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characterised by a loss factor. For an infinite strip load, which 

reduces the problem to two dimensions, three ground structures have been 

consideredr a half-space, a layer over an inflexible half-space, and a 

layer over a flexible half-space of different material properties to the 

layer. For a finite (rectangular) strip load, only the half-space 

ground structure has been analysed. 

The formulation of the problem involves partial differential equations, 
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propagation have been studied, and used to interpret the forced response 

results. 
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point, to study the value of isolation masses. 

xii 



CHAPTER 1 

INTRODUCTION 

1.1 The Railway Vibration Problem 

Vibration caused in the vicinity of a moving train becomes a problem 

if people are disturbed. only in exceptional circumstances are the 

vibrations great enough to damage buildings. The vibrations propagating 

away from a moving train are due in part to the changing stress pattern 

produced in the supporting ground. In addition, rail level defects and 

imperfections in the running gear of the train can cause stress waves in 

the ground, and periodic defects due to joints, Wheel-flats and welds are 

also significant. 

The total railway vibration problem can be broken into four 

components: 

(i) vehicle-track system dynamics, 

(1.i) the ground vibration, 

(iii) the response of buildings, 

( iv) the subjective response of occupants. 

An attempt at modelling the first component has been made by the 

O.R.E. [28J, and British Rail have obtained experimental data relating to 

components (1.i) to (iv) [13J. The aim of this work is to study the 

second component, and produce a mathematical model of the ground 

vibration, Which will give theoretical predictions of the surface 

vibration at the wayside of the train. 

1.2 Previous Work on Ground Vibration Propagation 

This section briefly reviews previous work in this field, which is 

discussed in more detail in the relevant chapters. Some previous work 

which is applicable to the railway problem, but does not relate to the 

mathematical models used in this work, is also mentioned here. 

1. 



In 1885, Rayleigh [67] discovered the 'surface wave' named after him, 

Which can propagate on the surface of an elastic space, by seeking a 

solution to the defining elastodynamic equations (see equations (3.1) and 

(3.2», in the form of a wave Whose amplitude decays exponentially with 

depth. This approach was suggested by experimental seismograms, which 

could not be explained Simply by considering the 'compression' and 

'shear' waves, the two 'body' waves which were already known to exist in 

the ground. Subsequently, Lamb [44, 45] laid the theoretical foundation 

for all later work, in his treatment of plane and cylindrically symmetric 

problems. His assumptions that the ground is homogeneous, isotropic, 

elastic and flat have been adhered to by most workers Who followed him. 

Lamb's solution for the surface displacements due to impulse loads is in 

the form of asymptotic expressions, valid in the 'far-field'. 

During the 1920's, stoneley [73] generalised the Rayleigh wave to 

include a 'surface' wave propagating at the interface of two solids, and 

LOve [49] studied the stress distribution under a vibrating rectangle, 

strip or Circle. This work was a fore-runner of later work concerned 

with the effects of a vibrating machine on its foundation, and in fact 

most work since the 1930's has examined the displacements and stresses 

immediately below the surface loading. Reissner [81] and later Miller 

and Pursey [56] used Simplified boundary conditions to study, 

theoretically, a vibrating disc on a half-space. Their solutions do not 

require the disc to be rigid, a condition which introduces aWkWard mixed 

boundary conditions of constant displacement under the disc, and zero 

surface stress outSide the disc. However, this rigidity is an important 

factor in machine foundation vibration. Bycroft [9] tried to approximate 

the rigidity while avoiding these mixed boundary conditions, by basing 

his assumed stress distribution under the disc on the exact statiC 

solution. This gave a good approXimation at low frequency. 

About ten years after Bycroft's work, AWOjobi and Grootenhuis [4] and 

Robertson [70] tackled the genuine problem of a vibrating rigid disc, by 

using different sophisticated techniques which lead to series expansions 

for the stress and displacement under the disc. 

Kobori and Thompson [40] studied the problem of a rectangular load on 

a half-space. Their analysis involves a double Fourier transform, and to 
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avoid excessive complications, they used a uniform stress distribution 

over the rectangle. Kobori at at [39] later extended this work, to a 

vibrating rectangular load on the surface of a layer over a rigid 

half-space. 

Richardson [68] was among the first workers interested in the surface 

displacements near to the disc. He used Bycroft's stress distribution 

under the disc to find a numerical solution for the near-field 

displacements. Kuhlemeyer [43] and Waas [79] used the Finite Element 

Method to study the surface vibrations, due to a disc load, of a layer 

over a rigid half-space. Waas showed this method to be particularly 

useful for modelling awkWard surface geometries, such as trenches. 

With the advent of powerful computers, workers since the mid-1970'S 

have used numerica.l techniques. Among others, Gazetas and Roesset 

[22,23] have done further work on machine foundation vibration, and 

Kausel and Roesset [36] introduced a dynamic stiffness matrix for a layer 

in the ground. Gaul [19] has extended the work of Kobori and Thompson 

[40], and looked at the surface vibrations in the vicinity of a square 

load. The developments of the last fifteen years are considered in 

greater detail in later Chapters. 

In this work, the load always acts on the surface of the ground, but 

Hushmand [33] and Novak and Beredugo [59] have studied the effect of 

embedding the load in the surface. They have used both theoretical and 

experimental models, and have found that embedment increases any resonant 

frequencies. A technique for reducing the propagation of vibration Which 

has been conSidered, is to dig a trench either near the source or near 

the area to be isolated. Barkan [5] was not encouraged by the results of 

trench experiments, and ECOM [14] found that existing surface 

irregularities had little isolation value. However, Waas [79], in his 

Finite Element solution, found that low frequency propagation could be 

considerably reduced by a trench. Woods [7], in a thorough experimental 

investigation of trenches dug around either the source or the response 

point, also met with qualified success. 

Much previous work is concerned with the propagation of r,ove waves. 

These are horizontally polarised waves which can exist in a surface 
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layer, provided the material beneath is less elastic (see [5], for 

example). However, such waves can only be excited if horizontal 

stresses exist on the surface, which is not the case in the models 

presented in this work. 

Further work specific to railway vibration has been performed 

recently. Grassie [76] has used both experimental and mathematical 

models to study the dynamic response of railway track with unsupported 

sleepers, and the ORE [28] have attempted to model a moving load. 

1.3 The Mathematical Models used in this Work 

In this work, three distinct models of the ground are used I (i) a 

half-space, (i1) a single layer of constant depth over an inflexible 

half-space, (iii) a single layer of constant depth over a flexible 

half-space. The second two models are referred to as the "bedrock 

model" and the "elastic foundation model" respectively. In all cases, 

the ground is considered homogeneous, elastic, isotropic and flat. In 

the elastic foundation model, the half-space has different material 

properties to the layer. When a forced response is studied, hysteretic 

damping is incorporated throughout the ground. For the free vibration, 

no damping is present, to allow the full development of natural modes. 

The theoretical formulation of the problem is based on the theory of 

linear elasticity. This is justified because of the small strains 

produced in the ground. Further, Richart and Whitman [82] have found 

from footing experiments that provided the acceleration of the footing 

does not exceed (g/2), then the linear apprOXimation gives good estimates 

of true vibration amplitudes. 

The maximum frequency of the harmonic load used in this work is 

64 Hz. This is in accordance with the frequency range of the dominant 

vibrations produced by passing trains, as measured in adjacent houses. 

The hysteretic damping is characterised by the "loss factor" T} (see 

Chapter 2), and for this frequency range, the ORE [28] have found that 

T} does not vary significantly. Therefore, a constant loss factor is 

used for a given model, for the whole half-space and all frequencies. 

4. 



Most of the forced response work is with an infinite strip load; 

Chapter 9 deals with a rectangular load. In each case, the load acts 

uniformly over the load area, and so displacement under the load is not 

constant. This simplification is considered justified, because it is not 

expected to greatly affect the near-field displacements, which are of 

more interest in this context than the displacements under the load. 

The ORE [28] maintain that a theoretical approach to the ground 

vibration problem must incorporate (a) the distance to the source, 

(b) the ground dissipation, (c) the depth, (d) the stratification. The 

models developed here all involve (a) and (b), and the bedrock and 

elastic foundation models introduce (d). The depth within the layer is 

of less interest here, as the load and response point are both on the 

surface. 

In Chapter 2, the material properties of interest, in particular the 

damping, are discussed. In Chaptp.r 3, the forced response of an 

infinite strip on a half-space is analysed. The harmonic load acts 

vertically, and the boundary conditions are 'smooth' - no shear stresses 

exist. This is always the case in this work. The method of solution 

involves sOlving Navier's elastodynamic equations of motion, by first 

transforming the equations to the transform domain, and then solving the 

resulting ordinary differential equations. The surface displacements are 

obtained by numerically inverse transforming these transformed solutions, 

using a method described in Appendix A. Some comparison of the results 

obtained with the receptance graphs of previous workers is possible. 

However, no work on the near-field displacements due to an infinite strip 

load acting on a half-space appears to have been done previously. 

In Chapter 4, the free vibration of the bedrock model is considered. 

The problem is formulated using a dynamic stiffness matriX for the layer, 

and to aid solution a linear approximation to this matrix is used. This 

follows the work of Waas [79]; the problem is solved as an eigenvalue 

problem to give the dispersion curves and modeshapes of the propagating 

waves. In Chapter 5, the forced response of an infinite strip load 

acting on the bedrock model is analysed. The exact dynamic stiffness 

matrix for the layer is derived i.n the transform domatn. This leads to 

the solution for the transformed components of motion at discrete values 
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of wavenumber, which allows numerical integration as before to obtain the 

surface displacements. As with the half-space forced response results, 

comparison is only possible with the receptance graphs of previous 

workers. 

Chapter 6 deals with the free vibration of the elastiC foundation 

model. A method developed by Wittrick and Williams [89] is used to 

solve the non-linear dynamic stiffness matrix for the layer, as an 

eigenvalue problem. This gives the dispersion curves. The "period 

equation" is derived, and with the knowledge of the "eigenfrequencies" 

from the dispersion curves, this is solved to give the modeshapes in the 

layer. It is found that the dispersion curves agree closely with an 

approximate expression due to Newlands [54], which is valid for large 

(,d), where , is the wavenumber and d the depth of the layer, 

provided (,d) > 25. 

In Chapter 7, the forced response of an infinite strip load on the 

elastic foundation model is studied. The approach used is similar to 

that of Chapter 5, and involves solution of the dynamic stiffness matrix 

in the transformed domain. As before, the only previous results Which 

afford comparison with those here are receptance graphs. A comparison is 

made in Chapter 7 between the results of the three ground structure 

models. 

In Chapter 8, masses are introduced into the three models. The 

purpose of this study is principally to predict the effectiveness of 

isolation masses. Various masses are placed at the load, or at the 

response point, or between the load and response point, and the effect on 

direct and transfer receptance is studied for all three models. In some 

cases, masses at two locations are used. Several previous workers have 

produced results which can be compared with some results in Chapter 8. 

Chapter 9 is concerned with the forced response of a rectangular 

patch of uniform pressure on a half-space. An analytical approach based 

on the work of Kobori and Thompson [40] is used, involving a double 

Fourier transform to find the transformed displacements. The inverse 

transformation is then accomplished using the method described in 

Appendix A, and also an application of Simpson's Rule. The effect of 
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masses placed on the surface is also investigated, and direct and 

transfer receptance graphs produced with and without the masses. These 

can be compared with results from earlier workers. Additionally, the 

method can be adapted to study the case of a square patch of uniform 

pressure on a half-space, as treated by Gaul [19], and a close 

correspondence of results is found. 
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CHAPTER 2 

MATERIAL PROPERTIES AND THEIR MEASUREMENT 

2.1 Some Definitions 

certain quantities Which define the material properties of a solid 

are required in this work, and are defined in this section. Young's 

modulus, denoted by the symbol E, can be described as [41] "the ratio 

between the applied stress and the fractional extenSion, when a 

cylindrical or prismatic specimen is subjected to a uniform stress over 

its plane ends and its lateral surfaces are free from constraint". The 

shear or rigidity modulus, denoted by ~, is the ratio between the 

shear stress and the shear strain of a similar specimen. poisson's 

ratio, denoted by v, is the ratio between the lateral contraction and 

the longitudinal extension of the specimen, the lateral surfaces being 

free. The bulk modulus, K, is "the ratio between the applied 

pressure and the fractional change in volume, when the solid is 

subjected to uniform hydrostatic compression". 

The shear modulus, ~, is also known as one of the two Lame 

constants; the other is denoted by A. For an isotropic homogeneous 

elastiC solid (that is, one which has no preferred direction of strain, 

has identical properties throughout its body, and obeys the linear 

elastiC stress-strain relations which are valid for small strains), ~ 

and A are the only two constants required tn the governing 

stress-strain relations. 

TO define the quantities E, v and K mathematically, it is 

convenient to choose coordinate axes such that the x-axis is parallel 

to the axis of the cylindrical specimen. Then the only non-zero stress 

component is crxx, and the stress-strain relations are (see [26] for 

example): 

crxx = (A + 2~)exx + A(eyy + ezz) 

o = (A + 2~)eyy + A(exx + ezz) (2.1) 

o = (A + 2~)ezz + A(exx + eyy) 
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where exx = au/ax, etc., and u is the displacement component in the 

x-direction. 

Then solving for exx' eyy and ezz gives: 

and therefore 

and 

v = 

J.L(3A + 2J.L) 
A + J.L 

A = ------
2( A + J.L) 

= ezz 
= _ __~~KL ___ _ 

2J.L( 3 A + 2J.L) 
(2.2) 

(2.3) 

(2.4) 

In the case of uniform hydrostatic pressure crxx = cryy = crzz = -P (say) 

and cryz = crzx = crxy = O. (2.5) 

Solving the stress-strain relations for this case gives 

P 
(2.6) exx = eyy = ezz = 

3A + 2J.L 

The fractional change in volume = -~ = -(exx + eyy + ezz) 

Therefore 

(2.7 ) 

The conditions for stability of the solid are that the bulk and 

shear moduli are positive, as these represent the reSistance to 

compression and shearing respectively. The extreme case of a body 

which resists shear but does not resist compression, is described by 

A + 2J.L/3 = O. The other extreme case of a body which resists 
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compression but not shear, is described by ~ = O. These two cases in 

conjunction with equation (2.4) lead to theoretical l~its on the value 

of v, such that -1 ~ v ~ 12 • However, no materials with a negative 

Poisson's ratio are known, and so a more practical statement of the 

range of v is 

(2.8) 

2.2 Material Damping 

The mathematical model of the ground used in this thesis includes 

dissipation due to internal damping. This makes the model more 

realistic, and has the additional advantage of removing integrand 

singularities Which exist in the zero-darnping case. 

For harmonic motion, as applies in this work, the damping can be 

represented by making the elastic moduli complex. Taking E as an 

example, we then have: 

(2.9) 

which is a vector rotating with angular velocity w. EL is in phase 

with the stress and is related to the recoverable elastic energy, and 

Ez is 900 out of phase with the stress, and is related to the 

unrecoverable energy lost in damping. The strain vector lags behind 

the stress vector (both rotate at frequency w) by the "loss angle" 

4>L, where 

tan 4>L = the "loss tangent" = Ez/E L (2.10) 

The actual stresses and strains at a given moment are the projections 

of the vectors on to the real axis. 

Several models have been used in the past to describe the behaviour 

of the damping term Ez . In the voigt model of viscoelasticity, the 

term E (which for the purposes of this discussion can represent any 

of the elastiC moduli) is replaced by one of the form: 
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a 
E - (E + iE' at) (2.11) 

where E' detennines the magnitude of the damping. This model assumes 

a viscous-type damping, proportional to velocity. This introduces a 

frequency dependence in the damping tenn, so that from equation (2.9), 

Ez = wE'. For this reason, many authors ([5J, [22], [41J, [52J, [79J 

and [20J) reject the voigt model as inappropriate for soilS, on the 

grounds that experiments have shown the elastic moduli and damping in 

soils to be almost unaffected by frequency, at least in the range of 

interest (in this work this is below 64 Hz; see for example [5] or 

[79] for descriptions of experimental work). Warburton [80] has 

suggested removing the frequency dependence, by modifying equation 

(2.11) to 

iE' a 
E - (E + w at) (2.12 ) 

Kolsky [41] analyses combinations of the voigt and Maxwell damping 

models, where the Maxwell model introduces a damping tenn which is 

inversely proportional to frequency. 

However, most authors choose a "constant hysteresis" model of 

damping, Which is independent of frequency. This model is used in this 

work. Of course, it should be realised that in reality, the behaviour 

of soil is anelastic and its damping mechanism complex, so all the 

models mentioned are strongly idealised. To explain the constant 

hysteresis model, the usual diagram of a stress-strain hysteresis loop, 

shown in Fig. 2.1, is useful: 
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Fig. 2.1: Hysteresis loop 

The loop shows the variation of stress with strain during one cycle 

of the motion. The total work done during the cycle, AW, is given by 

the area enclosed by the loop. The max~urn energy stored during the 

cycle, W, is given by the shaded area. 

from its definition, ~ is given by 

As shown in Figure 2.1, and 

~ = arctan e (2.13) 

where e is the angle subtended with the y-axis by a line drawn 

through the origin and the tips of the loop. A measure of the damping 

in the system is given by AWfW. This ratio leads naturally to the 

introduction of the "loss factor" used in structural mechanics, which 

results from energy considerations in a s~ple mass-spring-damper 

system [55 J: 

.. 
mx + cx + kx = F e iwt 

o 

The forCing function has been included for generality. If the 

hysteresis condition 

h 
c(w) = w' h = constant 

12. 
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is introduced, then for hannonic motion equation (2.14) becomes 

mx + (ih + k)x = Foeiwt (2.16 ) 

This can be rewritten: 

(2.17) 

Where the "loss factor" 7) = h/k (2.18 ) 

To relate the loss factor to the ratio AW/W, consider the energy 

dissipated per cycle: 

S
2fT/W 

E.D./cyc1e = AW = cxZdt 
o 

(2.19 ) 

For a harmonic response 

x = IXI cos (wt - ~) (2.20) 

where IXI is the amp1itude of the response. Hence from equations 

(2.15), (2.19) and (2.20) 

AW = fThwlXl z (2.21) 

Similarly, the maximum strain energy stored during a cyc1e is 

W = 'ik IXI Z 

So from equations (2.21) and (2.22) 

AW fThlXI Z 

W = 'iklXI Z = 

or 

1 AW 
7)= 2fT W 
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KolskY [41] gives alternative definitions of the loss factor, based 

on the rate of decay of motion in the soil during free vibration, or on 

the width of a resonance peak in a receptance diagram. 

In general, shear and compression in soil have different associated 

loss factors, which can be denoted ns and nc respectively. 

However, as explained in Section 2.4, there is a lack of consensus 

among experimental workers about the relative magnitudes of ns and 

nco For simplicity, in this work a single loss factor n is used, so 

that 

n = ns = nc (2.24) 

The O.R.E. [28] have noted that dissipation in soils "causes a 

pronounced weakening" of the high frequency vibration. To see why this 

is, consider the general expression for radial variation of amplitude 

with distance from a source of vibration 

(2.25 ) 

The values of A, k and n are different for the Rayleigh, shear and 

compression waves. From consideration of asymptotic solutions [5], it 

is known that in the far-field, n = 2 for the body waves, and n = 12 

for the Rayleigh waves. 

With internal damping characterised by loss factor n, 

wavenumber k w 
= ---------r:;; 

c( 1 + in) 2 
(2.26 ) 

where c is the relevant characteristic wavespeed (shear, compression 

or Rayleigh) in a perfectly elastic (undamped) soil, and the square 

root is due to the definitions of the characteristic wavespeeds (see 

equation (3.7». 
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Equation (2.26) is equivalent to 

(2.27 ) 

But 

(1 - i1) = (1 + 1)z,) '2e-i arctan1) (2.2Ba) 

Therefore 

(1 - i 1) )'2 = (1 + 1)z,) '''e -'2i arctan1) (2.2B) 

Putting E = '2 arctan 1) (2.29 ) 

this gives 

(cos E - i sin E) (2.30 ) 

Hence equation (2.25) can be rewritten: 

(2.31) 

From equation (2.30), a is proportional to w, and so the term 

(e-ar ) in equation (2.31) is smaller for higher frequency, and the 

greater weakening of high frequency vibration with distance is 

predicted. 

2.3 Exper~ental Methods of Determining Soil Parameters 

Several methods have been used by many workers to estimate soil 

parameters. They fall into one of two classes, either laboratory or 

"in-situ" experiments. Seed and Idriss [71] have found that tests on a 

specimen of soil in a laboratory, are appropriate for moderate to high 

induced strains. Triaxial compression, simple shear and torsional 

shear tests can all be accomplished, which with cyclic loads can yield 

experimental hysteresis loops. Forced vibration tests can find 

resonant frequencies, and free vibration tests (conducted by observing 
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the decay of motion after a cyclic load is removed) give the 

"logarithmic decrement" B. This is defined as the natural logarithm of 

the ratio of successive amplitudes of the decay, and is related to the 

loss factor, n (for small n) by [79]1 

(2.32 ) 

In-situ tests have not generally proved a suitable means of 

estimating damping, although the O.R.E. [28] mention a method described 

by Alvarez and Clement [78], based on the degree to which an impulse 

signal is widened by the distance travelled. They also point out that 

if the Rayleigh wave is known to dominate the response at some 

distance, the measurement of the vertical amplitude at distances r~ 

and r z leads to the following relation involving a: 

(E&) e-aR(r~ - r z ) 
r~ 

(2.33) 

where a is as given in equation (2.30), and in the case of equation 

(2.33) gives the Rayleigh wave dissipation. 

More usually, in-situ experiments have given the wave velocities, 

.which in turn can give the elastic moduli. The O.R.E. use a 

"cross-hole" procedure, Which allows the variation of compression 

wavespeed with depth to be measured. Bore-holes are dug, and a pulse 

is generated at a certain depth. The travel-time to a point at the 

same depth in another bore-hole is recorded. Because the compression 

wave is the fastest, it corresponds to the first arrival. The 

Rayleigh wavespeed can be determined by measuring the phase change with 

a sinusoidal excitation between points r 1 and r z , which is given by 
21T Ci (r z - r ~ ), where cR is the Rayleigh wavespeed. 

British Rail [32] have developed their own method of determining 

the shear wavespeed, which does not involve drilling. A shear wave is 

generated by impacting a bar held on the ground by the rear Wheels of a 

Land-Rover. The difficulty in recognising the arrival of the shear wave 
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at some .distant point, is reduced by using a geophone sensitive to 

horizontal vibrations. They also use a seismic technique to find the 

compression wavespeeds of each layer of the ground. A pulse is 

generated by striking a metal plate, and the first arrival at a 

geophone is timed. If the plate is moved away from the geophone, 

Fig. 2.2 shows the form of the resulting time-distance graph: 

t 

x 

Fig. 2.2 Time/distance graph resulting from seismic tests 

The different slopes of the graph give the compression wavespeeds 

in each layer. 

British Rail estimate the density of the ground. p, from an 

empirical relation between the compression wavespeed cl. and p. Then 

by the definition of the shear wavespeed (see equation (3.7»: 

(2.34) 

where c, is the shear wavespeed. From the resu1ts of Section 2.1, it 

can be shown that 

(2.35 ) 

Hence, the other required parameters can be calculated. 
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Grootenhuis and AwOjobi [27] have suggested that in-situ tests are 

best performed with an electromagnetic exciter, rather than a vibrator 

using rotating out-of-balance forces. This is because the soil's 

elastic moduli are known to vary according to the amplitude of the 

motion (see Section 2.4), and as the force of this latter vibrator is a 

function of the frequency, as will therefore be the induced amplitude, 

any receptance curves produced with it will be of l~ited value. 

Grootenhuis and Awojobi prefer to keep the amplitude constant and vary 

the force of their exciter. Resonant frequencies can then be 

determined by varying the frequency to give the same amplitude for 

minimum force. By finding the resonant frequencies with two different 

masses at the load, Awojobi's previous work [3] allows v and ~ to 

be found. Provided the masses are not too different, it can be 

assumed ~ will not be significantly affected by the difference in the 

two resonant frequencies. Young's modulus can then be found from: 

E = 2~_ 
I + v 

This technique also allows non-linear effects to be studied, by 

repeating tests With different amplitudes. 

2.4 A ReView of Published Data on Material Properties 

(2.36 ) 

Seed and Idriss [71] have found that the main factors affecting the 

elastic moduli and damping of soils are: (i) the strain amplitude, y; 

(ii) the effective mean principal stress, O"m'; (iii) the "void ratio" 

(or relative density) e; (iv) the number of cycles of loading, N; 

(v) the degree of saturation in cohesive soils. All workers agree that 

the shear modulus and damping are proportional to the strain; hence 

the hysteresis curve for higher strains Will have a larger area. 

However, there is some disagreement among workers on the influence of 

other factors. Seed and Idriss have found that the grain size of sandy 

soils is not important, although the void ratio is. Barkan [5] found 

exactly the reverse. Whereas Seed and Idriss were unable to draw 

conclusions from their test results on clay soils, Barkan found that 

damping in clay is proportional to moisture content. 
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Such contradictions as these reflect the difficulties in soil 

testing, and also in some cases the danger of comparing labOratory 

results with those obtained in-situ. Chae [11] found that only the 

"confining pressure" tests in the labOratory give consistent results 

with those obtained in-situ. Using sandy soil of void ratio 0.52, four 

different techniques - the "resonant column", "seismic", "amplitude 

ratio", and Chae's own semi-analytical "half-space" technique, all gave 

close results for the proportional variation of shear modulus With 

confining pressure. 

ChOOSing a realistic loss factor is complicated by the great range 

of results for various soils, as shown in Table 2.1, which is a 

condensation of results from previous authors. 
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Ref. Material ~ v LOSS Factors Confining pressure 
No. (Nm-z ) Tis Tic or strain, if 

given 

[75] saturated 6.9xl07 0.5 0.3 0.125 7891 Nm-z 
clay 

[75] partially 
saturated 5.6X107 0.4 >0.05 - .. 
clay 

[75] sandy 1.12XI08 0.3 >0.05 - .. 
gravel 

[75] Beach sand 8.5X107 0.3 >0.05 - .. 
[28] saturated 4.09xI08 0.45 TI = 1.0 -

clay 

[28] Sand 5.0xI08 0.25 TI = 0.1 -

[28] Granite 2.25xl08 0.25 TI = 0.1 -

[28] Deep 
geological - - TI < 0.01 -
formations 

[19] clay - 0.4 0.05 0.1 -
[79] NO specific material ~0.04 <Tis A large range 

~0.1 of strains 

[52] NO speCific material 0.04~TI~0.4 
.. 

[33] No specific material TI < 0.1 Maximum strain 
y = 10-3 

[71] No specific material TI < 0.3 Maximum strain 
y = 10-z 

[29] Sand - - TI = 0.1 -

[29] clay - - TI = 0.5 -

[88] Crustal - -- TI .- 0.01 (Seismic wave 
rocks generated by 

explosive blast) 

Table 2.1. Previous experimental results 
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No experiments were performed in the course of this work. Although 

most of the results presented here are in a non-dimensional form, they 

are designed to be easily interpreted for a particular British Rail 

test-site, called Clarborough. The material properties Which have been 

measured at ClarborOUgh, using the British Rail technique descrLbed in 

Section 2.3, are tabulated below. 

property AbOve 7 m Below 7 m 
: 

Density, p 1550 2450 

(kg.m- 3 ) 

Young's modulus, E 2.69 x 108 204.26 x 108 

(Nm-z ) 

Shear modulus, J.L 1.07 x 108 87.36 x 108 

(Nm-z ) 

Poisson's ratiO, v 0.257 0.179 

Table 2.2: Clarborough material properties. 

Three ground structure models are used in this work. For the 

"half-space" (Chapters 3 and 9) and "bedrock" (Chapters 4 and 5) 

models, only the material properties shown for the top layer (above 

7 m) are necessary. For the "elastic foundation" model (Chapters 6 and 

7), a half-space, haVing the material properties below 7 m is assumed 

to support the layer. 

No data are available for the damping at ClarbOrough and so a 

constant value of 

~ = ~s = ~c = 0.1 (2.37) 

has been used, although strictly the loss factor should vary with 

distance from the load, because ~ is strain dependent. However, in 
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the absence of the necessary data it is difficult to predict this 

variation with distance. Also, there is no reason Why ~s should 

equal ~, but the results in Table 2.1 do not indicate Which loss 

factor should be the greater. The material properties of the top layer 

at ClarbOrough (Table 2.2) seem to correspond most closely to 

Sutherland's sandy gravel ([75] in Table 2.1). Accordingly, ~ = 0.1 

has been taken as a rough average of the sandy soils tabulated. 

Note: The O.R.E. results for sand in Table 2.1 {(28]) show a similar 

Poisson'S ratio to Clarborough, and also a loss factor ~ = 0.1. The 

large difference in shear modulus, however, may be because the O.R.E. 's 

modulus has been calculated from an experimentally found compression 

wavespeed and POisson's ratiO, and the wavespeed was calculated as an 

average through depth. It is likely that the wavespeed will increase 

with depth of SOil, due to the greater pressure, and so increase the 

average value. 
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CHAPTER 3 

INFINITE STRIP LOAD ACTING ON A HALF-SPACE 

3.1 Introduction 

In this Chapter, the railway vibration source is mathematically 

idealised as a Single, infinite strip of uniform, harmonically varying 

pressure, acting on the surface of an homogeneous, isotropic, elastiC 

half-space. The half-space exhibits "constant hysteretic" damping, as 

described in Section 2.2. There is no mass at the Vibrating strip 

this complication is considered in Chapter 8. The contact between the 

strip and the half-space surface is "smooth" - no shear stresses act at 

the surface. The method of analysis involves expressing the problem 

in terms of Navier's elastodynamic partial differential equations, 

which are Fourier transformed to produce ordinary differential 

equations. The boundary conditions are also Fourier transformed, and 

solution expressions are found in the transform domain. These 

expressions are then numerically inverse transformed to give the 

approximate surface displacements, using a method explained in 

Appendix A. 

AS discussed in Chapter 1, much of the work on ground vibration has 

been concerned with displacements directly underneath the foundations 

of vibrating machines. Where the load has been modelled as an 

infinite strip acting on a half-space, the more complicated case of a 

rigid strip has been modelled [2,4,22,51,60,16]. In this case the 

boundary conditions are mixed (constant displacement under the load, 

and zero surface stresses elsewhere) leading to dual integral 

equations. Both "smooth" and "welded" contacts have been considered. 

The results produced are mostly in the form of direct receptance 

graphs, and are discussed in Chapter 8. 

very little previous work eXists on the near-field surface effects 

of a strip load on a half-space. Miller and Pursey [56J have used the 

same boundary conditions, and similar analysis to here, but they seek 

asymptotiC solutions of the inverse transform integrals using complex 

23. 



contour integration, Which are only valid in the far-field. 

Gopalacharyulu and Rebbeck [25], expanding on the work of Barkan [5] 

(who, in turn, gives Lamb's [45] results), give asymptotic solutions 

for a line-load. However, their results for displacements near the 

source are inaccurate: the asymptotic expression given in their 

equation (11.2) can only be reduced to one term if the products (hx) 

and (kx) are very large, where h and k are respectively the 

compression and shear wavenumbers. Lamb gives the asymptotic series in 

full ([45], equation (89», and if a ratio test is performed on the 

first and second terms, with realistic values of hand k, the second, 

neglected term can be shown to dominate the first, for considerably 

more than the 100 m distance considered. Gopalacharyulu and Rebbeck 

also consider a strip loading, and produce an asymptotic expression for 

the Rayleigh wave contribution to surface Vibration. However, their 

method only allows solution under the load, and so does not afford 

comparison with the near-field results given here. 

The method of analysis used here is described in Section 3.2. The 

non-dimensionalisation of the results is explained in Section 3.3, and 

the results are presented in Section 3,4. These are discussed in 

Section 3.5. 

3.2 Analysis of Infinite strip Load acting on a Half-Space 

The half-space is assumed homogeneous, isotropic and elastic (the 

last assumption requires small strains). Following Sections 2.1 and 

2.2, the elastic moduli E, ~ and A have their previous definitions, 

and throughout are complex parameters depending on the loss factor n. 

The boundary conditions and ground structure model, together with 

the coordinate system, are shown in Fig. 3.1. 
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Uniform harmonic pressure 
P/2a per unit length 

2a 

z,w 

X,u 

Elastic half-space material 
properties 
E,V,ll,n. 

Fig. 3.1 Diagram of strip-load acting on half-space 

The harmonic uniform pressure P/2a (P is the force per unit 

length in the y-direction) acts on a strip of the surface which is (2a) 

wide. u and ware the displacements in the x and z directions, 

respectively. Navier's Equations of MOtion can be expressed in the 

following form (see [26], for example): 

02U 
( A+J.J.) 

ot:. 
J.J. '\72u (3.1) p at2' = -- + oX 

02w 
( A+J.J.) ~~ + J.J. '\72w (3.2) p at2' = oz 

where p= density of medium, A and J.J. are the Lame constants, t:. is the 

dilatation = ~~ + oX 
oW -_. body forces have been assumed zero, and only 
oz' 

the two equations relevant to the two-dimensional model have been given. 

Introduce potentials ~ and H such that 

o~ oH 
u = -- - --oX oz 
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w = a$ + aH 
az ax (3.4) 

Inserting eqs.(3.3) and (3.4) into eqs. (3.1) and (3.2) gives: 

'172$ - -~ 
cl~ 

$ = 0 (3.5 ) 

V2H -
1 

H = 0 --2' 
c2 

(3.6 ) 

where·· denotes double differentiation w. r. t. time, and 

2 A+2J.1.. 2 J.I. ) cl = ---- = compress1on wave speed, c2 = - = shear wave speed. (3.7 
p P 

we assume harmonic solutions to result from an harmonic input: 

iwt 
$ = $(x,z)e ; 

iwt H = H(x,z)e 

Equation (3.8) into eqs. (3.5) and (3.6): 

where 

w 
kl = -

Gl 

w 
k2 = -

c2 

Define the Fourier Transform pair as [35]: 

(3.8) 

(3.9) 

(3.10 ) 

(3.11) 

(3.12 ) 

Use eq. (3.12) to transform eqs. (3.9) and (3.10) to the, plane: 

Integrating by parts gives: 

(3.13 ) 

and likewise: 
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putting 

gives: 

d 2ii 2--;;Z-J3H=O 
dz 

Equations (3.16) and (3.17) have solutions: 

-H B -J3z + B2eJ3z = 1e 

Transforming equations (3.3) and (3.4): 

(3.14 ) 

(3.15 ) 

(3.16 ) 

(3.17) 

(3.18 ) 

(3.19) 

(3.20 ) 

(3.21) 

Equations (3.18) and (3.19) into equations (3.20) and (3.21): 

(3.22 ) 

(3.23 ) 

The relevant stresses are defined as [26]: 
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au oW 
TZZ = A -- + (A+2~) ax az 

( ~~ + aw 
TZX = ~ az ax) 

Transforming equations (3.24) and (3.25) gives: 

TZZ 
- dw = Ai ,U + (A+2~) 

dz 

(3.24 ) 

(3.25 ) 

(3.26 ) 

(3.27 ) 

SUbstituting eqs. (3.22) and (3.23) into eqs. (3.26) and (3.27) gives: 

TZZ 

(3.28) 

Also 

(3.29) 

Equations (3.22), (3.23), (3.28) and (3.29) can be combined in matrix 

form as: 

where {U} = [Xl {A} (3.30 ) 

{ti} T = l u W TZZ TZX J 
(3.31) 
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and [X] = 

i,g f3q i,g-1 -J3<r1 

i,q -1 i,q-1 -ag ag 

{2j.L,-( .H2j.L)k~ 2}g -2j.Li'f3q {2j.L,2_(A+2j.L)k12}g-~ 2j.Li'f3q-1 

-2j.LCli,g -j.L(2,2_k22)q 2j.Lia,g-1 -j.L(2,2_k22 )q-1 

(3.32 ) 

where (3.33 ) 

We now introduce the surface stress boundary conditions. The 

"smooth" contact means that the surface shear stress TZX = O. The 

uniform harmonic stress acting on the strip = (P/2a)eiwt , and for 

convenience the eiwt term will be assumed but not written. 

{ 
-P/2a Ixl < a 

C~early TZZ = 
0 Ixl > a 

(3.34) 

Equation (3.34) transforms to: 

P sin ,a 

] TZZ = - ------
2" ,a 

also TZX = 0 

(3.35 ) 

NoW, for the half-space ground structure, only waves travelling in 

the positive z direction are permissible, so 
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Evaluating eq. (3.30) at z=O and applying the boundary condition eq. 

(3.35 ) 

Therefore 

and 

{U}z=o = [X]z=o 

[ 
i, 
-cx 

[

2J.L'-(A+2J.L)kl2 

-2J.Lcxi, 

= 

(3.36 ) 

(3.37 ) 

-2J.Li'f3 

-J.L(2,2_k 22 ) 

[ 

-P sin,a 1 
211' ,a 

o 

(3.38) 

Using eq. (3.38) to replace 
[ 

B
All 1 in eq. (3. 37 ) : 

[ 
-~~!:!!f~ 1 211',a 

o 
(3.39) 

Equation (3.39) can be written as: 

-

[ : lz=o ~ [Xu] 
(3.40) 

This expression for u and w must be inverse-transformed, to 

give the surface displacements u and w. 
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3.3 The non-d~ensionalising of parameters 

Nearly all the results in this work are designed to be easily 

interpreted for the "Clarborough" test site (see Section 2.4), but many 

are in fact non-dimensionalised. The method of non-dimensionalising 

the results is explained here. 

The solution w(X,Z) (or u(x,z» is a function of nine variables, 

and so we have 

g(w,X,Z,a,p,E,P,w,n,V) = 0 (3.41) 

where all the parameters are as defined previously. D~ensionally, 

[W] ::: [x] - [z] ::: [a] ::: [L]; [p] ::: [M][Lr3 

(3.42 ) 

The force P has the dimensions given because it is a force per 

unit length along the strip. For the three-dimensional model used in 

Chapter 9, [P]::: [M][L][Tr2.. For the "bedrock" and "elastic 

foundation" models discussed later, a layer depth 'h' is required and 

[h] ::: [L]. n and v are d~ensionless. With a few exceptions, v 

will have the value 0.257. 

If E, a and p are used to non-d~ensionalise the other parameters, 

we find 

w g[a 
x Z P 
a I a' Ea n, v] = 0 (3.43 ) 

The term can be considered the non-d~ensionalised 

(frequency)2.. In the wavenumber domain, parameters will non-dimension

alise by multiplying by 'a', e.g. (ak~), (a,), (au). 

The wavespeed c2.' for example, is non-dimensionalised by 

dividing by (aw), so that 
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(3.44) 

3.4 Results 

The numerical quadrature routine used to inverse transform equation 

(3.40) is described in Appendix A. An example of the computer programs 

used, written in Fortran and called HSWM4F, is listed in Appendix B. A 

note explaining the program, and the programming alterations necessary 

to produce all the results given, precedes the listing. 

The material properties measured at Clarborough and given in 

Table 2.2 have been used, with an imaginary part added to each elastic 

modulus dependent on ~, for example E(l + i~), as explained in 

Section 2.2. With a few exceptions, the loss factor used is 

~ = 0.1. The load P has magnitude 2IT, in this and all subsequent 

Chapters except Chapters 8 and 9. For some of the results tn these 

Chapters P has magnitude either IT or 1. 

The compression and shear wavespeeds are given in terms of the 

complex elastic moduli by equation (3.7). If c 1 * and c z* are the 

compression and shear wavespeeds in an undamped medium, then the 

relationships between C~I c z ' c 1 *, c z* and ~ are: 

(3.45 ) 

c 1 and Cz will always be used to denote the complex wavespeeds. 

Figures 3.4, 3.5, 3.6, 3.7 and 3.10 are non-dimensionalised as 

explained in section 3.3. Figures 3.2 and 3.3 show the variation of 
-

Iwl and lui in the wavenumber (') domain, for the five frequencies 

4, 8, 16, 32 and 64 Hz. To exaggerate the features of these curves, a 

low loss factor, ~ = 0.002, and a log scale for the amplitude of w 

and u have been used. 

Figures 3.4 and 3.5 show the non-dimensionalised vertical and 

horizontal amplitude components of motion respectively, plotted against 

non-dirnensionalised distance, for the six non-dimensionalised 
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frequencies nZ = wZpaz/E = 0.002, O.OOS, 0.033, 0.131, 0.295 and 

0.524. These values, with a = 0.75 m, correspond to the following 

frequencies at Clarborough: 4, S, 16, 32, 4S and 64 Hz respectively. 

This value of the strip half-width, a, means that the x/a = 33~/3 
range plotted is equivalent to 25 m at Clarborough. 

Figures 3.6 and 3.7 show the phase change with non-dimensionalised 

distance for vertical and horizontal motion respectively, for the 

non"-dimensionalised frequencies n' = 0.002, 0.033 and 0.524. 

Consideration of more frequencies in these figures would have resulted 

in a confusing number of lines, and would not have provided any 

significant extra information. The apparent discontinuity in phase at 

±rr is a plotting convenience, to restrict the graphs to convenient 

bounds. In reality, the phase change is continuous. Failure of the 

curves to touch lines through ±rr is because of an inadequate number of 

data points. 

Figures 3.S and 3.9 show the attenuation of the amplitude of 

vertical motion, on a dB log scale, over the first 75 m at Clarborough 

(equivalent to x/a = 100), for the siX frequencies considered 

previously, and for the loss factors n = 0.1 and n = 0.02 

respectively. 

Figure 3.10 shows the effect on the amplitude of vertical motion at 

the centre of the load, of varying the strip width, with a constant 

force/unit width. Four non-dimensionalised frequencies are 

conSidered: nz = 3.2 x 10- 5 , 0.131, 0.524 and 1.279, which are 

equivalent to 0.5, 32, 64 and 100 Hz at Clarborough. 

3.5 Discussion 

Figures 3.2 and 3.3 show the variation of wand u in the 

wavenumber domain, for various frequencies and a loss factor 

n = 0.002. The main features of all six graphs shown are a major and a 

minor peak in otherwise smooth curves. The log scale also reveals an 

inflection on the 'left side' of the major peak. Calculation of the 

wavenumber of the Rayleigh, shear and compression waves in the 
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equivalent perfectly elastic (no damping) solid, reveals that at each 

frequency shown, these wavenumbers match respectively the major peak, 

inflection and minor peak. Table 3.1 clarifies this for the vertical 

component w, by giving the wavenumbers of the two peaks. 

and kR are the wavenumbers of the compression, shear and Rayleigh 

waves respectively, with no damping. 

Freq. k.1. k z kR Wavenumber domain location of w peakS 
(Hz) (rpO) (T'j=0) (T'j=0) (T'j = 0.1) 

Minor peak Major peak 
(modulus) (Real part) ( Imag. part) 

4 0.055 0.096 0.104 0.057 0.110 0.105 

8 0.109 0.191 0.208 0.115 0.220 0.209 

16 0.219 0.383 0.416 0.227 0.437 0.416 

32 0.437 0.765 0.831 0.455 0.873 0.831 

48 0.657 1.148 1.247 - - -
64 0.876 1.531 1.662 0.907 1.742 1.660 

Table 3.1: Relevant wavenumbers with and without damping 

The 48 HZ information is included in Table 3.1 for later 

reference. The k.1.' k z and kR values were found using: 

(3.46 ) 

where the Rayleigh wavespeed was calculated as described by equation 

(4.14). The locations of the wavenumber domain peakS have been found 

from turning points in discrete data, and so the very close but not 

exact agreement between the imaginary part of the major peak wavenumber 

and the Rayleigh wavenumber kR, is to be expected. The real and 

imaginary parts of this peak have been tabUlated, to show the effect of 

damping, which for the Table is larger than for Figs. 3.2 and 3.3 to 

emphasise the effect. In fact, T'j = 0.1 is the value used for most 

subsequent figures. Allowing for the damping effect, the wavenumber 

of Iwl at the minor peak is very close to k.1.' and comparing the 

kz values with Figure 3.2, these values are clearly close to the 

inflections in each major peak. 
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The locations of the u major peaks are very similar to those of 

W I except that the real and imaginary parts are reversed. This is 

because of the 90° phase difference between the vertical and horizontal 

motion, which can be seen in Figures 3.6 and 3.7, and is a consequence 

of the form of equation (3.39). For zero damping, the peakS are at the 

same wavenumbers. 

Figures 3.4 to 3.7 give the amplitude and phase change with 

distance of vertical and horizontal motion. It can be shown with this 

information, that the motion of a particle on the surface is 

anti-clockWise, and elliptical, becoming more circular with distance 

from the load (With local exceptions to this rule, particularly at 

higher frequencies, because of the ''Wavyness'' of the variation of 

amplitude, as shown in Figures 3.4 and 3.5). The greater propagation 

of the lower frequencies is very clear, and is partly caused by the 

tendency towards an infinite static solution (see Chapter 8 for a 

consideration of this feature of the infinite strip solution). The 

OSCillation in the graphs of Figures 3.4 and particularly 3.5, is 

connected to the "extraneous" roots of the Rayleigh equation, and is 

discussed in Chapter 9. 

The horizontal motion is zero at the centre of the load (Fig. 3.5), 

as required by symmetry, and so the effect of the load edge at 

x/a = 1 is more pronounced than for the vertical motion. The reason 

for the 'crinkles' in each curve of Figure 3.5 near the load edge is 

not known; because it is not frequency dependent it is probably not 

due to interference between the Rayleigh and body waves. 

The changes of phase shown in Figures 3.6 and 3.7 show the 

domination of the Rayleigh wave, which is clarified in the following 

table, in which A~, AZ and AR refer to the compression, shear and 

Rayleigh waves respectively, calculated from 

(3.47 ) 
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Non-dimensional Non-dimensionalised Wavelengths 
Frequency 0' ALia A,/a AWa 

0.002 152.3 87.2 80.5 
0.008 76.2 43.6 40.3 
0.033 38.1 21.8 20.1 
0.131 19.0 10.9 10.1 
0.295 12.7 8.1 7.6 
0.524 9.5 5.5 5.0 
1.279 6.1 3.5 3.2 

Tab1e 3.2: Relevant non-dimensionalised wavelengths 

Information for 0' = 0.295 and 1.279 (equivalent to 48 and 100 Hz 

at Clarborough) is included in Table 3.2 for later reference. Each 

frequency component in Figures 3.6 and 3.7 changes phase by 360Q in 

slightly 1ess distance than xla = ARIa, due to the damping present. 

Figures 3.8 and 3.9 show the attenuation of vertical motion over a 

greater distance, for different loss factors, and 10g scales have been 

used for the displacement amplitudes. In comparing these two figures, 

it should be noted that each scale has been chosen to fit the data, and 

so they are not equal. Also, because each frequency curve shows 

attenuation relative to the deflection under the 10ad for the same 

frequency, it does not necessarily follow in Figure 3.9 that the 

displacements due to higher frequencies will exceed those of lower 

frequencies - rather, it can only be concluded that the higher 

frequency components are less attenuated for part of the frequency 

range. The greater attenuation of higher frequencies due to damping, 

as discussed in Section 2.2, is clear in Figure 3.B. The cl1ange in 

loss factor from ~ = 0.1 to ~ = 0.02 has a great effect, and shows 

that the heavier damping inhibits certain phenomena. The regular 

wavyness in each curve, the 'wavelength' of which is proportional to 

frequency, can be seen in every curve of Figure 3.9, where ~ = 0.02. 

This low damping also allows another quite separate interference 

phenomenon to become evident, due to the different speeds of the three 

propagating waves. This effect is also discussed in Chapter 9, and is 

the reason why, for example, the 64 Hz component is the least 

attenuated in the range 10 m < x < 20 m. The form of these 

attenuation results, with regular ripples and a continuous phase 
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change, is very similar to the experimental results of the U.S. Army 

ECOM [14]. However, in Figure 3.8, the extra crinkles in the 64 Hz 

curve for x > 55 m, are due not to interference effects, but lack of 

accuracy in the numerical integration, as the displacements concerned 

are very small. 

These results suggest that in ground with low damping, the low 

frequency components cannot necessarily be expected to dominate the 

response in the near-field. 

Figure 3.10 shows that the displacement of the strip load, for a 

given frequency, is sensitive to the strip width. Apart from 

Figure 3.10(a), in which the frequency is too low (or alternatively the 

width variation too small) to reveal a pattern, each curve has a peak 

at a particular width. Figure 3.10{d) suggests a regular series of 

peaks and troughs. The change in these peak-displacement widths is 

inversely proportional to frequency, or proportional to wavelength. It 

seems logica.l that a maximum displacement can be expected when the 

strip half-width equals a quarter wavelength of the propagating wave. 

On this basis, and consulting Table 3.2, in each case a wavelength 

abOut 20% larger than the shear wavelength is predicted. Now, 

although in the far-field the Rayleigh wave dominates the surface 

response, because unlike the body waves it does not lose energy into 

the half-space, this is not true under the load, and so a wavelength 

greater than the Rayleigh wavelength must be expected. A tentative 

estimate of the effects of the body and Rayleigh waves can be made with 

the energy distribution among the waves calculated by Miller and Pursey 

[57]. Their load acted on a disc, and so the distribution can only 

approximately apply to the strip. They calculated that the Rayleigh 

wave carries 67% of the energy from the load, the compression wave 7% 

and the shear wave 26%. considering the case 0 2 = 0.524 listed in 

Table 3.2 (the other frequencies and wavelengths are directly 

proportional), the resultant non-dimensional wavelength, AmI with no 

damping, can thus be estimated: 

(3.48) 
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· . ~m = 
a 5.45. (3.49) 

The peak in Figure 3.10(C) predicts a wavelength near A/a = 6.4, 

somewhat longer than 5.45. However, apart from the approximate nature 

of the calculation above, an alternative solution for the division of 

energy among the propagating waves, mentioned by the O.R.E. [28], gives 

less prominence to the Rayleigh waves. This would clearly result in a 

predicted wavelength longer than Am/a = 5.45. 
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CHAPTER 4 

FREE VIBRATION IN AN ELASTIC LAYER OVER A RIGID BEDROCK 

4.1 Introduction 

In this and the next Chapter, the ground is modelled as an 

homogeneous, isotropic elastic layer over an inflex~le half-space. This 

will for convenience be described as the "bedrock model", In Chapter 5, 

the forced response in a damped layer is studied, with the load as an 

infinite strip. The problem is therefore plane. In this Chapter, the 

free vibration in an undamped layer is considered. Because the purpose 

of the work in this Chapter is to explain certain features of the forced 

response results, a plane formulation will be used here too, 

Some previous workers have studied free vibration for the bedrock 

model. The formulation of the problem used by waas [79] is used here. 

He provides, along with most other workers, a simple method of predicting 

the natural frequencies of the layer for zero wavenumber (see Section 

4.4), waas also shows that the axisymmetric problem has an identical 

solution to the plane problem. Tolstoy and Usdin [77] use the 

"interference principle" of ray theory I to derive the period equations 

(which give the wavenumbers of the natural frequencies) for several 

ground structures. The "interference principle" is based on the 

equality of amplitude at a given depth of each of the compression and 

shear waves, which is the requirement for unattenuated propagation; zero 

internal damping is clearly a prerequisite. Thetr treatment of an 

elastic layer over a flexible half-space is considered in Chapter 6. 

They show that the bedrock model period equation tends to the well-known 

Rayleigh equation (equation (9.53», as the layer depth tends to 

infinity. Like Kuhlemeyer [43], who also uses the interference 

principle, they give dispersion curves (that is, the variation of 

wavenumber or wavespeed with frequency) of the first two propagation 

modes in the layer. The relevance of their solutions to this work is 

discussed in Section 4.4. 

Kobori e~ a~ [39] study the bedrock model free vibration as part of 

their work on the forced response with a rectangular load. They 

dispersion curves, and note interesting features which are in common 
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the results presented here. These are discussed in Section 4.4. Also 

working in three dimensions, Kausel and Roesset [36] give the three 

dimensional dynamic stiffness matrix for the layer (Which relates the 

displacements in the layer to the stresses), while Girardi [24] has 

calculated the dispersion curves for the torSional motion of a disc. 

In Chapter 5, the exact dynamic stiffness matrix for the bedrock 

model is derived. The dynamic stiffness matrix for several sub-layers 

is assembled in the usual way, with overlapping matrices for each layer, 

so that the stresses at the sub-layer interfaces other than the top and 

bOttom of the layer cancel (see equation (5.26». Because of the zero 

displacement bOundary condition at the bOttom of the layer, Which allows 

the bOttom two rows of the stiffness matrix to be neglected, and so 

excludes the unknown interface stresses, the free v1bration (which 

requires zero surface stresses) natural frequencies are determined by 

equating the determinant of the assembled dynamic stiffness matrix to 

zero. However, this multi-layered determinant contains transcendental 

terms, Which make the eigenvalue solution very difficult. This problem 

is overcome by following the work of Waas, who obtains a discrete 

solution. If the bedrock layer is divided into sufficient sub-layers, 

the variation of the displacements u(X,Z) and w(x,z) in the z-direction 

can be approximated as linear. Waas performs the necessary "virtual 

work" analysis to derive the resulting approximate linear dynamic 

stiffness matrix. This can be expressed as a quadratic equation in 

wavenumber , (see equation (4.1», in which the coefficients of the 

equation, for a single sub-layer, are 4 x 4 symmetric matrices. In the 

absence of damping, these are real matrices. In this form, the matrix is 

amenable to solution, and the method used is descr1bed in Section 4.2. 

The solution "eigenfrequencies" of the matrix are the natural 

frequencies of free plane waves, Which propagate along the layer. The 

eigenvectors give the variation of displacement, as a function of z, of 

each natural plane wave. This is analogous to stiffness matrix 

solutions of structural problems, and so the natural plane waves, Which 
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can propagate at different discrete natural frequencies, are the natural 

"modes" of the system. The eigenvectors therefore give the "mode shapes". 

The results obtained from this linear solution are described in 

Section 4.3, and discussed in section 4.4. 

4.2 Eigenvalue Solution of the Linear Dynamic Stiffness Matrix 

The linearised dynamic stiffness matrix was introduced in the last 

section. For this approximation to be accurate, the height of the 

sub-layers must be small compared to the wavelengths of interest. For a 

single sub-layer, Waas [79] gives the linearised free vibration problem 

in the following form: 

(4.1 ) 

where (Om] is the vector of displacements at the top and bottom of the 

m'th layer, so that 

and 

A == !!m 
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(4.5 ) 

(4.6 ) 

where hm is the height of the sub-layer; in this work, all the 

sub-layers will have equal height, so that hm will equal the layer 

depth divided by the total number of sUb-layers. The other parameters in 

equations (4.1) to (4.6) are as before. 

Equation (4.1) can be regarded as a linear equation for w2 , by 

solving for chosen real values of ,. This Will be called the "linear 

eigenvalue solution", and because , is chosen real, Will only give 

solution modes which propagate unattenuated. 

form of the displacement functions: 

This is clear from the 

(4.7) 

More generally, a frequency can be chosen, and a "quadratic eigenvalue 

solution" sought, which will allow , to be real, imaginary or complex, 

The linear eigenvalue solution is straightforward, and is achieved 

with a computer program described briefly in Section 4.3, which uses a 

NAG library routine. The quadratic eigenvalue solution involves some 

manipulation of equation (4.1), using a method described by Wilkinson and 

Reinsch [85]. This involves reducing equation (4.1) to a linear form, 

given by: 

fCC] - '(I]}{y} ::: 0 (4.8 ) 

51. 



where 

(e] I ] I 

B~ 

(4.9 ) 

and {y} = CJ (4.10 ) 

[I] is the identity matrix, and the matrices A,B, G and M are the same 

as in equation (4.1). Equation (4.8) can be solved using standard 

techniques. This is peformed by another computer program, which is 

briefly described in Section 4.3, and uses more NAG library routines. 

Of course, the linear approximation requires many sub-layers, and for 

N layers a dynamic stiffness matrix of order 2N is assembled from the 

(4 x 4) matrices A, B, G and M, such that the component matrices overlap 

(equation (5.26) shows the matrix structure), This means that matrix [C] 

in equation (4.9) will be of order 4N. Apart from the accuracy 

requirement, using many layers has the added advantage of giving smooth 

mode shapes, as these are given by the solution eigenvectors. 

4.3 Results 

The solution of the linear eigenvalue problem mentioned in Section 

4.2, was found with a Fortran program using the NAG library routine 

F02ADF, which uses Householder Reduction and the QL algorithm to solve an 

equation of the form 

Ax = A'Bx (4.11) 

where A and B are real symmetric matrices, and A' is the eigenvalue. 

The quadratic eigenvalue solution is found with the Fortran program 

ZFINDW, which is listed with notes in Appendix B. This program uses the 

NAG library routines F04ACF and F02AGF. The former finds the inverse of 

a real, square, symmetric, banded matrix. The latter finds the 

eigenvectors and eigenvalues of a matrix. Program ZFINDW could be 
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adapted to also give the linear eigenvalue solution, which is a subset Of 

the quadratic solution. 

For the frequency range of interest, below 64 Hz, a linear dynamic 

stiffness matrix composed from 25 sub-layers (giving a matrix of order 

50), was found to give adequate accuracy. Because the accuracy is 

dependent on the sub-layer height being much less than the wavelengths of 

interest, a fixed number of layers will result in a progressively less 

accurate approximation as the frequency increases. The wavelength of a 

wave, hi, is related to its wavespeed ci by: 

(4.12 ) 

where f is the frequency in Hz. 

In general the accuracy can be checked by comparing with solutions 

obtained using more layers, but for the case ,= 0, the exact solution 

is known. The discrete frequencies at which ,= 0 for the propagating 

modes are given by the natural frequencies of a one-dimensional rod, 

which has the same height as the layer, and the same "fixed-free" 

boundary conditions. This is explained in Section 4.4, but the 

numerical results for ,= 0 are tabulated here in Table 4.1, with the 

exact values given for a comparison. only the six solutions which exist 

for frequencies less than 70 Hz are given. The material properties of 

Clarborough (see Table 2.2) have been used. All the results in this 

Chapter are dimensionalised for Clarborough, which gives the following 

undamped wavespeeds: 

(4.13 ) 

c~ and Cz are defined algebraically in equation (3.7), and cR is 

given by the approximate relation (see [26]) 

cRlcz = (0.87 + 1.12v)/(1 + v) (4.14) 
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WFIND50 Results using 
i.~~_=_!) i.~!!_=_!2 ~J. 25 sub-layers for fm = ~l. fn = 

, = 0 4 h 4 h 

Frequency (Hz) (Hz) (HZ) 

9.385 9.384 (m = 1) 

16.411 16.408 (n = 1) 
28.192 28.151 (m = 2) 
47.111 46.918 (m = 3) 
49.298 49.225 (n = 2) 
66.216 65.685 (m = 4) 

Table 4.1: Natural frequencies for zero wavenumber for the bedrock 
model. 

The numerical data in Table 4.1 was calculated with a program called 

WFIND50. This program used 200 points per curve to plot Figures 4.1 and 

4.2. These give exactly the same information, but in different forms. 

Figure 4.1 is in a form amenable to later analysis in Chapter 5, and 

shows the variation of wavenumber with frequency of the first ten 

modes. Additionally three lines have been superimposed on Figure 4.1, 

to show the variation of wavenumber with frequency of the Rayleigh, shear 

and compression waves (calculated with equation (3.46». Figure 4.2 is 

the more usual dispersion curve for the ten modes, showing variation of 

speed with frequency. For reference, the Rayleigh and body wavespeeds 

have been marked on the speed axis. The zero wavenumber information is 

not included in Figure 4.1 as a programming convenience, because this 

information corresponds to infinite wavespeeds in Figure 4.2. A 

frequency range much larger than 64 Hz has been used, to show the 

asymptotic behaviour of the dispersion curves at high frequency. 

Features of these Figures are discussed in Section 4.4. It should 

be noted that although the first and second mode curves in both Figures 

4.1 and 4.2 are shown not crossing, this is in fact due to inadequate 

resolution in the graph-plotting, and these curves should cross, like all 

the other pairs of curves. This has been confirmed by studying the mode 

shapes of the type shown in Figures 4.3 and 4.4 at frequencies just above 

and below the intersection frequency. The continuity of mode shape 

shows that the dispersion curves do cross. 
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It can be seen that the fourth mode dispersion curve is double-valued 

for a small range of frequency. (Note that the "first mode" is 

considered to be the one which propagates at the lowest wavespeed and so 

on for the higher order modes.) Its stationary frequency, or 'turning 

point' is at 44.839 Hz, as calculated numerically. The mode is 

single-valued above 47.111 Hz (as shown in Table 4.1, this is the 

numerical solution - the exact value is 46.918 HZ). 

The general behaviour of these dispersion curves is dictated by the 

bedrock model boundary conditions, not by the material properties. other 

material properties were used to produce results identical in form; for 

example, the Checkerhouse test-site material properties were used, which 

are given in Table 4.2. This produced similar results, but with a lowest 

frequency for the first mode of 7.09 HZ. 

Young's modulus, E 132.4 

(MN.m-z ) 

Density, p 1780 

(kg.m- 3 ) 

POisson's ratio, v 0.158 

Layer depth, h 20 

(m) 

Table 4.2: Checkerhouse test-site material properties 

Figure 4.3 was produced with program ZFINDW, and shows the vertical 

motion component of the mode shapes. Figure 4.4 was produced by a 

version of the program slightly adapted to give the horiZontal motion 

components. In fact I Figure 4.3 shows the variation of ( iw), as the 

problem was formulated as in Chapter 5 (see equation (5.24». There is a 

90° phase difference between the vertical and horizontal motion. 

Four different frequencies have been chosen at which to plot these 

two figures, which show the general appearance of several modes, and in 

particular the behaviour of the fourth mode in the range 
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44.839 HZ ~ frequency ~ 47.111 Hz, where it is doUble-valued. The 

vertical scales show the depth of the layer. The ClarbOrough layer is 

7 m deep, and so there is no motion at (or beyond) z = 7 m. The 

horizontal scales are of arbitrary magnitude, since the eigenvalue 

solutions can only be found to within an arbitrary mUltiplicative 

constant. 

As mentioned in Section 4.3, the linear eigenvalue solution 

wavenurnbers are a subset of the quadratic eigenvalue solution, which 

provides a useful check on the results of programs WFIND50 and ZFINDW. 

The other eigenvectors in the quadratic eigenvalue solution are the 

wavenumbers of non-propagating modes. These range from large 

wavenumbers which are purely imaginary, resulting in a rapid decay of 

amplitude of the modes with distance (this is clear from equation (4.7», 

to complex wavenumbers with large real parts and small imaginary parts, 

which cause the modes to decay slowly with distance. The eigenvectors 

come in complex conjugate pairs, representing positive- and 

negative-travelling modes. 

4.4 Discussion 

When the wavenumber ,= 0, the solution of equation (4.1) is 

expressed by 

(4.15 ) 

From equation (4.7), the displacements in the layer for zero 

wavenumber are independent of x, and so effectively a one-dimensional 

standing wave results. Waas (79] hs shown that if the vector of 

displacement [0] for the whole layer is re-ordered, so that the 

horizontal and vertical motion components are separate, i.e., 

(4.16 ) 

and if the equivalent changes are made to the dynamic stiffness matrix, 

the horizontal and vertical motion components for zero wavenumber 

uncouple: 
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(4.17) 

Cx 0 
Un 

-~------------- = 0 
W1. 

o Cz 

Therefore, the ,= 0 condition results in standing waves which have 

either just horizontal motion (pure shear waves), or just vertical motion 

(pure compression waves). The natural frequencies are given by the 

related one-dimensional "fixed-free" rod natural frequencies, Which in 

terms of the body wavespeeds and height of layer 'h' are: 

(4.18 ) 

Equation (4.18) has been used to construct Table 4.1. After those 

given in the table, the next six frequencies given by equation (4.18) are 

82.04, 84.45, 103.22, 114.86, 121.99 and 147.67 Hz. These can be seen to 

be very close to the, = 0 'roots' of the dispersion curves in Figure 

4.1. The slight disparity, which increases with frequency, is due to the 

lack of accuracy in the numerical solution. 

Kobori at a~ [39] have noticed an extra significance of these 

frequencies. The crossing of two dispersion curves always occurs at one 

of these frequencies, as can be clearly seen by comparing the twelve 

frequencies given with either Figure 4.1 or Figure 4.2. Kobori at aL 

also mention that for v = 0.25 the first two modes intersect when their 

wavespeeds are exactly twice the shear wavespeed. Tolstoy and usdin [77] 

also mention this tn their earlier work. In this work, v = 0.257, which 

is very close to their value, and it is found that the first two modes' 

dispersion curves intersect very near 2Cz (see Figure 4.2). This was 

checked by finding the wavenumber of the first mode corresponding to the 

frequency of intersection, 16.41 Hz, and then calculating the wavespeed. 

In Chapter 5, it is shown that the intersection of the first two 

modes, produces a resonance in the forced response at that frequency. 
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Because this frequency can be easily predicted with equation (4.18), a 

simple estimate is possible for the resonant frequency of any ground with 

a layer over a much stiffer bedrock. 

Another feature noted by Kobori at a~ is the exceptional behaviour of 

the fourth mode, in being double-valued for a small range of frequency. 

The development of this mode through this frequency range is shown in 

Figures 4.3 and 4.4. 

(Figures 4.3/4(a». 

At 44.82 HZ, only the first three modes exist 

At 44.839 Hz (Figures 4.3/4(b», two almost equal 

modes exist - these are the two manifestations of the 4th mode, called 

the 4th and '5th' modes in the figures, and the frequency is just above 

the turning frequency. At 45.5 Hz (Figures 4.3/4(C», the 4th and 5th 

modes are quite distinct. Figures 4.3/4(d) show the five modes present 

at a frequency just below where the fourth mode becomes single-valued. 

The so-called fifth mode shape in Fig. 4.3/4(d) shows how the mode 

behaves like a pure shear wave at ,= O. The vertical motion component 

is almost non-eXistent, and the horizontal motion component is larger 

than that of any other mode. 

Although the various features noted above have been observed and 

relati.onships discovered, their causes are not fully understood. These 

natural modes are the result of a complicated interaction between the 

shear and compression waves, interfering constructively to produce 

propagating waves. The compression wavenumber line superimposed on 

Figure 4.1 shows the effects described all occur for modes travelling 

faster than the compression wave. The dispersion curves seem to inflect 

along this line, and then once they represent speeds less than the 

compression wavespeed, they all asymptote towards the shear wavespeed 

with increasing frequency. These effects are also clear in Figure 4.2. 

It seems that although eaCh mode is the result of an interaction between 

the body waves, at certain frequencies one body wave dominates the other. 

The intersections of disperSion curves, and the double-valued 

behaviour of the fourth mode, are the result of the severe "bedrock 

model" boundary condition, zero motion at the bottom of the layer. The 

more realistic "elastiC foundation" dispersion curves given in Chapter 6 

do not possess these peculiarities. Another effect of the boundary 

condition is the lack of propagation below 9.38 Hz. The rigid base 
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inhibits the modes from developing. As a result, the dispersion curves 

of Figure 4.2 each go to infinity at their minimum frequency. In 

Figures 4.1 and 4.2, the appearance of the curves for negative wavenumber 

(representing waves travelling in the opposite direction) will be the 

reflection in the frequency axis of the curves presented. 

Figures 4.1 and 4.2 show that the first mode is distinct from all the 

others, in that above 30 Hz its wavespeed equals that of the Rayleigh 

surface wave for the medium. In fact, at sufficiently high frequency, 

the first mode is indistinguishable from the Rayleigh wave. In 

Figure 4.1, the deviation of the first mode dispersion curve from the 

Rayleigh wavenumber line at high frequency is an indication of the degree 

of inaccuracy in the high frequency results. Figures 4.2 and 4.4 con finn 

that the vertical and horizontal motion components of the first mode, 

have the well-known shape of the Rayleigh wave. The vertical component 

has a maximum at about 2/27 AR below the surface (this is discussed in 

relation to the elastic foundation model in Section 6.5.1). Below about 

30 Hz, the layer is too shallow to allow a true Rayleigh wave to develop. 
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~~R5 

INFINI~ STRIP LOAD ACTING ON AN ELASTIC LAYER OVER RIGID BEDROCK 

5.1 Introduction 

The 'bedrock model' was introduced in the last Chapter and its 

ground structure is shown in Figure 5.1. In this Chapter, the surface 

vibrations of this model, caused by an infinite strip of harmonically 

varying pressure are studied. The model has been investigated by a 

number of previous workers. Warburton [80J looked at the direct 

receptance of a rigid disc load. He approximated the stress 

distribution under the load by the static solution. He did not 

incorporate internal damping, and found the resonant frequencies for 

which the response is infinite. These frequencies are related to this 

work in Section 5.4. Waas [79] has used the Finite Element Method to 

study the direct receptance of a forced rigid strip or disc. He also 

gives the surface displacement with distance, caused by a rigid disc 

embedded in an inhomogeneous layer. 

Gazetas and Roesset [22] have studied the swaying and rocking 

direct receptances of an infinite strip, using the Fast Fourier 

Transform. Kausel and Roesset [36] followed this work by calculating 

the three-dimensional dynamic stiffness matrix for the layer. Kausel 

and Peek [38] later applied this matrix to find the vertical direct 

receptance for a disc load. 

Koberi et aL (39] have produced direct receptance graphs for a 

rectangular load, and they show how the resonance peaks in these are 

greatly reduced in amplitude by increased damping. small and Booker 

[72] have found the stress distribution through the layer using a 

flexibility matrix approach, which has the advantage over a stiffness 

matrix of not becoming infinite for incompressible materials. 

Some of the results mentioned above can be compared with the 

receptance figures given in Chapter 8. However, none of these workers 

have considered the variation of surface displacement with distance for 

the bedrock model. The closest results are Waas' for a disc embedded 

in an inhomogeneous layer. Therefore, no direct comparison is possible 

with most of the results in this Chapter, which are predominantly for 
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surface displacements in the 'near-field'. The results are 

non-dtmensionalised as described in Section 3.3, to aid comparison with 

the results of other Chapters. Additional figures show (i) the 

Fourier transforms of the displacements plotted in the wavenumber 

domain; (ii) the effect varying the strip width has on the strip 

displacement; and (iii) the maximum deformations through the layer 

under the strip. 

The necessary analysis of the problem is given in Section 5.2. The 

results are described and presented in Section 5.3, and then discussed 

in Section 5.4. 

5.2 Analysis of the Elastic Layer over Bedrock Model 

A layer of finite depth, of homogeneous and isotropic material, 

over lies a half-space of inelastic material, or "bedrock". The model 

is two-dimensional, and the following diagram details the coordinate 

system and relevant parameters used. 

h 

Pressure (p/2a)e iwt per unit length 

! ! t ! J 1 
a 

Material properties 

E,p,v,n 

Figure 5.1: The bedrock ground structure and infinite strip load 

"h" is the depth of the layer, and "aU the half-width of the load. As 

shown, the boundary condition is a force not a displacement. 
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Much of the analysis is included in Chapter 3. Essentially it is a 

treatment of the "Navier-5tokes" equations, involving the Fourier 

Transform to produce ordinary differential equations which can be 

solved. The analysis of Chapter 3 can be followed until equation 

(3.29). After this a new formulation is required, as to follow a 

similar method merely with changed boundary conditions would encounter 

problems over the terms e±az and e±~z. This is because with a layer 

these terms must now be calculated down to the maximum depth of the 

layer, and as a and ~ are of a similar magnitude to wavenumber " 

overflow would quiCkly result, for any realistic layer depth. Dividing 

the layer into several layers all with exactly the same ground 

parameters, E,p,v and D did not prove an adequate solution, because in 

the subsequent cross-multiplications of the matrix algebra, the 

overflow occurs again, even though the order of the ultimate answer 

would be quite acceptable. An attempt to scale parameters is not 

appropriate, because within each matrix are very large and very small 

elements, since the exponents (az) and (~z) occur with both signs. 

The alternative is to reject the formulation of the problem represented 

by equation (3.30), and instead consider a dynamic stiffness matrix 

approach which has been successfully used for structural vibration 

problems. From equations (3.22) and (3.23) 

- - T T 
[u(o), w(o), u(h),w(h)] = [e] [AI A2 Bl B2] 

or 

{U} = [e] A (5.1) 

The matrix [e] is: 

i, i' /3 -~ 

-a a i' i' 
[el = (5.2) 

i,e-ah i,ecxh -~h _/3e~h /3e 

-cxh ah i,e-/3h i,e~ -ae ae 
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Hence {A} = [C]-l {U} (5.3) 

From the equations (3.28) and (3.29) we also have 

- T 
[-TZZ(O), -TZX<O), TZZ(h), TzX<h)] = [S] {A} 

or 

{T} = [S] {A} (5.4) 

where TZZ is the transform of the stress component TZZ' etc. The negative 

signs are for later convenience. 

The matrix [S] is given by: 

-2J.L,2+(H2J.L)k1
2 

- 2J.L,2+(A+2J.L)k1
2 

2J.LU3i -2 J.L,,3 i 

[S) = 2J.L,a:i -2J.L,a:i 2J.L,2_J.Lk22 2J.L,2_J.ik22 

2 
{2J.L,2_(A+2J.L)k1 }g 2 2 -1 

{2J.L' -(A+2J.L)k1 }g -2J.Li!:j3iq 2J.L,j3iq-1 

(5.5) 

Where g and q are defined by equation (3.33). 

Combining equations (5.3) and (5.4) gives 

(5.6) 

To ease the inversion of [C], as required by equation (5.6) write 

l [::l = [ : (5.7) 
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where (I] is the 2X2 identity matrix. 

Hence (5.8) 

and (5.9) 

and therefore from equation (5.8) 

(5.10 ) 

therefore equation (5.9) gives 

(5.11) 

The algebraic steps involved in the process described by equations 

( 5 .8) to (5 . 11 ) are tedious, and will be condensed. 

equation (5.2) 

We have, from 

(5.12) 

C2.2. (5.13) 

Therefore, from equation (5.12): 

(5.14) 

It therefore follows from equations (5.12), (5.13) and (5.14) that 

1 
2i,a [i,{g(a~'2.)+g-~(a~,2.)}, 

-a{g(a~,2.)-g-~(a~,2.)}, 
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i'{9('2.-a~)-g-~(a~'2.)}] 

-a{g(,2.-a~)+g-~(a~'2.)} 
(5.15 ) 



putting Y = aP + " 

and introducing C" gives 

= [~- 2~(gY+g-~Z}, -~(g-~y + gZ) - ~-~l 

i,q _ ~,(gY-gr<Z)' 2:,q_< _ ~(gr<y_gZ) 

(5.16 ) 

(5.17) 

After some algebra and a little manipulation, the determinant of 

equation (5.17) can be expressed: 

a.j32. ,3 
4ij3,(1 - cosha.zcoshj3z) + 2i(--- + --)sinha.zsinhj3Z , a. (5.18 ) 

Therefore we can write: 

= ~[i,q-~ - ~,(g-~Y-9Z)1 ~-~ - ~a(g-~y + 9Z)] 

D -i'q + ~,(gy-g-~Z)' ~ - ~a(gY + g-~Z) 

Also, from equations (5.13) and (5.14) 

cosha.z ] 
Equation (5.20) yields 

OJ = r-COSha.z, 

.!:~ sinha.z 
L' ' 

i, . 
-a s~nha.z, 

-cosha.z, 

(5.19) 

(5.20) 

1, (5.21) 

0, 

The (2 x 4) matrix x, can now be evaluated from equation (5.11), by 

multiplying together equations (5.19) and (5.21). The algebraically 

complicated result is given by the bottom half of matrix [C]-~ in 

equation (5.22). 
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Combining equations (5.~2), (5.~4) and (5.2~), equation (5.10) 

gives x~, the top half of matrix [C]-~. 
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[Cr1=~ 
o 

where 0 

[
~(1-COShazcosh~z-sinhazCOSh~Z)1 [~~ sinh~z{sinhaz+coshaz) 

+~~(Sinhazsinh~Z+COShaZSinh~Z) I :'t~{1-COShaZCOSh~Z-SinhaZCOSh~Z) 

[
~(1-coshazcosh~z+sinhazcosh~Z)1 [~~ sinh~z(coshaz-sinhaz) 1 

+~~Csinhazsinh~Z-COShazSi~Z) , ~'t~Cl-COShazcOSh~Z+Sinhazcosh~Z) , 

. -1 
i,~9Z-(a~SinhaZ-,2COShaZ), 

~9(,2coshaz+a~sinhaZ)-'i 

-1 
~ + 9_-(,2sinhaz-a~OShaZ), 

a 

~ - 9(,2sinhaz+a~coShaZ), 
a 

2 3 
= 4i~' (1-coshazcosh~z) + 2i (~~- + f_) sinhaz sinh~z and q = , a e-~h, 

[a~'2cosh~Z 1 [,2sinhaz 1 
- -~- -a~,2sinhaz 7~- +,2coshaz 

, a +,4sinh~z ,1,a _,2coSh~z 
-a~,2coshaz -a~sinh~z 

[
'4Sinh~z+ 1 

1 a~,2coshaz ,Za a~,2cosh~z I 

-a~,2sinhaz 

. [aPSinhaZ ] . -1 ~ 
~,q - - , 

, +,2coshaz 

[
'2COSh~Z 1 

~ +,2s inhaz 
i'a _,2c~Shaz 

-a~s1nh~z 

-1 1 
[~ - acaecoshQZ] 

+c2sinhaz) 

-1 1 

-lCq+ , I 
. i [-a~sinhazl [~ - ac~shazl 

+,2coshaz -,2s inhaz) 

(5.22) 

g= e-ah • 

. 
,....; 
r--. 



-1 The product [5] [C] will give a symmetrical stiffness matrix, provided 

the matrices in equation (5.4) are manipulated so that 

{T} = [-i TZZ(O), - TZX{O), iTZZ{h), - T 
Tzx(h)] (5.23) 

{U} = [iw(o), u(O), iw(h), U(h)]T (5.24) 

This transformation is after Kausel and Roesset [36]. 

The matrix [T] = [5] [C]-l is then: (only the top half of the symmetrical 

matrix is shown) 
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1 
D 

2~i 2!'2sinhazcosh~Z 1 f2i~(1-COShaZCOSh~Z) [(A+2~)k12] 
a,-(A+2~)kl , -4 2 

-a~sinh~zcoshaz ~, 

+2i'sinhazsinh~z x «A+2~)k12 ~ 
a 

a~2 ,3 
-2~ (-- + --» , a 

2~~Z~ ['2COShazsinh~z ], 

-a~sinhazcosh~z 

" 

.. 

where D has the same definition as before. 

~~~(A+2~)k12(a~Sinh~z-,2sinhaZ)' -2~i~k2{cosh~z-coshaz) 

2~i~k22(COSh~z-COShaZ), 

[
~~~ (A+2~)k12{,2sinhazcosh~Z a, 

-a~sinh~zcoshaz) 

.. 

2 
~t:~Z_ , [a~s=nhazl 

,2sinh~z 

1 r
-2i~{1-C~ShazCOSh~Z) x 

I {{A+2~)kl -4~,2}-

2i,sinhazsinh~z x 

2, a~2 ,3 
{(A+2~)kl- -2~(--- +--)} a (; a 

~t:~~Z_2X['2cOShazsinh~z ] 

(; -a~sinhazcosh~z 

(5. 25) 

(Y') 
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With this analytically derived stiffness matriX, the matrix 

corresponding to a problem with several layers of depth "h" can be 

assembled; for example, for three layers: 

iw(o) 

u(o) 

iw(h) 

w(h) 

I iW( 2h) 
J 
I 

I u( 2h) 
I 

I 0 
I 

l 0 

= 

-TZZ(O) 

-'zx(o) 

o 

o 

o 

o 

,zz( 3h) 

'zx( 3h)J 
(5.26) 

Where each 4x4 square marked within the BxB stiffness matrix corresponds 

to [TJ, with the relevant additions of elements at the intersections. 

If a single layer is being divided into 3 layers of identical material 

properties, and the total layer height is H, then the "h" in equation 

(5.26) will be such that H=3h. Because the stresses at the surface are 

already known, since the boundary conditions are imposed, equation 

( 5.26) reduces to six equations in just six unknowns. 

(3.34) and (3.35) we have 

From equations 

,zz(o} 
P sin,a 

1 
= 2rr ,a (5.27 ) 

TZX(O} = 0 J 

Hence expressions for u("o} and w("o} can be found, and these can 

be inverse-transformed to give u(x,o} and w(x,o) using the quadrature 

routine described in Appendix A. This routine is an efficient 

way of exploiting the symmetry and generally good behaviour of u and w. 

Note 1: In the limiting case ,=0, the dynamic stiffness matriX has 

been taken from Ref (36]. 
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Note 2~ clearly, if the displacements at depths below the surface are 

required, these can be found directly by inverse transforming u(h}, w(h} 

at the necessary depths. 

5.3 Results 

Of the results which follow, Figures 5.2, 5.3 and 5.11 are 

specifically for the Clarborough test-site, the material properties of 

which are given in Table 2.2. The other figures are 

non-dimensionalised, but whereas most are designed for easy 

interpretation as Clarborough, with v = 0.257, Figure 5.9 is an 

exception. Figure 5.9 is most easily interpreted as the Checkerhouse 

test-site, the material properties of which are given in Table 4.2. 

Therefore a Poisson's ratio v = 0.158 has been used. The non

dimensionalisation of the results is described in Section 3.3. In 

order to re-dimensionalise to find the Checkerhouse information, the 

Checkerhouse material properties with a = 3 m must be used. This 

large value of a (for Clarborough, a = 0.75 m) is because the 

Checkerhouse layer depth, which must be non-dimensionalised, is also 

large, and must be reduced in this way to avoid computer overflow. An 

alternative would have been to use the layer height as the 

non-dimensionalising parameter. This, of course, is not possible with 

the half-space model of Chapters 3 and 9. 

The Figures were all produced with versions of a Fortran program, 

which can be easily derived from the program EF64H2, listed in 

Appendix B. Figures 5.2 and 5.3 show the variation of Iwl and lui 

respectively with wavenumber, for several frequencies, and 

n = 0.002. A log scale has been used, to reveal smaller peaks which 

are dwarfed on a linear scale. Figures 5.2(a) and 5.3(a) show, by 

their lack of peaks and small an~litudes, that no propagation of motion 

occurs at either 4 or 8 Hz. The peaks in the other diagrams indicate 

the wavenumbers of the propagating waves, and are analysed in Section 

5.4. To this end, Table 5.1 lists the wavenumbers of the peaks. 

Figure 5.4 shows the vertical motion amplitude against distance, 

for six frequencies. To avoid dwarfing the other curves, the 
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(n2. = 0.033) curve has only been plotted for x/a > 8. The whole curve 

is given in Figure 7.16. Figure 5.5 is lLke Figure 5.4, except that it 

shows the variation of horizontal motion amplitude, and here the 

(n2. = 0.033) curve is shown complete. 

Frequency Wavenumber location of peaks of Iw\ , lui: 1) = 0.002 
Hz (n2. ) 1st 2nd 3rd 4th 5th 

4 (0.002 ) - - - - -
8 (0.008 ) - - - - -

16 (0.033) 0.19 - - - -
32 (0.131 ) 0.88 0.46 0.20 - -
48 (0.295) 1.25 0.88 0.57 0.55 -
64 (0.524) 1.66 1.38 0.98 0.86 0.51 

-Table 5.1: Wavenumbers of peaks of I w I and I u I, bedrock model. 

Figures 5.6, 5.7 and 5.9 all show the attenuation of vertical 

motion on a dB log scale, over a greater distance than the previous two 

figures covered, and for just four frequencies. The reference 

amplitude for the attenuation is the displacement at x/a = 0, for each 

frequency. Figures 5.6 and 5.9 are for 1) = 0.1, and Figure 5.7 for 

1) = 0.02. Figure 5.8 shows the phase change with distance 

corresponding to two of the frequency components shown in Figure 5.6. 

If curves for more frequencies were shown in Figure 5.8, the result 

would be a confusing number of lines, and little extra information 

would be included. 

Figure 5.10 shows the effect varying the strip width has on the 

vertical displacement at the centre of the strip, with constant force 

per unit width, and for four frequencies. Figure 5.11 is a 

representation of the way the ground deforms under the strip. The 

displacements have been made discernible by scaling the vertical and 

horizontal motion differently, and multiplying the movements' 

magnitudes by 106 • 
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FIG 5.11 A Representation of the maximum deflections 
e~erienced under the load 

The displacements shown are derived from data for the Clarborough 
test site, with a load frequency of 32Hz and a ground loss factor 
of 0.1. No allowance has been made for phase differences, so this 
actual configuration could not occur-; instead, (continued below) 
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the diagram indicates the maximum deflections. In it, point A moves 
to AI etc. The diagram has been scaled with a ratio of 1:50 in 
the Z direction, and 1:10 in the x-direction. The displacements 
have been multiplied by 106 in both directions. Each scaling is 
arbitrary and chosen to make the diagram more informative. 
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5.4 Discussion 

The wavenl..l.lliJ:>E:: r domain graphs, Figures 5.2 and 5.3, have been plot ted 

with a low loss factor and using log scales to accentuate their peaks. 

The absence of peaks in Figures 5.2(a) and 5.3(a) shows that no 

propagation can occur at these frequencies, as predicted by Figure 4.1. 

The lowest frequency of propagation is a function of both the material 

properties and the depth of the layer. The effect of varying the depth 

alone is shown in Table 6.2. Figure 4.1 can be used to explain the 

location of the peaks in Figures 5.2 and 5.3. For a given frequency, 

the wavenumbers given in Table 5.1 are very close to the wavenumbers of 

the natural modes at that frequency. Exact agreement is impossible, 

because these natural modes are for a layer without damping, and so 

their wavemmibers are real. The wavenumbers of the waves in a damped 

medium are complex, but as the damping for Figures 5.2 and 5.3 is so 

low, the imaginary parts of the wavenumbers are smalL These figures 
- -show the variation of lui and Iwl along the real , axis, primarily 

because this is the axis of integration. 

These wavenumber domain graphs are significantly different to those 

of the half-space (Figures 3.2 and 3.3). Although above about 30 Hz 

the Rayleigh wave is again the dominant propagating wave, no 

contributions now appear at the shear or compression wavenumbers. 

Instead, the wavenumbers of the propagating modes produced by their 

interaction appear (and in fact, the Rayleigh wave is also a result of 

their interaction). 

The calculated near-field displacements are shown in Figures 5.4 

and 5.5. There are several striking features of these graphs. The 

OZ = 0.002 and O.OOB components, which equate with 4 and 8 Hz at 

Clarborough, decay rapidly, each having a minimum near x/a = 11.5. 

The graphs of phase change for these frequencies, which are not shown, 

reveal no propagation, or zero phase change, except at x/a = 11.5. 

Here, there is a jump of 180° in phase. It seems that the elastic 

nature of the layer, and its constraint at z = 7 m, reduce the 

indentation of the strip to practically zero at x/a = 11.5. It is as 

if the layer 'buckles' at this distance, the phase changes by 180°, and 

the displacements beyond x/a = 11.5 are a reaction to the stresses 

induced in the layer at that distance. These further displacements 
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become negligible after a short distance Which depends on the layers' 

elasticity. Because these displacements are so small, and because the 

displacement at x/a = 11.5 is almost zero, these frequencies do not 

appear in the attenuation graphs (Figures 5.6, 5.7 and 5.9) which are 

for a greater distance and use a log scale. 

From Figures 5.4 and 5.5, it is clear that propagation is possible 

at 0 2 = 0.033 (or 16 HZ for Clarborough). This frequency, for 

Clarborough, is close to 16.4 Hz, the frequency of intersection of the 

first two natural modes, shown in Figure 4.1. This "resonant 

frequency" is also given by warburton [BO], who found that his undamped 

layer had an infinite response when 

cot(aoR~') = 0 (5.28) 

(5.29) 

and ro is the radius of the disc load. In fact, equation (5.28) is 

independent of rOI and is identical to equation (4.18) with 

Therefore the first frequency predicted by equation (5.28) 

for Clarborough is 16.4 Hz, and the second is 49.3 Hz, from Table 4.1. 

The relative amplitude of the 16 Hz response can be seen clearly in 

curve 'R' of Figure 8.6, which shows the direct receptance for the 

layer as a function of frequency. 

The first third of the phase change shown in Figure 5.B applies to 

the smaller distance shown in Figure 5.4. The minimum in the 

0 2 = 0.033 vertical motion component at about x/a = 16, corresponds to 

a locally faster rate of change of phase (or larger wavenumber) in 

Figure 5.B. The phase change graphs for each frequency have the same 

characteristic associated with their minima, Which can only clearly be 

seen for 0 2 = 0.033. Likewise, the maxima in these curves occur when 

the wavenumber is locally smaller. The average wavenumber for the 

whole range is always close to the first mode wavenumber of Figure 4.1, 

being slightly larger because of the damping. This is predicted by 

the wavenumber domain graphs, which show more information is associated 

with this wave than any other. In the region of the minima, Where the 
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total disturbance travels even more sloWly than the first propagating 

wave (thiS cannot be called the first 'mode' in the same sense as in 

the last Chapter. as here the damping will change its form), 

destructive interference produces a wave slower than any of the 

contributing waves. Conversely, in the region of a maximum, 

constructive interference results in a wavespeed faster than the first 

propagating wave, and therefore a smaller wavenumber. 

At OZ = 0.033, only two propagating waves can eXist, and so the 

interference 'pattern' is simple. The complexity of the interference 

pattern increases discretely with increasing frequency, because a new 

propagating wave appears at discrete frequencies. ( Also, increased 

frequency means decreased wavelength, and so the 'density' of the 

pattern increases.) Howeve.r I this trend cannot continue indefinitely I 

even though the number of natural modes is infinite. Kobori at at [39] 

have shown that depending on the depth of the layer, h, for (nf) large 

enough the layer solution is the same as the half-space solution. 

This is not surprising, since large damping or short wavelengths make 

the boundary conditions at the bottom of the layer practically 

irrelevant. This tendency for the solutions to merge is suggested in 

Figure 7.18, which shows "the half-space and layer solutions in the same 

graph, for 64 Hz. At very high frequency, the interference pattern is 

due to the Rayleigh "extraneous roots" (see Section 9.5.2). It is 

possible that these extra waves contribute to the complicated 

interference patterns of Figures 5.4 and 5.5. 

With the half-space model, it was found that the vertical motion 

direct receptance of the load is inversely proportional to frequency, 

with an infinite statiC solution. The bedrock boundary conditions 

require a finite statiC solution (see Figure 8.6), and also because of 

the resonance which can occur in the layer I the displacemen"t under the 

load does not decrease monotonically with increasing frequency. The 

16 HZ case (with Clarborough parameters) is an obvious example of this, 

but it can also be seen that the 48 Hz curve in Figure 5.4, which is 

near to another (undamped) resonance frequency of 49.3 HZ, produces a 

larger response at the load than 32 Hz. The receptance graph, Figure 

8.6, shows this clearly. The horizontal motion (Figure 5.5) also shows 

that the 16 HZ and 48 Hz inputs produce large responses near the load. 

89. 



In particular, Figure 5.5 shows that 16 HZ (n2 = 0.033) is a special 

case: the amplitude at the edge of the load, marked by the inflection 

at IWI/a ~ 14.8, is nearly twice that of any other frequency. 

The only known results which can in any way be compared with these, 

are from Waas [79]. He considered the somewhat different problem of a 

disc embedded in an inhomogeneous layer over bedrock. He gives a 

non-dimensionalised figure of displacements against distance, which can 

be matched with the n2 = 0.131 case here. The results are of a very 

similar form, despite the models' differences. 

From the results in this Chapter and the bedrock receptance Figures 

in Chapter 8, it is clear that the bedrock undamped resonant 

frequencies below 64 Hz are given by the natural frequencies of a one 

dimensional rod, and by the turning frequency of the fourth mode. 

Figure 5.6 shows the extension of Figure 5.4 to x/a = 100, using a 

dB log scale for each graph. Figure 5.7 is similar, the only 

difference being that n = 0.02. The reduction in damping greatly 

reduces the attenuation. In the bedrock model, there is no "radiation 

damping" as in the half-space, and all the energy is trapped in the 

layer. Hence the internal damping is the only cause of dissipation. 

The Clarborough 16 Hz (or nZ = 0.033) curves can be misleading, because 

the reference value at x/a = 0 is so much larger than for the other 

frequencies. So the greater attenuation of these curves does not imply 

that their displacement amplitudes are smaller than the others. The 

lower damping (Figure 5,7) does not inhibit the interference effect in 

the 16 Hz curve, and the minimum at x/a ~ 16 now appears to be the 

first of several minima, which are much less clearly defined with 

larger damping. The 32 Hz (02 = 0.131) curve also has an almost 

regular interference pattern, but the higher frequency graphs are more 

complex. 

Figure 5.9, the eqUivalent attenuation graph for Checkerhouse, is 

included here principally to put the Clarborough 16 Hz resonance into 

perspective. The lowest non-dimensionalised frequency in Figure 5.9, 

OZ = 0,122, corresponds to 16 HZ at Checkerhouse. Likewise, the higher 

frequencies are equivalent to 32, 48 and 64 HZ at Checkerhouse. The 
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interference pattern for each curve is less dense than in Figures 5.6 

and 5.7, because the wavespeeds and therefore wavelengths are double 

those of Clarborough: 

Checkerhouse wavespeeds: c~ = 889 rns- L , C z = 567 rns- L 

cR := 513 rns- L 

At Checkerhouse, the main resonant frequency is at 

(5.30) 

889/(4 x 20) = 21.11 Hz. Also, at 16 Hz there are only two propagating 

waves. Therefore the 16 HZ curve is not a resonance case, and shows 

little sign of interference. Its (unshown) phase change with distance 

reveals a wavenumber slightly larger than the first modes', due to the 

damping. It is attenuated least because it is the lowest frequency 

(see Section 2.2). 

Figure 5.10 shows the effect on direct receptance of varying the 

width of the load. The graphs can be compared with similar ones for 

the half-space, in Figure 3.10. compared with the half-space, the 

bedrock reduces the amplitudes slightly. The maximum displacement per 

frequency is for a different width than in the half-space, because 

clearly the "resultant wavelength" (see the last part of Section 3.5) 

will also be different. However, at the higher frequencies, when the 

bedrock and half-space solutions start to merge, the graphs are quite 

similar. 

Figure 5.11 shows a representation of the deflections under the 

load. The spread of materia.l to the edge of the load is clear. Also, 

a "buckling" of material near the layer base is apparent, with the 

displacement to T' being larger than 0', for example. The boundary 

condition requires zero displacement at the bottom of the layer. 
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CHAPTER 6 

FREE VIBRATION IN AN ELASTIC LAYER OVER AN ELASTIC HALF"-SPACE 

6.1 Introduction 

In this Chapter, the ground is modelled as an elastic, homogeneous, 

isotropic layer, over-lying an elastic, homogeneous, isotropic 

half-space, of different material properties to the layer. The natural 

modos of free vibration are analysed, and the results are used to help 

explaj,n the forced response due to an harmonic strip load, presented in 

the next Chapter. 

Ground vibration literature contains much work on the natural 

propagating modes in a layer over a half-space. The case of a liquid 

layer, which is less complicated than the corresponding ground layer 

problem, due to the lack of shear waves in the liquid, was first 

investigated by pekeris [62], who considered isovelocity water over an 

homogeneous water bottom. The extension to other velocity structures, by 

perturbation of the Pekeris solution, is presented by Williams [86], and 

sound propagation in a channel with "lossy" boundaries is considered by 

Bucher [8]. The case of a liquid layer over a solid half-space is 

treated by Pack [84]. Although the methods of these workers are 

inappropriate for the present problem, their solutions can help explain 

phenomena occuring in the solid layer problem. 

Previous work on the ground model of an elastic layer over an 

inflexible half-space, is considered in Chapters 4 and 5. The extension 

of LOrd Rayleigh's original work on surface waves (67], to include waves 

propagating at the interface of two solid media, was begun by stone ley 

[73]. In the present prOblem, his work relates to waves at the interface 

of the layer and half-space. FU [18J has shown that the free wave 

solution for the present problem, when the layer depth is much larger 

than the wavelength, is described by the product of the period equations 

for the Rayleigh and Stone ley waves. However, Fu also demonstrates that 

the interaction between the Rayleigh and Stone ley waves in a layer is 

negligible, provided the wavelength of interest is greater than the layer 

depth. In any case, Scholte and Sezawa and Kanai [10,34] have shown that 

"true" Stone ley waves (see the next paragraph) can only exist under 
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special circumstances. The relevance of these considerations to the 

present problem is considered in Section 6.5. 

The expression "true stone ley wave" is used by Phynney [65] to 

distinguish between the wave investigated by Stoneley and the related 

"leaking stone ley wave" Which can exist with exceptional combinations of 

layer and half-space material properties. Phynney summarises the original 

work of Gilbert and Laster on this subject (83). "Leaky" modes arise 

from the so-called extraneous roots of the period equation; their place 

in the present ground model solution is considered in section 6.5. Fu 

attempted a physical interpretation of the extraneous roots [87], and 

Phynney has approached the problem using the contour integration 

formulation, leading to asymptotiC expressions for ground displacements, 

used in much previous work (see for example the classic work of Lamb, 

[45]. subsequent workers have used more recent and more powerful 

techniques to cope with more complicated load boundary conditions). In 

this formulation, the leaky modes appear as poles on Riemann sheets other 

than the principal sheet of integration. Chapman [12] has helped to 

clarify the significance of the leaky modes. 

It should be noted that the expression "leaky" mode, coined by 

acousticians concerned with sound propagation in water, can be slightly 

misleading to a structural engineer. The complex behaviour of these 

inhomogeneous waves, with energy flowing from the layer into the 

half-space, where no reflection occurs at infinity, does not match the 

usual definition of "mode" as applied to structures. 

several workers in this field give dispersion figures for the natural 

modes. Tolstoy and Usdin (77] use the interference principle of waveguide 

propagation, to produce period equations for a variety of liquid and 

solid layer combinations, including the model under consideration here. 

They give dispersion curves (the variation of wavespeed with wavenumber) 

for the first two natural modes. Kuhlemeyer [43J has also produced 

dispersion curves for the first two modes, uSi,ng a Finite Element 

formulation of the "elastic foundation" problem. Newlands (54] has used 

a similar mathematical formulation to that of Section 6.5 here, to 

produce an approxtmation to the period equation valid for large values of 

Cd, where C 1.S the wavenumber and d the layer depth. The results of this 
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work are found to agree closely with Newlands' approxj.mation for (Cd) > 

25, provided his material properties are used. 

The mathematical analysis presented here is similar to that of Fu, 

and Newlands [18,54]. By substituting for the displacements in Navier's 

elastodynamic equations with potential functions, and assuming harmonic 

waves with no transverse motion (which is the form of waves produced by 

the strip load of Chapter 7), a solution is sought for the relevant 

boundary conditions, zero surface stresses, and continuity of stresses 

and displacements at the layer/half-space interface. This gives the 

period equation as a determinant equated to zero. Fu merely checks this 

equation for the special cases d=O and d=oo, when the equation reduces to 

the period equation of the Rayleigh and Stone ley waves respectively, and 

Newlands gives an approximate solution for large wavenumbe.r. A solution 

for smaller wavenumbers is algebraically very complicated. 

However, an alternative method of obtaining the dispersion curves is 

now possible, due to the work of Wittrick and Williams [89]. Their 

method allows the eigenvalue solution of the non-linear dynamic stiffness 

matrix for the elastiC foundation model, subject to the matriX having a 

minimum number of layers. The method, and also the minimum number of 

layers required, is explained in Section 6.3. The only limitation of the 

method is that the solution wavenumbers (the eigenvalues) must be real. 

This excludes solutions for "leaky" modes, which have complex 

wavenumbers. Fortunately, modes with complex wavenumbers only exist for 

mode wavespeeds greater than the shear wavespeed in the half-space, Which 

is typically much higher than the body wavespeeds in the layer, and so 

dispersion curves can be deduced for much of the wavenumber region of 

interest (see Figure 6.2). 

The shapes of the natural modes could be derived directly from the 

solution of the stiffness matrix described above, but to give accurate 

shapes of the higher order modes would require many layers and therefore 

much computation. A more elegant method is to solve the period equation 

derived in Section 6.2, for a particular natural frequency and wavenumber 

pair. This immediately yields the displacements due to the corresponding 

mode, both in the layer and the half-space. 
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6.2 Analysis of Free Vibration in an Elastic Layer Over-Lying an 
Elastic Half-Space 

u,x 

A, Jl, P 
! 

z = 0 

W,z LAYER 

u ' 

--------------------~t--------7>---------------Z = d 
z' = 0 

A-', Jl f, pi 
HALF-SPACE Wi ,z' 

Fig 6.1: Diagram of Ground Structure Model 

Figure 6.1 shows the model of the ground structure used in this analysis, 

known here as the "elastic foundation" model. The layer and half-space 

have different material properties, and their interface lies along the 

plane Z=d. The grounds' surface is the plane Z = O. 

Navier's elastodynamic equations are required (see Section 3.2): 

a2v 
(A+~) y6 + ~~2! = P at2 (6.1) 

au oW where v is the vector of displacements u and wand A = -- + , ax az 

Introducing potential functions ~ and H (see section 3.2), for the 

displacements u and w in the layer, such that: 

a4> 
u = ax 

8M 

az 
w = 84> + aM 

az 8x (6.2) 

then for harmonic motion of angular frequency w, equation (6.1) separates 

into two wave equations: 

(6.3) 
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and (6.4) 

Where kIp k2 are the compression and shear wavenumbers respectively defined 

(6.5) 

The harmonic solutions for $ and H are of the formr 

$ = $(Z)ei(wt-eX) 

(6.6 ) 

H = H(Z)ei(wt-eX ) 

where, is the wavenumber (or rate of change of phase) of horizontal waves. 

Substituting equation (6.6) in equations (6.4) and (6.5) and suppressing 

the e iwt term, leads to: 

(6.7) 

and (6.8) 

where the" denotes double differentiation w.r.t. time. It should be 

remembered that indicates a property in the half-space. 

For the half-space, introduce potential functions e and G, such that the 

half-space displacements u' and w'are given by: 

• ae aG • u == ax - 8Z'; w as = --, 
az 

+ 8G 
ax (6.9) 

For continuity at the interface, the horizontal wavenumber e must be the 

same in both the layer and the half-space. Therefore for harmonic e and G, 

we have: 

(6.10) 
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d'(z' ) - (,2 

where 

Putting 

.2 2 .2 
ex =, - k.1 ; 

fj2 ::: ,2 - k22 

fj,2 ::: ,2_ k2'2 } 

(6.11) 

(6.12 ) 

(6.13 ) 

gives the following solutions to equations (6.7), (6.8), (6.10), and 

(6 .11): 

(6.14) 

He z) 
-fjZ 

+ B fjz (6.15 ) = B1e 2e 

, , . , 
9( z) C1e 

-0( Z 
+ C2e 

()( Z 
(6.16 ) = 

• • • • 
G(Z) = D1e-fj Z + D fj Z 

2e (6.17) 

where Ail Bil Cil Di' i=1 or 2, are constants of integration. On physical 

grounds, C2 and D2 must be zero, as no reflection of energy occurs at 

infinity. Therefore, substituting equations (6.14)to (6.17) into equations 

(6.2) and (6.9) gives: 

(6.18 ) 

(6.19) 
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. . 
-i,x 

, . . -a z 13'Dle-13 z -i,x u == -i,cle e + e (6.20) 

, . 
-i,x 

. • • . -a z i<:D1e-(j z -i,x w == -a cle e - e (6.21) 

The continuity of displacement at the interface boundary condition 

requires u=u· I W=W' at z == d, z'=o. 

Therefore equations (6.18) and (6.20) give: 

(6.22) 

and equations (6.19) and (6.21) give: 

(6.23) 

Multiplying equation (6.22) by (1'/13') and then adding to equation (6.23) 

gives the following expression for CIl 

1 
CI == ------- { 

A1e- adcc2-a13') + A2ead (,2 + a13') + 

-UB2eJ3d( J3+13' ) 

(6.24) 

Likewise, multiplying equation (6.22) by (a'/i(.;) and then subtracting 

equation (6.23), gives DIl 

-1 
D1 = -------

,2-a'(j' 

(6.25 ) 
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The relevant stress components in the layer are defined: 

TZZ ::: 
AOU 

oX 
oW 

+ (A + 2J.L) oZ (6.26 ) 

(6.27 ) 

The equivalent half-space stress equations are obtained by sUbstituting 

primed quantities in equations (6.26) and (6.27). 

From equations (6.1S) to (6.21), we have: 

au' 
ax 

oW 
, 

ax 
•• -ex z 

e 
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(6.29) 

(6.29) 

(6.30) 

(6.31) 

(6.32 ) 

(6.33) 

(6.34 ) 

(6.35) 



Equations (6.28) to (6.35) can now be used with equations (6.26) and 

(6.27), to apply the stress boundary conditions. The stress components 

are continuous, at z=d, z'=o; therefore equating TZZ at z=d with T'Z'Z' 

at z': 0 and cancelling the term e-i'x gives: 

(6.36 ) 

Similarly, continuity of TZX gives: 

(6.37 ) 

At the free surface, z=O, and TZZ = 0, yield 

(6.38 ) 

Similarly, at z=O, TZX = 0, therefore 

(6.39) 

Equations (6.24) and (6.25) (for C1 and 01) can now be substituted into 

equations (6.36) and (6.37) giving: 

"-Old { } + A2eOld -/3d { } Ale E-F.O + H.U fE-F,P -H.V} + Ble G-F.S-H.Q 

+ B2ePd{-G + P.T - H.R} = 0 (6.40) 

and 
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-ad ad 
Ale (W-x.o - Z.U} + A2e {-W - X.P + z.V} 

+ Ble-~ (-Y-X.S + Z.Q} + B2e~ {-Y+X.T + Z.R} = 0 (6.41 ) 

where: 

1 
(6.42 ) 

(6.43 ) 

(6.44) 

(6.45 ) 

(6.46) 

(6.47 ) 

(6.48) 

Putting (6.49) 

equations (6.38) to (6.41) can be written as 

[M] {A} = 0 (6.50) 

so that for non-trivial solutions, the determinant of [M] must equal 

zero. We have: 
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(E-F,O+H.U) (E-F.P-H.V) (G-F.S-H.Q) (-G+F.T-H.R) 
.e-ad .ead .e-J3d .eJ3d 

(W-X.o-Z.U) (-W-x,P+Z.U) (-Y-X.S+Z.Q) (-Y+X.T+Z.R) 
.e-ad . ead .e-J3d .eJ3d 

det [t<1] = = 0 

E E G -G 

W -W -Y -Y 

(6.51) 

Equation (6.51) is the period equation for the elastic foundation model, 

and has been found algebraically too complicated to be solved analytically 

[18,54]. 

In Section 6.3, an alternative method for finding the natural 

frequencies of the system is described. Once these are known, equation 

(6.50) can be solved to give AI' A2, Bl and B2 to within an arbitrary 

mutliplicative constant. Substitution of these into equations (6.24) and 

(6.25), and then (6.1B) to (6.21), gives the modeshapes. 

6.3 Numerical Solution of the Dynamic Stiffness Matrix and its 
Application to Finding the Modeshapes 

Because it is not practical to solve equation (6.51) analytically, an 

alternative approach to find the natural frequencies of the layer will be 

used. By a simple combination of the analysis in Chapters 3 and 5, the 

dynamic stiffness matrix for the elastic foundation model can be derived. 

This derivation is actually performed in Chapter 7 (see equation (7.3», 

but this dynamic stiffness matrix will also be used here. 

denoted [T], is such that 

[T] (W] = [TJ 

The matriX, 

(6.52 ) 

where [W] is the vector of Fourier transformed vertical and horizontal 

displacements, and [T] is the vector of the corresponding stresses, at 

each of several sub-layers composing the surface layer. It is necessary 
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to divide the layer into these sub-layers, to avoid computational problems 

described in Chapter 7. 

If the load in this forced response problem is removed, setting the 

stress vector [T] to zero (all elements of [T] other than the top two are 

zero due to the stiffness matrix formulation - see Ch. 7), the equation for 

free vibrations results: 

[T] [W] = 0 (6.53) 

Clearly non-trivial solutions will correspond to [T] having a zero 

determinant. 

Throughout this analysis, the exact matrix [T] will be used, not a 

linear approximation to the matrix, as used in the "bedrock" work of 

Chapter 4. Matrix [T] is non-linear, and so a special method due to 

Wittrick and Williams [89] will be used to find its eigenvalues. This 

method allows the solution for the natural frequencies of the system 

which correspond to a given real wavenumber. The method wil now be 

described, using the notation of [89]. 

A quantity called the Sign Count of [T], denoted seT}, must be 

defined. This is most easily defined in terms of the upper triangular 

form of [T], denoted TA, which is the equivalent form of [T] with only 

zeroes below the leading diagona.l. This is derived by subtracting the 

necessary fractions of the first row of [T] from each of the other rows, 

in order to make the first element of each other row equal zero. The 

modified second row is then used in a similar fashion, to reduce the 

second element of each subsequent row to zero, and so on for all the 

rows. The sign count s {T} is then equal to the number of negative 

elements on the diagonal of TA. Also requiring definition are the 

quantities J(w*) and Jo(w*). J(w*) is the number of natural frequencies 

of (T) which exist below the fixed chosen frequency w*, and Jo(w*) is the 

number of natural frequencies of [T] which exist below w*, if constraints 

are imposed at every sub-layer interface (including the top and bottom of 

the layer) to prevent any motion at those depths, ie. the displacement 

vector D describing the motion at the sub-layers is made zero. 
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Then the algorithm deduced by Wittrick and Williams states that 

(6.54) 

This relation is proved in a lucid manner in [89]. 

With equation (6.54), computation of the dispersion curves shown in 

Figures 6.2 and 6.3 is straightforward. For a chosen frequency w*, 

Jo(w*) can be reduced to zero by making the height of each sub-layer less 

than a critical height. This critical height can be found easily, by a 

modification to the dynamic stiffness matrix for the "bedrock" model (see 

Chapter 4), Which describes a layer with a free surface, lying on an 

inflexible half-space. If no motion is allowed at either the base or the 

surface of the layer, then the conditions for the calculation of Jo(w*} 

for a single layer are satisfied. ProVided every sub-layer has the same 

height, they are all identical, and so Jo(w*) for each layer is the 

same. Because of the form of the dispersion curve for this layer with 

fixed surfaces, the lowest natural frequency of a propagating wave 

corresponds to that of the fundamental mode at zero wavenumber (see 

Fig. 4.1 for the equivalent "bedrock" model dispersion curve). Reducing 

the layer height increases this lowest frequency, and so by making the 

height sufficiently small, this lowest frequency will exceed w*. The 

program EFEIG, Which performs this calculation, is listed in Appendix B, 

and its results are given in the next section. 

If the number of sub-layers, n, is now chosen large enough to make 

the height of each sub-layer of T(w*), less than the critical height 

calculated by the above method, equation (6.54) reduces to: 

J ( w *) == s {T( w * )} (6.55) 

computation of the sign count of T(w*), for a chosen wavenumber ~, is a 

fast and simple process. The natural frequencies wn ' Which exist for ~, 

and are less than w* can be found using a bisection method based on 

reducing w*, and finding the change (if any) in the integer value of 

S(T(w*)}. Program EFIND uses this approach to plot the dispersion 

curves in Figures 6.2 and 6.3, and program EIGFREQ calculates individual 

natural frequency and wavenumber pairs very accurately, using quadruple 
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precision, to be used in plotting the modeshapes. Program EIGFREQ is 

closely related to program EFIND, which is listed in Appendix B. 

once the natural frequency for a particular wavenumber is known from 

program EIGFREQ, equation (6.50) can be used to give the constants of 

equation (6.49), to within an arbitrary constant. A slight complication 

1s that this constant is in general complex. However, because the 

modeshapes are described by real values, the ratiO of the real and 

imaginary parts of the arbitrary constant can be determined. As explained 

at the end of section 6.2, the mode shapes can then be calculated. 

program MODE2 in Appendix B evaluated and plotted the mode shapes in 

Figures 6.4 to 6.7. 

6.4 Results 

6.4.1 Material properties 

The material properties used in this chapter match those of previous 

Chapters, and correspond to properties measured experimentally at the 

British Rail test-site "Clarborough", which has a layer depth of 7m. 

These are summarised and listed in Table 2.2. Additionally, the relevant 

wavespeeds are listed in Table 6.1: 

Wave speed Layer Half-space 

compression wavespeed ems-I) 459.4- 3007.3 

Shear Wavespeed (ms-1 ) 262.7 1880.3 

Rayleigh wavespeed (ms-1 ) 241.9 1707.2 

TABLE 6.1: wavespeeds in layer and half-space, elastic foundation 
model 

The Rayleigh wavespeeds are calculated from equation (4.14). 
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6.4.2 Results for the Determination of the Minimum Required Size 

of the Dynamic Stiffness Matrix 

AS explained in Section 6.3, the dynamic stiffness matrtx for the 

layer must have sufficient sub-layers to ensure that each layer, if it 

were held rigid at each interface, would allow no wave propagation below 

the maximum frequency of interest. Table 6.2 gives the results from 

program EFEIG, which divides the 7m layer at Clarborough into integer 

numbers of sub-layers, and then computes the lowest value of the 

fundamental frequency. Because EFEIG uses a linearised approximation to 

the dynamic stiffness matrix, the program further sub-divides each 

sub-layer into sufficient layers to make the linear approximation valid 

(see Chapter 4 for an explanation of the sufficient conditions). 

Number of Depth of each Lowest value of 

sub-layers sub-lay_er(m) fundamental frequency (Hz) 

1 7 18.7806 

2 3.5 37.5612 

3 2.333 56.3418 

4 1. 75 75.1224 

5 1.4 93.9030 

Trun.E 6.2 The effect of layer depth on the fundamental 

frequency of a layer held rigid at both interfaces 

For the frequency range of interest, Which is below 64Hz, it is clear 

that four sub-layers each of height I.75m are required for the eigenvalue 

solution of the dynamic stiffness matrix. 

Note that the lowest fundamental frequency is inversely proportional 

to tl1e layer depth, for this layer with fixed boundaries. Also, these 

conditions produce a higher value of the lowest fundamental 

frequency than in the "bedrock" model (Chapter 4), as can be expected 

from 
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the greater stiffness. In fact, the bedrock lowest fundamental frequency 

for a given layer depth is exactly half that of the layer rigid at both 

surfaces, ana so it is 9.4HZ for a 7m layer. 

6.4.3 Description of the Figures 

Figures 6.2 and 6.3 were produced by the program EFIND. Figure 6.2 

shows the variation of wavenumber with frequency for the first six natural 

modes, for wavenurnbers greater than k2 • I the shear wavenumber in the 

half-space. For reference purposes, three extra lines have been 

superimposed on the graph, to show the variation of wavenumber with 

frequency of the compression and shear waves in the layer, and the shear 

wave in the half-space. The variation of the Rayleigh wavenumber for the 

layer I is coincident wth the first mode above 30Hz. Figure 6.3 is a 

different interpretation of the information shown in Figure 6.2. Here 

wavespeed variation with frequency for the first six natural modes is 

shown. Because of the great variation in wavespeeds, a log scale has been 

used. Reference points on the scale show the Rayleigh, shear and 

compression wavespeeds in the layer I and the Rayleigh wavespeed in the 

half-space. The half-space shear wavespeed is shown as a line across the 

graph, to show the limit of the solution. 

Figure 6.4 shows the variation of amplitude (to within an arbitrary 

constant) of the vertical and horizontal motion components of the first 

and second modes, plotted against non-dimensional depth. variations in 

both the layer and half-space are shown, for a pair of frequencies for 

each mode. Figure 6.5 is similar to Figure 6.4, but shows the third mode 

amplitude variations, for four different frequencies. The lowest 

frequency graph shows the shape of the third mode at a wavenumber close 

to 1<:2'. Figure 6.6 shows three graphs of the fourth modeshapes; the 

lowest frequency is again for a wavenumber near to k2'. Figure 6.7 

follows the same pattern as Figures 6.4 to 6.6, with two graphs for each 

of the fifth and sixth modeshapes. 
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Figures 6.4 to 6.7 were all plotted by the program MODE2, after 

initially finding very accurate values of the natural frequencies for 

chosen wavenumbers. To ensure good solutions of equation (6.50), these 

frequencies were found to 14 decimal places. Table 6.:3 gives the first 

ten dec~l places of all the natural frequencies used in the Figures. In 

addition, the natural frequency of the first mode at very low wavenumber 

is given. 

Mode Number Natural Frequency (HZ) Wavenumber 
1 0.0027118335 0.00001 
1 14.7154135863 0.35 
1 57.7484706315 1.5 
2 14.8140575665 0.2 
2 41.9628403395 0.8 
3 20.1225704611 0.07 
3 29.8069828493 0.3 
3 44.1564817126 0.6 
3 59.8292569719 1.0 
4 32.8675640479 0.11 
4 38.6191778612 0.4 
4 58.5943808847 0.8 
5 40.1606909848 0.14 
5 54.9652960654 0.5 
6 57.1908625770 0.2 
6 62.5359477427 0.55 

TABLE 6.3: Natural frequencies of mode shapes 
shown in Figures 

6.4.4 Comparison with previous results 

(') 

Previous work has produced dispersion curves for the first two natural 

modes [43,54,77] the form of which is similar to the first and second mode 

curves in Figure 6.3. Direct comparison is not possible, since different 

material properties have been used in each case. However, Newlands [54] 

has found the following approximate relation valid for large ('d): 

(6.56) 
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• 2 '2 where S = -, 0 -, -( ,2-k2 ) 

(,2-ki )'2 -, • 2 '2 
-C,2-kI ) -C 

2 '2 
-2C(C2- kI) 

2 
(2C2-k2) 

'2 '2 
2C(,2_kI ) Il'/Il 

'2 
(2,2_k2 )Il'/Il 

C2,2_k~) '2 
2" C2-k2 

'2 '1 
0 (2C 2-k2 )Il'/Il ) Il /Il 

and T = -C 
2 '2 

-( C2- k2) 

2 '2 
'C2- k I) 0 

2 '2 
-2C( C2- k1) 0 

2 (2,2_k2 ) 2 '2 
2C( ,2-k2) 

where the 3rd and 4th columns of T are identical with those of 5, and the 

parameters have the sarne definitions as before, with kI', k2" Il' 

representing the compression wavenumber, shear wavenumber and shear 

modulus in the half-space, respectively. 

Newlands tabulates values of (Cd) for the first five modes, for a 

range of c/c2' where c is the mode wavespeed. He uses material 

properties defined by 1l'/Il=A'/A=20/9; p'/p=5/4; Il=A, 1l'=A', These 

material properties were used as a check with the present method, and it 

was found that for (Cd) > 25, the difference between the two sets of 

results was less than 1%. 

6.5 Discussion 

6.5.1 Analysis of the Results 

The significance of the work in this Chapter is in its application to 

the forced response in the elastic foundation model. In this respect 

Figure 6.2 shows the principal results, which can be applied directly to 
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understanding the results of Chapter 7. For a chosen exciting 

frequency, the wavenumbers of the resulting natural modes can be found 

immediately. At frequencies where a mode may have a "leaky" contribution 

to the total forced response, the real part of the wavenumber of the 

leaky mode can be found indirectly, by studying the forced response 

"wavenulTI.:!:.x'lr domain" variation of transformed vertical and horizontal 

motion (see Figures 7.3 and 7.5). In these wavenumber domain figures, 

which are plotted for individual frequencies, each mode produces a peak 

in the variation of u and w (Fourier transformed horizontal and 

vertical motion, respectively). Referring to Figure 6.2, if a frequency 

say fe l is chosen just below the frequency at which a mode dispersion 

curve meets the "half-space shear wavenumber" line, the corresponding 

wavenumber domain plot for fc will show a peak at low wavenumber, which 

only appears for a small frequency range below f c • This peak must relate 

to the "leaky" form of the mode, and the relative size of the peak is a 

measure of the relative contribution to the forced response of that 

mode. In the past (for example [18] and [54]) these "inhomogeneous" 

waves have been neglected, but the results of Chapter 7 show they can 

have some effect. In particular, the receptance figures for the elastiC 

foundation model (Figs. 8.20-8.25) show peaks at 33 Hz, which is just 

above the leaky "cut-off" for the fourth mode. From equation (6.13), it 

can be seen that the 'leaky' transition occurs when ( = kz ', making ~' 

complex. The transition from homogeneous to inhomogeneous wave can 

clearly have an important effect. Further discussion of the leaky modes 

can be found in section 6.5.2. 

Although Figure 6.2 is of most use in the interpretation of forced 

response results, Figure 6.3 is a more conventional disperSion diagram, 

and more suitable for physical interpretatl.on. only the first mode has a 

real wavenumber for the whole frequency range. At large frequencies, the 

first mode wavespeed tends to the Rayleigh wavespeed in the layer. It is 

well known that the Rayleigh wave amplitudes are very small beyond one 

wavelength below the surface (67]. With the Clarborough material 

properties used here, the Rayleigh wavelength equals the layer depth at 

about 35Hz. Above this frequency, the first mode wavespeed is very close 

to the Rayleigh wavespeed. Kuhlemeyer [43] found that at very low 

frequencies, the first mode wavespeed approaches the Rayleigh wavespeed 

in the half-space. Both the Rayleigh wavespeeds, for the layer and 
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half-space (i.e., in the case of the half-space, this is the speed of 

the Rayleigh wave which would exist if the layer were a vacuum) are 

tabulated in Table 6.1. If the wavespeed of the first mode is calculated 

using the first entries in Table 6.3, it is found that at about O.0027Hz, 

the mode wavespeed equals 1703.9ms-1, which is close to the half-space 

Rayleigh wavespeed of l707.2ms-l • At such a low frequency this wavespeed 

produces a very long wavelength, and the layer depth becomes 

insignificant, appearing only as a "skin" on the half-space With almost 

no effect on the wave motion. 

Kuhlemeyer also found that at high frequency, the modes of order two 

and above approach the layer shear wavespeed. In Figure 6.3 this 

tendency can only be seen in the second mode; a greater frequency range 

would show the other modes behaving similarly. The effect of the 

compression wavespeed, however, can be seen tn three modes, the 2nd, 3rd 

and 4th. All these dispersion curves inflect along a line through cl on 

the wavespeed axis. EVery mode is the result of a different interaction 

between the compression and shear waves; the inflections in the 

dispersion curves, and their asymptotic approach to the shear wavespeed, 

indicate which body wave dominates the behaviour. The first mode, Which 

(for all practical purposes) is a Rayleigh wave for frequencies outside 

the frequency range allowing the interface to interfere with the mode, is 

a surface wave caused by reflection of the body waves at the free 

surface. 

comparison of Figs 6.2 and 6.3 with the bedrock model dispersion 

curves (Figs 4.1 and 4.2) reveals that some surprising behaviour in that 

model was due to the inflexible half-space boundary condition. With the 

physically more realistic boundary conditions imposed here, which allow 

movement at the bottom of the layer, no two mode dispersion curves ever 

cross, and the fourth mode does not possess the derivative df/dC=O at 

non-zero C. (These characteristics can only be seen true in Figs 6.2 and 

6.3, for wavespeeds less than C2" the half-space shear wavespeed. 

However, analysis of the forced response wavenumber domain peakS, as 

explained earlier in this section, indicates that the real part of the 

wavenumber, for the dispersion curves below the C2' line in Figure 6.2, 

will not alter these characteristics). Also, the modes are shifted to 

lower frequencies, as could be expected with these boundary conditions. 
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The effect of boundary conditions restraining motion at both the 

"surfaces" of the layer, is mentioned briefly in section 6.4.2. 

Graphs A and 5 in Figure 6.4 show the development of the Rayleigh wave, 

as frequency increases. In Graph A, it is clear that the frequency is 

too low for a fully developed Rayleigh wave, as the layer half-space 

interface affects the modeshape. In Graph 5, the frequency has been 

nearly quadrupled, and the vertical and horizontal components resemble 

the variation with depth described by many authors. In particular, 

Kolsky [41] shows that the vertical component varies according to: 

(6.57) 

while the horizontal component varies according to: 

(6.58) 

where a = C2/Cl1 k=CR/c2, and Cl / C2 and CR are the compression, shear and 

Rayleigh wavespeeds respectively. Kolsky'S notation has been changed and 

his expressions altered slightly. From Table 6.1, k=O.92l and a=O.572, 

for the material properties used here. 

Analysis of equation (6.57) reveals that it can never equal zero for 

Z~OI but differentiation with respect to z yields a turning point at 

CZ=O.493, or alternatively, as C=2rr/A, where A is the wavelength, at z = 

O.07BA. 

Equation (6.58), if equated to zero, predicts zero horizontal motion 

at a depth of O.096A. Differentiation gives a turning point at a depth of 

O.361A. In all the Figures 6.4 to 6.7, depth is shown 

non-dimensionalised; the non-dimensionalised Rayleigh wavelength for a 

frequency of 57.75Hz is A/a=5.61. computing the depths z/a = O.078A/a, 

O.0961A/a and O.361A/a for A/a=5.61, reveals that the turning points and 

horizontal motion "zero" shown in Graph B of Fig 6.4 are all close to the 

corresponding Rayleigh wave depths. It is therefore apparent that the 
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first mode will become indistinguishable from the Rayleigh wave at high 

frequencies. 

The second mode shapes, shown in Graphs C and D of Figure 6.4, 

suggest that as with the first mode, the mode shape only fUlly develops at 

high frequency. symmetry of the mode shapes cannot be expected, as the top 

and bottom boundary conditions in the layer are not equal. However, most 

of the mode shapes in Figures 6.4 to 6.7, for the modes of order greater 

than one, are Clearly "almost" either symmetric or anti-symmetric, 

suggesting they are "corruptions" of either symmetric or anti-symmetric 

modes which exist in a layer with symmetric boundary conditions. The 

plane of this "quasi-symmetry" is at z/a = 4 2/ 3 , In Figure 6.5, for 

example, the horizontal component of the third mode is nearly 

anti-symmetrical about this plane, while the vertical component is nearly 

symmetrical. Conversely, the fourth and fifth modes have nearly 

anti-symmetrical vertical components and nearly symmetrical horizontal 

components (Figs 6.6 and 6.7). The sixth mode follows the same pattern 

as the third. All these higher modes develop fuller more complex shapes 

at higher frequencies. 

For each of the 3rd, 4th, 5th and 6th modes, the lowest frequency 

graph in Figures 6.5 to 6.7 shows the mode just above the cut-off at the 

half-space shear wavenumber (Fig 6.2). In these graphs the decay of 

amplitude of vibration in the half-space is very slow - this is predicted 

by equations (6.20) and (6.21), for very small ~'. These waves which 

cause large displacements in the half-space and yet are still "trapped" 

because their wave speeds are too low for coupling with the half-space 

shear wave (see the next section), appear to have a considerable effect 

on the forced response. In the elastiC foundation receptance Figures of 

Chapter 8, peaks of varying size appear near the frequencies 20.12HZ, 

32.87Hz, 40.16Hz and 57.19Hz, which are the frequencies where the 

individual modes are just below the half-space shear wavespeed. 

6.5.2 The im~rtance of LP.a~ and stoneley Waves 

It is clear from the discussion at the end of the previous section, 

that a mode near to transition from "trapped" to "leaky" has a 

significant effect on the response. Logically, a mode which is leaky and 
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loses energy to the half-space will have less effect at some distance 

from the source than a trapped mode, although it is possible for energy 

radiated into the half-space to be diffracted back into the layer [12]. 

"Leaky" waves have been studied for some years ([12,65,74,84,87]) but it 

is difficult to relate waves studied by these workers to the individual 

modes analysed here. However, their work helps to explain the mechanism 

of "leaky" propagation. In the notation of this Chapter, a "leaky" mode 

always has a complex wavenumber, and is an "inhomogeneous" wave - it 

changes its form as it propagates along the layer. This is because 

energy is continuously lost to the half-space. Stump [74] explains that 

the energy is lost through coupling with the body waves in the 

half-space, and that this coupling is only possible if the speed of the 

mode exceeds the speed of the coupling body wave. Some individual leaky 

waves, which exist with particular material property combinations of the 

layer and half-space, have been discussed by several authors. At high 

pOisson's ratiO, above v=O.45, a leaky wave denoted by P~ is known to 

exist, which couples with the half-space compression wave. Phynney [65] 

describes a "leaky" Stoneley interface wave which exists between a liquid 

layer and a SOlid, and loses energy to compression waves in the liquid. 

"True" stoneley waves, as mentioned in section 6.1, are not "leaky"; 

they are generalised Rayleigh waves Which exist at the interface of two 

media, and decay rapidly in both media away from the interface. However, 

these waves are in general of theoretical interest only, as they require 

special conditions to prevail before they can develop. Stone ley was 

originally concerned with the "Wiechert" surface of discontinuity deep 

inside the earth, where the compression wavespeeds in each medium, and 

the shear wave speeds in each medium, are almost equal. Newlands, and 

Tolstoy and Usdin [54,77] both find that stoneley waves do not contribute 

to their solutions, for their chosen material properties. Tolstoy and 

Usdin comment that if stoneley waves did eXist, then an extra dispersion 

curve could be expected to appear in Figs 6.2 .and 6.3, which would be 

asymptotic to a line very close to the first (Rayleigh) wave mode. 

However, the work of Scholte [10] makes it clear that stone ley waves 

cannot exist with the material properties used here. HiS equations 1 

and 2 give values of (~/~') as a function of (p/p'), in the notation of 

Section 6.2. For stone ley waves to exist between two media, the ratio 
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~/~. must lie between the values given by these two equations; this 

condition corresponds to Cl~l' and C2~2'. Table 6.1 shows that these 

conditions are not satisfied. 
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CHAPTER 7 

INFINITE STRIP LOAD ACTING ON AN ELASTIC LAYER OVER AN ELASTIC HALF-SPACE 

7.1 Introduction 

The free vibrations of the "elastic foundation" ground structure 

model are analysed in Chapter 6, where the contributions of previous 

workers are discussed. In this Chapter, the complementary elastic 

foundation near-field forced response of a strip-load is studied, which 

does not appear to have been examined before. Some previous results for 

the direct receptance of a strip on the elastic foundation are mentioned 

in Chapter 8; additionally, New1ands [54] has considered a line-load. 

However, the bulk of the results in this Chapter cannot be compared with 

any previous work. 

Following the forced response work of Chapters 3 and 5, internal 

damping characterised by the loss factor n is present in the layer, and 

also the under-lying half-space. The damping mechanism is explained in 

Section 2.2. The method of analysis is an extenSion of the work in 

Section 5.2. Here, the dynamic stiffness matrix for the elastic 

foundation layer is derived by effectively combining the half-space and 

layer stiffness matrices. 

The results are non-dimensional, and although they cannot be compared 

with any independent work, comparison is possible with the half-space and 

bedrock results. In fact, Figures 7.12 to 7.20 show the results from 

each ground structure model, for a given frequency, combined in single 

graphs. The Figures preceding these follow the pattern established in 

Chapters 3 and 5, and show (i) transforms of horizontal and vertical 

motion components in the wavenumber domain; (ii) horizontal and vertical 

motion components plotted against distance, using linear and dB 

'attenuation' scales; and (iii) the effect varying the strip width has 

on the direct receptance, with a constant force per unit width. 
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7.2 ANALYSIS OF THE ELASTIC FOUNDATION MODEL 

Harmonic strip-load P/2a 
per unit length 

a 

X,u 

Z,w h 

Ground material properties E, p, v 
and loss factor n 

Elastic half-space, material properties El , PI' vI and 
loss factor n 

FIGURE 7.1: The "Elastic Foundation" Model with Infinite strip Load 

Figure 7.1 shows the key elements of the model. An isotropic, 

elastic, homogeneous layer with material damping (loss factor) n, of 

depth 'h' covers an isotropic, elastic, homogeneous half-space of 

different material properties but with the same level of material 

damping. The uniform load acts on an infinite strip of width '2a', and 

the contact is 'smooth' - there is no shear stress. The load moves 

vertically and harmonically. 

Much of the analysis of this problem is identical to the solution of 

the 'bedrock' model, given in Section 5.2, so this will not be repeated 

here. In Section 5.2, a dynamic stiffness matrix [T] (see equation 

(5.25» is derived, such that 

[T] [W] ::: (r] (7.1) 
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Where 

[r] = [-irzz{O), -rzx(O), irZz(h), TzX<h»)T 

and (7.2) 

[W] = [iw(O), u(O), iw(h), U(h)]T 

where Tij are the transforms of stress components; u, ware the 

transforms of horizontal and vertical motion, respectively; and the '0' 

and 'h' in round brackets refer to the position in the layer to Which 

each quantity refers. 

Because of computational difficulties described in Chapter 5, it is 

necessary to sub-divide the single layer into several exactly similar 

layers, each of height 'd' (say). If there are three layers, so that 

d = h/3, the formulation becomes: 

-iW(O) -iTzz(O) 

u( 0) -TZX(O) 

iw(d) 0 

u(d) 0 

iW( 2d) 0 
= (7.3) 

U(2d) 0 

iw( 3d) iTZZ{3d) 

U( 3d) Tzx(3d) 

where each shaded 4 x 4 matrix is equal to [T], with the relevant 

additions of elements where the intersections cross (shown by cross 

hatching). 

With the bedrock model, the elements of [w] corresponding to movement 

at the bottom of the layer (iW(3d) and iU(3d) in the equation above) 

were zero. This reduced the problem to one of six equations in six 
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unknowns, as the stress components TZZ(O) 

equation (3.35». They are 

TZZ(O) 

TZX(O) = 0 

-
and TZX(O) are known (see 

(7.4) 

NoW that deformation is allowed at the bottom of the layer, the 

components W(3d) and U(3d) are no longer zero. However, a solution can 

be found in a fashion similar to the bedrock problem, as now the 

stresses Tzz(3d) and TZxC3d) can be found. The Simplest method to 

achieve this uses the equality of stresses above and below the layer/ 

half-space interface, i.e., 

!
~ZZ( 3d)] 

TZX( 3d) 

-

= !~~z(Z'=O)] 
T' (z'=O) zx 

(7.5) 

Where T' is the stress component in the half-space, and Z' is zz 
the vertical direction in the half-space. 

Likewise, the components u and w above and below must match. 

From equation (3.39), replacing the right hand side of the equation by 

[T~z(Z'=O), r~x(z'=O)]T 

[~. (0')] = 

w'(O' ) 

which leads to 

1~~z(O')] = 

T' (0') zx 

(7.6) 

(7.7) 
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Performing this matrix inversion an~ multiplication, followe~ by 

intr~ucing the coefficient 'i' to the TZZ(O') an~ W'(O') terms, gives: 

- . 
iTzZ(O' ) iTZZ( 3~) 

(.H2J..1.)t3k z ________ ..3._ 

at3-Cz 
2J..1.at3'-2J..1.,3+(~+2J..1.)'k z _ __________________ ..3._ 

at3 - ,z 

= = 

TZX(O' ) 
-
TZX( 3~) 

J..I.oc'k z ---"'-aJ3-'z 

x [i~C 3~ll 
u( 3~) 

(7.8) 

Or, defining [R] as the (2 x 2) matrix in equation (7.8) Where: 

ru 1RU] 
R = 

-iRZl. Rzz 
(7.9) 

gives 

[~TZZC 3dl] [ Ru iRUj[':Cldl] 
= 

TZX( 3~) -iRZl. Rzz. u( 3~} 
(7.10 ) 

Equation (7.3) can now be mo~ifie~l if the signs of equation (7.10) 

are change~ an~ the LaS is a~~e~ to the bottom two elements of the stress 

matrix, in equation (7.3) (pr~ucing two zero sums), then the matrix [R] 

must be a~de~ to the bottom right corner of the (8 x 8) ~ynamic stiffness 

matrix. 

As the surface stresses are known (equation (7.4», we now have eight 

equations in eight unknowns, which can be solve~ for the transforme~ 

displacements [w]. 

Section 7.3. 

The solution metho~ an~ results are presented in 
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7.3 Results 

Program EF64H2, which is listed in Appendix B with some brief notes, 

is representative of several closely related programs used in this work. 

The program uses NAG library routines to solve equation (7.10) for 

discrete values of ,. This yields values of w(',z=O) and u("O), 

Which are inverse transformed using a numerical technique described in 

Appendix A, to give the displacement on the surface of the ground. 

Figures 7.2 to 7.5 show the real and imaginary parts of Fourier 

transformed horizontal and vertical components of motion, 
-non-dimensionalised (to become ( au) and ( aw) respectively), and for 

various frequencies. A low loss factor has been used in each of these 

Figures to accentuate the peaks. Table 7.1 lists the Rayleigh, shear and 

compression wavenumbers for zero damping, and also the wavenumber 

location of peaks in these Figures. The dimensional frequencies relate 

to the Clarborough test-site (see Table 2.2 for the material properties), 

with the strip half-width a = 0.75. The corresponding non-dimensional 

frequencies in the layer and the half-space are tabulated in Table 7.2. 

The method of non-dimensionalising is explained in Section 3.3. 

IFreq. 
(HZ) 

4.0 
8.0 

16.0 
19.25 
32.0 
33.0 
38.5 
48.0 

56.5 

64.0 

Theoretical (n=0) wavenunibers 
(ak~) (akz ) (akR) 

0.041 
0.082 
0.164 
0.197 
0.328 
0.338 
0.395 
0.492 

0.072 
0.143 
0.287 
0.345 
0.574 
0.592 
0.691 
0.861 

0.078 
0.156 
0.312 
0.375 
0.623 
0.643 
0.749 
0.935 

Non-dimensionalised Wave
number (a,) LOcation of 
major peaks in Figs., 

11 = 0.002 

0.021, 0.041 
0.066, 0.115 
0.165, 0.291 

* 0.035, 0.21, 0.36 (11 = 0.02) 
0.0683, 0.261, 0.392, 0.620 

* 0.085, 0.28, 0.415, 0.64 
* 0.065, 0.3, 0.36, 0.52, 0.75 

0.253, 0.463, 0.516, 0.733, 
0.935 

0.579 1.013 1.100 * 0.1, 0.4, 0.58, 0.68, 0.92, 
1.1 

0.656 1.148 1.246 0.532, 0.671, 0.843, 1.063, 
1.247 

* - these peak locations were measured from the figures; the others 
are from discrete data. 

Table 7.1: Non-dimensionalised Wave numbers 
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Frequency oz. oz. 
( Clarborough ) (Layer) (Half-Space) 

(Hz) 

4.0 0.002 0.00004 
8.0 0.008 0.00017 

16.0 0.033 0.00068 
19.25 0.047 0.00099 
32.0 0.131 0.00273 
33.0 0.139 0.00290 
38.5 0.189 0.00395 
48.0 0.295 0.00614 
56.5 0.408 0.00850 
64.0 0.524 0.01090 

Table 7.2: Non-dimensionalised frequencies 

Most of the remaining Figures show non-dimensionalised amplitudes 

plotted against distance; additionally, some Figures show phase change 

plotted against distance. All parameters in the Figures are 

non-dimensional, except for the frequency. Figures 7.6 and 7.7 show 

vertical and horizontal amplitude respectively, for each of the six 

frequencies 4, 8, 16, 32, 48 and 64 Hz. The loss factor ,= 0.1, and 

the range covered is (x/a) ~ 33~/3' The same range is used in Chapters 

3 and 5, to aid comparison. F.igures 7.8 and 7.9 give similar information 

to Figure 7.6, but over the larger range (x/a) ~ 100, using a dB log 

scale to show attenuation. In Figure 7.9 the damping has been reduced 

to 1) = 0.02. 

Figure 7.10 shows the phase change of two of the frequency components 

plotted in Figure 7.9, 4 Hz and 32 Hz. Figure 7.11 shows the effect 

varying the strip width has on the displacement at the centre of the 

strip, with a constant force per unit width, for the frequencies 1.5, 32, 

64 and 100 Hz. The loss factor is 1) = 0.02 to exaggerate the maxima and 

minima. 

Figures 7.12 to 7.20 are a comparison of the half-space, bedrock and 

elastic foundation models' results. Figure 7.12 shows the results from 

each model, for vertical amplitude and a frequency of 8 HZ, plotted over 

(x/a) ~ 33~/3' Figure 7.13 shows the equivalent three phase changes, and 

Figures 7.14 and 7.15 correspond to Figures 7.12 and 7.13, but are for 
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the horizontal component of motion. Figures 7.16 and 7.17 give the 

amplitude and phase change, respectively, of the vertical component of 

motion at 16 HZ, for each model. Similarly, Figures 7.18 and 7.19 are 

for 64 HZ, and give the vertical and horizontal components' amplitudes, 

respectively, for each model. 

Figure 7.20 compares the vertical motion direct receptances for all 

three models, over the frequency range 1 < f ~ 64 Hz, using a log scale 

for the amplitude. 

7.4 Discussion 

The interpretation of the bedrock model forced response results in 

Chapter 5 was made possible by the free vibration work of Chapter 4. 

Likewise, the elastic foundation model free vibration work of Chapter 6 

is essential to this discussion. Figures 7.2 to 7.5 all show the 

variation of Fourier transformed displacements with wavenumber. The main 

features of these graphs are distinct peaks, the wavenumber locations of 

which are predicted by the free vibration work. Each peak represents a 

propagating wave, and is related to a partiCUlar natural mode; this can 

be clearly seen by comparing Table 7.1 with Figure 6.2 (prOVided the 

values in the Table are first dimensionalised for the ClarbOrough 

test-Site, by dividing by a = 0.75). Table 7.1 shows that abOve abOut 

30 Hz, the first peak is at the Rayleigh wavenumber. (A convention that 

the 'first' peak is defined as the peak at largest wavenumber will be 

adhered to.) The relative size of this peak indicates the relative 

importance of the associated propagating wave. Unlike the half-space 

model, but in common with the bedrock model, peaks do not in general 

occur at the shear or compression wavenumbers. The coincidence of the 

first peak with the compression wavenumber at 4 Hz, at (a,> = 0.041, can 

be seen in Figure 6.2 to be unique to that frequency (for the first 

mode). Each dispersion curve in Figure 6.2 shares this characteristic 

at a distinct frequency. 

Although Figure 6.2 'predicts' that six propagating waves 

(corresponding to the free vibration modes) will exist at 64 Hz, only 

five peaks are evident in Figure 7.2(C). Accordingly, there are only 
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five entries in the 'peaks' column of Table 7.1 for 64 Hz. This is 

because a linear amplitude scale in Figure 7.2(C) allows the sixth 

propagating wave's peak to be dwarfed by the other peaks. A log scale 

would reveal the additional peak at approXimately (a<=) = 0.45. 

Figures 7.3 and 7.5 show the tranformed displacements at frequencies 

for which one of the waves is 'leaky'. Therefore, the location of the 

matching low wavenumber peaks in these graphs cannot be predicted with 

Figure 6.2 (the leaky waves are discussed in Section 6.5.2). As a 

'leaky' wave has a complex wavenumber, the relevant peak in these Figures 

is located at the real part of the wavenumber. TWO of the frequencies 

chosen for Figures 7.3 and 7.5, 9.25 Hz and 38.5 Hz, are just below the 

frequencies at which the 3rd and 5th modes respectively become leaky 

(Figure 6.2). The other two frequencies, 33.0 Hz and 56.5 Hz, are just 

above the equivalent 'transition' frequencies for the 4th and 6th modes 

respectively. The first mode/propagating wave has a real wavenumber for 

all frequenCies, and the 2nd mode/propagating wave is only 'leaky' at 

very small frequency. Figure 6.2 also shows that only these first six 

modes can exist below 64 Hz. (It should be remembered that damping has 

the effect of slightly increasing the frequency at Which " = 0' 

phenomena occur. ) Figures 7.3 and 7.5 show that the leaky waves, which 

lose energy to the half-space, make less of a contribution to the 

propagating disturbance than the ' trapped' waves. However, the 33.0 Hz 

and 56.5 Hz graphs show that at a frequency just above the transition 

between the 'leaky' and 'trapped' states, the relevant wave makes an 

important contribution. This is particularly true of the 4th 

mode/propagating wave; the sudden appearance of this trapped, 

propagating wave has a marked effect on the receptance graphs, shown in 

Figures 7.20 and 8.20 to 8.25. This is also discussed in Section 6.5.1. 

As with the bedrock model, all peaks other than the first peak, which 

is associated with the Rayleigh wave, can be expected to tend to the 

shear wavenumber, with increasing frequency. 

Figure 7.6 shows the amplitude of vertical motion plotted against 

distance, for six frequencies. The equivalent non-dimensional 

frequencies are given in Table 7.2. As with the bedrock model, it is 
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found that the higher frequencies result in more complicated variations 

of displacement. This is because more propagating waves exist at high 

frequencies, as can be seen in Figures 7.2 to 7.5, and so the 

interference patterns are more complicated. In common with the 

half-space model results, the lower frequencies domi.nate the response 

largely because of the infinite statiC response of these models. 

Additionally, it has been shawn in Section 2.2 that the hysteretiC 

damping present has more effect, per unit distance, on the propagation of 

higher frequency waves. 

In common with the bedrock model, it is possible that the waves 

associated with the Rayleigh equation extraneous roots, Which are 

discussed in Section 9.5.2, contribute to the interference patterns. 

The amplitude of displacement under the load does not decrease 

monotonically with increasing frequenCY1 in this respect the results are 

unlike those of the half-space model, but similar to those of the bedrock 

model. This can be clearly seen in Figure 7.20, and in the case of the 

elastic foundation model is attributable to the appearance of the 4th 

propagating wave, above 30 Hz. There is also evi.dence that the 6th 

propagating wave, which appears at about 56 HZ, causes a second much 

smaller peak, and a third peak, presumably asSOCiated with the appearance 

of another propagating wave, will occur at a frequency greater than 64 Hz. 

The interference in the horizontal motion amplitude (Figure 7.7) is 

more pronounced than in the vertical motion (Figure 7.6), because in the 

former case the displacements are not dwarfed in comparison with the 

displacements at the strip. The strip-edge at (x/a) = 1 has a greater 

effect on the horizontal than the vertical motion, and the 4 Hz and B Hz 

components of horizontal motion propagate so strongly, that they are 

monotonically increasing in amplitude throughout the range shown. 

Figures 7.B and 7.9 emphasise certain features of Figure 7.6, and 

demonstrate the effect of reducing damping to n = 0.02 (in 

Figure 7.9). In comparing these Figures, it should be noted that the 

amplitude scales are not the same, but rather fit the data. The greater 

attenuation of the higher frequenCies, and also their more complex 

displacements, are clear. As with the half-space and bedrock models, 
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the reduced damping greatly reduces the attenuation of amplitude of the 

higher frequencies, and does not suppress the interference patterns as 

much as the higher damping (although this second effect in Figure 7.9 is 

also due to the changed scale). An interference effect of long 

'wavelength' can be seen in the 4 Hz curve, most clearly in Figure 7.9. 

Figure 7.9 also shows that in ground with low internal damping, there may 

exist 'zones' on the surface where the largest contribution to 

displacement is of a high frequency, such as for 48 Hz near (x/a) = 30. 

A similar effect can be seen in Figure 7.7, for the 32 Hz component near 

(x/a) = 12. However, this conclusion is only possible with a graph such 

as Figure 7.9, if the reference values for each curve at (x/a) = 0 are 

known. Although the 4 Hz component is more attenuated than the 48 Hz 

component near (x/a) = 30, their magnitudes are also a function of their 

displacements at (x/a) = o. 

Figure 7.10 shows the phase change with distance of the two frequency 

components 4 and 32 Hz, for ~ = 0.02. The loss factor has little 

effect on the appearance of these curves - the wavelength, determined by 

the distance required to change phase by 2rrc , is shortened slightly by 

increased ~. As with the phase change graphs in previous Chapters, the 

apparent discontinuities in the lines are a convenience for 

graph-plotting, to confine the scale to ±rr. Failure of each line to 

reach ±rr is due to inadequate resolution. The rate of change of phase 

is identical to the wavenumber of the propagating disturbance (or the sum 

by superposition of all the propagating waves). Measuring this change in 

Figure 7.10 for the 4 Hz component, reveals that its wavenumber is very 

close to the wavenumber of the dominant peak in Figure 7.4(a). only two 

waves can propagate at 4 Hz, and the one corresponding to the first mode 

of free vibration clearly dominates. However, Figure 7.10 shows that the 

32 Hz component does not have a constant wavenumber for (x/a) ~ 100, and 

the average value is not so close to the wavenumber of the first peak 

(the Rayleigh wavenumber at this frequency). The changes in wavenumber 

are related to the maxima and minima in the 32 Hz components of Figures 

7.6 and 7.7; this relationship also applies to the bedrock model, and is 

discussed in Section 5.4. 

Figure 7.11(b), (c) and (d) can be compared directly with Figures 

3.10 and 5.10(b), (c) and (d), Since they are all for the same 
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frequencies and loss factor. The first graph in each case «a» is not 

at the same frequency, due to numerical problems in the solution, but 

each one serves its purpose of showing the trend as frequency increases. 

They all show the effect on displacement at the centre of the strip, of 

varying the strip-width, with constant force per unit width. The graphs 

all exhibit a similar pattern of troughs and peaks. In Section 3.5, for 

the half-space model, it is suggested that the location of these troughs 

and peaks, which is frequency dependent, is because of the "resultant 

wavelength" of the shear, compression and Rayleigh waves. This 

wavelength is deduced from Miller and PUrsey's calculated energy 

distribution among the waves [57]. The different boundary conditions in 

the three models produce peaks and troughs of different amplitude, but 

because their locations are so close, it seems reasonable to extend the 

"resultant wavelength" hypothesis to this model too, particularly for the 

high frequencies, for which the solutions merge. 

Pigures 7. 12 to 7.20 are a comparison of the forced response results 

of the three ground structure models so far considered~ the half-space, 

bedrock and elastic foundation with a strip-load. The first four Pigures 

are all for 8 HZ, and show the vertical components of motion, and their 

phase change, and the horizontal components of motion, and their phase 

change, respectively, for each model. Although all three have similar 

amplitudes under the load, the rest of the solutions are quite 

different. The bedrock model does not allow propagation of vibration at 

this frequency, and so the displacements in the near-field are much 

smaller than produced with the half-space model. Equally, the elastic 

foundation model results in greater near-field displacements than the 

half-space, because at this low frequency a long wavelength is produced, 

and much more energy is trapped near the surface by the layer than by the 

half-space. 

The phase change due to the bedrock model, shown here in Pigures 7.13 

and 7.15 for the 8 Hz case, has been discussed in Section 5.4. It 

reveals the lack of propagation. In the case of the half-space, it 

reveals the dominance of the Rayleigh wave. The somewhat faster wave 

represented by the longer wavelength in the elastiC foundation, shows the 

dominance of the propagating wave connected with the first mode of free 

vibration. The ratio of this wavespeed and the Rayleigh wavespeed can be 
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approximated from Figure 6.3, by reading the wavespeed of the first mode 

for 8 Hz. The Rayleigh wavespeed is marked on the wavespeed scale. This 

gives an approximate ratio, because no damping exists in the free 

vibration analysis. 

Figures 7.16 and 7.17 show the vertical component of motion and its 

phase change, respectively, for each model, at a frequency of 16 Hz. 

These results represent a considerable departure from the 8 HZ case, as 

16 Hz not only allows propagation in the bedrock model, but is a 

resonance frequency. This phenomenon is discussed in Section 5.4. As a 

result, the bedrock model response is much greater than that of the other 

two models, for (x/a) < 10. The minimum in the bedrock amplitude at 

(x/a) ~ 16, which is matched by a locally slower rate of propagation (see 

Fig. 7.17), is also discussed in Section 5.4. For the half-space and 

elastic foundation results in Figures 7.16 and 7.17, similar reasoning 

can be applied as to the 8 Hz results. A 16 Hz input also produces a 

fairly long wavelength compared with the layer depth (Table 3.2 gives the 

wavelengths for each frequency), and so the layer is effective at 

'trapping' energy, in comparison with the half-space. Therefore, the 

elastic foundation displacements for (x/a) > 4 exceed those of the 

half-space, and the latter's wavespeed is the smaller (Fig. 7.17). Again 

the ratio of the wave speeds can be approximated from Fig. 6.3. 

In Figs, 7.18 and 7.19, a jump in frequency is made, to 64 HZ, and 

the vertical and horizontal components of motion respectively are shown, 

for each model. Although the many propagating waves produced in the 

layered models at this frequency produce complicated variations in 

amplitude, it is clear that the three solutions show signs of merging, 

with the increased frequency. The average phase changes for each model 

(not shown at this frequency) are also close. The layer solutions seem 

to fluctuate about the half-space solution, as if it were a mean value. 

At sufficiently high frequency, it is known (see Section 5.4) that the 

layer/half-space interface becomes practically irrelevant. 

Figure 7.20 shows the direct receptance of the three models using a 

log scale to aid comparison. These curves are also reproduced and 

discussed in Chapter 8. The half-space and elastic foundation have 

infinite static responses (with the strip load; see Section 8.4), and 
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the elastic foundation eXhibits a resonance peak near 33 HZ, because of 

the fourth propagating wave. The bedrock receptance curve has several 

resonance peaks, the most Significant being the 16 Hz resonance Which 

causes the large amplitude shown in Fig. 7.16. These bedrock resonance 

peaks are also a result of the behaviour of propagating waves, as 

discussed in Section 5.4. 
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CHAPTER 8 

THE EFFECT OF MASSES PLACED' ON THE GROUND' S SURFACE 

8.1 Introduction 

In this Chapter, several problems are investigated I 

( i) the effect on direct receptance of a mass placed at the 

load; 

( ii) the transfer receptance at 25 m from the load, if a mass 

is placed between these two points; 

( iii) the transfer receptance at 25 m from the load, if two 

masses are placed at different points between the load and 

the response point. 

Each of the three situations is considered with various masses, and 

the three ground structure models - elastic half-space, elastic layer 

over inflexible bedrock (the "bedrock model"), and elastic layer over an 

elastic half-space of different material (the "elastic foundation 

model") are all treated. 

The first problem of a mass at the load, is an extension of the work 

in previous Chapters to a more realistic model. The other two problems 

are relevant to attempts to absorb surface vibration, by exciting masses 

placed there. The literature on this Subject includes much work on 

masses on diSCS, on either a half-space or an elastic layer over a 

half-space. This work will be considered in Chapter 9. Luco and 

westmann [50], in a work mainly concerned with the effect of the type of 

bonding between a rigid, massless strip and a half-space, give some 

receptance figures of interest. Alabi [2J has used a mapping finite 

difference model, to analyse the harmonic vertical motion of a rigid 

strip; he presents direct receptance graphs for various masses at the 

load. Gazetas and Roesset [23J also give direct receptance graphs, for 

each of the three ground structure models considered in this work, and 

an infinite strip load. 

The analysis in the next section of this Chapter is based on the 

method of receptances. The results presented are all receptance graphs, 

calculated for a range of frequencies and masses Which are of interest. 
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8.2 Analysis of the Effect of a Mass on the Ground's Surface Vibration 

The method of receptances will be used, Which is described by, among 

others, Bishop and Johnson [20]. 

Consider first a harmonic force acting on a mass, which rests at a 

point on the surface of the ground. The structure of the ground can be 

any of the three models considered in earlier chapters. For the purpose 

of finding the direct receptance of the mass-ground combination, 

consider the diagram shown in Fig. 8 • 1, which breaks the problem into 

elernents~ 

2 

GROUND 

F. = force at point i 
l. 

positive 

Fig. 8.1: Direct Receptance Model Diagram 

By the law of action and reaction, F3 = - Fz . 

considering the ground first: 

(8.1 ) 

where Wz is the displacement of the ground at point 2, and (3Z2. is the 

direct receptance there; throughout, • (3ij 1 will refer to a receptance, 

either direct or transfer, of the ground, and aij will Similarly refer 

to a mass. 

At the mass, which has the same displacement as the ground it rests 

on: 

(8.2 ) 
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Where O(Z1. and 0(2.2. are respectively the transfer and direct receptances 

of the mass. Also, 

= = -1 

M,w2. 

since the forces are harmonic. 

Eliminating Fz gives: 

0( 
{32.2. 

W 
2.2. F = -------z ()( + {3 1. 
Z2. 2.2. 

Which leads to 

W 
1 2. = -----------F [ I/O( + 1/{3 ) 1. 

Z2. 2.2. 

(9.3) 

(9.4) 

(9.5 ) 

which is the direct receptance expression required. O(zz is given by 

equation (9.3) for a given frequency, and {3zz can be deduced for a range 

of frequencies, and for each ground structure model, using the methods 

described in Chapters 3, 5 and 7. 

To find the transfer receptance at a point under a mass, some 

distance from the applied harmonic force, a similar method can be used. 

Referring to the receptance model diagram shown in Fig. 9.2, the 

response at point 2 on the ground is: 

(~.6) 

11 F2 

--_._----
1 2 

Fig. 9.21 Transfer Receptance Model Diagram 
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The force on the mass is F2 , and so we have: 

Elimination of F2 gives: 

F 
1. 

= 
(3 

21. 

where 0122 is again defined by equation ( 8 . 3 ) • 

receptance under a mass can be found. 

(8.7) 

(8.8 ) 

Hence the transfer 

Of more interest is the transfer receptance at a point beyond the 

mass, which itself is beyond the load; this situation is shown in 

Fig. 8.3: 

LOAD 

1 
o 
I 

RESPONSE 

1 
1 2 3 

Fig. 8.3: Transfer Receptance Model Diagram, With Mass 
between Load and Response Point 

Now if W3 is the response at point 3, 

(8.9 ) 

where (33j are transfer receptances in the same sense as before. The 

force F2 acting on the mass m is given by: 

1 (8.10 ) = 

Substituting for 0122 in equation (8.10) from equation (8.3), and 

dividing through by Flo gives: 

158. 



W (332. W 3 
(33'-. 

2. 
(8.11) = P 0( P 

'-. 2.2. '-. 

But (W2./P'-.) is given by equation (8.8), and so 

W (332. (32.1-3 (3 - (8.12 ) = -----P 3'-. (0( + (3 ) 1- 2.2. 2.2. 

This expression gives the transfer receptance at point 3, due to a force 

at point 1 and a mass at point 2. 

If a second mass is introduced, the situation shown in Fig. 8.4 is 

reached: 

LOAD r T RESPONSE 

1 1 
1 2 3 4 

Pig. 8.4: Transfer Receptance Model Diagram, With TWo Masses 

Between Load and Response Point 

Now (8.13) 

and with analysis similar to the one mass case, the expression 

W 
4. 

F 
1. 

= (8.14 ) 

can be deduced. With equation (8.14) the transfer receptance at point 

4, with a load at point 1, and two intervening masses, can be 

calculated. 
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8.3 Results 

The receptance expressions in equations ( 8.5), ( 8 .12) anej ( 8 .14) 

have been evaluateej for a range of frequencies, and for several masses. 

The distances between the loaej, masses and response point, and also the 

magnitude of the masses chosen, were all suggesteej by British Rail R&D. 

The masses were 0, 1, 3 and 10 tonnes for the transfer receptance 

graphs, anej a larger range of eight masses for the ejirect receptance 

graphs. The masses were always ejistributeej over a strip the same wiejth 

as the exciting force. The transfer receptance was calculateej at a 

point 25 m from the loaej. The mass was placed at several positions, the 

closest to the loaej being 3 m. When two masses were placeej on the 

surface, they were always of the same magnitueje. 

The grounej material properties correspond to those measured at the 

Clarborough test-site, anej are given in Table 2.2. The loss factor of 

the grounej's ejamping useej is, n = 0.1. 

The results show a non-dimensional quantity plotteej against a 

dimensional one, which is unusual. Non-~imensional vertical amplitueje, 

at a specifieej ejistance from the centre of the strip loaej, is plotteej 

against frequency measureej in Hz. This is to facilitate comparison with 

the results in other Chapters, Where non-dimensional amplituejes are 

shown plotteej against non-dimensional ejistance for a fixeej frequency. 

These fixeej frequencies are given in both non-dimensional form, anej 

ejimensional form, with particular reference in the latter case to 

Clarborough. For the non-dimensional extension to other test sites, 

such as Checkerhouse, see Chapter 3. 

Figures 8.5, 8 .6 anej 8. 7 show ejirect receptance at x = 0, with a 

variety of masses, for the half-space, beejrock and elastic founejation 

moejels respectively. Figs. 8.8 to 8.11 show receptance for the 

half-space moejel, with one mass at varying positions, anej Figs.8.12 anej 

8.13 show receptance with two masses in the half-space moejel. Figs. 

8.14 to 8.17 are beejrock receptance graphs with one mass, anej Figs. 8.18 

anej 8.19 are similar but with two masses. Figs. 8.20 to 8.23 are 

receptance graphs for the elastic founejation rnoejel, with one mass, anej 

Figs. 8.24 anej 8.25 show the results with two masses. 
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8.4 Discussion 

Although the results presented are principally for the response 25 m 

from the load, masses have only been considered at positions up to 

12 .5 m from the load. This is because a symmetry exists in the model, 

which results in a mass at n metres (n " 25) from the load, producing 

the same receptance graph as a mass at (25-n)m from the load. Similarly, 

for the two mass case, a mass Ml at x metres and a mass M2 at y metres 

(x, y " 25), is an equivalent case to a mass Ml at (25-x)m and a mass M2 

at ( 25-y)m. This symmetry is predictable from the receptance 

expressions, in equations (8.12) and (8.14). considering the slightly 

simpler equation (8.12), the terms {331.' a zz and {32.2. will not vary 

between case one (a mass at n metres) and case two (a mass at (25-n) 

metres), while the terms {3zz and {3Z1. will by their definition exchange 

values, so resulting in exactly the same transfer receptance at 25m in 

both cases. Note that the symnmetry observed here may not exist in a more 

general situation. 

This discussion will focus on the half-space, bedrock and elas't'ic 

foundation results in turn, with cross-references to each model to 

consider common features. The first Figure in the results section, Fig. 

8.5, shows the direct receptance with the half-space model and various 

masses. Above about 10 HZ, the form of this graph is familiar and 

accords with the general shape of rigid disc solutions (see Waas [79], 

for example). The zero mass curve H is monotonic decreasing, indicating 

that the peak in the other curves is a mass resonance. However, at low 

frequency , the curves tend to very large receptances, which is at 

variance with the solutions for loads on finite areas. This is because 

the static solution for a infinite strip has infinite vertical 

receptance. The proof of this is implicit in the work of TimOshenko and 

Goodier [53], who obtain a static solution for a strip by superposing 

static line load solutions. Their response is finite, because they 

assume that at some depth d below the centre of the load, the vertical 

motion becomes zero. Their finite solution then depends on a factor log 

d. In a true half-space, the vertical displacement is only zero at 

infinity, and so an infinite receptance results . Alternatively, a 

static analysis of the problem yields the expression: 

W = K [00 ~~~_,a~~~~_~~f_ 
o ,z 

(8.15 ) 
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where W is the vertical displacement at the centre of the strip, K is a 

constant, a is the strip half-width, and , is the wavenumber. This 

integral is improper due to its singularity at , = 0, and predicts 

infinite response [15]. 

Infinite receptance, or "compliance", is also found in the work on 

rigid strip solutions of Gazetas and Luco and Westmann [21, 50]. 

In common with the receptance FigS. 8.6 and 8.7, for the bedrock and 

elastic foundation models respectively, the curves for larger masses 

have peaks of greater magnitude and at lower frequency than the smaller 

masses, as usual. 

Figs. 8.8 to 8.13 show the effect of masses on the half-space 

transfer receptance. They show that the effectiveness of a mass in 

reducing the response at some distance, is dependent on the position and 

size of the mass, and also the frequency range of interest. Any of the 

masses in any of the positions will increase the response between 5 and 

15 HZ, but above 20 Hz the effect is generally helpfuL It is clear 

that a mass as small as 1 tonne has little effect, even When two are 

used in unison, as shown in Figs. 8.12 and 8.13. The 10 tonne mass 

causes a substantial reduction in response above 20 HZ, particularly 

When two 10 tonne masses are used, but this latter case significantly 

amplifies the response between 5 and 15 Hz. The "wavyness" superimposed 

on even the zero mass curves (which provide a useful reference for 

comparing the Figures), is assumed due to interference between the 

different propagating waves (see section 9.5.2). 

In Fig. 8.6, Which is a direct receptance graph for the bedrock 

model, with various masses, each curve tends to a finite value at zero 

frequency, which is required by the rigid boundary condition at the base 

of the layer. AlthOUgh the method of solution does not allow 

computation of the static displacement, it is clear that all the curves 

tend to a value of about W = (0.8 X 10-a ). a at zero frequency • Each 

mass has the same static displacement, as in the original solution of 

Navier's equations, the gravity body force was neglected. As a unit 

force was used to produce this displacement, its reciprocal will give 

the equivalent stiffness of the layer. A value of a = 0.75 has been 

used for the Clarborough model, giving a stiffness K = 166.7 MKgnCz. 
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The main peak of each curve in Fig. 8.6 is a combination of two 

effects: ( a) the mass, and (b) at 16 Hz the first two modes of 

vibration propagate with the same wavenumber, so magnifying the response 

( see the free vibration analysis of Chapter 4) . Effect (b) also 

explains Why curve H, for zero mass, eXhibits a large peak too. The 

smaller peaks at higher frequencies are also explained by the behaviour 

of natural modes, which are all analysed in Chapter 4. 

The transfer receptance Figures for the bedrock model, nos. 8.14 to 

8.19, all show practically zero response below 12 Hz. This was also 

predicted by the free vibration analysis, Which showed that the bedrock 

model "waveguide" effect prevented propagation at lower frequencies. 

The principal peak is again related to the frequency at Which the first 

two natural modes propagate in unison, but at this distance from the 

source, the centre of the peak has increased 1 Hz to abOut 17 Hz. The 

other peaks, between 45 and 50 HZ, have also shifted, although the 

increase is abOut 2 Hz. The author is' unaware of a physical 

explanation for this phenomenon, which has also been observed by others. 

In particular, the O.R.E. of the International Union of Railways [30] 

have found the following empirical relation, Which closely applies 

here: 

= K 

Where fo = the peak frequency at the load, d = the distance to the 

response point from the load, Cl. = the compression wavespeed, and K is 

the frequency shift at distance d. The dependence on Cl. suggests the 

shifting phenomenon is caused by the behaviour of the compression wave. 

Although direct comparisons are obviouSly impossible between 

solutions for a flexible, infinite strip, and a rigid diSC, a Similarity 

of form can be expected, particularly for the bedrock model, Which 

predicts finite static response for bOth a strip and a disc. Waas [79] 

has analysed a rigid disc on a layer over a rigid base, with similar 

dimensions and material properties to those used here. His Fig. 38 

shows direct receptance, and he too finds a major peak in each curve, 

with smaller peaks at higher frequencies, in virtually the same ratios 

to the results presented here. He also finds that the zero mass case 
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has the smallest of the main peaks, at a slightly higher frequency than 

any of the others. 

Direct receptance graphs of a very s~ilar form to those given here, 

can also be found in the work of Gazetas and Roesset [23], for a strip 

load, and the three ground structure models used here. 

Figs. 8.14 to 8.19 show that it is less easy to generalise abOut the 

effect of masses, than in the half-space model. A one tonne mass in 

most of the positions considered, increases response at 25 m over most 

of the frequency range, and so is of no use as an isolator. A single 

ten tonnes mass, placed close to the load at 3 or 5.5 m, substantially 

reduces bOth the amplitude of the main peak, and the response from 20 to 

40 HZ, but this first effect is lost if the mass is placed at 10 m or 

12.5m. However, a mass close to the load increases response between 12 

and 15 HZ, Which is not the case at 10 or 12.5 m. 

The most surprising feature of these Figures is the effect of two 

masses. Whereas with the half-space model, two masses were better 

isolators than one mass for most of the frequency range, the opposite is 

true in the bedrock mode 1. The large reduction between 20 and 40 HZ 

caused by the single mass, is almost completely lost, with a slight 

improvement at higher frequencies. These results suggest that a large 

single mass placed near to the load, is the best isolator in the bedrock 

model, for most of the frequency range. 

Fig. 8.7 shows the direct receptance for the elastic foundation 

model. AS in the half-space model, the static response of each curve is 

infinite. This characteristic has apparently disguised peaks Which are 

caused by mass resonance. The smaller peaks at higher frequency are 

mass-independent, as evidenced by the peak in the zero mass curve; these 

peaks are probably caused by the natural mode behaviour (see Section 

7.4). It is shown in the free vibration analysis of the elastic 

foundation model in Chapter 6, that no two modes share the same 

wavenumber at any frequency, and so the sharp peaks characteristic of 

the bedrock model cannot be expected. comparison of Fig. 8.7 with the 

bedrock receptance Fig. 8.6, reveals that because energy is not trapped 

in the layer in the elastic foundation model, the curves are smoother 

and the peak displacements smaller. 
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Physically the elastic foundation model can be considered a 

"compromise" between the half-space and bedrock models, and the results 

of Figs. 8.20 to 8.25 feature aspects of the solutions for the other two 

models. They show the effect on transfer receptance of one or two 

masses. All the curves approach larger responses near zero frequency, 

as with the half-space model, although the amplitudes are greater now, 

as more energy is retained by the layer. A rectangular load solution 

might exhibit peaks in the region 5 to 15 Hz. 

The principal peak in each Figure is shifted to a slightly higher 

frequency than the corresponding peak in Fig. 8.7, although the 

magnitude of the shift is less than predicted by the equation K 

= (fod)/C~, an equation which seems to be better matched with the 

bedrock mode 1. In each of the Figs. 8 .20 to 8. 25, curve A has a 

pronounced minimum near 23 HZ, and curve B has a minimum mear 30 Hz. 

Logically, these minima are near the frequencies of the peaks of 

corresponding curves in Fig. 8.7. only the 10 tonnes and 1 tonne cases 

can be matched exactly, since no curve for 3 tonnes has been plotted in 

Fig. 8.7. However, if the poSition of the peak of a 3 tonnes curve is 

estimated in Fig. 8.7, by extrapolating between the 2 and 5 tonnes 

curves (E and F), it is clear that the peak will be near 30 HZ. The 

mass has ' absorbed' much energy in this frequency range, leaving the 

response in this range reduced at distance. Any minimum Which might 

have appeared in curve C in Fig. 8.21, has apparently been lost in the 

large peak near 35 Hz caused by the 4th mode/propagating wave. 

AS in the half-space results, two masses are more effective 

isolators than one mass for much of the frequency range, but the reverse 

is true below about 20 Hz. Also, the effect of a second mass is less 

dramatiC than in the half-space, with the exception of the effect at 23 

HZ of two 10 tonnes masses placed at 10 and 12.5 m. Of all the mass and 

distance combinations, a single 10 tonnes mass placed at 3 m, is most 

effective at absorbing energy above 40 Hz. AS with the other two ground 

structure models, the results suggest that the effectiveness of 

isolators is heavily dependent on the frequency range of interest, and 

the relative positions of load, mass and response point. In general a 

large mass is much more effective than a small one. Probably the safest 

and most economical use of an isolator, is a single heavy mass close to 

the load. 
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This analysis could be improved by including the receptance to 

horizontal mass motion, and rocking motions. However, some comparisons 

have been made with experimental results produced by British Rail [32]. 

Results from a test site at uttoxeter, where a shallow 3 m layer covers 

a firmer material, 

model results here. 

show some agreement with the form of the bedrock 

A large peak in the uttoxeter transfer receptance 

graphs is almost independent of the position of the measuring point, and 

below this frequency little propagation occurs. 

Comparison of experimental results with the other two ground 

structure models (half-space and elastic foundation), is made difficult 

by the infinite static response. 
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CHAPTER 9 

A THREE-DIMENSIONAL MODEL: A RECTANGULAR LOAD 
ON A HALF-SPACE 

9.1 Introduction 

9.1.1 Relevant previous work 

The two founders of research into ground Vibrations were LOrd 

Rayleigh and Professor Lamb. Rayleigh [67] discovered the existence of 

a surface wave restricted to near the free surface of a half-space, now 

known as the Rayleigh wave. Knowledge of the existence and behaviour of 

this wave is necessary to explain experimentally observed ground 

vibrations. Lamb [45] was the first to consider the waves propagated and 

vibration caused by line and point sources, acting on the surface of an 

elastic half-space. His approach to the problem has guided much of the 

subsequent work. As an extension of Lamb's work, Love [49] considered 

the static displacements of a rectangular or circular load on a 

half-space, using the potential method due to Boussinesq. 

Since these early theoretical studies, most workers in this field 

have been motivated by the reqUirements of civil engineering, for example 

to improve machine foundation design and avoid damage-causing resonance. 

For this reason, they have studied the direct receptance of loads, rather 

than the vibrations caused on the surface surrounding the load. Reissner 

[81], and later Miller and Pursey [56], considered a constant stress 

acting over a diSC, Which is a convenient shape to analyse in cylindrical 

coordinates, and leads naturally to use of the Hankel transform. Miller 

and Pursey incorporated viscoelastic damping into their model, and 

produced asymptotic expressions for the surface displacements, valid in 

the far-field. 

Bycroft [9] used a stress distribution under the disc closer to that 

produced by a rigid diSC, in an attempt to simulate a machine foundation 

more closely. He based his stress distribution on the static stress 

distribution, which can be calculated exactly (see Richardson's Appendix 

[68], for example), and his results have been shown adequate for low 

frequency [4]. Bycroft also considered a disc on an elastic stratum. 
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Awojobi and Grootenhuis [4] and Robertson [70] tackled the genuine 

rigid circular body problem, which involves mixed boundary conditions of 

constant displacement under the disc, and zero stresses on the 

surrounding surface. This leads to dual integral equations, from Which 

AWOjobi and Grootenhuis obtain approximate expressions for the stress 

distributions, by combining series solutions to the integrals (neglecting 

the integrands' singularities), with asymptotic expressions for the 

contributions from these singularities. They show receptance graphs for 

the circular body, and also find the "correction mass" which must be 

added to the body if a statiC stress distribution is assumed, and the 

resonant frequencies of the body are desired. Robertson also gives 

receptance graphs, produced with a series solution. 

In a later piece of work, Awojobi [3] again considered a rigid 

circular body, but resting on 'Gibson soil', which is defined as 

incompressible with a shear modulus proportional to depth, such that 

~ = kz, where k is a constant and z the depth. He, too, produces 

direct receptance graphs. 

In an extension to the work of these authors, LUCO and Westmann [51] 

have studied the effect on the vibrations of a rigid disc of varying 

POisson's ratiO. Their solution of the key integrals involves the 

numerical integration methods of Filon [1] and Simpson's Rule [35]. zeng 

and Cakmak [16] have used orthogonal series expansions to approximate the 

stress and displacement under a rigid diSC, and Lin [46] has investigated 

the effect on the rigid disc's stress distribution and receptance, of 

varying the half-space hysteretic loss factor, n. Richardson studied 

the coupling of the motion of two diSCS, using Bycroft's stress 

distribution under the diSCS, and approximating the resulting integrals 

using Longman's method for OSCillating integrals [47,48]. 

Richardson, Webster and Warburton [69] have considered some 

combinations of circular bodies and excitations on or beside the bodies. 

They have used Bycroft's stress distribution under the bodies, and 

approximated the infinite integrals with Longman's technique. They have 

found that the vertical mode of excitation propagates with greater effect 

than the rOCking or horizontal modes, and that a mass some distance from 

the eXCitation point can be strongly excited. 
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Balakrishna and Nagaraj [66] give some useful expressions for 

predicting the natural frequencies of excited bodies, which are 

applicable to the rectangular load studied here. One expression, which 

they attribute to Converse, gives good agreement with the resonant 

frequencies found in this work, as shown in Section 9.5.3. 

some more recent workers have been interested in the effect of layers 

in the ground of different material properties, or of the effect of 

non-circular loads. Warburton [80J has looked at the forced vibrations 

of a circular body, resting on an elastiC layer over an inflexible 

half-space (the "bedrock" model used with an infinite strip load, as in 

Chapter 5), with Bycroft's approximation to the stress distribution under 

the body. Waas [79] has used the Finite Element Method, to study the 

vertical motion of a disc on both a half-space and the "bedrock" ground 

structure model, using hysteretic damping. His bedrock results 

resemble, in form, those of Chapter 5. LUco [52] worked on the problem 

of a rigid disc resting on a viscoelastic layer, which in turn over-lies 

an elastic half-space. He gives graphs of the impedance functions. He 

chose constant hysteretic damping in preference to Kelvin-Voigt viscous 

damping, because laboratory tests have shown this to be a better 

approximation to the anelastic behaviour of soils. In effect, his model 

of the ground is the same as that studied with an infinite strip load in 

Chapter 7. Girardi [24] has considered the effect of torsion applied to 

a diSC, which lies on the "bedrock" ground structure. 

Kausel, Roesset and Waas [37J have used the Finite Element Method to 

approximate the swaying and rOCking impedance functions, of irregular 

footing shapes on layered media, which they find tend to the half-space 

solutions for high frequency. Kobori, Minai and Suzuki [39] have 

studied the vibration of a massless rectangular load, resting on an 

hysteretically damped "bedrock" ground structure. They find that the 

natural propagating modes have a similar effect on the surface vibration, 

to the results of Chapter 5 for an infinite strip on a "bedrock" 

structure. Their solution method, which has to contend with a doUble 

Fourier inverse transformation which cannot be performed analytically, 

uses the coordinate transformation ~ = , cos e, y = , sin e, where ~ 

and yare the transform variables, in order to reduce the e-integral to 

finite limits. Gaul [19] uses the same transformation to study the 
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vibrations due to a square loaded by a uniform harmonic stress, and 

resting on a half-space which is hysteretically damped. He is concerned 

with surface vibrations in the near-field of the load, and for this 

reason his work is closest to the main results here. As explained in 

Section 9.4.2, his parameters have been used with the solution method of 

this Chapter, and good agreement found. 

Experimentally, Chae [11] has investigated non-circular foundations 

in some depth, and discovered that the same load acting on a rectangular 

area produces greater deflection than on the same circular area. He has 

also found that the resonant frequency of a rectangular mass is lower 

than the resonant frequency of an equal circular mass. He has modified 

the previously held "equivalent radius", used to compare solutions due to 

circular and rectangular bodies, from one based on equivalent area, to 

one based on equivalent perimeter lengthS. This new equivalent radius 

will be used in Section 9.5.3. 

9.1.2 The scope of work in this Chapter 

In this Chapter, the surface vibrations due to an harmonically loaded 

rectangular strip are studied. The dimensions of the strip are chosen to 

approximate those of a railway sleeper. The stress is uniformly 

distributed, and the contact is 'smooth' ; there are no shear stresses 

under the load. Although a rigid strip would be a closer approximation 

to a sleeper, it has been assumed that on the free surface around the 

strip, the difference in behaviour caused is not pronounced. The strip 

rests on an isotropiC, homogeneous, elastiC half-space, Which exhibits 

constant hysteretic damping. only a vertical harmonic force is applied 

to the strip, as thiS is considered the most important component of 

vibration induced in a sleeper by a passing train. However, the method 

can easily be altered to accommodate different loading conditions. 

Unlike the infinite strip load studied in previous Chapters, the 

elastodynamic equations {equation (9.1» must now be solved in three 

dimensions, not two. The approximate solution is obtained by double 

Fourier transforming the partial differential equations Which describe 

the vibration, solving these in the transform domain, and then using 

numerical techniques to inverse transform and give the near-field surface 

displacements. The requisite analysis, which follows [40] is given in 
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section 9.2, and the numerical solution described in Section 9.3. 

section 9.4 describes the results, which form three groups of figures: 

(i) the integrand functions which must be inverse transformed. and 

which give useful information about the propagating wave 

components, which assemble to cause the surface displacements; 

(ii) vertical and horizontal motion amplitudes and phase changes 

plotted against distance, for each of four frequencies; 

(iii) direct and transfer receptance figures, with various masses 

either placed at the load, or at a response point some distance 

from the load, or finally at a point in beween the load and 

response point. 

9.2 The Analysis of the Surface Vibration Caused by a Vibrating 
Rectangular strip 

Rectangular strip, uniformly 
and harmonically loaded 

y,v 

z,w 

b 

c 
X,u 

Elastic half-space, 
material properties, E,p,v 
and hysteretic damping loss 
factor n 

Fig. 9.1: Diagram of Rectangular Load on Half-space 
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Figure 9.1 shows the coordinate system and rectangular strip 

dimensions of the model to be analysed. The rectangle has sides of 

length 2b and 2c, and is aligned with respect to the coordinate axes as 

shown. It rests on a homogeneous, isotropic, elastic half-space, Which 

has material properties E, p and v in the usual notation, and exhibits 

hysteretic damping of vibrations characterised by a loss factor n. An 

harmoniC vertical load acts uniformly over the rectangle, and the contact 

is 'smooth' - no shear stresses exist at the surface, 

The behaviour of the half-space is described by Navier's 

elastodynamic equations (see Appendix A [26], for example). In the 

absence of a body force, these can be written: 

(9.1) 

Where X and ~ are as usual the Lame constants, u is the vector of 

the three components of displacement, and if denotes double 

differentiation with respect to time. "V" denotes the gradient, "V." the 

divergence, and "Vz" is the Laplacian operator. 

The stress-strain relations can be written: 

Tij = X6kkBij + 2~6ij 

where (9.2) 
1 

6ij = 2(Ui,j + Uj,i) 

where Tij are the stress components, 6ij are the strain components 

as defined, Bij is the Kronecker delta, and the summation convention 

applies. 

If the motion is harmonic with frequency W, then equation (9.1) 

can be expanded into the three component equations: 

(9.3) 
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(A + jJ.) 
at::.. jJ.1l2.v + pw2.v -- + = 0 
ay ( 9.4) 

(A + jJ.) 
at::.. jJ.1l2.w + pw2.w 0 -+ = az (9.5) 

where the dilatation t::..= 
au + av + aw 
ax ay az (9.6 ) 

Taking the differential of equations (9.3) to (9.5) with respect to 

x, y and z respectively, and dividing through by p, gives the following 

three equations: 

A + jJ. a2. t::.. + ~ a ll2.u + w2. au = 0 --p-- ax2 p ax ax 

A + jJ. a2. _jJ. a av 
t::.. + ll2.v + w2. = 0 P ay2. p ay ay 

A +_jJ._ 02. jJ._ a oW 
p az2 t::.. + P az ll2.w + w2. az = 0 

Summing equations (9.7) to (9.9) and simplifying gives: 

Putting 

gives 

where C 2. 
1. 

(9.7) 

(9.8) 

(9.9) 

(9.1O) 

(9.11) 

(9.12 ) 

To solve equation (9.12), the double Fourier transform is required, 

defined by 

= 211T fOD fOD f(J3,y,Z) 
-00 -00 

(9.13 ) 

The transform of a double partial differential can be shown to be: 

f
a> fa> _a_2.~ - ( j3X+ ) e-1 YY dxdy = -J32.g(J3,Y,Z) 

21T ax2. 
-00 -00 

1 
(9.14) 
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Now Fourier transforming equation (9.12) givest 

(9.15 ) 

(9.16 ) 

and integrating equation (9.15) gives 

(9.17) 

where A and B are constants of integration. However, B must be 

zero, otherwise incoming waves exist, and no reflection is allowed 

at z = 00. Hence 

The Fourier inversion of equation (9.18) gives 

A(X,y,Z) = ~rr IOO IOO 

A(~,y)e-a~z+i(~+YY)dAdY 
-00 -00 

(9.18 ) 

(9.19 ) 

Now equations (9.3) to (9.5) can be Fourier transformed; also 

dividing through by p givest 

A + 1.1. - ~ ( _~z yZ + 
d2. - (.U2.u ( ----- )( -i )~A + - ---)u + = 0 p p dzz (9.20 ) 

A + 1.1. - ~ ( _~z y2. d Z - (.Uzv ( ----- )( -i )yA + - + ---)v + = 0 p p dz' 
(9.21 ) 

A + )J. ~~ + ~ ( _~2. y2. d2. - (.U2.W ( -----) - + ---)w + = 0 
p dz p dzz (9.22 ) 

Substituting into equations (9.20) to (9.22) from equation (9.18), 

and multiplying through by p/)J. gives 

(9.23) 
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dZ pwz _ 
( ____ ~z _ yZ + ---)v = 
dzz ~ 

Putting 

and 

gives: 

and 

Therefore 

d Z 
(--
dzz 

where 

A + 2jJ.. ::: (--'P.--- - 1) 

The homogeneous solution of equation (9.30) is 

._()( z 
(U,V,W) = (B,C,D)e Z 

as waves reflected at 00 are inadmissible. 

A particular integral of equation (9.30) is [40] 

(u,v,W) 

(9.24) 

(9.25 ) 

(9.26 ) 

(9.27 ) 

(9.28) 

(9.29 ) 

(9.30 ) 

(9.31) 

(9.32 ) 

Therefore, combining equations (9.31) and (9.32), the complete 

solution is: 

-
(u,v,w) (9.33 ) 

From the definition of the dilatation a, equation (9.6), we have 

after applying the Fourier transform: 
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-
6.= 

-dw -iJ3u - iyv + 
dz 

(9.34) 

But u, V and ware given by equation (9.33), and inserting these 

in equation (9.34) gives 

(9.35 ) 

-Substituting in equation (9.35) for 6. from equation (9.18), 

cancelling terms and rearranging, gives an expression for D: 

D = i 
(J3B + yC) 

Q(z. 

Equation (9.33) can now be rewritten: 

(9. 36) 

(u,V,w) A ~z i ~z = (i~/iY/a~) --- e ~ + [B/C, - (~B + yC)]e 2 (9.37 ) 
k~Z. Q(z. 

To find A, Band C, we must introduce the Fourier transformed stress 

boundary conditions. From equation (9.2) 

(9.38 ) 

Substituting for u and w from equation (9.37) leads to: 

(9.39) 

Similarly 

Tyz 'z=o (9.40) 

(9.41 ) 
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The stress component 'zz is non-zero under the load; its transform 

from equation (9.2) is given by: 

- - dW) I 
'zzlz=o = {A~ + 2~ dz z=O (9.42 ) 

Therefore 

'zzlz=o (9.43 ) 

Substituting for ex 2-
1. in equation (9.43) from (9.16), and 

noticing from equation (9.26) that 

leads to 

Tzzlz=O = 

The stress at the surface is given by the imposed load: 

Tzzlz=O = 

= 0 

P 
4bc Ixl < b , Iyl < c 

Ixl > b, Iyl > c 

( 9.26a) 

(9.44) 

(9 .45) 

i.e., the surface is stress-free outside the rectangle. P is the total 

force acting on the rectangle, and is uniformly distributed over it. 

Now from equation (9.45) 

- = 2rr1 fOO fOO_ 'zz'z=o 
P -i(!3x+W)d d 

4bc e )QY 
-00 -00 

(9.46) 

Evaluating this integral leads to 
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Izzlz=O = 
p 

(9.47 ) 2rrbc 

Equations (9.39) and (9.41) are two equations for the three 

constants A, B and Cj combining equations (9.47) and (9.44) gives the 

third equation necessary for a solution: 

sinj3bsinyc ---J3y---
(9.48 ) 

Multiplying equation (9.39) by y, and subtracting from it equation (9.41) 

multiplied by 13, gives, after a little algebra: 

(9.49 ) 

Substituting this into equation (9.41) leads to: 

(9.50 ) 

which, using equation (9.26), simplifies to: 

( 9.51) 

Substituting equations (9.51) and (9.49) into equation (9.48) yields: 

(9.52 ) 

where 

(9.53) 

F(J3,y) is the well-known Rayleigh function. This allows the 

expreSSion for C to be re-written: 
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c = iP sin/3bsinyc 2<X <X Y 
-----(----------).--~-~-
2rrbc~ ~ F(~,y) 

(9.54) 

NOw, from equations (9.51) and (9.49) 

(9. 55) 

(9.56 ) 

With A, Band C defined as functions of ~ and y, equation (9.37) 
-gives u, v and w in a form suitable for numerical inverse Fourier 

transformation. This process is descrLbed in the next section. 

9.3 The Method of Numerically calculating the Inverse Double Fourier 
Transforms 

TO find the displacements in the half-space, caused by the vibrating 

rectangle, it is necessary to inverse transform equation (9.37), where A, 

Band C are defined by equations (9.54), (9.55) and (9.56). Therefore 

the general problem is expressed by the inversion of equation (9.37): 

(u,v,W) 1 JOOJOO A i :::: (C-". - ) -<Xl.z + [B C {~B + yC)]e<XzZ} 2rr ~F/~Y/()(l0 k~2 e I ,- <X
z 

I-' 

-00 -00 

x e i( ~x+yy ) d~y (9.57 ) 

However, we are interested in the surface vLbration, where Z = 0, 

and if we further restrict the range of interest to the x-axis, where 

y = 0, the inverse transform is Simplified: 

(u,V,W) 1 JOOJOO A i = 217 {(i~,iY/a~) k--z + [B,C,-
-00-00 1. <X Z 

i~x 
(~B + yC)]}e d~y 

(9. 58) 
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The functions u, v and ware shown plotted in the (~,Y) plane in 

Figs. 9.2 to 9.5, and their behaviour is such as to further simplify 

equation (9.58). The function v is anti-symmetric about y = 0, with 

the result that the transverse displacement v along the x-axis is zero. 

This is required by the symmetry of the physical problem; likewise, the 

horizontal displacement u will be zero on the y-axis, and this is 

ensured by u being anti-symmetric about ~ = o. 

Furthermore w is symmetric in both ~ and y axes, while u is 

symmetric in y = 0, and as just mentioned, anti-symmetric in ~ = O. 

These properties allow the infinite integrals to be reduced to 

semi-infinite integrals, as the ternl ei~ is the sum of a symmetric and 

an anti-symmetric function. Equation (9.58) reduces to: 

00 00 

u = ! J J (B -
o 0 

(9.59 ) 

and 

A i i-z - a-z (~B + yC)} cos~xd~y 
.1 Z. 

(9.60 ) 

Although methods exist for the computation of convergent infinite 

integrals (see, for example, LOngman [47]) the upper integration limits 

in equations (9.59) and (9.60) can be truncated with an insignificant 

loss of accuracy. This is because most of the information in the (~,y) 

plane is near to the Rayleigh wavenumber kR' where kRz = ~z. + yz.. 

Denoting adequate 'cut-off' points for the integration by ~c and Yc' 

equations (9.59) and (9.60) can be re-written 

and 

2 u :0: 
IT 

2 
IT 

(9.61 ) 

(9.62 ) 
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For large (~X), the first integration along the ~ axis in each of the 

above integrals will develop dense oscillations. The integration can be 

approximated accurately, for a chosen value of x (say x!.), using a 

method described in Appendix A. If the results of these first numerical 

integrations are denoted u(xl.) and w(xl.) such that 

(9.63 ) 

and 

(9.64) 

then we may write 

(9.65 ) 

and 

(9.66 ) 

where throughout an expression of the form u(xl.) means "U evaluated 

for X = x!.'" 

The variations of u(xl.) and w(xl.) are sufficiently well-behaved, in 

the frequency and distance range of interest here (frequency ~ 64 HZ, 

distance ~ (x/b = 33», to allow integration of equations (9.65) and 

(9.66) using several applications of Simpson's Rule. 

Simpson's Rule is given by 

+ ... + 

+ 2(f, + ... + f,n-,)} 

Where fi is equal to f( xi) I and h is the increment. 

(Ref: any Engineering MathematiCS textbook, e.g., Spencer at a1 [35]) 
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Several applications are desirable, as then the interval used for the 

Rule can be varied according to the local behaviour of U(x~) and 

w(x1 ). Above y = kR' u(x1 ) and w(x1 ) vary smoothly, but both exhibit 

peaks related to the Rayleigh and compression wavenumbers (the location 

of which is frequency dependent), and for large x 1 (> 10) both exhibit 

significant oscillations for y < kR' (See Figs. 9.6 and 9.7, which show 

plots of w against y.) 

Once u(x1 ) and w(x1 ) have been approximately evaluated for the 

whole range 0 ~ y ~ YC 1 equations (9.65) and (9.66) give u(x1 ) and 

w(x1 ). By then incrementing x1 , and repeating the process, the surface 

displacement pattern in the near-field can be found with adequate 

accuracy. 

Note 1: The value of the expression (sin~bsinyc/~y) requires attention 

when ~ or y equal zero. Using L'Hopital's limit theorem, it can be 

shown that if ~ = 0, then the expression = sin yc/y, and conversely if 

y = 0, then the expression = sin ~b/~. If both ~ and yare zero, it 

has the value 1. 

Note 2: In Section 9.1.1, it was mentioned that two previous workers 

reduced one infinite integral of the double inverse transform to finite 

limits, by means of the transformation ~ = , cose, y = ,sine. This is 

a more elegant approach, and may save some computation time; however, 

one infinite integral must still be contended with, and by the method 

used here, most of the computation time is spent on just the first, more 

involved, integration. Keeping the original expressions has the 

advantage that the information on each axis is known to be predominantly 

near ~/y = kR' 
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9.4 Results 

9.4.1 Material properties and non-dimensionalisation 

In previous Chapters an attempt has been made to generalise the 

results, by non-dimensionalising them. However, these results are most 

easily interpreted as for a particular British Rail test-site, at 

Clarborough. The results here are presented in a similar way, to aid 

comparison with the previous work. 

A description of the non-dimensionalising method can be found in 

Chapter 3. Although the Figures here, which show actual displacements or 

pnase change plotted against distance (Figs. 9.B to 9.13) all have 

non-dimensionalised scales, all the Figures are for a particular 

frequency (Of the harmonic load) in Hz. Should the reader wish to 

compare these results with others, the following non-dimensionalised 

(frequency)2 term should be used: 

(9.67 ) 

in the notation used before. 

The four relevant non-dimensional (frequency)Z values are tabulated 

below, using the Clarborough material properties: 

Frequency (HZ) 4 16 32 64 

OZ = ~~e~~ 0.002 0.033 0.131 0.524-
E 

Table 9.1: Relevant values of the frequency parameter oz. 

The C1arborough material properties, as used in previous Chapters, 

are Young's modulus, E = 269 MNm-'; denSity, p = 1550 kgm-3; pOisson'S 

ratio:: 0.257. The compression, shear and Rayleigh wavespeeds with these 

material properties are, respectively, 459.4, 262.7 and 241.9, all ms-~ 

(see equation (4.14) for the calculation of the Rayleigh wavespeed). The 

values of 'b' and 'c' used are 0.75 m and 0.125 m respectively. 

Figures showing actual displacements (Figs. 9.8 to 9.16) are for a 

load of magnitude 2rr (the load is non-dimensionalised as P = P/Ebz, 
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which has the value P = 4.15 x 10-& for a load of 2rr at Clarborough) 

and an hysteretic damping loss factor n = 0.1 (see Chapter 2 for a 

description of the damping mechanism). These figures are as used in the 

previous Chapters. 

In Figure 9.2, which shows curves of u, v, w plotted against ~ or 

Y, the features of the curves have been exaggerated by reducing the loss 

factor n to 0.02. 

9.4.2 Accuracy of the method, and comparison with other work 

An example of the computer programs used to produce these results, 

called Program W, is listed in Appendix B. A note preceding the listing 

describes how other related programs can be generated, by modifying W. 

All the programs (except those which plot in the (~,Y) plane) use the NAG 

library routine DOlANF, which accomplishes the first integration of u 

and w resulting in values of u and w (these terms are defined in 

the last section). The NAG routine is described in Appendix A. The 

accuracy of this routine depends on input parameters stating the required 

relative accuracy, and the required absolute accuracy. In addition, the 

values of ~c and Yc (def.ined in Section 9.3) will alter the 

solution. It was found that defining the relative accuracy and absolute 

accuracy as respectively 10-6 and 10-~8, and setting ~c = Yc = 20, the 

results were accurate to three Significant figures, on the basis of 

comparisons with higher required accuracy and greater ~CI Yc' 

To the author's knowledge, the only previous results which can be 

directly compared with those produced by the method here, are due to Gaul 

[19]. He gives results for two non-dimensional frequencies, Showing the 

variation of real and imaginary parts of non-c'iimensional displacement up 

to xfb = 8, due to uniform loading of a square area (area b Z ). He uses a 

POisson'S ratiO v = 0.4, and incorporates hysteretic damping. However, 

his damping model is Slightly different to the one used here, as he uses 

different loss factors for shear and compression - respectively, 

ns = 0.05, ni\= 0.1. Apart from this difference, program W was easily 

modified to use Gaul's square load, different poisson's ratiO and 

different frequency. The results showed excellent agreement with the 

real part of Gaul's vertical displacement, and were within 10% of the 

205. 



imaginary part of the displacement. This difference is assumed due to 

the different damping, as effectively the loss factors were taken as ns 

= nA = 0.1. This agreement with Gaul's results which were produced by a 

different method (see Section 9.5) lends weight to the results presented 

here. 

9.4.3 Description of Figures 

Figures 9.2 to 9.5 show plots of u, v and w in the (~,y) plane. 

Figures 9.2 to 9.5 show a surface, while Figure 9.2 effectively shows 

sections of the surface, with the features exaggerated by decreasing 

n. Figure 9.2 shows the symmetry and anti-symmetry respectively of w 

and u in the y-direction, and the symmetry of v in the ~direction. 

The major peak in each graph is caused by the Rayleigh wave. In Figs. 

9.2(a) and 9.2{C) the peak is only shifted slightly from y = kR' because 

of the damping present, but in Fig. 9.2(b), this shift is greater, 

because the • section , is taken at y = 0.02, and the peak is centred 

near (kRZ - 0.02 Z )'2. Again, the peak is • near' tttis value due to the 

damping. 

The fact that this peak follows the locus kRz = yZ + ~z can be 

clearly seen in Figs. 9.3 to 9.5. These show the U , v and w surfaces 

over part of the quarter-plane. For the frequency of 32 Hz chosen, a 

unit square in the (~,y) plane is large enough to show all the behaviour 

of interest. The variations over the other three quarter-planes can be 

deduced from the one, because of the symmetry of the functions. The 

second, smaller peak (or trough) in these Figures, near ~ (or 

y) = 0.45 on y (or ~) = 0, is caused by the compression wave. As was 

the case with the infinite strip solutions of Chapter 3, the shear wave 

contribution is lost in the dominant Rayleigh wave peak. 

Given the symmetry of the physical problem, the horizontal and 

transverse motion components u and v can be expected to be related in 

some way, and their relationship is revealed in the algebra of 

Section 9.2. Combining equations (9.37), (9.54) and (9.56) leads to the 

equation: 

(9.68 ) 
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Hence, rotating the u graphs through 90°, and interchanging the 

names of the (3 and y axes, will produce the v graphs. partly for 

this reason, Figs, 9.4(a) and 9.4(b) show the v surface observed from the 

(1.0,1.0) corner of the ((3,y) plane, instead of the origin as for the u 

surface in Figs. 9.3(a) and 9.3(b), to show more information in the four 

graphs. 

Figures 9.5(a) and 9.5(b) show the w surface, and clearly suggest the 

symmetry of w in both {3 = 0 and y = o. 

-Figures 9.6 and 9.7 show w curves plotted against y, for the 

frequencies 4 and 64 Hz, and various values of x. These Figures show 

how for low frequency, increasing x has the effect of concentrating 
-the w information below kR' At the higher frequency, increasing x 

still has this effect, which is beneficial with regard to applying 

Simpson's Rule, but in addition the integration is complicated by an 

oscillation, imposed on both real and imaginary parts of w below kR' 

Graphs of the variation of u for increasing x and frequency would 

behave similarly. Figures 9.6 and 9.7 therefore show that the 

increments used in the applications of the Simpson's Rule, to each 

section of the w or u curve along 0 ~ y ~ yc' should be varied as 

x increases. Such a variation was used to produce the results here, to 

maximise the efficiency of the method. 

Figure 9.8 shows the variation of non-dimensional vertical amplitude 

with distance, the amplitude plotted on a log scale, for the four 

frequencies considered in this Chapter: 4, 16, 32 and 64 HZ. The small 

"crinkles" on each curve are due to the approximate nature of the 

integration, and could only be removed with considerably greater 

computation time. However, an additional 'wavyness', evident 

particularly in the 64 Hz curve, is apparently due to a physical 

property, as explained in Section 9.5.2. 

Figures 9.9 and 9.10 show the phase change with distance of each of 

the four frequency inputs. As in previous Chapters, there is no 

discontinuity in the phase change in reality; the appearance of the 

lines is a graphical convenience to limit the scale to ±rr. Each 'jump' 

should occur at exactly ±IT, and failure to do so at the higher 
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frequencies is due to the resolution of points being inadequate. AS 

wavenumber is defined as rate of change of phase, the effective 

wavenumber of each travelling wave in this 'near-field' can be calculated 

graphically. In the range shown, the wavenumbers are practically 

constant, and are tabulated below, with the theoretical zero-damping 

Rayleigh wavenumber for comparison. 

Frequency Wavenumber Rayleigh Wavenumber 

4 0.115 0.103 

16 0.447 0.415 

32 0.860 0.831 

64 1.724 1.66 

Table 9.2: Wavenumbers of the propagating Waves 

The discrepancy between the Rayleigh wavenumber and the propagating 

wavenumber is partly due to the damping present, but the discrepancy is 

slightly larger than produced by a Vibrating infinite strip, with the 

same damping (Chapter 3). An additional reason for the difference is 

discussed in Section 9.5.2. 

Figure 9.11 is similar to Figure 9.8 but shows the change in 

amplitude of horizontal (u) motion (on a log scale) with distance. 

Because of the log scale, the zero amplitude at x = 0, required by 

symmetry, cannot be shown. A clear maximum of amplitude is achieved, for 

each of the four frequencies shown, at the load edge, where x/b = 1. 

Features of Fig. 9.8 are amplified in Fig. 9.11, with the regular 

'wavyness' of each curve being much clearer. The 'wavelength' of this 

phenomenon can be easily measured from Fig. 9.11. Also, the tendency for 

higher frequencies to predominate in the near-field is more evident than 

in Fig. 9.11. 

Figures 9.12 and 9.13 correspond to Figs. 9.9 and 9.10, and show the 

variation of the horizontal motion phase with distance. The effect of 

the load edge is clear in each graph, and the rates of change of phase, 

or wavenumbers, of each curve match their vertical motion counter-parts, 

with the exception of the 4 Hz graph which has a slowly increasing 
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wavenumber up to xfb = 20, Where it achieves the 4 Hz vertical motion 

wavenumber. 

Figures 9.14, 9.15 and 9.16 form a separate group of results, and are 

concerned with the effect of masses on direct and transfer receptances. 

Figure 9.14 shows the direct receptance of the rectangle with eight 

different masses, over the frequency range 2 to 64 Hz. In these three 

Figures, the total input load is of magnitude rr. Each mass resonant 

frequency is clear, and the tendency of each curve to the same static 

value is evident. This static value is approximately Iwfbl = 2.2x10-a , 

which, treating the mass on the ground as a Simple, mass-spring system, 

and re-dimensiona1ising for the C1arborough properties with unit load per 

unit area, gives a stiffness K = 5.08 x lOa Nm-~. Figure 9.15 is 

similar to Figure 9.14, but considers the transfer receptance of a 

rectangular mass placed at xfb = 4 from the load. The same 8 masses 

were used as in Fig. 9.14. The purpose of Fig. 9.15 is to help 

interpret Fig. 9.16, which shows the response at xfb = 33~/3 from the 

load, if a mass is placed at xfb = 4. Four masses were used in this 

case. All the masses used are listed on the relevant Figures. 

The method used to produce these receptance figures was identical to 

that used for the infinite strip receptances, described in Chapter 8. 

Equations (8.5), (8.9) and (8.13) have been used to produce Figs. 9.14, 

9.15, 9.16 respectively. 

9.4.4 Additional data for displacements further from the load 

The near-field results presented show high frequencies producing 

greater displacements than low frequencies. This is known to not be the 

case further from the load, from experimental observation. As the 

amount of computation which would be required made it impractical to 

extend Figs. 9.8 and 9.1l, vertical motion was instead computed for a 

small range of distance, much further from the load. The results of 

these computations are tabulated below, in dimensional form, for the 

Clarborough test-site. 
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Frequency Distance Iwl Phase of w I(change in 

(Hz) from load m x 10-1.1· (radians) phase of w)1 

48 2.27 0.704 
49 2.24 0.585 0.119 Av.= 4 
50 2.23 0.467 0.118 
51 2.19 0.359 0.108 

0.115 

48 2.24 1.209 

16 
49 2.16 0.809 0.400 Av.= 
50 2.06 0.404 0.405 

0.409 
51 1.97 -0.017 0.421 

48 1.22 0.123 
49 1.15 -0.705 0.828 Av.= 32 

1.10 -1. 567 0.862 50 
0.816 

51 1.09 0.753 0.757 

48 0.21 1.427 

64 
49 0.19 -0.451 1.878 Av.= 
50 0.18 1.179 1.630 

1.792 
51 0.16 -0.689 1.868 

Table 9.3: Additional Vertical Motion Data. 

From Table 9.3 it can be seen that, sufficiently far from the load, 

the low frequency components dominate. However, this data is too 

limited to draw safe conclusions from the phase change calculations. 

9.5 Discussion 

9.5.1 Discussion of Figures with reference to the infinite strip 
load results 

The bulk of work in this thesis is concerned with an infinite strip 

load, acting on one of three different ground structures. Surface 

vibrations in the Vicinity of the load have been predicted. In the 

literature on ground vibration, very little work is concerned with 

surface vibrations around a load of finite area, and most of this work 

has been concerned with a half-space ground structure. It is probable 

that the Finite Element Method will prove the best tool with which to 

analyse more complicated ground structures. With this method, Waas [79] 

has already studied vibrations in the vicinity of an embedded circular 

load, with the 'bedrock' ground structure. Warburton [80] and LUCO [52] 
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have calculated the direct receptances of circular bodies, resting on 

either 'bedrock' or 'elastic foundation' ground structures (the 'elastic 

foundation' is an elastic layer over an elastic half-space of different 

material properties), and comparison with the infinite strip load 

receptances for these ground structures reveals many similarities. It 

would be of value if a tentative extrapolation could be made from the 

surface vibration results for an infinite strip, acting on layered ground 

structures, to predict the effect of a finite strip on the same ground 

structures. 

With the results in this Chapter, a useful comparison can be made 

beween these two different loads acting on the half-space ground 

structure. The relevant results for the infinite strip are contained in 

Chapters 3 and 8. using Clarborough data, both the infinite and finite 

strips have a total width of 1.5 m, but the finite strip is only 25 cm 

long (in the y-direction). Figures 3.3(C) and 3.2(b) show plots of u 

and w against wavenumber C, for the infinite strip, with a frequency 

of 32 Hz and a loss factor n = 0.002. These can be compared with Figs. 

9.2(C) and 9.2(a) respectively, which are for the rectangle (or finite 

strip) with n = 0.02. They are of exactly the same form, although, of 

course, this similarity of form does not imply that integration of the 

different u and w functions will produce results also of exactly the 

same form. Figures 9.2(a) and 9.2(C) are sections through a two 

dimensional surface, chosen to show maximum amplitudes, unlike Figs. 

3.3(C) and 3.2(b). 

Figures 9.3 to 9.7 in this Chapter have no equivalent in the infinite 

strip results. They are easy to interpret, and were discussed briefly in 

Section 9.4.3. Figures 9.8 and 9.11, however, can be compared with the 

corresponding displacement Figs. 3.4 and 3.5. It is clear, particularly 

in the high frequency horizontal motion, that a 'wavyness' of the same 

'wavelength' exists in the corresponding figures. The probable reason for 

this is discussed in Section 9.5.2. A comparison of amplitudes under 

the different loads is possible, but it must be remembered that a total 

load 2rr for Figs. 9.8 and 9.11 compares with a load 2rr/unit length in 

Chapter 3. The displacement at x = 0 under the rectangle is 

approXimately frequency independent, at least in the frequency range used 

here (curve H in Fig. 9.14 shows this). The equivalent variation of 
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amplitude, with frequency for the infinite strip, can best be seen in 

Fig. 8.5, curve H. Wei and Petyt [15] have shown that the static 

displacement of the infinite strip is infinite, and the asymptotiC 

approach to an infinite value at zero frequency is suggested by Fig. 

8.5. This is one reason why the response under the infinite strip is 

much larger than under the rectangle. Another reason is related to the 

different attenuation of the Rayleigh and bOdy waves in the two models, 

which also explains why the vibrations from the rectangle are so much 

more attenuated with distance. The different "spreading" laws for plane 

and spherical waves are discussed in Section 9.5.2. 

Figures 9.9, 9.10, 9.12 and 9.13, which show the change of phase with 

distance of vertical and horizontal motion, can be compared directly with 

Figs. 3.6 and 3.7. It is clear, comparing like frequencies, that the 

wavenumbers are very similar. The only readily noticeable differences 

are in the high frequency, horizontal phase change under the load, and 

also the 4 Hz horizontal phase change for the first half of the distance 

covered. AS explained in section 9.5.2, the lower frequency waves 

eXhibit interference over a greater distance from the load, due to their 

longer wavelengths. 

Figures 9.14 and 9.16 have their counterparts in Figs. 8.5 and 8.8. 

Because b = 0.75 m here, the dimensional distance 25 m used in Chapter 8 

corresponds to xfb = 33 ~/3' AS noted in Chapter 8, by the symmetry of 

the receptance expressions, a rectangular mass placed at xfb = 29~/3 
from the load, would cause exactly the same response at xfb = 33~/3 as 

shown in Fig. 9.16. Figure 9.15 does not have an equivalent figure in 

Chapter 8. The resonant frequencies in Figs. 9.14 and Fig. 8.5 cannot 

be expected to match, because in Fig. 8.5 the mass is per unit length, 

whereas here the mass acts over a strip only 25 em long. 

The difference in amplitude of the peaks is partly due to the 

difference in mass per unit length, and also because the static 

deflection of a rectangular load is finite. The curves marked 'H' in 

each Figure, which are for zero mass, emphasise this point. 

Figures 9.16 and 8.8, which show the effect of placing a mass between 

the load and response point in the two models, have some common 
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features. In bOth cases, the largest mass placed at 3 m from the load, 

is effective in reducing vibrations for much of the frequency range, but 

also significantly increases the response for lower frequencies. Mass B 

has a similar effect, although the corresponding positive and negative 

effects (from the vibration isolation point of vieW) are bOth shifted to 

higher frequencies. All the characteristics of these infinite strip 

results are shifted to higher frequencies with the rectangular load. 

9.5.2 Comparison of near-field displacement results with 
previous work 

A significant feature of the graphs showing displacement amplitude 

plotted against distance, is a periodic "wavyness". This is most evident 

in the horizontal components, shown in Fig. 9.11. Exactly the same 

behaviour was found in the infinite strip results of Chapter 3. Few 

previous workers give displacement against distance graphs, but a similar 

periodic wavyness can be found in the results of Kuhlemeyer [43], Waas 

[79, the relevant results are for an embedded load over an inhomogeneous 

layer] and Gaul [19]. However, only KUhlemeyer attempts to explain the 

phenomenon. He noticed that the wavelength of this apparent interference 

pattern in his results, equalled the wavelength of an "inhomogenous" wave 

(see Chapter 6 for a discussion of these waves) corresponding to one of 

the 'extraneous' roots of the Rayleigh wave equation. Since Rayleigh's 

original rejection of these 'extraneous' roots, they have been neglected 

by most subsequent workers. However, Fu and others (see Chapter 6) have 

shown how inhomogeneous waves could propagate in a half-space. 

TO test Kuhlemeyer's hypothesis, Rayleigh's equation [67] must be 

solved for Poisson'S ratiO v = 0.257, as at ClarbOrough. The equation 

is: 

(9.69 ) 

where Rayleigh's notation has been used, and effectively h = c/c1 , and 

k :: c/cz . Equation (9.69) can be reduced to a cubic in (kz ), because 

the ratio kZ/hz is known: following Rayleigh's method 
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(9.70 ) 

solving the cubic (for A and ~ at ClarborOUgh) gives the roots 

k Z = 3.869, 3.283 and 0.848, and as k Z = (c/cz)Z and Cz = 262.7 ms-~ 

for Clarborough (Table 6.1), it follows that the three solutions have the 

wave speeds 516.7, 476.0 and 241.9 ms-~. The third is known to be the 

Rayleigh wavespeed at Clarborough (Table 6.1). Consulting Fig. 9.11, it 

is easiest to estimate the • wavelength , of the 64 Hz curve "wavyness": 

it is approximately x/b = 11, or dimensionalising for Clarborough, a 

wavelength A = 8.25 m. At 64 HZ, the three solution wave speeds above 

give wavelengths 8.07 m, 7.44 m and 3.78 m. Considering that the 

"wavelength" in Fig. 9.11 was estimated by inspection, the first wave has 

a very similar wavelength to the observed "wavyness". Kuhlemeyer used 

completely different material properties in his work, and so these 

results lend weight to his hypothesis. 

Ho1zlohner [31] has produced results for a rectangular load, acting 

on a half-space with no internal damping and zero POisson's ratio. 

Although no direct comparisons cn be made because of these different 

material properties, some of his observations are of interest. He found 

that in the vicinity of the load, the resultant wavespeed was less than 

the theoretical Rayleigh wavespeed, despite the lack of internal damping 

in his model. This surprising interference effect is evident in the 

wavenumber resulting from the 4 HZ load, calculated from Fig. 9.12. 

Holzlohner also finds that the near-field attenuation of the total motion 

is proportional to r-~, but in the far-field it is proportional to r-'z. 

This has been confirmed experimentally by several workers [58,88]. This 

shows that the Rayleigh wave only dominates the response in the 

far-field. Barkan [5] predicts interference effects near the source, 

from consideration of the asymptotic expressions which describe the body 

and Rayleigh waves. The O.R.E. committee [28] analysis is quantitative, 

and finds that in the range r/Ap < 0.5, where Ap is the compression 

wavelength, the Rayleigh wave does not contribute more to the total 

response than the body waves. This is because the body waves' amplitudes 

are proportional to r-z , whereas the Rayleigh wave amplitude is 

proportional to r-'z. For Clarborough, and the frequencies 4, 16, 32 and 

64 HZ, (Ap/2b) = 76.5, 19.12, 9.56 and 4.78 respectively. In Fig. 9.11, 
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this change at r = 0.5Ap is marked by an inflection in the 16, 32 and 

64 Hz curves. This partly explains the behaviour Of the 64 Hz curve in 

Fig. 9.81 the other frequency amplitudes will also drop below the 4 Hz 

curve, at greater distances from the load (see Table 9.3). The greater 

effect of the hysteretic damping on the higher frequencies is also 

important [28], as can be seen clearly tn the infinite strip attenuation 

figures (Chapter 3). 

9.5.3 The direct and transfer receptance Figures, and the 
effect of a mass 

The direct receptance graph (Fig. 9.14) is of a form which affords 

the greatest comparison with previous work. Similar receptance graphs 

can be found in [4,39,61,69,70,79]. The degree to which the resonant 

frequency, for a given mass, in this work and these references coincides, 

depends on the model used. A rigid diSC, for example, behaves somewhat 

differently from the "flexible" rectangle used here. Chae [11] has 

studied the effect of varying the load shape, and deduced that in 

comparing disc- and rectangular-shaped loads, an "equivalent radius" 

based on an equivalent perimeter is superior to one based on equal 

area. For example, therefore, the "equivalent radius" of the (1.5 m x 

0.25 m) rectangle is 

Req= 

A radius based on equal area would be 

3.5 
2rr 

= 0.557 (9.71) 

(9.72 ) 

The implication of equations (9.7l) and (9.72) is that a rectangular 

load will cause a bigger displacement than a circular load of the same 

area. 

As an example of the application of this "equivalent radius", 

consider the expression given by Richardson [69] for the surface static 

vertical displacement of a rigid disc: 

w( r, 0) (9.73) 
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This expression is for v = 0.0, but Luco and Westmann [51] have 

shown that for 0 < v < 1/3, the direct receptance does not change 

greatly. P = the total load, R = the disc radius, and y = c2/c~. uSing 

the Clarborough data, and with R = Req = 0.557 for the rectangle, gives 

w(O,O) = 1.31 x 10-a • Figure 9.14 shows this is about 60% less than the 

static value obtained here, for a "flexible" rectangle. It seems logical 

that the rigid load should deflect less at its centre than a "flexible" 

one for a given force. However, using the value Req' = 0.345 gives a 

value w'(O,O) = 2.11 x 10-a , which is very close to the static value 

obtained here. Although caution is required when using equation (9.73) 

with an "equivalent radius", these values suggest that Req is a better 

measure than Req·. 

This conviction is supported by application of an expression due to 

Converse, given by Balakrishna and Nagaraj [66]. This expression 

predicts the resonant frequencies of a circular load-foundation system, 

and is 

fm = 3.13(840 8(1.64 
J.L 

(9.74) 

where p = density in lb/cu.ft.; J.L = shear modulus in lb/sq.in.; crF and 

crw are, respectively, the unit dynamic force and unit dead load, in lb; 

and R is the radius of the load in inches. using Clarborough data, and 

making the necessary conversions of units, it is found that the second 

product under the square root sign dominates the first, so that the value 

of R is important. using Req = 0.557 m, equation (9.74) becomes: 

1016 fm ~ ----rm (9.75 ) 

where m is the mass at the load, in kg. For comparison, using 

Req = 0.345 gives 

1292 
-rm (9.76 ) 

For the masses used here, the resonant frequencies predicted by 

equations (9.75) and (9.76) are tabulated in Table 9.4, with the resonant 

frequencies measured from Fig. 9.14 (denoted Fm). 
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MasS fm (HZ) f m' (HZ) Fm (HZ) 
(kg) based on Req based on Req' measured in Fig. 

500 45.4 57.8 46 
~ooo 32.~ 40.9 33 
3000 ~8.5 23.6 ~9 

5000 ~4.4 ~8.3 ~5 

~oooo ~0.2 ~2.9 1~ 

~7000 7.8 9.9 8 
42500 4.9 6.3 5 

Tab~e 9.4: Resonant frequencies 

c~early, Req in equation (9.74) gives a better prediction than 

Req' • 

9.15 

The order of error beween the f m' and Fm values is interesting, 

because it is similar to that between the results in this Chapter and 

those of rigid discs, as found by Robertson, Awojobi and Grootenhuis, and 

Waas [70,4,79] respectively. This is consistent with the experimental 

work of Chae, who found that a mass on a rectangular area has a lower 

resonant frequency than the same mass on the same area, but circular. 

Kobori, Minai and Suzuki [39] are the only workers to consider the 

effect on static displacement, of changing the ratio c{b which defines 

the rectangle dimensions. Using Kelvin-voigt damping, they plot the 

non-dimensionalised vertical amplitude function: 

fSV = ~Q~~ 
Pv 

(9.77 ) 

where Wo = the vertical displacement at the centre of the load in 

metres, bv = (bC)1/2 (m), and Pv = the total load in N. Hence, for 

Clarborough and the results shown (Fig. 9.14) 

Figure 5(a) in [39] gives the variation of fsv with (c{b), and it is 

clear that 0.17 is close to the value given for c/b = 6, as used here. 

Richardson, Warburton and Webster [69] have studied the effect on a 

circular body of a vibrating load beside it, with v = 0.25. They have 

found that the body can be strongly excited, as is found in the results 
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of Fig. 9.15. It is clear from Fig. 9.16 that, as with the infinite 

strip load results of Chapter 8, the effect of a mass placed beteen the 

load and the response point is complicated. Fig. 9.15 suggests that for 

the 10,000 kg and 3000 kg masses, the amplification of response in Fig. 

9.16 (seen by comparison with curve D for zero mass) is for a range of 

frequencies above the resonant frequency of the mass. Curves C and D 

indicate that for the frequency range considered, a small mass is of no 

use as an isolator. If the frequency range around 10 HZ is of most 

nuisance, these results do not suggest an isolation mass near the load 

(or, by symmetry, near the response point) will be very effective. 

However, if higher frequencies are exciting a structure at some distance, 

a 'large' mass placed near the load might reduce the vibration at the 

structure. 
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CHAPTER 10 

CONCLUSIONS 

10.1 summary 

The aim of this work was to gain some understanding of the 

propagation of ground vibration produced by trains. No attempt was made 

to model the train load accurately. The source of vibration was 

idealised as uniform, harmonically varying vertical pressure, acting over 

either an infinite strip or a rectangle. The infinite strip load was 

modelled as acting on either a half-space, a layer over an inflexible 

half-space, or a layer over a flexible half-space. The rectangular load 

was modelled as acting on a half-space. In all cases, the ground was 

idealised as homogeneous, isotropic and elastic, and material damping was 

included. computer programs were developed to find numerical 

approximations to the surface displacements, in the vicinity of the 

load. TO help interpret the results for the two layered ground 

structures, free vibration analysis was performed to investigate the 

natural propagating modes. The effect of isolation masses placed at the 

load, or beween the load and response point, was studied for each model. 

10.2 Free Vibration in a Layer 

10. 2. 1 The bedrock model (Chapter 4) 

A linearised dynamic stiffness matrix for the bedrock model was used 

to study the behaviour of the natural propagating modes in the layer. 

computer programs were developed which solve this matrix formulation as 

an eigenvalue problem, resulting in the dispersion curves and 

modeshapes. It was found that below a certain frequency, no propagation 

of vibration could occur. The first mode corresponds to the Rayleigh 

wave at SUfficiently high frequency, and the other modes tend to the 

shear wavespeed with increasing frequency. At discrete frequencies 

which equal the natural frequencies of a one-dimensional rod, having the 

same "fixed-free" boundary conditions and height as the layer, pairs of 
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dispersion curves cross. Additionally, for a small range of frequency, 

the fourth mode dispersion curve is double-valued. All these frequencies 

are marked by an increased forced response (Chapter 5), in particular at 

the frequency where the first two modes' dispersion curves intersect. 

This important frequency is identical to the fundamental longitudinal 

frequency of the one-dimensional rod. 

10.2.2 The elastic foundation model (Chapter 6) 

The exact dynamic stiffness matrix for the elastic foundation model 

was solved as an eigenvalue problem, using a technique due to Wittrick 

and Williams [89] which overcame the non-linearity of the matrix. This 

gave the dispersion curves of the natural propagating modes in the layer, 

for all real wavenumbers. The period equation for the layer was 

derived, and used to find the mode shapes. These solutions were found 

using computer programs developed for this purpose. It was found that 

for ( ,d) > 25, where , is wavenumber and d the layer depth, the 

dispersion curves are close to those of Newlands [54], as given by an 

apprOximate expression valid at large (,d). As with the bedrock model the 

first mode corresponds to the Rayleigh wave at sufficiently high 

frequency, and the other modes approach the shear wavespeed as frequency 

increases. However, no dispersion curve is double-valued, and no two 

curves cross. It was found that certain modes contribute most to the 

forced response (Chapter 7), at frequencies just above the onset of their 

"leaky" phase. This is particularly true of the fourth mode. 

10.3 Forced Response: Plane Problems 

10.3.1 The half-space model (Chapter 3) 

The theory was developed to analyse an infinite strip load acting on 

a hal£-space. The solution for the surface displacements involved the 

Fourier transformation of equations to the wavenumber domain. The 

inverse transformation was effected numerically, using a computer program 

which incorporated a library routine. The results show the behaviour of 

the transformed displacements, which are dominated by peaks at the 

Rayleigh, shear and compression wavenumbers, and the amplitude and phas~ 

change in the near-field of the actual displacements. The effect on the 
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~isplacernents of varying the loss factor n has been stu~ie~. Although 

the Rayleigh wave ~ominates the response, interference patterns ~ue to 

the effect of the bo~y waves, an~ also behaviour associate~ with the 

extraneous roots of the Rayleigh equation, are evi~ent. This 

interference means that for low n, the low frequency components will not 

necessarily ~ominate near the loa~. 

The effect of varying the strip wi~th, with constant stress per unit 

wi~th, has been investigate~. An attempt has been ma~e to explain the 

peak response at certain wi~ths, by calculating the "resultant 

wavelength" of the three propagating waves. 

10.3.2 The be~rock mo~el (Chapter 5) 

Because a ~irect extension of the half-space mo~el solution rneth~ to 

the be~rock mo~el woul~ involve computational overflow, an alternative 

rneth~ to fin~ the surface ~isplacements on the layer was use~. This 

involve~ ~eriving the exact ~ynamic stiffness matrix for the layer, in 

the transform ~omain. To avoi~ overflow, the stiffness matrix was 

assemble~ for a layer ~ivi~e~ into two suD-layers. The inverse 

transformation of the transforme~ ~isplacements was achieve~ using the 

same metho~ as for the half-space mo~el, incorporate~ into a ~ifferent 

computer program. Graphs of the transforme~ ~isplacements show peaks at 

certain wavenumbers, which have been relate~ to the wavenumbers of the 

natural propagating mo~es (Chapter 4). A large resonance was foun~ at a 

frequency which matches the intersection frequency of the first two 

~es' ~ispersion curves (Chapter 4). This resonance was compare~ with a 

similar resonance ~escribe~ in other work. The near-fiel~ amplitu~e an~ 

phase variation of ~isplacements were foun~, an~ the effect on 

attenuation of varying the ~amping was stu~ie~. The amplitu~e of 

vibration exhibits maxima an~ minima, an~ these peaks an~ troughs are 

relate~ to local variations in the wavenumber (or rate of change of 

phase). Decreasing the ~amping makes the interference effects more 

pronounce~. AS with the half-space mo~el, the effect of varying the 

strip wi~th was stu~ie~, an~ similar behaviour to the former mo~el was 

foun~. 
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10.3.3 The elastic foundation model (Chapter 7) 

The previously derived exact dynamic stiffness matrix for the bedrock 

model, was combined with the easily derived (2 )( 2) stiffness matrix for 

the half-space, to give the equivalent matrix for the elastic foundation 

model. A computer program was developed to numerically apprOximate the 

surface displacements, using an approach similar to the bedrock model 

solution. The wavenumber-locations of peaks in the graphs of 

transformed displacement, were related to the wavenumbers of the natural 

propagating modes (Chapter 6). The near-field displacements show 

interference effects of a form similar to the bedrock model results, and 

decreasing damping again accentuates these effects. As before, low 

damping can allow the higher frequency components of the vibration to 

dominate near the load. The receptance graphs show that the fourth 

propagating wave (which is related to the free vibration fourth mode) 

causes a pronounced peak in the forced response. This occurs at the 

frequency for which the fourth wave's speed is just below the shear 

wavespeed in the under-laying half-space. 

Also in Chapter 7, graphs are presented which compare the results of 

the three ground structure models. 

10.4 Forced Response: Rectangular Load on a Half-Space (Chapter 9) 

The problem of a rectangular load on a half-space was studied, by 

solving Navier' s elastodynamic equations in three dimensions. The 

solution method involved a double Fourier transform, and the double 

inverse transformation was performed numerically using a developed 

computer program, which incorporates a library routine. The results 

include sections and surfaces of the transformed displacements in the 

wavenumber domain, which show most of the information centred on the 

Rayleigh, shear and compression wavenumbers. Graphs showing the 

near-field amplitude and phase of displacement were presented. The 

results were checked by comparison with earlier related work, and close 

agreement was found. An interference effect due to waves connected with 

the extraneous roots of the Rayleigh equation was noted. The results 

were compared with those for the infinite strip on the half-space. 
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It was found that because of the different "spreading laws" for the 

body and Rayleigh waves, and also the interference between these waves, 

the higher frequency components of the propagating waves produce larger 

displacements near the load, than the low frequency components. Por 

this reason, asymptotic expressions for the far field cannot accurately 

describe the near-field displacements. 

10.5 The Effect of Masses Placed on the Ground's Surface 
(Chapters 8 and 9) 

The effect on surface vibrations of masses placed on the ground's 

surface was investigated for the infinite strip load acting on all three 

ground structure models, and for the rectangular load acting on a 

half-space. The intention was to predict the effectiveness of isolation 

masses. The theory of receptances was used to generate results shO"~ing 

direct and tranfer receptance. principally, the effect on the response 

25 metres from the load was studied, with one or two masses placed at 

various locations. A symmetry was found in the results, such that a mass 

placed at x metres from the load (x <: 25), produced the same 

displacement at 25 metres as a mass placed (25 - x) metres from the 

load. It was found that a small mass is an ineffective isolator, but 

that a large mass significantly increases the response for part of the 

frequency range. The effectiveness of the masses as isolators is 

sensitive to their location, and two masses do not necessarily reduce 

vibration at 25 m any more than a single mass. The optimal choice of 

isolation mass, for practical purposes, is probably a single large mass 

placed near the load. However, this is also a function of the most 

sensitive frequency range at the response point. 

It was found that with increased distance from the load, the 

receptance peaks for the layered models shifted to slightly higher 

frequencies. Por the bedrock model, this "frequency-shift" was found to 

be in accordance with an empirical relation. Por the rectangular load 

on a half-space, the location of the direct receptance peaks agree with 

an expression given by earlier workers. 
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10.6 Possible Further WOrk 

An extension of this work would be to study the effect of a 

rectangular load on a layered ground structure. The three- dimensional 

dynamic stiffness matrix for the bedrock model could be derived, and then 

combined with the work of Chapter 9 to give the equivalent matrix for the 

elastic foundation model. These matrices would be fonnulated in the 

'Wavenumber domain, and the required inverse transformation could be 

achieved as for the half-space model. 

The mathematical models of the train Vibration problem used here are 

strongly idealised. Ultimately, a model must be found which incorporates 

(i) the track design, (ii) the train vehicle characteristics, (iii) the 

movement of the train, and (iv) the ground properties. This work has 

incorporated the fourth feature I but the load was modelled as a single, 

stationary, harmonic area of uniform stress. 

It is likely that the Finite Element Method is the best available 

technique for modelling the track design, which may include embankments, 

for example. 
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APPENDIX A 

DESCRIPTION OF THE NUMERICAL INTEGRATION SUBROUTINE 

A.I Background 

If an integral Iw[a,b]f is expressed as 

b 
Iw[a,b]f = J w(x)f(x)dx 

a 
(A.l) 

where w(x) is called the "weighting function" , then its quadrature 

sum Qn[a,b]f can be written 

n 
r wif(xi) ~ Iw[a,b]f 

i=l 
(A.2) 

where the wi are termed "weights" and the xi are the abscissae at 

which the function f(x) is evaluated. A quadrature sum is of 'degree 

of precision' d if it is exact for all functions f(x) which are 

polynomials of degree ~ d (see Ref. [64]). Quadrature sums which use 

equidistant abscissae for the function evaluations are well-known. An 

example is Simpson's Rule, which is a special case of the Newton-Cotes 

formula (see [35], for example), and which is given in Chapter 9. If 

n abscissae are used, its degree of precision is d = n - 1. For the 

well-behaved functions integrated in Chapter 9, this is adequate. 

However, in general, "Gaussian" quadrature offers a much more 

efficient method of numerical integration. Gaussian quadrature uses 

abscissae which, rather than being equidistant, are at the zeroes (or 

"roots") of orthogonal functions. With a correct choice of the 

weights Wi' d = 2n I is possible, by using all (2n) degrees of 

freedom inherent in n weights and n abscissae. The weights of the 

Gaussian quadrature formulae, Hni' are given by equation (A.3): 
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Hni (A.3 ) 

The constants Hni are also known as the "Christoffel numbers". 

Qn(X) is an orthogonal polynomial of degree n, and Qn'(x) is its 

derivative w.r.t. x. The simplest example of these formulae is the 

GausS-Legendre formula, for which w(X) = I, and the abscissae are 

given by the roots of the n'th Legendre polynomial, Pn(X), where 

N (-I)k(2n - 2k)1 _ 
Pn(x) = £ ~n--------------____ -xn 2k 

k:O 2 k I (n - k) I (n - 2k) I 
(A.4) 

N = n/2, n even; N = (n - 1)/2, n odd. 

The orthogonality interval is then -1 ~ x ~ 1, and equations (A.2) 

and (A.3) give 

and 

1 

J f(x)dx ~ 
-1 

n 
£ Hnif(xi) 

i=1 

Hni 
2( 1 - x- z) = _______ .1 __ _ 

nzp~_.1.(Xi) 

Note that the range of integration in equation (A.l) can, if 

necessary, be changed from a ~ x ~ b to -1 ~ x ~ I, by 

Substituting variables: 

(A.5 ) 

(A.6 ) 

b b 1 J f(x)dx = --~-~ J f[x(t)]dt, (A.7 ) 
a -1 

Equation (A.6) is derived using the properties of the Legendre 

polynomial [6]. 

In practice, an estimate of the error inherent in a quadrature 

approximation is required. The usual method is to compute the 

approximate value of the integral using two separate quadrature 

formulae of different degree, and then assume that the error is of the 
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same order as the difference between the two results. Kronrod [42] 

justifies this method on the basis of experience. This need for an 

error check reveals a drawback in the Gaussian sequence of formulae. 

Because the Gaussian formulae do not share common abscissae (except for 

the mid-point when n is odd), the sequence is said to be "unnested". 

AS a result, many function evaluations are necessary to estimate the 

error. 

However, for each Gaussian formula it is possible to add a specifiC 

set of abscissae, to produce a new formula which is "nested" with the 

original one. If n = m + 1 abscissae are added to an m-point rule, 

then a degree of precision d = 3m + 1 can be achieved. The method of 

finding this "optimal extension" for the GausS-Legendre formula 

(equations (A.5) and (A.6», and the resulting formulae, are given by 

Kronrod [42], after whom the formulae are named. The GausS-Legendre 

and Kronrod formulae together provide an economical way of 

simultaneously approximating the integral and the error. 

A.2 The problem 

The numerical integration performed in this work is of the inverse 

Fourier transforms, and the integration range is therefore -00 < Y < 00, 

where Y is the wavenumber. AS explained in Section 9.3, the 

integration can be reduced to the limits 0 ~ Y ~ YC 1 because of the 

symmetry of the integrand functions, and because most of the 

information is concentrated at low wavenumber, below Yc. 

reduces to solution of integrals of the form I 

Yc f w{x)G{x)dx, 
o 

G{x) = sinyx or cosyx 

The problem 

(A.S) 

The function w{x) represents either the real or imaginary part 

of horizontal or vertical transformed motion. w{x) is always well

behaved, as can be seen in the relevant Figures (for example, 

Figs. 9.2 and 9.3). The numerical integration is therefore only 

complicated by the oscillation due to G{x). The three-dimensional 

formulation of the problem involves a double Fourier transform, but 
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because only the displacements along y = 0 are sought, the 

oscillation is restricted to just the first of the two integrations 

(see Chapter 9). Three principle methods have been used by previous 

workers in this field to deal with oscillating integrals. Gazetas 

[21], for example, uses the Fast Fourier Transform. Although this 

does not take advantage of the symmetry and generally good behaviour of 

the integrands, it is still effective because of its great 

efficiency. Richardson [68], among others, uses techniques due to 

LOngman [47,48], which give approximate solutions to finite and 

infinite oscillating integrals. These are particularly appropriate if 

computing time or storage are limited. For an integral of the form 

00 

r = f g(x)dx 
a 

(A.9) 

where g(x) oscillates about zero and converges to a finite limit, 

LOngman first expresses the integral as a sum of integrals with the 

roots of g(x) as the integration limits, so that 

00 f g(x)dx 
a 

(fx~+ fX2 + fX3 
= + .. t )g(x)dx 

a x~ x2 

(A.lO) 

where the xk are the roots of g(X). By using a transformation due 

to Euler, LOngman transforms this convergent series of integrals into 

a much fastp.r converging series. A modification of this method also 

allows the approximate solution of finite integrals. 

An alternative approach, used by Luco [52] and others, is Filon's 

method. Given an integral of the form in equation (A.8), Filon's idea 

is to approximate the function w(x) by an n'th order polynomial. 

Substituting this polynomial into equation (A.8), the approximate 

integral can then be found by direct integration. 

The resulting Filon's formula, for G(x) = sinyx, is of the form 

[17]: 

~W(X)SinYXdx = h{aw(a)cosay - aw(b) cosby + ~ + 'T} + Rn 
a 
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where h is the quadrature increment, such that 

2nh ;:;. b - a (A.l.2 ) 

and a,~, " 5, T and Rn are functions of a, b, hand y. The 

remainder term Rn gives an indication of the error. 

The oscillating integrals in this work have been apprOXimately 

evaluated using a NAG library routine, called DO~. It is 

essentially a refinement of Filon's approach, as its method involves a 

numerical approximation of w(x), linked with a direct integration. 

The NAG library has been used as a programming convenience, and an 

approach based on Filon's method was preferred to the other two 

approaches mentioned, firstly to take advantage of the integrand's 

characteristics, and secondly because computer time and storage were 

not at a premium. 

The routine is an adaptation of the subroutine DQAWF, developed by 

Piessens e~ aL [64], who list the program. An earlier, similar program 

is described and listed by Piessens and Branders [63]. The method of 

numerically approximating the function w(x) depends on the length of 

the quadrature sub-intervals. If the exact integral is given by 

equation (A.B), and the sub-interval is denoted 'L', then define 

(yc > 0) (A.13 ) 

Provided Lyc > 4 and R ~ 20 (A.14) 

the approximation is made with a Chebyshev series of degree 24, with an 

error estimate obtained with a series of degree 12. 

The Chebyshev series can be defined by the following relation: 

'rn( X) :::... cos( n arccosx) (A. IS) 

If the conditions given in equation (A.14) are not met, then Kronrod 

Is-·point and Gauss 7-point rules are used, for the numerical 

integration and error check respectively. This course is most likely 

near the sharper peaks of the functions wand u (see, for example, 

Fig. 9.2). 
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The routine is "adaptive", i.e., the abscissae can be changed with 

each subsequent iteration. The user specifies the acceptable error, 

in both relative and absolute terms, and the subroutine repeats the 

quadrature with increasingly more abscissae, until the "weaker" 

accuracy requirement is met. 

In those programs in Appendix B which use the routine, the 

integration range is divided at a point Yd, and the routine is 

applied tWice, with the limits 0 ~ Y ~ Yd, Yd < Y ~ Yc' Yd is 

chosen so that for Y > Yd, the integrands are without peaks, so 

increasing the total efficiency. 

A.3 parameters Required by NAG Routine D01ANF 

SUBROUTINE DOLANF{G,A,B,OMEGA,KEY,EPSABS,EPSREL,RESULT, 

?ABSERR,W,LW,IW,LIW,IFAIL) 

EXTERNAL G 

B 
DOIANF finds a numerical approximation to I G(x)W(x)dx, where 

A 

W(x) is either sinwx or coswx. In calling the routine, G is a REAL 

FUNCTION G(X), X also REAL. A and B def.ine the REAL limits of 

integration. OMEGA = w. If KEY = I, then W(x) = coswx, and if 

KEY = 2, W(x) = sinwx. EPSABS and EPSREL are the user defined absolute 

accuracy and relative accuracy, respectively. RESULT will contain the 

approximation to the integral, and ABSERR will contain an upper bound 

for the absolute error. W(LW) is a work-space array, where LW/4 is 

an upper bound for the number of sub-intervals required. IW( LIW) is 

also a work-space array, with LIN ~ LW/8 + LW/4 +2. IFAIL takes its 

usual definition and in each application of DOlANF in this work, 

IFAIL;=O. 
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APPENDIX B 

KEY COMPUTER PROGRAMS 

B.l Int:t'oduction 

Seven programs are listed in this Appendix, all in the Fortran 

language. Each is preceded by some brief notes. Some of these can be 

used to reproduce certain Figures in this work, while others calculate 

data which can contribute to producing other Figures. Those Figures not 

included in these two sets can be reproduced with very similar programs, 

and the necessary alterations are described in each set of notes. The 

NAG routine DOIANF, which is used in several programs, is described in 

Appendix A. 

The programs require access to either or both of the NAG library of 

subroutines, and the GINOGRAF graph plotting system. This is mentioned 

in the notes where appropriate. Those variables which can be changed, 

to vary the material properties, load frequency, etc. are listed in an 

Inputs section of each set of Notes. Additional information is included 

which could be useful for modifying the programs. 

The output of each program is also briefly explained. 

B.2 Program HSWM4F 

This program relates to the half-space model work of Chapter 3, and 

the variables have dimensions. This version of the program uses 200 

points to plot the vertical and horizontal amplitudes of motion, for 

x < 25 m, and a frequency 4 Hz. 

In order to produce plots in the wavenumber domain, such as Figs. 3.2 

and 3.3, it is necessary to replace the integration loop which begins at 

line 29, with a loop which calls FUNCTION G(ZETA) directly, and which 

varies ZETA rather than X. In this way values of first wand then u 

(for INDICATOR=l) can be calculated. These values can be stored in 

arrays, ready to be plotted using SUBROUTINE GRAPH. 
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To produce the "width-variation" graphs in Fig. 3.10, it is necessary 

to (i) replace the X variation in the integration loop by a variation of 

width, also to be stored in an array, say WID(40) - 40 points were used 

for Fig. 3.10; (ii) replace X{NX) in the calls to D01ANF by 0.0; 

( iii) make WIDTH become COMMON to the program and FUNCTION GI ( iv) 

change the definition of PRS at label 168 in G(ZETA) to: 

PRS = -SIN(ZW)/(ZETA*0.75), 

where 0.75 is the strip half-width used for ClarbOrough. 

TO produce the receptance graphs in Chapter 8, the frequency rather 

than the distance must be varied in the integration loop. 

to D01ANF, X(NX) is replaced by the distance of interest. 

In each call 

Requires GINOGRAF and the NAG library. 

Inputs (Variable Parameters) 

FREQ 

E 

RHO 

VNU 

DAMP 

In FUNCTION G( ZETA) : 

WIDTH 

PRS 

Comments 

The frequency of the harmonic load (HZ) 

young's modulus, Nm-z 

Density, kgm-3 

pOisson'S ratio 

Half the loss factor, n/2 

The total strip width, 2a 

The definition at label 168 of this 

term which is the transformed stress 

at the load, implies the scaling 

P/2rr = 1. 

Additionally, the range of x covered can be changed at lines 31 and 

50, where the range is defined as 25.0. If the frequency FREQ is 

increased, then in each call to D01ANF (there are four in total), the 

number '1.5' should be increased accordingly, in order that it should be 

several times greater than the Rayleigh wavenumber at the new frequency. 
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output 

For each value of X(NX), and for each of the vertical and horizontal 

components of motion, the four estimates of the max~um error inherent in 

the applications of DOlANF are printed. A graph is produced, showing 

the variation with distance of the vertical and horizontal amplitudes of 

motion, using a different colour for each component. 
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PROGRAM HSWM4F 

c 

9C 
75 

lu5 

100 

HSWM PLOTS THE MODULI OF VERTICAL AND HORIZONTAL MOTION AGAINST X. 
COMPLEX MU,LA~BDA,C1,C2,K1,K2 
DIMENSION WM(200),WP(200),X(200),WR(200),WI(200) 

?,TW(6000),IW(2500) 
COMMON K1,K2,MU,LAMBDA,INDICATOR,KEY1 
EXTERNAL G 
CALL CC036N 
F RE 9=4.0 
E=2 .. 69£08 
R HO=15 50.0 
VNU=0.257 
ALAM=(VNU*E)/«1.0+VNU)*Cl.0-2.0*VNU» 
AMU'=E/(2.0*(1.0+VNU» 
A C1'=SQRT( (2 .O*AMU+ALAM) IRHO) 
AC2~SQRT(AMU/RHO) 
DAMP=O.05 
AA=SQR~(O.5*(1.0+SQRT(1.0+4.0*DAMP*DAMP») 
MU=CMPLXCAMU,O.O>*CMPLX(1.0,(Z.O*DAMP» 
LAMnDA=CMPLX(ALAM,0.O)*CMPLX(1.0,(2.0*DAMP» 
C1=CMPLX(AC1,0.O)*CMPLX(AA,(DAMP/AA» 
C2=CMPlX(AC2,O.0)*CMPlX(AA,(DAMP/AA» 
OME6A=6.283185308*FREQ 
K1=OMEGA/C1 
K 2=OMEGA/C2 
Wf'iAX=O.O 
DO 100 NKEY=1,2 
KEY1=NKEY 
K EY:=NK E Y 
DO 75 NX=1,200 
XN=fLOATCNX) 
X (NlO=(XN-1.0) *25.0/199.0 
INDICATOR=O 
CALL D01ANF(G,0.O,1.5,X(NX),KEY,10E-18,10E-6,BWRCOS1,ABSERR1, 

?TW,6000,IW,2500,0) 
CAL~ D01ANf(G,1.5,20.0,X(NX),KEY,10E-18,10E-6,BWRCOS2,ABSERR2, 

?TW,6000,IW,2500,O) 
1ND1CATOR=1 
CALL D01ANFCG,O.O,1.5,X(NX),KEY,10E-18,10E-6,BWICOS1,ABSERR3, 

?TW,6000,IW,2500,0) 
CALL D01ANFeG,1.5,20.0,X(NX),KEY,10E-18,10E-6,BWICOS2,ABSERR4, 

?TW,6000,IW,2500,0) 
WR(NX)=2.0*(BWRCOS1+BWRCOS2) 
WI(NX)=2.0*(BWICOSl t BWICOS2) 
WM(NX)=SQRT(WR(NX>**2+WI(NX)**2) 
I f( WM ( N X ) • G T • W ~ A X) W M A X = W M ( N X) 
WRI~E(6,90)ABSERR1,ABSERR2,ABSERR3,ABSERR4 
FORHATCII,1X,4(E11.5,1X),I,lX,4(E11.5,1X» 
C ONTINU E 
IF(NKEY.EQ.2)GOTO 105 
CAll GRAPH(250.,125.,0.O,25.0,0.O,WMAX,26) 
IF(NKEY.EQ.2)CALL PENSEL(2,O.1,2) 
CALL GRACUReX,WM,200) 
CONTINUE 
CALL DEVEND 
STOP 
END 
SUBROUTINE GRAPH(A,B,C,D,E,F,I) 
CALL AXIPOS(1,30.,30.,A,1-> 
CALL AXIPOS(1,30.,30.,B,2) 
CALL AXISCA(1,I,C,D,1) 
CALL AX1SCA(1,I,E,F,2) 
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9995 

167 

168 
169 

CALL AXIDRA(Z,1,1) 
CALL AXIDRA(-2,-1,Z) 
RETURN 
END 
FUNCTION G(ZETA) 
CO~PLEX K1,KZ,ALPHA,BETA,T(Z,2),MU,lAMBDA,Y1,Y2,Y3,V4, 
?T~1;B(Z,2),TINV(2,2),RD,R(2,2),ZK1,ZKZ,BARW 

COMMON K1,K2,MU,LAMBDA,INDICATOR,KEY1 
WIDTH=1.) 
ZK1=ZETA*ZETA-K1*K1 
ZK2=ZETA*ZETA-K2*K2 
ALPHA=CSQRT(ZK1) 
BETA=CSURT<ZK2) 
TMZ=2.0*MU*ZETA 
Y1=TMZ*IETA-(LA~8DA+200*MU)*K1*K1 
Y 2=:-TM1 *ALPHA 
Y3=:-TMZkRETA 
Y4=~TMZ*ZETA+~U*K2*K2 
A=REAL<Y2) 
BF:l=REAL(Y3) 
C=II'IAG(Y2) 
D=II'V'AG(v3) 
T(1;1)=Y1 
T(2,1)=CMPLX(-C,A) 
T(1.2)=CMPLX(-D,8B) 
T (2.2)=y4 
B(1,1)=C MPLX(O.O,ZETA) 
B (2 ... 1)=-ALPHA 
B(1,.2)=l:IETA 
B (2,.2}=C~PLX(O.O,ZETA) 
I{ D = T ( 1 , 1 ) * T (Z , 2 ) - T ( 1 , 2 ) * T ( 2 , 1 ) 
TINV(1,1)=T(2,2)/RD 
TINV(Z,Z)=T(1,1)/RD 
TINV(1,2)=-T(1,2)/RD 
TINV(Z,1)=-T(2,1)/Ru 
DO 9995 1=1,2 
DO 9995 J=1,2 
R (I ..,J ) = C M P LX ( a • 0,0.0 ) 
DO 9995 K = 1 ,2 
R(I..,J)=R(I,J)+B(I,K)*TINV(K,J) 
ZW=lETA-WIOTH*O.5 
IF(ZETA.LT.10E-7)GOTO 167 
GOTO 168 
P RS'=-1 00 
GOTO 169 
P R S=-$ I N ( Z W ) / Z W 
I F ( KEY 1 • E Q • 1 ) B,. R W= R ( 2 , 1 ) * P R S 
IF(~EY1.EQ.2)RARW=R(1,1)*PRS 
I H INDICATOR.EQ .O)G=REAL(BARW) 
IF(INDICATOR.EQ.l)G=IMAG(BARW) 
RET UR N 
END 

END OF LISTING OF FILE :ISR008.HSWM4F(1,*,1) FOR USER :ISR008 AT 19~6/04 

.**.****~*************************************************************** 
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B.3 Program ZFINDW 

This program produces the bedrock free propagation mode shapes shown 

in Figs. 4.3 and 4.4. The program logiC is directly related to the 

analysis of Section 4.2, for the "Quadratic Eigenvalue problem". 

Although the version shown will plot the vertical amplitude components of 

the modeshapes, for the frequencies 16, 32, 48 and 64 HZ, the program can 

easily be changed to give the horizontal components. ThiS is achieved 

by changing the definition of VRR(NQ), just above label 52, to 

VRR(NQ) = VR«2*NQ - l),NK). 

TWo NAG library routines are used; these are F04ACF, which inverts a 

real, square, symmetric, banded matri.x, and F02AGF, which finds the 

eigenvalues and eigenvectors of a matrix. 

Although a different program was used to plot the dispersion curves 

in Figs. 4.1 and 4.2, which was based on the "Linear Eigenvalue Problem" 

of Section 4.2, this program has not been listed here. This is because 

Figs. 4.1 and 4.2 could also have been produced by a slightly modified 

version of program ZFINDW, which gives the propagating (real wavenumber) 

modes as a subset of the complete set of (complex wavenumber) excited 

modes. 

Requires GINOGRAF and the NAG library. 

Inputs (Variable parameters) 

N 

H 

E 

RHO 

VNU 

conunents 

The number of sub-layers used: large 

enough to lend accuracy to the 

linearised dynamic stiffness matrix, and 

to give smooth graphs of the modeshapes. 

The height of each sub-layer - hence 

7.0 (see program) defines the total 

layer height (in m) 

Young's modulus (Nm-z) 

Density (kg m- 3 ) 

Poisson's ratiO 
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Inputs (cont.) 

F~Q 

output 

As listed, 16 Hz,32 HZ, 48 Hz and 64 Hz 

are used; the number of frequencies, 

and the lowest frequency can be changed 

at lines 18 and 21. 

Four graphs, showing the mode shapes in different colours for each 

frequency, are produced. Much written data is also produced: 

(i) N, the number of layers; 

(ii) ~Q, the frequency (the data are listed for each frequency); 

(iii) the real and imaginary parts of each eigenvalue; 

(iv) the eigenvectors corresponding to each real eigenvalue. 

252. 



PROGRAM ZFINDW 

DIMENSION A (50,50),8(50,50) ,RL(50,3),C (100,100) ,RR(100),RI<100), 
* I NT GE R ( 10 Q) ,v R ( 1'00,100> , V I( 100,100) ,KO U NT (1 00), VR R (26), Z( 26) 

REA L LA f"I, NU 
CAL L CC 03 6N 
N=25 
N2= 2* N 
1 RL =N 2 
N4= 2* N2 
IFAIL=O 
H=7.0/N 
£=2.69E08 
RHO=15S0.0 
VNU=O.257 
LAM=(VNU*E) I( (1.0+VNU)* (1.0-2 .O*VNU» 
MU= EI (2.0 *( 1. O+VNU» 
DO 53 IA=1,26 

5 3 I (I A) =- F L OA T ( 1 A -1 ) * 7. 0 I 2 5 • G 
DO 50 IF=1,4 
CALL GRAPH(100.,140.,-O.25,0.25,-7.0,0.O,S) 
F1=FLOAT(IF) 
FREQ=FI*16.0 
OM=6.283185308*FREQ 
A (1,3 )::::H* (L AM+2 .O*MU) 13.0 
A(2,2)=0.0 
A (2 ,3 ) = H * MU 13 • 0 
DO 1 I=3,(2*N-1),2 
A<I,1)=A(1,3)/2.0 
A(I,Z)=O.O 

1 A (I ,3 ):::: 4. 0* A ( !, 1 ) 
DO 2 J::::4,(2*N),2 
A(J,1 )=H*P"U/6.0 
A(J,2)=O.O 

2 A (J ,3 ):::: 4. 0* A ( J , 1 ) 
DO 3 K= 1, N2 
DO 3 L= 1, N2 

3 8(K,L)=O.0 
DO 4 M= 1, N2 

4 8(M".,,=1.0 
CALL F04ACF (A,N2,8, N2,N2,2,N2,B,N2, RL, 1RL,3,1FA1L) 
00 10 I 1:::: 1, N4 
DO 10 12=1,N4 

10 C<11,I2)=0.0 
DO 11 13= 1, N2 

11 C (I 3, <13+ N2 » =1 .0 
C1= (LAM-MU) *0.5 
C2= (LAM+MU) *0.5 
C 3= MU IH -0 M* OM *R HO *H 13. a 
C 4= -MU I H- OM *0 \111* R H 0* HI 6. 0 
C 5= (L AM +2.0 *M U) / H -01"1* OM *'R HO *H /3. a 
C 6= -( LA "1+ 2. 0* MU ) I H- OM *0 rH RH 0* HI 6.0 
DO 5 !I!=1, (N2-1>,2 
C « "1+ N2 ), (N 2+ 2) ) = -8 (M ,1 ) * c 1 -8 (M, 3) * C 2 
C ( ( M + N 2 + 1 ), (N 2 + 1 ) ) = -8 ( ( ~ + 1 ) ,2 ) .. C 1 + 8 ( (M + 1 ) ,4 ) * C 2 
C ( ( M+ N 2 ) , N4 ) = C 2 * 8 (M, ( N 2 - 3 » 
C«M+N2+1), (N4-1»=-C2*8«M+1), (N2-2» 
DO 5 1=3, (N2-3),2 
C«N2+M), (N2+I+1) )=-C2* (s(t";,( 1+2) )-8(M, (1-2») 

5 C«N2+M+1),(N2+I»=-C2*(B«t-1+1),(!-1»-8(0'1+1),(I+3») 
DO 6 J::::1, (N2-1),2 1 
C ( ( N 2 + J ) , 1) =- C 3 *' I) (J ,1 ) - C 4 * E: (J ,3 ) 
C ( ( N 2 + 1 + J ), 2) =- C 5 * 8 ( ( J + 1 ) ,2 ) - C 6 * B ( ( J + 1 ) , 4 ) 
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c« N2+J +1), N2 )=-C6*B( (J +1), (N2-2) )-2.0*C5*B«J+1) ,H2) 
C«N2+J), (N2-1) )=-C4*B(J, (N2-3) )-2.0*C3*BCJ,CN2-1» 
DO 6 L=3,(N2-3),2 
C « J+ N2 ), U :- C4 * (B (J, (L -2}) +[3 (J , (L+ 2» ) -2.0 *c 3* B( J, U 
C « J + N2 +1 ), (L +1 » =- C6"" ( B ( (J +1 ), (L -1 » .. B ( (J+ 1) , ( L" 3) » - 2 .. 0 'It C 5* 

'?B « J+ 1) , (L+ 1) ) 

6 CONTI NU E 
CALL F02AGF(C,N4,N4,RR,RI,VR,N4,VI,N4,INTGER,IFAIL) 
I f( IF AI L. NE.O HI RI TE (6,30) IF Al L 
IF(IFAIL.NE.O)STOP 

30 f'ORMAT(/,' IFAIL=',I2) 
WRITE(6,29)N 

29 FORMAT(/,' NO. OF LAYERS=',I3) 
WRITE(6,31) FREQ 

31 FORMAT(/,' FREQ=',F7.3) 
WRITE(6,32) 

.32 FOR,4AT(//,' E.V. REAL PART IMAGe PART') 
K=1 
00 33 N H= 1, N4 
KOUNTCNH)=O 
IFCA8S(RI(NH» .. GT.10E-3C)GOTO 45 
KOUNT(K)=NH 
K=K +1 

45 CONTINUE 
33 WRITE(6,34)RR{NH),RI<NH) 
34 fORMAT<4X,f14.10,2x,F14.10) 

KM1 =K-1 
DO 40 NN=1,KM1 
NK=KOUNT(NN) 
WRITE (6,41) NK 
DO 42 NP= 1, N2 

42 luRITE(6,36)VR(NP,NK),VIO-iP,NK) 
40 CONTINUE 

VRRMAX=O.O 
KK=O 
DO 51 N 0= 2, KM 1, 2 
NK=KOUNT( NO) 
DO 52 NQ=1,25 
VRR (NQ) =VR( (2*NQ) ,NK) 

52 IF(ABS(VRR(NQ» .GT.VRRMAX>VRRMAX=A8S(VRR(NQ» 
VRR(26)=O.O 
KK=KK+1 
IF(KK.GT.4)KK=(KK-4) 
CALL PENSEL(KK,O.1,2) 
CALL GRACUR(VRR,Z,26) 

51 CONTINUE 
CAL l PI CC lE 

41 FORMATU/,' EIGENVECTORS FOR EIGENVALUE NO: ',13) 
36 FORMAT(4X,F14.9,2X,F14.9) 
SOC ON TI NU E 

CALL OEVEND 
STOP 
END 
SUBROUTINE GRAPH(A,8,C,O,E,F,1) 
CALL AXIPOS(1,30.,30.,A,1) 
CALL AXIPOS(1,30.,30.,B,Z) 
CALL AXISCA(1,I,C,D,1) 
CALL AXISCA(1,I,E,F,2) 
CALL AXIDRA(Z,1,1) 
CALL AXIDRA(-2,-1,2) 
RET UR N 
E NO 
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B.4 Program MODE2 

The program plots graphs of the form shown in Figs. 6.4 to 6.7. A 

particular wavenumber/"eigenfrequency" pair, found very accurately with 

program EIGFREQ (see Section B.6) is used to solve equation (6.50), to 

give matrix [AJ to within an arbitrary multiplicative constant. This 

allows solution of equations (6.24) and (6.25) for C1 and D1 , which in 

turn gives u, w, u' and w' from equations (6.18) to (6.21). The 

parameters are non-dimensional, and the program plots the horizontal and 

vertical components of the modeshapes, using 200 points for each curve. 

Requires GINOGRAF 

Inputs (Variable Parameters) 

ZETA 

FREQ 

DEPTH 

VNU 

OMSQ 

OMSQ2 

VNU2 

f_omments 

Defined as (Ca); as shown, 

ZETA ,= 0.55*0.75 

Frequency f in Hz, corresponding to 

chosen wavenumbers 

Non-dimensional depth of layer, (h/a) 

v in layer 

02, defined here as [(2rr)2a2p/EJfz 

OZ for the half-space, defined here 

as for OMSQ 

v in half-space 

Additionally, the value 9.333 appears at several places in the 

program and represents DEPTH; this could be changed by a global editing 

command. In the call to AXISCA near the end of the program, 18.666 

represnts (2 x DEPTH). 

output 

The program prints X3 and X3CHECK as a check on the accuracy of the 

solution eigenfrequency; the two values should be the same. A graph of 

the form shown in Figs. 6.4 to 6.7 is produced. 
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PROGRAM MODE 2 

COMPLEX ALPHA,BETA,ALPHA1,BETA1,MZ,MZ1,A1,A2,A3,A4,A5,EYE,B1,~2, 
?D1,D2,D3,D4,E1,E2,E3,E4,AZ,AZ1,F1,F2,F3,F4,f5,S11,S12,S13, 
?S14.S21,S22,S23,S24,S31,S33,S41,S43,H,EZ,Y1,Y2,Y3,X3CHECK, 
?X1,X2,X3,X5,X6,U(100),W(100),U1(100),W1(100),A2I,BZ,B11,0 
? , UA .. W A, U 1 A, W 1 A, ON E 

DIMENSION 1(100),UTOT(200),WTOT(200),ZTOT(200) 
REAL K1,K2,K11,K21,MU,MU1,LAPMU,LAPHU1 
CALL CC036N 
ZETA=O.55*O.75 
FREG=62.5359477427122 
DEPTH=9 .. 333 
V NU=O. 2 57 
OMSQ=1.2796E-04*FREQ*FREQ 
OMSQ2=2.666E-06*FREQ*FREQ 
C1=SQRT«1.-VNU)/«1.+VNU>*(1.-2.*VNU)*OMSQ» 
C2=1.0/SQRTC2 .. 0*C1.0+VNU>*OMSQ) 
K1=1.0/C1 
1<2=1.0/C2 
V NU2=0 .179 
C11=SQRT«1.0-VNU2)/«1.+VNU2)*C1.-2.*VNU2>*OMSQ2» 
C21=1.0/SQRT(2.0*(1.0+VNU2)*OMSQ2) 
K 11 =1 • 0 I C 11 
K 21 =1 .01 C 21 
M U=OMS Q*C2*C2 
MU1=OMSQ2*C21*C21 
lAPMU=OHSQ*C1*C1 
LAPMU1=OMSQ2*C11*C11 
EYE=CMPLX(O.O,1.0) 
ZZ=IETA*ZETA 
SIGN1=ZZ-K1*K1 
S IGN2=I Z-K2*K 2 
ONE=CHPLX(1.0,O.O) 

\. 

IF(SIGN1.GT.O.O)ALPHA=SQRT(ZZ-K1*K1).ONE 
If(SIGN1.LT.O.0)ALPHA=SQRT(K1*K1-ZZ)*EYE 
IF(SIGN2.GT.O.O)BETA=SQRT(ZZ-K2*K2)*ONE 
IF(SIGN2.LT.O.0)BETA=SGRT(K2*K2-ZZ>*EYE 
AlPHA1=SQRT(ZZ-Kl1*K11>*ONE 
BETA1=SQRT(ZZ-K21*K21>*ONE 
HZ=d.O*HU*ALPHA*ZETA*EYE 
HZ1=2.0*MU1*ALPHA1*ZETA*EYE 
Al=lZ-ALPHA*SETA1 
A2=lZ-ALPHA1*BETA1 
A3=n+AlPHA*BETAl 
A4=~Z-ALPHA1*BETA 
A5=ll+ALPHA1*BETA 
B1=BETA1*BETA1+ZZ 
B 2=BETA *BET A+ IZ 
D;1=ALPHA1-ALPHA 
D 2=ALPH A 1+ALP HA 
D3=BETA-BETAl 
D4=BETA+BETAl 
E,l='EXP(-ALPHA*DEPTH) 
E2=EXP(ALPHA*DEPTH) 
E3=EXP(-BETA*DEPTH> 
E 4= EX P ( BET A * 0 E P T H ) 
F1=.(Z.O*MU*ZZ-LAPHU*K1*K1>*CMPLX(1.0,O.O) 
F2=(2.0*MU1*ZZ-LAPMU1*K11*K11>*CMPLX(1.0,O.0) 
f3=2.0*MU1*ZZ*BETA1 
F4=2.0*MU*EYE*ZETA*BETA 
F5=2.0*MU1*EYE*ZETA*BETA1 
H ::M U 1 * EYE'" Z ETA 256. 



5 00 

0=2.0*MU1*AlPHA1*ZZ 
EZ=EYE*ZETA 
S11=(MZ-MZ1*A1/A2+H*Bl*Ol/A2)*El 
S12=(-MZ-MZ1*A3/A2+H*B1*02/AZ)*E2 
S13=(-MU*B2+0*D3/A2+MU1*B1*A4/A2)*E3 
5,14 =( - M U *B 2 -0 * [) 41 A 2 + M U 1 * a 1 * A 5 I A 2 ) * E 4 
S21=(Fl+F3*Dl/A2-F2*Al/A2)*El 
522=(F1+F3*02/A2-F2*A3/A2)*E2 
S23=(F4-(H/MU1>*D3*F2/A2-F5*A4/AZ).E3 
S24=(-F4+EZ*04*F2/A2-F5*A5/A2)*E4 
531 =F 1 
S 33=F 4 
5 ~1 =M Z 
S 43=-8 2 *HU 
X4=GMPLX(1.0,0.O) 
Y1=543*S31 
'(2=533*541 
V 3=531 * 541 
A2I=1.0/A2 
X3=X4*(S11*(Vl-V2)-S12*(Yl+V2)-2.0*S14*V3)/<-S11*<Vl+V2)+S12*(V1 

?'(2) ... 2.0*313*Y3) 
X3C»ECK=X4*(S21*(Yl-Y2)-S22*(Y1+Y2)-2.0*S24*V3)/<-S21.(V2+Y1)+ 
?S22~(Y1-Y2)+2.0*S23*Y3) 

X2=O.5*<X3*CY1-Y2)+X4*(Yl+Y2»/Y3 
X1=(S33/S31)*(X4-X3)-X2 
X5=~2I*<Xl*El*A1+X2*Ei*A3+EZ*<X3*E3*D3-X4*E4*(4» 
X6=A2I*eXl*EZ*E1*Dl+X2*E2*eZ*D2-eX3*E3*A4+X4*E4*AS» 
WRI~Ee6,700)X3,X3CHECK 
UMAjO=O.O 
AZ='ALPHA*9.333 
B Z =@E T A *9 • 3 33 
UA=~EZ*(X1*E~P(-AZ)+X2.EXP(AZ»+BETA*(X3*EXP(-BZ)-X4*EXP(BZ» 
WA=~ALPHA*(X1*EXP(-AZ)-X2*EXP(AZ»-EZ*(X3*EXP<-BZ)+X4*EXP(BZ» 
U1A=-E Z *x 5+X6 *B ET A 1 
W1A=-ALPHA1*X5-EZ*X6 
C01=1~AG(UA)/REAl(UA) 
C02=REAl(U1A)/REAl(UA) 
C03=IMAG(w1A) IIMAG(WA) 
DO 500 1=1,100 
Z(I)=FLOATCI-1)*(9.333/99.0) 
A 1 =A L P H A * Z ( 1> 
A Z 1 =A L P H A 1 * Z ( I ) 
BZ=BETA*Z(I) 
B z 1 =B ETA 1 * Z (I ) 
UA=(_EZ*(X1*EXP(-AZ)+X2*eXP(AZ»+8ETA*(X3*EXP(-BZ)-X4*EXPCBZ») 

?*CMPLX(1.0,COn ' 
WA=C_ALPHA*(X1*EXP(-AZ>-X2*eXPCAZ»-eZ*(X3*EXp(-aZ)+X4*eXP(8Z») 

,?*C"'PlX(1.0,C01> 
U 1 A= ( - E Z * x 5 * E X P (- A Z 1 ) + X 6 * BET A 1 * E )( P ( - B Z 1 ) ) * C M P L)( (1 .0 , CO 1 ) 

11C02 
W1A=:<_ALPHA1*X5*EXPC-AZ1)-eZ*X6*EXP(-BZ1».CMPLX(1.0,C01) 

? I C03 
U ( I') = REA L ( U A ) 
W(l)=IMAG(WA) 
U1(I>=REAL(U1A) 
!oJ 1C I) = I MA G (W 1 A) 
IF(ABSCU(I».GT.UMAX)UMAX=ABS(UCI» 
IF (A8 S ( W (I) ) • G T .UM A X) UM AX = AB S (101 ( J) ). 
IF('ABS(Ul0» .6T.UMAX)UMAX=ABS(U1(1» 
IF(ABS(Wl(I») .GT.UMAX)UMAX=ABS(W1(1» 
CONTINUE 
DO 800 J=1,100 
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BCO 

850 

9(0 

950 

7eo 

UTO-T·(J) =U (J) 
DO 850 J=101,200 
UTO~(J)=U1(J-100) 

DO 900 K=1,100 
Z TOT( K) =-z (10 
U TO,T( K) =1rI (K ) 
DO 9-50 K=101,200 
ZTO~(K)=-Z(K-100)-9.333 
\HO;r( K) =\J 1 (K-1 00) 
CALL AXIPOS(1,SO.,SO.,70.,1) 
CALL AXIPOS(1,SO.,50.,100.,2) 
CALt AXlSCA(1,10,-UMAX,UMAX,1) 
CALL AXISCA(1,10,-18.666,O.0,2) 
CALli AXIDRA(2,1,1) 
CALL AXIDRAC-2,-1,2) 
C AI,. l G RAe U R Oil 0 T , Z TOT , 2 0 0 ) 
CALL PENSEL(2,0.1,2) 
CAL~ 6RACUR(UTOT,ZTOT,200) 
CALt PENSEL(3,0.1,2) 
CALH GRAMOV(-UHAX,-9.333) 
CAL~ GRALIN(UMAX,-9.333) 
CALl! DEVEND 
fORMAT(1X,'X3=',F8.4,1X,F8.4,· 
STOP 
END 

, .... 

X3CHECK= ',F8.4,1X,F8.4) 
\,. 

END OF LISTING OF FILE :ISR008.MODE2(68,lt,1) FOR USER :ISROOB AT . 
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8.5 Program EFEIG 

This program finds the lowest fundamental frequency in a layer with 

fixed-fixed boundary conditions. The problem is dimensionalised with 

Clarborough parameters, and the solution follows the work of Section 

4.2. The eigenvalue problem is formulated as in equation (4.11), which 

for convenience is re-stated here: 

Ax = h'8x (4.11) 

h' represents w, here, and the matrices [A] and [8], which have the 

same names in the program, are given by matrices [G] and [M] in equations 

(4.5) and (4.6). The matrices given by equations (4.3) and (4.4) do not 

contribute to the stiffness matrix, because a solution is sought for 

, = 0, which will give the lowest fundamental frequency. The problem is 

solved for a range of 10 layer depths, and the program prints each lowest 

frequency/depth pair. The NAG routine F02ADF which solves the eigenvalue 

problem is mentioned in Section 4.3. 

Requires The NAG library. 

Inputs (Variable Parameters) 

N 

E 

~O 

VNU 

H 

Output 

comments 

Number of sub-layers to be used. 

Young's modulus (dimenSional) 

Density (dimenSional) 

Poisson's ratio in layer 

The dimensional depth, which is 7 m 

for Clarborough, is defined in the 

expression for H. 

Ten layer depth/eigenfrequency pairs are printed. 
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25 

15 

16 

17 

18 

19 

1 
4 
5 

PROGRAM EFEIG 

DIMENSION A(46,46),B(46,46),RC46),DE(48) 
N =24 
M =2IAN-2 
DO ,25 M Z = 1 , M 
DO 25 MY=MZ,'" 
A({MY+1-~Z),MY)=O.0 

E=2'.69E08 
RHO=1550.u 
V NU =0.257 
ALAM=(VNU*E)/«1.0+VNU)*(1.0-2.0*VNU» 
AMU=E/(2.0*(1.0+VNU» 
AlA~U=AlAM+2.0*~~U 
1 FAIL=O 
DO 11=1,10 
H=(7.0/FlOAT(I»/N 
HEIGHT=H*N 
CON=RHO*H/6.0 
D' 0 '15 M A = 1 , M 
B(MA,MA)=4.0*CON 
DO 16 MB=2,M 
B«MB-1),MB)=0.U 
DO 17 I"IC=3,M 
B«MC-2),MC)=CON 
DO 18 ME=4,M 
DO 18 MD=~E,M 
B«MD+1-ME),MD)=O.O 
[) 0 19 l =1, ( N- 2 ) 
A«2*l-1),(2*l+1»=-ALAMU/H 
A{(2*L-1),(2*L+2»=O.0 
A«2*l),(2*l+1»=O.0 
A{(2*L),(2*l+2»=-AMU/H 
A«.2*L-1),(2*l-1»=2.0*AlAMU/H 
A «2*L>, (2*U) =2 .O*AMU/H 
A(M~1,M-1)=2.0*ALAMU/H 
A(M.M)=2.0*AMU/H 
CAll F02ADF(A,M,B,M,M,R,DE,IFAIL) 
IF(lFAIl.NE.O)WRITE(6,4)IFAIl 
IFCIFAIl.NE.O)STOP 
R{1)=SQRT(ABSCR(1»)/6.283185308 
WRI~E(6,5)R(1),HEIGHT 

C ONTINU E 
FORMAT(1X,IIFAIl=',I2) 

FOR~AT(1x,'FREQ.=·,F9.4,· FOR H=',F9.4) 
STOP 
END 

END OF LISTING OF FILE :ISR008.EFEIG(14,*,1) FOR USER :ISR008 AT 
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B.6 Program EFIND 

This program plots the dispersion curves shown in Figs. 6.2 and 6.3. 

The program uses the method of solution described in Section 6.3. All 

parameters are non-dimensionalised, except the frequency in the main part 

of the program, which is in Hz. However, the graph-plotting logic 

redimensionalises the information for Clarborough. For a given 

wavenumber, the frequency of each mode is calculated to within 0.01 Hz. 

Six dispersion curves are found, in the range 0 ~ ~ ~ 1.67, and 

o < frequency ~ 64 Hz. The Subroutine G is very similar to its 

counterpart in program EF64H2, with the difference that instead of 

solving the dynamic stiffness matrix for wand u, here this matrix is 

changed to upper triangular form to find the sign count of the matrix 

(see Section 6.3). Also, a larger matrix is defined here, in accordance 

with the number of layers necessary to make the lowest fundamental 

frequency in each sub-layer (with fixed-fixed boundary conditions) 

greater than 64 Hz. This number of sub-layers is found with program 

EFEIG. 

Note that program EIGFREQ can be easily derived from program EFIND, 

by introducing quadruple precision, and changing the logic to calculate 

just one frequency to fourteen decimal places. 

Requires GINOGRAF 

Inputs (Variable parameters) 

NNN 

A 

FREQN 

ZETA 

comments 

Maximum number of plotting points per 

dispersion curve (in practice fewer 

are used to avoid leaky behaviour, i.e., 

for wavespeed < c z ') 

Defines how many dispersion curves are 

to be plotted 

Arbitrary number, which must be set 

much larger than FREQN 

Maximum frequency of interest 

Defined here as 

ZETA = 1.25*FLOAT(IO)/NNN 

The '1.25' gives the largest value of 

(,a) to be considered. 
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The following parameters are in FUNCTION (ZETA,FREQ,CV): 

N The number of layers to be used (found 

using program EFEIG) 

H 

VNU 

OMSQ, OMSQ2 

VNU2 

Non-dimensionalised sub-layer depth, 

defined by (h/a)/N 

Poisson's ratio in the layer 

OZ in the layer and half-space, 

defined as a function of frequency as 

in program MODE2 

Poisson's ratio in the half-space 

Additionally, certain numbers appearing in the program must be 

changed, for different material properties. These numbers, with the 

quantity they represent, are: 

Number 

0.75 

64.0 

1.7 

1880.3 

1.531 

0.875 

0.214 

459.4 

262.7 

241.7 

Quantity Represented 

a, the strip half-width 

maximum frequency 

maximum dimensional wavenumber 

shear wavespeed in the half-space 

k z at 64 Hz 

kl. at 64 Hz 

kz.' at 64 Hz 

layer compression wavespeed 

layer shear wavespeed 

layer Rayleigh wavespeed 

These numbers could be changed using a global edit. 

output 

If the program is unable to find an eigenfrequency, it stops and 

writes an appropriate message. Otherwise, two graphs are produced giving 

dispersion curves of the form shown in Figs. 6.2 and 6.3. 
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PROGRAM EFIND 

DIM t N S ION F R E Q ( 1-: i.~ ,1 , 1 q ) , Z ETA G (1 LJ CJ;; ) , C ( 1 000, 1 0) , F R E Q G (1 J D D ) , 

?C~(10DJ),ZETAA(1~DO) 
C 0 r-,,.; 0 N HolD I CAT 0 ~ 
NNN=1~IJ," 
/'II r-'fl' =6 
C V 4 X =} • 'J 

D u :: GIl = 1 , N r~ N 
DO ~O I v=l,MMM 
F"':(HIZ,Iy>=ri.O 

5C CCIl,IV)=J.O 
CHl CCU36N 
A = 1j'~,J • '.1 
F F(!~ (m = 6 4 • U 
DO 39 IQ=1,NN~ 
I t .. I) I CAT 0 R = J 
ZETA=1.25*FLOf:.T(IO)/NNN 
ZET~A(IO)=ZETA/G.75 
CALL G(LETA,FREGN,C~) 

C D=CN 
IFCCN.GT.10)CD=10 
DO 39 K=1,CD 
I I~ D I CAT 0 R = ( K - 1 ) 
00 30 I=i,iOJu 
FRc'K=FRE~N/FLOflT(2*'I) 
IF(K.GT.1>FREQK=FRECH'I \. 
CALL G(ZETA,FREQK,CK) 
I F ( ( K • E U • 0 • 0) F R t: Q M: F R E (. K 
IF<CK.EQ.O.O)GOTO 31 
I F ( 1 • E. Q • 1 J 0 0) W R I T E ( 6 , "!. '2) F 1< E (~ K , Z ETA 
IFC1.EGl .1000)GOTO 39 

3C CvNTINUE 
31 FREQNL=FRF-QN 

NC=1 
33 FREQK=(FREQNL-FPEQ~)/2.0+FREQM 

N C=NC*2 
CALL G(ZETA,FREQ~,CK) 
I F ( AB S ( A- F R EQ K ) • LT. :) • G 1 ) F R E Q ( 10, K) = F R E Q K 
I F (A B S ( A - F R E Q K) • LT. J .01 ) C ( 10, K) = 6.2832 *' F R E Q K / (Z r: r A*,1 .33333:' 3 
If(ABS(/I-FREQK) .LT.O.01>GOTu 38 
A=FREQK 
IF(CK.t::Q.O.O)FREQM=FREQK 
IF(CK.Ew.u.O)GOTO 33 
IF(fLOATCNC).GT.10E10)WRITF(A,34)FREQK,ZETA 
IF(CK.NE.O.O)FREQNL=FREQK 
G OTO 33 

3c FRF.QfA=FnE(~K-1.0 
39 CONTINUE 
32 FORMAT(1X,·I.EG.1000 Ar~D FREQK=',F10.5,' FOR ZETA:',F7.4) 
34 FORII'IAT(1X,8NC.GT.1LE10 AND FREQK=',F10.5,· FOR ZETA=',F7.4) 

C AL t G RAP H ( 1 5 0 • ,2 0 n • , a • (], 6 4 .0,0 • 0, 1 • 7 , 1 0, 1 ) 
DO 7U J=1,rIlMM 
NG=D 
DO 60 I=1,NNN 
IF(FRE~(I,J).EQ.O.O)bOTO 65 
WK=6.2832*FREQ(I,J)/1RRO.3 
IF(ZETAA(I).LT.wK)GOTO oe 
N G=NG+ 1 
lETAG(NG)=ZETAA (I) 

FRE~G(NG}=FREQ(I,J) 

6C CONTINUE 
65 CONTINUE 
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7C 

bC 
iS5 
qr: 

CALL GRACURCFkEQG,ZETAG,NG) 
CALL WLINE(Z,64.0,1.531> 
CALL WLINE(3,64.0,O.875) 
CALL WLINE(4,64.0,O.214) 
CALL PIeClE 
CALL PENSELC1,O.1,Z) 
CALL GRAPH(160.,200.,O.O,64.0,150.0,2000.0,10,4) 
DO 90 J=1,"'M'" 
N G=() 
DO SO 1=1,NNN 
IF(C(I,J).EQ.O.U)GOTO ~5 
IFCCCI,J).GT.18Hl.3)GOTO 80 
IF(CCI,J).GT.CMAX)CMAX=CCI,J) 
N G=NG+ 1 
CG(N(,)=C(I,J) 
fREQG(Nu)=FREQ(l,J) 
CONTI NU E 
CON TIN U t. 
CALL GRACUR(FREUG,CG,Nh) 
CAL l I..J L. INC. 2 C 2 , 1 ($ f;:, a • 3 , 6 4 • 0 , 1t, 8 0 • 3 ) 
CALL WLINE2(3,459.4,L.0,459.4) 
CALL WLINEZ(4,262.7,4.0,262.7) 
CAll WLINE2(Z,241.7,4.0,241.7) 
CALL DEVEND 
STOP 
END 
SU8ROUTINE WLINE(I,A,B) 
CALL PENSELCI,O.1,2) 
CALL GRAMOV(O.O,O.O) 
CAll GRALIN(A,B) 
RETURN 
END 
SUBROUTINE WLINE2(I,A,B,C) 
CALL PENSELCI,O.1,Z) 
CAll GRAMOV(O.O,A) 
CALL GRALIN(B,C) 
RET URN 
END 
SUBROUTINE GRAPH(A,B,C,D,E,F,I,J) 
CALL A X I P 0 S (1 , 50. , 5 lJ .. , A, 1 ) 
CALL AXIPOSC1,SJ.,50.,B,Z) 
CAll AXISCAC1,1,C,D,1> 
CALL AXISCA(J,I,E,F,2) 
CALL AXIDRAC2,1,1) 
CALL AXIORA(-2,-1,2} 
RETURN 
END 
SUBROUTINE GCZETA,FREQ,CV) 
COMPLEX U,V,W,X,Y,Z,MU,Cl,C2,Kl,K2,ALPHA,8ETA,DEN, 

?ALPHAI,8ETAI,lAPMU,SHA,SHB,CHA,CHB,AH,8H,ZETAI,A(10,l0) 
?,AL,ETA,COEFF,PHI,D,A,C,DD,E,C12,C22,K12,K2Z,Rl1,R12,R2Z 

CONI'40N INDICATOR 
REAL ZETA,H 
INTEGER N 
N=4 
M=2'*N+2 
H=9.333/N 
V NU=Q. 257 
OMSQ=1.2796E-04*FREQ*FREQ 
OMSQ2=2.666E-06*FREQ*FREQ 
AC1=SGRT«1.-VNU)/C(1.+VNU>*(1.-2.*VNU)*OMSQ» 
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ACZ=1.0/S QR T(2.0*(1.0+VNU)*OMSQ) 
DAf'lP=O.CJ 
AA=SQRT(O.5*C1.0+SQ~TC1.0+4.0*DAMP*DAMP») 
C1=CMPLXCAC1,O.O>*C MPLX(AA,(DAMP/AA» 
C2=C~PLX(AC2,O.0)*CMPLX(AA,(DAMP/AA» 

K1=1.0/C1 
K 2=1.01 C2 
VNU2=i).179 
D AMP2=O.:1 
AC12=SQRT«1.0-VNU2)/«1.+VNU2)*(1.-2.*VNU2>.OMSQZ» 
A C22=1.il/SQRT (2 .n*< 1.0+VNU2>*OMS(2) 
AA2=S~RT(U.5k(1.0+SQRT(1.U+4.U*DAMP2*DAMP2») 
C12=CMPLX(AC12,r;.O)*C~PLX(AA2,(DAMP2/AA2» 
C22=CMPLX(AC22,O.O)*CMPLX(AA2,(DAMP2/AA2» 
K12=1.0/C12 
K22=1.0/C22 
ALP~A=CSQRT(ZETA*ZETA-K12*K12) 
BETA=C?QRT(ZETA*lETA-K22*K22) 
DtN=1.0/(ALPHA*8ETA-ZETA*2ET~) 
LAPMU=OMSQ2*C12*C12 
MU=OMSQ 2*C 22*C22 
R11=LAPMU*BETA*K12*K12*DEN 
R22=Rl1*ALPHA/BETA 
R12=(2.0*MU*ALPHA*8ETA*ZETA-2.0*MU*ZETA**3+LAPMU*ZETA*K12*K12)· 
DO 1 I=1,M 
DO 1 J=1,M .. 

1 A(I,J)=CMPLX(O.O,O.O) 
IF(ZETA.GT.1JE-12)GOTO 3 
ETA =H Ie 2 
AL=C2/C1 
COEff=OMSQ*C2 
PHI==AL*ETA 
A(1,1)=COEFF/{AL*CSIN(PHI)/CCOS(PHI» 
A(2,2)=COEFF*CCOS(ETA)/CSINCETA) 
DO 4 L=1,N 
A«2*L-1),(2*l+1»=-COEFF/CAL*CSINCPHI» 
A«2*L),(2*L+2»=-COEFF/CSIN(ETA) 
A«2*L+1),{2*L-1»=ACC2*L-1),(2*L+1» 
A«2*L+2),(2*L»=A{(2*L),(2*L+2» 
A«2*L+1),C2*L+l»=2.0*A(1,1) 
A«2*L+2),(L*2+2»=2.0*A(2,2) 

4 cmHINU E 
ACM~1,M-1)=A(M-1,M-1)/2.0-R11 
A (~:""1,r·1)=-R12 
A C M ,M -1 ) = - R 1 2 
A(M,M)=A(M,M)/2.0-R22 
GOTO 6 

3 ALPHA=CSQRTCZETA*ZETA-K1*K1) 
BETA=CSQRT(ZETA*ZETA-K2*K2) 
ALPHAR=REAL(ALPHA) 
ALP H A I 14 = I MAG ( A L PH A) 
ALPHAI=CMPLXC-ALPHAIM,ALPHAR) 
BETAR=REAL(BETA) 
BETAIM=IMAG(BETA) 
BETAI=CMPLXC-BETAIM,BETAR) 
ZETAI=CMPLX(O.O,ZETA) 
LAPt4U=Of"lSQ*C1*C1 
~1 U= 0,., S Q "* C 2 * C 2 
AH=ALPHA*H 
BH=BETA*H 
SHA=O.5*(CEXP(AH)-CEXP(-AH» 
SHB=O.5*(CEXP(BH)-CEXP(-8H» 
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5 

6 

I 

25 

2(: 

CHA=O.5*(CEXP(AH)+CEXP(-AH» 
CH8=O.5*CCEXP(AH)+CEXP(-BH» 
U=2.0*BETAI*LAP~U*K1*K1*(ZETA*IETA*SHA*CH~-ALPHA*8ETA*SHB 

?*CHA)/CALPHA*ZETA) 
V=2.0*BETAI*(1.0-CHA*CHB)*(LAPMU*K1*K1-4.0*MU*ZETA*ZETA)+ 

? 2 • 01* Z ETA I * S H A * S H B * ( ( LAP M U '* K 1 * K 1 * Z ETA I ALP H A ) - 2 • a * ~ U· ( (A L PH-A * 
?8ETA*BETA/ZETA)+(ZETA**3/AlPHA») 

W=2.0*MU*K2*K2*(ZETA*ZETAI*CHA*SHB-ALPHA*BETAI*SHA*CH8 )1 
?ZETA 
X=2.0*BETAI*LAP~U*K1*K1*(ALPHA*8ETA*SHB-ZErA*ZETA*SHA) 1 

?(ALPHA*ZETA) 
y=2.0*MU*BETAI*K2*K2*(CHA-CHr) 
Z=2_0*MU*K2*K2*(ALPHA*8ETAI*SHA-ZETA*ZETftI*SH3)/ZETA 
0=4.0 * 13 ET A I * Z ETA * ( 1 • 0- C H A * C H B) + 2 .0* ( ALP H A * a ETA * BET A I / Z. ETA-
?(ZE~A**3)/ALPHAI)*SHA*SHB 

A(1,1)=U/O 
A ( 1 ~2) = v 10 
A (Z,1)=V/O 
A(2,2-)=w/0 
DO 5 K=1,N 
A«2*K-1),(2*1<+1»=X/D ~. 
AC(2*K-1),(2*K+2»=Y/D 
A « 2*K) , (2 *K+ 1 ) ) =-y 1 D 
A C<2*K) ,(2*K+2) )=Z/o 
A«2*K+1),(2*K-1»=A«2*K-1),(2*K+1» 
A ( ( 2 * I< + 1) , ( 2 * K ) ) = A ( ( 2 * K) , ( 2 * K + 1 ) ) 
A « 2*K + 2) , ( 2 * K -1) ) = A ( (2 *K -1) , (2 * K + 2) ) 
A ( ( 2 * K + 2) , ( 2 * l< ) ) = A { ( 2 *-K ) , ( 2 * K + 2 ) ) 
A « 2* K + 1) , ( 2 * K + 1 ) ) = 2 .0 * A ( 1 ,1) 
A « 2*K + 2) , (2 * K + 2) ) = 2 • a * A ( 2 ,2) 
CONiTINUE . -
A (1,::-1 , M -1 ) = A ( M - 1 , 14 - 1 ) 1 2 • 0 - R 11 
A(~~1,M)=-"12-V/0 . 
A(H,M-1)=-R12-V/D 
A(M,M)=ACM,M)/2.0-R22 
B = A ,( 2, 1 ) 1 A ( 1, 1 ) 

\. 

A(2 ... 2)=A{2,2)-AC1,2)*f3 
A (2,3) = A ( 2 , 3) - A ( 1 , 3 ) * 8 
A(2,4)=A(2,4)-A(1,4).A 
DO 25 I=1,(M-3),2 
C=ACI+2,I)/A(I,I) 
DD=(A(I+2,I+1 )-C*ACI,I+1» tACH1,I+1) 
A(!f2,I+2)=ACI+2,I+2)-ACI,I+2)*C-A(I+1,I+2)*DD 
A ( 1+2, I + 3) = A ( 1+ 2, I + 3 ) - A (I , 1+3) * C -A ( I + 1 , I + 3) * D D 
C =A,(I + 3, I) I A ( I, I) 
DD=(A(I+3,I+1 )-C*A<I,I+1» IACI+1,I+1) . 
E=(A(I+3,I+2)-C*A(I,I+2)-DD*A(I+1,I+2»/A(I+2,I+2) 
A (I "·3, I + 3) = A ( 1+ 3, 1+3) - A ( I , 1+3) * C - A ( I + 1 , I. + 3 ) * 0 0 - A ( 1+ 2 , I + 3 ) '" E 

IF(I.EQ.(/1"73»GOTO 25 
A(I+3,I+4)=A(1+3,I+4)-ACI+2,I+4)*E 
A(I+3,I+S)=ACI+3,I+5)-A(I+2,I+S)*E 
C ON,n NU E 
C v=D. 0 
DO 26 JJ=1,10 
I F ( 11 E A L (A ( J J , J J » . LT. a . O} C v = C V+ 1 .0 
CV=CV-INDICATOR I 

IFCCV.LT.O.O) cv=O.O· 
RETURN 
END 

END OF LISTING OF FILE :ISR\108.EFINO(79,*,1) FOR USER :ISRu08 AT 19: 
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B.7 Program EF64H2 

This program calculates data for plotting the elastic foundation 

model results. It contains all the logic required for the bedrock model 

computations, and therefore a bedrock program has not been included. To 

generate such a bedrock program, the (6 x 6) dynamic stiffness matrix 

defined by FUNCTION G(ZETA) here, should be reduced to a (4 x 4) matrix 

composed of its top left corner elements. All variables are 

non-dimensional, and this version of the program calculates the 

horizontal motion amplitUde and phase, at 41 points in th.e range 

162 / 3 < x/a ~ 33~/3' The program can be modified to produce wavenumber 

domain graphs (e. g ., Fig. 7.2), "width variation" graphs (Fig. 7.11) or 

receptance graphs (Figs. 8.20 to 8.25) in exactly the same way as 

described for the program HSWM4F in Section B.2. 

TWo NAG routines are used in FUNCTION G( ZE'!'A). (The routine OOlM~ 

is explained in Appendix A). Routine F03AHF decomposes the complex 

dynamic stiffness matrix [A] into triangular matrices, in preparation for 

solution of the problem, by forward and backward substitution, by routine 

F04AKF. 

Clearly a second application of the program is necessary, to obtain 

sufficient data to plot a graph of the variation of horizontal motion 

amplitude and phase over the range x/a < 33~/3' 

To calculate the vertical motion variation, the only change necessary 

in the main part of the program is to the phase definition at line 38, 

which should become 

WP(NX) = ATAN2(WI,WR) 

In addition, the definition of BARW at the end of FUNCTION G(ZETA) should 

become 

BARW = CMPr~(o.0,-1.0)*B(l,1) 

Requires: The NAG library. 
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Inputs (Variable parameters) 

N 

H 

OMSQ 

VNU 

DAMP 

In FUNCTION G(ZETA) I 

OMSQ2 

VNU2 

DAMP2 

BBlT (defined twiCe) 

cormnents 

Number of sub-layers composing dynamic 

stiffness matrix 

Non-dimensional sub-layer height; 

therefore 9.333 = h/a 

Non-dimensional (frequency)z, OZ 

POisson's ratio 

Half the loss factor, ~/2 

Non-dimensional (frequency)z, OZ in 

the half-space 

Poisson's ratio in the half-space 

Half the loss factor, ~2, in the 

half-space 

Non-dimensional, transformed stress 

on the strip; if the value 

4.96 x 10-9 is used, this is equivalent 

to P = 2rr at Clarborough. 

Additionally, to calculate information for 0 ~ x/a <16z/ a , it is 

necessary to replace the first (l6.667) at line 24 by 0.0. If the 

frequency is changed, the same logiC applies to the value '1.4' in each 

call to DOlANF, as for the program HSWM4F; the only difference here is 

that now this value of wavenumber is non-dimensional. 

outputs 

sets of X position, horizontal (or vertical) amplitude and phase are 

written to a data file. For one value of the loop variable NX, the 

upper bounds for each error inherent in the applications of DOIANF are 

written. 
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PROGRAM EF64H2 

C EFO USES THE MANUALLY INVERTED STIfFNESS MATRIX,T,AND QUADRATURE 

9C 
75 
5S 

COMPLEX C1,C2,K1,K2 
DIM~NSION WM(12u),WP(120),X(120) 

?, TW (60r)O) ,IW( 2500) 
COM~ON H,N,O~SQ,C1,C2,K1,K2,~,INDICATOR 
EX r t RNA L (, 
N =2 
M=21*N+2 
H='f.Y33/N 
O""S(~=Q.524 
WHITE(6,4<t)N 
FOI-(j'-lAT(/I/,'NO. OF LAYERS=',I2) 
VI\IU'=O.2S7 
A C 1 =S Q R T ( ( 1 • - V N U )/ ( ( 1 • + V N U ) * ( 1 • - 2 • *v N U ) '* 0 M S Q » 
AC2=1.0/SGRT(2.J*(1.0+VNU)*OMSQ) 
D AI"! P=O .05 
AA=SQRT(J.5*(1.C+SQRT(1.0+4.0*OAMP*OAMP») 
C1=CMPLX(AC1,C.O)*CMPLX(AA,(OAMP/AA» 
C2=CMPLX(AC2,Oou)*CMPLX(AA,(DAMP/AA» '. 
K1=1.0/C1 
K2=1.0/C2 
DO 75 NX=1,41 
XN=fLOAT(NX) 
X 01 x} = 1 6 .667 + ( X N) 11r1 6 .667 / 4 0 .0 
I r~DICATOR=O 
CALL D01ANF(G,O.O,1.4,X(NX},2,10E-18,1nE-6,BWRCOS1,ABSERR1, 

?Tw,6000,IW,2500,U) 
CALL D01ANFCG,1.4,9.0,XCNX),2,10E-18,10E-6,BWRCOS2,ABSERR2, 

?TW,6000,IW,2500,O) 
I NDICATOR==1 
CALL D01ANF(G,O.O,1.4,X(NX),2,10E-18,10E-6,BWICOS1,ABSERR3, 

?TW,6000,IW,2500,O) 
CALL D01ANF(G,1.4,9.0,X(NX),Z,10E-18,10E-6,BWICOSZ,ABSERR4, 

?TW,6000,IW,2500,O) 
WR==2.0,*(BWRCOS1+AWRCOSZ) 
WI=2.0*(BWICOS1+AWICOSZ) 
W~{NX)=SQRT(WR**Z+WI**2) 
WP(NX)=ATANZ(-Wk,WI) 
I f(wM(NX) .GLWMAX)Wf>lAX=WMCNX) 
WRITE(4,55)X{NX),WMCNX),WP(NX) 
IF(NX.EQ.S9)WRITE(6,90)ABSERR1,ABSERR2,ABSERR3,ABSERR4 
F OR toIAT ( / / ,1 X, 4 ( E 11 .. 5,1 x) , I ,1 X, 4 ( E 11 .. 5, 1 X) ) 
CONTI NU E 
FOR~AT{1x,F7.3,2X,F15.11,2X,F7 .. 3) 
STOP 
END 
FUNCTION G(ZETA) 
COMPLEX U,V,W,X,y,Z,MU,C1,C2,K1,KZ,ALPHA,BETA,DEN, 

?ALPHAI,BETAI,LAPMU,SHA,SHA,CHA,CHB,AH,BH,ZETAI,A(6,6) 
?,AL,ETA,COEFF,PHI,D,B(6,1),BARW,C12,C22,K12,K22,R11,R12,R22 

DIMENSION RINT(6) 
COMMON H,N,OMSQ,C1,C2,K1,K2,M,INOICATOR 
REAL ZETA,H,6BIT 
I NH:GE R N 
OMSQ2=u.(J109 
V~UZ=O .. 179 
D Ar'"p2=C, .05 
A C 1 2 = S Q R T ( ( 1 .0- V N U 2 ) I ( ( 1 • + V N U 2) k (1 .. - 2 .. '* V NU Z ) *0 M S Q 2) ) 
A C 2 2 == 1 • U / S Q R T ( 2 • I) * C 1 .. a + v N U 2 ) * 0 M 5 Q 2 ) 
A A 2 =5 Q R T ( 0 • 5 * ( 1 .0+ S Q R T ( 1 .0 + 4 .0* DAM P 2 * DAM P 2 ) ) ) 
C12=CMPLX(AC12,O.O)kCMPLX(AA2,(DAMP2/AAZ» 

269. 



C22=C~PLX(AC22,O.0)*CMPLX(AA2,(DAMP2/AA2» 

K 12=1.0/C12 
K22=1.D/C22 
ALPHA=CSQRT(ZETA*ZETA-K12*K12) 
BETA=CSQRT(ZETA*ZETA-K22*K2Z) 
DEN=1.0/CALPHA*BETA-ZETA*ZETA) 
LAPMU=OMsa2*C1Z*C12 
MU=OfolSQZ*C2Z*CZ2 
H11=LAPMU*8ETA*K1Z*K1Z*DEN 
R22=Rl1*ALPHA/BETA 
R12=(2.a*MU*ALPH~*RETA*ZETA-2.0*MU*ZETA**3+LAPMU*ZETA*K12*K12)*D 
DO 1 1=1,M 
B (J ... 1)=CMPLX(O.O,O.0) 
DO 1 J=1,M 

1 A<I ... J)=Cf'lPLX(O.O,O.t) 
IFCZETA.GT.l0E-12)GOTO 3 
ETA =H 1 C 2 
AL=CZ/C1 
C OE FF=OMSQ*C2 
PfiI=AL*ETA 
A (1 IJI 1 ) = CO E F F I ( A L * C SIN (P HI) / ceo S (PH I) ) ' .. 

A(2 ... 2)=COEFF*CCOS{ETA)/CSIN(ETA) 
DO 4 L=1,N 
A«2*L-1),(2*L+1»=-COEFF/(AL*CSINCPHI» 
A ( ( 2 *L) , C 2 * L + 2) ) =- C 0 E F F 1 C S HJ( ETA) 
AC(2*L+l),(2*L-1»=A«2*L-l),( 2kL t 1 » 
A C ( 2 *L + 2 ) , ( 2 * L ) ) = A ( ( Z * L ) , ( 2 * L + 2 ) ) 
A ( ( 2 *L + 1 ) , ( 2 * L + 1 ) ) = Z • a * A ( 1 ,1) 
A«2*L+2),(L*Z+,»=2.0*ACZ,Z) 

4 CONTINUE 
BE:llT=4.96E-09 
A (M:-1 , ,.,. -1 ) = A C M - 1 , M - 1 ) I Z .0- R 11 
A (M:-1 , fli ) = - R 1 2 
A (M ... M-1)=-R12 
A (I"I ... M ) = A (M, M ) 1 2 • ()- R 2 2 
G OTO 6 

3 ALPHA=CSQRT(ZETA*ZETA-Kl*Kl) 
bETA=CSQRT(ZETA*ZETA-K2*K2) 
ALPHAP=REAL(ALPHA) 
ALPhAIM=IMAG(ALPHA) 
ALPHAI=C~PLXC-ALPHAIM,ALPHAR) 
BETAR=REAL(BETA) 
BET~IM=IMAG(HETA) 
BETAI=CMPLX(-UETAIM,BETAR) 
ZETAI=CMPLX(O.O,ZETA) 
L AP~~U=Ot<ISQ 4"C1 *C 1 
MU=OMsa*C2*C2 
AH=!\LPHA*H 
BH=HETA*H 
SHA=0.5*(CEXPCAH)-CEXP(-AH» 
SHB=O.5*(CEXP(BH)-CEXP(-BH» 
CHA=O.5*CCEXP(AH)+CEXP(-AH» 
CHB=O.5*(CEXP(BH)+CEXP(-6H» 
U=2.0*8ETAI*LAPMU*K1*K1*(ZETA*ZETA*SHA*CHB-ALPHA*BETA*SHB 

?*CHA)/(ALPHA*ZETA) 
V=2_0*bETAI*(1.0-CHA*CHB)*(LAP~U*K1*K1-4.0*MU*ZETA*ZETA)+ 

? 2 • Q.* Z ETA I * S H A * S H f~ * ( ( LAP M U * K 1 * K 1 * ZE T A I ALP H A ) - 2.0 *YI u* ( (A L PH A * 
?bETA*BETA/ZETA)+(ZETA**3/ALPHA») 
~=2_0*MU*K2*K2*(ZETA*ZETAI*C~A*SHB-ALPHA*BETAI*SHA*CHB )1 

?lETA . 
X=2.0*6ETAI*LAPMU*K1*K1*(ALPHA*PETA*SHB-ZETA*ZETA*SHA) 1 

?(ALPHA*ZETA) 
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V=2.0*MU*8ETAI*K2*K2*(CHA-CHB) 
Z=2·.0*MU*K2 *K2 * (ALPHA*BET AI *SHA-Z ETA*Z ETAI*SHB) /1 ETA 
D=4.0*BETAI*ZETA*(1.0-CHA*CHB)+2.0*(ALPHA*BETA*BETAI/ZETA-
?(ZE~A**3)/ALPHAI)*SHA*SHB 
BBIT=4.96E-09*SIN(ZETA)/ZETA 
A (1 ,,1)=U/D 
A(1 ... 2)=V/O 
A (2,,1)=V/D 
A (2 ... 2)=W/0 
[)O 5 K=1,N 
A«2*K-1),(2*K+1»=X/D 
A«2*K-1),(2*K+2»=Y/D 
A«2*K),(2*K+1»=-Y/D 
A « 2*K) ,.(2*K+2» =ZI D 
A«2*K+1)~(2*K-1»=A«2*K-1),(2*K+1» 
A«2*K+1),(2*K»=A«2*K),(2*K+1» 
A«2*K+2),C2*K-1»=A«2*K-1),(2*K+2» 
A«2*K+2),(2*K»=A«2*K),(2*K+2» 
A « 2*K + 1) , ( 2* K + 1 ) ) = 2.0* A ( 1 ,1) 
A«2*K+2),(2*K+2»=2.0*A(2,2) 
CONTINUE 
A(M~1,~-1)=A(M-1,M-1)/2.0-R11 
A(M~1,M)=-R12-V/D 

A(M"M-1)=-R12-V/D 
A(M"M)=A(M,M)/2.0-R22 
B(1.1)=CMPLX(O.O,BBIT) 
IFAIL=O 

.~ . . 

CALL F03AHF(M,A,M,DETR,DETI,IO,RINT,IFAIL) 
IFCIFAIL.EG.O)GOTO 10 
W RITE (6,7) I F A I L 
FORMATCI,IIfAIL=',lZ) 
STOP 
CALL F04AKF(~,1,A,M,RINT,B,M) 
BARW=BC2,1) 
IF(INDICATOR.EQ.O)G=REAL(BARW) 
IFCI~DICATOR.EQ.1)G=IMAG(BARW) 
RETURN 
END 

END OF, LISTING OF FILE :ISR008.EF64H2(2,*,1) FOR USER :ISR008 AT 1981 

********~***********************************************************, 
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B.B Program W 

This program was used to produce the results of Chapter 9, which are 

for a rectangular load. The program writes the real and imaginary parts 

of vertical motion (WR and WI, respectively) to a data file, for six 

values of distance X from the centre of the rectangle. Several 

applications of program ware required, to produce enough information for 

a graph of the range of Figs. 9.B to 9.13. Alternatively, if running 

time for the program is not limited, all the data could be collected with 

one run. 

TO obtain horizontal motion data, the definition of WB in FUNCTION 

G(GAMA) must be changed to the correct expression (given by equations 

(9.37), (9.54) and (9.56) - all the program names are the same as in the 

analysis, except for Hand K, which represent k~ and k z respectively 
-

in the analysis; clearly WB represents W). To produce the receptance 

graphs, FREQ must be varied instead of X; this involves changing lines 4 

and 25. To produce the wavenumber domain graphs (Figs. 9.2 to 9.7), the 

functions in the (~, y) plane are generated using FUNCTION G, with BET.A 

varied in COMMON. SUBROUTINES INTEG and SIMPSON are then irrelevant. If 
-plots of ware required, INTEG should be used, but without the call to 

SIMPSON. In each case, the data prOduced can be converted into a graph 

using a simple plotting routine. 

Requires: the NAG library. 

Inputs (Variable Parameters) 

FREQ 

BEE, GEE 

E, RHO, VNU 

DAMP 

Comments 

Frequency of harmonic load in Hz 

Dimensions of rectangle, in metres 

Young's modulus (Nm-z), Density (kgm-3), 

poisson'S ratio 

Half the loss factor, ~/2 

Additionally, the • 6' at line 22 def.ines how many X positions are to be 

considered. The four calls to SUBROUTINE INTEG(M,BINC,ANSW,BETAl,X) 

break the integration into convenient sections; the values of BETAl must 

be increased with increased frequency, to ensure the relevant features 
-of w (see Figs. 9.6 and 9.7) are within the correct sections. M is the 

total number of points per section integration, for the Simpson's Rule 
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calculation - the NAG routine DOlANF uses as many points as required for 

the desired accuracy. BINC = (Section Length)/(M - 1). 

output 

The program prints six sets of values of X, WR and WI, i.e., 

corresponding values of x, Re(W) and Im(W), where the horizontal motion 

u can be substituted for w. 
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PROGRAM \V 

CO~PLEX MU,C1,C2,H,K 
COMMON BETA,BEE,CEE,INDIC,H,K,MU 
EH~RNAL G 
FtiEQ=16.0 
i:3 EE =0. 7 5 
C EE =0. 1 25 
[==2.69E08 
kHO=155J.O 
\I NU =0. 2 57 
ALAM==(VNU*E)/«1.J+VNU)*(1.0-2.G*VNU» 
M'U = E / ( c: • Q ... ( 1 .0" V N U ) ) 
AC1=SQKT«2.0*AMU"ALA~)/RHO) 
AC2=SQRT(AMU/RHO) 
D Ar~ P = 0 • U 5 
A A= S Q R T ( C .5 *' ( 1 • 0+ S Q R T (1 .0"" • t i *D AMP" 0 A MP ) ) ) 
MU=CMPLX(AMU,o.r)*C~PLX(1.U,(2.U*DAMP» 
C 1= C 1>1 P-L X ( A C 1 ,0. (j) '" C t>' P LX ( A A , ( t· AM P / A A ) ) 
C2=CMPLX(AC2,O.O).CMPLXCAA,(DAMP/AA» 
O~EGA=6.28318530f;*FREQ .~' 
H =0 ~ EGA I C 1 
K =0 f4 EGA I C 2 
DO 5 1=1,6 
DO (j J=1,;: 
I t~D Ie = J 
)(=FlOAT(I-1)*O.1 
CALL INTEG(19,(O.2/13.),ANS1,O.O,X) 
WRITE(6,65)ANS1 
CALL INTEG(35,(O.4/34.),ANS2,O.2,X) 
WRITE(6,65) ANS2 
CALL INTEG(33,(O.4/32.),ANS3,O.6,X) 
WtHTE(6,6S) ANS3 
C AL li I NT E G ( 7 5 , ( 1 9 • 0 I 7 4. ) , AN 5 4 ,1 • Q , X ) 
IJRITE(6,6S)ANS4 
FORMATC1X,'ANS= ·,F18.14) 
ANSW=ANS1+ANS2+ANS3+ANS4 
IF ( J • E Q • 1 )j,J R = AN 5\11 
IF(J.EQ.2)WI=ANSW 
CON TIN U E 
WRITE(4,60)X,WR,WI 
FOR~AT(1X,' X=',F6.3,· WR=',F18.14,· WI=',F18.14) 
STOP 
END 
SUBROUTINE INTEG(M,BINC,AN5W,BETA1,X) 
Dlt'tENSION TW(6000),IW(2500) ,fl(1UO) 
EXTERNAL G 
COMMON BETA,BEE,CEE,INDIC,H,K,MU 
lFAIL=O 
DO 1 I=1,M 
BETA=BETA1+(I-1 >*BINC 
CALL D01ANF(G,O.O,20.0,X,1,10D-18,10D-6,BB,ABSERR,TW,6000, 

? IW,2S00,IFAIL) 
IF{IFAIL.NE.O)WRITE(6,67)IFAIL 
IFCIFAIL.NE.O>STOP 

1 8(1)=88 
6 7 F OR j\Ii A T ( 1 X , • I F A I L = ., I 3 ) 

CALL SIMPSON(B,~,bINC,ANSW) 
RET UR N 
END 
F UN C T ION G ( GAM A ) 
CO~PLEX MU,H,K,A1,A2,FR,A,8,C,A12,BCM,EVE,WB 
COM~ON 6ETA,BEE,CEE,INDIC,H,K,MU 
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5G=BETA*BETA+GA~A*GAMA 

A1=CSGkT(BG-H*H) 
A2=CSGiRT(UG-K*K) 
A12=A1*A2 
IF<ABS (BETA) .GT .10E-30.AND.A8S(GAMA) .GT .10E-3D) 

?STERM=SIN(BETA*AEE)*SIN(GAMA*CEE)/(BETA*GAMA) 
IF(~BS(8ETA).LT.10E-3C.AND.ABS(GA~A}.GT.10E-30)STERM=(SINCGAMA* 

?CEE»/GAf'oA 
IF(ABS(RETA).GT.10E-30.AND.ABSCGAMA) .LT.10E-30)STER~=(SlN(BETA)~ 

? BEEl/EETA 
IF(ABS(OETA).LT.10E-30.AND.ABS(GAMA).LT.10E-30)STERM=1.0 
F R= ( 2 • 0 * P G - K * K ) "It * 2 - 4 .0* A 1 2 "It A G 
BCM=(1.!J/(BEE*CEE*fw1U» 
A=BCM*S TERI4I *H*H *( 2. O*PC,-K *K) I fR 
EYE=-Cf-'PLX(O.O,1.0) 
H=-~YE*HCM*STERM*2.G*A12*8ETA/fR 
C =- EYE'" HeM'" S T E R 1'1 .. 2 • I ~ * A 1 2 * (, A ,.,. A / F R 
WA=A1*A/(H*H}-(EYE/A2)*(UETA*B+GAMA*C) 
IFCINDic.EQ.l)G=REAL(WB) 
IF(lNDIC.EQ.2)G=IMAG(WU) 
RETURN 
END 
SUBROUTINE SIMPSON(A,N,AINC,ANSW) 
Dlf.lENSION Aon 
A NS 1 = A ( 1 ) + A ( N ) 
A NS 2 = 0 • a I.. 

A NS 3=0.0 
00 1 I=2,(N-1>,2 

1 ANS2=ANS2+A(I) 
DO 2 J=3,(N-2),2 

2 ANS3=ANS3+A(J) 
ANSW=(AINC/3.0)*(ANS1+4.0*ANS2+2.0*ANS3) 
RETURN 
END 

E tI D 0 F LI S TI N G 0 F f I L E ~ I S ROO 8 • W ( 5 , *,1> fOR USE R : IS ROO 8 AT 19 86/09/18 

******~**~***********************************************************~ 
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