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ABSTRACT

Faculty of Engineering and Applied Science
Institute of Sound and Vibration Research

Doctor of Philosophy
Numerical Methods in Wave Propagation in Periodic Structures

by Jose J. de Espindola

This work describes a computer oriented study in wave propagation in
periodic structures,

A simple introduction is first proQided to review the concept of
propagation constant and to lay down the basic terminology and ideas
for subsequent development,

A general méfrix theory of free wave propagation in general Tinear
periodic structures is constructed. A general equation for the
propagation constant fs derived.

Stringer-stiffened plates and ring-stiffened cylinders undergoing
only axi-symmetric motion are analysed by using this general theory.

The effect of coupling between transvefse and torsional movement
of a support (stringer) is considered.

Numerical methods for the computation of the field transfer matrix
are analysed and modifications introduced, where appropriate, to increase
accuracy and speed up computation time.

Free wave propagation in stringer-stiffened cylindrical shells and
ring-stiffened cylinders undergoing general vibration motion is analysed
by using the general method. The frequency dependence of the propagation
constant is discussed, |

The concept of complex wave component is introduced and used in the

construction of a general matrix wave theory of the response of finite
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and infinjte periodic systems to concentrated harmonic forces. This
theory 1is applied to finite and infinite stringer-stiffened plates and
shells,

A general theory of the response of finite and infinite systems to
a convected harmonic pressure field is derived and applied to stringer-

stiffened plates and shells,
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NOTATION

General

[] square matrix

{1} column matrix

[ ]T transpose of a matrix

(17! inverse of a matrix

(1] row matrix

Q circular frequency

* complex non dimensional frequency
90* real non dimensional frequency

u complex propagation constant

uo real propagation constant

E conplex modulus of elasticity

Eo ~real modulus of elasticity

G complex modulus of shear rigidity
Go real modulus of shear rigidity

v Poisson's ratio

p mass density

[Al, [A], state matrices

[T(yz, y])] transfer matrix, period transfer matrix
[Te(ys 0)]  field transfer matrix

[P] point transfer matrix

{z(y)} state vector

XsYoZ spatial variables

[u],[ v] modal matrices of [A]

[ 2 ] diagonal matrix where »; are the eigenvalues of [A]

UsV,W displacements in the x, y and z direction, respectively



number of half waves along a support or number of waves along
the circumference of a cylinder

distance between supports of rings

distance between frames

a constant

thickness of plates and shells

torsional stiffness

stiffness coefficient in the v direction

coupling coefficient between v and w coordinates
coupling coefficient between v and & coordinates
pb]ar moment of inertia

warping constant

coefficients of the characteristic equation of [T]

{z(y)}, {x(y)} station vectors

ASP

[c1, [c],

aspect ratio

transformation matrix

[B], [B]r a square matrix transforming {x(y)}' into {x(y)}

K

> !

n
cv

R

A

A, A
Y

I

defined in 4.2.10
non dimensional coordinate
shell radius

area of a support (stringer, ring) section

A, CZ defined in fig. 6.7

s Iz, In; moment of inertia of a stringer

convection velocity



Chapter I

¥ quantity associated with a free harmonic wave
t time variable

{f(t)} input vector

Chapter 11
Cys Cp arbitrary constants

27585533 elements of a square matrix

N stringer loss factor

SR a constant

v non dimensional phase velocity

M imaginary part of the propagation constant
v group velocity

Chapter III

q generalised displacements
F generalised forces

tij element of the period transfer matrix

Chagter IV

Nys Mo elements of the state matrix for a plate element defined in 4.2.9

a constant

defined in 4.2.10

-~

C defined in 4.2.12

Cj coefficients defined in 4.3.1

ep principal argument of a complex numbar
I nolar moment of inertia



1 a principal moment of inertia defined in eq. (4.4.3)

A area of a ring section

tg j elements of the field transfer matrix

t? ; element of the reduced transfer matrix
3

Chapter v

[Pj] constituent idempotents of [A]

{x]}, {xz} column matrices defined in 5.3.1
c],..,c8 constants

A determinant

(0] defined in 5.3.4

{vj}’ {uj} columns of [V] and [U] respectively
djm defined in 5.4.2

Chapter VI

b, 5 elements of [B]

Ny N, defined in 4.2.9

defined in 6.2.8

3

a a constant defined in 6.2.8

{x} a state vector

€13 element of [C]r

dij element of [C]P'J

%Ags Oq3%) defined in 6.3.5

oy defined in 6.4.1

¢ angular coordinate (see fig. 4.1)

Fw’Fv’Fu’Fe external forces and moments acting on a ring
t:. element of the pariod transfer matrix

tg . element of the field transfer matrix



{SZ(QO*)} power spectral density of the response
Sp(Qo*) power spectral density of the excitalion
< > time average

o complex constants defined in 8.3.1

Chapter VIT

Cj coefficients defined in 7.2.1

{C}r column matrix of coefficients Cj

[F] square matrix defined in 7.2.2

o complex coefficients defined in 7.2.16
wm(y) complex wave component

f(x,y,t) exciting harmonic force

o defined in fig. 7.1

{f}r exciting vector

[z(v)] a square matrix defined in 7.3.4

Ik elements of [5(y)]
qj(y) gencralised displacement
S non dimensional coordinate

Chagter VIII

P(%,¥,t) harmonic pressure field

Por amplitude of the h;rmonic pressure field
k wave number

Cj arbitrary constants defined in 8.2.6

{c} column matrix of coefficients o

{cu} column matrix defined in 8.2.8

{x} square matrix defined in 8.2.8

{Z_} column vector definad in 8.2.12



CHAPTER 1

1.1 INTRODUCTION

A periodic system is one that consists of identical elements joined
together in an identical manner to form the whole system. It is possible
to find many such systems in engineering; a large hydroelectric power
station pipeline resting on stiffening rings placed at equal distance
from each other; a tall building having a uniform structure and identical
storeys; an ai}craft fuselage consisting of a cylindrical uniform shell
stiffened by identical frames and regularly spaced stringers. The modal
method of analysing the high frequency forced vibrations of such structures
bears inherent shortcomings that are difficult to overcome in practice
chiefly when the structure is made up of many periodic elements. For
instance, it is well known |6] that the natural frequencies of a periodic
structure fall into groups and that each group contain as many natural
frequencies as the number of periods of structure, When the number of
periods is Targe (as so often occurs) the natural frequencies are very
closely spaced and the modal method becomes complicated to apply to find
the response of the structure. Also in these cases the computer time and
storage required to find the natural frequencies and normal modes of the
structure are very large.

These difficulties may be bypassed by using a wave approach proposed
by Mead |9 |. No previous calculations of normal modes or natural
frequencies are required to compute the response of the structure to
external excitations. Also, no lengthy summation of modal contributions
to the response is needed. Damping adds no further complications to the
wave method as it does by coupling the normal modes. The wave approach
also provides a better insight to the dynamical behaviour of the structure

when it is to be excited by a convected acoustic pressure field or
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(for instance, stringer-stiffened shells) or when the supports have more
than one degree of freedom coupled together.

It is the purpose of this work to seek a method of wave solution
applicable to such complex structures, which, besides being fairly general,
requires only a reasonable amount of algebra and is quite adequate for
automatic computations.

It has been previously shown |28, |3]|, |4| that transfer matrices
can be a powerful tool in analysing periodic structures. It was felt
then that by coupling the ability of transfer matrices of handling
structures with complex supports with the wave framework of thinking it
would provide a good approach to the solution of dynamics problems
related to periodic structures.

In chapter II the basic ideas of the method are explained. Generality
at that stage was sacrificed in favour of simplicity and the results are
valid only for the particular case considered there (a flat plate resting
on supports with only one degree of freedom). The notions of propagation
constants and wave groups are also reviewed.

In chapter III the general basis of the method is established. This
is done with disregard for the particulars of the structure (other than
being spatially perfodic and Tinear). A general equation for the
propagation constant is derived,

In chapter IV the method is first checked by applying it to the free
wave propagation problem of systems with two terminal degrees of freedom.
Specifically, a flat plate periodically supported by stringers with two
degrees of freedom (rotation and transverse movements) is taken as an
example. The effect of coupling is also discussed, Another example, a
ring stiffened cylinder undergoing axi-symmetric vibrations, is also
considered,

In chapter V the problem of efficiently (in computing time and

~3 -



accuracy) computing the field transfer matrix for systems with more than
two terminal degrees of freedom is considered. Existing methods are
reviewed and compared and modifications are suggested, whenever possible,
~in order to speed up computations and increase accuracy.

In chapter VI two examples are considered (a stringer-stiffened
cylindrical shell and a ring-stiffened cylinder) with four terminal
degrees of freedom. The general theory established in chapter III is
used with three methods of computing the field transfer matrix. It was
found that all three methods give virtually the same numerical results
but they differ slightly in computing time efficiency.

The general problem of response of infinite and finite periodic
structures to concentrated loads is tackled in chapter VI. Again the
terminology established 1nvchapter III has proved adequate for a general
treatment of this problem. A theoretical background is first constructed
leading to the definition of the 'complex free wave components', The
complex free wave components are then used to compute the response of
finite and infinite periodic structures. The method is again checked
numerically by considering a stringer~stiffened flat plate and a stringer-
stiffened circular shell. The role of damping is also analysed in
connection with the response.

In chapter VIIT a general wave solution is given for the response of
infinite and finite periodic structures to a convected harmonic pressure
field, This solution is in fact a generalisation of that given by Mead
|37| for beams. Again the particulars of the structure (apart from being
periodic and linear) are bypassed. The method is checked in a stringer-
stiffened flat plate and in a stringer-stiffened shell. Frequency response

curves for these structures are presented and discussed.



1.2 TRANSFER MATRIX : THEORETICAL BACKGROUND
1.2,1 The State Equation

The basics of transfer matrices can be found in many texts dealing
with engineering structures and automatic controls (see, for instance,
|13] and |22|). However, for the sake of completeness and for easy
reference a brief account of the theory is provided in this section,

Consider a mathematical model M (i.e. a set of mathematical equations)
of a physical system S. The role of the mathematical model 1is to describe
some aspect of the behaviour of the real system. The constituent
equations of the mathematical model can be of various form such as algebraic,
differential, etc. For the purpose of this work only differential
equations need to be considered.

In control theory the concept of state of a physical system (as well
as of 6utput) is normally associated with a particular instant of time.
For instance, if a certain input is applied to the physical system at an
instant to the observed output (as well as the state of the system) at
the instant t will depend on the applied input and also on the initial
state of the system. Therefore the matﬁematica] model of a system
consists of two kinds of equation: those describing the state of the
system and those describing the output of the system.

This work will not, of course, be concerned with output equations but
only with state equations. For a physical system the state equation can

be written as
{z(t)} = g{{z(t)}, {f(t)}, t) . (1.2.7)

where{z(t)}is a column vector representing the state of the system at the

jnstant t and {f(t)} is an input vector, and {z{t)} is the time derivative

of {z(t)}.



If the system is Tlinear (1.2.1) can be written as
{z(t)} = [A(t)] {z(t)y + [B(t)] {f(t)} , oo (1.2,2)

where [A(t)] and [B(t)] are N x N and N x P matrices, respectively, and
{f(t)} is a P x 1 column vector,

Now, for the purpose of thi§ work the concept of state must be
adapted. Instead of referring to the state of the system at the time t
one shall be talking about the state of the system at a particular
‘station'. Initial state will mean the state at a reference station,
Therefore the time dimension will be substituted for a spatial dimension.

When this adaptation is made equation (1.2.2) can be read:

. ‘ .
z(y)} = [AW] 2y + B Fy)? c0(1.2.3)
L ' .
where {z(y)} 1is the spatial derivative of {z(y)}.
In many engineering structures matrices [A(y)]and [B(y)] do not

depend on y. In these cases the 'state equation' (1.2.3) can be written

as:

{z(y)}' = [A] {z(y)} + [B] {f(y)} o (1.2.4)
If no input is applied equation (19274) is further simplified:

)} = [A] z(y)} ..(1.2.5)

Both equations (1.2.4) and (1.2.5) will find their applications in the

course of this work.



102.2 The transfer matrix

By a transfer matrix [TQyz,yl)] it is understood to be a Tinear

operator that transforms the station vector {z(y,)} into {z(¥5,)}s In

mathematical notation:

1z(y,)1 = [TWosy1)] (2 )y

Or, for the particular case where y; = 0 and y, = y:

2z = [TW,0)] 2(0)}

Assuming a solution for (1.2.5) of the form {z(y)}

one can easily see that:
[T,0]] = el

It can also be shown that |27] :

A I
Ay - RN
that is:
[fw.0] = £ [Ajj y
= j=0 Je

..(1.2.6)

o (1.2.7)

= e[AJy (see Ref. 27)

..(1.2.8)

..(1.2.9)

o+ (12410)

From expression (1.2.8) some properties of the transfer matrix can be

easily derived:



[r.0] = [1]
(M1 +v2.00 = [Ty1,0)] [T(y2,0)] »+(122,11a,b,c)

[T(y-00" = [T(=y,0]]

Other properties of transfer matrices will be listed in Appendix A.
Another expression for the transfer matrix which will be derived in

chapter VII is given below:

To.o = [ 0] M | (1.2.12)

Where [U] is the modal matrix of [A] and Eij;] a diagonal matrix of
the eigenvalues of [A].

Expressions (1§2°10) and (1.2.12) will find their applications in
chapters V, VI, VII and VIII,



CHAPTER 11

Free wave propagation in systems with one terminal degree of freedom

2.1 GENERAL

The purpose of this chapter is to provide an introduction, in a
rather simple manner to the basic ideas that form the framework of the
methods to be developed in this work, aimed to formulate and solve
problems in wave propagations in spatially periodic structures. To this
end a thin flat plate, resting on equally spaced flexible supports (or
stringers) in one direction and simply supported along an orthogonal
direction, is taken as a concrete example. The flexible supports are,
for the time being considered infinitely stiff in the transverse
direction but can rotate and, consequently, apply both elastic and
inertial moments on the plate. The consideration of periodic supports
with infinite transverse stiffness might eventually bring severe errors
if coupling between transverse and rotational movements of the supports
is considerable. But this model is very convenient for the purpose of
this chapter due té its inherent simplicity. '

For subsequent chapters the ideas introduced here will be extended
and a general formulation of the problem of free wave propagation in
periodic structures will be presented. In this formulation the
pecu1iarities of the structure (other than being periodic and Tinear) are
by-passed. Restrictions such as that of infinite transverse stiffness,

applied to the present model, shall no longer be necessary.

2.2 THE FIELD TRANSFER MATRIX

The sequence of steps toward establishing the basic concepts of this
introductory theory will lead to an equation that relates the propagation
constant to the frequency.

Consider the model depicted in fig. 2.1 where a uniform flat plate

rests on torsionally elastic supports periodically located 2 units of

-0-



length apart and on two other simple supports, orthogonal to the former
ones, b being the distance between them. It shall be assumed also that
the contact between plate and supports occurs along a line. This is a
reasonable assumption since the common area between plate and support is
small compared with the area of the bay.

In spite of its simplicity this model can realistically represent an
aircraft fusilage structure as it has been shown by Lin |1]| and

Clarkson |2].

The simple supports then represent the frames action. The frames
have usually very high transverse and torsional stiffness so that they
behave as rigid boundaries and panels adjacent across the frames move
almost independent?y.A Lven so, the hypothesis of simple supports
representing frames works, provided the distance between the frames is,
say, two and a half times, or greater, the distance between supports
(stringers). There is however considerable correlation across the
stringers. So, even if the purpose of this chapter is only to bring
about ideas that are to be generalized in order to make the theory suitable
for more advanced models, the expressions to be obtained are, nevertheless,
of value in practice.

Consider now the differential equation of motion of a Tinear damped

flat plate referred to the system of coordinates of fig. 2.1

4 4 L 2 :
2M oy BN AW he 37w L (2.1.1)
axt ax29y? ay't D at?

where w, deflection
h, thickness of the plate,
p, mass density,

D = De(] + in), complex flexural stiffness,

-10-



where
Do, flexural stiffness, and
n, loss factor.
If the structure is vibrating harmonically with a frequency 2, the

general solution of equation (2.1.1) can be written as

©0

_ .orTX int

wix,y,t) = L wr(y), sin 5= @ ..(2.1.2)
r=1

where 1 is the complex unit.

If such solution is introduced into equation (2.1.1) and the
expression emt eliminated the result is an ordinary linear homogeneous

differential equation of fourth order:

WV (y) - 2t M) (e 9—89*2«) w.(y) =0 ..(2.1.20)

where ¢ = %ﬂ.

The associated characteristic equation is:

2
W22 4 (g4 - 20 =0 . (2.1.3)

Equation (2.1.3) has solutions as follows:

A1, "R, 1.}\2’"' io , where

VIR SR m}% | L (2.1.8)

-
x2=—}£ {sz*~ (%ﬁ-?}z , and

ASP = b/%, aspect ratio, and
2 Y2
Qr = Rﬁﬁﬁﬁm} complex nondimensional frequency.

The solution of equation (2.1.2) is therefore a Tinear combination

of four functions of the type N, Making use of the simple support

...’!1..



boundary conditions at the frames, it is possible to express two of the
arbitrary constants of the linear combination as functions of the other
two. Only two arbitrary constants remain.

In the present development, solutions of the form of the expression

(2.1.5) will be assumed:

W.(y) = Cy(sinhag b osin oy = sty sinf A1)

+ Cégsinh Ape sin a, (2 - y) - sin e sinh Ay (2 - y)jX ..(2.1.5)

Functions (2.1.5) clearly satisfy the condition of zero deflections at

the stringers.

Assume now the following expression for the bending moment

My) = £ M. (y) sin rox o iot
r 2
r=1
BZWr(y) ]
where M_(y) = =D |————— = vz2w _(¥) ..(2.1.6 a,b)
r ayz r

From (2.1.5) and (2.1.6) the following expressions can be written:
Wr'(O) = Cl(XZ sin hlli A sin Kzi) + CZ(Al Sinbkzl Ccos hklg

~ Ap Sin hr;a €OS Ayt) ..{(2.1.7 a,b)

M.(0) = D.Co. (2,2 Sin haje sin a8 + 212 sin a2 sin hage)

The above expressions can be conveniently written in matrix form:
e | — 1 4
W, (Oﬂ ay ay Cy
> = ﬁ .. (2.1.8)
Mr(O) 0 a3 C2

L / L 4t

172



and the elements of the 2 x 2 square matrix are:

a; = Ao sin hkl,@ - A sin Ao f

@ = A1 SIN A8 €OS haye = A, sin hajg cos a,g

1

a, D sin xye sin hajn (332 + 2,2)

Similar expressions can be written for the slope and displacement at the

right end of the bay:

- N -
wr‘(z) ~a, -8 Cy
\ (= Iy . (2.1.9)
M.(2) as 0 C,

~ -~ ~ ~

o ‘
Isolating the vector {Cz} from expression (2.1.8) by inverting the

square matrix and taking this vector into expression (2.1.9) the result

is:
' l “ r az ' a22 al ( ~
2 - e s s !
Wy (*) a; (a1a3 a3) Y (0)
) S ) .. (2.1.9)
as as
M.(2) I T a M (o)
AN Ve . -J N )

The square matrix appearing in the above expression acts as an operator

such that, when applied to the vector

W) w ' (2)
{M:(o):} it gives {M:(z)}’

It is in essence a transfer matrix. One can easily see that the

determinant of this matrix is one. This happens in accordance with one
of the properties of transfer matrices listed in appendix A.

In short, the expression (2.1.9) can be written as:



wr‘(z) wr‘(O)
W - E‘F(z,oﬂ T ¥ .(2.1.9 a)
LMr(sL) M.(0)

where [%F(Q,O}] is the field transfer matrix and is able tq 'transfer'
quantities from coordinate 0 to coordinate 2 along the field. Vectors

such as those appearing in equa.(2.1.9) are called station vectors, or

state vectors.

2.3 THE POINT TRANSFER MATRIX

in order to apply the basic principle of free wave propagation to a
spatially periodic structure an overall transfer matrix must be found
that can 'transfer' quantities through a whole period of the structure.
Whatever the way a period is considered it must contain a support.

So, an operator has to be found such that when applied to the station
vector on the left Qf a support the station vector on the right of the
same support is obtained. This operator is the point transfer matrix.

The supports under consideration in the present chapter have only
one degree of freedom, that is, rotation and the point transfer matrix
can be derived By applying the cempatibility conditions and by knowing

that the jump in moment is proportional to the slope:

(2.3.1)

m R - MrL

P (2) = K wr' (2)

In the above expression R and L stand for right and left, respectively.

In matrix form expression (2.3.1) gives:






2z 294
a = DO/SZ,L*h and Q* = Q..h@....&._
0 0 D0

In expression (2.3.3) it has been implicitly assumed that both skin and

stringer have the same mass density.

2.4 THE EQUATION FOR THE PROPAGATION CONSTANT
Expressions (2.3.2) together with (2.1.9) can be joined in one

single expression:

( Y- B a a,? a (
R 2 2 1 :
! - a—— [ Je—
Wy () a; aja;  a, Yy (0)
a, a a2 a a
2 % 2 1 2
M.(£) Kty KGETo) o [M(o)
LT ) i 6a; a; prajay a, | al_~ LT
.. (2.4.7)

The square matrix in expression (2.4.1) is the overall transfer matrix
necessary to the derivation of the equation for the propagation constant

and is obtained as a product of the point and field transfer matrices:

1] = [P [rpe0)] (2.4 a)

Since both point and field transfer matrices have unitary determinant
the determinant of the overall transfer matrix is also one.
Now, the application of the basic principle of free wave propagation

in spatially periodic structures leads to the following expressions:

w'(2)] W' (0) |
/ - e"iuﬁ b | ..(2.4.2)
\Mr(ﬁ‘) MY‘(O)J

N

[ﬁo]"e"i”[lﬂ Wr!ml - {o} . (2.4.3)



Expression (2.4.3) is in fact an tZ X 2‘ eigenvalue problem showing
that the eigenvalues of the period transfer matrix are e'iu. If some
damping is present either in the plate or in the supports or in both the
period transfer matrix is complex and, accordingly, the propagation
constants are complex. When no damping is present the propagation constant
might be real or purely imaginary. Only those frequencies for which the
propagation constants are real correspond to actually propagating waves.

The characteristic equation associated with the eigenvalue problem
(2.4.3) or, in.other words, the characteristic equation of the period

transfer matrix [T] can easily be seen to be:

52 - 372 a .
e 1ou iK 2 L. z-aﬁ} ey = 0 . (2.4.4)
1

It is worthwhile looking at equation (2.4.4) and noting that if y is a
solution then -y is also a solution. This is in accordance with the
physical fact that if the structure allows a wave to propagate, say, to
the right, another wave with the same phase velocity should be able to
propagate to the Teft. This fact can also Tead to the conclusion that
equation (2.4.4) is equivalent to the following:

2 .
Ko, @2 a2 ar

= 0 () . Z
cos y = 3 ( a1, ) a7 ..(2.4.5)

The above expression is the equation for the propagation constant.

Mead |5| has obtained an equation for the propagation constant for a
beam on periodic massless torsional supports using receptance functions.
The similarity in the form of his equation and that of (2.4.5) is expected.

The case of a beam can be considered by taking A; = a, = A SO that:

a; = a sin hxg = a sin ag
a, = A sin ag cos hag - x sin hag cos ag ..(2.4.6)
ag = D sin ag sin hag 202
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Miles |6] in an early paper has produced a formula applicable to a beam
on simple periodic supports and this formula was derived by making use of
difference equations. Miles's formula can be reproduced here by making

Kq equal to zero and substituting (2.4.6) into (2.4.5):

i [ - 51 3
cos 1 = sin hA2 cos A% - sin A% coS hx .. (2.4.7)
sin hag - sin A2

In expressions (2;406) and (2.4.7) » is given by:

1 2 b2
o= 4 (Q* )2 and 9% = pQDQ

3

Another convenient form of the equation for the propagation constant that

is very convenient in analysis is expressed by equation (2.4.8):

f@*,, v,) =0 ..(2.4.8)

In this equation_ﬂo is considered an independent variable and Q*O an
impTicit function of .

The values Of‘po in equation (2.4.8) are restricted to those that
make the nondimensional frequency real.

For damped systems the propagation constant must be complex but for
non-damped systems there are real values of u satisfying (2.4.8).

In this work equation (2.4.8) is used in connection with non-damped
systems only and it will prove to be interesting both in computations and
in the understanding of the phenomenon of free wave propagation in periodic
structures. When some damping is present one shall resort to equations

of (2.4.4) type.

2.5 PRESENTATION OF NUMERICAL RESULTS; DISCUSSION OF EQUATIONS (2.4.7)
AND (2.4.8)

Equations (2.4.7) and (2.4.8) can provide a basis for a discussion
from which the fundamentals of the nature of free wave propagation in

spatially periodic structures can spring up. Brillouin | 7] has first
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analysed the phenomenon through discrete spring mass models related to
crystals and transmission Tines and Mead |5] has thrown further 1ight
into it by considering a continuous beam resting on simple periodic
supports with massless spring-like torsional restraints. The present
discussion rests heavily on these previous works and is introduced here
for the sake of completeness and uniformity of wording.

Consider first equation (2.4.7) in connection with a non-damped beam
on simple periodic supports.

The righfnhand side of equation (2.4.7) is obviously real for any
value of the frequency. Those frequencies for which its modulus is equal
or smaller than one correspond to real values of the propagation constant.

One could call these allowed frequencies, or propagating frequencies. If

energy is fed into any point of the structure in one of these frequencies
it will propagate in both directions. If the modulus of the right-hand
side of (2.4.7) is greater than one the propagation constant is no longer
real.

It can either be a pure imaginary number or a complex one, the real

part being 0 or 5 and the imaginary part given by:

1
2

wy =T Tog |cos y + (cos?y - 1) ..(2.5.1)

One could then talk of a decaying wave and the corresponding frequencies

could be called attenuating freguencies.

Fig. (2.2) is a plot of equation (2.4.7) in which the nondimensional
frequency Q*O is in the abcissas axis and cos yu, ih the ordinate axis.

This figure shows portions of the curve inbetween the + 1 Tines, these
portions meaning bands of propagating frequencies. Also in the graph are
shown portions where the curve lies outside the two Timiting Tines and
these represent bands of attenuating frequencies. The figure shows the

first three propagaticn bands numbered 1, 2 and 3, and two attenuation



bands. Therefore a beam on simple periodic supports behaves in a band-
pass filter manner and it will be shown in forthcoming chapters that this
is, in fact, a common feature of much more complex types of periodical

structures. It is worth noting that the crossing points A, B, C, D, E
3 .

and F correspond to nondimensional frequencies values of 52, (?ﬂ)2, (27)2,
21)2, (37)2, (%ﬂJZ and (47)2, respectively. In short, the nth pass band

starts at the nondimensional frequency (ny)2 and finishes at I(Zn + 1)ﬁ/212
These results have first been found by Miles |6]. The previous analysis
could also be made by Tooking at figure (2.3). This is a very interesting
kind of graph for the analysis of free wave propagation in periodical
structures that will be used throughout this work and is better explained

in connection with equation (2.4.8). One can see (for instance, by looking
at egn. 2.4.7) that the frequency is a symmetric function of the propagation
constant, This is a general statement applicable to any periodic structure,
whatever its degree of complexity. Furthermore, the frequency is a periodic
function of the propagation constant, its period being 2r.

These two properties are the basis for the construction of the curves
of fig. (2.3) which, for brevity of reference, will be called, from now on,
Hoo Q*O curves.

Symmetry and periodicity properties make it sufficient to draw the
curves for half a period only, say, from 0 to n. But one could imagine
the graph extending indefinitely to both right and left.

In Fig. (2.3) the first three propagation bands are indicated by
numbers 1, 2 and 3. ‘

It is appropriate at this point to define a nondimensional phase

velocity:
Q'k
vio= 2 ..(2.5.2)
Ho

It is obvious that the phase velocity is dependent on the frequency, that
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is, a beam on simple periodic supports, and indeed any periodic structure,
is a dispersive medium. As such, only waves that are spatially sinusoidal
do not djistort as they propagate through the structure. On the other hand,
short pulses and short signals always distort as they travel along the
structure,

If one thinks of a point harmonically varying force applied to one
of the bays of an infinite periodic structure it is easy to understand
that the distribution of deflections along the strucfure does not follow
a sinusoidal pattern,

It is particularly easy to visualise this fact by thinking of a
static force, i.e. a point harmonic force with zero frequency. The same
applies even if the frequency is a propagating one, in which case one
could think of a Fourier decomposition of the spatially distributed
deflections. To each one of these components there corresponds a
pro%agation constant and, consequenf]y, a phase velocity. In fact one can
realise by looking at expressions (2.4.2), or (2.4.5), that if Mo is the
propagation constant corresponding to the frequency Q*O, then o * J2u,
j=+1,+2 ..., is also a propagation constant corresponding to Q*o.
Briefly: the spatially distributea deflectijons can be decomposed in

spatially sinusoidal Fourier components with propagation constants

g ¥ j2w and nondimensional phase velocities:

¥ L=, 22, el ..(2.5.2 a)

* = B . ¥
VJ o 57y )

If fig. (2.%) is imagined extended to both right and left and if a line
parallel to theuo~axis is drawn through Q*O (impressed nondimensional
frequency of the harmonic point force), this parallel line will cut one

of the p - Q*O curves (if the frequency is propagating) at infinite points,
each of them corresponding to one of the propagation constants My j2m,

j=+1,+2.., that is, corresponding to one of the spatially sinusoidal

components, The nondimensional phase velocities will be the qudfﬁent of
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the impressed nondimensional frequency over these component propagation
constants.

The so called nondimensional group velocity is given by

dg*o
V* = ‘du . ..(2.5.3)
0

When the system shows no dissipation, the group velocity gives the speed
of the travelling energy. But if the structure dissipates energy the
group velocity becomes less meaningful, physically sbeaking. Now, if
0 gy, g n the slopes at the points ne * 27y 3 =0, +1,+2 .., are all

-

equal, that is, the group velocity is unique and can be computed by taking

any of the sinusoidal wave components.

This meéns that the set of sinusoidal wave components form, in fact,
a group. Similarly, from the point of application of the harmonic force
another group of waves is sent to the left (negative direction). It is
worth noting that if u, 1s equal to zero or r the slope is zero for any
of the values vy * 2%, 3 =0, 1, 2 ... This means that the group velocity
is zero and no net transfer of energy along the structure does occur. Each
bay can be considered as isolated with the extremes either clamped or
simply supported and vibrating in one of its fundamental modes. In fig.
(2.2) the letter C stands for 'clamped', S, for 'simply supported' and

the subscript refers to the particular band or mode.

The conditions of ‘clamped' or 'simply supported' ends of a bay for
Ho equals o or ¢ does not necessarily hold for more comp1icafed periodic
supports (for instance, supports with more than one degree of freedom).
But for any perjodic structure (no matter how sophisticated) and what sort
of periodic supports it has) the po - Q*O curves must be horizontal (that
is, have zero slope) at Hg = 0 and « corresponding to zero group velocity.
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The concepts of groups of waves and group velocity have only been
touched here because it was felt convenient in the discussion of the
Ho ™ Q*O curves. No attempt wa%kmade or will be made to elaborate on
this subject. A good account of the theory can be found in |7| and a
study in depth in |8].

Another kind of graph that shall be used in this work is shown in
fig. (2.4), as yet, for a beam on simple supports . This graph incorporates
both real and imaginary parts of the propagation coﬁstant and are computed
in connection with equations of the (2.4.5) type.

Both damped and nondamped systems can be represented in this form of
graph. However, the Timits of the passing bands (points Srl and Crl) are
easier to compute (and indeed with better accuracy) thrbugh the method
related to the ﬁo - Q*O curves. Graphs of the type showﬁ in fig. (2.4)
have been used to a great extent by Mead 5], [11], [12], Mead and Wilby
[9], and Sen Gupta [10]|. In this present work they will be referred to
assz*o -§ curves.

Actual computations for plates are not shown in this chapter, although
expression (2.4.5) has been derived for a plate. They will appear in
chapter IV and it will be shown fhat the case considered here is just a

particular case of a more general one and can be conveniently treated as

such, as far as computations are concerned.
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CHAPTER III

A general theory of free wave propagation in Periodic Structures

3.1 GENERAL
In chapter II the basic ideas of a matrix method applicable to the

free wave propagation phenomenon in spatially periodic structures was
introduced. A specific example was necessary to support the ideas and

the resultant equations were restricted to that particular structure. If
another example of structure is to be taken the whole derivation must be
repeated all over again. To this inconvenience it must be added that the
derivation is likely to become cumbersome, if not practically impossible
to handle, as the consequence of only moderate further complexities
appearing in the structure. These shortcomings make the method described
in chapter II unsuitable when, for instance, additional degrees of freedom
are introduced to the supports and coupling effects are considerable. The
same applies to complex strugtures such as stringer-stiffened cylindrical
shells and ring-stiffened cylinders. But the method developed in the
previous chapter can easily be generalised and made applicable to such
structures. Transfer matrices have been applied to both free and forced
vibrations of stiffened beams, plates and shells [3], |4], [13], |14],
[15], [16]. Its ability to handle several degrees of freedom and the fact
that one can obtain a period transfer matrix representative of the whole
periodic structure (supposed infinite) suggest its application to more
advanced problems in wave propagation. One could argue that the same
applies to the stiffness matrix. This is no doubt true and, in fact, the
‘transfer matrix can be obtained from the stiffness matrix, and vice-versa
|13]. But, as a general rule, the direct derivation of the period stiff-
ness matrix is far more difficult than the period transfer matrix.
Furthermore, general methods for the numerical construction of transfer

matrices can conveniently be applied to complex structures, thus avoiding
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strenuous qlgebric manipulations. Some of these methods are to be
explored in this work in connection with the wave propagation problem.
Besides this numerical advantage, transfer matrices are quite adequate
for the theoretical analysis of both free and forced wave propagation

.

problems, as it is to be seen in subsequent chapters.

3.2 THE NATURE OF PROPAGATION CONSTANTS : GENERAL FORMULATION OF THE
FREE WAVE PROPAGATION PROBLEM S

Consider a spatially periodic linear system. Further peculiarities
of the system (apart from being periodical and Tinear) are immaterial.
Such a system can be considered as a chain of idéntica1 b1ack‘boxes
(periods) linked and interacting together. Fig. (3.1) shows one of such
periods with the 1nteract1§ns resultant at its ends. The interaction

resultants are to be referred to as terminal generalised forces. Also

shown in the figure are the terminal generalised displacements.

The terms generalised forces and generalised displacements are given
here the same usual meaning encountered in the study of Lagrange's
equations of classical dynamics.

The number of terminal generalised displacements (forces) equals the
number of terminal degrees of freedom.

In addition to the terminal generalised displacements and forces,
the system might also exhibit a finite (N) or infinite number of non-

terminal generalised displacements. External generalised forces applied

by the surrounding environment can also be present but they should not be
considered in so far as only free waves are toncerned. As a concrete
example, the structure of fig. (2.1) has one terminal degree of freedom
(rotation) and infinite nonterminal degrees of freedom.

The massless beam with three point masses of fig. (3.2), periodically

restrained by longitudinal and tortional massless springs has two terminal
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degrees of freedom and three nonterminal degrees of freedom.

The system represented by fig. (3.1) is assumed to have n degrees of
freedom and the letters L and R stand for left and right of the period,
respectively. The terminal quantities (generalised forces and displace-
ments) on the Teft and right of a pefiod are re]atéd by a period transfer

to
matrix [T} according»éxpression (3.2.1):

dGRER e

The period transfer matrix appearing in expression (3.2.1) is of order

2n x 2n and is an operator that can 'transfer' a station vector from the
Teft to the right of a period.

The basic principle of free wave propagation in spatially periodic
structures states that if a wave is propagating along the system then the
station vector in eq. (3.2.1) must be the same, apart from a change in

phase. In mathematical form:

{;_i}R - {;L} "o i | .. (3.2.2)

Equations (3.2.7) and (3.2.2) can be summarised in eq. (3.2.3) bel ow,

where the references R or L have been dropped:

[m wﬁ“[ﬂ {%} - {O} | .. (3.2.3)

Expressfon (3.2.3) represents an eigenvalue problem of order 2n x 2n, the
eigenvalues being e” ™. So, a system with n terminal degrees of freedom
has 2n propagation constants for each frequency, no matter how many non-
terminal degrees of freedom it has. If the system is nondamped some of
the propagation constants might be real, some imaginary or compiex. One

or more real propagation constants means that enerqy can freely propagate,
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that is, the frequency is propagating. The other propagation constants
(imaginary or complex) can be thought as representing exponentially

decaying waves along the system,

3.3 THE EQUATION FOR THE PROPAGATION CONSTANT
If the system of equation (3.2.3) is to have non-trivial solutions

the determinant of its matrix must be zero, that is:.

B - e [

This 1is the equation for the propagation constant, although in a form

I
Lo

.. (3.3.1)

that is not quite convenient for computations. A first step in trans-
forming (3.3.1) to a more suitable form is to expand it according to eq.

(3.3.2):

2n

2n-1
A7 = (par

+ P.z%zn'z toaee F Py h pzn) = 0 ..(3.3.2)

where A = e ¥, the eigenvalue of (3.3.1).
Now, this equation can be brought to a far more convenient form
(from the computational point of view) by looking at the properties of a

transfer matrix listed in appendix A, It can be seen that:

P, = =1 (the determinant of the overall transfer matrix
n .
s one) .. (3.3.3)

pj = pzn-j s J o= ]aﬁ

The above expressions show that only the n first pj's coefficients are
necessary to be computed., This fact brings considerable simplifications
for systems with up to two terminal degrees of freedom and is also an
important fact in cutting down computations and round-off ervors in systems
with higher numbers of terminal degrees of freedom.

The symmetry of the coefficients of eq. (3.3.2), as expressed by
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properties (3.3.3), means that if w is one of jts solutions, then -u is
also a solution.

This property, obvious from the physical point of view, comes out
mathematically in a very simple way indeed, thanks to relations (3.3.3).
This property can also be used to reduce the order of the eq. (3.3.2) by
half, as will be shown in the next section. So far eq. (3.3.2) has been
looked upon as a polynomial in A, that is, in e Mand it was said that,
at any frequency, 2n propagation constants are to be found if the system
has n terminal degrees of freedom. The number of nonterminal degrees of
freedom can be finite (N) or infinite. Now, this equation can also be
thought as written in the form (2.4.8) where Ho is considered an
independent variable and Q*O’an implicit function. Thinking in this way
one reaches the conclusion that eq.(3.3.2) is a polynomial of order N
(the number ofl terminal degrees of freedom) in o*. So, for any value
of o (say, between 0 and w) there correspond N real values of Q*O. If
one thinks now of an u_ - Q*O graph of (3.3.2) (thought as written in the

0
(2.4.8) form) this will show N o "~ Q*O curves, that is, N bands of
propagation. If N is infinite, one shall no longer have a polynomial, but
a transcendental equation in Qg. ‘The number of propagation bands fis,
accordingly, infinite. In practice only the lower propagation bands (say

the first and second) are important and worth being computed.

3.4 PARTICULAR CASES OF EQ.(3.3.2)

3.4,1 Systems with one terminal degree of freedom (n = 1)

For n =1 eq. (3.3.2) becomes;

-2 -
Ttz L i

The real and imaginary part of the left hand side of the above equation

must be zero, that is
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cos 2y~ pycos u+ 1 =0

sin 2y -~ py sin y= O

It is easy to show that the above t@o equations are equivalent to a single

one, equation (3.4.1):
2 cos u- p; = 0 ..(3.4.1)

Where p; is the trace of the corresponding period transfer matrix. If one
thinks of the structure dealt with in chapter II where the stringers had
infinite transverse stiffness, then equations (2.4.5) and (3.4.1) and
equivalent. But eq. (3.4.1) is in fact much more general since it applies
to any linear spatially periodical system with only one terminal degree of
freedom. For instance, one could think of the structure of chapter II but
with the stringérs free to move but prevented from rotating transversely.
This case was studied by Sen Gupta [19] in a lengthy analysis following
a rather different approach. Later in appendix B it will be shown that
once the period transfer matrix of a system (in its most general form) is
known, the perjod transfer matrix of any other system derived from it by
imposing restraints (singularities) at the terminals can be obtained in

an automatic manner, rather convenienﬂg?or numerical computations.
Particular cases 1ike the one just quoted can be handled without any

further work of analysis or complexities.

3.4,2 Systems with two terminal degrees of freedom

If the steps shown in (3.4.1) are repeated for n = 2 one ends up with
the following equation:
2 cos 2u = 2p; cOS p ~py, = O ..{3.4.2)

3

The coefficients p; and p, in eq. (3.4,Z2) can be easily found by applying

Leverrier's method with Faddeev's modification (see appendix C) |17, |18].
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According to this procedure p, is half the trace of the matrix
[1] ([1] - py [1) ). The value of p, is, as always, the trace of [T].

In mathematical form:
4

X

Pt .. (3.4.3)

l{
2 .
J

where the t's are elements of the period transfer matrix {T].

’+ B
C G Bty T Pltjj)}

1

P2

o~ F

So, for any nondamped periodic system with two terminal degrees of
freedom expression (3.4.2) can be interpreted as an equation in which
is a given real parameter (uo) and g is an unknown.

A number of propagation bands can then be found equal to the number
of nonterminal degrees of freedom (which can be finite or infinite).

Equation (3.4.2) can also be written in the following form:
4 cos 2y -~ 2pp cospu =2 -p, = 0 . (3.4.4)

In this equation the nondimensional frequency should be considered as a
parameter and u as an unknown. It is worth noting that eq.(3.4.4) is a
polyromial of order two in cos u. Therefore, instead of working with a
polynomial equation of order four in A = e_iu property (3.3.3) made it
possible to reduce thié order by half. Equation (3.4.2) has been used in

this work in the computation of Hg ™ o* curves for nondamped stringer-

0
stiffened plates and ring stiffened cylinders, in the case of axisymmetric
wave propagation., On the other hand, equation (3.4.4) has been used in

the computation ofsz*o - u curves for both structures, with and without

damping.



3.4.3 Systems with n terminal degrees of freedom

It is now very easy to extend the results of subsections 3.3.1 and

3.3.2. A general equation of the (3.4.2) type can be written:

2 cos ny - 2p; cos (n = 1w~ 2pyeos (n - 2) - .. 2p,.q €OSy - p =0
.. (3.4.5)
Again here it is more convenient to regard eq. (3.4.5) as being of the
(2.4.8) type, u being an independent real parameter (“o) and g an
unknown.

It is always possible to write a polynomial equation in cos  of
order n which is more appropriate for the computation of Q*O = u curves.
Two important cases should be noted here for they are related to

stringer-stiffened shells and ring-stiffened cylinders:

n = 3;:

8 cos 3y - 4Py cos 2y ~ (6 + 2p,) cos y + 2p; - p3 =0 ..(3.4.6)

16 cos *u - 8p; cos 3y - (4p, + 16) cos 2y - (2py - 6py) cos y +

2 + 2p,+p, = 0 ..(3.4.7)

It is worth noting that. the coefficients pj are complex when damping is

present,

For n equals or greater than three the pj coefficients are conveniently
found numerically, using a routine based on Leverrier's method with the
Fadeev's modification. Of course only half of the coefficients of the
period transfer matrix need to be computed, after which the routine should
return. This means a considerable saving in numerical computations and, to

a certain extent, an increased accuracy. Indeed, 1f only the first n
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coefficients are required the routine needs to perform approximately

(n = 2)(2n)3 + (2n)2 multiplications while .(2n ~ 2)(2n)3 + (2n)2
multiplications are necessary to compute 2n coefficients. Altogether
n(2n)3 multiplications are saved. For instance, an economy of‘éﬁ%% is
achieved when n = 4 and /2% when n = 3. The increased accuracy is due
to the fact that the process of computing the pj's, being recurrent,
accumulates round-off errors and, consequently, the sooner it is
interrupted the better. In fact it is a broad way of speaking. For
rather small matrices such as those encountered in this work the accuracy
of computing all the 2n coefficients in the usual way (that is without
considering property (3.3.3)) would be good anyway. But the fact still
remains that there is a great saving in computation time and the need to
caTéu1ate only half the number of the coefficients of the characteristic
equation of the perjod transfer matrix should be regarded as of important

practical value,
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CHAPTER IV

Free wave propagation in systems with two terminal degrees of freedom

4,1 GENERAL

In chapter 11l a general formulation of the problem of free wave
propagation in spatially periodic structures was made. A basic step in
the solution of this problem is to obtain the period transfer matrix and
then the eguation for the propagation constant.

The period transfer matrix is generally made up of two factors: the
field and the point transfer matrix. In fact, it is not an easy task to
obtain the field transfer matrix analytically if its order is, say,
greater than four. In these cases convenient numerical procedures must
be used. This matter will be dealt with in chapter V.

In the present chapter two c1asse§ of structureé will be considered
as the first applications of the general theory.

The first class consists of thin flat plates (or skins) periodically
supported and the second, of cylinders periodically stiffened by rings.
The flat plates are considered to be thin and resting along one direction
on two parallel simple supports (distant b units of length from each other)
and, orthogonally to this direction, on an infinite number of elastic
supports (both rotation and vertical translation allowed), distant g
apart.

Fig. (2.1) is a sketch of such a structure, the only difference
between this and that dealt with in chapter II 1is that two terminal
degrees of freedom are now considered. This makes the plate structure
models analysed in this chapter more representative of a real aircraft
fuselage, chiefly when coupling between torsional and transverse
displacement is strong, or (and) the transverse stiffness is not
sufficiently great if compared toc the torsional stiffness. The expression
'sufficiently great' will be understood when the numerical results are

discussed.
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4.2 THE STATE TRANSFER MATRIX [A]
The state transfer matrix [A] is the basic element for the computa-
tion of the field transfer matrix. It appears in the state equation for

the system

and it is real for undamped systems and complex if some damping is present.
In this section the state matrix [A] is first derived for a flat

plate element and then for the cylinder undergoing axi-symmetric vibrations.

4.2.1 The state matrix [A] for a flat plate element

i
i
s

Select the vector L%%(y)ﬁ v (YY) w ) WA"‘(yzj T as a station

r

vector and then resolve the equation (2.1.2) for wr* (y):

Moo (y) o= 2ew T y) - (e - By w(y) L (4.2.1)

1

It is convenient to remember that equation (4.2.1) is valid for the
assumed solution in expression (2.1.2).

Now, looking at equation (4.2.1) it is easy to write:
!

| - 1 . (4.2.2)




f‘vh 5 ’I e 7
where by = ~(gh - -] = o 2 )
T iJ L "J
Q, ¥
In condensed form the above expressicn can be written:
3
! — B v f b 5 \
X )1 = [B] . x ()} L (4.2.3)

One could, of course, define a transfer matrix relating the station
vector {xr(y)}~at two points of the field (say y, and y,). But the basic

3

principle of free wave propagation calls

for relations between generalised

forces and displacements (see, for instance expression (3.2.2))so that a

way of transforming vector {x (/)} into another vector {Zr(Y)} defined in

pra’
or
D]

terms of these quantities ought to be found. The vector {zr(y)} ca

conveniently defined as

{zr(y)} L. EJ )y W “y), V

and one shall seek a field transfer matrix relating this vector at two
points.
The relation betwzen {xr(y)} and {zr(y)} can be found by first taking

" the relations

wly) o= y)
w ') = v '(y)
r r (4.2.4)
Mr(y) = - Jwr“(y) + Dz wr(y)
Voly)y = = Da PUy) 4+ D(2 - ) v ()

¢ - - (' N
W, (y) 1 0 0 0 wr(Y)
w () 0 ] 0 0 W 'y
P o ) . (4.2.5)
Mr(y) Dve? 0 =D 0 vt (y)
V {y) 0 Dg?(2-v) 0 D W P y)
L ..J N /
~N 7



or, in condensed form:

o Lo gt .
Viy) = 2V (y) sin—~= e” L (4.2.7)
for shear and, of course, applying the usual expressions for bending
moment and shearing forces per unit Tength of the ordinary theory of
thin elastic plates.
The matrix [C] provides the means to transform the station vector

{xr(y)}into {zr(y)}a It shall be called transformation matrix from now

on. The state matrix [ﬁjr can now easily be shown to be

f -1 =]
(Al = [, [8]. [c], .. (4.2.8)
where
B 0 0 0 |
0 1 0 0
-3
1. = h :
\)Z;é O '"-"D* 0
0 () 0 -4
ot b |

Carrying out the product indicated in (4.2.8) the matrix [A] is found in

its final form:

0 ] 0 0]
. v ? 0 -1 0
Al L (4.2.9)
no 0 N 0



where

niy = "”2D79<-5
5 = Do
%]
5t
The state mat

forward manner by obtaining the derivat

moment and shear f

trix [A] could hav

orce as functions

of

fact, was done by Henderson and Nashif

simpler and 1

involving less algebratw manipulatio

4.2.2 The state matrix [A] for a

in a more

ive of the

quantities.

and

straight

displacement, slope,

This, in

the above method seems

~ element undergoing

axifsymmecrjc motion

Consider the cylindrical sheT] element of Fig.
element is vibrating in an axi-symmetric mode
(v) as well as the derivatives in relation to

The above assumptions lead to the simplif

equations |21]:

N2y ~
= v
ax? X
"
Vg”:’ + W+
g X

whevre

R radius of

(ol
=
N
puv g
far

i

<

a»

[0
N

b
siw . gReh

e

oxH K

the cylinder eleme

w longitudinal displacement

K = Eh
1 - v?
5
ko=
‘iz'\/

37-

i

nt

Q)!Q}

(4.1). If this
tangential displacement

( )) are zero.

ied set of Donnell's

. (4.2.10)



P

X

X o= e a nondimensional coordinate.
For the time

being 1t will be

and its derivative

the others.

&
Ly, ~R2ZH 2y

..q:..\'.{ + ,l W+ L.RM.IL »g.p-il = 0

ax™ k D 5t ?

It a solution of the

—y
<
5
g
o~
~—
3

differential equation the result is

above
WIV(Q) +oCw(x) = 0 . (4.2.12)
where
0. . *
C = RQ(%) 12 ()% -~ (5-)? and
Y h* R .
Q* 2= P,,'litzz
D
Now, making use of (4.2.12) it is possible to write:
7 " \ 1 g ——
W(x) 0 ] 0 0 w(Z) )
w' (%) 0 0 1 0 W' (%)
$ ) } '
W't (%) 0 0 0 1 w'' (%)
W' (X) ~C 0 0 0
~ / o

That is the [B] matrix for the cylinder elem

fie

motion,

N -~ e i P R
assumed that

hat the terms

involving u

A

') by comparison with
single differential equat

L (4.2.71)

is introduced in th

o ah

ent in axi-symmetric mode of

Making use now of the well known expressions for the bending moment

and shear force and applyin

g the assumed solution of
have:

_.38,..

eq. (4.2.11), we



It is now very easy to see that;:

S - - - ~
w(x) ] 0 0 0 w(x)
o (x) B 0 %— 0 0 W' (%)
[ D _ .. (4.2.15)
M(x) 0 0 — 0 w't(x)
R2
" D RNy
V(x) 0 0 0 - w' 't (x)
where
o(x) = L dulx)
R dx

Expression (4.2.15) shows the transformation matrix [C]. Its inverse is

1 0 0 0

;- L (4.2.16)
R2
0 0 5 0
R3
MO 0 0 DJ‘__J

-
1

The state matrix is obtained by carrying out the product EC}[BJ[C]nl :

0 R 0 0

[A] L (4.2.17)

~30 -



It is worth noting that both matrices [A] for the plate element and for

the cylinder element are cross
4.3 THE FIELD TRANSFER MATRIX

The state matrix [A] is the basic element for the construction of the

D

field transfer matrix, The simplicity of both [A] matrices derived in the
previous section suggests the straight forward application of a consequence
of the Cayley-Hamilton theovem [13}. It is possible to prove 1221 that the
field transfer matrix, relating station vectors y units of length apart,

can be written as:
Zn .
. . -1
EF(Y,O):} = L Cj M(J ) . (4.3.1)

where the coefficients Cj are the roots of the following system of linear

equation:

roocyo G L gy 1, 2n o (4.3.1a)

Generally speaking, the main restriction to this method of finding the
field transfer matrix resides in the computation of the power of [A].
This restriction does not apply to the present cases anyway because the
extreme simplicity of [A] makes it possible to obtain by hand a1l the

;
necessary powers of [A].

4.3.1 The Field Transfer Matrix for the Plate Element

The characteristic equation associated with the state matrix [A]
a plate element is given by (2.1.3). If the roots are written in the form

)‘19 ”>"1:» >‘27 ">125 where

-4 0 -



i 1
! . Z
N, = + g% 2
X%
L (4.3.2)
1 Vi .
3 . = e P 7 e ! [N
Ao 3 (ASP) £

and if these roots are taken into (4.3.7a), the result is:

M7 ocos ha,y = a,%c08 hagy

C ;= e S P

. 2o® sin hayy - g 3sin fogy C. — _coshhy- cosh)ay
c, = ; Ca

) 2 7
VYL P OL 7\. “\)z

A1 Sin haov =~ 2o sin haq Y
1 2y 2 1

C, =
4 Xllzg - k2%13

Now, obtaining the second and third powers of [A] by hand multiplication
and carrying out the Tinear combination expressed by (4.3.1) the end

resuit is the field transfer matrix for a plate element:



2 m Cs Cy

C1+C3vz? CotCy (v~ w+) " FT - 5

2 Cr Gy o ) Cs

T - 1 - o _ -

mm,gmﬁ‘mr%mmcvwx ALFEN mm ng C1+C3{vzg2- dz,v 55 AU 2vg®) )

n 2
o 1 5 N+ - Jw..si n ~

Ca(nivz2en,) ConytCu(Znyveng- —5-) C1+Co(ve?- 1) Co+Cy (v
. Z Cy+Covz?
mmsm.wmr,?,l,gmwvm,.vmsm/RNW Ca{nptvniz?) 17Covg

-4 2-




where:

i F"':T ’g
“eF ot Gy
= ~2D<{ = \)v? - 2Dm(? . >(££u>2
n MG pat VIARSP
D sy P T %
et {0 ) - e

4.3.2 The Field Transfer Matrix for the Cylinder Element

in

s v e e
SX1-SYymmetyic motion

The steps to be given here are basically the same as for the previous
section.

The characteristic equation associated with [A] is derived  from
equation (4.2.12) and is:

A+ o= 0 . (4.3.4)
If there is some damping in the cylindrical shell C is complex. If no

damping is present C is a real number,

One could represent the roots of

(4.3.4) by
iﬁﬂwiméﬁim:mlli
1

Aj = |C]% e s J = 1,2,3,4 , 0 g @p < 27 .. {4.3.5)
where GP is the principal argument of C,

It is also easy to show that:

12 = ikl

)\3 - "'}\)_ -.(4-3.6)

Xg = “ill
With these relations taken to equations (4.3.71a) the C's coefficients can

be found:

L3



C _l(ﬂ\“,Jr se ha o)
1T (COS X COS Ny X)

C. = T sin hiix + sin 2ix
2 =% ,.%,.,.,wm;ww,"_ﬁwm
. i} L (6.3.7)
C. = 1 cos hrix ~ cos Mix
3 T i =
a7
T sin hXax - sin 2ax
C o= i BM_ -~
>\l

The above relaticns are valid only for [C] not equal to zero. For [C]

equal to zero one could take the Timit values:

C, = 1
C2 = ;(

.. (4.3.7a)
C3 = JZ’X?

Now it is possible to obtain [A]? and [A]? and carry out the linear
combination expressed by eq.(4.3.1). The field transfer matrix for a

cylindrical element undergoing axi-symmetric vibration is:

= R2 37

C, C,.R Cop Cu

c R R?
_ C.;R““‘* Cl (:2*5 Cg”D‘"‘
[p(x. )] - ..(4.3.8)

c DC

¢t ¢ D¢ c C,.R

JRQ Lp b 2

N o
3 R2 y

For readiness in the computation of (4.3.8) it is good to point out that:



1.2
Ny = oA (T+d), C> 0
2
..(4.3.8a)
»o= [cjfy c<o
K P D
%y o= (01 cos (%) + 1 sin (Zw) . C complex.

It is worth noting that both matrices in expressions (4.3.3) and (4.3.8)
are cross symmetric. A1l the structures to be dealt with in this work
have cross symmetric field trans matrices. The general conditions for

©

a transfer matrix to be cross symmetric is given in |23

4.4 THE POINT TRANSFER MATRIX
The reasons to find a point transfer matrix as well as its meaning
have been explained in section 2.3. The stiffening elements encountered
in the structures dealt with in the present chapter have two dagrens of
freedom, rotation and transverse displacement.
The point traensfer matrix is derived by considering the compatibility

conditions for the displacement and slope and the equations for the jumps

in moment and shear across the stiffening element:

W R = W L
R L
L (4.4.1)
A N R
VR = kw W KGWBL + VL

In the above expressions ¢ stands for the slope at the stiffening element

and Kau is a coupling coefficient between torsional and transverse
lwaty) B
displacement. The coefficients Keﬁ KPV and Kv have been computed by
/ U '

L5



K., given in expression (2.3.3), and
v)

A, the cross section area of the stringer.
The above expression shall be used in this chapter in connection with
stringer~-stiffened flat plates,

In matrix form equation (4.4.1) gives the point transfer matrix:

\R — _— v N
W 1 0 0 0 1% L
8 0 1 0 0 g
- { L (4.4.2)
M S 0 M
y K, Ky, O 1 v
N s r - ’—“r’ . r

For a ring vibrating axi-symmetrically the elements of the point transfer
matrix can be found as follows:

In fig. (4.1) the forces acting on one ring are shown. The sign
convention is compatible with that one found in [24] where it was used to
derive the cylindrical shell equations.

The differential equations of motion of the ring can be written by
applying the hypothesis of axi-symmetry of the vibration to the general

|

equations derived by WAH and Hu [25].1ts results ere only two equations:

FI 529(t) -
';; 6(t) + pIp ‘d’m{%}” = Fe(‘t)
{4 8'(1
A4.4.3)
EA 22u(t) =RV EA
RQ W(t) + E)A gtz }W\L/



where:

Iq, the polar moment of atrea of the section, and
F

I, a principal momen of Qrea ahout an axis parallel to the
X axis.
Assuming harmonic expressions for all the quantities involved in

equations (4.4.3):

int, L
Fee : Fw(t; = F e

-
(el
—
cf
—
i

and taking these expressions into equation (4.4.3) one finds:

EI
F = == - 5l 0?%)p
6 <R2 £ p )U
. (4.4.4)
F, o= (G2 - ha?)
R2
o N P — L . R o — R ,,(L . v - . .
Noting that Fw = Vo - Viand b= M - M7, equations (4.4.3) give:
Ky = ooy g
R? 0
EA
Ky = == F Reany®? o (4.4.5)
R
K., = 0

6w

The above equations are enough to complete the ring point transfer matrix.
Since there is no coupling between 6 and w in the present example of

£

t Kev is zero. Of course a more general kind of ring
3

section can be considered.

ring the coefficien

L7~



4.5 THE PEREO:, Tiﬂ:xng[ R ?'t'w'fxx\/i

Ihe pericd transfer malrix is given, as always, by equation (2.4.7a).
Looking at the general expression for the point transfer metrix (4.4.2)
lines of the pericd transfer matrix are
irst two lines of the field transfer matrix. The third

equal to the

k1 2 . N Lo wg 2 e e i m A B NN
and fourth lines are obtained as follows:

whare the tF’j are elements of the field transfer matrix LT (/de

was implicitly undarstood that the wey the period transfer mstrix has been
constructed (according to expression {2.4.1a)) corresponds to a definition
of period as indicated in fig.(4.2). Of course, there are infinite ways
of defining & structural period, the choice being just a matter of
convenience. 1t should be pointed out that whilst the field transfer
matrices derived before are cross symmetric the period transfer matrix is
not, It is possible, by dafining a period sywmetrical to its centre, and

etrical

by proper choise of sign convention to establish a cross sy
ericd transfer matrix (sece 1230Y, However this will not ba done in this
i i

work and the definition expressed in fig.(4.2) and expression (2.4.1a) will

or translation one terminal degree of freedom can be eliminated by
applying the technique described in Appendix B.

Waen it is done it might be wore convenient to apply the reduction

-4 8



(It = 1,1, = &) the period transfer matrix will be:
A B L 15
ool (thr thig
[f(g,O)J = =
K,} T * Lok
o o t 22 | , .
o — vk, ok bk
21 T RgUT, o

If the rotational degree of freedom of the stiffening
(I, =2, 1, = 3):
* kS
e ' D)
0 11 12
B(L,O)] = =
] % *
ot s ) ¢ r
t 21 + W{l ‘L’Zz‘}‘

ok
I\GL 3

eleme

Kwt*1

2

1ting the transverse o

nt i

oveme: 1~t
.. (4.5.2a)
s eliminate

. (4.5.2b)

The reduced transfer matrix is obtained by eliminating line and column Il

and Tine and column 12.
It is worth noting that
(4.5.2a) and (4

.5.2b). This is obvious for only t

were possible in the original structure and one has

4.6 DISCUSSION OF RESULTS

In this work two examples
be considered.

The first example (called here Exal
Lin |1] and its pertinent data

Data for Examdle I

For each panel

b = 50.80 [cm]
E = 0.725 x 10° [N/em?]

of stringer-stiffened fla

are listed below in SI units:

wo terminal mov

nple I) is taken from a

kGJ does not appear in any of expressions

ements

been prevented.

t plates are to

paper by

~
230



h = 0.1016 [om]

; = 20.826 [om]

0 = 2.8 x TOMB‘[E“E sec?/cmt]
v = 0,3

e
i
——

I
I
20
F1
5
»
fnd

I
~
it
O O
<o
.
E:‘
Lo

. S }.,‘
C = 94,20 x 10 [cnt]
CWA = 4.43 [em®

0.0 [cm]

>
<
il

= 2.08 [cm]

E = 0.725 x 106 [N/cm?]
In = 5.075 [em"]
I . = 3.45 [cmb]
- 1y
In; = 0.0 [cm"]

JA = 10.55 [cmt]
o = 2.8x107° [N.sec?/cn’]
v = 0.3

In that paper Lin was interested only in the lower and upper limits

6]

of each passing band and he developed a method to compute them. These
1imits are associated with zero group velocity.

It has been shown by Miles |6] that when a periodic structure is
finite the natural frequencies fall in groups, the upper and lower
frequencies of thesegroups being independent of the number of periods of
the structure. When the structure becomes infinite the freguency groups

- Pk

Fimits of a propagating band

ho;

. L SN S SR B | SR
bacome continuous freguency bands. 0

can be identified as natural resonant frequencies of the infinite periodic

S50 -



3

structure, or of any of 1ts periocdic substructures, or of an isolated

i

bay. Of course, any frequency falling in a passing band of an infinite

O

periodic structure can also be thought as a 'natural frequency'. The

only thing is that into the structure at any of these

—4

“ TP - £ 4
f energy is fec

"natural frequencies' it will prope to + o, Infinity can be thought

as a sink that absorbs any energy that reaches it. On the other hand, if

[eo

the vibration is steady at one of the lower or upper limits of a passin
band no energy will flow from one bay to the next.

Lin's results are compared in table 4.7 with those obtained by using
the technique to compute Ho ” QO* curves (see appendix D).
Table 4.1 Comparison with Lin's results |1] for the Tower and upper

Timits of the Propagation Bands (Example I
G i

Wy " QO* Technique Lin's M

S wo* HZ HZ

T 17.22 96.9 98.9

0 22.681 130.0 130.2

0 39.865 228.9 228.9
n 55,7136 323.0 323.0

The agreement between both sets of results is complete. Fig. (4.3} is &
computer plot of the three first Mo " QO* curves forr = 1,
The Mo T 0 * curves of fig. (4.4) were obtained by applying the

o

vy

reducing technique explained in appendix B with IT = 1, and 12 = 4. Thi
means that the transverse stiffness has been considered infinite, Ho
serious errors have been introduced by applying this technique to this

o o Fe oy s e Lo by o A a gy e b
structure for two ressons:



a) The transverse stiffness is in fact very high if compared, say,

with the transverse stiffness in the middle of

Table 4.2 compares the results with and without the application of

the reduction technique

{ nd K inite Ko = o K = &
%\W a . finit W 0 5
N
* a * *
1 QO Y 0 H QO

7 17.220 7 17.220 0 22,681

[
™~
Ny
jox!
]
ard
<
N
Lo
C
N
&)
=
~No
W
L4
w
Ny
[Sxt

0 39.865 0 39.865 T 56,322
T 55,7136 7 55,7135 0 62.920

T 56,3522 7 62.920 0 61.300

0 73.192 0 78.192 T 96.211

~>

Table 4.2 Comparison between results obtained for the structure of

Example I and derived structures by making either Kw or
infinite.
The small dncresse in the upper freguency of the first band shown in the
second column of table 4.2 is probably due to the greater transverse
stiffness of the stringer (infinite, actually). Also shown in table 4.2

are the results cbtained when taking 11 = 2, and 12 = 3. This means that

the plate {s allowed to translate, but not to rotate at the supports, or
stringers. Jn this Tast case only a specisl type of flexural waves can

exist, namely those for which only transverse displacement of the supports
oceur,

-52-



With the purpose of finding the effect of coupling between transver

and Tongitudina snother skin-stringedh structure (called

= ~T A - AN e ey L
Example 1I) is considered below.

In this structure the stringers are not symmetric in relation to th

Fine of attachment so that there is some coupling between transverse and

rotational movements.

Data for Example 11

For each Panel
b = 24,39 [mﬂ}

E 20.69 x 10 [N/cm?]

e
H

ho= 0.122 [em]

L o= 7.32 [m]

o = 78.50 x 10°° [N sec/cn?]

v = 0.3

For each stringer (see sketch below)

E

it

20.69 x 10¢ [l/cm?]

78.50 x 107° [N.sec?/cm?]

e
H

v = 0.3

Table 4.3 compares the Tower and upper frequencies of the first three

o
—
[
wy
o
3
O
[l
Lot
-5
[}
v
s
o

passing bands for thi figs. (4.6, 4.7 and 4.8) show the

corresponding »_ ~ 2 * plots.

o

e



Kw and }WC not altered Ry = @ Kwd = 0

u <“'Ol'% U ‘)O* U QO*

0 9.86892 " 11.0327 0 10.3315  (5%)

7 10.03175 0 21.6417 T 11.0327  (10%)
7 16.023 0 22.87324 i 15.3935 (4%)

0 21,71345 W 34.36923 0 21.6412  (0.3%)
0 33.31063 7 62.3386 0 32.9565 (%)

7 34,59 0 66.9582 T 34.36923 (0,5%)

Table 4.3 Lower and upper band frequencies for Example 11 and the

7
NG

derived structures for Kv = w and Kv = 0,
J ‘

Also shown in the same table are the values of the lower and upper band
freguencies for Kw = o,
It can be noticed that by simply ignoring coupling errors{shown in

brackets) can be introduced in the first band which incidentally is the

wst important in many cases. This should be borne in mind if one intended

to represent each stringer by one transverse and one torsional spring

=+

Another feature of this structure is that the stringer itransverse
stiffness is small compared with the torsional stiffness to the extent
that the lower frequency of the first propagating band corresponds to
= 0 (the 'clamped' vibration mode). Tt is shown in fig. (4.6),
The order of appearance of the Timiting band frequencies have reversed
here in relation to the order found in the structure called Example I.

the reduction technigue is = o the derived system must

show the same order as in Exa shown in fig. (4.7) and in
table 4.3, But now serious ¢ ced by a ing zero transverse

-5 -



displacement at the stringer. The depsrture of these results from those
of the original system is in part due to the fact that the stringers are
/ SEIFT enough for the hypothesis of zero displacement at
their attachment to be a sound one. It is also in ' part due to the coupling
that is automatically eliminated by this hypothesis.

It is interesting to notice that coincident values of frequency such
as 11,0327 (, = 7), 21.6412 (, = 0), 34,3692 (v = ) etc. occurs only
between columns 2 and 3 in table 4.3. This is expected because both

columns show results belenging to derived structures without coupling

)

~H

The results discussed above can also be presented in the form o

QO* - uocurves as was explained in chapter II. This is shown in figures

(4.9 and 4.70) for n = 0 and 0.15. A1l these graphs are divided in two
regions, below and above the 0 - 0 line and are related to the originel

he imaginary parts of the propagation constants

-{

structure of Example I.
are plotted in the imaginary region and the real parts in the real region.

Figure (4.9) for n = 0 shows that the 'second' propagation constant
is always heavily attenuating. The 'first' propagation constant is
sometimes pfopagating and sometimes attenuating. It is worth noting that
the passing bands shown by the first propagation constant coincide with
those shown in fig. (4.3).

S0 if a harmonic point force acts in one of the bays of this
s

-~

structure two waves are sent to the right and two to the left.

<
—h

une

423

o
these waves decays strongly along the structure and the other may also
ding

decay or propagate, depe on the value of the exciting frequency.

“C‘
:3

U"\

The effect of damping is to introduce & non-zero value for the

imaginary part of the propagation constant at all fi requencies. Fig. (4.10)

shows the QO* - uocurves I with v = 0.15, 0One could notice
that the fmaginary part of the 2Znd propagation constant dips in the region

.
where a propagation band does exist when n = 0. Cuves Tike those in
*’%



fig. (4.10) have been obtained for some other values of the damping but

are not shown here to save space. 1t 15 interesting to notice that the

In chapter Il it was explained that when the infinite pericdic
structure is excited by a harmonic point force with a propagating frequency
two groups of waves are generated; one propagating to the right and the
other to the left. It is interesting to plot the phase velocities of one
group (the one propagating to the right, say) by using equation (2.5.22a).
These sort of plots have been introduced by Mead |5] and have been used

by Sen Gupta  |lo]. Figures (4.11, 4.12 and 4.13) show such graphs for

3

the structure of Example I and they correspond to the first, second and
third bands, respectively. Looking at curve (4.11), for instance, one
can see that it is divided in positive and negative branches. Positive
branches correspond to positive j's in equation (2.5.2a) and negative
branches to negative J's and 0 g by & T In this way positive branches
correspond to positive phase velocities and negative branches to negative
phase velocities,

So both net waves sent away from the applied havmonic force are
combinations of infinite harmonic components with all the possible phase
velocities. (For a detailed discussion of this see |5] ).

The uppermost branch corresponds to j = 0 and this gives the primary
component, or primary phase velocity. The wave Tength of the primary
component was called pseudo-wavelength by Mead [26].

IT in fig. (4.11) a vertical Vine is drawn through a propagating
frequency it will cut the branches at points whose ordinates correspond
to positive and negative phase velocities.

The Junction points shown in fig. (4.17) (marked A, B, C, D, etc.)

correspond to the limits of the propagation bands and one can see that
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ame modulus but with

N

the phase velocities appear in pairs of

different signs. As a result no propagation does occur as was explained

1

in chapter II. The explanation given above applies as well to the curves

o]
~%

figs. (4.12) and (4.13). A1l the computations carried out for the skin-

wy

tringer structures given so
wave propagation in ring stiffened cylinders. The computer programs and
sub-routines involved are the same, apart from the computation of the
state matrix [A]. In the Tisting below a set of data is given for a ring
stiffened structure referred to here as Example III. This set of data is
:

taken from a paper produced by Wah and Hu |25] and converted to SI units.

Data for Example 11T (cylinder)

For each cylindrical bay:

i

R 103.68 [mm]

L= 31.39 [mn]

h = 1.19 [mm]

E = 2.069% 106 [N/cm?]

v = 0.3

o = 78.50 [N sec?/cm"] x 1070
For each ring (see sketch):

2.18 [mm]

jaB o
i 1

5.82 [mm]
E = 2.069% 108 [N/cm?]
v = 0.3

6

p = 78.50% 1077 [N sec?/cm¥]

Fig. (4.14) shows the - o * curves and table 4.4 presents the Timit
g o 0

band frequencies for this structure as well as for the derived structure

in which Ky = = The 4 - QO* curves for the derived structure with K =

is shown in fig. (4.15).
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K., =ne 7{8 Tinite K\/« = o
H e 1 o,

0 27.1153 7 27.73502

T 27.72686 0 35,51674
w 27.73502 0 39.071626

0 39¢O7?63> m 60, 76544

0 40.34984 T 67.56043

7 60.76544 0 89.87714

Table 4.4 Limit band frequencies for axi-symmetric wave propagation in

ring stiffened cylinders.

Example II. The reason is that the transverse stiffness of the ring is
Tow if compared to the torsional one.

The application of the reduction technique to make KW = « changes
this pattern and the first propagation band comes to start with g = 7
Most of the comments made in connection with the structure of txample 11
apply here,

In fig. (4.16) the QO* - p curves for the structure of Example 111,
without the application of the reduction technique, is shown for rn = 0
and in fig. (4.17) for n = 0.15. It is interesting to consider the curves

of fig.(4.15) as the 1imit of those of fig.(4.17) for n approaching zero.

For easy understanding of the curves the Letters I and R, standing for

imaginary and real, respectively, appear after the number of the
propagation constant, It is interesting to notice that complex conjugate
propagation constants do exist for this structure along the bands (0,17.20)

).

5

and (25.10, 27.71

(&)
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GENERAL VETHODS TO COMPUTE THE FIELD TRANSFER
5.1 GENERAL

of problems of free wave propagation in spatially periodical structures
tines no matter whet the peculiarities of a particular
structure or its degree of complexity are. One of the fundame nta? ste
in this theory is the computation of the field transfer matrix from the
state matpix.

The state matrix is generally easy to derive (see chapter IV). But
1f the system concerned has many terminal degrees of freedom (say n > 2)
the computation of the field transfer matrix can no longer be achieved by
following the process employed in chapter IV. One must resort to numerical
methods., These methods must be very efficient, both in accuracy and in the
amount of computations required. Accuracy in the computation of the field
transfer matrix from the state matrix [A] plays an important role since it
affects the accuracy of the coefficients pj‘sinvolved in the equation for
the propayation constants (see chapter III).

If one is trying to compute Vg " QO* curves for the structufe the
equation (2.4.8) must be solved interactively (it is highly traﬁ%endeﬁb[}
and if the pj's are not accurate enough round-off errors might impair or
even prevent the convergence.

Also, because the solution of (2.4.8) is iterative the equation for
the propagation constant (consequently the field transfer matrix) must be
computed many times end this fact calls for the efficiency (in time) of

= o

the computation of the field transfer matrix. S0, the two critical factors

-

og

g‘/

Qy

pine

(&3

in the computation of the field transfer matrix are speed and accura
they should be one's major preoccupation when selecting or developing a
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method.

] - o S b o !
l have proposed the method based on the

Henderson and McDeanie

~
i I

constituent idempotents of [A] whose theory is well presented by
Frame |27].
According to this method the field transfer matrix for a bay of

length £ is given by

n 2L E
[pt0] = R e’ 7]

where [Pj] are the constituent idempotents of [A] and are computed

according to the formula

Al = 2 [1]

Py = T el
s N ™ s
1] Y '

Even for a nondamped bay ([A] real) the constituent indempotents must be
computed by using complex arithmetic and 4n(n - 1) multiplications of
complex matrices have to be performed to compute all the Zn indempotents
of [A], which is equivalent to 16n(n - 1) products of real matrices. In
the case of n = 4 it would mean 192 multiplications of 8 x 8 real matrices.
On the top of that the method needs the computation of the roots of the
characteristic equation of [A] with great accuracy for they are heavily
involved in the computation of {Pj]k

At the outset one can see that this method is not very appealing when
one is dealing with nondamped systems for, if anything else, it would mean
a waste of time in computations. Lin and Donaldson |28] have computed the
field transfer matrix for curved panels by lumping the distributed mass of
the shell along discrete 'mass lines' running parsllel to the stringers and

Tinking each mass Tine by a massless strip of the shell. The field transfer
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matrix of a massless strip and the point transfer matrix of a line mass
are then computed and by suitable multiplications the overall field

transfer matrix s obtained.

iderable algebratceffort even if the
simplest shell theory (Donnell's equation) s used and it must be repeated

i

throughout for each particuler kind of structure. Also the numerical
computations are kept very high. In this present chapter an effort will
be made to se?ec? more suitable methods for the computation of the field
transfer matrix introducing, whenever possible, modifications in an attempt
to reduce the computational task and increase accuracy.

A11 the methods to be considered here are based upon the state matrix
[A] which is the only thing to require algebraic manipulations. As wiil be
seen in chapter VI these a?gebrak'maﬁipu?ations are usually kept under an
acceptable amount.
5.2 THE TRUNCATED SERIES METHOD

In chapter I it was mentioned that the transfer matrix associated vith
p

the state matrix [A] can be written in infinite series of the form:

[A] © ]
[TF(>'O>:I = e ry = % [/‘U‘T{ 3:':

j=0

The question that arises is whether the above series, when conveniently
truncated, provides a good method for the computation of the field transfer
matrix. One should expect so because this series is strongly convergent
for any matrix [A].

&
5

D= 1.3077 4 1012 and 200 = 2.4329 , 1018,

(G2

Hotice, for instance, that ]
This means that by retaining a number of terms of the infinite series of

about, say, fifteen to twenty one should get & good accuracy,



If fifteen terms are retajned the number of matrix multiplications

5
[
-3
I
0
ey
=
[
1931
SN
—
=
3
e
s
.
o
=
Y
o
ot
w
W

is thirteen while the indempotent meth
fourty eight 8 x 8 matrix multiplications. When no damping is present
in the bays the state matrix [A] is real so that the truncated series
involves only real operations.

This fact means a two fold advantage upon the constituent indempotent
method; first is the obvjous economy in computation (the constituent
method requires the equivalent of 192 multiplications of real 8 x 8
matrices) and, second, the truncated series method can be programmed for
computers in which the complex arithmetic is not available (for instance,
the world widespread IBM 1130 computer).

One should %ecognise another advantage of the truncated series method
upon all the others cited previously; it does not reguire the solution of
the characteristic equation of [A], which means further saving in computing
time.

In programming the truncated series advantage should be taken from the
fact that [A] and {ts powers are cross-symmetric.

The present method has been used in connection with the computation

of Hy " 9 * curves for the structures dealt with in chapter 1V.

0

The programme was run in the ICL 1907 computer (11 digits in single
precision) and in the CDC 7600 computer (14 digits in single precision).
The accuracy of the results is virtually the same in both computers. They
will be presented later in chapter VI. For computers with seven or eight
digits in single precision the method must yet be checked for accuracy
and, if necessary, the truncated series should be computed in double

precision. In computing the truncated series it is convenient to follow

the following steps:



r’**
]
e

d
it
[

e

| V—
<

J r
[T} = A,y [h]/z2
[T = A1,y [Tyaql/N
Then:
. N
T (9«50> = 7 7.7 + I“i.
[F I [T [1]

5.3 THEVMETHOD BASED ON CAYLEY-HAMILTON THEOREM

The method described in chapter IV and summarized in expressions
(4.3.1) and (4.3.7a) can conveniently be programmed if attention is paid
to some details to improve efficiency and accuracy.

L

According to this method - which is a consequence of Cayley-Hamilton
theorem - the field transfer matrix is a linear combination of powers of
[A] and the coefficients of the linear combination are solutions of a
system of linear equations given by (4.3.1a).

The first step towards the application of this method is to solve
the characteristic equations of the state matrix. That is a fourth order
polynomial equation in )2 and give solutions in the form + x;s + 2,5 1 25
and + ,. Accuracy is necessary in computing these roots. Also, because
the computation of the field transfer matrix is a step inserted in an

iterative process aiming to find bg " 9 * curves (propagation bands), it

0
is essential that the method used to solve the characteristic equations
be always convergent, Mullers method |25] has proved to satisfy both
requirements of accuracy and convergence besides being extremely fast.
It is interesting to point out here that no formal proof has ever

been provided for the convergence of Muller's method but no failures have
~

been reported by Muller in his papers ov has it happened in this work.
§ S i ;
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So this method has been used here whenever a polynomial equation {with
real or complex coefficients) had to be solved.

Now, it is faster to solve two systems of four Tinear equations than
one system of eight ones. Due to the nature of the roots of the
characteristic equation of [A] it is possible to split the system of
eight linear equations represented in (4.3.7a) into two systems of four

equations each. It can b2 easily shown that the two smaller systems are:

Ll R . {xl} = {cos hxmf}
(5.3.1)

In the above systems of equations one has:

C, C,
C,

{XI} - <g2 : {xz} C
C, Cq

The square matrices of the two systems in (5.3.1) are very closely related

indeed, for:

0, O 0 0

[ 0 % O 0
0 0 3 0




In this way the two systems ({5.3.7) can be represented by:

|
S
=
]
=
=
£
S
=
-
[ —
N
e
i
!
¥
{
{
1
i
H
H

Noticing that the determinant of the above square matrix is

A= (027002) (0327012) (02720 2) (0527252) (3 27 002) (g %=1 32)
.. (5.3.3)

the sole condition for the systems (5.3.2) to have determinate solutions

is that

2 2 forp :
- # 25 for m # Jj.
Now, the matrix appearing in system (5.3.2) is of the simple alternant
type. This can be easily seen by noting that its determinant is an

alternating function of the variables x;2, 2,2, 232 and 3,2, that is, it

changes its sign (but preserves its absolute value) when two of the
variables are interchanged. It can be shown |[30] that the inverse of a
simple alternant matrix can be obtained by following a very simple rule.

h

The elements of the jlL column of the inverse are quotients of which

the numerators are elementary symmetric functions of the variables 3?
roZs 232, a2 with the ij omitted and the denominators are products of
311 the factors of the form (ka - Am2)3 m # j. Following this rule the

inverse of the matrix of the systems (5.3.2) can easily be written down:

~.66.~.



_ _ waWwNy:N ~ ygmymwyzw yww wwyww
- D2 D3 Dy

25,2 25 2 25 2 2y R 2y 2482 Y. : L) 7 2
A1 Ay ﬁww Ay e A g h, Sy A AL %yo;y:w ydxyuw+yPWy@w4ywuy»:
Do Ds D
t t
i~
Ww
244 .2 2 2442 p :
~ Ao +>;.w +hy _ V/)»:Mw..ziwl +v,r.‘w - ydw+v.vow+vf 2 _ % N+V/JM+V/ u
R D2 L3

bR by U3 Dy

o (5.3.4)



where:

Dy = (01270,2) 0 2052) D 20y ?)
Dy = (0527012) (00?7252 (0,27 042)
Dy = (20,20 (032705,2) (55270, 2)
D, = (2 02 (0,272,2) 0,27 042)

The solution of system (5.3.2) is then found to be:

)

Cl
C, C, sin hy
e b m)/
- D {cos h, } ; = D] .. (5.3.5
\C7 LC8

As a last remark one should point out that the matrix [D] does not contain
the length of the field for which the field transfer matrix is to be
computed. It does appear only in expression (5.3.5), This fact is of
convenience when the field transfer matrix has to be computed for several
lengths of field, for instance, when computing the state vectors along
many points in a bay. b

So, instead of solving in the computer a system of eight linear
equations with complex coefficients one has only to calculate matrix [D]
and then the Cj‘s by applying expression (5.3.5). The economy in
computation is considerable. One should always bear in mind that the
field transfer matrix has to be computed many times in the process of
calculation of the propagation bands to have an idea of the importance of
this saving.

Having determined the coefficients Cj‘s one is now able to form the
Tinear combination (4.3.1).

Instead of computing the powers of [A] it is advisable to follow the

-



(7] = [Te] [A] + Cy[1]

Te(¥s0)] = [T4]

In following the above scheme advantage should be taken from the cross~

symmetry of the state matrix.

5.4 THE METHOD BASED ON THE EIGENVECTORS OF [A]

The third method to be explored in this work is quite straight
forward and is based on the eigenvectors and eigenvalues of the state
matrix.

It shall be seen in chapter VII that the field transfer matrix can

be expressed by
2j
o0yl = [l e 01! . (5.4.1)

where [U] is the matrix of the right eigenvectorsof LAl and [V] s the
matrix of the left eigenvectors that is, the eigenvectorsof the transpose
1
of [A‘r'
Expression (5.4.1) is valid on the condition that the eigenvalues

are normalized according to expression (5.4.2):

T :
_ = 5. .. (5.4.2
{VJ} { m} ®im ( )
where 5jm is one when j = m and zero otherwise. It is also assumed that
},J‘ "4 >\n‘§5 N j 7£ H!c
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As a consequence of (5.4.2) one can write:

' o o= [ .. (5.4.3)

which means that:

i

vy v (5.4.4)

Taking this result to (5.4.1) the final expression for the field transfer

matrix will be:
Te(r0)] = U] el ..(5.4.5)

The efgenvectors and eigenvalues of the state matrix can, of course, be
computed by using a standard subroutine. There are some shortcomings
in following this approach. First, standard subroutines to solve eigen-
value problems with a general complex matrix are not generally available
in many computing systems. Second, a general feature of most (if not all)
the standard iterative methods to solve eigenvalue problems is that the
accuracy of the eigenvectors is somehow Tower than the accuracy of the
eigenvalues. This is, of course, inconvenient in the present case since
the computation of the field transfer matrix is only an intermediate step
towards the calculation of the propagation constants. Consequently the
accuracy of the eigenvectors should alsc be great, of the same order as
the accuracy of the eigenvalues.

Further, the standard iterative methods mentioned above are, in
general, too time consuming for the present purposes.

In appendix C the Leverrier's method with Fadeev's modification will
be described. This is a direct method giving the characteristic equation

of [A] and can also be applied to compute both its right and left eigen-

i

vectors.

This method is very efficient and accurate for small matrices (say
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up to 15 x 15) and has no restrictions related to the nature of the square
matrix. One must only assume that the ejgenvalues are distinct. The
method also permits advantage to be taken from the fact that [A] is cross
symmetric and that aij =0 when 1 + J is even.

The method described in this section enjoys the same advantage
pointed out in the end of section 5.3. One can see by looking at
expression (5.4.5) that the size of the field (y) can easily vary because
it is not involved in the modal matrices appearing in this expression.

So, once the matrices [U] and [U]™" have been obtained (for a certain
frequency) the field transfer matrix for any length of field can be

calculated.

One shall see, Tater in this work, applications of this property.



CHAPTER VI

FREE WAVE PROPAGATION IN STRINGER-STIFFENED SHELLS AND
RING~STIFFENED CYLINDERS

=

6.1 GENERAL

Having developed a general theory to solve problems of free wave
propagation in periodic  structures (chapter III) and discussed
suitable techniques to compute the field transfer matrix from the state
matrix (chapter V) one is now prepared to tackle some specific examples.

Two kinds of structures will be considered in this chapter and they
will be referred to as stringer-stiffened shell and ring-stiffened
cylinder.

The main element in both structures is a thin cylindrical elastic
shell, damped or not.

In the first structure referred above the shell is supposed to be
simply supported along two circular frames distance b units apart and
orthogonal to the axis of the shell. The stringers are also supposed to
be simply supported at the frames and run parallel to the axis of the
shell. This structure is supposed'tq represent a section of a cylindrical
aircraft fuselage (see fig. 6.1). The attachment between shell and
stringer is considered to be along a Tine.

The comments related to the representativeness of this model of a
real structure could follow the same 1ines as those made in chapters II
and IV for the stringer-stiffened plate structure. The circular frames
are considered as acting as simple supports in spite of their high
transverse and torsijonal stiffness. ,

As pointed out in |2] this {s a sound hypothesis for high aspect/
ratio, say, greater than two and a half.

Since panels adjacent across the frame move almost in dependently

and since there is considerable corrciction across the stringers one shall

T



examine wave propagation around the circumference of the shell (y direction
in fig. (6.1)) only.

The second structure to be dealt with in this chapter consists of an
infinitely Tong circular cylinder stiffened by rings distant b units
apart. A1l the rings are assumed to be identical and attached to the shell
along a Tine. Ring-stiffened cylinders have been a subject of vibration
research for a long time, which is shown by the considerable number of
publications available.

Most of these works are concerned with finding the eigenvalues and
modal shapes of ring-stiffened shells. Bushnell |31] has developed a
finite difference analysis of a general shell of revolution by using
.Novoshi1ov's kinematic relations for these shells.

Hu and Wah |25] have analysed a ring-stiffened circular cylinder by
considering the interaction forces between shell and rings as forcing
functions on the r{ngs and the problem is treated as one of the forced response
of a series of rings.

Forsberg [32] has tackled the problem by introducing the ring charac-
teristics (stiffness and inertia) through the boundary conditions at each
junction and at the ends of the shell, Finite element has also been used
|32] but it has been pointed out by Forsberg and Warburton [33] [34] that
for cylindrical shells there is no inherent advantage of finite elements
upon other methods.

When all the bays and ring-stiffeners are identical the structure can
be thought as periodical, each period including a cylindrical shell bay
and a ring. In this case the theory developed ﬁn chapter 1II can be
conveniently applied to examine the wave propagation along the structure.

In the next two sections the state matrix related to both structures
dealt with in this chapter will be derived. For simplicity Donneli's

equations will be taken in both cases but a moye advanced theory could be
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used without increasing too much the algebraic work to derive the state
matrices. As explained before, as soon as the state matrix is derived

the task of finding the field transfer matrix is left to the computer.

6.2 The state matrix for the shell element associated with

stringer-stiffened shells

The method adopted in chapter IV to find the state matrix for a flat
plate element can be applied here for the shell element. “

As was said in the previous section the dynamic counterpart of
Donnell's equations will be used for both stringer-stiffened shell and
ring-stiffened cylinder. The reason for this choice is simplicity, though
a more general shell theory would not increase too much the amount of
algebra.

Considering the sign convention established in fig. (6.1) the

Donnell's equation can be written:

22, Imv a2 Iy a2 L g L oh 3% . g
ax 2 2 ay? 2 sXay R ax K st2
2 -y N 7
Yrvoefy o, Iovatvo e 1w o oph 3% | . (6.2.1)
2 oxay 2 sx2 ay 2 R ay K 3t2
,Y,.ig.[.lj“iym—ﬂﬁ‘nﬁ.% M+2wﬁb+m§iﬁn$ﬁiﬂzﬁ
R 5% R ay R2 12 ax* ax%5y?  ay?2 K gt2
In equations (6.2.1) R is the radius of the shell element and K = ngg .
Assuming solutions of the form:
“&(X;Y>t) = cf U-r()/) o5 X ehgt
e r‘:-’
vis,y,t) = % V.(y) sin gx o1t . (6.2.2)
r=1
wix,y,t) = ¥ y (y) sin zx emt s ¢ o= 10
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and taking them to equations (6.2.1) and solving each of the resulting

equations for the highest derivative it contains one ends up with:

U () = gl S y) o ey ) s g o)
1 1"' h 2 ‘;’}‘\ 1 ] 1
v (y) =(~7ﬁ-z2-ﬁﬁ&ﬁvrbﬁ o gl () v )
> ~ 12 he”
My = Py ) - 1B g ) <[ 1B (- 2B )
h2R h2R hz R2 K
+ 202w M (Y) ..{6.2.3)

|

Equations (6.2.3) can be used to construct the following matrix differential

equation:

- N)  — — N
u 0 0 0 0 0 O 0 1 u
v 0 0 O O 0 1 0 \Y
W 0 ¢ O 1 0 0 0 ¢ W
w! o 0 0 0o 1 0 0 O w'

i = ) > ..(6.2.4)
wh! 0 0 0 0 0 1 0 0 w''!
W bey 0 bgs O bee 0 bes 0 | w''
v! 0 b,, 0 by, 0 0 0 b,y v
y' b 0 b 0 0O 0 b 0 !
) P81 83 87~ | \U )

Equation (6.2.4) can be written in condensed form:

{x}; = [B]r {X}r ..(6.2.48a)

The elements of matrix [B] = are given below:
12

12 1 hef’
by = -~ .z;  bgy = -~{ght (= B=5) s b = 22%
h2R ' { h2 RZ K }



= 12 . _odevoooophe? 1L L Ty
bb?“ ”}']”*’2“;")\“ 5 D7p = e e G W‘}/\“M*“ : byy = 'R' 5 b7e = N R
2 ohp? 2v 4 T4
bg1 = T:g(izm‘”gm~); bes = 15 - be7 = = 75 -

Here again it must be said that it is convenient to find another vector
different from {x}r and more suitable to our purpose. The vector to be

chosen is;:

‘{2}1 = U )Vl ) s ) et LML)V L) s R (¥): T )] 5

Vectors {x}r and {Z}r are linked by a transformation matrix [C]r that can
be found by making use of the expressions for the stress resultants in

accordance with the sign convention defined in fig.(6.1):

v Iuw

2 N2
M = nDQEJﬁ + vENE)
’ DS (6.2.5)
Fo 30 3,
v, o= DRk (2ev) i
Y Byz SXZBy
- KO-v) 2u 2y
T_y . 5y T Bi)

Applying expressions (6.2.2) to expressions (6.2.5) one can write the
following transformation matrix equation in which [C}r is the

transformation matrix:
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~N — J——
u ] 0 0 0 0 0 0 0 u
v 0 1 0 0 0 0 0 0 v
W 0 0 1 0 0 0 0 0 W
W 0 0 0 1 0 0 0 0 W'
1:1 0 0 Dvz? 0 ~D 0 0 0 w''
y 0 0 0 D(2-v)z2 0 -D 0 0 Wi
~N vzK 0 K/R 0 0 0 -K 0 v
T 0 cgil%v) 0 0 0 0 0 K(;"v) u
§
L L)
(6.2.6)
or
tayp, = [el, tx) .. (6.2.6a)

The inverse of matrix [C]_ can easily be found by applying expressions
r P

(6.2.2) to expressions (6.2.5) solving the results for the highesf

derivatives:
M. (y) .
wty) = s e vzt (y)
1 v (y pd t
W' Ny) = e+ (2ev).% W (y)
' N.(¥) W.(y)
V) e v ()
. . 2 -
u ' (y) R GED) T.(y) 2v.(y)
and writing
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u 1 0 0 0 0 0 0 0 u
v 0 1 0 0 0 0 0 0 v
W 0 0 1 0 0 0 0 0 W
W' 0 0 0 1 0 0 0 0 W'
Wt | o 0 w2 0 -1 0 0 0 M
I I (O 0 0 0 v
t 1 1
v vz 0 ® 0 0 0 " 0 ~N
2
i - o el
~ / . —p L
. (6.2.7)
or
x(¥)y =[] 2)) .. (6.2.7a)
Now, the state matrix appearing in the state equation {z(y)}' = [A]{z(y)}is

given by [C] [B] [c]™'. The matrices €], [c]™* and [B] are very sparse
indeed which makes the above product extremely easy to be carried out by
hand.

If this is done the result is:

_ , -
0 - 0 0 0 0 0 iy
e 0 1 0 0 0 -y 0
0 0 0 1 0 0 0 0
0 0 w2 0 -1 o0 0 0
(Al = ..(6.2.8)
| 0 0 0 Ny 0 1 0 0
0 0 n, 0 w2 0 0
0 w*? 0 0 0 0 0 L
s 0 0 0 0 0 0




2
, . ot _ KO ) - ph&
where o = D/ and 1, = K@-v)-ehdl

Again it must be said that the above matrix could have been derived
by finding the expressions for the derivatives of the stress resultants
as functions of the stress resultants themselves. This has in fact been
done by Henderson and McDaniell4| but the method produced above seems more
elegant, systematic and the intermediate steps are easier to check. The

algebra required is also extremely simple.

6.3 THE STATE MATRIX FOR THE SHELL ELEMENT ASSOCIATED WITH THE RING-
STIFFENED STRUCTURE

To compute the state matrix for the shell element associated with the
ring-stiffened cylindrical structure (that is, the state matrix associated
with the x direction (see fig. 4.1 ) one shall follow, as always, the
procedure used in chapter IV and in the previous section.

The same set of Donnell's equations will be used here with £he sign
convention established in fig.(4.1) so that the proper sign adaptations
should be performed in equations (6.2.1).

Assuming the following set of solutions;

u(X,9,t) = % ur(i) sin ro o0t
r=1

v(X,9,t) = fi vr(i) cos ro o2t .. (6.3.1)
r=

w(§,¢,t) = % Wr(;) sin ro 2t
r=1

and taking

T
{x}" = [ﬁwv,u,w,w',w",w"',v‘gzl

and following the same steps given in the previous sub-section one

finds
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0 0 0 0 0 -1 0
0 0 0 0 0 0 0 1
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
6] = | .. (6.3.2)
0 0 0 0 0 1 0 0
bgq 0 bes 0 bgs 0 0 bgg
b,y O b,y O 0 0 0 bg
0 bg, O bg, O 0 bg, O
T -
or
{x(x)}r = [B]r {x(x)}r ..(6.3.2a)
where
r 1 phR 2
be] = - E Y b63 = “'“]/‘I+" '.{(“ + ’Q‘E‘K‘"‘QZQ b65 = 2}" s b68 - - "E
hR? 2
b7l = - "r:”—'v" (Y‘2" ET(“*Q 2)5 b73 = - T{””\‘)‘ s b78 = - '11':;":)‘) I8
- 2
b82 = ]2\) 1"2 %&92 b8[_, = Vo b87 = r l%"y
2
kK = D
12R2

The transformation matrix is found by taking expressions (6.3.1) into

Donnell's expressions for the stress resultants and assuming:
- T - - - _- - - -
{z(x)3,. = EV(X),u(X),\*J(X)ss(X),N(X)s‘»/(X),N(X),T(X_)Jr

The result js:
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1

],

or

C87 -

1 0
0 1
0 0
0 C53
0 0
0 C,s
Coy O

~-vr?2D/R2;
-(2-v)r2D/R3;
rwK/R3

kIR 5

K(1-v)/2R

o

O ofe-

(]

64

0 0 o
0 0 0
0 0 0
0 0 0
0 0 0
Cee O 0
0 0 Cog
0 Cg; O
-r
D/R2;
D/R3;
w/R 3

rk(1-v)/2R 3

..(6.3.3)

..(6.3.32a)

The inverse of [C]r is found by the usual process shown in the previous

sub-section and fis:
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;_ 0 0 0 0
0 1 0 0 0
0 0 1 0 0
? 0 0 0 R 0
G
' 0 0 dey O des
0 0 0 den O
0 dry 0 0 0
dg; O dg; O 0
where
des = w2 dss = RYD;  dey
dyy = -r; dgg = 2R/(1-W)K;
dgy = R/K

. (6.3.4)

Now, performing the product [C] [B] [c]™' the state matrix comes out:

0 r 0 8] 0

-rv 0 -y 0 0

0 0 0 R 0

0 0 w¥/R 0 R
ml = D
LJr

0 0 0 20r2(1-v)/R 0

~rK{1-v2YR 0 oy 0 wr2/R
Ry ok 2
0 -Rg2* 2 O 0 0
oz 0 -rk(1-v2)/R 0 0

...82_«

0

“rv

=2R/K(1-v)

0




where

/',Dz )
G = - .Dwﬂ(r’*? + :E«fiim)(j,,,\,?.) + R,_:,VOQO*,E
RS h?
S T e
2 R \Y \),Owo
‘ - I
Gy DO/Q

2, distance between stiffening rings.
One should notice that all the state transfer matrices derived in
this and in chapter IV share the common properties of being cross-symmetric

and having a5 = 0 if i + J is an even number. Their properties lead to

J
a cross~symmetric field transfer matrix. This fact is of convenience for
checking purposes and also because it provides means of time saving in the
numerical computation of the field transfer matrix.

General methods for the computation of the field transfer matrix have
been considered in chapter V. One can see that for the structures dealt
with in this present chapter one has to resort to one of those methods
because the order of the state matrix is too high to follow the approach

found in chapter IV.

The next section will deal with the point transfer matrix.

6.4 THE POINT TRANSFER MATRIX

As pointed out in chapters II and IV the point transfer matrix for an
open section stringer has been developed by Lin I3] and made more general
by Henderson and McDaniel|’].

In these derivations the inertia in the directions of y, z and & (see
fig. 6.1) is considered. The displacements in these directions are
considered small and the effects of variations of u along the stringgr5
negligible.

-83 -



According to the above stated assumptions the jump in bending momement,

radial shear Vr

-y R
r

where
Vo

VW

where

%4

The other coefficients appearing in (6.4.1) are given in 2.3.3 and 4.

1t

i

Y

[t

i

it

LK f 4 A
K, V.. + Kua¥p * Kglp + 1
+ Kw =K 4
W T Pue v
Ko oW+ - N
v KV“GF

Egt(Aylng - A Tg) - (C, = A)

Egtlng

3

s b
Do/hg

Er”Ig + A

and in plane force Nr

. *2
9]
14“0

Ag o

4

*2
0

across the stringer are given by:

.. (6.4.1)

From equations (6.4.1) Henderson and McDaniels point transfer matrix

is derived:

N
u

Y
W
8

M

R

S O OO O e

OO

0 0 0

1 0 0

0 1 0

0 0 1
Ko K K

Vg W5 8
Kw Ky Mg
K —

v v V6
0 0 0

_84,.

- OO

lany

o O

o

oo O O

<

oo o o o

/\L
u

v

W

.. (6.4.2)



Neither Lin nor Henderson and McDaniel were interested in wave propagation
through perfodic  structures but in the forced response and natural
frequencies of a finite stringer-stiffened shell using the classical

transfer matrix approach |13

Stringer-stiffened shells have been considered in this work because
it provides a good example to check the numerical procedures related to
the method established in chapter 1II.

In order to derive the point transfer matrix for a ring, resort will

be made to the general equations produced by Wah and Hu [25]:

L 3 N2y,
Eﬁ.(éiﬁ BCRAS I Eﬁ.(w + Yy 4 pA Chs.A . Fo (ost)
R4 Bd;L* 3¢3 R2 3 3t2

3w 2 2 n2
EE.(imh - 3%Yy - Eﬁ.(§ﬂ~+ A%y 4 pA 2 LA Fy(est)
R 393 342  R2 gy og2 at2

7 L 2 2 2 2
E] (LU . g 229y . GJh(a Uy R 2AZ8y pA 25U = F (4,t)
Rq a¢4 a¢2 RQ 8¢2 3¢2 atz H

FT 2y 6J a2 2
== (R~ 22y 22 ATy p 378y pIp R = RF6(¢,t)
R2 a¢2 R2 8@2 3¢2 3t2

In equation (6.4.3) I is a principal moment of area’ of the ring
cross-section about an axis parallel to the radial direction. The
quantities FW, Fv, Fu and Fe are the external forces and twisting moment
per unit length acting on the ring (see fig. 4.1).

The other constants appearing in equations (6.4.3) have already been
explained in chapters II and IV. It will be assumed here that rings and
cylindriealshells have both the same mass density, an assumption that can
easily be‘dropped if necessary,

Now applying expressions (6.3.1) to the differential equations (6.4.3)

assuming that
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q,‘st)

Fu(¢5t>

0

Fo{o,t)

and noting that

Wr

VY

where

1

= rzx er sin ry e
= r?} er COS rg
= r§1 ‘ur sin re e
= rg} Fgr sin rg
rL ) VrR
.R _ TrL
R _ NrL
R _ MrL
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K
b

K
v

1t

aé‘
Notice that

vanish when

ET 6J 2,
Sy p2 FS . g g %2
R2 R2 priao
pa B L EA
Ru k2
N
R4 R2 40
Y‘L‘L E}__ + )’*2 EE]— A-Of Q *2
R® R& P
2 EL 4 o2 Eﬁ. ~ A.a. q *2
Ru R2 40
D./2kh

the coupling coefficients K: and K in
ne coupling f ts Kyg v

r

0 (axi-symmetric case).

the above expressions

Expressions (6.4.4) can now be used

to determine the ring point transfer matrix:

-
-V

TR

W

M

V

The square matrix appearing in (6.4.5) is the p

a ring.

1 0 0

0 1 0

0 0 1

0 0 0

4] K 0
us

Koy O "

0 K 0
u

-K 0 -

0 W

0 o 0 0 0 - b
0 0 0 0 0 u
0 0 0 0 0 W
] 0 0 0 0 9

f . (6.4.5)
K9 1 0 0 0 M
0 0 1 0 0 v
0 0 1 0 N
ue

0 0 0 0 1 T

_r § r

oint transfer matrix for
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6.5 THE PERIOD TRANSFER MATRIX,
The period transfer matrix is obtained, as always, by performing the

product ijr {T}F, where [P] is the point transfer matrix. For easy

r
computation the elements of the period transfer matrix can be written as:

a) for stringer~stiffened shell:

F . .
¢ . = . < 4 = =
t‘l9\} t -t,J k3 -‘ & 3 T 87 J ’2’8
_ L F , L F F JF
ts,j = t 5, + kvet 2,3 + kwet 3,3 + % b3
.. {(6.5.1)
F F F F
t = - K
6,J t 6+ * Kth 245J * Kwt 3,3 Kugt by 3 J = 1.8
- F F _ F _ F
t7,3' =t T Kt 2, Kow 35 Kyt 3
b) for ring stiffened cylinder:
- .
t_i ’j - t _553 3 ’l S 45 J e }:8
_ L F F F
tSsJ ) t 553. * Kuet 257 * K@t L?sj
- B F .
tB,J =t 6] Kowt 153 Kwta,g
(6.5.2)
_ .F F . F -1 0
t75j - t 7:lj * Kut Za.j ‘ KUGt L’rs.j ? J = }’U
_ 4 F . _
ta,j =t gsd Kvtl,j Kth3,j

1f the situation is such that one decides to assume that the transverse

displacement is zero the period transfer matrix can be written as
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a) for stringep-stiffened shell:

t*. . = *F. .y 1« ?m i o= M i o= e

1,3 Py, Ted =060 J=1.0

F F F
* == * i K n <.~7<‘
t L j t 433 K KVGt 2$J ) IGt 3sJ (6.5¢3)
2
j=1,6

t* . = t*F .+ K t*F L+ K t*F, .

5sJ 55J v 220 Vo 3sJ

b) for ring-stiffened cylinder:

F
* . . -
t‘t,j L i,J 5 153,\} 196
, F F F
t = t* O + K t* .
PN byJ Ug AN 8 35J
.. (6.5.4)
F +F F
* o * " -k *
t Jaj t 5, ’ Kut 2, ¥ Kuet 393 s j = 156
F F
* = * - %
Pe,s = Ve TN

-

In expressions {(6.5.1) to (6.5.4) F stands for 'field' and the star means
‘reduced', that is the reducing technique described in appendix B has been

applied to the original field transfer matrix to obtain {TF*j.

6.6 NUMERICAL RESULTS
In this section a ring-stiffened cylinder (fig.4.1) and a stringer-
stiffened shell (fig. 6.1) are considered for numerical computaticons. The
data for the ring-stiffened cylinder are the same as Example III 1isted in
chapter IV. The data for the stringer-stiffened shell is the same as
Example I with the additional data for the radjus which is R = 182.88 cm .
A1l three methods of computation of the field transfer matrix have

been used to compute vy ” QO* curves. The numerical results are virtually
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the same. As far as computing time is concerned the method based on the
eigenvalues and eigenvectors of LAjrshows an advantage of 20% over the
truncated series method but is practically equivalent to the modified

method based upon Cayley-Hemilton Theorem.

6.6.1 Stringer-stiffened shell results

Table 6.1 1ists the Tower and upper Timits for the first three bands
of the stringer-stiffened shell.

Also shown on table 6.1 are Lin's results |1]| and the Tower limit

of the first band computed by Henderson and McDaniel |4]. This last
tigure refers to a closed skin~stringer shell made up of 56 bays.

Henderson and McDaniel had applied the traditional transfer matrix
approach |4| to find the first natural frequencies of closed skin-stringer
structures. One can see by looking at table 6.1 how close their computed
first natural frequency is to the Tower Timit of the first band found in
this work.

On the other hand, apart from the lower limit of the first band, the
results obtained in this work are very different from those shown by Lin.
Fig.(6.2)shows the first three propagating bands as computed in this work
and fig. (6.3) represents the numerical results produced by Lin. The
dashed lines linking the 1imits of the bands is to remind that the inter-
mediate frequencies have not actually been computed by Lin. One could see

that the two bands shown in fig. (6.3) actually overlap, a fact not shown

in fig. (6.2) in the first two bands.
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Table 6,1 Comparison of results obtained by Lin, Henderson and McDaniel
and the technique developed in this work. Stringer-stiffened

structure with ASP = 2.44.

o~ Qg technique Lin's Method Henderson and
McDaniel

1o % Hz Hz Hz

7 19.9975 114.3 104.5 112.3

0 39.45826 226.0 414.0

T 55.9429 321.0 232.3

0 63.23307 362.0 496.6

0 78.4660 450.0

ﬂ 96.21064 550.2

To boost the confidence in the numerical methods and techniques used in
this work further runs have been done with increased values of the radius.
Radius of 2.5R, 10R, T100R and 1000R have been considered. The aim was to
see whether the above results would steadily converge to those of the flat
plate when the radius gets bigger and bigger. Table 6.2 shows that it
actually happens. This fact is believed to be a necessary check on the
techniques used in this chapter. J

One should point out here that the results produced in table 6.1 have
been obtained in three different ways, that is, each time one of the
techniques for the construction of the field transfer matrix described 1in
chapter V has been used.

Lin's method for curved structures is radically different from that
for flat ones. Instead of using the 'exact' approach developed for flat
structures (which would be extremely laborious) he derives an approximate

energy method.
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Table 6.2  Lower and upper frequency limits of passing bands for

different radius. Stringer-stiffened structure with

ASP = 2.44, R = 182.88 [cm]

M R 2.5R 10R

100R 1000R

Flat Plate*

T 19.997 17.595 17.209

0 39.458 34.505 23.610

T 55,943 55,813 55.711

0 63.233 39.662 39.781

17.217 17.221

22.690 22,681

55,697 55,695

39.819 39.823

17.222

22.681

55,714

39.865

* Results obtained in chapter IV

The numerical results seen in tables 6.1 and 6.2 were obtained by

making use of a state matrix based on the more general set of Flugge's

equations., The simplified equations (Donnell's equations) used to derive
the state matrix in expression (6.2.8) have proved to be just as good for

the computation of the first two passing bands as one can see by looking

at table 6.3.

Table 6.3 Stringer-stiffened structure.

Donnell's and Flugge's general equations.

Comparison of results from

Simplified Flugge's
equations (Donnell's eq)

General Flugge's
Theory

20.0132

39.4645

55.9335

63.2510

19,9975

39.4583

55.9429

63.2331

The reducing technique explained in appendix B has been applied here with
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I, =3and I, = 6, that is, the transverse stiffness was considered
infinjte.
In table 6.4 a comparison is made between the original results and

those for the reduced structure.

Table 6.4 Stringer-stiffened shell. Variation of results when the

stringer transverse stiffress is considered infinite.

Original structure Kw = w
20.0132 20.0132
39.4645 39.4653
55.9335 55.9486
63.2510 66.0664

As can be seen the results for KW = « are good enough to represent the
original structure. For other kinds of stringersa careful analysis must

be made on the grounds of the discussion presented in chapter IV. The

main advantage of elimination of degrees of freedom (when it is justifiable)
is some time saving in computations. For instance, it took 40.046 seconds
in a CDC 7600 computer to calculate the two first passing bands of the
original structure when the method based on the eigenvectors and eigen-
values of [A] was applied. With the reduction technigue applied as explained
above the time was 35.953 seconds which means an economy of just over

eleven percent. Fig. (6.4) and fig. (6.5) show QO* - u curves for the
stringer-stiffened shell corresponding to n = 0.0 and 5 = 0.15 and with

an aspect ratio equal to three. The propagation constants have been
numbered for easy understanding of the graphs. A number refers to the

real or imaginary part of the corresponding propagation constant if it is

below or above the 0-0 Tine, respectively. Again it is convenient to
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consider fig. (6.4) as a limit to which fig. (6.5) tends to when damping
tends to zero.

Considering now fig. (6.4) one can see that propagation constants
1 and 2 are complex conjugates up to point A(QO* = 39.130) and propagation
constants 2 and 3 are complex conjugates from 2,% = 39.130 to 44.736
(point B).

This same graph shows two complete propagation zones the first being
associated with the propagation constant numbered three. The second
propagation band can be considered in three parts. The first part is
associated with propagation constants 3 and 2, that is, these are
‘propagating' propagation constants. So, associated with any frequency
within this first part there are two propagating waves. The second part
of the second band is associated with propagation constant number three
only. In this part of the propagation band the propagation constant
number two becomes 'attenuating'. The third part of the second propagation
band is also associated only with propagation constant number three, but
one can see that there 1is an overlap with the third propagation band
(propagation constant number two starts propagating again). The reason
for usinchhere aspect ratio equals 3 (instead of 2.44 used before) is to
enlarge the second part of the second propagation band for easier
visua?isatioﬁa IT the aspect ratio of 2.44 were used this region would
almost disappear as one can understand by looking at fig. (6.2). The
aspect ratic was increased by holding 2 constant and increasing b
(distance between frames).

Fig. (6.6) and (6.7) show QO* - v* curves (that {is non-dimensional
phase velocity plotted against the non-dimensional frequency) for the
stringer-stiffened shell with ASP = 2,44, Fig. (6.6) corresponds to the
first propagation band and fig. {6.7) to the second one. It is again very

clear from fig. (6.7) that for any frequency within the band (47.736,
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55,943) there correspond two groups of free propagating waves. In fact,
since the second and third bands overlap in the way shown in fig. (6.2)
one could say that for most frequencies within the second band there

correspond two groups of waves.

6.6.2 Numerical Results for ring-stiffened cylinders

Computations of y - QO* and g * - y curves have been carried out
for the ring-stiffened cylinder mentioned in the beginning of this section.
Different numbers of circumferential waves have been considered and

fig. (6.8) and (6.9) are typical plots.

Fig. (6.8) was computed for five circumferential waves and fig.(6.9)
for two. Comparison of results is difficult because of the lack of
comparable data available. Wah and Hu |25] have considered fifteen bays
of the above ring-stiffened structure simply supported on two 'half-rings'
placed at both ends. They have computed the first natural frequency for
some circumferential wave numbers.

If their ring-stiffened cylinders were infinite the first natural
frequency (for any circumferential wave number) would have to coincide
with the lower 1limit of the first propagating band. For finite structures
supported at the ends the comparison is not always so strajight forward.

Wah and Hu have shown that the transverse displacement along the
structure (15 bays) follows an overall semi-sinusoidal pattern with some
inter-ring displacement superimposed upon it.

1f the number of circumferential waves is large (say greater than
three) there is considerable inter-ring motion and the potential energy
of the structure is very little due to the overall semi-sinusoidal
displacement. In this case and if the number of bays is large the first
natural frequency of the finite structure (for r » 3) should compare with

the lower limit of the first propagation band of the infinite structure,
g
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Table 6.5 makes such a comparison.

Table 6.5 Circular frequencies (rd/sec). Comparison between the lower
1imit of the first propagation band with the first natural

frequency of a 15 bay structure.

U r Wave propagation Wah and Hu
method

0 3 4.140 4,615

0 4 7.860 7.982

0 5 12.590 12.660

Note that for three circumferential waves the discrepancy between the
results is about 12% while for five waves they differ by only about 1%.
For higher numbers of circumferential waves the agreement is expected to
be still better.

When the number of circumferential waves is small (say one or two)
the inter-ring motion decreases in importance so that the elastic energy
of the finite structure is due mainly to the overall semi-sinusoidal
displacement.

The rings participate with more inertia than elasticity. In these
cases (r g 2) comparison with the infinite structure is obviously out of
the question. This is particularly true when r = 1 (rigid body motion
for the infinite structure and 'beam' mode for the finite one). The
potential elastic energy for the infinite structure is zero in this case
so is the lower l1imit of the first band. For the finite ring-stiffened
cylinder the 'beam mode' means that some potential energy plays a role
so that the first natural fréquency is well above zero.

Wah and Hu computed natural frequency for r = 2 is 4235|rd/sec| and

-~ 06 —



the Tower Timit of the first band as computed here is 1510 |rd/sec].

In table 6.5 one can see that the Tower 1imit of the first propagation
constant corresponds to u = 0, This is in agreement with the computed
mode shapes by Wah and Hu which shows that the inter-ring displacements
follow a modified sine wave pattern with localised effect at the rings
so that aw/ax = 0,

Fig. (6.10) shows the QO* - u curves for the ring-stiffened cylinders
without damping and for five circumferential waves and fig. (6.11) was
obtained for a skin damping of n = 0,15.

As was explained previously it is easier to understand the curves of
fig., (6.10) if they are considered as a limit of those of fig. (6.11) when
the damping is brought to zero.

For easy understanding the propagation constants have been numbered.
A number refers to the real or imaginary part of the corresponding
propagation constant if it is below or above the 0-0 Tine, respectively.

For instance, the number 1 just below the 0-0 1ine (look within the
first propagation band) means that the real part of the first propagation
band is zero (at that frequency). The number 2 just above the 0-0 line
means that the second propagation constant is zero. With this convention
the graph becomes almost self-explanatory.

One could notice that propagation constants 1 and 2 are complex
conjugates up to the lower limit of the first propagation band.

Propagation constants 3 and 4 are complex conjugates for frequencies
ranging from zero to 8.320 (point A(A')) and from 20.410 (point B(B')) to
38,090 (point C(C")).

Two complete propagation bands are included jn fig. (6.10) as well as
part of the third band.

) It is interesting to notice that for this structure (and for the

range of frequencies shown in the figure) propagation constant number 2 is
g propag
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the only one associated with actual wave propagation.

Propagation constants 3 and 4 are very attenuating for all the range
of frequencies shown in the figure.

Propagation constant 1 is much Tess attenuating than 3 and 4. It is
interesting to notice that at the beginning of the first propagation band
both propagation constants 1 and 2 have zero real and imaginary parts.

At this frequency both propagation constants correspond to standing waves.
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CHAPTER VII

RESPONSE OF SPATIALLY PEZRIODIC  STRUCTURES TO CONCENTRATED FORCES

7.1 GENERAL

The previous chapters have dealt with free wave propagation in
periodic  structures. In this chapter it will be shown that the same
matrix language used before can successfully be applied to the problem
of response to point harmonic forces. The propagation constants of ths
structure are supposed to be known for the frequency (or frequencies) of
interest. The case of a single harmonic force applied anywhere in a bay
of an infinite periodic  structure is first considered. The problem can
easily be extended to the case of several concentrated harmonic forces by
super position (the structure is supposed to be Tinear). As far as the
structure is concerned the only requirements are that it is spatially
periodic  and linear. Other peculiarities of the structure are by-passed
in the theory leading to the response to concentrated forces to be
developad in this chapter.

The response of finite periodic  structures will be developed in
sequence and other cases of interest shall be briefly discussed.

The analytical computation of the response of infinite and finite
structures to concentrated harmonic forces can be a powerful tool in the
interpretation of results from experiments. It will be shown that the
method developed in this chapter applies in fact to both deterministic
and random forces as well. Before tackling the problem of finding the
response of an infinite pericdic  structure to a harmonic force some
theoretical background must be explored. This will be done in the next

section.
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7.2 WAVE SHAPE ~ COMPLEX WAVE COMPONENTS

Broadly speaking, to each terminal degree of freedom there
correspond a pair of free waves, one directed to the positive and another
directed to the negative direction. Of course all of thase waves, or some
of them, can be attenuating, depending on the particular frequency
considered. In any case the spatial distribution of the deflections along
one bay can be expressed as a linear combination of functions e*3Y where
the *j are the eigenvalues of the state matrix, For simplicity (but
without sacrificing the generality of language) a flat structure will be

considered as a way of introduction. Equations (4.2.4) can thus be

written:
_ iy
wr(y) = T Cj e™J
J
- A3y
6,.(¥) 32 A Cj e’J
L (7.2.1)
S 2 . .2 rjY
Mr(y) D § Cj(xj Ty v) e
- b (o \JA AjY
V() = Dgnggf (2-v)5 ) el

where Cj are complex constants.
Equations (7.2.1) can be written in matrix form as shown in expression

(7.2.2):

{zyhy, = [F], L\e”{]r {3, .. (7.2.2)

T \
€3, = [C15C0,CasCults 12()1, = [ (y)se {y) M (y),V. () ]
r ¥ r r r r
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and

1 1 1 1
S} Y A3 AL
e 2 2 2 2 2 2 2
”D(Al"gr\)) “D(Aé”zfnv) ”0(7\3“Cr*-)) "D(M”Cr\?)
2 >
DOI-(2v)z ) DOy DRG-(2v)eihs DA (2-v)e)

For the particular case of y = 0 expression (7.2.2) reads:

{z(0)} = [F]r{C}r o (7.2.3)

Equations (7.2.2) and (7.2.3) can be combined on the condition that the

inverse of [F]r exists:

z(y)), = [Fl, CeMLT [F, "L z0)) . (7.2.4)

r

Expression (7.2.4) shows clearly that the coefficient of {z(O)}r is

precisely the field transfer matrix for a field length y. Therefore one

can write:
Oety,00] = [F, 04T 7,7 o) | . (7.2.5)

Now, expression (7.2.4) can be thought of as the solution of the state

equation {z(y)}I = [A] {z(y)}. Substituting {z(y)} in the state equation

for the expression (7.2.4) and noting that [?’ € Jy} [l ;} [ﬁ \;

ends up with the following expression:

Fl, [0, [0 ] ), o, = 1,9, €497 ] 17,z 00,



from which one concludes that

~ - I >L\—} ret =1
(Al = [Fl, EJ [F1. ..(7.2.6)
The interesting conclusion that springs up from expression (7.2.6) is that
matrix [F]r is in fact the modal matrix of [ﬂ]rﬁ that is, the matrix whose
columns are the right eigenvectors of [A]r‘ In chapter V the matrix of
the right eigenvectors of [A]r was denoted by {D}r and for uniformity of

notation equations (7.2.4) and (7.2.6) are re-written here:

{z(y)} = [TF(“y’O)]r {z(0)} L (7.2.7)

r r

and

G0, = I, [¥47] 01, 0.2.8)
Expression (7.2.8) has been considered in chapter V as providing a very
convenient method of computing the field transfer matrix.

It is not convenient to invert ﬁ)]r to compute the field transfer
matrix. Instead it is preferable to find the modal matrix of the left
eigenvector, that is, the matrix whose columns are the eigenvectors of the
transpose of {ﬁ}r. It is well known from linear algebra that the transpose
of the matrix of the left eigenvectors is the inverse of [U}r. In

mathematical notation:

[V]rT = I .. (7.2.9)

where [Y]r is the matrix of the ejgenvectors of [ﬁ]rT, provided the eigen-

. . T
vectors are normalised such that {v}m {u}j = §

]
4
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Matrix [er can conveniently be computed by using the same subroutine
that calculates [U]r (see appendix C). Now apply the basic principle of
free wave propagation in spatially perjodical structures by taking y = £

in expression (7.2.2) and considering expression (7.2.3):
[P), 2y, = [P, [u], [e)iﬂ[ﬂ];lw]rﬁjr:eﬂ1”{ﬂ]r{C}r,or

O -1
Pl [Tp(es00] U3, €€y, = &7 U] <3, or

V70T e, = e o, (7.2.70)

Therefore the complex coefficients appearing in expressions (7.2.1) can
be found by solving the eigenvalue problem expressed in (7.2.10). Note

that there are 2n eigenvalues, that is, 2n sets of complex coefficients

C‘j‘!
One can easily see that since {z(0)} = [U]{C}r expression (7.2.10)

can be transformed finto

[1] 12(0)) = e ' (z(0)) L (7.2.01)

which is the basic eigenvalue probiem dealt with in chapter I1I.
The relation between {C}r and {Z(O)}r is given by (7.2.3) from which

one can write:

3™ = W1z = V1T 120", so that

[
=
I
—

(vy) iz, 5, m=1,2 ... 2n . (7.2.12)

N

So the quantities appearing in (7.2.1) can be written as functions of the

eigenvectors of the period transfer matrix.

-103 -



Next, represent [TF(y,O)] as follows:

|80

o 020

et

5
6]

so that any component of a state vector {z(y)}r can be written as (s

expression (7.2.7)):

z. F

m
5 ¢

V)=t ) (z(0)3" . (7.2.13)

The total value of zj(y) will be:

2.(y) = 5 Zy) = pﬂygo)l (3(2(0)

m
L (7.2.74
; ) (7.2.14)

(—y

More generally a state vector can be written as:

2z = e300 (xz(0)™) , m=1, o .(7.2.15)
m

m

remembering that {z(0)}" are the eigenvectors of the period transfer

matrix.

Note that the state vector in expression (7.2.15) is not completely
determined because the eigenvectors of the period transfer matrix are only
computed within an arbitrary constant. Therefore expression (7.2.15) can

be written in another very convenient form for computations:

Zn
zWr = 5 e Ly () < (7.2.16)
m=1

where o, are arbitrary complex constants and
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W (y)yt = [Tely:0)]  1z(0)1, L (7.2.17)
The vectors {wm(y)} shall be called complex wave components.

In the beginning of this section a flat periodic  structure was
taken as a way of illustration. By following the steps given above it
is easy to realise that the theory developed here is indeed very general
and not at all restricted to flat structures.

In fact after writing down expression (7.2.2) all the subsequent
steps could have been done without referring to any particular kind of
structure.

Such expression can also be written by thinking of a more complicated
structure, 1In fact it has been done for a curved shell by using Donnell's
equations and the modal matrix [U]r has been written down but is not
included here. In practice it is far more convenient to compute the
modal matrix numerically (as explained in appendix C) when the number of
terminal degrees of freedom exceeds two. (For two terminal degrees of
freedom the method used in chapter IV should be used),

Therefore, as a closing remark, one should say that expression
(7.2.2) can be regarded as general and also is the theory developed in

this section.

7.3 RESPONSE OF INFINITE AND FINITE PERIODIC TRUCTURES TO CONCENTRATED
HARMONIC FCRCES

The theoretical background developed in the previous section will be
applied here to find the response of spatially periodic infinite structures
to concentrated harmonic forces.

In fig. (7.1) an infinite periodic tructure is depicted where a

oy

Hoag

is applied

.. rax ot
harmonic force represented as f(x,y,t) = ~§~ e

|l sin

r r

at bay numbered zero,
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Starting at the point of application of the force two sets of waves
are sent away, one to the right {positive direction) and another to the
left (negative direction).

Some or all of these waves might actually be decaying along the
structure, depending on the nature of the propagation constants at the
frequency . Without Toss of generality the response at bay O can be

represented by expressions (7.3.1 a and b):

n
)y’ = B )3 Y sy
m=
. (7.3.1 ab)
{z(y)y = I ()15 ¥ <y

In the above set of expressions it was assumed that the propagation
constants ui, wp, ... W, are associated with waves propagating (or decaying)
to the right. The propagation constants Hoal? Hppo? oo Mop @re in turn
related to waves propagating (or attenuating) to the left.
Now the station vectors Jjust left and just right of the point of
application of the force are related as shown in expression (7.3.2):
z()1." = tz()} - O . (7.3.2)

where {f}r is the applied force vector. For instance, in the case of a

flat structure the applied force vector is

T . N . s
i, = Ez,th 0, fﬁJ , where f_ s the amplitude of the applied
harmonic force. For the case of a general time varying force and response
an equation similar to (7.3.2) can be written with vectors {z(yj}r e““‘t

ot : . . . oy
and {f}r e! replaced by their Fourier transforms. Conseguently the

present theory can be applied to both deterministic and random problems [35].
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7w vy ) = = o {I"U,(Y)} - {f}t” , Or

{:{E’vl(Y)} e (V)Y - {1;’)””(3')} *{L})Zn(\/)] > ={f}. . (7.3.3)

Expression (7.3.3) represents a system of 2n linear equations that can be
solved for the coefficients o It is worth noting that the square matrix
appearing in the above efpression is nonsingular since the vectors {wj(y)}
are linearly independent as can be seen by their definition in expression
(7.2.17).

Therefore, by solving the system of equations (7.3.3) one is able to

find the response within the bay 0. For easier reference expression (7.3.3)

shall be written in a more compact form:

[z,(y)] logd = - {f} .. (7.3.3.3)
where
O1sy ) ( . -
Kiy) T (y) ifT1gKsgn
722K ()
| ) - (7.3.4)
{
i
i
|
d ~{y 5 i 3 \ &£ <
OznsK("r’) L‘#K({)} ifn+ ] £ K = 2n
\ / \




Now, the station vector at any point of the structure can be partitioned
as shown, for instance, in expression (3.2.1), that is, in generalised
displacement and generalised forces. The generalised displacement does
not change when 'transferred' across a support (compatibility condition),

so that one can write:

where the subscripts 0 and 1 stand for bay 0 and bay 1.

It is convenient to remember that

g ) = 7.y) i=1,n

With the above considerations made it is possible to write:

(6, m(0)]
1y
N g, m(0)
{ale)ly = 1q0)yy = 2 en 2, (7.3.5)
e o (7.3.5
g, m(0)
L s b,
In general for the bay numbered N one has:
\
C-:l m(y)
H
n 02>m(y> Mi(N””L‘m
ey = oo, , e ..(7.3.6)
m=|
Gn?m(y)
One should note that expression (7.3.5) represents a set of linear

equations that can be solved for S that is:

i
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glgm<0) o1
Oz’m(O) o
. ] o= q(£) .. (7.3.5a)
) 0
o
On9‘ \O) \O’,n

Note that {q(z)}o is computed by using (7.3.7a).

In expression (7.3.6) y is a local variable varying between 0 and &
and {q(y)}N means the general co-ordinates within bay number N.

Having solved eguations (7.3.5a) the complete state vector at bay N

can be computed by using (7.3.7):

(o, m{y) )
ozam(y)
‘ n =i {n-1)u )
{Z(y)}N = i o p : e m A7.3.7)
m=1
02n>m<Y)
\ J

Obviously what was explained above for a bay on the right of bay numbered
zero (this will be called a positive bay) can be applied 'mutatis mutandis’
to a bay on the left (negative bay) of bay zero. Therefore the above
theory gives the response at any point of a spatially periodic infinite
structure. The main role in this theory is played by the complex wave
components defined in expression (7.2.17). Since the system has been
considered linear the response to several concentrated harmonic forces

can, obviously, be obtained by superposition.

7.4 RESPONSE OF FINITE SPATIALLY PERIODIC  STRUCTURES TO CONCENTRATED
HARMONTC FORCES

Section 7.3 has dealt with the response of infinite periodic  structures
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to harmonic concentrated forces.

The response of a finite periodic  structure can be obtained by
taking the response of the structure as if it was infinite and adding
the effects of the boundaries. The effects of the boundaries are the
reflections of the free waves at the corresponding fregquency. In

mathematical form the response can be described as (see fig. 7.2):

Zn i ~(3+M)um
{z{y)}. = {z({y)t.. + 2 a_{v (y)} e o (7.4,7)
J % m=1

where j is the number of the bay where the response is computed. The
application of expression (7.4.1) to the boundaries gives a system of 2n
Tinear equations from which a. are computed.

As a way of illustration a stringer stiffened plate (fig. 7.2) will
be considered. Shear force and bending moment at the ends of the structure
are zero.

For the right hand side of the first and last stringers one can write:

/’

21(0) 21(0)] 9, m(0)
2n ’
J ) = + L oo
m=1 ™
z2(0) Y ZwZ(OU Y ¢y, m(0)
L / ’
. (7.4.2a,b)
0 z_3{(0) ¥, m(0)
2n - (N )
= + z Ctm . e :
m=1 .
0 AU P ¥, m(0)

The sTight modification of subscript notations introduced in (7.4.2) is self-
explanatory.

The state vector at the right of the first stringer can be written
as:
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-~z
L

from which

,
z3(0)

ZH(OU Y

But

23(0)

ZL&(O) M

/

wWo

W

z1(0)

z5(0)

. m(0)

wq m(O)

- (M1

o (7.4.3)

. {7.4.4)

Substitutions of (7.4.2a) and (7.4.4) in (7.4.3) and using (7.4.2b)

lead to a system of four linear equations from which the coefficients

can be found, that is
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Having determined the coefficients % the response can be found by taking
them to (7.4.1).

The steps given in this section can be repeated for other kinds of
boundary conditions as well as for more advanced structures.

The knowledge of the complex wave components permits the computation
of the response of periodic structures in many other cases. For instance,
a semi-infinite or finite periodic structure with base (ground) excited

motion can easily be dealt with.

7.5 NUMERICAL RESULTS

In this section some computer results for stringer-stiffened plates
and shells will be presented and commented on.

A harmonic force of unit amplitude is applied at a point of & bay and
the response is either plotted along the structure (for a certain value of
the frequency) or plotted at a single point for a suitable range of
frequencies (frequency response plot).

When plotting the response along the length of the structure a

non-dimensional co-ordinate is defined such that:

V2]
i

G+ Ty/e 5 3=0,0,2....

92}
1

jy/g’ 3 j:"]y -'2 PRI

where j numbers the bay where o lies.

In this section both finite and infinite structures are considered
and the results commented on. The stringer-stiffened plate considered
here is the same as called Example I in chapter IV and the stringer-

stiffened shell is the same as that appearing in chapter VI.
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7.5.1 Stringer-stiffened plate

As a first example an infinite stringer-stiffened flat plate is taken
and a harmonic force of unit amplitude is applied in the middle of a bay.

Fige 7.3 and 7.4 show the amplitude response of the displacement and
moment of an undamped infinite stringer-stiffened plate for two values of
the non-dimensional frequency. Curve 1 is for s%* = 18.175, a propagating
frequency, and curve 2 is for 9.% = 0,10 which is an attenuating frequency.

The response is plotted only at bays 0, 1, 2, 3 and 4. There is no
need to plot the response at the left of bay 2 because of the symmetry of
the structure and Toad. The displacement and moment are made non-
dimensional by multiplying them by 1/h and h/D, respectively. It can be
seen that for the propagating frequency (18.175) the moment has its peaks
at the stringers but the displacement amplitude is greater in the middle
of a bay. The response at the frequency 0.10 resembles that of a beam on
an elastic foundation acted upon by a static force [36].

Figs. 7.5 and 7.6 show the amplitude response along the structure at
the Trequencies 90* = 49.363 (a propagating frequency) and Qo* = 34,10
(an attenuating frequency). Frequency 49.363 falls within the second
propagatfon band and frequency 34.10 lies inbetween the first and the
second propagation bands.

One can see that the response at these high frequencies tends to be
very small if compared with the response, say, for frequencies belonging
to. the first propagation band (figs. 7.3 and 7.4). What was said above
refers to an infinite non-demped stringer-stiffened flat plate (Example
I in chapter 1V).

Figs. 7.7 and 7.3 show the response of the same structure but with
some damping (n = 0.15) in the skin for the frequency 18,175,

~

The main effect of this amount of damping is to introduce an amplitude
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decay along the structure (note that 18,175 is a propagating freguency
for n = 0.0). The decay is due to the fact that damping makes the
imaginary part of uy (zero for n = 0.0) different to zero.

The reduction in the amplitude Tevel in the first bay is very small
indeed. Notice that the peak value of the non-dimensional moment for the
non-damped structure is 2.448 x 107° while for the damped structure it is
2.213 x 107°%,

Computations for the same structure excited at the same frequency
(18.175) with a damping level of n = 0,25 shows that the maximum moment
is 1.793 x 10“3. When damping is increased from 0.15 to 0.25 the
reduction in the maximum moment amplitude is about 22% and in the maximum
displacement about 27%.

To have an idea of the effectiveness of damping in reducing the
response level one could think that for the same increase in damping
(0.15 to 0.25) a single degree of freedom system would have its amplitude
of vibration leyel reduced by about 65%. But damping in the stiffened
plat structure is extremely important when the exciting frequency
ceincides with one of the Tower or higher Timits of a propagation band.

In these‘particular cases the steady state amplitudes of the response
would be theoretically infinite if no damping was present in the structure.
The results shown so far refer to an infinite stringer-stiffened

plate.

In figures 7.9 and 7.10 one can see the amplitude response for a
Tinite stringer-stiffened plate with seven bays and with the force applied
at the middle of the structure. The response is plotted for four bays,
that is bays 0, 1, 2, 3 and 4 (see fig. 7.2). The skin is only supported
by a stringer at the ends of the structure. Damping is zero.

The frequencies of exictation are 18.175 and 0.10 as in figs, 7.3 and

7.4,
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Théiresponse of the finite and infinite structures are virtually the
saime for ab* = 0.10. This is expected for this is a heavily attenuating
frequency, which means that there is almost no reflection at the
boundaries.

Now, the response at 18.175 is  radically different from that of
the infinite structure. This again is expected because this is a
propagating frequency and there is full reflection at the end supports
(stringers).

Since damping causes the amplitude of the propagating waves to
decay along the structure (and, consequently, decrease the effect of the
reflections at the boundaries) one should expect that above a certain
amount of damping the responses of the infinite and finite structures
(with many bays) will be almost equal.

This is in fact true as figs. 7.11 and 7,12 clearly demonstrate.
These figures show the response of the above described finite structure
with some damping (n = 0.15) in the skin and for the frequency 18,175,
Comparison between these two figures with figs. 7.7 and 7.8 show how
close these results for finite and infinite structures are,

It is also interesting to notice the dramatic change in the
distribution along the structure of the amplitude response when some
damping is added to the finite structure (compare figs. 7.9 and 7.10
with 7,11 and 7.12, respectively).

The computation of the response of the infigite stringer-stiffened
structure took 17 seconds at the ICL 1907 computer. The same
computations performed for a finite structure took 35 seconds. In both
cases the response was computed at a hundred points in each bay and for
two different frequencies.

One could safely say that the method developed in this chapter is

very efficient both in time and in storage (29k for finite and 14k for



infinite structure).

So, an infinite periodic structure can represent with advantage
(from the computational point of view) a finite one, provided it has
many bays away from the excitation point and a moderately high amount
of damping. Therefore, considering that these assumptions hold, it is
more convenient (from the computational point of view) to compute
frequency response curves for the infinite structure and assume that
they are representative of a finite one, no matter what sort of boundary
conditions there are at the ends.

Figs. 7.13 and 7.14 show frequency response plots for non-dimensional
displacement and moment for an infinite stringer-stiffened plate with

= 0,25, It is shown in these graphs that deflection and moment have a
peak at around QO* = 17.222, that is the Tower limit of the first
propagation band. If the structure had no damping the steady state

response at 17.222 would bz theoretically infinite, as was stated before.

7.5.2 Stringer-stiffened shell

The results to be shown here are restricted to infinite stringer-
stiffened shells. This decision was taken bescause, as it happened for
plates, one should expect that above certain levels of damping and with
the force applied sufficiently away from the boundaries a finite shell
structure would produce a response very close to that of the infinite
structure,

For cases where damping is not sufficiently high or the force is too
close to one of the extreme biys the infinite model no longer can
represent the finite one and the theory developed in this chapter for
finite periodic structures must be applied. Most of what was said for
flat plate structures could now be repeated in connection with stiffened

cylindrical shells.

|
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Figures 7.15 and 7.16 show the amplitude response of the undamped
stringer-stiffened shell for the frequencies QQ* = 22,10 (falling within
the first propagation band) and 0.65 (an attenuating frequency). Amplitude
response along the structure when the shell is damped has also been
obtained but is not shown here. In fact there is nothing dramatically
new in these curves in relation to those obtained for the flat structure
~except that amplitude of displacement and moment are comparatively smaller,
which is expected. Figs. 7.17 and 7.18 are the counterparts of figs. 7.13
and 7.14, They represent amplitude response of the cylindrical shell at
the middle of a bay to the harmonic force applied at the same point. The
peak response occurs very close to the non-dimensional frequency 20.72

which in turn is very close to the lower 1imit of the first passing band.
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CHAPTER VIII

RESPONSE OF PERIODIC STRUCTURES TO CONVECTED PRESSURE FIELDS

8.1 GENERAL

This chapter sets out to establish a general wave theory to compute
the response of spatially periodic structures to a convected harmonic
pressure field. The knowledge of the frequency response of the
structure to such fields is basic to find the response to more complex
ones, such as convected random acoustic fields and boundary layer
fluctuations.

The power spectral density function of the response to a random
pressure field can be computed when the power spectral density of the
exciting field and the frequency response functions are known |42],

[11], |34].

This chapter will be concerned only with the computation of the
frequency response function, that is, the response of the periodic
structure to a convected simple harmonic pressure field of unit amplitude.

The method to be developed here can be considered as a generalisation

of that presented by Mead |37].

8.2 RESPONSE OF AN INFINITE PERIODIC  STRUCTURE TO A CONVECTED
HARMONIC PRESSURE FIELD

Assume an infinite periodic structure excited by convected harmonic
pressure field of the form:
rixy o 1ot - ky) ..(8.2.1)

p(X)y’t) = FE] (por sin b

where k is the wave number.

~
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The phase velocity of the convecting pressure field is CV = 9/k,
and this is identical in this case with the convection velocity of the
pressure field. This convected pressure field exerts pressures of equal
magnitude at all points of the structure but with a phase difference of
-ky between two points distant y apart,

The state equation can be written as
' : ~ik
z(y) = [Al, (z(y)) - tp,,} e Ty ..(8.2.2)

The forcing vector appearing in (8.2.2) will have different forms,
depending on the circumstances. For instance for the stringer-stiffened

plate considered in chapter IV {por} will be

¢ -,

0
0
{por} = <0
p

or

and for the shell structure

{pw}r.ﬁjoooo%r@(ﬁT

Ve

To solve equation (8.2.2) assume a solution as given by expression {8.2.3):

{z(y)} = [U] {c(y)? ..(8.2.3)

where [U] is the modal matrix of [Al.
The subscript r has been dropped from expression (8.2.3). Taking
expression (8.2.3) into equation (8.2.2) and pre-multiplying both members

21
by [U] the result is
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-1 A . . .
Noting that [U]™ [A] [U] =[ kg\] the above expression is transformed into

equation (8.2.4):

{z(y)}' = [ij\] {z(y)r - {8} e~1ky ..(8.2.4)

Expression (8.2.4) represents a set of 2n ordinary differential equations

of the form:

i) = ALy) - o e Y, 521, 2n ..(8.2.5)

It is very easy to solve the equations (8.2.5) [38] and their solutions

are:

~iky .
= 0, S My -
tily) = 95 R Cs e, ry # ik ..(8.2.6)

where Cj is an arbitrary constant.

Expressions (8.2.6) can now be rearranged in matrix form:

-1k 1 . Aj
{C(y)} S Y &mjie} + Ee ‘]Q {C}s .-(8.2.7)

kj £ ik

When expression {8.2.7) is taken into (8.2.3) and it is noticed that
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the final solution to equation (8.2.2) is

{z(y)} = e 1KY 1! p} + [TF(y,O)] €, ..(8.2.8)

where {C } = [U] {C} and [x] = [A] + ik[I]. Notice that {c, is an
arbitrary constant vector. This vector can be found by noticing that the
phase difference of the response at two different points of the structure
separated by the periodic Tength is equal to the phase difference of the
exciting pressure field at the same points. When this property is applied
for the extremes of a period of the structure the following expression

applies:

Pl {z(e)y = &'** 1700 ..(8.2.9)

By making use of expressions (8.2.8) and (8.2.9) the following system of

Tinear equations is found:

r s ol _
[[P] [Te(2,07] - e"“[ﬂ] (c) = -e *”[[PJ - [0 7 ey
.. (8.2.10)

Alternatively expression (8.2.10) can be written:
- - ~ikg .~1 : ~iky P
[U’J [Tpts0)] - o™ ’{_zﬂ‘ () = [Pl [p(e,01] -e ”‘*”Bj} 57 g
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Solving the system of equations (8.2.10) for the vector {CU} and taking
this vector into expression (8.2.8) the response is found.
Instead of inverting the matrix [x] it is more convenient to follow

the procedure below:

I

Call {zp} [X]nl {p,} so that

[ 2,1 = ipg) .. (8.2.12)

It is enough now to solve system (8.2,12) and take {zp} into equation
(8.2.10) or (8.2.11).

When the response {z(y)} is computed for a certain range of frequencies
for Py = 1 the result is the frequency response function for that same
range of frequencies.

Since the frequency response function is a function of both frequency

and convection velocity a more adequate notation will be adopted, that is:

i u

o

tHag*s o)y = e 7y 4 [TF(y,oﬂ i } .. (8.2.13)

When the frequency response is known the power spectral density of the
random response {SZ(Q)} is related to the power spectral density of the

excitation by

! [2
" A
(5;(2,4)) = {h(szo*,f:\{}‘ }sp%*) .-(8.2.14)
The non-dimensional mean-square response is given by
Q &
_ 0 max
<«%2(t2}> = f {SZ(QO*)}dQO* ..(8.2.15)
0
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Expression (8.2.14) applies only for pressure fields with a frozen wave-
form with only one convection velocity. Such excitation does occur, for
instance, in the far field of a jet noise.

When the pressure field is not frozen as it occurs in the near field
of a jet noise it has a spectrum of wave number components at each
frequency and can be represented by the wave number/frequency spectrum
Spla,7sk) 111], 139]. In these cases the response spectrum at any
frequency can be obtained by integrating the wave number/ frequency
spectrum over all wave numbers:

Feo
{S;(e,%)) = }H(QO*,kSCV)} Sp(2,*5k) dk ..(8.2.16)

Looking back now at expressions (8.2.7) and (8.2.10) (8.2.11) it

can be seen that large responses are expected when one (or both,

simultaneously) of two things occurs:

First, when Xj = ik, for some xj. This is the normal coincidence
phenomenon of the unsupported structure combined with the harmonic
pressure field.

Second, when k& is equal to one of thé propagation constants of the
structure. In this case the square matrix appearing in the left hand
side of (8.2.10) (8.2.11) becomes singular. This means that, at that
particular frequency, the phase difference k2 between pressure distance
% apart.is equal to the phase difference yg between free wave motion at
points 2 apart. The convection velocity of the harmonic pressure field is
then equal to the phase velocity of one of the free wave components.

This second coincidence pheonomenon can occur at much lower

frequency than the ordinary coincidence phenomenon (Aj = -ik).
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8.3 RESPONSE OF FINITE PERIODIC STRUCTURES TO A CONVECTED HARMONIC
PRESSURE FIELD

The response of finite periodic structures to a convected harmonic
pressure field can be computed by following the same approach as used in
chapter VII, that is, it consists of the response of the infinite structure
plus the effects of the boundaries. These effects are the free waves due
to the reflections at the boundaries.

In mathematical form (see fig. 8.1):

=

2 “(J"”Uk

{z{y)d; = 2, () + 51 o (9 (¥)} e .. (8.3.1)

N

In this section a finite structure with one of the periodic supports at
each end will be considered as a way of illustration. It will become
clear, nevertheless, that the derivation to be shown below could have been
carried out for any other boundary conditions,

Consider an N bay finite periodic structure (see fig, 8.1). The
particulars of this structure (apart from being periodic with N bays and
with a support at each end) are not relevant to the following derivations.

For j =1 and y = 0 (that is, at the right hand side of the first

support) eg. (8.3.1) becomes:

2

LR N B

{Z(O)}} = {ZCO(O)}-‘ + ’:ik {L’)k(O)} -'(8~3*2}

k=1

At the right hand side of the Ntb bay (left hand side of the imaginary
(N+?)th bay) one has:

{Z(O)}N+T = {Zw(o>}ﬂ+7 + kzi oy {¢k(O)J e : .. (8.3.3)
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Note that

{z(0)}, = [P] {z(2)}

: [ . (8.3.4)

0
where [P] is the point transfer matrix.
The generalised forces at the Teft of the first support and at the
right of the last one are zero. These conditions when applied to
expressions (8.3.2), (8.3.3) and (8.3.4) lead to a system of 2n linear
equations for which the constants @ are found. In the following two
sub-sections two cases will be considered, a stringer-stiffened plate
and a stringer-stiffened shell.

8.3.1 Finite stringer-stiffened plate

Equation (8.3.3) gives:

0 M.(0) 4 o kO i
= + I oy e ..(8.3.5)
k=1 .
0 M. (0) ey 7,k (0)
From (8.3.4) one can take:
M Kwe K9 W
= ..(8.3.6)
Yy Ky “Kus °
and from (8.3.2):
/ Ny
W w_(0) 4
{ = + z o
(7 ek
‘ ’ . (8.3.72,b)
(1 M_(0) 4
= + I q
; 1
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Combining equations (8.3.5) and (8.3.7a,b) the result is:
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Expression (8.3.8) is a system of four equations in the unknowns
Ojs Oy O3y Oye

Solving this system and taking the o coefficients to expression
(8.3.1) the response of the stringer~stiffened structure to the

convected harmonic pressure field is found.

8.3.2 Finite strincer-stiffened shell

A system of equations similar to (8.3.8) can be found for the
shell case. The steps are the same given in the previous sub-section
and will be omitted here.

The system of equations for the shell structure is:
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In chapter VII it was seen that above a certain moderate amount of
damping the response of the infinite and finite structures are practically
equal, provided the force is sufficiently far from the extreme bays. In
these circumstances the infinite periodic structure model is a good
representation of the finite one (no matter the kind of boundaries) and
indeed more convenient for computations.

When a finite periodic structure is being excited by a convected
harmonic pressure field the picture of the excitation 'sufficiently far
away' from the extremes cannot exist. Nevertheless, the infinite model
can still be a good representation of the finite one, as has been shown
by Mead [37|. In his paper Mead compares the greatest rms response (see
expression 8.2.15) in any one bay centre of a five bays beam with that of
the infinite beam.

The beams were damped with n = 0.25 and they rested on simple supports
with torsional elastic constraint. The exciting field was a convected
random noise of constant power spectral density.

Mead found that the rms curve for the infinite beam was very close to
the curve of maximum rms in any bay centre of the finite beam.

When the mean square responses at the five bay centres were averaged
and piotted against the convected velocities the resulting curve was
extremely close to that of the infinite beam. This comparison has been
répeated for many other values of damping with the same conclusion,

Since this sort of average is often enough for design Mead concluded
that the infinite structure is a good representation of the finite one.

In this chapter results for infinite stringer-stiffened plates and

shells are presented and discussed.
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8.4 NUMERICAL RESULTS

As was stated in the last section only results concerning infinite
structures will be presented here,

More specifically, two kinds of structures will be considered :
an infinite stringer-stiffened plate (Example I in chapter IV) and an
infinite stringer-stiffened shell (the same dealt with in chapters V1
and VIT) with a pressure field convected around the circumference.

A stringer-stiffened cylindrical shell is not, of course, infinite
in the circumferential directions. However, the assumption that it is
infinite can be justified provided there is enough damping, or wave
attenuations, present to cause a wave generated at one point to be
negligible by the time it has travelled completely around the c¢ircumference
back to its starting point,

Also, the concept of a random pressure field convecting around a
circular stringer-stiffened shell, with a uniform ampTitude and convection
velocity, is idealistic. In practice, a real noise field would approximate
to this only over a limited segment of the shell structure. If the
structure damping (or wave attenuation) is large enough the respense of
the segment will depend mainly on the pressure field over that segment.
This will be the same (or nearly s0) as the response of an 'infinite'
shell to a uniform pressure field of uniform convection velocity over an
infinite shell structure.

8.4.1 Stringer-stiffened plate

Figures 8.2 and 8.3 show the displacement and moment amplitude
frequency response for the stringer~stiffened plate at the middle of a
bay. The peaks of thesecurvesrepresent coincidence effects. Note, for
instance, that CV = 5,842 in the primary free wave velocity of the
structure corresponding to the frequéncy QO* = 17,222 (uo = 1) (see fig.

4.12).
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In other words, the phase difference of the pressure field between
two points o apart is equal to the phase difference of the primary free
wave between the same points. This situation represents a sort of
coincidence that tends to make the structure respond strangely. If the
structure had no damping the response would be infinite (theoretically).
The other pair of convection velocity/frequency for which peaks occur in
the other curves also represents coincidence (see fig. 4.12). For
instance CV = 8,265 is the speed of a free travelling wave component with
the frequency of 18.175. Therefore, if a harmonic pressure field has a
convection velocity of 8.265 and a frequency of 18.175 coincidence will
occur.

Also if a random pressure field is convected along the structure with
a convected speed of 5.842 the response spectrum will have a peak at the
frequency 17.222,

Figures 8.4 and 8.5 show the amplitude response at the right hand
side of a stringer (s = 0).

The same values of convected velocities have been used o compute
these curves,

One can see that at the supports the displacement response peaks
decrease with the convection velocity, a fact not observed in fig. 8.3,
This same observation applies to the moment response,

Note that the highest response at the supports do occur when CV = «
and Qo* = 21.641, which represents another coincidence (uo = 0).

Fig. 8.6 shows the momént aimplitude response at the left hand side
of a stringer,

One can see that at these points the amplitude response peaks do not
incresse with the convection velocity. The highest peak occurs when
CV = 14,19 and QO* = 20.160 which again is a coincidence situation (see

fig. 4.12). Another fact to be observed is that at the upstream side of



the stringers the moment amplitude peaks are slightly higher than those
occurring at the downstream side,

8.4.2 Stringer-stiffened shell

The computations presented in the previous sub-section have been
repeated for an infinite stringer-stiffened shell. The convection
velocities have been selected to provide the strongest coincidence
possible and to check the rate of damping in attenuating the responses.
A1l the co-ordinates of a station vector have been computed but only
curves for transverse displacement and bending moment are shown, The
shell is considered damped with n = 0.25,

Fig. 8.7 and 8.8 represent the amplitude response for the transverse
displacement and bending moment at the middle of a bay respectively. As
for the plate case the curves show peaks where coincidence occurs,

As expected the maximum amplitude of displacement and moment are
smaller than those found for the flat structure (see figs. 8.2 and 8.3).
Notice again that 6.370 is the non-dimensional velocity of the primary
wave component (see fig. 6.6) at the frequency QO* = 19,997 (p = «). If
the structure had no damping the response would be infinite (theoretically)
The same can be sajd for the other peaks within propagation bands for they
also represent coincidence, The presence of damping makes these peaks
finite. For instance when CV = 2,124 and QO* = 19,997 (see point E in
fig. 6.6) one has a coincidence but the peak shown in figs. 8.7 and 8.8 is
comparatively small.

Figures 8.9 and 8,10 show the transverse displacement and moment
amplitude responses at the right hand side (s = 0) of a stringer. In these
figures one can notice that the displacement and moment amplitudes no
Tonger increase with the convection speed as happenad in the plate case.

One can also see that this particular shell structure can show strong

moment response at the stringers at relatively high frequencies.
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Fig. 8.11 shows the moment amplitude response for the shell at
the left hand side of a stringer.

A common feature of both flat and shell structures is that the
response at the Jeft hand side of a stringer (i.e. on the 'upstream' side)
is higher than the response at the right hand side (i.e. on thefdownstream'
side). But, contrary to what happened to the flat structure, the moment

is higher in the middie of a bay.

”134 -



CHAPTER IX
GENERAL CONCLUSIONS AND SUGGESTIONS FOR FURTHER STUDY

The basic ideas of free wave propagation in spatially periodic
structures have been reviewed and the transfer matrix terminology
introduced in connection with a specific example.

A general theory of free wave propagation in periodic structures was
then constructed. This theory fully employs the transfer matrix
technique and 1s general in the sense that it completely bypasses all the
particulars of the structure (other than spatial periodicity and
Tinearity). It is also computer oriented requiring only little algebraic
effort for derivation of the state matrix. For systems with two degrees
of freedom it has been possible to fully write down the field transfer
matrix but for greater numbers of degrees of freedom one of the three
numerical methods discussed in chapter V should be used. It was found
that all these methods give virtually the same numerical results but the
method based on the truncated series requires more computing time than
the other two (which in turn require about equal computing time), But it
has the inherent advantage of not requiring complex algebra when the
field is non-damped.

When the field transfer matrix has to be computed at many points
along the field the two other methods are far more advantagecus.

Comparison was made between the lower limit of the first propagation
band of an infinite ring-stiffened cylinder and the lowest frequency of
the first group of modes of a 15 bay finite structure with the same
elements, and simply supported on two 'half-rings' placed at both ends
(as calculated by Wah |25]). It was found that for a number of
circumferential waves greater than 3 both results are very close (within

1%).  For smaller numbers of circumferential waves (say one or two) there
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is little inter-ring motion and the potential energy of the finite
structure is due mainly to the overall semi-sinusoidal displacement
between the end supports. In these conditions comparison between finite
and infinite structures have Tittle meaning.

Comparison of the Tower Timit of the first propagation band of an
"infinite' stringer-stiffened cylindrical shell with the first natural
frequency of a 56 bay closed stringer-stiffened cylindrical shell |4] has
shown that they are very close,

On the other hand, the two first propagation bands have not shown

the overlap produced by Lin's approximate method |1|. Indeed the

numerical values of the two first band limits produced by Lin are not
quite in agreement with those computed in this work. This overlap has
not been found by increasing the values of the shell radius either.
This has produced, instead, a gradual convergence to the flat plate
results. Lin's band Timits computed by his 'exact' method for plates
are virtually identical to those produced by the present method.,

The concept of complex wave components has been established and a
matrix technique to compute them has been developed. It was shown that
the response of finite and infinite structures to harmonié forces can be
éomputed as a linear combination of these complex wave components,

Response along the structure and frequency response functions have
been computed for stringer-stiffened plates (finite and infinite) and
stringer~stiffened shells.

Computing storage and time requirements were kept very low (less
than 13 sec. in the CDC 7600 to compute the single point frequency
response function for the stringer~stiffened shell at 101 values of the
frequency).

A general metrix theory of the response of finite and infinite

periodic structures to a convected harmonic pressure field has been
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developed. This theory has been applied to a stringer-stiffened plate
and to a stringer-stiffened cylindrical shell.

Frequency response functions have been computed and the effect of
coincidence phenomena pointed out,

The largest moments have been found at the upstream side of a
stringer for the particular plate structure taken. For the particular
stringer-stiffened shell the moment at the middle of & bay was higher
than both upstream and downstream moments.

The main features of the methods developed in this work are:

a) generality,

b) computer oriented,

c) time and computer storage required are very small,

d) algebra required kept to a minimum.

These features are in addition to those inherent to the wave propagation
approach commented on in chapter I which make it so convenient to be
applied to periodic structures.

A1l the characteristics of the methods established in this Work
make it adequate for future applications to more complicated structures,
for instance, sandwich structure.

The existence of bi-dimensional transfer matrices has been shown by
Pestel [43]. This fact can be used to further extend the theories dealt
with in this work to bi-dimensional periodic structures.

Experiments on models representing complex engineering structures
(ships hulls, etc.) are urgently required. It is hoped that the theories
presented in chapters VII and VIII would provide great help in assisting

the analysis and interpretation of the results from such experiments.
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FIG. 4.2

DEFINITICN OF A STRUCTURAL PERICD.
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Reac

structural
data

Set-
nuimber of [‘teral‘fet’tS:ﬂI;
H=0.0, -
A’lebel‘ O,( PoiﬂiSC‘Q’O)Ha)tO .be
Com Pu.tea/(NP)} A =TT (HP-1) ;
Fre quency incremen tar)’,

Nymb cr of bands (nB) -

DO BOII=1,KP

m(11) = [
J=0

XLl = 0.002

XRI=XL1+ALF

DO 100 J=1 200

Leok for a root X
inside ¢xLI,xRI] .

Is there o

rool x ¢ [(XLI,xRT])/

Q:(LI 1) = X

]f[g. D1

NO

XLI= XRI
XRI=XLI+DF

e




XL]l= 4.00001%X
ES

XRI= XLI+AF g f=Heal
A

' WRITE
. : *
fig. pf (cont.) mp), $,(3,11), J=1,8,

1=1,NP

o /uo Hyv o [ 1T

{{9, D2



Read
S'fru c{fura [

date

Set:
,LQ::max::max’. Va[ue of JL‘D;
NP = number of Fo{nZLs
(ﬂ/&;)i
AF = S [(HP-1)

L 1) =o0.0

/D020 I=2,NP

Loy=8a-9 1 aF

{ig_ D 3

Compufe [A])

compute

(ul,[v] and {);

(omfut e [Te]

Comfuzte 7]

Cempute g ,9,..., q and the polinemial
equafl'on ;or2 the Pnro quaf:'on constant.
(See, for inst. egs. 2.4.6 and 2.4 7)

Solve Pol(homf‘al
ec;uaf;[on(ec;. for
the prop. constant) .

write th e
PFOPagajl'on cons??nf

and QD) 1-14, NP/




APPENDIX A

SOME PROPERTIES ASSOCIATED WITH TRANSFER MATRICES

In this appendix some properties associated with transfer matrices
are 1isted, MNo proof is shown because they are either evident or have
been given elsewhere [15].

Property Al.

1f [A] is a cross-symmetric state matrix and if ajy =0 for i+

even then the field transfer matrix is cross-symmetric.
Property A2.
If [T(y,0)]4s a transfer matrix and if the state matrix is not

dependent on y then:
-1 )
[Tr-01 7 = [7(-y,0]]

Property A3.

The determinant of a transfer matrix is one, that is:

i

[T(y,0]] 1

Property A4.

The characteristic equation of a 2n x 2n transfer matrix

l )\Zn - (pl)‘ZH"“T + szzn”‘z ¥ ... * pzn“]}\ + pZn) = O

enjoys the following properties:



APPENDIX B

TERMINAL SINGULARITIES : THE AUTOMATIC REDUCTION TECHNIQUE

It was said in sub-section 3.4.1 that when the period transfer
matrix is known in its most general form, the period transfer matrix of
any other system, derived from the former by imposing terminal constraints
(singularities), can be easily obtained numerically. To deduce the
technique to perform such operation, the case of a system with originally
two terminal degrees of freedom is taken as an {llustration. One assumes
that one of the terminal degrees of freedom is eliminated so that the
derived system has only one terminal degree of freedom left. More
specifically still : it will be assumed that the first co-ordinate of -the
station vector is annihilated by a constraint. Equation (3.2.1) can be

expanded for this particular example:

0 = tlzqu + t13F1L + tlHFZL-
qu = t22%L * tzaFiL + tzquL
FlR = tazQzL + t33F1L + tsszL
FzR = tuz?zL * tusFlL * tuquL

Solving for FZL in the first equation of the above set and taking it into

the second and third equations, one can write:

t t,

R 24 L 24 L
Q2 = (tpp =ty 770G+ (tea =ty g0)Fy

i 14
(B.1)
t.. t

R 3 L 3k L

Fooo= (g, 7ty E;:QQ2 oty -ty th)Fl



Equation (B.1) can be written in matrix form:

) R B toy ton | L
192 (too- tin ETZ) (toz ~ ty3 ET:) dz
£ 5 = .(B.2)
t t
3h 34
Fi (tso- tio ?:;:) (t33 -ty %gj:) Fl

In condensed form:

R oo ot ..(B.23)

It is worth noting that, once this particular case has been considered,
the result expressed by equation (B.2) can be generalized for the n-terminal
case by looking carefully at the elements of the reduced square matrix.

Perhaps it may not be easy to write down a general formula for the
elements of the reduced square matrix, but one can readily establish their
law of formation,

Let I, be the order of the annihilated generalized co~ordinate and
I, the order of corresponding generalized force.

Probably the best way of showing how the elements of the reduced
transfer matrix are formed is through a flow diagram. This is done in
fig. (B.1),

In fig. (B.1) t is an element of the reduced matrix, that is,
of the period transfer matrix of the derived system. The diagram is made
up of quite standard symbols and the notation is very close to that used
in Fortran. If more than one degree of freedom is taken from the terminals
of the original system the technique established in fig.(B.1) can be applied

in succession, the order of elimination being immaterial.
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APPENDIX C
LEVERRIER METHOD WITH FADEEV'S MODIFICATION

Leverrier's method with Fadeev's modification is a direct method
for the computation of eigenvai&es and eigenvectors of a general square
matrix.

Direct methods are not usually the first choice for the computation
of eigenvectors and eigenvalues for large matrices because they are
generally more sensitive to round-off errors and require greater computing
time, The present method, nevertheless, is quite advantageous for the
needs of this work because:-

a) The matrices are usually small and in such cases it requires less
computing time;

b) It allows advantage to be taken from the cross-symmetry of the matrices
with further saving in computing time;

c) It is completely insensitive to the peculiarities of the matrices;

d) It gives the same Tevel of accuracy to both eigenvectors and eigenvalues;

e) It provides an extremely economical way of computing equation for
the propagation constént from the period transfer matrix.

Suppose

N N-1 N-2

N 4
P(t) = (-1)7 (0 = a@ad - g T - s - gy) 8]
is the characteristic polinomial of the square matrix [A]. It can be

proved that the coefficients gj can be computed by constructing the

following sequence:
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A, = [A R L s B = (Al -a [T
[,
P ) B L  [Bl. = [Ala -9 [T
. (C.1)
t Ay
[AJ;*..] = [A] [B}th ':‘“‘"*'F';T""““z IN-1 5 [BlN;} = [A]NJ. " 9N~ U]
to Ay ;
[A]N = [Aj [B]Nq 5 " = 9y 5 [B]N = [AJN - 9, [I]

By solving the characteristic equation the eigenvalues are found., As was
explained in chapter IIT N is usually even (N = 2n) and it can be seen
that 95 = 0, j odd, so that the characteristic equation can always be
solved first for 22 and have its order reduced by half.

Supposing that the eigenvalues are distinct it can be shown that 18]
the eigenvalue corresponding to xj is given by any of the columns of the

square matrix

] - UL S AJ.“"Z B, + A

N-3 1o
j ST Bt eeeen [Blyy o -e(ci2)

J

For instance, for the flat plate structure one has:

M- P15 Bh- [, since g = 0
- i
WL- B2 [, - W,2-200] 5 g =i

o TAT e TRl.= TA 13 - 2.31AT o+ of -
[Als = NLIPY [B]s= 1ﬁr} 2¢3[A] 5 since gy = O



Taking the expressions for [A]r’ [A]rz and [A]r3 and choosing, for
instance, the fourth column of [ij one has:

1

- 2 - 2
D (XJ z2v)

~

Dy %2 - (2eu)r2
L‘DAJ X5 (2-v)c?)
Expression (C.3) has previously been found in Chapter VII.

To compute, say, the kth column of (C.2) it is convenient to use the

recurrence formula:

‘{U}O = {e}k

{ur; = 2, {ul,

i Jj i-1 +'{b}i

where {e}, s a column of zero elements except the Kt one, which is one

h

and {b}; is the k™" column of matrix [B],-
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APPENDIX D
NOTES ON THE COMPUTATION OF Wy " QO* AND QO* - u CURVES

Flow diagram D,1 contains the basic steps for the computation of

Hy ~ QO* curves (passing bands). After reading the pertinent data for

the structure it is necessary to set some constants:

NI = maximum number of iterations that are allowed to be performed to
find a root, that is, a propagating freguency corresponding to a
certain value of o between 0 and .

AF = frequency interval within which a propagating frequency is to be
searched. If no root is found inside AF another increment &4F is
given and the search continues. If a root is found within AF it
is stored in mu (see fig. D.2).

Au = propagation constant increment.

NB

i

number of passing bands desired; J is a counter for the number of
bands.

The search for a root within AF was made by a subroutine based on
Muller's method |29]. The subroutine first compares the signs of
f(uO,QO*) (see expression 3.4.5) at the extremes of AF and if they are
equals it returns giving a message of non-existence of a root within AF.
If they are different it starts Muller's jterative process until a root
1s found within a pre~set accuracy.

This process may not converge if 4F is too large (in a sense) or if
round-off errors prevent it. Therefore it is very important to compute
f(uo,Qo*) accurately which implies in the accurate computation of the
field transfer matrix and in the coefficients of the equation for the
propagation constant. This fact has been emphasised throughout this
work.

Fig. D.3 is a flow diagram for the computation of QO* - W curves.

The diagram is self-explanatory and needs no further comments. Perhaps

=1 Lh



it is only worth reminding that the polinomial equation for the
propagation constant has complex coefficients and was satisfactorily

solved by using another subroutine based on Muller's method,
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