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ABSTRACT

Faculty of Engineering and Applied Science 

Institute of Sound and Vibration Research

Doctor of Philosophy

Numerical Methods in Wave Propagation in Periodic Structures

by Jose J. de Espindola

This work describes a computer oriented study in wave propagation in 

periodic structures.

A simple introduction is first provided to review the concept of 

propagation constant and to lay down the basic terminology and ideas 

for subsequent development.

A general matrix theory of free wave propagation in general linear 

periodic structures is constructed. A general equation for the 

propagation constant is derived.

Stringer-stiffened plates and ring-stiffened cylinders undergoing 

only axi-symmetric motion are analysed by using this general theory.

The effect of coupling between transverse and torsional movement 

of a support (stringer) is considered.

Numerical methods for the computation of the field transfer matrix 

are analysed and modifications introduced, where appropriate, to Increase 

accuracy and speed up computation time.

Free wave propagation in stringer-stiffened cylindrical shells and 

ring-stiffened cylinders undergoing general vibration motion is analysed 

by using the general method. The frequency dependence of the propagation 

constant is discussed.

The concept of complex wave component is introduced and used in the 

construction of a general matrix wave theory of the response of finite 
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and infinite periodic systems to concentrated harmonic forces. This 

theory is applied to finite and infinite stringer-stiffened plates and 

shells.

A general theory of the response of finite and infinite systems to 

a convected harmonic pressure field is derived and applied to stringer 

stiffened plates and shells.
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NOTATION

General

[] square matrix

{ } columnmatrix

L J transpose of a matrix

[ ] inverse of a matrix

[ ] row matrix

0 circular frequency

0* complex non dimensional frequency 

^Q* real non dimensional frequency

p complex propagation constant

w^ real propagation constant

E complex modulus of elasticity

Eg real modulus of elasticity

G complex modulus of shear rigidity 

Gg real modulus of shear rigidity

V Poisson's ratio 

p mass density 

[A], [A]p state matrices 

[^(y2' 7])] transfer matrix, period transfer matrix 

[Tp(y, 0)] field transfer matrix 

[Pj point transfer matrix 

{z(y)} state vector 

x,y,z spatial variables 

[u]i[ v] modal matrices of [A] 

diagonal matrix where A. are the eigenvalues of [A] 

u*v,w displacements in the x, y and z direction, respectively



r number of half waves along a support or number of waves along 

the circumference of a cylinder 

distance between supports of rings

b distance between frames

C a constant

h thickness of plates and shells

K torsional stiffness

Ky stiffness coefficient in the v direction

K^y coupling coefficient between v and w coordinates

Kyg coupling coefficient between v and e coordinates

J polar moment of inertia

CW warping constant

P^ coefficients of the characteristic equation of [T] 

{z(y)}, {x(y)} station vectors

ASP aspect ratio

M* [C]p transformation matrix

[B], [B]^ a square matrix transforming {x(y)}' into {x(y)}

K defined in 4.2.10

X non dimensional coordinate

R shell radius

A area of a support (stringer, ring) section

Ay, A^, A, C^ defined in fig. 6.1

I, Ic, I c moment of inertia of a stringer

CV convection velocity



Chapter

quantity associated with a free harmonic wave

t time variable

{fCt)} input vector

Chapter

^T ^2 arbitrary constants

1 2 2 elements of a square matrix

"^r stringer loss factor

"o a constant

V* non dimensional phase velocity

imaginary part of the propagation constant

V* group velocity

Chapter III

q generalised displacements

F generalised forces

^ij element of the period transfer matrix

Chapter IV

n^, TI2 elements of the state matrix for a plate element defined in 4.2.9

g a constant

k defined in 4.2.10

C defined in 4.2.12

coefficients defined in 4.3.1

principal argument of a complex number 

polar moment of inertia



I a principal moment of inertia defined in eq. (4.4.3)

A area of a ring sectton

t. . elements of the field transfer matrix

t'!' . element of the reduced transfer matrix

Chapter V

[Pj] constituent tdempotents of (A]

{Xq}, {Xg} column matrtces defined in 5.3.1 

c\,..,Cg constants

A determinant

[o] defined in 5.3.4

{Vj}, {Uj} columns of [V] and [u] respectively 

defined in 5.4.2

Chapter VI

buj elements of [B]^

np Ho defined tn 4.2.9 

n^ defined in 6.2.8 

a a constant defined in 6.2.8

{x} a state vector 

c^j element of [C]^ 

d^j element of [C]^ 

"o' "i'"2 ^^f^^^^ '^'^ 6.3.5 

a, defined in 6.4.1

* angular coordinate (see fig. 4.1)

F ,F ,F ,F\ external forces and moments acting on a ring W V U o

^ij element of the period transfer matrix

element of the field transfer matrix



^^z("o*)^ P°^Gr spectral density of the respon 

^'p/^^*) power spectral density of the excitation 

time average 

a|^ complex constants defined in 8.3.1

Chapter VIZ

Cj coefficients defined in 7.2.1 

column matrix of coefficients c.

[F] square matrix defined in 7.2.2 

°m complex coefficients defined in 7.2.16

V'^iCy) complex wave component 

f(x,y,t) exciting harmonic force

Y defined in fig. 7.1 

ff)^ exciting vector 

[z(Y)] a square matrix defined in 7.3.4 

^i,k elements of [z(Y)] 

Aj('y) generalised displacement 

s non dimensional coordinate

Chapter VIII

P(x,y,t) harmonic pressure field 

Por amplitude of the harmonic pressure field 

k wave number 

Cj arbitrary constants defined in 8.2.6 

{c} column matrix of coefficients c. 

{c^} column matrix defined in 8.2.8 

Zx) square matrix defined in 8.2.8 

fZp} column vector defined in 8.2.12 



CHAPTER I

1.1 INTRODUCTION

A periodic system 1s one that consists of identical elements joined 

together in an identical manner to form the whole system. It is possible 

to find many such systems in engineering; a large hydroelectric power 

station pipeline resting on stiffening rings placed at equal distance 

from each other; a tall building having a uniform structure and identical 

storeys; an aircraft fuselage consisting of a cylindrical uniform shell 

stiffened by identical frames and regularly Spaced stringers. The modal 

method of analysing the high frequency forced vibrations of such structures 

bears inherent shortcomings that are difficult to overcome in practice 

chiefly when the structure is made up of many periodic elements. For 

Instance, it is well known |6| that the natural frequencies of a periodic 

structure fall into groups and that each group contain as many natural 

frequencies as the number of periods of structure. When the number of 

periods Is large (as so often occurs) the natural frequencies are very 

closely spaced and the modal method becomes complicated to apply to find 

the response of the structure. Also in these cases the computer time and 

storage required to find the natural frequencies and normal modes of the 

structure are very large.

These difficulties may be bypassed by using a wave approach proposed 

by Mead |9 |. No previous calculations of normal modes or natural 

frequencies are required to compute the response of the structure to 

external excitations. Also, no lengthy summation of modal contributions 

to the response is needed. Damping adds no further complications to the 

wave method as it does by coupling the normal modes. The wave approach 

also provides a better insight to the dynamical behaviour of the structure 

when it is to be excited by a convected acoustic pressure field or 



turbulent boundary layer excitations. The wave propagation method is 

based on a very simple principle (which will be referred to here as 'the 

basic principle of free wave propagation in spatially periodic systems’).

It states that all response quantities ip associated with a single 

free harmonic wave in a periodic system (for instance, a transverse 

displacement, moment, etc.) have values ip^, ip^ at the extremes of a system 

period related as:

”^1 = 'j^o ^"^^ ..(1.1.1) 

where ^ is the so called propagation constant and it is the change of 

phase between 1^% and V, .

The basic principle expressed by (1.1.1) has extensively been used 

by Brillouin |7| in connection with crystal structures and electric lines. 

Its early applications to engineering periodic structures include works 

by Ungar |40i and Bobrovnitskii and Maslov 141|.

Ungar has derived expressions for the propagation constant for a 

beam resting on periodic impedances in terms of reflections and 

transmission coefficients. Bobrovnitskii and Maslov have studied the 

propagation of waves on a beam with periodic point loading.

The use of receptance functions was first introduced by Mead and 

Wilby [9,„ In [s] Mead reviewed in depth the concept of propagation 

constants in connection with the free wave propagation in beams on 

identical, equi-spaced supports. Also the concept of free wave motion as 

a group is analysed in detail. This concept has later been applied to 

the response of finite periodic one-dimensional structures 112 I and to 

the analysis of rib-skin structures 111 I.

The use of receptance functions has proved adequate to analyse the 

sort of structures dealt with in |9|, |5|, |12| and 111| but it is 

apparent that the method would become cumbersome for more complex structures 
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(for Instance, stringer-stiffened shells) or when the supports have more 

than one degree of freedom coupled together.

It is the purpose of this work to seek a method of wave solution 

applicable to such complex structures, which, besides being fairly general, 

requires only a reasonable amount of algebra and is quite adequate for 

automatic computations.

It has been previously shown |28|, |3|, |4| that transfer matrices 

can be a powerful tool in analysing periodic structures. It was felt 

then that by coupling the ability of transfer matrices of handling 

structures with complex supports with the wave framework of thinking it 

would provide a good approach to the solution of dynamics problems 

related to periodic structures.

In chapter II the basic ideas of the method are explained. Generality 

at that stage was sacrificed in favour of simplicity and the results are 

valid only for the particular case considered there (a flat plate resting 

on supports with only one degree of freedom). The notions of propagation 

constants and wave groups are also reviewed.

In chapter III the general basis of the method is established. This 

is done with disregard for the particulars of the structure (other than 

being spatially periodic and linear). A general equation for the 

propagation constant is derived.

In chapter IV the method is first checked by applying it to the free 

wave propagation problem of systems with two terminal degrees of freedom. 

Specifically, a flat plate periodically supported by stringers with two 

degrees of freedom (rotation and transverse movements) is taken as an 

example. The effect of coupling is also discussed. Another example, a 

ring stiffened cylinder undergoing axi-symmetric vibrations, is also 

considered.

In chapter V the problem of efficiently (in computing time and 
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accuracy) computing the field transfer matrix for systems with more than 

two terminal degrees of freedom is considered. Existing methods are 

reviewed and compared and modifications are suggested, whenever possible, 

in order to speed up computations and Increase accuracy„

In chapter VI two examples are considered (a stringer-stiffened 

cylindrical shell and a ring-stiffened cylinder) with four terminal 

degrees of freedom. The general theory established In chapter III Is 

used with three methods of computing the field transfer matrix. It was 

found that all three methods give virtually the same numerical results 

but they differ slightly in computing time efficiency.

The general problem of response of infinite and finite periodic 

structures to concentrated loads is tackled in chapter VI. Again the 

terminology established in chapter III has proved adequate for a general 

treatment of this problem. A theoretical background is first constructed 

leading to the definition of the 'complex free wave components'. The 

complex free wave components are then used to compute the response of 

finite and infinite periodic structures, The method is again checked 

numerically by considering a stringer-stiffened flat plate and a stringer- 

stiffened circular shell. The role of damping is also analysed in 

connection with the response.

In chapter VIII a general wave solution is given for the response of 

infinite and finite periodic structures to a convected harmonic pressure 

field. This solution Is in fact a generalisation of that given by Mead 

|37| for beams. Again the particulars of the structure (apart from being 

periodic and linear) are bypassed. The method is checked in a stringer- 

stiffened flat plate and in a stringer-stiffened shell. Frequency response 

curves for these structures are presented and discussed.
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1.2 TRANSFER MATRIX : THEORETICAL BACKGROUND

1,2,1 The State Equation

The basics of transfer matrices can be found in many texts dealing 

with Engineering structures and automatic controls (see, for instance, 

|13| and |22|). However, for the sake of completeness and for easy 

reference a brief account of the theory is provided in this section.

Consider a mathematical model M (j.e, a set of mathematical equations) 

of a physical system S. The role of the mathematical model is to describe 

some aspect of the behaviour of the real system. The constituent 

equations of the mathematical model can be of various form such as algebraic 

differential) etc. For the purpose of this work only differential 

equations need to be considered.

In control theory the concept of state of a physical system (as well 

as of output) is normally associated with a particular instant of time. 

For instance, if a certain input is applied to the physical system at an 

instant to the observed output (as well as the state of the system) at 

the instant t will depend on the applied input and also on the initial 

state of the system. Therefore the mathematical model of a system 

consists of two kinds of equation: those describing the state of the 

system and those describing the output of the system.

This work will not, of course, be concerned with output equations but 

only with state equations. For a physical system the state equation can 

be written as

{z(t)} = g({z(t)}, {f(t)}, t) ..(1.2.1)

where{z(t)}1s a column vector representing the state of the system at the 

instant t and {f(t)} is an input vector, and {z(t)} is the time derivative 

of {z(t)}.
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If the system is linear 0.2.1) can be written as

{z(t)} = [Act)] {z(t)} + [BCt)] {fCt)} 0.2.2)

where [ACt)] and [BCt)] are N x N and N x P matrices, respectively, and 

(fCt)} is a P X 1 column vector.

Now, for the purpose of this work the concept of state must be 

adapted. Instead of referring to the state of the system at the time jt 

one shall be talking about the state of the system at a particular 

'station'. Initial state will mean the state at a reference station. 

Therefore the time dimension will be substituted for a spatial dimension. 

When this adaptation is made equation C1.2#2) can be read:

tz(y))‘ = [A(y)] (z(y)} + [B(y)] {f(y)} ..(1.2.3)

where {z(y)} is the spatial derivative of {zCy)}.

In many engineering structures matrices [ACy)]and [B(y)] do not 

depend on y. In these cases the 'state equation' (J.2.3) can be written 

as:

{%(/)}' . [A] (z(y)} + [B] {f(y)] ..(1.2.4)

If no input is applied equation (1.2.4) is further simplified:

(zCy)} = [A] (zCy)} ..(1.2.5)

Both equations Cl.2,4) and Cl.2.5) will find their applications in the 

course of this work.



1*2*2 The transfer matrix

By a transfer matrix [TCy^^yj] it is understood to be a linear 

operator that transforms the station vector {z(yi)} into {z(y2)}. In 

mathematical notation:

{2(72)} = [7(72,71)] {z(7i)} ..(1.2.6)

Or, for the particular case where y^ = 0 and y2 = y:

{z(7)} = [T(y,Of] (zCO)} ,.(1.2.7)

Assuming a solution for (1.2,5) of the form {z(y)} = eC^]^ Csee Ref. 27) 

one can easily see that:

[T(7,0)] = e[A]7 ..(1.2.8)

It can also be shown that |27| :

..(1.2.9) 
j=0

that is:

[TCy.on = g [A]^ 4 ..0.2.10) 
J=o

From expression (1*2*8) some properties of the transfer matrix can be 

easily derived:
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[T(0,0)] = [I]

[TCyi + y2,og = rT(yi,O)] [T(y2,0)] ..(l.2.]1a,b,c)

[T(y.o)r' = rT(-y,o)j

other properties of transfer matrices will be listed in Appendix A.

Another expression for the transfer matrix which will be derived in 

chapter YU is given below:

[rcy.oj] = [u] [u]"'^ ..(1.2.12)

Where [u] is the modal matrix of [A] and ["Xj^ a diagonal matrix of 

the eigenvalues of [Aj.

Expressions Clo2ol0) and (1.2.12) will find their applications in 

chapters V, YI, YII and YIII.
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CHAPTER II 

Free wave propagation in systems with one terminal degree of freedom

2.1 GENERAL

The purpose of this chapter is to provide an introduction, in a 

rather simple manner to the basic ideas that form the framework of the 

methods to be developed in this work, aimed to formulate and solve 

problems in wave propagations in spatially periodic structures. To this 

end a thin flat plate, resting on equally spaced flexible supports (or 

stringers) in one direction and simply supported along an orthogonal 

direction, is taken as a concrete example. The flexible supports are, 

for the time being considered infinitely stiff in the transverse 

direction but can rotate and, consequently, apply both elastic and 

inertial moments on the plate. The consideration of periodic supports 

with infinite transverse stiffness might eventually bring severe errors 

if coupling between transverse and rotational movements of the supports 

is considerable. But this model is very convenient for the purpose of 

this chapter due to its inherent simplicity.

For subsequent chapters the ideas introduced here will be extended 

and a general formulation of the problem of free wave propagation in 

periodic structures will be presented. In this formulation the 

peculiarities of the structure (other than being periodic and linear) are 

by-passed. Restrictions such as that of infinite transverse stiffness, 

applied to the present model, shall no longer be necessary.

2.2 THE FIELD TRANSFER MATRIX

The sequence of steps toward establishing the basic concepts of this 

introductory theory will lead to an equation that relates the propagation 

constant to the frequency.

Consider the model depicted In fig. 2.1 where a uniform flat plate 

rests on torsionally elastic supports periodically located & units of 
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length apart and on two other simple supports, orthogonal to the former 

ones, b being the distance between them. It shall be assumed also that 

the contact between plate and supports occurs along a line. This is a 

reasonable assumption since the common area between plate and support is 

small compared with the area of the bay.

In spite of its simplicity this model can realistically represent an 

aircraft fusilage structure as it has been shown by Lin |1| and 

Clarkson |2|.

The simple supports then represent the frames action. The frames 

have usually very high transverse and torsional stiffness so that they 

behave as rigid boundaries and panels adjacent across the frames move 

almost independently. Even so, the hypothesis of simple supports 

representing frames works, provided the distance between the frames is, 

say, two and a half times, or greater, the distance between supports 

(stringers). There is however considerable correlation across the 

stringers. So, even if the purpose of this chapter is only to bring 

about ideas that are to be generalized in order to make the theory suitable 

for more advanced models, the expressions to be obtained are, nevertheless, 

of value in practice.

Consider now the differential equation of motion of a linear damped 

flat plate referred to the system of coordinates of fig. 2.1

8^w , . 9^w , 9^w _ hp 9^w 1
9x^ Bx^ay^ ay'* D at^ 

where w, deflection

h, thickness of the plate,

p, mass density,

D = Do(l + in), complex flexural stiffness, 

-10-



where

Do, flexural stiffness, and 

n, loss factor.

If the structure is vibrating harmonically with a frequency fi, the 

general solution of equation (2.1.1) can be written as

co

w(x,y,t) = WY(y)' sin 
r=l

where 1 is the complex unit.

If such solution is introduced into equation (2=1.1) and the 

expression e^"^ eliminated the result is an ordinary linear homogeneous 

differential equation of fourth order:

wY^^(y) - 2;^w^?i(y) + (c'* - ^^) w^(y) = 0 ..(2,1.2cg

L riT where c = « 

The associated characteristic equation is:

" 2;^X^ + (s'* - ^^) = 0

Equation (2,1.3) has solutions as follows.

Xi, -Xi, 1X2,- 1X2 , where

X2 = - (o* " (^)2 } , and

ASP = b/A, aspect ratio, and
Q4^ = ^ll&lSl, complex nondimensional frequency.

The solution of equation (2.1.2) is therefore a linear combination 

of four functions of the type Making use of the simple support 



boundary conditions at the frames, it is possible to express two of the 

arbitrary constants of the linear combination as functions of the other 

two. Only two arbitrary constants remain.

In the present development, solutions of the form of the expression 

(2.1.5) will be assumed:

w(y) = Ci(sinhbXi & sin x^y » sin x^ & sinhjXiy)

f CgFsinh XiA sin X2 (& " Y) " ^2^ ^inb Xi(i - y)^ ..(2.1.5)

Functions (2,1^5) clearly satisfy the condition of zero deflections at 

the stringers.

Assume now the following expression for the bending moment ;

M(y) = z M^(y) sin ^^ e ^^^ 

r=l

where M(y) =
3%(y) 

9y^
vs^w^(y) ..(2il.6 a,b)D

From (2.1.5) and (2.1.6) the following expressions can be written:

w'(o) = Ci(X2 sin hXi& - Xi sin X2^) + (^(Xi sin X2^ cos hXi^

- X2 sin hXi& cos X2&) ..(2.1.7 a,b)

M(o) = D.C2.(X2^ sin hXi& sin X2A + Xi^ sin X2A sin hXi&)

The above expressions can be conveniently written in matrix form

., (2.1.8) 

-12-



and the elements of the 2 x 2 square matrix are;

81 = Xz sin hxi& - Xi sin Xz^

8z - %! sin Xz& cos hxi& - Xz sin hXi& cos Xz&

Bg = D s1n XzJl sin hXiA (xi^ + Xz^) 

^^^^T^r expressions can be written for the slope and displacement at the

right end of the bay:

wY;(i)

M^(&)

ag -81 Cl

.(2.1.9)
as Cg

Isolating the vector from expression (2.1.8) by inverting the

> >

0

square matrix and taking this vector into expression (2

i s:

1.9) the result

W^'(&) fl" ai W^'(o)

=
< ..(2.1.9)

fl ^2
M^Io)

the above expression acts as an operatorThe square matrix appearing in

such that, when applied to the vector

It is in essence a transfer matrix. One can easily see that the 

determinant of this matrix is one. This happens in accordance with one 

of the properties of transfer matrices listed In appendix A.

In short, the expression (2.1.9) can be written as:

-13



W^'(l)

M^(A)

..(2.1.9 a)

where Tp^A.O)' is the field transfer matrix and is able to 'transfer'

quantities from coordinate 0 to coordinate & along the field. Vectors 

such as those appearing in equa.(2.1,9) are called station vectors, or 

state vectors.

2.3 THE POINT TRANSFER MATRIX

In order to apply the basic principle of free wave propagation to a 

spatially periodic structure an overall transfer matrix must be found 

that can 'transfer' quantities through a whole period of the structure. 

Whatever the way a period is considered it must contain a support.

So, an operator has to be found such that when applied to the station 

vector on the left of a support the station vector on the right of the 

same support is obtained. This operator is the point transfer matrix.

The supports under consideration in the present chapter have only 

one degree of freedom, that is, rotation and the point transfer matrix 

can be derived by applying the compatibility conditions and by knowing 

that the jump in moment is proportional to the slope:

..(2.3.1)

h/(«) - \'-(i) = %»/*■(<>)

In the above expression R and L stand for right and left, respectively.

In matrix form expression (2.3.1) gives;
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Wy.'(jl)

M^U)

where

w^'(jt)

Mp(&)

..(2.3.2)

0

1 is the point transfer matrix and its determinant 

is obviously one.

The point transfer matrix for an open cross section stringer with a 

line attachment to the plate, or skin, and with the point of attachment 

and the shear center located on the same perpendicular to the plate was 

first derived by Lin 13|o Henderson and McDaniel |4| have later dropped 

this last restriction by allowing a general location of the shear center 

in relation to the point of attachment (fig. 6.1)

According to Henderson and McDaniel the torsional stiffness K^ is 

given by;

Kg = -GC;2 - Es^CWA + J^ 6^n*Q2 ..(2.3.3)

where:

E = Eq(1 + inp)> complex modulus of elasticity in tension, 

E^, modulus of elasticity in tension, 

p^, loss factor for the stringer,

G -- - - -- -  , modulus of elasticity in shear, 
2(1 + v)

C, Saint-Venant's constant for the cross section.

CWA = CWq + I^A^2 + ir,A^2 - 2In^A^A^, warping constant for 

rotation about point A,

Owrg<».

J. = f A(C - A )2 f A(C - Ay)2, polar moment of with

respect to point A,
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OQ = Do/ji4h and n*^ = ^.g^^l&l

In expression (2.3.3) it has been implicitly assumed that both skin and 

stringer have the same mass density.

2.4 THE EQUATION FOR THE PROPAGATION CONSTANT

Expressions (2.3.2) together with (2.1.9) can be joined in one

single expression:

ag ag^ a^

^1 a^ag ag

a? a^ a.
K — f K (— - - -6 a^ a^ "^e^aiBg a^^ M^(o)

.. (2.4.1)

The square matrix in expression (2.4.1) is the overall transfer matrix

necessary to the derivation of the equation for the propagation constant 

and is obtained as a product of the point and field transfer matrices:

H = [p] Evco)] ..(2.4.1 a)

Since both point and field transfer matrices have unitary determinant 

the determinant of the overall transfer matrix is also one.

Now? the application of the basic principle of free wave propagation

in spatially periodic structures leads to the foil owing expressions:

Wp'Ct)

..(2.4.2)

which together with (2.4.1) leads to:

Mr(^)

..(2.4.3)



Expression (2.4.3) is in fact an |2 x 2| eigenvalue problem showing 

that the eigenvalues of the period transfer matrix are e"^^. If some 

damping is present either in the plate or in the supports or in both the 

period transfer matrix is complex and, accordingly, the propagation 

constants are complex. When no damping is present the propagation constant 

might be real or purely imaginary. Only those frequencies for which the 

propagation constants are real correspond to actually propagating waves. 

The characteristic equation associated with the eigenvalue problem 

(2.4.3) or, in other words, the characteristic equation of the period 

transfer matrix [tJ can easily be seen to be;

e-i2p _ fK - 2 j e"^^ + 1 = 0 . .(2.4.4)

It is worthwhile looking at equation (2.4.4) and noting that if p is a 

solution then -p is also a solution. This is in accordance with the 

physical fact that if the structure allows a wave to propagate, say, to 

the right, another wave with the same phase velocity should be able to 

propagate to the left. This fact can also lead to the conclusion that 

equation (2.4.4) is equivalent to the following;

cos p
kg @2
I, I -in  /    " v-*ii —i-.*e"i u.i,ii#"iu- I ** —• ieiui.,.1

2 aiSg ai
..(2.4.5)

The above expression is the equation for the propagation constant.

Mead |5| has obtained an equation for the propagation constant for a 

beam on periodic massless torsional supports using receptance functions. 

The similarity in the form of his equation and that of (2.4.5) is expected. 

The case of a beam can be considered by taking = Xg = X so that:

a^ = X sin hx& - x sin XA

Bg = X sin xA cos hx& - x sin hxA cos x&

Bg = D sin xt sin hx& .2(2

..(2.4.6)
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Miles |6| in an early paper has produced a formula applicable to a beam 

on simple periodic supports and this formula was derived by making use of 

difference equations. Miles's formula can be reproduced here by making 

Kg equal to zero and substituting (2.4.6) into (2.4.5):

sin hXA cos XA - sin xt cos hxt a 7\ 
sin hx& - sin XA

In expressions (2.4.6) and (2.4.7) X is given by:

X = 1 fn* j 2 g^pj Q* = --  _ --

Another convenient form of the equation for the propagation constant that 

is very convenient in analysis is expressed by equation (2.4.8): 

f (f2 *Q 5 n Q) = 0 ..(2.4.8)

In this equation n is considered an independent variable and n*^ an 

implicit function of u^.

The values of u^ in equation (2.4.8) are restricted to those that 

make the nondimensional frequency real.

For damped systems the propagation constant must be complex but for 

non-damped systems there are real values of u satisfying (2.4.8).

In this work equation (2.4.8) is used in connection with non-damped 

systems only and it will prove to be interesting both in computations and 

in the understanding of the phenomenon of free wave propagation in periodic 

structures. When some damping is present one shall resort to equations 

of (2.4.4) type.

2.5 PRESENTATION OF NUMERICAL RESULTS; DISCUSSION OF EQUATIONS (2.4.7)

AND (2.4.8)

Equations (2.4.7) and (2.4.8) can provide a basis for a discussion

from which the fundamentals of the nature of free wave propagation in 

spatially periodic structures can spring up. Brillouin |7| has first



analysed the phenomenon through discrete spring mass models related to 

crystals and transmission lines and Mead |5| has thrown further light 

into it by considering a continuous beam resting on simple periodic 

supports with massless spring-like torsional restraints. The present 

discussion rests heavily on these previous works and is introduced here 

for the sake of completeness and uniformity of wording.

Consider first equation (2.4.7) in connection with a non-damped beam 

on simple periodic supports.

The right-hand side of equation (2.4.7) is obviously real for any 

value of the frequency. Those frequencies for which its modulus is equal 

or smaller than one correspond to real values of the propagation constant. 

One could call these allowed frequencies, or propagating frequencies. If 

energy is fed into any point of the structure in one of these frequencies 

it will propagate in both directions. If the modulus of the right-hand 

side of (2.4.7) is greater than one the propagation constant is no longer 

real.

It can either be a pure imaginary number or a complex one, the real 

part being 0 or and the imaginary part given by: 

Pj = - log cos p + (cos^p - 1)2 ..(2.5.1)

One could then talk of a decaying wave and the corresponding frequencies 

could be called attenuating frequencies.

Fig. (2.2) is a plot of equation (2.4.7) in which the nondimensional 

frequency n* is in the abcissas axis and cos p, in the ordinate axis.

This figure shows portions of the curve inbetween the + 1 lines, these 

portions meaning bands of propagating frequencies. Also in the graph are 

shown portions where the curve lies outside the two limiting lines and 

these represent bands of attenuating frequencies. The figure shows the 

first three propagation bands numbered 1, 2 and 3, and two attenuation 



bands. Therefore a beam on simple periodic supports behaves in a band­

pass filter manner and it will be shown in forthcoming chapters that this 

is, in fact, a common feature of much more complex types of periodical 

structures. It is worth noting that the crossing points A, B, C, D, E 

and F correspond to nondimensional frequencies values of ^2, (^)2, (2^)2, 

(^)^, (3^)2, (^)^ and (4^J2, respectively. In short, the n^^ pass band 

starts at the nondimensional frequency (n^)2 and finishes at |(2n + 1)^/2,2 

These results have first been found by Miles |6|. The previous analysis 

could also be made by looking at figure (2.3). This is a very interesting 

kind of graph for the analysis of free wave propagation in periodical 

structures that will be used throughout this work and is better explained 

in connection with equation (2.4.8). One can see (for instance, by looking 

at eqn. 2.4.7) that the frequency Is a symmetric function of the propagation 

constant. This is a general statement applicable to any periodic structure, 

whatever its degree of complexity. Furthermore, the frequency is a periodic 

function of the propagation constant, its period being 2n.

These two properties are the basis for the construction of the curves 

of fig. (2.3) which, for brevity of reference, will be called, from now on.

Symmetry and periodicity properties make it sufficient to draw the 

curves for half a period only, say, from 0 to ^. But one could imagine 

the graph extending indefinitely to both right and left.

In Fig. (2.3) the first three propagation bands are indicated by 

numbers 1, 2 and 3.

It is appropriate at this point to define a nondimensional phase 

velocity:

Y * _ , (2.5.2)

It is obvious that the phase velocity is dependent on the frequency, that 

~ 2 0 -



is, a beam on simple periodic supports, and indeed any periodic structure, 

is a dispersive medium. As such, only waves that are spatially sinusoidal 

do not distort as they propagate through the structure. On the other hand, 

short pulses and short signals always distort as they travel along the 

structure.

If one thinks of a point harmonically varying force applied to one 

of the bays of an infinite periodic structure it is easy to understand 

that the distribution of deflections along the structure does not follow 

a sinusoidal pattern.

It is particularly easy to visualise this fact by thinking of a 

static force, i.e. a point harmonic force with zero frequency. The same 

applies even if the frequency is a propagating one, in which case one 

could think of a Fourier decomposition of the spatially distributed 

deflections. To each one of these components there corresponds a 

propagation constant and, consequently, a phase velocity. In fact one can 

realise by looking at expressions (2.4.2), or (2.4.5), that if p^ is the 

propagation constant corresponding to the frequency n*^, then p^ + j2^, 

j = + 1, + 2 ..., is also a propagation constant corresponding to n*^. 

Briefly: the spatially distributed deflections can be decomposed in 

spatially sinusoidal Fourier components with propagation constants 

p + j2^ and nondimensional phase velocities:

V * = ^* i ^ - t T* ± ..(2.5.2 a)

If fig. (2,5) is imagined extended to both right and left and if a line 

parallel to thep ^axis is drawn through n*^ (impressed nondimensional 

frequency of the harmonic point force), this parallel line will cut one 

of the p - n*. curves (if the frequency is propagating) at infinite points, 

each of them corresponding to one of the propagation constants p^ + j2^, 

j = + 1, f 2 .., that is, corresponding to one of the spatially sinusoidal 

components. The nondimensional phase velocities will be the quotient of 
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the impressed nondimensional frequency over these component propagation 

constants.

The so called nondimensional group velocity is given by

V * = ..(2.5.3)

When the system shows no dissipation^ the group velocity gives the speed 

of the travelling energy. But if the structure dissipates energy the 

group velocity becomes less meaningful, physically speaking. Now, if 

0 pQ ( ir the slopes at the points p^ + j2^, j = 0, + 1, + 2 .., are all 

equal, that is, the group velocity is unique and can be computed by taking 

any of the sinusoidal wave components.

This means that the set of sinusoidal wave components form, in fact, 

a group. Similarly, from the point of application of the harmonic force 

another group of waves is sent to the left (negative direction). It is 

worth noting that if p is equal to zero or ir the slope is zero for any 

of the values p^ + j2^, j = 0, 1, 2 ... This means that the group velocity 

is zero and no net transfer of energy along the structure does occur. Each 

bay can be considered as isolated with the extremes either clamped or 

simply supported and vibrating in one of its fundamental modes. In fig. 

(2.3) the letter C stands for 'clamped', S, for 'simply supported' and 

the subscript refers to the particular band or mode.

The conditions of 'clamped' or 'simply supported' ends of a bay for 

p equals o or does not necessarily hold for more complicated periodic 

supports (for instance, supports with more than one degree of freedom). 

But for any periodic structure (no matter how sophisticated) and what sort 

of periodic supports it has) the p^ - o* curves must be horizontal (that 

is, have zero slope) at p = o and ^ corresponding to zero group velocity.
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The concepts of groups of waves and group velocity have only been 

touched here because it was felt convenient in the discussion of the 

p - n*^ curves. No attempt was made or will be made to elaborate on 

this subject, A good account of the theory can be found in |7| and a 

study In depth in |8|.

Another kind of graph that shall be used in this work is shown in 

fig. (2.4), as yet, for a beam on simple supports . This graph incorporates 

both real and imaginary parts of the propagation constant and are computed 

1n connection with equations of the (2.4.5) type.

Both damped and nondamped systems can be represented in this form of 

graph. However, the limits of the passing bands (points S^^ and C^/) are 

easier to compute (and indeed with better accuracy) through the method 

related to the u - n* curves. Graphs of the type shown in fig. (2.4) 

have been used to a great extent by Mead |5|, I 11 I, |12|, Mead and Wilby 

|9|, and Sen Gupta |10|. In this present work they will be referred to 

aso*^ -p curves.

Actual computations for plates are not shown in this chapter, although 

expression (2.4.5) has been derived for a plate. They will appear in 

chapter IV and it will be shown that the case considered here is just a 

particular case of a more general one and can be conveniently treated as 

such, as far as computations are concerned.



CHAPTER III

A general theory of free wave propagation in Periodic Structures

3.1 GENERAL

In chapter II the basic ideas of a matrix method applicable to the 

free wave propagation phenomenon in spatially periodic structures was 

introduced. A specific example was necessary to support the ideas and 

the resultant equations were restricted to that particular structure. If 

another example of structure is to be taken the whole derivation must be 

repeated all over again. To this inconvenience it must be added that the 

derivation is likely to become cumbersome, if not practically impossible 

to handle, as the consequence of only moderate further complexities 

appearing in the structure. These shortcomings make the method described 

in chapter 11 unsuitable when, for instance, additional degrees of freedom 

are introduced to the supports and coupling effects are considerable. The 

same applies to complex structures such as stringer-stiffened cylindrical 

shells and ring-stiffened cylinders. But the method developed in the 

previous chapter can easily be generalised and made applicable to such 

structures. Transfer matrices have been applied to both free and forced 

vibrations of stiffened beams, plates and shells |3|, |4|, |13|, |14|, 

|15|, |16|. Its ability to handle several degrees of freedom and the fact 

that one can obtain a period transfer matrix representative of the whole 

periodic structure (supposed infinite) suggest its application to more 

advanced problems in wave propagation. One could argue that the same 

applies to the stiffness matrix. This is no doubt true and, in fact, the 

transfer matrix can be obtained from the stiffness matrix, and vice-versa 

|13|. But, as a general rule, the direct derivation of the period stiff­

ness matrix is far more difficult than the period transfer matrix. 

Furthermore, general methods for the numerical construction of transfer 

matrices can conveniently be applied to complex structures, thus avoiding 



strenuous algebric manipulations,, Some of these methods are to be 

explored in this work in connection with the wave propagation problem. 

Besides this numerical advantage, transfer matrices are quite adequate 

for the theoretical analysis of both free and forced wave propagation 

problems, as it is to be seen in subsequent chapters.

3.2 THE NATURE OF PROPAGATION CONSTANTS ; GENERAL FORMULATION OF THE 
FREE WAVE PROPAGATION PROBLEM

Consider a spatially periodic linear system. Further peculiarities 

of the system (apart from being periodical and linear) are immaterial. 

Such a system can be considered as a chain of identical black boxes 

(periods) linked and interacting together. Fig. (3.1) shows one of such 

periods with the Interactions resultant at its ends. The interaction 

resultants are to be referred to as terminal generalised forces. Also 

shown In the figure are the terminal generalised displacements.

The terms generalised forces and generalised displacements are given 

here the same usual meaning encountered in the study of Lagrange's 

equations of classical dynamics.

The number of terminal generalised displacements (forces) equals the 

number of terminal degrees of freedom.

In addition to the terminal generalised displacements and forces, 

the system might also exhibit a finite (N) or infinite number of non- 

terminal generalised displacements. External generalised forces applied 

by the surrounding environment can also be present but they should not be 

considered in so far as only free waves are concerned. As a concrete 

example, the structure of fig. (2.1) has one terminal degree of freedom 

(rotation) and infinite nonterminal degrees of freedom.

The massless beam with three point masses of fig. (3.2), periodically 

restrained by longitudinal and tortional massless springs has cwo terminal 
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degrees of freedom and three nonterminal degrees of freedom.

The system represented by fig. (3.1) 1s assumed to have n degrees of 

freedom and the letters L and R stand for left and right of the period, 

respectively. The terminal quantities (generalised forces and displace­

ments) on the left and right of a period are related by a period transfer 

Matrix [Tj according expression (3.2.1);

T
L

.. (3.2.1)

The period transfer matrix appearing in expression (3.2.1) is of order 

2n X 2n and Is an operator that can 'transfer' a station vector from the 

left to the right of a period.

The basic principle of free wave propagation in spatially periodic 

structures states that if a wave is propagating along the system then the 

station vector In eq. (3.2.1) must be the same, apart from a change in

phase. In mathematical form:

Equations (3.2.1) and (3.2.2) can 

where the references R or L have

.. (3.2.2)

be summarised in eq. (3.2.3) bel ow 

been dropped:

{o} .. (3.2.3)

Expression (3.2.3) represents an eigenvalue problem of order 2n x 2n, the 

eigenvalues being e ^^. So, a system with h terminal degrees of freedom 

has 2n propagation constants for each frequency, no matter how many non­

terminal degrees of freedom it has. If the system is nondamped some of 

the propagation constants might be real, some imaginary or complex. One 

or more real propagation constants means that energy can freely propagate, 
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that is, the frequency is propagating. The other propagation constants 

(imaginary or complex) can be thought as representing exponentially 

decaying waves along the system.

3.3 THE EQUATION FOR THE PROPAGATION CONSTANT

If the system of equation (3.2.3) is to have non-trivial solutions 

the determinant of its matrix must be zero, that is: 

H - [d = 0 .. (3.3.1)

This is the equation for the propagation constant, although in a form 

that is not quite convenient for computations. A first step in trans­

forming (3.3.1) to a more suitable form is to expand it according to eq.

(3.3.2):

" (PiX^" f ... + Pg^^^X + Pgn) - '^ '"(^'3.2)

where X = e ^^, the eigenvalue of (3.3.1).

Now, this equation can be brought to a far more convenient form 

(from the computational point of view) by looking at the properties of a 

transfer matrix listed in appendix A. It can be seen that:

P2 = -1 (the determinant of the overall transfer matrix 
" is ™®) .. (3.3.3)

Pj - P2„_j . j = l.n

The above expressions show that only the n first p^'s coefficients are 

necessary to be computed. This fact brings considerable simplifications 

for systems with up to two terminal degrees of freedom and is also an 

important fact in cutting down computations and round-off errors in systems 

with higher numbers of terminal degrees of freedom.

The symmetry of the coefficients of eq. (3.3.2), as expressed by 
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properties (3.3.3), means that if p is one of its solutions, then -u is 

also a solution.

This property, obvious from the physical point of view, comes out 

mathematically in a very simple way indeed, thanks to relations (3.3.3). 

This property can also be used to reduce the order of the eq. (3.3.2) by 

half, as will be shown in the next section. So far eq. (3.3.2) has been 

looked upon as a polynomial in X, that is, in e"^^and it was said that, 

at any frequency, 2n propagation constants are to be found if the system 

has n terminal degrees of freedom. The number of nonterminal degrees of 

freedom can be finite (N) or infinite. Now, this equation can also be 

thought as written in the form (2.4.8) where p is considered an 

independent variable and n* an implicit function. Thinking in this way 

one reaches the conclusion that eq.(3.3.2) is a polynomial of order N 

(the number of terminal degrees of freedom) in n*. So, for any value 

of p^ (say, between 0 and ^) there correspond N real values of o* . If 

one thinks now of an p - n* graph of (3.3.2) (thought as written in the 

(2.4.8) form) this will show N p^ - n* curves, that is, N bands of 

propagation. , If N is infinite, one shall no longer have a polynomial, but 

a transcendental equation in n* The number of propagation bands is, 

accordingly, infinite. In practice only the lower propagation bands (say 

the first and second) are important and worth being computed.

3.4 PARTICULAR CASES OF EQ. (3.3.2)

3.4.1 Systems with one terminal degree of freedom (n - 1) 

For n = 1 eq. (3.3.2) becomes:

e ^^^ - Pl e + 1 = 0

The real and imaginary part of the left hand side of the above equation 

must be zero, that is 



cos 2p - p2 cos p f 1 = 0

sin 2p - Pl sin p = 0

It is easy to show that the above two equations are equivalent to a single 

one, equation (3.4.1);

2 cos p " Pl = 0 ..(3.4.1)

Where pi is the trace of the corresponding period transfer matrix. If one 

thinks of the structure dealt with in chapter II where the stringers had 

infinite transverse stiffness, then equations (2.4.5) and (3.4.1) a^d^ 

equivalent. But eq. (3.4.1) is in fact much more general since it applies 

to any linear spatially periodical system with only one terminal degree of 

freedom. For Instance, one could think of the structure of chapter II but 

with the stringers free to move but prevented from rotating transversely. 

This case was studied by Sen Gupta |19| in a lengthy analysis following 

a rather different approach. Later in appendix B it will be shown that 

once the period transfer matrix of a system (in its most general form) is 

known, the period transfer matrix of any other system derived from it by 

Imposing restraints (singularities) at the terminals can be obtained in 

an automatic manner, rather convenien^^^or numerical computations. 

Particular cases like the one just quoted can be handled without any 

further work of analysis or complexities.

3.4.2 Systems With two terminal degrees of freedom

If the steps shown in (3.4.1) are repeated for n = 2 one ends up with 

the following equation:

2 cos 2p - 2pi cos p - Pz = 0 ..(3.4.2)

The coefficients pi and pg in eq. (3.4,2) can be easily found by applying 

Leverrier's method with Faddeev's modification (see appendix C) |17|, |18|. 
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According to this procedure Pg is half the trace of the matrix 

M " Pl [^] )' ^^^ value of Pl is, as always, the trace of [l]. 

In mathematical form:

..(3.4.3)

P2 = 4 E ( s t.. t.. - Pit..) >

where the t's are elements of the period transfer matrix [l]. 

So, for any nondamped periodic system with two terminal degrees of 

freedom expression (3.4.2) can be interpreted as an equation in which p 

is a given real parameter (u) and (^ is an unknown.

A number of propagation bands can then be found equal to the number 

of nonterminal degrees of freedom (which can be finite or infinite). 

Equation (3.4.2) can also be written in the following form:

4 cos ^p " 2pi cos p - 2 -pg = 0 . « (3.4.4)

In this equation the nondimensional frequency should be considered as a 

parameter and p as an unknown. It is worth noting that eq.(3.4.4) is a 

polynomial of order two in cos p. Therefore, instead of working with a 

polynomial equation of order four in x = e ^^ property (3.3.3) made it 

possible to reduce this order by half. Equation (3.4.2) has been used in 

this work in the computation of p - n* curves for nondamped stringer- 

stiffened plates and ring stiffened cylinders, in the case of axisymmetric 

wave propagation. On the other hand, equation (3.4.4) has been used in 

the computation ofn* - p curves for both structures, with and without 

damping.
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3'4.3 Systems with n terminal degrees of freedom

It is now very easy to extend the results of subsections 3.3.1 and 

3.3.2, A general equation of the (3.4.2) type can be written:

2 cos np - 2p2 cos (n - l)p - 2p2cos (n - 2) - 2p^_^ cosp - p^ = 0

..(3.4.5) 

Again here it is more convenient to regard eq. (3.4.5) as being of the 

(2.4.8) type, p being an independent real parameter (p^) and an 

unknown.

It is always possible to write a polynomial equation in cos p of 

order n which is more appropriate for the computation of n* - p curves.

Two important cases should be noted here for they are related to 

stringer-stiffened shells and ring-stiffened cylinders: 

n = 3: '

8 cos 3p - 4p^ cos (6 + 2P2) cos p + 2p^ - pg = 0 ..(3.4.6)

n = 4:

16 cos ^p - 8pi cos 3p - (4p2 + 16) cos 2^ - (2pg - Gp^) cos p +

2 + 2p2 + p^ = 0 ..(3.4.7)

It is worth noting that.the coefficients p. are complex when damping is 

present.

For n equals or greater than three the p. coefficients are conveniently 

found numerically, using a routine based on Leverrier's method with the 

Fadeev's modification. Of course only half of the coefficients of the 

period transfer matrix need to be computed, after which the routine should 

return. This means a considerable saving in numerical computations and, to 

a certain extent, an increased accuracy. Indeed, if only the first n
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coefficients are required the routine needs to perform approximately 

(n - 2)(2n)^ + (2n)^ multiplications while (2n - 2)(2n)^ + (2n)^ 

multiplications are necessary to compute 2n coefficients. Altogether 

n(2n)^ multiplications are saved. For instance, an economy of ^^% is 

achieved when n = 4 and 72% when n = 3. The increased accuracy is due 

to the fact that the process of computing the pj's, being recurrent, 

accumulates round-off errors and, consequently, the sooner it is 

interrupted the better. In fact it is a broad way of speaking. For 

rather small matrices such as those encountered in this work the accuracy 

of computing all the 2n coefficients in the usual way (that is without 

considering property (3.3.3)) would be good anyway. But the fact still 

remains that there is a great saving in computation time and the need to 

calculate only half the number of the coefficients of the characteristic 

equation of the period transfer matrix should be regarded as of important 

practical value.
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CHAPTER IV

Free wave propagation in systems.with two terminal degrees of freedom

4.1 GENERAL

In chapter III a general formulation of the problem of free wave 

propagation in spatially periodic structures was made. A basic step in 

the solution of this problem is to obtain the period transfer matrix and 

then the equation for the propagation constant.

The period transfer matrix is generally made up of two factors: the 

field and the point transfer matrix. In fact, it is not an easy task to 

obtain the field transfer matrix analytically if its order is, say, 

greater than four. In these cases convenient numerical procedures must 

be used. This matter will be dealt with in chapter V.

In the present chapter two classes of structures will be considered 

as the first applications of the general theory.

The first class consists of thin flat plates (or skins) periodically 

supported and the second, of cylinders periodically stiffened by rings. 

The flat plates are considered to be thin and resting along one direction 

on two parallel simple supports (distant b units of length from each other) 

and, orthogonally to this direction, on an infinite number of elastic 

supports (both rotation and vertical translation allowed), distant & 

apart.

Fig. (2.1) is a sketch of such a structure, the only difference 

between this and that dealt with in chapter II is that two terminal 

degrees of freedom are now considered. This makes the plate structure 

models analysed in this chapter more representative of a real aircraft 

fuselage, chiefly when coupling between torsional and transverse 

displacement is strong, or (and) the transverse stiffness is not 

sufficiently great if compared to the torsional stiffness. The expression 

'sufficiently great' will be understood when the numerical results are 

discussed.
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As far as periodically ring-stiffened cylinders are concerned, only 

axi-symmetrically propagating waves will be considered in this chapter.

The general case of free wave propagation in this class of structures 

is postponed to chapter V.

4.2 THE STATE TRANSFER MATRIX [A]

The state transfer matrix [A] is the basic element for the computa­

tion of the field transfer matrix. It appears in the state equation for 

the system

{Zp(y)} = [A]^ {z^/y)}

and it is real for undamped systems and complex if some damping is present.

In this section the state matrix [A] is first derived for a flat 

plate element and then for the cylinder undergoing axi -symmetric vibrations.

4.2.1 The state matrix [Al for a flat olate element
T

Select the vector |vL(y), Wr'Cv), Wr''Cy)' Wr'''(y)| as a station
IV

vector and then resolve the equation (2.1.2) for w^ (y):

= 2&^w;''(y) . (s^ - ^^) w^(y) ..(4.2.1)

It is convenient to remember that equation (4.2.1) is valid for the 

assumed solution in expression (2.1.2).

Now, looking at equation (4.2.1) it is easy to write:
)

w^jy) 0 1 0 0 w^(y)

w^'(y) 0 0 1 0 w^'(y)
' ..(4.2.2)

w^/'(y) 0 0 0 1 w,;'(y)

^w^/''(y) bui 0 2?; 2 0 w^;''(y)^
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where bm - }

In condensed form the above expression can be written:

fx^Cy)} = [B]^ fx^Cy)} ..(4.2.3)

One could, of course, define a transfer matrix relating the station 

vector {x^Cy)}.at two points of the field (say y^ and yg). But the basic 

principle of free wave propagation calls for relations between generalise: 

forces and displacements (see, for instance expression (3.2.2))so that a 

way of transforming vector {x^/y)} into another vector {z(y)} defined in 

terms of these quantities ought to be found. The vector {z(y)} can be 

conveniently defined as

{Zp(y)} |Wp(y), wy'(y), M^/y), V^(y^ 

and one shall seek a field transfer matrix relating this vector at two 

points.

The relation between (x^/y)} and {z (y)} can be found by first taking 

the relations

Wp(y) = wy(y)

Wy/(y) = w'(y)
..(4.2.4)

M^(y) = - Dw^/'Cy) f Dvs^w^/y)

Vp(y) = - DwY'''(y) f D(2 - v)c2 w^(y)

and then rewriting them in matrix form:

w^(y) 1 0 0 0 Wp(y)

wy'Cy) 0 1 0 0 w'(y)
' '" ( 4.2

M^(y) D' 'C^ 0 -D 0 w^''(y)

Vr(y) 0 Dc^(2-v) 0 D w^'''(y)
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or, in condensed form:

= [c]^ {x^Xy)} ..(4.2.6)

Expressions (4.2.4) have been written by considering expression (2.1.2) 

for the deflection, expression (2.1.^^) for the moment and

V(y) = z v_/y) sin — e'^^^ ..(4.2.7)
r=l & 

for shear and, of course, applying the usual expressions for bending 

moment and shearing forces per unit length of the ordinary theory of 

thin elastic plates.

The matrix [C] provides the means to transform the station vector 

(x_(y))into {z_(y)}. It shall be called transformation matrix from now 

on. The state matrix [A] can now easily be shown to be

Mr = Mr t^Jr PJr ..(4.2,8)

where

10 0 0

0 10 0
[c];' =

VE^ 0 - ^ 0

0 ^Z(2-v) 0 - -^

Carrying out the product indicated in (4.2,8) the matrix [A] is found in 

its final form;

0 1 0 0

0 " T? 0
Mr =

0 m 0 1

nz 0 vs^ 0
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where

- -2Dc^(l - v); ^2 - Dg2(i - ^2) _ and

The state matrix [A] could have been derived in a more straight 

forward manner by obtaining the derivativeof the displacement, slope, 

moment and shear force as functions of these same quantities. This, in 

fact, was done by Henderson and Nashif |20|. But the above method seems 

simpler and involving less algebras manipulations.

4.2.2 The state matrix [Al for a cylinder element underooino 

axi-symmetric motion

Consider the cylindrical shell element of Fig. (4.1). If this 

element is vibrating in an axi-symmetric mode the tangential displacement 

(v) as well as the derivatives in relation to (^y( )) are zero.

The above assumptions lead to the simplified set of DonneTTs 

equations |21|:

^ + \, ^ _ nRlh ^. = 0

3x^ 3x K at^

..(4.2.10)

sx ax'* K ' atz

where

R radius of the cylinder element

u longitudinal displacement

Eh

12R^
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X = a nondimensional coordinate.

For the time being it will be assumed that the terms Involving u 

and Its derivatives are negligible in eq. (4.2.10) by comparison with 

the others. This last assumption leads to a single differential equation:

pR^h 9 2w
D Atz

s'+w 0
k

(4.2.11)

If a solution of the form w(x, t) w(x) e " is Introduced in the above

differential equation the result is

w (x) + Cw(x) = 0 (4.2.12)

where

C = R2(^) 1^ (^j2 . (^)2 and

D

Now, making use of (4.2.12) It Is possible to write:

W(x) 0 1 0 0 w(x)

W'(x) 0 0 1 0 w'(x)
>

w''(x) 0 0 0 1 w''(x)

w'''(x) -C 0 0 0 |w'"(x)

That is the [B] matrix for the cylinder element in axi-symmetric mode of 

motion.

Making use now of the well known expressions for the bending moment 

and shear force and applying the assumed solution of eq. (4.2.11), we

have:
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M(x)

(4.2.14)

V(x) D

R3

The state matrix

It is now very easy to see that:

"w(x)

8(X)

10 0 0

0 1 0 0

w(x)

W'(x)
<
M(x)

V(x)

where

G(x) 1 
R

dv

0 0 0
R2

0 0 0 -5.-

jx

w''(x)

w'''(x)

..(4.2.15)

Expression (4.2. 11)) shows the transformal

10 0 0

0 R 0 0

0 0 0

0 0 0 .^X

:ion matrix [C . Its inverse is

..(4.2.16)

[C] [B] [C]is obtained by carrying out the product

0 R 0 0

[A]

0 0 R
D 0

..(4.2.17)
0 0 0 R

-CD

R3
0 0 0
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It is worth noting that both matrices [Aj for the plate element and for 

the cylinder element are cross-symmetric and of the same order

4.3 THE FIELD TRANSFER MATRIX

The state matrix [A] is the basic element for the construction of the 

field transfer matrix. The simplicity of both [A] matrices derived in the

previous section suggests the straight forward application of a consequence

of the Cayley-Hamilton theorem |13|. It is possible to prove |22| that the

field transfer matrix, relating station vectors y units of length apart,

can be written as:

Tp(y,0)
2n

j=l
..(4.3.1)Cj [a](^O

where the coefficients Cj are the roots of the following system of linear

equation:

Cj m = 1, 2n
j=l

..(4.3.1a)

Generally speaking, the main restriction to this method of finding the 

field transfer matrix resides in the computation of the power of [A]. 

This restriction does not apply to the present cases anyway because the 

extreme simplicity of [A] makes it possible to obtain by hand all the 

necessary powers of [A].

4.3.1 The Field Transfer Matrix for the Plate Element 

The characteristic equation associated with the state matrix [A] for 

a plate element is given by (2.1.3), If the roots are written in the form

Al, -Al, X2, -Ag, where
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'ASP^'

.(4.3.2)

A 2 1

and if these roots are taken into (4.3.1a), the result is:

cos hx^y - X2^cos hx^y

c
Xi sin hXgy - Xg sin hXf/ 

^4^2^ - XgXi^

Now, obtaining the second and third powers of [A] by hand multiplication

and carrying out the linear combination expressed by (4.3.1) the end

result is the field transfer matrix for a plate element:



GJ

1

o! D
I W
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where:

= -2D(1 - v)r2 = 2^(1 - x,)(^5jT)2

'^2 " ^ { ^^ " \'2)(2?^r)'2 " <1*2}

4.3,2 The Field Transfer Matrix for the Cylinder Element in 

axi-symmetric motion

The steps to be given here are basically the same as for the previous 

section.

The characteristic equation associated with [A| is derived from 

equation (4.2.12) and is:

X'' + c = 0 ..(4.3.4)

If there is some damping in the cylindrical shell C is complex. If no 

damping is present C is a real number. One could represent the roots of 

(4.3.4) by

i 4
= |C|" e , j = 1,2,3,4 , 0 2Tr ..(4.3.5)

where 0 is the principal argument of C.

It is also easy to show that:

= iX}

X3 = "Xi ..(4.3.6)

= -iXi

With these relations taken to equations (4.3.1a) the C's coefficients can 

be found;
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1
Cl = (cos XX f cos hXjX)

_ 1 sin hxix + s1n 

Al
, - ..(4.3.7)

r 1 cos hAix - cos

r _ 1 s1n hA]x - sin Aix

The above relations are valid only for |C| not equal to zero. For |C| 

equal to zero one could take the limit values:

C 2 — X
..(4.3.7a)

Now it is possible to obtain [Aj^ and [A]^ and carry out the linear 

combination expressed by eq.(4.3.1). The field transfer matrix for a 

cylindrical element undergoing axi-symmetric vibration is:

Cl Ci.R

[jp(x, oj]

r DC r DC
R2

-C3-;

(4.3.8) it is good to point out that:

=r
..(4.3.8)

Cl Cz.R

r C Cl

For readiness in the computation of
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xi = 41C2L , (1 + i), c > 0

2
..(4.3.8a)

Al = |C|^ ; C < 0

Al = |C|^ cos (^) + i sin (^^) » C complex.

It is worth noting that both matrices in expressions (4.3.3) and (4.3.8) 

are cross symmetric. All the structures to be dealt with in this work 

have cross symmetric field transfer matrices. The general conditions for 

a transfer matrix to be cross symmetric is given in |23|.

4.4 THE POINT TRANSFER MATRIX

The reasons to find a point transfer matrix as well as its meaning 

have been explained in section 2.3. The stiffening elements encountered 

in the structures dealt with in the present chapter have two degrees of 

freedom* rotation and transverse displacement.

The point transfer matrix is derived by considering the compatibility 

conditions for the displacement and slope and the equations for the jumps 

in moment and shear across the stiffening element:

..(4.4.1)

In the above expressions 6 stands for the slope at the stiffening element 

and K^ is a coupling coefficient between torsional and transverse DW

displacement. The coefficients Kg, Kg and l< have been computed by



Henderson and McDaniei|4| for the type of support of fig.(6.1) and are:

00

w ' n d 0

K given in expression (2.3.3)

A, the cross section area of th

and

stringer

The above expression shall be used in this chapter in connection with

stringer-stiffened flat plates

In matrix form equation (4.4.1) gives the point transfer matrix:

V/

..(4.4.2)

ow

ow

w

6

1

0

K

0 0 0

0 0 6

0

0

r r

For a ring vibrating axi-symmetrically elements of the point transfer

matrix can be found as follows

In fig. (4.1) the forces acting on one ring are shown. The sign

convention is compatible with that one found in [24 I where it was used to

derive the cylindrical shell equations.

The differential equations of motion of the ring can be written by

applying the hypothesis of symmetry of the vibration to the general

equations derived by WAH and Hu |25|.Its results are only two equations:

8(t) f pl = F,(t)
R2 P 3t2

..(4.4.3)

^ w(t) f pA
R2 atz
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where:

I , the polar moment of area of the section, and

I, a principal momen of area about an axis parallel to the

X axis

Assuming harmonic expressions for all the quantities involved in

equations (4.4.3):

%<t) = F,e1=t: F„(t) = F„ e''=t

and taking these expressions into equation (4.4.3) one finds:

F = (— - An^)w
..(4.4.4)

Noting that F , = V^ - V^ and F. M^ - M*", equations (4.4.3) give:

'6w

EI
R2

'p'

+ A.a.^
R2

..(4.4.5)

The above equations are enough to complete the ring point transfer matrix.

0

Since there is no coupling between 6 and w in the present example of

ring the coefficient K^ is zero. Of course a more general kind of ring 

section can be considered.
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4.5 THE PERIOD TRANSFER MATRIX

The period transfer matrix is given, as always, by equation (2.4.1a). 

Looking at the general expression for the point transfer matrix (4.4.2) 

one can see that the first two lines of the period transfer matrix are 

equal to the first two lines of the field transfer matrix. The third 

and fourth lines are obtained as follows:

(4.5.1)

F 
where the t 'j are elements of the field transfer matrix It

was Implicitly understood that the way the period transfer matrix has been 

constructed (according to expression (2.4.1a)) corresponds to a definition 

of period as indicated in fig.(4.2). Of course, there are infinite ways 

of defining a structural period, the choice being just a matter of 

convenience, It should be pointed out that whilst the field transfer 

matrices derived before are cross^symmetric the period transfer matrix is 

not. It Is possible, by defining a period symmetrical to its centre, and 

by proper choise of sign convention to establish a cross symmetrical 

period transfer matrix (see |23|). However this will not be done in this 

work and the definition expressed in fig.(4.2) and expression (2.4.1a) will 

be the only ones used here.

If one assumes that the supports are very stiff either in rotation 

or translation one terminal degree of freedom can be eliminated by 

applying the technique described in Appendix B.

When it is done it might be more convenient to apply the reduction 

technique to the field transfer matrix and then obtain ths period transfer 

matrix by pre-multiplying the reduced matrix by the suitable reduced point 
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transrer matrix^ For instance, in eliminating the transverse movement

(b = 1,1 2 = 4) the period transfer matrix will be:

[T(bO)]
til t*i2

t*21 t*22

G 11

If the rotational degree of freedom o the stiffening element is eliminate

(b = 2, Ig = 3):

The reduced transfer matrix is obtained by eliminating line and column II 

and line and column 12.

It is worth noting that K does not appear in any of expressions 

(4.5.2a) and (4.5.2b). This is obvious for only two terminal movements 

were possible In the original structure and one has been prevented.

46 DISCUSSION OF RESULTS

In this work two examples of stringer-stiffened flat plates are to 

be considered.

The first example (called here Example I) is taken from a paper by 

Lin |1| and its pertinent data are listed below in SI units:

: Data for Example I

For each panel

b = 50.80 [cm]

E = 0.725 X 106 [N/cm^]
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h = 0,1016 [cm]

& = 20.826 [cm]

p = 2.8 X lcr^[N.secVcm^]

= 0«3

For each stringer

A = 1.485 ^^%]

Ay = 0.0 [cm]

Ag = 0.208 [cm]

C = 94.20 X 10"^ ^^4]

CWA = 4.43 ^mG]

C^ = 0.0 [cm]

Cg = 2.08 [cm]

E = 0.725 X lOG [N/cm2]

I = 5.075 [cm^]

I = 3.45 [cm4]

I = 0.0 [cm'^1

JA = 10.55 [cm'']

p = 2.8 X 10 [N.sec2/cm4]

V = 0.3

In that paper Lin was interested only in the lower and upper limits 

of each passing band and he developed a method to compute them. These 

limits are associated with zero group velocity.

It has been shown by Miles |6| that when a periodic structure is 

finite the natural frequencies fall in groups, the upper and lower 

frequencies of these groups being independent of the number of periods of 

the structure, When the structure becomes infinite the frequency groups 

become continuous frequency bands. So, the limits of a propagating band 

can be identified as natural resonant frequencies of the infinite periodic

-50-



structure, or of any of its periodic substructures, or of an isolated 

bay. Of course, any frequency falling in a passing band of an infinite 

periodic structure can also be thought as a 'natural frequency'. The 

only thing is that if energy is fed into the structure at any of these 

'natural frequencies' it will propagate to + Infinity can be thought 

as a sink that absorbs any energy that reaches it. On the other hand, if 

the vibration is steady at one of the lower or upper limits of a passing 

band no energy will flow from one bay to the next.

Lin's results are compared in table 4.1 with those obtained by using 

the technique to compute - n* curves (see appendix D).

Table 4.1 Comparison with Lin's results |1| for the lower and upper 

limits of the Propagation Bands (Example I)

Technique Lin's Method

'"o HZ HZ

TT 17.22 98.9 98.9

0 22.681 130.0 130.2

0 39.865 228.9 228.9

ir 55.7136 323.0 323.0

The agreement between both sets of results is complete. Fig. (4.3) is a 

computer plot of the three first p - curves for f = 1.

The p - n* curves of fig. (4.4) were obtained by applying the 

reducing technique explained in appendix B with II = 1, and 12 = 4. This 

means that the transverse stiffness has been considered infinite. No 

serious errors have been introduced by applying this technique to this 

structure for two reasons:
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a) The transverse stiffness is in fact very high if compared, say, 

with the transverse stiffness in the middle of a bay;

b) The coupling coefficient K is zero since A , I and C are 
y y 

zero.

So, the assumption that this system has only the torsional degree of 

freedom is not too far from reality.

Table 4.2 compares ths results with and without the application of 

the reduction technique:

Table 4.2 Comparison between results obtained for the structure of 

Example I and derived structures by making either K or 

K infinite.

nd K finite Kg . .

u y "'o

17.220 17.220 0 22.681

0 22.681 0 23.325 IT 23.325

0 39.865 0 39.865 IT 56.322

IF 55.7136 IF 55.7136 0 62.920

IT 56.322 TF 62.920 0 81.300

0 78.192 0 78.192 TF 96.211

The small increase in the upper frequency of the first band shown in the 

second column of table 4.2 is probably due to the greater transverse 

stiffness of the stringer (infinite, actually). Also shown in table 4.2 

are the results obtained when taking II = 2, and 12 = 3. This means that 

the plate is allowed to translate, but not to rotate at the supports, or 

stringers. In this last case only a special type of flexural waves can 

exist, namely those for which only transverse displacement of the supports

occur
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With the purpose of finding the effect of coupling between transvers 

and longitudinal displacement another skin-stringer structure (called 

Example II) is considered below.

In this structure the stringers are not symmetric in relation to the 

line of attachment so that there is some coupling between transverse and 

rotational movements.

Data for Examole II

For each Panel

b = 24,39 [cm]

E = 20.69 X 10^ [N/cm^]

h = 0.122 [cm]

& = 7.32 [m]

p = 78.50 X 10 [N sec^/cm^]

V = 0.3

For each stringer (see sketch below)

E = 20.69 X 10^ [N/cm^]

P = 78.50 X 10 [N.sec^/cm^]

V = 0.3

Table 4.3 compares the lower and upper frequencies of the first three

passing bands for this structure and figs. (4.6, 4.7 and 4.8) show the

corresponding p - n plots.
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Table 4.3 Lower and upper band frequencies for Example II and the 

derived structures for K - « and = 0.

K and 
w not altered K = 

we
: 0

y 'Ll

0 9 86892 11.0327 0 10 3315 (5%)

10 03175 0 21.6412 11 0327 (10%)

IT 16 023 0 22.87324 15 3935 (4%)

0 21 71345 TT 34.36923 0 21 6412 (0.3%)

0 33 31063 11 62.3386 0 32 9565 (1%)

ir 34 596 0 66.9582 IT 34 36923 (0.5%)

Also shown in the same table are the values of the lower and upper band 

frequencies for K =

It can be noticed that by simply ignoring coupling errors (shown in 

brackets) can be introduced in the first band which incidentally is the 

most important in many cases. This should be borne in mind if one intended 

to represent each stringer by one transverse and one torsional spring.

Another feature of this structure is that the stringer transverse 

stiffness is small compared with the torsional stiffness to the extent 

that the lower frequency of the first propagating band corresponds to 

p = 0 (the 'clamped' vibration mode). It is shown in fig. (4.6).

The order of appearance of the limiting band frequencies have reversed 

here in relation to the order found in the structure called Example I. If 

the reduction technique is applied to make K = » the derived system must 

show the same order as in Example I. This is shown in fig. (4.7) and in 

table 4.3. But now serious errors are introduced by assuming zero transverse 
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displacement at the stringer. The departure of these results from those 

of the original system is in part due to the fact that the stringers are 

not transversely stiTr enougn Tor the hypothesis of zero displacement at 

their attachment to be a sound one. It is also in part due to the coupling 

that is automatically eliminated by this hypothesis.

It }s incerGscing co notice that coincident values of frequency such 

as 11.0327 (p = Ti), 21.6412 (^ = 0), 34.3692 (p = ir) etc. occurs only 

between columns 2 and 3 in table 4.3. This is expected because both 

columns show results belonging to derived structures without coupling.

The results discussed above can also be presented in the form of 

^0 - curves as was explained in chapter II. This is shown in figures 

(4.9 and 4.10) for n = 0 and 0.T5. All these graphs are divided in two 

regions, below and above the 0 - 0 line and are related to the original 

structure of Exampl,e I, The imaginary parts of the propagation constants 

are plotted in the imaginary region and the real parts in the real region.

Figure (4.9) for = 0 shows that the 'second' propagation constant 

is always heavily attenuating. The 'first' propagation constant is 

sometimes propagating and sometimes attenuating. It is worth noting that 

the passing bands shown by the first propagation constant coincide with 

those shown in fig. (4.3).

So if a harmonic point force acts in one of the bays of this 

structure two waves are sent to the right and two to the left. One of 

these waves decays strongly along the structure and the other may also 

decay or propagate, depending on the value of the exciting frequency.

The eftect of damping is to introduce a non-zero value for the 

imaginary part of the propagation constant at all frequencies. Fig. (4.10) 

shows the curves tor Example I with n - 0.15. One could notice 

that the imaginary part of the 2nd propagation constant dips in the region 

where a propagation band does exist when n = 0. Cuves like those in 
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fig. (4.TO) have been obtained for some other values of the damping but 

are not shown here to save space. It is interesting to notice that the 

same program used to compute curves (4,9) or (4.10) can be used (with 

minor changes) in case the damping is heavily dependent on the frequency.

In chapter II it was explained that when the infinite periodic 

structure is excited by a harmonic point force with a propagating frequency 

two groups of waves are generated; one propagating to the right and the 

other to the left. It is interesting to plot the phase velocities of one 

group (the one propagating to the right, say) by using equation (2.5.2a). 

These sort of plots have been introduced by Mead |5| and have been used 

by Sen Gupta |lo|« Figures (4.11, 4.12 and 4.13) show such graphs for 

the structure of Example I and they correspond to the first, second and 

third bands, respectively. Looking at curve (4.11), for instance, one 

can see that it is divided in positive and negative branches. Positive 

branches correspond to positive j's in equation (2.5.2a) and negative 

branches to negative j's and 0 p In this way positive branches 

correspond to positive phase velocities and negative branches to negative 

phase velocities.

So both net waves sent away from the applied harmonic force are 

combinations of infinite harmonic components with all the possible phase 

velocities. (For a detailed discussion of this see |5| ).

The uppermost branch corresponds to j = 0 and this gives the primary 

component, or primary phase velocity. The wave length of the primary 

component was called pseudo-wavelength by Mead |26|.

If in fig. (4.11) a vertical line is drawn through a propagating 

frequency it will cut the branches at points whose ordinates correspond 

to positive and negative phase velocities.

The junction points shown in fig. (4.11) (marked A, B, C, D, etc.) 

correspond to the limits of the propagation bands and one can see that 



the phase velocities appear in pairs of the same modulus but with 

different signs. As a result no propagation does occur as was explained 

in chapter II. The explanation given above applies as well to the curves 

of figs.(4.12) and (4.13). All the computations carried out for the skin­

stringer structures given so far can be repeated for the axi -symmetric 

wave propagation in ring stiffened cylinders. The computer programs and 

sub-routines involved are the same, apart from the computation of the 

state matrix [A]. In the listing below a set of data is given for a ring 

stiffened structure referred to here as Example III. This set of data is 

taken from a paper produced by Wah and Hu |25| and converted to SI units.

Data for Example III (cylinder)

For each cylindrical bay2_

R = 103.68 [mm]

L = 31.39 [mm]

h = 1.19 [mm]

E = 2.069* 106 [N/cmZ]

V = 0.3

p = 78.50 [N sec2/cm4] x lO"^

For each ring (see sketch):

b^ = 2.18 [mm]

dn = 5.82 [mm]

E = 2.069* 106 [N/cmZ]

v = 0.3 

p = 78.50* 10"^ [N sec2/cm4]

Fig. (4.14) shows the p - o* curves and table 4.4 presents the limit 

band frequencies for this structure as well as for the derived structure 

in which K = The - n^* curves for the derived structure with K^ = 

is shown in fig.(4.15),
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Table 4.4 Limit band frequencies for axi-symmetric wave propagation in 

ring stiffened cylinders.

'^8 finite K = w

0 27.1153 27.73502

27.72686 0 35.51674

IT 27.73502 0 39.071626

0 39.07163 IT 60.76544

0 40.34984 Tr 67.56043

IT 60.76544 0 89.87714

Here again the first propagation band starts with u = 0 as happened in 

Example II. The reason is that the transverse stiffness of the ring is 

low if compared to the torsional one.

The application of the reduction technique to make K = » changes 

this pattern and the first propagation band comes to start with p = 

Most of the comments made in connection with the structure of Example II 

apply here.

In fig. (4.16) the - p curves for the structure of Example III, 

without the application of the reduction technique, is shown for n = 0 

and in fig. (4.17) for n = 0.15. It is interesting to consider the curves 

of fig.(4.15) as the limit of those of fig.(4.17) for n approaching zero. 

For easy understanding of the curves the Letters I and R, standing for 

imaginary and real, respectively, appear after the number of the 

propagation constant. It is interesting to notice that complex conjugate 

propagation constants do exist for this structure along the bands (0,17.20) 

and (25.10, 27.115).
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Incidentally this last frequency marks the beginning of the first 

propagation band and above it the curves have a behaviour similar to 

those of Example IL
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CHAPTER V

GENERAL METHODS TO COMPUTE THE FIELD TRANSFER

MATRIX

5J GENERAL

The general theory developed In chapter III shows that the solution 

of problems of free wave propagation in spatially periodical structures 

follows the same lines no matter what the peculiarities of a particular 

structure or its degree of complexity are. One of the fundamental steps 

in this theory is the computation of the field transfer matrix from the 

state matrix.

The state matrix is generally easy to derive (see chapter IV). But 

if the system concerned has many terminal degrees of freedom (s^n > 2) 

the computation of the field transfer matrix can no longer be achieved by 

following the process employed in chapter IV. One must resort to numerical 

methods. These methods must be very efficient, both in accuracy and in the 

amount of computations required. Accuracy in the computation of the field 

transfer matrix from the state matrix [A] plays an important role since it 

affects the accuracy of the coefficients p.'sinvolved in the equation for 

the propagation constants (see chapter III).

If one is trying to compute u - o* curves for the structure the 

equation (2.4.8) must be solved interactively (it is highly trahcen^ent/)

and if the p.'s are not accurate enough round-off errors might impair or

even prevent the convergence.

Also, because the solution of (2.4.8) is iterative the equation for 

the propagation constant (consequently the field transfer matrix) must be 

computed many times and this fact calls for the efficiency (in time) of 

the computation of the field transfer matrix. So, the two critical factors 

in the computation of the field transfer matrix are speed and accuracy and 

they should be one's major preoccupation when selecting or developing a
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method.

Henderson and McDanief |4| have proposed the method based on the 

constituent idempotents of [Al whose theory is well presented by 

Frame |27|.

According to this method the field transfer matrix for a bay of

length t is given by

Tp(&,0[
2n

j -1

eV'
J

where [Pj] are the constituent idempotents of [A] and are computed 

according to the formula

2n

[Pj] - tl 

i/j

[A]r - Xi[I]

4

Even for a nondamped bay ([A] real) the constituent indempotents must be 

computed by using complex arithmetic and 4n(n - 1) multiplications of 

complex matrices have to be performed to compute all the 2n indempotents 

of [A], which is equivalent to 16n(n - 1) products of real matrices. In 

the case of n = 4 it would mean 192 multiplications of 8 x 8 real matrices. 

On the top of that the method needs the computation of the roots of the 

characteristic equation of [A] with great accuracy for they are heavily 

involved in the computation of [P.].

At the outset one can see that this method is not very appealing when 

one is dealing with nondamped systems for, if anything else, it would mean 

a waste of time in computations. Lin and Donaldson |28| have computed the 

field transfer matrix for curved panels by lumping the distributed mass of 

the shell along discrete 'mass lines' running parallel to the stringers and 

linking each mass line by a massless strip of the shell. The field transfer 
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matrix of a massless strip and the point transfer matrix of a line mass 

are then computed and b^ suitable multiplications the overall field 

transfer matrix is obtained.

The accuracy of the results depends on the number of mass lines 

considered.

The method still demands considerable algebronreffort even if the 

simplest shell theory (Donnell's equation) is used and it must be repeated 

throughout for each particular kind of structure. Also the numerical 

computations are kept very high. In this present chapter an effort will 

be made to select more suitable methods for the computation of the field 

transfer matrix introducing, whenever possible, modifications in an attempt 

to reduce the computational task and increase accuracy.

All the methods to be considered here are based upon the state matrix 

[A] which is the only thing to require al gebro/r manipulations. As will be 

seen in chapter VI these algebrA^ manipulations are usually kept under an 

acceptable amount.

5.2 THE TRUNCATED SERIES METHOD

In chapter I it was mentioned that the transfer matrix associated with 

the state matrix [A] can be written in infinite series of the form:

The question that arises is whether the above series, when conveniently 

truncated, provides a good method for the computation of the field transfer 

matrix. One should expect so because this series is strongly convergent 

for any matrix [A].

Notice, for instance, that 151 = 1.3077 * lO^z and 20: = 2.4329 * 1018. 

This means that by retaining a number of terms of the infinite series of 

about, say, fifteen to twenty one should get a good accuracy,
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If fifteen terms are retained the number of matrix multiplications 

is thirteen while the indempotent method requires 4n(n - 1), that is,

fourty eight 8 x 8 matrix multiplications. When no damping is present 

in the bays the state matrix [A] is real so that the truncated series

involves only real operations 

This fact means a two fold advantage upon the constituent indempotent 

method; first is the obvious economy in computation (the constituent 

method requires the equivalent of 192 multiplications of real 8 x 8 

matrices) and, second, the truncated series method can be programmed for 

computers in which the complex arithmetic is not available (for instance, 

the world widespread IBM 1130 computer). 

One should recognise another advantage of the truncated series method 

upon all the others cited previously; it does not require the solution of 

the characteristic equation of [A], which means further saving in computing 

time.

In programming the truncated series advantage should be taken from the 

fact that [A] and its powers are cross-symmetric.

The present method has been used in connection with the computation 

of p - n* curves for the structures dealt with in chapter IV.

The programme was run in the ICL 1907 computer (11 digits in single 

precision) and in the CDC 7600 computer (14 digits in single precision). 

The accuracy of the results is virtually the same in both computers. They 

will be presented later in chapter VI. For computers with seven or eight 

digits in single precision the method must yet be checked for accuracy 

and, if necessary, the truncated series should be computed in double 

precision. In computing the truncated series it is convenient to follow 

the following steps:
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[Tz] = Mr y [Ti]/2

[TN] = Mr [TN-ll/N

Then:

5.3 THE METHOD BASED ON CAYLEY-HAMILTON THEOREM

The method described in chapter IV and summarized in expressions 

(4.3.1) and (4.3.1a) can conveniently be programmed if attention is paid 

to some details to improve efficiency and accuracy.

According to this method - which is a consequence of Cayley-Hamilton 

theorem - the field transfer matrix is a linear combination of powers of 

[A] and the coefficients of the linear combination are solutions of a 

system of linear equations given by (4.3.1a).

The first step towards the application of this method is to solve 

the characteristic equations of the state matrix. That is a fourth order 

polynomial equation in x2 and give solutions in the form + X}, + X2, + X3 

and + x^- Accuracy is necessary in computing these roots. Also, because 

the computation of the field transfer matrix is a step inserted in an 

iterative process aiming to find p - n^* curves (propagation bands), it 

is essential that the method used to solve the characteristic equations 

be always convergent. Mullers method |29| has proved to satisfy both 

requirements of accuracy and convergence besides being extremely fast.

It is interesting to point out here that no formal proof has ever 

been provided for the convergence of Muller's method but no failures have 

been reported by Muller in his papers or has it happened in this work. 



So this method has been used here whenever a polynomial equation (with 

real or complex coefficients) had to be solved.

Now, it is faster to solve two systems of four linear equations than 

one system of eight ones. Due to the nature of the roots of the 

characteristic equation of [A] it is possible to split the system of 

eight linear equations represented in (4.3,la) into two systems of four 

equations each. It can be easily shown that the two smaller systems are:

..(5.3.1)

m = 1, 2, 3, 4

In the above systems of equations one has:

The square matrices of the two systems in (5.3.1) are very closely related

indeed, for:

where

'm

F 1
is the square matrix:

5^m^m 3

0 0 0

0 Xg 0 0

0 0 Xg 0

0 0 0 X4
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In this way the two systems (5.3.1) can be represented by:

Noticing that

4 
in TH

the determinant of the above square matrix is

.(5.3.2)

A = (X22-Xi2)(X32.Xi2)(x^2-Xi2)(x32-X22)(X42-X22)(x^2-X32)

..(5.3.3)

the sole condition for the systems (5.3.2) to have determinate solutions

is that

for m /

Now, the matrix appearing in system (5.3.2) is of the simple alternant 

type. This can be easily seen by noting that its determinant is an 

alternating function of the variables Xi^, X2^» Xs^ and x^^, that Is, It 

changes its sign (but preserves its absolute value) when two of the 

variables are interchanged. It can be shown |30| that the inverse of a 

simple alternant matrix can be obtained by following a very simple rule.

The elements of the j^^ column of the Inverse are quotients of which 

the numerators are elementary symmetric functions of the variables Xi^ 

XgZ, Xg2, x^2 with the Xj^ omitted and the denominators are products of 

all the factors of the form (Xj^ - X^^)* ^ / J' Following this rule the 

inverse of the matrix of the systems (5,3.2) can easily be written down:
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4
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where:

Dl = (X12-X22)(Xi2-X3^)(Xl^-X^^0

^2 = (X2^-X1^)(X2^-A3^)(X2^-X4^)

^3 - (A3^"Xi^)(X3^-X2^)(X3^-X4^)

Di^ = (X4^"Xi^)(X4^-X2^)(X4^"X32)

The solution of system (5.3.2) is then found to be:

As a last remark one should point out that the matrix [D] does not contain 

the length of the field for which the field transfer matrix is to be 

computed. It does appear only in expression (5.3.5). This fact is of 

convenience when the field transfer matrix has to be computed for several 

lengths of field, for instance, when computing the state vectors along 

many points in a bay.

So, instead of solving in the computer a system of eight linear 

equations with complex coefficients one has only to calculate matrix [D] 

and then the C.'s by applying expression (5.3.5). The economy In 

computation is considerable. One should always bear in mind that the 

field transfer matrix has to be computed many times in the process of 

calculation of the propagation bands to have an idea of the Importance of 

this saving.

Having determined the coefficients C.'s one is now able to form the 

linear combination (4.3.1).

Instead of computing the powers of [A] it is advisable to follow the 
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scheme shown below:

[Ti] = CgEA] + C7[I]

[Fz] = [Tj] [A] + C,OJ

[T?] = [Te] [A] + C, [I]

[TF()^O)] = [Ty]

In following the above scheme advantage should be taken from the cross­

symmetry of the state matrix.

5.4 THE METHOD BASED ON THE EIGENVECTORS OF [A]

The third method to be explored in this work is quite straight 

forward and is based on the eigenvectors and eigenvalues of the state 

matrix.

It shall be seen in chapter VII that the field transfer matrix can 

be expressed by

[Tp(y.O)] M [vF ..(5.4.1) 

where [u] is the matrix of the right eigenvectors of [A] and [v] is the 

matrix of the left eigenvectors that is, the eigenvectors of the transpose 

of [A]^,.

Expression (5.4.1) is valid on the condition that the eigenvalues 

are normalized according to expression (5.4.2):

where Is one when j = m and zero otherwise. It is also assumed that

^j / ^^, j / m.
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As a consequence of (5.4.2) one can write: 

[V]"^ [U] = [I] ..(5.4.3)

which means that; 

[Y]\ = [U]-' -.(5.4.4)

Taking this result to (5.4.T) the final expression for the field transfer 

matrix will be;

LTp(y,O)] = [U] [-e^l^ [u]":^

The eigenvectors and eigenvalues of the state matrix can, of course, be 

computed by using a standard subroutine. There are some shortcomings 

in following this approach. First, standard subroutines to solve eigen­

value problems with a general complex matrix are not generally available 

in many computing systems. Second, a general feature of most (if not all? 

the standard iterative methods to solve eigenvalue problems is that the 

accuracy of the eigenvectors is somehow lower than the accuracy of the 

eigenvalues. This is, of course, inconvenient in the present case since 

the computation of the field transfer matrix is only an intermediate step 

towards the calculation of the propagation constants. Consequently the 

accuracy of the eigenvectors should also be great, of the same order as 

the accuracy of the eigenvalues.

Further, the standard iterative methods mentioned above are, in 

general, too time consuming for the present purposes.

In appendix C the Leverrier's method with Fadeev's modification will 

be described. This is a direct method giving the characteristic equation 

of [A] and can also be applied to compute both its right and left eigen­

vectors.

This method is very efficient and accurate for small matrices (say 
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up to 15 X 15) and has no restrictions related to the nature of the square 

matrix. One must only assume that the eigenvalues are distinct. The 

method also permits advantage to be taken from the fact that [A] is cross 

symmetric and that a^j = 0 when 1 + j is even.

The method described in this section enjoys the same advantage 

pointed out in the end of section 5.3. One can see by looking at 

expression (5.4.5) that the size of the fjeld (y) can easily vary because 

it is not involved in the modal matrices appearing in this expression. 

So, once the matrices [U] and [Uj have been obtained (for a certain 

frequency) the field transfer matrix for any length of field can be 

calculated.

One shall see, later in this work, applications of this property.
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CHAPTER VI

FREE WAVE PROPAGATION IN STRINGER-STIFFENED SHELLS AND 

RING-STIFFENED CYLINDERS

6.1 GENERAL

Having developed a general theory to solve problems of free wave 

propagation in periodic structures (chapter III) and discussed 

suitable techniques to compute the field transfer matrix from the state 

matrix (chapter V) one is now prepared to tackle some specific examples.

Two kinds of structures will be considered in this chapter and they 

will be referred to as stringer-stiffened shell and ring-stiffened 

cylinder.

The main element in both structures is a thin cylindrical elastic 

shell, damped or not.

In the first structure referred above the shell is supposed to be 

simply supported along two circular frames distance b units apart and 

orthogonal to the axis of the shell. The stringers are also supposed to 

be simply supported at the frames and run parallel to the axis of the 

shell. This structure is supposed to represent a section of a cylindrical 

aircraft fuselage (see fig. 6,1). The attachment between shell and 

stringer is considered to be along a line.

The comments related to the representativeness of this model of a 

real structure could follow the same lines as those made in chapters II 

and IV for the stringer-stiffened plate structure. The circular frames 

are considered as acting as simple supports in spite of their high 

transverse and torsional stiffness.

As pointed out in |2| this is a sound hypothesis for high aspect 

ratio, say, greater than two and a half.

Since panels adjacent across the frame move almost independently 

and since there is considerable correlation across the stringers one shall 
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examine wave propagation around the circumference of the shell (y direction 

in fig. (6.1)) only.

The second structure to be dealt with In this chapter consists of an 

infinitely long circular cylinder stiffened by rings distant b units 

apart. All the rings are assumed to be identical and attached to the shell 

along a line. Ring-stiffened cylinders have been a subject of vibration 

research for a long time, which is shown by the considerable number of 

publications available.

Most of these works are concerned with finding the eigenvalues and 

modal shapes of ring-stiffened shells. Bushnell |31| has developed a 

finite difference analysis of a general shell of revolution by using 

Novoshilov's kinematic relations for these shells.

Hu and Wah |25| have analysed a ring-stiffened circular cylinder by 

considering the interaction forces between shell and rings as forcing 

functions on the rings and the problem is treated as one of the forced response 

of a series of rings.

Forsberg |32| has tackled the problem by introducing the ring charac­

teristics (stiffness and inertia) through the boundary conditions at each 

junction and at the ends of the shell, Finite element has also been used 

|32| but it has been pointed out by Forsberg and Warburton |33| |34| that 

for cylindrical shells there is no inherent advantage of finite elements 

upon other methods.

When all the bays and ring-stiffeners are identical the structure can 

be thought as periodical, each period including a cylindrical shell bay 

and a ring. In this case the theory developed in chapter III can be 

conveniently applied to examine the wave propagation along the structure.

In the next two sections the state matrix related to both structures 

dealt with in this chapter will be derived. For simplicity Donnell's 

equations will be taken in both cases but a more advanced theory could be
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used without increasing too much the algebraic work to derive the state

matrices As explained before, as soon as the state matrix is derived

the task of finding the field transfer matrix is left to the computer.

6,2 The state matrix for the shell element associated with 

stringer-stiffened shells

The method adopted in chapter IV to find the state matrix for a flat 

plate element can be applied here for the shell element.

As was said in the previous section the dynamic counterpart of 

Donnell's equations will be used for both stringer-stiffened shell and 

ring-stiffened cylinder. The reason for this choice is simplicity, though 

a more general shell theory would not increase too much the amount of 

algebra.

Considering the sign convention established in fig. (6.1) the 

Donnell's equation can be written:

8X2 2 8y^ 2 9xay R gx K atz

2 8X8y 2 8x2 2^2 R gy K at^

V^y + 1 _ 2L _ hf + 2 ^ = 0 

R 3x R 8y R2 12 ax^ 8x2ayz gy2 K atz

In equations (6.2.1) R is the radius of the shell element and K = .

Assuming solutions of the form: 

u(x,y,t) = E u(y) cos ^x e^^^

v(x,y,t) = z V (y) sin ;x e^"^ '-(G'^'^^) 
r=l

w(x,y,t) = z wL(y) sin ex e^"^ ; e = gL 
r=l ' D 
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and taking them to equations (6.2.1) and solving each of the resulting

equations for the highest derivative it contains one ends up with;

.w^Xy)

v^/'(y) = ('^^ '5^ - ^'^^)Vy.(y) "^Y^ '^'^^/(y) + ^ Wp'(y)

12 H

h^ R2 K

+ 2g^wy''(y) ..(6.2.3)

Equations (6.2.3) can be used to construct the following matrix differential

equation:

u
1

0 0 0 0 0 0 0 1 u

V 0 0 0 0 0 0 1 0 V

w 0 0 0 1 0 0 0 0 w

w' 0 0 0 0 1 0 0 0 w'
. = <

w'' 0 0 0 0 0 1 0 0 w''

w''' 1^61 0 ^63 0 1^65 0 ^67 0 w'"'

v' 0 byg 0 ^74 0 0 0 ^78 v'

u'
\ /

^81 0 ^83 0 0 0 ^87 0 u'

..(6.2.4)

Equation (6.2.4) can be written in condensed form:

{x)r = W^ {x}^ ..(6.2.4a)

The elements of matrix [B] are given below:

^61 = 12 

hZR
^63

12 (L _ f!«f)

h2 R2 K
^65 - ^^^'
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b67= — ; b72 = ; b74 = 1 ; b78 = ^ .5

b8i = baa = ^''^; b87 =

Here again It must be said that it is convenient to find another vector 

different from fx) and more suitable to our purpose. The vector to be 

chosen is;

fz)^ = [u^(y),V^(y),w^(y),w'^(y),M^(y),V^Xy), -N^Xy),T^(y)j^;

Vectors {%} and izl^ are linked by a transformation matrix [c]^ that can 

be found by making use of the expressions for the stress resultants in 

accordance with the sign convention defined in fig.(6.1):

..(6.2.5)

^ 8y^ Bx^ByJ

Applying expressions (6.2.2) to expressions (6.2.5) one can write the

following transformation matrix equation in which [c]^ is the

transformation matrix:



..(6.2.6)^

u 1 0 0 0 0 0 0 0 u

V 0 1 0 0 0 0 0 0 V

w 0 0 1 0 0 0 0 0 w

w' 0 0 0 1 0 0 0 0 w

M 0 0 Dvi^"" 0 -D 0 0 0 w

V 0 0 0 D(2-v)c2 0 ^D 0 0 w

vgK 0 K/R 0 0 0 -K 0 V

T 0 0 0 0 0 0 u

or

fz(y)}^ = [c]^ {x(y)}^ ..(6.2.6a)

The Inverse of matrix [c]^ can easily be found by applying expressions 

(6.2.2) to expressions (6.2.5) solving the results for the highest

^r'(^) - T(T^ T^(y) - 5V^(y)

derivatives:

Wr"(y)
M_(y)

+^S^WY{y)

w^'''(y)
Vr(y)

+ (2-v).g^. w^'(y)

Vr'(y)
N_(y)

+ ^^u^(y) +
w^(y)

and writing



u 1 0 0 0 0 0 0 0 u

V 0 1 0 0 0 0 0 0 V

w 0 0 1 0 0 0 0 0 w

w' 0 0 0 1 0 0 0 0 w'

w'' 0 0 0 - 'g 0 0 0 M

w'"' 0 - -Q 0 ^^(2-\)) 0 0 0 0 V

V ' 0 0 0 0 - p 0 -N

u' 0 " ^ 0 0 0 0 0
T

.(6.2.7)
or

{x(y)} = [C]"^ {z(y)}
.(6.2.7a)

Now, the state matrix appearing in the state equation {z(y)}' = |?J{z(y)}is 

9ivGn by [C] [B] [C] \ The matrices [C], [C] and [B] are very sparse 

Indeed which makes the above product extremely easy to be carried out by 

hand.

If this is done the result is:

0 0 0 0 0 0 2 -

0 1 0 0 0 1
" K 0

0 0 0 1 0 0 0 0

0 0 vc^ 0 0 0 0
[A]^ =

0 0 0 ^1

L)

0 1 0 0
..(6.2.8)

0 0 12 0 0 1
K 0

0 on*2 0 0 0 0 0 "C

Ts 0 0 0 0 0 VC 0
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where o= D/^'*, and fj = |<(l-7)-^nA,

Again it must be said that the above matrix could have been derived 

by finding the expressions for the derivatives of the stress resultants 

as functions of the stress resultants themselves. This has in fact been 

done by Henderson and McDaniel|4| but the method produced above seems more 

elegant, systematic and the intermediate steps are easier to check. The 

algebra required is also extremely simple.

6.3 THE STATE MATRIX FOR THE SHELL ELEMENT ASSOCIATED WITH THE RING- 

STIFFENED STRUCTURE

To compute the state matrix for the shell element associated with the 

ring-stiffened cylindrical structure (that is, the state matrix associated 

with the X direction (see fig. 4.1 ) one shall follow, as always, the 

procedure used in chapter IV and in the previous section.

The same set of Donnell's equations will be used here with the sign 

convention established in fig.(4.1) so that the proper sign adaptations 

should be performed in equations (6.2.1).

Assuming the following set of solutions:

u(x,^,t) = z u(x) sin r* e^^^
r=l

v(x,*,t) = E V (x) cos r* e^^^ ..(6.3.1)
r=l

w(x,^,t) = z WL(x) sin r* e^^^
r=l

and taking

fx) = ^_-v,u,w,w',w'',w''',v',u'l

and following the same steps given in the previous sub-section one 

finds
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0 0 0 0 0 0 "1 0

0 0 0 0 0 0 0 1

0 0 0 1 0 0 0 0

0 0 0 0 1 0 0 0
[B] =

0 0 0 0 0 1 0 0
..(6.3.2)

^61 0 ^63 0 bgs 0 0 ^68

b?! 0 ^73 0 0 0 0 ^78

0 ^82 0 ^84 0 0 ^87
r

or

{x(x)}^ = [B]^ {x(x)}^ ..(6.3.2a)

where

bgi = - ^ ; bg3 = -r^- ^+ .6^02; bgg = 2r^; bgg = - -^

h2
12R2

The transformation matrix 1s found by taking expressions (6.3.1) into 

DonneTPs expressions for the stress resultants and assuming: 

{z(x)}^ = |-v(x),u(x),w(x),G(x),M(x),V(x),N(x),T(^)|^

The result is;
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The inverse of [C] is found by the usual

1

0

0

1

0 0

0 0

0

0

0

0

0

0

0

0

0 0 1 0 0 0 0 0

0 0 0 0 0 0

FJr = ..(6.3.3)
0 0 G53 G G55 0 0 0

0 0 0 C 54 0 ^66 0 0

67^ 0 G73 G 0 0 0 G78

0 ^82 0 0 0 0 ^87 0
r

or

{z(x)}^ = [G]r {x(x)} ..(6.3.3a)

where

C53 c -vr^D/RZ; G55 = D/R2;

(^64 -(2-v)r2D/R3; ^66 - D/R3;

^71 rvK/R; G73 " vK/R ;

(^78 K/R ; ^82 rK(l-^)/2R ;

(^87 K(l-v)/2R

process shown in the previous

sub-section and is:
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1 ) 0 0 0 0 0 0

0 0 0 0 0 0 0

0 ) 1 0 0 0 0 0

[c]-'
0 ) 0 R 0 0 0 0

(6.3.4)
r

0 D d 5 3 0 ^55 0 0 0

0 ) 0 d 64 0 ^66 0 0

0 ^72 1^ 0 0 0 0 d78

^81 ] d 83 0 0 0 d 87 0
r

where

^53 = vr^; ^55 - RVD; ^64 = R(2-v)r ^66 (3/0;

^72 = -r; ^78 - 2R/(l-\ )Ki dg^ = -rv; das = -Mi

^87 .= R/K

Now, performing the product [B] the state matrix comes out:

0 r 0 0 0 0 0 -2R/K(l-v)

-rv 0 _^ 0 0 0 R 
7 C

0 0 0 R 0 0 0 [

Mr"
0

0

0

0

vrVR

0

0

2Dr2(l-v)

R 
1T

/R 0

0

R

0

0

0

0

..(6.3.5

-rK(l-\ ^/R 0 0 vrVR 0 -M 0

0 -Ra^n* 0 0 0 0

(*2 0 -rK(l-v^ )/R 0 0 0 -rv 0
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where

R3 h2

^2 = - ^ r^(l - v^) + ^^0^0*^

^0

1, distance between stiffening rings.

One should notice that all the state transfer matrices derived in

this and in chapter IV share the common properties of being cross-symmetric

and having a^. = 0 if 1 + j is an even number Their properties lead to

a cross-symmetric field transfer matrix. This fact is of convenience for

checking purposes and also because it provides means of time saving in the

numerical computation of the field transfer matrix.

General methods for the computation of the field transfer matrix have 

been considered In chapter V. One can see that for the structures dealt 

with In this present chapter one has to resort to one of those methods 

because the order of the state matrix is too high to follow the approach

found in chapter IV.

The next section will deal with the point transfer matrix.

6.4 THE POINT TRANSFER MATRIX

As pointed out In chapters II and IV the point transfer matrix for an 

open section stringer has been developed by Lin |3| and made more general 

by Henderson and McDaniel|4|.

In these derivations the inertia in the directions of y, z and e (see 

fig. 6.1) is considered. The displacements in these directions are 

considered small and the effects of variations of u along the stringer, 

negligible.
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According to the above stated assumptions the jump in bending movement, 

radial shear V^ and in plane force N across the stringer are given by:

Vr' ..(6.4.1)

+v^r ^vw^r ^ve^r
L 

r

where

\e - ^^^(^j^ns - Agl;) - (C^ - A^) A a^nQ*^

K = Es^I; + Aa^nQ*2

where

Dg/h^^=4

The other coefficients appearing in (6.4.1) are given in 2.3.3 and 4.

From equations (6.4.1) Henderson and McDaniels point transfer matrix 

is derived:

u
R 1 0 0 0 0 0 0 0

/ \ 
u

L

v 0 1 0 0 0 0 0 0 V

w 0 0 1 0 0 0 0 0 w

8 0 0 0 1 0 0 0 0 8

M 0 Kwe 1 0 0 0
<
M

..(6.4.2)

V 0 "^YW Kw 0 1 0 0 V

-N 0 -^w \e 0 0 1 0 "N

T
r

0 0 0 0 0 0 0 1 r T
r
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Neither Lin nor Henderson and McDaniel were interested in wave propagation 

through periodic structures but in the forced response and natural 

frequencies of a finite stringer-stiffened shell using the classical 

transfer matrix approach |13|.

Stringer-stiffened shells have been considered in this work because 

it provides a good example to check the numerical procedures related to 

the method established in chapter III.

In order to derive the point transfer matrix for a ring, resort will 

be made to the general equations produced by Wah and Hu |25|:

R^ 3*3 R2 5^ atz '^

..(6.4.3)

R'* 34,'* 3*^ R^ 3*^ 34^ 3t2 ^

EI
R2

(R
3*2 R2 9*2 g^2

p] R . RF (*.t}
P gt2 G

In equation (6.4.3) I is a principal moment of ore a" of the ring 

cross-section about an axis parallel to the radial direction. The 

quantities F^, F^, F^ and F are the external forces and twisting moment 

per unit length acting on the ring (see fig. 4.1).

The other constants appearing in equations (6.4.3) have already been 

explained in chapters II and IV. It will be assumed here that rings and 

cylind^^^shells have both the same mass density, an assumption that can 

easily be dropped if necessary.

Now applying expressions (6.3.1) to the differential equations (6.4.3) 

assuming that



w r^l wr sin

F mt

Fu(*,t) Fur sin r^,

er si n 1nt

and noting that

F wr
V F R 

r

F vr T Tr

F R 
r

Fe
R

r

the result is

R 
r Mr u e^r

r
L 

r VW r w r

..(6.4.4)

R + 'u^r K

T^ T^
Y r

. w
VW r

where

K
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Notice that the coupling coefficients K,, and in the above expressions 

vanish when r = 0 (axi-symmetric case). Expressions (6.4.4) can now be used

to determine the ring point transfer matrix:

- V R 1 0 0 0 0 0 0 0 -V ' L

u 0 1 0 0 0 0 0 0 u

w 0 0 ] 0 0 0 0 0 V/

6 0 0 0 0 0 0 0 6
..(6.4.5

M 0 K 
U8

0 1 0 0 0 M

V 0 0 0 1 0 0 V

N 0 K 
u

0 K 
UG

0 0 1 0 N

r
0 0 0 0 0 1

r
T

r

The square matrix appearing in (6.4.5) is the point transfer matrix for

a ring.
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6.5 THE PERIOD TRANSFER MATRIX

The period transfer matrix is obtained, as always, by performing the 

product [P] [T]r» where [P]^ is the point transfer matrix. For easy 

computation the elements of the period transfer matrix can be written as:

a) for stringer-stiffened shell:

t. . = t . . ; i 4, i = 8, j = 1,8
I 9 J I ) J

..(6.5.1)

F F F F 
- ^ 6,j "^ ^VW^ 2»j "^ \/^ 3,j " \vo^ 4,j ; j = 1,8

b) for ring stiffened cylinder: 

t. . = t^. . ; i ^ 4, j = 1,8

F F F
t . = . f K . f K 
5,J 5,J Ue 2,J 6 4,J 

t . = t^ . - K t' .-Kt 
6,J 6,J VW 1,0 W 3,J 

..(6.5.2)

t . = t .-Kt .-Kt .
8,J 8,J V 1,J VW 3,J

If the situation is such that one decides to assume that the transverse

displacement is zero the period transfer matrix can be written as
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a) for stringer-stiffened shell:

t*^j i ; i 3, i = 6; j = 1,6

: j = 1,6

t*^ . + K t*^ . + K t*^ . 
5,J V 2,J ve 3,J 

b) for ring-stiffened cylinder: 

t*. . = t*^. . ; i 3; j = 1,6 
I ) J I ) J

t* . = t*^ . + f K t*^ .
4,J 4 ,J Ug 2 >J 6 3 >J

..(6.5.4)
F F F+* . = f*' + k f*' 4. k" f*r 

5,J 5,j U 2,j U0 3,j ; j

In expressions (6.5.1) to (6.5.4) F stands for 'field' 

'reduced', that is the reducing technique described in

and the star means 

appendix B has been 

applied to the original field transfer matrix to obtain [Tp*].

6.6 NUMERICAL RESULTS

In this section a ring-stiffened cylinder (fig.4.1) and a stringer- 

stiffened shell (fig. 6.1) are considered for numerical computations. The 

data for the ring-stiffened cylinder are the same as Example III listed in 

chapter IV. The data for the stringer-stiffened shell is the same as

Example I with the additional data for the radius which is R = 182.88 cm . 

All three methods of computation of the field transfer matrix have

been used to compute p^ - n* curves. The numerical results are virtually
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the same. As far as computing time is concerned the method based on the 

eigenvalues and eigenvectors of [A] shows an advantage of 20% over the 

truncated series method but is practically equivalent to the modified 

method based upon Caxdey-Hamilton Theorem.

6.6.1 Stringer-stiffened shell results

Table 6.1 lists the lower and upper limits for the first three bands 

of the stringer-stiffened shell.

Also shown on table 6.1 are Lin's results |1| &^d the lower limit 

of the first band computed by Henderson and McDaniel |4|. This last 

figure refers to a closed skin-stringer shell made up of 56 bays.

Henderson and McDaniel had applied the traditional transfer matrix 

approach |4| to find the first natural frequencies of closed skin-stringer 

structures. One can see by looking at table 6.1 how close their computed 

first natural frequency is to the lower limit of the first band found in 

this work.

On the other hand, apart from the lower limit of the first band, the 

results obtained in this work are very different from those shown by Lin. 

Fig.(6.2)shows the first three propagating bands as computed in this work 

and fig. (6.3) represents the numerical results produced by Lin. The 

dashed lines linking the limits of the bands is to remind that the inter­

mediate frequencies have not actually been computed by Lin. One could see 

that the two bands shown in fig. (6.3) actually overlap, a fact not shown 

in fig. (6.2) in the first two bands.
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Table 6.1 Comparison of results obtained by Lin, Henderson and McDaniel 

and the technique developed in this work. Stringer-stiffened 

structure with ASP = 2.44.

^o" n* technique Lin's Method Henderson and 
McDaniel

Vo Hz Hz Hz

IT 19.9975 114.3 104.5 112.3

0 39.45826 226.0 414.0

71 55.9429 321.0 232.3

0 63.23307 362.0 496.6

0 78.4660 450.0

77 96.21064 550.2

To boost the confidence in the numerical methods and techniques used in 

this work further runs have been done with increased values of the radius. 

Radius of 2.5R, lOR, lOOR and lOOOR have been considered. The aim was to 

see whether the above results would steadily converge to those of the flat 

plate when the radius gets bigger and bigger. Table 6.2 shows that it 

actually happens. This fact is believed to be a necessary check on the 

techniques used in this chapter.

One should point out here that the results produced in table 6.1 have 

been obtained in three different ways, that is, each time one of the 

techniques for the construction of the field transfer matrix described in 

chapter V has been used.

Lin's method for curved structures is radically different from that 

for flat ones. Instead of using the 'exact' approach developed for flat 

structures (which would be extremely laborious) he derives an approximate 

energy method.
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Table 6,2 Lower and upper frequency limits of passing bands for 

different radius. Stringer-stiffened structure with

ASP = 2.44, R = 182,88 [cm]

p R 2.5R TOR lOOR lOOOR Flat Plate*

TT 19.997 17.595 17.209 17.217 17.221 17.222

0 39,458 34,505 23.610 22.690 22,681 22.681

TT 55.943 55.813 55,711 55.697 55,695 55.714

0 63.233 39.662 39.781 39.819 39.823 39.865

* Results obtained in chapter IV

The numerical results seen in tables 6.1 and 6.2 were obtained by 

making use of a state matrix based on the more general set of Flugge's 

equations. The simplified equations (Donnell's equations) used to derive 

the state matrix in expression (6.2.8) have proved to be just as good for 

the computation of the first two passing bands as one can see by looking 

at table 6.3.

Table 6,3 Stringer-stiffened structure. Comparison of results from 

Donnell's and Flugge's general equations.

Simplified Flugge's 
equations (Donnell's ea)

General Flugge's 
Theory

20.0132 19.9975

39.4645 39.4583

55.9335 55.9429

63.2510 63.2331

The reducing technique explained in appendix B has been applied here with
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I^ = 3 and Ig = 6, that is, the transverse stiffness was considered 

infinite.

In table 6.4 a comparison is made between the original results and 

those for the reduced structure.

Table 6.4 Stringer^stiffened shell. Variation of results when the 

stringer transverse stiffness is considered infinite.

Original structure K =00 
w

20.0132 20.0132

39.4645 39.4653

55.9335 55.9486

63.2510 66.0664

As can be seen the results for K = » are good enough to represent the 

original structure. For other kinds of stringers a careful analysis must 

be made on the grounds of the discussion presented in chapter IV. The 

main advantage of elimination of degrees of freedom (when it is justifiable) 

is some time saving in computations. For instance, it took 40.046 seconds 

in a CDC 7600 computer to calculate the two first passing bands of the 

original structure when the method based on the eigenvectors and eigen­

values of ^A1 was applied. With the reduction technique applied as explained 

above the time was 35.953 seconds which means an economy of just over 

eleven percent. Fig. (6.4) and fig. (6.5) show n* - curves for the 

stringer-stiffened shell corresponding to n = 0.0 and n = 0.15 and with 

an aspect ratio equal to three. The propagation constants have been 

numbered for easy understanding of the graphs. A number refers to the 

real or imaginary part of the corresponding propagation constant if it is 

below or above the 0-0 line, respectively. Again it is convenient to 
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consider f1g. (6.4) as a limit to which fig. (6.5) tends to when damping 

tends to zero.

Considering now fig. (6.4) one can see that propagation constants 

1 and 2 are complex conjugates up to point A(o * = 39.130) and propagation 

constants 2 and 3 are complex conjugates from n* = 39.130 to 44.736 

(point B).

This same graph shows two complete propagation zones the first being 

associated with the propagation constant numbered three. The second 

propagation band can be considered in three parts. The first part is 

associated with propagation constants 3 and 2, that is, these are 

'propagating' propagation constants. So, associated with any frequency 

within this first part there are two propagating waves. The second part 

of the second band is associated with propagation constant number three 

only. In this part of the propagation band the propagation constant 

number two becomes 'attenuating'. The third part of the second propagation 

band is also associated only with propagation constant number three, but 

one can see that there is an overlap with the third propagation band 

(propagation constant number two starts propagating again). The reason 

for usinghhere aspect ratio equals 3 (instead of 2.44 used before) is to 

enlarge the second part of the second propagation band for easier 

visualisation. If the aspect ratio of 2.44 were used this region would 

almost disappear as one can understand by looking at fig. (6.2). The 

aspect ratio was increased by holding constant and increasing b 

(distance between frames).

Fig. (6.6) and (6.7) show o * - v* curves (that is non-dimensional 

phase velocity plotted against the non-dimensional frequency) for the 

stringer-stiffened shell with ASP = 2.44. Fig. (6.6) corresponds to the 

first propagation band and fig. (6.7) to the second one. It is again very 

clear from fig. (6.7) that for any frequency within the band (47.736, 
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55,943) there correspond two groups of free propagating waves. In fact, 

since the second and third bands overlap in the way shown in fig. (6.2) 

one could say that for most frequencies within the second band there 

correspond two groups of waves.

6.6.2 Numerical Results for ring-stiffened cylinders

Computations of p^ - n^* and n^* - p curves have been carried out 

for the ring-stiffened cylinder mentioned in the beginning of this section. 

Different numbers of circumferential waves have been considered and 

fig. (6.8) and (6.9) are typical plots.

Fig. (6.8) was computed for five circumferential waves and fig.(6.9) 

for two. Comparison of results is difficult because of the lack of 

comparable data available. Wah and Hu |25| have considered fifteen bays 

of the above ring-stiffened structure simply supported on two 'half-rings' 

placed at both ends. They have computed the first natural frequency for 

some circumferential wave numbers.

If their ring-stiffened cylinders were infinite the first natural 

frequency (for any circumferential wave number) would have to coincide 

with the lower limit of the first propagating band. For finite structures 

supported at the ends the comparison is not always so straight forward.

Wah and Hu have shown that the transverse displacement along the 

structure (15 bays) follows an overall semi-sinusoidal pattern with some 

inter-ring displacement superimposed upon it.

If the number of circumferential waves is large (say greater than 

three) there is considerable inter-ring motion and the potential energy 

of the structure is very little due to the overall semi-sinusoidal 

displacement. In this case and if the number of bays is large the first 

natural frequency of the finite structure (for r 3) should compare with 

the lower limit of the first propagation band of the infinite structure.
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Table 6.5 makes such a comparison.

Table 6.5 Circular frequencies (rd/sec). Comparison between the lower 

limit of the first propagation band with the first natural 

frequency of a 15 bay structure.

p r Wave propagation 
method

Wah and Hu

0 3 4.140 4.615

0 4 7.860 7.982

0 5 12.590 12.660

Note that for three circumferential waves the discrepancy between the 

results is about 12% while for five waves they differ by only about 1%. 

For higher numbers of circumferential waves the agreement is expected to 

be still better.

When the number of circumferential waves is small (say one or two) 

the inter-ring motion decreases in importance so that the elastic energy 

of the finite structure is due mainly to the overall semi-sinusoidal 

displacement.

The rings participate with more inertia than elasticity. In these 

cases (r 2) comparison with the infinite structure is obviously out of 

the question. This is particularly true when r = 1 (rigid body motion 

for the infinite structure and 'beam' mode for the finite one). The 

potential elastic energy for the infinite structure is zero in this case 

so is the lower limit of the first band. For the finite ring-stiffened 

cylinder the 'beam mode' means that some potential energy plays a role 

so that the first natural frequency is well above zero.

Wah and Hu computed natural frequency for r = 2 is 4235|rd/sec| and 
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the lower limit of the first band as computed here is 1510 lrd/sec|.

In table 6.5 one can see that the lower limit of the first propagation 

constant corresponds to ^ = 0. This is in agreement with the computed 

mode shapes by Wah and Hu which shows that the inter-ring displacements 

follow a modified sine wave pattern with localised effect at the rings 

so that aw/sx = 0.

Fig. (6.10) shows the n* - u curves for the ring-stiffened cylinders 

without damping and for five circumferential waves and fig. (6.11) was 

obtained for a skin damping of n = 0.15.

As was explained previously it is easier to understand the curves of 

fig. (6.10) if they are considered as a limit of those of fig. (6.11) when 

the damping is brought to zero.

For easy understanding the propagation constants have been numbered. 

A number refers to the real or imaginary part of the corresponding 

propagation constant if it is below or above the 0-0 line, respectively.

For instance, the number 1 just below the 0-0 line (look within the 

first propagation band) means that the real part of the first propagation 

band is zero (at that frequency). The number 2 just above the 0-0 line 

means that the second propagation constant is zero. With this convention 

the graph becomes almost self-explanatory.

One could notice that propagation constants 1 and 2 are complex 

conjugates up to the lower limit of the first propagation band.

Propagation constants 3 and 4 are complex conjugates for frequencies 

ranging from zero to 8.320 (point A(A')) and from 20.410 (point B(B')) to 

38.090 (point C(C')).

Two complete propagation bands are included in fig. (6.10) as well as 

part of the third band.

It is interesting to notice that for this structure (and for the 

range of frequencies shown in the figure) propagation constant number 2 is 
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the only one associated with actual wave propagation.

Propagation constants 3 and 4 are very attenuating for all the range 

of frequencies shown in the figure.

Propagation constant 1 is much less attenuating than 3 and 4. It is 

interesting to notice that at the beginning of the first propagation band 

both propagation constants 1 and 2 have zero real and imaginary parts. 

At this frequency both propagation constants correspond to standing waves.
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CHAPTER YII

RESPONSE OF SPATIALLY PERIODIC STRUCTURES TO CONCENTRATED FORCES

7.1 GENERAL

The previous chapters have dealt with free wave propagation in 

periodic structures. In this chapter it will be shown that the same 

matrix language used before can successfully be applied to the problem 

of response to point harmonic forces. The propagation constants of the 

structure are supposed to be known for the frequency (or frequencies) of 

Interest. The case of a single harmonic force applied anywhere in a bay 

of an infinite periodic structure is first considered. The problem can 

easily be extended to the case of several concentrated harmonic forces by 

super position (the structure is supposed to be linear). As far as the 

structure is concerned the only requirements are that it is spatially 

periodic and linear. Other peculiarities of the structure are by-passed 

in the theory leading to the response to concentrated forces to be 

developed in this chapter.

The response of finite periodic structures will be developed in 

sequence and other cases of Interest shall be briefly discussed.

The analytical computation of the response of Infinite and finite 

structures to concentrated harmonic forces can be a powerful tool in the 

interpretation of results from experiments. It will be shown that the 

method developed in this chapter applies in fact to both deterministic 

and random forces as well. Before tackling the problem of finding the 

response of an infinite periodic structure to a harmonic force some 

theoretical background must be explored. This will be done in the next 

section.
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7.2 WAVE SHAPE - COMPLEX WAVE COMPONENTS

Broadly speaking, to each terminal degree of freedom there 

correspond a pair of free waves, one directed to the positive and another 

directed to the negative direction. Of course all of these waves, or some 

of them, can be attenuating, depending on the particular frequency 

considered. In any case the spatial distribution of the deflections along 

one bay can be expressed as a linear combination of functions e^j^ where 

the ^j are the eigenvalues of the state matrix. For simplicity (but 

without sacrificing the generality.of language) a flat structure will be 

considered as a way of introduction. Equations (4.2.4) can thus be 

written:

w_(y) = % C. e^j^

GpCy) = z Xj c. e^j^ 
j

..(7.2.1)

Mply) = "D Z Cj(Xj2 - s^2v) e^jy

Vr(y) = -D z Cj Xj ^Xj2 - (2-v)^} e^j'y

where Cj are complex constants.

Equations (7.2.1) can be written in matrix form as shown in expression

(7.2.2):

(^(y))r = fir P^dr t^r ,.(7.2.2)

where

{C}^ = 1,^2,CgiC^ T. {Z(y)}y, = |w^(y),6p(y),M^(y),Vy.(y^^
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and

1 1 1 1

[FJr =

-D(X3-;^v) -D(X4-G^^

-DCXi-(2-v);^)Xi -D(Xg-(2-v);^)X2 "D(X3-(2-v);^)X3 "D(x^-(2-v)

For the particular case of y = 0 expression (7,2.2) reads:

{z(0)}^ = [F]^ {C}^ ..(7,2.3)

Equations (7.2,2) and (7.2.3) can be combined on the condition that the 

inverse of [F]^ exists:

{z(y)}r = [FJr De^j^ D^^'^ {z(0)}^ ..(7.2.4)

Expression (7.2.4) shows clearly that the coefficient of {z(0)} is 

precisely the field transfer matrix for a field length y. Therefore one 

can write:

[Tp(y.00 , [F]^ [-6^14:3 [F]/' {y(0)}^ ..(7.2.5)

Now, expression (7.2.4) can be thought of as the solution of the state 

equation {z(y)}* = [A] {z(y)}. Substituting {z(y)} in the state equation

for the expression (7.2.4) and noting that
LJ

e^j^ one

ends up with the following expression;

[F]r M[Fj;'lF], rFl/*tz(O)l^ - M^:FJ^[^e'-j<lLF]/\z(O)
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from which one concludes that

..(7.2.6)

The interesting conclusion that springs up from expression (7.2.6) is that 

matrix [F]^ is in fact the modal matrix of [A], that is, the matrix whose 

columns are the right eigenvectors of |A]p. In chapter V the matrix of 

the right eigenvectors of [A] was denoted by [u]^ and for uniformity of 

notation equations (7.2.4) and (7.2.6) are re-written here:

(z(y)}^ = [Tp(y,0)]^ {z(0)}^

and

[Tp(y.o)]^ .

..(7.2.7)

(7.2.8)

Expression (7.2.8) has been considered in chapter V as providing a very 

convenient method of computing the field transfer matrix.

It is not convenient to invert [u] to compute the field transfer 

matrix. Instead it is preferable to find the modal matrix of the left 

eigenvector, that is, the matrix whose columns are the eigenvectors of the 

transpose of [Alp. It is well known from linear algebra that the transpose 

of the matrix of the left eigenvectors is the inverse of [u]^. In 

mathematical notation:

[V]p^ = [U]"^ ..(7.2.9)

where [v] is the matrix of the eigenvectors of [Aj provided the eigen-

T 
vectors are normalised such that {yl lu). = 6 

m J mj 



Matrix [V] can conveniently be computed by using the same subroutine

that calculates [U]^ (see appendix C). Now apply the basic principle of 

free wave propagation in spatially periodical structures by taking y = 

in expression (7.2.2) and considering expression (7.2.3):

Mr (^(Olr = EPlr Mr [ =’''‘^ M;‘M,fc]^= e-i" [U]^ (C)^, or

Mr [^^(-0)1 M, {C!^ - 0-'" [Ul^ (C)^, or

M"Mt1 MiO^ = e-'-^ {C},. (7.2.10)

Therefore the complex coefficients appearing in expressions (7.2.1) can 

be found by solving the eigenvalue problem expressed in (7.2.10). Note 

that there are 2n eigenvalues, that is, 2n sets of complex coefficients

One can easily see that since {z(0)} = [u]{C} expression (7.2.10) 

can be transformed into

[T] {z(0)} = e"^^ {2(0)1 ..(7.2.11)

which is the basic eigenvalue problem dealt with in chapter III.

The relation between {C}^ and {z(0)} is given by (7.2.3) from which 

one can write:

{C}^^ = [U]"^ {z(0)l^ = [V]"^ (z(0)l^\ so that

= {v.}^ {z(0)}^\ j, m = 1,2 ... 2n ..(7,2.12)

So the quantities appearing in (7.2.1) can be written as functions of the

eigenvectors of the period transfer matrix.
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Next, represent [Tp(y:O)] as follows:

[Tp(y,0)]

so that any component of a state vector {z(y)} can be written as

expression (7.2.7)):

Zj^ky) = [tj^(y,O)j {z(0)}^ ..(7.2.13)

The total value of z.(y) will be

Zj(y) = [tj''(y,O)| (z{z(0)}^) ..(7.2.14)

More generally a state vector can be written as:

{z(y)} = [Tp(y,0)] (z {z(O)}^') , m = 1, 2n 
m

(7.2.15)

remembering that {z(0)}^ are the eigenvectors of the period transfer

matrix.

Note that the state vector in expression (7.2.15) is not completely 

determined because the eigenvectors of the period transfer matrix are only 

computed within an arbitrary constant. Therefore expression (7.2.15) can 

be written in another very convenient form for.computations:

2n
{z(y)} = z {^^(y)} (7.2.16)

where a are arbitrary complex constants and

ZiCy) = % 
m
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**„(y)’ = Pp(y,O)] {2(0)J|,, ..(7.2.17)

The vectors {^(y)} shall be called complex wave components.

In the beginning of this section a flat periodic structure was 

taken as a way of illustration. By following the steps given above it 

is easy to realise that the theory developed here is indeed very general 

and not at all restricted to flat structures.

In fact after writing down expression (7.2.2) all the subsequent 

steps could have been done without referring to any particular kind of 

structure.

Such expression can also be written by thinking of a more complicated 

structure. In fact it has been done for a curved shell by using Donnell's 

equations and the modal matrix [u] has been written down but is not 

included here. In practice it is far more convenient to compute the 

modal matrix numerically (as explained in appendix C) when the number of 

terminal degrees of freedom exceeds two. (For two terminal degrees of 

freedom the method used in chapter IV should be used).

Therefore, as a closing remark, one should say that expression 

(7.2,2) can be regarded as general and also is the theory developed in 

this section.

7.3 RESPONSE OF INFINITE AND FINITE PERIODIC STRUCTURES TO CONCENTRATED 
HARMONIC FORCES

The theoretical background developed in the previous section will be 

applied here to find the response of spatially periodic infinite structures 

to concentrated harmonic forces.

In fig. (7.1) an infinite periodic structure is depicted where a 

harmonic force represented as f(x,y,t) = ^^ fj/y) sin e^^^ is applied 

at bay numbered zero.

-10 5-



starting at the point of application of the force two sets of waves 

are sent away; one to the right (positive direction) and another to tne 

left (negative direction).

Some or all of these waves might actually be decaying along the 

structure, depending on the nature of the propagation constants at the 

frequency^. Without loss of generality the response at bay 0 can be 

represented by expressions (7.3.1 a and b):

r n
{z(y)} = 2 a Y

m=l

2n
{Z(y)}" = 2 o Y 

m-nfl

..(7.3.1 a,b)

In the above set of expressions it was assumed that the propagation 

constants n, ^2, ... are associated with waves propagating (or decaying) 

to the right. The propagation constants %+r '•-n+2- ••• ‘'2n 

related to waves propagating (or attenuating) to the left.

Now the station vectors just left and just right of the point of 

application of the force are related as shown in expression (7.3.2):

(Z(Y))/ = (z(t)}/ - (fl^ ..(7.3.2)

where if) is the applied force vector. For instance, in the case of a

flat structure the applied force vector is

0, 0 where f is

harmonic force. For the case of a general

the amplitude of the applied

time varying force and response

an equation similar to (7.3.2) can be written with vectors {z(Y)}^ e 

and {f} e^^^ replaced by their Fourier transforms. Consequently the 

present theory can be applied to both deterministic and random problems |35|.
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Combining (7.3,la,b) and (7.3.2) one has:

m=l

2n
E
m=n+l

, or

(7.3.3)

Expression (7.3.3) represents a system of 2n linear equations that can be 

solved for the coefficients a^. It is worth noting that the square matrix 

appearing in the above expression is nonsingular since the vectors {^.(y)} 

are linearly independent as can be seen by their definition in expression 

(7.2.17).

Therefore, by solving the system of equations (7.3.3) one is able to 

find the response within the bay 0, For easier reference expression (7.3.3) 

shall be written in a more compact form:

%(Y) (f)o , 6 (7.3.3, a)

where

""KM

"Z'Kly)
(7,3.4)

°^h,K(Y) (y)} if n f 1 K 2n
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Now, the station vector at any point of the structure can be partitioned 

as shown, for instance, in expression (3.2.1), that is, in generalised 

displacement and generalised forces. The generalised displacement does 

nor change when 'transferred' across a support (compatibility condition) 

so that one can write;

{9(&)}o = {9(0)]^

where the subscripts 0 and 1 stand for bay 0 and bay 1 

It is convenient to remember that

gj(y) - Zj(y) ; j = 1, n

With the above considerations made it is possible to write:

m(0)

n
0. m(0)

m=l "^ ..(7.3.5)

In general for the bay numbered N one has:

{q(y)}^ =
n

m=l

m(y)

m(y)2 >
, G ,.(7.3.6)

- 7

One should note that expression (7.3. 5) represents e set of linear

equations that can be solved for a, that is:



0 m(0)

O m(0)

.(7.3.5a)

Note that {q(&)}Q is computed by using (7.3.1a).

In expression (7.3.6) y is a local variable varying between 0 and 2 

and {c^y)}u means the general co-ordinates within bay number N.

Having solved equations (7.3.5a) the complete state vector at bay N 

can be computed by using (7.3.7);

n

m(y)^

m(y)

m=l
e "^ ..(7.3.7)

Obviously what was explained above for a bay on the right of bay numbered 

zero (this will be called a positive bay) can be applied 'mutatis mutandis' 

to a bay on the left (negative bay) of bay zero. Therefore the above 

theory gives the response at any point of a spatially periodic infinite 

structure, The main role in this theory is played by the complex wave 

components defined in expression (7.2.17), Since the system has been 

considered linear the response to several concentrated harmonic forces 

can, obviously, be obtained by superposition.

7.4 RESPONSE OF FINITE SPATIALLY PERIODIC STRUCTURES TO CONCENTRATED 

HARMONIC FORCES

Section 7.3 has dealt with the response of infinite periodic structures
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to harmonic concentrated forces

The response of a finite periodic structure can be obtained by

taking the response of the structure as if it was infinite and adding

the effects of the boundaries. The effects of the boundaries are the

reflections of the free waves at the corresponding frequency. In

mathematical form the response can be described as (see fig. 7.2)

{z(y)}j {z(y)}j
2n

where j is the number of the bay where the response is computed. The

application of expression (7.4.1) to the boundaries gives a system of 2n

linear equations from which a

As a way of illustration a

are computed

stringer stiffened plate (fig. 7.2) will

be considered. Shear force and bending moment at the ends of the structure

are zero.

For the right hand side of the first and last stringers one can write:

Zi(0)

Z2(0) z.z(0)

2n

m=l

m(0)

m(0)
» 7

-(j+M)P^

Zml(O)

> + a 
m

>

..(7.4.2a,b)

0 z.3(0) xf'g m(0)

2n7
m

-(N+M+l)p 
e m

0 Z./0) N+Mf2 V'h m(0)

The slight modification of subscript notations introduced in (7.4.2) is self-

explanatory.

rhe state vector at the right of the first stringer can be written

as:
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/ \
Zi(0) 1 0 0 0 zi(0)

Z2(0) 0 1 0 0 Z2(0)

Z3(0) 1 0 0

Z4(0)
"M

J'-' '"^we 0 1 0
<. 7

-(Mfl)

from which

Z3(0) "WG zi(0)

(7.4.3)

Z4(0) _i Z2(0)w

6

But

Substitutions of (7.4.2a) and (7.4.4) in (7.4.3) and using (7.4.2b)

lead to a system of four linear equations from which the coefficients

can be found, that is



.
(
7
.
4
.
5
)
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Having determined the coefficients a the response can be found by taking 

them to C7o4.1).

The steps given in this section can be repeated for other kinds of 

boundary conditions as well as for more advanced structures.

The knowledge of the complex wave components permits the computation 

of the response of periodic structures in many other cases. For instance, 

a semi-infinite or finite periodic structure with base (ground) excited 

motion can easily be dealt with.

7.5 NUMERICAL RESULTS

In this section some computer results for stringer-stiffened plates 

and shells will be presented and commented on.

A harmonic force of unit amplitude is applied at a point of a bay and 

the response is either plotted along the structure (for a certain value of 

the frequency) or plotted at a single point for a suitable range of 

frequencies (frequency response plot).

When plotting the response along the length of the structure a 

non-dimensional co-ordinate is defined such that:

s = (j + l)y/A , j = 0, 1, 2 ...

s - jy/^ , j - -1, -2 

where j numbers the bay where s lies.

In this section both finite and infinite structures are considered 

and the results commented on. The stringer-stiffened plate considered 

here is the same as called Example I in chapter IV and the stringer- 

stiffened shell is the same as that appearing in chapter VI. 
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7.5ol Stringer-stiffened plate

As a first example an infinite stringer-stiffened flat plate is taken 

and a harmonic force of unit amplitude is applied in the middle of a bay.

Fig. 7.3 and 7.4 show the amplitude response of the displacement and 

moment of an undamped infinite stringer-stiffened plate for two values of 

the non-dimensional frequency. Curve 1 is for n* = 18.175, a propagating 

frequency, and curve 2 is for n^^ = 0.10 which is an attenuating frequency.

The response is plotted only at bays 0, 1, 2, 3 and 4. There is no 

need to plot the response at the left of bay 2 because of the symmetry of 

the structure and load. The displacement and moment are made non- 

dimensional by multiplying them by 1/h and h/D, respectively. It can be 

seen that for the propagating frequency (18.175) the moment has its peaks 

at the stringers but the displacement amplitude is greater in the middle 

of a bay. The response at the frequency 0.10 resembles that of a beam on 

an elastic foundation acted upon by a static force |36|.

7.5 and 7.6 show the amplitude response along the structure at 

the frequencies n^* = 49.363 (a propagating frequency) and o* = 34.10 

(an attenuating frequency). Frequency 49.363 falls within the second 

propagation band and frequency 34.10 lies inbetween the first and the 

second propagation bands.

One can see that the response at these high frequencies tends to be 

very small if compared with the response, say, for frequencies belonging 

to. the first propagation band (figs. 7.3 and 7.4). What was said above 

refers to an infinite non-damped stringer-stiffened flat plate (Example 

I in chapter IV).

Figs. 7./ and 7.^ show the response of the same structure but with 

some damping (n = 0.15) in the skin for the frequency 18.175.

The main eriect of this amount of damping is to introduce an amplitude

-11 6



decay along the structure (note that 18ol75 is a propagating frequency 

for n = 0,0). The decay is due to the fact that damping makes the 

imaginary part of Pi (zero for n = 0,0) different to zero.

The reduction in the amplitude level in the first bay is very small 

indeed. Notice that the peak value of the non-dimensional moment for the 

non-damped structure is 2.448 x 10 while for the damped structure it is 

2,213 X 10"^.

Computations for the same structure excited at the same frequency 

(18,175) with a damping level of n = 0,25 shows that the maximum moment 

is 1.793 X 10 When damping is increased from 0.15 to 0.25 the 

reduction in the maximum moment amplitude is about 22% and in the maximum 

displacement about 27%.

To have an idea of the effectiveness of damping in reducing the 

response level one could think that for the same increase in damping 

(0,15 to 0,25) a single degree of freedom system would have its amplitude 

of vibration level reduced by about 65%, But damping in the stiffened 

plat structure is extremely important when the exciting frequency 

coincides with one of the lower or higher limits of a propagation band. 

In these particular cases the steady state amplitudes of the response 

would be theoretically infinite if no damping was present in the structure.

The results shown so far refer to an infinite stringer-stiffened 

plate.

In figures 7.9 and 7.10 one can see the amplitude response for a 

finite stringer-stiffened plate with seven bays and with the force applied 

at the middle of the structure. The response is plotted for four bays, 

that is bays 0, 1, 2, 3 and 4 (see fig, 7.2), The skin is only supported 

by a stringer at the ends of the structure. Damping is zero.

The frequencies of exictation are 18.175 and 0.10 as in figs. 7.3 and 

7.4.
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The'response of the finite and infinite structures are virtually the 

same for n* = 0.10« This is expected for this is a heavily attenuating 

frequency, which means that there is almost no reflection at the 

boundaries.

Now» the response at 18.175 is radically different from that of 

the infinite structure. This again is expected because this is a 

propagating frequency and there is full reflection at the end supports 

(stringers).

Since damping causes the amplitude of the propagating waves to 

decay along the structure (and, consequently, decrease the effect of the 

reflections at the boundaries) one should expect that above a certain 

amount of damping the responses of the infinite and finite structures 

(with many bays) will be almost equal.

This is in fact true as figs. 7.11 and 7.12 clearly demonstrate. 

These figures show the response of the above described finite structure 

with some damping (n = 0.15) in the skin and for the frequency 18.175. 

Comparison between these two figures with figs. 7.7 and 7.8 show how 

close these results for finite and infinite structures are.

It is also interesting to notice the dramatic change in the 

distribution along the structure of the amplitude response when some 

damping is added to the finite structure (compare figs. 7.9 and 7.10 

with 7.11 and 7.12, respectively).

The computation of the response of the infinite stringer-stiffened 

structure took 17 seconds at the ICL 1907 computer. The same 

computations performed for a finite structure took 35 seconds. In both 

cases the response was computed at a hundred points in each bay and for 

two different frequencies.

One could safely say that the method developed in this chapter is 

very efficient both in time and in storage (29k for finite and 14k for 
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infinite structure).

So, an infinite periodic structure can represent with advantage 

(from the computational point of view) a finite one, provided it has 

many bays away from the excitation point and a moderately high amount 

of damping. Therefore, considering that these assumptions hold, it is 

more convenient (from the computational point of view) to compute 

frequency response curves for the infinite structure and assume that 

they are representative of a finite one, no matter what sort of boundary 

conditions there are at the ends.

Figs. 7.13 and 7.14 show frequency response plots for non-dimensional 

displacement and moment for an infinite stringer-stiffened plate with 

n = 0.25. It is shown in these graphs that deflection and moment have a 

peak at around 9 * = 17.222, that is the lower limit of the first 

propagation band. If the structure had no damping the steady state 

response at 17.222 would be theoretically infinite, as was stated before.

7.5.2 Stringer-stiffened shell

The results to be shown here are restricted to infinite stringer- 

stiffened shells. This decision was taken because, as it happened for 

plates, one should expect that above certain levels of damping and with 

the force applied sufficiently away from the boundaries a finite shell 

structure would produce a response very close to that of the infinite 

structure.

For cases where damping is not sufficiently high or the force is too 

close to one of the extreme bays the infinite model no longer can 

represent the finite one and the theory developed in this chapter for 

finite periodic structures must be applied. Most of what was said for 

flat plate structures could now be repeated in connection with stiffened 

cylindrical shells.



Figures 7ol5 and 7.16 show the amplitude response of the undamped 

stringer-stiffened shell for the frequencies n* - 22.10 (falling within 

the first propagation band) and 0.65 (an attenuating frequency). Amplitude 

response along the structure when the shell is damped has also been 

obtained but is not shown here. In fact there is nothing dramatically 

new in these curves in relation to those obtained for the flat structure 

except that amplitude of displacement and moment are comparatively smaller, 

which is expected. Figs. 7.17 and 7.18 are the counterparts of figs. 7.13 

and 7.14. They represent amplitude response of the cylindrical shell at 

the middle of a bay to the harmonic force applied at the same point. The 

peak response occurs very close to the non-dimensional frequency 20,72 

which in turn is very close to the lower limit of the first passing band.



CHAPTER VIII

RESPONSE OF PERIODIC STRUCTURES TO CONVECTED PRESSURE FIELDS

8.1 GENERAL

This chapter sets out to establish a general wave theory to compute 

the response of spatially periodic structures to a convected harmonic 

pressure field, the knowledge of the frequency response of the 

structure to such fields is basic to find the response to more complex 

ones, such as convected random acoustic fields and boundary layer 

fluctuations.

The power spectral density function of the response to a random 

pressure field can be computed when the power spectral density of the 

exciting field and the frequency response functions are known |42|, 

|11|, |34|.

This chapter will be concerned only with the computation of the 

frequency response function, that is, the response of the periodic 

structure to a convected simple harmonic pressure field of unit amplitude.

The method to be developed here can be considered as a generalisation 

of that presented by Mead |37|.

8.2 RESPONSE OF AN INFINITE PERIODIC STRUCTURE TO A CONVECTED 

HARMONIC PRESSURE FIELD

Assume an infinite periodic structure excited by convected harmonic 

pressure field of the form:

P(X)y.t) = ^z^ (P^^ sin I^) e " ^y) ..(8.2.1)

where k is the wave number.



The phase velocity of the convecting pressure field is CV = n/k, 

and this is identical in this case with the convection velocity of the 

pressure field. This convected pressure field exerts pressures of equal 

magnitude at all points of the structure but with a phase difference of 

-ky between two points distant y apart.

The state equation can be written as

fz(y)} = [A]^ {z(y)} - {pQ^) (8.2.2)

The forcing vector appearing in (8.2.2) will have different forms, 

depending on the circumstances. For instance for the stringer-stiffened 

plate considered in chapter IV {pl will be

0

^or

and for the shell structure

0 0 0 0 P,, 0 OjT

To solve equation (8.2.2) assume a solution as given by expression (8.2.3):

{z(y)} = [u] {;(y)} ..(8.2.3)

where [u] is the modal matrix of [A]

The subscript r has been dropped from expression (8.2.3). Taking 

expression (8.2.3) into equation (8.2.2) and pre-multiplying both members 

by [u]" the result is
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(z(y))' = [U]-*M [u] ts(y)l - tej e-'I'-y

where

{8} = [U]"' {p^}. 

Noting that [uJ'^M [u] the above expression is transformed into

equation (8.2.4):

{z(y)} (5(y)} - {8} e ^^"^ ..(8.2.4)

Expression (8.2 4) represents a set of 2n ordinary differential equations

of the form:

C'j(y) ^jSzCy) - GjJ J
p"iky 2n ..(8.2.5)

It Is very easy to solve the equations (8 2.5) |38| and their solutions

are:

..(8.2.6)

where C. Is an arbitrary

Expressions (8.2.6)

constant

can now be rearranged in matrix form:

{6} e^jy (C), (8.2.7){c(y)} = e ^^^

j - 1,

'j / ik

X. f ik
L J

When expression (8.2.7) is taken Into (8.2.3) and it is noticed that
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Euj [U] [u] X. [u]-; + [u]

[A] + ik [I]
-1

Xj + ik^^

the final solution to equation (8.2.2) is

{z(y)} ..(8.2.8)

where {C^} = [u] {C} and [x] = [A] f 1k[l]. Notice that {Cl is an 

arbitrary constant vector. This vector can be found by noticing that the 

phase difference of the response at two different points of the structure 

separated by the periodic length is equal to the phase difference of the 

exciting pressure field at the same points. When this property is applied 

for the extremes of a period of the structure the following expression 

applies:

[P] {z(&)} = {z(0)} ..(8.2.9)

By making use of expressions (8.2.8) and (8.2.9) the following system of

linear equations is found:

..(8.2.10)

Alternatively expression (8.2.10) can be written;

[P] [TpCG^O)] - [P] [TF(Jl,O)r]

[P] [Tp(t,0)]

e-'k"[I] (2(0)}

(8.2.11)
122 -



Solving the system of equations (8,2.10) for the vector {C } and taking

this vector into expression (8.2.8) the response is found.

Instead of inverting the matrix [%] it is more convenient to follow

the procedure below:

Call {Zpl = [x]"^ {Pg} so that

M <^p> = tPoi ..(8.2.12)

It is enough now to solve system (8.2.12) and take {z } into equation 

(8.2.10) or (8.2.11).

When the response {z(y)} is computed for a certain range of frequencies 

for Pg = 1 the result is the frequency response function for that same 

range of frequencies.

Since the frequency response function is a function of both frequency 

and convection velocity a more adequate notation will be adopted, that is:

{H(%*, CY)} fx]'* {p„} + rTp(y,O)l (C^)
(8.2.13)

When the frequency response is known the power spectral density of the 

random response {Sg^n)} is related to the power spectral density of the 

excitation by

..(8.2,14)

The non-dimensional mean-square response is given by

..(8.2.15)
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Expression (8.2.14) applies only for pressure fields with a frozen wave­

form with only one convection velocity. Such excitation does occur, for 

Instance, in the far field of a jet noise.

When the pressure field is not frozen as it occurs in the near field

of a jet noise it has a spectrum of wave number components at each

frequency and can be represented by the wave number/frequency spectrum

Sp(n^*,k) 111 I, |39|. In these cases the response spectrum at any 

frequency can be obtained by integrating the wave number/ frequency

spectrum over all wave numbers:

H(Y, Sp(n^*,k) dk ..(8.2.16)

Looking back now at expressions (8.2.7) and (8.2.10) (8.2.11) it 

can be seen that large responses are expected when one (or both, 

simultaneously) of two things occurs:

First, when X. = 1k, for some X., This is the normal coincidence 

phenomenon of the unsupported structure combined with the harmonic 

pressure field.

Second, when k& is equal to one of the propagation constants of the 

structure. In this case the square matrix appearing in the left hand 

side of (8.2.10) (8.2.11) becomes singular. This means that, at that 

particular frequency, the phase difference kt between pressure distance 

t apart is equal to the phase difference u^ between free wave motion at 

points t apart. The convection velocity of the harmonic pressure field is 

then equal to the phase velocity of one of the free wave components.

This second coincidence pheonomenon can occur at much lower 

frequency than the ordinary coincidence phenomenon (Xj - -Ik).
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8.3 RESPONSE OF FINITE PERIODIC STRUCTURES TO A CONVECTED HARMONIC 

PRESSURE FIELD

The response of finite periodic structures to a convected harmonic 

pressure field can be computed by following the same approach as used in 

chapter VII, that is, it consists of the response of the infinite structure 

plus the effects of the boundaries. These effects are the free waves due 

to the reflections at the boundaries.

In mathematical form (see fig. 8.1):

{z(y)}j = {z^(y)}j + E {^^(y)} e ..(8.3.1)

In this section a finite structure with one of the periodic supports at 

each end will be considered as a way of Illustration. It will become 

clear, nevertheless, that the derivation to be shown below could have been 

carried out for any other boundary conditions.

Consider an N bay finite periodic structure (see fig. 8.1). The 

particulars of this structure (apart from being periodic with N bays and 

with a support at each end) are not relevant to the following derivations.

For j = 1 and y = 0 (that is, at the right hand side of the first 

support) eg. (8,3,1) becomes:

2n
{z(0)}^ = {z^/0)}^ + ^2 {^^(Oj) ..(8.3.2)

At the right hand side of the N^" bay (left hand side of the imaginary 

(N+1)^^ bay) one has:

2 n - i N u r
(z(m)N+l = (".(°)\+l + ..(8.3.3) 

k=l
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Note that

(z(0)}^ ..(8.3.4)[Pj fz(i:))o

where [p] is the point transfer matrix.

The generalised forces at the left of the first support and at the 

right of the last one are zero. These conditions when applied to 

expressions (8.3.2), (8.3.3) and (8.3.4) lead to a system of 2n linear 

equations for which the constants a are found. In the following two

sub-sections two cases will be considered, a stringer-stiffened plate

and a stringer-stiffened shell.

8.3.1 Finite stringer-stiffened plate

Equation (8.3.3)

0

0

From (8.3 4)

gives

>
V

and from (8

M«(0)

M«(0) Nfl

one can

3.2);

4
'f z

take:

a

^6

»3.k(0) -iNp 
e ..(8.3.5)

(8.3.6)

w w.(0) 4
< f >

e 8.(0)
""k

(8.3.7a,b)
M.(0) 4

"k
3.k(°)

v.(0) ;,k(»)
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Combining equations (8.3.5) and (8.3.7a,b) the result is:

C
8
.
3
.
8
)
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Expression (8.3.8) is a system of four equations in the unknowns 

«!, Og, Kg, a^.

Solving this system and taking the a coefficients to expression 

(8.3.1) the response of the stringer-stiffened structure to the 

convected harmonic pressure field is found.

8.3.2 Finite stringer-stiffened shell

A system of equations similar to (8.3,8) can be found for the 

shell case. The steps are the same given in the previous sub-section 

and will be omitted here.

The system of equations for the shell structure is:
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In chapter VII it was seen that above a certain moderate amount of 

damping the response of the Infinite and finite structures are practically 

equal, provided the force is sufficiently far from the extreme bays. In 

these circumstances the infinite periodic structure model is a good 

representation of the finite one (no matter the kind of boundaries) and 

indeed more convenient for computations.

When a finite periodic structure is being excited by a convected 

harmonic pressure field the picture of the excitation 'sufficiently far 

away' from the extremes cannot exist. Nevertheless, the infinite model 

can still be a good representation of the finite one, as has been shown 

by Mead |37|. In his paper Mead compares the greatest rms response (see 

^xptesslbn 8.2.15) in any one bay centre of a five bays beam with that of 

the infinite beam.

The beams were damped with n = 0.25 and they rested on simple supports 

with torsional elastic constraint. The exciting field was a convected 

random noise of constant power spectral density.

Mead found that the rms curve for the infinite beam was very close to 

the curve of maximum rms in any bay centre of the finite beam.

When the mean square responses at the five bay centres were averaged 

and plotted against the convected velocities the resulting curve was 

extremely close to that of the infinite beam. This comparison has been 

repeated for many Other values of damping with the same conclusion.

Since this sort of average is often enough for design Mead concluded 

that the infinite structure Is a good representation of the finite one.

In this chapter results for infinite stringer-stiffened plates and 

shells are presented and discussed.



8.4 NUMERICAL RESULTS

As was stated In the last section only results concerning infinite 

structures will be presented here.

More specifically, two kinds of structures will be considered : 

an infinite stringer-stiffened plate (Example I in chapter IV) and an 

infinite stringer-stiffened shell (the same dealt with in chapters VI 

and VII) with a pressure field connected around the circumference.

A stringer-stiffened cylindrical shell is not, of course, infinite 

in the circumferential directions. However, the assumption that it is 

infinite can be justified provided there is enough damping, or wave 

attenuations, present to cause a wave generated at one point to be 

negligible by the time it has travelled completely around the circumference 

back to its starting point.

Also, the concept of a random pressure field convecting around a 

circular stringer-stiffened shell, with a uniform amplitude and convection 

velocity, is idealistic. In practice, a real noise fjeld would approximate 

to this only over a limited segment of the shell structure. If the 

structure damping (or wave attenuation) is large enough the response of 

the segment will depend mainly on the pressure field over that segment. 

This will be the same (or nearly so) as the response of an 'infinite' 

shell to a uniform pressure field of uniform convection velocity over an 

infinite shell structure.

8.4.1 Stringer-stiffened plate

Figures 8.2 and 8.3 show the displacement and moment amplitude 

frequency response for the stringer-stiffened plate at the middle of a 

bay. The peaks of thesecurvesrepresent coincidence effects. Note, for 

instance, that CV = 5.842 in the primary free wave velocity of the 

structure corresponding to the frequency h^* = 17.222 (p = ^) (see fig. 

4.12).



In other words, the phase difference of the pressure field between 

two points apart is equal to the phase difference of the primary free 

wave between the same points. This situation represents a sort of 

coincidence that tends to make the structure respond strangely. If the 

structure had no damping the response would be infinite (theoretically). 

The other pair of convection velocity/frequency for which peaks occur in 

the other curves also represents coincidence (see fig. 4.12). For 

instance CV = 8.265 is the speed of a free travelling wave component with 

the frequency of 18.175. Therefore, if a harmonic pressure field has a 

convection velocity of 8.265 and a frequency of 18.175 coincidence will 

occur.

Also if a random pressure field is convected along the structure with 

a convected speed of 5.842 the response spectrum will have a peak at the 

frequency 17.222.

Figures 8.4 and 8.5 show the amplitude response at the right hand 

side of a stringer (s = 0).

The same values of convected velocities have been used to compute 

these curves.

One can see that at the supports the displacement response peaks 

decrease with the convection velocity, a fact not observed in fig. 8.3. 

This same observation applies to the moment response.

Note that the highest response at the supports do occur when CV = » 

and = 21.641, which represents another coincidence (p = 0).

Fig. 8.6 shows the moment amplitude response at the left hand side 

of a stringer,

One can see that at these points the amplitude response peaks do not 

increase with the convection velocity. The highest peak occurs when 

CV = 14.19 and n^* = 20.160 which again is a coincidence situation (see 

fig. 4.12). Another fact to be observed is that at the upstream side of 
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the stringers the moment amplitude peaks are slightly higher than those 

occurring at the downstream side.

8.4,2 Stringer-stiffened shell

The computations presented in the previous sub-section have been 

repeated for an infinite stringer-stiffened shell. The convection 

velocities have been selected to provide the strongest coincidence 

possible and to check the rate of damping in attenuating the responses. 

All the co-ordinates of a station vector have been computed but only 

curves for transverse displacement and bending moment are shown. The 

shell is considered damped with n = 0.25.

Fig. 8.7 and 8.8 represent the amplitude response for the transverse 

displacement and bending moment at the middle of a bay respectively. As 

for the plate case the curves show peaks where coincidence occurs.

As expected the maximum amplitude of displacement and moment are 

smaller than those found for the flat structure (see figs. 8.2 and 8.3). 

Notice again that 6.370 is the non-dimensional velocity of the primary 

wave component (see fig. 6.6) at the frequency n * = 19.997 (p = ?). If 

the structure had no damping the response would be infinite (theoretically) 

The same can be said for the other peaks within propagation bands for they 

also represent coincidence. The presence of damping makes these peaks 

finite. For Instance when CV = 2.124 and n* = 19.997 (see point E in 

fig. 6.6) one has a coincidence but the peak shown in figs. 8.7 and 8.8 is 

comparatively small.

Figures 8.9 and 8,10 show the transverse displacement and moment 

amplitude responses at the right hand side (s = 0) of a stringer. In these 

figures one can notice that the displacement and moment amplitudes no 

longer increase with the convection speed as happened in the plate case.

One can also see that this particular shell structure can show strong 

moment response at the stringers at relatively high frequencies.
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Figo 8.11 shows the moment amplitude response for the shell at 

the left hand side of a stringer.

A common feature of both flat and shell structures is that the 

response at the left hand side of a stringer (i.e. on the 'upstream' side) 

is higher than the response at the right hand side (i.e. on the'downstream' 

side). But, contrary to what happened to the flat structure, the moment 

is higher In the middle of a bay.



CHAPTER IX-

GENERAL CONCLUSIONS AND SUGGESTIONS FOR FURTHER STUDY

The basic ideas of free wave propagation in spatially periodic 

structures have been reviewed and the transfer matrix terminology 

introduced in connection with a specific example.

A general theory of free wave propagation in periodic structures was 

then constructed. This theory fully employs the transfer matrix 

technique and is general in the sense that it completely bypasses all the 

particulars of the structure (other than spatial periodicity and 

linearity). It is also computer oriented requiring only little algebraic 

effort for derivation of the state matrix. For systems with two degrees 

of freedom it has been possible to fully write down the field transfer 

matrix but for greater numbers of degrees of freedom one of the three 

numerical methods discussed in chapter V should be used. It was found 

that all these methods give virtually the same numerical results but the 

method based on the truncated series requires more computing time than 

the other two (which in turn require about equal computing time). But it 

has the inherent advantage of not requiring complex algebra when the 

field is non-damped.

When the field transfer matrix has to be computed at many points 

along the field the two other methods are far more advantageous.

Comparison was made between the lower limit of the first propagation 

band of an infinite ring-stiffened cylinder and the lowest frequency of 

the first group of modes of a 15 bay finite structure with the same 

elements, and simply supported on two 'half-rings' placed at both ends 

(as calculated by Wah |25|), It was found that for a number of 

circumferential waves greater than 3 both results are very close (within 

1%), For smaller numbers of circumferential waves (say one or two) there 
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is little inter-ring motion and the potential energy of the finite 

structure is due mainly to the overall semi-sinusoidal displacement 

between the end supports. In these conditions comparison between finite 

and infinite structures have little meaning.

Comparison of the lower limit of the first propagation band of an 

'infinite' stringer-stiffened cylindrical shell with the first natural 

frequency of a 56 bay closed stringer-stiffened cylindrical shell |4l has 

shown that they are very close.

On the other hand, the two first propagation bands have not shown 

the overlap produced by Lin's approximate method |1|. Indeed the 

numerical values of the two first band limits produced by Lin are not 

quite in agreement with those computed in this work. This overlap has 

not been found by increasing the values of the shell radius either. 

This has produced, instead, a gradual convergence to the flat plate 

results. Lin's band limits computed by his 'exact' method for plates 

are virtually Identical to those produced by the present method.

The concept of complex wave components has been established and a 

matrix technique to compute them has been developed. It was shown that 

the response of finite and infinite structures to harmonic forces can be 

computed as a linear combination of these complex wave components.

Response along the structure and frequency response functions have 

been computed for stringer-stiffened plates (finite and infinite) and 

stringer-stiffened shells.

Computing storage and time requirements were kept very low (less 

than 13 sec. in the CDC 7600 to compute the single point frequency 

response function for the stringer-stiffened shell at 101 values of the 

frequency).

A general matrix theory of the response of finite and infinite 

periodic structures to a convected harmonic pressure field has been 
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developed. This theory has been applied to a stringer-stiffened plate 

and to a stringer-stiffened cylindrical shell.

Frequency response functions have been computed and the effect of 

coincidence phenomena pointed out.

The largest moments have been found at the upstream side of a 

stringer for the particular plate structure taken. For the particular 

stringer-stiffened shell the moment at the middle of a bay was higher 

than both upstream and downstream moments.

The main features of the methods developed in this work are:

a) generality,

b) computer oriented,

c) time and computer storage required are very small,

d) algebra required kept to a minimum.

These features are in addition to those inherent to the wave propagation 

approach commented on in chapter I which make it so convenient to be 

applied to periodic structures.

All the characteristics of the methods established in this work 

make it adequate for future applications to more complicated structures, 

for instance, sandwich structure.

The existence of bi-dimensional transfer matrices has been shown by 

Pestel |43|. This fact can be used to further extend the theories dealt 

with in this work to bi-dimensional periodic structures.

Experiments on models representing complex engineering structures 

(ships hulls, etc.) are urgently required. It is hoped that the theories 

presented in chapters VII and VIII would provide great help in assisting 

the analysis and interpretation of the results from such experiments.
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FIG. 4.2

DEFINITION OF A STRUCTURAL PERIOD.
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APPENDIX A

SOME PROPERTIES ASSOCIATED WITH TRANSFER MATRICES

In this appendix some properties associated with transfer matrices 

are listed. No proof is shown because they are either evident or have 

been given elsewhere |15|, 

Property Al.

If rAl is a cross-symmetric state matrix and if a.. = 0 for i f j 

even then the field transfer matrix is cross-symmetric.

Property A2.

If [T(y,0)]is a transfer matrix and if the state matrix is not 

dependent on y then:

[T(y.O)]-' . [T(-y.oa

Property A3

The determinant of a transfer matrix is one, that is:

LTfy.oj]

Property A4.

The characteristic equation of a 2n x 2n transfer matrix

+ P2n-1^ P2n) " 

enjoys the following properties:

P2n = -'

P^ " P2n-j ' ^ " ^'^



APPENDIX B

TERMINAL SINGULARITIES : THE AUTOMATIC REDUCTION TECHNIQUE

It was said in sub-section 3.4.1 that when the period transfer 

matrix is known in its most general form, the period transfer matrix of 

any other system, derived from the former by imposing terminal constraints 

(singularities), can be easily obtained numerically. To deduce the 

technique to perform such operation, the case of a system with originally 

two terminal degrees of freedom is taken as an illustration. One assumes 

that one of the terminal degrees of freedom is eliminated so that the 

derived system has only one terminal degree of freedom left. More 

specifically still : it will be assumed that the first co-ordinate of the 

station vector is annihilated by a constraint. Equation (3.2.1) can be 

expanded for this particular example:

I I I

Solving for F^^ in the first equation of the above set and taking it into

the second and third equations, one can write:

(^2 " Ct22 " tj2 ^^^)g2 +

^1 (^32 " ti2 t]^^92

(^23 " ^13 tji^^^l

(^^33 " ^13 t^^^l

..(B.l)



Equation (B.l) can be written in matrix form:

[T*] {Z)*L{Z}*”

..(B.2)

..(B.2a)

It is worth noting that, once this particular case has been considered, 

the result expressed by equation (B.2) can be generalized for the n-term1nal 

case by looking carefully at the elements of the reduced square matrix.

Perhaps it may not be easy to write down a general formula for the 

elements of the reduced square matrix, but one can readily establish their 

law of formation.

Let II be the order of the annihilated generalized co-ordinate and 

I2 the order of corresponding generalized force.

Probably the best way of showing how the elements of the reduced 

transfer matrix are formed is through a flow diagram. This is done in 

fig. (B.l).

In fig. (B.l) t is an element of the reduced matrix, that is, 

of the period transfer matrix of the derived system. The diagram is made 

up of quite standard symbols and the notation is very close to that used 

in Fortran, If more than one degree of freedom is taken from the terminals 

of the original system the technique established in fig.(B.l) can be applied 

in succession, the order of elimination being immaterial.
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APPENDIX C

LEVERRIER METHOD WITH FADEEV'S MODIFICATION

Leverrler's method with Fadeev's modification is a direct method 

for the computation of eigenvalues and eigenvectors of a general square 

matrix.

Direct methods are not usually the first choice for the computation 

of eigenvectors and eigenvalues for large matrices because they are 

generally more sensitive to round-off errors and require greater computing 

time. The present method, nevertheless, is quite advantageous for the 

needs of this work because;-

a) The matrices are usually small and in such cases it requires less 

computing time;

b) It allows advantage to be taken from the cross-symmetry of the matrices 

with further saving in computing time;

c) It is completely Insensitive to the peculiarities of the matrices;

d) It gives the same level of accuracy to both eigenvectors and eigenvalues;

e) It provides an extremely economical way of computing equation for

the propagation constant from the period transfer matrix.

Suppose

P(t) = (-1)^ (X^ - giX^-T - 9^) |18|

is the characteristic polinomial of the square matrix [A]. It can be 

proved that the coefficients g. can be computed by constructing the 

following sequence:



0^1 = [A] ; \[A]1 = 91

[A]2 = [A] Ml ; = 92

[A]N-1 [A] [B],^_2 ' 1^ " ^N

[A]^ = [A] [B]^_i ; -"^^^^ = 9^

; [B]1 = [A]1 - 91 [I]

; [B]2 = [Ajz - 92 [^]

..(C.l)

By solving the characteristic equation the eigenvalues are found. As was 

explained in chapter III N is usually even (N = 2n) and it can be seen 

that g. = 0, j odd, so that the characteristic equation can always be 

solved first for x^ and have its order reduced by half.

Supposing that the eigenvalues are distinct it can be shown that |18[ 

the eigenvalue corresponding to x. is given by any of the columns of the 

square matrix

[U]j = x/'’ [1] +

For Instance, for the flat plate structure one has:

Ml = [A]^ ; [B]i = [A]^ , since gi = 0

[A]2 = [A]/; [B]2 = [A]/ - 2c'[i] ; ; = F

Ms = Mr[B]2: [B]3= [Ap]' - Zs^EA] ; since gg = 0
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Taking the expressions for [A]^, [Aj^^ and [A] 

instance, the fourth column of [U]. one has:

3 and choosing, for

D (X.2

{Uj} ..(C.3)

-Dx- x-^ - (2-v);^
J J

Expression (C.3) has previously been found in Chapter VII.

To compute, say, the k column of (C.2) it is convenient to use the 

recurrence formula:

{u}^ =Xj{u}^_^+{b}^

where {e}^ is a column of zero elements except the k^^ one, which is one 

and {b}j is the k column of matrix [B]..
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APPENDIX D

NOTES ON THE COMPUTATION OF p " n* AND 0* - p CURVES

Flow diagram D.l contains the basic steps for the computation of 

Pg - n* curves (passing bands), After reading the pertinent data for 

the structure it is necessary to set some constants:

NI = maximum number of iterations that are allowed to be performed to 

find a root, that is, a propagating frequency corresponding to a 

certain value of p between 0 and

6F = frequency interval within which a propagating frequency is to be 

searched. If no root is found inside 6F another increment 6F is 

given and the search continues. If a root is found within 6F it 

is stored in mu (see fig. D.2).

6u = propagation constant increment.

NB = number of passing bands desired; J is a counter for the number of 

bands.

The search for a root within 6F was made by a subroutine based on 

Muller's method |29|. The subroutine first compares the signs of 

f(p^,n *) (see expression 3.4.5) at the extremes of AF and if they are 

equals it returns giving a message of non-existence of a root within AF. 

If they are different it starts Muller's iterative process until a root 

is found within a pre-set accuracy.

This process may not converge if AF is too large (in a sense) or if 

round-off errors prevent it. Therefore it is very important to compute 

^^^o'^o*) ^^^^^^tely which implies in the accurate computation of the 

field transfer matrix and in the coefficients of the equation for the 

propagation constant. This fact has been emphasised throughout this 

work.

Fig. D.3 is a flow diagram for the computation of n * - p curves. 

The diagram is self-explanatory and needs no further comments. Perhaps



it is only worth reminding that the polinomial equation for the 

propagation constant has complex coefficients and was satisfactorily 

solved by using another subroutine based on Muller's method.
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