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ABSTRACT

FACULTY OF ENGINEERING AND APPLIED SCIENCE 

Doctor of Philosophy

ACOUSTICALLY INDUCED VIBRATION OF, AND SOUND 

RADIATION FROM, SLENDER BEAMS 

by Janies Ronald Bailey

This thesis deals with the acoustic coupling between slender beam 

structures and a surrounding fluid medium. The sound radiated from an 

unbaffled slender cylindrical beam vibrating transversely at resonance 

is calculated by solution of the classical wave equation subject to the 

boundary conditions imposed by the motion of the beam. The relationship 

between sound radiation and acoustically induced vibration is then demon­

strated by using a theory based upon the principle of reciprocity to 

predict the resonant response of a cylindrical beam to acoustic excitation. 

The results show that radiation and response are highly dependent on 

frequency and the ratio of structural to acoustic wavelengths.

An idealized acoustic source model for a transversely vibrating 

beam is established by calculating the sound pressure radiated to the 

far-field. The results show that a vibrating beam can be represented as 

a line of coupled dipole sources.

For periodically supported beams an exact solution of the wave 

equation is seen to be extremely difficult with the boundary conditions 

imposed by the complex mode shapes. Approximate solutions are obtained 

by defining an effective structural wavelength for sound radiation.

These approximations are sufficiently accurate for use in design.

Experimental measurements of sound radiation and response have 

involved consideration'of the statistical parameters which control sound 

and vibration measurements in a reverberant room. It has been shown



that reliable measurements of tte radiation resistance of an extended, 

source such as a vibrating beam can be made at a single point if the 

length of the source is longer than an acoustic wavelength, and if many 

microphone positions are used to determine the mean sound pressure level. 

This result has been utilized in an extensive experimental programme.

The radiation resistance and pure-tone acoustic response of three freely- 

suspended and three periodically supported beams have been measured in a 

large reverberant room. The experimental results agree well with theore­

tical predictions.

An experimental programme has also been conducted in a large anechoic 

room. Measurements have been made of polar directivity and the wavelength 

coincidence effect which occui's when a plane wave impinges on a structure 

at an angle such that the acoustic trace wavelength is equal to the 

bending wavelength of the structural mode.
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CHAPTER 1

[NTRODUCTIOH

1.1 Definition of the Problem

Acoustically induced vibration of slender beam-like structures has 

recently become a major desien problem in certain power generation 

systems, particularly in the heat exchangers of gas-cooled nuclear 

reactors where sound pressure levels of up to l80 dB may be generated 

by the gas circulators. Hydrodynamic excitation of heat exchanger 

elements has been recognised as a serious fatigue problem for a consi­

derable time (cf. 1, 2, 3, )-i) . This new acoustic problem has been added 

because of the high efficiency azid low volume required in nuclear systems,

A schematic of a gas cooled reactor is shoi-m in Figure (l.l). Designers 

must be able to predict the response of multi-supported beam-type compo­

nents such as heat exchanger (boiler) tubes and control rods to the 

acoustic excitation generated by the gas blower. In the aerospace industry 

considerable effort has been directed towards predicting the response of 

plates and shel]s to the high intensity sound generated by rocket and jet 

engines. The response of unbaffled beam-type structures has been neglected 

in general, although the rather unrealistic problem of baffled beam response 

has been briefly considered by Lyon and Maidanik (5).

An associated problem arising from the coupling of a surrounding 

fluid with a vibrating beam is that of sound radiation, Sound waves 

are generated by the vibration of a rigid body in contact with a fluid 

medium. Often it is desirable to control the amount of vibratory energ:^'- 

transferred to the fluid from the body. This is particularly important 

when the vibratory energy is unwanted sound. Sound radiation from train 

rails is a typical example of this problem.



Another question of interest is closely related to the above 

problem. The energy dissipated by the motion of a body in a fluid is 

essentially a form of velocity dependent damping. Acoustic radiation can 

be an important damping mechanism, especially if the total damping of 

the structure is small. An understanding of this acoustic damping is 

therefore needed for the analysis of many types of structural vibration, 
e.g., the vibration of a wire in uniform normal flow when the Strouhal 

frequency of vortex shedding is coincident mth a resonant frequency of 

the wire (Leehey and Hanson (6)).

1.2 The Objectives of the Investigation

Literature on the response of structures to acoustic excitation is 

almost entirely limited to large, flat panels and cylindrical shells 

with diameters large compared with the acoustic wavelength. There is 

little information on beam-type structures. The primary objective of 

this investigation is to produce a method for theoretically predicting 

the response of slender beams to acoustic excitation.

Special attention mil be given to establishing the importance of 

various parameters of the beam and the acoustic medium. In particular, 

the acoustic response of periodically supported beams will be considered 

in detail. The eventual aim of this part of the investigation is to 

produce solutions which will enable the designer to determine the best 

support system for a beam subjected to acoustic excitation.

Another objective of this research is to develop a procedure for 

calculating the acoustic energy radiated from a transversely vibrating 

beam. It will be shomi in the analysis that this is actually a pre­

requisite to the primary objective, i.e., the response of a structure 

excited by sound is intimately related to the sound radiation

— 2 -



characteristics of the vibrating structure. There are other practical 

applications for this objective in reducing the amount of undesirable 

sound radiated from vibrating beams and in calculating the acoustic damping 

due to sound radiation.

A large part of this research is devoted to calculating the response 

of a single beam excited by sound in a diffuse acoustic field. In some 

practical situations a beam will be adjacent to or surrounded by other 

structures. An exact solution for acoustic response would be difficult 

because of the complex boundary conditions presented by the geometry.

The study of the behaviour of fibrous materials is an example of this 

multiple scattering problem, (e.g. Attenbourgh (7)). If the vibrating 

beam could be replaced by its equivalent acoustic sources, it- should be 

easier to determine the effects of these surrounding bodies because 

information is available on the interactions of simple point sources 

and reflecting surfaces. For this reason one of the objectives of this 

study is to devise acoustic models of vibrating beams in terms of 

idealized elementary source distributions.

Well established methods have been devised for measuring sound 

radiation and acoustic response of vibrating systems. However, special 

problems exist when the sound is pure tone or of narrow frequency band­

width. Hence, considerable attention has been given to these problems
for the case of the highly resonant structures under investigation, 

of the conclusions are considered to be of general interest for the 

development of reliable techniques of source power measurement.

)ome



1.3 The General Approach to the Problem 

1.3.1 Review of the Literature

Considerable progress has been made in recent years toward gaining 

an' understanding of the response of structures excited by sound (8. 9).
The foundations of one method, which is particularly well suited to the 

problem under consideration, are presented in a classical paper by Smith 

( 10) which utilizes the principle of reciprocity to show that the mean 

square acoustic response of a structural mode is proportional to the ratio 

of energy radiated to energy stored per cycle. Several assumptions are 

basic to the analysis which yields the above conclusion. Namely, the 

vibratory system must be linear and the structure must vibrate in a single, 

highly resonant mode. Also sound sources in the medium must be suffi­

ciently far from the structure for the acoustic impedance of the sound wave 

radiated from the structure to be given by pc where p is the fluid density 

and c is the speed of sound in the fluid. These three conditions are fuJ.- 

j.illed in many real situations, however, two additional significant restric­

tions must be included. These are that sound energy must be radiated to the 

far field and the exchange of energy between the structure and the acoustic 

medium must be by the direct path only. These two conditions are rarely 

met in real situations. In nuclear power station applications for example, 

individual boiler tubes are surrounded by other structures which might 

interfere with radiation to the far field. Also tube supports provide 

other paths for the flow of energy between the structure and the acoustic 

medium. Therefore considerable care must be exercised in applying this 

method to real situations. However, the isolated beam configuration forms 

the essential basis for an understanding of the beam response problem. 

Therefore, it has been possible to use Smith's approach with confidence in 

this study, particularly because beam modes are usually well separated in 
frequency.



A currently fashionable approach to vibration analysis :i s the 

statistical energy method which has been developed to deal with complex 

structures having high modal densities. In general this theory indicates 

that the power flow and vibrational energy distribution in coupled 

acoustic-structural systems are governed by equations similar to those 

which control heat transfer and temperature distributions in thermal 

systems, i.e. power always flows from a high energy mode (hot region) 

to a lower energy mode (cold region) with the power flow being propor­

tional to the difference in modal energy levels (temperature). The 

statistical energy method can be a powerful tool in the analysis of 

complex structures excited by broad band acoustic excitation. However, 

the method relies on statistical averaging of modes and is therefore not 

well suited to the study of one dimensional structures which have low 

modal density.

Theoretically it would be possible to study the present problem by 
considering the power flow between individual beam modes and the acoustic 

modes of the surrounding medium. This approach would require consideration 

of the distortion of the acoustic modes of the room by the presence of the 

static beam. The perturbation of the acoustic modes in a rectangular room 

by a two dimensional strip parallel to one wall has been considered by Morse 
and Feshbach (16). Application of this method to a three dimensional beam 

at an arbitrary position in a non-rectangular room would be very complicated. 

Therefore, Smith's analysis, in which the diffuse field is effectively pro­

duced by an infinite array of distant point sources, was thought to be 
preferable.

Classical normal mode approaches (e.g. 11, 12, Id) assume that the 

pressure at the surface of the vibrating body is known a priori. Surface 

pressure is generally unknown in the present study.

5 -



1.3.2 An Outline of the Presentation 
1.3.2.1 Theory

Smith's theory of the response of structures excited by sound is out­

lined in Chapter II. The concept of radiation resistance is introduced 

and the equations for the response of a structure subjected to a rever­

berant sound field are presented.

Fundamentals of sound radiation from a vibrating body are presented 

in Chapter III. The classical wave equation is introduced and the appro­

priate boundary conditions are defined. As an introduction to the theore­

tical analysis presented in later chapters, the general equations in 

cylindrical co-ordinates are developed and applied as an example to the 

case of an infinitely long, pulsating cylinder.

The central theory of this investigation is contained in Chapter IV 

where the analysis of sound radiation from transversely vibrating beams 

is developed. Expressions are derived for the radiation resistances of 

an infinitely long, rigid cylinder and an infinitely long cylinder 

vibrating in a standing wave. Then an extensive investigation is con­

ducted on the sound radiation from an infinitely long cylinder held 

motionless except for a finite section which vibrates in a standing wave. 

Radiation resistance and the equivalent acoustic sources are defined for 

this case. Finally, approximate solutions for the radiation resistance 

of periodically supported beams are obtained by defining an effective 

structural wavelength for sound radiation.

The theory developed in this work requires the use of numerical 
integration, computation of Hankel functions, and extensive algebraic 

manipulation. A computer program was developed to perform these functions. 

This program is briefly discussed in Chapter V.

- 6



1.3.2.2 Experimental

Special problems are associated with the measurement of pure-tone 

sound power in a reverberant room. The statistics governing the theo­

retical accuracy of measured results are presented in Chapter VI.

An experimental programme for measuring the radiation loss factors 

of vibrating beams is reported in Chapter VII. Investigations are con­

ducted with freely-suspended and periodically supported beams.

A programme for measuring the resonant response of beams to 

acoustic excitation is reported in Chapter VIIIo This study includes 

the response of freely-suspended and periodically supported beams and 

a freely-suspended circular ring to pure-tone sound in a reverberation 

chamber. An experiment in the anechoic room for measuring wavelength 

coincidence effects and polar directivity is also reported.

Conclusions and design criteria are given in Chapter IX.
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^CHAPTMi II
RESPONSE OF STRUCTURES TO ACOUSTIC EXCITATION

2.1 Theory

The theory of modal response is developed in terms of a coupling 

parameter which relates incident free-field acoustic pressure to the 

generalised force acting on a single mode. This coupling parameter 

is generally a complex quantity which varies with frequency and angle 

of incidence. It can be defined by the following expression:

^m ^m.b]/^o (2.1)

where is the modal coupling parameter, p is the incident free-field

sound pressure, and F , . the modal blocked force, is the effectivem,Dl'
force on the structure when it is held motionless. The pure-tone response 

of a structural mode is related to this coupling parameter by

r p = Z V,m o m m (2.2)

where is the modal velocity and Z is the modal impedance.

Of course, when a body vibrates under the action of an incident 
sound field, additional (radiation) pressures are created by the motion. 

The total pressure at the surface is the sum of the blocked and radiation 

pressures.

In general, sound energy is radiated from a vibrating body with the 

intensity varying with direction. This variation is called directivity. 

Similiarly, the effective drivnng force generated by a sound wave inci­
dent on a structure varies with the angle of incidence. It is an 

important conclusion of the principle of reciprocity that these variations 

with direction are identical. Thus, a mode which radiates sound strongly 

in one direction will also respond strongly to acoustic excitation from 

that direction.
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An anali’'tical expression relating sound radiation to the coupling 

parameter is given by Smith and Lyon (9) as

= (p„ r„(«,.n) I ,m (2.3)

where is the radiated sound pressure in the direction n, p is the

density of the acoustic medium, w is the circular frequency, and R is 

the distance from the vibrating body.

As will be pointed out in Section (2.3), the response of a structure 

to a diffuse sound field is of particular importance. For this case, 

it is convenient to relate response to radiated power or radiation 

resistance.

At large distances from the vibrating structure the mean intensity 

is given by

<I> = /2 c (2.^)

where c is the speed of sound in the acoustic medium. Radiated power 

can be calculated by integrating the intensity over the surface of a 

sphere of large radius R^. Substituting equation (2.3) into {2.h) yields

the following equation for mean power:

<w> rad

2 ^ 2

8itc

m' d Ti
(2.9)

The quantity in brackets above is equal to the average coupling factor 
for all angles of incidence and may be devoted by <|r |^>

all Q

Radiation resistance is defined in terms of radiated power as

, _2R = <w> / <v > ,rad ’ (2.6)

-2where <v > is the mean-square velocity of the structure, averaged with

respect to time and snace. R , can, be expressed in terms of T byrad ^ ra



R pw
rad 4 1TC all n (2.7)

Explicit equations relating acoustic response to will be given

in Section (2.3).

2.2 The Concept of Radiation Resistance

Since a large part of this study is devoted to calculating the 

radiation resistance of slender beams, it is appropriate that the concept 

of radiation resistance should be clearly defined at this stage.

Tlie total impedance of a system is defined by equations (2.1) and 

(2.2) as the ratio of applied force to velocity. It is generally a 

complex number with the real part corresponding to the resistance of the 

system and the imaginary part corresponding to the reactance. A single 

degree of freedom system which includes radiation resistance is shown in 

Figure (2.1). The impedance of this system is given by

^ " (^rad ^ ^mech) + ^ (2.8)

To be strictly correct the total impedance should include the

imaginary or reactive part of the radiation impedance; hut for mechanical

structures vibrating in air, this term, is usually negligible (9).

The real part of the impedance is the resistance of the system which

is responsible for eventual decay of free vibrations and is of primary

importance in controlling vibration response under steady state resonant

excitation. In the present analysis, it is often convenient to represent

the resistance by the total loss factor which is defined as the

ratio of energy dissipated to energy stored per cycle. It is related to

total resistance R by R = and to the magnification factor Q, by
-1’^TOT ” ^ total loss factor may be considered as being the sum of

- 10



a mechanical loss factor n , associated with internal damping andmecn
a radiation loss factor n ^ corresponding to sound radiation. Inrad
general, n , may be due to the rubbing of two surfaces, the stressing mech
of an imperfect elastic material or the passing of an electric conductor 

through a magnetic field. Radiation loss factor is defined in terms of 

radiated sound power by the following equation:

<w>rad
rad -2 ’wM < V >

(2.9)

where M is the total mass of the vibrating structure.

A knowledge of radiation resistance is necessary in analysing the 
coupling of a sound field with a vibrating structure. It is also required 

in order to include acoustic damping in the analysis of ordinary structural 

vibrations and to calculate the sound power radiated from a vibrating 

structure. Morse (lU), Rschevkin (l5), Morse and Feshbach (l6), Kinsler 

and Frey (1T), Morse and Ingard (l8), and Skudrzyk (l9) are standard texts 

which deal with the fundamentals of sound radiation. The radiation resis­

tances of flat panels and baffled beams have been studied by Smith (lO), 

Lyon and Maidanik (5)5 Maidanik (20), and Smith and Lyon (9)• Cylindrical 

shells have been considered by Junger (21, 22), Greenspon (23), Laird and 

Cohen (24), and Manning and Maidanik (25). An extensive study of cylin­

drical shells has also been made by Runkle and Hart (26). Most of this 

work, however, has been directed toward the problems of radiation from 

baffled structures or cylindr]cal shells with diameters large compared 

with the acoustic wavelength. With the exception of Morse (l4), who 

considered radiation from an infinitely long cylinder vibrating with 

uniform transverse velocity, little information is available on the 

central subject of this research which is the radiation and response of 

slender beams.

11



2.3 Response to Diffuse feouncL Fields

The response of structures subjected to a reverberant sound field is 

of considerable practical importance. This case will now be considered 

in aetail because it most accurately represents the acoustic environment 

in a nuclear power station and the results can be applied directly to 

the experimental investigations reported in Chapters VII and VIII.

The sound field in a reverberant room is said to be diffuse if all 

angles of incidence are equally probable. Problems associated with the 

diffusivity of pure-tone sound energy in a reverberant chamber are dis­

cussed in detail in Chapter VI.

2.3.1 Pure-Tone Acoustic Excitation

The resonant response of a single mode excited by pure-tone sound is 

a case of special interest. The following equation relates mean square 

response to pressure and radiation loss factor :

< V TTC nrad
3 2m M p n

° TOT

(2.10)

where < p^> is the mean-square sound pressure, averaged with respect to 

time and space.

2.3.2 Broad-Band Acoustic Excitation

A second special case of considerable interest is the resonant 

response of a structure vibrating in a single mode excited by broad-band 

random scond. The following equation relates response to excitation!
2it^ c n< v^>

sy.)
rad

M p m n
(2.11)

TOT

where C (w) is the pressure spectral density.
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The above equation is restricted to analysis of inodes with adequate 

spacing between resonant frequencies, This condition is usually .found 

in beam-type structures where the modal density is inversely proportional 

to 0)^. However, periodically supported beams have bands of resonant fre­

quencies which might require a multimodal analysis if the damping of the 

individual modes is high enough to couple the modes together.

Of course, if the bandwidth of the acoustic excitation is much 

narrower than the resonant bandwidth of the structure, the excitation can 

be treated as pure-tone and the previous section is then pertinent.

2.3.3 Application to Slender Beams

Equations (2.10) and (2.1l) can be used to analyse the response of 

slender beams to acoustic excitation by defining the appropriate mean 

square velocity. For simply supported beams, the velocity distribution 

of a resonant mode can be written as

V = V sin(Kg Z) cos tot. (2.12)

where is the maximum amplitude and K is the structural wavenumber. 

The mean square velocity is given by

< K 2.Ts
o o

-2 V< V > = o
4

sin^(Kg Z) cos^(mt) dt dZ,, (2.13)

(2.1I)

Free-free beams, clamped beams and periodically supported beams 

have additional hyperbolic terms in the velocity distribution, A 

genera] expression is given by

V = V cos wt{ A. cos K Z + B sin K_ Z + C cosh K Z + D sinb. K Z),

.15:
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where A, B, C and D are constants determined by the boundary conditions. 

These constants have been evaluated by Bishop and Johnson (27),
Timoshenko (28) and others. The mean square velocity can be obtained by 

substituting the appropriate constants into equation (2.1$) and following 
the above procedure.

2.4 Summary

The basic equations relating acoustic response to sound radiation 

have been presented in this Chapter. The concept of radiation resistance 

has been introduced and it has been shown that the acoustic response of 

a structure can be predicted if the radiation resistance of the structure 
is known. The following Chapters III, IV, and V therefore concentrate on 

this parameter for transversely vibrating beams.
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CHAPTER III

AN INTRODUCTION TO THE RADA'^TION OF SOUHD BY CYLINDRICAL BODIES

3.1 Introduction

The power radiated from a vibrating structure can be determined by 

several methods. One approach is to calculate the far-field radiated 

sound pressure from which intensity and power can be ascertained.. An­

other method is to find the acoustic pressure at the surface of the 

vibrating body and to obtain the time averaged power from the real 'part 

of the product of pressure or force times flux or velocity. Both of 

these methods require solution of the classical harmonic wave equation 

given by
o o (3.1)V^p + K^p = 0,

.2 .where V " is the Laplace operator equal to the divergence of the gradient, 

p is acoustic pressure, and K is the acoustic wavenumber. The wave 

equation is developed in depth by Morse (l4), Morse and Feshbach (l6), 

Morse and Ingard. (18), Klnsler and Frey (1.7)3 and Rschevhin (I5). It 

can be derived from basic principles by assuming that the non linear 

fluctuations of the acoustic variables can be neglected, that the process 

is adiabatic, and that the acoustic medium obeys the perfect gas law. 

Newton's second law, the equation of continuity, and the equation of 

state then yield the desired result given by equation (3.1). The 

physical implication of the wave equation is simply that if there is a 

concentration of pressure at a point, the pressure at that point will 

tend to decreaseo

The two boundary conditions required for solution of equation (3.1) 

depend on the extent of the acoustic medium and the motion of the vib­

rating body. The first boundary condition is that no reflections occur 

in the neighbourhood of the source. Mathematically this means that

15



only outgoing solutions of the wave equation are relevant. The second 

boundary condition is that at the body-medium interface, the acoustic 

particle velocity is equal to the velocity of the vibrating body. If 

the geometry of the vibrating body is complex, the Helmholtz integral 

method can be used to obtain solutions which match the boundary condit­
ions, e.g. Chertock (29). This approach is unnecessary in the present 

analysis because of the simple geometry of cylindrical beams.

It is often convenient to work with velocity potential ip which is 

related to acoustic pressure p by

p = -p St (3.2)

For simple harmonic motion this eauation becomes

p = iwp^ (3.3)

The second boundary condition at the surface of the vibrating body 

can be written in terms of velocity potential by

Vn
31
Sr ;1)

where V is the normal surface velocity of the body.

Solutions of the wave equation have been obtained for many simple 

acoustic sources. Acoustic monopoles, dipoles, quadrupoles and multi­

poles are discussed in Appendix 1, Details of these examples are 

presented in standard acoustic textbooks such as Deferences (14) through 

(19The resuJ-US of Appendix I will be useful in subsequent discussions 

on sound radiation and response of slender beams.

3.2 The General Equations in Cylindrical Co-ordinates

For beam type structures it is often convenient ku use the wave 
equation in cylindrical co-ordinates given by

16 -



o o _
1 3 / 3 . . 1 3 3 A

3t^ (3.^)

For simple harmonic motion the velocity potential can he written

as

i|;(r,^,z,t) = i,l;(rj(}),z) e -itot (3.6)

The second partial derivative with respect to time is

3 il 2 / \—= w v\r^^,t)
St"

(3.7)

Substitution into equation (3.8) yields

1 A_ r I-', ^ 1 3 3^
r 3r 3r^ 2^,2 ,2 ^ + k ^ = 0, (3.8)

r 3(p 3z -

Equation (3.8) is known as the Helmholtz equation. Assuming that 

the variables can be separated, the velocity potential can be written as

^^r,^,z) = ^ (z) (3.9)

where ij; (z) is the inverse Fourier transform of ^(K) as shown in the

following pair of equations'.

\p(K) =

ijj(z) = 2TT

^ (z) e dz

^(K) dK .

(3.10)

(3.11)

Velocity potential can thus be written as

i|;(r,(}),z) = 4>(r,<p) — ^(K) dK (3.12)

Now the Fourier transform of equation (3.8) can be taken:

2rl i_ /
j 'r 3r 3r

% 9 ~| —iKz 2 ( "iK 7[2 772 ^ 712 J I
3 !j) 3 z

17



Tile second partial derivative with respect to z is given by

-iK= -K'" ^ j ij;(K)
9z

die. (3.1^)

-- ip(r,^) \p(z)
Bz

(3.15)

Substituting into (3.13) yield

Br
rl B , B . 1b 3;: 3") + - K^l \p(r,^} \p(z) e dzp p j vv-c-.q,'; e

r B^ ;
2 —-I- ^(r,((>) -ijjiz) e“"“ dz - 0

.TO
iKz

J (3.16)

Thus the wave equation is reduced to

,2
]^(r,*) = 0.

r Bcj)Br' (3.17)

An outgoing solution of (3.17) is given by

^(r,^) - % cos mb [j (kr) + ih (kr)]
111=0

(3.18)

where k^ = k^ - K^, k > K,

'ljQ^(kr) - Bessel function of order m.

N^(k3r) - Neumann function of order m.

\ - coefficients determined by the boundary condition;

The Hankel function of order m is given by

H^^kr) = J^(kr) + iN^^kr);

30 that equation (3.18) can be written as

(3.19)

= % A^ cos n^(kr)
m=0 m

The inverse Fourier transform of (3.20) is given by

(3.20)

- l8 ^



i|j (r ” ■ -- 271 j
, \ iKzV{r,(j>) e dA. (3.21)

^ cos dK
m=0 (3.22:

-icot (3.23)

For simple harmonic motion,

^^r,^,z,t) = ^^r,*,z)e

Substituting into (3.22) yields
_~iut foo CO" J [ I cos H^(kr)]e^^^ dK. (3.24)^(r,^,z,t) =
Sir m=0

Equation (3o24) is a general expression for velocity potential in 

cylindrical co-ordinates. Acoustic pressure can be expressed by utili­

zing equation (3.3). The result is

• a.-not
p(r,*,z,t) loops

277
[ I cos E (kr)]e^^^ dK .(3.25)
m=0

Equation (3.24) must satisfy the boundary condition imposed by the 

structure. Thus, the particle velocity at the surface must equal the 

normal surxace velocity of the structurco This boundary condition is 

stated mathematically by equation (3.4). A general expression relating 

surface velocity to velocity potential can be obtained by performing 

the partial differentiation of velocity potential vith respect to r.

li _ ^ {e -iojt
9r 9r 2-n [ I A^ cos m* E^(kr)]e^^^ dK} (3.26)

m=0

9^ _ e 
3r

-imt
27T [ I A^ cos m* E^ (kr)] dK

m-0
(3.27)

where.
= fr (3.28)
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For a given surface velocity the following equation can he used

to determine the coefficients A .m
-iwt

V
r=a 2TT [ I cos (kr)]e iKz dK. (3.29)

m=0

Equations (3.2^) and (3.29) are sufficient for calculation of the 

sound radiation from cylinders with arbitrary surface velocity distri­

butions. Useful approximations and properties of the Hankel Function 

are listed in Appendix II.

3.3 An Example: The Pulsating Cylinder

Consider an infinitely long cylinder of radius a which is expanding 

and contracting ujiiformly with surface velocity V = V e The

boundary condition is that the particle velocity must equal the normal, 

velocity of the cylinder at the surface.

-iwt dllj IV = V en o 3r (3.30:

Now5 by equation (3.44),
aCO"icot

2-ir
“iLco*b 0 r T' . , .L I cos E' lkr)j

m=0
dK . (3.31)

By using the orthogonal properties of the trigonometric functions, 

it can he shown that all the A^'s equal zero except A . Equation (3.3l)

thus becomes

Vo 2?r IT (kr) dK
r=a

Taking the inverse Fourier Transform yields

(3.32:

j A « -ihz (3.33)
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The coefficient A can tin r "ore be written as o

V 2TT
A = - \ 6(K)o H^(kr) (3.34)

r=a

where 5 = Dirac delta function.

Radiated sound pressure as given by equation (3.25) can be written

as

p(r,(j),z,t) =
-iwtiwpe

2t\ Hjkr)
r=a

(3.35)

Substituting A yields

p(r,*,z,t) =
-iwt

2Tr
2. Yy(K) dK ^ ,3_3g)

H'(kr) r=a

The above integral can be evaluated by noting the following general 

characteristic of the delta function:

F(t) 6(t-a) dt = F(a) (3.37)

This yields the following expression for radiated pressure:

iwpe"^^^ V H (k r)
p(r,^,z,t) = - I ° -— , (3.38)

r=a

where k = co/c.

Equation (3.38) can be simplified by substituting from equation
(A.2.2.)

p(r,^,z,t)
2pc e ^ H (k r^

(3.39)
E

At large distances from the cylinder- equation (A.?.9) can be 

used to yield

p(r.d,z,t) . + To - kr +o :/ c _ -i(wt + Yo - kr + ’n/h)
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The Mean intensity js given

pc
<I> - 1

uk rE^ 
o o

(3.^1)

Power per unit length £ can be calculated by integrating over 

the surface of a. cylinder of large radius r.

£ 2^
<w> ~ j [ <I>rdzdQ . (3.^2)

o o

<v> 8gc
2K E

(3.43)

Now, the mean-square velocity averaged with respect to time and 

space is given by <v > = V^/2. Therefore, radiation resistance can be 

written as

Rrad ?K E o o
(3.44)

Limiting values of radiation resistance can be obtained by using

the approximations for given in equations (A.2c4) and (A.2.6). The
result is 

R
2pc (ir a£) (ka), ka<<l;

; ka>>l.rad ^pc (Pirat) (3.45)

It is interesting to compare the above equation with equation 

(A.lt.7) which gives the radiation resistance of a simple source^ VThen

ka^>l, for both cases is equal to pc times the total surface area.
This is often found at high frequencies.

3.6 Summary

liie classical wave equation has been introduced and the boundary 

conditions for sound radiation have been defined in this chapter.



Fundamenta]. acoustic point sources have been reviewed in Appendix I 

where expressions are presented for the radiation resistance of mono­

poles, dipoles, quadrupoles. and multipoles.
Fourier Transform techniques have been used to set-up the general 

equations for sound radiation in cylindrical co-ordinates. These 

equations have shown that sound pressure radiated from cylinders is 

dependentron the Hankel Function. Useful approximations and properties 

of the Hankel Function have been listed in Appendix II.

Finally, the basic procedure for calculating radiation resistance 

has been established by considering in detail the case of an infinitely 

long pulsating cylinder.
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CII/iPTFF; IV

TI-IEORY OF SOmD RADIATION FROM TRANSVERSELY VIBRATING CYI,INDRICAL BEAME

H.l Introduction

The theory of sound radiation in this work so far has been limited 

to fundamental acoustic sources and the relatively simple case of an 

infinitely long, pulsating cylinder. Now we are ready to proceed with 

the primary objectives of this studyj namely, to consider sound radiation 

from transversely vibrating cylindrical beams.

We will begin this chapter by considering the sound radiation from 

infinitely long beams. The first case will be that of a rigid cylinder 

vibrating in a plane with uniform transverse velocity. Then we will 

continue with the case of a cylinder vibrating in an infinitely long 

standing wave.

Of course, an infinitely long beam will seldom be encountered in real, 

physical situations. Hence, approximations must be obtained for beams of 

finite length. When the structural wavelength of the beam is larger than 

the acoustic wavelength in the medium, a general solution for radiated 

power will be achieved by working with pressure and velocity at the sur­

face of the cylinder. On the other hand, when the acoustic wavelength 

is larger than the structural wavelength, it will be advantageous to work 

with the sound pressure radiated to the far-field. This approach will 

yield an integral equation for radiated sound power which can be calcu­

lated numerically. It will also give us considerable insight into the 

type of acoustic sources involved so that equivalent acoustic sources 

for transversely vibrating, slender beams can be defined.

Finally, the sound radiation from periodically supported beams will 

be considered. Approximate solutions will be obtained by defining an



effective structural wavelength for sound radiation.

As in the previous chapter> it will be convenient to present the 

results in terms of radiation resistance.

h.2 An Infinitely Long, Rigid Cylinder Vibrating in a Pi ane

Consider the axially independent case of an infinitely long cylinder 

of radius a,,vibrating back and forth in a direction perpendicular to 

its axis with a uniform velocity V e The normal velocity can

be written as

V = V cos i) n o
-icot (4.1)

The boundary condition expressed by equation (3.29) yields

-icot !•“
cos ^ e-icot 2^ J

[ cos B9(kr)]e^^^dK. (4.2)
m-0

Again utilizing the orthogonality of trigonometric functions, 

all the A^'s can be shown to be zero except Equation (4.2) thus

reduces to

Vo 2it A^H^ (kr) at.
r=a

(4.3)

Taking the inverse Fourier Transform yields

A^H^ (kr)
r=a

V e dz.o (4.4)

Integration yields the following expression for A

2^ V^6(K)
(kr)

r=a
(4.5)

Pressure can now be written as

-iwt r‘x>
p(r,^,z,t) = icope

27,4
iKz, A cos t{)H (kr) e ' dK. (4.6)
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Substituting for yield;

-iwtlojpep(r,^,z,t)

Integration yields

p(r,^,z,t;

2n 6(k) cos ^H^(kr)
e2-rr Hi (kr)J 1 r=a

dK. (4.7)

) = lojpe Vn cos (j) E-^(k^r)
H{'V)

r=a

Substituting from equation (A.2.3) yields
pc cos (k r) e ly)

p(r,^,z,t) o 1 o
"1

(4.8)

(4.9)

No¥j equation (A.2.7) can be used to yield the following equation 

for pressure at large distances from the cylinder.

PC V cos ,p(r,cj)Z,t) =--- =------ ^
irk r o

^-i(wt + Yi - kr,r + 3^/4) (4.10)

The mean intensity can therefore be written

<I> =
pc V cos (p

TTk r o 1
(4.11)

Radiatea power per unit length Z can be calculated by integrating

over the surface of a cylinder of large radius. The result is

<w> -
pc 2 o
"o

(4.12)

Now, the mean square velocity averaged with respect to time and
~2 2space IS given by /v > = V^/2. Substituting into (4.12) yields the 

following expression for radiation resistance:
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Rrad
= . (4.13)

k E, o 1

Using the approximations of equations (A.2.5») and (A.2.6) yields

Rrad

pc(^^a&)(ka)^
2'“

pc (frat)

ka<<l;

ka>>l.
(4.14)

The above result for ka<<l agrees with that obtained in Reference

(18).
A check on these results can be obtained by working with the pressure 

and velocity at the surface of the vibrating cylinder. The pressure at 

the surface can be written by substituting from equation (A.2.7) into 

equation (4.9). The result is

■i(cut+ Yi - To)
p(a,^,z,t)

-ipc cos (j) V E eo o
2 E, (4.1:

The real part of the pressure is thus given by

p(a,^,z,t)_real
-pc cos d V E

sin (wt + Yn - Y )' (4.16)± o

The real part of velocity can be written as

V = V cos (u cos cot real o (4.17)

Power radiated by unit length t can be calculated by the following 

integration:
i/2 2?

^ ^ . (4.18)<w>

The result is

<w> -

<p ^ . V ^ > a dz d(() real real
-i/2 o

-pc V E---^ (^ai) sin (y^ (4.19)

For ka <<1, substitution for E^, E^, Y , and Y^ yields
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P 21 ,, 2 , 2„-, ,, . .irk"a'".,
<\i> - gpc V (ira K sin (—~—) (4.20:

pc (-11^8^.) (ka)^
_ (4.21)

Radiation resistance is thus given by

R
pc(-iT^a£) (ka)^

rad ka<<l (4.22)

Similar substitutions for ka>>l yield

(4.23)

Radiation resistance as expressed by equations (4.22) and (4.23) 
is identical with that given by equation (4.l4).

4.3 An Infinitely Long Cylinder Vibrating in a Standing Wave

We now consider the case shown in the top of Figure (4.1) of an 

infinitely long cylinder of radius a, which is vibrating at resonance 

in a standing wave with normal velocity given by

V = V cos* z)en o ^ sin 3 (4.24)

where the structural wavenumber K is equal to Ptf times the inverse 

of the structural wavelength, the plane of vibration is denoted by 

* = 0, and cos(KgZ) is used if the origin is placed at an antinode; 

sin(KgZ) if the origin is at a nodal point. Using equation (3-29) and 

the orthogonal properties of the trigonometric functions yields the 

following equation:

V cos* (K z)e ^—o ^ sin s 2tt

-1 1 TCVcos*Hj(kr)e dK.(4.2$)
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Taking the inverse transform yields

A^H](kr) = o.z (4 .ko,

Now,

cos(K z)
iK z -iK ze " . e "

(^u27)

and

sin(K. z)
iK z -iK ze " - e "

2i (^^28)

Substituting into equation (4.26)
mrV

A^H^(kr) = ~
4(K + i(K niT, J-)Z

+ e ]dz

V r r i(K - ~)z
e 1 dz.

,origin at 
antinode)

(4.29)

(origin at 
antinode)

Integration yields

AiH^(kr) TrV^ [d (K + ^ ) + d(K - ~)j (origin at antinode) ^(4.30)

TTV
" — [<S(K + SI) _ _ ^)] ^(origin,at node)

where 6 = Dirac delta function.

Now, using equation (3.25) and integrating yields the following 

expression for pressure:

p(r,*,z,t) = iwpV cos^ ^?^(K z)e ^
o sin s Tjt (qa)

(4.31)

where

o s
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How

H^(X) J^(X) + iN^(X) J|(X) - iN|(x) 
H|(X) " J^(X) + iN^(X) • Jj(X) - iN^(X) (U.32)

H^(X) _ J^CX) J{(X) + N^(X) Hj(x) + iW^(x) J|(X) -iJ^(x)N'(x)

H{(X) J{(X)^ + N|(X)^ (U.33)

J^(X) K^(X) - Jj(x) N^(X) =
ttX (4.3^)

The real part of the pressure at the surface can be written by 
substituting equations (4.33) and (4.34) into (4,31). The result is

p(a,*,z,t)real
2wpV cos d) (K z) cos wt o sin s ______ _

Trq^a {[j'(qa)]^+ [N'(qa)]^} (4.35)

The real part of velocity is given by

“ V cos (j) '^?^(K z) cos wt (4.36)

Radiated power can be calculated by substituting into equation 
(4.l8). The result of the integration is

<w> =
wp 2, (4.37)
{[j;(qa)]^+ [N'(qa)]

—2Now, <v > - ij— o Radiation resistance is therefore given by

R 2wpt
g^{[jj(qa)]^ + [N^(qa)]^} (4.38)

But,
[J'(qa)]^ + [N'(qa)]^ = (4.39)



Thus >

Rrad

Values of are tabulated in Reference (l8) so that equation (Uo40)

can he used to calculate for any given qa.

It is often convenient to vork with the non-dimensional radiation

loss factor related to radiation resistance hy = ^rad^^^^"
A plot of n vs. qa is shown in Figure {h.k) for a steel cylinder

vibrating in air. It should he noted that n ^ is zero when .

Therefore, the frequency corresponding to K = may he considered as 

a lower cut-off frequency. Below this frequency the structural wave­

length of the beam is less than the wavelength in t’ne acoustic medium 

3,nd q, the radial acoustic wavenumber, is imaginary. The acoustic 

energy is entirely reactive and no sound is radiated to the far field.

The maximum n . occurs at qa = 1, where the radial acoustic wave- raa
length is equal to the circumference of the beam. Above this frequency 

’^r-d off with increasing frequency. At these high frequencies

radiation resistance will be independent of frequency. Physically this 

simply means that acoustic short circuiting around the circumference 

of the beam decreases as the dimensions of the beam become much larger 

than an acoustic wavelength. Limiting values of are given below:

Rrad

0, q < 0 ;
pc (7r^a£ ) (K^a) (qa)' 

2

pc (irat)

, qa«l;

, qa>>l.

It is interesting to compare the above equation with the results 
obtained for the infinitely long cylinder. As a check on the above 

result, we can let K - 0; i.e., remove the axial distribution. For
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this case q will be equal to K and the above eouations for ,R will
o " rad

be identical with equations (l+.l^t) for the rigid cylinder.

Long Cylinder, Ha3 d Motionless Except for a Finite

Section Which Vibrates in a Standing Wa.ve

Expressions were obtained in the previous section for the radiation 

resistance of an infinitely long beam vibrating in a standing wave, A 

more realistic situation is, of course, the case of a finitely long beam 
vibrating in a standing wave. To avoid difficulties in matching the 

acoustic boundary conditions at the ends of the beam, it is convenient 
to consider the beam as having infinite length but being held motion­

less except for a finite section. The effect of this assumption will be 
inoignifleant if the radius of the cylinder is small compared with the 

length.

Therefore, consider the case shown in the boctom of Figure (t,l) of 

an infinitely long cylinder of radius a, vibrating between supports at 
+^t/2 with normal velocity

0 z < -&/2

V A -V21 z < */2

0 z > ^^2.

where the mode number n - 1,2,3,^,... is the number of antinodes in 
the standing wave and cos{^~) is used if n is odd; sin if n

is even.

The boundary conditions at the surface is that the particle 
velocity must equal the normal velocity of the surface. Thus,

cos^ cos^n^^.) -imt
o ^ sin £ ^

-iwt
2'ir

cos *H^(kr)e^^^ dK. (4.^3)
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Taking the inverse yields

r&/2
A^H^(kr) = V

' r=a
cos \n-nz. -iKz ,sin '"T") ^

-&/2

Performing the integration yields

A^H{(ka)

2V^ (^)sin(i^)cos 

- K^]
2' n odd

(1.4;
cos (S^^ sinniT. .k2,

[ (=) - k"]
5 n even.

Pressure can now be written as
/ hSl) sin 

p(r,^,z,t) = - : ° ^ cosi^PV.CSZ^ (^^:).cosb e"imt
dK

H'(ka) [(21)2 - k2J (4.46)

4.4.1. Near-field Calculations

At this stage one can choose to calculate the pressure at the surface 

of the cylinder or the pressure in the far-field. Let us first consider 

pressures at the surface which can he written as

p(a,^,z,t)
:: (f) CO., e-iwt COS/K^,^

i sin 2-^0 ^
En [( riTT'
1^' K

dK(4.47)

For Odd mode numbers, the integral in equation (4.4?) car be written
as ,

Iodd
_ r coc(S) h + ag.

E - la (4.48:
1 £

Using the trigonometric identity of equation (4.2?) yield
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iK& -iK&

odd

E r e ^ + e^]e 
o ___________ j_
2E^[(^) - K^]

i(Yo“Y_-| + K2)

{k.h 9)

For k > ^ j the above integral can be evaluated by contour inte­

gration. Using the contours shown in Figure (4.2), the appropriate
i(Kz + Kt/2 + Y - y^)

coritoui’ for the exponential e can be closed by

a semicircle around the upper half of the K-plane. This can be reduced

to the contours around the simple poles at (^-).
i(Kz + K2/2 + Y - Yi)

For the exponential e “ , the contour can be

closed by a semicircle around the lower half of the K-plane. This can 

be reduced to the contours around the simple poles at (•-nir/t). Thus,

can be shown by residue theory to be given by 

I
'IT sin(nm/2) cos(nmz/t) 

odd „ /n-nu ®
h 'u>

(4.50)

For even mode numbers, the trigonometric identity of equation (4.28) 

can be used with contour integrations to yield

even
-iE TT cos(nm/2) sin(nmz/t)

EiT-S)
(4.51)

In both equation (4.50) and (4.51), E^, and y^ are now

functions of Q, where Q is related to the acoustic wavenumber K and theo
structural wavenumber (nir/t) by

Q' = - (^:y (4.52)

A general expression for pressure at the surface can now be writt en

cos,nmz\ .r ^

2 E1
:4.53)
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The real part of pressure is thus

p(a,^,z,t)
PCV, CO. , “Pcifi)

real 2 E1
pin - wt) .

The real part of surface velocu Ly is given "by

Vreal
cos -mrz.sin ^ (^-55)

Radiated power can be calculated by integrating the time average 

of the product of the real parts of pressure and velocity over the 

surface of the cylinder.

<w>
1
T

f2/2 r2v r \ r

2E
. 1 0

j cos , n-rrz , 
o sin i ' cos in(Yo~Yi-wt)cos wtadzd^dt (4.56)

-1/2 o o

Carrying cut the above integrations yield;

<w> pc (^a&)Vo
sin (4.57)

The mean square velocity averaged with respect to time and space

on resistance is given byis given by <v"> = Therefore, radiati

pc(iTat) sin(Y^ ) p
^rad 2~E^^ » Q > 0 (4.58)

The above equation is a general expression for radiation resistance
of a finite cylinder vibrating in a standing wave when Qp > 0.

A normalised plot of from this equation for a beam of density

Pjpj outer ramus a^, and inner radius is shown by the solid line 
in Figure (4.5).



Approximate values for B . arc given belov:raa ^

pc(wa&) Qa =Pc(/^j(qa)3
3 Qa<'l.

Rrad (^-59)
p c (, Tr a* j Qa>>l.

The above equations are seen to be identical with the results 

obtained for the infinitely long cylinder vibrating in a standing wave. 

However, there is one important difference between infinite and finite

standing waves. This occurs for the case K < nil̂ . Returning to
equation (it.U6) and using the approximation of equation (A.2.10) yields.

p(a,(j),z,t) =
i.paV (21)003 “"(21)
_____o X, ^______ cos^ 2'_ X

ir

dK (4.6o)
j [(!=)" - K'.2i

Using the contours of integration shown in Figure (4.3) it can 
be seen that the simple poles at (^) will not result in real pressure 

terms. However, the difference between the incoming and outgoing parts 

of the logarithmic factor is im for F and -iv for F' so that the branch 

points at + K do contribute to energy radiation. Thus, a finite 

cylinder vibrating in a standing wave can radiate energy when the 

structural wavelength is less than the acoustic wavelength.

When K < nm/&, a closed form solution cannot be obtained because 

of difficulties in evaluating the contribution of tne logarithmic 

branch point at K - K , However, it can be noted that the relevant 

terms in the expression for radiated sound power are not proportional



to the velocity of the beam vhich indicates that is not an

exact solution for the shape of a vibrating beam in contact with an 
acoustic medium. This also implies that the source of energy loss is 

the finite extent of the beam.; i.e. the sudden change in the slope at

/ = ±^^2.

Some understanding of the source of this radiation can be obtained 

by reformulating the problem. Instead of working with the pressure at 

the surface let us now consider the alternative method of analyzing 

the far-field sound radiation.

^ • ^1- • 2. Far-Field Calculations

At large distances from the cylinder we can use the approximation 

of equation (A.2.8) for the Hankel function with equation (U.^7) to 
yield the following expression for radiated pressure:

/o ' sin,nr.P(r,^,z,t) = cos^'g')
rr X

i Kr - Sir
cos,K2\

Y. + Kz,
dK

5/2 r/n'fT.2 „-2-iK

(4.6i)

Changing to spherical co-ordinates:

r = R sin 6

z = R cos e

4> = 0

(1.62)

p(R,^,3,ti
/T- »^.(4) Z (4)... *
uRsinS X 1, (4.63)

where
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cos,K&\ iKB sin8 + iKRcosG-iYiI °
J 0/2 p

E K [(21) _

The above integral can be evaluated by the method of stationary 

phase integration as suggested by Laird and Cohen (2^J. (Details of

this method are given by Erdelyi (30)). The approximate result as 

R “ is given by

/
i / 2'fT ^ cos , ^"*1

R";!^ 8 sin(-2- ^
h.G5)

"o ^1 LV ,

where the argument for and is (k a sin 0)„ For small ka (i.e. 
k^a sin G << 1) pressure can be written as

p(R,^,8,t]
-PC k^^a^V^(2Z^ I—^cosip cos 9)sin0e ^^t4ik^R

sin 2
E [ (Sf)*^ - cos^s] (It.66)

Mean intensity can now be written as

<I> =

|p|^ pc (22^ (ka)^ cos^*[^?^(-2- cos *)| sin^G
2pc 22 R" [(22^ _ k; cos" G] (4.67)

Radiated power can be calculated by integrating the intensity over 

the surface of a sphere of large radius R.

<w>
c27r P ■ \ p

<I> R sinGdGdcf) =------—
7-2/HI'i 2, A IT kvpcV^(-^y) (ka) f"rcpsH"o’’__„\'t2 . 3,

o o

rcos / o „\'ta . jI c:i n ( P COS 6 / I SXIil Qd.Q
[(4)' - -s=e]"

O L' 2
:4.68)

—2 2,How, <v > = V^/4. Substitution yields



Braa
pc(2^)(^:j^(ka)^j G)]^sin"8de

,' :r,T \:: , ^ 2 2
1'-^) - k COS 0

(^.69)

A computer program has been written to evaluate the above integral

numerically by the Bunge—Kutta method (^12), In using this program it

is once again convenient to work with the non-dimensional radiation

loss factor. A normalised plot of the resulting n . for a cylindrical
beam is shown by che dashed line in Figure (4.9) , for comparison with

the result obtained from equation (4.58). As expected, calculated

by equation (I1.69) approaches the previously obtained values when the

structural wavelength is larger than the acoustic wavelength. The

value of using equation (4.69) is that we can now express n as 8
'rad

continuous function of k^a. Thus, we can approximate radiation and

acoustic response for any ratio of structural to acoustic wavelength.
4.4.3. Equivalent Acoustic Sources

One of the important objectives of this study is to define the 
equivalent acoustic sources for transversely vibrating beams. Having 

derived an expression for pressure radiated to the far-field, we are 

now in a position to proceed with this objective. The directivity U 
of radiated sound pressure can be expressed by suppressing the non- 

directional terms in equation (4.66). The result is

D(*,8) = cos * cos 8) sin 8
- 2(—) - cos 0

's

(4.70)
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•where we have introduced the structural wavelength A__ and the acoustic 

wavelength A .

If the acoustic wavelength is longer than the structural wavelength 

for a given mode of the beam, the mode is said to be sub-critical because 

the denominator in the above equation is always greater than zero. From 

a response viewpoint, this means that the acoustic trace wavelength of 

a plane wave incident on the cylinder at an angle 0 with the axis is 

always greater than the structural wavelength of the beam.

For higher order modes of the beam, the structural wavelength will
#

be longer than the acoustic wavelength. These modes, termed super­

critical, will radiate strongly in the direction for which cos 0 is equal 

to A /A . This also implies that the beam will have maximum response to 

a plane wave which is incident on the beam at an angle such that the 
acoustic trace wavelength is equal to the structural wavelength. If the 

frequency of the acoustic excitation is also equal to the resonant 

frequency of the beam, this condition is called dual coincidence.

Calculations with equation (I.70) show that the fundamental mode 

of a beam will have a figure eight directivity pattern for ratios 

o.t structural to acoustic wavelength. Thus, a beam vibrating nn the 

fundamental mode is essentially a dipole acoustic source. This is as 

expected since every point of the beam is in-phase with every other 

point. Directivity patterns for the fundamental mode are plotted in 

Figure (U,6),

Directivity patterns for the second, third, fourth and fifth modes 

are shown in Figures (4.7), (4.8), (4.9) and (4.10) respectively. When

the acoustic wavelength is much longer than the length (or structural 

wavelength) of the beam, it can be observed that all the odd modes have 

dipole directivity patterns and all the even modes have quadrupole

4o -



directivity patterns. This characteristic is also exhibited by the 

ninth and tenth modes as shown in Figures (4.11) and (4,12). This 

phenomenon can be explained by modelling a beam as a line of coupled 
dipole sources as shown in Figure (4.13). Each quarter wavelength of 

the beam can be represented by an equivalent dipole source. (Of course, 

each quarter wavelength could also be divided into a number of individual 

in-phase dipoles). When the acoustic wavelength is much longer than 

the structural wavelength, destructive interference would tend to 

cancel sound radiation from the interior dipoles, leaving only the 

quarter-wavelengths at each end of the beam. For odd modes, the two 
end dipoles would be in-phase resulting in a net dipole distribution of 

double strength. For even modes, the two end dipoles would be exactly 
180 out-of-phase so that a net quadi'upole distribution would result.

In the intermediate frequency range, where the structural and acoustic 

wavelengths are of the same order, the radiation is seen to be multipole 

in nature with one loop in the directivity pattern for each quarter 

wavelength of the mode. Thus, a beam vibrating transversely in the n^^ 

mode radiates sound as a multipole with 2n loops in the directivity 

pattern. The oraer m of the multipole can be established by noting that 

2n simple sources would be required to produce the multipole.

Therefore
-.m = 2n.

(4^71:

2^^ -^= n,

(m-l) = logg (n) = £n(n)/£n(2), 

m = 1 £n(n)/£n(2).

At higher frequencies, when the structural wavelength becomes much 

larger than the acoustic wavelength, sound radiation is dominated by

the component in the direction for which cos 6 = X /X . In theas

h 1 „



limiting case of an infinitely long Etructur.a]_ wavelength the net 

result is once again dipole radiation. From the acoustic source 

viewpoint the individual dipoles will now he far enough apart to radiate 

independently. Both odd and even modes have the same characteristics 

at these high frequencies. This is as expected since the end quarter- 

wavelengths are so widely separated that the relative phases will not 

matter.

^'5 Periodically Supported Beams

A basic understanding of the acoustic behaviour of slender beams

vibrating in standing waves has now been established. In this section 

we shall consider a more practical situation; namely, the case of 

periodically supported beams. The purpose of this section will be to 

develop a method for estimating the sound radiation and acoustic res­

ponse of periodically supported beams. This will be accomplished by 

defining an effective structural wavelength for sound radiation. The 

previous sections will then be utilized to approximate the radiation 
loss factor.

The main sound radiation analysis will be preceded by presentation 

of the classical frequency equation and a discussion of the mode shapes 

of periodically supported beams.

^.5•1 Natural Frequencies

The classical method for calculating the natural frequencies of 

transversely vibrating beams has been well established by Timoshenko 

(28) , Bishop and Johnson (-dj) and others. For periodically supported

beams with uniform span length, the natural frequencies are given by

f.1 0^0^ y (1.7^-;
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where = natural frequency of the mode,

n^TT = root of the frequency equation,

I = length of each span,

E = Young's Modulus.^

I = cross sectional moment of inertia,

Y = mass per unit length, 

g = gravitational constant.

The roots of the above equation have been determined graphically 
by Ayre & Jacobson (31). In general, the natural frequencies tend to 

fall in groups with one mode for each span of the beam,

4.5.2. Mode Shapes with Simply Supported Ends

The fundamental mode of a periodically supported beam is obviously 
equivalent to the fundamental of the single span beam. The second 

mode of a two span beam is equivalent to the fundamental of a single 

span beam with one end clamped and the other simply supported. Simi­

larly the higher order modes in each group can be reduced to the 

equivalent single span cases with the internal supports acting as points 

of inflection. Typical mode shapes are shown by the solid lines in 
Figures (4.l'i) and (4,15) for the first two groups of natural modes 

of a beam with five simple supports.

4.5.3. Effective Wavelengths for Sound Radiation

An expression for the radiation resistance of a finite beam 

vibrating in a standing wave was obtained in Section (4.4) by solving 

the classical wave equation subject to the boundary conditions im­

posed by the motion of the vibrating beam. Solutions were obtained 

by assuming that the mode shapes of the vibrating beam could be 

expressed in terms of sine or cosine. For periodically (or non- 

periodically) supported beams this is no longer possible because the 

supports can act as points of inflection, resulting in additional

„ 4-



liyper'bolic terms. The total sound pover radiated from a particular 

mode could he approximated by summing the contributions from the Fourier 

components of the velocity distribution. Radiation resistance could 

then be calculated in the usual manner.

It would obviously be a mammoth task to follow this procedure to 

calculate the radiation resistance of every mode of a periodically 

supported beam. Fortunately, it has been found that an adequate approx­

imation for radiation resistance can be obtained by assuming that the 

majority of the radiation is due to the fundamental wavelength component. 

This assumption is justified because it has been shown that radiation 

is highly dependent on the difference between the structural and the 

acoustic wavelengths. Thus, even if the higher order Fourier components 

are of the same magnitude as the fundamental, the radiation is still 
dominated by the fundamental wavelength component.

The fundamental wavelengths, which will be considered as equivalent 

wavelengths for sound radiation, are shown by the dashed lines in 

Figures (4.1^) and (4.15).

It should be noted that these approximations are only valid when 

the acoustic field is diffuse. All the Fourier components would have 

to be included to consider the directional characteristics of sound 

radiation and response.

4.5.4. Radiation Resistance

Radiation resistance of periodically supported beams will now be 

estimated by using the equivalent structural wavelengths. The 

equivalent wavenumber is given by

(4.73)
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Substituting into equation ('!. >8) yields

R
pc(Tra£) sin (y^ “ Yt )

rad 2 E,

where E^, E^, Yq and are now functions of q as defined by

% = >=0 - ■‘e (^.75)

Limiting values are given by substituting into (4.>9). 

result is
>3

The

Rrad

2pc(Tr a&)(q a)'

pc (irat)

q^a << 1

, q^a >> 1

(4.76)

For the case q <0, equation (4.69) is applicable with (nir/t) 

replaced by k .

The results of assuming an equivalent wavelength for sound radia­

tion are shoim in Figure (4.l6). The curve which establishes the upper 

limit in this plot is the radiation loss factor of an infinitely long, 

rigid beam vibrating in a plane. The lower curve is the radiation loss 

factor of a simply supported beam. At higher frequencies the two 

curves converge. As expected the two groups of modes shown in Figures 

(4.l4) and (4.15) lie between these two curves with the first mode in 

both groups being on the lower curve and the last mode approaching the 

upper curve.

Obviously, the equivalent wavelength for the first mode in each 

group is the actual structural wavelength of the beam. Thus the 

calculations for these modes should be exact. Perhaps the calculations
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for the higner modes in each group could be improved by including other 

Fourier components. Eovever, the considerable effort involved would 

be difficult to justify for the following reasons. First of all, from 

a design viewpoint, converging upper and lower limits for response have 

been established. Also, approximations for the Eankel function have 
been used in all the calculations and it has been assumed that a finite 
beam is equivalent to an infinitely long beam, held rigid except for a 

iinite portion which vibrates in a standing wave. Finally, application 

of the results to predict the response of a beam to acoustic excitation 

would require an approximation of the total damping of the beam and a 

detailed knowledge of the acoustic field. In the midst of all these 
approximations the assumption of an equivalent structural wavelength 

would seem to be adequate,

^ • 5 * 5 6 Comm.euts on ClcUii'ped [Beams

The previous discussion has been limited to periodically supported 
beams. It has been observed that the natural modes occur in groups 

with one mode for each span of the beam. The first natural mode in 

each group has the resonant frequency of a single span with simply 

supported ends. The last mode has a natural frequency which is slightly 
less than the natural frequency of a single span with clamped ends. From 

a sound radiation viewpoint the primary difference between clamped and 
supported beams is that with clamped beams the phase of adjacent spans 

IS indeterminate. Thus, a clamped beam could have effective structural 

waveienguns less than or equal to any of the simply supported modes, 
depending on the relative phase of each span. The worst case would 
always occur when all the spans are in-phase. The effective structural 

wavelength for this case would be slightly less than the wavelength for 
the dimply supporued case with all the spans in-phase and the frequency 

would be slightly higher. Thus, the sound radiation and acoustic
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response of neriodically cl-omped beaTris iimst. lie equal to ov less "than 
that calculated for beams with periodic simple supports.

Of course, it is extremely difficult to predict the behaviour of

any support system. If simple supports are assumed all uhe possible 

mode shapes are included. For this reason, simple supports shoul.d be

assumed in the design of periodically supporbed beams subjected to 

acoustic excitation.

4.6 Summary
Three of the primary objectives of this research have been achieved

in this chapter. Firstly, a procedure for calculating the acoustic

energy radiated from a transversely vibrating beam has been escablished.

Secondly, it has been shown that a transversely vibrating beam can be

represented by an ensemble of coupled dipole sources. Finally, an

approximate solution for the radiation resistance of a periodically

supported beam has been obtained.

The important parameters for sound radiation are clearly shown in

the following table of radiation resistances. For every case, radiation

resistance is seen to be proportional to pc& where pc is the specific

impedance of the acoustic medium and I is the length of the vibrating
4

beam. .When k << 1, radiation resistance is proportional to a . Thus 

the radius of a vibrating beam is a very critical parameter at low 

frequencies.

The importance of the ratio of structural to acoustic wavelengths
3is also evident with radiation resistance being proportional to k

where = (k^ - Q,^). If the structural wavelength is of the same
2 2order of magnitude as the acoustic wavelength, i.e., ,

radiation resistance will be closely linked to the exact velocity 

distribution of a particular mode. On the other hand, when the ratio
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of structural to acoustic wavplengths is much larger thau 1, k viii 

approach and radiation resistance vill he relatively insensitive
to the exact shape of the velocity distribution. This result is 

particularly useful in approximating the radiation resistance of 

peliodically supportea beams. The ratio of structural to acoustic 

wavelengths is also important in differentiating between finite and 

infinitely long beams. When the ratio is greater than 1, the 

radiation resistance per unit length of an infinitely long beam is 
identical with that of a finite beam. In contrast, when the ratio is 

less than 1, a finite beam will radiate as a multipole source but an 
infinitely long beam will not radiate sound to the fax-field.

For small ka radiation resistance is proportional to k^. Thus, 

radiation resistance is highly dependent on frequency and the speed 

of sound in the acoustic medium.

At high frequencies radiation resistance is (^iven by pc(?at) for

every case. This is in agreement with the basic principle that wave 
motions are insensitive to details smaller than an acoustic wavelength. 

It is interesting to compare this result with the radiation resistance

0.1. a pulsating sphere. For equal dimensions and velocities the ratio

pul. cyl. _ pc.(2Tia&)
bsc.cyl. pc(7ra£) = 2, (^.77)

Thus, a pulsating cylinder is a more efficient radiator than an 

oscillating cylinder at high frequencies. This is consistent with the 

comparison oj. pulsating and oscillating spheres in Appendix I.
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Fig. 41 Top-An infinitely long standing wave
Bottonn- A finite standing wave.
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xIO-4

r) X'rad

Fig.4-4 Radiation loss factor of a steel cylinder 
vibrating transversely in air.



Fig. 4-5 Normalized 7]^^^ for a cylindrical beam



Xa/L = 10

Mode shape

Xa/L = 0-2 Xa/L= 0-1

Fig.4.6 Directivity patterns-fundamental mode.



Xa/L=10

Mode shape

Xa/L= 0-2 Xa / L = 0-1

Fig. 4-7 Directivity pattern - second mode.



Mode shape

Xa/L = 0-a Xa/L = 0.1

Fig.4-8 Directivity pattern - third mode.



Xa /L = 1

Mode shape

Fig. 4-9 Directivity patterns - fourth mode.



Mode shape

Aa/L = 0-2

Fig. 4 10 Directivity patterns - fifth mode.



Mode shape

Xa/L= 0-2 Xa/L = 0 1

Fig. 4-11 Directivity patterns-ninth mode.



Xa/L = 10 Xa/L=1

Mode shape

Xa/L= 02 Xa/L = 0 1

Fig. 4 12 Directivity patterns - tenth mode.



+ Positive monopole 

- Negative monopole

Fig. 4 13 Acoustic source model.



Mode No.

X cff

Frequency 

175 Hz

^cff

205Hz

274 Hz

‘Cff

354Hz

Fig.4-14 Effective wavelengths for the first group of 
modes - beam 4 with five supports.



Mode No. 

5

Frequency 

703 Hz

760 Hz

890Hz

1030Hz

Fig.4-15 Effective wavelength for the second group 
of modes - beam 4 with five supports.



Fig.4-16 Hrad - First two groups - five periodic supports-
beam four.



CHAPTER V

NOTES OH COMPUTATION

5.1 The MASTER PROGRAM

Several parameters have been shown to be important in determining 

the response of a beam to acoustic excitationo In particular, the 

number of supports for a given length of beam would be of interest to 

the designer. The mathematical models which have been derived require 

the use of numerical integration and computation of Hankel functions.

A computer program has been written in Fortran IgOO to perform these 

functions. The flow diagram is shown in Figure (5.I). For given beam 

dimensions uhe program will calculate all the natural frequencies, 

radiation loss factors and acoustic responses of the beam in a given 

frequency range. The program will then automatically add additional 

suppoits one at a time, and repeat the above calculations. Up to 

thirteen supports can be included in the analysis.

The numerical integrations are performed by Subroutine S4 Runk 
which is an application of the Runge-Kutta method. Subroutine DERY 

defines the differential for the integration and Subroutine F(BETA) is 

used to set up the proper equations for odd and even modes. The Sub­

routine BESSEL is used to compute the Hankel functions.

5.2 Typical Calculations

The following beam parameters have been used in typical calculations 

with the MASTER PROGRAM:

Material Aluminium

Outside diameter 1.0 inches

0.8593 inches
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Length

Young’s Modulus 

Density

9b inches
10 X 10^ p.s.i,

0.101 l6m/in^

The effect of changing the number of supports is shown in Figure 

(5.2) which is a plot of normalized response to pure-tone sound vs. Ka.

At first glance, it would appear that adding supports will always reduce 

the maximum response to acoustic excitation. This can be misleading, 

however, unless the source of the acoustic excitation is taken into 

consideration. The following example will demonstrate this point.

Suppose the above beam is to be subjected to noise generated by a 

gas ciiculator with a flat spectrum from 100 to 1000 Hz. This corresponds 

to the range of Ka from 0.023 to 0.23 shown in Figure (5.2). The mode 
which will have maximum response with two supports occurs at Ka = .21 

corresponding to 89O Hz.

If four supports are used, the mode with maximum response occurs at 
Ka = O.ItL corresponding to I85 Hz. For this particular mode all three 

spans of the beam vibrate in-phase, resulting in increased response 

because the coupling with the sound field has been greatly enhanced by the 
longer effective structural wavelengths. The amplitude of response has 
been increased by a factor of 2.8. Thus, for equal damping, the addition 

of two more supports has actually increased the response of the beam to 

the acoustic excitation.

The peculiar behaviour of the response of the beam with two supports 

can be explained by recalling the simple acoustic source model of section 
{k.k.3). The first mode is essentially a dipole acoustic source which 

should radiate and respond strongly. The second mode is equivalent to a 

quadrupole source which is a relatively weak radiator. Hence, the 

response of the second mode is greatly reduced. The third mode is a
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multipole radiator, but the acoustic wavelength is longer than the

structural wavelength so that radiation is dominated by the center lobe 
and is essentially dipole in nature. Consequently, the response of the 

third mode is slightly higher than that of the second mode. The next 

four or five modes are multipole radiators with response increasing with 

frequency because the radiation is beginning to be controlled by the 
major lobe of the directivity pattern, At higher frequencies, where the 

structural wavelength is much greater than the acoustic wavelength, the 
radiation once again becomes dipole in nature.

Similar explanations car be offered for the response behaviour of 

beams with additional supports. For example, the first mode of the beam 

with four supports should radiate as a multipole. The second mode, having 

an effective structural wavelength equal to the length of the beam, 

should radiate as a quadrupole, and the third mode, with every span in- 

phase, should radiate as a strong dipole. Because of phase cancellation 

between spans, the fourth mode shoiuld be a relatively weak multipole. 

Hence, the acoustic response of a beam with four supports increases with 

frequency to a. maximum at the third'mode. Then the response drops 

sharply as the nature of the radiation becomes multipole and increases 
with frequency to a second maximum at the sixth mode, etc.

Further calculations using the MASTER PROGRAM are given in Chapter 

VII for comparison with experimental results. '
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STOP

Fig.5-1 Flovv^ diagram for master program





CHAPTJIiR VI

INTRODUCTION TO THE PROBLEMS OF SOUND MEASUREMENTS IN 

REVERBERANT ROOMS

This chapter discusses, some aspects of the measurement of sound 

radiation and response in reverberant rooms. This discussion is vital 

to the experimental investigations reported in Chapters VII and VIII.

6.1 Comments on Diffusivity

There are several methods of measuring the sound power radiated 
from a vibrating body. Measurements in the free-field provide informa­

tion about the directivity of a source and. define radiated power. However, 

the large number of microphone measurement points and the corresponding 

data analysis result in a relatively high test effort. Measurements in 

a reverberant field require fewer microphone readings and consequently 

less test effort. The procedure used in this research has been to compute 

the radiated sound power from sound pressure measurements in a large 

reverberant room. The mean acoustic power output <\t> in watts of a source 

in such a room is given by the following equation:

< w > 2.8 (< p^> V/T) X 10" (6.1)

where V is the room volume in ft^, <p> is the sound pressure in microbars, 

and T is the reverberation time of the room in seconds. The above equation 

is based on the assumption that the sound field is completely diffuse.

Uniformity of energy distribution in a reverberant room is dependent 

on the number of modes present in the frequency band of interest and the 

spectrum of the source. In general, sound sources which emit broad band 

noise will excite many modes in the room and produce reasonably diffuse



sound fields. Narrow band or pure-tone sources will generally produce 

noii-uiixform fields. Schroder (32) has shown that a sufficient number of 

modes will be excited in a reverberant room if the frequency is above 

the "large room" frequency given by

f^ P = 1.19 X 10 (T/V) (6.2)

The "large room" frequency of the reverberation chamber used in this 

research is approximately 320 Hz. Above this frequency the assumption 

of a diffuse field would seem to be valid.

6.2 Fluctuations of Sound Pressure

6.2.1 General Theory

The sound pressure at a point in a reverberant room varies as either 

the frequency or the source position varies. Above the "large room" 

frequency Schroder (32) has shown that for variation of pure-tone fre­

quency the sound pressure level at a point has a Gaussian probability 
distribution with the standard deviation from the mean value equal to

5.5 dB.
Doak (33) investigated the fluctuations of sound pressure level in 

rooms when the receiver position was varied. He was able to show that 

■ the standard deviation of pure-tone sound pressure level at a point from 

its mean value is 5.5 dB above the "large room" frequency. This value 

does not hold near the source where the directivity of the source would 
affect the spatial variation of sound pressure.

Obviously, excessive errors would result from using a single micro­

phone position to measure sound pressure. As pointed out by Baade (3^), 

the uncertainty of measuring sound pressure can be reduced by taking 

separate readings at a number of points in the room. By averaging N
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independent samples, the standard deviation will be reduced by a factor 
of yW . A more practical method is to calculate the average sound 

pressure from the output of a microphone which is moved along a traverse. 

The number of statistically independent samples obtained from a traverse 

of length X is given by Lubman (35) and Schroder (36, 37) as N = 1 + 2X/X. 
where A is the acoustic wavelength. The equivalent sample size can be 

increased by using a two-dimensional traverse (3^).

6.2.2 Measurements of the Standard Deviation of Pure-tone Sound 

Pressure Levels

An experimental investigation was conducted to measure the fluctua­

tions of pure-tone sound pressure. A loud speaker, placed in one corner 

of a large reverberant room, was driven through a power amplifier by a 

beat-frequency oscillator. The sound pressure level from a microphone 
traverse was recorded with a high speed level recorder. Typical sound 

pressure traces are shown in Figures (6.I), (6.2) and (6.3) taken from 

traverses at 172, I6OO and 3700 Hz, respectively. As the frequency 

increases the spacing between maxima and minima of sound pressure level 

along the traverse decreases. This is consistent with arguments of the 

preceding section and reflects the fact that the acoustic wavelength is 

inversely proportional to frequency.

The statistical characteristics of the sound pressure levels in 

the room can be established by analysing the traverse recordings. The 

mean sound pressure level and the standard deviation of sound pressure 

level at a single point from the mean value was calculated by dividing 

the level recorder traces into 50 equal parts. The measured standard 

deviations are plotted vs frequency in Figure (6.4). The results are 

seen to be in good agreement with the theoretical even at frequencies

55



below the ’’large room" frequency.

It can be concluded from these results that pure-tone sound pressure 

levels can be accurately measured if a sufficiently large number of 
microphone readings are taken.

6•3 Spatial Variation of Room Impedance

6.3.1 Theory

The acoustic power output of a source depends on the impedance of 
the acoustic medium. The impedance presented by a reverberant room is 

determined by the volume and absorption of the room and the spectrum of 

the excitation. The variance of room impedance and hence power input

from point sources has been investigated by Lyon (38). For a simple 

source radiating into a reverberant room, Lyon derives the following 
equation for normalised variance of radiation resistance:

^^/l6M (6.3)

where M is the modal overlap equal to the product of the modal 

n^(f.) and the modal bandwidth A .
density

as

Modal density of a reverberant room is given by Morse and Ingard (18)

n„(f) =
i+TTf^ V

V

The modal bandwidth is given by

 TT f. n
^V

(6.4)

(6.5)

where 2.2
f .T (6.6)
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Substituting into equation (6.3) yields

2 ^ 1.58 X 10 T
" f" V

(6.7)

where V is the room volume in m .

Normalised standard deviation of sound power at a point is therefore 

given by

N
1.256 X 10-

f
(6.8)

From this equation it can be seen that the sound power radiated from 

a point source can be accurately measured with the source at a single point 

if the frequency is high, the volume of the room is large, and the rever­

berant time is short.

A plot of equation (6.8) is shown by the solid line in Figure (6.5) 

for the reverberant room used in this research.

The greatest contribution to the standard deviation comes from source 

positions near the walls. Baade (3^) suggests that for points at least a 

quarter wavelength from the walls, the standard deviation should be only 

70^ of that shown in Figure (6.5). Using this assumption, the standard 

deviation of radiation resistance is plotted by the dashed line in 

Figure (6.5) for points not near a wall. Tiiis result implies that at 300 

Hz, 68% of the source points not near a wall should result in measured 

sound power within ± 50% of the true mean value. At 1000 Hz the uncertainty 

is reduced to ± 13%.

6.3.2 Experimental Investigation
The theory presentedii the previous section is strictly applicable to 

a simple source. This research is primarily concerned with transversely 

vibrating beams which radiate sound as an ensemble of dipole sources



(see Section 4.U.3)< Intuitively, one would expect such a distribution 

of sources to see an average impedance of the room; especially when the 

length of the beam is longer than an acoustic wavelength. An experimental 

investigation has been conducted to test this assumption. The apparatus 

is shown in Figure (6.6). The beam response rig, which consists of a 

dexion angle frame bolted to a 300 lb. concrete base, was placed at ten 

different positions near the centre of the large reverberant room. At 

each position, the beam (5 ft. long, 1 in. dia.) was driven mechanically 

at three resonant frequencies and the output of a microphone traverse was 

recorded. From these traces the radiated sound power if as calculated for 

each position, the mean radiation resistance was determined, and the nor­

malised standard deviation was calculated. The results are shown in the 

following table:

Mode ho. FREQ.

3 , 322 Hz 0.239

5 5lt2 0.105

T 1^50 0.016

These results are plotted in Figure (6.5) for comparison with the 

theory of the previous section. The standard deviation of the radiation 

resistance of the beam is seen to be lower by a factor of approximately 

three. A theoretical explanation for this is offered by Doak (39) who 

suggests that the standard deviation of the radiation resistance of a 

distribution of dipoles should be reduced by a factor approximately 

equal to the number of dipoles in the ensemble. This is consistent with 

the observed phenomenon.
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near a rigid wall has been made. The image source presented by the wall 

causes destructive interference as the beam is moved closer to the wall. 

This is in basic agreement with the theory of the interactions of point 

sources and reflecting surfaces, but more extensive experiments would be 

needed to produce fully reliable results.
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CI-IAPTEl^ VII

Experimental Programme for Measuring Radiation Loss Factor

of Slender Beams

The purpose of this experimental programme was to measure the sound 

power radiated from resonant, transversely vibrating cylindrical beams. 

Three freely-suspended beams were used in the first part of this inves­

tigation to show the effects of changing various parameters. Particular 

consideration was given to the importance of the radius of the beam and 

the ratio of structural wavelength to acoustic wavelength.

A periodically supported beam was used in the second part of this 

study to show the importance of support spacing.

7.1 Investigations with Three-Freely-Suspended Beams

7.1.1 Description of the Apparatus

T"ne apparatus used in this experiment is shown in Figure (T.l).

The beam response rig, described in Chapter VI, was positioned near the 

centre of the large reverberant chamber. The rig was designed so that 

it would cause minimum obstruction to the acoustic near-field of the 

beam. It was found by experimentation that minimum distortion of the 

mode shapes of the beam could he achieved by suspending the beam with a 

wire attached to a pin through the first nodal point of the fifth trans­

verse resonant mode. The suspension wire was made as small as possible 

(.012” dia.) to avoid resonant frequencies of the wire and to minimize 

the flow of energy between the beam and the rig.

A small coil, protiuuing into the field of an annular permanent magnet, 

was attached to the bottom end of the beam to provide a means of mechanical 
excitation with minimum external interference. The response of the beam 

was measured with three Bruel and Kjaer accelerometers. One of the
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accelerometers was attached with wax to the bottom end of the beam 

opposite the coil. The other two were placed at the top end of the beam, 
one in the same plane as the coil, the other at 90° rotation. The sound 

pressure level was measured with a one-inch Bruel and Kjaer condenser 

microphone mounted on a microphone traverse unit.

The specifications of the beams used in this experiment are given 

in the following table:

TABLE OF BEAM SPECIFICATIONS

Specification Beam. 1 Beam 2 Beam 3

Material Copper Aluminium Copper

Outside Diameter 1.112 inches 1.00 inches 1.312 inches

Inside Diameter 1.016 0.75 1.00

Length 60 60 60

Elastic modulus l8xl0^P/in^ lOxlO^P/in^ l8xl0^P/in^

Density 0.3351bm/in^ 0.101 Ibm/in^ 0.335 Ibm/in^

7.1.2 Measured Results

The reverberation time of the room was measured at each frequency 
by switching off the loudspeaker and recording the slope of the decay in 

sound pressure level. A typical trace is shown in Figure (j.2).

The frequency response of each beam was measured by dr-iving the 

beam with the coil and slowly sweeping the frequency of the excitation. 

Typical accelerometer outputs are shown in Figures (7.3) and (7.-0 mea­

sured at the bottom of the beam opposite the coil and at the top end oi 

the beam in the plane of the coil. The antiresonance effect is clearly 

shown in Figure (7.3) by the sharp dip in response just before each



resonant frequency. The first fifteen to twenty resonant frequencies 

can easily be distinguished but the higher order modes are lost because 

the sweep is on a logarithmic scale. By manually tuning the oscillator 

the first fifteen modes of each beam could be determined and all the 

resonant frequencies were found to be within 5^ of the theoretical values, 

The good agreement between theoretical and experimental natural frequen­

cies implies that the added masses of the accelerometers did not appre­

ciably affect the mode shapes of the beam. This is as expected since 

the weight of each accelerometer was only two grams.

The procedure for measuring . was to drive the beam at resonance 

by tuning the oscillator to a natural frequency of the beam, record the 

accelerometer outputs, then traverse the microphone over a distance of 

15 feet continuously recording the sound pressure level in the room.

The results for the three beams are plotted in Figure (7.5) with the 

theoretical values which are calculated by assuming that the mode shapes 

of the beam can be described with trigonometric functions. Of course, 

the mode shape of a free-free beam will also contain hyperbolic terms, 

but these are probably insignificant from a radiation viewpoint because 

wave motions are generally insensitive to details smaller than an 

acoustic wavelength.

It is significant that the first two modes of each beam did not 

radiate measurable sound to the far-field. The acoustic wavelength was 

longer than the total length of the beam for these cases. Hence, it 

is not surprising that these relatively weak multipoles did not radiate 

strongly (see Section (4.4.3)).

The beams used in this experiment were designed to investigate the 
two most important parameters in sound radiation: namely, (i) radius of 

the beam and (ii) ratio of structural to acoustic wavelengths. The
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importance of the radius parameter alone was studied by comparing the 

modes of beams 2 and 3 which had the same resonant frequencies and 

mode shapes. The wavelength ratio parameter was investigated indepen­

dently by comparing the modes of beams 1 and 2 which had the same mode 

shapes at different frequencies. The predicted behaviour was observed 

for both parameters.

7.2 Investigations with a Periodically Supported Beam

The main objective of this part of the experiment was to determine 

the changes in sound radiation from a slender beam when the number of 

periodic supports was varied. This was achieved by measuring the radia­

tion loss factor of a beam with two, three and five simple supports.

7.2.1 Description of the Apparatus

The importance of taking the tube supports into account when 

assessing acoustic response has been established in previous work by 

Beaney & Yeh (Uo). In particular, it has been shown that a tube must 

be isolated from other structures if meaningful results are to be 

obtained. The support used in these experiments is shown in Figure (7.6). 

The base stand can be bolted rigidly to the vibration isolation pad in 

the large reverberation room to minimise mechanical coupling of the tube 

to other structures.

Tapered pins on the sides of the collar fit into hardened steel 

cone bearings mounted in the yoke. This leaves the beam free to rotate 

so that the support is essentially "simple" with zero moment and deflec­

tion at the support.
A schematic of the experimental arrangement is shown in Figure (7.7) 

The beam was mounted on the vibration isolation pad near the centre of
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the large reverberant room. The fiv^e simple supports, positioned 

periodically along the beam, could be disconnected independently so 

that different combinations of supports could be investigated. A small 

coil, protruding into an annular magnet, was attached to the beam to 
provide a means of mechanical excitation. The response of the beam was 

measured with four accelerometers attached with wax to the beam, one in 

each span. A one-inch microphone, mounted on a traverse, was provided 

for measuring the sound pressure in the room. A 25 watt loudspeaker was 

available for acoustic excitation.

The output of the accelerometers was fed into an audio-frequency 

spectrometer. A four beam oscilloscope and a level recorder were also 

available for analysis of the results. The frequency of the excitation 

was measured with a digital frequency meter.

The specifications of the beam used in this experiment are given in 

Chapter ^.

7.2,2 Natural Frequencies and Mode Shapes

Analysis of the sound radiation from vibrating beams requires some 

knowledge of the resonant frequencies and mode shapes. The natural 

frequencies of the beams used in this experiment were determined by 
driving the beams mechanically and tuning the oscillator until a maximum 

accelerometer output was obtained. The ratios of measured to calculated 

natural frequency are shown in Figures (7.8), (7.9)3 (T.IO) for two, three 

and five supports, respectively.

The natural frequencies of several modes could not be measured because 

the accelerometers or the driving coils were, at nodal points for those 

particular modes. Thus only the first, third and fifth groups of modes 

were considered for the case with five supports.
The experimental results are seen to be within 15% of the theoretical 

predictions for most of the modes. Lower experimental frequencies probably 

indicate that the supports are not completely rigid in the plane of vibi/a-

tion. b5



Some of tLe modes are repeated in all three support arrangements.

For example, the fourth mode with two supports is the same as the 

third mode with three supports and the first mode with five supports.
The measured frequency was 172 Hz for all three cases. Similarly, the 

20th mode with two supports is equivalent to the 19th mode with three 
supports and the 17th mode with five supports. The measured frequencies 

of these three modes were 4003, 4008, and 3990 Hz, respectively.

For pure, resonant vibration, the mode shapes would have equal 

amplitude in each span. With mechanical excitation at a single point 

in one span, the measured results tended to have maximum amplitude in 

the driven span and slightly reduced amplitudes in adjacent spans. When 

this was observed the average amplitude was taken to be the mean of the 

amplitudes measured in each span. A typical example of the accelerometer 

outputs in each span is shown by the oscillascope traces in Figure (f.ll) 

for the second mode of the beam with five suppoits. The amplitudes in 

each span are seen to be of the same order of magnitude for chis mode 

with the first two spans (the upper traces) vibrating in-phase and the

second two spans (the lower traces) vibrating l80 out-of-phase.

7.2.3 Measured Radiation Loss Factors

The procedure for measuring radiation loss factor is essenoially 

the same as that used with the freely-suspended beams. Basically, this 

involves driving the beam mechanically at resonance, measuring the 

accelerometer outputs and recording the radiated souna pressure levels 

in the room.
The results with two supports are shown in Figure (7.12) which is 

a plot of radiation loss factor vs. Ka; where K is the acoustic wave- 

number (^/c) and a is the radius of the beam. The theoretical curve 

was calculated by the computer program presented in the previous

chapter. It is significant to note that the fourth mode of che beam.
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occurring at 172 Hz, was the first mode to radiate measurable sound. This 

is as expected since below this frequency the acoustic wavelength is longer 

than the total length of the beam.

The support at the centre of the beam was then connected and the 

experiment repeated. The results are shown in Figure (7*13) for comparison 

with the theoretical predictions. Finally, all five supports were con­

nected with the result shown in Figure (7-1^0 •

The basic characteristics of sound radiation from periodically 

supported beams is seen to be identical with that from simply supported 

beams. Radiation loss factor increases with frequency to a maximum at 

Ka = 1. Above this frequency radiation loss factor decreases with 

increasing frequency. The primary difference between periodically supported 

beams and simply supported beams is the slope of the radiation loss factor 

curve at low frequencies. This is more clearly observed in Figure (4.15) 

which has an expanded Ka axis. The implications of this will be discussed 

in the next chapter which deals with resonant response to acoustic exci­

tation.

7.3 Discussion of Results
The experimental results of this investigation largely verify the 

theory presented in Chapter IV. As predicted radiation loss factor 

increases with frequency to a maximum at Ka = 1 where the radial acoustic 

wavelength is equal to the circumference of the beam. Above this fre­

quency radiation loss factor decreases with frequency.

The statistical problems discussed in Chapter VI have been encoun­

tered. With the 50 microphone positions used in these experiments, it 

can be shown that there is a &>% probability of measuring radiation loss 

factor within ±20% of the true value. Additional uncertainties are
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encountered at low frequencies (see Figure (6.5)) because of the spatial 

variation of room impedance- Hence, it is not surprising that individual 

measured results differ from the theory by as much as a factor of two.

The theoretical predictions of radiation loss factor for the periodi­

cally supported beam are based on the assumption that sound radiation is 

dominated by the longest wavelength component of the velocity distribution. 

This assumption has been verified; again demonstrating the basic principle 

that wave motions are insensitive to small details.

Measurable sound pressure was not radiated by any mode when the 

acoustic wavelength was longer than the total length of the beam. This 

evidence supports the theory of Chapter IV which suggests that these modes 

should be relatively weak multipole radiators.
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CHAPTER VIII

EXPERIMENTAL PROGRAI#IE FOR MEASURING THE RESONANT RESPONSE OF

CYLINDRICAL BEAMS TO ACOUSTIC EXCITATION

Four experimental investigations are reported in the following 

chapter. The first experiment is concerned with measuring wavelength 

coincidence effects and polar directivity in a large anechoic room. The 

second study, conducted in a large reverberant room, deals, with the resonant 

response of three freely-suspended beams to pure-tone acoustic excitation. 

The third experiment is directed toward measuring the response of a periodi­

cally supported beam to pure-tone sound and the fourth investigation is 

concerned with the acoustic response of a freely-suspended circular ring.

8.1 Anechoic Room Investigations

An attempt was made in ChapterIV to model a transversely vibrating 

beam as a line of coupled acoustic dipoles. One way to verify this 

theory would be to determine the acoustic directivity pattern by measuring 

the sound pressure radiated from a vibrating beam in an anechoic room.

Since radiation and response are directly related by reciprocity, an 

equally good method of determining directivity is to measure the response 

of the beam to sound incident from a single direction. This approach 

was chosen because it requires considerably less effort.

8.1.2 Wavelength Coincidence Effects

The experimental arrangement for measuring wavelength coincidence

lown in Figure f 8.1 . Th Imply supported beam used in

Chapter VEwas mounted near one end of a large anechoic room. A 100 watt 

unbaffled loudspeaker was suspended from the ceiling so that it could be 

raised and lowered to vary the angle of incidence of the acoustic wave­
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fronts with the beam. A microphone was positioned near the centre of 

the beam. The output of this microphone was fed into the compressor 
circuit of a beat frequency oscillator which was set to maintain a sound 

pressure level of 9h dB at the centre of the beam. The response of the 

beam was measured with four accelerometers equally spaced along the 

beam. With the speaker at nine different positions from zero to 90 , 

the outputs of the accelerometers were recorded as the,frequency of the 

excitation from the oscillator was automatically swept from 150 to 3000 Ez. 

Typical results are shown in Figure (8.2) and (8.3) for zero and 35 angles 

of incidence. Directivity patterns were calculated by comparing the 

amplitudes of these recorded traces. The results for the sixth, seventh, 

ninth and tenth modes are plotted on a linear scale in Figures (8.4) through 

(8.7) for comparison with the theoretical patterns.

The sixth mode is particularly interesting because the acoustic wave­

length is almost as long as the structural. The equivalent acoustic 

source model is a multipole radiator with each half wavelength of the beam 

acting as a dipole source. The dipoles are coupled together, resulting 

in destructive interference at certain angles. The measured results are 

in reasonably good agreement with theory, especially with regard to the 

major lobe in the directivity pattern. Unfortunately, measurements could 

not be made for angles from 60° to 90° because of physical limitations 

in positioning the speaker. The relatively large response at grazing 

incidence for this mode is probably due to ground effects since the 

acoustic wavelength is of the same order of magnitude as the depth of 

the absorbing wedges covering the floor of the anechoic room.

The seventh, ninth and tenth modes are supercritical with struc­

tural wavelength longer than the acoustic wavelength. Maximum response 

for each case occurs when the acoustic trace wavelength is equal to the 

structural wavelength.
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Lower order modes were also excited in this experiment. However, 

the results are subject to uncertainty because the speaker could not 

he placed far enough from the beam to ensure a plane wavefront at the 

beam.

8.1.2 Polar Directivity

Sound pressure radiated from a beam vibrating in a plane is theore­

tically proportional to the cos G, where 8=0 denotes the plane of 

vibration. The procedure used to measure this polar directivity is 

identical with that used the previous section. Results are shown in 

Figure (8.8) for comparison with cos 0.

Poorest agreement with theory is observed for the fourth mode.

This is not surprising because the assumption of a plane wave for this 

low frequency mode would be doubtful. The sixth and ninth modes give 

considerably better agreement with theory. Again, the response for 

0 = 90° is probably because of reflections from the floor of the anechoic 

room which would result in a net force on the beam.

8.2 Reverberant Room Experiments

8.2.1 Three Freely-Suspended Beams

The radiation loss factors of three freely-suspended beams were 

measured in ChapterVII. The resonant response of the beams to pure-tone 

sound in a reverberant room was also measured. The results are reported 

in the following section.

The apparatus used in this experiment is that shown in Figure (T.l) 

with the excitation provided by the loudspeaker. Typical frequency 

response traces are shown in Figures (8.9) and (8.10). It is interesting 

to compare these plots with Figures (7.3) and (7.^) which record the out­

puts of the same accelerometers with mechanical excitation. The first 

two modes are not excited acoustically. This is as expected since these 

modes did not radiate measurable sound.
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Detailed analysis of the individual modes requires consideration of 

the total damping of the system. The main sources of damping are coulomb 

damping associated with the motion of the suspension wire, hysteresis 

damping due to the bending of the beam, and radiation damping. The total 

damping loss factor was measured by two methods. For the lower order 

modes it was found that the best method was to measure the decay of ampli­

tude with the level recorder. A typical decay trace is shown in Figure 

(8.11). Ttiis plot is slightly concave up which implies that the damping 

is fundamentally viscous in nature with a slight d.ependance on amplitude. 

Hie damping of the higher order modes was measured by the half-power
~kbandwidth or 3 dB-down method. The measured ranged from 3.0 x 10

to 5.0 X 10

The procedure for measuring the response of the individual modes of 

the beam was to tune the oscillator to a resonant frequency of the beam 

with the excitation being provided by the coil; then switch the excitation 

to the loudspeaker thus ensuring that the speaker was tuned to the peak 

of the frequency response for that mode. Then the accelerometer outputs 

were recorded and the microphone was traversed to obtain an average 

sound pressure. The results are shown in Figure (8.12). Individual 

values are seen to differ from the theoretical by as much as a factor of 

two; but this is not unexpected since the experimental results depend on 

accurately measuring response, damping, and sound pressure level. Errors 

in accurately measuring the sound pressure level alone could result in 

scatter of 20% and it is extremely difficult to accurately measure the 

damping of a highly resonant structure. The degree of correspondence 

between the theoretical and experimental trends of frequency dependency 

is considered to be adequate to confirm the relationship between response 

and radiation which forms the basis of the response theory.



8.2.2 Periodically Supported Beams

The arrangement for measuring tlie resonant response of the periodi­

cally supported team is shown in Figure (7.7) with the excitation supplied

by the loudspeaker. Total damping loss factors, measured by the methods
—U ”2of the previous section, ranged from 5.0 x 10 to 1.0 x 10 . In general

the lower frequency modes were more lightly damped. Part of the increased 

damping of the higher frequency modes is, of course, due to increased 

acoustic damping. The remainder is probably due to increased frictional 

losses at the supports.

Response to pure-tone acoustic excitation was measured by the procedure 

of the preceding section.

< V >, the root mean square velocity averaged with respect to time and 

space, was calculated from the acceleration outputs by using the tables 

given in Bishop and Johnson (27). < p >, the root mean square sound pres­

sure averaged with respect to time and space, was calculated from the 

sound pressure levels recorded by the microphone transverse.
Measured results are plotted in Figures (8.13), (8.l4) and (8.15) 

for two, three and five supports, respectively. In these Figures < v > 

is in ft/sec, < p > is in y bars, and is the measured total damping

loss factor. The theoretical curves in these figures were calculated 

by the computer program listed in Chapter (V). Individual measured points 

differ from the theoretical by as much as a factor of 3. However, the 

degree of correspondence is adequate to justify the assumption of an 

effective structural wavelength, which is the main concern of this study.

As expected, only those modes which radiate sound could be excited 

acoustically. For the case with two supports the first mode to be 
excited acoustically was the fourth mode occurring at 172 Hz. The funda­

mental mode at 10 Hz and the second and third modes at and 98 Hz could
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not be excited acoustically. Obviously, the fundamental mode lies in 

the infrasound region. For the second and third modes, the acoustic 

wavelength is longer than the total length of the beam. These two 

modes are basically weak, multipole radiators with low acoustic coupling. 

With the standard loudspeaker used in these experiments, it was impossible 

to generate sound levels high enough to excite these modes.

8.2.3 A Freely-Suspended Circular Ring

This research has been mainly concerned with straight beams. There 

is considerable practical interest in the acoustic response of curved 

beams. For example, the boiler tubes in present nuclear power stations 

are wound in a helix about a solid central core. Intuitively, a section 

of a boiler tube having a relatively long radius of curvature and a struc­

tural wavelength longer than the acoustic wavelength should exhibit the 

same acoustic response characteristics as an equivalent straight beam.

A simple experiment was devised to test this hypothesis, A steel 

tube, having the same external dimensions as the periodically supported 

beam, was bent into a circular ring with the ends welded together. The 

ring, freely-suspended by a small wire, was excited with pure-tone sound 

in the reverberant room. The response of the ring was measured with 

two accelerometers attached with wax in the plane of curvature and two 

attached at 90° to the plane of curvature. Typical examples of response 

as the frequency was swept from 200 to 5000 H?, are shown in Figures (8.l6) 

and (8.17). The general trend of acceleration response is seen to be 

similar to that of straight beams with response increasing with frequency 

to a maximum value and then decreasing.

From these results it can be concluded that the acoustic response 

of a curved beam would be very similar to that of the equivalent straight 

beam; especially at higher frequencies where the radius of curvature and 

the structural wavelength are longer than the acoustic wavelength.

hi-L. _



8.3 Summary

Measured directivity patterns are in basic agreement with the theory 

derived in Chapter IV. These results confirm the multipole nature of 

sound radiation from transversely vibrating beams and demonstrate the 

principle of reciprocity which suggests that a structure which radiates 

strongly in one direction will also respond strongly to acoustic excita­

tion from that direction.

Good agreement with theory has also been obtained in measuring the 

resonant response of freely-suspended and periodically supported beams to 
pure tone acoustic excitation in a reverberant, diffuse sound field.

Finally, experimental evidence has been presented to show that the 

response behaviour of curved beams is similar to that of straight beams.
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Fig.8-4 Subcritical directivity - 6^^ mode
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Fig.6-5 Supercritical directivity - 7^^ mode
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Fig.8-8 Polar directivity



Eo
4-"o
C9
SZ

ro

"D
oL.
3
10
m
o
E

E03O
JOi

O

O
(Ocoa.
(O
C9L.
>
Uc
o U3 C7
C9 O £- jC

U O
to to3
Ou<

m
00
u_

oQ.
Q.
O



o
Q
O

0)x;

m

"O
oL
3
m
m
o
E

a
ensC9XI

oo u
C9w X:

O) +->
coQ. «*—o
(/)Ci» C9l_ cnj>\ duc C9o X3 +-»croi- c

Eu 03-t-» C9
U) X3oU OX<

o
CD

L



CO
■O-Q -»s>-

C9
U
mL.

>\
m
u
o
u

cn
c
CL
E
m
"O

m
y
CL
>\

00

L



m

Eg
CD

1 C9toCoatoC9L.
CM yE05 to(b) DCD OufO

•DCb)N
m
Et_oz
CMT—
00

r- li.E05CiCD

JBCjlf” li X </\



10

CO+J
L.oa
Cl
ZJ10

c\j
o
COcoD.
(0
cs

o
co
+-'

I
C9£_
ZJCL
CO
CO
gi
Ll



I'.

(/)+-»L-
O
Q.Q.
3
(/)

fO
I
C9
</)C
OQ.(/)
OL.

O
Co
I
o

{=■
A
i>V

AIQLV
CO

L



ff' CO <0 Tm n CkJ TT! I I I I—I-----rI (A CO M (O m ^ fO CM

m

to■o o
h-
O

pr
Ai>
V

AICL
V

JiC

LO
o

{/)
+-'

L.
OQ
Q
D

10
I
O
U)co
D.
(/)
CJ£_

Co-H-I
CJt_
oCL

10^—
COch
L



oL.
ZJ•*->
(D>£_U
U

c
m
a
C9
x:

CD
C
L.

OV)CoCL
(n
o

>ucC9
3CT
O
u.

CD

L



id
m

rHoO

id
OVJ

8If)
O

8CO

£_
3•4-«
>t_
3
U

o
c
m
a

oo
O)

OJ
C9
if)c
OQ.CO
O

u
c
0)3
CT
0)£_li.

s

L



CHAPTER IX

CONCLUSIONS.

9*1 General Conclusions

The conclusions which are drawn from this research are listed below 

in the order of importance as they appear to the author.

It has been shown that a theory based on the principle of reci­

procity can be used to predict the response of slender beams excited 

by sound.

A calculation of the sound radiation from a transversely vibrating, 

unbaffled cylindrical beam has shown that the radiation resistance is 

highly dependent on frequency. Radiation resistance increases with 

frequency to a maximum at ka = 1 where the radial component of the 

acoustic wavelength is equal to the circumference of the beam. At very 

high frequencies radiation resistance is independent of frequency and 

proportional to pcS, where S is the surface area of the beam; i.e. the 

beam radiates as if it were a baffled piston radiating into an infinite 

acoustic medium. Physically, this means that acoustic short circuiting 

around the beam decreases as the dimensions of the beam become much 
larger than an acoustic wavelength.

The ratio of the acoustic wavelength to the structural wavelength 

( ha.s been shown to be a very important parameter in controlling

radiation and response. When > 1, an infinitely long beam

vibrating in a standing wave will not radiate sound and will not respond 

to acoustic excitation. The acoustic energy for this case is entirely 

reactive and no energy is radiated to the far field. Thus, the frequency 

corresponding to wavelength coincidence (ka = O) may be defined as a 

lower 'cut-off' frequency for sound radiation and acoustic response
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of infinitely long teams.

In contrast to the case of an infinitely long beam, it has been

shown that a finite beam can radiate sound when a /X >1. An under-a s
standing of the source of this radiation has been gained by showing 

that a line of coupled dipoles is an equivalent acoustic source model 

for a transversely vibrating beam. When A. is much longer than the 

total length of the beam, all odd beam modes radiate as dipole sources 

and all even modes radiate as quadrupole sources. When - 1, both

odd and even modes radiate as relatively weak multipoles. In the limit 

as Ag ->• CO, phase cancellation between adjacent quarter wavelengths 

decreases and the beam radiates as a dipole source until the acoustic 

wavelength becomes larger than the circumference of the beam. Above 

this frequency the dipole model breaks dovm and the radiation becomes 

line monopole in nature.

The acoustic source model also offers an explanation for the 

peculiar acoustic response behaviour of slender beams. At all frequenc­

ies the fundamental mode is a strong dipole source with relatively high 

acoustic response. If A^/A < 1, the response of the second mode is 

greatly reduced because the equivalent acoustic source is a relatively 

weak quadrupole. Response increases for the third mode which once again 

exhibits dipole radiation, etc., until A^/A^ - 1, Above this frequency, 

response increases with frequency for all modes to a second maxima and 

then decreases as the dipole model breaks down. Experimental and 

theoretical results have shown that the acoustic response of a cylin­

drical beam is insignificant at these high frequencies if ka > 2. 

Therefore, the frequency corresponding to ka = 2 may be taken as a 

practical upper 'cut-off frequency for design calculations.

It has been shown that the radiation resistance of a transversely
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vibrating beam is relatively insensitive to the exact shape of the 

velocity distribution when > 1. In fact, the radiation resistance

of a finite beam is identical to that of an infinitely long beam when 

the structural wavelength is longer than the acoustic wavelength. This 

result is consistent with the basic principle that wave motions are in­

sensitive to details smaller than a wavelength.

Approximate solutions for the radiation resistance of periodically 

supported beams have been obtained by defining an effective structural 

wavelength for sound radiation. The resulting radiation resistance is 

bounded by an upper limit corresponding to a rigid beam vibrating with 

uniform transverse velocity and a lower limit corresponding to a simply 

supported beam vibrating in a standing wave. A computer program has 

been developed to apply these results to the design of support systems. 

Computations have demonstrated the fact that increasing the number of 

supports can actually increase the response of a beam excited by sound.

An accurate method has been developed to measure pure-tone sound 

radiation from, and acoustic response of, transversely vibrating beams. 

Variations of room impedance have been investigated and it has been 

shown that the radiation resistance of an extended source can be accurate­

ly measured at a single source position if the length of the source is 

longer than an acoustic wavelength and many microphone positions are 

used to determine the average sound pressure level in the room. In 

comparison, previous theories (cf. 38, 40) have shown that the radiation 

resistance of simple acoustic sources can not be accurately measured at 

a single point, especially at low frequencies where the modal density 

of the room is low.

It has been shown that the maximum radiation loss factor of a solid 

steel beam vibrating in air is approximately l.l4 x 10 (see Figure 

(h.h)). Thus, the total damping of a slender beam would have to be



very light indeed for acoustic damping to he important in air. However, 

acoustic radiation can he an important damping mechanism in dense acoustic 

fluids.

9.2 Design Criteria

Various heam and acoustic medium parameters have heen shoTO to he

particularly important in controlling radiated sound power <w>, radiation

loss factor and response to acoustic excitation <v>. A quick

estimate of the importance of frequency, radius, heam length, material

density, medium density, speed of sound, and (X /X ) can he made hya s
referring to the following table,

TABLE OF PARAMETERS

r^- ■” —----------
Frequency Range 0 < ka < 1 ka>>l

<w> '^rad <v> <w> ^rad
:

<V>

frequency f^ f2 -1/2
f - f"" f-2

radius of solid 
heam

a 2a -
1
a -1a a-3/2

length £ - £ - v"/" 1

mat'l density - % - -1
Pm

-1
Pm

medium density Po
i

Po Po -

speed of sound 1 c“^
■ 1

C C C

1 1
1 . . !

f CV-'
!<
LI

-
1 I

' I ' 1
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9.3 Summary

In conclusion it may be said that all the objectives of this 

research have been successfully achieved, The principle of reciprocity 

has been demonstrated and a method for predicting the response of 

slender beams to acoustic excitation has been produced. The importance 

of beam and acoustic medium parameters has been established and a 

computer program has been written to aid in the design of periodically 

supported beams. Expressions have been derived for radiation damping 

and an equivalent acoustic source model for a transversely vibrating 

beam has been defined. The statistical problems of sound measurements 

in a reverberant room have been investigated and an accurate method for 

measuring pure-tone sound radiation from an extended source has been 

developed.
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APPENDIX I

Acoustic Point'Sources

In this section we will consider several examples of simple acoustic 

sources. The results obtained here are useful in the discussions on 

sound radiation and acoustic response of slender beams. These examples 

are presented in detail in standard acoustic textbooks such as Refer­
ences (l4) through (19).

A,1.1 The Monopole

Consider a small sphere of radius a which pulsates periodically 

with uniform radial velocity given by V e The radiated sound

pressure is given by Doak (41) as

P =
pc V a(ika) e -iwt + ikr

r(l + ika) (A.1.1)

At large distances from the source, the radiated wave is essentially 

a plane wave with the particle velocity strictly in phase with the 

pressure. For this case the mean intensity can be written as

<I> =
pc (ka)^
2 [(ka)^ + l] (A.1.2)

The total mean radiated power can be calculated by integrating 

the intensity over the surface of a sphere of radius r.

cw>
ran
<I> r sing do d(^ (A.1.3)

o o
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<v> =
pc (4Tra^) , (ka)^

Cka)^+ 1
(A.1.4)

The mean square velocity averaged with respect to time and space 

will be
—9 9 (A.1.5)—P P<v > = /2.

Substituting this into equation (3.8) and utilizing (2.6) yields

,2
bad '

(ka) + 1
(A.1.6)

Limiting values for ka<<l and ka >>1 are therefore given by 

( pc(4T7a^) (ka)^
Rrad"

pc(4va )

ka<<l;

ka»l.
(A.1.7)

A.1.2 The Dipole

Sound can also be generated by simply moving a fluid back and forth 

along an axis. Consider the case of a small sphere of radius a which

The radiatedU
pressure is given by Doak (4l) as.

oscillates harmonically with normal velocity V cos 6 e

-pc cos 6 (l + l/ikr)e ^
p = -------------- --------2--------------------------- (A.1.8)

[(ka) + 2(1 + ika) ] r

Following the procedure of section (A.Id), the mean intensity at 

large distances from the source can be written as

<I> =

cos^ 8 (ks)^

T2r [(ka) + 4j
(A.1.9)

Substitution into equation (A.1.3) yields
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<v>
pc a . 'Jia)
2[(ka)^ + h]

TT ?1T

COS 6 sin6 d0 dtj) . (A.l.lO)

The result of evaluating the above integral is

<v>
pc(^?a^) (ka)^

6 [(ka)^ + 4 ] . (A.1.11)

Again, the mean square velocity averaged with respect to time and 
—2 2space is <v > = V^/2. Substituting this together with equation (A.l.ll) 

into equation (2.6) yields

Rrad
_ pc(^iTra^) (ka)^ 

3[(ka) ^ + )+ ] (A.1.12)

Limiting values for large and small ka are therefore givengiven oy

Rrad'

pc(4ma^) (ka)^
12

pc(iiTTa ')

ka<<l:

ka>>l.
(A.1.13)

The above approximation when ka<<l can also be obtained by placing 

close together two simple sources of equal magnitude and opposite sign 

(e.gc (l8)).

A.1.3 The Quadrupole

A third well known type of acoustic source is the quadrupole, which 

can be represented by two dipoles; one orientated in the positive 

direction, the other pointing in the negative direction. Of course, 

this is equivalent to an ensemble of four simple sources with appro­

priate signs. When the distance between the simple sources is small 

compared with the wavelength (i.e. ka.<<l), the radiation resistance 

can be written as (l8)

_ fl



p _ pc(4^a ) (ka)
r^i 1, 215 (A.l,l4)

At higher frequencies (ka>>l), the pressure radiated from each 

individual source will not he disturbed by the radiation from the other 

sources. Hence, if the two dipoles which combine to make the quadru— 

pole are far enough apart, the total radiated power will be the sum of 

the power radiated from each dipole. Similarly, if the simple sources 

which make the two dipoles are widely separated, the total power will 

be the sum of that radiated from the four simple sources individually. 

The previous two sections are applicable for these cases.

A.1.4 Multipoles

The simplest example of a multipole source is the dipole which 

results from bringing close together two monopoles of opposite sign. 

Because of constructive and destructive interference, the dipole has a 

figure eight directivity pattern with sound intensity proportional to 
cos e. A multipole of order m is made up of 2™ simple sources. Thus, 

a dipole is a multipole of the first order.

A quadrupole is a second example of a simple multipole radiator.

The directivity pattern for this case has a four leaved rose shape with 

sound intensity proportional to cos(29). Since four simple sources are 

required, the quadrupole is said to be of the second order.

Expressions for the radiation resistances of monopoles, dipoles, 

and quadrupoles have been given in the three preceding sections, A 

general expression for the radiation resistance of a multipole is given 

by (l8) as pc(4ma^) (ka)~^
= (m+l)l.3.5 ...(2m+l) (A.1.15]
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A suiruiiary of the results of this Appendix is given in the following 

Table of radiation resistances. It is interesting to compare the 

radiation resistances of a pulsating and an oscillating sphere. For 

equal areas and velocities, a pulsating sphere vill radiate three times 

as much acoustic energy.

TABLE OF RADIATION RESISTANCES

TYPE OF SOURCE
Radiation Resistance

General Expression ka<<l ka>>l
Pulsating sphere 
(monopole).

Oscillating sphere 
(dipole)

Quadrupole

pc(^ra^)(ka)^
(ka)^ + 1.

pc (i|7ra^(ka)^

pc(^Tra^) (ka)^

3 [(ka)^ + It]
I Pc(4^a^)(ka)^

12

pc(ItTra^) (ka)^
1,215

pc(4ra )

pc(ItTra )
3

Multipole of order 
m

pc(IiTra^) (ka)^™ i 
(m-M)l.3.5- . • (2m+l)

Infinitely long,
I pulsating cylinder 
I (per unit length )

l6pc£
2K E

Pc(tt a£)(ka) pc(2ira£) !
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APPENDIX II

■ The'Hankel Function

The following properties and approximations are given hy Morse and 

Ingard (l8).

3H(kr) ^ 3H(kr) 3(kr) ^ 3H(kr)
3r 3(kr) ' 3r 3(kr) (A.2.1)

3r r=a

,ki ,E iy
e ° (A.2.2)

9r r=a
ly

ki E e ™ , m 0.ra (A.2.3)

Values of are tabulated in Reference (l8). Limiting values of 

amplitude and phase are given by the following:

For ka<<m + g ;

1+
TTka (A.2.4)

E ml ,2 m+1
m (vT) Trm

2 ka m (ml ),,2^2(^#-)2™\ m > 0. (A.2.5)

For ka>>m t g2 5

E - V'

E

Ti'ka ’
“1

m

Yo = ka, - ^ (A.2.6)

'-- yTrka m ka ~ — (m + g) m > 0. (A.2.7)

At the surface r = a, the Hankel function of order one can b«

written as
(ka) = J (ka) t iW^(ka) =

-lE e o (A.2.8)
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At large distance from the surface,

i[kr - ^ (2m + l)]
(A.2.9)

When ka << 1.5, the following expansion can he used for the case

k > K. o
. I^/ka) g

ah'(ka) = -1 + a _ ^(k^ - K^) [&^(Ca /k^- (A.2.10)

For k < K, the expansion is

E (ka)
aHj(ka)

-1 - a^(K^ - k^) &^(Ca - k^^ (A.2.11)

where C = O.89O5.
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