

University of Southampton Research Repository

Copyright © and Moral Rights for this thesis and, where applicable, any accompanying data are retained by the author and/or other copyright owners. A copy can be downloaded for personal non-commercial research or study, without prior permission or charge. This thesis and the accompanying data cannot be reproduced or quoted extensively from without first obtaining permission in writing from the copyright holder/s. The content of the thesis and accompanying research data (where applicable) must not be changed in any way or sold commercially in any format or medium without the formal permission of the copyright holder/s.

When referring to this thesis and any accompanying data, full bibliographic details must be given, e.g.

Thesis: Author (Year of Submission) "Full thesis title", University of Southampton, name of the University Faculty or School or Department, PhD Thesis, pagination.

Data: Author (Year) Title. URI [dataset]

UNIVERSITY OF SOUTHAMPTON

DEPARTMENT OF AERONAUTICS AND ASTRONAUTICS

COAXIAL CONTRAROTATING TWIN ROTOR AERODYNAMICS

by

MICHAEL JOHN ANDREW

Under the Supervision of Professor I.C. Cheeseman

Dissertation Submitted for the
Degree of Doctor of Philosophy

TABLE OF CONTENTS

ABSTRACT

LIST OF FIGURES

NOTATION

ACKNOWLEDGEMENTS

1. INTRODUCTIONS

- 1.0 Introduction
- 1.1 Historical Note
- 1.2 Research Development

2. EXPERIMENTAL RIG AND PROCEDURE

- 2.0 CCTR Rig
- 2.1 Experimental Procedure

3. TIP VORTEX MODELLING

- 3.0 Introduction
- 3.1 Vortex Core Maximum Induced Velocity and Radius Defined
- 3.2 Problems of Data Correlation
- 3.3 Salient Features of the Tip Vortex Core
- 3.4 Tip Vortex Roll-up
- 3.5 Tip Vortex Decay
- 3.6 Discussion and Conclusion

4. COAXIAL COUNTERROTATING TWIN ROTOR AERODYNAMICS IN HOVER

- 4.0 Introduction
- 4.1 General Wake Approaches
 - 4.1.1 CCTR Wake Approaches
- 4.2 CCTR Vortex-Strip Theory
 - 4.2.1 Principal Features of Vortex-Strip Theory
- 4.3 Application of Vortex-Strip Theory
- 4.4 Conclusion

5. COAXIAL COUNTERROTATING TWIN ROTOR AERODYNAMICS IN FORWARD FLIGHT
 - 5.0 Introduction
 - 5.1 CCTR Forward Flight Model
 - 5.2 Application of the Vortex-Glauert Model
 - 5.3 Discussion
 - 5.4 Conclusion
6. PROGRAM ROTOR
 - 6.0 Introduction
 - 6.1 The Hover Facility
 - 6.2 The Forward Flight Facility
 - 6.3 Conclusion
7. PRELIMINARY OPTIMISATION STUDY OF A CCTR IN HOVER
 - 7.0 Introduction
 - 7.1 Single Rotor Hovering Performance
 - 7.2 CCTR Hovering Performance
 - 7.3 Conclusion
8. CONCLUSIONS
 - 8.0 Conclusions
 - 8.1 Recommendations for Further Work

APPENDIX 1

A1.0 Solution of the Vortex Turbulent Boundary Layer Analogy
Energy Equations

APPENDIX 2

A2.0 Salient Hover Equations

A2.1 Salient Forward Flight Equations

APPENDIX 3

A3.0 Program ROTOR Input Procedure

A3.1 Program ROTOR Listing

UNIVERSITY OF SOUTHAMPTON

ABSTRACT

FACULTY OF ENGINEERING

AERONAUTICS & ASTRONAUTICS

Doctor of Philosophy

COAXIAL CONTRAROTATING TWIN ROTOR AERODYNAMICS

by Michael John Andrew

The modelling of a Coaxial Contrarotating Twin Rotor (CCTR) system has been developed from single rotor modelling techniques. Particular attention has been paid to the characteristics of the tip vortex, namely, vortex strength, structure and decay. Equations are presented which describe both the vortex core and the complete structure of a rolled-up tip vortex. These equations are utilised with conventional strip theory to enhance the predictive accuracy, and replace the arbitrary application of a tip loss factor. Using this combined approach, named Vortex-Strip theory, the full interference effects between the two rotors of a hovering CCTR have been successfully modelled.

By a similar approach, a Vortex-Glauert theory has been developed to model the wake of a CCTR in forward flight. Comparisons between theory and experimental results from model and full scale rotors are shown over a variety of hovering and forward flight conditions.

Both wake models have been written in Fortran IV computer language with a flexible input procedure. This feature allows a user to investigate a wide range of rotor parameters including different rotor radii, number of blades, CCTR rotor spacing, with variations in blade twist, taper and effective hinge offset.

The computer program, named ROTOR, was used in a preliminary optimisation study of a hovering CCTR. The results show that a conventional CCTR is a more efficient layout in hover than an equivalent single rotor; a finding which has been endorsed by experimental results.

Although the presented models have been developed for a CCTR, it should not be overlooked that they are equally applicable to single rotor configurations.

LIST OF FIGURES

Figure 1 Schematic diagram of the Mote CCTR rig

Figure 2 Table of McCormick's et al vortex data

Figure 3 Table of Andrew's et al vortex data

Figure 4 Table of vortex data comparisons

Figure 5 Vortex velocity/time output trace

Figure 6 Schematic diagram of a typical vortex velocity/time trace

Figure 7 Photograph of vortex core expansion

Figure 8 Two infinite retilinear vortices

Figure 9 Vortex core edge induced velocity

Figure 10 Vortex core radius

Figure 11 Effect of Mach number on the vortex induced velocity

Figure 12 Vortex velocity distribution

Figure 13 Vortex circulation distribution

Figure 14 Vortex circulation distribution

Figure 15 Equivalent Rankine vortex

Figure 16 Normalised total vortex strength

Figure 17 Normalised vortex core strength

Figure 18 Total vortex strength

Figure 19 Vortex velocity distribution

Figure 20 Vortex core variation with azimuth

Figure 21 Schematic representation of the CCTR hover model

Figure 22 Component downwash velocity distributions

Figure 23 Comparison between Strip and Vortex-Strip theories

Figure 24 Vortex velocity components on the upper rotor

Figure 25 Lower rotor downwash from the upper rotor

Figure 26 Lower rotor vortex induced velocities on the upper rotor

Figure 27 Total downwash velocity distributions

Figure 28	CCTR lift distributions
Figure 29	Tip vortex wake limits
Figure 30	Vortex axial displacement from the upper rotor
Figure 31	Mote CCTR performance characteristics
Figure 32	CCTR performance curve
Figure 33	ABC performance curve
Figure 34	Mote CCTR compared with equivalent single rotor
Figure 35	Downwash distributions
Figure 36	Schematic representation of forward flight model
Figure 37	Predicted single rotor blade loading
Figure 38	Blade loading at 0.0 degrees of azimuth
Figure 39	Blade loading at 90.0 degrees of azimuth
Figure 40	Blade loading at 180.0 degrees of azimuth
Figure 41	Blade loading at 270.0 degrees of azimuth
Figure 42	Inflow distributions at 0.0 degrees of azimuth
Figure 43	Inflow distributions at 90.0 degrees of azimuth
Figure 44	Inflow distributions at 180.0 degrees of azimuth
Figure 45	Inflow distributions at 270.0 degrees of azimuth
Figure 46	Tip vortex paths in the longitudinal plane
Figure 47	Photograph of the tip vortex formation at the front of a CCTR
Figure 48	Photograph of the upwash at the front of a CCTR
Figure 49	Photograph of a pending blade vortex interaction
Figure 50	Photograph of the flow periodicity at the front of a CCTR
Figure 51	ABC inflow distributions in the longitudinal plane
Figure 52	Mote forward flight performance characteristics
Figure 53	Mote performance characteristics at an advance ratio of 0.174
Figure 54	Flow chart of the hover code
Figure 55	Flow chart of the forward flight code
Figure 56	Notation of axes

Figure 57 Variation in the number of blades

Figure 58 Variation in blade aspect ratio

Figure 59 Constant blade solidity

Figure 60 Variation in the number of blades

Figure 61 Variation in aspect ratio

Figure 62 Effect of inter-rotor spacing

Figure 63 Effect of reducing upper rotor radius

Figure 64 Effect of reducing upper rotor radius

Figure 65 Mote CCTR comparison - aspect ratio effect

Figure 66 CCTR comparison - aspect ratio effect

NOTATAION

A	Tip vortex coefficient
A_r	Blade aspect ratio = R/C
a	Lift curve slope
a_o	Blade coning angle
a_1	First harmonic longitudinal flapping coefficient
$a_1 a_2$	Landgrebe wake coefficients
B	Tip vortex coefficient
b	Number of blades
b_1	First harmonic lateral flapping coefficient
C	Tip vortex coefficient
C_L	Rotor lift coefficient
C_T	Rotor thrust coefficient
c	Blade chord
c_1	Local blade lift coefficient
c_{do}	Local blade profile drag coefficient
D	Drag, tip vortex coefficient
D_i	Induced drag
D_p	Profile drag
d	Vertical spacing between CCTR rotors
E	Tip vortex coefficient
E_v	Tip vortex rotational energy
F	Rotor figure of merit
H	Rotor H-force
I	Second moment of inertia
K	Vortex strength = $2\pi v_r r$
K_1	Tip vortex modelling constant
K_2	Tip vortex modelling constant
K_c	Tip vortex core strength
K_1	Maximum tip vortex strength in the logarithmic region

K_2	Total tip vortex strength
M	Mach number
P	Rotor power
Q	Rotor torque
R	Rotor radius
R_e	Reynolds number based on blade chord
r	Radial distance
r_c	Tip vortex core radius
r_l	Tip vortex logarithmic outer radius
r_o	Tip vortex defect outer radius
T	Rotor thrust
t	Blade thickness
u	Induced velocity, axial velocity
U_p	Perpendicular velocity to blade section
U_T	Tangential velocity to blade section
V	Forward flight velocity
V_s	Tip vortex induced velocity at vortex core edge ($r=r_c$)
V_T	Rotor tip velocity
V_c	Rotor climb velocity
v	General velocity, radial velocity
v_i	Induced velocity
v_v	Tip vortex induced velocity
w	Tangential velocity
x, y	Cartesian coordinates
z	
α	Blade angle of attack
α_r	Local blade angle of attack
β	Blade flapping angle
Γ	Blade bound circulation
Γ_{\max}	Maximum blade bound circulation
γ	Lock number

θ Blade pitch
 λ Rotor inflow ratio
 μ Rotor advance ratio
 π $\pi = 3.145927$
 ρ Air density
 σ Blade solidity
 ϕ Inflow angle
 ψ Degrees of azimuth
 Ω Rotor angular velocity
 ω Angular velocity

Suffixes

1,2,3 Blade number
u,l Upper and lower rotor respectively
x,y,z Components associated with the (x,y,z) Cartesian coordinates

ACKNOWLEDGEMENTS

The author wishes to express his gratitude to Professor I.C. Chesseman for his guidance and supervision throughout this study; to Mr N.I. Powell and technical staff at Southampton University for their assistance during the experimental portion of the study; to Westland Helicopters Limited for supplying the experimental helicopter model rotor rig; to the Science Research Council for their financial support; and to Mrs W. Bull for typing the thesis.

1. INTRODUCTION

1.0 Introduction

Although a vast amount is now known about single rotor aerodynamics (1,2) and associated modelling techniques (3,4), current knowledge of the flow through a coaxial contrarotating twin rotor (CCTR) is extremely limited. Even Russian publications fail to disclose concise details of CCTR flow characteristics (5,6). The following historical note on CCTR development indicates that this particular layout is a serious contender to the conventional single rotor configuration. However, the dearth of knowledge in the literature needs to be rectified if the full potential of the CCTR helicopter is to be exploited in the future. The objective of this thesis is to partially fulfill this need.

1.1 Historical Notes

In 1784 two Frenchmen, Launoy and Bienvenu (7) were credited with the first working model of a helicopter. The device they constructed was a model CCTR, powered by twisted chord and bent whalebone. A similar layout was also proposed by Cayley in 1796. Although various designs followed it was not until the beginning of this century that Berliner (1909) built a CCTR system which lifted a pilot untethered. Similar attempts are attributed to Pescara (1919), d'Asanio (1930) and Breguet (1930).

With the main emphasis being placed on single rotor development in post-war years, relatively little attention has been paid to the CCTR layout. Apart from the Sikorsky Advancing Blade Concept (ABC) (8), work on this configuration effectively ceased in the mid 1950's. Nevertheless, the ABC verification program identified some of the salient features of a CCTR, and indicated great caution is necessary when applying single rotor type assumptions, even in the most simplified analysis.

The ABC exploits the fundamental properties of a CCTR system. That is, the resultant unbalanced aerodynamic moments and torques on

one rotor are reacted by the other rotor turning in the opposite direction, allowing trim to be maintained without the aid of a tail rotor. In addition, the ABC alleviates retreating blade stall by selectively loading only the advancing blades in each rotor. Although this necessitates very stiff blades with rigid root fittings, the forward flight speed capability of the helicopter has increased markedly over the conventional single rotor. In recent trials, the ABC craft was reported to have reached a forward flight speed of 240 knots (9). Further potential gains include good overall handling qualities, high hovering efficiency and compactness with low noise characteristics (10).

However, during preliminary flight trials, the ABC XH-59A demonstrator craft in a low advance ratio flight regime, experienced a high nose up pitching moment, rendering the craft uncontrollable. A heavy tail first landing resulted. Post-analysis of this incident revealed that the computation of the control range pilot input required to maintain trim, using simple momentum type theory, grossly underpredicted the resultant blade forces and moments. The 'K' factor in Glauerts well known forward flight equation was subsequently updated to allow for the interaction between the two rotors (11). With increasing forward flight speed, the influence between the two rotors diminishes. Even so, at the higher end of the speed range very large profile drag losses are incurred by the rotor hub and blade rigid root fittings. This to date, has been identified as the major disadvantage of the ABC.

Alternatively, the CCTR layout may also be exploited with semi-rigid or fully articulated rotors. CCTR's of this category have also been demonstrated as a viable option in both model (12) and full-scale helicopters (13). Under the guidance of Nikoi Kamov, the Russian 'Ka' series of CCTR helicopters was born. The first craft to fly successfully was the Ka-8 in 1947. Continuing success of this configuration is reflected by the Ka-25 anti-submarine helicopter, the Ka-25k flying crane and the Ka-26 general purpose helicopter. The Ka-25k is claimed to combine a high payload to all-up-weight ratio, with good manoeuvrability and minimum dimensions (13).

A further application of the CCTR has been utilised by Westland Helicopters Limited. With this layout the feasibility of using a small remotely piloted helicopter (RPH) for real time surveillance and reconnaissance was investigated. From the prototype RPH design, named Mote, through more advanced projects using CCTR crafts Wisp, Wide-eye and Supervisor, the overall handling qualities have been successfully demonstrated.

Although disjointed, the development of the CCTR has brought forth a variety of claims which if to be taken seriously and exploited in future development requires a greater indepth knowledge of this particular layout. The following section presents the research investigations which were carried out at Southampton University to increase the understanding of the aerodynamic properties of a CCTR.

1.2 Research Development

At the inception of the research study, the prototype RPH, developed by Westland Helicopters Ltd, was presented to the University for research investigations. Chapter 2 discusses the overall characteristics of the craft and the modifications made over the duration of the investigation.

The expansive experimental research already in existance on single rotor aerodynamics has over recent years, with advances in computer hardware, been supplemented with more refined theoretical treatments. Such theoretical approaches, although not necessarily producing a higher degeree of predictive accuracy, have often identified areas where current experimental data is lacking. For example, results from advanced wake modelling codes developed by Johnson (14), suggest much more effort is needed to ascertain the strength, decay and overall characteristics of the tip vortex, even when evaluating integrated effects on a helicopter rotor. Chapter 3 surveys the available literature reporting tip vortex data and presents equations defining the strength and circulation distribution of a tip vortex.

Chapters 4 and 5 describe the developed CCTR wake theories for hover and forward flight respectively. Included in these chapters are comparisons with results from model and full-scale rotors. The adaption of the CCTR theory to an overall computer program ROTOR, is presented in Chapter 6. The program refinements include a well defined input procedure with the option to run interactively, combined with a generally written set of modular codes which may be used as a continuing research tool. Chapter 7 discusses one application of program ROTOR to a preliminary optimisation study of a hovering CCTR.

Finally, a review of the research study and discussion of the results including conclusions and recommendations for future work is contained in Chapter 8.

2. EXPERIMENTAL RIG AND PROCEDURE

2.0 CCTR Rig

The CCTR rig used throughout this investigation was presented to the University of Southampton by Westland Helicopters Limited. Initially developed as a prototype design to explore the control characteristics and problems encountered with CCTR RPH's, the complete craft (named Mote) was extensively modified for adaption to experimental research.

All experimentally redundant structures were removed from the craft leaving only the main frame, drive shafts and rotor heads. The two 10cc glow plug motor power supplies were initially replaced by one large 1.5 horse power direct current motor. This was later upgraded by two small electrical dc motors (max power of each = 0.4 horse power) which have been especially developed for model applications. Light in weight, very compact and low in cost the major disadvantage of a model motor is the high current drawn through its windings (e.g. amps =10, volts =12), and resulting low electrical efficiency. Nevertheless, these motors were easily integrated to the main frame and considered highly desirable, especially for forward flight testing.

The rig (Fig 1) was mounted on four strain gauged flexures which were calibrated to measure the overall lift. The power absorbed by the CCTR system was determined from recording the input power to each motor and correcting for known motor and mechanical losses. The latter was evaluated by running the rig at sample RPM's without blades, and generating representative opposing torques on the drive shafts using a frictional torquemeter. The torquemeter was constructed from a cord taken over a drive shaft and connected to a spring balance and freely hanging mass. As the rig is run-up, the cord produces an opposing frictional torque which can be determined from the change in tension registered by the spring balance. It was observed that changes in efficiency took place during prolonged running of the rig and was assumed to result from the increase in

temperature in the motor windings. To account for this when establishing thrust/power characteristics, on the spot efficiencies of the rig were determined using the torque meter for each separate thrust condition. Nominally however, the overall system efficiency was less than 30%.

The salient rig characteristics are:-

Configuration	Twin rotor, contra-rotating and coaxially mounted
No blades/rotor	Two
Rotor spacing	19.6cm
Rotor radius	76cm
Max RPM	600

A variety of blades were used during the course of the investigation and unless otherwise stated, the default blade characteristics assumed in program ROTOR are:-

Blade Fixing	Teetering
Lift curve slope (rads)	5.73
Profile drag coefficient (after Bailey (15))	

2.1 Experimental Procedure

CCTR hover was investigated with the rig thrusting downward (blades inverted) to minimise re-circulation affects. Wake detail was collected using:-

- 1) Smoke visualisation/photographic techniques to locate the tip vortices of each rotor.
- 2) A single non-directional hot wire anemometer developed at Southampton University (16) to determine the induced velocity flow field and the magnitude of the trailing tip vortex strengths. Hard copies of the tip vortex speed/time signatures were obtained from a graph pen recorder.

With the RPM (synchronous rotor RPM was achieved by an interconnecting toothed timing belt linking the two drive shafts) of each rotor being monitored by magnetic pickups connected to a tachometer, the power absorbed by each rotor was recorded. Differential collective was then applied to trim out any power (yaw) imbalance in the rotors. For this particular CCTR, differential pitch settings well under 1.0 degree were found adequate to maintain trim. Overall rotor thrust and power were then measured. This procedure was repeated for a variety of pitch settings.

Forward flight performance of the rig was similarly investigated in Southampton University's 7x5 feet wind tunnel. Initially, the tunnel wind speed was set as required, without the rotors turning, to zero the strain gauge outputs from the four supporting flexures. Thereafter, the rig was run-up to a predefined RPM with simultaneous application of the rotor controls to remove any differential forces on the flexures. The corresponding control settings, overall rotor thrust and power were then recorded. Further smoke visualisation tests were also carried out in the 10x8 feet working section to investigate tip vortex wake affects in low advance ratio flight conditions. In all, advance ratios, between 0 to 0.25 were investigated for a variety of rotor loading conditions.

Chapter 3 introduces the tip vortex experimental data, while Chapter 4 presents the Mote hover performance results. Chapter 5 includes both the forward flight performance characteristics, and discusses some of the smoke visualisation photographs gathered during the experimental programme.

3. TIP VORTEX MODELLING

3.0 Introduction

Over the last decade, the complexity of rotor wake computer analysis has increased greatly. Nevertheless, underlying the theoretical models are basic assumptions not fully endorsed by experimental investigation. For example, the common practice of setting the strength of an assumed Rankine tip vortex ('solid body' rotational core with an irrotational outer region) equal to the peak circulation on the blade is immediately open to criticism. Following a similar viewpoint, Johnson (14) in a recent paper concludes that 'to correlate and develop non-uniform distorted wake models further requires experimental data that encompass the details of rotor aerodynamics such as the measurement of the tip vortex circulation, core size and peak velocities even when the parameters of most interest are the integrated effects such as the first harmonic flapping motion'.

Considering the substantial influence of the tip vortex on blade air loads, especially in hover and at low advance ratios, a survey of the available vortex data was undertaken to check the validity of the currently used assumptions. The resultant salient findings covering the vortex core, vortex structure and decay are presented in sections 3.1 - 3.5.1, and collectively discussed in section 3.6.

3.1 Vortex Core Maximum Induced Velocity and Radius Defined

For a Rankine vortex, the maximum tangential vortex induced velocity V_s is located at the 'solid body' rotational core edge. Within the 'solid body' region or vortex core, the general vortex induced velocity v_v , is directly proportional to the radial distance r , from the vortex centre, reaching a maximum value V_s at radial distance r_c , defining the core radius. (i.e. $v_v = V_s$, $r=r_c$). In utilising a vortex core model an estimation of the core radius and strength is required. Ideally, explicit equations determining V_s

and r_c are necessary to minimise computational time.

McCormick et al (17) have fitted empirical equations to a colligate of vortex data yielding,

$$V_s/V_T = 0.625C_L \quad (3.1)$$

$$w/c = 0.02 + 0.035C_L \quad (3.2)$$

$$R_e = 3.5 \times 10^5$$

V_T is the rotor tip speed and w is defined as the distance from the vortex centre where the vorticity has reached half its centreline value (a logarithmic distribution of vorticity is assumed by McCormick). Considering the limited cases investigated ($A_r < 6$, $V_T = 31$ m/s) to determine equations 3.1 - 3.2, the agreement shown in Figure 2 is very reasonable. However, the equations do lack universality which is best highlighted by comparisons with Carradonna et al (18) vortex data. Similarly, although good agreement was found by Andrew (19) by fitting expressions to a variety of vortex data taken at typical lift coefficients and tip Mach numbers of less than .55 (Figure 3), the equations become less valid for Mach numbers approaching unity. The equations reported in reference (19) are:-

$$r_c/c = \frac{(1-M)t\theta}{\sqrt{M} c} \quad (3.3)$$

$$V_s/V_T = (1 + (6.6/A_r))(tC_L/c)^{1/2} \quad (3.4)$$

To obtain a better global fit, an extended colligate of vortex data was examined. Spivey (20) has concluded that for low Mach numbers, the tip vortex location and direction is not affected by

centrifugal forces or pressure gradients. Further, Chigier et al (21) argue that the vortex structure generated from a fixed wing and a rotating blade should be similar. Consequently, the presented vortex data has been accumulated from rotating blade and fixed wing investigations.

3.2 Problems of Data Correlation

Great care must be taken at all times when making comparisons with and using other sets of experimental data. The limitations of the experimental technique, the test conditions and the way the data have been derived and presented must be fully appreciated. The two sets of data obtained by Chigier and Corsiglia (21,22) serve as a typical example of where caution is necessary in interpreting the results. In reference (21) the triple hot wire anemometer was fixed at a single position for a 'sufficient length of time' to record a time mean averaged value. For a blade pitch setting of 12 degrees, the maximum vortex induced velocity recorded was $0.37V_T$. In contrast, the reported maximum induced velocity in reference (22), where almost identical test conditions were investigated was $0.68V_T$. In this case, the measuring probe was rapidly scanned many times through a vortex yielding a quantity of vortex peak velocities which were later averaged.

The discrepancies between probe fixed and probe moving data arise, in part, from the behaviour of the vortex itself. In both references (21) and (22), a measurable vortex meander was noted (a Crow type of instability). For the probe fixed case (21), this produced a fluctuating velocity field. Consequently the probe was, for substantial periods, recording velocity signatures with magnitudes less than the maximum values within the vortex. When averaged, the resultant 'peak' velocities produced were much less than the maximum velocity within the vortex. For the moving probe case (22) however, effectively instantaneous velocity values are recorded, yielding a much better estimate of the peak velocities within the vortex.

3.3 Salient Features of the Tip Vortex Core

Even with the problems of data correlation, a number of salient features are highlighted in the literature, giving adequate guidance for tip vortex modelling:-

- 1) The strength of the vortex core K_c , (given by $K_c = 2\pi V_s r_c$) increases with increase in pitch θ . (22,25,26,27,28). Generally, this results from an increase in both V_s , and r_c . However, exceptions are reported where r_c remains roughly constant (27), and may result from the experimental techniques used, or a possible redistribution of the vorticity throughout the vortex (see Section 3.4.)
- 2) V_s increases linearly with pitch (22,25,26,27). However, beyond maximum pitch, blade stall greatly modifies the vortex producing a diminished V_s and an uncharacteristically thickened vortex core (28).
- 3) Flow measurements of a rectangular tip section (29,30) evince that the vortex core initially forms at the side of the tip and moves over to the top surface at or beyond the region of maximum thickness (largest pressure gradient).
- 4) If a rolled up tip vortex is said to comprise of a 'solid body' rotational core surrounded by a further distribution of vorticity, then the rolling up process may take many wing tip chords. However, it must be emphasised that large velocities are induced back onto the wing immediately the core departs from the trailing edge.

Andrew's equation (3.5) can be simplified to reflect the extended set of vortex data by linearising V_s with respect to pitch θ , and redefining aspect ratio $A_r = R/c$, yielding

$$V_s/V_T = (1 + (6.6/A_r)) K_1 \theta \quad (3.5)$$

(θ in degrees)

McCormick et al (17) have indicated that the core radius r_c , could be as small as 2% of the blade chord, but theoretical analyses incorporate very wide ranging suppositions. Typically the core diameter is set to 10% of the blade chord (25) or 1% of the blade radius (31). More recently, it has been found that to guarantee predictive accuracy a theoretical core radius of 5% blade radius was used. (14,32). Consulting Figure 4, it is immediately obvious that for regular aspect ratio blades r_c is generally over-estimated and insensitive to changes in operating conditions.

An interesting observation (see Figure 4) is that the vortex core radius departing from the blade trailing edge is of the order of the turbulent boundary layer thickness i.e

$$r_c/c = R_e^{-1/5} K_2 V_s / V_T \quad (3.6)$$

Where from the limited experimental data available, the best fit empirical constants are given by:

$$K_1 = 2.64 \times 10^{-2} , \text{ in equation (3.5)}$$

$$K_2 = 1.2 , \text{ in equation (3.6)}$$

Combining equations 3.5 and 3.6 yields the vortex core strength K_c of,

$$K_c = 2\pi V_t c (((1+(6.6/A_r))K_1 \theta)^2 K_2 R_e^{-1/5}) \quad (3.7)$$

Interestingly, equation (3.7) indicates that the vortex core strength is proportional to pitch squared; whereas the blade bound circulation Γ is proportional to θ giving the ratio:

$$K_c / \Gamma \propto \theta \quad (3.8)$$

It must be emphasised that this expression does not violate the conservation of circulation. It simply states that the normalised vortex core strength grows with blade pitch; while the remaining blade circulation may be viewed as being shed as discrete vortex filaments.

This result is, perhaps, indirectly endorsed by the experimental difficulty encountered in generating a tip vortex at low pitch settings. Indeed, below pitch angles of 7 degrees, Tangler et al (26) had great difficulty in recording a trailing tip vortex.

Carradonna et al (18) similarly found that for a low pitch setting K_c / Γ was less than that for a higher pitch setting.

The effects of compressibility on the vortex core have not been included in equations (3.5) and (3.6) since to the author's knowledge, no substantial body of vortex data exists on this subject. However, Carradonna et al (18) have indicated that the vortex structure does change with Mach number reflecting transonic flow conditions. This is accompanied by a reduction in the maximum core edge induced velocity V_s . Nevertheless, the limited results indicate that the far field of the vortex remains unchanged with only the inner sections of the vortex changing appreciably. Such changes, if required, may be modelled by the developed equations in

the following section.

3.4 Tip Vortex Roll-Up

Landgrebe (23) has concluded that the induced downwash on the blade from the inboard vortex sheet is an order of magnitude less than the induced velocity distribution from the tip vortex wake. This results partly because the vorticity is not as concentrated and partly because it tends to be convected downward faster than the tip vortex. However, some of the vortex sheet may be captured by the tip vortex, modifying the induced velocity distribution outside of the vortex core.

From fixed wing experimental evidence, Nielsen and Schwind (33) modelled a completely rolled-up vortex based on an analogy with the structure of a turbulent boundary layer. This has been further utilised in reference (22). More recently, this analogy has also been applied to rotor tip vortices (34). Modifying the equation of reference (22) by non-dimensionalising with respect to the blade chord c , yields

Core region,

$$K/\Gamma_{\max} = A(r/c)^2 \quad (3.9)$$

$$0 \leq K \leq K_c$$

Logarithmic region,

$$K/\Gamma_{\max} = B \ln(r/c) + C \quad (3.10)$$

$$K_c \leq K \leq K_1$$

Defect region,

$$\ln(1 - (K/\Gamma_{\max})) = D(r/c) + E \quad (3.11)$$

$$K_1 \leq K \leq K_o$$

References (22) and (34) identify 'best fit' coefficients for a particular set of vortex data. A more general approach to estimate the coefficients A-E for any individual vortex is suggested in the following procedure:-

For a "solid body" rotational core, the vortex strength may be given by:

$$K_c = 2\pi V_s r_c \quad (3.12)$$

Comparing equations 3.9, 3.12 yields,

$$A = 2\pi V_s c^2 / (r_c \Gamma_{\max}) \quad (3.13)$$

V_s and r_c are computed from equations (3.5) and (3.6).

For the logarithmic region, consider $dK/d\ln r$:

$$dK/d\ln r = r dK/dr = 2\pi v r + 2\pi r^2 dv/dr$$

Whence,

$$(dK/d\ln r)_{r=r_c} = K_c, \quad (3.14) \text{ since } (dv/dr)_{r=r_c} = 0$$

Hence, comparing equations (3.10) and (3.14) yields,

$$B = K_c / \Gamma_{\max} \quad (3.15)$$

$$C = B(1 - \ln(r_c/c)) \quad (3.16)$$

To obtain the coefficients D and E, the radial distance to the perimeter of the logarithmic region r_1 , and the outer radius of the vortex r_o , the following conditions are typically satisfied:-

- 1) Continuing the boundary layer analogy, the outer radius of the vortex r_o , is defined where the vortex circulation strength K_o , reaches 99 percent of the peak circulation on the blade Γ_{\max} . However, research has indicated (28,35) that the final vortex strength may be much less than the expected value. Consequently a more general expression may be used:

$$K_o = n \Gamma_{\max} \quad (3.17)$$

$$0 \leq n \leq 0.99$$

Using equations 3.11 and 3.17 yields

$$\ln(1-n) = D(r_o/c) + E \quad (3.18)$$

- 2) Continuity of circulation is satisfied at r_1 , giving:

$$B \ln(r_1/c) + C = 1 - \exp((Dr_1/c) + E) \quad (3.19)$$

- 3) Similarly, in the outer regions of the vortex, sharp discontinuities in circulation are assumed not to exist, whence

$$(dK/dr)_{r=r_1} = B/r_1 = -(D/c) \exp((Dr_1/c) + E) \quad (3.20)$$

To develop the remaining equation, a simple work/energy theorem has been postulated. That is, the total rotational energy per unit length of a fully rolled up tip vortex was equated to the induced drag on the blade from the points of peak circulation to the tip. The theorem which is presented in Appendix 1 produces the following equation:-

$$E_v = ((\rho \pi r_c^2 v_s^2)/4) + (VAR1)(VAR2 + VAR3) = \left[\text{induced drag} \right]_{r(\Gamma_{\max})}^{r=1.0} \quad (3.21)$$

where,

$$VAR1 = \frac{\rho \Gamma_{\max}^2}{4\pi} r$$

$$VAR2 = \frac{1}{r_c} \left[B^2 (0.33 \ln^3 r - \ln^2 \ln c + \ln r \ln^2 c) + BC (\ln^2 r - 2 \ln r \ln c + C^2 \ln r) \right]$$

$$VAR3 = \frac{r_o}{r_1} \left[\ln r + \exp(2E) \left(\ln r + \sum_{l=1}^m (2Dr/c)^m / (m*m!) \right) - 2\exp(E) \left(\ln r + \sum_{l=1}^m (Dr/c)^m / (m*m!) \right) \right]$$

Equation (3.21) is solved with equations (3.9) - (3.20), yielding an initial value of the tip vortex rotational energy E_v . Further solutions are evaluated by iteration until the vortex rotational energy E_v , is equal to the induced drag on the blade between tip and $n\Gamma_{\max}$ (the default value of n being 0.99); while simultaneously satisfying the conservation of circulation law, where the circulation contained in the vortex K_o equals $n\Gamma_{\max}$. Both energy and circulation conservations laws are satisfied simultaneously by adjusting the vortex outer structure (equations (3.19) and (3.20)).

Thirty stations were located in the outer 10% of blade radius to compute the induced drag and peak blade bound circulation using two dimensional aerofoil theory as presented in Appendix 2.

3.5 Vortex Decay

A general observation of the tip vortex wake shed beneath a hovering rotor is that the tip vortex dissipative rate is much greater than ideal theory would suggest. Widnall (36) has shown that below a helical pitch of 32 degrees the filaments will become

unstable due to their strong interactions. Such interactional decay has been reported by Tangler et al (26) using schlieren flow visualisation techniques. They found that vortex instability was accentuated by the development of an asymmetric wake which resulted from the finite tolerance limits of blade manufacture, pitch settings etc. Maximum interaction occurred at complete wake contraction where two adjacent vortices, generated by neighbouring rotor blades, began revolving about their common centroid of vorticity. While this is occurring the two vortices draw closer together becoming unstable and either destroy each other or combine to form a weak diffuse vortex.

By considering a two-dimensional representation (Figure 8), the respective velocities are:

$$v_1 = K_2 / (2\pi a) , \quad v_2 = K_1 / (2\pi a)$$

Equating the strength of each vortex to an analogous mass, a centroid of vorticity c , lying on the line joining the vortices can be determined from,

$$K_1 a_1 + K_2 a_2 = 0$$

For the case where $K_1 = K_2$, the vortices would revolve about their centroid with angular speed w_c given by,

$$w_c = K_1 / (\pi a^2) \quad (3.22)$$

By increasing the number of blades (same blade loading) the axial separation between consecutive vortices is reduced. For similar blade loadings, equation (3.22) indicates that the angular rate w_c , would similarly increase causing further instabilities and rapid diffusion.

This instability appears as sinusoidal fluctuations of the tip vortex which grow with time (26). Similarly, reducing the collective pitch decreases the axial vortex spacing enhancing rapid decay.

Another instability was also noted for independant vortices even in a four bladed rotor. The vortex core was seen to expand until only a diffuse vortex could be registered. An example of this decay is given in Figure 7.

3.5.1. Axial Velocity Effects on Vortex Decay

The description vortex decay is often interpreted as the time dependant decay of the vortex strength (circulation) as, for example, predicted by Lamb (65). Effectively the strength K , at time t , is given by $K = K_0 \exp(-ct)$, where K_0 is the initial value of the vortex strength and c , either a predetermined constant or estimated from a 'best fit' experimental curve. Theoretically, the vortex strength decay is extremely slow and implies that a large number of rotor wake revolutions should be detectable beneath a lifting rotor. Experimental results however, indicate the the 'decay' of the helicopter tip vortex is much more rapid. This is often allowed for in wake modelling by simply increasing the value of the constant c , in the decay equation stated above.

It is suggested in the following argument that the assumption of rapid circulation decay can be a gross misrepresentation of the 'decay' mechanism. Take, for example, the well known incompressible flow expression describing the equilibrium state of the vortex, where the pressure gradient across the vortex matches the centrifugal force, namely:-

$$(1/\rho) dp/dr = w^2/r \quad (3.23)$$

whence integrating between the core radius r_c and the vortex outer

radius r_o , where

$$K = K_c = \text{constant} \quad (3.24)$$

and ,

$$w^2 = K_c^2 / (4\pi^2 r^2) \quad (3.25)$$

yields ,

$$(p_o - p_c) / \rho = - \left[K_c / (8\pi^2 r^2) \right]_{r_c}^{r_o} \quad (3.26)$$

whence , assuming $r_c \ll r_o$,

$$(p_o - p_c) = \rho K_c^2 / (8\pi^2 r_c^2) \quad (3.27)$$

Applying the conservation of circulation law implies K_c remains constant. Therefore, any weakening of the pressure gradient across the vortex will be associated with a vortex core expansion.

Now Tangler et al (26) have reported rapid vortex core expansions resulted when two vortices come into close proximity. In this instance, as the two vortices approached each other, the static pressure p_o would reduce, weakening the stabilising vortex pressure gradient and, therefore, producing a vortex core expansion (equation

3.27).

However, Tangler et al (26) also report that at low pitch settings (< 7 degrees), the strength of the rotor tip vortex is reduced, and the vortex core axial velocity is seen to diminish quickly. This also results in a rapid vortex core expansion. Equally, Logan (40) has found that for weak vortices, axial velocities diminish with downstream distance and remain unchanged for strong vortices. Again, as the vortex axial velocity falls, the static pressure within the vortex core will increase, weakening the vortex stabilising pressure gradient. The same vortex core expansion results.

Interestingly, the actual strength (circulation) decay may be extremely slow as theoretically predicted; yet as a result of the vortex core expansion, may occupy such a large volume that the corresponding velocity field is greatly diminished.

3.6 Discussion and Conclusion

The modelling equations 3.5 and 3.6 used to evaluate vortex core radius r_c , and corresponding vortex induced velocity V_s , are compared with experimental data in Figures 9 and 10. Figure 9 indicates an increase in V_s is found with increasing blade pitch. Other researchers have also reported this trend (22, 25, 26, 27). Figure 10 also shows a similar connection between core radius r_c , and blade pitch. However, other investigators have concluded that the core radius does not vary substantially throughout an incidence range of 8 to 12 degrees (22), at least for the fixed wing case. This may partially result from the limitations of an experimental technique or the variability in data obtained, as can be similarly seen on Figure 10. Nevertheless, such conclusions cannot be wholly ignored and place a level of uncertainty in the universality of equation 3.6. The core radius magnitude, however, is more accurately defined with values much less than commonly used in theoretical analyses (14, 25, 31, 32).

For completeness, Figure 11 has been included to indicate

possible affects of compressibility on the tip vortex. The salient changes are a reduction in peak induced velocity V_s , and a redistribution of vorticity throughout the vortex. Interestingly, the far field remains unaltered, allowing an incompressible solution to adequately model the effects of the vortex on a point away from the immediate vicinity of the core. Plotted with the data on Figure 11 is the function $r_c(\sqrt{1-M^2})$. Although, with the limited data available this solution can only be proposed as a possible approximation, it may partially explain that within the limits of experimental variability, Rorke (25) found no marked changes in V_s , from test ranging from free stream Mach numbers of 0.2 to 0.6.

The equations developed in Section 3.4 to describe the complete structure of a trailing tip vortex have been used to evaluate the circulation distribution through a known rotor tip vortex structure (39). In this case, the value of 'n' in equation (3.17) was reported to be 0.99. Figures 13 and 14 show the comparison between the resultant predicted circulation curves for a rotor with an aspect ratio of 13.7 and blade pitch settings of eight and twelve degrees respectively. Both the circulation distribution and outer vortex radius are well predicted. The associated velocity distributions are given in Figure 12, while Figure 15 highlights an equivalent Rankine vortex with the same core radius producing an identical velocity far field. As can be seen from Figure 15, this is accomplished at the expense of the near field velocity distribution.

Figure 16 indicates, however, that the final vortex strength may be much less than the peak circulation on the blade. The data, which was taken from reference (28), shows that for a given thrust, the strength may vary substantially and furthermore, is not constant over a thrust range. This may result from the affects of a high blade aspect ratio (20.5) and the corresponding relatively low circulation strength of the vortex core (Figure 17). For comparison, the generalised logarithmic constant B ($=K_c/\Gamma_{\max}$) in equation 3.10, is given in reference (34) as 0.39. However, interpreting the results presented in reference (34), the following simple relationship may be postulated;

$$n\Gamma_{\max} = 3.1K_c \quad (3.28)$$

Applying this relationship to Cook's (28) full-scale rotor data, produces vortex circulation strengths much less than the blade's peak circulation. However, expression (3.28) yields a general underestimate of the vortex strength over most of the thrust range as shown in Figure 18.

Using the same procedures to evaluate a theoretical vortex structure for Cook's rotor, initial convergence between induced drag and vortex rotational energy could not be established. The corresponding vortex energy with 'n' set to 0.99 was always in excess of the induced drag value. Using just the 'solid body' and logarithmic regions to define the vortex structure, the vortex parameters were re-evaluated, converging firstly on the induced drag value computed as before and secondly, on a mean experimental value for the vortex strength.

The corresponding values of the outer rotor radius for the two cases were .472m and .165m respectively. The experimentally measured value of .162m, indicates that the latter method of convergence more accurately defined the vortex parameters. That is, from knowing the total strength of the vortex, a good approximation to the structure can be predicted with equations (3.9) and (3.10). Moreover, if the vortex strength is much less than the peak circulation on the blade, computation of the vortex structure may be achieved without using the defect vortex equation (3.11). The resultant velocity distribution is depicted in Figure 19. The theoretically predicted curve over-estimates the velocity distribution outside the vortex core and is seen to arise from estimating a core radius in excess of the measured value. However, taking into consideration the spread of vortex strength data for a given thrust (Figure 16), this discrepancy is well within the experimental tolerances.

For low aspect ratio rotor blades most of the blade circulation

is found in the vortex core. Indeed, for a blade aspect ratio of 6 and a collective pitch of twelve degrees, Carrandonna et al (18) report that all the circulation was found within the vortex core. Such findings indicate that a generalised circulation curve and associated logarithmic constant B equal to 0.39, as expounded in reference (34) is highly questionable. Alternatively, equations 3.5 and 3.6 allow greater flexibility in evaluating the core circulation ratio B , and reflect the experimentally found trends of varying vortex structure with rotor blade aspect ratio.

Section 3.5 indicated that vortex decay is not necessarily a feature of strength or circulation decay, but may result from a rapid vortex core expansion. The vortex core expansion takes place when the pressure gradient across the vortex is weakened. This may happen when,

1. a vortex-vortex interaction occurs
2. the vortex core axial velocity diminishes

The falling vortex axial velocity is more often seen to occur in weaker rather than stronger vortices.

More recently, the variation in vortex core radius over the first 90 degrees of azimuth (until the following blade passage) has been published (41) for a four bladed rotor with a blade aspect ratio of 15 and a chord of 0.05m. The data, shown in Figure 20, indicates the rapidity of the expanding vortex core which has more than doubled in less than a quarter of a rotor revolution.

With the equations developed for defining the vortex core and subsequent rolled up vortex structure, combined with an appreciation for the vortex core expansion process, the overall wake modelling techniques may now be described. Chapters 4 and 5 present the hover and forward flight models respectively; both of which use extensively the vortex equations presented in this Chapter.

4. COAXIAL COUNTERROTATING TWIN ROTOR AERODYNAMICS IN HOVER

4.0 Introduction

Wake flows generated by hovering rotors have been studied in great detail (3, 18, 23, 31, 44). Except for the most simple momentum/blade element approaches to rotor performance prediction, the modelling of rotor wakes has relied heavily upon the availability of computer hardware. Offsetting this availability however, is the ever increasing need to reduce computational costs by decreasing the time required to achieve a successful run. Consequently, a suitable compromise between the degree of complexity incorporated in any wake model and the computational time required has to be reached.

Many researchers have identified a general weakness in modelling routines to date. Notably, Cheeseman (43), Miller (44) and Johnson (14) indicate that the forthcoming models require a better understanding of the structure, strength and decay of rotor tip vortices. In the following sections a number of wake models are presented for guidance in selecting a possible optimum method which could incorporate the tip vortex information presented in Chapter 3.

4.1 General Wake Approaches

The problem of evaluating the induced downwash distribution along a rotor blade has been paid much attention. The resulting theories and wake models include the simple Glauert type strip analysis (45), a Fourier series representation of blade airloads (46), local momentum approaches (4,47) and vortex theories ranging from prescribed wakes (23), to the more advanced free-wake analyses (44, 48). Blade representation by a lifting line has been superseeded by the more exacting lifting surface methods (49).

The combined momentum-blade element approach of strip theory recognises the major design parameters and yields an estimate of the induced velocity at any specified blade element. However, the theory

in general, requires the application of a tip loss factor to increase the rotor performance predictive accuracy. This restriction, combined with the inability of the theory to model temporal variations in the flow, limit its usage.

To overcome these limitations, vortex theory has been developed to provide a more physical representation of blade airloads. With advances in computer hardware more exacting theories have been presented. Such theories usually require extensive computer code with many iterative and numerical routines necessitating large run times. Unfortunately, this does not always guarantee good predictive accuracy. For example, reference (50) indicates that a free-wake model can produce severe wake distortion, leading to blade vortex interactions not apparent in actual hovering tests. Ultimately, 'relaxed' procedures are often necessary to fine tune the desired output. Nevertheless, vortex theory can be most readily applied to compute temporal variations in the flow and is important when estimating the influence of one blade or rotor on another.

4.1.1. CCTR Wake Approaches

The most fundamental approach to CCTR hover performance prediction is that reported by Harrington (51). The CCTR is represented by a single rotor with the same radius and number of blades (equivalent blade solidity). The predicted performance for a test CCTR shows reasonable agreement over a large thrust range and is, therefore, a useful model for a first approximation. Another simple model was used in the Advancing Blade Concept CCTR verification programme (52). Applying momentum theory, the induced velocities of the lower rotor is assumed to increase by the average downwash from the upper rotor. This was later modified with the supposition that the upper rotor wake is fully developed and only the inner 50% of the lower rotor area is exposed to the fully developed wake; with the outer sections taking in clean air. Similarly, Stepniewski (2) incorporated strip theory into the evaluation of the affect of one rotor on another, yielding a better blade loading distribution. However, as with all the aforementioned approaches, this method assumes averaged or fully developed wake

flows and is inadequate, for example, in determining the full influence of varying the inter-rotor spacing.

A more concise method is that developed by Cheeseman (53), who combined a lifting line approximation to translational lift plus a stream tube model for propeller lift. The trailing helical tip vortex wake is approximated by a straight line horseshoe vortex system with strengths set equal to the peak circulation on the blade. Wake contraction is not considered.

Recently, renewed interest has been shown by the Japanese in CCTR configurations. In reference (32), momentum theory is developed by modelling the two rotors as actuator discs, to predict the optimum load sharing ratio for a given inter-rotor spacing. Implicit in the optimisation is the reliance of ideal flow conditions and the formation of an associated optimum wake geometry which as cited, does not adequately allow for the mutual influence of the two rotors. To overcome this limitation, a more rigorous treatment is also presented. Using a simplified free-wake analysis, the tip vortex wake is approximated by inviscid ring vortices. Each blade is represented by a lifting line. Of most interest are the results from a sensitivity analysis which was undertaken to guarantee predictive accuracy. The conclusions from the analysis indicated that the bounds for good accuracy were given by a rotor azimuth step $\psi = 20$ degrees, the number of vortex rings for each rotor $N = 8$, and the vortex core radius $r_c = 0.05R$ (32). The large number of rings are required to prevent instabilities in the numerical convergence of the wake in close proximity to the rotors. It is suggested that such instabilities will be remedied by introducing viscosity into the flow equations. The incremental step of 20 degrees of azimuth is derived from a trade off between a realistic run time required for wake convergence, and the acceptable finite errors incurred during the integration procedures. Finally, the poor physical representation of vortex core radius may be an indicator of the useful applications of this model. For example, a rotor blade with an aspect ratio of 15 would have a vortex core radius of 75% blade chord. Referring to Figure 4, it can be seen that this approximation is an order of magnitude greater than actual results, and does not

allow for the substantial influence of changing rotor conditions.

Finally, the application of local momentum theory (54) to CCTR performance prediction has shown good overall agreement and endorses the findings of Andrew (19), when comparing two and four bladed single rotors with a four bladed CCTR. The theory equates the local instantaneous momentum of fluid with the blade elemental lift to yield the elemental induced downwash. To estimate the timewise variation of the induced downwash after a blade pass, simplified vortex theory is applied, using a combination of a vortex ring (nearest vortex to the rotational plane) and a vortex cylinder (remaining vortices). Although the vortex model could be improved upon, the low computational time required for a successful run highlights the major advantage of this approach.

4.2 CCTR Vortex-Strip Theory

The collection of aforementioned theories have emphasised specific modelling advantages. In general, momentum approaches require a low computational time, whereas vortex theory enhances the blade loading predictive accuracy. The present theory uses a simplified method, combining vortex and momentum theory in an attempt to exploit the advantages of each.

Strip theory (15) (Appendix 2) yields an initial estimate of the induced downwash at a blade element vis:-

$$v_{im} = \left(\frac{V_c + \sigma_r a \Omega R}{2} \frac{(-1 + (1 + \frac{2(\theta r \Omega - V_c)}{\frac{4V_c + V_c + \sigma_r a \Omega R}{16}})^{1/2})}{\sigma_r a \Omega R} \right) \quad (4.1)$$

Traditionally, a tip loss factor is introduced to allow for the finite span of the blade and the associated formation of the tip

vortex. Such tip loss factors are often applied such that they confusingly truncate the blade radius so that in the tip region no lift is generated. More realistically, the 'tip loss' is caused by the lift impairment resulting from the tip vortex induced velocities over the complete blade. This loss is not simply a result of the interference between a blade and its own tip vortex, but the summation of the velocities induced by the helical tip vortex wake propagating from all blades in the rotor(s).

To incorporate a better estimation of the losses incurred by a finite rotor radius system while allowing for the lift contribution generated at the tip, strip theory has been combined with a vortex model. The latter represents the three-dimensional helical tip vortex wake by a series of straight line filaments, and using the Biot-Savart law to calculate the induced velocities at any specified point. The vortex filaments are either made to follow the empirical prescribed paths reported by Landgrebe (23), or alternatively, may be relaxed using the free-wake facility in program ROTOR (see Chapter 6). The vortex filament structure, degrees of azimuth step and number of wake revolutions, are all optional parameters input by the user of ROTOR. Furthermore, the time history of vortex core radius and associated velocity may be computed applying the assumptions and equations presented in Chapter 3.

Each helical vortex trail is attached to its respective blade at the tip, with the solid body rotational vortex core already formed as defined by equation 3.5 and 3.6. If the turbulent boundary layer vortex structure is required, a roll-up of 60 degrees is assumed before the logarithmic and defect rotational regions are fully formed. This assumption has been endorsed by other researchers findings (18).

For hover, by definition, the vertical climb velocity V_c , in equation (4.1), is exactly zero. However, the present theory suggests that each blade element perceives an additional induced velocity v_v , due to the tip vortex wake, which may be interpreted as a local climb velocity. That is, the induced velocity v_v , calculated at each elemental annular ring, replaces V_c , in equation (4.1), to

produce a modified elemental strip velocity. The resulting additional loss of useful angle of attack at each blade element reflects the losses associated with a finite radius rotor system, replacing the arbitrary tip loss factor.

Figure 21 is a schematic representation of the presented model. The downwash from a given rotor is bounded by its respective tip vortex wake. The initial flow conditions at the entrance to the upper rotor disc are given by the induced velocities from the upper and lower rotor tip vortex wakes, v_{vu} and v_{vlu} respectively; plus the strip contribution v_{im} from equation (4.1) where $V_c(r) = v_{vu} + v_{vlu}$. More precisely, the inflow of any radial station point r , is given by:-

$$v_{iu}(r) = v_{vu}(r) + v_{vlu}(r) + v_{imu}(r) \quad (4.2)$$

The inflow in the section of the lower rotor immersed in the downwash of the upper rotor may be approximated by:-

$$v_{il}(r') = v_{iu}(r) \left(\frac{R_u}{R_c} \right)^2 \quad (4.3)$$

$$0 \leq r' \leq R_c$$

(conservation of momentum)

where

$$r' = r \left(\frac{R_c}{R_u} \right) \quad (4.4)$$

Finally, the inflow in the outboard section of the lower rotor taking in clean air is given by:-

$$v_{il} = v_{vl} + v_{vul} + v_{iml} \quad (4.5)$$

$$R_c < r \leq R_1$$

Equation (4.3) however, does not take into account the effect of the further pressure jump across the inner section of the lower rotor. This pressure jump, resulting from the lift generated on the lower rotor blades, is more noticeable with increasing radius. Figure 27, indicates that the downwash magnitude is underpredicted for both the upper and lower rotors in this region using equation 4.1 - 4.4. Stepniewski (2) hypothesised that the lower rotor immersed in the upper rotor wake share a common rate of flow; and assuming that the final induced velocity reaches twice the value of the upper rotor disc in the fully developed wake where the static pressure tends to the ambient value, produced an expression for the CCTR induced flow.

However, Stepniewski's model does not take into account the vertical separation between the rotors, the tip vortex wake effects from both the upper and lower rotors and the influence of upper rotor wake contraction at the lower rotor disc plane R_c . Using Stepniewski's premise that the lower rotor immersed in the upper rotor wake share a common rate of flow, and considering the elemental thrusts generated on the upper and lower rotors simultaneously from momentum and blade element theories, including the above effects, it may be postulated:-

momentum:

$$dT_u(r) + dT_l(r) = 4\pi\rho r(\bar{v}_v(r) + v_{im}(r))v_{im}(r)dr \quad (4.6)$$

blade element:

$$dT_u(r) = b_u^{\frac{1}{2}} \rho \frac{\Omega_u^2 r^2}{\Omega_u r} a_u (\theta_u - \frac{v_v(r) + v_{im}(r)}{\Omega_u r}) c_u dr \quad (4.7)$$

$$dT_l(r') = b_l^{\frac{1}{2}} \rho \frac{\Omega_l^2 r'^2}{\Omega_l r'} a_l (\theta_l - \frac{v_v(r) + v_{im}(r)}{\Omega_l r'}) (\frac{R_u}{R_c})^2 c_l dr' \quad (4.8)$$

That is, the tip vortex induced velocity $v_v(r)$, is computed at each radial station r , from the tip vortex wakes of both the upper and lower rotors. For the momentum expression (4.6), the total tip vortex induced velocity is averaged around a specified annular ring of radius r , yielding $\bar{v}_v(r)$. with the inclusion of the upper rotor wake contraction, a radial station on the upper rotor r is associated with a radial station r' on the lower rotor (Equation 4.8).

$$\text{Now, } r' = r (\frac{R_c}{R_u}) \quad (4.9)$$

$$\text{and, } dr' = dr (\frac{R_c}{R_u}) \quad (4.10)$$

Substituting equation (4.9) and (4.10) into (4.8) and equating equations (4.7) and (4.8) to equation (4.6) yields:-

$$\begin{aligned}
 & b_u^{\frac{1}{2}} \rho \frac{\Omega_u^2 r^2 a_u (\theta_u - (v_v + v_{im}))}{\Omega_u r} c_u dr + b_1^{\frac{1}{2}} \rho \frac{\Omega_1^2 r^2 a_1 (\theta_1 (R_c/R_u)^3 - (v_v + v_i))}{\Omega_1 r} c_1 dr \\
 & = 4\pi \rho r (\bar{v}_v + v_{im}) v_{im} dr
 \end{aligned} \tag{4.11}$$

Expanding and rearranging (4.11) yields:-

$$\begin{aligned}
 & 4\pi v_{im}^2 + (4\pi \bar{v}_v + b_u^{\frac{1}{2}} \Omega_u a_u c_u + b_1^{\frac{1}{2}} \Omega_1 a_1 c_1) v_{im} \\
 & - b_u^{\frac{1}{2}} c_u \frac{\Omega_u^2 r a_u c_u (\theta_u - v_v)}{\Omega_u r} - b_1^{\frac{1}{2}} c_1 \frac{\Omega_1^2 r a_1 c_1 (\theta_1 (R_c/R_u)^3 - v_v)}{\Omega_1 r} = 0
 \end{aligned} \tag{4.12}$$

Where, solving the quadratic in v_{im} produces the solution:-

$$v_{im} = \frac{(v_v + b_u \frac{\Omega_u a_u c_u}{\Omega_u r} + b_1 \frac{\Omega_1 a_1 c_1}{\Omega_1 r}) (-1 + E_1)}{16\pi} \tag{4.13}$$

where,

$$E_1 = \frac{1 + \frac{2\Omega r(\theta_u - v_v / (\Omega_u r)) + \frac{2b_1 \Omega_1^2 a_1 c_1 r}{b_u a_u c_u \Omega_u} (\theta_1 (R_u / R_c)^3 - v_v / (\Omega_1 r))}{\frac{4\pi v^2}{b_u a_u c_u \Omega_u} + v_v (1 + \frac{b_1 a_1 c_1 \Omega_1}{b_u a_u c_u \Omega_u}) + \frac{b_u a_u c_u \Omega_u}{16\pi} (E_2)}}{b_u a_u c_u \Omega_u}$$

and,

$$E_2 = (1 + \frac{b_1 a_1 c_1 \Omega_1}{b_u a_u c_u \Omega_u})^2 + 2 \left(\frac{b_1 a_1 c_1 \Omega_1}{b_u a_u c_u \Omega_u} \right) \quad (4.14)$$

Note that when the vertical separation tends to zero for a conventional CCTR (i.e. $b_1 a_1 c_1 \Omega_1 = b_u a_u c_u \Omega_u$ and $R_c \rightarrow R_u$, $r \rightarrow r$), the above equation collapses, to the text book solution for the equivalent single rotor (equation 4.1) where $b_s = b_u + b_1$.

Equations (4.13) and (4.14) were used to generate the inflow curves (labelled as theory No 2) on Figure 27. As can be clearly seen, the further pressure jump across the outboard section of the lower rotor immersed in the upper rotor wake is now more adequately represented, reflecting the experimental data.

Knowing the total downwash, the inflow angle at any blade element is evaluated vis,

$$\phi = \frac{v_v + v_{im}}{\Omega r} \quad (4.15)$$

Overall rotor thrust and torque are computed by summing the individual differential thrusts and torques at each specified blade element using two-dimensional aerofoil characteristics (see Appendix

2).

4.3.1 Principal Features of Vortex-Strip Theory model

Hot wire recordings of the tip vortex signatures from the Mote rig indicated that the vortex was essentially Rankine in nature. Although some circulation could be seen outside of the vortex core it was not considered, in the first instance, significant. Consequently, initial evaluation of the Vortex-Strip model was undertaken using equations 3.5 and 3.6 to define the tip vortex strength.

Figure 22 depicts the downwash velocity component distribution for a single two bladed rotor. The modified strip induced velocity distribution v_{im} incorporates the effect of the apparent vertical climb velocity v_v . The slight depression at 90% blade radius results from the upwash effect of the previous blade trailing tip vortex. The total theoretical velocity distribution compares well with experimental data. The largest discrepancies in velocities beyond 70% blade radius results, firstly, from the differences in the predefined vortex position and strength, and secondly, in the limitations of the hot wire recorded data which are discussed later in this section.

Figure 23 compares the present theory with conventional strip theory for a two bladed untwisted rotor set at a collective pitch, of 10.5 degrees. Over the complete blade radius, the vortex-strip theory predicts a higher induced downwash with a corresponding reduction in blade angle of attack at any specified blade element. These losses, reflecting those associated with a finite aspect ratio rotor blade, although a maximum at the tip are nevertheless, spread over the complete blade radius.

For the CCTR, the mutual interference effects are accounted for by evaluating the increments in inflow at one disc resulting from the velocity field generated by the other disc. To start the computation in program ROTOR (details given in Chapter 6), the inflow at the upper rotor disc is calculated using equations (4.13)

and (4.14) including the induced effects of its own tip vortex wake. The inflow at the inboard section of the lower rotor disc immersed in the upper rotor wake reflects the distribution at the upper rotor disc corrected for wake contraction. The net effect of the tip vortex velocity field on the upper rotor on the inner portion of the lower rotor over one complete revolution is given by evaluating the averaged vortex induced velocity over the upper disc. (The averaging process, calculation procedure and further potential savings in computational time are discussed in Chapter 6). Figure 24 compares the averaged vortex induced velocities around the upper disc with the velocities induced at the blade. The latter distribution defines the initial apparent vertical ascent velocity v_v , used in equation (4.13), to determine the strip downwash distribution along the upper rotor. The total downwash from the upper rotor on the lower rotor is given in Figure 25. The outboard velocities on the lower rotor are computed from the average upper tip vortex induced velocities at the lower disc plane. With the lower rotor downwash distribution established from the upper rotor, the lower rotor tip vortex wake effects on both the outboard sections of the lower rotor and the complete disc of the upper rotor are computed. The latter constitutes the interference effects of the lower rotor on the upper rotor (Figure 26), and by simultaneously updating the inflow conditions at the upper rotor disc, modifies the subsequent downwash along the inboard sections of the lower rotor.

The final downwash distributions for the respective rotors are compared with experimental data in Figure 27. The experimental data was recorded using a single non-directional hot wire probe placed beneath each rotor and aligned along the blade chord at each blade pass. The absolute velocity magnitudes recorded at a plane .12R below the upper disc, and the associated wake contraction, was used to scale back the velocities into the plane of the disc. A similar procedure was adopted for the outboard sections of the lower disc, while the inboard distribution was evaluated from measuring the actual values .12R below the disc and correcting for any further wake contraction. The corresponding blade loading distributions are given in Figure 28. The lower rotor lift distribution is degraded on the inboard sections of the lower rotor with a slight negative

distribution to 36% blade radius. Thereafter, the loading remains below that of the upper rotor until approximately 80% blade radius whereupon the lift distribution exceeds that of the upper rotor loading. This results from the required increment in lower rotor pitch (~ 0.5 deg) to maintain yaw trim. Clearly, the combined vortex-strip theory yields a much more representative blade loading than strip theory alone.

The wake contraction used in the computation of the aforementioned figures was prescribed using updated Landgrebe wake coefficients. A study of the actual wake contraction indicated that a variation in tip vortex location occurred with time. Such variations for the single rotor are well known (18). Utilising the free-wake facility of program ROTOR, the initial prescribed wake was relaxed to allow for the influences of all the vortex helicities from both rotors. Figure 29 shows the final converged wake, indicating a severe upper rotor wake contraction with little change in the lower rotor vortex locations from the initial prescribed paths. It is evident from the figure that the free wake facility did not increase the overall predictive accuracy of the vortex paths. Furthermore, the computational time required to converge the wake, using the free-wake facility, was approximately two orders of magnitude greater than the prescribed computational time. Considering these facts the only modification retained in the program was an allowance for the increase in the axial translation of the upper rotor tip vortex wake as it traverses the lower rotor disc. This feature, depicted in Figure 30, although did not produce any significant differences for the Mote geometry, was incorporated to allow for the effects of reducing CCTR inter-rotor spacing (Chapter 7).

Introducing an allowance for the effects of vortex core expansion (reflecting the trend depicted in Figure 20) into the flow computations did not significantly change the overall rotor performance prediction. This results because even with the core expansion, the vortex blade interactions generally took place outside of the vortex core.

4.3 Application of Vortex-Strip Theory

Figure 31 shows the performance characteristics of the Mote CCTR run at a tip speed of 35m/s. For direct comparison with the performance curves generated in Chapter 7, CCTR optimisation, the data is presented as thrust per unit power versus thrust coefficient. Although the performance curves of both the CCTR and one of the rotors operating independantly are well predicted, the general trend is an over prediction of the thrust power ratio for a given thrust. A further comparison with a conventional four bladed CCTR with a tip speed of 119.4m/s (Fig 32) also highlights this trend when using equations 3.5 and 3.6 to define the tip vortex strengths. This, in part, may result from neglecting the circulation distribution outside of the vortex core in the vortex induced velocity calculations. This discrepancy however, diminishes with increasing thrust, and is a direct consequence of the vortex modelling equations where the normalised vortex core strength was found in Chapter 3, to be directly proportional to collective pitch setting.

A further comparison with predicted CCTR performance is given in Figure 33 for the Sikorsky's Advancing Blade Concept two, three bladed CCTR (52), operating at a tip speed of 198.3m/s, with both blade twist and taper. Both equations 3.5 - 3.6 and the fully rolled up tip vortex equations were used to predict the ABC performance; the latter equations converging on the peak blade bound circulation. The results shown in Figure 33 imply that a vortex strength greater than defined by equations 3.5 - 3.6, yet less than the peak bound circulation would best fit the test data. This conclusion reflects the full-scale vortex data reported by Cook (28) and, as will be seen latter, is endorsed by the forward flight findings in Chapter 5.

Recently Stepniewski (55) has shown that the hovering efficiencies of both the Russian CCTR's and Sikorsky's ABC CCTR are greater than a wide range of conventional single rotors. Utilising program ROTOR, the performance curves of the Mote CCTR was compared with an equivalent single rotor. The latter having the same number of blades, blade solidity, rotor radius, tip speed and aerofoil

section (same thrust potential) as the CCTR. Figure 34 presents the data which indicates that for a given thrust the CCTR absorbs approximately 5% less power than the equivalent single rotor. Included among Stepniewski's (55) full scale rotor data are the figures of merit of the Aerospatiale SA-365N, F_A , ($R_A = 7.5\text{m}$, $b = 4$) and the Kamov Ka -25, F_K , ($R_K = 7.87\text{m}$, $b = 6$) which are 0.572 and 0.674 respectively. Both helicopters have a gross weight of approximately 7360kg.

Now the figure of merit F , is given by:

$$F = \frac{\text{Ideal Power}}{\text{Actual Power}}$$

$$\text{where, Ideal Power} = T(T/(2\pi R_p))^{\frac{1}{2}}$$

Whence, for the same thrust generation, the actual power ratios between the Kamov Ka -25, P_K , and the Aerospatiale SA-365N, P_A , is given by:

$$P_K/P_A = (R_A F_A)/(R_K F_K)$$

$$\text{yielding } P_K = .87 P_A$$

Although such a deduction does not take into account the differing number of blades, the previous figure of merit ratios indicate that a 13% saving in power is achieved in hover by operating a CCTR with the same all-up-weight as the conventional single rotor. Also presented in reference (55) is the shaft horse power in hover per unit gross weight for a variety of helicopters. The lowest power to weight ratio is given for a Kamov CCTR helicopter as 0.096. This compares very favourably with a variety of conventional Western World single rotor helicopters with power to weight ratios ranging from 0.11 to 0.133.

Such increases in CCTR efficiency is seen to result from;

- 1) the contraction of the upper wake of a CCTR allows clear air with a slight upwash to be taken by the outboard sections of the lower rotor. Consequently, the effective disc area has increased with a corresponding reduction in induced power. This is seen most clearly when comparing the downwash distributions for the Mote CCTR and an equivalent single rotor (Figure 34). In the outboard sections ($r > 0.8$) of the rotor disc the momentum velocity contribution for the equivalent single rotor is in excess of both the upper and lower rotors of the CCTR.
- 2) the vertical spacing of the two rotors in the CCTR layout reduces the severity of the total vortex induced velocity, especially on the upper rotor.
- 3) the recapture of the upper rotor wake rotational losses on the lower rotor. Such losses have been calculated for a typical single rotor by Bramwell (1) and Gessow et al (15) indicating the loss to be less than 0.5% of the total rotor power. Consequently this feature is considered a secondary effect.

4.4 Conclusion

The conventional Glauert type strip analysis has been modified to incorporate the influence of the trailing helical tip vortices from all blades at any specified blade element. Furthermore, Stepniewski's (2) simple model of a CCTR has been greatly extended to incorporate the effects of the tip vortices shed from both rotors, including the influence of wake contraction. The theory has been applied to both model and full-scale rotors with different tip speeds, rotor radii, number of blades and blade aspect ratios, including blade twist and taper. Over representative CCTR thrust loadings, the vortex equations (3.5) and (3.6), used in program ROTOR, to determine the vortex strengths, produced a reasonable predictive accuracy. The remaining discrepancies, in part, are seen to result from neglecting the additional 'captured' circulation outside of the vortex core. Unfortunately, precise evaluation of

this circulation, at present, is not possible since it varies between rotors. Nevertheless, actual tip vortex strength would seem, in general, to be less than the peak circulation on the blade, endorsing Cooks results (28). However, the vortex core equations establish an effective strength which reflects the variations in rotor parameters, including blade aspect ratio and rotor tip Reynolds number. Equally important is the much more representative blade loading distribution predicted by the combined Vortex-Strip theory, especially in the blade tip region, updating the arbitrary application of the tip loss factor when using strip theory alone.

The developed theory also indicates that a CCTR in hover produces more thrust per unit power than an equivalent single rotor. This conclusion has been endorsed by other CCTR operators (10), and in comparisons between full-scale CCTR and single rotor helicopters (55). Such comparisons suggest a potential 5% saving (neglecting the tail rotor power of the conventional single rotor) when operating a CCTR with the same all-up-weight as the conventional single rotor.

5. COAXIAL CONTRAROTATING TWIN ROTOR AERODYNAMICS IN FORWARD FLIGHT

5.0 Introduction

The wake concepts, modelling techniques and associated limitations expounded in the previous chapter are also largely applicable to the forward flight analysis of a CCTR. An exception is the blade element-momentum strip theory which is limited to hover and vertical translation of the helicopter. For a forward flight condition Glauert approximated a rotor by a circular wing with an elliptic loading; yielding the well known constant induced velocity distribution \bar{v}_i .

$$\bar{v}_i = T(2\rho AV') \quad (5.1)$$

$$\text{where, } V' = \sqrt{V^2 + v_i^2} \quad (5.2)$$

In addition, to incorporate an allowance for the azimuthal variation of the induced downwash, Glauert postulated;

$$v_i = \bar{v}_i (1 + K\bar{r}\cos\psi) \quad (5.3)$$

where K is traditionally given by:-

$$K = -\tan(\mu/2\lambda) \quad (5.4)$$

or resulting from experience gained at the Royal Aircraft Establishment, the factor is often given by:

$$K = -\tan(\mu/\lambda) \quad (5.5)$$

The usefulness of equations (5.1) to (5.5) is reflected by their continued application in rotor analyses, offering as they do a reasonable description of the induced flow through the rotor with the added benefits of simplicity and low computational time. Nevertheless, the Glauert model often underpredicts the downwash distribution for a variety of forward flight modes with the largest discrepancies occurring at low advance ratios (52). During the ABC CCTR verification program the required control range required to maintain trim was grossly underpredicted by a Glauert type analysis. At a forward flight speed of 25 kts ($\mu = 0.067$), the ABC helicopter experienced a high nose up pitching moment which could not be countered by the pilot. The craft struck the ground with a 'heavy tail first landing' (56). Similarly Johnson (14) has identified substantial inaccuracies in momentum and classical wake modelling techniques. Applying such models to the analysis of an articulated rotor, it was found that the lateral b_1 flapping coefficient was constantly under estimated for advanced ratios of less than 0.15. By using a free wake facility, a more accurate representation of the close proximity of the tip vortex wake to the longitudinal plane of the rotor disc was achieved, resulting in a much better theoretical prediction of the b_1 flapping coefficient.

5.1 CCTR Forward Flight Model

As with the variety of hovering theories, the forward flight models have specific advantages for a certain range of flight conditions. Generally, it may be concluded that:-

- 1) The Glauert model has simplicity which is reflected in the low computational time. Nevertheless, blade loading prediction for low advance ratio flight is poor and partially results from the absence of modelling the finite number of blades in a rotor layout.
- 2) The classical wake approach where the vortex filament positions are assumed to be influenced only by the local free-stream conditions, neglecting vortex-vortex interactions, yields more accurate rotor performance predictions at higher advance ratios. Again, with low advance ratio flight, large discrepancies can occur resulting from the high degree of wake distortion, commonly found in experimental investigations (see Figures 47-50).
- 3) At low advance ratios, the vortex interactions substantially modify the tip vortex locations from the classical representation. Consequently the 'free-wake' model and associated lengthy computational time has been found essential for accurate temporal blade loading predictions.

Using similar principles as presented for the vortex-strip hover model, a forward flight hybrid model may be developed. The aim of such an approach is to allow for greater flexibility in application without diminishing the specific advantages of each modelling technique.

Referring to Figure 36, the slipstream of each of the two rotors is represented by a Glauert expression for the induced velocity, modified to account for the induced velocity effects of the tip vortex wake. That is, the effect of the tip vortex wake is

approximated by updating equation (5.2) to incorporate the vortex induced velocity through the centre of the disc, giving:-

$$v' = \sqrt{v^2 + (\bar{v}_i + \bar{v}_v)^2} \quad (5.6)$$

Substituting the expression for the resultant velocity v' at the centre of the disc into equation (5.2), and rearranging, yields a quartic in the mean induced flow through the rotor v_i of,

$$\bar{v}_i^4 + 2\bar{v}_v \bar{v}_i^3 + \bar{v}_i^2 (v^2 + \bar{v}_v^2) - (T^2 / (4\rho^2 A^2)) = 0 \quad (5.7)$$

For the classical wake option (wake limits defined by the free stream conditions only) in program ROTOR, a further allowance for the influence of the tip vortex wake on a specified blade element is established by evaluating the downwash at that element via:-

$$v_i = \bar{v}_i + v_v \quad (5.8)$$

Furthermore, if any portion of the lower rotor is immersed in the upper rotor wake, equation (5.8) is retained with the added term of $(2\bar{v}_i)$ to evaluate the flow in this region of the lower rotor. This assumes that the wake from the upper rotor is fully developed on intersection with the lower rotor plane.

Alternatively, the free-wake option not only updates the positions of vortex filaments, including vortex interactional

effects as the blades rotate around the disc, but assumes an induced velocity distribution given by equation (5.3), (5.5) and (5.7).

Equation (5.8) is correspondingly updated to give:

$$v_i = \bar{v}_i (1 + K\bar{r}\cos\psi) + v_v \quad (5.9)$$

As previously assumed, the portion of the lower rotor ~~immersed~~ in the upper rotor wake is effected by the fully developed velocities. This however, is computed on a local, level where v_i lower = f_n (v_i upper).

One limitation of the free-wake tip vortex model is the assumption that the vortex core departs the trailing edge of the blade at the tip ($\bar{r} = 1.0$). This assumption neglects the fact that the vortex core location is not only effected by the free-stream conditions but is substantially modified by the large pressure gradients existing at the tip. Indeed, Chigier et al (21) have reported that a vortex core moves inboard, and for the tests conducted, suggested the path taken by the forming vortex was a deflection inboard by the the order of 10 degrees to the tip. For comparative purposes, the free-wake model was used with and without assuming a 10 degrees deflection of the tip vortex from quarter chord to the blade's tailing edge. Figure 37 shows the predicted blade loading results in the lateral plane for an inflight H-34 rotor with an advance ratio of 0.03. Effectively the results show the influence of the vortex position on blade loading. With the blade pressure gradient term assuming a 10 degrees vortex core path deflection on the top surface of the blade, the resultant blade loading at the tip reaches a higher value. This reflects the experimentally determined blade loadings; but as will be established in the next section, it is also equally sensitive to the final rolled-up tip vortex strength.

Throughout the computational procedures, the assumption of rigid blade flapping has been imposed. The corresponding flapping coefficients have been approximated (where actual experimental data was not available) by the following expressions allowing for the effective hinge offset and varying inflow distribution across the rotor (1):-

$$a_0 = \frac{\gamma}{8(1+\epsilon)} (\theta_0^2 (1+\mu^2) + 4\lambda/3) \quad (5.10)$$

$$a_1 = \frac{2\mu((4\theta_0^2/3)+\lambda)}{1-\mu^2/2} + \left(\frac{8}{\gamma} \frac{\epsilon b}{1+\mu^2/2} \right) \quad (5.11)$$

$$b_1 = \frac{(4\mu a_0^2/3)+K\lambda_i}{1+\mu^2/2} - \left(\frac{8}{\gamma} \frac{\epsilon a_i}{1+\mu^2/2} \right) \quad (5.12)$$

$$\text{where, } \lambda_i = v_i / \Omega R \quad (5.13)$$

and $\epsilon=1.5e$, for a uniform blade mass distribution neglecting the effect of root cutout. The effective hinge offset ϵ , is normalised by the blade radius. Only the first harmonics are considered since higher harmonics are of the order of further elastic blade deflections which have been ignored. Furthermore, it has been noted (1) that the second flapping harmonics are generally an order of magnitude less than the first harmonics and, therefore, only have importance in vibration or control load computations.

The corresponding flapping angle β , at any azimuthal position is given by:

$$\beta = a_0 - a_1 \cos\psi - b_1 \sin\psi \quad (5.14)$$

The computational approach and the full equations used in the forward flight code are presented in Chapter 6 and Appendix 2 respectively.

5.2 Application of the Vortex-Glaert Model

One of the most testing flight regimes for any forward flight rotor wake model is the low advance ratio case ($\mu < 0.15$). In this transition zone between hover and well established forward flight, the trailing wake deformation has a substantial influence on the induced velocity and blade loading distributions.

To ascertain the potential of the present model, the Vortex-Glaert approach was used to predict the blade loading distribution of an H-34 rotor in flight with an advance ratio of 0.03. The predicted results are compared with both experimentally measured inflight data (57), and the results from a full vortex lattice free-wake code (58). Four blade positions of 0, 90, 180 and 270 degrees of azimuth were examined. The input to the present model included the measured pitch distribution, and the flapping coefficients up to the first harmonic.

As can be seen from Figures 38-41, the full-vortex lattice method generally over predicted the blade loading distribution on the inner portion of the blade; while for the 90, 180 and 270 degrees of azimuth cases did not forecast the substantial peak loading toward the blade tip.

The H-34 rotor, with aspect ratio rotor blades of 20.5, falls

into the category of the rotor blade investigated by Cook (28). As presented in Chapter 3, one of the major difficulties in using the vortex turbulent boundary layer analogy equations is that the final rolled-up tip vortex strength may be a fraction of the peak bound circulation. Indeed, Figures 16 to 18 depict Cook's full-scale vortex data where, in general, it was found that the vortex strength was found to be less than half the expected value.

Using this research work for guidance, two finalised vortex strength values were investigated. The first value used in the Vortex-Glaert approach represented the generalised Carradonna et al (34) vortex model which yielded a final vortex strength K_o , equal to 3.1 times the vortex core strength K_c . A second estimation of the final strength of the vortex was obtained by using an expression developed by Cook (59), to predict the local mean value of blade circulation given by:-

$$K_o = \frac{T}{\rho NR\Omega((1/2)-(3/16)\mu^2)(1-(3/2)\mu\sin\psi)} \quad (5.15)$$

For the H-34 rotor the mean vortex strength evaluated using Cook's expression was nearly twice the value set by Carradonna's approximation. The roll-up of each vortex was assumed complete after 60 degrees of azimuth (before next blade passage) whereupon the full value was set to the trailing vortex filament. The free-wake facility was used in program ROTOR to evaluate the tip vortex locations around the disc.

Figures 38-41 indicate that the predicted blade loading distribution more accurately reflects the experimentally measured results. Furthermore, with the fully rolled up vortex strength set equal to the local blade mean circulation value, the peak loadings at the blade tips were more accurately defined. However, the blade

loading is sensitive to both vortex position and strength; the former being directly coupled to the latter in the free-wake model. This coupling effect is most readily highlighted in Figure 40 for the blade loading distribution at a blade azimuth position of 180 degrees. With the final vortex strength set to the blade mean circulation, the free-wake model indicates a second vortex blade interaction at $\bar{r} = 0.75$. (blue curve).

Overall, the agreement between the Vortex-Glauert model and the experimentally measured data is quite reasonable, especially in the tip region where the mean blade circulation value was taken as the strength of the fully rolled-up tip vortex. This circulation value, based on a mean rotor thrust estimation, correlates well with Cook's (28) research data. Indeed, the finalised vortex strength values were found to be just less than half the peak circulation on the blade.

In contrast to the vortex-lattice model predictions, the inboard blade loading distribution was underpredicted using the present model. This feature is thought, in part, to be affected by the simplification of the Glauert momentum inflow distribution, assuming a substantial mean value at the centre of the disc. Indeed, the constant Glauert induced velocity distribution in the 90 - 270 degrees plane, shown on Figures 43 and 45, suggests an equal circulation weighting along the blade radius. This supposition may lead to measurable discrepancies, especially near the blade root. Figures 42 and 44 show a similar breakdown of the inflow distributions for the 0 and 180 degrees azimuth positions. Again, Figure 40, clearly identifies two vortex 'strikes' occurring at the front of the disc. Figure 46 details the tip vortex paths computed using the free-wake facility in the longitudinal plane of the H-34 rotor (i.e. the 0-180 degrees of azimuth plane where Z/R is the normalised axial displacement of the tip vortices on Figure 46). The vortices generated at the front of the disc initially move upward and inboard before descending through the blade plane (vortex coordinates at the front of the disc were determined relative to blade axes located at 180 degrees of azimuth). This feature is reflected in the smoke visualization photograph (Figure 48) for the

lower rotor of a CCTR operating at a low advance ratio. In contrast, the tip vortices of the trailing edge of the disc are convected away at a much faster rate. Landgrebe et al (60) has shown similar trends for the tip vortex wake generated by a single rotor operating at low advance ratios.

However, the major limitation of this 'free-wake' option is highlighted by the subsequent locations of the tip vortices after they pass through the front portion of the disc. The combined effects of assuming a limited number of wake revolutions, neglecting the blade bound vorticity in the computation of the tip vortex locations, and the relative flow magnitudes at the front of the disc operating at a low advance ratio, create the conditions whereby the vortex-vortex interactions produce a macro wake roll-up. That is, the formation of a larger vortex composed of a number of tip vortices. The second vortex strike prediction is a result of this feature.

Although there is much less detailed blade loading data for CCTR's, the heavy tail first landing incident of the ABC helicopter provoked a revision of the methods used in forecasting the inflow through the two rotors. The revised inflow distributions based on experimental measurements for a forward flight velocity of 25 knots ($\mu = 0.067$) are given in reference (56). Converging on the ABC helicopters gross weight of 9000lb by varying the blade collective pitch, the inflow variation in the longitudinal plane was evaluated. Figure 51 compares the revised inflow values of reference (56) with the generated values from program ROTOR, using the free-wake facility. It is interesting to note the build-up of inflow over the rear section of the lower rotor.

Figures 52 and 53 show comparisons between theory and experimental forward flight Mote CCTR data for a constant thrust coefficient of 0.006 and advance ratio of 0.174 respectively. In both cases, the classical wake option was found adequate for estimating the overall performance of the Mote CCTR.

5.3 Discussion

Applying the Vortex-Glaert model to predict the blade loading distribution of an H-34 rotor in flight with an advanced ratio of 0.03, produced some very interesting results. As detailed in the previous section, a variety of tip vortex strengths were used when computing the total inflow through the rotor. Of these the tip vortex strengths set equal to the localised mean blade circulation gave the most accurate blade loading prediction, especially, near the tip region. Indeed, this mean value reflects the full scale rotor data (Figure 16) collected by Cook (28). Both rotors have a blade aspect ratio of 20.5.

Nevertheless, inboard blade loadings at this low advance ratio, in general, were under predicted, suggesting that the computed inflow was excessive. Perhaps, the most plausible reason for this is the "global" momentum representation of the Glaert model. The comparatively large inflow through the central regions of the disc, implicit in the Glaert model, may be more accurately modelled by a local momentum theory, as proposed by Azuma et al (47). In fact, the incorporation of the local momentum theory into a tip vortex - momentum approach would be a straightforward extension of the proposed model. Alternatively, explanations seem common to most other wake modelling methods. That is, a different blade loading prediction results when the initial computer input is either the rotor thrust or blade pitch. In the latter case, for high aspect ratio rotor blades, the final blade thrust is generally underpredicted. This feature, is often explained by the omission of the blade elastic deflections. Although such a discrepancy can be the order of a degree in pitch between experiment and theory to obtain equivalent blade loadings, Kawachi (61) has shown that the blade aspect ratio has a substantial effect on this trend. For a hovering rotor with a blade aspect ratio of 6.54, equivalent theoretical/experimental blade loadings were achieved when Kawachi's program converged on a blade pitch over one degree less than the actual value. Converging on the experimental pitch value gave an excessive blade loading distribution, especially at the blade tip. Interestingly, the vortex core model expounded in Chapter 3 would reflect the overall trend, indicating an increasing degradation of

rotor thrust per degree of blade pitch as the blade aspect ratio is decreased, independant of blade elastic deflections.

Resulting from a conversation with Kawachi, it was indicated that 'good' values of the lift curve slope were 5.73 and 6.28 for momentum and vortex approaches respectively. Infact, Kawachi in reference (61) uses a lift curve slope value of 6.05 as a good universal representative value. Obviously this approach is questionable and may well reflect the uncertainty of many of the currently used models.

The free-wake solution of the tip vortex locations suggested two blade vortex interactions at the front of the disc. The experimental blade loading (Figure 38) does not indicate a second vortex strike. This disparity is seen to result from neglecting the blade bound vorticity (especially the next blade pass) in the present model.

In contrast, the vortex lattice method, in general, overpredicted the inboard blade loading distribution and failed to reflect the substantial peak loading at the tip. The former limitation may be improved by comparing the downwash at a specified blade element with that required to conserve momentum for a given elemental thrust. It is proposed that if a mismatch occurs then the inflow value should be updated accordingly. Peak loading predictions at the blade tip may be enhanced by including a more accurate description of the substantial tip vortex core which is formed on the blade surface.

Using the results from the H-34 rotor as guidance for future rotor blade loading predictions, program ROTOR was initiated to generate the inflow values through the upper and lower rotor of the ABC CCTR. Setting the tip vortex strengths to the local mean blade circulation value, the inflow distributions for an advanced ratio of 0.067 were computed. Figure 51 shows that a reasonable inflow prediction in both magnitude and trend, especially in the aft region of the lower rotor. Further comparisons using the classical wake option with performance figures generated from the Mote experimental

programme show reasonable agreement throughout a range of advance ratios (Figure 52) and blade collective pitch settings (Figure 53).

The previous computations have used, in general, finalised tip vortex strengths much less than the peak blade bound circulation values. This, however, does not necessarily violate the conservation of circulation principle. Indeed, it is proposed that if a concentrated tip vortex core has a comparatively "short life" with an expanding core, then the much weaker inboard shed vorticity may be dissipated at an even greater rate. That is, the circulation is still conserved, yet, because of the expansion process it occupies such a large volume that the related velocity field rapidly diminishes.

5.4 Conclusion

The Vortex-Glauert model presented here has given reasonable agreement with experimental data from both single rotor and CCTR systems. Furthermore, it shows considerable promise for low advance ratio modelling. The general underprediction of blade loading distributions when converging on the experimental blade collective pitch reflects current findings from a wide variety of modelling approaches (61). This is often remedied by increasing the blade collective pitch during the computation (allowing for blade elastic deflections) or selecting a larger lift curve slope value.

Alternatively, it has been proposed that a more accurate representation of the rotor may be achieved by coupling the tip-vortex momentum approach with a local momentum theory. Updating the approach in this way does not limit the flexibility of the model in that either classical or free-wake routines could still be used.

Further investigations are required to ascertain the fully rolled up tip vortex strengths generated from a variety of different rotor blades. The present model sets this strength to a mean bound circulation value which reflected the full scale rotor data reported by Cook (28). Equally, as indicated in Chapter 3, the tip vortex, core strength is substantially effected by the blade aspect ratio

which other wake models do not adequately account for (61).

6. PROGRAM ROTOR

6.0 Introduction

The main objective in developing program ROTOR was to produce a computer package written for the general case, with high flexibility and the option to run interactively. Furthermore, structured in a module format, the code may be easily updated, allowing it to be used as a continuing research tool. After compilation, the program is initiated by a well defined input procedure (see Appendix 3). During this stage, a number of questions are first posed to the user, to determine whether a hover or forward flight computation is required. Further input includes blade radius, blade pitch (including twist distribution), blade chord (including taper distribution), rotor RPM, the number of rotor wake revolutions, the degrees of azimuth spacing between integration procedures and if an allowance for tip vortex roll-up required.

Both single rotors (read as upper rotor) and CCTR's may be analysed with up to a total of twenty blades. Other blade variables including twist, taper and hinge offset are easily handled by the code. It must be emphasised, however, that the flapping equations given in Chapter 5 could be improved upon to incorporate a more accurate description of blade twist and taper effects. Additional features include the option for differing rotor radii, number of blades and vertical spacing between the two rotors in the CCTR layout. A full input procedure for an arbitrary rotor plus a full program listing containing extended Fortran IV code is detailed in Appendix 3.

6.1 The Hover Facility

The flow chart in Figure 55 depicts the salient features of the Hover Code. After setting the input parameters, subroutine STRIP is called to compute an initial estimate of the rotor thrust coefficient. Initially, conventional strip theory is used with a tip loss factor to estimate the rotor thrust. Thereafter, LANDG is

initialised to define the Landgrebe empirical prescribed tip vortex paths. The helical vortex wake is stepped out to the number of requested wake revolutions, using the straight line vortex filament approximation. The accuracy of the approximation is dependant upon the degrees of azimuth spacing parameter defined in the input procedure. The vortex filament cartesian coordinates are computed for all blades in the rotor(s) by subroutine BLVOCO. With the vortex filament locations known and the vortex core parameters V_s , and r_c , established, subroutine CAL is called to evaluate the apparent vertical accent velocity distribution v_v . Recalling STRIP yields a modified momentum downwash contribution effected by the tip vortex wake. After summing the total downwash at each blade station, subroutine PERM is initialised to evaluate the overall thrust, torque, location and magnitude of the peak circulation. The fourteen blade stations are distributed such that the first nine are separated by 0.1R to 90 percent blade radius with the remaining five stations equally spaced over the last 10 percent of blade. Lift and torque are summed using mean two-dimensional aerofoil characteristics as presented in Appendix 2.

The aforementioned procedures are repeated until the rotor thrust-vortex location inter-relationship has converged. At this stage, if the single rotor performance calculation was requested, the program would output a variety of data depending upon the number of WRITE statements 'released' in the current program. Throughout the program a variety of WRITE statements are included such that maximum access to the computed data may be achieved. However, to suppress the output listing the majority of WRITE statements have a 'C' in column one of their line. With this arrangement, the computer ignores the WRITE statement, but before compilation, may be activated by simply removing the 'C' character during an edit of the program.

For a CCTR computation the program continues to evaluate the performance of the lower rotor in a similar manner to that explained for the upper rotor. Initially, the performance calculation is performed allowing for the upper rotor wake interaction and altering the pitch on the lower rotor until the torques on both rotors are

within .01 of each other. Thereafter a full computation is initiated which allows for the elongation of the upper rotor wake under the influence of the lower rotor (using subroutine ZUPDATE), and the lower rotor tip vortex wake effect on the upper rotor inflow distribution. At this stage, the extended Stepniewski equations are utilised in subroutine STRIP 2, to complete the calculation of the lower rotor influence on the upper rotor.

Re-calculation of the upper and lower rotor performances follows until, the upper and lower rotor thrust-vortex locations are fully converged. The final data output represents the complete interference effects between upper and lower rotor.

6.2 The Forward Flight Facility

The pertinent features of the forward flight code are represented by the flow chart in Figure 56. After initialising the input parameters and selecting the type of wake required the program commences by calling subroutine GLAERT, to estimate an initial value for the mean induced flow through the rotors. Directly proceeding this calculation, the advance ratio, inflow ratio and blade flapping coefficients up to the first harmonic are determined. Knowing the wake step in degrees of azimuth (input parameter), the flapping angle and the flapping rate are evaluated at each future blade azimuth position.

The wake computations immediately follow. The rotors are started from the rest with each blade moving through two wake stations, trailing their corresponding tip vortex filaments (two per blade). For the CCTR configuration, the upper and lower rotors rotate anticlockwise and clockwise respectively. Although started from rest, the rotors assume the correct tip speed immediately with the locations of the initial two vortex filaments per blade being determined solely by the local freestream conditions. Thereafter, subroutine RANKINE is called to establish the vortex filament strengths which vary around the disc. If the free-wake option has been selected, subroutine IND is called to evaluate the induced velocities from all other vortex wake filaments on the end points of

any specified wake filament. Repeated calculations are performed until all the interactions have been computed. The subsequent update of filament end points is managed in subroutine POSTN.

The velocities in the x, y, z directions of the coordinate system, shown in Figure 57, of the filament end points are assumed constant over a time equivalent to one blade step. For the classical wake option, these velocities are set to the local freestream conditions.

The aforementioned procedures are continued until the predefined number of wake revolutions are completed. Wake convergence may be checked in the interactive mode by comparing the filament locations between completed rotor revolutions. This check may be continued until the user is satisfied that sufficient repeatability has occurred, usually after two further wake revolutions.

Thus far, the preceding calculations have been with respect to the no-feathering axes with the origin located at the centre of the upper rotor disc. Figure 56 shows the direction of the axes system. Following computations, however, are simplified by a transfer of axes to a set rotating with and in a specified blade, denoted by a suffix 'b' in Figure 56. Thereafter, RANKINE, IND, GLAUERT and INCEPT are called to evaluate the tip vortex strengths, the vortex induced velocity distribution along a specified blade and the modified Glauert velocity through the rotors. Tangential and perpendicular velocities to a given blade are then summed, and using subroutine PERM, the elemental and overall blade thrust, torque and H-force contributions are determined. The procedures are repeated for each blade in the rotor layout. Complete rotor thrust, torque and H-force are then output with the blades 'frozen' at their specified locations. Subsequent runs may be initialised to trim out any rotor imbalance.

6.3 Conclusions

The development, running and debugging of program ROTOR formed

a substantial part of the research programme. Partly for this reason, the program was structured in a module format to allow future users the option of updating certain features when more information becomes available. Equally, other approaches could be integrated with various routines with ROTOR, avoiding unnecessary duplication of work.

The version of program ROTOR presented in Appendix 3 is configured for use in the interactive mode. However, when using the free-wake facility during a time sharing session, the run time can be prohibative. Consequently, it is recommended that when using the free wake facility, program ROTOR should be configured to run in batch, avoiding this difficulty.

7. PRELIMINARY OPTIMISATION STUDY OF A CCTR IN HOVER

7.0 Introduction

As a result of the spiralling costs of energy and the highly competitive commercial market, the need for more efficient rotor systems is becoming increasingly important. Although gains in rotor thrust of a few percent for a given power may at first seem trivial, the corresponding payload increment is amplified. For example, a gain in payload of 20% may result if a thrust increment of only 5% is attained for a given power. Such gains are becoming feasible with the aid of computers in advanced blade design; and the application of composites during manufacturing processes which allow greater flexibility in blade structure with varying planform, twist and aerofoil distributions.

The outcome of any optimisation study is heavily constrained by the 'specification', defining the requirements of the helicopter. Generally, a number of tradeoffs emerge between hover, fast forward flight, autorotating characteristics and avoidance of blade stall on the retreating blade and during maneuvers. Although complete helicopter studies have been undertaken, notably by Stepniewski (55), considerable effort has been concentrated on main rotor design.

For a single rotor Bingham (62) found that the initiation of blade taper and taper ratio had a significant influence on the efficiency of rotor in both hover and forward flight. For the hover case, Bingham concludes that the favourable influences of taper result from, 1) the increased inboard loading of the rotor which reduces the induced torque and, 2) the reduction of chord in the outboard regions decreased the profile torque. Although similar gains could be achieved by twisting the blade (washout) in hover, it was established that blade taper had the more beneficial effect in forward flight. Again, the main reason proposed was the reduction in blade profile drag as proportionately more blade area is moved

inboard. However, it should be noted that the influence of taper and taper ratio decreases as blade solidity increases.

Another interesting optimisation programme was undertaken (63) to study the problems of blade wake interactions and designing a rotor which capitalised on the findings. The outcome was the Variable Geometry Rotor (VGR). The VGR system consisted of two rotors turning in the same direction (corotating rotors). By varying the vertical spacing, blade radii, collective pitch and phasing between the two rotors, the performance characteristics of a wide variety of combinations were obtained. Indeed, the full programme included analytical studies and experimental investigations on model and full-scale rotors.

The key parameter in effecting a desirable change in rotor efficiency was the vertical rotor spacing. For an vertical rotor spacing of two chord lengths, the hover performance was increased by 12%. At an advance ratio of 0.2, 5.06% less torque for a given thrust was required with a rotor vertical spacing of one chord length. Increasing the spacing had a negligible effect. Further testing at an advance ratio of 0.3 with a rotor axial spacing of one chord length indicated that 3.4% less torque at the same lift as the regular rotor was required. The reason attributed to this result was the lower induced flow through the upper rotor, especially in the inboard regions. Both differential collective pitch and radii reduced the forward flight performance for the one chord vertical rotor spacing.

With regard to the CCTR layout very little emphasis has been placed on optimising the rotors. An exception is the preliminary work reported by Nagashima and Makanishi (32) on the optimisation of a hovering CCTR and the associated wake geometry. They conclude that for a given vertical rotor spacing, differential collective pitch may be applied, obtaining the optimal thrust sharing ratio. This thrust sharing ratio was found to be almost equivalent to the contraction ratio of the upper rotor wake at the plane of the lower rotor. However, such an optimum thrust sharing ratio would, in general, be achieved at the expence of generating a torque imbalance

between the two rotors and therefore of little practical value.

Jones (64), however, in a preliminary study comparing the ABC CCTR with a conventional single rotor, for a given mission, indicated that the ABC CCTR could operate with a smaller rotor radius and possibly fuel load.

7.1 Single Rotor Hovering Performance

Useful insights into the effects of number of blades, blade aspect ratio and blade solidity on the hovering performance of a single rotor were gathered by running program ROTOR. The generated information is presented in Figures 57-61. The only constraints imposed on the data acquisition were:-

Rotor radius = .76m (Mote dimension)
 Tip speed = 35m/s

The measure of rotor efficiency used throughout the program has been defined as the thrust generated per unit power.

Figure 57 indicates that for the same mean lift coefficient ($6C_L/\sigma$), the highest efficiencies are obtained by keeping the number of blades to a minimum. This is not surprising since adding blades into a rotor system increases the disc loading which increases the induced power. Equally, increasing the blade aspect ratio while keeping the number of blades constant (Figure 58) reduces the rotor disc loading for a given mean lift coefficient.

At all stages in interpreting the efficiency of a rotor system, great caution is necessary. For example, it is unimportant to an operator that a two bladed rotor is more efficient per unit lift coefficient than a four bladed rotor (double solidity), if the former was unable to lift a specified all-up-weight.

A second set of curves shows efficiency with respect to constant blade solidity (Figure 59) and thrust coefficient (Figure 60). Figure 60 highlights the variation of the number of blades

combined with varying aspect ratio, to maintain a constant blade solidity of 0.08. The graph indicates that a more efficient rotor may be obtained for a given thrust if a large number of high aspect ratio blades are used as opposed to a small number of low aspect ratio blades.

Completing the overall view of the parametric trends, Figures 57 and 58 have been replotted against thrust coefficient (Figures 60-61). At low thrust coefficients, the most efficient rotor system has the minimum number of rotor blades (lowest solidity). This results directly from minimising the profile drag which forms a substantial part of the total power absorbed at low thrust settings. Increasing the thrust reduces the initial efficiency gain of a low solidity rotor. That is, the blades in a low solidity rotor have to operate at a greater collective pitch, increasing the induced power of the rotor. Although a similar trend is seen with varying blade aspect ratio (Figure 58), the potential gain is greater even for high thrust loadings. In essence, this reflects the beneficial effects that aspect ratio has on the resultant induced rotor power.

7.2 CCTR Hovering Performance

For direct comparison, Figure 62-65 are plotted with an abscissa based on a regular Mote rotor thrust coefficient C_{TM} defined as;

$$C_{TM} = T / (\rho V_M^2 \pi R_m^2)$$

where,

$$V_M = 35 \text{ m/s}$$

$$R_m = 0.76 \text{ m (maximum permissible radius)}$$

This parameter allows absolute comparisons between a variety of design options to be made. Figure 62 shows the effect of interrotor spacing on the thrust per unit power generated by a CCTR. The greatest efficiency is achieved when the two rotors are infinitely separated, inferring no mutual rotor interference. Effectively, the disc area has doubled. The lower efficiency limit is reached as the inter rotor spacing tends to zero (from practical reasoning, the

zero vertical rotor spacing curve on Figure 62 was computed assuming the same rotor rotational directions and therefore not technically a CCTR). Over a midrange spacing, allowing for adequate blade tip clearance, no gain is predicted from increasing the separation from 10% to 20% blade radius. This result reflects the findings of the VGR programme (63) where little further gain in performance was achieved after a rotor separation of two chord lengths.

Figures 63 and 64 show the effect of reducing the upper rotor radius, with the same RPM and tip speed between the upper and lower rotors, respectively. A definite benefit can be seen by reducing the upper rotor radius by a small amount (approximately an 8% reduction with respect to the lower rotor). However, a further reduction in the upper rotor radius produces a degrading effect with a thrust coefficient exceeding 0.005. This trend results from a tradeoff between reducing the upper rotor radius and, therefore, increasing the upper rotor induced power, with the enhanced performance of a larger portion of the lower rotor taking in clean air.

To verify the encouraging findings on rotor blade aspect ratio, a second set of blades, with an aspect ratio of 19.0, were constructed and fitted to the Mote rig. Figure 65 shows the hovering performance of this CCTR ($b=4$, $R=0.76$) compared with the standard Mote blades with an aspect ratio of 14.1. (The performance data was averaged from five separate tests). At a thrust coefficient of 0.007, a increase in hovering efficiency of 4.0% can be seen. Replotting the data presented in Reference (51), for two CCTRs with equal blade radii of 3.8 metres, but differing blade aspect ratios of 8.33 and 11.65, shows the same trend.

7.3 Conclusion and Recommendations

This limited study of a hovering CCTR has shown three areas where potential gains in hovering efficiency may be obtained. Firstly, the vertical rotor spacing has a beneficial effect on the CCTR performance. Interestingly, this gain is quickly attained by small vertical rotor spacing (< 10% rotor radius). Consequently, the rotor spacing necessary to avoid the possibility of a mutual blade

strike will invariably be sufficient to exploit this feature. Secondly, there is a tradeoff between reducing the upper rotor radius and, therefore, increasing the induced power, with the benefits resulting from a larger portion of the lower rotor taking in clean air. For the example given, an 8% reduction in upper rotor radius produced the most promising results. Thirdly, blade aspect ratio has a significant effect on the hovering efficiency of a CCTR (also applies to a single rotor). The trend of increased hovering efficiency with higher aspect ratio rotor blades has been endorsed by experimental data. This, in part, is considered to result from a reduction in the induced power, analogous to the reduction in induced drag found in fixed wing operations with increasing aspect ratio.

It is recommended that this preliminary study be continued, using program ROTOR. Besides investigating blade twist and taper distributions, root cut-out etc, unconventional CCTR layouts should be explored. That is, differing rotor radii, number of blades and RPMs should be investigated, not only with the view of increased performance, but perhaps with the aim of minimising the overall helicopter vibration levels. This, of course, will have to be investigated over the complete flight envelope of the CCTR, as undoubtedly trade offs will emerge.

8. CONCLUSIONS

8.0 Conclusions

At the inception of the research work, the appropriate literature was surveyed to obtain a suitable wake theory which would adequately model the flow through a Coaxial Contratrotating Twin Rotor (CCTR). Initially, the large variety of single rotor wake models were investigated. This investigation, although producing the various advantages of momentum and vortex approaches, indicated that a more indepth understanding of wake generated flows was essential. One fundamental area where a lack of information was reported (14, 43, 44) was the characteristics of the helicopter tip vortex, namely vortex strength, and structure. Bearing this fact in mind, the available CCTR models were examined to determine their suitability. In general, the CCTR models investigated as presented in Chapter 4, were greatly simplified and did not satisfactorily allow for the effect of one rotor on another. Equally, all the CCTR models contained the same single rotor wake assumptions.

It was therefore considered necessary in developing a suitable CCTR wake model that:-

- 1) The experience gained from single rotor modelling techniques, and the limitations thereof, would be used as guidance in the development of a CCTR model.
- 2) Fundamental weaknesses, namely the understanding of tip vortex characteristics would be improved upon.

Consequently, in developing a CCTR model, considerable effort was expanded on single rotor concepts and tip vortex experimental and theoretical considerations. The results of this work, in part, generated a frame-work in which a CCTR model was developed. However, the findings are also applicable to single rotor wake modelling which for completeness have been reported herein.

The tip vortex literature survey presented in Chapter 3, highlighted possible areas where traditional modelling techniques are limited. The results of the survey indicated that although a large amount of experimental data was available, very little cross-correlation had been done. To overcome this limitation, the vortex data was condensed and used to establish a better understanding of the tip vortex. Initially, only the vortex 'solid body' rotational core was studied in detail. As a result, two equations were developed defining the vortex core radius and associated tangential velocity (Equations 3.5 and 3.6). It was found that, for example, a high aspect ratio rotor blade generated a comparatively weaker tip vortex core than a lower aspect ratio rotor blade. Equally, the vortex core radius, as it departs from the trailing edge of the blade, was found to be the order of the turbulent boundary layer thickness. This result was in conflict with many typical suppositions used in a variety of wake models. For example, although the actual vortex core radius could be as small as 2% blade chord, typical analyses often use anything between 0.5% (31) to 2.5% (14,32) blade radius to define the vortex core radius.

Further research on the complete structure of a rolled-up tip vortex highlighted more ambiguities in the literature. Although to a good approximation, the complete vortex structure may be considered analogous to the structure of the turbulent boundary layer (33), the coefficients in the describing equations (see Equations 3.9 - 3.11) cannot be considered universal, as it is sometimes suggested (34). To ascertain a good description of the structure of a tip vortex from a variety of rotor blades, a theoretical model was developed. The theoretical procedures and solution are described in Section 3.4 and Appendix 1 respectively, and compared with experimental data in Figure 13 and 14 where excellent agreement was found. Unlike the turbulent boundary layer solution however, where the outer limit of the layer is defined where the velocity approaches 99% of the free stream value, the outer radius of a vortex may not always be defined where the vortex strength approaches 99% of the maximum bound circulation on the blade. This feature was reported by Cook (28), who found that the tip vortex strengths shed from a rotor blade with an aspect ratio of 20.5 was, in general, less than half the expected

value. Indeed, for the vortex data reported by Cook (i.e. from a high aspect ratio rotor blade), Equations 3.9 and 3.10 were found adequate to described the resultant vortex structure (i.e. ignoring the defect region) once the finalised vortex strength was known (see Figure 19).

Lastly, Section 3.5 of Chapter 3 has identified that the large strength (circulation) decay sometimes assumed in wake modelling, may be a gross misrepresentation of what actually happens. Rotor tip vortex 'decay' is, infact, often associated with a vortex core expansion. It was shown in section 3.5 that this can take place when either a vortex-vortex interaction occurs or when the vortex axial velocity diminishes. Consequently, the associated velocity field of a expanding vortex core is, for points contained in the core, diminishing. The core strength, however, may not have changed by a significant amount. An example of this type of decay is given in Figure 7.

The difficulty in developing a suitable CCTR hover model is determining the correct tradeoff between avoiding unnecessary complicated computation without loosing a full description of the interference effects between the two rotors. Furthermore, increasing the complication of a theoretical model does not necessarily guarantee better predictive accuracy (50).

Chapter 4 presents a survey of a wide variety of wake modelling techniques. In essence, momentum approaches offer simplicity in application with a low computational time, while vortex theories can be most readily applied to compute temporal variations in the flow, and become important when estimating the influence of one blade or rotor on another. To exploit the advantages of each, a method was developed which combined the vortex, momentum and blade element theories into one approach.

The well known strip theory (15), which uses blade element and momentum theories to yield an initial estimate of the induced downwash at the blade element is still widely used. Its major limitiations, however, are the arbitrary application of a tip loss

factor to enhance the rotor performance prediction, and the poor physical representation of the rotor blade airloads. The tip loss, in fact, results from a finite radius rotor system, which allows air to flow around the lower surface of the blade to the upper blade surface, creating a tip vortex. It is argued in section 4.2 of Chapter 4, that the 'tip loss' may be more accurately described by the lift impairment resulting from the total tip vortex wake(s) induced velocities over the complete blade. Now for hover, by definition, the vertical climb velocity in the strip equation (4.1), is exactly zero. However, the developed theory suggests that each blade element perceives an additional induced velocity due to the tip vortex wake, which may be interpreted as a local climb velocity. That is, the total tip vortex induced velocity calculated at each elemental annular ring, replaces the global vertical climb velocity in the strip equation (Equation 4.1), modifying the resultant strip induced velocity. The resultant additional loss of angle of attack at each blade element reflects the losses associated with a finite radius rotor system, replacing the arbitrary application of the tip loss factor. Based on this method, Stepniewski's (2) simple model of a CCTR was greatly extended to include the effects of the tip vortex wake and wake contraction.

The resultant CCTR hover model named Vortex-Strip theory, was applied to both model and full-scale rotors (see Chapter 4), with different tip speeds, rotor radii, number of blades and blade aspect ratios, including blade twist and taper. Overall, the full interference effects between the two rotors was found to be well predicted and produced a much more representative blade loading prediction, especially in the tip region (see Figure 27 and 28). Equally, single rotor blade loading and performance prediction, using Vortex-Strip theory, was also very encouraging.

This approach, combined with the aforementioned vortex equations, implies the tip loss, for example, is strongly related to the blade aspect ratio. Interestingly, even the most current analyses (61) encounter substantial difficulties in predicting the performance and blade loading distributions of different aspect ratio single rotor systems. Kawachi (61), found that by entering the

actual blade pitch into a variety of rotor wake computer programs, produced a gross over prediction of the blade loading for a rotor with a blade aspect ratio of 6.54. The presented Vortex-Strip theory however, using equations (3.5) and (3.6), suggest that for such a low aspect ratio rotor blade, the tip vortex core strength would be high, tending to produce substantial rotor losses.

The Vortex-Strip theory was also used to compare the Mote CCTR with an equivalent single rotor. The latter being defined by collapsing the two rotor systems into one plane and spacing the blades equally around the disc. It was found that for a given thrust, the CCTR is approximately 5% more efficient than the equivalent single rotor and is considered to result from :-

- 1) The contraction of the upper wake of a CCTR allows clean air with a slight upwash to be taken by the outboard sections of the lower rotor. Consequently, the effective rotor disc area has increased with a corresponding reduction in the induced power.
- 2) The vertical CCTR rotor spacing effectively reduces the severity of the total vortex induced velocity, especially on the upper rotor.

Using similar principles to those developed for the hover theory, a forward flight hybrid model was developed, and is presented in Chapter 5. Combining Glauert's approximate forward flight equations with an allowance for the tip vortex wake (named the Vortex-Glauert approach), the resultant model was applied to both single rotor and CCTR systems. The model incorporated a facility to allow the tip vortices to either modify the wake limits (free-wake), or remain prescribed. The former was considered essential from the experience gained with single rotor modelling techniques (14), to adequately describe the flow pattern during low advanced ratio conditions. Since only very limited published data is available on CCTR aerodynamic characteristics in forward flight, the model was initially developed and tested on comprehensive full scale single H34 rotor data (57). The condition investigated was a low

advance ratio case of 0.03, with blade loading predictions at 0, 90, 180 and 270 degrees of azimuth. The most reasonable agreement ensued when the finalised tip vortex strengths, used in the fully rolled-up tip vortex equations were set to a local mean blade circulation, as suggested by the full-scale ABC hover findings, and results reported by Cook. Moreover, using this condition to predict the inflow distribution through the ABC rotor system, for an advance ratio of 0.067, produced very promising results. Figure 51 shows the high values of inflow which are generated over the rear portion of lower rotor of an ABC CCTR when operating at this low advance ratio.

Using the classical wake option in program ROTOR, the theoretical performance predictions were compared with experimental results for varying advance ratios with a constant thrust coefficient of 0.006, and varying rotor collective pitch with a constant advance ratio of 0.174 (Figure 52 and 53). The agreement in these ranges was found to be good through out.

During the verification and testing of the presented helicopter rotor wake models an extensive computational code was developed. Indeed, the construction, running and 'de-bugging' of the final program ROTOR formed a substantial portion of the research programme. The program refinements include a well defined input procedure with the option to run interactively, combined with a set of codes written for the general case. This feature allows an operator to investigate a wide range of rotor parameters including different rotor radii, number of blades, CCTR rotor spacing, with variations in blade twist, taper and hinge offset. Equally, the program has been constructed around a modular format, making future improvements and modification less time consuming. It is envisaged that the developed code will continue to be used as a research and development tool. The wide application of the program is reflected in the variation in runtimes, from a few seconds for a single rotor hovering condition, to many hundred of seconds for a fully converged solution of a free-wake CCTR computation.

The favourable finding of improved hovering performance of a CCTR when compared with a single rotor, prompted a preliminary

optimisation study of a hovering CCTR. The results of this study, presented in Chapter 7, indicate three factors which enhance the CCTR hovering performance, namely:-

- 1) Vertical CCTR rotor spacing. The practical optimal gain in hovering efficiency is quickly attained for a small vertical rotor spacing (<10% blade radius). Thereafter no further gain results.
- 2) A reduction in the upper rotor radius. There is a trade off between the increase in induced power of the upper rotor with a reduction in the upper rotor radius, and the enhanced performance of the lower rotor as proportionately more disc is exposed to clean air. For the example shown in Chapter 7, the most promising results were obtained for an 8% reduction in upper rotor radius.
- 3) Increasing the blade aspect ratio. Both theoretical and experimental findings indicate that an increase in hovering efficiency may be obtained with high aspect ratio rotor blades. For a thrust coefficient of 0.007, the standard Mote, with a blade aspect ratio of 14.1 was compared with the performance of a CCTR, with the same rotor radius of 0.76 metres, but with higher aspect ratio rotor blades of 19.0. At this thrust coefficient an increase in hovering efficiency of 4% was recorded by the higher aspect ratio CCTR.

Although condition 3) is equally applicable to the single rotor, and condition 1) is generally built into a CCTR to avoid any possibility of a blade tip strike between rotors, condition 2) represents a further modification to a CCTR, increasing its hovering efficiency over the equivalent single rotor. For example taking a thrust coefficient of 0.006, and combining conditions 1) and 2) above in a CCTR design, a potential gain in the CCTR hovering performance over a equivalent single rotor of 9% is predicted; and this is neglecting the further power absorbed by the tail rotor in the single rotor configuration.

8.1 Recommendations for Further Work

The developed forward flight and hovering theories, combined with the tip vortex modelling equations presented in Chapter 3, have shown considerable promise for both single rotor and CCTR configurations. The vortex analysis and modelling equations are based on a wide collection of experimental data. Not only do these equations help describe some of the difficulties encountered by other modelling techniques, but may be readily adapted, if necessary, for other applications in 'stand alone' vortex models. Further work is required however, to enhance the understanding of the finalised tip vortex strength and the conditions which effect it.

The increased hovering performance which may be achieved for a given rotor plan area demonstrates a significant advantage of the CCTR over the single rotor. As indicated in Chapter 7, further gains in efficiency are possible, and suggestions are made to investigate unconventional CCTR rotor layouts with different rotor radii, blades number, rotor RPM etc between rotors. This programme of work may be undertaken using program ROTOR without any further modification being necessary.

Equally, the full flight enveloped of a CCTR may be further explored with program ROTOR. For example, although the increased hub drag of the CCTR layout is often cited as a major drawback to its forward flight performance, this alone should not prevent active research in this area. Afterall, the Russians have successfully developed both milatary and civil CCTR variants which have continued to be a popular option. This fact, coupled with the encouraging findings reported herein, present an alternative rotor layout which has yet to be fully exploited by the Western World.

REFERENCES

1. A.R.S. Branwell. *Helicopter Dynamics*. Edward Arnold, London 1976.
2. W.Z. Stepniewski. *Basic Aerodynamics and Performance of the Helicopter*. AGARD-LS-63, 1973.
3. M.C. Cheney and A.J. Landgrebe. *Rotor Wakes-Key to Performance Prediction*. AGARD.
4. R. Stricker and W. Gradl. *Rotor Prediction with Different Downwash Models*. Forth European Rotorcraft and Powered Lift Aircraft Forum, Paper No 6, 1978.
5. M.L. Mil et al. *Helicopter Calculation and Design. Volume I, Aerodynamics* NASA TT-823, 1976.
6. V.E. Boskin, L.S. Vil'dgrube, Ye. S. Vozhdayev and G.I. Maykapar. *Theory of the Lifting Airscrew*.
7. D.W. Wragg. *Flight Before Flying*, Osprey Publishing Ltd, 1974.
8. R.K. Burgess. *Development of the ABC Rotor*, 27th Annual National V/Stol Forum of the American Helicopter Society, 1971.
9. J.J. Ventribo (Editor). *Sikorsky News*, Nov 1981.
10. D.S. Jenney. *ABC Aircraft Development Status*, Paper No 8, Sixth European Rotorcraft and Powered Lift Aircraft Forum, 1980.
11. V.P. Bailey. *The Advancing Blade Concept (ABC) Rotor Program*. SAE Specialist Meeting, Las Angeles, 1977.
12. J.A. Faulkner and I.A. Simons. *The Remotely Piloted Helicopter* Vertica Vol 1, 1977.

13. J.W.R. Taylor and K. Munson. Jane's All the Worlds Aircraft 1979-80.
14. W. Johnson. Comparison of Calculated and Measured Helicopter Rotor Lateral Flapping Angles. Jnl. of the American Helicopter Society. April 1978.
15. A. Gessow and G.C. Myers. Aerodynamics of the Helicopter. Frederick Ungar Publishing Co. New York, 1978.
16. P.O.A.L. Davies and M.R. Davis. ISVR Report No 155, University of Southampton. October 1966.
17. B.W. McCormick, J.L. Tangler and Harold E. Sherrieb. Structure of Trailing Vortices. Jnl of Aircraft Vol 5, No 3, 1968.
18. F.X. Carradonna and C. Tung. Experimental and Analytical Studies of a Model Helicopter Rotor in Hover. Vertica, Vol 5, No 2, 1981.
19. M.J. Andrew. Co-axial Rotor Aerodynamics in Hover Vertica, Vol 15, No 2, 1981.
20. R.F. Spivey. Blade Tip Aerodynamics - Profile and Platform Effects. 24th Annual National V/Stol Forum of the American Helicopter Society, 1968.
21. N.A. Chigier and V.R. Carsiglia. Tip Vortices - Velocity Distributions 27th Annual National V/Stol Forum of the American Helicopter Society, 1971.
22. V.R. Carsiglia, R.G. Schwind and N.A. Chigier. Rapid Scanning, Three-Dimensional Hot-Wire Anemometer Surveys of Wing-Tip Vortices. Jnl of Aircraft, Vol 10, No 12, 1973.
23. A.J. Landgrebe. The Wake Geometry of a Hovering Helicopter Rotor and its Influence on Rotor Performance 28th Annual National V/Stol Forum of the American Helicopter Society, 1972.

24. P.G. Wilby. The Aerodynamic Characteristics of some New RAE - Blade Sections and their Potential Influence on Rotor Performance. *Vertica*. Vol 14, No 2-4.
25. J.B. Rorke, R.C. Moffitt and J.F. Ward. Wind Tunnel Simulation of full Scale Vortices. 28th Annual National V/Stal Forum of the American Helicopter Society, 1972.
26. J.L. Tangler, R.M. Wohlfeld and S.J. Miley. An Experimental Investigation of Vortex Stability, Tip Shapes, Compressibility, and Noise for Hovering Model Rotors. NASA CR-2305, 1973.
27. N.A. Chigier and V.R. Corsiglia. Wind Tunnel Studies of Wind Wake Turbulence. *Jnl of Aircraft*, Vol 19, No 12, 1972.
28. C.V. Cook. The Structure of a Rotor Balde Tip Vortex AGARD CP-111, 1972.
29. J.D. Hoffman and H.R. Velkoff. Vortex Flow over Helicopter Rotor Tips. *Jnl of Aircraft*, Vol 18, No 9, 1971.
30. M.S. Francis and D.A. Kennedy. Formation of a Trailing Tip Vortex. *Jnl of Aircraft*. Vol 16, No3, 1979.
31. A.J. Landgrebe. An analytical Method for Predicting Rotor Wake Geometry. *Jnl of the American Helicopter Society*. Oct 1969.
32. T. Nagashima dn K. Nakanishi. Optimum Performance and Wake Geometry of Co-Axial Rotor in Hover. Seventh European Rotorcraft and Powered Lift Aircraft Forum. Paper No 41, 1981.
33. J.N. Nielsen and R.G. Schwind. Decay of a Cortex Pair Behind An Aircraft. Aircraft Wake Turbulence and its Detection. Plenum Press, 1971.
34. C. Tung, S.L. Pucci, F.X. Carradonna and H.A. Morse. The

Structure of Trailing Vortices Generated by Model Rotor Blades.
Seventh European Rotorcraft and Powered Lift Aircraft Forum.
Paper No 4, 1981.

35. D.S. Dasanjh, E.D. Gaspaek, and S. Eskinazi. Decay of a Viscous Trailing Vortex. The Aeronautical Quarterly, May 1962.
36. S.E. Widmell, D. Bliss and A. Zalay. Theoretical and Experimental Study of the Stability of a Vortex Pair. Aircraft Wake Turbulence and its Detection Plenum Press, 1971.
37. G.K. Batchelor. Axial Flow in Trailing Line Vortices. Jnl of Fluid Mechanics. Vol 20, Part 4, 1964.
38. Lord Rayleigh. On the Dynamics of Revolving Fluids Proceedings of the Royal Society. Ser. A, 93(1916).
39. S. Leibovia. Structure of Vortex Breakdown. Annual Review of Fluid Mechanics (In Libaray under Q).
40. A.H. Logan. Vortex Velocity Distributions at Large Downstream Distances. Jnl of Aircraft 1619, No 12, 1972.
41. C. Maresca, M. Nsi Mba and D. Favier. Prediction et Verification Experimentale du Champ des Vitesses d'un Rotor en Vol Stationnaire. Ref 9. AGARD-CPP-334, 1982.
42. P.B. MacCready, Jr. An Assessment of Dominant Mechanisms in Vortex-Wake Decay. Aircraft Wake Turbulence and its Detection. Plenum Press 1971.
43. I.C. Cheeseman. Development in Rotory Wing Aircraft Aerodynamics. Seventh European Rotorcraft and Powered Lift Aircraft Forum. Paper No 1, 1981.
44. R.H. Miller. A Simplified Approach to the Free Wake Analysis of a Hovering Rotor. Seventh European Rotorcraft and powered Lift Aircraft Forum. Paper No 1, 1981.

45. H. Glaauert. On the Vertical Ascent of a Helicopter. ARC R&M No 1132, 1927.
46. K.W. Mangler and H.B. Squire. The Induced Velocity Field of a Rotor ARC R&M No 2642, 1953.
47. A. Azuma and K. Kawachi. Local Momentum Theory and its Application to the Rotory Wing. Jnl of Aircraft Vol 16, No 1, 1979.
48. D.R. Clark. The Free Wake Analysis. 25th Annual National V/Stol Forum of the American Helicopter Society, 1969.
49. J.D. Kacurek and J.L. Tangler. A Prescribed Wake Lifting Surface Performance Analysis. 32nd Annual National V/Stol Forum of the American Helicopter Society, 1976.
50. S.G. Sadler. A Method for Predicting Helicopter Wake Geometry, Wake Induced Flow and Wake Effects on Blade Airloads. 27th Annual National V.Stol Forum of the American Helicopter Society, 1971.
51. R.D. Harrington. Full Scale Tunnel Investigation of the Static Thrust Performance of a Coaxial Rotor. NACA Tn 2318, 1951.
52. A.J. Rudell. Advancing Blade Concept (ABC) Development 32nd Annual National V/Stol Forum of the American Helicopter Society, 1976.
53. I.C. Cheeseman. A Method of Calculating the Effect of One Helicopter Rotor on Another. ARC Tech Rep. C.P. No 406, 1958.
54. S. Saito and A. Azuma. A Numerical Appraoch to Co-Axial Rotor Aerodynamics. Seventh European Rotor craft and Powered Lift Aircraft Forum. Paper No 42. 1981.
55. W.Z. Stepniewski and L.H. Sloan. Some Thought on the

Optimisation of Transport Helicopters. Vertica, Vol 6, No 1.
1982.

56. V.P. Bailey. The Advancing Blade Concept (ABC) Rotor Program SAE Specialist Meeting, Los Angeles, 1977.
57. J. Scheiman. A Tabulation of Helicopter Rotor Blade Differential Pressures, Stresses and Motions in Forward Flight. NSAS TMS-952, March 1964.
58. V.G. Sekaran. A Free Wake Model for Predicting Rotor Wake and Blade Loads. University of Southampton, AASU Memo 82/1, Jan 1982.
59. C.V. Cook. Induced Flow Through a Helicopter Rotor in Forward Flight. Westland Helicopter Ltd, Research Paper 374, Jan 1980.
60. A.J. Landgrebe, R.B. Taylor, T.A. Egolf and J.C. Bennett. Helicopter Airflow and Wake Characteristics for Low Speed and Hovering Flight from Racket Interference Investigations. 37th Annual Forum of the American Helicopter Society, May 1981.
61. K. Kawachi. Extension of Local Momentum Theory to Hover in Rotor with Distorted Wake. Journal of Aircraft, Vol 19. No 7.
62. G.J. Bingham. The Aerodynamic Influences of Rotor Blade Airloads, Twist Taper and Solidity on Hover and Forward Flight Performance. 37th Annual Forum of the American Helicopter Society, May 1981.
63. W.R. Mantoy and J.B. Rorke. The Evolution of the Variable Geometry Rotor. Presented at Symposium on Rotor Technology of American Helicopter Society, Mideast Region, August 1976.
64. J.P. Jones. A Comparison of ABC and Conventional Rotors. Westland Helicopters Ltd, Research Paper No 385.
65. H. Lamb. Hydrodynamics. Cambridge, 1932.

66. I.A. Simons, R.E. Pacifico and J.P. Jones. The Movement, Structure and Breakdown of Trailing Vortices from a Rotor Blade. CAL/USAA Avlabs Symposium, June 1966.
67. R.L. Panton, W.L. Oberampf, N. Soskic. Flight Measurements of a Wing Tip Vortex. Journal of Aircraft, Volume 17, No 4, April, 1980.
68. A.D. Zalay. Hot Wire and Vorticity Meter Wake Vortex Surveys. AIAA Journal, Volume 14, No 5, 1976.
69. J.M. Pouradier and E. Horowitz. Aerodynamic Study of a Hovering Rotor. Presented at the Sixth European Rotorcraft and Powered Lift Forum. 1980.
70. J.D. Iversen, V.R. Corsiglia, D.R. Backus and R.A. Brickman. Hot-Wire, Laser-Anemometer, and Force Measurements of Interacting Trailing Vortices. Journal of Aircraft, Volume 16, No 7, 1979.

APPENDIX 1

A1.0 Solution of the Vortex Turbulent Boundary Layer Analogy Energy Equation

The following solution, relevant to section 3.4 in the main text, is derived from a postulated work/energy theorem. That is, the work done by the blade in creating a trailing tip vortex is considered equal to the rotational kinetic energy within the vortex. Now, the elemental rotational kinetic energy $d\varepsilon$, of an air particle of mass dm , angular velocity w and at a radial distance r from the axis of rotation is given by:

$$d\varepsilon = \frac{1}{2} (wr)^2 dm \quad (A1.1)$$

where,

$$w = K/2\pi r^2 \quad (A1.2)$$

$$dm = \rho 2\pi r dr \quad (A1.3)$$

whence the energy per unit length $d\varepsilon$, becomes;

$$d\varepsilon = (\rho/4\pi) \int (K^2/r) dr \quad (A1.4)$$

For the vortex core region,

$$K/\Gamma_{\max} = A(r/c)^2 \quad (A1.5) \quad 0 \leq r \leq r_c$$

Substituting (A1.5) into (A1.4) yields a vortex core energy E_c of:

$$E_c = (\rho \Gamma_{\max}^2 A^2 / (4\pi c^4)) \int_0^{r_c} r^3 dr \quad (A1.6)$$

$$E_c = (\rho \Gamma_{\max}^2 A^2 r_c^4) / (16\pi c^4)$$

For the vortex logarithmic region,

$$K/\Gamma_{\max} = B \ln(r/c) + C \quad (A1.7) \quad r_c \leq r \leq r_b$$

Substituting A1.7 into A1.4 yields a vortex logarithmic energy E_1 of:

$$E_1 = (\rho \Gamma_{\max}^2 / 4\pi) \int_{r_c}^{r_1} \frac{1}{r} (B \ln(r/c) + C)^2 dr$$

$$E_1 = (\rho \Gamma_{\max}^2 / 4\pi) \left| \begin{array}{l} B^2 \left| \frac{1}{3} \ln^3 r - \ln^2 r \ln c + \ln r \ln^2 c \right. + BC(\ln^2 r - 2 \ln r \ln c \right. \\ \left. + C^2 \ln r \right| \end{array} \right| \quad (A1.8)$$

For the vortex defect region

$$K/\Gamma_{\max} = 1 - \exp((Dr/c) + E) \quad (A1.9) \quad r_1 \leq r \leq r_o$$

Substituting (A1.9) into (A1.4) yields a vortex defect energy E_d of:

$$E_d = (\rho \Gamma_{\max}^2 / 4\pi) \int_{r_1}^{r_o} \frac{1}{r} (1 - \exp((Dr/c) + E))^2 dr \quad (A1.10)$$

Now

$$\int_{r_1}^{r_o} \frac{1}{r} (1 - \exp((Dr/c) + E))^2 dr = \int_{r_1}^{r_o} \frac{1}{r} (1 - 2\exp((Dr/c) + E) + \exp(2((Dr/c) + E))) dr$$

$$= \int_{r_1}^{r_o} \frac{1}{r} (1 - 2\exp((Dr/c) + E) + \exp(2((Dr/c) + E))) dr \quad (A1.11)$$

where,

$$\int_{r_1}^{r_o} \frac{1}{r} dr = \left| \ln r \right| \Big|_{r_1}^{r_o} \quad (A1.12)$$

and

$$-\int_{r_1}^{r_o} (2\exp(Dr/c + E)/r) dr = -2\exp(E) \int_{r_1}^{r_o} (\exp(Dr/c)/r) dr \quad (A1.13)$$

similarly,

$$\int_{r_1}^{r_o} (\exp^2(Dr/c + E)/r) dr = \exp(2E) \int_{r_1}^{r_o} (\exp^2(Dr/c)/r) dr \quad (A1.14)$$

Integrals (A1.13) and (A1.14) are solved using the expansion

$$\int (e^{ax}/x) dx = \left[\ln x + \frac{ax}{1x1!} + \frac{(ax)^2}{2x2!} + \frac{(ax)^3}{3x3!} \dots \frac{(ax)^m}{mxm!} \right] \quad (A1.15)$$

Whence, using (A1.12-A1.15) and substituting into (A1.10) yields:

$$E_d = (\rho \Gamma_{\max}^2 / 4\pi) \left| \int_{r_1}^{r_o} \ln r + \exp(2E) \left(\ln r + \sum_1^m (2Dr/c)^m / (mxm!) \right) \right. \\ \left. - 2\exp(E) \left(\ln r + \sum_1^m (Dr/c)^m / (mxm!) \right) \right| \quad (A1.16)$$

The total rotational vortex energy per unit length E_v , is given by

$$E_v = E_c + E_1 + E_d$$

where E_c , E_1 and E_d are computed from equations (A1.6) (A1.8) and (A1.16) respectively.

APPENDIX 2

A2.0 Salient Hover Equations

The axes system used throughout are given in Figure 56. However, exceptions to this axes set are the downwash velocity V_c , and vortex induced 'apparent vertical ascent' velocity v_v , where a positive magnitude indicates flow passing down through the rotor. Blade numbering commences with blade 1 located in the upper rotor at zero degrees of azimuth, blade 2, 3 etc following in an anticlockwise manner until the number of upper rotor blades have been reached. Therefore, the next blade number ($b_u + 1$) refers to a specified lower rotor blade with remaining blades being identified in a clockwise manner.

Using the well known strip equation (15) on initial estimate of the induced flow through the upper rotor is given by,

$$V_{im} = \left(\frac{V_c}{2} + \frac{\sigma_r awR}{16} \right) \left[-1 + \left(1 + \frac{2(\theta_{rw} - V_c)}{\frac{4V_c}{\sigma_r waR} + V_c + \frac{\sigma_r awR}{16}} \right)^{\frac{1}{2}} \right] \quad (A2.1)$$

where initially $V_c = 0$.

Blade elemental thrust is computed at 14 separate station points of elemental span dr , where

$$dr = .1R \quad r \leq 0.9R \quad (9 \text{ inboard station points}) \quad (A2.2)$$

$$dr = .02R \quad 0.9R < r \leq R \quad (5 \text{ tip station points}) \quad (A2.3)$$

and elemental thrust dT ,

$$dT = \frac{1}{2} \rho V^2 c_1 c \cos\phi dr \quad (A2.4)$$

$$V = V_T$$

$$c_1 = a (\theta - \phi) \frac{1}{\sqrt{1 - M^2}} \quad (A2.5)$$

$$\phi = \frac{v_i + v_v}{wr} \quad (A2.6)$$

(again v_v initially being 0)

Total thrust T , is then evaluated,

$$T = b \times \sum_{m=1}^{14} dT_m \quad (A2.7)$$

and corrected using a tip loss factor of,

$$B = 1 - \sqrt{2.0C_T/b} \quad (A2.8)$$

to yield an initial estimate of the thrust coefficient.

$$C_T = T/\rho V_T^2 2\pi R^2 \quad (A2.9)$$

Thereafter, Landgrebe (31) prescribed wake coefficients a_1 , a_2 and a_3 are used to determine the tip vortex paths,

$$a_1 = -0.25 (C_T/\sigma) \quad (A2.10)$$

$$a_2 = -1.41 \sqrt{C_T/2} \quad (A2.11)$$

$$a_3 = 0.145 + (27 * C_T) \quad (A2.12)$$

yielding vertical z_v and radial r_v coordinates of the tip vortex limits via,

$$z_v = a_1 wt \quad wt < 2\pi/b \quad (A2.13)$$

$$z_v = a_1 2\pi/b + a_2 (wt - 2\pi/b) \quad wt > 2\pi/b \quad (A2.14)$$

$$r_v = 0.78 + 0.22 \exp(-a_3 wt) \quad (A2.15)$$

The upper rotor is then stepped around the disc by predefined azimuth steps $\Delta\psi$, producing straight line vortex filaments lying on the paths described by equations A3.13 - A3.15.

On reaching the required number of rotor revolutions, the apparent vertical ascent velocity V_v , from the upper rotor wake is computed using equation A2.38. Thereafter, the aforementioned procedures are repeated with $V_c = V_v$ and continue with an initial estimate of the upper rotor performance via

$$\text{Elemented induced drag } dD_i = dL \sin\phi \quad (A2.16)$$

$$\text{Elemented profile drag } dD_p = \frac{1}{2} \rho V^2 C_{do} c dr$$

$$\text{where } C_{do} = 0.0087 - 0.0216 \alpha_r + 0.400 \alpha_r^2 \quad (A2.17)$$

Total blade thrust T is given by

$$T = b \left(\sum_{m=1}^{14} dL \cos\phi_m + \sum_{m=1}^{14} dD_p \sin\phi \right) \quad (A2.18)$$

and rotor torque Q by

$$Q = b \left(\sum_{m=1}^{14} dD_p \cos\phi r_m + \sum_{m=1}^{14} dL \sin\phi r_m \right) \quad (A2.19)$$

The procedures are repeated as described in Chapter 4, 4.3 with the inclusion of interference effects, evaluating thrust and torque on the lower and upper rotors until convergence has been achieved. The final inflow, computations use the extended Stepniewski equation 4.13, given in Chapter 4.

A2.1 Salient Forward Flight Equations

As with the previous section, the following equations are presented for the general case and only where necessary are the computational differences between the upper and lower rotors highlighted. Resulting from the opposite rotations of the two rotors in the CCTR, sign changes can occur. These changes are shown by (\pm) where the top and bottom signs refer to upper and lower rotors respectively. A single sign indicates no change occurs when transferring from one rotor to the other.

Glaert's approximation for the mean induced downwash \bar{v}_i yields

$$\bar{v}_i = T/(2\rho AV') \quad (A2.20)$$

$$\text{where } V' = \sqrt{V^2 + (v_i + v_v)^2} \quad (A2.21)$$

whence substituting (A2.21) into (A2.20) yields

$$\bar{v}_i^4 + 2\bar{v}_i^3 + \bar{v}_i^2 \left[V^2 + v_v^2 \right] - \left[T^2 / (4\rho^2 A^2) \right] = 0 \quad (A2.22)$$

The quartic equation in \bar{v}_i is solved by using a NAG computer library routine named COZAEF.

Initial conditions are set by

$$T = (\theta/3 + \mu^2\theta/2 + \lambda/2) \frac{1}{2}\rho abc \Omega^2 R^3 \quad (A2.23)$$

$$v_v = 0.0$$

and defining

$$\text{advance ratio } \mu = V \cos \alpha / \Omega R \quad (A2.24)$$

$$\text{inflow ratio } \lambda = (V \sin \alpha + v_v - v_i) / \Omega R \quad (A2.25)$$

Subsequent \bar{v}_i computations are performed throughout the program when the tip vortex wake effects are known.

Using the initial estimates of \bar{v}_i , λ and μ the source program computes the flapping characteristics of the blades around the disc. Using the coordinate system shown in Figure 56, where the top and bottom rotors have positive and negative rotations respectively. Simple flapping theory (1) yields,

$$\beta = a_0 - a_1 \cos\psi + b_1 \sin\psi \quad (A2.26)$$

$$d\beta/dt = \Omega(\pm a_1 \sin\psi - b_1 \cos\psi) \quad (A2.27)$$

where the flapping coefficients are given by equations (5.10) - (5.12), presented in Chapter 5.

The rotors are stepped around the disc with the trailing tip vortex filaments coordinates being generated with respect to the no-feathering axes, the origin of which is located at the centre of the upper rotor. Two options are possible for computing the vortex filament positions.

1) Classical Wake

The velocity and subsequent position of the j th vortex filament station from the k th blade is given by the local flow conditions without considering the interactions between filaments, namely.

$$x_{v_{j=1}} = - \sin\psi_k \cos\beta_k \quad (A2.28)$$

$$y_{v_{j=1}} = + \cos\psi_k \cos\beta_k \quad (A2.29)$$

$$z_{v_{j=1}} = \sin\beta_k \quad (A2.30)$$

$$\text{for } k > b_u, \quad z_{v_{j=1}} = \sin\beta_k - (d/R)$$

$$\text{where } v_x = 0.0 \quad (A2.31)$$

$$v_y = V \cos\alpha \quad (A2.32)$$

$$v_z = V \sin\alpha - v_i \quad (A2.33)$$

Subsequent j filament positions are computed for k blades via.

$$\sum_{k=1}^{k=b_u+b_b} \sum_{i=2}^m x_v = \sum_{k=1}^{k=b_u+b_1} \left\{ \sum_{j=2}^m x_v_{j-1} + \sum_{j=z}^m v_{x_{j-1}} \Delta t / R \right\} \quad (A2.34)$$

$$\text{where } \Delta t = \frac{\Delta \psi}{\Omega} \quad (A2.35)$$

(similar summations for y_v and z_v)

2) Free-wake

Using this facility, the interaction between the vortex filaments is computed using the Biot-Savart Law. The salient equations used in subroutine IND, with suffixes a b and p representing the vortex filaments end points (a,b) and a general point (p) respectively:-

$$v_{vx} = \pm \frac{K_o C}{4\pi} \left[\left(\left(y_p - y_a \right) \left(z_p - z_b \right) \right) - \left(\left(z_p - z_a \right) \left(y_p - y_b \right) \right) \right] \quad (A2.36)$$

$$v_{vy} = \pm \frac{K_o C}{4\pi} \left[\left(\left(z_p - z_a \right) \left(x_p - x_b \right) \right) - \left(\left(x_p - x_a \right) \left(z_p - z_b \right) \right) \right] \quad (A2.37)$$

$$v_{vz} = \pm \frac{K_o C}{4\pi} \left[\left(\left(x_p - x_a \right) \left(y_p - y_b \right) \right) - \left(\left(y_p - y_a \right) \left(x_p - x_b \right) \right) \right] \quad (A2.38)$$

$$\text{where, } C = (AP + BP) / ((AP \times BP)R((AP \times BP + I + J + K)) \quad (A2.39)$$

$$\text{and, } I = (x_p - x_a)(x_p - x_b) \quad (A2.40)$$

$$J = (p_p - y_a)(y_p - y_b) \quad (A2.41)$$

$$K = (z_p - z_a)(z_p - z_b) \quad (A2.42)$$

For the Rankine vortex, the strength K is given by:-

$$K = \int_0^{2\pi} q \cos\alpha \, ds \quad (A2.43)$$

where for the vortex core $q = V_s$, $ds = r_c d\alpha$

$$\text{yielding } K_c = 2\pi V_s r_c \quad (A2.44)$$

From Chapter 3, V_s and r_c are given by:-

$$V_s = V'_T (1.0 + 6.6/A_r) 2.64 \times 10^{-2} \theta \quad (\theta \text{ in degrees}) \quad (A2.45)$$

$$r_c = 1.2 R_e^{-0.2} V_s c / V'_T \quad (A2.46)$$

where V'_T is the local tip speed given by;

$$V'_T = \Omega R + V \sin\psi \quad (A2.47)$$

Note that for the forward flight case the strength of the vortex filaments vary around the disc. For computational purposes the average strength between the two filament end points is set equal to the strength of the filament. The velocity induced on the j th station on the k th vortex helix is given by:-

$$V_{vx_j} = \sum_{l=1}^{l=b_u + b_1} \sum_{m=1}^{m=n-1} V_{vx_{ml}} \quad (A2.48)$$

where n = number of stations per helix.

When $k = 1$, $v_{vx_{m=j}}$, $v_{vx_{m=j-1}}$, $v_{vx_{m=j+1}} = 0$

Similarly for v_{vy} and v_{vz} .

Further

$$v_i = \bar{v}_i (1 + \bar{r} \cos\psi) \quad (A2.49)$$

$$\text{where } \bar{v}_i = \bar{v}_i (v_{vz} \bar{r}=0) \quad (A2.50)$$

The wake is continually stepped around the disc until the desired number of stations have been reached for the classical wake, or until wake convergence is satisfied for the free-wake. The user of the program ROTOR may determine wake convergence by either comparing filament locations for consecutive revolutions of the disc, or by comparing the tip vortex induced velocity distribution for various blade locations. To compute the tip vortex induced values along the blade, a transfer of axes from the no feathering plane to axes inserting in and rotating with a given blade, is performed.

The transformation is given by

$$x_b = x_{nf} \cos\psi + y_{nf} \sin\psi \quad (A2.51)$$

$$y_b = (y_{nf} \cos\psi - x_{nf} \sin\psi) \cos\beta + z_{nf} \sin\beta \quad (A2.52)$$

$$z_b = z_{nf} \cos\beta - (y_{nf} \cos\psi - x_{nf} \sin\psi) \sin\beta \quad (A2.53)$$

$$(\text{if } k > b_u \quad z_{nf} = z_{nf} + d/R)$$

Using coordinate system (x_b, y_b, z_b) ,

$$v_v = v_{vz} \quad (A2.54)$$

The total velocities at any blade element radial station r is given by:-

Upper rotor

Perpendicular blade velocity U_p ,

$$U_{pu} = (V \sin\alpha - v_{iu}) \cos\beta - r \frac{d\beta}{dt} - V \cos\alpha \cos\psi \sin\beta + V_{vz} \quad (A2.55)$$

Tangential blade velocity U_t

$$U_{tu} = \Omega r + V \cos\alpha \sin\psi \quad (A2.56)$$

For the lower rotor immersed in the upper rotor wake

$$U_{p1} = (V \sin\alpha - 2v_{iu}) \cos\beta - r \frac{d\beta}{dt} - V \cos\alpha \cos\psi \sin\beta + V_{vz} \quad (A2.57)$$

$$U_{t1} = \Omega r + V \cos\alpha \sin\psi \quad (A2.58)$$

For the sections of the lower rotor taking in clear air,

$$U_{p1} = (V \sin\alpha - v_{il}) \cos\beta - r \frac{d\beta}{dt} - V \cos\alpha \cos\psi \sin\beta + V_{vz} \quad (A2.59)$$

At each blade station, the blade lift, drag and H-force is computed via:-

$$\text{Elemental lift } dL = \frac{1}{2} \rho U^2 c_1 c \Delta r \quad (A2.60)$$

$$\text{where } c_1 = a(\theta + (U_p/U_r)) \quad (A2.61)$$

$$\text{Elemental induced drag } dD_i = dL \sin\phi \quad (A2.62)$$

$$\text{Elemental profile drag } dD_p = \frac{1}{2} \rho c U^2 c_{do} \Delta r \quad (A2.63)$$

$$\text{where } c_{do} = 0.0087 - 0.0216 \alpha_r + 0.400 \alpha_r^2 \quad (A2.64)$$

$$\text{Elemental drag } dD = dD_p + dD_i \quad (A2.65)$$

Elemental H-force dH ,

$$dH = (dD_p \cos\phi - dL \sin\phi) \sin\psi - (dL \cos\phi + dD_p \sin\phi) \sin\beta \cos\psi \quad (A2.66)$$

Total blade thrust T_b is given by

$$T_b = \left(\sum_{m=1}^{m=14} dL \cos\phi_m + \sum_{m=1}^{m=14} dD_p \sin\phi \right) \cos\beta \quad (A2.67)$$

and blade torque Q_b by

$$Q_b = r \cos\beta \left(\sum_{m=1}^{m=14} dD_p \cos\phi - \sum_{m=1}^{m=14} dL \sin\phi \right) \quad (A2.68)$$

Total rotor thrust T , torque Q , power P and H-force H is given by:-

$$T = \sum_{b=1}^{b_u+b_1} T_b \quad (A2.69)$$

$$Q = \sum_{b=1}^{b_u+b_1} Q_b \quad (A2.70)$$

$$P = Q \times \Omega \quad (A2.71)$$

$$H = \sum_{b=1}^{b_u+b_1} H_b \quad (A2.72)$$

APPENDIX 3

3.0 Input procedure

```
*****  
*  
*  
* PROGRAM ROTOR  
*  
*****
```

THE PROGRAM CALCULATES THE HOVER AND FORWARD FLIGHT PERFORMANCE OF EITHER A SINGLE OR TWIN COAXIAL ROTOR LAYOUT. BEFORE RUNNING THE PROGRAM A NUMBER OF QUESTIONS ARE FIRST POSED. TO ANSWER EITHER INPUT A Y FOR YES OR AN N FOR NO, FOLLOWED BY THE REQUESTED DATA.

***** INPUT ALL LENGTHS IN METRES *****

DO YOU REQUIRE THE PERFORMANCE OF A SINGLE ROTOR?

/-N

THE TWO ROTORS IN A TWIN CONFIGURATION ARE LABELLED UPPER AND LOWER ROTOR RESPECTIVELY.

***** ALL PROCEEDING INPUTS ARE FOR THE UPPER ROTOR UNLESS OTHERWISE STATED. *****

INPUT NUMBER OF BLADES

/-2.0

INPUT ROTOR RADIUS

/-0.76

ARE THE BLADES TAPERED?

/-Y

EACH BLADE IS DIVIDED UP INTO 9 INBOARD ELEMENTS AND 5 TIP ELEMENTS. EACH INBOARD ELEMENT SPANS 0.1R, STARTING AT THE ROOT. EACH TIP ELEMENT SPANS 0.02R, STARTING AT 0.9R. INPUT THE MIDPOINT CHORD OF EACH ELEMENT STARTING AT THE ROOT END. (14 CHORDS IN ALL)

I.E. THE CHORD AT 0.05R, 0.15R.....0.85R, 0.91R, 0.93R.....0.99R

/-0.12 0.11 0.10 0.09 0.08 0.07 0.06 0.05 0.04 0.038 0.036
/-0.034 0.032 0.03

Input procedure continued

ARE THE BLADES TWISTED?

/-Y

INPUT EACH MIDPOINT BLADE ELEMENT PITCH,STARTING
AT THE ROOT END.(14 PITCHES IN ALL)

/-12.0 11.0 10.0 9.0 8.0 7.0 6.0 5.0 4.0 3.8 3.6 3.4

/-3.2 3.0

INPUT ROTOR RPM

/-440.0

INPUT MASS OF BLADE IN KG

/-1.5

DO YOU REQUIRE A FORWARD FLIGHT COMPUTATION?

/-Y

INPUT FORWARD FLIGHT VEL IN M/S

/-5.0

INPUT ROTOR SHAFT ANGLE OF ATTACK,ALPHA,IN DEGS

/--3.0

DO YOU WANT TO INCLUDE VORTEX ROLL-UP?

/-Y

HOW MANY WAKE REVOLUTIONS DO YOU REQUIRE?

INPUT AN INTEGER:

/-2

INPUT FILAMENT INCREMENT (INTEGER) IN DEGS OF AZIMUTH

/-20

***** ALL PROCEEDING INPUTS ARE FOR THE LOWER ROTOR *****

INPUT NUMBER OF ROTOR BLADES

/-2.0

INPUT ROTOR RADIUS

/-0.76

ARE THE BLADES TAPERED

/-N

INPUT BLADE CHORD

/-0.054

ARE THE BLADES TWISTED?

/-N

Input procedure continued

INPUT BLADE PITCH IN DEGREES

/-7.5

INPUT ROTOR RPM

/-440.0

INPUT MASS OF BLADE IN KG

/-1.35

INPUT VERTICAL SEPARATION BETWEEN ROTORS

/-0.196

3.1 Program ROTOR listing

LINE NUMBER FORTRAN TEXT

```

1      REAL MASSU,MASSL,MUU,MUL,LANDAU,LANDAL,LOCKU,LOCKL,MU
2      REAL KC,KL,KG,MACHNO,MACHNOU,MACHNOL,KU,KLOW
3      REAL LANDIU,LANDIL
4      INTEGER YES,TOTALSTP,DELTAZIM
5      DIMENSION HF(40),HFORCE(40),HFORCEU(40),HFORCEL(40)
6      DIMENSION XPT(40),YPT(40),ZIN(100,20),YIN(100,20),ZI(100)
7      DIMENSION YI(100),ZIF(100),YIF(100),VMOM(40),VFLAP(40)
8      DIMENSION THRUSTU(40),TORQUEU(40),THRUSTL(40),TORQUEL(40)
9      DIMENSION XFVT(100,20),YFVT(100,20),ZFVT(100,20),ZFV1(100,20)
10     DIMENSION THETAR(40),CHORDR(40),BSR(40)
11     DIMENSION VELFV(100,20),VELFVT(100,20),THI(40),UTI(40),THRUST(40)
12     C,UP(100,20),UT(100,20),TORQUE(40),TH(40),TOR(40),RADB(40)
13     DIMENSION XFVNEW(100,20),YFVNEW(100,20),ZFVNEW(100,20)
14     DIMENSION XVEL(100,20,20),YVEL(100,20,20),ZVEL(100,20,20)
15     DIMENSION CIRV(100,20)
16     DIMENSION TIME(20),RAD(20),EPSI(100,20),BETA(100,20)
17     DIMENSION DEETA(100,20),XFV(100,20),YFV(100,20),ZFV(100,20)
18     DIMENSION XVELT(100,20),YVELT(100,20),ZVELT(100,20)
19     DIMENSION THETAL(40),CHL(40),VINU(40),VECMUL(40),XLDU(40)
20     DIMENSION YLDU(40),ZLDU(40),VECUL(40),VIL(40),THLU(40)
21     DIMENSION HSL(40),XVL(100,20),YVL(100,20),ZVL(100,20),VVUL(100,20)
22     DIMENSION CIRL(100,20),VECL(40),VVL(100,20),VITL(40),THL(40)
23     DIMENSION XVU(100,20),YVU(100,20),ZVU(100,20),VVU(100,20)
24     DIMENSION CIRU(100,20),CU(40),BSU(40),XP(40),YP(40)
25     DIMENSION ZP(40),VECU(40),VIU(40),THETAU(40),VIT(40),THU(40)
26     DIMENSION TORL(40),THEO(40),TORU(40),NO(1),TOT(40)
27     DIMENSION RC1(2000),RCD1(2000)
28     DIMENSION RCU(2000),RCDU(2000),RCL(2000),RCDL(2000)
29     DIMENSION VORTEXA(100,20),VORTEXB(100,20),VORTEXC(100,20)
30     C,VORTEXD(100,20),VORTEXE(100,20),VORTEXKC(100,20)
31     C,VORTEXKL(100,20),VORTEXKO(100,20),VORTEXRC(100,20)
32     C,VORTEXRL(100,20),VORTEXRO(100,20)
33     C,XVL1(100,20),YVL1(100,20),ZVL1(100,20),VVVL(100,20),VV1(40)
34     C,VECUI(40),VIUI(40),VITI(40),THUI(40),TORUI(40)
35     COMMON/BL2/ A1,A2,A3
36     COMMON/BL5/ W,ALPHA,V
37     COMMON/BL9/ VA,VB,VC,VD,VE
38     COMMON/BL21/ TOTALSTP,NFILASTP
39     COMMON/BL22/ BET,AZM,SIGN
40     COMMON/BL25/ VSOU,RCU
41     CALL ICL9HEMASK(64,I)
42     DATA A/5.73/,NTYPV/0/
43     DATA NO/1HN/,M7/1HN/
44     DATA YES/1HY/
45     DATA VIS,RUE,PI/1.455E-5,1.225,3.1415927/
46     DATA N/12/
47     DATA EU/0.5/,EL/0.5/
48     WRITE(6,5)
49     5 FORMAT(*****)
50     WRITE(6,6)
51     6 FORMAT(*)
52     WRITE(6,7)
53     7 FORMAT(*      PROGRAM ROTOR      *)
54     WRITE(6,6)
55     WRITE(6,5)
56     WRITE(6,10)

```

LINE NUMBER FOR TRAN. TEXT

```
57      1  FORMAT(1,'THE PROGRAM CALCULATES THE HOVER AND FORWARD FLIGHT')
58      2  WRITE(6,11)
59      11 FORMAT('PERFORMANCE OF EITHER A SINGLE OR TWIN COAXIAL ROTOR')
60      12 WRITE(6,15)
61      15 FORMAT('LAYOUT.BEFORE RUNNING THE PROGRAM ROTOR A NUMBER OF')
62      16 WRITE(6,18)
63      17 FORMAT('QUESTIONS ARE FIRST POSED.TO ANSWER EITHER INPUT A  Y')
64      18 WRITE(6,20)
65      19 FORMAT('FOR YES OR AN N FOR NO,FOLLOWED BY THE REQUESTED DATA.
66      U')
67      20 WRITE(6,21)
68      21 FORMAT('*****INPUT ALL LENGTHS IN METRES*****')
69      22 WRITE(6,30)
70      30 FORMAT('DO YOU REQUIRE THE PERFORMANCE OF A SINGLE ROTOR?.')
71      31 READ(5,35)M1
72      32 FORMAT(1A4)
73      33 IF(M1.EQ.YES) GOTO 65
74      34 WRITE(6,50)
75      35 FORMAT('THE TWO ROTORS IN A TWIN CONFIGURATION ARE LABELLED')
76      36 WRITE(6,52)
77      37 FORMAT('UPPER ROTOR AND LOWER ROTOR.')
78      38 WRITE(6,55)
79      39 FORMAT('THE UPPER ROTOR CENTRE IS ALWAYS SITUATED AT THE')
80      40 WRITE(6,58)
81      41 FORMAT('REFERENCE AXES ORIGIN')
82      42 WRITE(6,60)
83      43 FORMAT('*** ALL PROCEEDING INPUTS ARE FOR THE UPPER ROTOR')
84      44 WRITE(6,63)
85      45 FORMAT('UNLESS OTHERWISE STATED ***')
86      46 WRITE(6,70)
87      47 FORMAT('INPUT NUMBER OF ROTOR BLADES')
88      48 READ(5,*)RU
89      49 IF(M1.EQ.YES) NOBLADES=IFIX(BU+0.2)
90      50 NBU=IFIX(BU+0.2)
91      51 WRITE(6,75)
92      52 FORMAT('INPUT ROTOR RADIUS')
93      53 READ(5,*)RU
94      54 WRITE(6,80)
95      55 FORMAT('ARE THE BLADES TAPERED?.')
96      56 READ(5,35)*2
97      57 IF(M2.EQ.YES) GOTO 100
98      58 WRITE(6,90)
99      59 FORMAT('INPUT BLADE CHORD')
100     60 READ(5,*)C
101     61 DO 95 I=1,14
102     62   CU(I)=C
103     63   CONTINUE
104     64   CAVU=CU(8)
105     65   GOTO 128
106     66   WRITE(6,105)
107     67   FORMAT('EACH BLADE IS DIVIDED UP INTO 9 INBOARD ELEMENTS AND 5')
108     68   WRITE(6,106)
109     69   FORMAT('TIP ELEMENTS')
110     70   WRITE(6,110)
111     71   FORMAT('EACH INBOARD ELEMENT SPANS 0.1R,STARTING AT THE ROOT')
112     72   WRITE(6,112)
```

LINE NUMBER FORTRAN TEXT

```
113      112 FORMAT('END.EACH TIP ELEMENT SPANS 3.02R,STARTING AT 0.9R.')  
114      WRITE(6,115)  
115      115 FORMAT('INPUT THE MIDPOINT CHORD OF EACH SEGMENT,STARTING AT')  
116      WRITE(6,116)  
117      116 FORMAT('ROOT END.(14 CHORDS IN ALL).')  
118      WRITE(6,125)  
119      125 FORMAT('I.E. THE CHORD AT 0.05R,0.15R,...,0.75R,0.85R,0.91R.')  
120      WRITE(6,126)  
121      126 FORMAT('0.73R,...,0.99R')  
122      READ(5,*) (CU(I),I=1,14)  
123      CAVU=CU(8)  
124      128 WRITE(6,130)  
125      130 FORMAT('ARE THE BLADES TWISTED?')  
126      READ(5,35)*3  
127      IF(M3.EQ.YES) GOTO 148  
128      WRITE(6,142)  
129      140 FORMAT('INPUT BLADE PITCH IN DEGREES')  
130      READ(5,*) THETA  
131      DO 145 I=1,14  
132      THETAU(I)=THETA*PI/180.0  
133      145 CONTINUE  
134      THETAVU=THETAU(8)  
135      GOTO157  
136      148 IF(M2.EQ.YES) GOTO 150  
137      WRITE(6,105)  
138      WRITE(6,106)  
139      WRITE(6,110)  
140      WRITE(6,112)  
141      149 FORMAT('THE ROOT END.(14 PITCHES IN ALL).')  
142      150 WRITE(6,155)  
143      143 WRITE(6,149)  
144      155 FORMAT('INPUT EACH MIDPOINT BLADE ELEMENT PITCH,STARTING AT')  
145      READ(5,*)(THETAU(I),I=1,14)  
146      DO 170 K=1,14  
147      THETAU(K)=THETAU(K)*PI/180.0  
148      170 CONTINUE  
149      THETAVU=THETAU(8)  
150      157 THETASW=THETASW*PI/180.0  
151      WRITE(6,158)  
152      158 FORMAT('INPUT ROTOR RPM')  
153      READ(5,*) OMEGAU  
154      WU=OMEGAU*PI/30.0  
155      DO 200 K=1,14  
156      BSU(K)=(BU*CU(K))/(PI*RU)  
157      VECU(K)=0.0  
158      200 CONTINUE  
159      BS=BSU(8)  
160      DO 210 K=1,9  
161      XP(K)=0.0  
162      YP(K)=(0.05*K)+((K-1)*0.05)  
163      ZP(K)=0.0  
164      210 CONTINUE  
165      DO 215 K=10,14  
166      XP(K)=0.0  
167      YP(K)=YP(9)+0.05+((K-9)*0.01)+((K-10)*0.01)  
168      ZP(K)=0.0
```

LINE NUMBER FORTRAN TEXT

```
169      215 CONTINUE
170      VTU=WU*RU
171      MACHNOU=VTU/340.0
172      REU=VTU*CU(8)/VIS
173      ARU=RU/ CU(8)
174      C CALCULATION OF VORTEX MAX SWIRL VEL AND CORE RADIUS.
175      VSOU=(1.0+(6.6/ARU))*(2.64E-2)*THETAU(12)*VTU*180.0/PI
176      RCCU=CU(12)*1.2*(REU**(-0.2))*VSOU/VTU
177      WRITE(6,5022)
178      5022 FORMAT('INPUT MASS OF BLADE IN KG')
179      READ(5,*) MASSU
180      WRITE(6,216)
181      216 FORMAT('DO YOU REQUIRE A FORWARD FLIGHT COMPUTATION?')
182      READ(5,35) M6
183      NAA=2
184      IF(M6.EQ.YES) NAA=1
185      IF(NAA.EQ.2) GOTO 5364
186      WRITE(6,5021)
187      5021 FORMAT('INPUT FORWARD FLIGHT VEL. IN M/S')
188      READ(5,*) V
189      WRITE(6,5472)
190      5472 FORMAT('INPUT ROTOR SHAFT ANGLE OF ATTACK,ALPHA,IN DEGS')
191      READ(5,*) ALPHA
192      5364 WRITE(6,219)
193      219 FORMAT('DO YOU WANT TO INCLUDE VORTEX ROLL-UP?')
194      READ(5,35) M51
195      WRITE(6,217)
196      217 FORMAT('HOW MANY WAKE REVOLUTIONS DO YOU REQUIRE?')
197      WRITE(6,218)
198      218 FORMAT('INPUT AN INTEGER:')
199      READ(5,*) NREV
200      WRITE(6,701)
201      701 FORMAT('INPUT FILAMENT INCREMENT(INTEGER) IN DEGS OF AZIMUTH')
202      READ(5,*) DELTAZIM
203      ALPHA=ALPHA*PI/180.0
204      NFILASTP=(360/DELTAIM)+1
205      TOTALSTP=(NREV*(NFILASTP-1))+1
206      IF(M6.EQ.YES) GOTO 409
207      CALL STRIP(VECU,YP,TOT,CTU,VIU,RU,THETAU,CU,BSU,BU,A,WU)
208      CALL LANDG(XVU,YVU,ZVU,CTU,BU,BS,RU)
209      IF(NBU.EQ.1) GOTO 221
210      DO 220 K=2,NBU
211      CALL BLVOC0(XVU,YVU,ZVU,BU,K)
212      CONTINUE
213      221 WRITE(6,222)VSOU,RCOU
214      222 FORMAT("VSU=",1F8.4,'M/S, RCU=",1F8.4,'M')
215      NCOUNT=1
216      223 DO 232 K=1,NBU
217      CALL CAL(XVU,YVU,ZVU,XP,YP,ZP,1,VVU,O,RU,BU,K,KC,CL,KO,RCU
218      C,VRL,RD,VA,VB,VC,VD,VE,NCOUNT,GAMAXU,RCOU,VSOU,CAVU,NTYPV
219      C,SIGN,1,CIRV)
220      CONTINUE
221      DO 240 K=1,14
222      VECU(K)=VVU(K,1)
223      CONTINUE
224      IF(NBU.EQ.1) GOTO 251
```

LINE NUMBER FOR TRAN TEXT

```
225      DO 250 K=2,NBU
226      DO 251 J=1,14
227      VECU(J)=VECU(J)+VVU(J,K)
228      250 CONTINUE
229      251 WRITE(6,*) (VECU(L),L=1,14)
230      CALL STRIP(VECH,YP,TOT,CTU,VIU,RU,THETAU,CU,BSU,BU,A,WU)
231      DO 260 K=1,14
232      VIT(K)=VECU(K)+VIU(K)
233      260 CONTINUE
234      WRITE(6,5561)
235      5561 FORMAT('TOTAL DOWNWASH DISTRIBUTION(VIT) ON UPPER ROTOR IS:')
236      WRITE(6,*)(VIT(L),L=1,14)
237      CALL PERM(VIT,YP,THU,TORU,THEO,RU,THETAU,CU,BSU,BU,ENU,GAMAXU
238      C,A,WU,THI,1,UTI,HF)
239      KC=2.0*PI*VSOU*RCU
240      ENU=ENU*(KC/GAMAXU)**2
241      WRITE(6,7033) ENU
242      7033 FORMAT('ENU=',1F10.4)
243      WRITE(6,*)(THU(14),TORU(14))
244      CTU=(BU*THU(14))/(ROE*(WU*RU)**2*PI*RU**2)
245      CQU=(RU*TORU(14))/(ROE*(WU*RU)**2*PI*RU**3)
246      WRITE(6,600) CTU
247      600 FORMAT(' ', 'THRUST COEFF,CTU, FOR UPPER ROTOR IS:',1F8.6)
248      WRITE(6,2) CQU
249      2 FORMAT(' ', 'TORQUE COEFF. FOR UPPER ROTOR IS:',1F10.8)
250      IF(NCOUNT.EQ.2) GOTO 409
251      CALL TIPVOR(ENU,GAMAXU,VTU,ARU,CAVU,THETAVU,THETASW,REU,KC
252      C,KL,KD,VRL,R0,NTYPV,MACHNO)
253      IF(KC.GT.GAMAXU) GOTO 8041
254      GOTO 3042
255      8041 VSOU=VSOU*GAMAXU/KC
256      KC=GAMAXU
257      8042 CALL DECAY(RCU,VSOU,WU,RU,RCU,RCU,BU,ENU)
258      DO 261 J=1,TOTALSTP
259      NVAR1=(DELTAZIM*(J-1))+1
260      NVAR2=(DELTAZIM*J)+1
261      RCU(J)=(RCU(NVAR1)+RCU(NVAR2))/2.0
262      261 CONTINUE
263      NCOUNT=1
264      GOTO 223
265
266      C      START OF LOWER ROTOR COMPUTATION.
267
268      409 IF((M1.EQ.YES).AND.(M6.EQ.YES)) GOTO 1510
269      IF(M1.EQ.YES) GOTO 580
270      408 WRITE(6,410)
271      410 FORMAT(/'*** ALL PROCEEDING INPUTS ARE FOR THE LOWER ROTOR ***')
272      WRITE(6,70)
273      READ(5,*) BL
274      NBL=IFIX(BL+0.2)
275      WRITE(6,75)
276      READ(5,*) RL
277      WRITE(6,80)
278      READ(5,35) M2
279      IF(M2.EQ.YES) GOTO 420
280      WRITE(6,90)
```

LINE NUMBER	FORTRAN TEXT
281	READ(5,*)C
282	DO 415 I=1,14
283	CHL(I)=C
284	415 CONTINUE
285	CAVL=CHL(8)
286	GOTO 425
287	420 WRITE(6,105)
288	WRITE(6,105)
289	WRITE(6,110)
290	WRITE(6,112)
291	WRITE(6,115)
292	WRITE(6,116)
293	WRITE(6,125)
294	WRITE(6,126)
295	READ(5,*)(CHL(I),I=1,14)
296	CAVL=CHL(2)
297	425 WRITE(6,130)
298	READ(5,35) M3
299	IF(M3.EQ.YES) GOTO 435
300	WRITE(6,140)
301	READ(5,*) THETA
302	DO 430 I=1,14
303	THETAL(I)=THETA*PI/180.0
304	430 CONTINUE
305	THETAVL=THETAL(8)
306	GOTO 441
307	435 IF(M2.EQ.YES) GOTO 440
308	WRITE(6,105)
309	WRITE(6,106)
310	WRITE(6,110)
311	WRITE(6,112)
312	440 WRITE(6,155)
313	WRITE(6,149)
314	READ(5,*)(THETAL(I),I=1,14)
315	DO 443 KK=1,14
316	THETAL(KK)=THETAL(KK)*PI/180.0
317	443 CONTINUE
318	THETAVL=THETAL(8)
319	441 WRITE(6,158)
320	READ(5,*) OMEGAL
321	WRITE(6,5022)
322	READ(5,*) MASSL
323	WL=OMEGAL*PI/30.0
324	VTL=WL*RL
325	MACHNGL=VTL/340.0
326	REL=VTL*CHL(8)/VIS
327	WRITE(6,460)
328	460 FORMAT("INPUT VERTICAL SEPARATION BETWEEN ROTORS")
329	READ(5,*) VSEP
330	VSEP=ABS(VSEP)
331	DO 445 K=1,14
332	BSL(K)=(BL*CHL(K))/(PI*RL)
333	445 CONTINUE
334	BS=(BL*CHL(8))/(PI*RL)
335	ARL=RL/CHL(8)
336	VSOL=(1.0+(6.6/ARL))*(2.62E-2)*THETAL(8)*VTL*180.0/PI

LINE NUMBER FOR TRAN TEXT

```
357      RCOL=CHL(8)*1.2*(REL**(-0.2))*VSUL/VTL
358      IF(M6.EQ.YES) GOTO 1510
359      THETAV=(((VSEP/RU)-(A1*2.0*PI/BU))/A2)
360      R2=0.78+(0.22*EXP(-A3*THETAV))
361      R3=R2*RU/RL
362      WRITE(6,303)R3
363      303 FORMAT("VORTEX INTERSECTS LOWER ROTOR AT",1F8.4,'(NON-D WRT RL)')
364      THETAV=THETAV*180./PI
365      WRITE(6,305)THETAV
366      305 FORMAT("ANG AT AN AGE OF",1F8.4,' DEGS.')
367
368      C      THE COMPUTATION OF THE MOMENTUM INDUCED DOWNWASH VELOCITY COMPUT
369      C      ON THE LOWER ROTOR FROM THE UPPER ROTOR ALLOWING FOR THE
370      C      POSSIBILITY OF DIFFERENTIAL PADII AND WAKE CONTRACTION NOW
371      C      FOLLOWS:
372
373      C      IF(APS(RL-RU).LT.-.02) GOTO 340
374      304 K=1
375      310 IF(K.GT.14) GOTO 347
376      KK=1
377
378      C      YP(KK) IS THE NON-D DISTANCE ON THE UPPER ROTOR.
379      C      (YP(K)*RL/RU) IS THE DISTANCE OF THE STATION PT 'K' ON THE LOWER
380      C      ROTOR, NON-D WRT THE UPPER ROTOR.
381
382      C      IF(YP(KK).GT.R2) GOTO 325
383      312 IF(YP(KK).GT.(1.0/R2)*(YP(K)*RL/RU)) GOTO 315
384      KK=KK+1
385      IF(KK.GT.14) GOTO 326
386      GOTO 312
387      315 IF(KK.EQ.1) GOTO 320
388      WRITE(6,*) K,KK
389      GRAD=(VIT(KK)-VIT(KK-1))/(YP(KK)-YP(KK-1))
390      CONS=VIT(KK)-(GRAD*YP(KK))
391      VINU(K)=(GRAD*(1.0/R2)*YP(K)*RL/RU)+CONS
392      VECMUL(K)=VINU(K)*(1.0/R2)**2
393      K=K+1
394      GOTO 310
395      320 GRAD=VIT(KK)/YP(KK)
396      VINU(K)=GRAD*(1.0/R2)*YP(K)*RL/RU
397      VECMUL(K)=VINU(K)*(1.0/R2)**2
398      K=K+1
399      GOTO 310
400      325 IF(K.LT.14) GOTO 326
401      VECMUL(K)=0.0
402      GOTO 347
403      326 DO 327 L=K,14
404      VECMUL(L)=0.0
405      327 CONTINUE
406      GOTO 347
407      C 340 DO 345 K=1,14
408      C      IF(YP(K).GT.R2) GOTO 335
409      C      VECMUL(K)=VINU(K)*(1.0/R2)**2
410      C      GOTO 345
411      335 VECMUL(K)=0.0
412      345 CONTINUE
```

LINE NUMBER FORTRAN TEXT

```
393      C
394      C      END OF MOMENTUM COMPUTATION.
395      C
396      347 WRITE(6,360)
397      360 FORMAT('VECMUL DISTRIBUTION IS:',/)
398      WRITE(6,365)(VECMUL(L),L=1,14)
399      365 FORMAT(7(1F8.4,1X),/)
400      KAZM=1
401      AZML=(KAZM-1)*PI/5.0
402      AZMLD=AZML*180.0/PI
403      WRITE(6,372)AZMLD
404      370 FORMAT('LOWER ROTOR AT AZIMUTH POSTN OF',1F8.4,' DEGS',/)
405      DO 375 K=1,14
406      ZLDU(K)=-V3FP/RU
407      YLDU(K)=YP(K)*COS(AZML)*RL/RU
408      XLDU(K)=YP(K)*SIN(AZML)*RL/RU
409      375 CONTINUE
410      DO 380 JK=1,NBU
411      CALL CAL(XVU,YVU,ZVU,XLDU,YLDU,ZLDU,2,VVUL,KAZM,RU,RU,JK,KC,KL
412      C,KD,RCU,VRL,RC,VA,VH,VC,VD,VE,NCOUNT,GAMAXU,RCOU,VSOU,CAVU
413      C,NTYPV,SIGN,1,CIRV)
414      380 CONTINUE
415      DO 385 K=1,14
416      VECUL(K)=VVUL(K,1)
417      385 CONTINUE
418      DO 390 K=2,BU
419      DO 390 J=1,14
420      VECUL(J)=VECUL(J)+VVUL(J,K)
421      390 CONTINUE
422      K=1
423      536 IF(YP(K).GT.R3) GOTO 537
424      K=K+1
425      IF(K.GT.14) GOTO 538
426      GOTO 536
427      537 M21=K
428      GOTO 492
429      538 M21=14
430      392 DO 391 K=1,14
431      IF(K.LT.M21) GOTO 393
432      VECUL(K)=VECUL(K)
433      GOTO 391
434      393 VECUL(K)=VECMUL(K)
435      391 CONTINUE
436      WRITE(6,395)
437      395 FORMAT('VECUL DISTRIBUTION IS:',/)
438      WRITE(6,400)(VECUL(L),L=1,14)
439      400 FORMAT(7(1F8.4,1X),/)
440      401 CALL STRIP(VECUL,YP,TOTL,CTL,VIL,RL,THETAL,CHL,RSL,BL,A,WL)
441      CALL LANDG(XVL,YVL,ZVL,CTL,BL,BS,RL)
442      IF(NRL.EQ.1) GOTO 511
443      DO 510 K=2,NRL
444      CALL GLVOC0(XVL,YVL,ZVL,BL,K)
445      510 CONTINUE
446      511 VSCL=(1.0+(6.6/ARL))*(2.64E-2)*THETAL(12)*VTL*180.0/PI
447      RCOL=CHL(8)*1.2*(REL**(-0.2))*VSOL/VTL
448      WRITE(6,515)VSOL,RCOL
```

LINE NUMBER FORTRAN TEXT

```
449      515 FORMAT('VSL=',1F8.4,'M/S, RCL=',1F8.4,'M')  
450      NCOUNT=1  
451      516 DO 520 K=1,NRL  
452      CALL CAL(XVL,YVL,ZVL,XP,YP,ZP,1,VVL,0,RL,RL,K,KC,KL,K0,RCL,VRL  
453      C,RC,VA,VB,VC,VP,VE,NCOUNT,GAMAXL,RCOL,VSOL,CAVL,NTYPV,SIGN,1  
454      C,CIRV)  
455      520 CONTINUE  
456      DO 525 K=1,14  
457      VECL(K)=VVL(K,1)  
458      525 CONTINUE  
459      1F(NRL.EQ.1) GOTO 531  
460      DO 530 K=2,NRL  
461      DO 530 J=1,14  
462      VECL(J)=VECL(J)+VVL(J,K)  
463      530 CONTINUE  
464      531 DO 535 K=1,14  
465      IF(K.LT.M21) GOTO 532  
466      VECL(K)=VECL(K)+VECUL(K)  
467      GOTO 535  
468      532 VECL(K)=VEMUL(K)  
469      535 CONTINUE  
470      CALL STRIP(VECL,YP,TOTL,CTL,VIL,RL,THETAL,CHL,BSL,BL,A,WL)  
471      DO 540 K=1,14  
472      IF(K.LT.M21) GOTO 541  
473      VITL(K)=VECL(K)+VIL(K)  
474      GOTO 540  
475      541 VITL(K)=VEMUL(K)  
476      540 CONTINUE  
477      WRITE(6,545)  
478      545 FORMAT('VITL DISTRIBUTION IS:',/)  
479      WRITE(6,550)(VITL(L),L=1,14)  
480      550 FORMAT(7(1F8.4,1X),/)  
481      CALL PERM(VITL,YP,THL,TORL,THLO,RL,THETAL,CHL,BSL,BL,ENL,GAMAXL  
482      C,A,WL,THI,1,UTI,HF)  
483      KC=2.0*PI*VSOL*RCOL  
484      ENL=ENL*(KC/GAMAXL)**2  
485      IF(NCOUNT.EQ.2) GOTO 552  
486      CALL TIPVOR(ENL,GAMAXL,VTL,ARL,CAVL,THETAVL,THETASW,REL,KC,KL  
487      C,K0,VRL,RG,NTYPV,MACHNOL)  
488      IF(KC.GT.GAMAXL) GOTO 8043  
489      GOTO 8044  
490      8043 VSOL=VSOL*GAMAXL/KC  
491      KC=GAMAXL  
492      8044 CALL DECAY(RCOL,VSOL,WL,RL,RCL,RCOL,BL,ENL)  
493      DO 551 J=1,TOTALSTP  
494      NVAR1=(DELTAZIM*(J-1))+1  
495      NVAR2=(DELTAZIM*j)+1  
496      RCL(J)=(RCL(NVAR1)+RCL(NVAR2))/2.0  
497      551 CONTINUE  
498      NCOUNT=2  
499      GOTO 516  
500      552 DEGSU=THETAU(8)*180.0/PI  
501      DEGSL=THETAL(8)*180.0/PI  
502      WRITE(6,555) THI(14),DEGSU,THL(14),DEGSL  
503      555 FORMAT('THI=',1F8.4,'N. THETAU=',1F8.4,'DEGS. THL=',1F8.4,'N  
504      CTHETAL=',1F8.4,'DEGS.')  
505
```

LINE NUMBER FORTRAN TEXT

```
505      WRITE(6,560)TORU(14),TORL(14)
506      560 FORMAT('TORU=',1F8.4,'NM TORL=',1F8.4,'NM.')
507      THC=(BU*THU(14))+(BL*THL(14))
508      TORC=(HU*TORU(14))+(BL*TORL(14))
509      CTL=(BL*THL(14))/(ROE*(WL*RL)**2*PI*(RL**2))
510      CQL=(BL*TORL(14))/(ROE*(WL*RL)**2*PI*(RL**3))
511      EFFU=CTL/CQU
512      CLU=6.0*CTU/FSU(8)
513      EFFL=CTL/CQL
514      CLL=6.0*CTL/FSL(8)
515      CTC=CTU+CTL
516      CGC=CQU+CQL
517      CLC=6.0*CTC/(FSU(8)+FSL(8))
518      EFFC=CTC/CGC
519      WRITE(6,561)
520      561 FORMAT('CTU',8X,'CQU',8X,'CTL',8X,'CQL',8X,'CTC',8X,'CGC',/)
521      WRITE(6,562)CTU,CQU,CTL,CQL,CTC,CGC
522      562 FORMAT(6(1F8.6,3X),/)
523      WRITE(6,563)
524      563 FORMAT('CTU/CQU',5X,'CLU',5X,'CTL/CQL',1X,'CLL')
525      WRITE(6,564)EFFU,CLU,EFFL,CLL
526      564 FORMAT(4(1F8.4))
527      WRITE(6,565)
528      565 FORMAT('* ** OVERALL COAXIAL ROTOR PERFORMANCE FIGURES ***')
529      WRITE(6,566)
530      566 FORMAT('CTC',8X,'CGC',8X,'CLL',8X,'CTC/CGC')
531      WRITE(6,567)CTC,CGC,CLC,EFFC
532      567 FORMAT(6(1F10.6),/)
533      WRITE(6,568)THC
534      568 FORMAT('OVERALL COAXIAL ROTOR THRUST=',1F10.4,'N')
535      WRITE(6,569)TORC
536      569 FORMAT('OVERALL COAXIAL ROTOR TORQUE=',1F10.4,'NM')
537      DELTOR=TORU(14)-TORL(14)
538      IF(ABS(DELTOR/TORU(14)).LT.0.05) GOTO 580
539      DTOR=ABS(DELTOR)/TORL(14)
540      FACTOR=DTOR**3.0/2.0
541      IF(DELTOR.LT.0.0) FACTOR=-FACTOR
542      C CON4=0.5*ROE*(VTL**2)*(RL**4)*A*CHL(8)
543      DO 570 K=1,14
544      THETAL(K)=THETAL(K)*(1.0+FACTOR)
545      570 CONTINUE
546      GOTO 401
547      580 IF(M1.EQ.YES) GOTO 582
548      IF(N21.GT.1) GOTO 582
549      N21=N21+1
550      C COMPUTATION OF INTERFERENCE OF LOWER ROTOR ON UPPER
551      DO 601 K=1,NHL
552      DO 601 J=1,TOTALSTP
553      XVL1(J,K)=XVL(J,K)*RL/RU
554      YVL1(J,K)=YVL(J,K)*RL/RU
555      ZVL1(J,K)=(ZVL(J,K)*RL/RU)-(VSEP/RU)
556      601 CONTINUE
557      C ROTOR FOR WHICH INDUCED VELS ARE GOING TO BE CALCULATED IN
558      C 'CAL'=R,B
559      C ROTOR FROM WHICH THE VORTEX WAKE IS GENERATED=C
560      DO 602 K=1,NRL
```

LINE NUMBER FORTRAN TEXT

```
561      CALL CAL(XVL1,YVL1,ZVL1,XP,YP,ZP,1,VVLU,C,RU,BU,K,KC,KL,KU
562      C,RCL,VRL,R0,VA,VB,VC,VD,VE,2,GAMAXL,RCOL,VSOL,CAVL,NTYPV
563      C,SIGN,1,CIRV)
564 602 CONTINUE
565      DO 603 K=1,14
566      VVI(K)=VVLU(K,1)
567 603 CONTINUE
568      IF(NBL.EQ.1) GOTO 609
569      DO 604 K=2,NBL
570      DO 604 J=1,14
571      VVI(K)=VVI(K)+VVLU(J,K)
572 604 CONTINUE
573 609 DO 605 K=1,14
574      VECUI(K)=VECUI(K)+VVI(K)
575 605 CONTINUE
576      CALL STRIP(VECUI,YP,TOT,CTUI,VIUI,RU,THETAU,CU,BSU,BU,WU)
577      DO 606 K=1,14
578      VITI(K)=VECUI(K)+VIUI(K)
579 606 CONTINUE
580      CALL PERM(VITI,YP,THUI,TORUI,THEO,RU,THETAU,CU,BSU,BU,ENUI
581      C,GAMAXI,A,WU,THI,1,UTI,HF)
582      WRITE(6,607) THU(14),THUI(14)
583 607 FORMAT('OLD THRUST(U.ROTOR)=',1F12.6,' NEW THRUST=',1F12.6)
584      WRITE(6,608) TORU(14),TORUI(14)
585 608 FORMAT('OLD TORQUE=',1F12.6,' NEW TORQUE=',1F12.6)
586      WRITE(6,583)
587 583 FORMAT(//,'***** RE-CAL OF LOWER ROTOR PERFORMANCE *****',//)
588      DO 584 K=1,14
589      VIT(K)=VITI(K)
590 584 CONTINUE
591      THU(14)=THUI(14)
592      TORU(14)=TORUI(14)
593      GOTO 309
594 582 WRITE(6,581)
595 581 FORMAT('DO YOU REQUIRE FURTHER PERFORMANCE COMPUTATIONS?')
596      READ(5,35) M4
597      IF(M4.EQ.YES) GOTO 29
598      GOTO 2056
599      ****
600      C
601      C          START OF FORWARD FLIGHT COMPUTATION
602      C
603      C          ****
604 1510 AU=A
605      AL=A
606      MAND=0
607      C          COMPUTATION OF GLAUERT MEAN INDUCED DOWNWASH, ROTOR ADVANCE AND
608      C          INFLOW RATIOS AND FLAPPING COEFFICIENTS.
609      C          ****
610      VVV=0.0
611      CALL GLAUERT(AU,BU,CAVU,WU,RU,THETAVU,ALPHA,V,VIGU,VVV,TGU)
612      IF(M1.EQ.YES) GOTO 1511
613      VVV=0.0
614      CALL GLAUERT(AL,BL,CAVL,WL,RL,THETAVL,ALPHA,V,VIGL,VVV,TGL)
615 1511 LANDAU=((V*SIN(ALPHA))-VIGU)/VTU
616      MUU=(V*COS(ALPHA))/VTU
```

LINE NUMBER FORTRAN TEXT

```
617      IF(M1.EQ.YES) GOTO 1514
618      LANDAL=((V*SIN(ALPHA))-(VIGL))/VTL
619      MUL=(V*COS(ALPHA))/VTL
620      C      BLADE FLAPPING COEFFS A0,A1,B1
621      1514 PAR1=(THETAU(8)/4.0)*(1.0+(MUU*MUU))+(LANDAU/3.0)
622      LOCKU=3.0*CU(8)*ROE*AU*RU*PU/MASSU
623      EPSILONU=1.5*EU
624      ACU=(LOCKU/(2.0*(1.0+EPSILONU)))*PAR1
625      PAR2=MUU*(8.0*THETAU(8)/3.0)+(2.0*LANDAU)
626      PAR3=1.0-(0.5*MUU*MUU)
627      LANDIU=VIGU/VTU
628      VAR66=-LANDAU
629      KU=ATAN(MUU/VAR66)
630      PAR4=(4.0*MUU*ACU/3.0)+(KU*LANDIU)
631      PAR5=1.0+(0.5*MUU*MUU)
632      PAR5B=8.0*EPSILONU/(PAR3*LOCKU)
633      PAR5C=PAR4/PARS
634      PAR5D=8.0*EPSILONU/(PAR5*LOCKU)
635      WRITE(6,*) KU,LANDIU,PAR4,PAR5,PAR5D
636      PAR5A=PAR2/PAR3
637      A1U=(PAR5A+(PAR5B*PAR5C))/(1.0+(PAR5B*PAR5D))
638      B1U=(PAR5C-(PAR5D*PAR5A))/(1.0+(PAR5B*PAR5D))
639      WRITE(6,5000) ACU,A1U,B1U
640      5000 FORMAT('A0U=',1F8.4,' A1U=',1F8.4,' B1U=',1F8.4)
641      C      WRITE(6,5001)
642      5001 FORMAT('INPUT A0,A1,B1')
643      C      READ(5,*) ACU,A1U,B1U
644      C      IF(M1.EQ.YES) GOTO 1512
645      PAR6=(THETAL(8)/4.0)*(1.0+(MUL*MUL))+(LANDAL/3.0)
646      LOCKL=3.0*CHL(8)*ROE*RL*RL*AL/MASSL
647      EPSILONL=1.5*EL
648      AOL=(LOCKL/(2.0*(1.0+EPSILONL)))*PAR6
649      PAR7=MUL*(8.0*THETAL(8)/3.0)+(2.0*LANDAL)
650      PAR8=1.0-(0.5*MUL*MUL)
651      LANDIL=VIGL/VTL
652      VAR67=-LANDAL
653      KLOW=ATAN(MUU/VAR67)
654      PAR9=(4.0*MUL*AOL/3.0)+(KLOW*LANDIL)
655      PAR10=1.0+(0.5*MUL*MUL)
656      PAR10A=PAR7/PAR8
657      PAR10B=8.0*EPSILONL/(PAR8*LOCKL)
658      PAR10C=PAR9/PAR10
659      PAR10D=8.0*EPSILONL/(PAR10*LOCKL)
660      A1L=(PAR10A+(PAR10B*PAR10C))/(1.0+(PAR10B*PAR10D))
661      B1L=(PAR10C-(PAR10D*PAR10A))/(1.0+(PAR10B*PAR10D))
662      WRITE(6,5926) AOL,A1L,B1L
663      5926 FORMAT('AOL=',1F8.4,' A1L=',1F8.4,' B1L=',1F8.4)
664      NOBLADES=NBU+NBL
665      C      ****
666      C      TOTAL NUMBER OF VORTEX FILAMENT STATION PTS PER HELIX, TOTALSTP
667      1512 TOTALSTP=(NREV*(NFILEASTP-1))+1
668      C      TIME BETWEEN SUCCESSIVE BLADE AZIMUTH STEPS
669      DO 1520 K=1,NOBLADES
670      C      WRITE(6,1537)K
671      1537 FORMAT('K=',I2)
672      IF(FLOAT(K).GT.(BU+0.2)) GOTO 1521
```

LINE NUMBER FORTRAN TEXT

```
673      TIME(K)=2.0*PI/(FLOAT(NFILASTP-1)*WU)
674      RAD(K)=RU
675      GOTO 1520
676 1521 TIME(K)=2.0*PI/(FLOAT(NFILASTP-1)*WL)
677      RAD(K)=RL
678      1520 CONTINUE
679
C
680      C      THE REFERENCE AXES USED ARE: *
681      C      *
682      C      * V,+VE ALONG +VE Y
683      C      *
684      C      V
685      C      *****
686      C      * * *
687      C      * * * K'TH BLADE
688      C      *
689      C      *
690      C      *
691      C      Z      Y EPSI(J,K)
692      C      +VE UPWARD +VE FROM CENTRE
693      C      TO AFT OF DISC
694
C
695      C      FLAPPING PARAMETERS EVALUATED FOR ALL BLADES AROUND THE DISC
696      C      *****
697      DO 2000 K=1,NOBLADES
698      DO 2000 J=1,TOTALSTP
699      FOR1=FLOAT(J-1)
700      FOR2=FLOAT(NFILASTP-1)
701      IF(FLOAT(K).GT.(BU+0.2)) GOTO 2001
702      EPSI(J,K)=(FOR1*2.0*PI/FOR2)+(FLOAT(K-1)*2.0*PI/BU)
703      A0=A0U
704      A1=A1U
705      B1=B1U
706      W=WU
707      GOTO 2002
708 2001 EPSI(J,K)=-(FOR1*2.0*PI/FOR2)+((-BU+FLOAT(K-1))*PI*2.0/BL)
709      A0=A0L
710      A1=A1L
711      B1=-B1L
712      W=WL
713      2002 BETA(J,K)=A0-(A1*COS(EPSI(J,K)))-(B1*SIN(EPSI(J,K)))
714      IF(K.GT.NBU) A1=-A1L
715      IF(K.GT.NBU) B1=B1L
716      DBETA(J,K)=W*((A1*SIN(EPSI(J,K)))-(B1*COS(EPSI(J,K))))
717      2000 CONTINUE
718      C      WRITE(6,5639)
719      5639 FORMAT('BETA DISTRIBUTION IS:')
720      C      DO 5005 MGI=1,4
721      C      WRITE(6,*) (BETA(MG,MGI),MG=1,TOTALSTP)
722      C5005 CONTINUE
723      C      WRITE(6,5009)
724      5009 FORMAT('DBETA DIS. FOR BLADE ONE IS:',//)
725      C      WRITE(6,*) (DBETA(MG,1),MG=1,TOTALSTP)
726
C      *****
727      C      INITIALLY SET UP THREE HELICAL STATION PTS PER BLADE
728      C      (TWO FILAMENTS PER BLADE)
```

LINE NUMBER	FORTRAN TEXT
729	C THE ROTOR WAKE TIP VORTEX COORDINATES ARE GIVEN BY
730	C THE ARRAYS XFV,YFV,ZFV.FOR XFV(J,K),J REFERS TO THE
731	C STATION POINT ON THE K'TH HELIX,I.E.THE HELICAL VORTEX
732	C FILAMENT GENERATED BY THE K'TH BLADE.
733	C *****
734	HORV=V*COS(ALPHA)
735	VERV=V*SIN(ALPHA)
736	DO 2010 K=1,NBLADES
737	XFV(1,K)=-SIN(EPSI(1,K))*COS(BETA(1,K))
738	YFV(1,K)=COS(EPSI(1,K))*COS(BETA(1,K))
739	IF(K.GT.NBU) GOTO 2011
740	ZFV(1,K)=SIN(BETA(1,K))
741	GOTO 2012
742	2011 ZFV(1,K)=SIN(BETA(1,K))-(VSEP/RU)
743	2012 XFV(2,K)=XFV(1,K)
744	XFV(1,K)=-SIN(EPSI(2,K))*COS(BETA(2,K))
745	YFV(2,K)=YFV(1,K)+(HORV*TIME(K)/RAD(K))
746	YFV(1,K)=COS(EPSI(2,K))*COS(BETA(2,K))
747	IF(M6.EQ.YES) VERV=V*SIN(ALPHA)
748	IF(M6.EQ.YES) GOTO 2210
749	RVORT=SQRT(XFV(1,K)**2+YFV(1,K)**2)
750	R=RU
751	V10=V1GU
752	IF(K.GT.NBU) R=RL
753	IF(K.GT.NBU) V10=V1GL
754	IF(RVORT.GT.1.0) VERV=(V*SIN(ALPHA))-(2.0*V10)
755	IF(RVORT.GT.1.0) GOTO 2210
756	IF(M7.EQ.YES) VERV=(V*SIN(ALPHA))-V10
757	IF(M7.EQ.YES) GOTO 2210
758	EPSV=ATAN2(-XFV(1,K),YFV(1,K))
759	IF(K.GT.NBU) EPSV=ATAN2(XFV(1,K),YFV(1,K))
760	VERV=(V*SIN(ALPHA))-(V10*(1.0+RVORT*COS(EPSV)))
761	2210 ZFV(2,K)=ZFV(1,K)+(VERV*TIME(K)/RAD(K))
762	IF(FLOAT(K).GT.(BU+0.2)) GOTO 2014
763	ZFV(1,K)=SIN(BETA(2,K))
764	GOTO 2015
765	2014 ZFV(1,K)=SIN(BETA(2,K))-(VSEP/RU)
766	2015 XFV(3,K)=XFV(2,K)
767	XFV(2,K)=XFV(1,K)
768	XFV(1,K)=-SIN(EPSI(3,K))*COS(BETA(3,K))
769	YFV(3,K)=YFV(2,K)+(HORV*TIME(K)/RAD(K))
770	YFV(2,K)=YFV(1,K)+(HORV*TIME(K)/RAD(K))
771	YFV(1,K)=COS(EPSI(3,K))*COS(BETA(3,K))
772	IF(M6.EQ.YES) VERV=V*SIN(ALPHA)
773	IF(M6.EQ.YES) GOTO 2211
774	RVORT=SQRT(XFV(2,K)**2+YFV(2,K)**2)
775	R=RU
776	V10=V1GU
777	IF(K.GT.NBU) R=RL
778	IF(K.GT.NBU) V10=V1GL
779	IF(RVORT.GT.1.0) VERV=(V*SIN(ALPHA))-(2.0*V10)
780	IF(RVORT.GT.1.0) GOTO 2211
781	IF(M7.EQ.YES) VERV=(V*SIN(ALPHA))-V10
782	IF(M7.EQ.YES) GOTO 2211
783	EPSV=ATAN2(-XFV(2,K),YFV(2,K))
784	IF(K.GT.NBU) EPSV=ATAN2(XFV(2,K),YFV(2,K))

LINE NUMBER	FORTRAN TEXT
785	VERV=(V*SIN(ALPHA))-(V10*(1.0+(RVORT*COS(EPSV))))
786	2211 ZFV(3,K)=ZFV(2,K)+(VERV*TIME(K)/RAD(K))
787	IF(M6.EQ.YES) VERV=V*SIN(ALPHA)
788	IF(M6.EQ.YES) GOTO 2212
789	RVORT=SQRT(XFV(1,K)**2+YFV(1,K)**2)
790	R=R11
791	V10=V1G1
792	IF(K.GT.NBU) R=RL
793	IF(K.GT.NBU) V10=V1GL
794	IF(RVORT.GT.1.0) VERV=(V*SIN(ALPHA))-(2.0*V10)
795	IF(RVORT.GT.1.0) GOTO 2212
796	IF(M7.EQ.YES) VERV=(V*SIN(ALPHA))-V10
797	IF(M7.EQ.YES) GOTO 2212
798	EPSV=ATAN2(-XFV(1,K),YFV(1,K))
799	IF(K.GT.NBU) EPSV=ATAN2(XFV(1,K),YFV(1,K))
800	VERV=(V*SIN(ALPHA))-(V10*(1.0+(RVORT*COS(EPSV))))
801	2212 ZFV(2,K)=ZFV(1,K)+(VERV*TIME(K)/RAD(K))
802	IF(FL0AT(K).GT.(BU+0.2)) GOTO 2016
803	ZFV(1,K)=SIN(BETA(3,K))
804	GOTO 2015
805	2016 ZFV(1,K)=SIN(BETA(3,K))-(VSEP/RU)
806	2017 CONTINUE
807	NOSTPS=3
808	5791 IF(M50.EQ.YES) GOTO 3016
809	C COMPUTATION OF THE INTERACTION BETWEEN FILAMENTS COMMENCES
810	C *****
811	NOM1=2
812	IF(M1.EQ.YES) NOM1=1
813	DO 2043 JKL=1,NOM1
814	IF(JKL.EQ.2) GOTO 2041
815	W=WU
816	R=RU
817	AR=ARU
818	C=CU(8)
819	THETA=THETAU(8)
820	VI=V1G1
821	B=BU
822	EN=ENU
823	GAMAX=GAMAXU
824	MACHNO=MACHNO1
825	GOTO 2042
826	2041 W=WL
827	R=RL
828	AR=ARL
829	C=CHL(8)
830	THETA=THETAL(8)
831	VI=V1GL
832	R=R1L
833	EN=ENL
834	GAMAX=GAMAXL
835	MACHNO=MACHNOL
836	2042 CALL VORPRAM(W,R,AR,C,THETA,0.0,VI,EN,GAMAX,1,0,7,DELTAZIM
837	C,TOTALSTP,V,B,NTYPV,MACHNO)
838	CALL VORTEXAV(VORTEXKC,VORTEXKL,VORTEXKO,VORTEXRC,VORTEXRL
839	C,VORTEXRU,NOSTPS,NORLADES,VORTEXA,VORTEXB,VORTEXC,VORTEXD
840	C,VORTEXE,DELTAZIM,B,R,C,GAMAX)

LINE NUMBER	FORTRAN TEXT
841	2043 CONTINUE
842	C WRITE(6,3300)
843	3300 FORMAT('AVERAGE VORTEX FILAMENT VALUES:',/)
844	DO 3310 K=1,NOBLADES
845	C WRITE(6,3320)K
846	3320 FORMAT('FOLLOWING DATA FOR HELIX',I2,/)
847	C WRITE(6,3330)
848	3330 FORMAT(7X,'RC',7X,'A',7X,'B',7X,'C',7X,'D',7X,'E')
849	C WRITE(6,3340)(VORTEXRC(J,K),VORTEXA(J,K),VORTEXB
850	C C,VORTEXC(J,K),VORTEXD(J,K),VORTEXE(J,K),J=1,TOTALSTP-1)
851	3340 FORMAT(6(1F8.4))
852	3310 CONTINUE
853	GOTO 3015
854	3016 DO 3017 K=1,NOBLADES
855	SIGN=1.0
856	IF(K.GT.NBU) GOTO 3018
857	W=WU
858	T=TGU
859	B=BU
860	MU=MUL
861	R=RU
862	AR=ARU
863	C=CU(8)
864	THETA=THETAU(8)
865	GOTO 3019
866	3018 W=WL
867	SIGN=-1.0
868	T=TGL
869	B=BL
870	MU=MUL
871	R=RL
872	AR=ARL
873	C=CHL(8)
874	THETA=THETAL(8)
875	3019 NTYPV=1
876	CALL RANKINE(V,W,R,AR,C,THETA,EPsi,CIRV,K,NOSTPS,SIGN,M51,T,MU,B)
877	3017 CONTINUE
878	3015 IF(M7.EQ.YES) GOTO 2031
879	IF(M8.EQ.YES) GOTO 2031
880	2017 DO 2020 K=1,NOBLADES
881	DO 2020 L=1,NOBLADES
882	SIGN=1.0
883	MMM=2
884	IF(K.GT.NBU) GOTO 3350
885	GAMAX=GAMAXU
886	R=RU
887	GOTO 3353
888	3350 GAMAX=GAMAXL
889	SIGN=-1.0
890	R=RL
891	3353 IF(K.EQ.L) MMM=1
892	CALL IND(XFV,YFV,ZFV,K,L,XVEL,YVEL,ZVEL,MMM,NOSTPS,R
893	C,VORTEXKC,VORTEXK0,VORTEXRC,VORTEXRL,VORTEXRD,VORTEXA
894	C,VORTEXB,VORTEXC,VORTEXD,VORTEXE,NTYPV,GAMAX,CIRV,SIGN)
895	2020 CONTINUE
896	C *****

LINE NUMBER	FORTRAN TEXT
897	C SUMMATION OF THE VORTEX INDUCED VELOCITIES AT EACH HELICAL
898	C STATION POINT NOW COMMENCES.E.G.THE TOTAL INDUCED VELOCITY
899	C IN THE X DIRECTION AT STATION POINTS 1 AND 2 ON HELIX 1
900	C IS GIVEN BY XVELT(1,1),XVELT(2,1) RESPECTIVELY.
901	C *****
902	2031 DO 2030 J=1,NOSTPS
903	DO 2030 K=1,NOBLADES
904	XVELT(J,K)=0.C
905	YVELT(J,K)=0.C
906	ZVELT(J,K)=0.C
907	2030 CONTINUE
908	IF(M7.EQ.YES) GOTO 2441
909	IF(M8.EQ.YES) GOTO 2441
910	DO 2040 K=1,NOBLADES
911	DO 2040 J=1,NOSTPS
912	DO 2040 L=1,NOBLADES
913	XVELT(J,K)=XVEL(J,K,L)+XVELT(J,K)
914	YVELT(J,K)=YVEL(J,K,L)+YVELT(J,K)
915	ZVELT(J,K)=ZVEL(J,K,L)+ZVELT(J,K)
916	2040 CONTINUE
917	C GOTO 2441
918	DO 6041 K=1,NOPLADES
919	DO 6041 J=1,1
920	SIGN=1.0
921	C=CHL(14)
922	W=WU
923	R=RU
924	IF(K.GT.NFL) GOTO 6042
925	GOTO 6043
926	6042 SIGN=-1.0
927	W=WL
928	R=RL
929	C=CHL(14)
930	6043 VLOCAL=(W*R)+(V*SIGN*SIN(EPSI(J,K)))
931	VVOR=0.176*VLOCAL
932	XVELT(J,K)=XVELT(J,K)+(VVOR*(SIN(EPSI(NOSTPS,K))*COS(BETA(NOSTP C)))
933	YVELT(J,K)=YVELT(J,K)-(VVOR*COS(EPSI(NOSTPS,K))*COS(BETA(NOSTPS C)))
934	ZVELT(J,K)=ZVELT(J,K)-(VVOR*SIN(BETA(NOSTPS,K)))
935	6041 CONTINUE
936	C *****
937	C EVALUATION OF NEW VORTEX FILAMENT LOCATIONS COMMENCES
938	C *****
939	2441 DO 2050 K=1,NOBLADES
940	VIG=VIGU
941	IF(K.GT.NBU) VIG=VIGL
942	CALL POSTN(XFV,YFV,ZFV,XVELT,YVELT,ZVELT,K,XFVNEW,YFVNEW,ZFVNEW
943	CNOSTPS,RAD,TIME,VIG,NBU,M7,M8,M6)
944	2050 CONTINUE
945	NOSTPS=NOSTPS+1
946	IF(NOSTPS.GT.TOTALSTP) NOSTPS=TOTALSTP
947	2051 DO 2060 K=1,NOBLADES
948	DO 2060 J=2,NOSTPS
949	XFV(J,K)=XFVNEW((J-1),K)
950	YFV(J,K)=YFVNEW((J-1),K)
951	
952	

LINE NUMBER	FORTRAN TEXT
953	ZFV(J,K)=ZFVNEW((J-1),K)
954	2060 CONTINUE
955	C *****
956	C SETTING UP THE NEW J=1 VORTEX FILAMENT STATION PT FOR ALL PLADES
957	C *****
958	DO 2070 K=1,NOBLADES
959	XFV(1,K)=-SIN(EPSI(NOSTPS,K))*COS(BETA(NOSTPS,K))
960	YFV(1,K)=COS(EPSI(NOSTPS,K))*COS(BETA(NOSTPS,K))
961	IF(K.GT.NBU) GOTO 2061
962	ZFV(1,K)=SIN(BETA(NOSTPS,K))
963	GOTO 2070
964	2061 ZFV(1,K)=SIN(BETA(NOSTPS,K))-(VSEP/RU)
965	2070 CONTINUE
966	C *****
967	IF(NOSTPS.EQ.TOTALSTP) GOTO 2080
968	GOTO 5791
969	2080 WRITE(6,2085)
970	2085 FORMAT('WAKE REVOLUTIONS COMPLETE, PERM CAL COMMENCES',/)
971	DO 2088 JM=1,NOBLADES
972	DO 2088 J=1,14
973	VELFVT(J,JM)=0.0
974	2088 CONTINUE
975	IF(M1.EQ.YES) GOTO 9091
976	C CLASSICAL WAKE INTERCEPT,YINCEPT2
977	7882 YINCEPT2=(-1.0*RU/RL)-(MUU*VSEP/(LANDAU*RL))
978	WRITE(6,3007) YINCEPT2
979	3007 FORMAT('CLASSICAL WAKE INTERCEPT IS:',1F12.6)
980	IF(M7.EQ.YES) YINCEPT=YINCEPT2
981	IF(M7.EQ.YES) GOTO 3008
982	CALL INCEPT(WU,V,ALPHA,VIGU,KU,VSEP,RU,RL,YINCEPT)
983	3008 WRITE(6,4022) YINCEPT
984	4022 FORMAT('INCEPT FROM HELIX INTERSECTION IS:',1F12.6)
985	C CALCULATION OF VORTEX INDUCED VELOCITIES ON THE BLADES
986	C BEGINS TRANSFER OF AXES FROM STATIONARY AXES IN THE NO
987	C FEATHERING PLANE TO AXES ROTATING WITH THE K'TH BLADE
988	C IS ALSO PERFORMED.
989	C *****
990	9091 K=1
991	2089 DO 2222 J=1,14
992	REPEAT=((0.05*J)+((J-1)*0.05))
993	IF(J.GT.9)REPEAT=(0.9+((J-9)*0.01)+((J-10)*0.01))
994	XP(J)=0.0
995	YP(J)=REPEAT
996	ZP(J)=0.0
997	2222 CONTINUE
998	DO 8500 LM=1,NOBLADES
999	DO 8500 J=1,NOSTPS
1000	ANG=EPSI(NOSTPS,K)
1001	BET=BETA(NOSTPS,K)
1002	ZFV1(J,LM)=ZFV(J,LM)
1003	IF(K.GT.NBU) ZFV1(J,LM)=ZFV(J,LM)+(VSEP/RU)
1004	XFVT(J,LM)=(XFV(J,LM)*COS(ANG))+(YFV(J,LM)*SIN(ANG))
1005	AN1=(YFV(J,LM)*COS(ANG))-(XFV(J,LM)*SIN(ANG))
1006	YFVT(J,LM)=(AN1*COS(BET))+(ZFV1(J,LM)*SIN(BET))
1007	ZFVT(J,LM)=(ZFV1(J,LM)*COS(BET))-(AN1*SIN(BET))
1008	8500 CONTINUE

LINE NUMBER	FORTRAN TEXT
1009	ANG21=2.0*PI
1010	ANG=(AMOD(EPSI(NOSTPS,K),ANG21))*180.0/PI
1011	C WRITE(6,2223)
1012	2223 FORMAT(7X,'XP',7X'YP',7X,'ZP')
1013	C WRITE(6,2224)(XP(J),YP(J),ZP(J),J=1,14)
1014	2224 FORMAT(3(2X,1F8.2))
1015	C WRITE(6,2081)K,ANG
1016	2081 FORMAT('INDUCED VEL ON BLADE',I2,' AT AZTH POS',1F10.4,'DEGS')
1017	DO 3000 L=1,NOBLADES
1018	IF(L.GT.NBU) GOTO 3001
1019	R=RU
1020	T=TGU
1021	B=B11
1022	MU=MUU
1023	B=AU
1024	RC0=RC0U
1025	VS0=VS0U
1026	C=CU(8)
1027	SIGN=1.0
1028	GOTO 3003
1029	3001 R=RL
1030	T=TGL
1031	R=RL
1032	MU=MUL
1033	B=BL
1034	RC0=RC0L
1035	VS0=VS0L
1036	C=CHL(8)
1037	IF(L.GT.NBU) SIGN=-1.0
1038	3003 CALL RANKINE(V,W,R,AR,C,THETA,EPSI,CIRV,L,NOSTPS,SIGN,M51,T,MU,1)
1039	C IF((L.EQ.1).AND.(K.EQ.1)) WRITE(6,5555)(CIRV(J,L),J=1,NOSTPS-1)
1040	5555 FORMAT('CIR=',1F10.4)
1041	CALL CAL(XFVT,YFVT,ZFVT,XP,YP,ZP,1,VELFV,0,R,B,L,XC,KL,K0,RC,RL
1042	C,VA,VB,VC,VD,VE,1,GAMAX,RC0,VS0,C,1,SIGN,2,CIRV)
1043	C WRITE(6,3004)L,K
1044	3004 FORMAT(/,'FROM HELIX',I2,'WITH COORDS WRT',I2,' BLADE AXES IS:')
1045	C WRITE(6,3333)
1046	3333 FORMAT(7X,'XV',7X,'YV',7X,'ZV')
1047	C WRITE(6,2224)(XFVT(J,L),YFVT(J,L),ZFVT(J,L),J=1,NOSTPS)
1048	C WRITE(6,400)(VELFV(J,L),J=1,14)
1049	DO 3009 J=1,14
1050	VELFVT(J,K)=VELFVT(J,K)+VELFV(J,L)
1051	3009 CONTINUE
1052	3000 CONTINUE
1053	K=K+1
1054	IF(K.LE.NOBLADES) GOTO 2089
1055	C *****
1056	NOM21=0
1057	K=1
1058	3006 IF(K.GT.NBU) GOTO 7016
1059	R=RU
1060	W=WU
1061	SIGN=1.0
1062	GOTO 7017
1063	7016 R=RL
1064	W=WL

LINE NUMBER	FORTRAN TEXT
1065	SIGN=-1.0
1066	7017 VVV=VELFVT(1,1)
1067	NOM21=NOM21+1
1068	IF(NOM21.GT.1) GOTO 7018
1069	CALL GLAUERT(AU,BU,CAVU,WU,RU,THETAVU,ALPHA,V,VIGU,VVV,TGU)
1070	IF(M1.EQ.YES) GOTO 7018
1071	IJ=NBU+1
1072	VVV=VELFVT(1,IJ)
1073	CALL GLAUERT(AL,PL,CAVL,WL,RL,THETAVL,ALPHA,V,VIGL,VVV,TGL)
1074	7018 DO 3005 J=1,14
1075	RADB(J)=((0.05*j)+((J-1)*0.05))*COS(BETA(NOSTPS,K))
1076	IF(J.GT.9)RADB(J)=(0.9+((J-9)*0.01)+((J-10)*0.01))
1077	C*COS(BETA(NOSTPS,K))
1078	IF(K.LE.NHU) GOTO 3011
1079	C COMPUTATION OF UPPER ROTOR WAKE VELOCITIES ON LOWER ROTOR
1080	XPT(J)=-RADB(J)*SIN(EPSI(NOSTPS,K))
1081	YPT(J)=(RADB(J)*COS(EPSI(NOSTPS,K)))-((1.0*RU/RL)+YINCEPT)
1082	RG=SQRT(XPT(J)**2+YPT(J)**2)
1083	GG=RU/RL
1084	IF(RG.GT.GG) GOTO 3011
1085	IF(RG.LE.GG) VELFVT(J,K)=VELFVT(1,1)
1086	3011 UP1=(V*SIN(ALPHA)*COS(BETA(NOSTPS,K)))-VELFVT(J,K)
1087	UP2=-(R*RADB(J)*DBETA(NOSTPS,K))-(V*COS(ALPHA)*COS(EPSI(NOSTPS,K)))
1088	C*SIN(BETA(NOSTPS,K)))
1089	IF(M7.EQ.YES) GOTO 7014
1090	C IF(M6.EQ.YES) GOTO 7014
1091	IF(K.LE.NBU) UP3=-VIGU*(1.0+(RADB(J)*KU*COS(EPSI(NOSTPS,K))))
1092	IF(K.GT.NBU) UP3=-VIGL*(1.0+(RADB(J)*KLOW*COS(EPSI(NOSTPS,K))))
1093	IF(YINCEPT.GT.1.0) GOTO 7012
1094	IF(ABS(YPT(J)).LT.1E-4) GOTO 3012
1095	IF(ABS(XPT(J)).LT.1E-4) GOTO 8734
1096	ANGRG=ATAN2(XPT(J),YPT(J))
1097	GOTO 3014
1098	3012 IF(YPT(J).LT.0.0) ANGRG=3.0*PI/2.0
1099	IF(XPT(J).GT.0.0) ANGRG=PI/2.0
1100	GOTO 3014
1101	8734 IF(YPT(J).LT.0.0) ANGRG=PI
1102	IF(YPT(J).GT.0.0) ANGRG=0.0
1103	3014 IF((RG.LE.GG).AND.(K.GT.NHU)) UP3=(-2.0*VIGU*(GG+(RG*COS
1104	C(ANGRG)*KU))+UP3
1105	GOTO 7012
1106	7014 IF(K.LE.NBU) UP3=-VIGU
1107	IF(K.GT.NBU) UP3=-VIGL
1108	IF(YINCEPT.GT.1.0) GOTO 7012
1109	IF((RG.LE.GG).AND.(K.GT.NBU)) UP3=-2.0*VIGU
1110	7012 VMOM(J)=-UP3
1111	VFLAP(J)=-UP2
1112	UP(J,K)=-(UP1+UP2+UP3)
1113	UT(J,K)=(W*RADB(J)*R)+(V*SIGN*COS(ALPHA)*SIN(EPSI(NOSTPS,K)))
1114	THI(J)=UP(J,K)/UT(J,K)
1115	UTI(J)=UT(J,K)
1116	3005 CONTINUE
1117	C WRITE(6,888)
1118	8888 FORMAT(6X,'THI',7X,'UT',/)
1119	C WRITE(6,8889)(THI(J),UTI(J),J=1,14)
1120	8889 FORMAT(2(1F10.4,6X))

LINE NUMBER	FORTRAN TEXT
1121	IF(K.GT.NBU) GOTO 9001
1122	SIGN=1.0
1123	BET=BETA(NOSTPS,K)
1124	AZM=EPSI(NOSTPS,K)
1125	R=RU
1126	B=BU
1127	W=WU
1128	DO 9002 J=1,14
1129	THETAR(J)=THETAU(J)
1130	CHORDR(J)=CU(J)
1131	BSR(J)=BSU(J)
1132	9002 CONTINUE
1133	GOTO 9004
1134	9001 R=RL
1135	B=BL
1136	W=WL
1137	SIGN=-1.0
1138	BET=BETA(NOSTPS,K)
1139	AZM=EPSI(NOSTPS,K)
1140	DO 9003 J=1,14
1141	THETAR(J)=THETAL(J)
1142	CHORDR(J)=CHL(J)
1143	BSR(J)=BSL(J)
1144	9003 CONTINUE
1145	9004 IJKL=2
1146	C COMPUTATION OF BLADE PERFORMANCE
1147	C *****
1148	CALL PERM(VIT,PADB,TH,TOR,THEO,R,THETAR,CHORDR,BSR,B,ENERGY
1149	C,GAMAX,A,W,THI,IJKL,UTI,HF)
1150	C WRITE(6,8091)
1151	8091 FORMAT('I AM HERE TOO')
1152	HFORCE(K)=HF(14)
1153	THRUST(K)=TH(14)
1154	TOQUEUE(K)=TOR(14)
1155	C *****
1156	C OUTPUT DATA
1157	C *****
1158	ANG12=2.0*PI
1159	ANGBLADE=(AMOD(EPSI(NOSTPS,K),ANG12))*180.0/PI
1160	WRITE(6,7778) ANGBLADE
1161	7778 FORMAT('BLADE AT AZIMUTH POSTN ',1F12.6,' DEGS')
1162	WRITE(6,7001) BETA(NOSTPS,K),DBETA(NOSTPS,K)
1163	7001 FORMAT('BETA=',1F12.6,' DBETA=',1F12.6)
1164	C WRITE(6,7002)
1165	7002 FORMAT('TOTAL VORTEX INDUCED VELOCITY IS:')
1166	C WRITE(6,400)(VELFVT(J,K),J=1,14)
1167	C WRITE(6,7003)
1168	7003 FORMAT('MOMENTUM VELOCITY DISTRIBUTION IS:')
1169	C WRITE(6,400)(VMOM(J),J=1,14)
1170	C WRITE(6,7005)
1171	7005 FORMAT('FLAP VELOCITY DISTRIBUTION IS:')
1172	C WRITE(6,400)(VFLAP(J),J=1,14)
1173	C WRITE(6,7004)
1174	7004 FORMAT('TOTAL VELOCITY DISTRIBUTION IS:')
1175	C WRITE(6,400)(UP(J,K),J=1,14)
1176	WRITE(6,7777) THRUST(K),TORQUE(K),K

LINE NUMBER	FORTRAN TEXT
1177	7777 FORMAT('THRUST= ',1F9.3,' TORQUE= ',1F9.3,' (BLADE',I2,')')
1178	K=Y+1
1179	IF(K.LE.NOBLADES) GOTO 3006
1180	NOSTPS=TOTAL STP
1181	MAND=MAND+1
1182	HFORCEU(MAND)=0.0
1183	THRUSTU(MAND)=0.0
1184	TORQUEU(MAND)=0.0
1185	HFORCEL(MAND)=0.0
1186	THRUSTL(MAND)=0.0
1187	TORQUEL(MAND)=0.0
1188	DO 2094 K=1,NOBLADES
1189	IF(K.GT.NBU) GOTO 2095
1190	HFORCEU(MAND)=HFORCEU(MAND)+HFORCE(K)
1191	THRUSTU(MAND)=THRUSTU(MAND)+THRUST(K)
1192	TORQUEU(MAND)=TORQUEU(MAND)+TORQUE(K)
1193	GOTO 2094
1194	2095 THRUSTL(MAND)=THRUSTL(MAND)+THRUST(K)
1195	HFORCEL(MAND)=HFORCEL(MAND)+HFORCE(K)
1196	TORQUEL(MAND)=TORQUEL(MAND)+TORQUE(K)
1197	2094 CONTINUE
1198	ALPHACU=-(HFORCEU(MAND)/THRUSTU(MAND))*180.0/PI
1199	IF(M1.EQ.YES) GOTO 5003
1200	ALPHACL=-(HFORCEL(MAND)/THRUSTL(MAND))*180.0/PI
1201	5003 WRITE(6,2098) THRUSTU(MAND),TORQUEU(MAND)
1202	2098 FORMAT('UPPER ROTOR,THRUST= ',1F12.6,'N',' TORQUE= ',1F12.6,'N/M
1203	C,')
1204	WRITE(6,8021) HFORCEU(MAND),ALPHACU
1205	8021 FORMAT('CORRESPONDING H FORCE= ',1F12.6,'N',' ALPHA= ',1F8.4,'DEGS
1206	IF(M1.EQ.YES) GOTO 1010
1207	WRITE(6,2099) THRUSTL(MAND),TORQUEL(MAND)
1208	2099 FORMAT('LOWER ROTOR,THRUST= ',1F12.6,'N',' TORQUE= ',1F12.6,'N/M
1209	C,')
1210	WRITE(6,8021) HFORCEL(MAND),ALPHACL
1211	C *****NOTE THE FOLLOWING DOES NOT TAKE INTO ACCOUNT OF VARIABLE
1212	C BLADES STEPPED FULLY AROUND IN EACH ROTOR*****
1213	C
1214	1010 VARA=360.0/(BU*DELTAZIM)
1215	C WRITE(6,1011)VARA,MAND
1216	1011 FORMAT('VARA= ',1F12.6,' MAND= ',I2)
1217	IF(FLOAT(MAND).GE.VARA) GOTO 2092
1218	FOR1=FLOAT(TOTAL STP+MAND-1)
1219	DO 2090 K=1,NOBLADES
1220	IF(K.GT.NBU) GOTO 2091
1221	EPSI(NOSTPS,K)=((FOR1*2.0*PI/FOR2)+(FLOAT(K-1)*2.0*PI/BU))
1222	FLAP=-(A1U*COS(EPSI(NOSTPS,K)))-(B1U*SIN(EPSI(NOSTPS,K)))
1223	BETA(NOSTPS,K)=A0U+FLAP
1224	DBETA(NOSTPS,K)=WU*((A1U*SIN(EPSI(NOSTPS,K)))-(B1U*COS
1225	(EPSI(NOSTPS,K))))
1226	GOTO 2090
1227	2091 ANL=(-BU+FLOAT(K-1))*2.0*PI/BL
1228	EPSI(NOSTPS,K)=-(FOR1*2.0*PI/FOR2)+ANL
1229	FLAP=-(A1L*COS(EPSI(NOSTPS,K)))+(B1L*SIN(EPSI(NOSTPS,K)))
1230	BETA(NOSTPS,K)=A0L+FLAP
1231	DBETA(NOSTPS,K)=WL*((-A1L*SIN(EPSI(NOSTPS,K)))-(B1L*COS
1232	

LINE NUMBER	FORTRAN TEXT
1233	C(EPSI(NOSTPS,K)))
1234	2093 CONTINUE
1235	GOTO 5791
1236	2092 WRITE(6,2093)
1237	2093 FORMAT('BLADES SUCCESSFULLY STEPPED AROUND DISC')
1238	THAV=0.0
1239	TORAV=0.0
1240	HFAV=0.0
1241	DO 2096 K=1,MAND
1242	IF(M1.EQ.YFS) THRUSTL(K)=0.0
1243	IF(M1.EQ.YES) TORQUEL(K)=0.0
1244	IF(M1.EQ.YES) HFORCEL(K)=0.0
1245	HFAV=HFORCEU(K)+HFORCEL(K)+HFAV
1246	THAV=THRUSTU(K)+THRUSTL(K)+THAV
1247	TORAV=TORQUEU(K)+TORQUEL(K)+TORAV
1248	2096 CONTINUE
1249	THAV=THAV/FLOAT(MAND)
1250	TORAV=TORAV/FLOAT(MAND)
1251	HFAV=HFAV/FLOAT(MAND)
1252	WRITE(6,2097)THAV,TORAV
1253	2097 FORMAT('TOT THRUST=',1F12.6,'N',' TOT TORQUE=',1F12.6,'N/M')
1254	ALPHAF=(-HFAV/THAV)*180.0/PI
1255	WRITE(6,8021) HFAV,ALPHAF
1256	GOTO 582
1257	2056 STOP
1258	END

LINE NUMBER FORTRAN TEXT

```
1259      SUBROUTINE RANKINE(V,W,R,AR,C,THETA,EPsi,CIR,K,NOSTPS,SIGN,M51
1260      C,T,MU,B)
1261      REAL MU
1262      INTEGER YES
1263      DIMENSION EPsi(100,20),VT(100,20),VS0(100,20),RC0(100,20)
1264      DIMENSION RE(100,20),CIR(100,20),CIROLL(100,20)
1265      DATA YES/1HY/
1266      DATA VIS/1.455E-5/,PI/3.1415927/,ROE/1.225/
1267      VAR1=T/(ROE*B*R*W*R*(0.5-(3.0*(MU**2)/16.0)))
1268      DO 10 J=1,NOSTPS
1269      L=NOSTPS-(J-1)
1270      VT(J,K)=(W*R)+(SIGN*V*SIN(EPsi(L,K)))
1271      VS0(J,K)=(1.0+(6.6/AR))*(2.64E-2)*THETA*VT(J,K)*180.0/PI
1272      RE(J,K)=VT(J,K)*C/VIS
1273      RC0(J,K)=C*1.2*(RE(J,K)**(-0.2))*VS0(J,K)/VT(J,K)
1274      CIR(J,K)=2.0*PI*VS0(J,K)*RC0(J,K)
1275      CIROLL(J,K)=VAR1*(1.0-(1.5*MU*SIGN*SIN(EPsi(L,K))))
1276      10 CONTINUE
1277      DO 20 L=1,NOSTPS-1
1278      CIR(L,K)=(CIR(L,K)+CIR(L+1,K))/2.0
1279      IF((L.GT.3).AND.(M51.EQ.YES)) CIR(L,K)=(CIROLL(L,K)+CIROLL(L+1,K)
1280      C/2.
1281      20 CONTINUE
1282      RETURN
1283      END
```

LINE NUMBER FORTRAN TEXT

```
1284      SUBROUTINE CALC(XV, YV, ZV, XP, YP, ZP, NO, VINDV, J, R, B, JJ, KC, KL, KD
1285      C, RC, RL, PR, VA, VH, C, D, E, NCOUNT, GAMAX, RC0, VSC, CC, NTYPV, SIGN, NTYPC
1286      C, CIR)
1287      REAL KC, KL, KG
1288      DIMENSION RC(2000)
1289      DIMENSION XP(40), YP(40), ZP(40)
1290      DIMENSION XV(100,20), YV(100,20), ZV(100,20), VINDV(100,20)
1291      DIMENSION CIR(100,20), VIV(100), VIVT(100)
1292      DIMENSION THETA(100)
1293      COMMON/BL1/WY(40)
1294      COMMON/BL21/ N, NFILASTP
1295      DATA ROE, PI/1.225, 3.1415927/
1296      M=1
1297      C      WRITE(6,2010)NCOUNT, N, NTYPV
1298      2010 FORMAT('NCOUNT=' ,I2, ' N=' ,I2, ' NTYPV=' ,I2)
1299      C      WRITE(6,90)
1300      90      FORMAT('H',10X,'VORTEX X COORD',10X,'VORTEX Y COORD',10X,'VORTEX Z
1301      C COORD')
1302      C      WRITE(6,91)(XV(L),YV(L),ZV(L),L=1,7)
1303      91      FORMAT(' ',10X,1F14.4,10X,1F14.4,10X,1F14.4)
1304      22      DO 40 K=1, N-1
1305      THETA(K)=(K-1)*2*PI/(NFILASTP-1)
1306      CD1=(XP(M)-XV((K+1),JJ))*(YP(M)-YV(K,JJ))
1307      CD2=(YP(M)-YV((K+1),JJ))*(XP(M)-XV(K,JJ))
1308      CD=(CD1-CD2)
1309      C1=(XP(M)-XV((K+1),JJ))**2
1310      C2=(YP(M)-YV((K+1),JJ))**2
1311      C3=(ZP(M)-ZV((K+1),JJ))**2
1312      AP=SQRT(C1+C2+C3)
1313      C4=(XP(M)-XV(K,JJ))**2
1314      C5=(YP(M)-YV(K,JJ))**2
1315      C6=(ZP(M)-ZV(K,JJ))**2
1316      BP=SQRT(C4+C5+C6)
1317      A4=XV((K+1),JJ)*XV(K,JJ)
1318      A5=(YP(M)-YV((K+1),JJ))*(YP(M)-YV(K,JJ))
1319      A6=ZV((K+1),JJ)*ZV(K,JJ)
1320      A7=(AP+BP)/(AP*BP)
1321      A8=R*((AP*PP)+A4+A5+A6)
1322      F=A7/A8
1323      IF(NTYPC.EQ.1) CIR(K,JJ)=2.0*PI*VSD*RC0
1324      IF(K.EQ.1) GOTO 540
1325      C      CORE
1326      C      CHECK IF BLADE TIP STATION POINTS ARE LOCATED INSIDE VORTEX
1327      VN1=(XV(K+1,JJ)-XV(K,JJ))**2
1328      VN2=(YV(K+1,JJ)-YV(K,JJ))**2
1329      VN3=(ZV(K+1,JJ)-ZV(K,JJ))**2
1330      AB=SQRT(VN1+VN2+VN3)
1331      IF((BP.LT.1E-3).OR.(AB.LT.1E-3)) GOTO 2020
1332      GOTO 2021
1333      2020 WRITE(6,2030)
1334      2030 FORMAT('BP OR AP LESS THAN 1E-3')
1335      GOTO 540
1336      2021 IF(NCOUNT.EQ.1) GOTO 778
1337      ANGLEB=ACOS(((BP**2)+(AB**2)-(AP**2))/(2.0*BP*AB))
1338      H=A8*(BP*SIN(ANGLEB))*R
1339      IF(NTYPV.EQ.1) GOTO 531
```

LINE NUMBER	FORTRAN TEXT
1340	IF(NTYPV.EQ.2) GOTO 532
1341	IF(H.GT.R0) GOTO 500
1342	IF((H.GT.RL).AND.(H.LE.R0)) GOTO 510
1343	IF((H.GT.RC(K)).AND.(H.LE.RL)) GOTO 520
1344	IF(H.LE.RC(K)) GOTO 530
1345	500 CIR(K,JJ)=K0
1346	GOTO 778
1347	510 CIR(K,JJ)=(1.C-EXP((-D+H/CC)+E))*0.99*GAMAX
1348	GOTO 778
1349	520 CIR(K,JJ)=((V1*ALOG(H/CC))+C)*0.99*GAMAX
1350	GOTO 778
1351	530 CIR(K,JJ)=KC*(H/RC(K))**2
1352	GOTO 778
1353	531 IF(H.GT.RC(K)) GOTO 778
1354	CIR(K,JJ)=KC*(H/RC(K))**2
1355	GOTO 778
1356	532 IF(H.GT.R0) GOTO 533
1357	IF((H.LE.RC).AND.(H.GT.RC(K))) GOTO 534
1358	CIR(K,JJ)=KC*(H/RC(K))**2
1359	GOTO 778
1360	533 CIR(K,JJ)=K0
1361	GOTO 778
1362	534 FF=KC/(((RC0+L.0018)/CC)**(.778))
1363	CIR(K,JJ)=FF*(((H+0.0018)/CC)**(.778))
1364	GOTO 778
1365	540 IF((YV(K,JJ).LT.1.01).AND.(YV(K,JJ).GT.0.99))GOTO 777
1366	GOTO 778
1367	777 IF(NO.EQ.1) GOTO 779
1368	GOTO 778
1369	779 SM=(1-YP(M))*R
1370	IF(SM.LT.RC0) GOTO 801
1371	GOTO 778
1372	801 VIV(K)=VSO*SM/RC0
1373	GOTO 40
1374	778 VIV(K)=SIGN*((CIR(K,JJ)*F)/(4*PI))*CD
1375	C WRITE(6,2000)K,JJ,CIR(K,JJ)
1376	2000 FORMAT('CIR(*,I2,I2,*)=',1F12.6)
1377	C CHECK COMPLETE
1378	40 CONTINUE
1379	C WRITE(6,51)
1380	51 FORMAT('H',*)
1381	VIVT(1)=VIV(1)
1382	DO 45 I=2,N-1
1383	VIVT(I)=VIV(I)+VIVT(I-1)
1384	45 CONTINUE
1385	VINDV(M,JJ)=VIVT(N-1)
1386	M=M+1
1387	IF(M.LE.14)GOTO 22
1388	C WRITE(6,80)
1389	30 FORMAT('H',TOTAL VORTEX INDUCED VELOCITY AT EACH STATION
1390	CPOINT IS')
1391	C WRITE(6,*)(VINDV(L),L=1,14)
1392	RETURN
1393	END

LINE NUMBER FORTRAN TEXT

```
1394      SUBROUTINE BLVOC0(XV,YV,ZV,BB,I)
1395      DIMENSION XV(100,20),YV(100,20),ZV(100,20),THETA(100)
1396      COMMON/BL21/ N,NFILASTP
1397      PI=3.1415927
1398      C      VORTEX COORDS FROM OTHER BLADES
1399      DO 31 K=1,N
1400      THETA(K)=(K-1)*2*PI/(NFILASTP-1)
1401      AB=SQRT(YV(K,1)**2+XV(K,1)**2)
1402      YV(K,I)=AB*COS(((2*PI)/BB)+THETA(K))
1403      XV(K,I)=AB*SIN(((2*PI)/BB)+THETA(K))
1404      ZV(K,I)=ZV(K,1)
1405      31  CONTINUE
1406      RETURN
1407      END
```

LINE NUMBER FORTRAN TEXT

```
1408      SUBROUTINE LANDG(XV,YV,ZV,CT,B,BS,R)
1409      DIMENSION XV(100,20),YV(100,20),ZV(100,20)
1410      DIMENSION THETA(100),RV(100)
1411      COMMON/BL21/ A1,A2,A3
1412      COMMON/BL21/ N,NFILASTP
1413      DATA ROE,PI/1.225,3.1415927/
1414      C      LANDGREBE WAKE COEFFS.
1415      A1=-0.25*(CT/BS)
1416      A2=-1.41*SQRT(CT/2)
1417      A3=0.145*(27*CT)
1418      C      VORTEX FILAMENT ANGLE
1419      DO 30 K=1,N
1420      THETA(K)=(K-1)*2*PI/(NFILASTP-1)
1421      IF(THETA(K)-PI)3,4,4
1422      3      ZV(K,1)=A1*THETA(K)
1423      GOTO 5
1424      4      ZV(K,1)=(A1*2*PI/B)+A2*(THETA(K)-2*PI/B)
1425      5      RV(K)=0.78+0.22*EXP(-A3*THETA(K))
1426      XV(K,1)=RV(K)*SIN(THETA(K))
1427      YV(K,1)=RV(K)*COS(THETA(K))
1428      30  CONTINUE
1429      RETURN
1430      END
```

```

LINE NUMBER FORTRAN TEXT

1431      SUBROUTINE STRIP(VO,Y,TOT,CT,VI,R,BETA,C,BS,B,A,W)
1432      REAL MACHNO
1433      DIMENSION EBETA(40),VAR7(40),BETA(40),C(40)
1434      DIMENSION Y(40),BS(40)
1435      DIMENSION VO(40),T(40),VI(40),TT(40)
1436      DIMENSION AN(40)
1437      DIMENSION AA(40)
1438      DATA ROE,PI/1.225,3.1415927/
1439      VAR8=BETA(8)*180/PI
1440      DO 5 I=1,14
1441      EBETA(I)=TAN(VO(I)/(W*Y(I)*R))
1442      5  CONTINUE
1443      C  WRITE(6,300)VAR8
1444      300 FORMAT('H','GEOMETRIC ANGLE OF INCIDENCE (75XR) IS:',1F8.4,'DEGS')
1445      C  WRITE(6,400)R
1446      400 FORMAT(' ','BLADE RADIUS IS:',1F8.4,'M')
1447      C  WRITE(6,401)(C(L),L=1,14)
1448      401 FORMAT(' ','BLADE CHORD AT .75R IS:',1F8.4,'M')
1449      C  WRITE(6,402)(BS(L),L=1,14)
1450      402 FORMAT(' ','ROTOR SOLIDITY IS:',1F8.4)
1451      C  WRITE(6,301)
1452      301 FORMAT(' ','ELEMENTAL INFLOW ANGLES FROM APPARENT VERTICAL FLIGH')
1453      C  C INCIDENT VELOCITIES ARE:')
1454      C  WRITE(6,302)(EBETA(L),L=1,14)
1455      302 FORMAT(' ',2F8.4)
1456      DO 10 I=1,14
1457      VAR1=(VO(I)/2)+(BS(I)*A*W*R/16)
1458      VAR2=2*((BETA(I)*Y(I)*W*R)-VO(I))
1459      VAR3=(4*VO(I)*VO(I))/(BS(I)*A*W*R)
1460      VAR4=RS(I)*A*W*R/16.
1461      VAR7(I)=1.0+((VAR2)/(VAR3+VO(I)+VAR4))
1462      VI(I)=VAR1*(-1.0+SQRT(ABS(VAR7(I))))
1463      AN(I)=(VI(I)+VO(I))/(W*Y(I)*R)
1464      MACHNO=(W*R*Y(I))/340.0
1465      PRANDTL=1.0/SQRT(1.0-(MACHNO**2))
1466      VVV=COS(AN(I))*PRANDTL
1467      AA(I)=(BETA(I)-AN(I))*180.0/PI
1468      IF(AA(I).LT.0.0) GOTO 36
1469      IF(I.LE.9) GOTO 20
1470      GOTO 21
1471      20  T(I)=0.5*ROE*(W*R*Y(I))*2*A*C(I)*0.10*R*(BETA(I)-AN(I))*VVV
1472      GOTO 10
1473      21  T(I)=0.5*ROE*(W*R*Y(I))*2*A*C(I)*0.02*R*(BETA(I)-AN(I))*VVV
1474      GOTO 10
1475      36  T(I)=0.0
1476      10  CONTINUE
1477      C  WRITE(6,303)
1478      303 FORMAT(' ','INDUCED VELOCITY(STRIPE) SQRT QUANTITY:')
1479      C  WRITE(6,304)(VAR7(L),L=1,14)
1480      304 FORMAT(' ',2F8.4)
1481      C  WRITE(6,305)
1482      305 FORMAT(' ','EFFECTIVE ELEMENTAL ANGLE OF INCIDENCE IS:')
1483      C  WRITE(6,306)(AA(L),L=1,14)
1484      306 FORMAT(' ',2F8.4)
1485      VAR9=1.0
1486      TT(1)=T(1)

```

LINE NUMBER FORTRAN TEXT

```
1487      DO 80 I=2,14
1488      TT(I)=T(I)+TT(I-1)
1489      80 CONTINUE
1490      CT=(B*TT(14))/(ROE*(W*R)**2*PI*R**2)
1491      C WRITE(6,100)
1492      100 FORMAT(' ','THRUST WITHOUT TIP LOSS IS:')
1493      C WRITE(6,*) TT(14)
1494      C WRITE(6,91)CT
1495      91 FORMAT(' ','THRUST COEFF. WITHOUT TIP LOSS IS:',1F8.4)
1496      C TIP LOSS FACTOR
1497      IF(CT.LT.0.0) GOTO 592
1498      VARS=1-(SQRT(2.0*CT)/B)
1499      C WRITE(6,800)VARS
1500      800 FORMAT(' ','TIP LOSS FACTOR IS:',1F8.4)
1501      GOTO 806
1502      592 VARS=1.0
1503      806 DO 30 I=1,14
1504      IF(Y(I).GT.VARS) GOTO 31
1505      GOTO 30
1506      31 T(1)=0.0
1507      30 CONTINUE
1508      C DO 33 K=1,14
1509      C IF(VI(K).LT.0.0) GOTO 34
1510      C GOTO 33
1511      C VI(K)=0.0           LINE=34
1512      C T(K)=0.0
1513      C CONTINUE           LABEL=33
1514      C WRITE(6,89)
1515      89 FORMAT(' ','STRIP INDUCED VELS. ARE:')
1516      C WRITE(6,*)(VI(L),L=1,14)
1517      C WRITE(6,90)
1518      90 FORMAT(' ','STRIP ELEMENTAL LIFTS ARE:')
1519      C WRITE(6,*)(T(L),L=1,14)
1520      DO 32 I=2,14
1521      TT(I)=T(I)+TT(I-1)
1522      32 CONTINUE
1523      TOT=TT(14)
1524      CT=(B*TT(14))/(ROE*(W*R)**2*PI*R**2)
1525      C WRITE(6,200) TOT
1526      200 FORMAT(' ','THRUST VALUE WITH TIP LOSS IS:',1F12.6,'N')
1527      RETURN
1528      END
```

LINE NUMBER FORTRAN TEXT

```
1529      SUBROUTINE PERM(VIT,Y,TH,TOR,DT,R,THETA,C,BS,B,ENERGY,GAMAX
1530      C,A,W,THI,NUM,UT,DHSUM)
1531      REAL MACHNO
1532      DIMENSION DL(40),DPD(40),DH(40),DHSUM(40)
1533      DIMENSION GAMA(14),TORITIP(14),DL2D(40)
1534      DIMENSION TORIS(40),BS(40),CL(40),TORPS(40)
1535      DIMENSION Y(40),THI(40),VIT(40),DT(40),CDO(40),TORI(40),
1536      C TORP(40),TH(40),TOR(40),C(40),THETA(40),UT(40)
1537      COMMON/BL22/ BETA,AZIMUTH,SIGN
1538      DATA ROE,PI/1.225,3.1415927/
1539      DO 50 I=1,14
1540      IF(NUM.EQ.2) GOTO 95
1541      THI(I)=VIT(I)/(W*Y(I)*R)
1542      95  IF(ABS(THETA(I)-THI(I)).GT.0.21) GOTO 81
1543      IF((THETA(I)-THI(I)).LT.0.0) WRITE(6,84) I
1544      VELR=W*R*Y(I)
1545      IF(NUM.EQ.2) VELR=UT(I)
1546      IF(VELR.LT.0.0) GOTO 81
1547      MACHNO=VELR/340.0
1548      VV=COS(THI(I))
1549      VVV=1.0/(1.0-(MACHNO**2))
1550      IF(I.LE.9) GOTO 36
1551      GOTO 37
1552      36  DL(I)=0.5*ROE*(VELR**2)*A*C(I)*0.10*R*(THETA(I)-THI(I))*VVV
1553      DL2D(I)=DL(I)/(0.1*R)
1554      GAMA(I)=DL(I)/(ROE*VELR*0.1*R)
1555      GOTO 38
1556      37  DL(I)=0.5*ROE*(VELR**2)*A*C(I)*0.02*R*(THETA(I)-THI(I))*VVV
1557      IF((I.EQ.14).AND.(DL(I).LT.0.0)) DL(I)=0.0
1558      DL2D(I)=DL(I)/(0.02*R)
1559      GAMA(I)=DL(I)/(ROE*VELR*0.02*R)
1560      C PROFILE DRAG COEFF.
1561      38  PAR1=ABS(THETA(I)-THI(I))
1562      CDO(I)=0.0087-(0.0216*PAR1)+(0.4*PAR1**2)
1563      C INDUCED TORQUE
1564      TORI(I)=DL(I)*Y(I)*THI(I)*R
1565      IF(I.LE.9) GOTO 39
1566      GOTO 40
1567      C PROFILE TORQUE
1568      39  TORP(I)=0.5*ROE*(VELR**2)*Y(I)*R*C(I)*0.10*CDO(I)*R*VV
1569      GOTO 50
1570      40  TORP(I)=0.5*ROE*(VELR**2)*Y(I)*R*C(I)*0.02*CDO(I)*R*VV
1571      GOTO 50
1572      81  DL(I)=0.0
1573      TORI(I)=0.0
1574      TORP(I)=0.0
1575      C WRITE(6,82)I
1576      82  FORMAT('BLADE AT STATION PT.',I2,' IS STALLED')
1577      84  FORMAT('BLADE ELEMENT AT STATION PT.',I2,' IS AT A -VE A-O-A')
1578      50  CONTINUE
1579      DO 51 I=1,14
1580      DPD(I)=TORP(I)/(Y(I)*R*COS(THI(I)))
1581      DT(I)=(DL(I)*COS(THI(I)))-(DPD(I)*SIN(THI(I)))
1582      IF(NUM.EQ.2) DT(I)=DT(I)*COS(BETA)
1583      IF(NUM.EQ.2) GOTO 52
1584      GOTO 51
```

LINE NUMBER FORTRAN TEXT

```

1585      52  VAR1=(DPD(I)*COS(THI(I)))+(DL(I)*SIN(THI(I)))
1586      52  VAR2=(DL(I)*COS(THI(I)))-(DPD(I)*SIN(THI(I)))
1587      52  DH(I)=(VAR1*SIGN*SIN(AZIMUTH))-(VAR2*SIN(BETA)*COS(AZIMUTH))
1588      51  CONTINUE
1589      C  WRITE(6,60)
1590      C  60  FORMAT(' ', 'ELEMENTAL LIFTS ARE:')
1591      C  WRITE(6,*) (DL(L),L=1,14)
1592      C  WRITE(6,53)
1593      53  FORMAT('ELEMENTAL THRUST DISTRIBUTION IS:')
1594      C  WRITE(6,*) (DT(L),L=1,14)
1595      C  WRITE(6,61)
1596      61  FORMAT('2-DIMENSIONAL LIFT DISTRIBUTION IS:')
1597      C  WRITE(6,*) (DL20(L),L=1,14)
1598      C  WRITE(6,70)
1599      70  FORMAT(' ', 'INDUCED TORQUE DISTRIBUTION IS:')
1600      C  WRITE(6,*) (TORI(L),L=1,14)
1601      C  WRITE(6,71)
1602      71  FORMAT(' ', 'PROFILE DRAG COEFF. DISTRIBUTION IS:')
1603      C  WRITE(6,*) (CDO(L),L=1,14)
1604      C  WRITE(6,72)
1605      72  FORMAT(' ', 'PROFILE TORQUE DISTRIBUTION IS:')
1606      C  WRITE(6,*) (TORP(L),L=1,14)
1607      C  TORIS(1)=TORI(1)
1608      C  TORPS(1)=TORP(1)
1609      DO 30 M=2,14
1610      TORIS(M)=TORI(M)+TORIS(M-1)
1611      TORPS(M)=TORP(M)+TORPS(M-1)
1612      30  CONTINUE
1613      C  WRITE(6,31)
1614      31  FORMAT(' ', 'INDUCED TORQUE VALUE IS:')
1615      C  WRITE(6,*) TORIS(14)
1616      C  WRITE(6,35) TORPS(14)
1617      35  FORMAT('PROFILE TORQUE VALUE IS:',1F10.5)
1618      C  TH(1)=DT(1)
1619      C  TOR(1)=TORI(1)+TORP(1)
1620      C  IF(NUM.EQ.2) DHSUM(1)=DH(1)
1621      DO 20 K=2,14
1622      IF(NUM.EQ.2) DHSUM(K)=DH(K)+DHSUM(K-1)
1623      C  TH(K)=DT(K)+TH(K-1)
1624      C  TOR(K)=TORI(K)+TORP(K)+TOR(K-1)
1625      20  CONTINUE
1626      C  GAMAX=0.0
1627      DO 500 L=1,14
1628      C  GAMAX=AMAX1(GAMAX,GAMA(L))
1629      500 CONTINUE
1630      DO 110 L=1,14
1631      IF(ABS(GAMA(L)-GAMAX).LT.1E-3) NUM=L
1632      110 CONTINUE
1633      C  WRITE(6,12C) Y(NUM)
1634      120 FORMAT('THE MAXIMUM CIRCULATION IS LOCATED AT',1F4.2,' RADIUS')
1635      C  WRITE(6,121) GAMAX
1636      121 FORMAT(1,'MAXIMUM BOUND CIRCULATION IS:',1F8.4)
1637      C  WRITE(6,*) (GAMA(L),L=NUM,14)
1638      C  TORITIP(NUM-1)=0.0
1639      DO 130 L=NUM,14
1640      C  TORITIP(L)=TORITIP(L-1)+(DT(L)*THI(L))

```

LINE NUMBER FORTRAN TEXT

```

1641      130 CONTINUE
1642      ENERGY=TORITIP(14)
1643      RETURN
1644      END

```

LINE NUMBER FORTRAN TEXT

```

1645      SUBROUTINE POSTN(XFV,YFV,ZFV,XVELT,YVELT,ZVELT,K0,XFVNEW,YFVNEW
1646      C,ZFVNEW,M,RAD,TIME,VIG,NHU,M7,M8,M6)
1647      REAL YES
1648      DIMENSION VELG(100,20)
1649      DIMENSION XVELT(100,20),YVELT(100,20),ZVELT(100,20)
1650      DIMENSION XFV(100,20),YFV(100,20),ZFV(100,20),XFVNEW(100,20)
1651      DIMENSION YFVNEW(100,20),ZFVNEW(100,20),DELTAXFV(100,20)
1652      DIMENSION DELTAYFV(100,20),DELTAZFV(100,20),TIME(20),RAD(20)
1653      COMMON/BL5/ OMEGA,ALPHA,V
1654      DATA YES/1HY/
1655      DO 10 K=1,M
1656      C      M7=YES,CLASSICAL WAKE REQUIRED.
1657      IF(M7.EQ.YES) GOTO 22
1658      DELTAXFV(K,K0)=XVELT(K,K0)*TIME(K0)/RAD(K0)
1659      DELTAYFV(K,K0)=(YVELT(K,K0)+(V*COS(ALPHA)))*TIME(K0)/RAD(K0)
1660      IF(M6.EQ.YES) VERV=V*SIN(ALPHA)
1661      IF(M6.EQ.YES) GOTO 21
1662      RVORT=SQRT(XFV(K,K0)**2+YFV(K,K0)**2)
1663      IF(YFV(K,K0).GT.1.0) VERV=(V*SIN(ALPHA))-(2.0*VIG)
1664      VELG(K,K0)=2.0*VIG
1665      IF((RVORT.GT.1.0).AND.(YFV(K,K0).GT.1.0)) GOTO 21
1666      EPSV=ATAN2(-XFV(K,K0),YFV(K,K0))
1667      IF(KU.GT.NHU) EPSV=ATAN2(XFV(K,K0),YFV(K,K0))
1668      IF(RVORT.GT.1.0) RVORT=1.0
1669      VERV=(V*SIN(ALPHA))-(VIG*(1.0+(RVORT*COS(EPSV))))
1670      VELG(K,K0)=VIG*(1.0+(RVORT*COS(EPSV)))
1671      DELTAZFV(K,K0)=(ZVELT(K,K0)+(VERV))*TIME(K0)/RAD(K0)
1672      GOTO 23
1673      22 DELTAXFV(K,K0)=0.0
1674      DELTAYFV(K,K0)=(V*COS(ALPHA))*TIME(K0)/RAD(K0)
1675      DELTAZFV(K,K0)=((V*SIN(ALPHA))-VIG)*TIME(K0)/RAD(K0)
1676      23 XFVNEW(K,K0)=XFV(K,K0)+DELTAXFV(K,K0)
1677      YFVNEW(K,K0)=YFV(K,K0)+DELTAYFV(K,K0)
1678      ZFVNEW(K,K0)=ZFV(K,K0)+DELTAZFV(K,K0)
1679      10 CONTINUE
1680      C      WRITE(6,20)M,K0
1681      20 FORMAT('ROTOR AT POSTN',1X,I2,' FOR HELIX NO',I2,/)
1682      C      WRITE(6,7)
1683      7  FORMAT('GLAUERT DISTRIBUTION IS:',/)
1684      C      WRITE(6,8)(VELG(L,K0),L=1,M)
1685      8  FORMAT(1F12.6)
1686      C      WRITE(6,60)
1687      60 FORMAT(7X,'DELTAXFV',7X,'DELTAYFV',7X,'DELTAZFV')
1688      C      WRITE(6,61)(DELTAXFV(L,K0),DELTAYFV(L,K0),DELTAZFV(L,K0),L=1,M)
1689      61 FORMAT(6X,1F8.4,2(7X,1F8.4))
1690      C      WRITE(6,62)
1691      62 FORMAT(1,7X,'XVELT',7X,'YVELT',7X,'ZVELT')
1692      C      WRITE(6,63)(XVELT(L,K0),YVELT(L,K0),ZVELT(L,K0),L=1,M)
1693      63 FORMAT(3(4X,1F8.4))
1694      C      WRITE(6,30)
1695      30 FORMAT(1,7X,'XP',7X,'XP1',7X,'YP',7X,'YP1',7X,'ZP',7X,'ZP1')
1696      C      WRITE(6,40)(XFV(L,K0),XFVNEW(L,K0),YFV(L,K0),YFVNEW(L,K0)
1697      C,ZFV(L,K0),ZFVNEW(L,K0),L=1,M)
1698      40 FORMAT((4X,1F3.2,5(1X,1F8.2)))
1699      RETURN
1700      END

```

LINE NUMBER FORTRAN TEXT

```
1701      SUBROUTINE GLAUERT(A,H,C,W,R,THETA,ALPHA,FORVEL,VI,VVV,T)
1702      DIMENSION COF(5),ZP(5),RP(5)
1703      REAL MU,LANDA
1704      DATA PI/3.1415927/,ROE/1.225/
1705      VI=0.0
1706      NUM=0
1707      5   P1=0.1E0
1708      TOL=XU2AAF(P1)
1709      C   WRITE(6,200)NUM
1710      200  FORMAT('NUM=',I2)
1711      NUM=NUM+1
1712      LANDA=((FORVEL*SIN(ALPHA))-(VI+VVV))/(W*R)
1713      MU=(FORVEL*COS(ALPHA))/(W*R)
1714      VAR1=((THETA/3.)+((MU**2)*THETA)/2.)+(LANDA/2.))
1715      VAR2=0.5*RCF*A*H*C*(W**2)*(R**3)
1716      T=VAR1*VAR2
1717      C   WRITE(6,8)
1718      8   FORMAT('GLAUERT THRUST IS: ')
1719      C   WRITE(6,*)T
1720      IF(NUM.GT.10)GOTO 10
1721      VIAPPROX=T/(2.0*ROE*PI*(R**3)*FORVEL)
1722      COF(1)=1.0
1723      COF(2)=2.0*VVV
1724      COF(3)=FORVEL**2+VVV**2
1725      COF(4)=0.0
1726      COF(5)=-(T**2)/(4.0*((ROE*P1)**2)*(R**4))
1727      NC=5
1728      IFAIL=0
1729      CALL CO2AEF(COF,NC,RP,ZP,TOL,IFAIL)
1730      DO 60 K=1,4
1731      IF(ZP(K).LT.0.1E-2) GOTO 70
1732      GOTO 60
1733      70  IF(RP(K).GT.0.1E-2) GOTO 80
1734      GOTO 60
1735      80  VI=RP(K)
1736      IF(T.LT.0.0) VI=-VI
1737      C   WRITE(6,90)VI
1738      90  FORMAT('VI=',1F12.6)
1739      60  CONTINUE
1740      C   WRITE(6,30)(RP(L),ZP(L),L=1,4)
1741      30  FORMAT('RP=',1F8.4,'IP=',1F8.4,/)
1742      C   VIHOVER=SQRT(T/(2.0*ROE*PI*R**2))
1743      C   WRITE(6,40) VIAPPROX,VIHOVER
1744      40  FORMAT('VIAPPROX=',1F8.4,'VIHOVER=',1F8.4)
1745      GOTO 5
1746      10  RETURN
1747      END
```

LINE NUMBER FORTRAN TEXT

```
1748      SUBROUTINE IND(XFV,YFV,ZFV,K0,LO,XVEL,YVEL,ZVEL,MMM,
1749      CNOSTPS,R,VORTEXKC,VORTEXK0,VORTEXRC,VORTEXRL,VORTEXR0,VORTEXA
1750      C,VORTEXP,VORTEXC,VORTEXD,VORTEXE,NTYPV,GAMAX,CIRAV,SIGN)
1751      DIMENSION VX(200),VY(200),VZ(200)
1752      DIMENSION VIX(200),VIY(200),VIZ(200)
1753      DIMENSION XV(200),YV(200),ZV(200),XV1(200),YV1(200),ZV1(200)
1754      DIMENSION VIXT(200),VIYT(200),VIZT(200)
1755      DIMENSION XFV(100,20),YFV(100,20),ZFV(100,20),CIRAV(100,20)
1756      DIMENSION XVEL(100,20,20),YVEL(100,20,20),ZVEL(100,20,20)
1757      DIMENSION VORTEXKC(100,20),VORTEXK0(100,20),VORTEXRC(100,20)
1758      C,VORTEXRL(100,20),VORTEXR0(100,20),VORTEXA(100,20)
1759      C,VORTEXB(100,20),VORTEXC(100,20),VORTEXD(100,20)
1760      C,VORTEXE(100,20)
1761      REAL I,J,K
1762      COMMON/BL25/ VSO,RCC
1763      CALL ICL9HEMASK(64,IRES)
1764      C          VIZ          Z (+VE UPWARD)
1765      C          *
1766      C          *
1767      C          *****P(XP,YP,ZP)          *
1768      C          VIX          * * *
1769      C          * * *
1770      C          * * *          * ***** *
1771      C          * VIY          *
1772      C          A          *          *
1773      C          (XA,YA,ZA)          *          *
1774      C          *          *
1775      C          *
1776      C          B          Y
1777      C          (XP,YB,ZB)
1778      C
1779      DO 100 LL=1,NOSTPS
1780      XP=XFV(LL,K0)
1781      YP=YFV(LL,K0)
1782      ZP=ZFV(LL,K0)
1783      DO 110 L=1,(NOSTPS-1)
1784      C      WRITE(6,*)L
1785      IF(MMM.EQ.2) GOTO 310
1786      IF(L.EQ.LL) GOTO 300
1787      IF((L+1).EQ.LL) GOTO 300
1788      IF(NTYPV.EQ.1) GOTO 310
1789      GOTO 310
1790      300 VIX(L)=0.0
1791      VIY(L)=0.0
1792      VIZ(L)=0.0
1793      GOTO 110
1794      310 CIR=CIRAV(L,LO)
1795      XA=XFV(L,LO)
1796      YA=YFV(L,LO)
1797      ZA=ZFV(L,LO)
1798      XB=XFV(L+1,LO)
1799      YB=YFV(L+1,LO)
1800      ZB=ZFV(L+1,LO)
1801      PI=3.1415927
1802      VAR1=(XP-XA)**2
1803      VAR2=(YP-YA)**2
```

LINE NUMBER FOR TRAN TEXT

```
1804      VAR3=(ZP-ZA)**2
1805      AP=SQRT(VAR1+VAR2+VAR3)
1806      VAR4=(XP-XR)**2
1807      VAR5=(YP-YR)**2
1808      VAR6=(ZP-ZB)**2
1809      BP=SQRT(VAR4+VAR5+VAR6)
1810      IF((BP.LT.1E-3).OR.(AP.LT.1E-3)) GOTO 997
1811      I=(XP-XA)*(XP-XB)
1812      J=(YP-YA)*(YP-YB)
1813      K=(ZP-ZA)*(ZP-ZB)
1814      VAR7=(AP+BP)/(AP*BP)
1815      VAR8=(AP*HP)+I+J+K
1816      CON1=VAR7/(R*VAR8)
1817      AB=SQRT((XA-XB)**2+(YA-YB)**2+(ZA-ZB)**2)
1818      IF(AB.LT.1E-3) GOTO 997
1819      ANGLEB=ACOS(((BP**2)+(AB**2)-(AP**2))/(2.0*BP*AB))
1820      H=ABS(BP*SIN(ANGLEB))
1821      IF((H.LT.RCD).AND.(NTYPV.EQ.1)) CIR=CIR*(H/RCD)**2
1822      IF(NTYPV.EQ.1) GOTO 629
1823      IF(H.GT.(VORTEXR0(L,LO)/R)) GOTO 500
1824      VORT1=VORTEXRL(L,LO)/R
1825      VORT2=VORTEXRG(L,LO)/R
1826      VORT3=VORTEXRC(L,LO)/R
1827      IF((H.GT.VORT1).AND.(H.LT.VORT2)) GOTO 510
1828      IF((H.GT.VORT3).AND.(H.LE.VORT1)) GOTO 520
1829      IF(H.LE.(VORTFXRC(L,LO)/R)) GOTO 530
1830      CIR=VORTEXKO(L,LO)
1831      GOTO 629
1832      510 CIR=(1.0-EXP((VORTEXD(L,LO)*H*R/C)+VORTEXE(L,LO)))*0.99*GAMAX
1833      GOTO 629
1834      520 CIR=((VORTEXB(L,LO)*ALOG(H*R/C))+VORTEXC(L,LO))*0.99*GAMAX
1835      GOTO 629
1836      530 CIR=(H*R/VORTEXRC(L,LO))**2)*VORTEXKC(L,LO)
1837      629 CON2=SIGN*CIR*CON1/(4.0*PI)
1838      VARX=((YP-YA)*(ZP-ZB))-((ZP-ZA)*(YP-YB))
1839      VIX(L)=CON2*VARX
1840      IF(ABS(VIX(L)).GT.VSO) WRITE(6,710)
1841      710 FORMAT('VIX.GT.VSO')
1842      IF(ABS(VIX(L)).GT.VSO) VIX(L)=VSO
1843      VARY=((ZP-ZA)*(XP-XB))-((XP-XA)*(ZP-ZB))
1844      VIY(L)=CON2*VARY
1845      IF(ABS(VIY(L)).GT.VSO) WRITE(6,711)
1846      711 FORMAT('VIY.GT.VSO')
1847      IF(ABS(VIY(L)).GT.VSO) VIY(L)=VSO
1848      VAR7=((XP-XA)*(YP-YB))-((YP-YA)*(XP-XB))
1849      VIZ(L)=CON2*VARZ
1850      IF(ABS(VIZ(L)).GT.VSO) WRITE(6,712)
1851      712 FORMAT('VIZ.GT.VSO')
1852      IF(ABS(VIZ(L)).GT.VSO) VIZ(L)=VSO
1853      GOTO 110
1854      997 WRITE(6,379)
1855      379 FORMAT('I AM HERE')
1856      VIX(L)=0.0
1857      VIY(L)=0.0
1858      VIZ(L)=0.0
1859      C      WRITE(6,100)
```

LINE NUMBER FORTRAN TEXT

```
1860      10  FORMAT(7X,'XA',7X,'YA',7X,'ZA',7X,'XB',7X,'YB',7X,'ZB')
1861      C  WRITE(6,20)XA,YA,ZA,XB,YB,ZB
1862      20  FORMAT(4X,1F8.2,5(1X,1F8.2),//)
1863      C  WRITE(6,30)
1864      30  FORMAT(7X,'XP',7X,'YP',7X,'ZP')
1865      C  WRITE(6,40)XP,YP,ZP
1866      40  FORMAT(3(2X,1F8.2))
1867      11G CONTINUE
1868      C  WRITE(6,740)
1869      740 FORMAT('VIX DISTRIBUTION IS:')
1870      C  WRITE(6,*)(VIX(JJJ),JJJ=1,(NOSTPS-1))
1871      C  WRITE(6,741)
1872      741 FORMAT('VIY DISTRIBUTION IS:')
1873      C  WRITE(6,*)(VIY(JJJ),JJJ=1,(NOSTPS-1))
1874      C  WRITE(6,750)
1875      750 FORMAT('VIZ DISTRIBUTION IS:')
1876      C  WRITE(6,*)(VIZ(JJJ),JJJ=1,(NOSTPS-1))
1877      VIXT(1)=VIX(1)
1878      VIYT(1)=VIY(1)
1879      VI7T(1)=VI7(1)
1880      DO 250 N=2,(NOSTPS-1)
1881      VIXT(N)=VIXT(N-1)+VIX(N)
1882      VIYT(N)=VIYT(N-1)+VIY(N)
1883      VI7T(N)=VI7T(N-1)+VI7(N)
1884      250 CONTINUE
1885      C  LL=STATION POINT.
1886      C  K0=HELIX NUMBER STATION POINT LL IS LOCATED.
1887      C  L0=HELIX NUMBER THE INDUCED VELOCITIES ARE FROM.
1888      XVEL(LL,K0,L0)=VIXT(NOSTPS-1)
1889      YVEL(LL,K0,L0)=VIYT(NOSTPS-1)
1890      ZVEL(LL,K0,L0)=VI7T(NOSTPS-1)
1891      100 CONTINUE
1892      RETURN
1893      END
```

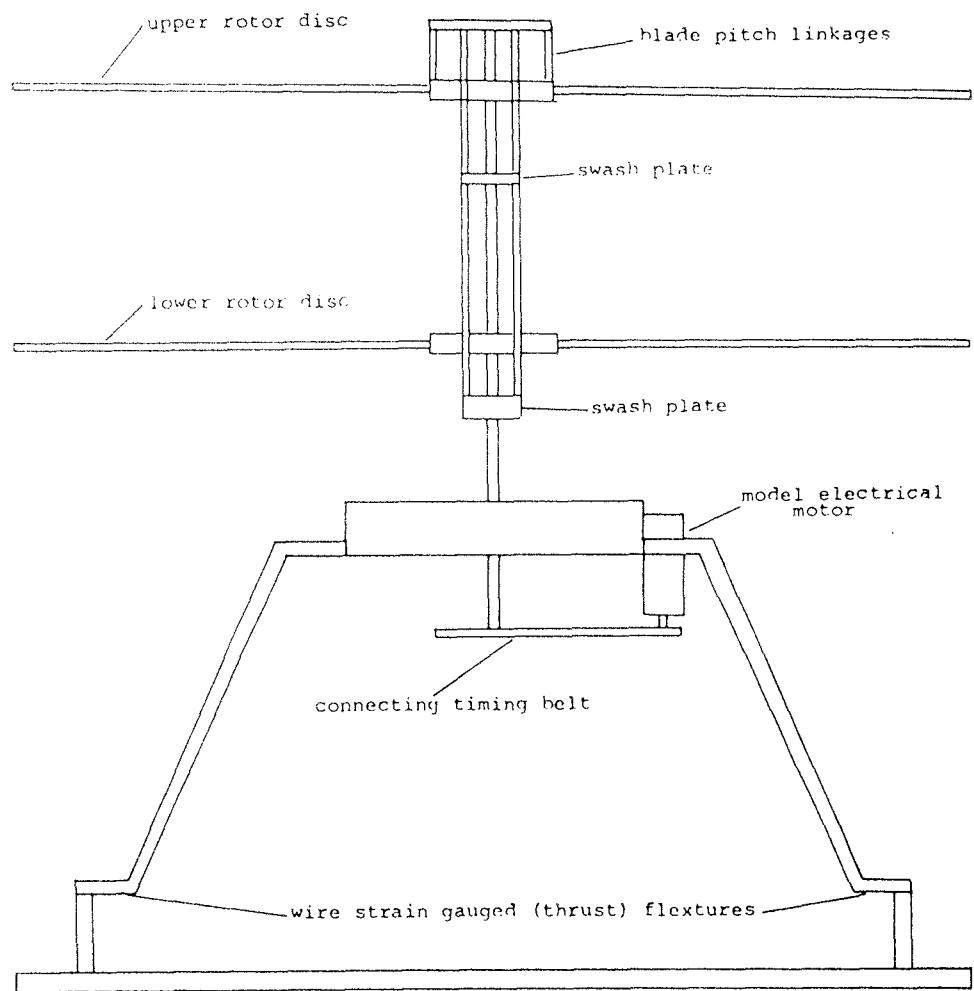


FIG.1 SCHEMATIC DIAGRAM OF THE MOTE CCTR RIG.

Source	C_L (mean)	Expt r/c	McCormick et al(17) $w/c=0.02+$ $0.035C_L$	Expt V_s/V_T	McCormick et al(17) $V_s/V_T=0.625C_L$	Comments
Cook (28)	0.69	0.016	0.044	0.31	0.43	
Andrew (19)	0.65	0.074	0.043	0.3	0.41	Vortex decay in expt apparent
Simons (66)	0.5	.05-.075	0.0375	0.23	0.28	Aged vortex
Carradonna et al (18)	0.446	0.056- 0.075	0.0356	0.68	0.28	Rotor blade aspect ratio=6.0
Panton (67)	0.87	0.046	0.05	0.72	0.54	
Zalay (68)	0.57	.03-.05	0.04	0.6	0.36	
Rorke (25)	0.4 [*]	0.03	0.034	0.58	0.25	[*] Estimate
Chigier et al (21)	0.72	0.079	0.045	0.37	0.45	
Chigier et al (22)	0.84	0.053	0.049	0.68	0.53	Aged vortex
Pouradier (69)	0.45			0.22	0.26	

FIG.2 TABLE OF McCORMICK'S ET AL VORTEX DATA.

FIG. 3 TABLE OF ANDREW'S ET AL VORTEX DATA.

Source	Comments	A_r	M	Vortex Position	Experimental V_s/V_T	Approximating $\frac{V_s}{V_T}$ $(\frac{t}{c} \bar{C}_L)^2$	Approximating $\frac{V_s}{V_T}$ $(1 + \frac{6.6}{A_r} (\frac{t}{c} \bar{C}_L)^2)$	Experimental r/c	Approximating $\frac{r/c}{(\frac{1-M}{\sqrt{M}}) \alpha g \frac{t}{c}}$
Cook (28)	Rotor blade hot wire probe	41	0.53	75° azimuth	0.3	0.29	0.34	0.016	0.013
Simons et al (66)	Rotor blade hot wire probe	54	0.125	300° azimuth	0.23	0.25	0.28	0.05 to 0.075	0.042
Present Author	Rotor blade hot wire probe	28	0.102	120° azimuth	0.3 ± 0.03	0.25	0.31	0.074	0.068
Rorke et al (25)	Fixed wing wind tunnel test hot wire probe	4.2	0.2	2c downstream	0.48	0.22	0.57	0.02 to 0.03	0.018
Zalay (68)	Fixed wing wind tunnel test hot wire probe vorticity meter	5.6	0.133	6.5c downstream	0.6	0.26	0.57	0.03 to 0.05	0.036
Panton et al (67)	Fixed wing free flight hot wire probe	9.2	0.123	39.6c downstream	0.72 +.12 -.25	0.36	0.62	0.046	0.045
Iversen et al (70)	Fixed wing wind tunnel test hot wire probe elliptic tip *based on 92% chord	11.4*	0.135	3.25c downstream	0.42	0.35	0.55	0.050	0.049
Chiger et al (21)	Fixed wing wind tunnel test hot wire probe	5.33	.089	trailing edge	0.37	0.33	0.74	.079	.095

Source	$0.37R_e^{-\frac{1}{3}}$	Expt r_c/c	Andrew $r_c/c = R_e^{-0.2} K_2 V_s / V_T$	Expt V_s/V_T	Andrew $V_s/V_T = (1 + (6.6/A_r)) * K_1 \theta$
Andrew	0.035	0.074	0.049	0.3	0.43
Carradonna et al (18)	0.02	0.056- 0.075	0.044	0.68	0.67
Cook (28)	0.017	0.016	0.021	0.31	0.38
Simons (66)	0.03	.05-.075	.032	0.23	0.33
Chigier et al (21)	0.024	0.079	0.056	0.37	0.73
Chigier et al (22)	0.024	0.053	0.056	0.68	0.73
Panton (67)	0.017	0.046	0.045	0.72	0.79
Rorke (25)	0.027	0.0475	0.05	0.58	0.6
Zalay (68)	0.02	.03-.05	0.039	0.6	0.57

FIG.4 TABLE OF VORTEX DATA COMPARISONS.

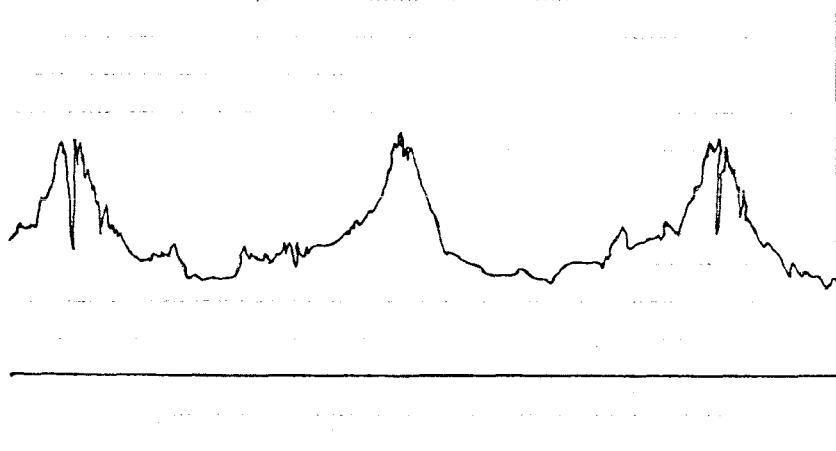


FIG. 5 VORTEX VELOCITY/TIME OUTPUT TRACE.

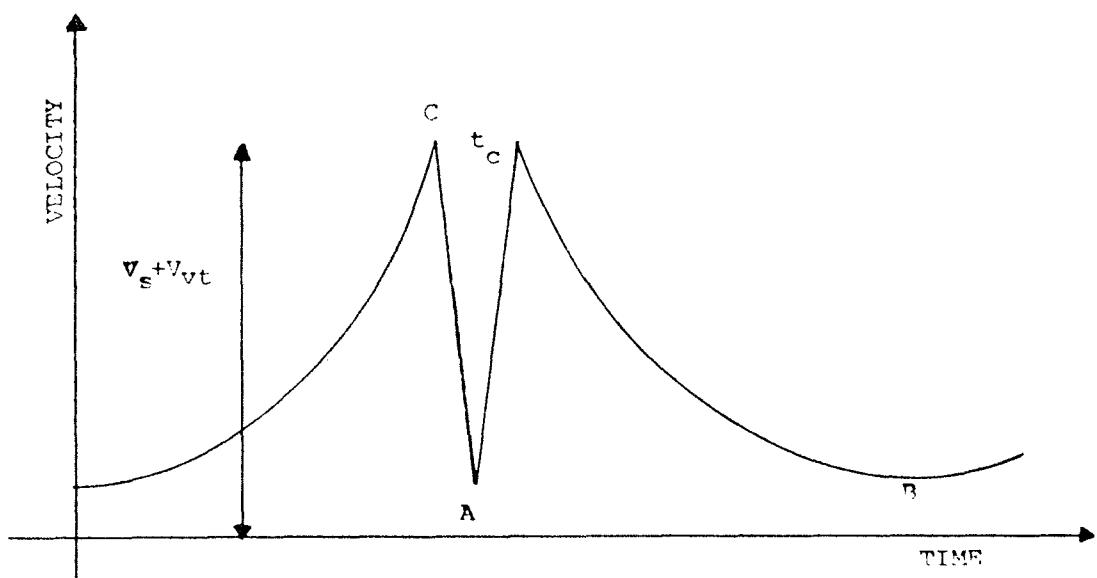


FIG. 6 SCHEMATIC DIAGRAM OF A TYPICAL VORTEX VELOCITY/TIME OUTPUT TRACE.

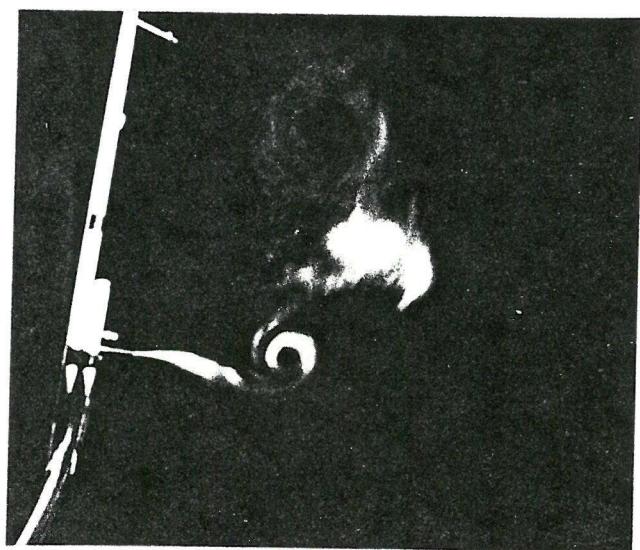


FIG. 7 PHOTOGRAPH OF A VORTEX CORE EXPANSION.

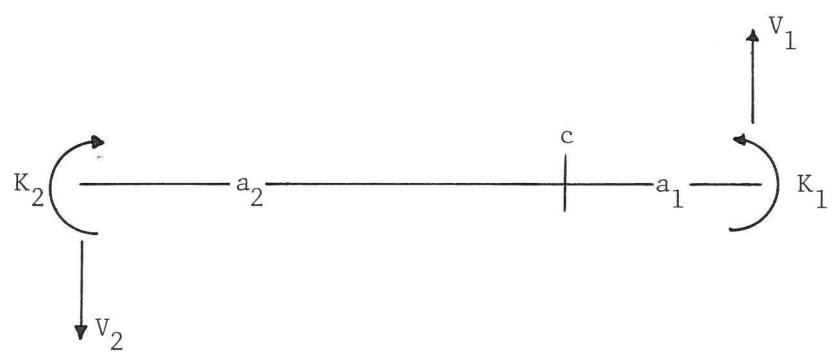


FIG. 8 TWO INFINITE RECTILINEAR VORTICES.

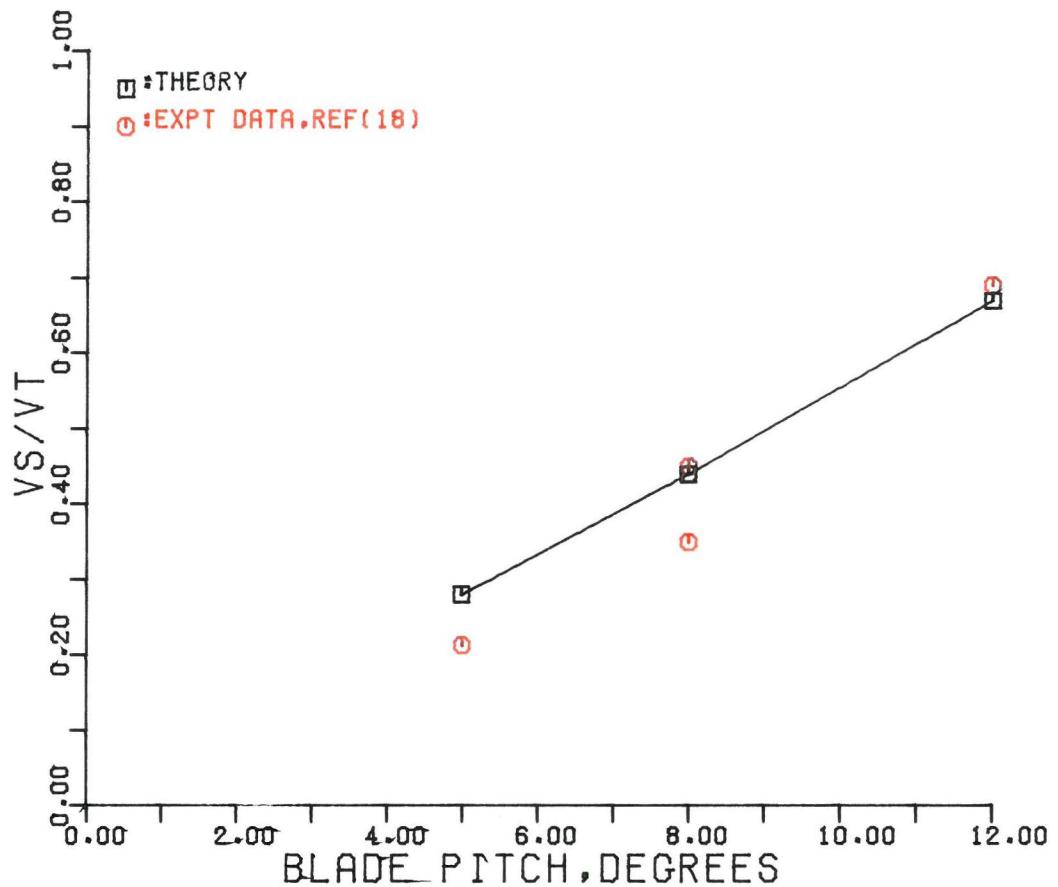


FIG.9 VORTEX CORE EDGE INDUCED VELOCITY.

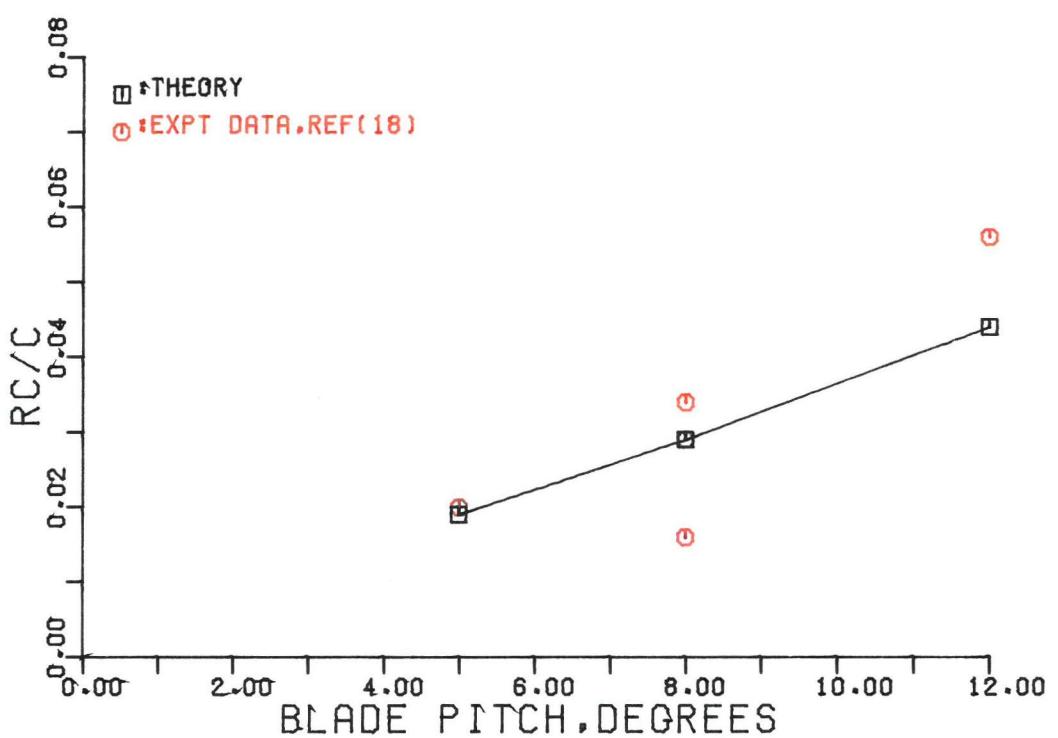


FIG.10 VORTEX CORE RADIUS.

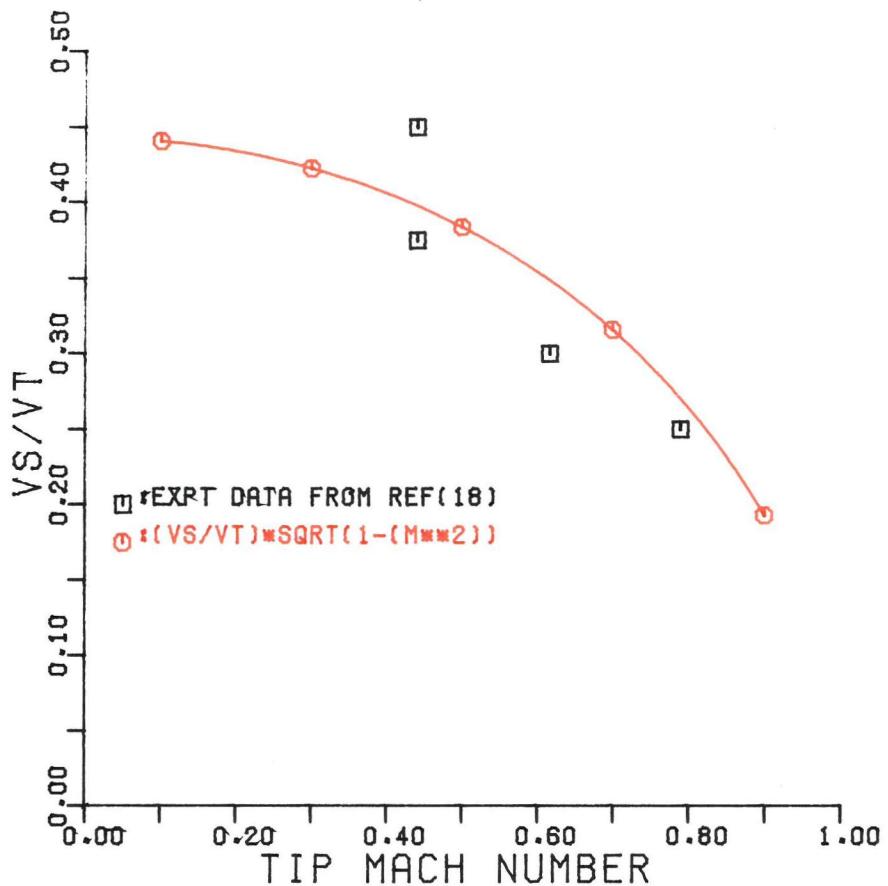


FIG.11 EFFECT OF MACH NO. ON VORTEX INDUCED VEL.

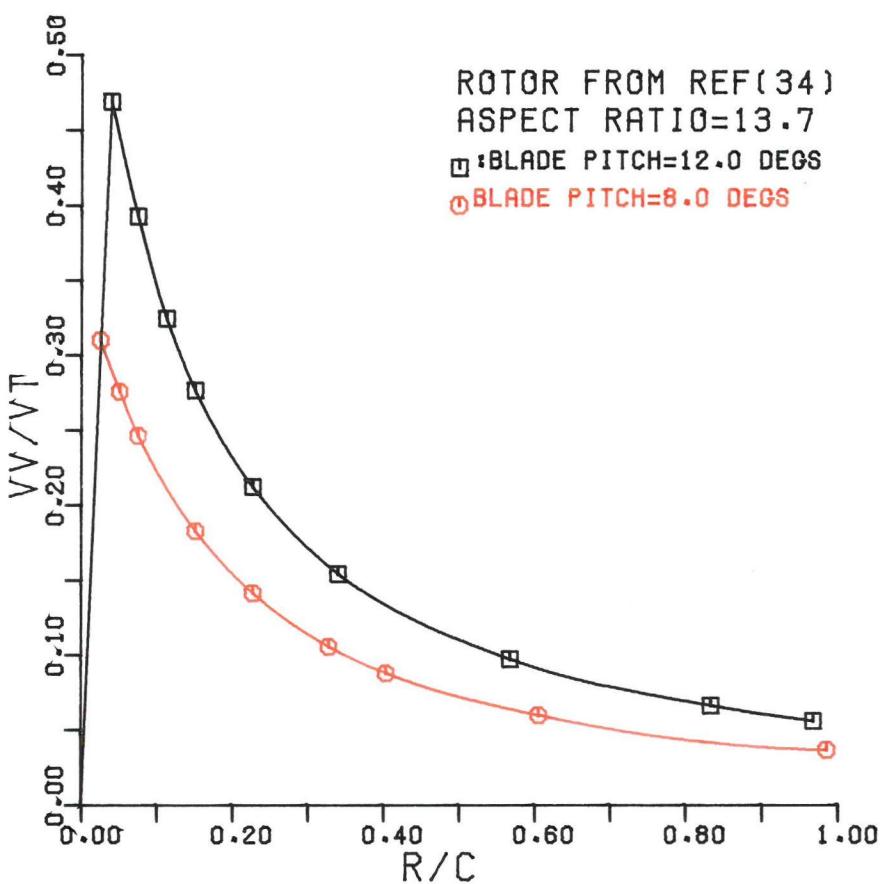


FIG.12 VORTEX VELOCITY (VV) DISTRIBUTION.

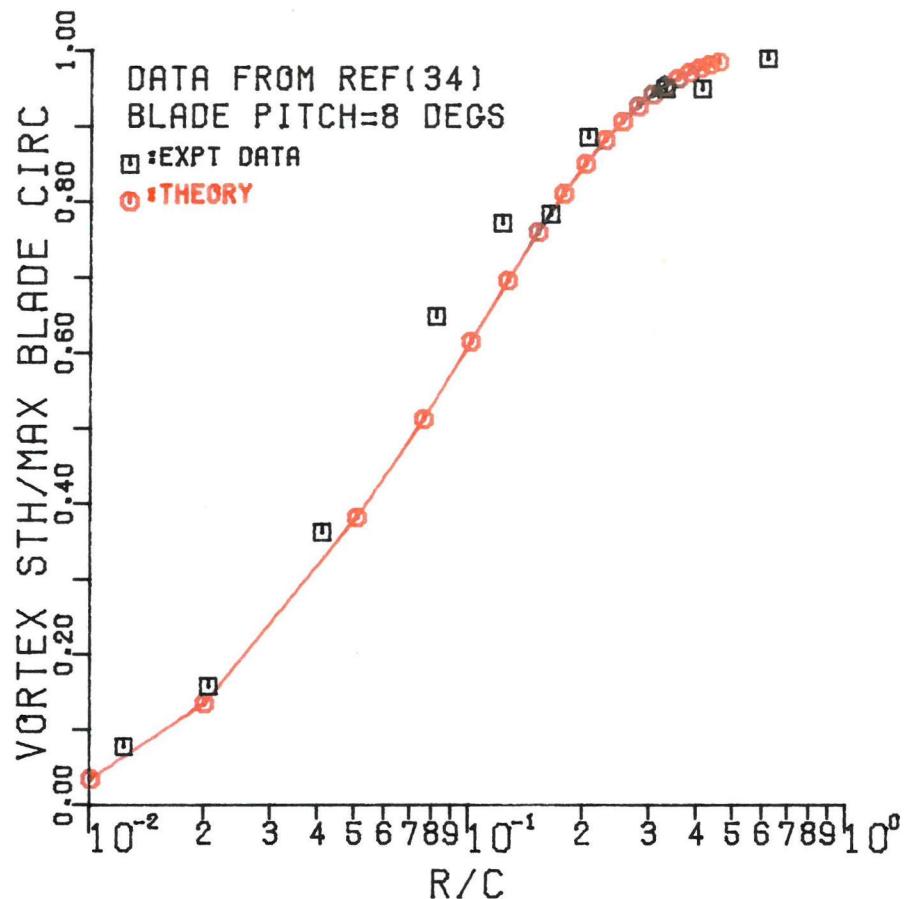


FIG.13 VORTEX CIRCULATION DISTRIBUTION.

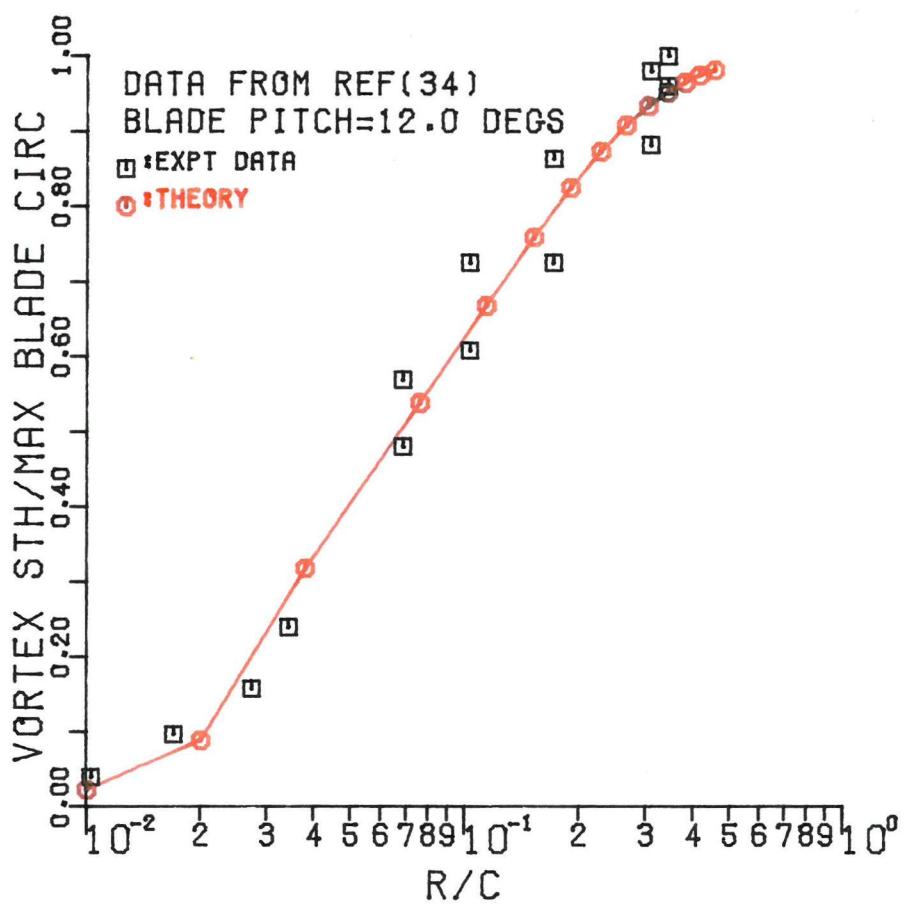


FIG.14 VORTEX CIRCULATION DISTRIBUTION.

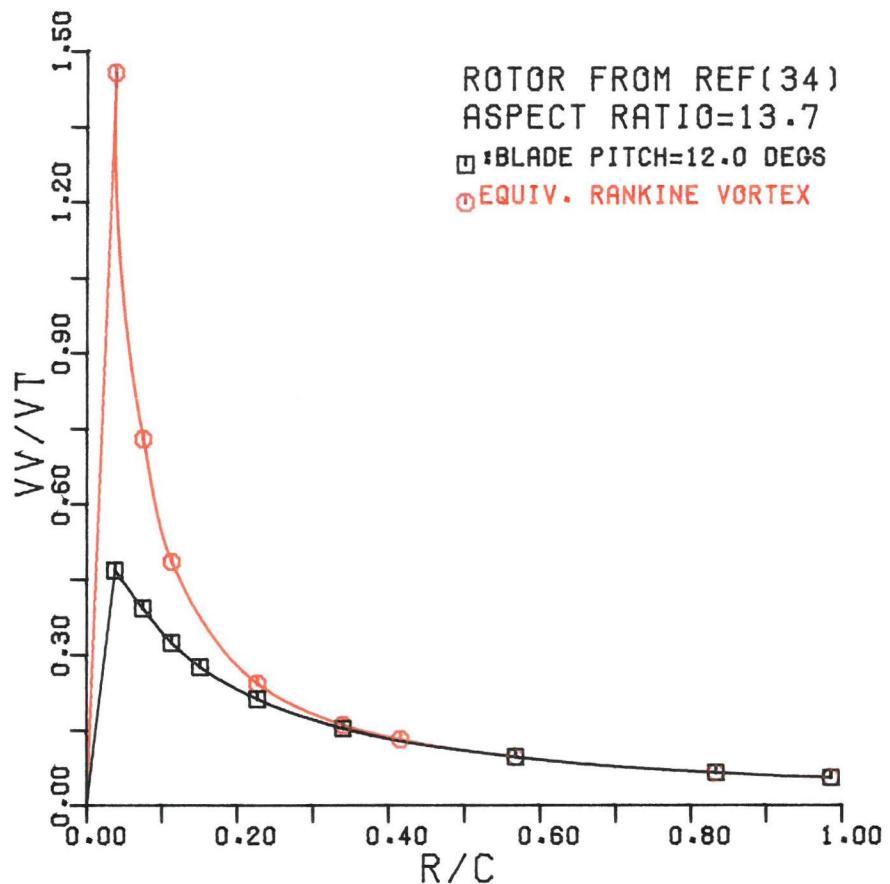


FIG.15 EQUIVALENT RANKINE VORTEX.

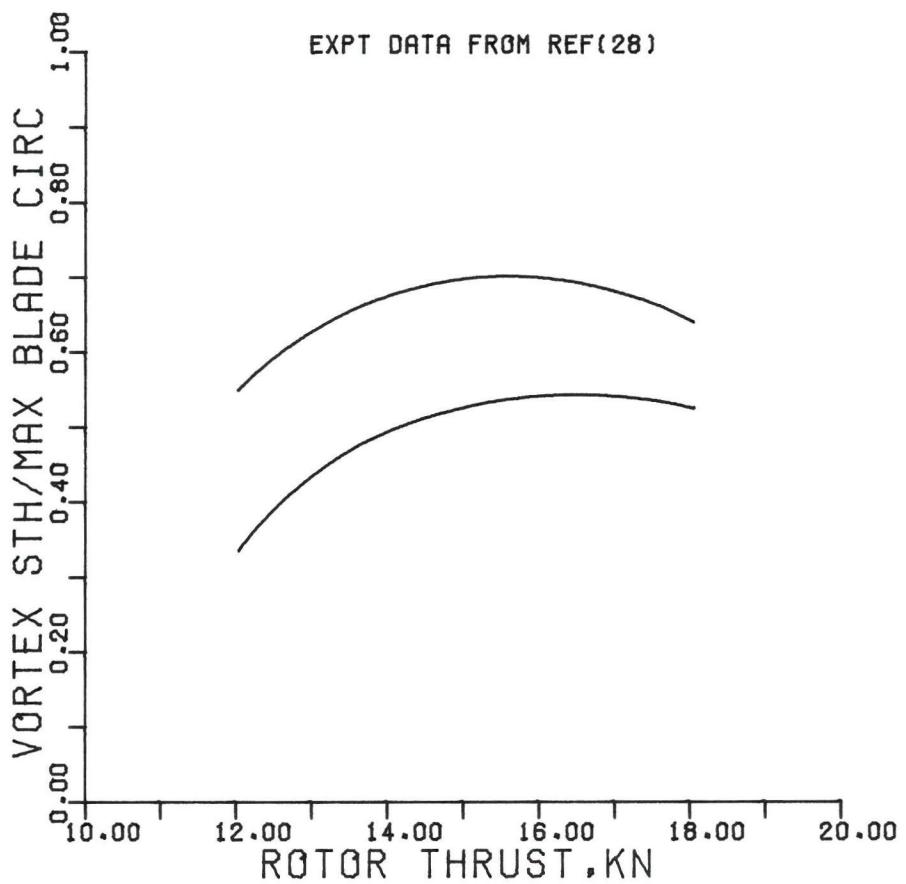


FIG.16 NORMALISED TOTAL VORTEX STRENGTH.

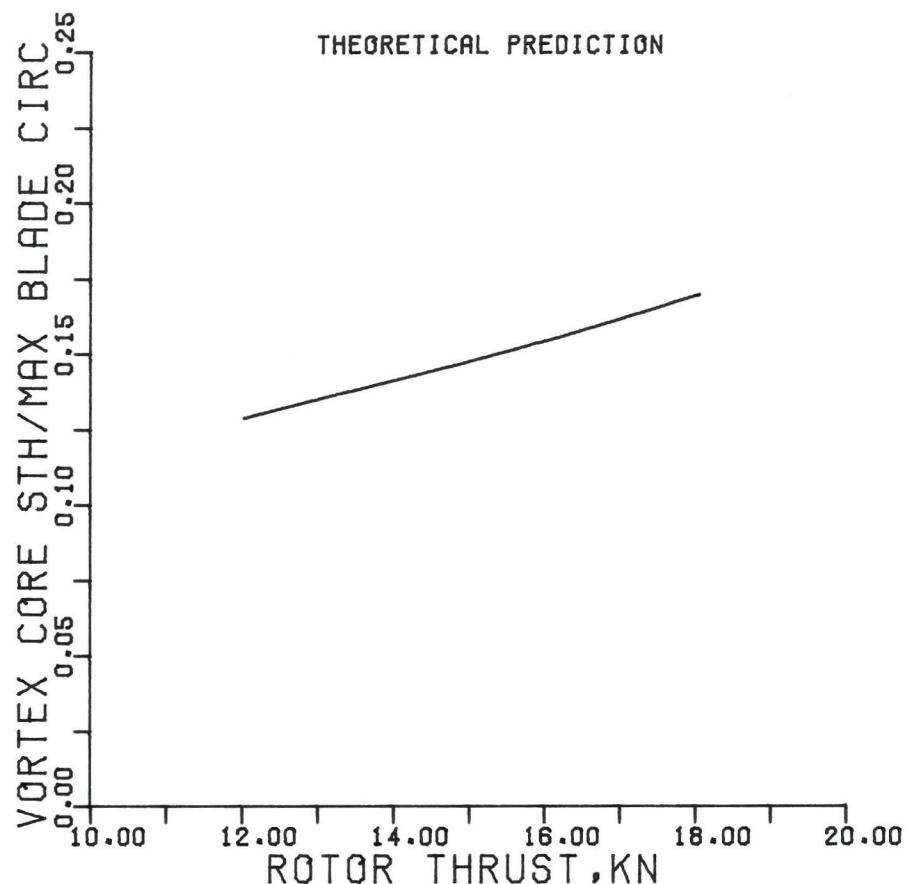


FIG.17 NORMALISED VORTEX CORE STRENGTH.

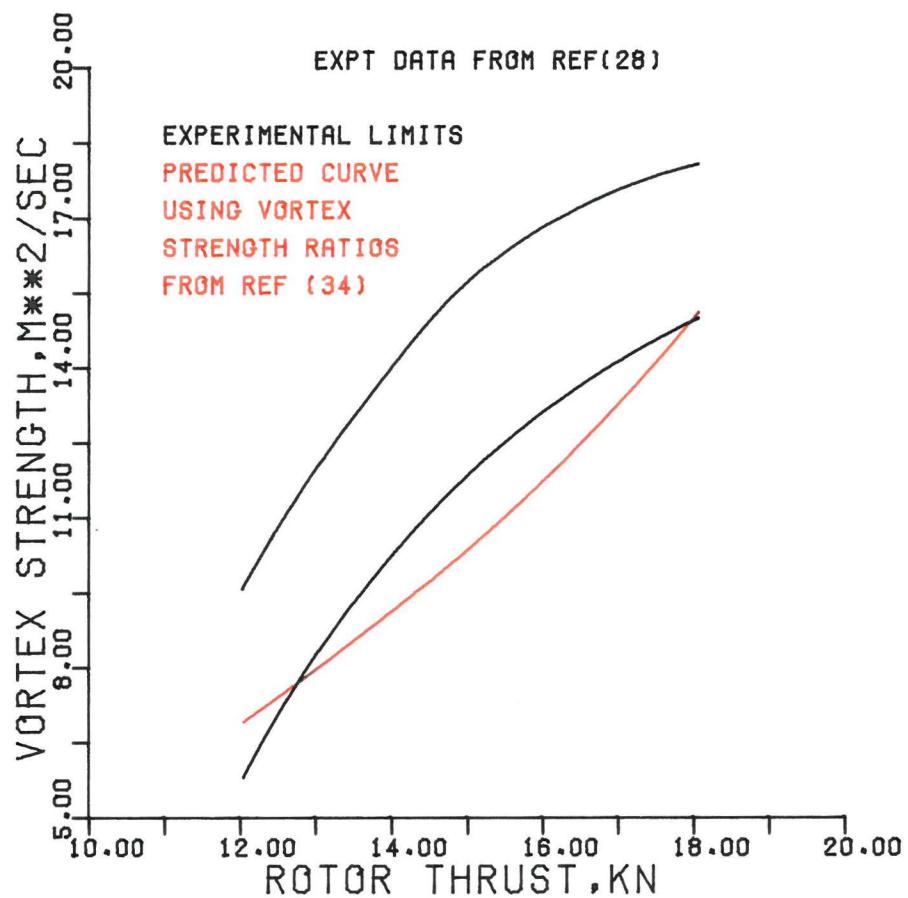


FIG. 18 TOTAL VORTEX STRENGTH.

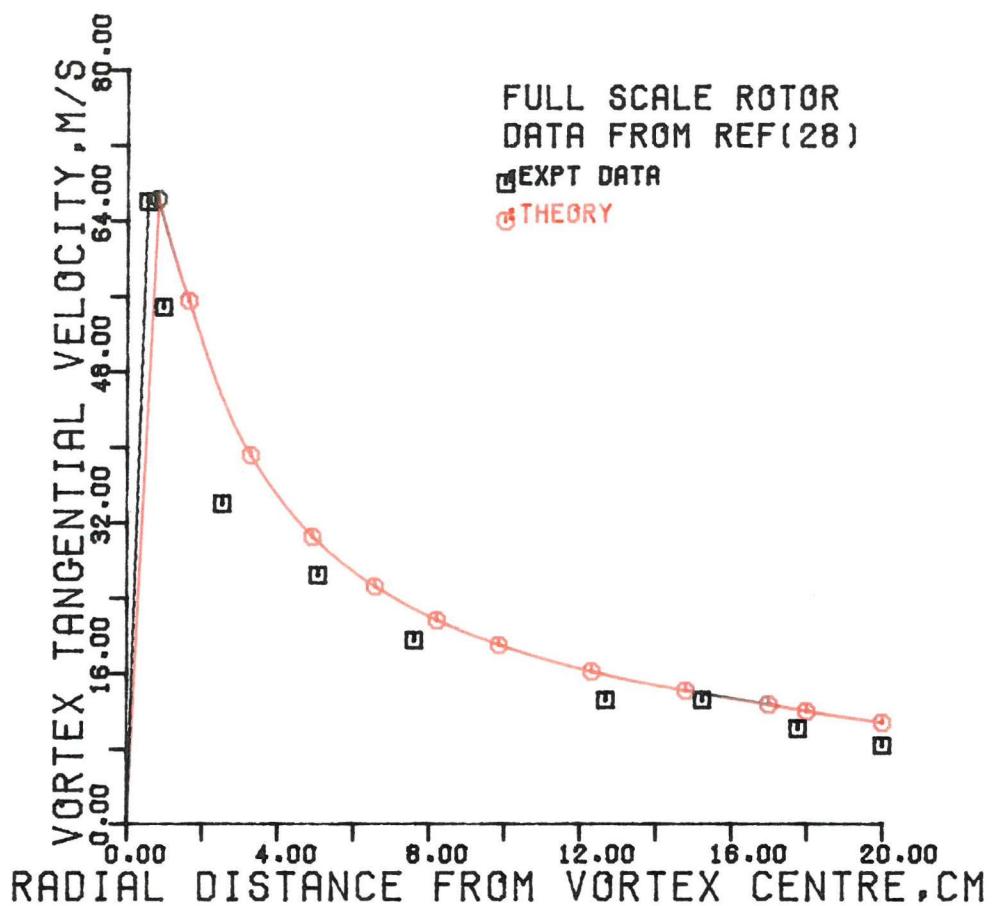


FIG.19 VORTEX VELOCITY DISTRIBUTION.

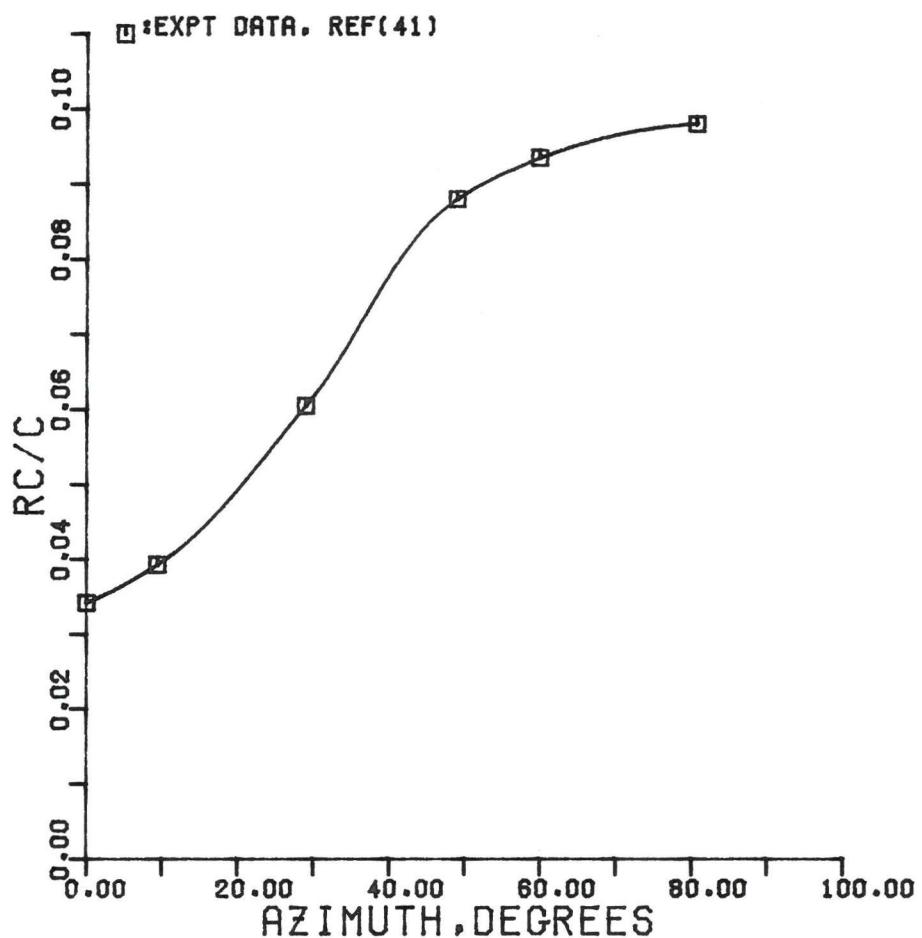


FIG.20 VORTEX CORE VARIATION WITH AZIMUTH.

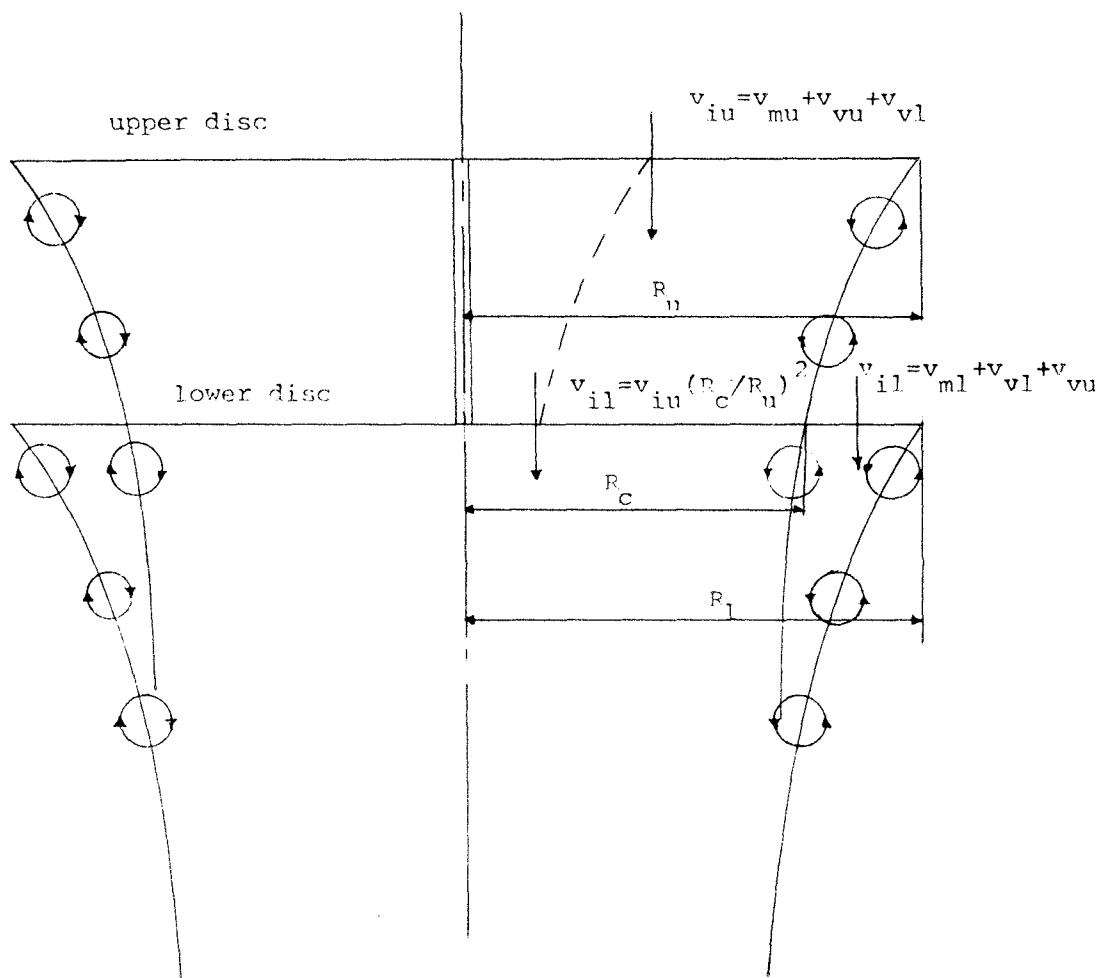


FIG.21 SCHEMATIC REPRESENTATION OF THE CCTR HOVER MODEL.

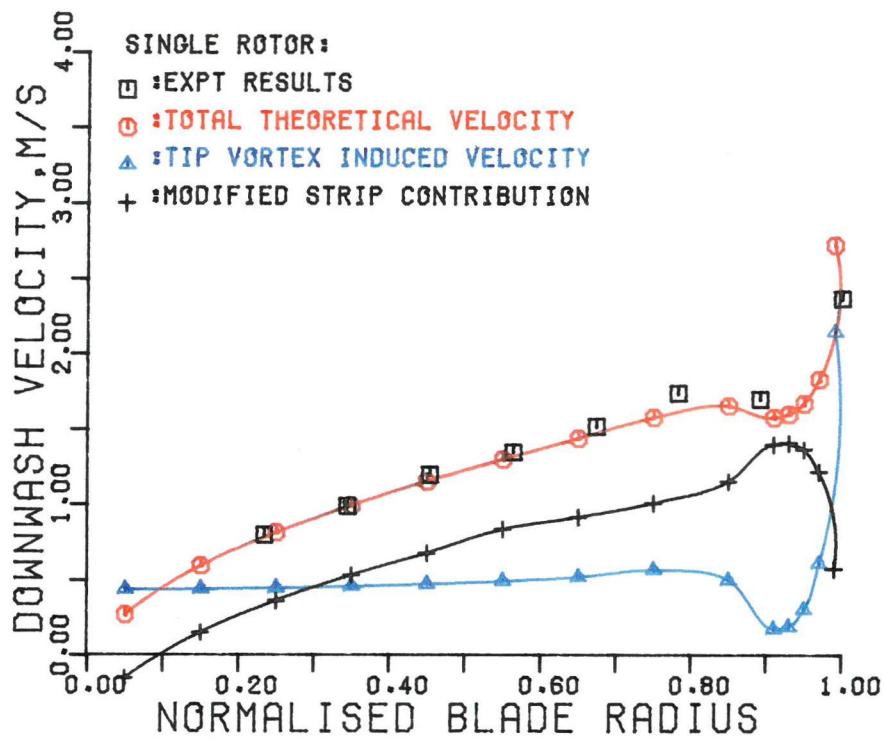


FIG.22 COMPONENT DOWNWASH VELOCITY DISTRIBUTIONS.

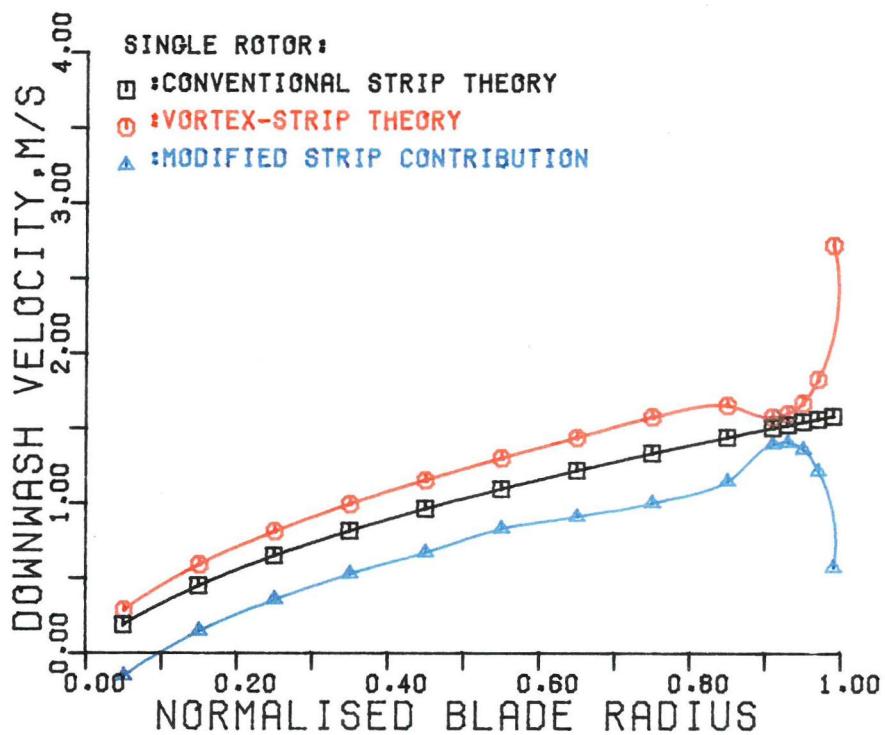


FIG.23 COMPARISON BETWEEN STRIP AND VORTEX-STRIP. THEORIES.

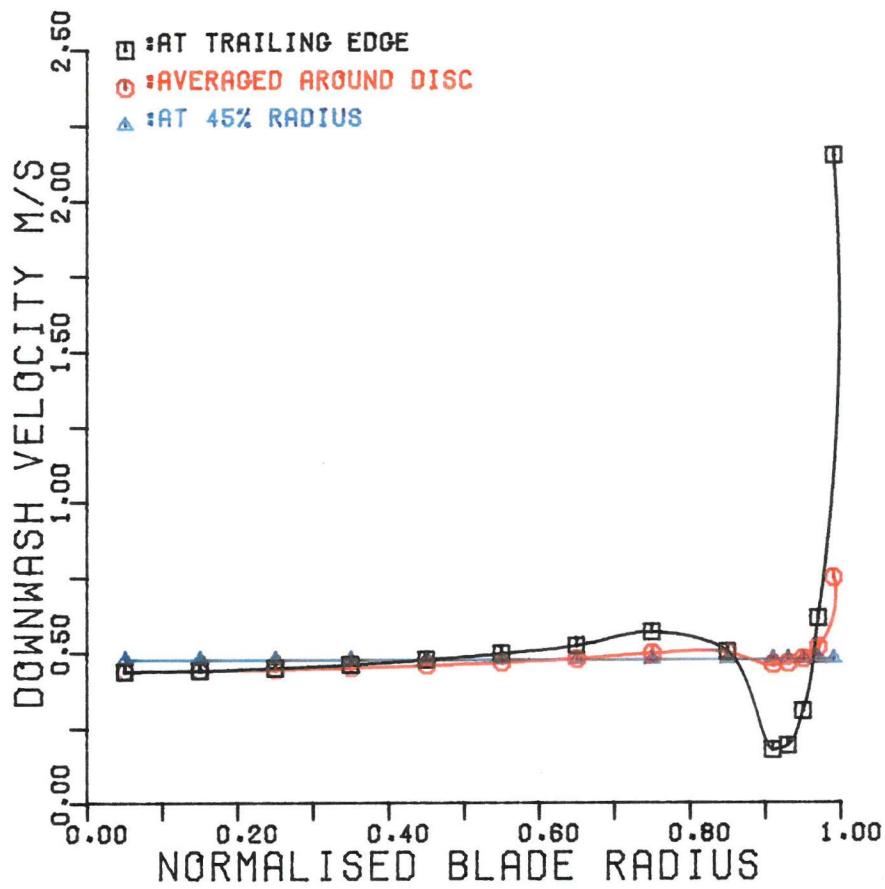


FIG.24 VORTEX VELOCITY COMPONENTS ON UPPER ROTOR.

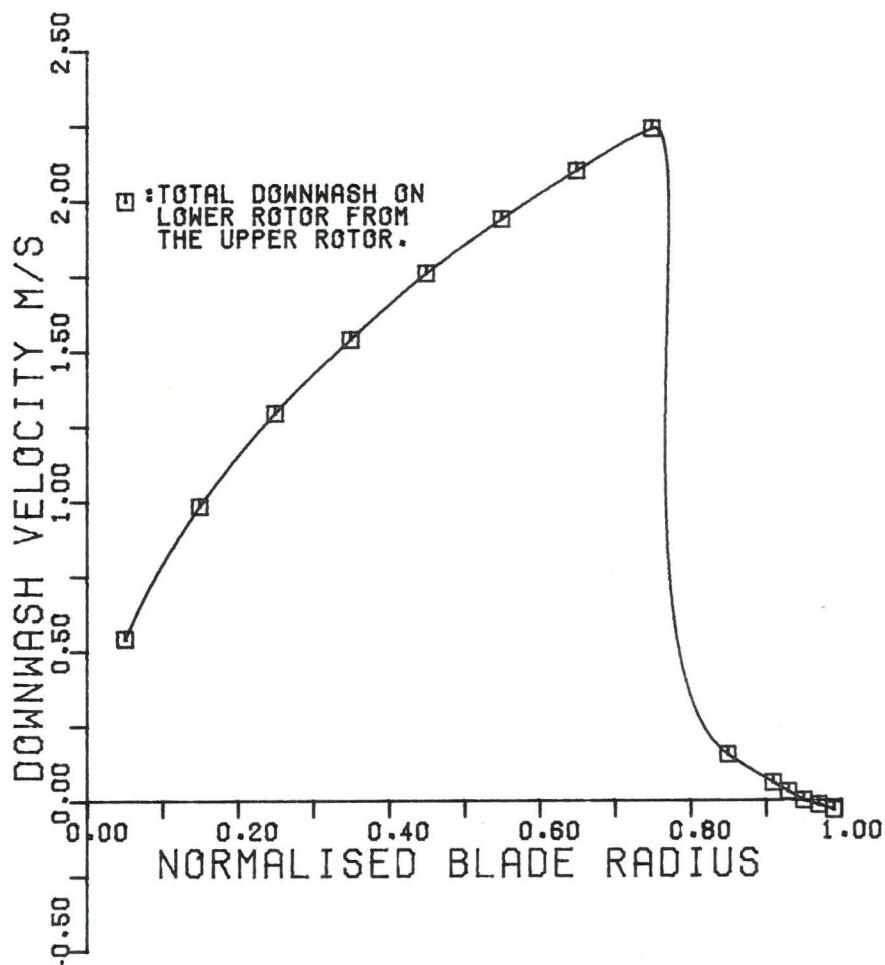


FIG.25 LOWER ROTOR DOWNWASH FROM UPPER ROTOR.

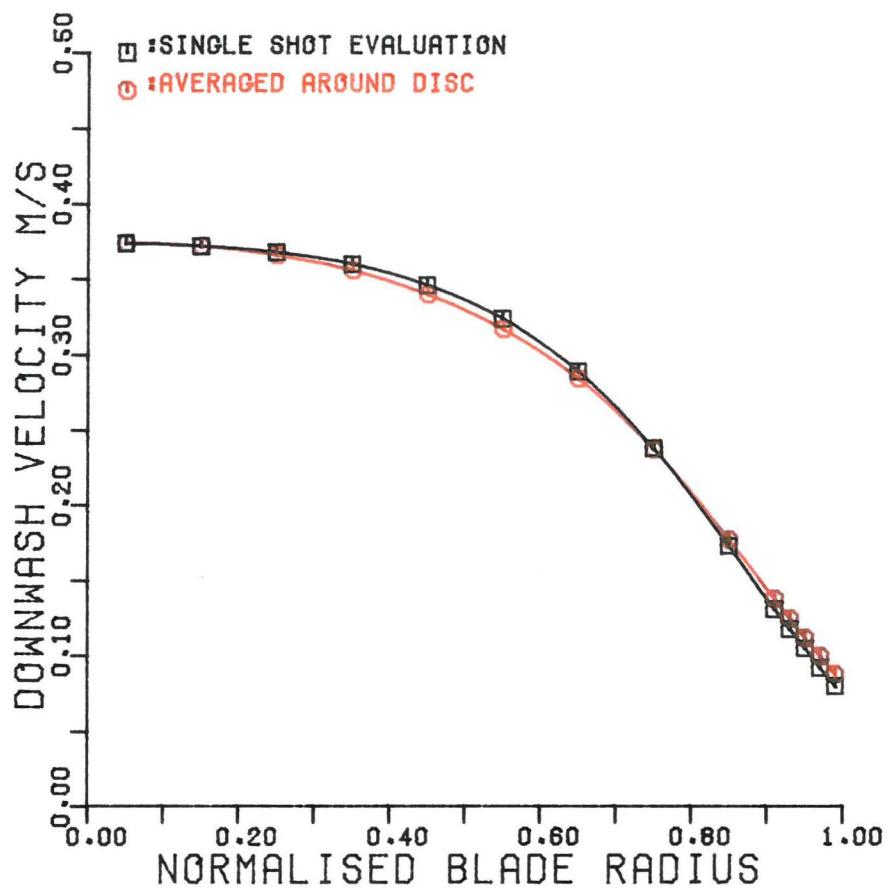


FIG.26 LOWER VORTEX INDUCED VEL ON UPPER ROTOR.

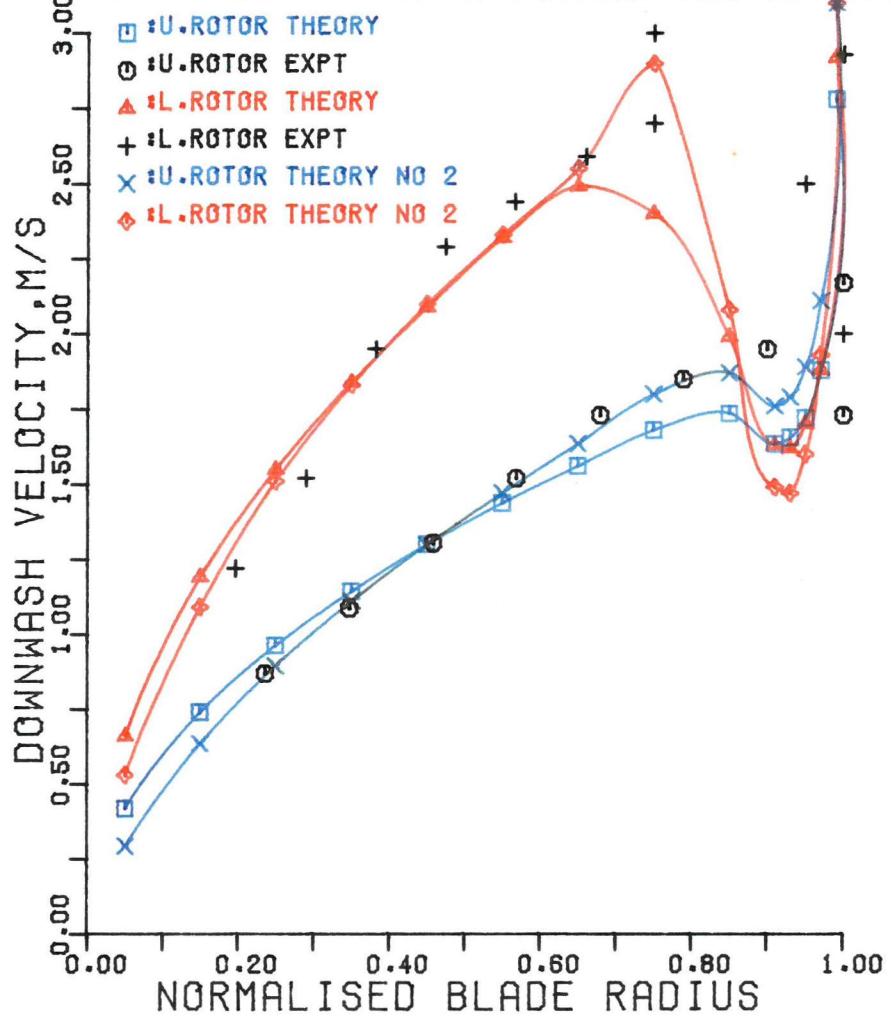


FIG.27 TOTAL DOWNWASH VELOCITY DISTRIBUTIONS.

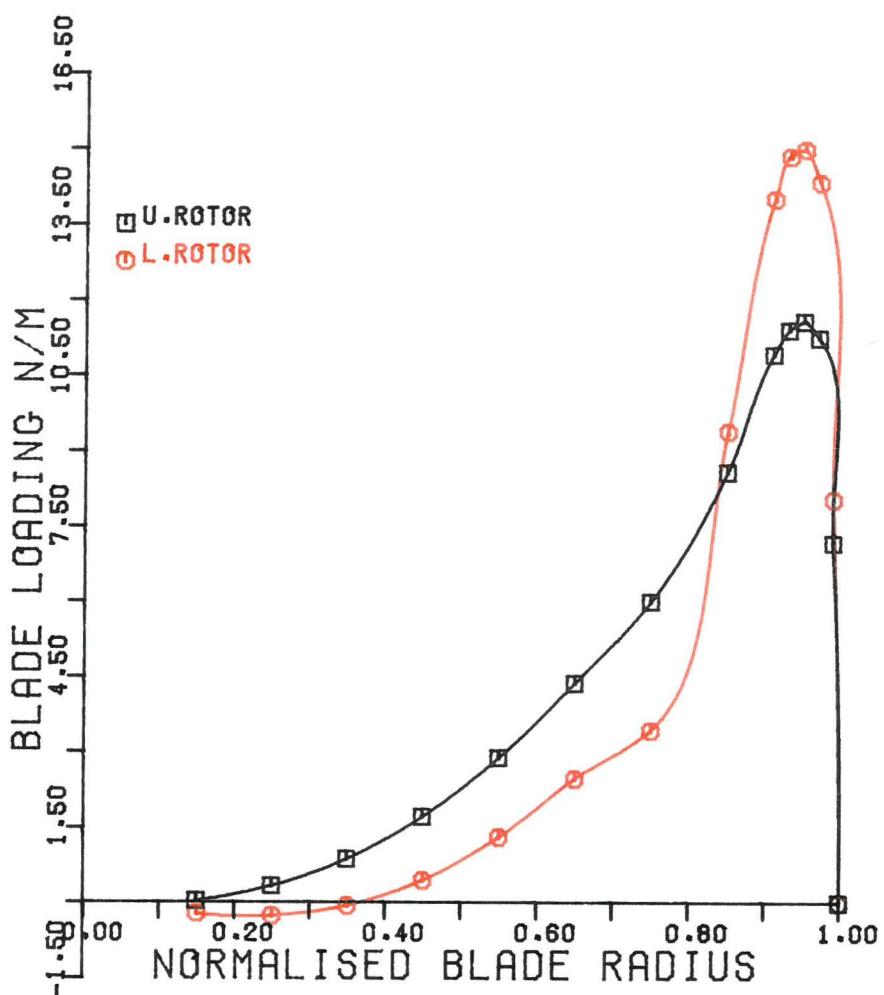


FIG.28 CCTR LIFT DISTRIBUTIONS.

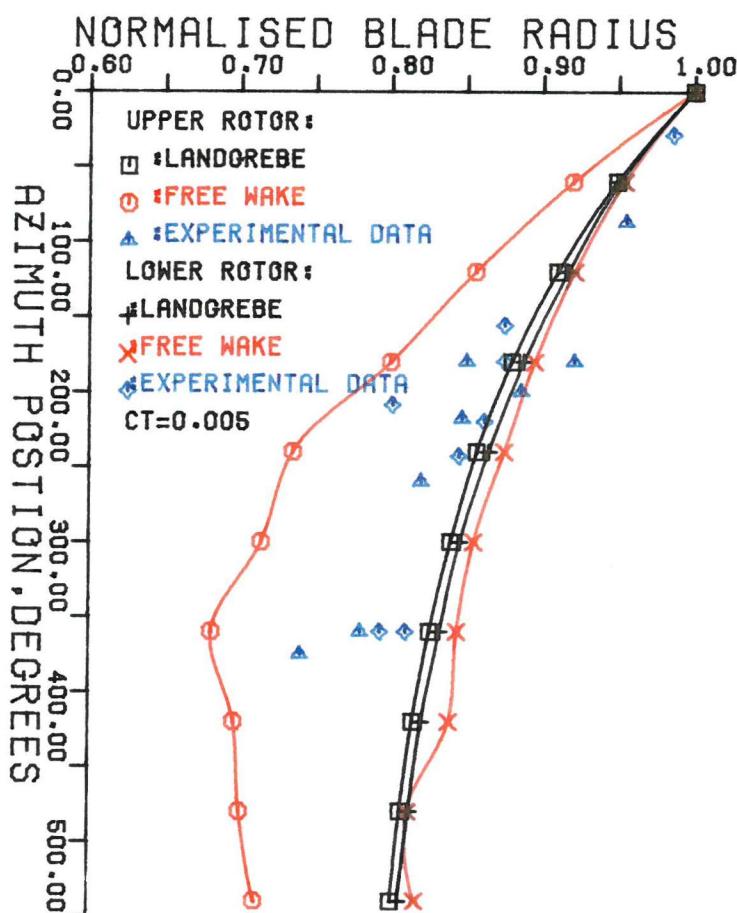


FIG.29 TIP VORTEX WAKE LIMITS.

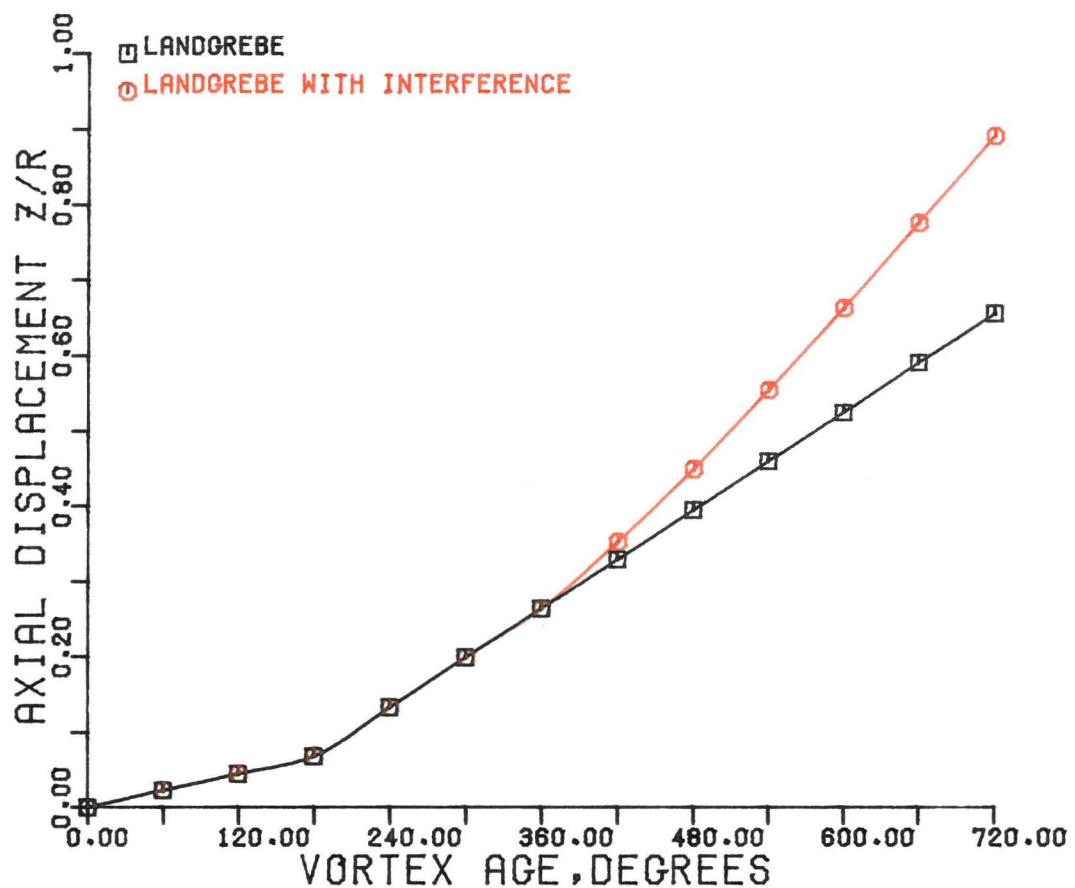


FIG.30 VORTEX AXIAL DISPLACEMENT FROM UPPER ROTOR.

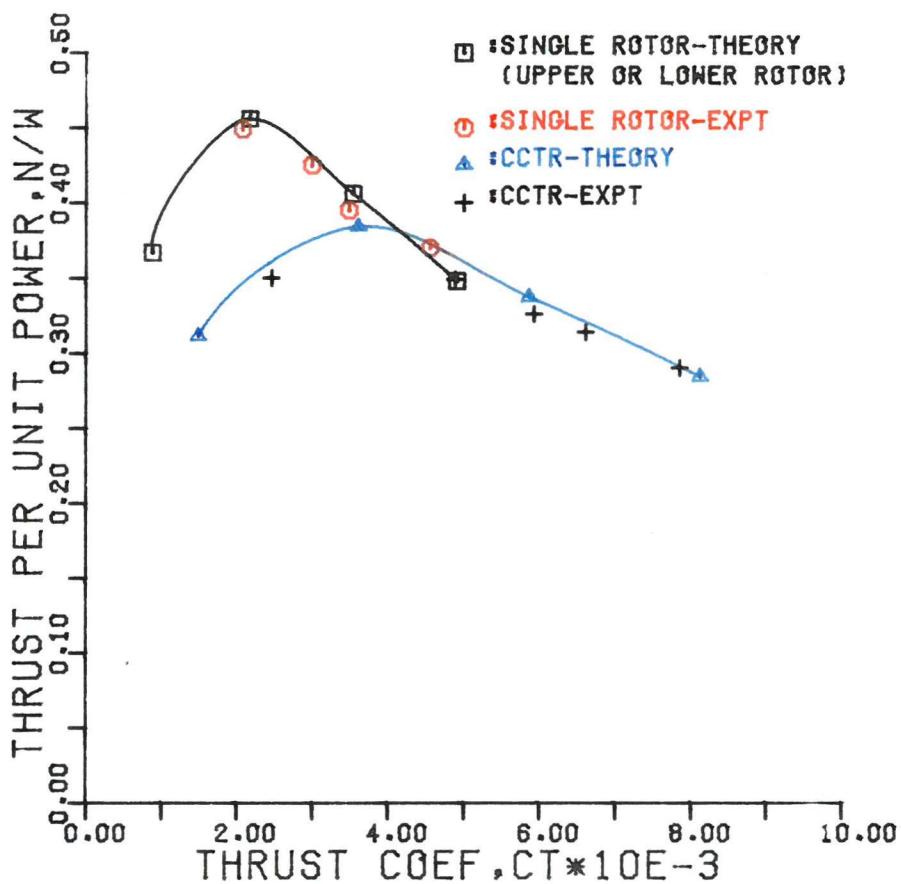


FIG.31 MOTE CCTR PERFORMANCE CHARACTERISTICS.

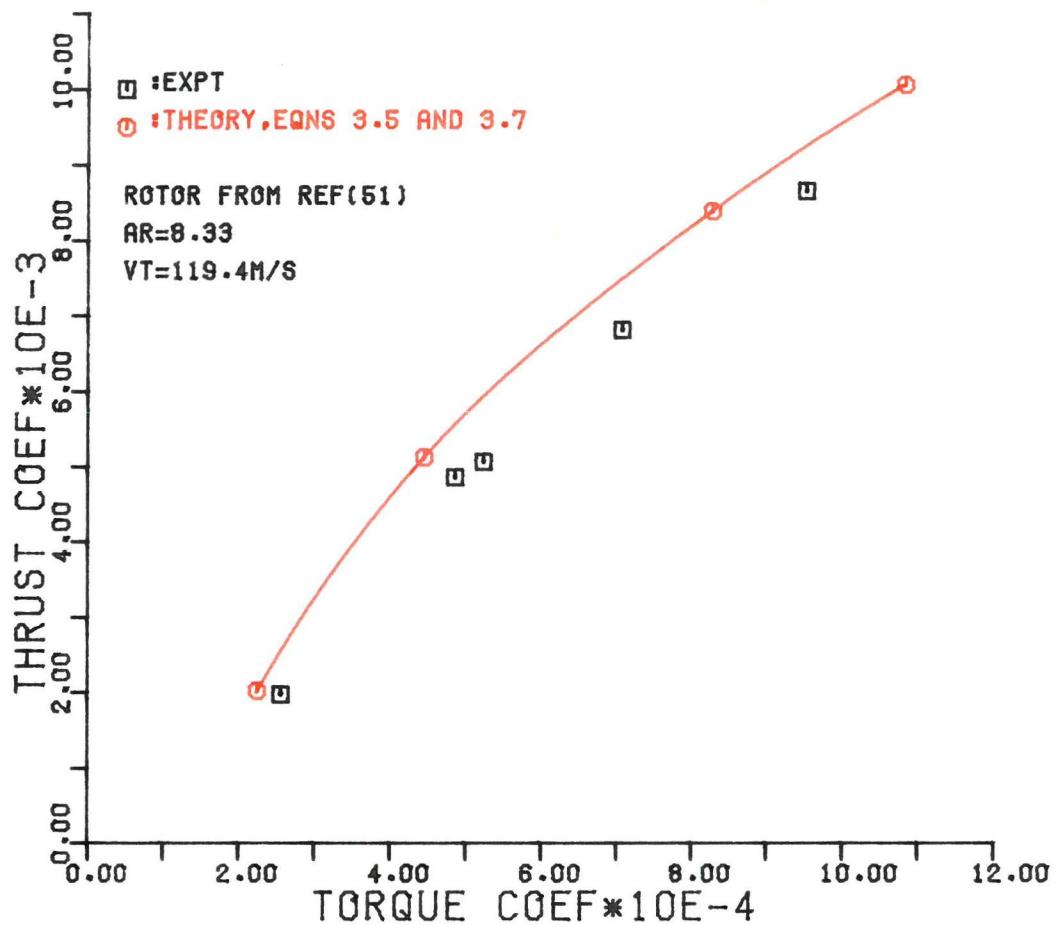


FIG.32 CCTR PERFORMANCE CURVE.

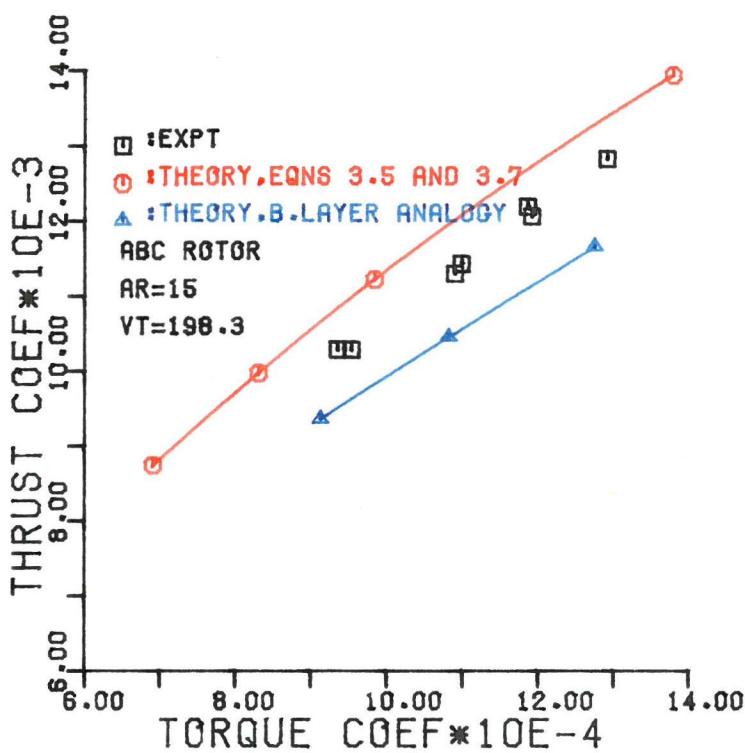


FIG.33 ABC PERFORMANCE CURVE.

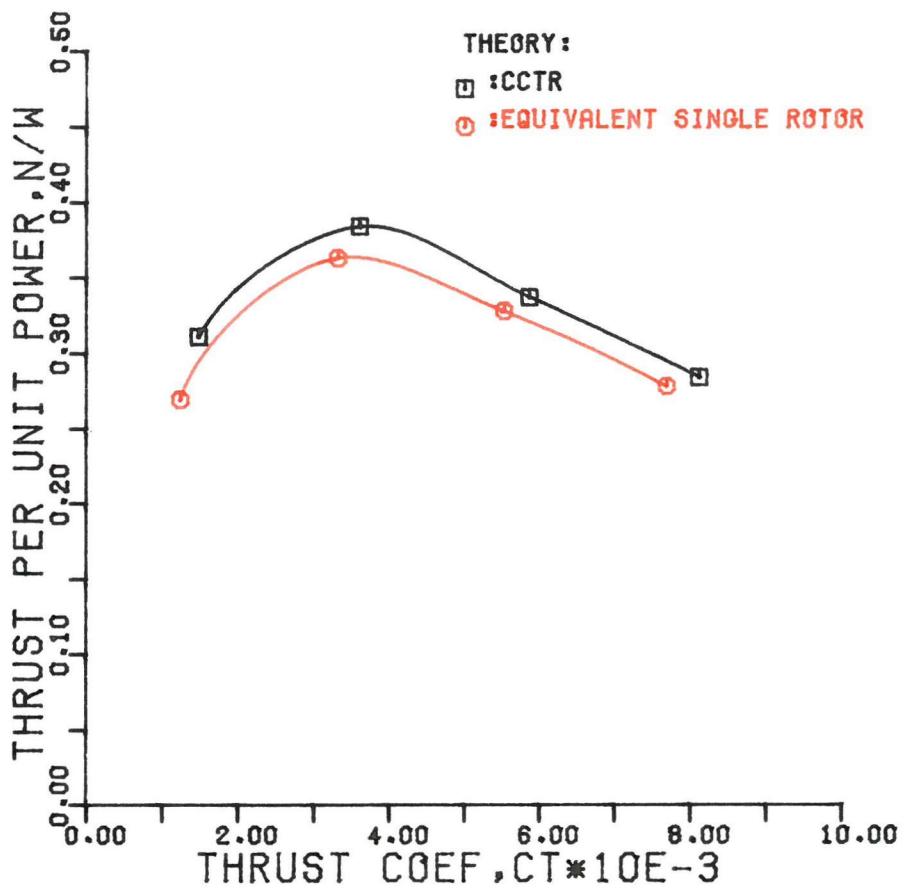


FIG.34 MOTE CCTR COMPARED WITH EQUIVALENT SINGLE. ROTOR.

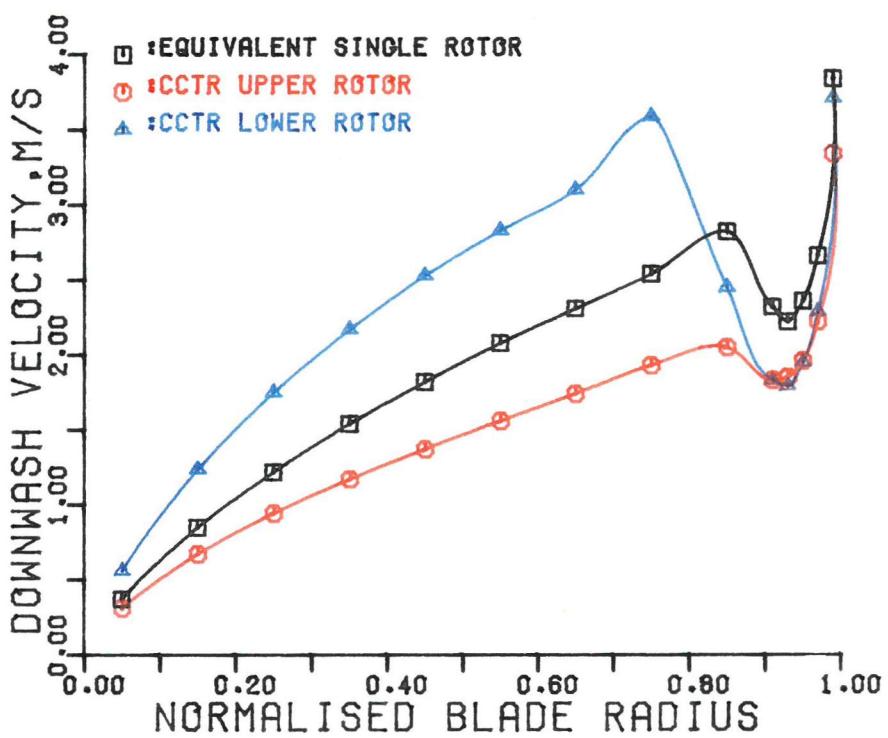


FIG.35 DOWNWASH DISTRIBUTIONS.

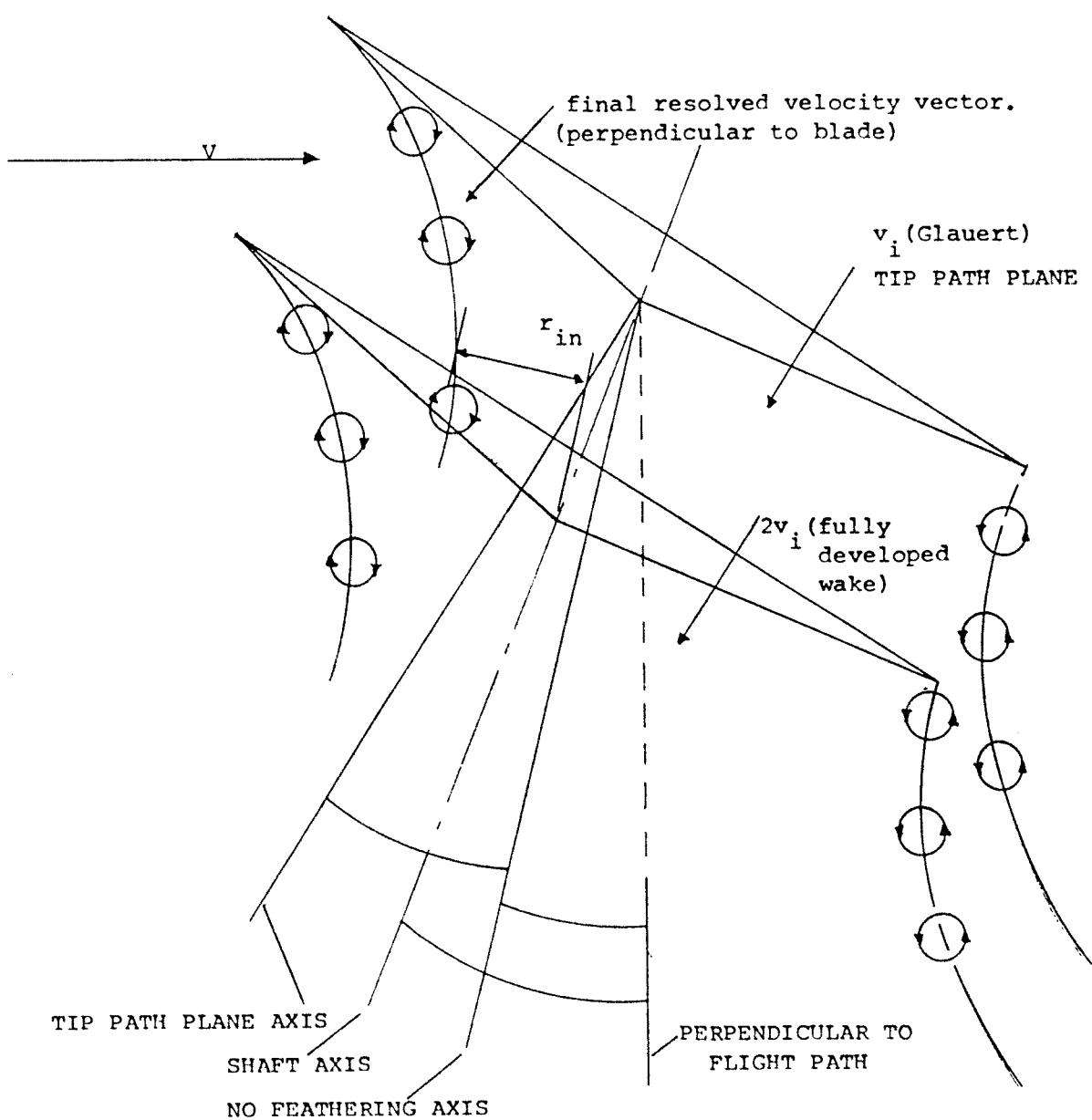


FIG. 36 SCHEMATIC REPRESENTATION OF THE FORWARD FLIGHT MODEL.

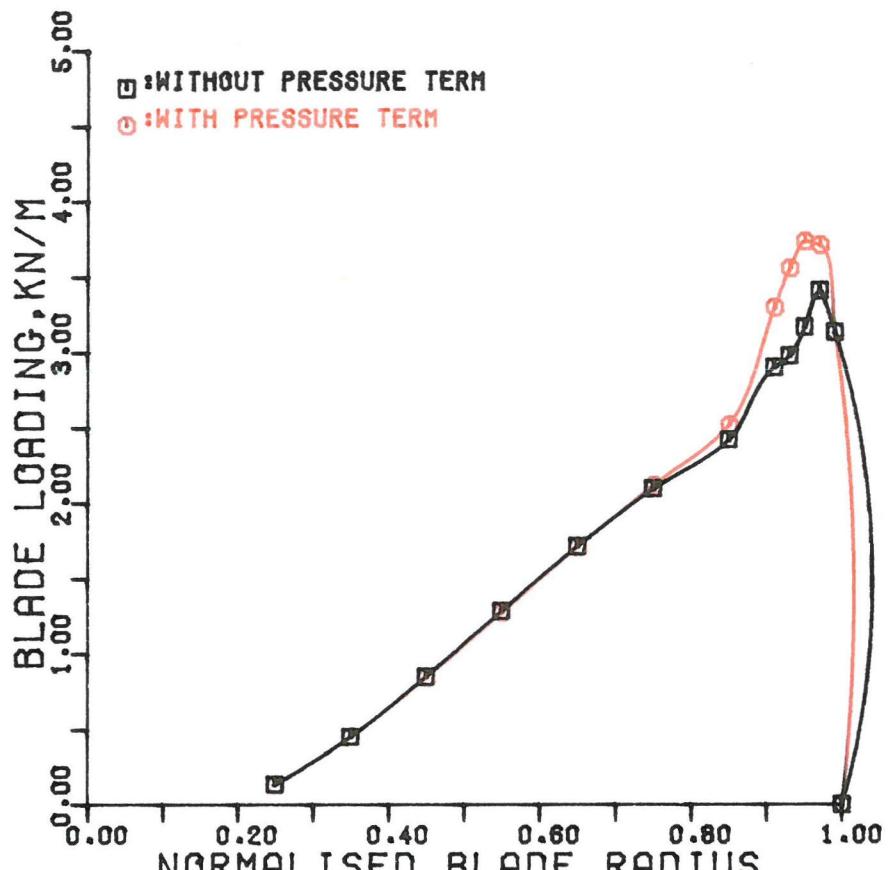


FIG.37 PREDICTED SINGLE ROTOR BLADE LOADING.

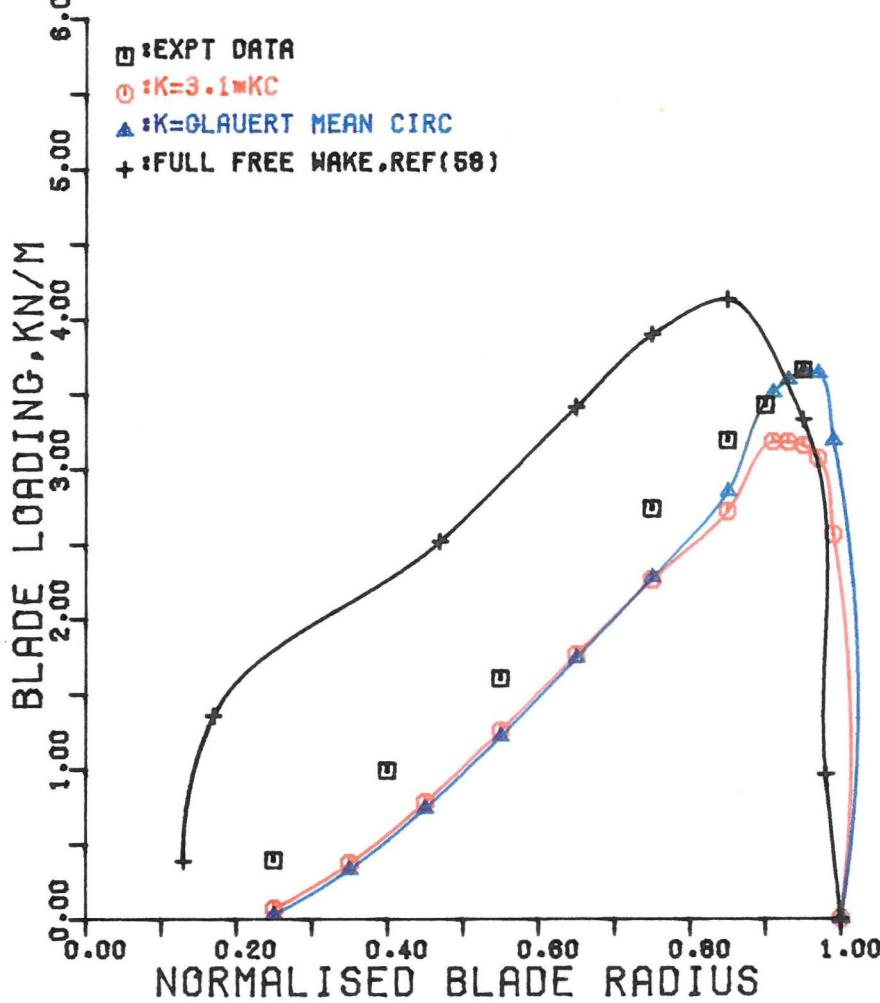


FIG.38 BLADE LOADING AT 0.0 DEGREES AZIMUTH.

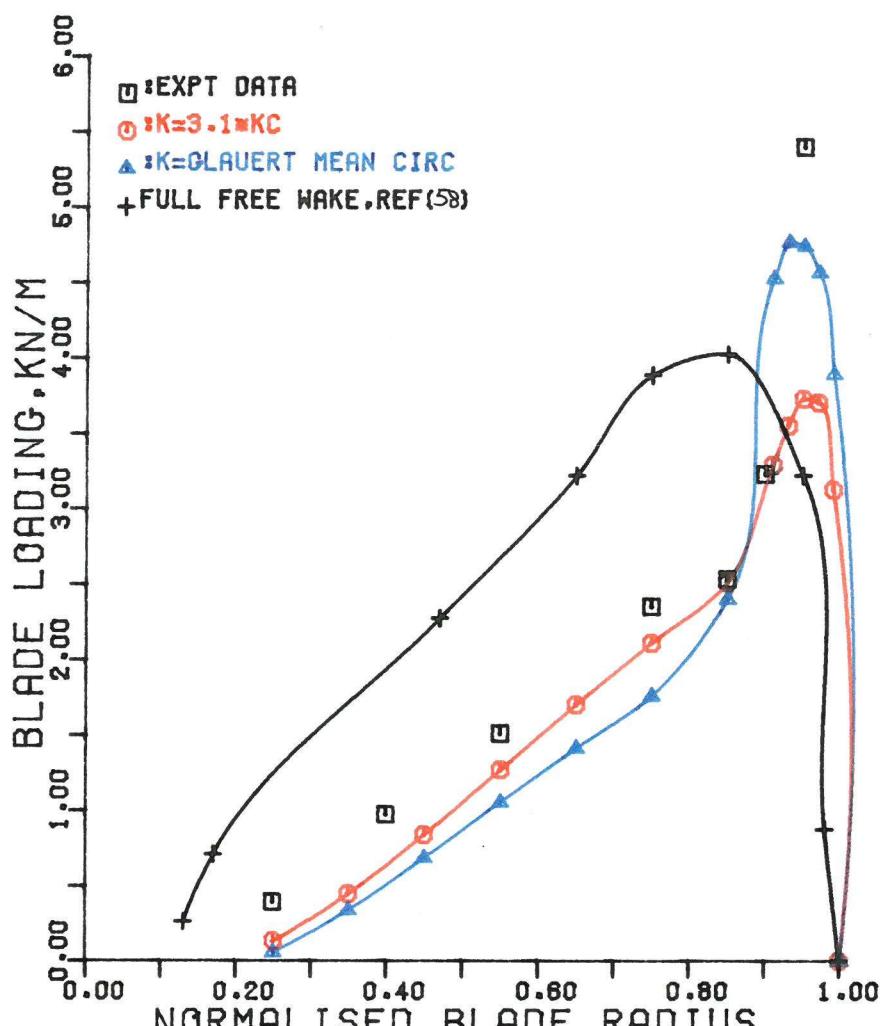


FIG.39 BLADE LOADING AT 90.0 DEGREES AZIMUTH.

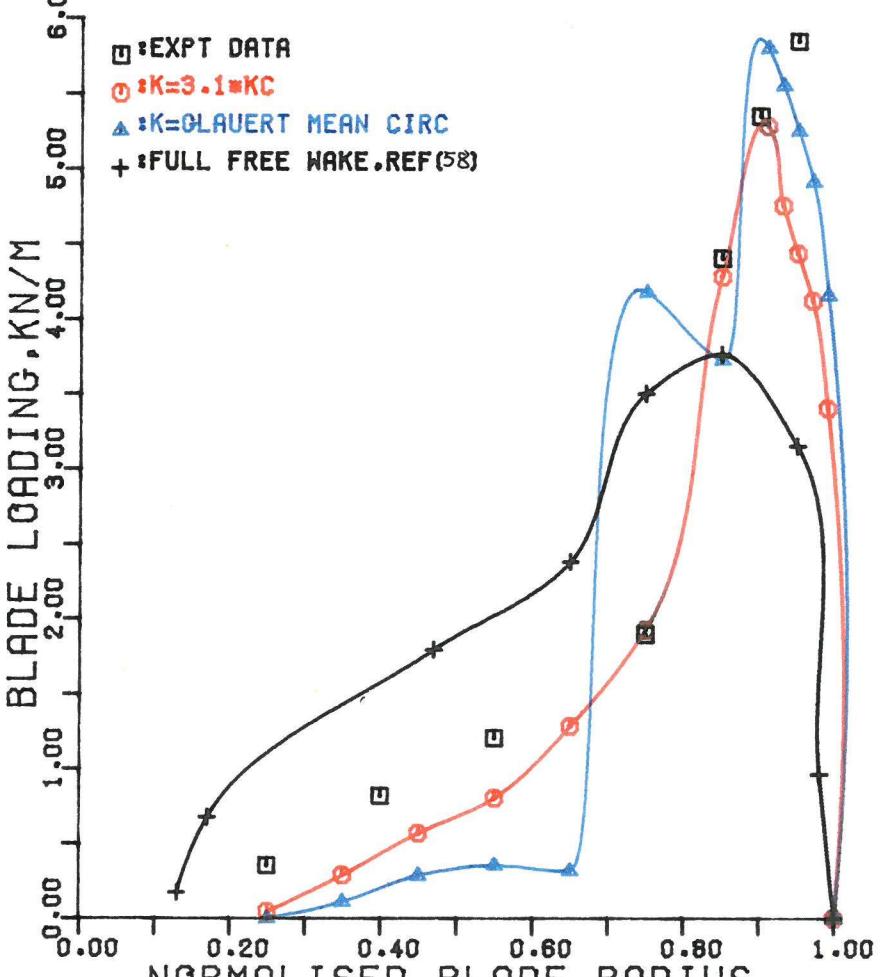


FIG.40 BLADE LOADING AT 180.0 DEGREES AZIMUTH.

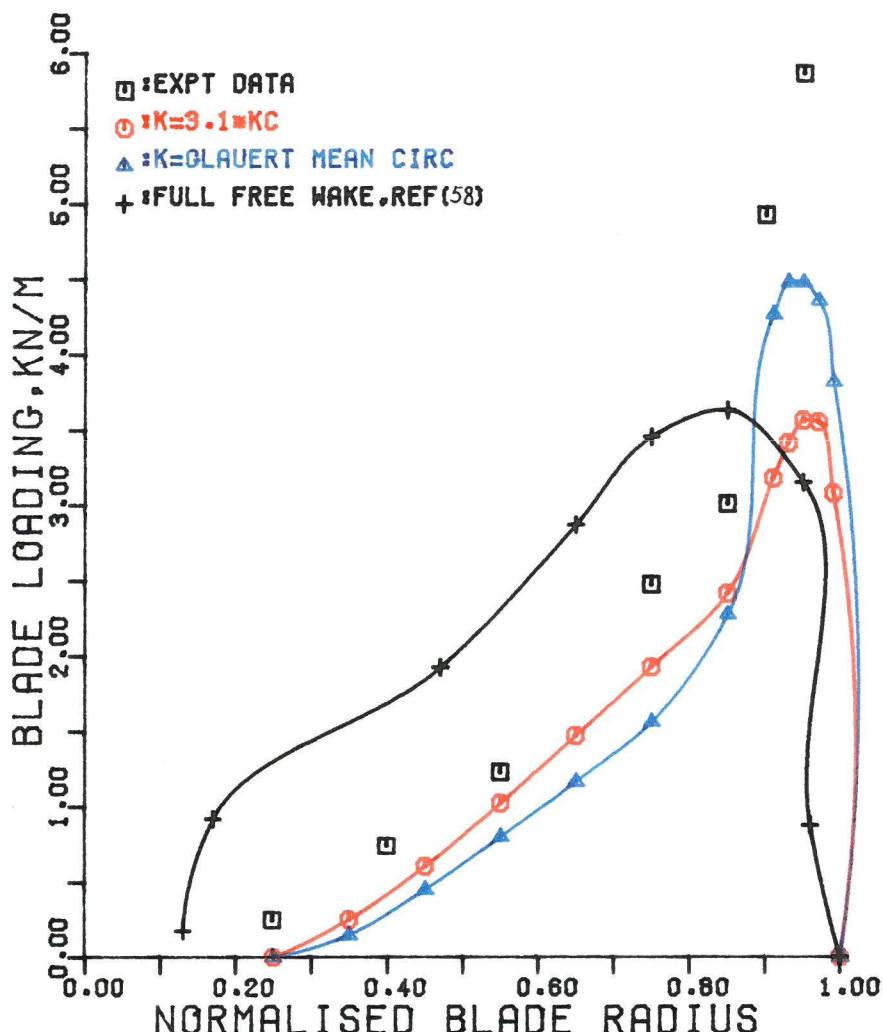


FIG.41 BLADE LOADING AT 270.0 DEGREES AZIMUTH.

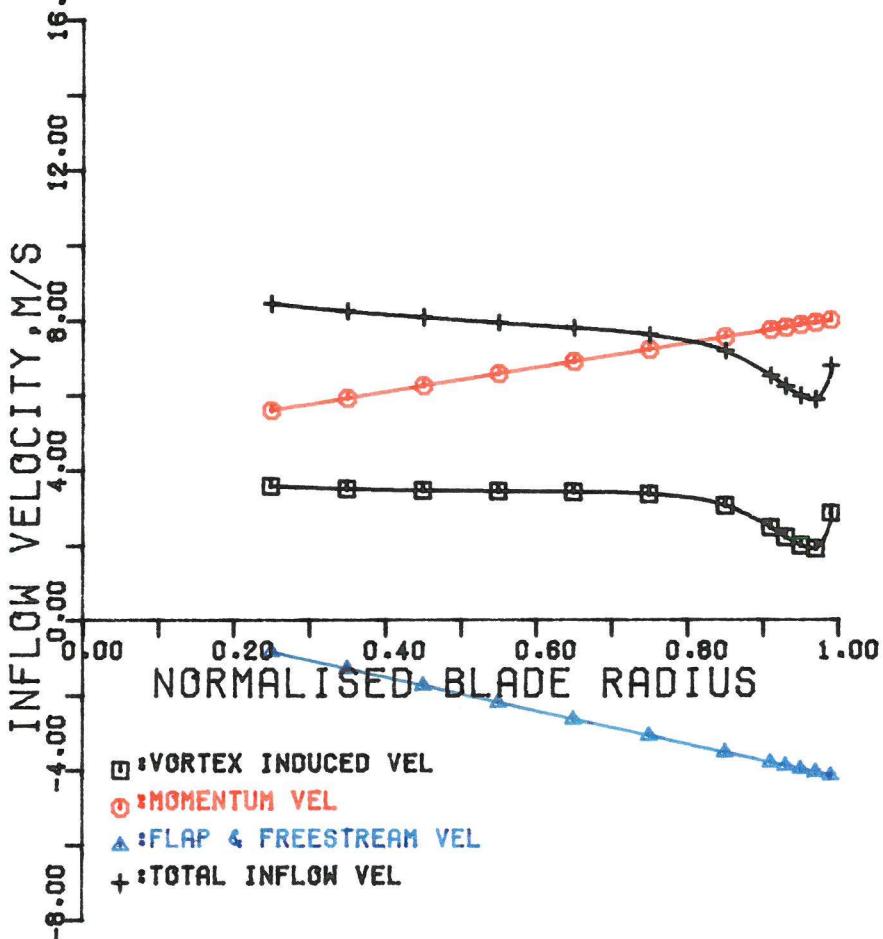


FIG.42 INFLOW DISTRIBUTIONS AT 0.0 DEGREES AZIMUTH.

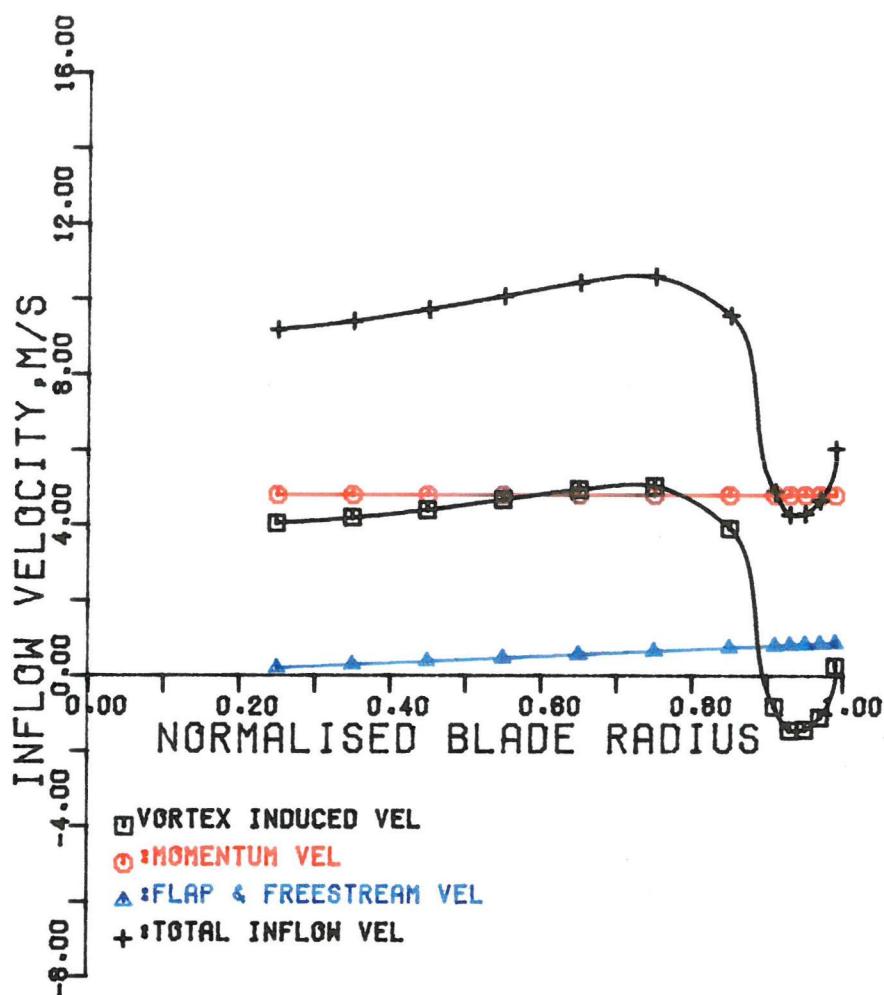


FIG.43 INFLOW DISTRIBUTIONS AT 90.0 DEGREES AZIMUTH.

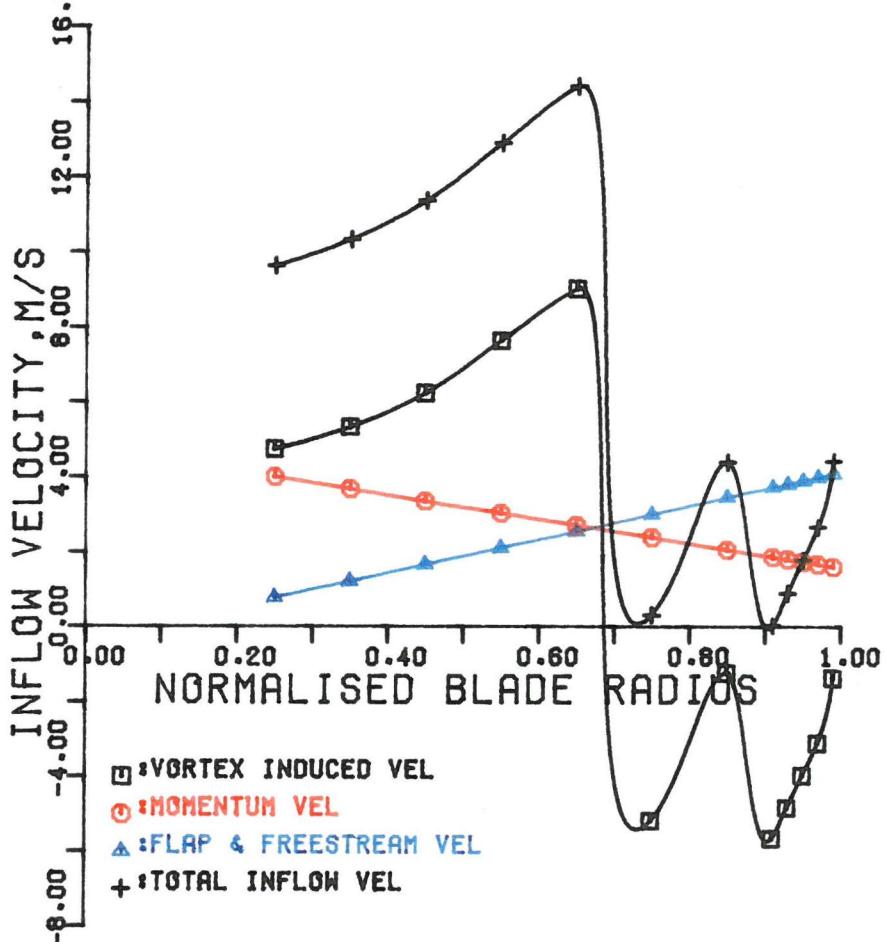


FIG.44 INFLOW DISTRIBUTIONS AT 180.0 DEGREES AZIMUTH

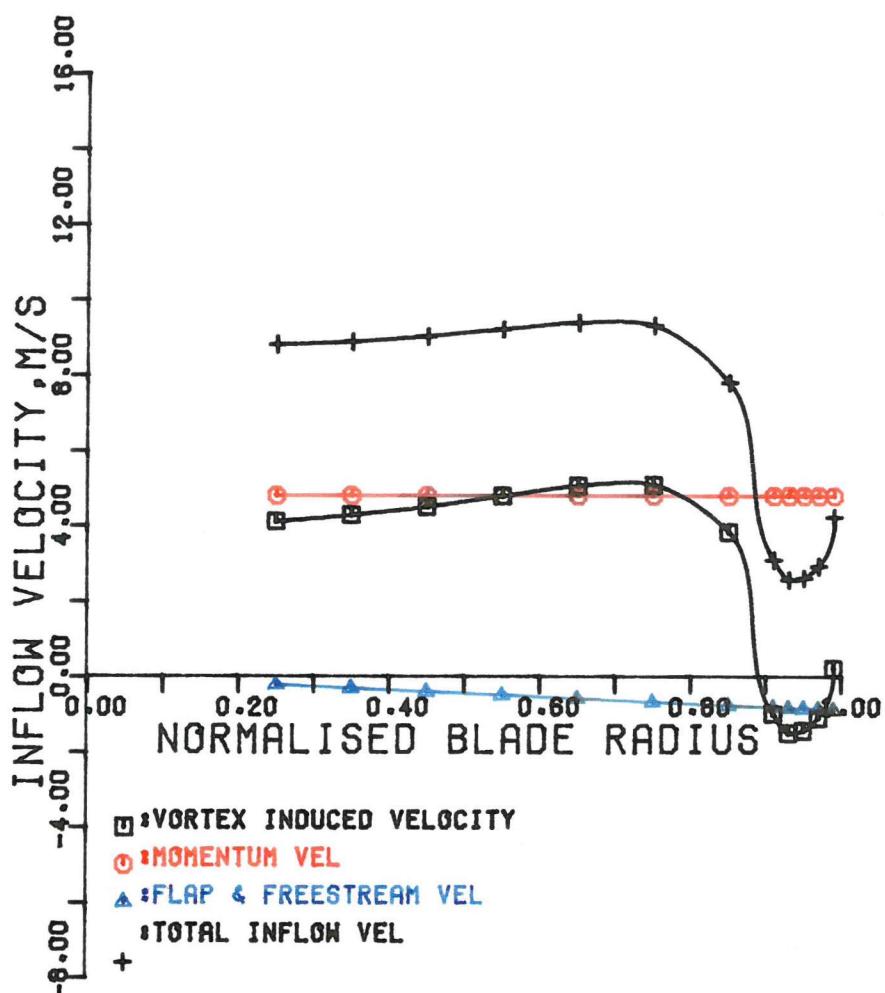


FIG.45 INFLOW DISTRIBUTION AT 270.0 DEGREES AZIMUTH.

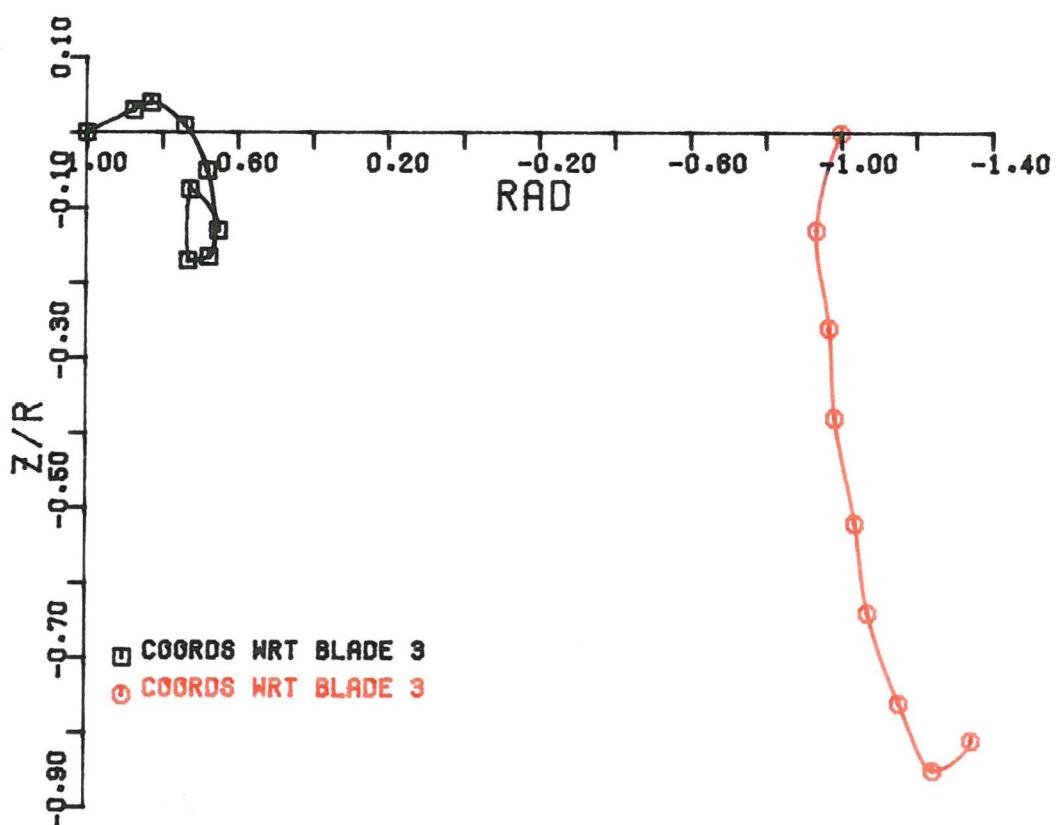


FIG.46 TIP VORTEX PATHS IN LONG,AL PLANE.

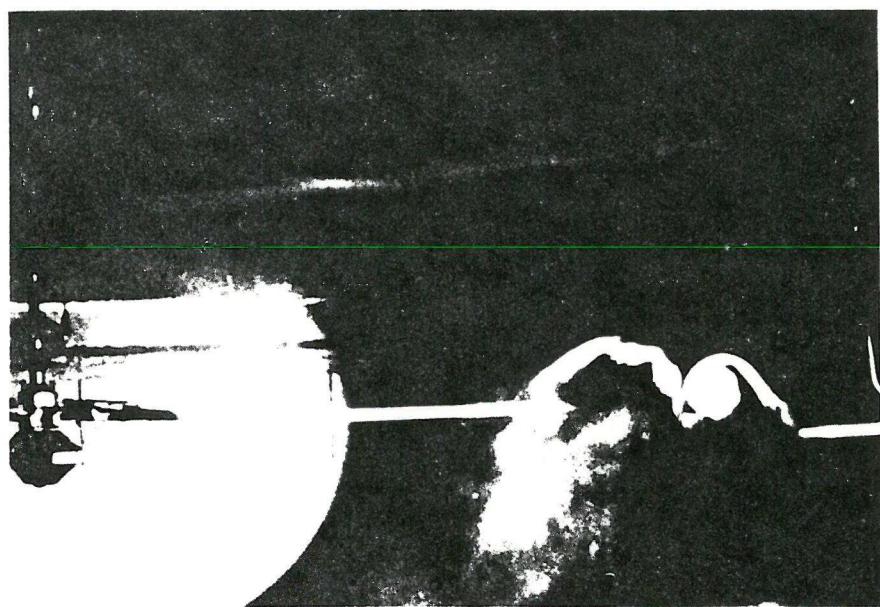


FIG.47 PHOTOGRAPH OF THE TIP VORTEX FORMATION AT THE FRONT OF A CCTR.

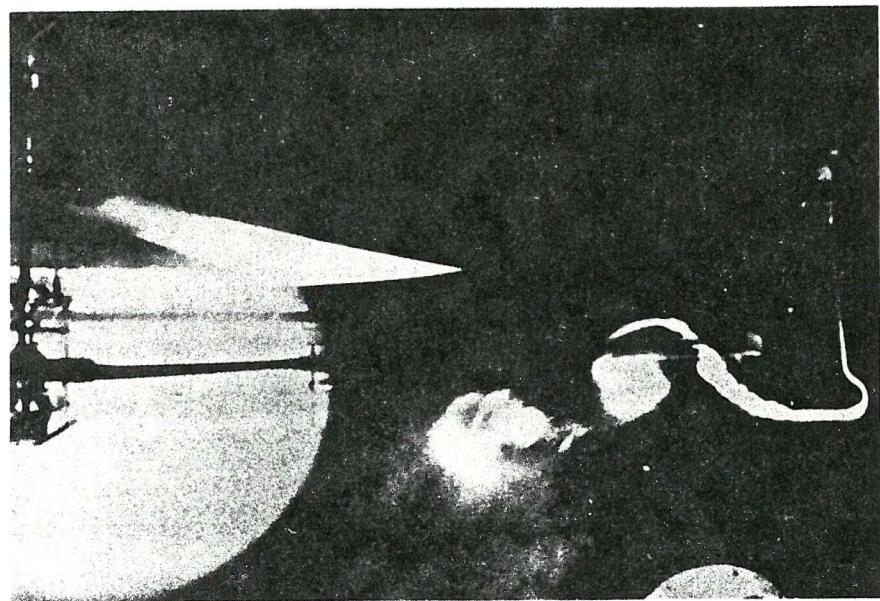


FIG.48 PHOTOGRAPH OF THE UPWASH AT THE FRONT OF A CCTR.

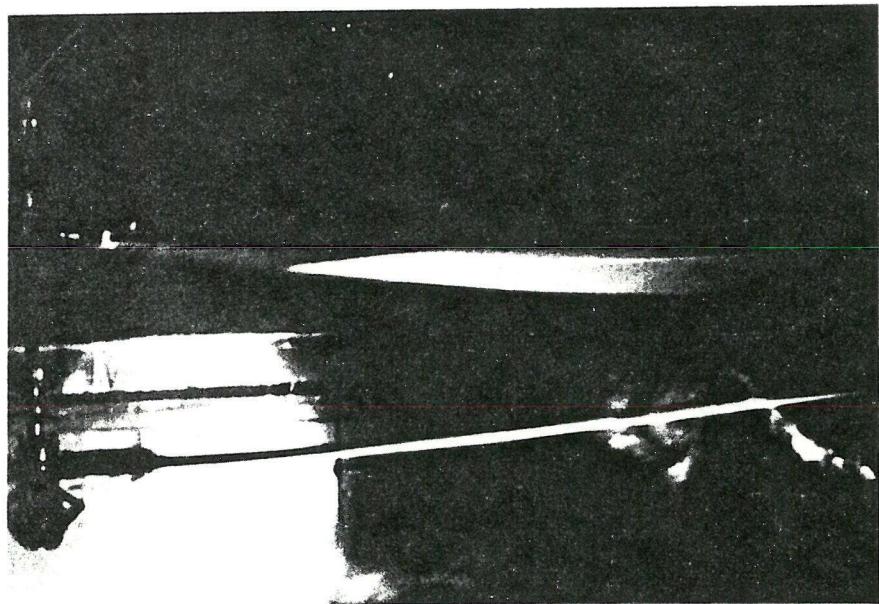


FIG.49 PHOTOGRAPH OF APENDING BLADE VORTEX INTERACTION.

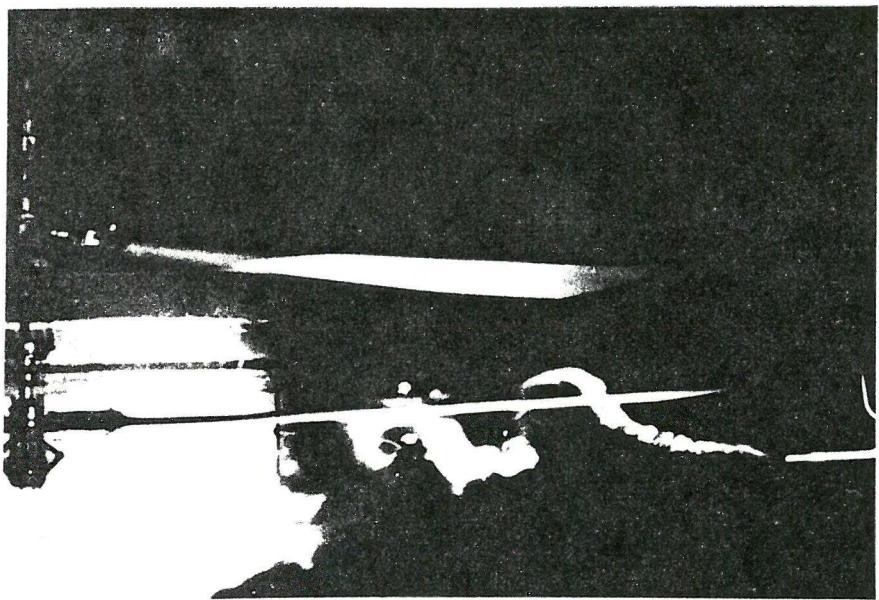


FIG.50 PHOTOGRAPH OF THE FLOW PERIODICITY AT THE FRONT OF A CCTR.

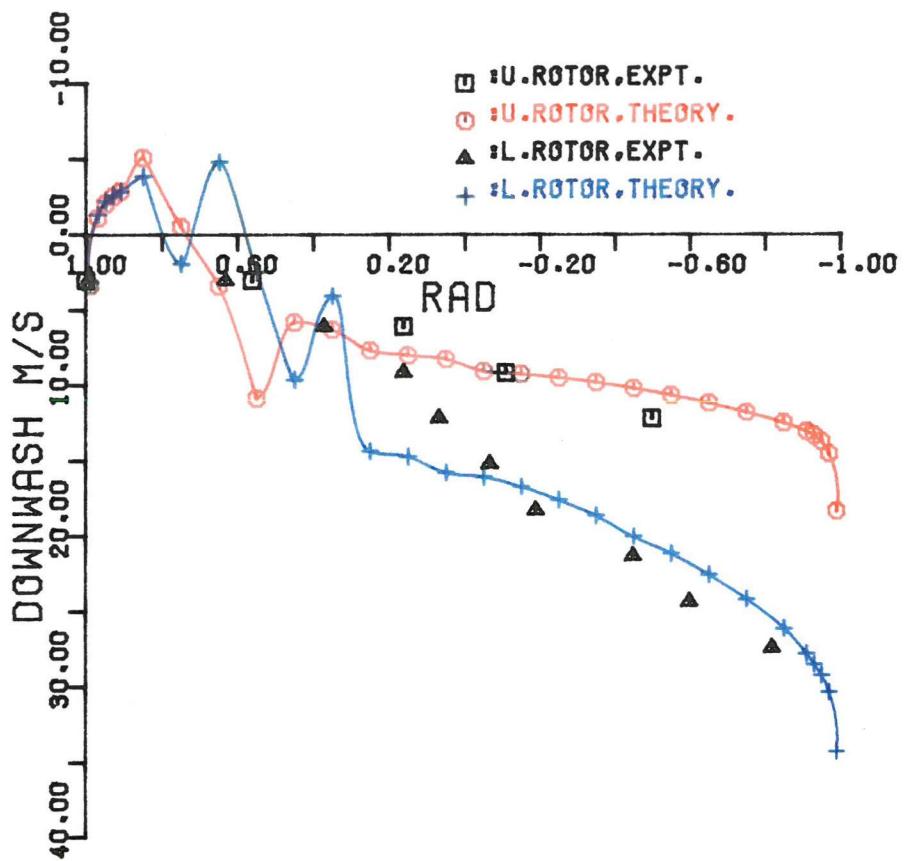


FIG.51 ABC INFLOW DISTRIBUTION,0-180 DEGS PLANE.

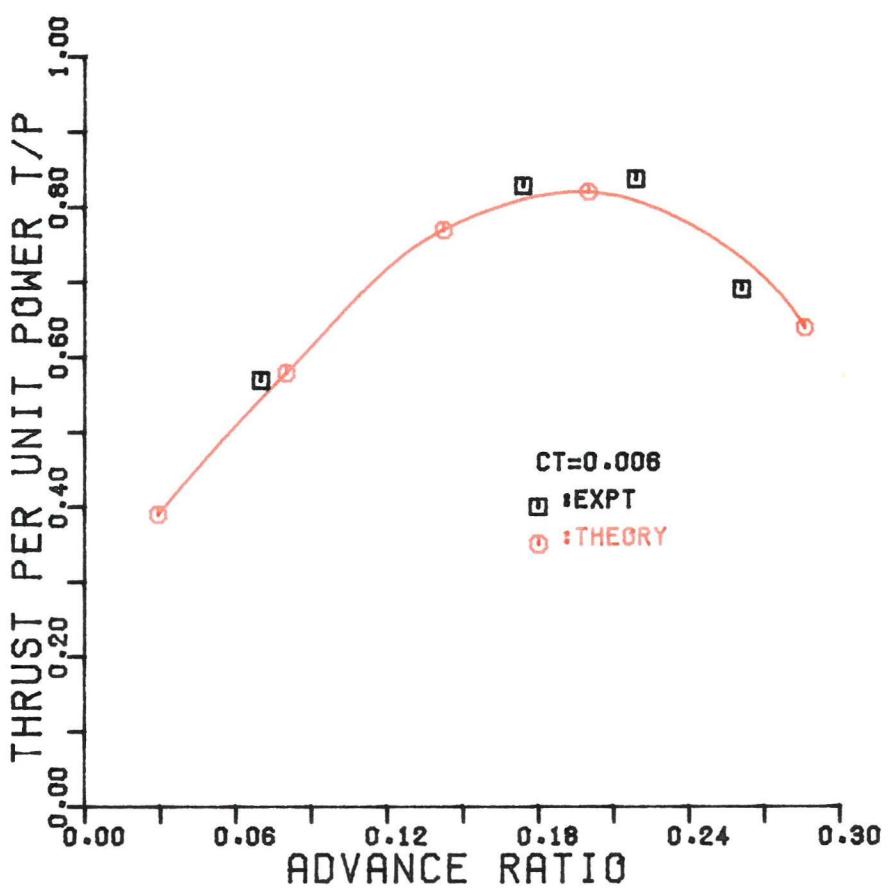


FIG.52 MOTE FORWARD FLIGHT PERFORMANCE.

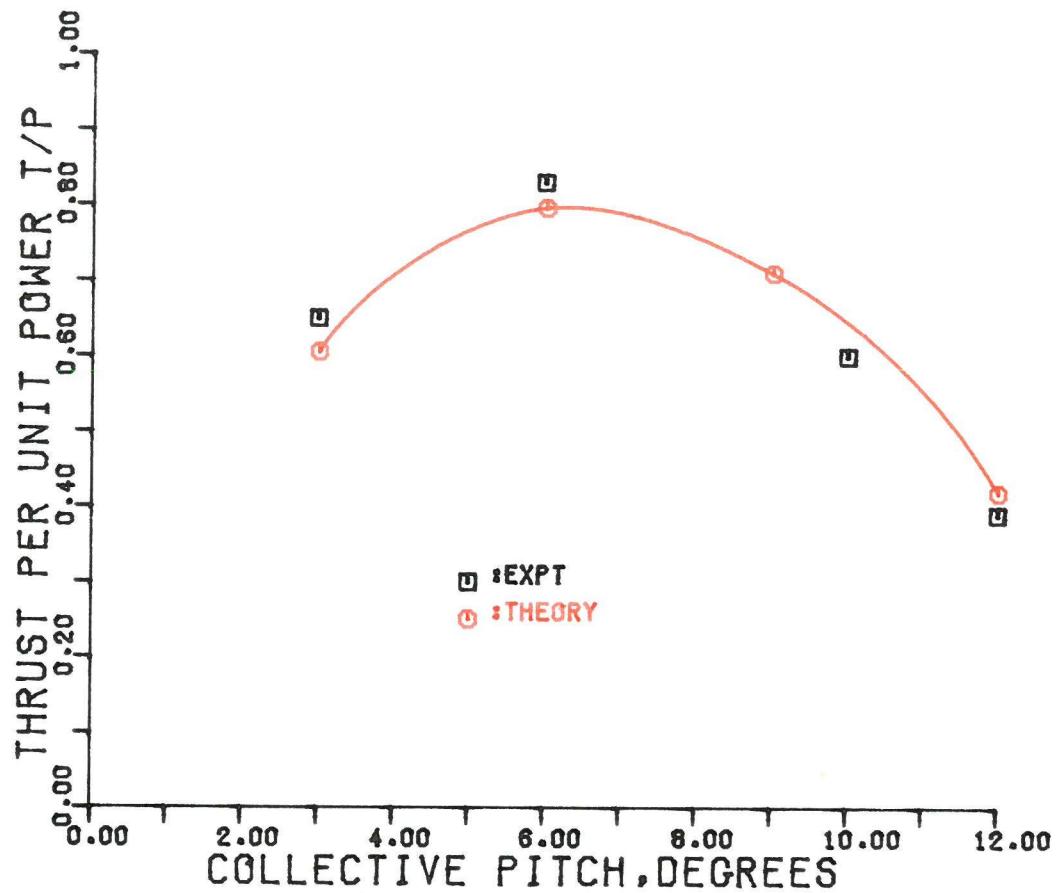


FIG.53 MOTE PERFORMANCE, ADVANCE RATIO=0.174.

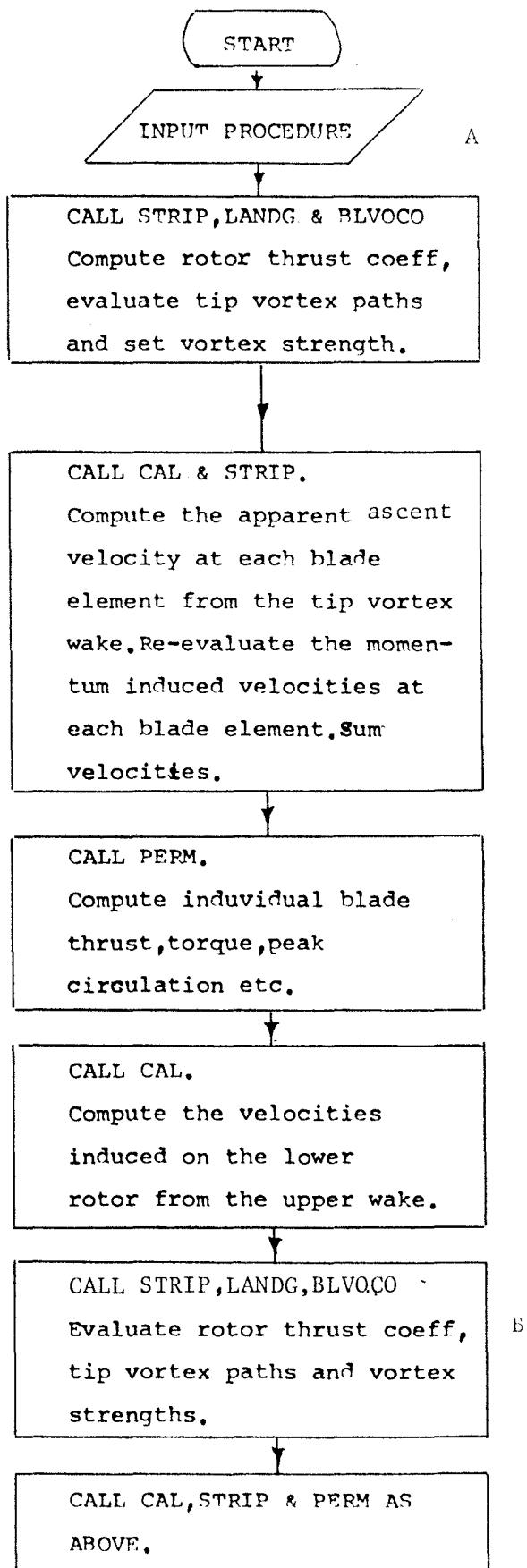


FIG.54 FLOW CHART
OF HOVER CODE.

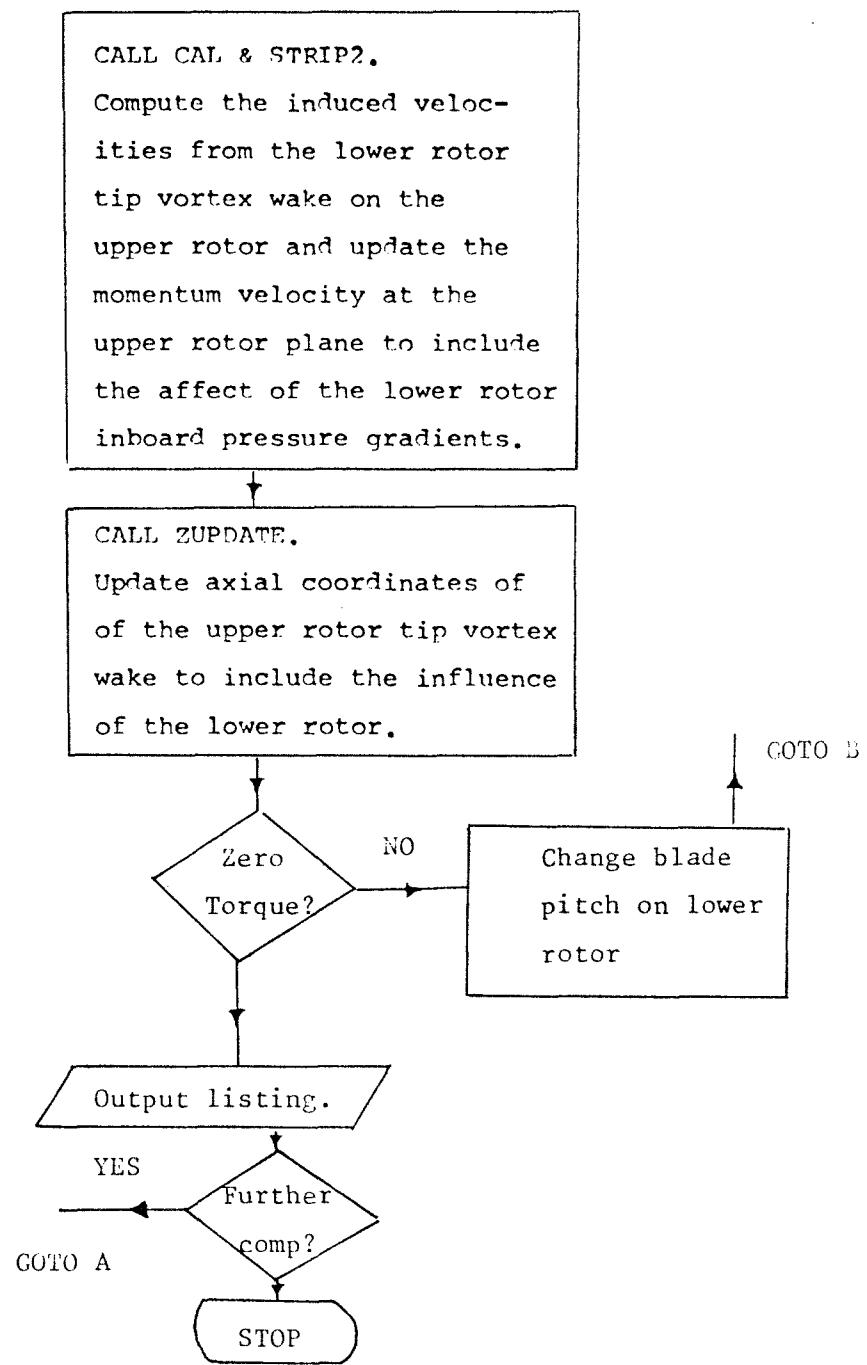
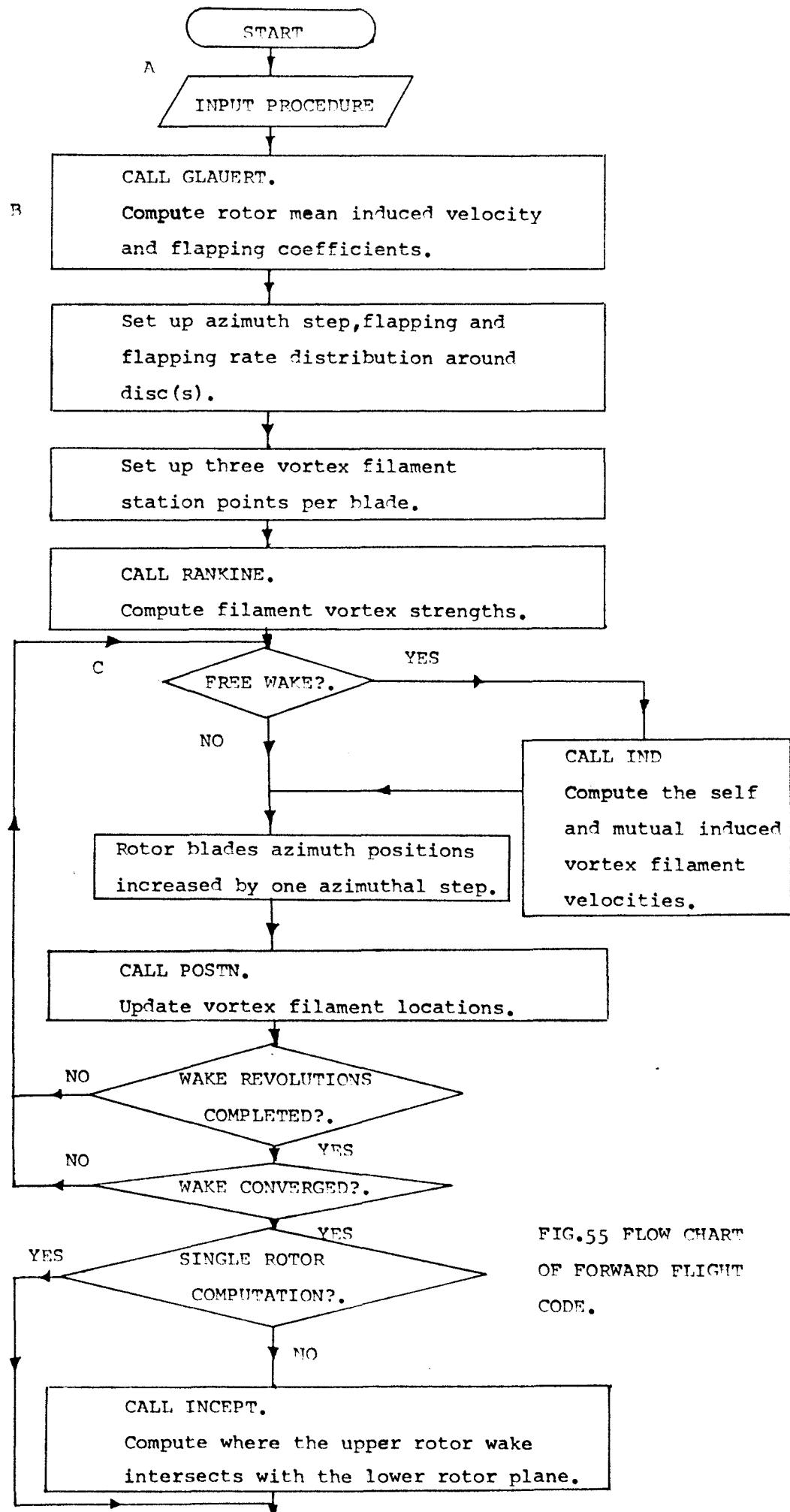



FIG.54 CONTINUED.

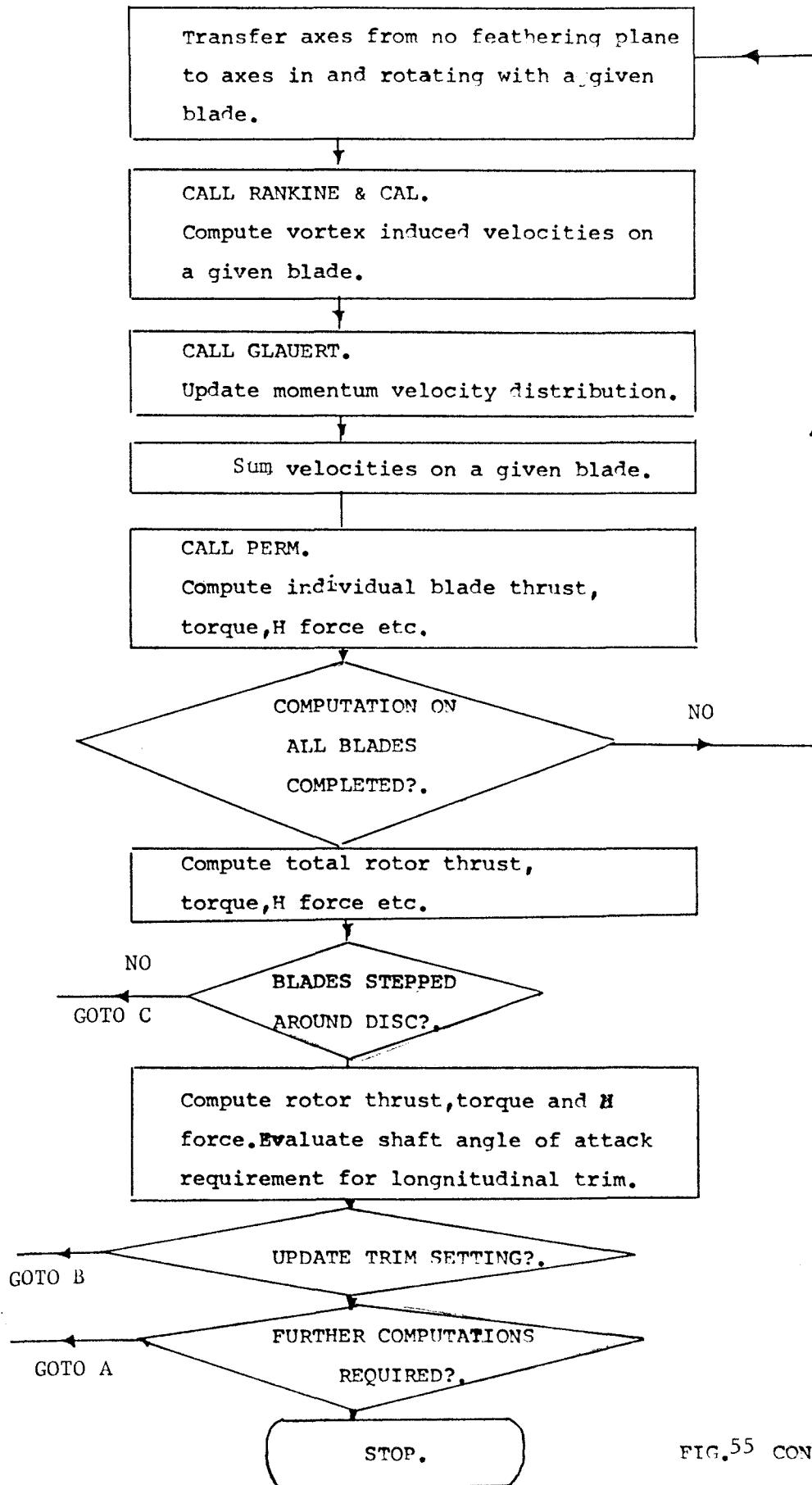


FIG. 55 CONTINUED.

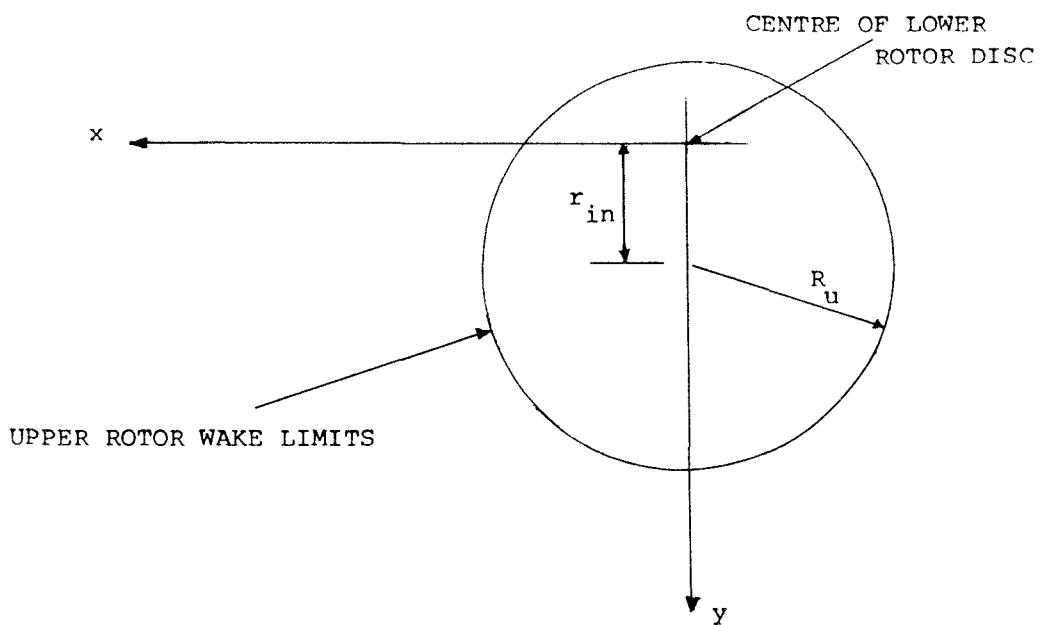
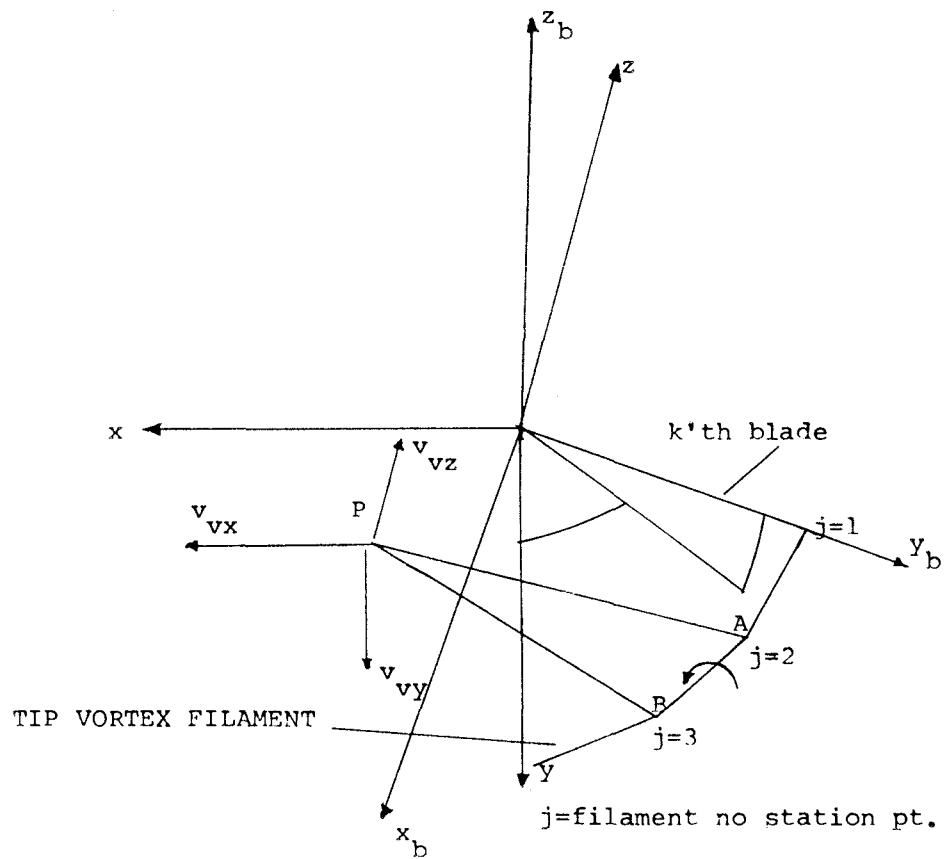



FIG.56 NOTATION OF AXES.

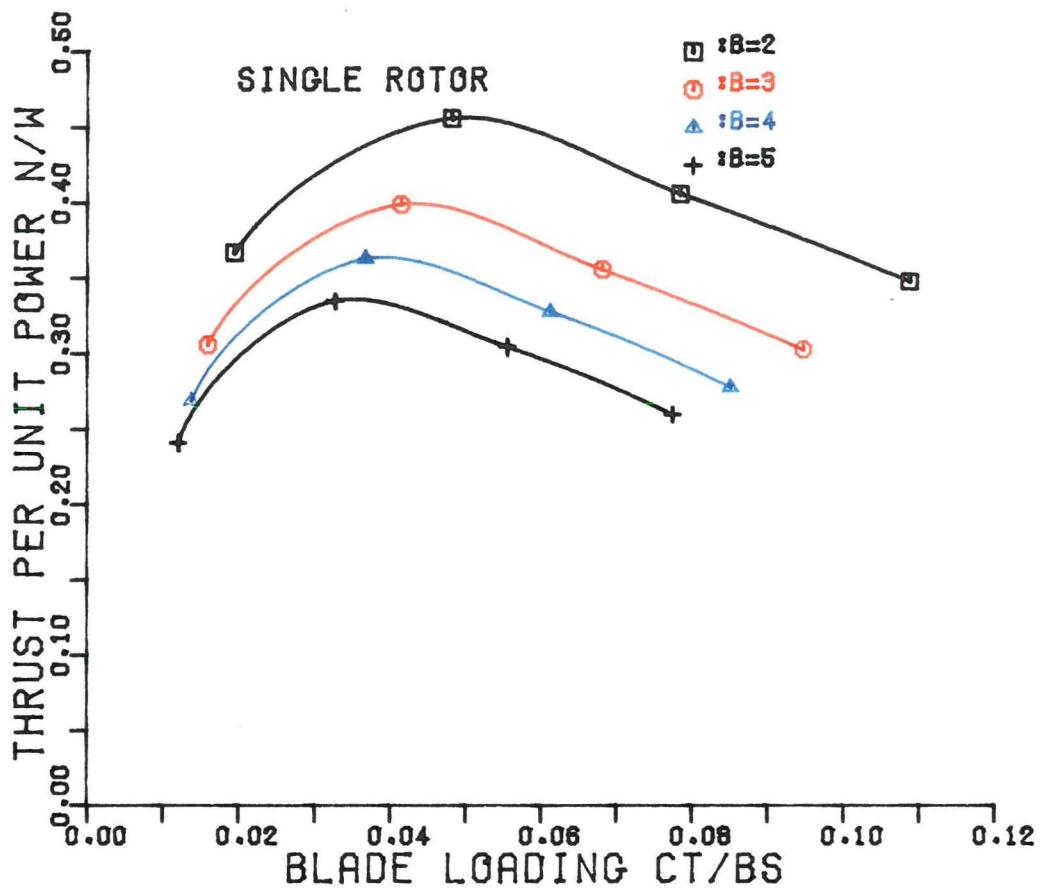


FIG.57 VARIATION IN NUMBER OF BLADES.

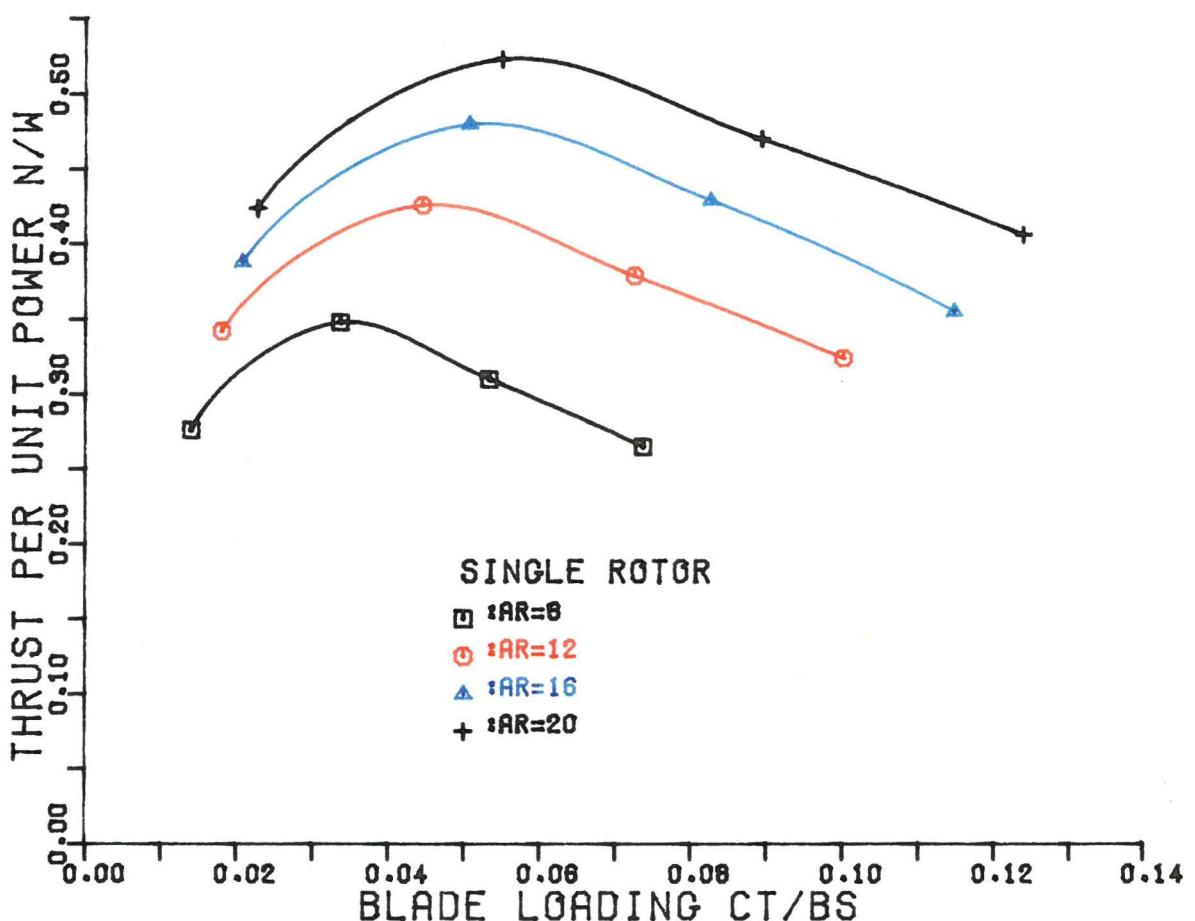


FIG.58 VARIATION IN BLADE ASPECT RATIO.

FIG.59 CONSTANT BLADE SOLIDITY.

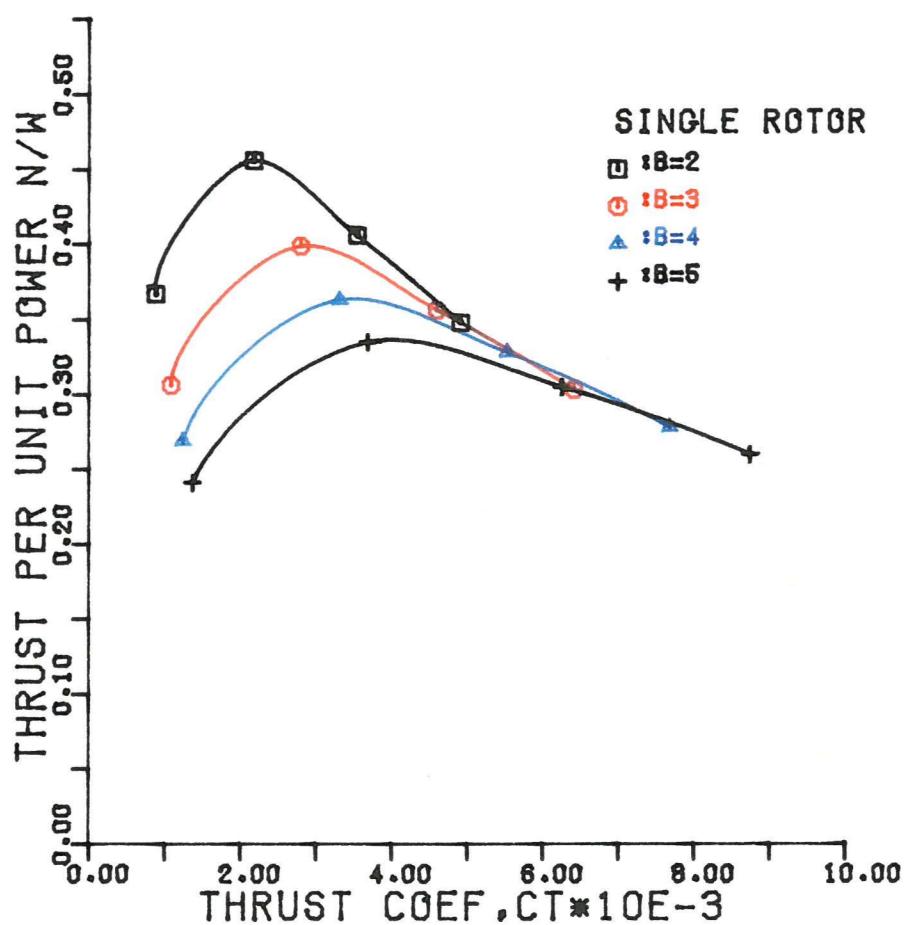


FIG.60 VARIATION IN NUMBER OF BLADES.

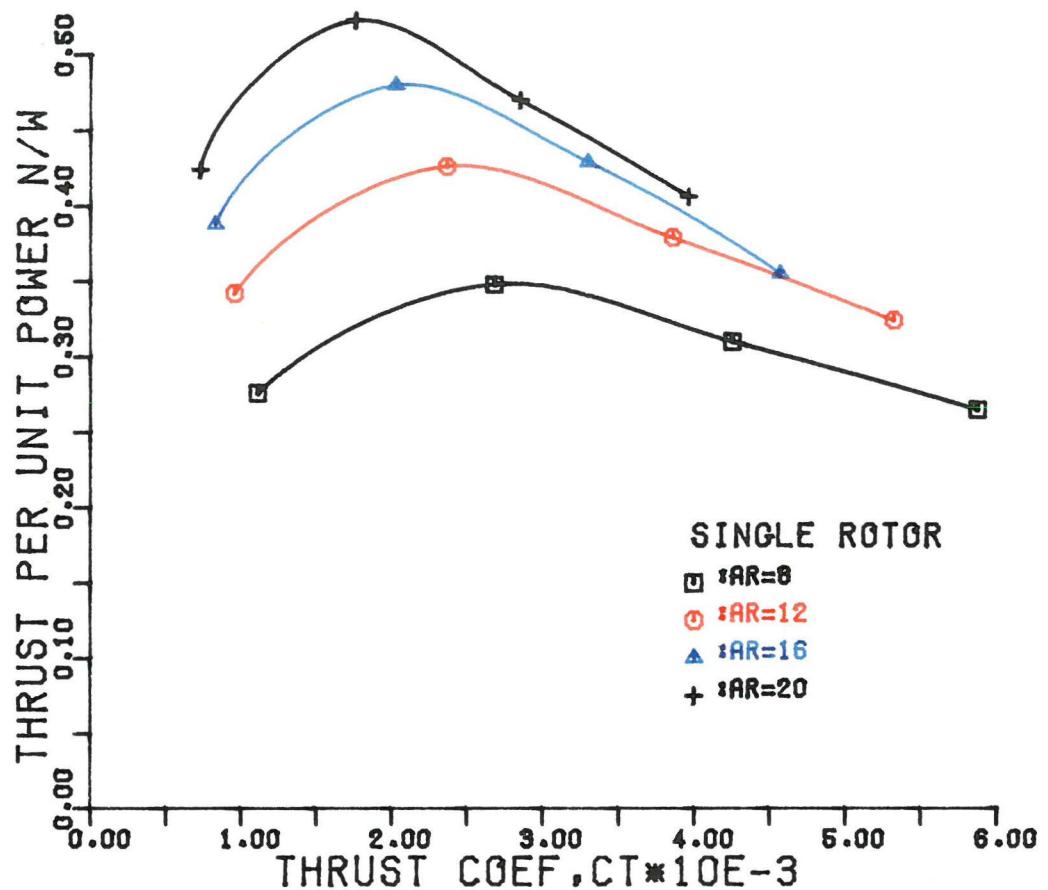


FIG.61 VARIATION IN ASPECT RATIO.

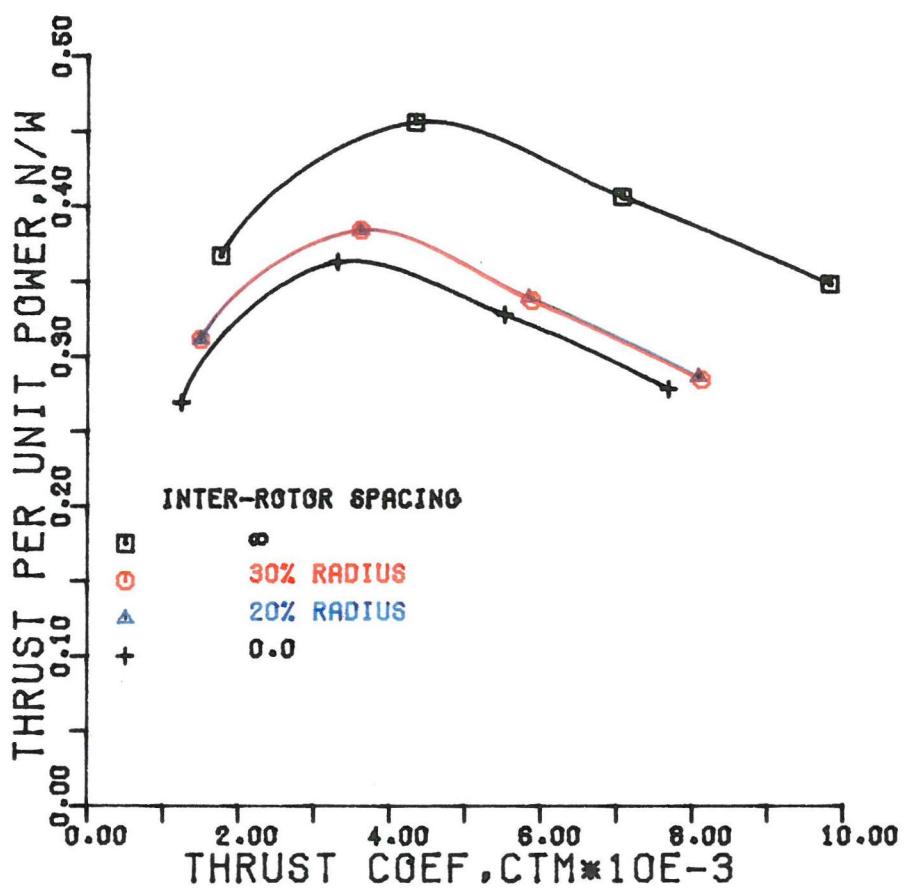


FIG.62 EFFECT OF INTER-ROTOR SPACING.

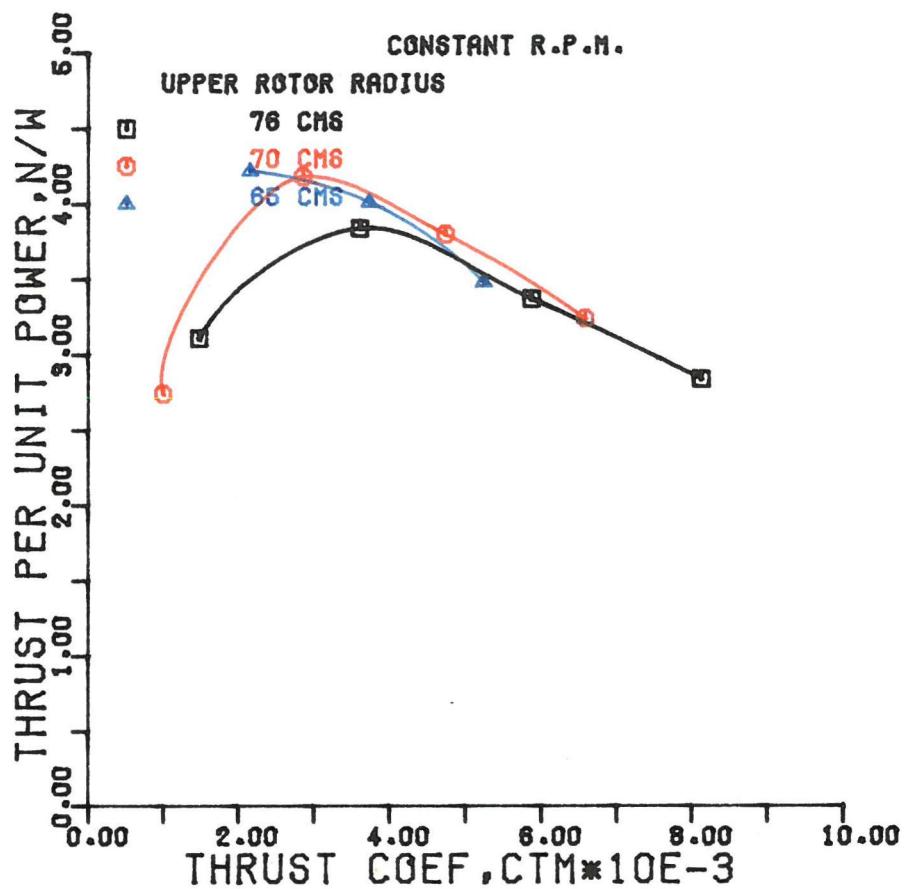


FIG.63 EFFECT OF REDUCING UPPER ROTOR RADIUS.

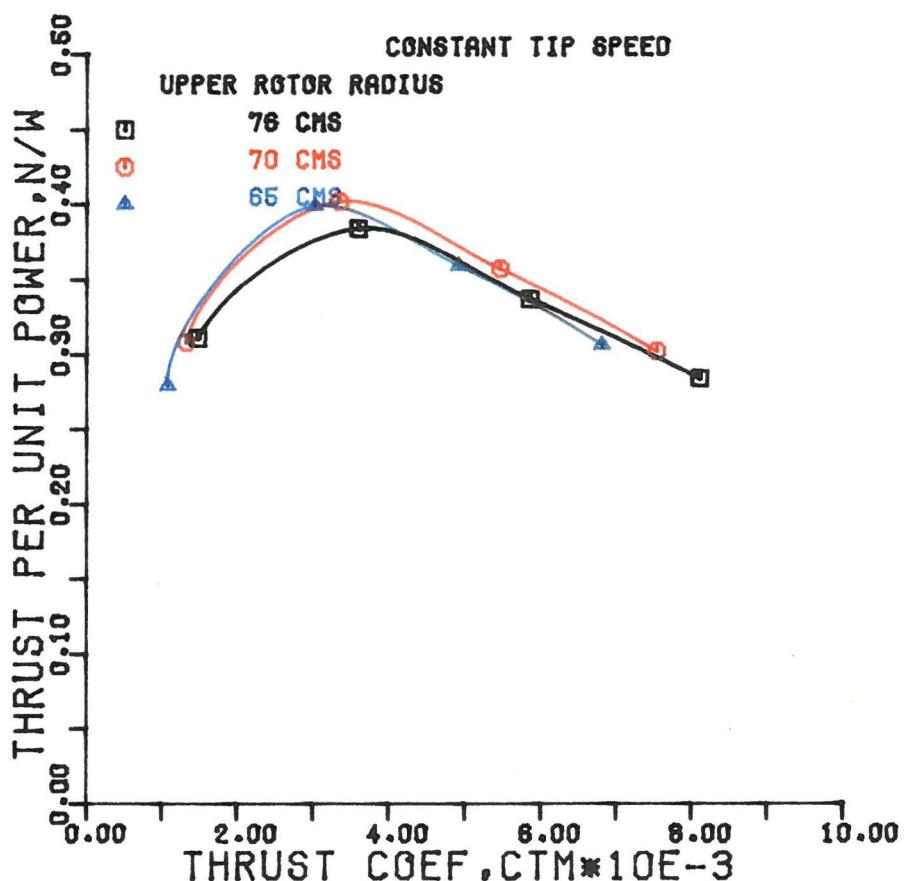


FIG.64 EFFECT OF REDUCING UPPER ROTOR RADIUS.

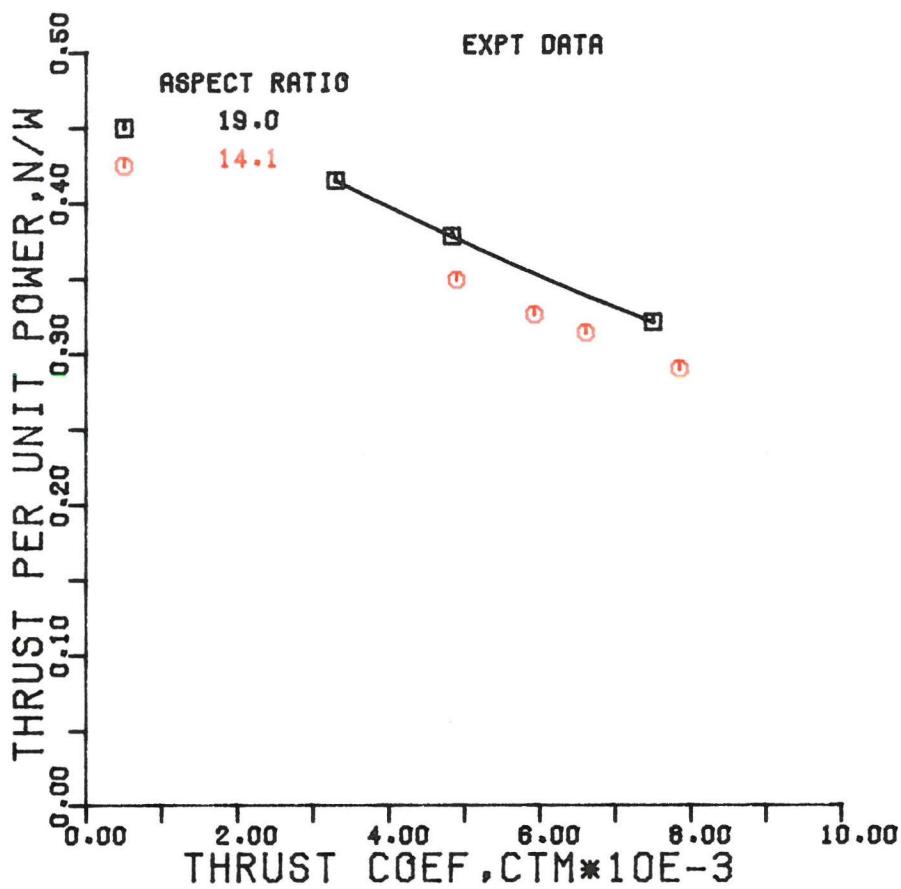


FIG.65 MOTE CCTR COMPARISON-ASPECT RATIO EFFECT.

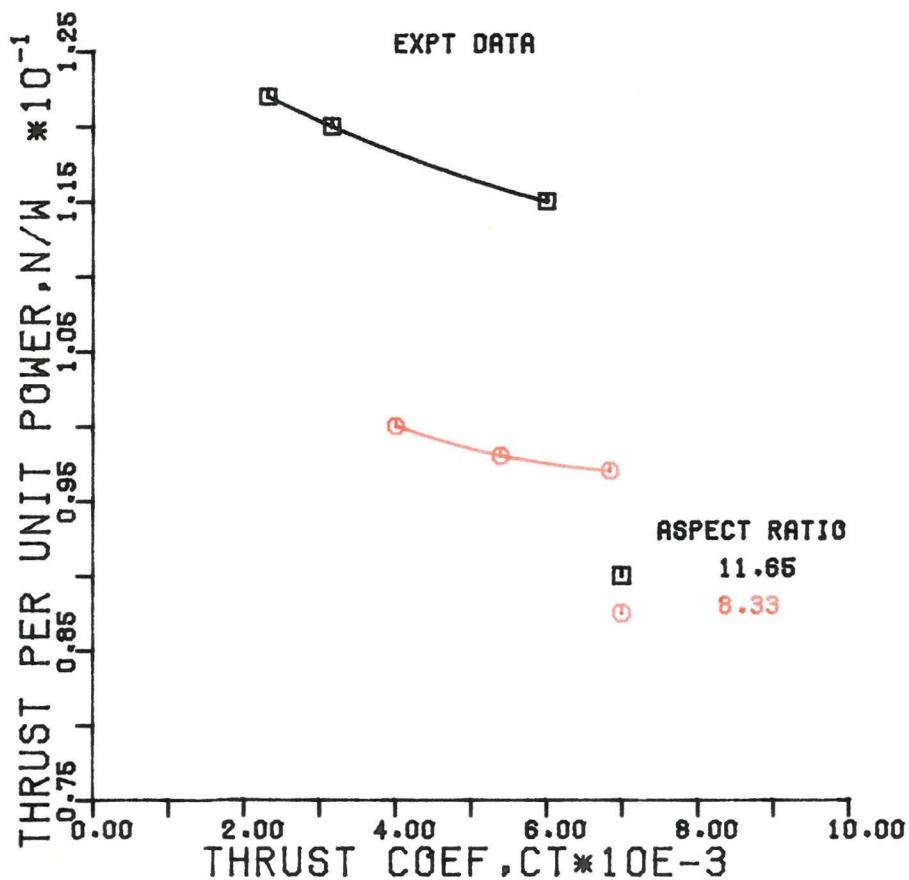


FIG.66 CCTR COMPARISON-ASPECT RATIO EFFECT.