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ABSTRACT 

FACULTY OF ENGINEERING AND APPLIED SCIENCE 

INSTITUTE OF SOUND AND VIBRATION RESEARCH 

Doctor of Philosophy 

MATRIX ANALYSIS OF WAVE PROPAGATION IN PERIODIC SYSTEMS 

by Ahmed Y.A. ABDEL-RAHMAN 

This work presents a method for studying the dynamical behaviour of 

periodic systems in one, two and three dimensions by matrix formulation 

which can exploit digital computer techniques for the analysis of complex 

structures. 

It is shown that free and forced wave-propagation in periodic systems 

can be understood by examining the variation of their characteristic 

propagation constants with frequency. General computer programs have 

been written to represent an arbitrary periodic system by a finite element 

model and to determine the variation of its propagation constants with 

frequency of propagation. The natural frequencies of som^ finite 

periodic systems are calculated from the propagation constants/frequency 

curves. 

The response of periodic systems to homogeneous random pressure fields 

is examined using periodic structure theory and finite elements. Examples 

of typical aircraft substructures and other engineering structures have 

been used throughout, and graphs showing the variation of the propagation 

constants with frequency and associated wave-forms and the response of 

these structures to random loading are presented. 

The response of general structures to random pressure fields using finite 

element techniques and the standard modal analysis is also presented. 

Examples of finite periodic structures are used and the results are comr 

pared with those obtained using the periodic structure method. 

This analysis provides an automatic means of investigating the vibration 

characteristics of any complex periodic structure by making use of exist-

ing finite element programs. 
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NOTATION 

Mbst of the symbols used in this text are listed below. Other natation 

are defined where they appear. 

General. 

I j Matrix 

[ j Row matrix 

{ } Column matrix 

[ Transpose of a matrix 

[ ] ^ Inverse of the transpose of a matrix 

[ ]* Conjugate of a complex matrix 

[ ]^ Imaginary part of a complex matrix 

r Real part of a complex matrix 

[l] Unit matrix 

[^x Diagonal matrix 

|a| Absolute value of a 

|i| Reference number i 

[c] Damping matrix 

[K] Stiffness matrix 

[M] Inertia matrix 

{q} Column matrix of generalised degrees of freedom 

{F} Column matrix of generalised nodal forces 

a, g Angles 

V Frequency in Hz 

w Angular frequency 

0 Non-dimensional angular frequency 

o Poisson's ratio 

# Propagation property 

p Density 

X Wave-length 
w 
A Shortest wave-length 

8 .8 ,8 Rotations about the x, y, z axes 
X y z ^ 

a Wave-number 

D Modulus of rigidity 

(iii) 



E Young's modulus 

h Plate thickness 

i /-I 

I Second moment of area of cross-section about the z axis 
through the centroid 

K Rotational stiffness 
r 

Translational stiffness 

t time 

u,v,w Displacements along the x, y, z directions 

u ,v ,w First derivatives of u, v, w with respect to y 
y y y 

Chapters I, II. 

p Propagation constant 

Real part of % 

Imaginary part of p 

u(r,t) Displacement field within an element 

[N(r)] Matrix of shape functions for an element 

{eCr)} Strain components for an element 

^B(ry] Differential of the element shape functions 

[D] Matrix of material constants 

[k] Stiffness matrix for an element 

^m] Mass matrix for an element 

{f} Column matrix of nodal forces for an element 

|Rj,[al,[T] Transformation matrices 

& Periodic length 

L Lagrangian 

T Kinetic energy 

U Potential energy 

Q Generalised non-conservative forces 

V Volume 

Chapters III, IV. 

Propagation constants along the d^, d^, directions 

a^,a2,a2 Components of the wave-number ^ along the d^, dg, directions 

Periodic distances (dimensions of a cell) along the d,, d^, d^ 
directions 

9 a? 
Operator = — ^ 

9x ay 

(iv) 



Chapter V 

5 Power spectral density of a response quantity ^ 

Sp Power spectral density of the pressure field 

U Convection velocity (phase velocity) of the pressure field 

CV Non-dimensional convection velocity of the pressure field 

Free wave speed (phase velocity) 

V Non-dimensional free wave speed 
w ^ 

a Mean square response 

k Angular wave-number 
k_, k Components of the wave-number k along the d^ and d^ 
^ directions 

E =-k& 

Eg —k^.A^, - kg. 

n Material loss factor 

g Modal damping 

P(2, t) Pressure field 

{q} Column matrix of generalised degrees of freedom 

[v] Transformation matrix 

6 Periodic length (length of a cell) for one-dimensional systems 

Periodic lengths (dimensions of a cell) along the d̂  and d_ 
directions 

(v) 



CHAPTER I 

1.1 Introduction 

A periodic system consists of identical cells, where a cell represents 

one period of the system, joined together in identical manner in one, two 

or three dimensions. There are many examples of such systems in physical 

and engineering structures: crystal lattices in solid state physics, a 

tall building having identical storeys, a flat or curved plate with 

stiffeners or supports at regular intervals in one or two dimensions (e.g., 

in aircraft and ship structures), a pipe-line system with stiffeners and 

supports placed at equal spacings, etc. Modular type multi-storey build-

ings can be regarded as three—dimensional periodic structures. 

Such structures are considered as finite periodic systems. Their 

natural frequencies fall into groups |40|, and the number of frequencies 

in each group equals the number of periods in the structure. When the 

number of periods is large, the natural frequencies are closely spaced. 

Calculating the response of these structures to dynamic excitation using 

the modal method of solution |35|, |37| requires modelling the whole 

structure and finding a large number of natural frequencies and associated 

normal modes. Such a procedure needs a lot of time for modelling and 

data preparation. Also the computer time and storage needed for the 

analysis can be very large. High modal density and some types of damping 

add further complications to the modal analysis |35|, |37|. 

The dynamical behaviour of such systems can be studied with great 

simplicity and accurately if we consider them as infinitely periodic and 

apply the periodic structure theory. For one-dimensional systems it 

can be stated as follows. 

A property ^ can propagate as a wave in an Infinite one-dimensional 

periodic system if the physical problem admits a solution of the type 

* _ Ae2ni(vt-anA) 
' n 

Ae i(wt + np) (1.1) 

where a = ^ , n = -2na&, w = 2wv (1.2) 
w 

a is the wave-number, A is the wave-length 



is the value of the property ^ associated with cell 

number n, 

V is the frequency, & the periodic length, 

w the angular frequency and A is a constant. 

The quantity % is known as the propagation constant. It represents the 

change in phase in passing from one cell n to its neighbouring cell 

n + 1: 

*n+l = 4n=^^ (1-3) 

Relations (1.1) and (1.3) can be used to describe attenuating waves |3|. 

In this case ^ will be a complex quantity. Its real part represents 

the change in phase while the imaginary part represents the attenuation 

in passing from one cell to the next. This theorem can be generalised 

for two and three-dimensional periodic systems. This will be investigated 

in Chapters III and IV. 

The study of wave propagation in periodic systems dates back to the 

eighteenth century, as Brillouin has discussed in his classic work |3| 

on the mathematical physics of wave propagation. His work covers a wide 

range of problems that occur in solid state physics, optics, electronics 

and electrical engineering. 

The dynamical behaviour of periodic systems that consist of beams 

and plates has been recently investigated by employing the periodic 

structure theory. Heckel |l9|, Ungar |60| and Bobrovnitskii and Maslov 

I 51 studied the flexural wave motion in periodic beam structures. Mead 

and Wilby |27| considered the effects of damping on such structures. 

Mead |28, 311, Sen Gupta |55, 561 and Mead and Sen Gupta |29, 301 studied 

the free and forced vibration of periodic beams and rib-skin structures. 

They showed that the response of one-dimensional periodic structures of 

five bays or more to random pressure fields is close to the response of 

infinite structures. Similar results have been obtained experimentally 

l"l-

Approximate methods of solution have been employed by Abrahamson |1| 

and Mead |32|. They used an extension of the Rayleigh Method and the 

Rayleigh-Ritz method to study the nature of waves propagating in non-

2. 



uniform periodic structures. Lindberg and Olson |24| and Orris and 

Petyt |46 , 47| used the finite element method to study free wave propa-

gation and the response of one-dimensional periodic structures to con-

vected random pressure fields. 

The purpose of this work is to present a general method to study 

the dynamical characteristics of any periodic system in one, two or 

three dimensions using the finite element method and the periodic structure 

theory. First the structure is divided into cells, where a cell repre-

sents one period of the structure. One cell is represented by a finite 

element model with interior and boundary degrees of freedom. The linear 

equation of motion of the cell is given by 

M{q} + [c]{q} + [K]{q} = {F} (1.4) 

where 

[ x ] , [Mj and [c] are the stiffness, inertia and damping matrices 

respectively, 

{q} and {F} are the generalised nodal degrees of freedom and forces. 

Free and forced waves propagating in the structure can be investigated by 

solving equation (1.4) after applying the appropriate constraint 

relations between the boundary degrees of freedom and forces given by 

equation (1.3). 

Chapters II, III and IV deal with free wave propagation in one, two 

and three-dimensional periodic systems. In Chapter V the response of 

one and two-dimensional periodic systems to random pressure fields is 

investigated. Also the response of general structures to random forces 

using the standard modal method of solution is presented and examples of 

finite periodic structures in one and two dimensions are used. Conclusions, 

general discussion and suggestions for future work are presented in 

Chapter VI. 

1.2 Theoretical Background to the Finite Element Method 

The equations of motion of systems composed of particles and rigid 

bodies can be formulated using Newton's laws of motion, where physical 



coordinates and forces acting on the individual components of the system 

are employed. A more general approach referred to as Variational 

Mechanics can be used to investigate the dynamical characteristics of 

any system whether discrete or continuous. It considers the system as 

a whole instead of its individual components, and formulates its equations 

of motion by considering two scalar quantities only, namely the kinetic 

and potential energies, and using Lagrange's equations which caa be ivritten 

as 

= Qi (1-5) 
1 1 

where L is known as the Lagrangian of the system and is defined by 

L = T - U (1.6) 

T and U are the kinetic and potential energies of the system, 

q^ are the generalised degrees of freedom in the system, 

n is the number of degrees of freedom, 

QL represents the generalised nonconservative forces in the system. 

In order to derive the equation of motion of complex continuous 

structures some approximate methods must be employed. One of the most 

reliable methods is the Finite Element Technique, which is in fact an 

extension of the Rayleigh-Ritz method. 

The main idea behind the finite element method is to represent any 

system by a mathematical model that can exploit the capacities of digital 

computers. It regards any continuous system as an assemblage of finite 

number of discrete elements, where each element is a continuous part of 

the system. These elements are joined together at a selected number of 

node points. At these nodes the displacements should be compatible and 

the internal forces be in equilibrium. The basic features of the method 

can be summarised in the following steps. 

i) The structure is divided into a number of elements, where each 

element is defined by a set of node points. These node points 

can be shared by several elements. 

ii) The stiffness, inertia and consistent load matrices are calcu-

lated for each element. 

4. 



iii) The system stiffness, inertia and consistent load matrices 

are formed by assembling the individual matrices for each 

element. 

iv) The physical boundary conditions are applied on the system 

matrices. 

The element matrices are calculated as follows. 

a) Define the element by a set of node points (usually gited on 

the element's boundary) with a certain number of degrees of 

freedom at each node. 

b) Represent the displacement field in the element by a set of 

functions such that each one corresponds to a unit value of 

one of the degrees of freedom at the nodes. 

The displacement field u at any point 2 within am element i can 

be written as 

{u(r^ t)}^ = [N(r)]^{q(t)}^ (1.7) 

where 

[N(r)]^ is a matrix containing the element shape functions, 

{q(t)}^ is a vector of the element nodal degrees of freedom. 

The element strain components can be written in the form 

{E(r^ t)}^ = [B(r)]^{q(t)}^ (1.8) 

where 

[B(r)]^ is a differential of the element shape functions. 

The element kinetic and strain energies can be Tfritten in the form 

™i " ^ 

"i = a 

p.{u}.^{u}. dv (1.9) 
^1/ 1 1 

V. 
1 

dv (1.10) 

V. 
1 

where 

is the density, v^ is the volume and is a matrix of 

material constants for element i. 

5. 



Substituting (1.7) into (1.9) gives 

T. = I Pi{q^t)}^^^N(r)]^^[N(r)]i{q(t)}^ dv 

or 

?! = (1.11) 

[m]̂  is known as the element consirtent inertia matrix where 

= Pi[N(r)]i^[N(r)]^ dv (1.12) 

V. 
1 

Similarly, substituting (1.8) into (1.10) gives 

U. = I 1 {q(c)}i^YB(r)]i^[D]i[B(r)]i{q(t)}i dv 

V. 
1 

or 

(1.13) 

[k]^ is known as the element consistent stiffness matrix, where 

[k]i = [B(r)]i^[D]i[B(r)]^ dv (1.14) 

V. 

If external forces P(2, C) exist, then the virtual work done by the 

external forces is given by 

6Wĵ  {5u(r^ t)}^ {P(r^ t)}^ dv (1.15) 

V. 
1 

Introducing (1.7) into (1.15) gives 

5w. 
1 

{5q(t)}^^[N(r)]^^ fP(2' dv 

V. 
1 

or 

5w\ = {5q(t)}^ {f}^ (1 .16) 

{f}^ is known as the element consistent load vector, where 

6. 



[N(r)]^^iP(2, t)}^ dv (1.17) 

V. 
1 

The kinetic and strain energies of the complete system can be written as 

T = 4{q}^[M]{q} (1.18) 

U = i{q}^[K]{q} (1.19) 

where 

{q} is a vector of the system nodal degrees of freedom 

[M] and [x] are the system inertia and stiffness matrices, where 

i=l 

[K] = (1.21) 

[M] = .1 (1.20) 

N is the total number of elements in the system 

is a transformation matrix given by 

W i = W i K ] i [ a ] i (1-22) 

[aj^ is a Boolean matrix relating the degrees of freedom of the 

individual elements to the degrees of freedom of the complete system. 

[Rg]^ is a transformation matrix for the application of the physical 

boundary condition. 

[r]^ is a transformation matrix to transform the element matrices 

from the element local coordinates to the system global coordinates. 

The generalised nodal forces can be obtained by considering the virtual 

work done by the external forces. This can be written in the form 

5w = {5q}*^F}. (1.23) 

{F} is the system consistent load vector, where 

^ T 
{F} = % [Bj. ̂ {f}. . (1.24) 

i=l ^ 1 

Introducing (1.18), (1.19) and (1.24) into Lagrange's equations. 

7. 



equations (1.5), yields the equations of motion for the undamped system 

in the form 

[M]{q} + [K]{q} = {F} (1.25) 

This equation can be solved for free and forced inotion of the structure 

using standard matrix techniques. 

For detailed analysis of the finite element imethod see Zienkiewicz 

|69l. 

8. 



CHAPTER II 

FREE WAVE PROPAGATION IN ONE-DIMENSIONAL PERIODIC SYSTEMS 

2.1 General 

There are many structures in engineering that can be regarded as one-

dimensional periodic systems. Examples of such structures are: a tall 

building consisting of identical storeys, a flat or curved plate with 

stiffeners at regular spacings, a pipe-line system with supports at equal 

intervals, electric transmission lines, etc. Recently, as mentioned in 

the previous chapter, the literature has contained a large number of papers 

on the wave propagation in one-dimensional periodic structures and their 

response to dynamic loads. These structures can be considered as an 

assemblage of identical cells (periods) joined together in identical 

manner. Their dynamical characteristics can be easily and quickly inves-

tigated if their periodic nature is utilised. This can be achieved by 

considering such structures as infinitely periodic and studying the nature 

of waves propagating in them using the periodic structure theory. This 

theorem was mentioned in Chapter I and will be repeated here since the 

whole mathematical formulation in this ifork is based on it. For one-

dimensional systems it can be stated as follows: 

A property ^ can propagate as a wave in an infinite one-dimensional 

periodic system if the physical problem admits a solution of the type 

^ . 2ni(vt - an&) 
b = Ae 
'̂n 

= Aei(wC+np) 
n 

(2.1) 

where is the value of the property ^ at a given point in cell number 

n (the origin of the system is chosen at the cell defined by n = 0). The 

definitions of the other variables in equation (2.1) w^^^ given in Chapter 

I, Sec. 1.1. This means that the property ^ at a given point in cell 
n 

n can be related to ^^+2 the corresponding point in cell n + 1 by 

the relation 

9. 



, , -2mia2 

or ^ i 

(2 .2 ) 

e 
n+1 

p is known as the propagation constant, where 

% = -2na& (2.3) 

which represents the change in phase in passing from one cell to the next. 

Attenuating waves can be described by relations (2.1) and (2.2) but 

in this case the wave-number a (and hence the propagation constant p) 

will be a complex quantity. The real part of u represents the change 

in phase while the imaginary part represents the attenuation in passing 

from one cell n to its neighbouring cell n + 1. 

In this chapter a matrix formulation for studying the free wave propa-

gation in any one-dimensional periodic system using the finite element 

technique and the periodic structure method is presented and discussed in 

detail. The variation of the propagation constant with frequency is 

obtained by solving the equations of motion of one periodic section (cell) 

of the system. Examples of simple one-dimensional periodic systems will 

be discussed first to illustrate the general behaviour of these systems, 

then the method will be used to study some typical aircraft substructures 

such as flat and curved stiffened plates. The determination of the 

natural frequencies of some finite periodic structures from the propagation 

constant/frequency curves is also investigated. 

This analysis provides an automatic means of studying any periodic 

system by making use of existing finite element routines. 

2.2 Mathematical Formulation 

Consider a one-dimensional periodic system composed of an infinite 

number of identical cells (periods) joined together in identical manner as 

shown in figure (2.1a). Using the finite element technique, a cell can 

be represented by a model with interior and boundary degrees of freedom. 

Each cell is coupled to its neighbours on each side (left and right) by a 

certain number of degrees of freedom and forces. Let {q^}, 

10. 



{F } and {9%}) degrees of freedom and forces at the nodes 

on the interior, left and right of the cell considered, 

equation of motion of an undamped cell is given by 

The linear 

([K] - w^[M]){q} = {F} (2.4) 

where 

{q} = {F} 

R 

(2.5) 

[K] and [n] are the stiffness and inertia matrices for the cell. They 

can be partitioned according to the interior, left and right degrees of 

freedom in the cell. Hence 

[K] = •=1,1 'l.L ^,R 

"L.I ^,L 

^,L 

[%] 

^ , L **L,R 

^ , L **R,R 

(2.6) 

The forces {F} are due to the external forces acting on the system and 

the forces of interaction between the cell and its neighbours. For free 

wave-motion, i.e., no external forces exist, equal to zero; 

however, and {F } are not zero since they transmit the wave-

motion from one cell to the next. This wave-motion is characterised by 

relating the degrees of freedom and equivalent nodal forces in one cell 

to the corresponding degrees of freedom and forces in adjacent cell by 

the following relations. 

fSl^n+l = e^tqLln. 

{FLin+l = e'^fFL^n 

(2.7) 

where ^ is the propagation constant. 

At the common boundaries between cell n and the neighbouring cell 

n + 1, the displacements must be equal and the interconnecting forces 

must be in equilibrium. Hence, 

11. 



and 

(Sl/n+l • (SR'n 

(2 .8) 

Substituting (2.7) into (2.8) gives 

(2.9) 

(2.10) 

Since relations (2.9) and (2.10) are the same for any cell, the suffix 

n can be dropped. 

Relation (2.9) can be used to write the relation between the degrees 

of freedom in the cell in the matrix form: 

[W] 

where 

[W] = : 0 

0 ; I 

0 

Also relation (2.10) and the condition 

{F,.} = 0, 

can be written in the matrix form: 

[W] 

R 

= 0 

where 

[w] - ' I : ° 1 0 

0 ; I 

(2.11) 

(2 .12) 

(2.13) 

(2.14) 

Substituting (2.11) and (2.13) into (2.4) results in equation of the 

form 

12. 



([&(%)] - M(p)]) = 0 

where [ K(p) ] and [ M(u) ] are complex matrices given by 

(2.15) 

[K] K. K, 
1,1 I,L 

[5] 
\ , L ^ , L 

^ , L 

[W ] M [W] (2.16) 

Equation (2.15) represents an eigenvalue problem in w for a given value 

of p. For propagating (unattenuated) waves p is real. In this case 

equation (2.15) can be rearranged to give a real symmetric eigenvalue 

problem in w for a given value of This laill be discussed in Section 

2.3. Also, equation (2.15) can be reformulated to give an eigenvalue 

problem in p for a given frequency w, where p will be generally a 

complex quantity. This will be discussed in Section 2.5. 

2.3 Formulation for the Real Propagation Constant 

Free waves can propagate (without attenuation) in one^dimensional 

undamped periodic systems within certain frequency bands only (called the 

propagation bands) |3|. In these bands the wave-number a, and hence 

the propagation constant w, is a real quantity. In section a 

formulation is presented to study the variation of the real propagation 

constant 

periodic system. 

W with frequency for any one-dimensional linear undamped 

Before proceeding to the mathematical formulation, some of the pro-

perties of one-dimensional periodic systems will be briefly discussed. 

Detailed discussion can be found in |3|. 

As explained in section 2.1, the relation between a propagation 

property ^ at any point in cell n and # at the corresponding 

point in the neighbouring cell n + 1 at any instant of time is given 

by equation (2.2), namely 

13. 



or 

>n+l = *n G 
-2nia2 

where p is the propagation constant and is given by relation (2.3), 

namely, 

W = -2ma& 

& is the periodic length (length of the cell) 

a is the wave-number. 

For propagating waves (non-attenuating) the wave-number a (and hence u) 

is a real quantity where 

a = 1/A 
w 

(2.17) 

A is the wave-length. 

The relations (2.2) can be satisfied by using a' and p' 

and ^ where 

a' = a 2 

u' = p ̂  2nm 

where m is an integer number. 

instead of a 

(2.18) 

Solving the equation of motion of the system given by (2.15) must 

yield the same values of the frequency w and the corresponding values of 

the vectors {q} for every equivalent p and p'. This means that the 

propagation property # (the vectors {q} in equation (2.15))and its 

frequency w are periodic functions of ^ with period 2n. Therefore 

it is sufficient to examine the relation between w and ^ within one 

period only. The period given by 

or 

-n $ u g n 

1 ^ 1 
(2.19) 

is chosen and is called the fundamental (first) zone of the one-dimensional 

system. This zone contains a complete period of w(w) allowing us to 

examine all the frequencies that can be propagated. Negative values of ^ 

means a wave travelling to the right (see Figure(2.la^ while positive ^ 

means a wave travelling to the left. Since a wave propagates to the left 
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or to the right in the same manner, the curve relating w to p (or a) 

must be symmetrical about the origin with a maximum (or minimum) at w = 0 

(or a = 0). Also due to the periodicity of the curve there will be another 

maximum (or minimum) at n = (or a = 2 R e s t r i c t i n g the values of 

and inside the zone given by (2.19) means that the wave-length X 

varies between 
w 

and 

X = m (at w = 0; a = 0) 
w 

A = 22 (atu= +n : a = + -r) 
w — ' — 2& 

(2.20) 

(2.21) 

The wave-length given by (2.21) is the shortest ivave-length for any wave 

travelling in the system. See Brillouin |3| for relevant discussion. 

Frequencies corresponding to % = 0 (a = 0) and % = (a = 2 

called critical frequencies. They are characteristic of the periodic 

system and depend on its physical properties. 

Now for a given value of ^ (real quantity) the matrices [5] and 

[n] in equation (2.11) can be written as 

[K^W)] = [Ff] + i[Ki], 

[M(p)] = [M^] + i[M^]. 

Substituting (2.22) into (2.15) gives 

( P ] + i P j - a,2([5T + i[ii])) {(,:-} + i{qi}} - 0 

(2.22) 

(2.23) 

where {q^} = {qi} (2.24) 

Separating the real and imaginary parts of (2.23) combining the two 

sets of equations together gives 

K -K^ - u = 0 (2.25) 

From (2.12) and (2.13) it is clear that for real values of p we can write 
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[w] = [W*]^ (2.26) 

where * denotes the complex conjugate, and hence the matrices [K] and 

[5] (given by (2.16)) are Hermitian, i.e., 

- [K], 
(2.27) 

[M*]" = [S] 

Therefore, equation (2.25) represents a real symmetric eigenvalue problem 

since, 

L 
K'] = -

[Mi] = -

This equation can be solved to find the variation of the frequency w with 

the propagation constant p (where w is real). For ea^h value of w 

equation (2.25) will give a set of frequencies occurring in equal pairs. 

The corresponding eigenvectors will define the wave inotion in the system 

at these frequencies. The method used in solving this eigenvalue problem 

is discussed in Appendix A. 

2.3.1 Computer programs 

A general computer program has been written to represent one period 

(cell) of a^y periodic system by a finite element model and to form the 

matrices in equation (2.25) for different values of the real propagation 

constant For each value of p the eigenvalue problem (2.25) is 

solved to find the corresponding values of the frequency w and associated 

wave-forms. The basic flow diagram for the computational procedure is 

given in Appendix B. 

2.3.2 Illustrative examples 

This example will be used to explain and illustrate some of the pro-

perties of one-dimensional periodic systems discussed at the beginning of 

this section. 

Consider the transverse wave motion in an infinite beam resting on 

simple supports at regular intervals as shown in figure (2.2a). One cell 

is represented by a finite element model, figure (2.2b). The beam element 
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and Che data values used in the analysis are given in Appendix Dl. The 

length of the cell & (distance between the supports) is taken equal to 

unity. The cell is divided into ten beam elements. The degrees of free-

dom considered at the nodes are the transverse motion v and the rotation 

and hence at the supports only 8^ exists. Figures (2.2b, c and d) 

show different choices for the basic cell representing the system. Although 

any one of these choices can be used for the analysis, it is advantageous 

to choose the cell with the minimum coupling degrees of freedom to its 

neighbours (figure (2.2b)) since this will, in general, simplify the analysis, 

Also it should be noted that the number of independent waves that can exist 

at any frequency equals twice the minimum number of coupling degrees of 

freedom between the cells [32| (only the rotation 8 in this case). Each 

pair of these waves represents two identical waves travelling in opposite 

directions. The problem is solved for various values of the real propaga-

tion constant ^ to find the corresponding frequencies of propagation. 

Figure (2.8) shows the variation of the non-dimensional frequency 0 with 

the propagation constant % for values of p varying between -3n and +3w 

where 

n = wC^Y--) (2-29) 

zz 

p is the beam density per unit length, 

2 the periodic length, 
I : the second moment of area of the cross-section about the local z axis 
zz 

(see Appendix Dl)j 

E: Young's modulus. 

From the graph it can be seen that the structure allows propagation 

within some frequency bands only (where the curves 0(iO exist). These 

are called the propagation bands and hence the beam acts as a pass-band 

filter. Waves with frequencies outside these bands are strongly attenuated. 

This will be discussed in a later section. Also it is clear that the fre-

quency is a periodic function of ŵith period 2w, and symmetrical about 

the frequency axis (line % = 0.0). Figures (2.9) aad (2.10) show the 

frequencies of propagation and the corresponding wave-forms in the first 

and second propagation bands for various values of the propagation constant 
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W. These wave-forms are the eigenvectors obtained by solving equation 

(2.25). It should be noted here that these eigenvectors are complex quan-

tities and only the real part of the solution 

(qf + iqi).ei(wt+nw) 

should be considered. 

When w = 0 the corresponding wave-form represents a standing wave 

where adjacent cells are vibrating in phase with one another. In the first 

band (upper bound) the frequency and the corresponding wave-form coincide 

with the fundamental natural frequency and associated normal mode of vibra-

tion of the single cell with its coupling degrees of freedom (8^ at the 

left and right supports in this case) constrained, while in the second band 

(lower bounding frequency of the band) they coincide with the second natural 

frequency and associated normal mode of the single cell with its coupling 

degrees of freedom unconstrained. The wavelength for these waves is given 

X = l/la = ™ 
w ' ' 

since the wave-number a is equal to zero. As the absolute value of p 

increases the wave-length decreases until it reaches the shortest wave-length 
1 

A when % = + n (or a = + ̂ y) where 
s — — 

A = T^T = 2& 
s |a| 

which can be regarded as a wave travelling to the right (corresponding to 

p = -m) or to the left (% = +n) or even as a standing wave where adjacent 

cells are vibrating in counter-phase with one another. In the first band 

(lower bounding frequency of the first band) the frequency of propagation 

and the corresponding wave-form coincide with the fundamental natural fre-

quency and associated normal mode of vibration of the single cell with its 

coupling degrees of freedom unconstrained, while in the second band (upper 

bounding frequency) they coincide with the second natural frequency and 

normal mode of the single cell with its coupling degrees of freedom const-

rained. For intermediate values of ^ (0 < < n ; 0 < |a| < ^^0 the 

corresponding waves are travelling waves to the right for negative p and 

to the left for positive These results were demonstrained on a movie 

film produced by the computer showing clearly the standing and travelling 



waves. Changing the values of ^ (or a) to p' (or a') in the analysis 

such that 

p' = p + 2nm or a' = a + % 

where m is any integer number will result in the same waves obtained for 

the corresponding values of % (or a) with a wave-length always given by 

= l/|a| 

and direction of propagation determined by the sign of p. This shows that 

the restriction on the values of p inside the fundamental zone given by 

(2.19) should be observed when determining the wave-length and the direction 

of propagation. 

To check the accuracy of the finite element results produced here, bhe 

single cell representing the system is idealised using different numbers of 

elements and the results are compared with those produced using closed 

form solution |31, 55|. Table 2.1 shows a comparison of the bounding fre-

quencies for the first three propagation bands obtained using the exact 

solution and using different finite element idealisation for the cell 

(frequencies corresponding to p = 0 or a = 0 and p = +n or a = + 

From the table it is clear that even when the cell is idealised with four 

elements only the finite element results are very close to the exact ones. 

The same accuracy is obtained for intermediate values of p (0 <|w| < n). 

The effect of adding rotational stiffness at the supports, figure (2.3a), 

on the propagation constant/frequency curve is investigated by considering 

a single cell with half the rotational stiffness at each support, figure 

(2.3b). The cell is divided into ten beam elements. Tbe beam element and 

data values used are the same as before. The results are shown in figure 

(2.11) for values of the rotational stiffness K = 0, 4, 10 and 

The propagation constant % is varied between 0 and -n only. As can 

be seen from this graph increasing the value of K has the effect of 

narrowing the width of the propagation bands (only the first two bands are 

shown). Similar to the beam on simple supports (K = 0), frequencies 

corresponding to values of % equal to zero or +n (bounding frequencies 

for the various propagation bands) coincide with the natural frequencies 

of the cell with its coupling degrees of freedom unconstrained or constrained 
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and hence, as can be seen from figure (2.11), the addition of dhe rotational 

stiffness at the supports affects only the bounding frequencies coinciding 

with the natural frequencies of the unconstrained cell. At the limit when 

K = m the propagation bands disappear completely amd rm propagation 

occurs in the beam. Similar results were produced in |30, 31 and 55| 

using closed form solution. 

2.3.3 Two examples of typical aircraft substructures 

Most aircraft substructures are composed of flat or curved plates with 

stiffeners at regular spacings. The following two examples are typical of 

such structures. 

a. Stringer stiffened flat panel, figure (2.4a). 

Figure (2.4b) shows a finite element idealisation for one cell. The 

elements and data values used in the analysis are given in Appendix D2. 

The cell is represented by four flat strip elements aa^ one thin-walled 

open section beam element. The degrees of freedom considered at each 

node are the transverse motion w and the rotation 8 . The variation 
X 

of the propagation constant with the nonrdimensional frequency 0 is shown 

in figure (2.12) for the first two propagation bands, where w is restricted 

between zero and only. Similar to the beam on simple supports the 

panel allows propagation within some frequency bands only. The upper and 

lower bounding frequencies for the bands occur at values of p equal to 

zei^ or -n. Waves with frequencies outside these baajs attenuate rapidly 

and the panel acts as a pass-band filter. 

b. Stringer stiffened curved panel, figure (2.5a)' 

Figure (2.5b) shows a finite element idealisation for a single cell. 

The elements and data values used in the analysis are given in Appendix D3. 

cell is represented by four curved strip elements for the panel and one 

open section beam element for the stringer. The degrees of freedom at the 

nodes are u, u^, v, y^, w, w^. At the stringers only u, v, w and w^ 

are retained. Figure (2.13) shows the variation of the propagation constant 

with the non-dimensional frequency 0 in the first t%m propagation bands. 

From the graph it is clear that the lower bounding frequency of the second 

band does not occur at values of ^ equal to zero or Otherwise the 

panel shows similar behaviour to the beam example discussed in Section 2.3.2. 
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The results obtained here for these two examples are in full agreement, 

within the readings taken from the plotted results, with those produced in 

1141 using transfer matrix analysis. The accuracy of the results produced 

here can be increased by simply increasing the number of elements represent-

ing the cell or by using more accurate elements. 

2.4 Transition from Non-Periodic to Periodic Systems 

In this section, the effect of adding periodic perturbation to a con-

tinuous medium on the variation of its propagation constant with frequency 

is investigated. 

Consider the transverse wave-motion in an infinite beam resting on 

spring supports at regular spacings as shown in figure (2.6a). One cell 

is represented by a finite element model with ten beam elements, figure 

(2.6b). The length of the cell (distance between the supports) is taken 

equal to unity. The beam element and data values used in the analysis are 

given in Appendix Dl. The degrees of freedom at the nodes are the trans-

verse displacement v and the rotation 8 and hence each cell is coupled 

to its neighbours on each side by two degrees of freedom. The problem is 

solved for different values of the spring supports stiffness K . For each 

case the real propagation constant ^ is plotted as a function of the non-

dimensional frequency 0 as shown in figure (2.14). For K = 0 the beam 

allows propagation at all frequencies and the curve relating n to 0 is 

the same as the one obtained by considering the equation for the transverse 

wave motion in an infinite beam given by 

4 2 
EI ^ * f . 0 (2.31) 

a / 

and considering 

v W = V (2.32) 
o 

as a solution to (2.31) results in the relation 

o o EI . 
V = 4n — a * (2.33) 

but 

2w ' * 2n& " "-El" 
V = , a = - and 0 = (§^^—)* (2.34) 

zz 
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Substituting (2.34) into (2.33) gives 

0 = (2.35) 

where 

X is the distance along the beam and v is a constant. 

Table 2.2 shows a comparison between the finite element results and the 

exact solution obtained by (2.35) where, as can be seen from the table, the 

finite element results are very close to the exact ones. 

Non-zero values for K makes the function 0(u) discontinuous and 

the beam starts to act as a pass-band filter allowing propagation within 

some frequency bands only. Increasing the values of simply increases 

the discontinuity in the curve. The width of the various propagation bands 

can be varied by varying the value of K . For - 100 the first band is 

very narrow while for K = 1000 the second band occurs at almost a single 

frequency only. When K = « the beam acts as the beam on simple supports 

giving 0(p) similar to the one obtained for the example in Section 2.3.2, 

figure (2.8). 

The effect of periodic perturbation in the form of point masses placed 

at equal intervals on the beam, figure (2.7a), on the propagation constant/ 

frequency curve is shown in figure (2.15) for various values of the mass m. 

A finite element idealisation of one cell is shown in figure (2.7b). The 

same beam element and data values used in the previous example are used 

here. The distance between the masses & (periodic length) is taken 

equal to unity. Here increasing the value of the point mass m increases 

the discontinuity in the propagation constant/frequency curve and hence 

narrowing the propagation bands until the limit when m = * where the 

results are equivalent to those obtained in Section 2.3.2 for the beam on 

simple supports. 

It is interesting to compare the difference between the effects of 

adding translational spring supports or point masses on the propagation 

constant/frequency curve. This can be explained by the fact that the 

motion of each cell is due to the forces of interaction with its neighbour-

ing cells and the forces tending to return the cell to its equilibrium 

position. The latter increases only by the addition of the translational 

stiffness and not by the point masses. 
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2.5 Formulation for the Complex Propagation Constant 

In Section 2.3 equation (2.15) was solved by considering that die 

propagation constant ^ is a real quantity and the problem was formulated 

to give an eigenvalue problem in the frequency w corresponding to a 

given value of A more general way to solve equation (2.15) is to formu-

late it to give an eigenvalue problem in p for a given value of w. This 

formulation has the advantage of giving the values of % at any frequency 

w, where % will be generally complex, enabling us to study the dynamical 

behaviour of the periodic system at all frequencies. However, it is more 

complicated to formulate and requires solving an eigenvalue problem with 

unsymmetric matrices, but on the other hand this eigenvalue problem can, 

in some cases, be of much smaller order than the one obtained in the formu-

lation for the real propagation constant. 

Now for a given value of the frequency w 

written in the form 

equation (2.15) can be 

where 

[D(w)] 

[D(;)] = [K(u)] - u^[M(u) 

D. 

1,1 

L,I 

D 

D 

I,L 

L,L 

(2.36) 

(2.37) 

The first relation in equation (2.36) gives 

(si) = °i.i (si) 

Relation (2.38) can be used to eliminate {q } from equation (2.36). This 

results in an equation of the form 

(2.38) 

[D(w)]{q.} = 0 (2.39) 

where 

[D] = [T'][D][T]. 

The matrices [T] and [T'] are given by 

M = 

(2.40) 

(2.41) 
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I] (2-42) 

Examination of (2.L#, (2.13) and (2.16) shows that the propagation constant 

^ appears in the elements of the matrices [R] and [Mj, and hence in 

[Oj and [Dj, only in the form 

(notice that the matrix D and hence 0?^?' does not contain e"^^). 

Therefore equation (2.39) can be written in the form 

+ e-iUDg] + [B3]){qL} = 0 (2.43) 

The matrices [B^], [Bg] and [B^j are of the same order as [o] where 

each matrix contains only the elements of [Dj which are multiplied by 

e^^, e and those that do not contain e"^^\ 

Multiplying equation (2.43) by e^^ and putting e^^ = A results in 

an equation of the form 

(A^fB^] + ^[Bj] + [B2]){qL} = 0 (2.44) 

Equation (2.44) represents a generalised eigenvalue problem of the form 

(A X* + A + ... + A ){x} = 0 (2.45) 
n n—1 o 

where n = 2 in this case. 

Appendix A gives the different methods for converting equation (2.45) 

into a linear eigenvalue problem of the form 

([G] - AI){Y} = 0 (2.46) 

if either A or A is a non-singular matrix, ^here | G| is a real n o L J 
unsymmetric matrix. Or to the general form 

([A] - X[B]){Y} = 0 (2.47) 

if both A^ and A are singular, where [A] and [s] are real unsym-

metric singular matrices. The matrices A^ and A will be singular if 

the number of coupling degrees of freedom of the single cell chosen to 

represent the system is more than the minimum number that can be obtained 
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by a different choice of the cell. For example, in the case of the beam 

on multiple supports discussed in Section 2.3.2, choices of the cell shown 

in figures (2.2c) and (2.2d) will result in singular A aad A matrices. 
" n o 

%%dle the choice shown in figure (2.2b) (cell with minimum coupling degrees 

of freedom to its neighbours) will result in non-singular matrices. For 

some complex periodic structures it can be more convenient to represent 

the structure by a cell with coupling degrees of freedom more than the 

minimum number that can be obtained by a different choice of the cell. 

Methods of solving these eigenvalue problems are also discussed in Appendix 

A. 

The eigenvalue problem (2.45) can be formulated and solved for given 

values of w to obtain the corresponding values of A, and hence p, 

which will, in general, be a complex quantity. 

2.5.1 Computer programs 

A general finite element computer program has been written to represent 

a single cell of the periodic system by a finite element model and form the 

matrices in equation (2.45) for a given frequency w. Then the eigenvalue 

problem (2.46) or (2.47) is formed and solved to find the corresponding 

propagation constants The basic flow diagram for the computational 

procedure is given in Appendix B. 

2.5.2 Illustrative example 

The same example used in Section 2.3.2, that is the infinite beam on 

simple supports, is used here again to illustrate the general behaviour of 

one-dimensional periodic systems at any frequency. The same finite element 

idealisation for the single cell is used here, figure (2.2b). In this 

system each cell is coupled to its neighbours on each side by one degree of 

freedom only, namely the rotation 8 at the supports, and hence only two 

independent waves can exist at any frequency {32|. (The number of inde-

pendent waves that can exist at any frequency equals twice the number of 

coupling degrees of freedom between the cells.) These will be two identical 

waves but travelling in opposite directions. Figure (2.16) shows the 

variation of the real and imaginary parts of p with frequency for the 

wave travelling to the right where the real part of ^ is negative. As 

can be seen from the graph there are bands of frequencies within which the 
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imaginary part of p (p^) is alternately positive and zero. When is 

non-zero (attenuation bands) the corresponding real part w is either 

zero or +n (in some cases, as will be shown in the next sub-section, 

caa take any value within the attenuation bands). Waves with frequencies 

within these bands are attenuated waves where the real part of ^ (zero or 

in this case) represents the change in phase while the imaginary part 

represents the attenuation in passing from one cell to the next (the ampli— 

tude of the wave reduces by e ^ per cell). The bands of frequencies 

where is zero are called the propagation bands since within these bands 

waves can propagate (without attenuation). It is clear that these propaga-

tion bands coincide with the results obtained in Section 2.3.2, figure 

(2.8). Figure (2.17) shows the attenuating wave-form corresponding to 

frequencies below the propagation band (where p = +̂Tr) and above it (where 

p = 0). Under these conditions, as mentioned above, adjacent cells will 

vibrate in counter phase or in phase with one another while the amplitude 
-Ui 

reduces by e per cell. 

2.5.3 Applications 

The same two examples used in Section 2.3.3 are used here. These are 

the flat and curved stringer stiffened panels. The same finite element 

idealisation for the cells representing the panels is used. Figures (2.18) 

and (2.19) show the variation of the real and imaginary parts of the propa-

gation constant with the non-dimensional frequency for the flat and 

curved panels respectively. 

For the flat panel case, the coupling degrees of freedom between the 

cells are the lateral displacement w and the rotation 8 and hence 

there are two independent pairs of waves that can exist simultaneously at 

any frequency (curves numbered 1 and 2 in figure (2.18)). For the first 

wave (curve 1) there are bands of frequencies where the imaginary part of 

W is zero (propagation bands). These bands coincide with the results ob-

tained in Section 2.3.3, figure (2.12). Outside these bands the real part 

of p is either zero or while the imaginary part is non-zero 

(attenuation bands). The second wave (curve 2) has a non-zero imaginary 

part while the real part is + 7 r . This represents an attenuating wave. As 

can be seen from these results the behaviour of the flat panel shows great 

similarity to the behaviour of the beam on multiple supports discussed in 

Section 2.5.2. For the curved panel case, there are four coupling degrees 

of freedom between the cells (degrees of freedom at the stringers). These 

are u, v, w and w . Therefore there are four independent pairs of waves 
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that can exist at any frequency (curves numbered 1 to 4 in figure (2.19)). 

Each pair of these waves represents two identical waves travelling in 

opposite directions. For wave 1 there are bands where t±ie imaginary part 

of p is zero (propagation bands). These bands coincide with the results 

produced in Section 2.3.3, figure (2.13). For waves 2 and 3 there are 

bands of frequencies where the imaginary part of p is non-zero while the 

real part is neither zero nor These are attenuated waves |33|. Wave 

4 has a non-zero imaginary part while the real part is which represents 

an attenuating wave. These results are in agreement (within the accuracy 

of the graphs) with the results produced in |l4| using the transfer matrix 

method. 

2.6 Natural Frequencies of a Single Periodic Cell 

If the single cell representing one period of any one-dimensional 

periodic system is symmetrical, about a plane through its centre and parallel 

to its left and right sides, and having only one type of degree of freedom 

coupling it to its neighbouring cells (say rotation only or translation only) 

then its natural frequencies with these degrees of freedom constrained or 

unconstrained can be associated with the propagation frequencies correspond-

ing to propagation constants p = 0.0 or ^ = +n (or wave-numbers a = 0.0 

or a = 2 where & is the periodic length). To prove this, consider 

the equation of motion of the cell when vibrating freely. This can be 

written in a matrix form as 

([%] " w^[M]){q} = 0 

or 

^11 ^IL ^IR 
Z. 

- W 

^ R < 

= 0 (2.48) 

where [K] and [nj are the stiffness and inertia matrices of the cell, 

{q} is a vector of the generalised degrees of freedom in the cell. 

The matrices [K], [M] and {q} are partitioned according to the interior, 

left and right degrees of freedom in the cell, figure (2.1b). 
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Let N^, and N (NT= N ) be the number of interior, left and 

right degrees of freedom in the cell. 

Since the cell is symmetrical then its natural modes of vibration will 

be either symmetrical or anti-symmetrical about the centre plane of symmetry. 

In these modes the degrees of freedom #111 be either of 

the same sign or of opposite sign depending on the nature of the degrees of 

freedom and the mode of vibration. For example if {q?} and {Qg} are 

rotations (say at the supports of a simply supported beam or plate), then 

they will be of the same sign in anti-symmetric modes and of opposite sign 

in symmetric modes. While if they are transverse displacements they will 

be of the same sign in symmetric modes and of opposite sign in anti-symmet-

ric modes. Therefore when the cell is vibrating freely we can write 

± iq^} 

Relations (2.49) can be substituted in equation (2.48) to eliminate 

This results in an equation of the form 

([K] -

where 

[K] = [W] [K] [W] 

= 0 

(2.49) 

% ' 

(2.50) 

where 

= I 1 0 

0 I I 
'f 

0 1 +1 

(2.51) 

(2.52) 

The two sets of equations represented by (2.50) are eigenvalue problems of 

order N + N^. Their solution will give 2(N + N^) eigenvalues and 

eigenvectors satisfying condition (2.49). However, it should be noticed 

that this condition is also satisfied when 

= 0.0 

or 

(2.53) 

(since The original equation (2.48) has only N + 

due to the symmetry of the cell) eigenvalues. Their associated 

normal modes give all the possible modes of vibration such that 
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{q^} = ^ 0.0. Therefore the two solutions of (2.50) give extra 

eigenvalues whose eigenvectors must satisfy the condition (2.53). These are 

the natural frequencies and normal modes of the cell with its boundary degrees 

of freedom {q^^ and {q } constrained. Now the two sets of equations (2.50) 

are the same equations obtained from the equation of free-wave propagation 

in the infinite periodic system given by equation (2.15) corresponding to 

values of the propagation constant ^ given by p = 0 or w = ir (or —ir) 

respectively. 

From the above discussion it is clear that the frequencies of propagation 

corresponding to ^ = 0.0 and % = +n are indeed the natural frequencies of 

the periodic section (cell) with its coupling degrees of freedom ({q^} and 

{q }) constrained or unconstrained. Inspection of the wave-forms (eigen-

vectors) obtained when solving equation (2.15) for # = 0 or p = -n can 

determine which frequency corresponds to the unconstrained cell and which 

corresponds to the constrained cell. However, in some cases, like the beam 

on simple supports, the natural frequencies of the unconstrained cell alter-

nate with the natural frequencies of the constrained cell and the lowest 

frequency corresponds to the unconstrained cell |25, 31, 6Z|. 

The above analysis can be extended to periodic systems with symmetric 

cells having more than one type of coupling degree of freedom (say rotation 

and translation) such as beams on spring supports or stiffened plates. In 

such cases we will find that the frequencies of propagation corresponding 

to p = 0.0, where {q } = +{q }, and % = +n, where {q^} = -{qg}, 

will coincide with the natural frequencies of the cell while its boundary 

degrees of freedom satisfy the conditions (2.49) or (2.53). This can be 

proved by a similar procedure as above. But in this case {q^} and {q^} 

will be divided into degrees of freedom that will have the same sign when 

the cell is vibrating in a symmetrical mode and degrees of freedom that will 

have opposite sign. Then condition (2.49) is satisfied if the cell is 

vibrating in a mode such that the degrees of freedom having the same sign 

are constrained while the degrees of freedom having opposite sign are uncon-

strained, or vice versa, or when all of them are constrained (condition 

(2.51)). The resulting eigenvalue problems in these cases will coincide 

with the equation of free wave propagation (2.15) when substituting p = 0.0 

or n 
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2.7 Natural Frequencies of Finite Periodic Systems 

In this section we will show that the natural frequencies of finite 

periodic structures of N identical cells, where each cell is symmetrical 

(about a plane through its centre and parallel to its sides) and coupled 

to its neighbouring cells by one type of degree of freedom only, can be 

obtained from the propagation constant/frequency curve. 

As explained in the previous section, if we consider a single cell, 

of length &, as one period of the infinite structure, then frequencies 

corresponding to values of the propagation constant ^ (or wave-number a) 

given by 

^ = 0.0 or a = 0.0 

and ^ (2.54) 
W = +7r or a = 

— — 22 

will coincide with the natural frequencies of the chosen period with its 

coupling degrees of freedom unconstrained or constrained. 

Now if we consider N cells together as one period, of length N&, of 

the infinite structure then, according to the discussion given in the 

previous section, the natural frequencies of this period with the degrees 

of freedom at its ends unconstrained or constrained will coincide with the 

frequencies of propagation corresponding to values of the wavenumber a' 

given by 

a' = 0.0 or a' = + (2.55) 
— 2 N & 

where N& is the periodic length in this case. Since the frequency of 

propagation is a periodic function of the wave-number a', with period 

1/N/, then condition (2.55) can be written as 

a' = 0.0 + 2L or a' = + ̂  l^L. 

where m is any integer number or zero. 

Or in general 

a' = + (m = 0,1,2,...) (2.56) 
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Regardless of the choice of the period representing the infinite structure, 

the wave-number/frequency variation must be the same for the same values of 

the wave-number since such variation is characteristic of the periodic 

system, and hence frequencies corresponding to values of the wave-number a 

equal to a' (where a' is given by (2.56)) i.e., 

a = a' = + (m = 0, 1, 2, ...) 

or (2.57) 

W = _+ ̂  (since % = -2na&) 

are indeed the natural frequencies of the N cell period with its end 

degrees of freedom ({q^^ and constrained or unconstrained. 

To illustrate this consider the case of an infinite beam on simple 

supports at unit distances apart. This is the illustrative example used 

in Section 2.3.2. Figure (2.20) shows the variation of the frequency of 

propagation with the wave-number a in the first t%m bands when only one 

cell (figure (2.2b)) is chosen as the period representing the structure 

(curves JE and KL in figure (2.20)). The wave-number a is restricted 

inside the first zone, hence 

- < a < (of < W < n) 

or 

-i < a < & (since & = 1.0). 

Only the positive values of a are considered due to the symmetry of the 

curve. 

Now consider 4 cells together as one period of the structure. The 

periodic length in this case will be 4^= 4.0 and the first zone is given 

by 

- J - < a' < 

2N& 2NA 

or (2.58) 

< a' < & (since N = 4; & = 1.0) 

Let us call this zone the sub-zone and the corresponding propagation bands 

are the sub-bands. As can be seen from figure (2.20)jdue to the fact 

that the frequency of propagation is a periodic function of the wave-number 

a' with period 1/N& and symmetrical about the x axis (line a = 0.0 or 

p = 0.0) it follows that section AB (which is the first sub-band) 
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in figure (2.20) is a mirror image of BC and BC is a mirror image of CD 

and also CD is a mirror image of DE where section DE nmst coincide with 

part of the first band JE since in this part (third sub-zone) a' = a. 

This is because, as explained before, the wave-number/frequency variation 

must be the same for the same values of the wave-number regardless of the 

choice of the period representing the infinite structure. Similarly the 

sub-band FI is a mirror image of IG and finally the fourth sub-band JI 

coincides with part of the first band JE. 

Now, according to the previous section, frequencies corresponding to 

values of a' = 0.0 (points A, F and J) and a' = " & (points B and I) 

are the natural frequencies of the 4 cell period with its boundary degrees 

of freedom unconstrained or constrained. But frequencies at points A, B 

and F are the same frequencies at points E, D and G, respectively. There-

fore, frequencies corresponding to values of the i#ave-number a given by 

or p = + —^ (since % = 2na&) 
2N& 

(#here & = 1.0, N = 4 and m = 0, 1, 2, 3, 4 in this case, points J, I, G, 

D and E) 

are the natural frequencies of the four cell period with its boundary degrees 

of freedom (6^ and 8^) unconstrained or constrained. 

Therefore calculation of the curves JE and KL obtained by choosing 

a single cell only to represent the infinite system can be used to calcul-

ate the natural frequencies of the finite system. 

From the above discussion we can conclude the following: 

a. The lower bounding frequency of the first sub-band is the lower 

bounding frequency of the first band while the upper bounding frequency 

of the sub-band (fourth in the above example) is the upper bound-

ing frequency of the first band. Also the upper, or lower, bounding 

frequencies of any of the intermediate sub-bands (second and third in 

this example) are the lower, or upper, bounding frequencies of the 

neighbouring sub-bands. Similar conclusions can be drawn in higher 

bands. 

b. The natural frequencies of a finite periodic structure of N symmetric 

cells, where each cell is coupled to its neighbours by one type of 



degree of freedom, with its boundary degrees of freedom constrained 

or unconstrained can be obtained from the propagation constant/ 

frequency curve at values of the propagation constant p given by 

(2.57), namely 

W =.1 = 0, 1, 2, N) 

For the case of a finite periodic beam on simple supports, its natural fre-

quencies with the boundary degrees of freedom (rotations at the supports) 

unconstrained alternate with its natural frequencies with the boundary 

degrees of freedom constrained [25, 33|. For this system, and similar 

systems, the natural frequencies of the finite structure can be obtained 

from the propagation constant/frequency curve at values of ^ given by 

(2.57), namely 

, mn 
U - ±/-N 

where N is the number of periods in the structure. The values of m are 

taken as follows. 

(i) If the boundary degrees of freedom are unconstrained 

m = 1, 2, ..., N for the odd-numbered bands and 

m = 0, 1, ..., N-1 for the even-numbered bands. 

(ii) If the boundary degrees of freedom are constrained 

m = 0, 1, ..., N-1 for the odd-numbered bands and 

m = 1, 2,..., N for the even-numbered bands. 

(iii) If one boundary (say {q^}) is constrained while the other boundary 

({q^J) is unconstrained then the natural frequencies are in fact 

the natural frequencies corresponding to the symmetric modes (or 

unsymmetric modes depending on the type of the coupling degree of 

freedom) of a structure having 2N periods with its boundary degrees 

of freedom ({q^} and unconstrained. In this case it should 

be noticed that the symmetric modes alternate with the antisymmetric 

modes |25|. 

For finite periodic systems with unsymmetric cells. Mead |33| has shown 

that their natural frequencies (except the first one) can be obtained by a 

similar procedure as above. 
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4 elements 
idealisation 

10 elements 
idealisation 

Exact 
results 

First band 
9.8722 9.8697 9.8696 

22.403 22.374 22.373 

Second band 39.634 39.483 39.478 

62.243 61.689 61.622 

Third band 
90.449 88.874 88.838 

123.49 121.02 120.903 

Table 2.1 

Comparison of the bounding frequencies of the first three 

propagation bands for an infinite multi-supported beam using 

exact and finite element solutions. 

Upper figures: Lower bounding frequencies. 

Lower figures: Upper bounding frequencies. 



Propagation 

Constant % 

Frequency of Propagation Propagation 

Constant % Finite Elements Exact 

0.0 0.0 0.0 

O.ln 0.09870 0.09870 

0.2m 0.39478 0.39478 

0.3n 0.88826 0.88826 

0.4m 1.5791 1.5791 

0.5m 2.4674 2.4674 

0.6m 3.5531 3.5531 

0.7m 4.8361 4.8361 

0.8m 6.3166 6.3165 

0.9m 7.9944 7.9944 

m 9.8697 9.8696 

Table 2.2 

Comparison of finite element results (10 beam elements 

per cell) and exact solution of the propagation constant/ 

frequency variation for the transverse wave motion in an 

infinite beam. 
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Figure 2#1.(a)5c]ieniatic diagram of part of a one—diinenBional pezd-odic 

system;(b)foroe8 on,and degrees of freedom of a single cell. 
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Figure 2.2.(a)Infinite beam on equally spaced simple supports;(b),(c) 

and(d)various choices for the single cell representing the system. 
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( b ) 

Figure 2.3. (a)Infinite beam on equally spaced supports with rotational 

stiffness ;(b)single cell representing the system. 
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of one cell. 



(b) 

Figure 2»5.(a)8tringer stiffened curved panel;(b)finite element ide&lisation 

of one cell. 
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Figure 2.6,(a)Infinite beam on equally spaced translational spring supports, 

(b)6ingle cell representing the system. 

m 

(a ) 
m 

jn 
2 

( b ) 
2 

Figure 2.7.(a)Infinite beam with point masses at equal (distances, 

(b)8ingle cell representing the system. 
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Figure 2.8.Variation of the real propagation conGtant with frequency for 

a beam on periodic simple aupports. 
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Figure 2.10. Standing and propagating waves of a beam on periodic 

simple supports . Second propagation band . 
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F R E Q U E N C Y P A R A r E T E R 
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Figure 2.11. Effect of varying the rotational atiffnesa K^at the aupporta 

of a periodic beam on the propagation constant-frequency variation. 
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F R E Q U E N C Y P A R A M E T E R 

Figure 2.12. Variation of the real propagation constant with frequency 

for a periodicsilly stiffened flat panel. 



SECOND BAND FIRST BAND 

8.00 16.00 24 .00 32 .00 4 0 . 0 0 48 .00 
F R Z C L Z X C Y 

5 8 . 0 0 W 

Figure 2.13. Variation of the real propagation constant with frequency 

for the periodically stiffened panel shown in figure(2.5). 
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Figure 2.14. Propagation constant-frequency variation for a beam on equally 

spaced translational spring supports.Various values of the 

translational spring stiffness K^are chosen. 
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Figure 2.15* Propagation Gonstant-frequency variation for a beam with point 

masses at equal distances.Various values of the point mass m 

are chosen. 
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Figure 2.16. Variation of the real and imaginary parts of the propagation 

constant with frequency for a beam on periodic simple supports. 



( a ) 

( b ) 

Figure 2.17* Attenuating waves of a beam on periodic simple supports 

(a)at a frequency below the first propagation band; 

(b)at a frequency above the first propagation band. 



(M 

OJ 

o 
o 
o 
(O 

o 
o 

o 
o 

-CD 

o 
o 
-w 

0:: 
- UJ 
gi-

m 5_ 
CC 
ck: 

g £ 
-o 
«n>_ 
(_) 
Z 

o LU ° = ) 

- s S 

CD 
C3 

-CD 

O 
O 

- C s f 

O 
O 

(O 

C3 
O 

OO'Zl OO'B OO't' OO'OOO'O OO't- 00*6- OO'G- 00"^-
I S N O O N 0 I l W € W c j 0 ^ j " W I 1 S N 0 3 N O I i W Q W J O ^ J 

Figure 2.18. Variation of the real and imaginary parts of the propagation 

constants with frequency for the periodically stiffened 

panel shown in figure(2.4) . 
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Figure 2.20. Determination of the natural frequencies of a four-bay beam 

simply supported or clamped at both ends ,from the propagation 

constant-frequency curve.(!I!he fiMt two groups only are shorn). 



CHAPTER III 

TWO-DIMENSIONAL PERIODIC SYSTEMS 

3.1 General 

In this chapter a general formulation for studying the free wave pro-

pagation in two-dimensional periodic systems is presented. Such systems 

can be considered as an assemblage of cells (periods) joined together on all 

sides and corners as shown in figure (3.1a), where a cell represents one 

repeating period of the system, figure (3.1b). 

Waves can propagate in such systema in two different manners, either 

as circular waves or plane waves depending on the type of forces generating 

them. Circular waves could be generated by a point force driving a certain 

point in the system and spreading a circular wave motion, while plane waves 

could be generated by a line force acting at any angle across the system. 

This analysis considers only plane wave motion in Cwo-dimensional periodic 

systems. 

Consider a two-dimensional periodic system defined by the two independ-

ent directions d^ and dg parallel to the directions of the system's 

periodicity. Each cell (period) in the system is identified by two numbers 

n^ and n^ defining its position along the d^ and dg directions, where 

the origin of the system is taken at the cell defined by n^ = ng = 0. A 

property ^ can propagate as a wave, with wave-number a and frequency v, 

if the physical system admits a solution of the type 

2mi(vt - n^a - ngSg&g) 
# = Ae 

i(wt + n + n p_) 

= Ae 1 1 ^ ^ (3.1) 

where 

0 is the value of the property # at cell n^, n^. 

A is a constant, t the time, w the angular frequency, & , and 

a^, ag are the dimensions of the cell and the components of the wave-number 

^ along the d^ and d2 directions, respectively. 

^2 and Ug known as the propagation constants in the d^ and dg 

directions, where 

34. 



#2 = 

Ug = -Zmag&g 

(3.2) 

can propagate, without attenuation, when the propagation constants 

and ^2 real quantities. They represent the change in phaae between 

adjacent cells in the d^ and d directions respectively. 

Attenuating waves can be described by (3.1) but in this case the pro-

pagation constants and p will be complex quantities |3|. Their 

real parts represent the change in phase while the imaginary parts represent 

the attenuation of the wave between adjacent cells in the d^ and dg 

directions. From the relation (3.1) it can be seen that the relation 

between the values of the property # at any point in one cell (n^, ng) 

and the corresponding points in adjacent cells can be written as 

b .. = ifi 
n^+1, ng 

^n^+l.ng+l *n^,n2^ 

i(w^+U2) 

For unattenuated waves, where and ^2 real quantities, 

relations (3.1) and (3.3) can be satisfied by using and instead 

of and where 

(3.4) 

^2' = ^2 -

where m^ and mg are any integer numbers. 

Equations of motion of the system (equation (3.19) in Section 3.3) 

must yield the same values for ^ and w for a given and 

equivalent and ^2'" This means that the propagating property 

and its frequency w are periodic functions of the real and 

with periods 2n. Therefore it is sufficient to examine the variation of 

the frequency of propagation w with the real and ^2 within one 

period (zone) only. The most suitable choice is 
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—T $ p a TT 

-n $ ^2 f ^ 

or (3.5) 

3 g 2&T " "1 ^ 2A 

1 
2 3 

2&2 " 2 " 2& 

Now it remains to determine the boundaries to which the wave-number ^ is 

to be restricted to allow examining all possible propagating waves in all 

directions and at the same time satisfy the restrictions (3.5). These 

restrictions on and ^2 for the same reasons discussed in Chapter 

II, Section 2.3 on restricting the propagation constant for one-dimensional 

systems inaide the fundamental zone. This will be discussed in the next 

section. 

3.2 Direct Cells, Recriprocal Cells and Zones in Two Dimensions 

In this section we will describe briefly how to construct the zones to 

which the real wave-number a (and hence u. and u_) will be confined 
— 1 2 

for any two-dimensional periodic system. This restriction should be 

observed when determining the direction of propagation or the wave-length 

X where 
w 

A = 1/lal. 
I I 

Full details and discussions for the zones can be found in |3|. 

First we must define what we mean by direct cells aad reciprocal cells. 

One period (cell) of the periodic system is referred to as the direct cell. 

It describes the periodicity of the medium in space. The reciprocal cell 

is geometrically identical to the direct cell but of dimensions that are 

the reciprocal of the corresponding dimensions of the direct cell. It 

describes the periodicity of the frequency of propagation in the wave-number 

domain. The direct system is constructed by joining the direct cells 

together and the reciprocal system is constructed by joining the reciprocal 

cells together in identical manner to the direct system. To illustrate 

the meaning of reciprocal cells we will consider first the one-dimensional 



systems discussed in Chapter II. 

In the one-dimensional case we found that the frequency of propagation 

is a periodic function of the wave-number ^ with period 1/2 where & 

is the length of the cell and we restricted the values of a_ within the 

first zone given by relation (2.19), namely 

1 , 1 1 

24 * S 22 

In other words we can say that the periodicity of the frequency in the 

wave-number domain can be described by a reciprocal cell of length 1/&. 

Therefore the first (fundamental) zone for one-dimensional systems as given 

by (2.19) can be constructed by taking its origin at the centre of one of 

the reciprocal cells in the reciprocal system, figure (3.2). The first 

zone is bounded by the perpendicular bisectors of tte lines drawn from the 

origin of the zone to the centres of neighbouring reciprocal cells as shown 

in figure (3.2). 

Now we can proceed to find the analogous zones two-dimensional 

systems. Zones will be areas in two dimensions and can be constructed as 

follows: 

First define the direct cell and the reciprocal cell for the system. 

Figure (3.3) shows the reciprocal system corresponding to the oblique two-

dimensional system shown in figure (3.1). Taking the centre of one of Che 

reciprocal cells as the origin of the zone, then the boundaries of the 

first zone are defined by the smallest closed polygon formed by drawing 

perpendicular bisectors to all the lines drawn from the origin of the zone 

to the centres of neighbouring reciprocal cells as illustrated in figure 

(3.3). 

The first zone for two-dimensional periodic systems with rectangular 

cells of dimensions and will be another rectangle of dimensions 

l/&^ and 1/&2 with the origin at its centre as shown in figure (3.4). 

Higher zones can be constructed in a similar manner. However, for the 

purpose of this work it is enough to discuss the construction of the first 

zone only. 

Similar to the one-dimensional periodic systems, frequencies corres-



ponding to values of a on the boundaries of the first zone for two-

dimensional periodic systems are characteristic of the medium and 

depend on its physical properties. Also propagation will occur within 

some frequency bands only with possible overlapping of the bands. The 

width of these bands will vary with the direction of propagation. 

Solving the system's equations of motion for values of the wave—number 

^ outside the fundamental (first) zone will always result in a wave-

motion that can be obtained with a wave-number inside the fundamental zone. 

The shortest wave-length for any wave travelling in a two-dimensional 

periodic system will correspond to the wave with the largest absolute 

value of the wave-number a inside the first zone since 

A* = 

3.3 Mathematical Formulation 

Consider a two-dimensional periodic system composed of an infinite 

number of identical cells joined together in identical manner as shown in 

figure (3.5a). A cell contains one period of the system, figure (3.5b). 

Using the finite element technique, a cell can be represented by a model 

with interior and boundary degrees of freedom. Each cell is coupled 

to its neighbours on all sides and corners. Let {q^}* be the 

degrees of freedom and forces at the interior nodes of t±ie cell, 

{q^^, {F^}, {qg}, {Fg}, {q^}, {F^} and {q^}, {F^} be the degree of 

freedom and forces at the left, right, bottom and top sides of the cell, 

degrees of freedom and forces at the left bottom, rig&t bottom, left top 

and right top corners of the cell. The linear i&^uation of motion of an 

undamped cell is given by 

([K] - w2[M]){q} = {F} (3.6) 

[K] and [M] are the stiffness and inertia imatrices for the cell, 

{q} and {F} are the nodal degrees of freedom and forces, where 

{q} = q̂  q̂  qg q? q̂ s 9%% q̂ ? qR?] » 
(3.7) 

{ F } = [ F ^ F ^ F ^ F g F p ^ R B ^ L T ^ 8 1 ^ ' 
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The matrices [Kj and [M] can be partitioned according to the interior 

left, right, bottom, top and corners degrees of freedom, hence 

[K] = K. 
1,1 

•S.i 

4 . 1 

*LB,I 

^LT,! 

*SlT,I 

*1,L *I,R *1,B *1,T *1,RB *1,LT *I, RT 

RT 

(3.8) 

A similar expression can be written for [M]. 

The nodal forces {F} are due to any external forces acting on the 

system and the forces of interaction between the cell and its neighbour-

ing cells. For free wave motion, i.e., no external forces exist, then 

{F } = 0. However the forces on the boundaries of the cell (forces of 

interaction between the cell and its neighbouring cells) are not zero 

since they transmit the wave motion from one cell to its neighbours. 

This wave motion is characterised by relating the degrees of freedom and 

equivalent nodal forces in one cell (n^, ng) to the corresponding 

degrees of freedom and forces in adjacent cells, figure (3.5). The 

relations between the nodal forces can be written as follows: 

iPi 
{F_} 
L n^+l,n 

= e 

{F*} in. 
B n^,n2^ = e {F*} 

fF } 
i^LT'n^+l.ng 

B n^.ng 
(3.9) 
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1^2 

i(Ui+ Wg) 
fFl" — G f F T 
I LB'n^+l.Hg+l t LB^n^.ng 

For equilibrium of the interconnecting forces between cell (n^, ng) and 

the neighbouring cells, the following conditions must be satisfied 

" ° (^^fc and right) 

" ° (bottom and top) (3.10) 

"ET'n. .n̂  * "'Ll^n^.l.n^ + .n^.l " ° 

(corner) 

Substituting (3.9) into (3.10) gives 

( V n^.n^ ' " ° 

' V n ^ . n / = ° 

iPn iwp i(w,+P2) 

Also the degrees of freedom can be related as follows 

fSL^ni+l.ng " G fSLln^.ng 

^^B^n^.ng+l ^ ^^B^n^,n2 

iWl (3.12) 

fSLB^n^+l.ng " ^ 

{^tB^n^+ling+l " ^ tSLgln^.ng 
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At the common boundaries between cell n , ng and its neighbouring cellf 

the displacements must be equal, hence, 

(SLB^n^+l.ng " (3.13) 

t^LB^n^.ng+l " 

{^LB^ni+l.ng+l " 

Substituting (3.13) into (3.12) gives 

r 1 _ *^lr I 
n^.ng ^ ^l'^2 

iw? 

{4T}ni,n2 " ^ {qB^n^in^ 

I - ^^2; I 
tSLT^n^.ng ^ {SLBln^.n^ 

i(p^+U2) 

f^Riln^.ng " G (%LB}n^,n2 

Relations (3.11) and (3.14) are the same for any cell and hence the suffix 

n^, n2 can be dropped. Relations (3.14) can be used to write the 

relation between the degrees of freedom in the cell in the matrix form 

{q} = [w]{q} (3.15) 

where 

{q} - [q^ q^ q^ %% q? q^B q^? qR^J ' 

= [q; q^ qg 
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.h ' 0 , 0 

:_o_ 0 

0 

L I J 0 

r ii'2 
e 0 

^ 
I I 

D-
I 1̂ 2 

Also Che equilibrium conditions (3.11) and the condition 

{F;] = 0 , 

can be written in the matrix form^ 

[W']{F} = 0 

where 

{F} - [F^ F^ F^ Fg F^ F^g F^^ F^^ F^^J 

TR.-
-IPI 

</o; 0 
I 1̂-

0 ; 0 

e 

(3.16) 

(3.17) 

(3.18) 

Substituting (3.15) and (3.17) into equation (3.6) results in an equation 

of the form 

([K(Wi, ̂ 2)] " [%(%!, ^ 

where [R] and [wj are complex matrices given by 

(3.19) 



[aj = 
4 . 1 

LB 

[W] [K] M , (3.20) 

*I,I 

GL,I 

^ . I 

^ia,i 

M. 
I,L ^I,B *I, LB 

^ B , LB 

[W] [M] [Wj 

[K̂  and [M] are the stiffness and inertia matrices in equation (3.6) 

Equation (3.19) represents an eigenvalue problem iji w for given 

values of Ml and When and u are real quantities, Ml Mg 

equation (3.19) can be rearranged to give a real symmetric eigenvalue 

problem in w. This will be discussed in Section 3.4. Also this 

equation can be reformulated to give an eigenvalue problem in and 

for given values of where 1̂1 and ^2 will be generally complex 

quantities. This will be discussed in Section 3.5. 

3.4 Formulation for the Real Propagation Constants 

As mencioned in Section 3.1, waves can propagate in two-dimensional 

periodic systems, without attenuation, when the propagation constants 

and pg real quantities. In this case die frequency of propagation 

is a periodic function of and with periods 2n and hence the 

variation of the frequency with the real propagation constants can be 

examined by solving equation (3.19) for given values of zuW Ug 

within one period only. In this case equation (3.19) can be reformulated 

to give a real symmetric eigenvalue problem in w for given real values 

of and %2' 

Now the matrices equation (3.19) 

can be written as 
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[K(Pj, w,) ] = P i + i[i i] 

W;)] - [5" + i[Si 

Substituting (3.21) into (3.19) gives 

2,rn ([K^] + ifK^j - w ([%f] + i[Mig)){{qf} + i{qi}} = 0 

(3.21) 

(3.22) 

where 

{qf} {qf} 

*LB *LB 

(3.23) 

Separating the real and imaginary parts of (3.22) and combining the two 

equations together gives 

K" 

-K^ - w M^ -M^ 

-i r:r 
M M 

-r 
q 0 (3.24) 

lYom (3.16) and (3.18) it is clear that for real values of and Pg 

we can write 

[W'j = [w*]' 

where * denotes the complex conjugate, and hence the matrices 

(given by (3.20)) are Hermitian, i.e., 

[k*]̂  = [K] 

[M.]^ . [5] 

and 

(3.25) 

Therefore equation (3.24) represents a real symmetric eigenvalue problem 

since 

r-iiT 

(3.26) 
rciiT 

5"] = -[%"] 

[Mi] = -[Mir 
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This equation can be solved for different values of the propagation 

constants ^ and (where and Pg real) to find the 

corresponding frequencies of propagation and associated wave forms. 

3.4.1 Computer programs 

A general computer program has been written to analyse any 

dimensional periodic system. One period (cell) of system is repre-

sented by a finite element model and the matrices in equation (3.24) are 

formed for given real values of and Ug- Then the problem is 

solved as a standard eigenvalue problem. The basic flow diagram for the 

computational procedure is given in Appendix B. The method used to 

solve the eigenvalue problem (3.24) is given in ̂ Appendix A. 

3.4.2 Illustrative examples 

Two examples are used here to illustrate tbe general behaviour of 

two-dimensional periodic systems, and to explain some of the points dis-

cussed in Section 3.1. 

Consider the flexural wave-motion in an infinite plate resting on 

simple line supports along orthogonal, equally spaced lines, figure 

(3.6a). In this case the system can be defined by th^ cartesian axes 

X and y. Let a be the wave-number for a wave travelling across the 

plate at a direction making an angle a to the :K-axis, then the compo-

nents of the wave-number ^ along the x and y directions are 

= |aj cos a ^ 

(3.27) 

ay = |aj sin a 

If and 2 are the dimensions of the cell representing one period 

of the plate (distances between the supports), figure (3.5b), then, from 

relations (3.2), we can write 

. 
(3.28) 

Uy = -2**y*y 

where and ^ are the propagation constants along the x and y 

directions respectively. 
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The first zone to which the wave number ^ (and hence the 

propagation constants and Wg) will be restricted is a rectangle 

of dimensions shown in figure (3.4). This was 

discussed in Section 3.2. The shortest wave-length for a wave travelling 

along the x direction will correspond to a #ave-number a = 

and hence 

(3.28) 

Similarly the shortest wave-length for a wave travelling along the y 

direction is 

X = 2& . (3.30) y y 
Th^ shortest wave-length X for any wave travelling in the system will 

correspond to a wave having the largest absolute value of a inside the 

zone as its wave-number, hence 

A 
G /ja | + |a 

' x'max ' y'max 

or 

X = ^ 2 (3.31) 

Tbe direction of propagation for this wave are given by 

-T -1 & 
a = tan (—^) = tan (+ --̂ ) (3.32) 

^ *y 

Propagation bands will be surfaces in the a , a (or u u ) domain. The 
X y X y 

width of the first propagation band, as will be shcmm later, is largest 

along the directions given by (3.32) and hence these directions can be 

called the preferred directions of propagation. These are directions 

normal to the diagonals of the cells. Frequencies corresponding to waves 

with wave-length given by (3.29), (3.30) and (3.31) are characteristic 

of the periodic system. They depend on the dimensions of the cells and 

their physical properties. 

Now consider a plate with square cells of dimensions . ™ 1-0 

(distances between the line supports). One cell (a square plate simply 

supported along its sides) is represented by a finite element model. 
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figure (3.6b). The cell is divided into 16 plate elements. The plate 

element and the data values used in the analysis are given in Appendix 

D4. The degrees of freedom at the nodes are the transverse displace-

ment w and the two rotations 8 and 8 , and hence at the left and 
X y 

right sides only 8 exists while at the bottom and top sides only 8^ 

exists. No degrees of freedom exist at the corners. The problem is 

solved for different values of the propagation constants and p . 

Figure (3.13) shows the variation of the non-dimensional frequency 0, 

in the first propagation band, for values of and ^ in the range 

-3n$u $ 3n 

-3nau 3 3n 

The non-dimensional frequency O is defined as 

where 

D = Eh3/12(l -

w is the angular frequency, p,h, D, E, o are the density, the thickness, 

the modulus of rigidity. Young's modulus and Poisson's ratio of the plate. 

As can be seen from the graph, the propagation baad is a surface with 

periodic variation in the % , p domain of periods 2w aad symmetrical 
X y 

about the lines u = 0 and % = 0. Therefore it must terminate at 
X y 

the boundaries of the first zone (a square bounded by p = and 

p = +n) with zero normal derivatives. Also shown on the graph the 

values of the components of the wave-number a (a^ and a ) alongside 

and Wy. Due to the periodicity of the frequency with and 

as explained in Section 3.3, it is enough to examine the variation of 

the frequency with and ^ inside the first zome only. Figures 

(3.14), (3.15) and (3.16) show the first, second and third propagation 

bands where u and u are restricted within the first zone only. 
X y 

Cross-sections along the x direction = 0.0) or the y direction 

(p^ = 0.0) or along a direction given by ^ (a direction making 

45 degrees to the x axis in this case) will yield curves similar to those 

obtained for one^dimensional systems. This is shown in figure (3.17) 

for the first three propagation bands. 

The limiting (cut-off) frequencies for the propagation bands depend 

on the direction of propagation and occur at the centre of the zone 
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(p = ^ = 0.0) and at the boundaries of the zone and/or 

Py = ̂  n). However in some cases, as will be shown later, the limiting 

frequencies for the propagation bands can occur at different values for 

%% and w . 

Another way of showing the variation of the frequency of propagation 

inside the first zone can be obtained in a polar plot by drawing lines 

joining the frequencies corresponding to wave-numbers drawn from the 

centre of the zone at all directions and terminating on the boundaries 

of one of the concentric polygons drawn inside the zone with sides parallel 

to the boundaries of the zone (squares in this case) as shown in figure 

(3.7). Figure (3.18) shows the first three propagation bands in the 

polar plot for the plate with square cells. This representation has the 

advantage of showing clearly the variation in the width of the different 

bands and the limiting (cut off) frequencies with the direction of propa-

gation. It also shows that the width of the first band is largest alogg 

a direction of propagation making an angle 45 degrees to the x axis 

which is the preferred direction of propagation. Also the overlapping 

of the second and third bands is very clear on this plot. 

Figures (3.19 a, b), (3.20 a, b), (3.21a, b) and (3.22a, b) show 

the frequencies of propagation and the associated wave-forms (These are 

the eigenvectors in equation (3.24))in the first and second propagation 

bands corresponding to some values of ^ and % (only 5 x 5 cells are 

shown.) For w equal to 0 or the corresponding wave components 

along the x direction are standing waves ifith i#ave-length equal to ™ 

or 2& respectively. Similarly for p equal to 0 or the 

corresponding wave components along the y direction are standing waves 

with wave-length equal to # or 2& . Frequencies corresponding to 

= 0.0 or +n and % = 0.0 or +n are the bounding frequencies for 

the propagation bands along the x direction, the y direction and the pre-

ferred direction of propagation. These frequencies aad associated wave-

forms, as can be seen from figures (3.19) to (3.21), caa be associated 

with the natural frequencies of the single cell with various boundary 

conditions. This will be discuased in detail in Section 3.6. 

Fbr 0 < I < n or 0 < | < ? the corresponding wave components 

are travelling waves along the x-direction or the y—direction respectively. 

The shortest wave-length and the corresponding direction of propagation 
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and 

are obtained from relations (3.31) and (3.32), hence 

22 & 
A = _ ^ L y _ = ^ 

-1 & 
a = tan (^-^ = 45° 

y 

which is the preferred direction of propagation. This wave corresponds 

to the lowest frequency of propagation in the first bamd (cut-off fre-

quency). 

The second example is similar to the previous ome except that the 

distances between the supports are taken as 

A = 1.0, & = 2.0 
X y 

and hence the basic cell representing the system is a rectangular plate 

of dimension = 1.0, & = 2.0 with simply supported edges. Figures 

(3.23) and (3.24) show the variation of the frequency of propagation in 

the first two propagation bands where % and ^ are restricted within 

the fundamental zone (% and p vary between +^0. Figure (3.25) 

shows cross-sections in these bands along the x direction, the y direction 

and the preferred direction of propagation (a direction making an angle 

equal to 26.56 degrees to the x axis in this case, where = ^y^' 

Figure (3.26) shows a polar plot for the frequency variation in the 

first two bands. Comparing this graph with the one for the plate with 

square cells (figure (3.18^ it can be seen how the dimensions of the 

cells affect the variation in the width of the various propagation bands 

with direction of propagation. Also it is clear that the first and 

second bands overlap in this case. Figures (3.27), (3.28), (3.29) and 

(3.30) show the frequencies of propagation and the associated wave-forms 

in the first and second propagation bands corresponding to values of 4* 

and ^ equal to 0 o r t # . Inspection of these figures shows that these 

frequencies and associated wave-forms coincide with the natural frequencies 

and associated normal imodes of the cell with various boundary conditions. 

This will be discussed in Section 3.6. The shortest wave-length and 

the corresponding direction of propagation (preferred direction of propa-

gation) are obtained from relations (3.31) and (3.32), hence 
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2& & 

X = , ""y = 4//5 

X y 

a = t a n C ^ ) = 2 6 . 5 6 ° 

y 

This corresponds to the lowest frequency of propagation in the first band 

(cut-off frequency). 

A movie film showing clearly the standing and propagating waves 

described above has been produced using the computer. 

3.4.3 Transition from non-periodic to periodic two-dimensional systems 

To illustrate the effect of periodic discontinuities on the propagation 

of waves in a homogeneous two-dimensional medium, consider the transverse 

wave-motion in an infinite plate resting on orthogonal, equally spaced 

line spring supports (translational only) as shown in figure (3.8a). A 

finite element idealisation of one cell is shown in figure (3.8b). The 

dimensions of the cell (distances between the line supports) are 

= 2 = 1 . 0 . 
X y 

The plate element and data values used in the analysis are given in 

Appendix D4. Figure (3.31a, b) shows the variation of the frequency of 

propagation with and in the first two propagation bands where 

the spring supports stiffness K is taken equal to zero. The values 

of p and % are restricted inside the first zon^ (a square bounded 

by u = +n and u = +n). Similar to the one-dimensional case dis-
j ^x — y — 

cussed in Section 2.4 it is clear from the figure that if we plot the 

propagation surfaces for larger values of and u (say 

-3n $ W 3 similar to the one-dimensional case shown in figure 

(2.14)) then we will find that the propagation bands (surfaces) will 

join together to form continuous surfaces (paraboloids) allowing pro-

pagation at all frequencies and in all directions. These surfaces are 

the same as those obtained by considering the equation of two-dimensional 

transverse wave motion w in an infinite plate given by 

2 
DV^w + ph = 0 (3.34) 

at 
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where 
4 2 2 

V* = V^.V^ j (3.34) 

2 2 

3x 3y 

and considering 

2ni(vt - a .X - a .yO 
w(x, y) = w^e * y (3.35) 

as a solution to (3.34) where w^ is a constant, v is the frequency, 

and a are the components of the wave-number in the x and y 

directions, p and D are the density and the imodulus of rigidity of 

the plate. 

Substituting (3.35) into (3.34) gives 

2 , 2 D . 2 ^ 2.2 
V = 4Tr . —r- . (a + a ) 

ph X y 

or 

where 

n = PgZ + ^ 2 (3.36) 

p = -2na & 
X X X J 

W = -2ma 2 = -2na & (& = & ) 
y y y y x % y 

0 is the non-dimensional frequency given by 

a = 

w is the angular frequency where 

w = 2nv. 

Table 3.1 shows a comparison between the finite element results plotted 

in figure (3.31) and the exact solution (3.36). The table gives the 

non-dimensional frequency 0 corresponding to various values of 

and p . From these results it is clear that the finite element calcu-

lations are very close to the exact ones. IKore accurate results can be 

obtained by increasing the number of elements representing the cell. 

Non-zero values for the translational spring supports stiffness K 
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simply introduce discontinuities into these surfaces allowing propagation 

in some frequency bands only. At the limit when K is equal to ™ 

the propagation bands are the same as those obtained for the simply 

supported plate with square cells discussed in Section 3.4.2. 

3.4.4 Oblique two-dimensional periodic systems 

In some two-dimensional periodic structures the cell describing the 

periodicity of the system can be in the form of a parallelogram. These 

can be found in some aircraft substructures such as stringer stiffened 

plates in two dimensions where the stringers are not orthogonal. Such 

systems are referred to as oblique systems. To illustrate how waves 

propagate in these systems consider the transverse wave motion in an 

infinite plate resting on simple line supports at equally spaced parallel 

lines in two directions making a 60° angle between them as shown in 

figure (3.9a). A finite element idealisation of the cell representing 

one period of the system is shown in figure (3.9b). The dimensions of 

the cell sides along the directions d^ and dg defining the system are 

= 1.0, &2 = I'O" 

The plate element and data values used in the analysis are given in 

Appendix D5. As described in Section 3.2, the first zone, to which the 

wave-number a (and hence and ^2) is to be restricted, for this 

system will be a hexagon with the origin at its centre as shown in 

figure (3.10). Figure (3.32) shows a polar plot for the first propaga-

tion band. Each curve in this plot corresponds to wave-numbers drawn 

from the centre of the zone in all directions and terminating at one of 

the concentric polygons drawn inside the zone with sides parallel to the 

boundaries of the zone as illustrated in figure (3.10). From the graph 

it is clear that the width of the propagation band is largest at a 

direction of propagation along the shorter diagonal of the cell (normal 

to the longer diagonal) and the lowest bounding frequency for the first 

band occurring along that direction (preferred direction of propagation). 

Figure (3.33) shows cross-sections in the first and second propagation 

bands for waves travelling along the d^ and dg directions (where 

# 0, ^2 = 0 = 0, ^2 ^ 0 respectively), and along the longer 

aad shorter diagonals of the cell (these are directions making 30° to 
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the axis where = u and 120 to the d^ axis where =-^2)' 

From this graph it is clear that the upper bounding frequency for the 

first band does not correspond to zero wave-number (% = " 0)' 

A comparison between these results and those obtained in Section 

3.4.2 for the plate with square cells, figures (3.17) and (3.18), shows 

that the propagation bands for the oblique system occur at higher frequen-

cies and the width of the first band is very narrow along the d^ and dg 

directions. 

3.4.5 Wave propagation in two-dimensional poin± supported 
periodic plates 

In many building structures the floors are supported on columns ^hich 

are generally located in a regular pattern. Understanding the vibration 

characteristics of such structures is important if they are subjected to 

dynamic loads such as machinery resting upon them. This be easily 

and quickly estimated if the periodic nature of the structure is utilised. 

To illustrate this, consider a two-dimensional plate resting on point 

supports at regular intervals parallel to the x and y directions as shown 

in figure (3.11a). A finite element idealisation of one cell with point 

supports at its corners is shown in figure (3.11b). The plate element 

and data values used in the analysis are given in Appendix D4. The 

dimensions of the cell (distances between the supports) in the x and y 

directions are 

& = 1.0, 2 = 1.0. 
X y 

The degrees of freedom at the nodes are: the transverse displacement w 

and the two rotations 8^ and 8 , and hence at the supports only 8^ 

8 exist. Figures (3.34a, b) show the variation of the frequency 

of propagation in the first and second propagation bands where the 

propagation constants p and ^ are restricted inside the first zone 
X y 

(a square bounded by ^ and w = +n). Figure (3.34c) shows 

cross-sections in the first, second and third propagation bands along 

the X direction (^ f 0.0, % = 0.0) and along the diagonal of the cells 
X y 

(a direction making an angle 45° to the x axis) i^hich is the preferred 

direction of propagation in this case (^^ = ^y). From these graphs it 

can be seen that the bounding frequencies for the bands at son# directions 

(e.g., preferred direction of propagation) do not necessarily correspond 

to wave-numbers at the centre or the boundaries of the zone. 
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A comparison between these results and those obtained in Section 

3.4.2 for the plate on line supports with square cells, figures (3.14), 

(3.15), (3.16) and (3.17) showy that the propagation bands for the point 

supported plate occur at lower frequencies. Also it is clear that the 

highest bounding frequency for the first band (along the preferred direc-

tion of propagation) is the lowest bounding frequency for the second 

band and hence, contrary to the plate on line supports, there is no 

stopping band between the first and second bands along the preferred direc-

tion of propagation. 

3.4.6 Wave propagation in periodically stiffened plates 

Many aircraft substructures are composed of flat or curved plates 

stiffened at regular spacings in one or two directions. Here we will 

consider the transverse wave motion in a two-dimensional flat plate 

stiffened with frames and stringers at equally spaced orthogonal lines 

as shown in figure (3.12a). The structural data aad elements used in 

the analysis are given in Appendix D6. A finite element idealisation of 

one cell is shown in figure (3.12b). The dimensions of the cell 

(distances between the stringers or the frames) are 

& =11.43 cm,& = 22.86 cm . 
X y 

The cell is divided into 16 plate elements, 4 frame elements and 4 

stringer elements. First the problem was analysed assuming zero transverse 

motion at the frames and the stringers (this is due to their high transverse 

rigidity in comparison to the plate). The variation of the frequency of 

propagation in the first two bands is shown in figures (3.35a, b) where 

and Py are restricted within the first zone. Figure (3.35c) shows 

cross-sections in the first, second and third propagation bands for waves 

travelling along the x direction, the y direction an^ the preferred 

direction of propagation (a direction making an angle a to the x axis 

where 

a = tan ^ = 26.56°). 

y 

Figures (3.36a, b, c) show similar results for the same structure 

considering non-zero transverse motion at the frames and the stringers. 

In this case the first propagation band starts from ze#^ frequency. Wave 

motion corresponding to the first part of the first band, wha^^ the wave-

number is small, represents waves of large wave-length compared to the 

distances between the stiffeners, and hence waves are propagated as if 
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the structure is non-periodic. The rest of the first band is very close 

to the first band for the plate when considering zero transverse displace-

ment at the stiffeners. 

The results obtained here when considering zero transverse displace-

ment at the stiffeners shows great similarity with the results obtained 

in Section 3.4.2 for the plate on line supports and rectangular cells 

(4^ = 1 .0 , = 2 .0 ) . 

3.5 Formulation for the Complex Propagation Constant 

Following the formulation for the one-dimensional systems given in 

Section 2.5, equation (3.19) can be rearranged to give an eigenvalue 

problem in and Ug for & given value of the frequency w, where 

and ^2 will he generally complex. This formulation haa the advant-

age of giving the values of the propagation constants aad Pg any 

frequency. Also, in some cases, it produces an eigenvalue problem of 

smaller order than the eigenvalue problem obtained in the formulation 

for the real propagation constantydiscussed in the previous section. 

However it is more complicated to formulate. 

Equation (3.19) can be written in the form 

= 0 (3.37) 

where 

[D] = 
^1,1 Dl,B ^^,LB 

^L,L ^L.B ^^,LB 

^^,B ^b,LB 

°LB,I ^^B,L ^iB,B 

W - "'[5] (3.38) 
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The submatrices D. . are given by 

D. . = . 
i,J i,J 1,] 

where K. . and M. . are the submatrices of [Kl and [51. 

first relation in equation (3.37) gives 

The 

Relation (3.39) can be used to eliminate ^9%} from equation (3.37). 

(3.39) 

Ttis results in an equation of the form 

[ D(ui^ pz) 

where 

= 0 

*LB 

(3.40) 

[ D(%i, ug) 1 = [T'][D(Wi, 

The matrices [T] and [T'] are given by 

[T] = 

I 

0 

0 

0 

I 

0 

0 

0 

i 

[T'] 1^1,1 
I 0 0 

0 I 0 

0 0 I 

(3.41) 

(3.42) 

(3.43) 

Examination of (3.16), (3.18) and (3.20) shows that the propagation 

constants and pg appear in the elements of the matrices [K] and 

[Mj, and hence in [o] and [5], only in the form 

+1^2 ±1%! 1 
e , e and e 

- 1 (notice that the matrix D , and hence , is a real symmetric 

matrix). 
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Therefore equ ation (3.37) can be written in the form 

(e''l[B,] + e"''l[B,J + e''2[B,] + e"''2[B,] + 

iCPi-Uo) i(u_-u ) 
. e 1 2 [Bj . e 2 1 

3J 

[Bj] . [Bg] + [Bg]) 0 

L 
*LB (3.44) 

The matrices [B.] are of the same order as [ D ] where earh matrix con-

tains only the elements of [Dj which are multiplied by e e 1, etc. 

Now if the ratio between and gives a rational number, then they 

can be written in the form 

-i;. 

(3.45) 

where n^ and Ug are integer numbers or zero. 

Substituting (3.45) into (3.44) and putting e^^ = X gives 

n -n n -n_ ^1+0- ou-mu 
(X [B ] + X [B ] + X 2[B ] + A [B ] + A [B ] + A " [B ] 

n -n "B.-n 
+ A [BJ + A ^[Bj + [B.]) = 0 (3.46) 

L̂B 

If the largest negative power of A in (3.46) is -m, then multiplying 

(3.46) by Â ^ will eliminate all negative powers of A. Therefore 

(3.46) can be written in the form (after multiplying by A™ and rearrang-

ing terms) 

([AjA" * [A„.JA 
n-1 + K ] ) 

< ''B 

*LB 

(3.47) 

where n is an integer positive number. 

[A^] are the sum of the matrices [Bj] that are multiplied by A^. 

Equation (3.47) represents a general eigenvalue problem of order n. 

This can be solved for various values of the frequency w and a certain 
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direction of propagation such that the ratio between and is 

a rational number. For example, along the d^ direction where ^ 0 

and ^ = 0 or along the dg direction where = 0 and ^ 0 or 

along directions such that = Ug or = ZPg etc. Different 

techniques for solving the eigenvalue problem (3.44) are given in Appendix A. 

3.5.1 Computer programs 

A general computer program has been written to represent one period 

(cell) of any two-dimensional periodic system by a finite element model 

and to formulate the eigenvalue problem given by equation (3.47). This 

eigenvalue problem is then reformulated to give a standard eigenvalue 

problem of the form 

([G] - X[l]){x} = 0 

([A] - x[B]){x} = 0 
or 

where various eigenvalue solutions can be used. This is discussed in 

Appendix A. The basic flow diagram for the computational procedure is 

given in Appendix B. 

3.5.2 Applications 

Some of the cases used in Section 3.4 will be used here to show that 

this formulation produces results similar to those obtained using the 

formulation for the real propagation constants (when and Pg 

real quantities), and also to investigate the behaviour of two-dimensional 

periodic systems at frequencies outside the propagation bands where the 

propagation constants will be generally complex. 

The following cases are considered. 

a. Transverse wave-motion in infinite plates resting on orthogonal, 

equally spaced simple line supports. 

This is the same example used in Section 3.4.2, fiĝ ire (3.6a). A 

similar finite element idealisation is used here, figure (3.6b). For 

the case of square cells (& = & = 1.0) two directions of propagation 

are considered, along the x axis and at a direction normal to the 

diagonal of the cells (preferred direction of propagation). Whe^ th^ 

waves are propagating along the x direction, relations (3.45) can be 
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written in the form 

J = ^2 * O'O" 

Therefore the eigenvalue problem (3.47) will be of the form 

2 
([A^jt + + [AQ]){q} = 0. 

This has been solved for various values of the non-dimenaional frequency 

0. The resulting X ifill give conjugate pairs for p. Each pair 

represents two identical waves travelling in opposite directions. Figure 

(3.37) shows the variation of the real and imaginary parts of w (where 

^ = p) with the non-dimensional frequency 0. Three different waves 

are shown (numbered 1, 2 and 3). The imaginary parts of w (attenuation 

factor) are plotted as positive quantities ^hile the real parts are plotted 

as negative quantities. It is clear from this figure that the range of 

frequencies where p is real (propagation bands for waves 1 and 2) 

coincide with the results obtained in Section 3.4.2, figure (3.17). Out-

side this range the real parts of % are either zero or +n, while the 

imaginary parts are non^zero. Waves corresponding to these values of w 

will attenuate at a rate depending on the values of the imaginary parts 

of ^ (the amplitude of the wave will attenuate by a factor e from 

one cell to the next). Wave 3 has a large imaginary part within the 

plotted frequency range and hence it is a heavily attenuated wave. 

For waves travelling normal to the diagonal of the cell (a direction 

making 45° to the x axis), we can write 

= ^y 

and hence relation (3.45) can be written as 

^x = %1 - % 

= Wg = W 

and the eigenvalue problem (3.47) will be of the form 

([A^jx* + [Ajlx^ + [AgJxZ + [A^jX + [A^]) {q} = 0. 

However since there are no degrees of freedom at the corners of the cell 

in this case we will find that the matrices [A,] and [A. ] are zero. 
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Figure (3.38) shows six possible waves that can exist at any 

frequency (numbered 1 to 6 in Che figure). The propagation constants 

for waves 1 and 2 are purely real within some frequency bands (propaga-

tion bands). These bands coincide with those produced in figure (3.17) 

outside these bands the Imaginary parts of w are non-zero and hence 

w^ves 1 and 2 will attenuate at these frequencies. The propagation 

constants corresponding to waves 3, 4, 5 and 6 have non-zero imaginary 

parts and hence they represent attenuating waves. 

Figures (3.39) and (3.40) show similar results for the plate with 

rectangular cells (&^ = 1.0, = 2.0). This is the second example used 

in Section (3.4.2). These graphs correspond to waves travelling along 

the X direction and the preferred direction of propagation (a direction 

mating an angle 26.56° to the x axis in this case). In figure (3.39) 

three waves are shown (numbered 1, 2 and 3), while in figure (3.40) six 

waves are shown (numbered 1 to 6). Similar to the previous example, 

within the range of frequencies where the propagation constants for some 

of these waves are real quantities (propagation bands) coincide with those 

produced in Section 3.4.2, figure (3.25). 

b. Stringer stiffened flat plate. 

This example was used in Section 3.4.6, figure (3.12a). The same 

finite element idealisation for the cell is used here. This is shown in 

figure (3.12b). Figure (3.41) shows the variation of the complex propa-

gation constants with frequency for waves travelling along the preferred 

direction of propagation (a direction making an angle 26.56° to the 

X axis, p = u = p). The transverse displacements at the stiffeners 

were considered equal to zero (due to the high transverse rigidity of the 

stiffeners). Four possible waves are shown in figure (3.41) (numbered 1 

to 4). Here again it is clear that the range of frequencies where the 

propagation constants ^ are real quantities (propagation bands for waves 

1 and 2) coincide with the results obtained in Section 3.4.6, figure 

(3.35). 
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3.6 Natural Frequencies of a Single Two-dimensional Periodic Cell 

If the single cell of a two-dimensional periodic system is symmetrical 

(about two planes through its centre and parallel to its sides) and having 

only one type of degree of freedom coupling it to its neighbouring cells 

on opposite sides, then its natural frequencies, while some or all of 

the boundary degrees of freedom are constrained or unconstrained, can 

be associated with the frequencies of propagation corresponding to wave-

numbers (or propagation constants) given by 

a = 0.0, % = 0.0 
X X 

or 

and 

X 
\ - - 2 r - "x = i' 

or 

a = 0.0, u = 0.0 
y y 

where a , a , p , p and & , 2 are the components of the wave-number, 
X y X y X y 

the propagation constants and the dimensions of the cell along the two 

directions x and y defining the system, figure (3.6). 

To prove this, consider the transverse wave-motion in two-dimensional 

plates resting on orthogonal, equally spaced line supports as shown in 

figure (3.6). This is the illustrative example used in Section 3.4.2. 

This example is chosen to simplify the proof (since there are no degrees 

of freedom at the corners of the cell in this case). However, the same 

procedure can be carried out for other cases. 

Now consider a single cell, figure (3.6b), vibrating freely. The 

degrees of freedom at the left and right boundaries ({q?} aad {Qg}) 

the rotation 8 , while at the bottom and top boundaries ({Qg} and {q^}) 

only 8 exist. No degrees of freedom exist at Che corners of the cell 

linear equation of motion 

of the undamped cell is given by 

([K] - w^[M]){q} = 0 (3.48) 

where [K] and [M] are the stiffness and inertia matrices for the cell , 
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{q} is a vector of generalised degrees of freedom in the cell. 

These matrices caa be partitioned according to the interior, left, 

right, bottom and top degrees of freedom in the cell. Hence 

[K] = ; {q} 

symmetric 

V i *Sl,L *^,R 9R 

^B,L 

Kl,L ^T,R ^T,B qm 

(3.49) 

A similar expression can be written for the matrix 

Let N^, N^, Ngy Ng and N be the number of degrees of freedom 

at the interior, left, right, bottom and top of the cell (notice that 

and due to symmetry). Since the cell is symmetrical 

then its normal modes of vibration will be either symmetrical or anti-

symmetrical about lines through the cell's centre and parallel to the x 

amd y axis. Four possible combinations of symmetry can exist. For each 

symmetry condition, the degrees of freedom 

caa be related to each other as given in table 3.2 (notice that these 

degrees of freedom are rotations only). 

symmetry about centre line 
parallel to the x axis 

symmetry about centre line 
parallel to the y axis 

1 Symmetric {q^} = -{q^} Symmetric fq^} " "^^R^ 

2 Symmetric {q^} = -{q^^ Anti-symmetric {q^} = ^^R^ 

3 Anti-symmetric {q^} = {q^} Anti-symmetric {q^} = 

4 Anti-symmetric {qg} = {q^} Symmetric fq^} " "^^R^ 

Table 3.2 

Relation between the degrees of freedom on the boundaries of a simply 
supported rectangular plate in free vibration (figure(3.6B)). 

Now the first relations in table (3.2), that is 

and {qg} = -{q^} 

can be used to eliminate {q^} and fq^} from equation (3.48). 

will give an equation of the form 

This 
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([K] - = 0 (3.50) 

where 

[K] [W]T[K][W] , 

[M] = 

[Wj is a transformation matrix given by 

[w] = 

(3.51) 

' I : 0 ; 0 ' 

0 : I ; 0 

0 

0 : 0 ; I 

0 
^ 'K" 
: 0 ; -I^L 

It is clear that the matrices K and [x] are of the same form as 

(notice [K] and [M] in equation (3.19) when substituting 

that there are no degrees of freedom at the corners of the cell and hence 

the rows and columns corresponding to {9^%} equation (3.19) are 

eliminated). 

Similarly we can use the second, third or fourth relations in table 

3.2 to eliminate {Qg} {q^} from equation (3.48). In each case 

we will obtain an eigenvalue problem similar to (3.50) where the matrices 

[K] and [x] will be the same as the matrices obtained in equations 

(3.19) when substituting the following values for the propagation constants 

and n 

(i) 

(ii) 

(iii) 

= -n, 

2̂ = 0.0, 
= 0 .0 , 

^2 ^ 
= -IT 

= 0.0 

The eigenvalue problem (3.50) is of order Its solution 

gives all the eigenvalues and eigenvectors satisfying the condition 

{qg} -{q?} and {q^} = -{qp} 
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However it should be noticed that 

{q.g} = -{q^} = 0.0 and/or ^ 

are other possible solutions to (3.50). 

Similar conclusions can be drawn for the other eigenvalue problems 

obtained from equation (3.48) when substituting the second, third and 

fourth relations in table 3.2. Each of these eigenvalue problems is of 

order + N and hence solving these four eigenvalue problems 

gives 4(N2 + N + N ) eigenvalues and eigenvectors. However, the 

original equation (3.48) has only N + N + N .+ N + N or 

N + 2N + 2N (since N = N and N = N ) eigenvalues and eigen-
J- ij ij K L i i) 

vectors which are all the possible solutions such tha± 

{q^} = 1/9%} ^ O'O *od {qg} = ̂ {q^} # 0.0 

Therefore all the other eigenvalues and eigenvectors obtained by solving 

the four eigenvalue problems mentioned above (4(N + N + N ) -
I L B 

N + 2N + 2N )) must be solutions satisfying the conditions 

{q^^ = ±{9%} = 0.0 and/or {q^} = j^q^} = 0.0 . 

From the above discussion it can be concluded that tb^ natural frequen-

cies of the single cell, while one of the conditions 

(i) 
• 

# 0.0 and {qg} ^ 0.0 

(ii) = 0.0 and {q^} ^ 0.0 

(iii) • ±'1E> f 0.0 and {qg} = Itq?} = 0.0 

(iv) = Ifqg) = 0.0 and {q^} = 0.0 

(3.52) 

is satisfied coincide with the frequencies of propagation corresponding to 

values of the propagation constants and Ug equal to zero or +n 

(or wave-numbers a and a equal to zero or + 1/2& and + 1/2& ). 

X y — X — y 

Tables 3.3 and 3.4 show the propagation frequencies for the plate 

with square cells (& = 2 = 1.0) and rectangular cells (& = 1.0, 

= 2.0) corresponding to values of and ^ equal to zero or +n 
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and the boundary condition imposed on the cell such that one of its 

natural frequencies coincides with that propagation frequency. This is 

shown for the first three propagation bands. Also shown in the tables 

are the values of the natural frequencies obtained using Warburton's 

expressions |6l| for comparison. 

3.7 Natural Frequencies of Finite Two-dimensional Periodic Systems 

In this section we will show th^± natural frequencies of finite 

two-dimensional periodic structures, where each period (cell) is symmetri-

cal (about two planes through its centre and parallel to its sides) and 

coupled to its neighbours on opposite sides by one type of degree of 

freedom only, can be obtained from the propagation constants/frequency 

curves. 

Following the same proof given in Section 2.7 for one-dimensional 

finite periodic systems, consider the case of two-dimensional periodic 

plates resting on equally spaced orthogonal line supports. As explained 

in the previous section, if we choose a single cell of dimensions &y 

(distances between the line supports) as one period of the infinite plate, 

then frequencies corresponding to values of the propagation constants % 

and u , or wave-numbers a and a , given by 
My, X y' o y 

W = 0.0, a = 0.0 
X X 

or , a^ = + 1/2A^ 

and (3.53) 

Wy = 0.0, a = 0.0 

or Uy = ± n , Ay = ± l/2&y 

will coincide with the natural frequencies of the chosen period with its 

coupling degrees of freedom satisfying one of the conditions given by 

(3.52). Now if we choose the period representing the infinite system as 

a plate consisting of N^ cells along the x direction aad Ng cells along 

the y direction then, according to the discussion given in the previous 

section, the natural frequencies of this period with its coupling degrees 

of freedom ({q^}, {Qg}: {9%}) satisfying one of the conditions 
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given by (3.52) will coincide with the frequencies of propagation corres-

ponding to wave-numbers given by 

X 
0 . 0 

or a' = + 1/2NL2 
X — 1 X 

(3.54) 
and a' = 0.0 

y 

where and NgK are the dimensions of the chosen period represent-

ing the system (periodic lengths). Since the frequency of propagation is 

a periodic function of the wave-number components and a/ with 

periods 1/N^&^ and l/Ng&y then (3.54) can beiyritten aa 

2N.& 
1 X 

2N_2 
2 y 

(3.55) 

Regardless of the choice of the period representing the infinite system, 

the wave-number/frequency variation must be the same for the same values 

of the wave-number since such variation is a characteristic of the 

periodic system and does not depend on the choice of t±ie period. There-

fore, frequencies corresponding to values of the iwave-nnmber components 

and a^ (when choosing one cell only representing the system) equal 

a' given by (3.55), i.e.. 

.Ni)j 

y - 2N2Ay 

or propagation constants 

m m 

^x = ± -Ni ' 

nipTT 
'y = - a ; 

(since p = -2na & and u = -2na & ) 
X X X y y y 

(3.57) 



are indeed the natural frequencies of the x cell period with 

its boundary degrees of freedom ({q,}, {qu}, {q^} aad {q_}) satisfy-

ing one of the conditions given by (3.52). 

Similar to the one-dimensional case, the choice of N x Ng cells as 

one period of the system will result in sub-zones amd sub-bands. The 

first sub-zone is given by 

2N.& * *x * ZN_& 
1 X 1 X 

(3.58) 

while if we choose one cell only of dimensions 2 as the period 

representing the system will result in zones and propagation bands. The 

first zone is given by 

2%;̂  ^ ^x ^ "IT" '' 
X 

(3.59) 

-!_< a < 
2& " y " 2& y y 

Sub-bands corresponding to (3.58) will construct the baade corresponding to 

(3.59) in a similar manner as discussed in Section 2.7 for the one-

dimensional case. 

Inspection of tables 3.3 and 3.4 showing the propagation frequencies 

corresponding to values of % and % equal to zero or m and the 
X y 

boundary conditions imposed on the period representing the system such that 

one of its natural frequencies coincides with that propagation frequency, 

and also inspection of the various wave-forms corresponding to different 

values of and p (some of these wave-forms are shown in figures 

(3.19) to (3.22) and (3.27) to (3.30)). It is found (without proof) that 

the values of and mg in relation (3.57) can be chosen as given in 

table 3.5 to calculate the natural frequencies corresponding to the various 

boundary conditions given by (3.52). This table is for the cases of 

periodic plates with square cells and rectangular cells (&%./& - 0.5). 

Tables 3.6 and 3.7 give the variation of the frequency of propagation with 

the propagation constants ^ and p , within the first propagation band, 

for the above two cases. The natural frequencies of finite periodic plates 
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can be calculated either from these tables or graphically from the propa-

gation constants/frequency surfaces. (The figures in these tables are 

calculated by idealising a single cell by 25 plate elements of the type 

given in Appendix D5). The values of and m^ in table 3.5 havebeen 

checked by calculating the natural frequencies of some finite periodic 

plates (2 X 2 cells and 5 x 5 cells) with various boundary conditions as 

given by (3.52). In each case the finite periodic plate is idealised 

by a finite element model and the natural frequencies are calculated using 

standard eigenvalue routines. The calculated natural frequencies coin-

cided with the frequencies of propagation corresponding to values of 

and w given by (3.57) when substituting values of m^ and m^ as 

given in table 3.5. 
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0 0.2m 0.4m 0.6m 0.8m m 

0 
0.0 

0.0 

0.2m 0.39478 

0.39478 

0.79038 

0.7896 

0.4m 
1.5791 1.9772 3.1713 

0.4m 
1.5791 1.9739 3.1583 

0.6n 
3.5532 3.9552 5.1615 7.1723 

0.6n 
3.5531 3.9478 5.1322 7.1061 

0.8n 
6.3173 6.7249 7.9481 9.9875 12.843 

0.8n 
6.3165 6.7113 7.8957 9.8696 12.633 

9.8724 10.287 11.532 13.608 16.515 20.255 
TT 9.8696 10.264 11.449 13.423 16.186 19.739 

Table 3.1 Comparison between finite element results and the exact solution of the propagation constants/ 

frequency variation for the transverse wave motion in an infinite plate. 

Upper figures: Finite element solution 

Lower figures: Exact solution 



First propagation band Second propagation band Third propagation band 

0, 0 

37.437 
37.073 
36.468 
36.133 

58.095 
57.088 
55.723 
55.065 

58.095 
57.088 
55.723 
55.065 

0, TT 

30.043 
29.695 
29.252 
29.011 

51.574 
50.722 
49.864 
49.348 

77.453 
76.253 
74.673 
72.205 

TT, 0 

30.045 
29.695 
29.252 
29.011 

51.574 
50.722 
49.864 
49.348 

77.453 
76.253 
74.673 
72.205 

^ f f ^ 

TT, TT 

20.255 
20.068 
19.867 
19.739 

72.652 
71.496 
70.176 
69.354 

/ / f ///̂  

72.652 
71.496 
70.176 
69.354 

Table 3.3 Frequencies of propagation corresponding to values of p = 0, +? and n = 0, for plates with 
square cells and the boundary condition imposed on the cell such that one^of its natural frequencies 
coincides with that propagation frequency. 
Upper figures: finite element results using 16, 25 and 64 elements per cell. 
Lower figures: natural frequencies calculated using Warburton's expressions. 

simply supported edges; «v, clamped edges. 



First propagation, band Second propagation band Third propagation band 

0, 0 

0, 'TT 

I T , 0 

25.402 
25.193 
24.862 
24.663 

24.321 
24.145 
23.974 
23.832 

14.575 
14.349 
13.976 
13.766 

31.402 
30.618 
29.629 
29.011 

34.646 
34.151 
32.990 
31.969 

21.713 
21.027 
20.240 
19.739 

44.158 
43.743 
43.130 
42.813 

43.064 
42.626 
40.909 
39.259 

41.646 
42.781 
40.936 
44.987 

TT, TT 

12.658 
12.542 
12.417 
12.337 

26.113 
25.792 
24.690 
23.709 

37.460 
35.851 
33.500 
32.076 

Table 3.4 Frequencies of propagation corresponding to values of y = 0, and u = 0, +n for plates with 
rectangular cells = 0.5) and the boundary condition imposed on thi cell such that one of its 
natural frequencies coincides with that propagation frequency. 
Upper figures: finite element results using 16, 25 and 64 elements per cell 
Lower figures: natural frequencies calculated using Warburton's expressions. 

simply supported edges; ,,,,,,,,, clamped edges. 



Boundary 
Condition 

First band 
m. 

Second band Third band 
m_ 

1 y 2 # # # N 

1 g 2 # # # 

1,2, Nr 
1g 2 g # # Nw 

1)2)* # # 

1,2. Nr 1,2 , . .NL 0,1,, .Ng-l 1,2,..N 1,2,..Nr 

1) 2 # # # N 0,1. .N -1 1,2*. 1 ,2 . .Nr 0,1...N^-1 0,1,..N-1 

1,2,..N 0,1. .Ng^l 1 , 2 . . . 1,2. .Nr 0,1...N^-1 0,1,..N2-1 

0,1,..N 1,2,...N r 0,1. .N^—1 0,1. .Ng"! 1,2,..ML 1,2,...Nf 

0,1,..N 1,2,...Nf 0,1. .N^-1 0 , 1 . .Ng^l 0,1...N^-1 1,2,...N f 

0,1...N 0 , 1 . .Ng-l 0,1...N^-1 

1,2,..N^ 

1 , 2 , . 

0,1., 

.N, 

.Ng-l 

0;1...N^-1 0,1,...N2-1 0,1...N^-1 1,2,...Nf 1,2...N 1 0 , 1 , , Ng"! 

Table 3.5 Values of and m for the calculation of the natural frequencies of finite periodic plates 
on simple line supports. 
Upper figures for plates with square cells 
Lo^er figures for plates with rectangular cells (& /& = 0.5). 

simply supported edge; clamped edges. 



0.0 0.1m 0.2m 0.3m 0.4m 0.5n 0.6m 0.7% 0.8m 0.9m m 

0.0 1 36.101 

O.lm 35.832 35.562 

0.2m 

0.3m 

34.106 

34.100 

34.830 

33.816 

34.084 

33.047 31.978 symi letric 

0.4n 32.986 32.693 31.898 30.792 29.563 

0.5w 31.895 31.591 30.769 29.624 28.349 27.088 

0.6w 30.913 30.599 29.751 28.569 27.250 25.942 24.751 

0.7m 30.099 29.777 28.905 27.690 26.332 24.983 23.750 22.712 

0.8m 29.492 29.164 28.274 27.032 25.643 24.261 22.996 21.927 21.117 

0.9m 29.119 28.786 27.884 26.626 25.217 23.814 22.527 21.438 20.612 20.096 

1 ^ 
28.992 28.658 27.752 26.488 25.073 23.662 22.367 21.272 20.440 19.920 19.743 

Table 3.6 Non-dimensional frequencies of propagation for periodic plates with square cells, 



""x \ 
0.0 0. Itv 0.2n 0. 37r 0.4n 0. 5Tr 0. 6Tr 0. 77r 0. Sir 0. 9Tr TT 

0.0 24.672 24. 644 24. 567 24. 456 24.329 24. 201 24.084 23. 987 23. 913 23. 868 23.853 

0.1m 24.263 24. 235 24. 157 24. 045 23.915 23. 785 23. 666 23. 567 23. 492 23. 446 23.431 

0.2n 23.176 23. 147 23. 066 22. 948 22.814 22. 678 22« 553 22. 449 22. 371 22. 323 22.307 

0.3n 21.690 21. 659 21. 573 21. 448 21.305 21. 161 21. 029 20. 918 20. 835 20. 784 20.767 

0.4n 20.045 20. 012 19. 920 19. 787 19.634 19. 479 19. 338 19. 219 19. 130 19. 076 19.057 

0.5n 18.408 18. 372 18. 273 18. 130 17.965 17. 799 17. 647 17. 519 17. 424 17. 365 17.345 

0.6n 16.893 16. 854 16. 748 16. 593 16.416 16. 237 16. 073 15. 936 15. 833 15. 769 15.747 

0.7n 15.592 15. 551 15. 436 15. 270 15.080 14. 888 14. 712 14. 564 14. 453 14. 384 14.361 

0.8w 14.586 14. 542 14. 420 14. 245 14.042 13. 838 13. 651 13. 493 13. 375 13.302 13.277 

0.9n 13.947 13. 901 13. 774 13. 591 13.380 13. 167 12. 972 12. 807 12. 684 12. 607 12.581 

TT 13.727 13. 681 13. 552 13. 366 13.152 12. 936 12. 737 12. 570 12. 445 12. 367 12.341 

Table 3.7 Non-dimensional frequencies of propagation for periodic plates 

with rectangular cells (i /& = 0.5) 
X y 



(a) 

( b ) 

Figure 3.1«(a) Schematic diagram of part of a two-dimensional periodic 

system ; (b) single cell representing the system. 



0 I ' 
^FIRST ZONE U 

Figure 3»2» Reciprocal ce.iĵ  and first zone for one-dimenaional periodic 

systems. 

Figure 3.3. Reciprocal system and first zone for the oblique two-dimensional 

periodic system shown in figure(3.1.). 
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Itgwre 3.4. First zone for two-dimensional periodic systems with rectangular 

cells. 
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(a) 

RB' \ 

( b) 

Figure 3»5« (a) Idealisation of a two-dimensional periodic system as 

sin assembly of cells joined together on all sides and 

comers ;(b)forceG on and degrees of freedom of a 

single cell . 



(a ) 

.1 

© 

© © © 

© © © © 

0 © © ® 1 

»-i 

( b ) 

Figure 3.6. (a) Peurt of two-dimenaional periodic plates on simple 

drthogonal line supports; (b) finite element idealisation 

of one cell. 



Figu ons inside the first zone of a two-dimensional periodic 

system with rectangular cells for polar plotting of the 

propagation constants-frequency variation. 

(a) ( b ) 

Figure 3.8. (a) Part of two-dimensional periodic plate on orthogonal 

line spring supports ; (b) finite element idealisation of 

one cell. 



(a) 

( b ) 

Figure 3.9. (a) part of two-dimensional periodic plate on oblique simple 

line supports ; (b) finite element idealisation of one cell. 



Figure DiviaionG inside the first zone of the two-dimensional 

periodic system shown in figure (3!.9)for polar plotting 

of the propagation constsints-frequency variation. 

(a) u 'X 

( b ) 

Figure (a) Part of a two-dimensional periodic point supported 

plates ; (b) finite element ide kion of one cell. 
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Figure 3.12. (a) Part of a two-dimensional periodically stiffened plate; 

(b) finite element idealisation of one cell ; (c) stringer 

cross-section ; (d) frame cross-section.Dimensions in centimeters. 



f2=19.B 
/ 

3 ;^r3 

3;7r,3;i; 

3:^3 

Figure 3*1)" Extended first band of the propagation surfaces for a 

periodic plate on simple line supports with square cells. 
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Figure ).l4. First band of the propagation surfaces for a periodic 

plate on simple line supports with square cells. 
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SECOND B A N D RST B A N D 

^ H I R q BANG) 

20.00 30.00 40.00 
FREQUENCY 

50.00 60 .00 
P A R A M E T E R 

70.00 80.00 

Figure i5.17. Variation of the reeuL propagation constants with frequency, 

for a two-dimensional periodic plate on simple line supports 

with square cells, for waves propagating along the X direction 

=0.0,y/^=0.0) and along the preferred direction of 

propagation=45.0,/^ = yX/ ) . 
X y 
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Figure 3.l8. Polar representation of the real propagation constants-

frequency variation for two-dimensional periodic plates 

on simple line supports with square cells;first band:black; 

second band:red;third band:blue . 





(a) 

O = 36 .5 

( b ) 

Figure 3.19. Standing waves of the two-dimensional periodic plate 

shown in figure().6) , 1 =1 =1.0 , yLi = y^=0.0 ; 
X y X y 

(a) first band ; (b) second band . 



(Q) 

2 9 . 2 5 

( b ) 

Figure 3.20. standing waves of the two-dimensional periodic plate 

shown in fig^re(3.6) , 12=1^=1.0 ,yÛ =ou,,/6l = ;T. 

(ay first band ; (b) second band . ^ 
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Figure 3*2). First band of the propagation surfaces for a twc nsional 

periodic plate on simple line supports with rectangular cells, 
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Figure ).25. Variation of the real propagation constants with frequency, 

for a two-dimensional periodic plate on simple line aupports 

with rectangular cells(1 =0.5),for waves propagating 

along the x direction('x=0.0,/y,=0),eU.ong the y direction 
O 

=90.0,=0)and along the preferred direction of 

propagation(c< =26.6,y^= . 
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Figure 3.26. Polar representation of the real propagation constanta-

frequency variation for a two diaenaional periodic plate 

on simple line supports with rectangular cells(1 =0.5). 
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Figwre 3.30. Standing waves of the two—dimensional periodic fOadwi 

shown in fig%re(3.6) , lx/ly=0.5 /z: 

(a) first band ; (b) second band . 
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Figure 3.31. Propagation surfaces for a flat plate; (a) first band ; 

(b) second band . 
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Figure Polar representation of the real propagation constants-

frequency variation for the two-dimensional periodic 

plate shown in figure(3.9) . 
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Figure Variation of the real propagation conatants with frequency, 

for the two-dimensional periodic plate shown in figure(3.9)^ 

l^slg I for waves propagating along the d^ direction(«^=0.p, 

y^sO.O),along the dg direction(3^.=60v0^y(/^=0.0)*normal to 

the shorter diagonal of the cell('::̂ =30.0,/((̂ =y</2) and 

normal to the longer diagonal of the cell('^=120.0,y/^=-y/^). 
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figure Variation of the real propagation constantswith frequency, 

for the two-dimensional point supported periodic plate shown 

in figure(3.11),l_=l =1.0 ;(a)fir8t band ;(b) second band ; 
X y 

(c) variation for waves propagating along the % direction 

(e<=0.0,y/4=0«0)and along a direction mmking 4$ degrees to 

the X direction(e(=45.0^/^u=/^) 
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Flgwre 3.3$. Variation of the real propagation constantswith fteqpwncy, 
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for waves propagating along the % directionC*=0.0,,X^=0.0), 

along the y dir*ction(<*^ =90.0,/^^=0.0)and along the preferred 

direction of propagation(#=26.6%xX*=^X<).Ihe stiffeners are 
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considered transversely rigid . 
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Figure ).36» Variation of the real propagation const&atgwith y, 

for the two-dimensional periodically stiffened ] wn 
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transverse xM}tion of the stiffeners is considered . 
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constants for a two-dimensional periodic plate on simple 

line supports With squ* ^ aves propagating along 

the X directian(/^=0.0) . 
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CHAPTER IV 

THREE-DIMENSIONAL PERIODIC SYSTEMS 

4.1 General 

Periodic systems in three dimensions can be considered as an assemblage 

of cells (periods) joined together on all faces, edges and corners in 

identical ways to form the whole system as shown in figure (4.1). Typical 

examples of such systems are crystal structures in solid state physics and 

the modern modular type buildings. Waves can travel in these systems in 

two different manners, either as spherical waves or plaae waves depending 

on the type of forces generating them. This analysis considers only 

plane wave—motion in three-dimensional periodic systems. 

Consider a three-dimensional periodic system defined by three indepen-

dent directions d^, dg and d^ parallel to the directioneof the system's 

periodicity. Each cell (period) in the system can be identified by 

three numbers n^, and n^ defining its position along the d^, dg and 

dg directions respectively, where the origin of the system is taken at 

the cell defined by n^ = ng = n^ = 0. A property # can propagate as 

a wave, with wave number a and frequency v, if the physical system 

admits a solution of the type 

2ni(vt - - ngdg&g " Bg^gK^) 
6 " Ae 
n^, Hg'*] 

i(wt + n p + n w. + n p-J 
Ae 1 1 2 Z 3 j (4 1) 

where 

6 is the value of the property 6 associated with cell 
Yni,n2,n2 

n^, ng, ng. 

A is a constant, t the time, v the frequency, w the angular 

frequency, where 

w = 2nv 

and a^, ag, a^ are the dimensions of the cell and the 

components of the wave-number a along the d^, dg and d^ directions 

respectively. 
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^1' ̂ 2 ^3 known as the propagation constants in the d^, dg 

and dg directions, where 

Wg = ' (4.2) 

Wg = -2na 2g 

For propagating waves, without attenuation, the propagation constants 

^2 smd Pg are real quantities. They represent the change in phase 

between adjacent cells in the d^, dg i&mi directions. Attenuating 

waves can be described by (4.1) where in this case Pg &Bd will 

be complex quantities. Their real parts represent the change in phase 

while the imaginary parts represent the attenuation of the wave as it 

travels from one cell to the next in the d^, dg and d^ directions 

respectively. 

From relation (4.1) it can be seen that the relation between the 

value of the property ^ at any point in one cell n^, ng, n^ and at 

the corresponding points in adjacent cells can be ^written as 

'n^+l, ng'*] 

# 4 = # e (4.3) 

6 = * e 

For unattenuated waves, where are real quantities, 

relations (4.1) and (4.3) can be satisfied by using ^2' 

instead of and where 

Wl' = 1 ^ 

Pg' = ^2 — 2^2^ J (4.4) 

m^, #2 and m^ are any integer numbers. 
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The equation, of motion of the system (equation (4.21), Section 

4.3) must yield the same values for ^ and w for given 

Pg or equivalent This means that the property ^ 

and its frequency w are periodic functions of the real Wg Wg 

with periods 2n. Therefore it is sufficient to examine the variation 

of the frequency of propagation w with the real u amd ly along 

the directions d^, dg and d^ inside one period (2m) only. The most 

suitable choice is 

-IT $ ^ TT , 

-n 3 ^2 ( m , (4.5) 

-n g Ug 3 n 

Similar to the one and two-dimensional systems, we mwat determine the 

boundaries to which the wave number ̂  (and hence ly) is 

to be confined to allow examining all possible jpropagating waves in all 

directions in the system and at the same &ume satisfy the condition (4.5). 

These restrictions on and are for the same reasons discussed 

in Chapters II and III for the one and two-dimenaional systems and should 

be observed when determining the wave-length or the direction of propaga-

tion. this will be discussed in the next section. 

4.2 Reciprocal Cells and Zones in Three Dimensions 

The discussion of reciprocal cells and zones given in Chapter III for 

the two-dimensional systema will be extended here to cover the threes 

dimensional case. 

Zones to which the wave-number ^ (and hence and u^) is to 

be confined will be volumes in three dimensions and can be constructed in 

a similar manner as for the two-dimensional systems. This restriction 

should be observed when determining the direction of propagation or the 

wave-length X , where 

A* = l/|a|' 

To construct the first (fundamental) zone for a three-dimensional 

system we will follow the procedure given in Section 3.2 for t*m^ 
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dimensional systems. First construct the reciprocal cells and the 

reciprocal system for the three-dimensional system considered. The 

reciprocal cell is geometrically identical to the direct (original) cell 

describing the periodicity of the direct (original) system, but of 

dimensions that are the reciprocal of the corresponding dimensions in the 

direct cell. The reciprocal system is constructed by joining the recip-

rocal cells together such that the reciprocal system is geometrically 

identical to the direct system. Now taking the centre of one of the 

reciprocal cells as die origin of the zone, then the first zone is the 

smallest volume bounded by plane perpendicular bisectors of the lines from 

the origin to the centres of all neighbouring reciprocal cells. To 

illustrate this, consider a three-dimensional system having rectangular 

parallelpiped cells, figure (4.2a). Let & , 2 aad & be the 

dimensions of the cell along the three directions x, y and z defining 

the system. The first zone will be another rectangular parallelpiped 

with dimensions ^^^y ^^^z Che origin at its centre as 

shown in figure (4.2b)^ The wave-number components, and hence the 

propagation constants p and along the three directions x, 

y and z will be restricted as follows 

- 2^- < < 2l- ' 3 * 
X X 

^ 3 , -n 3 ( n (4.6) 
2& " y" 2& ' " * ^y 

y y 

2% < *z * 2*- ' < ^z < " 

since p = -2na & , u = -2na & and u = -2ma & . The shortest wave-
X X X y y y z z z 

length for waves travelling along the x, y or z directions will be 

A = T^-r = 2A , (4.7) 
y |ayi y 

and the shortest wave-length A for any wave travelling in the system 
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will correspond to a wave associated with the largest absolute value 

of the wave-number ^ inside the zone, hence 

s la i2 . I ,_ , , 'max y a + a + a 
I I y t I g , 

(l/2Ax)^ + (l/2Ay)2 + (l/ZA^)^ 

2A A & 
""y" (4.8) 

& 2 + & 2 + % 2 
X y z 

The directions of propagation of this wave can be defined by two angles 

a and g as shown in figure (4.3) where 

a ^ & 
"1 V "1 X 

a = + tan —^ = +tan — 
*x -

(4.9) 

g= + tan-l Z_ = +tan-l iL. 

A .& 
X y 

4.3 Mathematical Formulation 

Following the analysis for one and two-dimensional periodic 

systems, a three-dimensional periodic system can be considered as an assemb-

lage of infinite number of identical cells joined together in identical 

manner on all sides, edges and corners, as shown in figure (4.1). A cell 

contains one period of the system. Using the finite element technique, a 

cell can be represented by a model with interior and boundary degrees of 

freedom. Let {q^^, {F } be the degrees of freedom and forces at the 

interior of the cell, 

{q%k {Fg}, {q^}, {Fg}, {q^j, {F^j, {q^}, and fqQl.fFQ} 

be the degrees of freedom and forces at the left, right, bottom, top, 

far and near faces of the cell; also let 

{q^g},{F^g}, etc., and degrees of 

freedom and forces at the edges and corners (common boundaries between the 

different faces of the cell) degrees of freedom as shown in figure (4.1b). 

The linear equation of motion of the undamped cell is given by 
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([%] - u2[M]){q} = {F} ( 4 . 1 0 ) 

where [K] and [#] are the stiffness and inertia matrices for the cell. 

{q} and {F} are the nodal degrees of freedom aa^ forces. The 

matrices [K] and [x] and the vectors {q} and {F} can be partitioned 

according to the interior, left, right, bottom, top, edges and corners 

degrees of freedom, hence. 

^%,L Kl,RTN ' 

Kl,! KL,L 

4 , 1 

KP,! 

KN,I 

^ia,i 

2 symmetric 

*^T,I 

^BF,! 

^TF,! 

*3N,I 

*SrN,I 

^1F,I 

^IBF,! 

*%BF,I 

*^TF,I 

K%TF,I 

*%TN,I KRTN,RTN 

Similar expressions can be written for [M] and {F}. 

*R 

'̂ LB 

^BF 

^TF 

"̂ BN 

"̂ LF 

^LN 

^RN 

^tBF 

^LTF 

^LBN 

^RTF 

^RBN 

^LTN 

iRTN. 

(4.11) 

> 
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Free waves propagate through infinite three-dimensional periodic 

systems (no external forces) when {F^} equal to zero. However the 

forces on the boundaries of the cell (forces of interaction between dwa 

cell and its neighbours) are not zero since they transmit the wave-motion 

from one cell to its neighbouring cells. This wave-motion is character-

ised by relating the degrees of freedom and equivalent nodal forces in one 

cell to the corresponding degrees of freedom and forces in adjacent cells. 

Let the suffix n^, ng, n^ define the position of the cell along the 

three directions d^, dg and d^ defining the system, then we can write 

fF } = G fF } 
L n^+1, Og.ng L n^.ng.n^ ^ 

fF I 

iWg 

iWq 
fF } = G fF } 2 
I F'n^.ng.ng+l * F'n^.ng,,;^ 

(4.12) 

{F } . , 
^ LB/n^+l.n+l.ng ^ LB^n^.n^.n^ 

7 

f9tB}ni+l,n2+l,n2 " ^ fSLB^n^.ng.ng ' 

i(%_+W_+p_) 
I" "1 JL 6 w r "I 

t^LBFn^+l.ng+l.ng+l " ^ LBF n^,n2,n2 

f I , 
t4LBF'n^+l,n +l,n +1 ^ tSLBF'n^.ng.ng 

etc.... 

For equilibrium of the interconnecting forces between cell n^y n^, n^ 

and neighbouring cells, the sum of forces at the common boundaries between 

the cells must be zero and hence the following equilibrium conditions must 

be satisifed. 
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tVnj,n2,„3 * ."3 " ° face) 

n^,=3+1 ° " ' face) 

fP } + fF } + fF } + fF ) . = 0 , 
RT n^,n2,n2 LT n^+l.ng.n^ RB n^+lfOg+l.ng 

(edge RI) 

fF } + fF } + fF } + fF } 
I RTN'n^.ng.ng ^ LTN'n^+l.ng.n^ ^ RIF^n .ng+l'Cy RBN'n^.ng.ng+l 

+ fF } + fF ) + fF ) 
I LBNMn +I,n2+l,n2 ^ RBF'n^.ng+l.n^+l LTF'n^+l,n2,n2 

+ ^ ^ L B F \ + l . „ 2 + l . n 3 + l ' ° < 4 . 1 3 ) 

Similar expressions can be written for the other edges and corners. 

At the common boundaries between cell n .ng.n^ and neighbouring 

cells the displacements must be equal, hence 

n^ing/Qg B n^.n^+lxn^ 

fo T = fg t 
n^.ng.n^ ^F n^.h^.n^+l 

(4.14) 

^^^B^n,+1, n^+l,n. 

fs^RTN^n,,n_,n_ (9^82}% +!^ n^tl.n^+l 

etc. 

Substituting (4.12) into (4.13) and (4.14) the following relations between 

the forces and displacements on the boundaries of cell n^/ng^n^ can be 

obtained (suffix nT,n_,n_ are dropped since these relations hold for any 
1 Z j 

cell). 



{F*} + e ^{]^} = 0, 
K If 

iw? 
{PL} + e "XF*} = 0, 

1%. 
{F_j + e ^{F_^ = 0 
jN j? 

iPi 1% 
{Fn^} + e ^{Fy^} + e + e {FT*} = 0, 

( 4 . 1 5 ) 

iWp i#n i(w?+w%) 
{F^^} + e ^{FL^} + e + e ^ {F__} = 0, 

m . iti_ 
{F^nJ + e ^^FL_} + e + e 

i(U3+Pj) 
{F^^J = 0, 

ip, IP iP, 

+ e {FLTN* + % {?***) + ^ {Fp^e} 

+ 6 
iCU^+Pg) 

+ e {FT,^} = 0 

{Fnc*} + e 
i(U3+Vl) 

{F } t LTF' 

Also 
in. 

L̂B 

^LF ^LT 

^LTF 

> 
*LB 

% 
q 
BN 

(̂ LN 

1%, 

*LF 

i(p^+pg)^ 
'2 ^3' 

i(Wl+Pg+Pg) 
e {qT*?} 

KPi+PJ) f 

i(Wo+ %*) *LF 

(4.16) 



Relations (4.16) can be used to write the relation between the degrees 

of freedom in the cell in the matrix form 

{q} = [w]{q} ( 4 . 1 7 ) 

where 

{q} is given by (4.11), 

{q} = Lqi *LB ^LF ^LBFJ 

[W] 

( 4 . 1 8 ) 

i(u.+u_) 

i(Wn+Wn) 

r iCu.+Pi) 
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^ G 
giCwz+Ws) 

^ Cwi+MZ+Pg) (4.19) 



Also the equilibrium conditions (4.15) and the condition 

{F^} = 0 

can be written in the matrix form 

[W']{F} = 0 (4.20) 

where {F} are the forces in equation (4.10). The matrix [w'] is 

identical to the transpose of the matrix [w] given by (4.19) while 
T . i^'s , -iu'8 

replacing e by e 

Substituting (4.17) and (4.20) into equation (4.10) results in an 

equation of the form 

^2' = 0 (4.2i) 

The matrices [K] and [x] are complex matrices given by 

[Kj = [W'][K][W], 

(4.22) 
[M] = [W'][M][W]. 

[Kj and [Mj are the matrices in equation (4.10). Equation (4.21) 

represents an eigenvalue problem in w for given values of 

Pg. For real values of the wave-number a, and hence 

equation (4.21) can be rearranged to give a real symmetric eigenvalue 

problem in w. This will be discussed in Section 4.4. Also it can be 

reformulated to give an eigenvalue problem in ^2 ^od for a given 

value of w, where p and will be generally complex quantities. 

This will be discussed in Section 4.5. 

4.4 Formulation for the Real Propagation Constants 

Similar to the one and two-dimensional periodic systems, waves can 

propagate, without attenuation, in three-dimensional periodic systems 

when the wave-number a, and hence Pg, are real quantities. 

In this case the frequency of propagation is a periodic function of the 

propagation constants % , with periods 2n. Therefore it is 

enough to study the variation of the frequency w with ^2 

within one period only. In this case equation (4.21) can be formulated 
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t o g i v e a r e a l s y m m e t r i c e i g e n v a l u e p r o b l e m i n w f o r g i v e n r e a l v a l u e s 

o f ^ 2 a n d W g . 

E q u a t i o n ( 4 . 2 1 ) c a n b e w r i t t e n i n t h e f o r m 

( [ K ^ j + i [ K ^ ] - w 2 ( [ M = ] + i [ M i ] ) ) { q f + i q ^ } = 0 ( 4 . 2 3 ) 

where [K^], and q^, q^ are the real aad imaginary 

parts of [K], [ M ] and (q) respectively. Separating the real and 

imaginary parts of (4.23) and combining the two sets of equations together 

gives 

- - K ^ 
2 

- W ' M'^ q " 
> 

- i q 

( 4 . 2 4 ) 

Ftom (4.19) and (4.20) it can be seen that for real values of Pg 

Ug we can write 

[W] . [W*]' ( 4 . 2 5 ) 

where * denotes the complex conjugate, and hence the matrices [K] and 

(given by (4.22)) are Hermitian, i.e.. 

[K*]? = [K] 
( 4 . 2 6 ) 

- * 

M [M] 

Therefore equation (4.24) represents a real symmetric eigenvalue problem 

since 

r=ii rziiT [a"] = -[K'] 

( 4 . 2 7 ) 

»iiT [Ml] = -[Ml] 

This equation can be solved for various values of t&a propagation 

constants ^ (as real quantities) to find the corresponding 

frequencies of propagation and associated wave-forms. Appendix A gives 

the method of solvinglU&Lseigenvalue problem. 
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4.4.1 Computer programs 

A general computer program has been written to represent one period 

(cell) of any three-dimensional periodic system by a finite element model 

and form the matrices in equation (4.24) for given real values of the 

propagation constants Pg &Bd . Then the problem is solved to 

find the corresponding frequencies of propagation and associated ̂ wave-

forms. The basic flow diagram for the computational procedure is given 

in Appendix B. 

4.4.2 Applications 

Consider the flexural wave-motion in a three-dimensional structure 

consisting of infinite flat plates intersecting orthogonally at equal 

distances in three directions. This can be regarded as am idealisation 

of a modular type building. Figure (4.4) shows a finite element idealisa-

tion of the cell chosen to represent one period of th^ structure (the cell 

is idealised by 12 plate elements). The plate element and data values 

used in the analysis are given in Appendix D7. The system is defined by 

the three directions x, y and z parallel to the sides of the cells. 

The dimensions of the cell (periodic lengths) along these directions are 

& = & = & = 1.0 
X y z 

Therefore the first zone to which the wave-number ^ (and hence the pro-

pagation constants u and will be confined is a rectangular 

parallelpiped of dimensions ^^^y with the origin of 

the zone at its centre. This was discussed in Section 4.2. 

First the problem is solved to find the variation of the frequency 

of propagation with the propagation constants p , p and In polar 

representation, where the length and direction of the vector from the 

centre of the plot represents the value of the frequency and the direction 

of propagation, propagation bands will be volumes enclosed between 

surfaces which are the upper and lower bounding frequencies for the bands. 

These surfaces are the frequencies corresponding to zero wave-number 

(^ = 0.0, ^ = Pg = 0.0) and wave-numbers terminating on the bound-

aries of the first zone. These surfaces can be defined by lines of 

constant a and lines of constant g where a and g are the two 

angles defining the direction of propagation as shown in figure (4.3). 
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Figure (4.5) shows the upper and lower bounding frequency surfaces for 

the first propagation band. The upper bounding frequency is the same 

for all directions of propagation and corresponds to a wave-number a 

equal to zero. This is shown as the spherical siurface, figure (4.5d). 

The lower bounding frequencies surface (corresponding to wave-numbers 

terminating on the boundaries of the zone) is shown in figures (4.5a,b,c) 

as the projection of the surface seen from the x, y aad z directions. 

From these figures it is clear that the lower bounding frequencies for 

the band vary with directions of propagation and the lowest frequency 

occurs in a direction given by (4.9), hence 

-1 -1,1.Ox .gO 
a = tan = tan (y-Qy = 45 , 

y 
& / A 2 + % 2 ^ 

6 = tan = tan (/Z) = 54.74° 
X y 

which can be called the preferred direction of propagation in this case. 

The wave-length corresponding to this frequency is the shortest wave-

length X given by (4.8), hence 

2& & A _ 
% . 1.55. 

X y Z 

Plotting the variation of the frequency of propagation with the wave-

number ^ (or with p and p^) for waves propagating in a certain 

direction will result in curves similar to those (Obtained for one-

dimensional periodic systems. Figure (4.6) shows ttie frequency variation 

for waves travelling along the preferred direction of propagation. This 

direction is defined by the two angles 

q = 45° and g = 54.74° 

(along this direction we have ^ ^ p ). 

X y z 

The frequency variation is shown for the first fcwr propagation bands, 

where the first and second propagation bands coincided with each other 

(this is because the cell representing the system is cubic). 
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From these results we can conclude that propagation occurs ia three 

dimensional periodic systems within some frequency bands only. The 

width of these bands vary with the direction of propagation. Similar 

to the one and two-dimensional periodic systems, waves with frequencies 

within these bands propagate in the system without attenuation while 

waves with frequencies outside these bands are attenuating waves. 

The second example is similar to the previous ona except that tbe 

dimensions of the cells (distances between the plates in the x, y and z 

directions) are 

& = 1.0, & = 1.5 and & = 2.0. 
X y z 

Figure (4.7) shows the upper and lower limiting surfaces for the first pro-

pagation band. The upper bound is the spherical surface (figure (4.7d)) 

corresponding to a wave-number a = 0.0, while the lower bound is the 

surface shown in figures (4.7a, b and c) corresponding to wave-numbers 

terminating on the boundaries of the first zone. Similar to the previous 

example the width of the first band is largest along the direction given 

by (4.9) where, 

o = tan = 33.69°, 

y 

tan " = 67.41° 
A /& + A 

X 

I A 
X y 

which is the preferred direction of propagation in this case. 

Figure (4.8) shows the variation of the frequency of propagation with 

the propagation constants along this direction (where = Py = Wg)* 

Comparing these results with the previous example shows that the 

width of the propagation bands is dependent on the dimensions of the cells 

(the first band is wider along the larger dimension). Otherwise the 

behaviour of the structure is similar to the first case. 



4.5 Formulation for the Complex Propagation Constants 

The formulation given in Chapter III, Section 3.5 for the two-

dimensional systems can be followed here to reformulate equation (4.21) 

to give an eigenvalue problem in Wg and for a given frequency 

w, and hence the wave-number/frequency variation can be examined at mry 

frequency whether within the propagation bands where the propagation 

constants are real quantities, or outside the bands where the propagation 

constants (or the wave-number) are complex quantities. Now for a given 

value of the frequency w, equation (4.21) can be written in the form 

[D(w^, Pg' = 0 (4.28) 

where 

[»] [K] - .2[M] 

D. 

D. 

'L,I 

F,I 

D. 
LB,I 

D 
BF,I 

D. 

D. 

LF,I 

LBF,I 

°I,B ^^,F ^I,LB BF ^I,LF °I,LBF 

D. 
LBF,LBF (4.29) 

and {q} LSi ^B %F ^LB ^BF %LF (4.30) 

From the first relation in equation (4.28) we can iwrite 

- 1 
+ D2^p{qp} + * 

^^.BF^^BF** ̂ I.LF^^LF^ * ^^,LBF*SLBF*) 
(4.31) 
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Substituting (4.31) into (4.28) to eliminate (q^) gives an equation 

of the form 

15' 

I'l = % 

]i8 given by 

[ 5 ] = [?'] [ii ][? ] -

The matrices [T ] and [T ] are given by 

[T] 

[ t ' J . Dy T E 
jj ̂  JL 

I 0 0 0 0 0 0 

B ̂  I 
0 I 0 0 0 0 0 

Dp,! G 0 0 I 0 0 0 0 

^^3,1 B 0 0 0 I 0 0 0 

D E 
BF,I 

0 0 0 0 I 0 0 

0 0 0 0 0 I 0 

0 0 0 0 0 0 I 

1,1 

E D_ _ ^ ̂  jj R n 
$ 

B ^I.BF 
E D. 

I 0 0 0 0 0 0 

0 I 0 0 0 0 0 

0 0 I 0 0 0 0 

0 0 0 I 0 0 0 

0 0 0 0 I 0 0 

0 0 0 0 0 I 0 

0 0 0 0 0 0 I 

(4.35) 

BYom (4.22) we can see that the propagation constants ^^,^2 ^3 

appear in the elements of the matrices [K ] and [M],i&nd Ih&nce in 

[ D ] and [D ], only in the form 



e e , e , e , e , 

±i(w_±%T) ±i(u ±w ±p ) 
e ^ , zMd e ^ ^ 

-1 
(notice that the matrix D , and hence D , is a real symmetric 

1,1 
matrix). 

Now similar to the two-dimensional analysis given in Section 3.5, if 

the ratios between give rational numbers, then they can 

be written in the form 

^ 2 = ^ 2 % ; ( 4 . 3 8 ) 

^3 " ̂ 3% 

Substituting (4.38) into equation (4.32) and putting e*^ = X gives 

[D(X)]{^^ = 0 (4.39) 

The elements of the matrix [5] in equation (4.39) contain A raised to 

positive and negative integer powers only. If the largest negative 

power of A in (4.39) is -m then multiplying (4.39) by will 

eliminate all negative powers of A. Therefore (4.39) can be written 

in the form (after multiplying by A ̂  and rearranging terms) 

<[\]*° + +••••" K])fq> = 0 (4.40) 

where n is a positive integer number. 

The matrices are of the same order as the matrix [oj where 

each matrix contains only the elements of [o] idhich are multiplied by 

Equation (4.40) represents a general eigenvalue problem of order n. 

This can be formulated and solved for various values of the frequency w 

and a given direction of propagation such that Che ratios between the 

propagation constants %2 and satisfy the condition (4.38). 

For example, along the d^, dg and d directions where Pg " " 0, 

= 0 and = 0 or along the preferred direction of propaga-

tion where = pg ^ Wg* etc. Methods of solving the eigenvalue problem 

(4.40) are discussed in Appendix A. 
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4.5.1 Computer programs 

A general computer program has been written to represent one cell 

(period) of any three-dimensional periodic system by a finite element 

model and to form the eigenvalue problem (4.40) for various values of the 

frequency w and a certain direction of propagation satisfying the con-

ditions (4.38). This eigenvalue problem is then solved using one of the 

methods discussed in Appendix A. The basic flow diagram for the 

computational procedure is given in Appendix B. 

4.5.2 Applications 

The same two examples used in Section 4.4.2 are used here. The same 

finite element idealisation for the cell representing the structure, 

fig. (4.4), is used. First the case of pla±es with cubic cells 

(&^ = & = = 1.0) is considered. Wave propagation along the preferred 

direction of propagation is investigated. This direction is defined by 

a = 45° and g = 54.74° 

Along this direction we have 

^x = ^y = 

and hence relations (4.38) become 

^1 ^ ^x * ^ 

Ug = Uy = ^ 

P] = W; = P 

Figure (4.9) shows two possible waves that can exist at any frequency 

(numbered 1 and 2 in the figure). The propagation constants for wave 1 

are purely real within the frequency range 25.8 3 w ^ 37.25 which is the 

first propagation band. This band coincides with the results produced 

in Section 4.4.2, figure (4.6). 0̂ :tside this band the propagation 

constants are complex quantities with real parts equal to zero or +n. 

Waves corresponding to these propagation constants are attenuated waves. 

The propagation constants for the second wave (wave number 2 in the 

figure) have non-zero imaginary parts (within the plotted frequency range) 

and hence it represents attenuated waves. 

Figure (4.10) shows the variation of the propagation constants with 

frequency for waves travelling along the preferred direction of propagation 

for the second example (& = 1.0, & = 1.5, & = 2.0). This direction is 
X ' y ' z 

defined by 
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a = 33.69, B = 67.41 

(where 

Three different waves are shown in the figure (numbered 1, 2 and 3). 

For each wave there are bands of frequencies where the propagation con-

stant is a real quantity (propagation bands). ;&lso we can notice the 

overlapping between the higher bands. Similar to the previous example, 

these propagation bands coincide with the results produced in Section 

4.4.2, figure (4.8). 
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Figure 4.1. (a) Schematic diagram of a three-dimensional periodic system; 

(b)8ingle cell representing the system . 



(a) ( b ) 

Figure 4,2.(a)Siiigle cell of a three-dimensional periodic syetem with 

rectangular parallelepiped cells;(b)the first zone to which 

the wave number a will be confined . 

Figure 4.]). The two angles defining the direction of propagation in a 

three-dimensional periodic system. 



Figure 4.4. Finite element idealisation of the single cell representing 

an infinite three-dimensional periodic system formed of flat 

plates . 
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Figure 4.5. Upper and lower bounding surfaces of the first propagation band 

for the three-dimensional periodic plates of figure(4.4); 

=lg ;(a),(b),(G)lower bound;(d)upper bound. 
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Figure 4.6. Variation of the real propagation constants with frequency,for 
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1 =1 =l^,for waves propagating along a direction defined by 
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Figure 4.7.Upper and lower bounding surfaces of the first propagation band, 

for the three-dimensional periodic plates of figure(4.4); 

1^:1^:1^=1.0:1.5:2.0;(a),(b),(o)lower bound;(d)upper bound 
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CHAPTER V 

RESPONSE OF STRUCTURES TO CONVECTED RANDOM 

PRESSURE FIELDS 

5.1 General 

The response of a general structure (periodic or non-periodic) to 

random forces can be calculated using the standard modal method of analysis. 

This requires modelling the whole structure and finding its natural fre-

quencies and associated normal modes. For the analysis of complex struc-

tures using digital computers, such & procedure needs a lot of time and 

effort for modelling and data preparation. Also the computer time, and 

storage, required for the analysis can be very large. High modal density 

and some types of structural damping increase the complexity of the modal 

analysis |35, 37|. 

Many complex structures consist of identical (or nearly so) repetitive 

units (cells) joined together in a similar manner such as periodically 

stiffened plates and beame in one and two dimensions.Finding the response 

of such structures to homogeneous random fields can be greatly simplified 

if their periodic nature is utilised. 

The forced vibration of one-dimensional periodic structures has been 

recently studied by Mead and Sen-Gupta |29, 30|, Sen-Gupta |57| and Mead 

and Pujara |34|. They showed that the response of a finite damped 

periodic structure can be estimated from the response of the infinite 

structure. For a beam type structure consisting of five periods they find 

that its average response is very close to the response of the infinite 

structure while its maximum response is no more than 50% above the response 

the infinite structure. Similar results have been obtained experi-

mentally |43|. Lindberg and Olson |24|, Olson |44| and Orris and Petyt 

|47| used the finite element method to find the response of one-dimensional 

periodic structures to random pressure fields. 

In this chapter a method is presented for using the finite element 

technique and the periodic structure approach to find the response of any 

one or two-dimensional periodic structure to random, homogeneous pressure 

fields. This formulation has the advantage that it can easily analyse 

any complex periodic structure where only one period of the structure need 
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be considered. No previous knowledge of the natural frequencies and 

associated normal modes of the structure is required. Also increased 

modal density or any type of damping in the structure add no further com-

plication to the analysis. 

This analysis is based on the assumption that the structure is con-

sidered infinitely periodic in one or two dimensions and that the random 

excitation can be considered as a sum of harmonic sinusoidally distributed 

components. The total response of the structure is the sum of the res-

ponses due to each of these components acting upon the structure separately. 

Due to the periodic nature of the structure, the response at any point in 

one cell (period) of the structure is equal to the response at the corres-

ponding points in other cells multiplied by a phase difference equal to 

that between the components of the excitation field acting upon the structure 

at these points. 

Most of the computation in this chapter will be concerned with the 

calculation of the frequency response function, idhich is the response of 

the structure to a convected harmonic field with unit amplitude. 

5.2 Types of Excitation Fields Considered 

In this chapter the response of one and two-dimensional periodic 

structures to frozen convected random pressure fields and general random 

homogeneous pressure fields is considered. The response to such pressure 

fields can be described as follows. 

a) Response to frozen convected random pressure fields (acoustic plane 

wave field) 

These are pressure fields that convect over the structure in a certain 

direction w^th a constant velocity U without change in wave-form. They 

can be analysed into a continuous frequency spectrum of harmonic components 

where each component is associated with a wave-number ^ (or given by 

i • s r (s.i) 
P 

or 
U 
P 

where v is the frequency, w the angular frequency and < is the angular 
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wave-number where 

j( = Zira.. (5.3) 

The power spectral density of a response quantity # at any point r 

is given by 

S^(r^ w) = S (r̂  w)|*(r, w)|^ (5.4) 

where S Cr, w) is the power spectral density of the pressure field. 

#(r\ w) is the wave receptance function. It represents the response 

of the structure at point ̂  due to a harmonic wave with unit ang)litude, 

frequency w and wave-number 

The mean square response in the frequency band 

0 < w < #2 

is given by 

"1 

*m 
S (r, w)|*(r^ w)|^dw (5.5) 

b) Response to general random homogeneous pressure fields. 

These fields can be described by a continuous frequency spectrum of 

harmonic components where each component is associated with a continuous 

spectrum of wave-numbers (e.g., boundary layer pressure field or diffused 

sound field). The power spectral density of the response at any point 

r is given by 

K.) - K.)|4'(2* (5.6) 

where S^fr^ w, <) is the power Spectral density of the pressure field. 

The mean square response in the frequency band 

0 < w < 

is given by 
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2 
Sp(E» w, K^I^Cr w, K)|^ dxdw (5.7) 

o o 

The wave receptance function #(r, w) or w, <) can be 

calculated by means of a finite element analysis. This will be investi-

gated in Sections 5.3 and 5.4. 

For a detailed discussion of such pressure fields see |34, 67|. 

A typical example of a general random homogeneous pressure field is 

the boundary layer pressure field. The wave number—frequency spectrum 

of this field is the double Fourier transform of its space time cross-

correlation function |34, 67|. For the calculation of the response of 

periodic systems, such a field can be expressed in the form 

Sp(E, 0) 
Sp(^^ 'bCCV/O^tCl + b^) + (eCV/n)2} 

{b^ + (1 - Gcv/n)2}{b2 + (1 + Ecv/n)^} 
( 5 . 8 ) 

(See |34| for the mathematical derivation of this expression) 

where 

CV : the non-dimensional convection velocity where 

P 

0 : the non-dimensional frequency 

E : = -K.& where < is the angular wave-number and & is the 

periodic length of the structure subjected to the pressure 

field 

b : boundary layer decay parameter 

U : convection velocity 
P 

S (0) : the power spectral density of the pressure at any point in 

the field 

It should be noted here that the second term in the numerator between the 

brackets [ ] in (5.8) is (CV/0) and not (O/CV) as given in |34|. 

5.3 Mathematical Formulation for One-dimensional Periodic Systems 

Consider a one-dimensional periodic system composed of an infinite 

number of identical cells (period^ ) joined together in identical manner, 

figure (2.1a). Using the finite element technique a cell can be described 

by a model coupled to its neighbours on either side by a certain number 

of degrees of freedom and forces, figure (2.1b). Tte linear equation of 
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motion of the cell can be written in the form 

([K] + iw[c] - = {F} 

where 

(5.9) 

[K ] , [c] and [M] are the stiffness, damping and inertia matrices 

for the cell, 

{q} and {F} are the degrees of freedom and forces at the 

different nodes in the cell. 

The matrices [K], [c] and [M] and the vectors {q} and {F} can be 

partitioned according to the interior, left and right degrees of freedom 

in the cell, figure (2.1b), hence 

K 
I,L ^,R 

^ I ^ , L ^ , R 

y 
R,L ^ , R 

(5.10) 

Similar expressions can be written for [Mj and [ĉ  

{q} {F} (5.11) 

where e and b denote the exterior and boundary forces respectively. 

The boundary forces are the forces of interaction between the cell 

and its neighbours due to the wave-motion in the structure. 

Now consider a harmonic pressure wave with unit amplitude, frequency 

w and wave-number ^ propagating across the structure (from left to 

right). This can be written in the form 

P(r, t) = e'Cwt - K.r) 

The exterior forces acting on the cells are due to this pressure field and 

hence the relation between these forces at any point in one cell n and 

the corresponding point in adjacent cell n + 1 can be written as 



where 

E = -K'.& (5.14) 

& is the length of the cell (periodic length). 

As this pressure wave propagates across the structure it will induce 

a wave-motion in the structure propagating in the same direction and ifidb 

the same wave-form as the pressure wave. Therefore the relation between 

the degrees of freedom and boundary forces at any point in cell n and 

the corresponding point in cell n+1 is similar to relation (5.13), hence 

" l C I = 

(5.15) 

At the common boundary between cell n and cell n+1 the displacements 

and exterior forces must be equal while the boundary (interior) forces in 

equilibrium, hence 

= (5.16) 

Substituting (5.16) into (5.12) and (5.15) gives 

( V : - ' 

(5.17) 

Relations (5.17) are the same for any cell, and hence the suffix n can 

be dropped. These relations can be substituted into equation (5.9) to 

eliminate the forced {F,} » and {F_} and the displacements 
1, it K 

{q }. This will result in an equation of the form 



([KXe)] + iw[c(E)] - w^[M(E)]) =: 

J 
FT(E) 

< 

(5.18) 

The matrices [ K j , [ c j and [M] are defined in a similar manner which 

coincide with the definitions of [&] and [M] given by (2.16) in 

Chapter II, Section 2.2. 

For most engineering structures the damping matrix [c] can be linearly 

related to the stiffness and inertia matrices. For aircraft structures 

it is usual to take 

w[c(E)] = n[K(E)] 

where n is called the material loss factor. 

(5.19) 

However, some times, a different loss factor is assumed for different 

elements. 

The solution of (5.18) is 

[K(E)] + iw[C(E)] - W^^M(E)] 
- 1 

F;(E) 

2F (E) 

(5.20) 

The displacements (9%} then obtained from equation (5.17). 

Equation (5.18) can be formed and solved for different values of the 

frequency w and wave-numbers ^ given by (5.2). The response 

quantities {q} can then be substituted in equations (5.4) and (5.5) 

find the power spectral density of the response and the mean square 

response. Also it can be solved for various values of the frequency w 

and wave-numbers ^ to find the power spectral density and the mean square 

response given by equations (5.6) and (5.7). 

If the damping is ignored, equation (5.18) can be written in the form 

(K* + iK^ - + iMf;) {qf + iqi} = {F^ + 1?^}^ (5.21) 

Separating the real and imaginary parts and combining the two sets together 

gives 

/ r rr / K 

—i 
K 

or 

-K J (5.22) 

(5.23) 
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since the matrices [& ] and [ M ] are Hermitian, then 

[Ri] = -[%!]?, 

Therefore the matrix [o] in equation (5.23) is real and symmetric. 

(5.24) 

5.4 Mathematical Formulation for Two-dimensional Periodic Systems 

Consider a two-dimensional periodic system composed of an infinite 

number of identical cells joined together in identical manner, figure 

(3.5a). Using the finite element technique a cell can be represented by 

a model coupled to its neighbours on all sides and corners, figure (3.5b). 

The linear equation of motion of the cell is given by equation (5.9), 

namely, 

([K] + iw[c] - w^[M]){q} = {F}. 

The matrices [K], [c] and [M] can be partitioned according to the 

interior, left, right, bottom, top and corner^degrees of freedom in the 

cell as given by (3.8) (Chapter III, Section 3.3). 

{F} can be written as 

b 

The vectors {q} and 

{q} = f Qy 1, {F} 

'̂ LT 

**RT 

where e and b denote the exterior and boundary forces respectively. 

Now consider a harmonic pressure wave with unit amplitude, frequency 

w and wave-number < travelling across the system at a direction making 

an angle a to the d^ axis (the d and dg axes are parallel to the 

sides of the cells, figure (3.1a^L This can be written (at a point ^) 

^ + 0 

^R 

^B 

"I^T ^T ^ 
F 
LB ^LB 
F 
LT ^LT 

^RB ^RB 

^RT ^RT 

(5.25) 
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in the form 

i(wt-K.S) 
P(S, t) = e 

i(wt -K-S^-K S_) 
e ^ ^ (5.26) 

where Kg and S^, Sg are the components of the wave-number ik 

and the position vector ^ (defining the position of th^ considered 

point from the origin). The exterior forces acting on the cells are (hw* 

to this pressure field and hence the relation between these forces at any 

point in one cell n^, ng (where n^ and ng define the position of 

the cell along the d^ and dg directions) and the corresponding points 

in neighbouring cells can be written as 

(5.27) 

e e ^^2^2 e ^^2 

where and Kg arc the dimensions of the cell along the d^ and dg 

directions. 

Eg ° (5.28) 

Aa pressure wave propagates across the system it will induce a 

wave-motion in the structure propagating at the same direction and with 

the same wave-form as the pressure wave. Therefore the relation between 

the degrees of freedom and boundary forces at corresponding points in 

neighbouring cells is similar to relation (5.27). 

Now following the analysis given in Chapter III, Section 3.3, we can 

obtain relations between the degrees of freedom and exterior forces at 

the boundaries of the cell similar to (3.12). Also considering the 

equilibrium of the boundary forces results in relations between the boun-

dary forces similar to (3.11), where and Eg replace and Wg 

in these relations. These relations can be used to eliminate all the 

boundary forces and the degrees of freedom and exterior forces, 

{q%}, , {q^}, {F^} , {Qgg}, {Fgg} , ^^LT* 

from equation (5.9). This will result in an equation of the form 
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([K^E^, Eg)] + iw[C(Ei, E )] - w2[M(E^, Eg)]) 

^LB 

I 

2F, 

2F. 

4F. 

(5.29) 

B 

LB 

The matrices [KCe , Gg)], [C(E^, Eg)] and [M(E^, Eg)] defined in 

a similar manner which coincides with the definition of [ Wg) ] 

given by (3.20) (Chapter III, Section 3.3). The solution of (5.29) is 

[ K(G^, Eg) + iwC(E^, Eg) - W^M(E^, Eg)] 

*LB 

I 

2F^ 

2F. 

4F 

(5.30) 

B 

LB 

The remaining displacements fqg}, {q?}, ^^RB^ 

then obtained from relations (3.12). 

5.5 Computer Programs and Applications 

A general computer program has been written to calculate the response 

of any one or two-dimensional periodic structure to the two types of 

excitation given in Section 5.2. One periodic section (cell) of the 

structure is represented by a finite element model, th^^ the matrices in 

equations (5.18) for one-dimensional systems or (5.29) for two-dimensional 

systems are formulated. The wave receptance functions #(r\ w) or 

w, k) are obtained by solving these sets of equations. The basic 

flow diagram for the computational procedure is given in Appendix B. The 

set of equations (5.18) or (5.29) are solved using Grout's factorisation 

method |65|. 

5.5.1 Examples of one-dimensional periodic systema 

Some of the examples used in Chapter II will be used here. This will 

enable us to see how to use the curves describing the variation of the 

propagation constant with frequency, obtained in Chapter II for these 

examples, to understand and predict their response to random pressure fields. 

98. 



The first example is the beam on multiple supports at equal distances. 

At these supports the translational stiffness is infinite and the 

rotational stiffness = 4.0. This example was used in Section 2.3.2 

and shown in figures (2.3a, b). Its propagation constant-frequency curve 

is shown in figure (2.11). To determine the response of this structure 

to random pressure fields, the generalised forces for a single beam ele-

ment due to a harmonic pressure wave given by 

i (wt-^.^) 
P(r, w, kj = e (5.31) 

must be calculated first. This is given in Appendix The single cell 

representing one period of the structure, figure (2.3b) is idealised by 

four beam elements and two rotational spring elements. The beam element 

and data values used are given in Appendix Dl. The distance between 

the supports (periodic length) is taken equal to unity. The damping 

matrix is calculated from relation (5.19) where the material loss factor 

n is taken equal to 0.25. The rotational stiffness at the supports 

is taken equal to 4.0. The response of the beam to the two types of 

pressure fields given in Section 5.2 is calculated. Figure (5.1) shows 

th^ power spectral density of the displacement at the mid point of the 

cells due to acoustic plane wave with unit amplitude. Various values 

for the non-dimensional convection velocity CV of th^ acoustic wave are 

chosen. The convection velocity U of such a pressure field can be 

written as 

u = ^ 

p a k 

where k = 2na, w = 2mv. 

The non-dimensional convection velocity is given by 

CV = - ̂  (5.33) 

where e = -k.& 

0 is the non-dimensional frequency, and 

& is the periodic length. 

From the graph it can be seen that in each spectrum th^ response has 

maximum values at frequencies where the convection velocity of th^ pressure 
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field equals the free wave speed (phase velocity) in th^ beam (coincidence 

phenomenon). The free wave speed, or phase velocity, v , is given by 
w 

V = - = - (5.34) 
w a p 

The non-dimensional free wave speed V is defined 
w 

V . - — 
w u 

or in general 

V ^ 0 3 |p| f n (5.35) 

where m is an integer number and ^ is the propagation constant. 

The relation between 0 and ^ for this example is shown in figure 

(2.11). 

The highest peak occurs when the convection velocity of the pressure 

*#ve equals the free wave speed corresponding to Che lower bounding 

frequency of the first propagation band where 

0 = 12.8, p = -n 

and hence 

V = 12.8/n = 4.0. 
w 

This frequency coincides with the fundamental natural frequency of the 

single cell when its coupling degrees of freedom (8^ and 8^) are 

unconstrained. These results are in agreement with the results produced 

by Mead and Sen-Gupta|30| using closed form solution. 

Figure (5.2) shcmm the response of the beam to the same excitation 

as before while the material loss factor n is taken equal to 0.02. In 

this case the maximum response in each spectrum occurs at the same fre-

quency as before but the amplitude of the response is nmch higher than 

the previous case (due to the low damping in the beam ia this case). 

Figures (5.3) and (5.4) show the response due to an acoustic plane 

wave with convection velocities CV = 2.0 and 4.0 while the damping in 

the beam is taken equal to zero. Also shown is Che response when the 

material loss factor n = 0.25 for comparison. In the first figure 
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(CV = 2.0) the response is infinite at 0 = 16.0. this point the 

propagation constant |p| = 2.74 (see figure (2.11)) where one of the 

free wave speeds is equal to 2.0. This is obtained from (5.35) where 

m = 1 and hence 

I— I ^ 0 16.0 _ n 
' w' |p + 2mn| " 2.74 + 6.28 ^ ' 

In the second figure (CV = 4.0) the response is Infinite at 0 = 12.8. 

At this point the propagation constant |p| = n (see fig. (2.11)) and 

hence the free wave speed in the beam is 

V . 12:8 = 4,0 
W 17 

where m is taken equal to zero. 

From the above discussion it can be concluded that from the propagation 

constant/frequency curve one can predict the frequencies at which maximum 

response occurs when the structure is subjected to a^ acoustic plane wave 

with a certain convection velocity. 

Figure (5.5a,b,c) (figures 5.5b, c are cross-sections in (5.5a)) 

shows the power spectral density of displacement at the mid point of the 

cells due to a general random pressure field (S (r^ w, kj) with unit 

amplitude. From the figure it is clear that Che largest response occurs 

when the wave-number k (notice that |p| = |k|& = |k|) and the frequency 

of the excitation coincide with one of the points on propagation 

constant/frequency curve (fig. (2.11)). The highest p^^& occurs at the 

lower bounding frequency of the first band where 0 = 12.8 and n. 

Figures (5.6a,b) show the power spectral density of the displacement at 

the cell centres due to a boundary-layer pressure field S (M, e) 

calculated from expression (5.8) where the follmving values are considered. 

The non-dimensional convection velocity CV = 4.0, the boundary layer 

decay parameter b = 0.1, the power spectral density of the pressure at 

any point in the field S (0) = l.Q. This boundary layer pressure field 

is shewn in figures (5.7a, b). As can be seen from this figure the 

pressure spectrum has maximum peaks when O/e = 4.0 which is the non-

dimensional convection velocity of the pressure field in this case. 
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Now returning to figure (5.6) it is clear that the maximum response 

occurs at frequencies where the non-dimensional free wave speed in the 

beam equals to 4.0. This figure is in fact the product of the two 

figures (5.5) and (5.7). Similar results were produced by Mead and 

Pujara |34| using a particular series of space harmonics. 

The next example is the flat stiffened panel used in Section 2.3.3. 

This is shown in figure (2.4). The propagation constant/frequency curve 

is shown in figure (2.12). Appendix C2 gives the formulation for calcu-

lating the generalised nodal forces for one element of the panel (strip 

element) due to a harmonic pressure wave with unit amplitude, frequency 

w and wave-number The damping matrix is calculated from relation 

(5.19) where the material loss factor n is taken equal to 0.25. The 

displacement response at the mid point of the cells to acoustic 

plane wave with unit amplitude is shown in figure (5.8) for various 

values of the non-dimensional convection velocity CV where 

cv -

The response is shown as a function of the non-dimensional frequency 0 

where 

Here again, similar to the previous example, the maximum response in each 

spectrum occurs at a frequency where the convection velocity of the 

pressure field equals the free wave speed (phase velocity) in the panel 

amd the highest peak occurs at the lower bounding frequency of the first 

propagation band (see figure (2.12)). Similar results were produced 

in |l4| using transfer matrix methods. 

5.5.2 Examples of two-dimensional periodic systems 

The two examples used in Chapter III, Section 3.4.2 will be used here. 

These are the flat infinite plates resting on equally spaced orthogonal 

line supports, figure (3.6a). The same finite element idealisation for 

the cell representing one period of the system is used here. This was 

shown in figure (3.6b). The generalised forces for a single plate 

element due to a harmonic pressure wave with unit amplitude, frequency 

w and wave-number K, are derived in Appendix C3. The damping matrix is 
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calculated from equation (5.19) wher^ the material Ic^^ factor n is 

taken equal to 0.25. 

First the plate with square cells = & = 1.0) is considered. Its 

response to the two types of pressure fields given in Section 5.2 is 

calculated. Figures (5.9), (5.10) and (5.11) slhow the power spectral 

density of the displacement at the centre of the cells due to an acoustic 

plane wave with unit amplitude propagating along the x direction, along a 

direction making 45 degrees to the x axis (preferred direction of propa-

gation) and along a direction making 20 degrees to the x axis. Various 

values of the convection velocity U of the pressure field are chosen. 

From these graphs it can be seen that the maximum response in each 

spectrum occurs at a frequency where the convection velocity of the pres-

sure field coincides with the free wave speed (^base velocity) in the 

plate. The free wave speed V can be calculated from the propagation 

constants/frequency curves shown in figures (3.17) (3.18) where 

V — 

X y 
(since u = -k & , w = -k A ), 

X X x' y y y' 

k and k are the components of the wave-number k along the x and 

y directions respectively. The highest peak for each direction of pro-

pagation occurs at the lower bounding frequency of the first propagation 

band along that direction when the convection velocity of the pressure 

field coincides with the free wave speed at that frequency. For waves 

propagating along the x direction the highest peak occurs at 0 = 30.0 

(notice that 0 = w for this example) when the convection velocity 

of the pressure field equals 9.55. At this frequency the free wave speed 

in the plate is given by 

V = — = 30 0 _ 9,55 

/(f) + (f) 
X y 

(since = n and % = 0.0 at this point). 
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similarly for waves travelling along the preferred direction of propa-

gation the highest peak occurs at w = 20.0 when the c^mvection velocity 

of the pressure field U = 4.5. The free wave speed in the plate at 

this point is given by 

(since |p^| = | = n at this point. See figure (3.17).) 

Also for waves travelling at a direction making 20 degrees to the % 

direction the highest peak occurs at w = 26.iZ? when the convection 

velocity of the pressure field U = 7.8. (Notice tha± this frequency 

is the lower bounding frequency of the first propagation band along this 

direction, fig^^e (3.18)). At this point the free wave speed in the 

plate is given by 

V* = = 7.8 

/(n)2 + (1.143)2 

(notice that k and k , and hence w and u , are restricted 
x y X y 

inside the first zone, figure (3.4)). 

Figures (5.12a,b), (5.13a,b) and (5.14a,b) show spectral 

density of the displacement at the centre of the cells due to a general 

homogeneous random pressure field with unit amplitude travelling along 

the three directions discussed above. From these graphs it is clear 

that the response in each case is largest when the wave-number and the 

frequency of the pressure field coincide with one of the points on the 

propagation constants/frequency curves along the direction of propagation 

(notice that 1% I = Ik I& and |p I = Ik |& ). The maximimi 
' x' ' x' X ' y' ' y' y 

response in each graph occurs at the lower bounding frequency of the 

first band along the direction of propagation of the pressure field. 

These frequencies can be clearly seen in the polar plot of the propaga-

tion constants/frequency curves shown in figure (3.18) where the curve 

showing the lower bound for the first band gives the frequencies where 

maximum response occurs for various directions of propagation. The 

highest peak occurs when the pressure field is propagating along the pre-

ferred direction of propagation in the plate as caa be seen from figure 

(5.13). 

104. 



Figures (5.15) and (5.16) show the response of the plate with 

rectangular cells (& = 1.0, & = 2.0) due to an acoustic plsm^ wave 
X y 

with unit amplitude travelling along the x direction and along a direction 

making 26.56 degrees to the x direction (preferred direction of propaga-

tion in the plate). Similar to the previous example, the response of die 

plate is largest when the convection velocity of the acoustic wave 

coincides with the free wave speed in the plate. The highest peak in 

each graph occurs at the lower bounding frequency of the first propagation 

band along the direction of propagation. (The propagation bands for diis 

example are shown in figures (3.25) and (3.26)). 

Figures (5.17 a,b) and (5.18a,b) show the response of the plate due 

to general homogeneous random pressure field with unit amplitude, travelling 

along the two directions discussed above. Here again, similar to the 

previous example, the response of the plate is largest when the wave-

number and the frequency of the pressure field coincide with one of the 

points on the propagation constants/frequency curves along the direction 

of propagation (notice that = |k^| and |py| = 2|k | in this 

case). These curves are shown in figures (3.25) aad (3.26). Also the 

maximum response occurs at the lower bounding frequency of the first band 

along the direction of propagation. The highest peak occurs at the lower 

bounding frequency of the first propagation band when the pressure field 

is propagating along the preferred direction of propagation in the plate. 

From the above discussion it can be concluded that from the propaga-

tion constants/frequency variation for free waves propagating in the two-

dimensional periodic system, one can predict the frequencies at which the 

response of the structure is largest when it is subjected to pressure fields 

propagating at various directions. The polar plot of t±^ propagation 

constants/frequency curves shows these frequencies very clearly. 

5.6 Response of General Structures to Random Excitation (Modal Analysis) 

In the previous sections of this chapter the analysis haa been 

confined to calculating the response of infinite periodic structures to 

homogeneous random pressure fields. In this section, the response of 

general structures (non-periodic or finite periodic structures) to any 

arbitrary excitation is calculated using finite elements and the 
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method of analysis. The response of some finite periodic structures in 

one and two dimensions is calculated using this approach and the results 

are compared with the response of infinite structures presented in 

previous sections. 

5.6.1 Mathematical formulation 

First the structure is represented by a finite element model. This 

gives the differential equation of motion in the imatrix form 

[M]{qV} + + [K]{q} = {F} (5.36) 

where [M] , [c] and [Kj are the structure's inertia, damping and 

stiffness matrices respectively. 

{q} and {F} are the vectors of generalised degrees of freedom and 

forces respectively. 

Equation (5.36) represents a system of simultaneous ordinary differ-

ential equations with constant coeffkients. For complex structures the 

matrices in (5.36) can be of large order, and the solution of such a set 

of equations can be very complicated and time consuming, especially if Che 

response is required for a large range of the excitation forces aa usually 

the case in random response problems. 

Equations (5.36) can be transformed into a set of independent 

equations by using the modal matrix of the undamped system |35, 371. This 

modal matrix is obtained by solving the eigenvalue problem of the undamped 

system. Such a solution can be written in the form 

Puf.] = [K][V] (5-37) 

where 

is a diagonal matrix where w's are the natural frequencies 

of the undamped system. 

[v ] is the modal matrix (eigenvectors associated with w's). This 

modal matrix can be normalised such that 

= [l] (5.38) 

[V]T[K][V] = (5.39) 
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Now if we let 

{q} = [yj{n} 

{n} represents another set of generalised coordinates, then we can 

write, 

{ q ' } = [ v ] { n ' } 

{q"} = [v ] {n" } 
Substituting (5.40) and (5.41) into equation (5.36) gives 

+ [ c ] [ v ] { n ' } + [K][v]{n} = {F} 

Multiplying (5.42) by gives 

{n " } + [c ] {n ' } + = {Q} (5.43) 

where 

[c] = [v ]T [c ] [v ] (5.44) 

{Q} = [V]*{F} (5.45) 

In general the matrix [Cj is non-diagonal. ]However, in many cases 

the matrix [c] can be considered as a linear combination of the stiff-

ness and inertia matrices. Hence 

[C] = a[M] + b[K] 

where a and b are constants, and hence the matrix will be a 

diagonal matrix. In some other cases the off-diagonal terma of [Cj 

are small compared with the diagonal terms and it can be approximated as 

a diagonal matrix. Also for the general case when [Ĉ  non-diagonal 

and the off-diagonal terms are not small there are other methods to trans-

form it into a diagonal matrix. This has been discussed in detail in 

In this section we will consider that the matrix is proportional 

to the stiffness matrix such that the matrix [CJ will be given by 



= [^2EW 

where g is called the modal damping. 

Therefore equation (5.43) represents an independent set of equations. 

Its solution gives the displacements {n), and hence {q} can be 

obtained from (5.40). 

The response of the structure to random pressure fields of the type 

discussed in Section 5.2 can be obtained by calculating the response to 

various values of the pressure field components (given by (5.12^ using 

the modal analysis method as explained above. The pcm#^ spectral density 

of the response and the mean square response are then obtained from 

relations (5.4) and (5.5) or (5.6) and (5.7). 

5.6.2 Computer programs and applications. 

A general computer program has been written to represent a general 

structure by a finite element model. The eigenvalue problem of the 

undamped structure is formulated and solved to calculate the natural fre-

quencies and the modal matrix. Then the matrices in equation (5.43) are 

formed. This equation is solved to obtain the response of the structure 

to the two types of excitation given in Section 5.2. 

The response of some finite periodic structures 

dimensions is investigated here. This will enable ua to compare their 

response to the response of infinite structures presented in previous 

sections. The following cases are considered. 

a. Response of a five bay beam to a frozen convected random pressure 
field. 

The beam is resting on equally spaced point supports having infinite 

translational stiffness and a rotational stiffness K = 4.0, figure 

(5.19). The distance between the supports is taken eq^ml to unity. 

The structure is represented by a finite element imodel where each bay 

is idealised by four beam elements. The beam element and data values 

used in the analysis are given in Appendix Dl. First the natural frequen-

cies and associated normal modes of the undamped structure are calculated 

(only the first five normal modes are considered. This will be discussed 

later). Figure (5.20) shows the first five normal modes of the beam. 
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The modal damping g is taken equal to 0.01 (material loss factor 

n = 2g) . The response of the beam to a frozen convected random pressure 

field with unit amplitude travelling over the beam from left to right 

with a convection velocity CV = 4.0 is calculated. Figure (5.21) shows 

the power spectral density of the displacement at the centre point of the 

bays (numbered 1 to 5 on the graph where bay 1 is on the left end of the 

structure, figure (5.19)). Since the beam has five bays then its natural 

frequencies will occur in groups where each group contains five natural 

frequencies occurring within one of the propagation banda of the infinite 

structure. Therefore it is enough to consider only the first five natural 

frequencies and associated normal modes to calculate tha response to 

excitation forces with frequencies within the first propagation band, j&s 

can be seen from figure (5.21) the response of the beam has five peaks 

corresponding to the first five natural frequencies. it should be 

noticed that two of these modes are antisymmetric (see figure (5.20)) and 

hence contribute nothing to the response at the mid point of the middle 

bay (bay 3). Comparing these results with the response of the infinite 

beam discussed in Section 5.5.1, figure (5.2),shows t±ie maximum res-

ponse of the finite beam is very close to the maximum response of the 

infinite beam and occurs at nearly the same frequency (at 0 = 13.1 for 

the finite beam and at 0 = 12.8 for the infinite beam, which is the lower 

bounding frequency of the first propagation band, figure (2.11)). Figure 

(5.22) shows the response to the same excitation as before while the modal 

damping S is taken equal to 0.125 (n = 2^ = 0.25). Here, due to the 

relatively heavy damping in the structure, some of the peaks have dis-

appeared. Also the amplitudes of the response is much lower than before. 

The maximum response occurs at a frequency close to the first natural 

frequency of the structure (0 = 13.1). 

Similar to the previous case, comparing the response of this structure 

to the response of the infinite structure calculated in Section 5.5.1, 

figure (5.1) shows that the maximum response for both structures occurs 

at very close frequencies. Also the maximum r.m.s. response of the 

finite stiructure is about 6% higher than the maximum r.m.s. response of 

the infinite structure. 

Figure (5.23) shows the response of the beam when the convection 

velocity of the pressure field is taken equal to ™ (this represents a 
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constant pressure field where the wave-number k = 0.0). In this case 

the response of the structure is symmetrical (the response of the first 

and second bays is identical to the response of the fifth and fourth 

bays respectively). The maximum response occurs in bay 3 at a frequency 

close to the upper bounding frequency of the first propagation band 

(where the maximum response of the infinite structure occurs in this 

case). Here the maximum r.m.s. response of the finite structure is ^bout 

33% higher than the maximum r.m.s. response of the infinite structure. 

From the above discussion it can be concluded that calculating the 

response of the infinite structure can provide a good estimate to the 

response of finite structures. Similar conclusions are obtained in |30|. 

b. Response of two-dimensional finite periodic plates. 

The response of flat plates resting on equally spaced orthogonal 

line simple supports is examined here. The following three cases are 

considered. 

(i) a 5 X 5 bay square plate, 

(ii) a 3 X 3 bay square plate, 

(iii) a single bay square plate. 

First the 5 x 5 bay plate is considered, figure (5.24a). The plate 

is represented by a finite element model where each bay is idealised by 

four plate elements only. (This will give 135 degrees of freedom in 

the system. A better idealisation, that is idealising each bay by a 

larger number of elements, will result in a very large number of degrees 

of freedom in the structure and hence cannot be solved easily on the 

computer.) The plate element and data values used in the analysis are 

given in Appendix D4. The modal damping g is taken equal to 0.125 

(material lî ss factor n = 2^ == 0.25). [Hie generalised nodal forces 

for a single plate element due to a harmonic pressure wave with unit 

amplitude, frequency w and wave-number jc are derived in Appendix C3. 

The response of the plate to a frozen convected random pressure with unit 

amplitude travelling over Che plate along a direction making 45 degrees 

to the X direction with convection velocities CV = 4.5 and CV = «» is 

investigated. First the natural frequencies and associated normal modes 

of the undamped structure are calculated. The first 25 natural frequencies 
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and normal modes are considered since they are closely spaced and occur 

within the first propagation band of the infinite structure. It should 

be noted here that these natural frequencies can be calculated much more 

accurately from table 3.6 corresponding to values of propagation 

constants and p given by 

m̂ TT 

= -N[ 
(N^ = 5, m^ = 1,2 5) 

Wy = (^2 = 5, mg = 1,2 5) 

Figure (5.25) shows the power spectral density of the displacement 

at the centre point of the first, third and fifth bays along the diagonal 

of the plate (see figure 5.25a)). From this figure it is clear that the 

maximum response occurs in bay 1 near the first natural frequency of the 

plate (notice that the first natural frequency obtained using this 

idealisation is n = 21.6, while the more accurate value obtained from 

the wave propagation results in table 3.6 is 0 = 19.8) which is the 

lower bounding frequency of the first propagation baad shcmm in figure 

(3.17). To obtain an accurate comparison between these results and the 

response of the infinite structure using the periodic structure approach 

discussed in Section 5.5.2, one cell of the infinite structure is repre-

sented by a finite element model using the same idealisation uaed here 

(4 plate elements per cell). Its response to the samu; excitation as 

above is calculated using the periodic structure approach. This is shown 

in figure (5.26). Also shown in the figure is the response when the 

convection velocity of the pressure field is taken equal to Comparing 

the response of the finite structure, figure (5.25) aj^ the response of 

the infinite structure, figure (5.26), shows that the largest response 

of the infinite structure occurs at a frequency n = 21.6 which is the 

lower bounding frequency of the first propagation band (where the maximum 

response of the finite structure occurs as discussed above). Also it can 

be seen that the maximum response of the middle b&p Cb&y 3) is very close 

to the maximum response of the infinite structure and occurs near the same 

frequency (0 = 21.6). Figure (5.27) shows the response of the plate 

when the convection velocity of the pressure field is ta&am equal to ™ 

(this represents a constant pressure field where the wave-numher < = 0). 
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Here it can be seen that the response of the different bays is largest 

within a range of frequencies which coincides with tha first propagation 

band of the infinite structure (see figure (3.17)). maximum response 

occurs in the middle bay (bay 3) at a frequency close the upper bound-

ing frequency of the first propagation band (where th^ nwainMm response 

of the infinite structure occurs, figure (5.26)). 

Figures (5.28), (5.29) and (5.30) show the response of a 3 x 3 bay 

plate and a single bay plate (shown in figures (5.24b,c)) to the same 

excitation as above. (The plate is idealised, in e#rh case, by four 

plate elements per bay). Here, similar to the previous caae, when the 

convection velocity of the pressure field is equal to 4.5 the largest 

response in each case occurs near the lower bounding frequency of the 

first propagation band. Also it can be seen that the maximum response 

of the middle bay of the 3 x 3 bay plate is very close to the response of 

the infinite structure shown in figure (5.26). Whem convection 

velocity of the excitation is equal to the response of the single 

bay plate occurs near the lower bounding frequency of the first propagation 

band (0 = 21.6) which coincides with the only natural frequency of the 

plate occurring within the first propagation band. The largest response 

of the 3 X 3 bay plate occurs in bay 2 (middle bay) at a frequency close 

to the upper bounding frequency of the first propagation band. 

A comparison between these three cases shows that as the number of 

bays in the finite structure increases, the response of tha middle bay 

is closer to the response of the infinite structure. This can be clearly 

seen in figures (5.31) and (5.32) showing a comparison between the 

responses when the convection velocity of the pressure field is taken 

equal to 4.5 and * respectively. 

From the above discussion, similar to the beam example, it can be 

concluded that knowledge of the response of the infinite structure can 

provide a good estimate to the response of finite structures. 
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Figure 5*1. Spectra of displacement at bay centres of an infinite beam 

on periodic point supports with rotational stiffness Ky=4.0, 

^=0.25 , due to random press^rw f.vlc.,frozen convection. 
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Figure 2. Spectra of displacement at bay centres of an infinite beam on 

periodic point supports with rotational stiffness ky,=4,0, 

^=0.02, due to random pressure field;frozen convection. 



OC lO 

a: 

0.00 4 .00 8.00 12.00 16.00 20.00 
- . I f ^ U E N C Y 

24 .00 28.00 

Figure 5.3« Spectra of displacement at ba^ centres of an infinite beam on 

periodic point supports with rotational stiffness ky=4.0, 

due to frozen convected random pressure field , CV=2.0 . 
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Figure 5.4. Spectra of displacement at bay centres of an infinite beam on 

periodic point supports with rotational stiffness Ky=4.0, 

due to frozen convected random pressure field, CV=4.0 . 



V 

Figure (a) Spectra of displacement at bay centres of an infinite beam 

on periodic point supports with rotational stiffness,Ky=4.0, 

^=0.25, due to general random homogeneous pressure field 

with unit amplitude « 
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Figure 5*5.(b) Cross-eections in fig^Te(5.5a).Lines of constant frequency 
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Figure 5.5.(c) Croaa-^aections in figure(5.5a)»LineB of constant wave-number 
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Figure 5*6.(a) Eesponse at bay centres of an infinite beam on periodic 

point 8upports,Ky=4.0,?y=0.25;due to boundary layer pressure 

field.Lines of constant frequency. 
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,6.(b) Response at bay centres of an infinite beam on periodic point 

supports,K =4.0,^=0.25;due to boundary layer pressure field. 



Figure $.7.(a)The power spectral density 

pressure field ,b=0.1,CV=4.0,S (D)=1.0, E = - K . l (see 



Figure 5.7.(b) The power spectral density 

pressure field ,b=0.1,CV=4.0,8 ( G ) .0, 6=-K.l 
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Figure 5.8. Spectra of displacement at bay centres of the infinite 

periodically stiffened panel shown in figure(2.4),due to 

frozen convected random pressure field . 
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Figure 5.9* Spectra of displacement at bay centres of a two-dimensional 

periodic plate on simple line supports with square cells 

due to frozen convected random pressure field propeigating 

along the X direction . 
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Figure Spectra of displacement at bay centres of a two-dimensional 

periodic plate on simple line supports with square cells 

due to frozen convected random pressure field propagating 

in a direction maifing 4$ degrees to the X direction . 
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Figure $.11. Spectra of displacement at bay oentrea of a two-dimensional 

periodic plate on aia^le line suppores *fith square cells 

due to frozen convected randan pressure field propagating 

in a direction making 20 degrees to the X direction . 
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Figure ^ . 1 2 . ( a ) Spectra o f displacement a t c e l l c e n t r e s o f em i n f i n i t e 

two-dimensional p e r i o d i o p l a t e on s imple l i n e supports 

wi th square ce. ^ ^ . ue t o gen^idL r^.dom homogeneous 

p r e s s I t amplitude propagat ing a long 

the X d i r e c t i o n . L i n e s o f constant frequency . 
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Figure 5 . 1 2 . ( b ) Spectra of displacement a t c e l l c e n t r e s o f an i n f i n i n e 

two-dimensional p e r i o d i c p l a t e on s imple l i n e supports 

with square c e l l s , d u e t o genera l random homogeneous 

pressure f i e l d wi th un i t amplitude propagat ing a long 

the X d i r e c t i o n . L ines of constant wave-number . 
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Figure 5 * 1 ) . ( a ) Spectra of displacement a t c e l l c e n t r e s o f an i n f i n i t e 

two-dimensional p e r i o d i c p l a t e on s i m p l e l i n e supports 

wi th square c e l l s , d u e t o genera l random homogeneous 

pressure f i e l d w i th un i t amplitude propagat ing a l o n g 

a d i r e c t i o n of 4$ degrees t o the X d i r e c t i o n . L i n e s of 

cons tant frequency . 
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Figure $ , 1 3 . ( b ) Spectra of displacement a t c e l l c e n t r e s o f an i n f i n i t e 

two-dimensional p e r i o d i c p l a t e on s imple l i n e supports wi th 

square c. ^ due t o genera l random homogeneous pressure f i e l d 

w i th u n i t amplitude propagating a long a d i r e c t i o n of 45 

degrees t o the X d i r e c t i o n . L i n e s of c o n s t a n t wave-number. 
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Figure (a ) Spectra of d isplacement a t c e l l c e n t r e s o f an i n f i n i t e 

two-dimensional p e r i o d i c p l a t e on s i m p l e l i n e supports wi th 

square c » t o general random homogeneous pressure 

f i e l d with u n i t amplitude propagat ing a l o n g a d i r e c t i o n of 

20 degrees t o the X d i r e c t i o n . l i n e s o f cons tant frequency . 
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Figure 5 . 1 4 . ( b ) S p e c t r a of displacement a t c e l l c e n t r e s of an i n f i n i t e two-

dimensional p e r i o d i c p l a t e on s imple l i n e suppor t s wi th 

square c e l l s , d u e t o genera l random homogeneous pressure f i e l d 

wi th u n i t amplitude propagating a long a d i r e c t i o n of 20 

degrees to the X d i r e c t i o n . L i n e a o f c o n s t a n t wave-number. 
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Figure 5 . 1 5 . S p e c t r a o f displacement a t c e l l c e n t r e s o f an i n f i n i t e two-

dimensional p e r i o d i c p l a t e on s imple l i n e supports w i th r e c t a n g u l a r 

, . je t o f rozen convected random pres sure f i e l d 

propagat ing a long the X d i r e c t i o n . 
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Figure ^ . 1 6 . S p e c t r a of d isplacement a t c e l l c en trea o f an i n f i n i t e two-

dimensional p e r i o d i c p l a t e on s imple l i n e s u p p o r t s w i t h r e c t a n g u l a r 

c e l l s ( l ^ ^ / l = . $ ) , d u e t o f r o z e n convected random pressure f i e l d 

propagat ing a l o n g a d i r e c t i o n of 2 6 . 6 d e g r e e s t o the X d i r e c t i o n . 
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f i g u r e 5«17»(8,)8pectra of displacement a t c e l l c e n t r e s o f an i n f i n i t e two-

dimensional p e r i o d i c p l a t e on s imple l i n e supports wi th 

rec tangu lar c e l l s d ^ y i = 0 . $ ) ,due t o g e n e r a l random homogeneous 

with ui i i l amplitude propagat ing a long the 

X d i r e c t i o n . L i n e s o f constant f requency . 
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Figure 5 . 1 7 * ( b ) 8 ^ c t r a of displacement a t c e l l c e n t r e s o f an i n f i n i t e two-

dimens ional p e r i o d i c p l a t e on s imple l i n e suppor t s wi th 

r e c t a n g u l a r c e l l s d ^ l = 0 . $ ) , d u e t o g e n e r a l random homogeneous 

pressure f i e l d wi th u n i t amplitude propeigating a l o n g the 

X d i r e c t i o n . L i n e s of constant wave-number . 
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Figure $.l8.(a)8pectr@, of displacement at cell centres of an infinite two-

dimensional periodic plate on simple line supports with 

rectangular celled=.5),due to general random homogeneous 

pressure field with unit amplitude propagating along a 

direction of 26.6 degrees to the X axis.Lines of constant 

frequency . 
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Figure 5.l8.(b)8pectra of displacement at cell centres of an infinite two-

dimensional periodic plate on simple line supports with 

rectangular cellsCl^1 =.5),due to general random hcxnogeneous 

pressure field with unit amplitude propagating along a 

direction of 26.6 degrees to the X direction.Lines of 

constant wave-number. 
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Figure 5 . 1 9 . A f i v e bay beam on po int supports wi th r o t a t i o n a l s t i f f n e s s 

subjec ted t o random pressure f i e l d . 
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Figure 5 .21 .8pectMi of displacement a t bay c e n t r e s o f the f i v e bay beam 

of f igure (5 .19 )*d i i e t o f rozen conveoted random pressure f i e l d , 

CV=4.0,K =4 . 0 , ^ =0.01 . 
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Figure 5«22 .Spec tra of diaplacement a t bay c e n t r e s o f the f i v e bay beam 

of f i g u r e ( 5 . 1 9 ) , d u e t o f r o z e n convected random preaaure f i e l d , 

CV=4. ,K^=4.0,^ =0.125 . 
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Figure 5 . 2 3 . S p e c t r a of displacement a t bay c e n t r e s of the f i v e bay beam 

of f i g u r e ( 5 . 1 9 ) , d u e t o fi-ozen convected random pressure f i e l d , 

CV=co,K =4.0,^=0.125 . 
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supports subjec ted t o random pressure f i e l d ; ( a ) a bay 
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Figure 5.25.Spectra of (iiopLacement at bay centres of the 5X5 bay plate 

of figure(5*24a),due to frozen conveoted random preBsnre field 

propagating along a direction of 45 degrees to the X direction, 

CV=4.5,^=.125 . 
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Figure 5 . 2 6 . S p e c t r a o f displacement a t c e l l c e n t r e s o f an i n f i n i t e two-

dimensional p e r i o d i c p l a t e on s imple l i n e supports w i t h square 

c e l l s , d u e t o f rozen convected random p r e s s u r e f i e l d propagat ing 

a long a d i r e c t i o n o f 45 degrees t o the X d i r e c t i o n , ^ = 0 . 2 5 . 
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Figure 5-27.Spectra of displacement at bay centres of the 5X5 bay plate 

of figure(5*24a),due to frozen convected random pressure field, 

CV=co, ̂ =0.125 . 
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Figure 5.28.Spectra of displacement a t bay c e n t r e s of the 3X3 bay p l a t e 

of figure(5.24b),due to frozen convected rEmdom pressure field 

propagating along a direction of 4$ degrees to the X direction, 

CV=4.5, ^ = 0 . 1 2 5 . 
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FiguM 5.29.Spectra of displacement at bay centres of the 3X3 bay plate of 

figure(5«24b),due to frozen convected random pressure field, 

CV=CÊ , ̂  =0.125 . 
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Figure $ . 3 0 . S p e c t r a of displacement a t the mid p o i n t o f t h e s imply supported 

square p l a t e of f i g u r e ( 5 . 2 4 c ) , d u e t o f r o z e n conveoted random 

pressure f i e l d propagat ing a long a d i i - e c t i o n o f 4$ degrees 

t o the X d i r e c t i o n , ^^=0.125 . 
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Figure $.31'Comparison of the response at the cell centres of an infinite 

two-dimensionsuL periodic plate on simple line supports with 

square cells and the response at the centre of the middle 

bay of a $X5 ,3X3 and a single bay plate of figure(5.24), 

due to frozen convected random pressure field propagating along 

a direction of 4$ degrees to the X direction,CV=4.5,?/ =2^ =.25. 
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Figure 5.32.Comparison of the response a t c e l l c e n t r e s o f an i n f i n i t e two-

dimensional p e r i o d i c p l a t e on s imple l i n e suppor t s wi th square 

c e l l s , a n d the response a t the cen tre o f t h e middle bay o f a 

5X5, 3x3 and a s i n g l e bay p l a t e o f f i g u r e ( 5 . 2 4 ) , d u e t o f r o z e n 

convected random pressure f i e l d , C V » c O , ? y = 2 ^ = 0 . 2 5 . 



CHAPTER VI 

CONCLUSIONS AND GENERAL DISCUSSION 

The study of the vibration characteristics of periodic structures 

using the finite element method in conjunction with the periodic structure 

theory as presented in this work proved to be an efficient and reliable 

approach for the analysis of complex structures using digital computers. 

It provided a general procedure to analyse, practically, any periodic 

structure in one, two and three dimensions making use of existing finite 

element programs. 

The fact that only one period of the structure needs be considered 

made a considerable saving in computer time and storage. It also simpli-

fied modelling the structure making it possible to represent the system by 

an accurate finite element model. 

The basic principles of periodic structure theory has been briefly 

reviewed and a theoretical background to the finite element method is 

presented. 

Free wave propagation in one-dimensional periodic systems is examined 

in detail in Chapter II. Matrix formulation for calculating the varia-

tion of the propagation constant, whether real or complex, with frequency 

and finding the associated wave-forms is presented. It is found that one-

"dimensional periodic structures in general allow propagation within some 

frequency bands only (called propagation bands). Within these bands 

waves propagate through the system without attenuation. llieir propagation 

constant is a real quantity. It represents the change in phase in passing 

from one cell to the next. Outside the propagation bands, waves attenuate 

aa they travel from one cell to the next. The propagation constant corres-

ponding to these waves is a complex quantity where the real part represents 

the change in phase while the imaginary part represents the attenuation 

the amplitude of the wave in passing from one period to th^ next. The 

width of the propagation bands and their bounding frequencies are character-

istic of the periodic system and depend on its physical properties. Also 

it is found that the frequency of propagation is a periodic function of 

t±ie propagation constant ifith period 2m. Wave-forma corresponding 

to various values of the propagation constant have been calculated and 
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demonstrated on a movie film, produced by the computer, which showed 

clearly the propagating, standing and attenuating waves. 

Very good agreement with exact calculations amd other approximate 

methods has been obtained even when using few elements to represent the 

basic period of the structure. 

The natural frequencies of some finite one—dimensional periodic 

structures has been estimated from the propagation constant/frequency curve. 

It is found that the natural frequencies of the finite structure fall 

into groups. Each group occurs within one of the propagation bands and 

the number of frequencies in each group equals the number of periods in 

the structure. 

The study of the transition from non-periodic to periodic structures 

showed clearly the effect of the existence of periodic discontinuities on 

the propagation of waves in a homogeneous medium. 

Two-dimensional periodic systems are examined in Chapter III. We 

found that two propagation constants were needed to extend the periodic 

structure theory to analyse two-dimensional systems. Matrix formulation 

for examining the relation between the propagation constants and frequency 

of propagation and calculating the corresponding wave-forms is presented 

and general computer programs are written. It is found that the frequency 

of propagation is a periodic function of the real propagation constants 

with periods 2m. Also it is found that propagation occurs within some 

frequency bands only and that the width of these bands depends on the 

direction of propagation as well as the physical properties of the system 

with possible overlapping of the various bands. 

The discussion of the zones for two-dimensional systems showed that 

it is enough to study the variation of the frequency with the propagation 

constants (or the wave-number) within the first zone only. 

The study of flexural waves in two-dimensional plates resting on 

orthogonal equally-spaced line supports provided a clear understanding of 

the general behaviour of two-dimensional periodic systems. Standing and 

travelling waves corresponding to various values of th^ propagation 

constants have been obtained and demonstrated on a movie film produced 

114. 



by the computer. Also we showed how to determine the natural frequencies 

of some two-dimensional periodic systems from the propagation constants/ 

frequency curves. 

The discussion of the transition from non-periodic to periodic two-

dimensional systems showed that it is possible to study wave propagation 

in homogeneous non-periodic systems using this approach. It also showed 

a very good agreement between the theoretical calculation and finite ele-

ment results for flexural wave propagation in infinite flat plates. 

Various ways of presenting the variation of the frequency of propaga-

tion with the propagation constants are shown. The polar presentation 

showed clearly the overlapping of the bands and the variation in their 

width with direction of propagation. 

The cases of oblique two-dimensional systems, the point supported 

plates and the two-dimensional stringer stiffened panels demonstrated the 

flexibility of this approach to analyse large varieties of problems with 

great ease and simplicity. 

Free wave propagation in three-dimensional periodic systems is investi-

gated in Chapter IV. It is found that three propagal^^m constants were 

needed to extend the periodic structure theory to analyse three-dimensional 

systems. Similar to the one and two-dimensional systems,formulation for 

investigating the variation of the propagation constants with frequency 

is presented and general finite element programs are written. It is found 

that the frequency is a periodic function of the real propagation constants 

with periods 2n. It is also found that three-dimensional periodic 

systems allow propagation within some frequency bands only. The width 

of these bands and their bounding frequencies depend on the direction of 

propagation and the physical properties of the system. The study of 

w^ves propagating in three-dimensional plates showed all these character-

istics very clearly. 

In Chapter V the response of one and two-dimensional infinite periodic 

structures to random pressure fields is investigated. 

For one-dimensional systema it is found that the largest response of 

the structure occurs within the propagation bands, and th^ response 

occurs at the lower bounding frequency of the first band. Therefore 

knowledge of the propagation constant/frequency variation for the structure 

can be used to predict the frequencies at which the response is largest. 
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For two-dimensional systems it is found that the propagation 

constants/frequency variation in the polar plot shows clearly the frequen-

cies where the response to homogeneous pressure fields is largest. The 

maximum response occurs at the lower bounding frequencies of the first 

propagation band. 

Finally the response of general structures to random pressure fields 

using finite elements and the standard modal analysis is presented. The 

response of finite one and two-dimensional periodic structures showed 

that such a response can be predicted from the response of infinite struc-

tures. 

From the above discussion we can summarise the main advantages of 

using the finite element method and the periodic structure theory to study 

the dynamical behaviour of periodic structures as follows. 

a. Only one period (cell) of the structure need be considered, thus 

modelling is simplified and the number of degrees of freedom is 

reduced; 

b. Large complex periodic structures of any shape can be automatically 

analysed without any further mathematical formulation; 

c. General computer programs have been written making use existing 

finite element routines; 

d. Calculation of the response of periodic structures to random pressure 

fields using the periodic structure approach does not require 

knowledge of the structure's natural frequencies and normal modes. 

Also systems with any type of damping can be analysed without any 

further complication. 

The analysis presented in this work is only a step towards a full 

investigation to understanding the dynamic behaviour of periodic structures, 

especially in two and three dimensions, using digital computers. Further 

work should be done to study some of the points mentioned below. 

a. Study of the response of periodic structures to concentrated loads 

and non-homogeneous excitation. 

b. The study presented in the previous chapters was restricted to study-

ing plane waves only. It should be extended to study circular wave 

motion in two dimensions and spherical wave laotion in three dimensions. 
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c. The generalised nodal forces due to harmonic pressure waves should 

be developed for various existing finite elements. 

d. Apply the analysis presented here to investigate the dynamic 

behaviour of various periodic structures such as stiffened cylinders 

or acoustically coupled periodic structures, etc. 

e. Experiments on models representing various engineering periodic 

structures such as ship hulls or stiffened cylinders should be 

carried out. 

Although the study presented in this work is applied only to periodic 

systems composed of beams and plates, it can be used to analyse other 

periodic systems in physics and engineering. 
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APPENDIX A 

METHODS nSED IN SOLVING THE VARIOUS EIGENVALUE PROBLEMS ENCOUNIEEED 

IN CHAPTERS II , III AND IV 

i- Eigenvalue problems of the form 

( [A] - A [s] ) { X ) = 0 (A.I) 

where [A] and [s] are real symmetric matrices and [Sjis positive 

definite. 

The main steps for solvigg this eigenvalue problem are aa follows 

a- Apply Cholesky's symmetric decomposition on the matrix [B] ,hence 

[S] = [L] [L]^ (A.2) 

where [L] is a lower triangular matrix and [L]^ is its transpose, 

b- Reduce equation (A.1) into the standard form 

( [C] - A [l] ){y| = 0 (A.3) 

where 

[c] = [L]-1 [A] [L]-^ (A.4) 

( y | = [L]^ (x) (A.5) 

c- Using Householder's transformation, equation (A.3) can be reduced 

to the form 

( [D] - A [l] ) (z) = 0 (A.6) 

where [D] is a symmetric tridiagonal matrix. 

d- The eigenvalues of (A.6) are obtained by the method of bisection 

i^dng Sturm sequencies. The eigenvectors are obtained by-applying 

the inverse iteration process. 

e- The eigenvectors {y} are obtained from the vectors (z) by the 

reverse Householder's process. The eigenvectors (x) of the 

original equation are then obtained from equation (A.5). 

For further details of the above methods Bee |2,51 6^^ . 
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ii- Eigenvalue problems of the form 

( + A 
n-1 

A + + A ) {x} = 0 (A?) 
n-1 ^ " "0 

where A ,A A^ are real square matrices of order N . 
n n— I u 

Two procedures are applied to solve this eigenvalue problem depending 

on the properties of the matrices A and A_ . 
^ n 0 

a- Ihe matrix A (or A^) is non-singular. 

If the matrix A is non-singular, the eigenvalue problem (A?) can 

be transformed to a standard eigenvalue problem of the form 

(A8) ( [ c ] - A [ I ] ) = 0 

where 

[ G ] 

0 I 0 0 

0 0 I 0 

0 0 0 I 

^0 ^1 ^2 3 

[ y } -

X 

A X 

X 

X 

(A9) 

where 

^n \ 
( i = 0,1,2 n—1 ) (A10) 

Here we used the case n = 4 for convenience in illustration of 

the arrays. 

The eigenvalue problem (A8) is solved by reduction to Eessenberg 

form and the QR algorithm |6^ I . 

If A^ is singular but A^ is non-singular,a similar pirocedure can 

be carried out to obtain an eigenvalue problem in 1/;i . 

b- The matrices A and A^ ai-e singular. 

In this case we observe that the eigenvalues of equation (A?) 

are those of the system 

( [ C ] _ A [D] ) ̂ y} = 0 (AID 

[o] 

0 I 0 0 

0 0 I 0 

0 0 0 I 

_ -^0 "^1 -Ag 

(A12) 
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I 

0 

0 0 

0 

0 

0 

(A13) 

where both [ c ] and[D] are singular matrices. 

Ihe eigenvalue problem (A11) can be solved using the QZ algorithm 

141,49 and 63 I . 



APPENDIX B 

FLOW DIAGRAMS FOE COMPUTATION 

These flow diagramG are for the computational procedures to calculate 

the variation of the propagation constantsCreal or complex)with frequency 

for one,two and three-dimensioneO. periodic systems and their response to 

random'homogeneous pressure fields. 

BLOCK B2 BLOCK B1 

BLOCK B3 

Calculation of the response 
to reindom excitation. 

Select the cell representing 
one period of the system. 

Calculation of the 
resO. propagation const.-
frequency variation. 

Divide the cell into a number 
of elements and provide 
necessary data. 

Calculation of the 
complex propagation const.-
frequency variation. 

matrices for the elements and 
applying the physical 
boundary condition. 

Form the inertia and stiffness 
matrices for the cell by 

Define the boundary nodes in 
the cell 
i-left and ri^t for one-
dimensional systems, 

ii-left,right,bottom,top and 
comers for two-dimensional 
systems, 

iii-lef t.ri^t, bottom, top, far, 
near, edges and comers for 
three-dimensional systems. 
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BLOCK B1 

Select a range of values for 
i- /f for one-dimensional 
systems * 

ii- for two-dimensional 

iii-
diAens^ona^ systems 

Repeat for 
all values 
of/^ . 

Solve for eigenvalues and 
eigenvectors. 

Plot propagation constants-
frequency variation. 

Formulate the matrices in 
equations (2.25)for one-
dimensional systems,(3.24) 
for two-dimensional systems 
or(4.24)for three-
dimensional systems. 
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Repeat for 
all values 
of 6) . 

BLOCK B2 

Select a range of values 
for the frequency . 

For two and three-
dimensional systems,select 
a certain direction of 
propagation and define n. 
and n^ for relation6(;).45) 
or n^,n_and n^ for relations 

Formulate the matrices in 
equations(2.44)for one-
dimensional systems or(3,4?) 
for two-dimensional systems 
or(4.40)for three-dimensional 
systems 

, 
Solve these ec 
described in A 
obtain . 

uations as 
ppendix A to 

1 

Plot the propagation constf-
frequency variation . 
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BLOCK B3 

Plot Sy(r,w) or 5^(r,6;,K) 

Repeat 
for all 
values 
of w . 

Repeat for 
all values 
of K or U 

Select a range of values for 
the excitation frequency d). 

Solve the above equations 
to calculate the response 

Response to frozen 
convected random 
pressure field. 

Response to general 
random homogeneous 
pressure field. 

Select a range of 
values for the 
convection velocity U 

Select a range of 
values for the 
wave-number K. 

a given 8 (r, 6U)or 8 (r,6U,K) 

Formulate the generalised 
forces for each element and 
assemble to obtain the 
external forces acting on 
the cell. 

Formulate the matid-ces in 
equation(5*l8)for one-
dimensional systems or 
equation(5.29)for two-
dimensional systems. 
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APPENDIX C 

DERIVATION OF THE GENERALISED NODAL FORCES FOR ELEMENTS USED 

IN CHAPTER V 

CI Generalised forces for the beam element used in Section 5.5.1 |22,51,52| 

The beam is assumed to be lying along the x axis and the pressure wave 

is travelling over it in the x direction, figure (C.l). 

Pressure field 

Node 1 Node 2 

Figure 0.1 

If the pressure wave is harmonic and having unit amplitude, it can be 

expressed in the form 

P ( x . t ) . (C.l) 

where 

time. 

is the angular frequency, k the angular wave-number and t the 

The generalised nodal forces are given by 

£ 

{f} [N]^ e - ^ d x (C.2) 

where [N] is the element shape functions, & = and x = X - X^. 

X̂ ^ and Xg are the global coordinates of nodes 1 and 2. 
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[N(x)]' 

1 + 2(^)^ 

2 3 

0 

3(§)2 - 2(2,3 

=2 x3 

- + 7 

(C.3) 

The generalised nodal forces {f} are obtained by performing the integration 

in (C.2), hence 

-ik%L r 
{f} = e 

0 

F2 - i F3 + ̂ 2 F4 

- i ^ 3 ^ 7 ^ 4 

(C.4) 

where 

?! = ̂  - 1), 

F. = 
e-ik* . 1 
— = — (1 + ik&) y J 
k'̂  k 

-ik& 2 2 2i 
?- {2k& + i(k^2^ - 2)} + , 

k̂ ^ k^ 

(C.5) 

{3k^&2 - 6 + i(k3&3 _ 6k&)} + — 
k k 
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For the case when k = 0 we can write 

= 

2 J 

F^ = (C.6) 

C2 Generalised forces for the flat strip element use^ i^ Section 5.5.1 

115, 50, 52 

The strip element is lying in the x direction and the pressure wave 

is travelling over it in the y direction, figure (C.2). 

Pressure wave 

Figure C.2. 

The generalised nodal forces become 

b A 

{f} = X^(x) [N^(y)]^ e dx dy 

o o 

where 

Y - Y, 

b = Y, - Yi 

& = length of strip in the x direction. 

and Y^ = global coordinates of nodes 1 and 2 

X (x) = characteristic functions for a uniform beam, 
m 

(C.7) 
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0 

0 

(C.8) 

L 

1 - 3(f)2 . 2(2)^ 

y - 2 L 4- L 
b 

0 

0 

3(f)^ - 2(f)^ 

D J 
The generalised nodal forces {f} are obtained by performing the 

integration (C.7), hence 

{f} . I 
m 

F, -

0 

0 

TY Fj * 73 ^4 
b b 

"2 - # ^3 * 72 ^4 

D 

0 

0 
3 2 
'I I""" I TT " •- •• T? 
b? 3 b3 4 

- F ?3 + : % ^4 
b 

(C.9) 

where F^, Fg, F^ and F^ are identical to (C.5) (C.6) with & 

replaced by b. 

For a strip with simply supported ends, = 2&/mw for m odd 

where m is the number of half waves in the x: direction. 
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C3 Generalised forces for Che plate bending element used in Sections 

5.5.2 and 5.6.2 15, 51, 52 

—1,—1 1 , - 1 

^ =y/b 

& = V a 

Figure C.3. 

Consider a rectangular plate element with dimensions 2a and 2b, 

figure (C.3). In non-dimensional coordinates S, n the displacement 

field over the plate is given by 

12 
W ( S , n ) = I o . P . ( 5 , n ) 

i=l 1 1 
(C.IO) 

The functions n) are defined as follows 

Pi = 1 

P, = S 

P4 = 5 

P5 = s' 

g - 25 + n in region (1) 

2Cn - 2C in region (2) 

- 25 - in region (3) 

-2gn - 2C in region (4) 

(C.ll) 

Pn = n' 
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''g = 2n5 - 2n 

- 2n + ^ 2 

-2nC - 2n 

2 _ _2 
- n - 2n - G 

in region (1) 

in region (2) 

in region (3) 

in region (4) 

10 

11 

12 

= Sn 

= - 5Gn 

+ 3^3%) 

- 35^3 + 35^^) 

in regions (1), (3) 

in regions (2), (4) 

y 

The coefficients a are related to the displacements w, 

at the four corners of the plate by 

and 

{a} = [w]{q} 

where {q} is the vector of nodal degrees of freedom 

and 

[W] 

{q} = [w^, 8^ , 8 w^, 8^ , 
'1 ?! 4 

(C.12) 

1 b/8 -a/8 1 b/8 a/8 4 -b/8 a/8 i -b/8 -a/8 

0 0 , a/8 0 0 -a/8 0 0 -a/8 0 0 a/8 

0 -b/8 0 0 -b/8 0 0 b/8 0 0 b/8 0 

-1 0 a/8 3 
5 0 a/8 g 0 a/8 - i 0 a/8 

0 -a/8 -i 0 -a/8 0 -a/8 0 -a/8 

0 b/8 0 0 -b/8 0 0 b/8 0 0 -b/8 0 

-0 -b/8 0 - 1 -b/8 0 i -b/8 0 i -b/8 0 

b/8 0 b/8 0 -i b/8 0 - 1 b/8 0 

0 0 -a/8 0 0 a/8 0 0 -a/8 0 0 a/8 

i 0 0 - 1 0 0 1 0 0 - 1 0 0 

1 

16 
b 

32 
a/32 1/16 b/32 a/32 

1 

16 
b/32 

a 

32 
1/16 

b 

" 32 
a 

32 

0 b/8 a/8 0 -b/8 a/8 0 -b/8 -a/8 0 b/8 -a/8 

(C.13) 
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The generalised forces for the element due to a harmonic pressure 

i(wt - k.s) 
P(S, t) = e 

are given by 

+1 +1 

{f} = [wj 

- 1 - 1 

where ^ is the wave—number. 

-ik.2 
n)e dgdn 

(C.14) 

(C.15) 

Figure C.4. 

If X, Y are the global coordinates and x, y are the local coordinates 

for the element, figure (C.4), then we can write 

X = A + X cos a - y sin a 

Y = B + X sin a + y cos a 

X = ga 

y = nb 

k^s = k^.X + ky.Y 

(C.16) 
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where A and B are the global coordinates of the centre of the element 

and a is the angle between the local and global coordinates. 

Substituting (C.16) into equation (C.15) gives 

+1 +1 
|T {f} = [w] 

V J 
- 1 - 1 

{Pi(5, n). 

-i{k (A+ga cosa - nb sina) + ky(B + ga sina + nb cos a)} 
MCdn 

-i(k A+kyB) 
+1 +1 

n){e 
-ig(k^acosa +kya sina) 

- 1 - 1 

-in(-kb sina + kyb cos a) 
} dgdn ( C . 1 7 ) 

The nodal forces {f} should then be transformed from the local axes 

to the global axes as explained in Chapter I, equation (1.24). 

The integration in (C.17) should be carried out in the four regions 

of the element shown in fig. (C.3). This can be done in a closed form 

as follows. 

a) 
^2 n+1 , ,,i+l , n-i+1 ^ 

x" e^dx - I iZlL ilLZ 
i=l a^ (n -i +1)! 

X 

b). 

y 
= FUNl(a, n, X , x ) 

2 y 
n m ax by , , 
X y e e dx dy 

( C . 1 8 ) 

"^1 (-l)i+ln: 

i=l a^(n - i + 1)1 

e(b+a)y yOi+n-i+l 

(-l)°-i+l e(t-a)y ym+n-i+l jy } 

"^1 (-^)i+l n! 

i=l a (n - i + 1)1 
{FUNl(b + a, m + n - i + 1, y^, yg) 

+ (-i)B 1+2 FUNl(b - a, m + n - i + 1, y^, y2)} 

FUN2(a, b, n, m, y^, yg) 
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where 

a, b are real or complex numbers, 

X, y are real numbers, and 

m, n are integer numbers. 

If n = 0 

x^ 

ax, e 
e dx = 

ax 
x^ 

X, 

If a = 0 

x^ 

X, 

X dx 
n+1 X. 

X 

n + 1 

and 

e''V ( x°^x}dy 

-y 

b y m /X' 
e ^y (— 

n+1 

n+1 
-y 

y. 
by 
e ' f m+n-1 , i\n+l m+n+li, 
n + 1 ly - (-1) y }dy 

n + "Y {FUNlCb, m + n + 1, y^, yg) 

or 

(-1)**^ FUNl(b, m + n + 1, y^, yg)} 

0 (n odd) 

^ ^ FUNl(b, m + n + 1, y^, yg) (n even or zero) 
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Also 

+1 
bym rf ax 
e y tl e 

j 
x" dx}dy 

-1 - 1 

+1 

e^^y™ {FUNl(a, n, -1, +l)}dy 

+1 

FUNl(a, n, -1, +1) [ dy 
J-l 

FUNl(a, n, -1, +l).FUNl(b, in, -1, +1) 
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APPENDIX D 

EINIIE ELEMENTS AND DATA VALHES USED IN THE DIFFEEEMT EaaMPLES 

OF THIS WORK 

D.1 

TVo-dimensional beam bending element of constant cross-section 

122,51,52 I . 

X,u 

Node 1 

Y,v, 

Node 2 

X 

This element has two nodes at the ends. The degrees of freedom at 

the nodes are u,v and # . The displacements along the aais of tha 

beam vary linearly with x whilst those normal to th^ aucLs cubically. 

Data values used. 

zz 

A 

I 
2 

E 

P 

: constant cross-sectional area = 1.0 

: second moment of area of the cross-section about the local z 

axis through the centroid = 1.0 

: Young's modulus = 1.0 

: mass per unit volume = 1.0 
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D.2. 

i- Plate element 

Finite strip flat shell element |l5,50 and $2 

u, 8 

Z,w ) 

Node 1 

Y,v 

Node 2 

This element has two nodes.The degrees of freedom at each node are 

u,v,w and (The variation of displacements in the x direction is 

the same as the beam function of Appendix D.1. . 

Data values used 

h : constant plate thickness = 0.04 ins (1.016x10"^ m) 

^ : length in the x direction = 20.0 ins (0,508 m) 

: Poisson's ration =0.3 

E : Young's modulus = 10.5x10"^ lb/ins^ (7.24x10^^ N/m^) 

/) : meiss per unit volume = 0.26l66x10"^ lb.8ec^/ins^(2795»69 kg/m^) 

The plate is considered simply supported at its edges parallel to the 

y direction . 

ii- Beam element 

Thin walled open section beam element |l5f50^51 and $21 . 

y,v 

This element has one node only with degrees of freedom u,v,w and 
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Data values used 

A : cross-sectional area = 0.2302 ins (0.1485x10 m ) 

I ,I ,I : second moments of area of cross-section with respect to 
yy yz zz ^ 

Eures through attachment point A = 0.179,0.0,0.08) ins 

(0.745x10"^,0.0,0.3455x10"^ m^) 

a ,a : coordinates of centroid of the cross-section =0.0,0.72 ins 
y z 

(0 .0 ,0 .0183 m) 

8 ,J ,J ,J, : warping constants = 0.0,6.806x10"^ ins^,0.0,0.01649 ins^ 

(0.0,7.195x10"" m^,0.0,4.428x10" m ) 

J : 8«uLnt-Venant torsion constant = 2.263x10"^in8"^(9*4l9x10 

G : shear modulus = 4*0x10^ lb/ins^ (2.759x10^^ N/m^) 

E, f, the same as the shell element . 

The distance between stringers is 8.2 ins (0.208 m). 

D.3. 

i- Plate element 

Finite strip singly curved shell element |l5,51 and 52| . 

y,7 

Node 1 Node 2 

z,w 

This element has a constant radius of cuiTvature with two nodes.the 

degrees of freedom at each node are u,Uy,v,v ,w and w^ . Die variation 

of displacements in the x direction is the same eus straight beam 

functions. 

Data values used 

h : shell thickness = 0.04 ins (1.016x10"^ m) 

^ : length in x direction = 20.0 ins (0.508 m) 

R : radius of curvature = 72.0 ins (1.829 m) 

b : eirc length(for one element) = 2.05 ins (0.052 m) 

a : Poisson's ratio = 0.3 

E : Young's modulus = 10.5x10^ lb/ins^ (7.2)5x10^^ N/m^) 

mass per unit volume = 0.26l66x10"^ Ib.sec^/ins^ (2795.69 kg/m^) 
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(Hie shell is considered simply supported at its edges parallel to 

the y direction . 

ii- Stringer element. 

Ihe same stringer element used in Appendix D . E . .The arc length 

between stringers is 8.2 ins (0.208 m). 

D.4. 

Two-dimensional isotropic rectangular plate bending element|10,51 and 52| 

y, e 

Node 1 

Node 4 
Z,w 

X, 8 

Node 2 

Node ) 

This element has 4 nodes at the corners.The degrees of freedom at 

the nodes are 0 .%e lateral displacements vary cubically 

whilst the normal rotations vary linearly along each edge. 

Data values used 

h : constant plate thickness = 1.0 

a : Poisson's ration = 0.3 

E : Youngs modulus = 10.92 (D = E.h^/(12(1-(7^)) =1.0) 

: mass per unit volume = 1.0 
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D.5. 

Two-dimensional orthotropic quadrilateral plate bending element 

45,48,51 and 521 . 

Z,w Y 

Node 

Node 1 5 Node 2 

Node 3 

This element has 8 nodes (4 at the comers and 4 at the mid point of 

the sides).The degrees of freedom at the nodes are w, 0 , 6 at nodes 
X y 

1 to 4 and 6 at nodes 5 to 8.The lateral displacements vary cubically 

and normal rotations vary quadraticaJly along each edge. 

Data values used 

h : constant plate thickness =1.0 

: angle betweeen material and global XY axes 
D ,D ,D̂  ,D : orthotropic plate constants referred to material a a s % y I xy r 

(for isotropic material D^=D =D = E.h /(I2(1-(r )), 

D^=(7D , D = ̂ (1-or ).D = 1.0,1.0,0.3,0.35 

: mass per unit volume = 1.0 
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D.6. 

i- Plate element 

(Two-dimensional orthotropic quadrilateral plate bending element. 

This is the same element described in Appendix D.5 . 

Data values used. 

h = 0.028 ina (1.016x10"^ m) 

= 0 .0 

= D = 21.1 lb.ins (2.385 N.m) 

= 6.33 lb.ins (0.7134 N.m) 

D = 7.383 lb.ins (0.8347 N.m) 
p 6. % 

^ # 0.26163x10 lb.sec /ins (2793.69 kg/m"̂  ) 

ii- Stringer element 

Two-dimensional grillage element with thin walled open section 

I 31,32 I . 

X 

Attach ment point 

z,w 

Node 1 
Mode 3 

Node 2 

This element has three nodes (two at the ends and one at mid-point 

along the x direction).The degrees of freedom at the nodes are w, 

and s.t nodes 1 and 2 and 6 at node 3. 

Data values used. 

The plate is stiffened by channel section frames and 2 section stringers. 

The distance between the frames is 9 ins (0.2286 m) and the distance 

between the stringers is 4.3 ins (0.1143 m). 

Stringer data. 

coordinates of centroid of the cross-section = 0.318,0.318 ins 

(8.077x10-^ , 8.077x10-^ m) 
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C : coordinates of the shear centre of the cross-section 

= 0.425 ,0.425 ins (O.OI8 ,0.0l8 m) 

A : cross-sectional area = 0.0^862 ins^ (3.782x10"^ m^) 

I ,I , : second moments of area of cross-section with respect to 

axes through attachement point = 0.01722,0.01232,0.01074ins^ 

(7.168x10"^ ,'5.128x10"^, 4.47x10"^ ) 

: warping function with pole at shear centre evaluated at attachement 

point = 0.0499 
—4 5 

J . : warping constant with pole at shear centre = $.06x10 ins 

m^) 

J : Saint Venant torsion constant = 1.573x10""^ ins^ (6.547x10"^^ m^) 

E : Young's modulus = 10.5x10° lb/ins^ (7.235x10^° N/m^ ) 

G : shear modulus = 4.0x10^ lb/ins^ (2.759x10^^ N/m^ ) 
mass per unit volume = 2.6l65x10"^ Ib.sec^/ins^ (2795.69 kg/m^) 

Data values for frames. 

a ,a^ = 0.214,1.25 ins (5.44x10''^,3.l8x10"^ m) 

= 0.516,1.25 ins (0.0131,010^18 m) 

A = 0.1145 ins^ (7.385x10"^ m^) 

I ,I ,I y = 0.28094,0.0306,0.00786 ins^ (1.169x10"^,1.274x10"^, 
yy yz zz r 

3.272x10 ^ m ) 

"^A 0-0^2189 ins^ (5.518x10"^° m^) 

J = 2.78x10"^ ins^ (1.157x10"''"' m^) 

E,G, /) # the same as the stringers . 
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D.7. 

Three-dimensional orthotropic qiiadrilateral plate bending element 

|45,48,^1 and 52 I . 

Node 1 

Node 4 

Y 

/ 

Node 2 

Node 3 

This element has 8 nodes (4 at the comers and 4 at the mid point of 

the sides).The degrees of fz^edom at the nodes are u,v,w, @ , 8 and 
X y 

0 at nodes 1 to 4 and 8 at nodes ̂  to 8.%e lateral displacements 

vary cubically &nd normal rotations vary quadratically along each 

edge. 

Data values used. 

h : constant plate thickness =1.0 

/) : angle between material and global XY axes = 0.0 
D ,D ,D^,D : orthotroDic plate constants referred to material axes 
X y 1 xy " ^ 2 

(for isotropic material D =D =D = E.h /(12(1-(r )), 
X y 

D^=(7D and 1)̂ =̂ ) 

= 1.0 ,1.0 , 0.3 , 0.35 . 
Z' : mass per unit volume = 1.0 . 
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