forces at the common boundaries between
the cells must be zero and hence the following equilibrium conditions must
be satisifed.
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[ I s o e o
1ﬁR}n1,nz,nB + 1F1}n1+1,n2,33 0 > (Right face)

{FT}nl,nz,n * {FB}ni,n2+l,n3 =0 7 (Top face)

{F_} + {F_} =0 (Near face)
3 F nl,nz,n3+1

{F_._} + {F__} + {F + {F
{ Rl n sT LT nl+i,n2,33 RB}nl,n2+1,n3 { LB}n1+l,n2+l,n3

(edge RT)

{F_ .} + {F. .} + {F_. .} + {F__}
RTN nl,nz,n3 LTN n1+1,n2,n3 RTF nl,n2+1,n3 RBN nl,nz,n3+1

+ {F
+1,n3+1 { LTF}nl+l,n2,n3+1

* Frpyty +1,0,+1,0 * 1

.
1 FRBFIn s0

3 1772

FLBF}n1+1,nZ+1,n3+1 = 0 (corner RTN) (4.13)

+ {

Similar expressions can be written for the other edges and corners.

At the common boundaries between cell n 50,0, and neighbouring

cells the displacements must be equal, hence

= {qL} >

{q.}
R nl,nz,n3 n1+1,n2,n3

: = {q,}
l,nz,ns B nl,n2+l,n3

1qN}nl,nz,n3 = {qF}ni,nz,n3+l g
(4.14)

} = {q;,}

1 ,
RT nl,nz,n3’ n,+L, n2+1,n3

1

{qRTN}nl,n = laggpl,

520y +1, n2+1,n +1

1 3

1S3 of o

Substituting (4.12) into (4.13) and (4.14) the following relations between
the forces and displacements on the boundaries of cell n;,0,,0; can be

obtained (suffix n;,0,,0,  are dropped since these relations hold for any

cell).
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{F.} + e 1{F?} = 0,
R
. i,
{FT} + e {FBf = 0,
: thy
{FN} + e {FF} = 0,
- iyg in, (g +uy)
iFRT} + e {FLT} + e iFRB} + e {FLB} = 0,
iu iy i(u,*u,)
: 2 3 2" M3 _
{FTN} + e {FBN} + e {FTF} + e {FBF} = 0,
’ i, i, i(ugtu,)
{FRN} + e {FRF} + e {FLN} + e {FLF} = 0,
N iy iy, ing
{Fopyt v e et + e HEppyd v e “{Fpppl
1y, +u,) 1(u,+u,) i(ug+ug)
1 Mo 2" M3 37 M1
*e (Frpyt * {Fopp! * @ {F gt
(gt g
172 73 oy
+ e {FLBE} = 0
Also 5 .
'y o “1 s - ~ “ _ luz 2 5
9zB 9 “JqTF dpp
< > Qq > > o ¢
9rr LF a7 LB
dgpr 91.BF SuTF 91 RF
L J \. J / L A
r N = elu:‘} r N g \= el(u1+p2) (
dy g ’ R 9B
< >
q q q q
J ? ) BF | RTE LBF
9y qrp
q q
LBN _%LBF
- el(u2+u3) ) ) 1(u3+ “1) 45
Iy 9gp > JARN
qLTN>
5 91BF I?RBN
i +
PR Nl
9RTN LBF
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Relations (4.16) can be used to write the relation between the degrees

of freedom in the cell in the matrix form

{q} = [W]{q} (4.17)
where
{q} is given by (4.11),
o=l @ 9 9 9 Gan Gn ol (4.18)
Lip 41, B *F LB BF LF 'LBF
- -1
U ESE
O I i
X ill i
; e %J G
_______ 9 N
RO
4F iuz: :
e o O
0TI i
i ,
L0 I
L8 T
= '
tHy !
S P
i”i(ui'*uz); ;
e oo
RIS S
’ oodp :
e 2 s
S g
¢ 1“3 :
e ~q:
S
: 1(1«*2‘*‘113)‘
= N .
L0 I
i =i, ;
O S =
PoTHg ;
B e
T iugtuy)
[ :
Y B T
D = iy
Loel T
“res T
Lty
e .=
R
;. THg
B
iUyt
B
 oiCuztug)
T“:"."“"""'"\A'
U 31(1{3;{”}{12 %
78, A el(u1+u2+ua)

(4.19)



Also the equilibrium conditions (4.15) and the condition
{F.i} = 0
can be written in the matrix form
[Ww'l{F} = o0 , (4.20)

where {F} are the forces in equation (4.10). The matrix {W‘] is

identical to the transpose of the matrix [W} given by (4.19) while
. iu's -iuts
replacing e by e .

Substituting (4.17) and (4.20) into equation (4.10) results in an

equation of the form

([KCups vy wy) - w? M(ups Hys ugdJal = 0 (4.21)

The matrices [KJ and [ﬁj are complex matrices given by

[&] = []xM,
] = [w][M] [w].

[K] and {MJ are the matrices in equation (4.10). Equation (4.21)

(4.22)

represents an eigenvalue problem in w for given values of His Hy and
Hye For real values of the wave-number a, and hence Hys Hy and s
equation (4.21) can be rearranged to give a real symmetric eigenvalue
roblem in w. This will be discussed in Section 4.4. Also it can be
reformulated to give an eigenvalue problem in His My and Hy for a given
value of w, where Hye My and Hg will be generally complex quantities.

This will be discussed in Section 4.5.

4.4 Formulation for the Real Propagation Constants

Similar to the one and two—dimensional periodic systems, waves can
propagate, without attenuation, in three~dimensional periodic systems
when the wave-number a, and hence By Wy and My » are real quantities.
In this case the frequency of propagation is a periodic function of the
propagation constants Hys Hy and Ha with periods 27w. Therefore it is
enough to study the variation of the frequency w with His Hy and Hy

within one period only. In this case equation (4.21) can be formulated
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to give a real symmetric eigenvalue problem in ® for given real values
£ and .

Equation (4.21) can be written in the form
([RF] + 1[R*] - o*([F] + i ])){e" + i3} = o (4.23)

where zir}, [El}, iﬁr],[ﬁl] and ¢, q- are the real and imaginary
parts of {i},{:ﬁ} and {a} respectively. Separating the real and
imaginary parts of (4.23) and combining the two sets of equations together

gives

e w0 uE #)) [T -0 e

From (4.19) and (4.20) it can be seen that for real values of Hys My and
Hy we can write
W] = {W*]T (4.25)
L : .
where # denotes the complex conjugate, and hence the matrices [i] and
{@ﬂ (given by (4.22)) are Hermitian, i.e.,
[Rx]" =[]

)" - @

Therefore equation (4.24) represents a real symmetric eigenvalue problem

(4.26)

i

since
] - -7
(4.27)
[ = -
This equation can be solved for various values of the propagation
constants Hys My and Ha (as real quantities) to find the corresponding

frequencies of propagation and associated wave~forms. Appendix A gives

the method of solving thiseigenvalue problem.
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4.4.1 Computer programs

A general computer program has been written to represent one period
(cell) of any three-dimensional periodic system by a finite element model
and form the matrices in equation (4.24) for given real values of the
propagation constants ul, Ho and u3 . Then the problem is solved to
find the corresponding frequencies of propagation and associated wave-

forms. The basic flow diagram for the computational procedure is given

in Appendix B.

4.4.2 Applications

Consider the flexural wave-motion in a three-dimensional structure
consisting of infinite flat plates intersecting orthogonally at equal
distances in three directions. This can be regarded as an idealisation
of a modular type building., Figure (4.4) shows a finite element idealisa-
tion of the cell chosen to represent one period of the structure (the cell
is idealised by 12 plate elements). The plate element and data values
used in the analysis are given in Appendix D7. The system 1is defined by
the three directions x, y and z parallel to the sides of the cells.

The dimensions of the cell (periodic lengths) along these directions are

Therefore the first zone to which the wave-number a (and hence the pro-
pagation constants Heo H and uz) will be confined is a rectangular
parallelpiped of dimensions 1/£X, 1/52,y and 1/5Lz with the origin of

the zone at its centre. This was discussed in Section 4.2.

First the problem is solved to find the variation of the frequency
of propagation with the propagation constants L uy and M, In polar
representation, where the length and direction of the vector from the
centre of the plot represents the value of the frequency and the direction
of propagation, propagation bands will be volumes enclosed between
surfaces which are the upper and lower bounding frequencies for the bands.
These surfaces are the frequencies corresponding to zero wave-number
(a = 0.0, H, = py =, = 0.0) and wave-numbers terminating on the bound-
aries of the first zone. These surfaces can be defined by lines of
constant o and lines of constant B where g and B are the two

angles defining the direction of propagation as shown in figure (4.3).
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Figure (4.5) shows the upper and lower bounding frequency surfaces for
the first propagation band. The upper bounding frequency is the same

for all directions of propagation and corresponds to a wave-number a
equal to zero. This is shown as the spherical surface, figure (4.5d).
The lower bounding frequencies surface (corresponding to wave-numbers
terminating on the boundaries of the zone) is shown in figures (4.5a,b,c)
as the projection of the surface seen from the X, v and z directions.
From these figures it is clear that the lower bounding frequencies for
the band vary with directions of propagation and the lowest frequency

occurs in a direction given by (4.9), hence

2
_ -1 7x _ -1,1.0, _ ,.0
¢ = tan z tan CTTED = 45,
Yy
-1 LV oL 2 + & 2 -1
8 = tan z £X£ Y = tan (V/2) = 54.74°
Xy

which can be called the preferred direction of propagation in this case.
The wave-length corresponding to this frequency is the shortest wave-

length AS given by (4.8), hence

ZQXR‘QZ 9
g = - = = 1.55.
X v z
Plotting the variation of the frequency of propagation with the wave-

number a (or with oo uy and uz) for waves propagating in a certain
direction will result in curves similar to those obtained for . one~
dimensional periodic systems. Figure (4.6) shows the frequency variation
for waves travelling along the preferred direction of propagation. This

direction is defined by the two angles

o = 45° and B = 54.74°

(along this direction we have 1 _ = uy = M)

The frequency variation is shown for the first four propagation bands,

where the first and second propagation bands coincided with each other

(this is because the cell representing the system is cubic).

82.



From these results we can conclude that propagation occurs in three
dimensional periodic systems within some frequency bands only. The
width of these bands vary with the direction of propagation. Similar
to the one and two—dimensional periodic systems, waves with frequencies
within these bands propagate in the system without attenuation while

waves with frequencies outside these bands are attenuating waves.

The second example is similar to the previous one except that the
dimensions of the cells (distances between the plates in the x, y and z

directions) are

1.5 and £ = 2.0,
% v 4

Py
]
}n.\
@)
has]

i

Figure (4.7) shows the upper and lower limiting surfaces for the first pro-
pagation band. The upper bound is the spherical surface (figure (4.7d))
corresponding to a wave-number g = 0.0, while the lower bound is the
surface shown in figures (4.7a, b and c) corresponding to wave-nﬁmbers
terminating on the boundaries of the first zone. Similar to the previous

example the width of the first band is largest along the direction given

by (4.9) where,

-1 2x o}
o = tan T = 33.69°,
y
-1 2z 2x2 * zyz o
B = tan T o= 67.41
Xy

which is the preferred direction of propagation in this case.
Figure (4.8) shows the variation of the frequency of propagation with
the propagation constants along this direction (where By = My = pz),

Comparing these results with the previous example shows that the
width of the propagation bands is dependent on the dimensions of the cells
(the first band is wider along the larger dimension). Otherwise the

behaviour of the structure is similar to the first case.
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4,5 Formulation for the Complex Propagation Constants

The formulation given in Chapter III, Section 3.5 for the two-
dimensional systems can be followed here to reformulate equation (4.21)
to give an eigenvalue problem in ﬁl, uz and My for a given frequency
w, and hence the wave-number/frequency variation can be examined at any
frequency whether within the propagation bands where the propagation
constants are real quantitiés, or outside the bands where the propagation
constants (or the wave-number) are complex quantities. Now for a given

value of the frequency w, equation (4.21) can be written in the form

[D(Uls Uzs UB)]{Q} = (4,28)
where
r - %] - 2r=
0] = [K] - »"[¥]
= [ D ]
Py1 Pr,v Prs Prr Pr,ie Prer Pr,ir P,
D1
Dp 1
Dp 1
Drg,1
Der,1
Drp,1
Prpr,1 Dipw,iBF  (4.29)
CrTy 1
and fab = la; a a5 95 9y 9 9y Yppl” (4.30)
From the first relation in equation (4.28) we can write
: -1 . : . .
tagh = =D 1 plag) + Dp plagh + Dy plaph + Dy jplagt +
D1 5rt9pe?* P 1pl%pd * P rpploppe?) (4.30)
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Substituting (4.37) into (4.28) to eliminate {qI} gives an equation
of the form

r - - = O . (4:932)
éﬁ(f’%ﬂﬂassﬂj)J { [*] }

where

- g T
fa'y = o, 95 % 9%p 9% %r %57 (#.33)

g
The matrix LD | is given by
[5] =[] [pl[z] - : (tro34)

v‘i
The matrices [T] and [T ] are given by

rem1 7
[T} =[EBDp EDpp EDpp EDrgp EDrpe % 0rir ® Primr
I 0 0 0 0 0 0
0 I 0 0 0 0 0
0 0 I 0 0 o 0
0 0 0 I 0 0 0
0 0 0 0 I 0 0
0 0 0 0 0 I 0
0 0 0 0 0 o I
; - (he35)
[m]= | Dy 1 E I 0o o 0o o0 o0 o
Dy.1 E o I o o0 0 0 0
Dp.1 B o o I ©o0o 0 0 ©
Dgy® © © o I 0 0 0 (4.36)
Dgpgy 2 ©0 0 0o o I 0 0
Dpy® © 0 0 o 0 I ©
Dgp® © 0 0 o o0 0 I |
where
-1
E = -Dp (4:37)

From (L4.22) we can see that the propagation constants i, 4, and #}

appear in the elements of the matrices [ff} and [%71 } ;and hence in

[D] and [ D ], only in the form
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+1; +1(u. +i(u *
ipg 1(u1 uz) ul(gz*u3)
e 5 e s e 5 e 3 e ]

ii(u3iu1) ii(ﬁliuziu3)
e 5 and e

{notice that the matrix DI I° and hence Dzll, is a real symmetric
3 3

matrix).

Now similar to the two-dimensional analysis given in Section 3.5, if

the ratios between His My and My give ratiomnal numbers, then they can

be written in the form

UI = nlu 2
Uz = an 2 (4.38)
U3 = n324

Substituting (4.38) into equation (4.32) and putting et = A gives
PW]{qr = o (4.39)

The elements of the matrix [5} in equation (4.39) contain A raised to
positive and negative integer powers only. If the largest negative
power of A in (4.39) is -m then multiplying (4.39) by A" will
eliminate all negative powers of A. Therefore (4.39) can be written

in the form (after multiplying by ,A—m and rearranging terms)
I n~1 e
([a ] + [a 5+ oo+ [A e} = o (4.40)

where n 1is a positive integer number.

The matrices [Ai] are of the same order as the matrix [5] ‘where
each matrix contains only the elements of [5] which are multiplied by
ki. Equation (4.40) represents a general eigenvalue problem of order n.
This can be formulated and solved for various values of the frequency w
and a given direction of propagation such that the ratios between the
propagation constants Hs Ho and Uy satisfy the condition (4.38).
For example, along the dl’ dz and d3 directions where By = Mg = 0,
Mg = Wy < 0 and By oy = 0 or along the preferred direction of propaga-
tion where Hy = Wy T Hgs ete. Methods of solving the eigenvalue problem

(4.40) are discussed in Appendix A,
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4.5.1 Computer programs

A general computer program has been written to represent one cell
(period) of any three-dimensional periodic system by a finite element
model and to form the eigenvalue problem (4.40) for various values of the
frequency w and a certain direction of propagation satisfying the con-
ditions (4.38). This eigenvalue problem is then solved using one of the
methods discussed in Appendix A. The basic flow diagram for the

computational procedure is given in Appendix B.

4.5.2 Applications

The same two examples used in Section 4.4.2 are used here. The same
finite element idealisation for the cell representing the structure,
fig. (4.4), is used. First the case of plates with cubic cells
(lx =g =4 =1.0) is considered. Wave propagation along the preferred

z
direction of propagation is investigated. This direction is defined by

o =45° and B = 54.74°
Along this direction we have

e

and hence relations (4.38) become

Figure (4.9) shows two possible waves that can exist at any frequency
(numbered 1 and 2 in the figure). The propagation constants for wave 1
are purely real within the frequency range 25.8 £ w £ 37.25 which is the
first propagation band. This band coincides with the results produced
in Section 4.4.2, figure (4.6). Outside this band the propagation
constants are complex quantities with real parts equal to zero or *m.
Waves corresponding to these propagation constants are attenuated waves.
The propagation constants for the second wave (wave number 2 in the
figure) have non-zero imaginary parts (within the plotted frequency range)

and hence it represents attenuated waves.

Figure (4.10) shows the variation of the propagation constants with
frequency for waves travelling along the preferred direction of propagation
for the second example (RX = 1.0, zy = 1.5, zz = 2.0). This direction is
defined by
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Fo) [o}
a = 33.69, g = 67.41

{where W = uy = uz)‘
Three different waves are shown in the figure (numbered 1, 2 and 3).
For each wave there are bands of frequencies where the propagation con-
stant is a real quantity (propagation bands). Also we can notice the
overlapping between the higher bands. Similar to the previous example,

these propagation bands coincide with the results produced in Section

4.4.2, figure (4.8).
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Figure 4.1.(a)Schematic diagram of a three-dimensional periodic system;
(b)Single cell representing the system .
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CHAPTER V

RESPONSE OF STRUCTURES TC CONVECTED RANDOM

PRESSURE FIELDS

5.1 General

The response of a general structure (per%odic or non~periodic) to
random forces can be calculated using the standard modal method of analysis.
This requires modelling the whole structure and finding its natural fre-
quencies and associated normal modes. For the analysis of complex struc—
tures using digital computers, such a procedure needs a lot of time and
effort for modelling and data preparation. Also the computer time, and
storage, required for the analysis can be very large. High modal density

and some types of structural damping increase the complexity of the modal

analysis |35, 37

Many complex structures consist of identical (or nearly so) repetitive
units (cells) joined together in a similar manner such as periodically
stiffened plates and beams in one and two dimensions.Finding the response
of such structures to homogeneous random fields can be greatly simplified

if their periodic nature is utilised.

The forced vibration of one-dimensional periodic structures has been
recently studied by Mead and Sen-Gupta !29, 30}, Sen~Gupta f57} and Mead
and Pujara [34[. They showed that the response of a finite damped
periodic structure can be estimated from the response of the infinite
structure. For a beam type structure consisting of five periods they find
that its average response is very close to the response of the infinite
structure while its maximum response is no more than 507% above the response
of the infinite structure. Similar results have been obtained experi-
Lindberg and Olson |24|, Olson |44| and Orris and Petyt

mentally [43
|47| used the finite element method to find the response of one-dimensional

periodic structures to random pressure fields.

In this chapter a method is presented for using the finite element
technique and the periodic structure approach to find the response of any
one or two-dimensional periodic structure to random, homogeneous pressure
fields. This formulation has the advantage that it can easily analyse

any complex periodic structure where only one period of the structure need
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be considered. No previous knowledge of the natural frequencies and
associated normal modes of the structure is required. Also increased

modal density or any type of damping in the structure add no further com—

plication to the analysis.

This analysis is based on the assumption that the structure is con-—
sidered infinitely periodic in one or two dimensions and that the random
excitation can be considered as a sum of harmonic sinusoidally distributed
components. The total response of the structure is the sum of the res—
ponses due to each of these components acting upon the structure separately.
Due to the periodic nature of the structure, the response at any point in
one cell (period) of the structure is equal to the response at the corres—
ponding points in other cells multiplied by a phase difference equal to
that between the components of the excitation field acting upon the structure

at these points.

Most of the computation in this chapter will be concerned with the
calculation of the frequency response function, which is the respounse of

the structure to a convected harmonic field with unit amplitude.

5.2 Types of Excitation Fields Considered

In this chapter the response of one and two-dimensional periodic
structures to frozen convected random pressure fields and general random
homogeneous pressure fields is comsidered. The response to such pressure

fields can be described as follows.

a) Response to frozen convected random pressure fields (acoustic plane
wave field)

These are pressure fields that convect over the structure in a certain
direction with a constant velocity Up without change in wave—form. They
can be analysed into a continuous frequency spectrum of harmonic components
where each component is associated with a wave-number a (or k) given by

a = V/U? = in , {(5.1)

cﬂs

or kK =

where v 1is the frequency, w the angular frequency and k is the angular

90,



wave~number where

K = 2ma. (5.3)

The power spectral demsity of a respomse quantity ¢ at any point x

is given by
5,Gr @) = 5_(z, 0 o, w|® (5.4)

where Sp(g, w) 1s the power spectral density of the pressure field.

¢(r, w) 1is the wave receptance function. It represents the response
of the structure at point r due to a harmonic wave with unit amplitude,

frequency w and wave-number K.

The mean square response in the frequency band

V0<w<w1
is given by
“1

cmz =f 5, (zs w |9z, w)izdw (5.5)

(o]

b) Response to general random homogeneocus pressure fields.

These fields can be described by a continuous frequency spectrum of
harmonic components where each component is associated with a continuous
spectrum of wave-numbers (e.g., boundary layer pressure field or diffused

sound field). The power spectral demsity of the response at any point

r is given by
S@(_r_, ws k) = Sp(}:, ws k) [o(x, w, 5_){2 (5.6)

where SP(E; w, k) 1is the power spectral demsity of the pressure field.

The mean square response in the frequency band
O <w < wy

is given by
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R
2 !
o = | f 5, w, ) [¢(x w, k)

12 dkdw (5.7)

oo
The wave receptance function ¢{xr, w) or ¢(xr, w, k) can be
calculated by means of a finite element analysis. This will be investi=-

gated in Sections 5.3 and 5.4.
For a detailed discussion of such pressure fields see |34, 67].

A typical example of a general random homogeneous pressure field is
the boundary layer pressure field. The wave number-frequency spectrum
of this field is the double Fourier transform of its space time cross—
correlation function |34, 67|. For the calculation of the responmse of

periodic systems, such a field can be expressed in the form

Sp(g) b(ev/2){(L + b2 + (ecv/a)?) (5.8)
m {{bz + (1 - ecV/D A2 + (1 + ecv/2)?)

Sp(€9 Q) =

(See |34| for the mathematical derivation of this expression)

where
. . . . )
CV : the non~dimensional convection velocity where %& = v
P
2 : the non-dimensional frequency
e : = =k.f, ' where k is the angular wave-number and £ 1is the

periodic length of the structure subjected to the pressure

field
b : Dboundary layer decay parameter
Up : convection velocity
SP(Q) : the power spectral demsity of the pressure at any point in
the field

It should be noted here that the second term in the numerator between the

brackets { ] in (5.8) is (CV/9) and not (Q/CV) as given in !34

5.3 Mathematical Formulation for One-dimensional Periodic Systems

Consider a one-dimensional periodic system composed of an mfinite
number of identical cells (period$ ) joined together in identical manner,
figure (2.1a). Using the finite element technique a cell can be described
by a model coupled to its neighbours on either side by a certain number

of degrees of freedom and forces, figure (2.1b). The linear equation of
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motion of the cell can be written in the form

([K] + iw[c] - w®[M]){q} = {F} (5.9)

where
{K], [CE and iM} are the stiffness, damping and inertia matrices
for the cell,
' {q} and {F} are the degrees of freedom and forces at the

different nodes in the cell.

The matrices [Kj, [C] and ﬁﬂ and the vectors {q} and {F} can be
partitioned according to the interior, left and right degrees of freedom

in the cell, figure (2.1b), hence

e

x] = Rr Ko K (5.10)
Lo e e
2,1 fRi R
Similar expressions can be written for [M] and [C], |
{q} = g | > AP} =P 4 fo)° | (5.11)
F
i, L L

& ) ®

where e and b denote the exterior and boundary forces respectively.

The boundary forces are the forces of interaction between the cell

and its neighbours due to the wave-motion in the structure.

Now consider a harmonic pressure wave with unit amplitude, frequency
w and wave-number Kk propagating across the structure {(from left to

right). This can be written in the form

P(r, t) = ei{wt - kx) (5.123

The exterior forces acting on the cells are due to this pressure field and
hence the relation between these forces at any point in one cell =n and

the corresponding point in adjacent cell n + 1 can be written as
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: e
{F}n+1 =

where

e = K.

% 1is the length of the cell (periodic length).

ie
e

(5.13)

(5.14)

As this pressure wave propagates across the structure it will induce

a wave-motion in the structure propagating in the same direction and with

the same wave-form as the pressure wave.
the degrees of freedom and boundary forces at any point in cell n and

the corresponding point in cell n+l is similar to relation (5.13), hence

‘ b
{FL}n+1

{qi}n+l

i

ie b
= {FL}H Ed

i
e 6{qL}n

Therefore the relation between

(5.15)

At the common boundary between cell n and cell n+l the displacements

and exterior forces must be equal while the boundary (interior) forces in

equilibrium, hence

RCIRAEL R CHY
R AP ¢ A (5.16)
| {FL}?H"TL - ;{FR}E;

Substituting (5.16) into (5.12) and (5.15) gives
REN A ie{FL}rex ’
R (5.17)
fagd, = e Sla

Relations (5.17) are the same for any cell, and hence the suffix n can

be dropped. These relations can be substituted into equation (5.9) to

eliminate the forces ‘{FL}b ,'{FR}b and '{FR}e and the displacements

'{qR}. This will result in an equation of the form



’ '
([R(e)] + iw[E)] - *[H)]) (qll - |r 0 | © (5.18)
iqLJ LZFL(Q

The matrices {ﬁ}, [E} and {ﬁ} are defined in a similar manner which
coincide with the definitions of [i} and {ﬁ} given by (2.16) in
Chapter II, Section 2.2.

For most engineering structures the damping matrix [C} can be linearly

related to the stiffness and inertia matrices. For airecraft structures

it is usual to take
w[c@] =n[K()] (5.19)

where n 1is called the material loss factor.

However, some times, a different loss factor is assumed for different

elements.

The solution of (5.18) is

- - - T -
qI‘L = {[K(g)] + im[C(e}] - wZIM(e)]J L FI(E) ¢ (5.20)

qu

The displacements '{qR} are then obtained from equation (5.17).

ZFL(S)

Equation (5.18) can be formed and solved for different values of the
frequency « and wave-numbers Kk given by (5.2). The response
quantities {q} can then be substituted in equations (5.4) and (5.5)
to find the power spectral density of the response and the mean square
response. Also it can be solved for variocus values of the frequency w

and wave-numbers k to find the power spectral demsity and the mean square

response given by equations (5.6} and (5.7).

If the damping is ignored, equation (5.18) can be written in the form
(R + iRY - W% + MYy (T + iq5) = (FF + iF5}° (5.21)

Separating the real and imaginary parts and combining the two sets together

gives
( & -kt - wz{ M M ]\ <! = J}.«*r ¢ (5.22)
i K- K M o j q" P
L L
or [Dl1qa} = {F}. (5.23)
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i

Since the matrices {ij} and {1} are Hermitian, then

&) = -&7, @] = - BERCRY

—1

Therefore the matrix EDJ in equation (5.23) is real and symmetric.

5.4 Mathematical Formulation for Two—-dimensional Periodic Systems

Consider a two—dimensional periodic system composed of an infinite
number of identical cells joined together in identical manner, figure
(3.5a). Using the finite element technique a cell can be represented by
a model coupled to its neighbours on all sides and corners, figure (3.5b).
The linear equation of motion of the cell is given by equation (5.9),

namely,
([K] + in[c] - o’[M]){q} = {F.

The matrices [K], [C] and [M] can be partitioned according to the
interior, left, right, bottom, top and cornersdegrees of freedom in the

cell as given by (3.8) (Chapter III, Section 3.3).

The vectors {q} and {F} can be written as

@b = (ap ) m o= [E P o+ [0 )P (5.25)

9 FL B

a Fo Fy

B Fp Fy

V9 ¢ Fr 7 < Frb

LB Fip Frp

A Frm Fir

dpp FRB FRB

\qRT/ kFRg‘ \FE%

where e and b denote the exterior and boundary forces respectively.

Now consider a harmonic pressure wave with unit amplitude, frequency
w and wave-number K travelling across the system at a direction making
an angle o to the dl axis (the di and dz axes are parallel to the

sides of the cells, figure (3.1a)). This can be written (at a point 8)

%.



in the form

i{wt=k.8)
e

B(S, t)
i{wt =Kk.S. =K. S.)
= e "1 272 (5.26)

where Kis Ko and Sl’ 82 are the components of the wave-number k
and the position vector S (defining the position of the considered
point from the origin). The exterior forces acting on the cells are due

to this pressure field and hence the relation between these forces at any

point in one cell n;, n, {where ny and n, define the position of
the cell along the dl and dz directions) and the corresponding points
in neighbouring cells can be written as
-1k. % ig
Y _ e 171 < e 1
{E}nl+l,n2 {FJnl,nz € v {F}nl,nz ¢
(5.27)
~ik.% ie
: ~ 272 e 2
{F}° = {F}° _ e = {F} e
nl,n2+1 nl,nz nl,nz

where 2y and 12 are the dimensions of the cell along the d1 and d2

directions ,

= =k, 4 (5.28)

="kl €y )

1
As this pressure wave propagates across the system it will induce a
wave-motion in the structure propagating at the same direction and with
the same wave-form as the pressure wave, Therefore the relation between
the degrees of freedom and boundary forces at corresponding points in

neighbouring cells is similar to relation (5.27).

Now following the analysis given in Chapter III, Section 3.3, we can
obtain relations between the degrees of freedom and exterior forces at
the boundaries of the cell similar to (3.12). Also considering the
equilibrium of the boundary forces results in relations between the boun—
dary forces similar to (3.11), where e and €, replace My and Hy
in these relations. These relations can be used to eliminate all the
boundary forces and the degrees of freedom and exterior forces,
agds (P38, Laphs (RS, {aggls (505, {appds (F 3% and  {apg)s
‘{FRT}Q from equation (5.9). This will result in an equation of the form
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o A - 2= TN r 5 e
({K(gl, ez)] + 1w{C(el, ez)} - w {M(els ez)j) 9y = Fy (5.29)
q 2F
J L . 4 L .
9y 2Fy
913 bR g
L J L J

. re= 1= vl . .
The matrices LK(el, az)j, {C(ai, 52)] and {M(El’ 82)} afe defined in
a similar manner which coincides with the definition of [ K(ul, uz} 1

given by (3.20} (Chapter III, Sectiom 3.3). The solution of (5.29) is

CY s . = _o2= =l (. e
q; = [ R(eps e)) + 1uC(eys €,) = wM(eys e,)] F. (5.30)
d, 2F;

< 7 9 r

g 27,

94p “Frp

. P W Y

The remaining displacements ‘{qR}s‘{qT},‘{qLT},'{qRB} and {qRT} are

then obtained from relations (3.12).

5.5 Computer Programs and Applications

A general computer program has been written to calculate the response
of any one or two—dimensional periodic structure to the two types of
excitation given in Section 5.2. One periodic section (cell) of the
structure is represented by a finite element model, then the matrices in
equations (5.18) for one~dimensional systems or (5.29) for two~dimensional
systems are formulated. The wave receptance functions 6(r, w) or
¢(x, w, k) are obtained by solving these sets of equations. The basic
flow diagram for the computational procedure is given in Appendix B. The
set of equations (5.18) or (5.29) are solved using Crout's factorisation

method [65].

5.5.1 Examples of one—-dimensional periodic systems

Some of the examples used in Chapter II will be used here. This will
enable us to see how to use the curves describing the variation of the
propagation constant with frequency, obtained in Chapter II for these

examples, to understand and predict their response to random pressure fields.
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The first example is the beam on multiple supports at equal distances.
At these supports the translational stiffness is infinite and the
rotational stiffness Kr = 4.0. This example was used in Section 2.3.2
and shown in figures (2.3a, b). Its propagation constant-frequency curve
is shown in figure (2.11).. To determine the response of this structure
to random pressure fields, the generalised forces for a single beam ele-
ment due to a harmonic pressure wave given by

i{wt~k.x)
P(r, w, k) =e (5.31)

must be calculated first. This is given in Appendix Cl. The single cell
representing one period of the structure, figure (2.3b) is idealised by
four beam elements and two rotational spring elements. The beam element
and data values used are given in Appendix D1, The distance between

the supports {periodic length) is taken equal to unity. The damping
matrix i1s calculated from relation (5.19) where the material loss factor

n 1s taken equal to 0.25. The rotational stiffness Kr at the supports
is taken equal to 4.0. The response of the beam to the two types of
pressure fields given in Section 5.2 is calculated. Figure (5.1) shows
the power spectral density of the displacement at the mid point of the
cells due to acoustic plane wave with unit amplitude. Various values

for the non-dimensional convection velocity CV of the acoustic wave are

chosen. The convection velocity Up of such a pressure field can be

written as

I z.}).:
P a

wle

where k = Zna, w = 27V,

The non-dimensional convection velocity is given by

oV = - (5.33)

™ |

where ¢ = ~k., %

$2 is the non—dimensional frequency, and

% is the periodic length.

From the graph it can be seen that in each spectrum the response has

maximum values at frequencies where the convection velocity of the pressure
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field equals the free wave speed (phase velocity) in the beam (coincidence

phencomenon). The free wave speed, or phase velocity, v , is given by
W

V. wh (5.34)

The non~dimensional free wave speed VW is defined as

\ :—-.S}.
W M
or in general
Vw=—----¥-——-—~ 0 < ;pi £ 7 (5.35)
Yot 2mm

where m 1s an integer number and yu 1is the propagation constant.

The relation between @ and u for this example is shown in figure
(2.11).

The highest peak occurs when the convection velocity of the pressure
wave equals the free wave speed corresponding to the lower bounding

frequency of the first propagation band where

and hence
V = 12.8/7 = 4.0,
w

This frequency coincides with the fundamental natural frequency of the
single cell when its coupling degrees of freedom {SL and SR} are
unconstrained. These results are in agreement with the results produced
by Mead and Sen*Gupta§30§ using closed form solution.

Figure (5.2) shows the response of the beam to the same excitation
as before while the material loss factor n 1is taken equal to 0.02. In
this case the maximum response in each spectrum occurs at the same fre-
guency as before but the amplitude of the reéponse is much higher than

the previous case (due to the low damping in the beam in this case).

Figures (5.3) and (5.4) show the response due to an acoustic plane
wave with convection velocities CV = 2.0 and 4.0 while the damping in
the beam is taken equal to zero. Also shown is the response when the

material loss factor n = 0.25 for comparison. In the first figure
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= 2,74 (see figure (2.11)) where one of the

(CV = 2.0) the response is infinite at & = 16.0. At this point the
propagation constant |u|

free wave speeds is equal to 2.0. This is obtained from (5.35) where

m = 1 and hence

{ - L = 1860
v, | (W omn| .74 + 6.28 = 20

In the second figure (CV = 4.0) the response is infinite at § = 12.8,
At this point the propagation comnstant Eut, = 1 (see fig. (2.11)) and

hence the free wave speed in the beam is

where m 1is taken equal to zero.

From the above discussion it can be concluded that from the propagation
constant/frequency curve one can predict the frequencies at which maximum
response occurs when the structure is subjected to an acoustic plane wave

with a certain convection velocity.

Figure (5.52,b,c) (figures 5.5b, c are cross—sections in (5.5a))
shows the power spectral density of displacement at the mid point of the
cells due to a general random pressure field (SP(E, w, k)) with unit
amplitude. From the figure it is clear that the largest response occurs
when the wave-number k (notice that iu} = ik}z = Ek}) and the frequency
of the excitation coincide with one of the points on the propagation
constant/frequency curve (fig. (2.11)). The highest peak occurs at the
lower bounding frequency of the first band where £ = 12.8 and |u| .= m.
Figures (5.6a,b) show the power spectral density of the displacement at
the cell centres due to a boundary-layer pressure field SP(Q, €)

calculated from expression (5.8) where the following values are considered.

The non~dimensional convection velocity CV = 4.0, the boundary layer
decay parameter b = 0.1, the power spectral density of the pressure at
any point in the field SP(Q} = 1.G6. This boundary layer pressure field
is shown in figures (5.7a, b). As can be secen from this figure the
pressure spectrum has maximum peaks when Q/e¢ = 4.0 which is the non-

dimensional convection velocity of the pressure field in this case.
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Now returning to figure (5.6) it is clear that the maximum response
occurs at frequencies where the non-dimensional free wave speed in the
beam equals to 4.0. This figure is in fact the product of the two
figures (5.5) and (5.7). Similar results were produced by Mead and

Pujara {34[ using a particular series of space harmonics.

The next example is the flat stiffened panel used in Section 2.3.3.
This is shown in figure (2.4). The propagation constanﬁ/freQuency curve
is shown in figure (2.12).  Appendix C2 gives the formulation for calcu~-
lating the generalised nodal forces for one element of the panel (strip
element) due to a harmonic pressure wave with unit amplitude, frequency
w and wave-number k. The damping matrix is calculated from relation
(5.19) where the material loss factor n is taken equal to 0.25. The
displacement response at the mid point of the cells due to acoustic
plane wave with unit amplitude is shown in figure (5.8) for various

values of the non-dimensional convection velocity CV where

BN

= oh,
cv Upz( D)
The response is shown as a function of the non~dimensional frequency &

where
1 H
2= wl@h,

Here again, similar to the previous example, the maximum response in each
spectrum occurs at a frequency where the convection velocity of the
pressure field equals the free wave speed (phase velocity) in the panel
and the highest peak occurs at the lower bounding frequency of the first
propagation band (see figure (2.12}). Similar results were produced

in |14| wusing transfer matrix methods.

5.5.2 Examples of two-dimensional periodic systems

The two examples used in Chapter III, Section 3.4.2 will be used here.
These are the flat infinite plates resting on equally spaced orthogonal
line supports, figure (3.6a). The same finite element idealisation for
the cell representing one period of the system is used here. This was
shown in figure (3.6b). The generalised forces for a single plate
element due to a harmonic pressure wave with unit ampiitude, frequency

w and wave-number k, are derived in Appendix C3. The damping matrix is
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calculated from equation (5.19) where the material loss factor n is

taken equal to 0.25,

First the plate with square cells {%X = Ry = 1,0) is considered. Its
response to the two types of pressure fields given in Section 5.2 is
calculated. Figures (5.9), (5.10) and (5.11) show the power spectral
density of the displacement at the centre of the cells due to an acoustic
plane wave with unit amplitude propagating along the x direction, along a
direction making 45 degrees to the x axis (preferred direction of propa-
gation) and along a direction making 20 degrees to the x axis. Various
values of the convection velocity Up of the pressure field are chosen.
From these graphs it can be seen that the maximum response in each
spectrum occurs at a frequency where the convection velocity of the pres—
sure field coincides with the free wave speed (phase velocity) in the

plate. The free wave speed VW can be calculated from the propagation

constants/frequency curves shown in figures (3.17) and (3.18) where

Vo=V oW W - w
v o |a x| T E—
K 2 + K 2 V/hx 2 uy 2
X v (E_D + (79
X y
(since My = ~kX£X9 py = -kyﬁy).

k. and ky are the components of the wave-number k along the x and

v directions respectively. The highest peak for each direction of pro-
pagation occurs at the lower bounding frequency of the first propagation
band along that direction when the convection velocity of the pressure
field coincides with the free wave speed at that frequency. For waves
propagating along the x direction the highest peak occurs at § = 30.0
(notice that § = w for this example) when the convection velocity

of the pressure field equals §.55. At this frequency the free wave speed

in the plate is given by

_ w . 30.0 -
Va I U - /0.0 F n2 935
5%+ (D2
£ 2
X b4
(since W =T and Hy = 0.0 at this point).
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Similarly for waves travelling along the preferred direction of propa—~
gation the highest peak occurs at w = 20.0 when the convection velocity
of the pressure field Up % 4,5, The free wave speed in the plate at

this point is given by

20.0
vV = = 4.5
v ;Zﬂ
(since Euxf = Iuy} =7 at this point. See figure (3.17).)

Also for waves travelling at a direction making 20 degrees to the x
direction the highest peak occurs at w = 26.2, when the convection
velocity of the pressure field Up = 7.8, (Notice that this frequency
is the lower bounding frequency of the first propagation band along this

direction, figure (3.18)). At this point the free wave speed in the

plate is given by

26.2 . 8

v
W

/Qn)z + (1.143)%

{notice that kx and ky’ and hence o and uy, are restricted

inside the first zone, figure (3.4)).

Figures (5.12a,b), (5.13a,b) and (5.1éé,b} show the power spectral
density of the displacement at the centre of the cells due to a general
homogeneous random pressure field with unit amplitude travelling along
the three directions discussed gbove. From these graphs it is clear
that the response in each case is largest when the wave-number and the
frequency of the pressure field coincide with one of the points on the
propagation constants/frequency curves along the direction of propagation
(notice that {uX§ = kafzx and fuyf = fky}%y). The maximum
response in each graph occurs at the lower bounding frequency of the
first band along the direction of propagation of the pressure field.
These frequencies can be clearly seen in the polar plot of the propaga-
tion constants/frequency curves shown in figure (3.18) where the curve
showing the lower bound for the first band gives the frequencies where
maximum response occurs for various directions of propagation. The
highest peak occurs when the pressure field is propagating along the pre-

ferred direction of propagation in the plate as can be seen from figure

(5.13).
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Figures (5.15) and (5.16) show the response of the plate with
rggtamguiar cells {2X = 1.0, ky = 2.0) due to an acoustic plane wave
with unit amplitude travelling along the x direction and along a direction
making 26.56 degrees to the x direction (preferred direction of propaga-
tion in the plate). Similar to the previous example, the response of the
plate is largest when the convection velocity of the acoustic wave
coincides with the free wave speed in the plate. The highest peak in
each graph occurs at the lower bounding frequency of the first propagation
band along the direction of propagation. (The propagation bands for this

example are shown in figures (3.25) and (3.26)).

Figures (5.17 a,b) and (5.18a,b) show the response of the plate due
to general homogeneous random pressure field with unit amplitude, travelling
along the two directions discussed above. Here again, similar to the
previous example, the response of the plate is largest when the wave-
number and the frequency of the pressure field coincide with one of the
points on the propagation constants/frequency curves along the direction
of propagation (notice that quf = kai and fuyf = 2]ky! in this
case). These curves are shown in figures (3.25} and (3.26). Also the
maximum response occurs at the lower bounding frequency of the first band
along the direction of propagation. The highest peak occurs at the lower
bounding frequency of the first propagation band when the pressure field

is propagating along the preferred direction of propagation in the plate.

From the above discussion it can be concluded that from the propaga-
tion constants/frequency variation for free waves propagating in the two-
dimensional periodic system, ome can predict the frequencies at which the
response of the structure is largest when it is subjected to pressure fields
propagating at various directions. The polar plot of the propagation

constants/frequency curves shows these frequencies very clearly.

5.6 Response of General Structures to Random Excitation (Modal Analysis)

In the previous sections of this chapter the analysis has been
confined to calculating the response of infinite periodic structures to
homogeneous random pressure fields. In this section, the response of
general structures (non-periodic or finite periodic structures) to any

arbitrary excitation is calculated using finite elements and the modal
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method of analysis. The response of some finite periodic structures in
one and two dimensions is calculated using this approach and the results
are compared with the response of infinite structures presented in

previous sections.

5.6.1 Mathematical formulation

First the structure is represented by a finite element model. This

gives the differential equation of motion in the matrix form
M]{q"} + [c]{q"} + [K]{q} = {F} (5.36)

where [M], [c] and [K] are the structure's inertia, damping and
stiffness matrices respectively.

{q} and {F} are the vectors of generalised degrees of freedom and

forces respectively.

Equation (5.36) represents a system of simultaneous ordinary differ-—
ential equations with constant coefficients. For complex structures the
matrices in (5.36) can be of large order, and the solution of such a set
of equations can be very complicated and time consuming, especially if the
response is required for a large range of the excitation forces as usually

the case in random response problems.

Equations (5.36) can be transformed into a set of independent
equations by using the modal matrix of the undamped system §35, 37{. This
modal matrix is obtained by solving the eigenvalue problem of the undamped

system. Such a solution can be written in the form
M) Fo'd = [K][Y] (5.37)

where

2 . . . .
f‘ w \j is a diagonal matrix where 's are the natural frequencies

of the undamped system.

[V] is the modal matrix (eigenvectors associated with w's). This

modal matrix can be normalised such that
{V}T{M] [v] [1] (5.38)

VTRl [v] = [u7) (5.39)

h

il

[
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Now if we let

{q} = [vl{n} (5.40)

where {n} represents another set of generalised coordinates, then we can

write,
{q'} = [V]{n'}
. . {5.41)
{¢"} = [Vj{n"}
Substituting (5.40) and (5.41) into equation (5.36) gives
] [vI{n"} + [c][vI{n'} + [R][V]{n} = {F} (5.42)
Multiplying (5.42) by éVET gives
"o+ [€n'r o+ ot Jind = () (5.43)
where
[c] = {V}T[c} [v] (5.44)
. N TT—ﬂ
{Qr = [v]™{F} (5.45)

In general the matrix [6} is non-diagonal. However, in many cases
the matrix [C] can be considered as a linear combination of the stiff-

ness and inertia matrices. Hence

[c] = a[M] + b[K] (5.46)

where a and b are constants, and hence the matrix [E] will be a
diagonal matrix. In some other cases the off-diagonal terms of {E}
are small compared with the diagonal terms and it can be approximated as
a diagonal matrix. Also for the general case when [E} is non-diagonal
and the off-diagonal terms are not small there are other methods to trans—
form it into a diagonal matrix. This has been discussed in detail in
[35].

In this section we will consider that the matrix [CE ig proportional

to the stiffness matrix such that the matrix [é} will be given by
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{E} = ?‘ng |

S

where £ 1is called the modal damping.

Therefore equation (5.43) represents an independent set of equations.
Its solution gives the displacements 1{n}, and hence '{Q} can be

obtained from {(5.40).

The response of the structure to random pressure fields of the type
discussed in Section 5.2 can be obtained by calculating the response to
various values of the pressure field components (given by (5.12)) using
the modal analysis method as explained above. The power spectral density
of the response and the mean square response are then obtained from

relations (5.4) and (5.5) or (5.6) and (5.7).

5.6.2 Computer programs and applications.

A general computer program has been written to represent a general
structure by a finite element model. The eigenvalue problem of the
undamped structure is formulated and solved to calculate the natural fre-
quencies and the modal matrix. Then the matrices in equation (5.43) are
formed. This equation is solved to obtain the response of the structure

to the two types of excitation given in Section 5.2.

The response of some finite periodic structures in one and two
dimensions is investigated here. This will enable us to compare their
response to the response of infinite structures presented in previous

sections. The following cases are considered.

Response of a five bay beam to a frozen comnvected random pressure
field.

4.

The beam is resting on equally spaced point supports having infinite
translational stiffness and a rotational stiffness Kf'= 4.0, figure
(5.19). The distance between the supports is taken equal to unity.

The structure is represented by a finite element model where each bay

is idealised by four beam elements. The beam element and data values

used in the analysis are given in Appendix D1. First the natural frequen-
cies and associated normal modes of the undamped structure are calculated
(only the first five normal modes are considered. This will be discussed

later). TFigure (5.20) shows the first five normal modes of the beam.
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The modal damping £ is taken equal to 0.01 (material loss factor
n o= 28). The response of the beam to a frozen convected random pressure
field with unit amplitude travelling over the beam from left to right
with a convection velocity CV = 4.0 is calculated. Figure (5.21) shows
the power spectral density of the displacement at the centre point of the
bays (numbered 1 to 5 on the graph where bay 1 is on the left end of the
structure, figure (5.19)). Since the beam has five bays then its natural
frequencies will occur in groups where each group contains five natural
frequencies occurring within one of the propagation bands of the infinite
structure. Therefore it is enough to consider only the first five natural
frequencies and associated normal modes to calculate the response to
excitation forces with frequencies within the first propagation band. As
can be seen from figure (5.21) the response of the beam has five peaks
corresponding to the first five natural frequencies. Also it should be
noticed that two of these modes are antisymmetric (see figure (5.20)) and
hence contribute nothing to the response at the mid point of the middle
bay (bay 3). Comparing these results with the response of the infinite
beam discussed in Section 5.5.1, figure (5.2),shows that the maximum res-—
ponse of the finite beam is very close to the maximum response of the
infinite beam and occurs at nearly the same frequency (at & = 13.1 for
the finite beam and at § = 12.8 for the infinite beam, which is the lower
bounding frequency of the first propagation band, figure (2.11)). Figure
(5.22) shows the response to the same excitation as before while the modal
damping & 1s taken equal to 0.125 (n = 2¢£ = 0.25). Here, due to the
relatively heavy damping in the structure, some of the peaks have dis~
appeared, Also the amplitudes of the response is much lower than before.
The maximum response occurs at a frequency close to the first natural

frequency of the structure (0 = 13.1).

Similar to the previous case, comparing the response of this structure
to the response of the infinite structure calculated in Section 5.5.1%1,
figure (5.1) shows that the maximum response for both structures occcurs
at very close frequencies. Also the maximum r.m.s. response of the
finite structure is about 67 higher than the maximum r.m.s. response of

the infinite structure.

Figure (5.23) shows the response of the beam when the convection

velocity of the pressure field is taken equal to « (this represents a
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constant pressure field where the wave-number k = 0.0). 1In this case
the response of the structure is symmetrical (the response of the first
and second bays is identical to the response of the fifth and fourth

bays respectively). The maximum response occurs in bay 3 at a frequency
closé to the upper bounding frequency of the first propagation band
(where the maximum response of the infinite structure occurs in this
case). Here the maximum r.m.s. response of the finite structure is about

33% higher than the maximum r.m.$. response of the infinite structure.

From the above discussion it can be concluded that calculating the
response of the infinite structure can provide a good estimate to the

» « o o - - s H
response of finite structures. Similar conclusions are obtained in %30;.

b. Response of two-dimensional finite periodic plates.

The response of flat plates resting on equally spaced orthogonal

line simple supports is examined here. The following three cases are

considered.

(i) a 5 % 5 bay square plate,
(ii) a 3 x 3 bay square plate,

(iii) a single bay square plate.

First the 5 x 5 bay plate is considered, figure (5.24a). The plate
is represented by a finite element model where each bay is idealised by
four plate elements only. (This will give 135 degrees of freedom in
the system. A better idealisation, that is idealising each bay by a
larger number of elements, will result in a very large number of degrees
of freedom in the structure and hence cannot be solved easily on the
computer.) The plate element and data values used in the analysis are
given in Appendix D4, The modal damping £ is taken equal to 0.125
{(material loss factor n = 28 = 0.25). The generalised nodal forces
for a single plate element due to a harmonic pressure wave with unit
amplitude, frequency w and wave-number k are derived in Appendix C3.
The response of the plate to a frozen convected random pressure with unit
amplitude travelling over the plate along a direction making 45 degrees
to the x direction with convection velocities CV = 4.5 and CV = » isg
investigated. First the natural frequencies and associated normal modes

of the undamped structure are calculated. The first 25 natural frequencies

110,



and normal modes are considered since they are closely spaced and occur
within the first propagation band of the infinite structure. It should
be noted here that these natural frequencies can be cazleculated much more
accurately from table 3.6 corresponding to values of the propagation

constants My and py given by

mle

“x:"f\fz s W =5, m =1,2,..., 5)
m,T

uy :__I\Y_; (Nz = 5’ mz = 1,2,..;, 5)

Figure (5.25) shows the power spectral density of the displacement
at the centre point of the first, third and fifth bays along the diagonal
of the plate (see figure 5.25a)). From this figure it is clear that the
maximum response occurs in bay 1 near the first natural frequency of the
plate (notice that the first natural frequency obtained using this
idealisation is @ = 21.6, while the more accurate wvalue obtained from
the wave propagation results in table 3.6 is © = 19.8) which is the
lower bounding frequency of the first propagation band shown in figure
{(3.17). To obtain an accurate comparison between these results and the
response of the infinite structure using the periodic structure approach
discussed in Section 5.5.2, one cell of the infinite structure is repre-~
sented by a finite element model using the same idealisation used here
(4 plate elements per cell). Its response to the same excitation as
above is calculated using the periodic structure approach. This is shown
in figure (5.26). Also shown in the figure is the response when the
convection velocity of the pressure field is taken equal to ., Comparing
the response of the finite structure, figure (5.25) and the response of
the infinite structure, figure (5.26), shows that the largest response
of the infinite structure occurs at a frequency § = 21.6 which is the
lower bounding frequency of the first propagation band (where the maximum
response of the finite structure occurs as discussed above). Also it can
be seen that the maximum response of the middle bay (bay 3) is very close
to the maximum response of the infinite structure and occurs near the same
frequency {(Q = 21.6). Figure (5.27) shows the response of the plate

when the convection velocity of the pressure field is taken equal to o

(this represents a constant pressure field where the wave-numher x = 0).
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Here it can be seen that the response of the different bays is largest
within a range of frequencies which coincides with the first propagation
band of the infinite structure (see figure (3.17)). The maximum response
occurs in the middle bay (bay 3) at a frequency close to the upper bound=-
ing frequency of the first propagation band (where the maximum response

of the infinite structure occurs, figure (5.26)).

Figures (5.28), (5.29) and (5.30) show the response of a 3 x 3 bay
plate and a single bay plate (shown in figures (5.24b,c)) to the same
excitation as above. (The plate is idealised, in each case, by four
plate elements per bay). Here, similar to the previous case, when the
convection velocity of the pressure field is equal to 4.5 the largest
response in each case occcurs near the lower bounding frequency of the
first propagation band. Also it can be seen that the maximum response
of the middle bay of the 3 x 3 bay plate is very close to the response of
the infinite structure shown in figure (5.26). When the convection
velocity of the excitation is equal to «, the response of the single
bay plate occurs near the lower bounding frequency of the first propagation
band (Q = 21.6) which coincides with the only natural frequency of the
plate occurring within the first propagation band. The largest response
of the 3 x 3 bay plate occurs in bay 2 (middle bay) at a frequency close

to the upper bounding frequency of the first propagation band.

A comparison between these three cases shows that as the number of
bays in the finite structure increases, the response of the middle bay
is closer to the response of the infinite structure. This can be clearly
seen in figures (5.31) and (5.32) showing a comparison between the
responses when the convection velocity of the pressure field is taken

equal to 4.5 and « respectively.

From the above discussion, similar to the beam example, it can be
concluded that knowledge of the response of the infinite structure can

provide a good estimate to the response of finite structures,
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Figure 5.1. Spectra of displacement at bay centres of an infinite beam

on pericdic point supports with rotational stiffuness K,=4.0,

17 =0.25 , due to random pressure field;frozen convection.
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Figure 5.3. Spectra of displacement at bay centres of an infinite beam on

periodic point supports with rotational stiffness k,=4.0,

due to frozen convected random pressure field , CV=2.0 .



ER SPECTRAL DENSITY OF DISPLACEMENT

POW

3 45 s7§9.10”6

@
-
ot

1] ¥ 3 1 A H

1 p i i H H
o ﬂ-,m_?,,_m;w-,-,-“_na,‘uurwﬂuwpan-~?-*-uyu---}“-~‘&~-_or,-~_;,,-_?~»--w~»”,

i ! i
asd-“a‘é—ax—?~~-‘é~~~‘T—wum4—-~-?~—~‘é-—‘-?n-&wé-‘“&7--a»4‘-‘~1wwmWéw“mﬁ§a~-w

IS SRR USRS SSUUVO PPN SYSHPNSS SO PR SSPRIS SSS SPURRS SPUTRIT SR USRI SO SN S

i i i 1
LS o o o g o e st o e s o o o s e e e s ] o e
i i H i i H I}
H

i i i
L3 i o o o o R o

i i .
i ! i ; : ] ; : : i ! ] :
g g o s o e e ---ﬁ-_~-¢~,“-?-_--4~--«1,«-~ﬁ-~--?~*~-
i : § : ! i ! ; :
g§«,_-~_?,-,-%----?«---i--u— = o o o e -“-L---_?_--_}-_-,
:

i

i
i

R e T

H

e

S

H
o o o e

g e o
i
§
&
i

o o o
§
§
. §
e
o s o e
§
i
1
i
b

o oy
PREp——

o sy s

- JE——— s e s s o

]
&
i
¢
8
§
H

H
g
;
F S T B | o g o

s g 5 5 s 9 B g o o 0
[T I S —
i
§
]
i
nwnmmmhmwmw
ww»“wmmmhw”ww
[ S

o o B e o e
o o S

ﬁ:&b

(RSP PO SN SRS AU Y S A——

[T J.
o e 4 o s o ey
e s e ot . ] s . s

s i s e g e gt o0
S . T D s

LSRN Sy SR SUIOR S

g o o o o o e e o o e o s i o

P 1 YRR VPR SR S R o o o e o o B

r~ _~~wiwu-u{_,~_ﬁ,_¢-§_-_-;,
t L i L i)
usuauu&—?——‘-i—-—“kn-um:--—yp
L=

v s

A o e

SN JURRUS SN SR

: S
§

&

i

i

[ Y.
i

; ! t ]
[ B R e Lt e B S

U NP

e v s e s it 1 2 0

PR RS-

e
f
1
e 0 o S s e 2
§
&
t
i
0090 s s o
o o e e
s 1 e o e o

PR ——

S ———
0 o v g 3 3

R 0 520 ) 0 o

107

O T

1m~

--g-d-numﬂ-a-_£~-—m

?“"““*““’r"“'*'““r“" ﬂr«m%-Fnﬂn—

£ i /
(T oo o o o o o )
G ol e o ol ey i f--_-%--_-Jm---?----év-_-;“---éu-,_ﬁ--- o o o g e o
_;---ué-_--r—-_-3----?---«L_ﬂ

t 1 i i

R LR B ¥ SR S
i §

qu---%-_-- -_--%‘“--,

% o o s 5 e e Lo i s e o 2 o s

4 567
bodod

i

i

i

o

i

i

i

!

3
.

[ P T s s e s o s om0 iy

PEUTURR T, T —

o o st s i s o el o vy
S 90 g 0 s o B0

R ——

e B a0 e

Eon o o s o o oy

oo

,_—,?----r-u--Ln-ﬂur—‘_-L--__ra-_uk--~”r~~«o

}
i
1
§
1
-

1.

1 ' H ; £ i § é 4
“““““ f“w_«%w-“uf-“h~§_-__?“““u‘_“--Tn“wm B S e R .
§

SUUUURII VGNP SRR FNUUE SRS PPN JUROUIOR SERUONURYS. SRORPRVOY SONONUL SUPURIN IRPRORS IO

¢ 4 i 4 i H i 4 i ¥ 5 i
e b e e o B b b i

1 ! 5 : $ i

i : : i
[PPSR S-S ~—--4—o—-é~_-*4~-—-in_~a
i
§
i
1

[ -

&
e

P

i
H

05 e ] s 7

.
doen
i

I
S
§

H

i

i

o oo v e
i

i

i

i

9

i

i

i

i
% W

ROy ——.
p———

t
i
i
i
§

e o e o e e o

i
i

mw Nmmwmmmmnw%mwmw

e o s s o s e i [N S - o s g o 0

2
i
]
]
i

R

B T L T ep—p—"
) iy
2 s o 8
S s g 0 e
9 00 a0 o U o
o s s o

B o e g S

107

e o o v s g o

e S ——
P R A e —

fita, oo o e sy e e v o

®
[w)
3
Ny
&
e
<

0.00 4.00 8.00 12.06 16.00 20-00 z

FREQUENCY PARAMETER

Figure 5.%. Spectra of displacement at bay centres of an infinite beam on
periodic point supports with rotational stiffuess Kyaéeﬁg

due to frozen comvected random pressure field, CV=4.0 .



Figure 5.5.(a) Spectra of displacement at bay centres of an infinite beam

on periodic point supports with rotational stiffmess,K, =4.0,
1 =0.25, due to general random homogeneous pressure field

with unit amplitude .
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frozen convected random pressure field .

Figure 5.8. Spectra of displacement at bay centres of the inf
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Figure 5.18.(b)Spectra of displacement at cell centres of an infinite two=
dimensional periodic plate on simple line supports with
rectangﬁlar cells(lx/ly:QB),due to general random homogeneous
pressure field with unit amplitude propagating along a

direction of 26.6 degrees to the X direction.Lines of

constant wave-number.
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Figure 5.22.8pectra c;‘.’ .displacement at bay centres of the five bay beam
of figure(5.19),due to frozen convected random pressure field,
CV=h. K =4.0, ¢ =0.125 ,
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Figure 5.235.Spectra of displacement at bay centres of the five bay beam

of figure(5,19),&u@ to frozen convected random pressure field,
CV=0,K =4.0, $=0,125 .
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of figure(5.24a),due to frozen convected random pressure field

propagating along a direction of 45 degrees to the X direction,

CV=h.5, ¢ =.125 .
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Figure 5.26.Spectra of displacement at cell centres of an infinite two=

dimensional periodic plate on simple line supports with square
cells,due to frozen convected random pressure field propagating
along a direction of 45 degrees to the X direction,?]=0.25 .
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Figure 5.31.Comparison of the response at the cell centres of an infinite



b ug-__--4---_4---_4_"_-4_~_-J---_J---_1-_--f-_-_1----{_-_-4----%-,--%--_-%----_

N

CEM
:

POWER SPECTRAL DENSITY GF D

ISPLA

-4
10

v
o

L |

S—

i ] i H i i § i 1 § i ] H i
cn““"‘1'“"1"““1‘““1'""1“”‘“1“““1““’1’“””1‘"‘T““”‘T“'“T‘*"1"'“1“""“‘

[o.0 B (L Lt 1 ~USPR R w SUUPHPSSY SN SOV I S I S S TS SRR SO SR S,
[ o o e o e o o o 0 ) o o o 0 o o 0 o o o A o e g bk e e o o e e

() g oo o i e e e e o e o i e et o S o e o S o v s B o s T [ e o e e e e o e o st o 4R e

ll[ B o e e e e i 0 e i e o e e B e e e e o s e o e e B e im0 B i e e e e o B s e e B i et B e i o e i B e s

2
]

i

4 56789
RN

3
]

2
I

107

L

L

56?89

i

B D Ot ek T e T SR T L3 T TTTT Spes TP =

3
I

i i t ¢ { i i 1 § i i i § §
-4

H i i § 4 ] i 1 ¥ ¢ [} 1 ] i

] i i i i i i § § § i i § i

H i i i i i i i § H i ] i ]

¥ i i i ] i ] ] £ ] i
i 3 ] i i i i i i ] ' i i ]
i i i i ] i & £ i i i t
B e D e e L e e e L L L L e L T T
i i L L] ] t ¢ i ¢
i £ i i 3 i i ¥ 3
i H 3 s ] ] ! i '
i i { £ ] i : i i

L i s s i o B e o e B s o e B e e B i B o B e B e e e o e e e e v

.

e o o o
o o e 0 e g e
o e e e e

L R
o o w

- o - -

- o v o B o

- . o -

o o . -

- o

- -
- - -

- - o -

YRR SRR | ST (R P PRI pp——"—" g

i
i
§
]
[ .
]
i
i
§
(S
[}
i
§
i
i
§
§
i
§
B
i
&
i
i
[
§
i
¢
i
b

t 1 t ‘ ;
R T it ST . S S S e LT N S e ittt

o s o ot s s s ) e e o ol e i o e o s o o el e e et s s s o o e Yy e v e e o s i e oy s e s e N s e e e sy s s s e s v
i t ] 1 i ! i
i i i i H 14 § i 4 i i i i
i H 11 1 i i i i i } i i H 3
e Rt e O S S s e i i T v et L
MNOX5 | H

i ] i t i i i i i i 1
e e o s s s o e i

B L L L L B (T g B B T L L T Iy e
i i

i i i i 3 4 i } 4

£ i i ] i § g ]

oo s o o e e S 0 o e o 0 P o o o 1 D L L T L R T .

i i

f

i i
§

o o o o o G e e

o -

!

i

{

{
[EPERRE S T ™

]

I

v o o o s B e i
)
i

PR
-

e 270 @ e 2o o B 4 o g
T Ny
- o e o o o g e B o
P T TS v,

(]
i
i
o
i
i
1
i
i
i
i
i

- v o Ny
N
- o -

t
i t
4 i
4

.1 (R WU S S N

L L T TS RYRUDES UPSIRPR PRy TS Sy g S

L] 3 H i
g 1 o o 2 G g o e ] e ] Ao o o e e g 0 e s s s 2 g e R e o o e o

e L T Ty o e 2T =T T ToY Spwywipginy Wprpunp. ¥ B A A N L T T e %_— -

i i i i i
e R e el e Bt L e R P P
i i & i i § i

h o e e et e o e S e G e B o o o e 0 0 e e e o o o o o ke

1 3 i i i i i

[PPSO T R J T g Py N T P,

N o niedads babadaads fadadatate Laleaab 2 LA L L T

i i i i

e DT L T T O e
i i 1] i i

,ou---_J--_-J_a_-%-—__d_ =

§ i i i i

L S T N L T

i i ] i i i i

¢ H i i
§ 3 i 1]
i i i
¥ i i

B S

i i ¥ 1 i i i 11 i ]
i 1 ] i i ] i & ] i i ] 4
i i { 3 i i i i i ] ] § i
e e e o o o s e ] o et v S oo oy o ] o o e oy o Do of s we o of ot st o o o R e o o o e o ek s s a2 e w f a t o  r s 23 ]
]
]
i

- o o 12
- o . 5

PR AP ¥ Y .

r-

™

t
x

o o e e o e

b s o s v e s

e
-

s o e o o o 3
I R Y
s 130 @ v e o o g
ol e g 2o o 2 2 2 o

000

P
N—-ﬂ——nu—m.—u-—

&
f=]
(=
&
<
o

1
'
]
g
4
i
!
i
H
I
2‘

W
Lo T
»
Q
Q
W

1 1 T
g0 18.00 24.00

FREQUENCY PARAMETER

L]

i s o o2 e
PRI SRR p—

0o i

Figure 5.32.Comparison of the response at cell centres of an infinite two-

dimensional periodic plate on simple line supports with square
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5X5, 3X3 and a single bay plate of figure(5.24),due to frozen
convected random pressure field,CV=cD,7) =2 {=0.25 .



CHAPTER VI

CONCLUSIONS AND GENERAL DISCUSSION

The study of the vibration characteristics of periodic structures
using the finite element method in conjunction with the periodic structure
theory as presented in this work proved to be an efficient and reliable
approach for the analysis of complex structures using digital computers.
It provided a general procedure to analyse, practically, any periodic
structure in one, two and three dimensions making use of existing finite

element programs.

The fact that only one period of the structure needs be considered
made a considerable saving in computer time and storage. It also simpli-
fied modelling the structure making it possible to represent the system by

an accurate finite element model.

The basic principles of periodic structure theory has been briefly

reviewed and a theoretical background to the finite element method is

presented.

Free wave propagation in one-dimensional periodic systems is examined
in detail in Chapter II. Matrix formulation for calculating the varia-
tion of the propagation constant, whether real or complex, with frequency
and finding the associated wave-forms is presented. It is found that one-
‘dimensional periodic structures in general allow propagation within some
frequency bands only (called propagation bands). Within these bands
waves propagate through the system without attenuation. Their propagation
constant is a real quantity. It represents the change in phase in passing
from one cell to the next. OQutside the propagation bands, waves attenuate
as they travel from one cell to the next. The propagation constant corres—
ponding to these waves is a complex quantity where the real part represents
the change in phase while the imaginary part represents the attenuation
in the amplitude of the wave in passing from one period to the next. The
width of the propagation bands and their bounding frequencies are character-
istic of the periodic system and depend on its physical properties. Also
it is found that the frequency of propagation is a periodic function of
the real propagation constant with period 27. Wave~forms corresponding

to various values of the propagation constant have been calculated and
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demonstrated on a movie film, produced by the computer, which showed

clearly the propagating, standing and attenuating waves.

Very good agreement with exact calculations and other approximate
methods has been obtained even when using few elements to represent the

basic period of the structure.

The natural frequencies of some finite one—~dimensional periodic
structures has been estimated from the propagation constant/frequency curve.
It is found that the natural frequencies of the finite structure fall
into groups. Each group occurs within one of the propagation bands and

the number of frequencies in each group equals the number of periods in

the structure.

The study of the transition from non-periodic to periodic structures
showed clearly the effect of the existence of periodic discontinuities on

the propagation of waves in a homogeneous medium.

Two-dimensional periodic systems are examined in Chapter III. We
found that two propagation constants were needed to extend the periodic
structure theory to analyse two-dimensional systems. Matrix formulation
for examining the relation between the propagation constants and frequency
of propagation and calculating the corresponding wave-forms is presented
and general computer programs are written. It is found that the frequency
of propagation is a periodic function of the real propagation constants
with periods 2m. Also it is found that propagation occurs within some
frequency bands only and that the width of these bands depends on the
direction of propagation as well as the physical properties of the system

with possible overlapping of the various bands.

The discussion of the zones for two~dimensional systems showed that
it is enough to study the variation of the frequency with the propagation

constants (or the wave-number) within the first zone only.

The study of flexural waves in two-dimensional plates resting on
orthogonal equally=-spaced line supports provided a clear understanding of
the general behaviour of two-~dimensional periodic systems. Standing and
travelling waves corresponding to various values of the propagation

constants have been obtained and demonstrated on a movie film produced
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by the computer. Also we showed how to determine the natural frequencies
of some two-dimensional periodic systems from the propagation constants/

frequency curves.

The discussion of the transition from non-periodic to periodic two-
dimensional systems showed that it is possible to study wave propagation
in homogeneous non-periodic systems using this approach. it also showed
a very good agreement between the theoretical calculation and finite ele~-

ment results for flexural wave propagation in infinite flat plates.

Various ways of presenting the variation of the frequency of propaga-
tion with the propagation constants are shown. The polar presentation
showed clearly the overlapping of the bands and the variation in their

width with direction of propagation.

The cases of oblique two-~dimensional systems, the point supported
plates and the two-dimensional stringer stiffened panels demonstrated the
flexibility of this approach to analyse large varieties of problems with

great ease and simplicity.

Free wave propagation in three-dimensional periodic systems is investi-
gated in Chapter IV. It is found that three propagation constants were
needed to extend the periodic structure theory to analyse three-~dimensional
systems. Similar to the one and two-dimensional systems,formulation for
investigating the variation of the propagation constants with frequency
is presented and general finite element programs are written. It is found
that the frequency is a periodic function of the real propagation constants
with periods Zm. It is also found that three~dimensional periodic
systems allow propagation within some frequency bands only. The width
of these bands and their bounding frequencies depend on the direction of
propagation and the physical properties of the system. The study of
waves propagating in three-dimensional plates showed all these character—

istics very clearly.

In Chapter V the response of one and two—dimensional infinite periodic

structures to random pressure fields is investigated.

For one-dimensional systems it is found that the largest response of
the structure occurs within the propagation ban&s, and the maximum response
occurs at the lower bounding frequency of the first band. Therefore
knowledge of the propagation constant/frequency variation for the structure

can be used to predict the frequencies at which the response is largest.
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For two-dimensional systems it is found that the propagation
constants/frequency variation in the polar plot shows clearly the frequen-
cies where the response to homogeneous pressure fields is largest. The

maximum response occurs at the lower bounding frequencies of the first
propagation band.

Finally the response of general structures to random pressure fields
using finite elements and the standard modal analysis is presented. The
response of finite one and two-dimensional periodic structures showed
that such a response can be predicted from the response of infinite struc-
tures.

From the above discussion we can summarise the main advantages of
using the finite element method and the periodic structure theory to study

the dynamical behaviour of periodic structures as follows.

a. Only one period (cell) of the structure need be considered, thus

modelling is simplified and the number of degrees of freedom is

reduced;

b. Large complex periodic structures of any shape can be automatically

analysed without any further mathematical formulation;

C. General computer programs have been written making use of existing

finite element routines;

d. Calculation of the response of periodic structures to random pressure
fields using the periodic structure approach does not require
knowledge of the structure's natural frequencies and normal modes.

Also systems with any type of damping can be analysed without any

further complication.

The analysis presented in this work is only a step towards a full

investigation to understanding the dynamic behaviour of periodic structures,

especially in two and three dimensions, using digital computers. Further
work should be done to study some of the points mentioned below.
a. Study of the response of periodic structures to concentrated loads

and non-homogeneous excitation.

b. The study presented in the previous chapters was restricted to study-
ing plane waves only. It should be extended to study circular wave

motion in two dimensions and spherical wave motion in three dimensions.
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c. The generalised nodal forces due to harmonic pressure waves should

be developed for various existing finite elements.

d. Apply the analysis presented here to investigate the dynamic
behaviour of various periodic structures such as stiffened cylinders

or acoustically coupled periodic structures, etc.

e. Experiments on models representing various engineering periodic
structures such as ship hulls or stiffened cylinders should be

carried out.
Although the study presented in this work is applied only to periodic

systems composed of beams and plates, it can be used to analyse other

periodic systems in physics and engineering.
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APPENDIX A

METHODS USED IN SOLVING THE VARIOUS EIGENVALUE PROBLEMS ENCOUNTERED
IN CHAPTERS II , III AND IV

i~ Eigenvalue problems of the form
([a] -a[B]){x}=0 (A.1)

where [A] and [B} are real symmetric matrices and [B]is positive

definite.
The main steps for solving this eigenvalue problem are as follows

a- Apply Cholesky's symmetric decomposition on the matrix {B} shence
(8] = [1][L]" (A.2)

where [L] is a lower triangular matrix and [LJT is its transpose.

b~ Reduce equation (A.1) into the standard form

([c] =al1]){y) =0 (A.3)
whefe

[e]=[0" [a][u]™" (A.4)

(v) = [1]" (=) (A.5)

c- Using Householder's transformation, equation (A.3) can be reduced

to the form

([p] =a[1])iz} =0 (A.6)

where [D] is a symmetric tridiagonal matrix.

d=- The eigenvalues of (A.6) are obtained by the‘method of bisection
using Sturm sSequencies. The eigenvectors are obtained by -applying
the inverse iteration process.

e~ The elgenvectors |y| are obtained from the vectors {z| by the
reverse Householder's process. The eigenvectors {x) of the
original equation are then obtained from equation (A.5).

@

For further details of the above methods see {2,51 and 64



il~ Eigenvalue problems of the form

(An v)tn+An,.’§ An~1+~---- +AO){X}=O (A7)

where An,Aﬂeﬁ,..gua, AO are real square matrices of order N .
Two procedures are applied to solve this eigenvalue problem depending
on the properties of the matrices An and AO s
a~ The matrix A (or AO) is non-singular.

If the matrix An is non-singular,the eigenvalue problem (A7) can

be transformed to a standard eigenvalue problem of the form

( [c] = a[1]){y} =0 (48)
where
‘o 1 o o ] (%)
- I
[CJ: 0O 0 0 {y}=4 Ax (49)
O 0 0 I A2 x?
| 3
bBO B, B, BBJ &Jt x |
where
-1 .
B, == A A (i=0¢1,250000, 0=1 ) (A10)

Here we used the case n = 4 for convenience in illustration of
the arrays.
The eigenvalue problem (A8) is solved by reduction to Hessenberg

form and the QR algorithm |65 ] .
Ir An is singular but AO is non-singular,a similar procedure can

(

be carried out to obtain an eigenvalue problem in 1/1 -
b= The matrices An and AO are singular.
In this case we observe that the eigenvalues of equation (A7)

are those of the system
([cl-ao]){y} =0 (411)

where -

[c] = (412)




{ I o0
o I

[p] =
o o

O

o

where both [C] and [D] are singular matrices.
The eigenvalue problem (A11) can be solved usin

| 41,49 and 63 ,

I

o

o

0

° ]
|
|

|
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APPENDIX B

PLOW DIAGRAMS TOR COMPUTATION
These flow diagrams are for the computational procedures to calculate

the variation of the propagation constants(real or complex)with frequency
for one,two and three-dimensional periodic systems and their response to

random homogeneous pressure fields.

Select the cell representing
one pericd of the system.

\
Divide the cell into a number
of elements and provide
necessary data.

/

Form the inertia and stiffness
matrices for the cell by
assembling the individual
matrices for the elements and
applying the physical
boundary condition.

Define the boundary nodes in

the cell

i~left and right for one-

dimensional systems,

ii-left,right,bottom,top and
corners for two-dimensional
systems,

iii-left.right,bottom,top,far,
near,edges and corners for
three-dimensional systems.

BLOCK B2 BLOCK B1
Calculation of the Calculation of the
complex propagation conste= real propagation const.-
frequency variation. frequency variation.

BLOCK B3

Calculation of the response
to random excitation.
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iBLOCK B1

Select a range of values for
i= u for one-dimensional
systems,
ii= Bas Mo for two=dimensional
systems,
iide ﬁ%, 59 M, for three-
dimensxona% systems.

Repeat for
all galues
of ¢’ s

£

!

Formulate the matrices in
equations (2.25)for one=
dimensional systems,(3.24)
for two-dimensional systems
or(4.24)for three-
dimensional systems.

Solve for eigenvalues and
eigenvectors.

Plot propagation constants-
frequency variation.
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BLOCK B2

Select a range of values
for the frequency w -

Repeat for
all values
of W .

A

For two and three-
dimensional systems,select

a certain direction of
propagation and define n

and n. for relations(}.#%)
or n,,n.,and n, for relations

(4°3§)¢2 3

/

Formulate the matrices in
equations(2.44)for one-
dimensional systems or(3.47)
for two-dimensional systems
or(4.40)for three-dimensional
systems,

Solve these equations as
describedsin Appendix A to
obtain #’ "~ .

/

' Plot the propagation consto-

frequency variation .
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BLOCK B3

Select a range of values for
the excitation frequency w -

{
! Y
Response to frozen Response to general
convected random random homogeneous
pressure field. pressure field.
3
Select a range of Select a range of
values for the values for the
convection velocity U . wave-number K.
X !
N
v
Repeat Formulate the generalised
for all forces for each element and
values assemble to obtain the
of W . external forces acting on
the cell,
]
Repeat for Formulate the matrices in
all values equation(5.18)for one=-
of K or U o dimensional systems or
P equation(5.29)for two=-
/ dimensional systems.

Y
Soclve the above equations
to calculate the response.

i

Calculate S,(r,w)or S,(r, w,K)

from equations(5.4)or(5.6) for

a given Sp(_z;,w)or Sp(_g,a),_fg).
]

¥

Plot S$(£,w) or S,(r,w K)-
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APPENDIX C

DERIVATION OF THE GENERALISED NODAL FORCES FOR ELEMENTS USED
IN CHAPTER V

Ccl Generalised forces for the beam element used in Section 5.5.1 IZZ,SI,SZJ

The beam is assumed to be lying along the x axis and the pressure wave
is travelling over it in the x direction, figure (C.1).
¥y

Pressure field
e

Node 1 | Node 2

Figure C.1

1f the pressure wave is harmonic and having unit amplitude, it can be

expressed in the form

P(x, t) = ei(wt—k.x) {(C.1)

where
w 1is the angular frequency, k the angular wave—number and t the

time.

The generalised nodal forces are given by

L
{f} = J [N}T ety (C.2)
o
where [N} is the element shape functions, & = X2 - X1 and x = X - Xl'

X1 and X2 are the global coordinates of nodes 1 and 2.
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Ne)"

The generalised nodal forces

in (C.2), hence

| ~ikX
{f} = e

where

A |
o

1 =32 4 2’

32 - 2’

2 3
--2.{_..;.5_
L 22

1

- -

{f}
0
3 2
F, === TF, + —F
172 3
2 1
Fy=3v Bt 358,
3
0
3 2
S
23T 3%
1 1
7 3t 38,
L I3
i —ikg
_-ike
F, = (I + ika) =~ ==
2= 72 2
~ikg .
Fo=- 3 {2kz+i(k222-2)} +%— P}
K k
~ik2
F, =S 13202 - 6 + 1(k2° - 6ke)} +
K

126,
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k

4

(C.3)

are obtained by performing the integration

(C.4)

(C.5)



For the case when k =

c2 Generalised forces

0 we can write

1
2

1.3

':'3'2 {(C.6)

for the flat strip element used in Section 5.5.1

[15, 50, 52]

The strip element

is lying in the x direction and the pressure wave

is travelling over it in the y direction, figure (C.2).

Pressure wave

!
|
|

"7

e

> X
Figure C.2.
The generalised nodal forces become
b 2 ,
(£} J J X_(x) [N (y)] oK 4y ay (c.7
o
where
y =Y = Y1
b = YZ - Y1
% = length of strip in the x direction.
Yl and Y2 = global coordinates of nodes 1 and 2

Xm(x) = characteristic functions for a uniform beam.
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+T
[N ]

The generalised nodal forces {f}

integration (C.7)

{f} = Im

F
where Fl’ Fz, 3
replaced by b.

, hence

e~1ky r

and F

|1 - a2 ¥y 3
L1 -3T 2@

Yz Y3
L o L
b b2

y ~ 2

3&? -2y’

y2 Y3
- L e Fm
b b2

3 2
= F, - =T
b2 3 b3 4

-1
5 T 4

1
+ == F
3702

-

o

are obtained by performing the

are identical to (C.5) and (C.6) with ¢

4

For a strip with simply supported ends;

where m

128,
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m

2% /mm

is the number of half waves in the x direction.

for m

odd

(c.8)

(C.9)



C3  Generalised forces for the plate bending element used in Sections

5.5.2 and 5.6.2 |15, 51, 52|

=1,=1 1,=1

// &

~ ¢ =x/a

“1,1 1,1
1 =y/b

Figure C.3.
Consider a rectangular plate element with dimensions 2a and 2b,

figure (C.3). In non-dimensional coordinates &, n the displacement

field over the plate is given by
12
Wi, n) = ] oP.(E, n) : (C.10)

i=1

The functions Pi(g, n) are defined as follows

P, =1
- 2
Pz—€
2
P3=n
P, =&
_ .3
PS = g
2 2 . .
P, = £° - 28 + 7 in region (1) (C.11)
2en — 2¢ in region (2)
g2 - 28 - o2 in region (3)
-2En — 2& in region (4)
P7 = 7
_ .3
P8-n
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P9 = 2ng - 2n in region (1)

n2 - 2n + €2 in region (2)

-2n& =~ 2n in region (3)

“ﬂz - 2n - 62 in region (4)
Pio = @nm

3

P, = 3t + 3En° - £70° - 5en
p,= HER - ©n -3 + 370 in regions (1), (3)

The coefficients

%(Ens - E3n3 - 3€n3 + 3€3n)

a

ey at the four corners of the plate by

where

{q}

W (D o e OO B

i
(@] l—-‘!l—w‘ B O o o
(@)

{a} =

W1

ql

{q} = [wl, exl, eyl,
b/8 -a/8 1 b/8
0 a/8 0 0
-b/8 0 0 -b/8
0 a/8 2 0
0 -a/8 -} 0
b/8 0 0 =-b/8
-b/8 0 - -b/8
b/8 0 i b/8
0 ~a/8 0 0
0 o - o0
-2 a/32 1/16 b/32
b/8 a/8 0 -b/8

130.

in regions (2), (4)

es W4,

a/8
-a/8

a/8
-a/8

a/8

a/32

a/8

- ol QO - oona [} [@ T

9

(] i—‘i!—w‘ Se= O ool
[#)Y

are related to the dispiacements

is the vector of nodal degrees of freedom

s O

-b/8

b/8

b/8

-b/8
b/8

b/32

~-b/8

]

a/8
~a/8

a/8
-a/8

Wy

6 and
X
(C.12)
I -b/8 -a/8
0 0 a/8
0 b/8 0
-3 0 al/8
i 0 -a/8
0] -b/8 0]
¢ -b/8 0
-1 b/8 0
0 0 a/8
-} 0 0
b a
1/16 - 35 33|
0 b/8 ~a/8
(C.13)



The generalised forces for the element due to a harmonic pressure wave

ilwt ~ k.s)
P(s, t) =e (C.14)
are given by
X T +% +1 “ik.s
{f} = [Kﬂ J j Pi(E, nje d&dn (C.15)
-1 -1

where k 1is the wave-number.

Figure C.k4.

If X, Y are the global coordinates and X, y are the local coordinates

for the element, figure (C.4), then we can write

X=A+xcos o=y sin q
Y=B+xsina+ycos g

ta (C.16)

.8 = kX.X + kY.Y

b
1

R
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where A and B are the global coordinates of the centre of the element

and o 1s the angle between the local and global coordinates.

Substituting (C.16) into equatién (C.15) gives

+1 +1
_ T [
{£} = [W] ] {p. (g, m).

-1 =1

—i{kX(A+€a coso = nb sina) + kY(B + £a sino + nb cos o)}

e Jd&dn

~i(kXA+kYB) - +§ ?1 —ii(ancosa +kYa sina)

= e Wt | P.(g, me
i B B
-1 =1
~in{~k_b sino + k,b cos a)
% kY } d&gdn (C.17)

e

The nodal forces {f} should then be transformed from the local axes

to the global axes as explained in Chapter I, equation (1.24).

The integration in (C.17) should be carried out in the four regions

of the element shown in fig. (C.3). This can be done in a closed form

as follows.

x
22 n+l i+l |, n-i+l 2
n ax., _ ax v (-1) n! x
a). [ X e dx = e . T
i=1 a” (o -i +1)! X
X 1
1
= FUN1{(a, n, X5 xz) (C.18)
b). J f Xnymeaxeby dx dy
v, 7Y
72
n+l i+l , .
- ! + +n-~1+1
- (il) n { { e(b a)y SERmErL 4o
i=l a (-1 + 1)!
Y1
72
_ ( (_l)n-1+1 e(b—a)y ym+n~1+1 dy }
J
71
n+l i+l /
- G~ o [FONI( + a, m+n-1+1, 5y, 7))

i=1 at (a - i+ 1!

+ D2 poNib - a, m 40 - i+ 1, y.» v))

FUN2(a, b, n, m, yi5 ¥,)
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where
a, b are real or complex numbers,
X, vy are real numbers, and

m, 0 are integer numbers.

If n=20
X, %,
ax & ;
[ e dx = em——
a EX
Xy 1
If a =20
x
2 n+1 gxz
n X
X dx =
| ey |
X %1
1
and
y2 y
j ebyym { f x"dx }dy
¥y -y
Yy
r2 n+l 7
- eby‘m (x )
Y n+l -y
71
_ e Ceomdn~l L nt+l min+l
=] T I v -1y }dy
71
=L FruNie m+n+l, v, v,)
n+ 1 ? * 71 Y2
- (D™ EWNLG, mr a1,y vy
= 0 (n odd)
or
2 o
=7 FUN1I(b, m+ n + 1, Yis yz) (n even or zero)
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Also

+1
= ( PV [FUNI(a, n, -1, +1)}dy

)

~1

= FUNi(a, n, -1, +1) i e’y dy
1

= FUN1(a, n, -1, +1).FUNL(b, m,

134,
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APPENDIX D

FINITE ELEMENTS AND DATA VALUES USED IN THE DIFFERENT EXAMPLES
OF THIS WORK

Do

Two=dimensional beam bending element of constant cross~section

|22,51,52

Node 1
y/

Node 2

This element has two nodes at the ends. The degrees of freedom at

the nodes are u,v and 9Z . The displacements along the axis of the

beam vary linearly with x whilst those normal to the axis vary cubically.
Data values used. ,

A : constant cross-sectional area = 1.0

I : second moment of area of the cross-section about the local z

ZZ
axis through the centroid = 1.0

E ¢ Young's modulus = 1.0
P ¢ mass per unit volume = 1.0
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D°20
i~ Plate element
Finite strip flat shell element 15,50 and 52 .

u, 8 Y,v

Node 2

ZyW o

J

This element has two nodes.The degrees of freedom at each node are
u,vyw and 9X.The variation of displacements in the x direction is
the same as the beam function of Appendix D.le -
Data values used
h  : constant plate thickness = 0.04 ins (1.016x10™> m)
£ : length in the x direction = 20.0 ins (0.508 m)
o : Poisson's ration =0.3
E  : Young's modulus = 1O,5x10“3 lb/’ins2 (7.24x?010 ﬂ/m2>
p : mass per unit volume = (3“26166:(!0"“3 lb.secz/ins4(2795,69 kg/mB)
The plate is considered simply supported at its edges parallel to the
y direction .
ii= Beam element
Thin walled open section beam element I?B,Eoﬁﬁﬁ and 52| .

\
J

P
N
&

This element has one node only with degrees of freedom u,v,w and Oyo
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Data values used
A : cross=sectional area = 0.2302 ins2 (0.1&85x10“3 mZ)

I ,I_ I : second moments of area of crosse-section with respect to

yy'yz' 2z

axes through attachment point A = 0.179,0.0,0.083 ins

(0.745x10™7,0.0,0. 3455x10™7 n")

asa ¢ coordinates of centroid of the cross-section =0.0,0.72 ins
(0.0,0.,0183 m)

Saf%Qy’%uz’Jé ¢ warping constafts = O‘,(),6.806>;:1Om3 ins5,O,O,O.O1649 ins6

(0.0,7.195x10™ " & ,0.0,4.428x10 a
J : Saint-Venant torsion comstant = 2e.263><’EOml‘}ine{’&(9«,41€3:e{’€<3m'H mq)
6 1b/ins® (2.759x101° N/u)

E, P, £: the same as the shell element .

G : shear modulus = 4.0x10

The distance between stringers is 8.2 ins (0.208 m).

De 20

i= Plate element
Finite strip singly curved shell element !15,51 and 52| .

YV

)

Node 1 Node 2

[ I

o W

This element has a constant radius of curvature with two nodes.the
degrees of freedom at each node are u,uy,v,vy,w and wy . The variation
of displacements in the x direction is the same as straight beam
functions.
Data values used
h i shell thickness = 0.04 ins (1.016x10™° m)
£ : length in x direction = 20.0 ins (0,508 m)
R : radius of curvature = 72,0 ins (1.829 m)
b : arc length(for one element) = 2.05 ins (0.052 m)
o : Poisson's ratio = 0.3
: Young's modulus = 1O,5x306 lb/insz (75235x101o N/m2>
p : mass per unit volume = 0.26166x10™° lb.sece/in54 (2795.69 kg/h3)
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The shell is considered simply supported at its edges parallel to

the y direction .
ii= Stringer elemeni.
The same stringer element used in Appendix D.B. .The arc length

between stringers is 8.2 ins (0.208 m).

Ddii'ﬁ
Two=dimensional isotropic rectangular plate bending element 10,51 and 52

&

xiiex

Node 1 Node 2

Y

Node 3

g
|

Node 4 f;

P SN
N

!
|
i
[
|
1
:
i
|
Zy %

This element has 4 nodes at the corners.The degrees of freedom at
the nodes are w, 9x and Oyoihe lateral displacements vary cubically
whilst the normal rotations vary linearly along each edge.

Data values used
h : constant plate thickness = 1.0

-

o ¢ Poisson's ration = 0.3
E ¢ Youngs modulus = 10.92 (D = E,hB/(WZ{ﬂa 02)) =1.0)
P

: mass per unit volume = 1.0
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D.5.
Two=dimensional orthotropic quadrilateral plate bending element

|45,48,51 ana 52| .

/ X
N G
X
Node 1 (5 Node 2

6 Na

y

¥ 8

Node 7 Node 3
Zew N

This element has 8 nodes (4 at the corners and 4 at the mid point of

the sides).The degrees of freedom at the nodes are w, gx, Qy at nodes

17 to 4 and 6 at nodes 5 to 8.The lateral displacements vary cubically

and normal rotations vary quadratically along each edge.

Data values used

h ¢ constant plate thickness = 1.0

B : angle betweeen material and global XY axes

DX,D quaD ¢ orthotropic plate constants referred to material axas
(for isotropic material szDyzD = E°h3/€12(%=ag)),
D,=0D , nys F(1=0 )eD = 1.0,7.0,0.3,0.35

p : mass per unit volume = 1.0

139,



P
Daobo

i= Plate element

Two-dimensional orthetropic gquadrilateral plate bending element.
This is the same element described in Appendix D.5 .

Data values used.
= 0.028 ins (1.016x10™° m)

n

B = 0,0

D, = Dy = 211 1lb.ins (2.385 Nem)
Dy = 6.33 1b.ins (0.7154 Nem)
ny = 7.385 1lb.ins (0.8347 N.m)

P o= 0626165x10“3 1b,sec2/ins% (2795.69 kg/m3 )

ii~ Stringer element
Two-dimensional grillage element with thin walled open section

|51,521] .

/Attachfment point

This element has three nodes(two at the ends and one at mid-point
along the x direction).The degrees of freedom at the nodes are w, 6x
and 91 at nodes 1 and 2 and 6 at node 3,
Data values used.
The plate is stiffened by channel section frames and 2 section stringers.
The distance between the frames is 9 ins (0.2286 m) and the distance
between the stringers is 4.5 ins (0.1143 m).

tringer data.

a sa coordinates of centroid of the cross-section = 0.%18,0.318 ins

(8.077x1073 | §,077%102 1)
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Cvgcz : coordinates of the shear centre of the cross-section
= 0.425 ,0.425 ins (0.018 ,0.018 m)

A  : cross-sectional area = 0.05862 insa {39782X?Oa5 ma}
I I i : sscond moments of area of cross-section with respect to
vy Tyz® T2z 4
axes through attachement point = 0.01722,0.01232,0.01074ins

(7.168x1079 45.128%10™2 ke li7x10™0 @)

: warping function with pole at shear centre evaluated at attachement

n
point = 0.0499
%QA : warping constant with pole at shear centre = B,Oéxio”# in55
(533§X?Oa52 o)
. . A . -5 . 4 =12 4
J  : Saint Venant torsion comstant = 1.573x10 ~ ins  (6.547x10 m )
e .
E : Young's modulus = 10.5%10° ib/insz (7@235x€0i0 N/hz )
G : shear modulus = %an?O6 i%/insz {2@759x?0?0 N/m2 )

p : mass per unit volume = 296?65x?0“4 1b°sec2/ins4 (2795.69 kg/mi}

Data values for frames.

B .
a2, = 0.214,1.25 ins (5.44x107,%.18x10™%

m)

Cy’cz = 0.516,1.25 ins (0.01%1,010318 n)
A 0.1145 insz <7w385x%@“5 mz)
I I ,I = 0.28094,0.0306,0.00786 insq {16169x10”?§€¢274x10”8,
vy vz’ Tzz -9 4
3.272x70° 7 m )
7 = 0.052189 ins5 (5@5?8x?0”10 m5)
J = 2§78x?6“5 iﬁs& {?3257x70“?i m%}

E;G,p = the same as the stringers .

1

<.
|
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De ?@e
Three-dimensional orthotropic guadrilateral plate bending element

{45,48,51 and 521 .

; X
P P
Ve %

///// Node 1 {5 Node 2

e
8
K2
v A 8-

¥

Node 4

This element has 8 nodes(4 at the cormers and 4 at the mid point of
the sides).The degrees of freedom at the nodes are u,v,w, ng Sy and
ﬁz at nodes 1 to 4 and § at nodes 5 to 8.The lateral displacements

vary cubically and normal rotations vary quadratically along each
edge.

Data values used.

h ¢ constant plate thickness = 1.0

£ : angle between material and global XY axes = 0.0

DX,D §E€’3xy : orthotropic plate constants referred to material axés

N ‘ 3 5
(for isotropic material D =D =D = E.h”/(12(1=0c)),

z ¥
D,=0D and D_ = 4(1=0 )D )
i Xy -
= ?a@ ??g;i} % 055 % §®E§ @

P : mass per unii volume = 1.0 .
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