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Structural damping has become an important oparameter in Leq reduction of
machines. Its use is particularly important in the medium frequency range
(500 Hz to 3000 Hz) from where most of the acoustic energy is radiated.
Studies on a new and useful dambing technique, the filling of cavity compo-
nents with granular materials, is presented in this thesis. Experimental
studies show regions of maximum damping caused by standing wave formation
~in the material. The first maximum occurs when the internal dimension of
the cavity is equal to one quarter of the longitudinal wavelength. The
tuning of optimum damping to any desirable Zrequency requires accurate
knowledge of wave speed. Experiments show that wave speeds also decrease
with amplitude when strains reach values hizher than about 10_6. This is
caused by gross slip taking place at contacts which breaks the main structure
of grain-grain contacts responsible for the propagation of elastic waves.
Waves speed whose amplitudé‘prqduce strains smaller than 10_6 were observed
being independent of amplitude. Is is concluded that the effective elasticity
of the granular material, for these small strains, is given by the
elasticity of actual grains themselves in the chain of grain contacts;
local deformations at contacts are negligibZe. Loss factors of granular
materlals also present identical variation with strain. At large strains

(> 10~ ) energy is totally dissipated at grazin contacts, by dry friction

in partlal and gross slip forms. For low strains, as insignificant amount
of energy is dissipated at grain contacts compared to the amount of energy

dissipated by hysteresis inside the grains themselves.
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CHAPTER 1

INTRODUCTION

Noise in industry has become a matter of increased concern in recent
years and its hazardous effects on hearing are now well known. It is

estimated that in Great Britain alone some half a million workers are

subjected to noise levels which may cause nearing damage. Impending.legis-—
lation, specifying limits for noise in industrial environments, has
provided a new stimulus for research into ways of reducing levels. Noise
control at source is obviously the most desirable, though most difficult
method, rather than the more common solution of enclosures. This thesis
concentrates on the former area, with particular reference to machine
structures, mechanical processes and handling noise (noise associated with

the transport of workpieces and materials inside factories).

The relative importance of the severzl parameters influencing the

(1)

noise radiation from machine structures cza be seen from Richard's equation

- ' - Af
Leq(A’ Af, fo) 10 log Fc(fo) + 10 log Ref{ JHC(f)} + 10 log i

(o)

Ac
+1010g—f—r-a—d - 10 12g n_ - 10 log d + C

o
where Leq is the equivalent level of the sound power radiated, filtered
in a band Af and centred at fo; Fc is the impulse force; Hc is the
point response function (defined as displacement/force); d is a typical
thickness of the structure; Acrad is the A-weighted radiation efficiency;

ns is the structural loss factor and C is a constant.

Richards was able to show the importamce that medium frequencies
(500 Hz to 3000 Hz) have on the total nois=z energy radiated from machines.
This is due to the way the frequency relate=d parameters, such as force
derivatives, radiation efficiency, A-weighzing function and point response,
combine and maximise Leq in this region. Other parameters have a flat

spectral shape.




The total noise radiated is consideres as a sum of terms each related

to individual structural parameters and tc the excitation. Some terms of
the equation have been quite extensively szudied, radiation efficiency(z)
and the point response function(B), for irstance, while others are still
not properly understood. This is the case for structural damping; the
mechanisms of energy dissipation which exist in machine structures at
medium frequencies have not been fully expiained. The importance of dam?—
ing as a noise control paféﬁé&er can be sezn from the abovém;&hation which
shows that as Leq is negatively proportiocnal to the logarithm of the loss
factor, a tenfold increase in ng (at mid-frequencies where most of the
sound is radiated) reduces Leq by 10 dB. Hence, this thesis has been

aimed towards finding ways of improving the damping of machine structures.

\

i The damping of a structural component is the term usually employed

i to describe the dissipation into heat (or otherwise) of vibratory energy.

i Energy flow to other structural components is another way in which energy
is removed from a vibrating component. Eowever, this is difficult to
quantify so that heat dissipation mechanis= only will be discussed in this
thesis. The most common mechanisms by which vibrational energy is dissi-
pated in industrial structures are internz. friction in metals (material
damping), friction at joints (interfacial Jdamping) and additive treatments
such as viscoelastic materials attached to the surface of the structure
(additive damping). 0il films or air traoped at joints and gaps and the
filling of the cavities in components with granular materials can also
provide considerable amounts of enérgy dissipation. Sound radiation from
structures is a form of damping (acoustic camping) but its contribution is

usually insignificant compared to other me-hanisms.

The usual form of specifying the level of damping that exists in a

component is by the loss factor defined as

. Energy dissipated per radian of oscillation
s Total vibratory energy -n the system

The loss factor thus defined is convenient because it represents-a ratio of
energies and can be employed to both simpls and complex structural vibrators.
Another form of damping representation often found in the literature is the

Quality Factor (Q) defined as the reciproczl of the loss factor,

Q = l/ns.



Each machine obviously has its own particular and simplest method of
noise control, the forcing function being the most important parameter because
it is in fact the primary cause of the noise problem. It is not always
possible, however, to reduce the force input to desirable levels as this
may adversely affect the efficiency of the machine or process. Thus,
other parameters must be considered. This is the stage where damping

becomes an essential parameter in noise recduction. An example of this

can be seen in noise reduction of drop forzes. Four main noise sources are
apparent: (a) acceleration noise from the impulsive movement of several
components, particularly the tup, anvil anc the billet as it deforms
plastically in a very short time at each biow; (b) noise due to air emission
at very high speed from the impact area; (c) small explosions in the impact
area due to combustibility of the o0il and sawdust thrown into the die area;
(d) the vibratory energy stored in the various components after each blow.
Source (d) above is perhaps the dominant ncise source in drop forges,
because although surface velocities may noc reach values as high as those
during the initial impacts (constituting tke acceleration noise which lasts
for milliseconds only) their continuing trznasient vibrations are a major
contribution to the overall Leq before ttey finally die awéy. The columns
of a drop forge are components where structural damping can be applied quite
simply because of their hollow constructior. Their walls have panels which
can be damped by viscoelastic layers, and zlso cavities which can be filled
with granular materials. Tup guides boltec to them provide further
increases in the damping by energy dissipation in dry friction-form at
contacting parts and joints of connection with other components (anvil and
head gear, for instance) also contribute significantly to the overall
damping due to the presence of rubber inserts. This example shows the
importance of different forms of damping usually found in machine structures.
Chapter 2 of this thesis presents a descrirtion of the physical phenomena

associated with their mechanisms.

The filling of cavities in components with granular materials is a
new technique which has some advantages over more conventional techniques.
For instance, it is easy to Qpply and granclar materials such as sand are
cheap and have high internal damping. They can also resist high

temperatures.



- Although very few studies have so far been -arried out on this particular

damping technique, results were encouraginz enough to start a research
pProgram seeking an understanding of the mectanisms of energy dissipation and

l27l reports experimental studies on a

the parameters to them associated. Wolf
large I ~ beam having steel boxes filled wich sand attached to it. Damping

levels varied from 0.01 to 0.2 depending upon the amplitude of vibration.
Measurements made at three frequencies (40 Ez, 110 Hz and 220 Hz) showed - ————--
higher damping levels at 220 Hz and lowest at 40 Hz, despite acceleration

levels of the beam did not vary significantiy. Wolf's results show an
interesting dependence upon amplitude i.e., an increase in the damping at

higher order modes of the beam ' where its zctual displacement amplitude is

reduced. This leads one to conclude that amplitude of vibration may not be

the parameter directly associated to the loss factor increase with frequency.

, 29
The work of kuhl an Kaiser, , on damping of short concrete bars and
aluminium tubes filled with sand, shows regZons of maximum damping at about
. . ' 21} .
1000 Hz. This was latter explained by Cremer and Heckll I in terms of

resonances 1in the sand itself.

These résults indicate that granular mzterials such as sand, may provide
high levels of structural damping when applied to machine structures and
contribute to a significant reduction in noise radiation.

This thesis therefore presents experimental and theoretical studies on the
determination of parameters related to the mechanisms of energy absorption

(and dissipation) from the structure in which the granular material is
contained. A first part of the study (chapter 3) consists of a series of
experiments designed to determine the influence of parameters such as
amplitude of vibration, grain sizes, externzl pressure and cavity dimension
upon the damping of beams. Internal damping and speed of waves have also

been the subject of detailed studies - éhapters 4 and 5 respectively - which
originated from the necessity for accurate information about these particular
parameters for the production of the damping of structures filled with granular

materials. Such predictions are presented i chapter 6.




CHAPTER 2

DAMPING MECHANISMS COMMONLY FOUND IX MACHINE STRUCTURES

2.1 Introduction

AfRféhérdsﬁl)"WOrkLEhoweﬁfthe importance of the medium frequency acoustic”
energy radiation from machinery. This is cue to a combination of structural
and acoustical ﬁarameters, as was described in Chapter 1. Increasing
structural damping levels especially in thi:z frequency range is an important

method of reducing the levels of noise radiztion.

This chapter presents a brief physical description of the several
mechanisms of damping found in most industr-al machines, involving
mainly material damping, frictional damping existent in joihts, damping due
to viscoelastic layers and due to air pumpi-g at gaps of assembled plate-

like components.

Results of measurements made in severa. machines and components, such
as rods of rock drills, presses and drop forges are also presented to show

the relevance of damping as a parameter for noise control.

2.2 Structural Damping Measurement Methods

2.2.1 Decay rate method

Perhaps the most common method of measuring damping is the decay rate
method due to its simplicity. The rate of cecay of vibrations after the
excitation is suddenly turned off is measured and expressed in the form
of reverberation time (T) which represents the time taken for the vibratory
energy .to decéy to one millionth (60 dB) of its initial value. The loss

factor is determined from the relation

2.

N

3
1

Fh

T

where f 1is the measurement bandwidth centrzl frequency. Despite its

popularity, the method has several drawbacks which must be remembered during




measurements. The first is related to the damping level up to which it
is applicable. A structure whose loss factor is of 0.16, performing free
vibrations, will dissipate all its vibratory energy in one cycle. Thus
the decay rate readings (and consequently 1oss factor determination) are
very inaccurate. The method is usually not recommended for structures

having loss factor greater than 0.08 - 0.1.

7 Meaéureﬁéntsgére'ﬁéualiy made in bands isolating distinct structural
resonances. Machine components because of their sizes and bulky shapes,
have distinct resonances only in the low ani medium frequency regions.
Resonant peaks are often closely spaced and amplitudes of one frequency
band may influence readings taken in neight-ouring bands. In such cases,
filters of very sharp roll-off slope are reguired (48 dB/Dec or so) and
results should be checked with measurements made by other methods, for

instance, the half-power bandwidth.

2.2.2 Half-power bandwidth method

Loss factor determination by the half-—ower bandwidth method consists
of plotting the response spectrum and measu—ement of the frequency bandwidth
for values 3 dB down the peak (whose reson=nt frequency 1is fn). The loss

factor is calculated from the relationship:

The modal density of flexual vibrations is constant with frequency, but,
‘as the response halfpower bandwidth increaszs linearly with frequency for
constant damping, the spectrum of highly demped structures has overlapping
resonances which restricts the application >f this method. On typical machine
components its use is limited mainly to low frequencies. Alternatively, if
the structure is poorly damped, resonances are so sharp that analysers
frequency resolution is not sufficient if zooming facilities are not

available. -




2.2.3 Input power measurement method

A third method, the input power methoé, follows more closely the
definition of loss factor. This involves mezasurement of the power dissi-
pated (Wdiss) by the component (which can be assumed equal to the power
supplied to it assuming no energy is transmitted to other parts of the

structure) and the structure's vibratory erargy (Evib)' The loss factor

- is determined from-the expression - e e

n = Wdiss .
ZﬂfEVib
The method has enormous potential beczuse the power dissipation
measurements (after conversion into energy diissipation per cycle) provides
valuable information about damping mechanism and espécially their variation
with amplitude. Loss factors can be meastcred for different amplitudes of
vibration in a very controlled way. This method is particularly useful
in the research of new damping mechanisms. It enables measurements in
highly damped structures, but it also has i<s drawbacks: it is time
consuming, phase matching between force anc response signals may present

problems and resonances at contacts and in connectors limit the frequency

range to below a few kiloHertz.

2.3 Material Damping

Although the inherent damping by intermal friction in metals and
alloys is small compared to that which can Se instilled by special damping
techniques, highly damped materials are desirable to provide a contribution
to the overall damping of components in caszs where additive damping
treatments fail to succeed. Viscoelastic materials have been extensively
used for many years and more recently studi=s on granular materials
have shown that their use in industrial structures can signifidantly improve
loss factors. An understanding of their mechanisms of internal éﬁergy

dissipation is then essential to aid the design of quieter machines.



2.3.1 Damping in metals

Internal damping in metals is characterZsed by several relaxation
peaks occurring over the spectrum which are zssociated to various micro-
structural mechanisms. A hypothetical spect=um suggésted by Zener(s)
shows regions of maximised loss factors caus=z=d by different forms of

relaxation (fig. 2.1).

crystalline materials. Impurities and point defects breaks the Symme try
within the crystals giving an anelastic charzcteristic to the material

when sound waves propagate through them.

Grain boundaries usually present viscous—-1like properties yielding a
constant loss factor with amplitude (linear camping). Because of the
freedom grains have for moving relative to ezch other, the damping provided
by the grain boundaries is higher than that provided by the grains them-
selves. Point defect relaxation is a distinct case of relaxation. This
is because at higher frequencies grains have no time to move relative to
each other and little energy can be dissipated. Also only small amounts
of energy are dissipated at low frequencies tecause the large period of
vibration allows elastic relaxation of grains to take place. Intermediate
conditions, however, maximise the energy dissipation and gives a so-called

relaxation peak.

The frequency range covered by such peaks can be several decades often
including the whole audio frequency range. Arother equally important para-
meter related to the internal damping of metzls is the amplitude of vibra-
tion. Fatigue stresses are always considerec in the design of machines and
so have been used here to represent the paraceter amplitude. Below the
fatigue limit (Of), the mechanisms of damping are found to be almost
linear for the vast majority of metals used in industry. Some regions of
a mate;}al may have stresses high enough to cause plastic flow or shear
of some‘grains, but on a small scale without affecting the overall
linearity of the damping mechanisms (fig. 2.2). As stresses in the material
approach the fatigue limit (and even exceedir = it) the high degree of
plastic flow in the microstructure makes the loss factor strongly amplitude-
dependent (but still frequency independent). Thus, at stresses higher than

O¢ there is a sudden jump in the loss factor curve against strain.



Machine components are designed to operate with stresses smaller than O
and so this nonlinear region can generally be ignored and linear damping

only should be observed.

(5)

Based‘on measurements made in several materials commonly used in
industry (1020 steel, grey iron, magnesium alloy, aluminium, sandwich
steel, glass laminate, titanium alloy and cthers) at stresses below the
fatigue limit, loss factors were -all found to be approximately linear—
(n = on, where n varies between O and 1). The deviation from

linearity can be neglected in practical cases.

The effect of dynamic stress distribution over components has been
studied in detail by Lazan and found that for linear damping mechanisms
the loss factor of the component can be assumed to be identical to the
loss factor of the material and independent.of the stress distribution

" (i.e., independent of components' mode shagpes of vibration).

Damping levels of different materials vary according to the degree
to which each material is capable of dissipating energy in its micro-
structure. Cast iron, for instance, has z high percentage of carbon in

graphite form and is a material with relatively high damping.

Typical loss factors of some of the mzterials usually found in

industry are listed below.

Material Loss Factor
n
. . -4
Aluminium - 10
Copper 2 x 10—3
Cast iron 10"3
Manganese/ ' -9
Copper alloy 3-7 x 10
: Steel 1-6 x 10
Tin 2 x 1073
Tungsten 2 x 10-4




. The damping level of a material in ttz absence of any other damping
mechanism affects its dynamic characteristics, particularly at resonances.
Resonant vibration levels are then totally controlled by the internal
damping. In order to account for the int=arnal daﬁping of a component in
the calculation of its dynamic response, the material elasticity modulus
is usually written in the form

E = E(1 + jn)

where E 1is the elasticity modulus obtairzd from static tests.

2.3.2 Damping of polymers (viscoelastic) materials

Polymer is a class of materials whick exhibit high internal damping
due to the nature of their long chain moleczules which gives a combination
of elasticity and viscosity. As a result =he dynamic performance is
between that of a crystalline solid and a Ziquid. The most important
feature of this type of material is the decendence of damping on frequency

and temperature. The amplitude of vibratisn does not affect the damping.

Molecules of polymers are composed of long chains of segments(6).
Each segment is made of a primary chemical structure (fig. 2.3). The
overall combination of such segments is what differentiates one polymer
from another. The way the segments are ccanected, size and numbers of
branches, cross linkings, the addition of Zillers, etc., are all factors
which affect that damping of the material. In fact, special polymers éan

be "designed" to achieve particular damping qualities.

At low frequencies, stresses applied zo the material deform the
molecules by rotation and bending of not oxly the branches but also the
whole segments too. This is a slow process allowing time for the
molecule to'readjust itself to a constant =quilibrium state. Deformations
follow in phase with slow change of stress=s. Low frequency vibrations do
not dissipate very much energy and this rezion is called the "rubbery"

region of the spectrum.

At intermediate frequencies, chain sezments perform coiling and
uncoiling motions (chain segments are smal_er than the macro-molecule and

larger than primary chemical structures or the chain length of a monomer

10.



group).  The inertia of the whole molecule restrains its motion allowing

bendings and coiling of chain segments only. 1In this region high damping
occurs. Frequencies are high enough not tc permit relaxation of the

segments of the molecule, also strain and s<ress are out-of-phase.

At very high frequencies the bending znd stretching of primary
chemical structures at the outside of the molecule (forming its tips)
provide its main source-of deformation. Ttz main structure of the molecule
remains underformed and gives stiff charactzristics to the material, called
the "glassy".region on the spectrum. This process is also accompanied by

very little energy dissipation.

Material loss factors are at a maximuc in the intermediate frequency

range of the spectrum called the "transitio=n region".

Figure 2.4 shows typical loss factor z=d Young's modulus shapes for
polymetric materials. Transition regions spread over several frequency
decades so that loss factors can be constan= and at a maximum throughout
the audio spectrum. Special viscoelastic ZJamping materials having loss
factors of the order of unity can be obtain=zd. Figure 2.5 shows measure-
ments made on samples of standard PVC sﬁpplied by ICI. Values of
n = 0.2-0.3 are typical of general purpose oDlastics and PVC materials

available on the market in the form of tubes or sheets.

2.3.3 Standard material damping medsurement methods

2.3.3.1 Metallic materials

Damping of metallic materials is usual’y measured by suspending samples
in the form of bars on very thin wires (or =ilk thread whenever possible) to
minimise the flow of energy through the susc.ension. The bar should also
be suspended at nodal points for the same r=ason. For materials of very
low damping (n < 10_4) it is recommended that they are tested in a vacuum
chamber to eliminate the damping supplied b+ the air surrounding the test
specimen (acoustic damping) . The usual test method is the decay rate
method, unless damping is nonlinear. Transducers recommended are non-
contacting devices, usually magnetic, which are readily available on the
market. A laser velocimeter has recently bzen successfully used for loss

(25,26)

factor measurements of the damping oI metals. Its main advantage

is that it does not require careful positiozing of transducers close to the




specimen surface. Accelerometers are not zpplicable for small samples of

material as energy flowing through the cable leads to erroneous measure-

ments.

2.3. .2 Viscoelastic materials

Damping measurements of viscoelastic samples is commonly performed by the
- —use of the OBERST bar. It consists of attzching a layer of the material to
be tested to.a metallic (steel or aluminium) bar and the damping levels and
resonant frequencies before and after attaching the viscoelastic material
are measured. Elasticity and shear moduluz of elasticity as well as
longitudinal and shear loss factors of the material can be determined by
this method. It has now become a draft p-oposed standard recommended by
the Acoustical Society of America(ls). Fizure 2.5 shows an example of its
application(7), in the measurement of shez~ loss factors of three different

ICI plastics. The OBERST bar is a simple =nd efficient technique which

could in due course be used by all researc=ers in this field.

2.4 Structural Damping Techniques

After measurements on several industrZal-machines, one of the main
conclusions was that almost all the dampinz was localised at the joints.
That makes essential a deep understanding of the several mechanisms of
energy dissipation, the parameters directlx related to it as well as their
importance. The effectiveness of more co=ventional damping techniques

* such as constrained layers of viscoelastic materials and vibrational
absorbers will also be discussed. Two new damping techniques ~ air pumping
and damping by granular materials - have rzcently been studied. A dis-

cussion of their applications will be presznted.

2.4.1 Frictional damping at joints

2.4.1.1 Mechanism of friction

A joint is defined as the region of ccntact between two surfaces.
Surfaces are never absolutely smooth; mag—ification would reveal many tiny
tips and valleys. When surfaces are press=d together, the tips of the

asperities carry all the applied forces prz.ducing high stress concentrations

12.



which causes plastic deformation and forms cold-welded junctions between

the metal surfaces. Frictional resistance to tangential forces is made

up of two COmponents(g). One component ovarcomes the shear resistaﬁce of
the welds before sliding begins - the shear component. As relative sliding
begins, the opposing asperities tend to "plough" through one another,
creating a second type of additional resistance - the ploughing component
(only observed when one metal is very soft compared to the other). It

may be expected that the-application of a tangential lead initiates plastic
flow and junction growth before junction stearing begins. In practice, a

"strain hardening" effect of the asperities is observed causing shearing

to occur behind the junction rather than at the welds themselves.

Plastic deformation and strain-hardening are irreversible processes
of energy conversion and are the mechanisms by which energy is dissipated

at dry friction joints.

The overall friction coefficient is defined as the ratio of the total

shear resistance to the normal load.

2.4.1.2 The normal load effect

The real area of contact is the summation of all the small junction
areas and is proportional to the normal lozd and independent of the size
of the bodies.

In an experiment reported by Andrew et al(lo), the normal force versus

deflection curve was plotted for different values of normal load. The
loading and unloading sequences followed icentical paths except for the
initial loading sequence during which the joint béhaved somewhat differently.
This has been attributed to an initial "becding-in' due to plastic
accommodations of the asperities. It was concluded that normal loads do

not dissipate enough energy to be explored for structural damping purposes.

2.4.1.3 The effect of tangential loacs on displacement

The relative tangential displacement tetween two bodies is a summation
of elastic deformation of the bodies and tke actual relative slip between
(9)

surfaces 1in contact . The contribution of the asperities' plastic

deformation to the tangential displacement has been shown to be negligible,




even in the first tangential loading where plastic flow of the junctions

takes place.

2.4.1.4 The mechanism of fretting

The surface damage that takes place wien two surfaces slide relative
to each other is due to two major factors. - Alternate tangential -forces
cause shearing close to the junctions so thkat for a continuous cyclic
tangential load contacts are subjected to succeséive welding and shearing.
Asperities are then flattened and the fragrments thus formed are deposited
in the valleys. Asperities under plastic czformations are also susceptible
to corrosion, forming oxide particles on tke surface. The surface is
weakened by this double process of material removal, i.e., mechanical
forces and chemical reactions, which makes it very susceptible to crack

propagation as well as wear of the joint.

Shotpeening and metal spraying are cormon procedures to reduce wear

(11)

of joint surfaces. Also, work on the cyaride hardening technique has

shown it to be very efficient and cheap.

2.4.1.5 Effect of impurities on dry friction

If metal surfaces are very clean and cuctile, a superposition of
tangential and normal load produces growth of the junction, reaching a
total contact area almost equal to the geomatric area. Tabor(lz) reports
that friction coefficient values of 50 to 120 or more (tending to infinity)
can be reached. Small amounts of contamirants, however, are sufficient
to reduce the shear strength of the interfzze to a few percent of that for
perfectly clean surfaces reducing the friction coefficient to values of
the order of unity. The presence of lubricant films between the surfaces

eliminates entirely the formation of junctions and the friction is then

determined by the shear strength of the lubricant film itself.

It has been experimentally observed thz=t normal load, apparent
contact area and velocity of sliding between surfaces do not affect
significantly, the friction coefficient values, so that for most practical
situations, dynamic friction coefficients lzy in the range 0.3 to 0.5.
Based on a large compilation of practical czses, static friction coeffi-

cients have been also found to be about 407 higher than dynamic

14,
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coefficients. Rab1now1cz( 3 recommends as good approximations for

dynamic coefficients the following: Mg = C.3 for unknown conditions,
My = 0.15 for mild sliding conditions, and Mg = 0.6 for severe sliding

conditions.

2.4.2 Analysis of Ideal Joints

2.4.2.1 Simple flat joint- partial siip conditiom

Consider a joint consisting of three members with the centre one of
relatively small cross section. It is assumed in this analysis that
 shear stress at the interfaces occurs only where relative slip occurs and
that in all members, sections parallel to the axis remain parallel during
application of a cyclic load. The applicztion of a force P to the
centre member produces a relative slip at the interface (originally at
x = 0), and extends inwards to an extent tnat the shear resistance
equals P, As long as P 1is less than tkes total shear resistance the
joint can offer, gross slip is prevented ar3i a partial slip condition

(14)

is said to occur. Analytical estimations of the energy dissipated

per cycle lead to an expression of the forr:

(1 - )%

/cycle = ~
24ukcpc

Ediss
where u 1is the friction coefficient, P.s the clamping pressure, Kc’

the stiffness of the centre member, K, the stiffness of outer members -

and P the average load applied to the cenire member.

The energy dissipation is then proportional to the cube of the load
and inversely proportional to the coefficieat of friction, clamping

pressure and stiffness of centre member.

2.4.2.2 gimple flat joint - gross slio condition

As the applied load exceeds the shear strength limit, surfaces can
slide relative to each other in gross slip Zorm. Predictions of the

energy dissipated per cycle have lead to tk= following expression:

2 -
20°p(P - P

Ediss/cycle = g + Eps’




where P is the maximum force which cause:z partial slip only. Any slight

increase in the load produces gross slip. Eps is the energy dissipated
per cycle in partial slip which takes place because of the cyclic nature

of the external load.

Ediss/cycle is now a linear function oZ the applied force P, the
coefficient and the clamping pressure.

Analysis of jointsrin;61v1n37Coﬁioﬁb dzmping (dry friction) has shown
that there exists an optimum interface pressure for which damping is
maximized. For very high interface pressu—ze there occurs no slip and,
consequently, no energy dissipation; for vary low interface pressure slip

can easily occur but the low frictional forces dissipated little energy.

In between these two extremes there it an optimum pressure for which
damping is maximised. Studies of the damping of a few typical joints

are discussed next.

2.4.2.3 Bolted joints

Bolted joints are one of the most common joints in machines and other
structures. Such joints when optimised fro= the damping point of view,

can contribute significantly to the overall loss factor of the structure.

The exact distribution of the normal szresses in a bolted joint is
very difficult to estimate because it varies with the dimensipns of the
joint. Rotscher's cone, however, provides = simple and accurate enough
description of the stresses. This assumes that the pressure is maximum
at the radius of the bolt and drops linearlx to zero at a distance of
about three times the bolt diameter. Applization of a tangential load
produces relative slip at the outer part of the cone and consequently
energy is dissipated. This process can be optimized. Ito and Masuko(ls)
have experimentally established the optimur pressures for a bolted joint,
shown in Fig. 2.6. It is interesting to me=tion that their orders of

magnitude were from 1 to 3~N/mm2. (Optimu= loss factors, nop = 0.045

were found to be about three times higher t2an the non-optimized,

n = 0.015.)




Measurements were carried out on a cartilever beam whose clamping end

was bolted to a larger mass. Ito and Masuko also noticed some influence

spacing had on the damping levels which were higher when the distance

between bolts was about three times the bolt diameter (this produced an

overlap of pressure cones of about half their volumes).

2.4.2.4 Double-leaf cantilever

The double-leaf cantilever as studied by Goodman and Klumpp(16)

consists basically of two identical beams positioned one on the top of the
other and pressed together by a constant uriformly distributed pressure p,
fig. 2.7. A harmonic force F is applied at the-free end in order to
produce bending deformations. As the composite beam deforms, relative

slip takes place at the interface and energy is dissipated.

Theoretical study(l6) of the energy dissipation per cycle resulted

in an expression, as follows:

i(utpz )[-BFR _ 8up
diss 37 2 7 2 h

where u 1s the friction coefficient; t the width of the beams {and
interface); & the beam length; E the Young's modulus of the material

of the beams; and ‘h the height of the cross section of each beam.

The optimum pressure can be shown to bz p = 3F/8th, and the corres-

ponding energy dissipation is:

”
/cycle = é% u”pz(t£3/Eh).

E..
diss

Figure 2.7 shows a comparison between theoretical and experimental
results. Loss factors of about 0.1 can easZly be achieved (near optimum

pPressure). The maximum (optimum) loss faczor measured was O.25.

As the pressure deviates from optimum walues, loss factor values are

reduced. It was noticed n= 0.05 for pressures equal to one quarter

and equal to double the optimum one.




2.4.2.5 Frictional damping at free eni of a cantilever

The case of a cantilever with its free end pressed against a surface,
providing a frictional force, has been stucied by Earls and Beards(17).
A harmonic force P was applied at a point along the length of the beam
inducing vibrations. It was assumed that zross slip was occurring at the
joint. Figure 2.8 shows a comparison betwezn theoretical and experimental
results. The ;ftimiéaﬁio;.of frictional camping is again apparent.
Contact pressures were limited to below 0.C3 N/mmzand the maximum loss
factor achieved was 0.025 which is one order of magnitude lower than in

the case of double leaf cantilevers.

2.4.3 Damping by inserts at joints

The introduction of inserts of high irternal loss factor in joints
can result in superior damping performance to that of dry friction joints.
This section summarises the extensive work carried out by Mente1(18’19)
into this particular topic. His work is mzinly devoted to predictions
and measurements of damping of beams and plztes vibrating in their funda-
mental mode of vibration. All conclusions reported here are thus valid

for frequencies below a few hundred Hertz.

Beams in which slipping occurs at joirts dissipate energy by dry
friction and when optimised, loss factors (for the fundamental mode) are
about one order of magnitude higher than thz internal damping of the beam

material (the total expected loss factor is of the order of 5 x 10_2).

The introduction of viscoelastic inserts between the interfaces (if
the geometry of the joint allows only shear motion in the insert) can,
by optimum design, produce higher loss factors than that obtainable from
dry friction, but stiil of the same order cI magnitude (total expected loss
factor.is of the order of 10-2). If the vibratory motion of the joint is
such that shear and rocking motions are possible, then the total loss
factor can be increased further by a full o-der of magnitude (n =‘10-1).
Such damping levels were measured even for wery small vibration levels -
an advantage over dry friction damping. zperimental work into the effect
of inserts upon the damping of a bolted joiat has been carried out by

Ito and Mazuko(zo). Rubber, polyester platz and two types of oil were

used as inserts. It is shown in this repor= that the generally accepted




assumption that oil can increase the dampicg of joints, may not always be

true. Viscoelastic inserts were observed to provide constant damping
with amplitude of vibration with slightly kigher values than for the case
of no inserts which means that its effects is significant. The behaviour
of oiled joints is at present difficult to predict. For low clamping

pressures, clamping is influenced by the o0il film damping. As the

pressure increases, 0il is forced out of tke joint and the joint damping

is proﬁided by metallic contact oﬁly. Permeable oils capable of
infiltrating themselves throughout the whoie joint interface are desirable.
Doubts regarding the amplitude dependence ci oily joints still remain,

however.

The analyses and studies of damping of joints so far presented refers
mainly to low frequency resonances of structures. This is sufficient
for applications such as turbine blade and machine tool vibrations. The
new field of damping of industrial strucfures for noise control requires
also information about loss factors in the high frequency range. At high
frequency the amplitude of vibrations may make some of the previously dis-
cussed methods inapplicable. Richards(l) has shown that the majority of
the energy of industrial sounds is concentrated at medium frequencies
(roughly from 500 Hz to 3000 Hz). This is due to a combination of
factors, such as coincidence frequency, A-wzighting and force spectrum.
It is in this frequency range where damping techniques must be efficient;

unfortunately, this is still an obscure area.

2.4.4 Damping by attached viscoelastic layers

This damping technique has been used successfully for many years and
can be very effective in light beams and plate-like structures. The
method consists of éttaching a layer of high damping viscoelastic material
to the surface of the structure. The technique has been extensively
studied and analyses can be found in many ra=ferences. In this section a
short review of the capability and approximate equations for prediction are

presented.

The first applications deal with struczures having an added layer only,

and vibrating in longitudinal and flexural modes. The resultant loss factor
(21) .

for the longitudinal modes is given by




E2d2

Ny, =N A =
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and for the case of bending waves .

2
) E2d2A
g 2 73
Eyd, > 2
where A = (d1 + dz)/Z and B = 13 + EZdZA

n, is the viscoelastic material loss factor; E2 its Young's modulus;

d2 the thickness of the applied layer; E;, the structure material

Young's modulus; and d1 the structure thiIckness. Both expressions show
the structural loss factor to be directly proportional to the product
n2E2d2 and independent of frequency and amolitude of vibration. One of
the most important observations regarding this result is that a good
viscoelastic damping material should have a modulus of elasticity as high

as possible as well as a high loss factor.

For the bending case, it should also be noted that the loss factor is
dependent upon the sQuare of the parameter A which represents the distance
between the neutral fibre (of this combined system) and the centre line of
the layer. The use of spacers to place the damping layer as far as
possible from the neutral axis is desirable. It should also be noted that
in applications where damping material is attached all over the external
surface of a symmetrié structure (such as a circular rod), the parameter

A will tend to zero, resulting in no damping.

A comparison between the damping proviced by a damping layer to different
modes of vibrations has shown that about tem times more damping 1is imparted
to bending waves than to longitudinal waves. This is an important feature
and suits many practical cases because bendiIng waves are normally unwanted
vibrations (radiating sound) and longitudinzl waves may transmit the

_mechanical work of the structure.

The configuration discussed so far is of unconstrained type, in which
damping is provided by longitudinal deformations in the viscoelastic
material. If a stiff constraining layer is attached to the top of the

viscoelastic material, bending will cause sktear deformation in the visco-



elastic layer. This sandwich configuratica is capable of even higher

dissipation than the simple unconstrained case.

Theoretical analysis shows that this Zoss factor for bending vibration
is given to a reasonable accuracy by:
2

E3d3A Ny :

n = B
e T T TR T ATy :

where E3 is the Young's modulus of the constraining layer material

and d3,

structures, it reduces to

its thickness. For thin constraZning layers and thick basic

1 + V1 + n22

Unlike loss factors of unconstrained layers, constrained ones exhibit

some frequency dependence, with an optimum value at a frequency given by

cL d1G2
£ ax = 5% dld E 1+ n%
m 29353 -
where c is the speed of longitudinal waves, in the base plate material,
and G2 }s the shear modulus of the viscoelastic material.

Although damping is frequency dependerz, this variation is small (the
"half power bandwidth" extends over five oczaves), thus once fmax is set
to any medium range frequency of interest, nopt can be assumed constant.
The damping in the unconstrained configuration is directly proportional to
the product n2E2, whereas damping for constrained configurations is
virtuale independent of G2. Its effect is only observed at the frequency
for maximum damping. 1In the selection of a viscoelastic material for

constrained configurations the magnitude of the other shear modulus may be

ignored. The major requirement is to- have n, as high as possible.
In the case of two plates of equal dimsnsions with a viscoelastic

interlayer and f T i
yer, nopt max 2re glven by
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2.4.5 Tuned dampers

Tuned dampers or as they are also callzd, vibration absorbers, are
essentially a single degree of freedom systzm which is attached to the
vibrating structure at a point of maximum diIsplacement (anti-nodal point).
The force exerted on the structure by the vibration absorber can be very
large reducing resonance responses to a min mum. This characteristic
makes it a very efficient device for structuaral damping purposes. Assuming
the damper unit has a mass m, stiffness * and loss factor n and

) t

; . . . iw
that the structural response at the appliczzion point is Xe » the

solution to the equation of motion for mass m 1is given by

X e1Lut

X = 2
.
k(L +in)

and the force F transmitted back to the structure can be shown to be

2 iwt
F = - mW Xe .
1 - mw
k(L + iny
. (22) . . .
Studies of applications on beams and plates with several boundary

conditions can be found in the literature but because of the complexities

of analytical results, a discussion only will be presented. It is important
to mention some characteristics of this typs of damping mechanism. Firstly,
the damper resonant frequency must coincide with the structure resonant
frequency of interest in order to achieve ootimum performance. The
structural resonance peak is split into twc smaller peaks. One correspond-

ing to the mass m and the structure movinz essentially in phase, and the
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other with them moving in opposite directiocas. In most cases, two resonance
peaks are observed. However, if the damper is not properly tuned, one of

the peaks will be greater than the other and actual damper effects reduced.

This system is ideal for structures having basically one dominant
resonant frequency or a group of frequencies very close together. Usually the
dampers effectiveness is limited to resonan:z frequencies concentrated in a
___band less than ome octave. This type of spsctrum is not, however, very
common in machine structures. Impulsive forces and the high modal densities,
lead to a uniform distribution of the vibratory energy throughout the audio
spectruﬁ. In a few cases, for example the fundamental mode of a C-framed
punch press, a distinct resonant frequency is observed and vibration

absorbers could be useful.

2.4.6 Damping by "air pumping"

Damping provided by air trapped in gaps between plates and between
beam/plate joints has been shown to produce reasonably high loss factors(23’24).
The damping effect is due to the viscous en=rgy dissipation as the air is
forced to move from one region to another as the structure vibrates. The
viscous nature of the dissipation makes this mechanism frequency dependent.

At low frequencies, velocity gradients are low and so is the energy dissi-
pation. At high frequencies the air has no time to move, and behaves as

a stiff spring, resulting in little dissipation. At intermediate frequencies,
howevér, velocity profiles are capable of mzximising the damping(Fig. 2.9). In
practical cases, such optimum frequencies are of the order of 100 Hz, so

that in the audio frequency range damping tends to decrease with frequency.

There are two important parameters directly related to the damping
levels. The first is the air gap thickness. Experiments suggest that
small gaps lead to the highest loss factors, i.e., plates bolted directly
together or ‘with spaces of less than about O.5 mm. For spaces of 1 mm
ﬁs is reduced by a factor of 2 to 3. Spacing between fixing bolts does not
seem to affect damping levels to any great extent (bolt spacing was varied

from 10 cm to 20 cm, fig. 2.10).

The second important parameter is the plate thickness ratio. Equal

thickness plates may vibrate in phase producing little relative displacement
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with minimal "air pumping". It is thus dzsirable to mismatch the

plate thickness.

Ratios can vary from 1 (for equal plztes) to a minimum when one
of the plates is much thinner than the otber. Ratios of about } can

already provide high damping levels (fig. 2.11).

The attachment of thln p ates (e.g., 1 mm thick) to typical machine -- -
components would then produce the maximum damping possible from this
damping mechanism. Ideal applications fcr this technique are casings

Oor any other plate-like components.

2.5 Total Damping Prediction

The damping of the various types of joints and their interface
conditions, the material damping and the use of spectral damping treat-

ments, all contribute to the overall dampi=g of each individual component.

Due to the bulky characteristics of trpical machine components,
their mode shapes are little affected by tkte addition of structural
damping, with the exception of vibration atsorbers when applied to slender
beam-like and plate-like components. In tkis case; modes of vibration
can be modified by the large forces exertec by the damper. Since the
use of vibration absorbers is only efficiert if the noise radiated is
concentrated in a narrow frequency band, tkey are rarely employed in the

reduction of machinery noise.

The prediction of the overall amount c< energy dissipated (per cycle)
in components in which several damping meckanisms are present, can then
be approximated by the summation of dissipzzions provided by individual

mechanisms, so that,

Ediss B Ediss * Edis* * Ediss Tees
“total hysteresis “joints - visc. layers

and if expressed in terms of loss factors, cne obtains,

Ng = ng +ng + N + ...
total hysteresis joints visc. layers

i.e., the overall loss factor represents tre summation of loss factors

produced by individual mechanisms.
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2.6 Damping of Some Machine Structures

Several projects involved with noise coatrol of machines such as-presses,
drop forges, rock drills, etc., have necessitated a review of all the
parameters related to the noise radiation, of which the loss factors had

to be experimentally determined.

A discussion of some of the measurements is presented in this section.

Figure451i2 shows loss fact;r>resu1ts of a tﬁird—scale drép h;mmer
model (by the decay rate method). Anvil and column show identical loss
factors, damping decreasing with frequency at a range of 10 dB/dec.

Loss factors of the anvil and columns were maasured before assembly, giving
values of the order of n = 10_3, i.e., éonsiderably less than when
assembled. Friction within the joints 1is responsible for the higher levels

of damping.

Measurements on a full-scale drop hammer were compared to results from
the model, to test the frequency effect. No significant variation was
detected which suggests that damping decreas=s with frequency due to ampli-
tude dependent mechanisms only. Figure 2.13 also shows several attempts
to increase the damping of structural components by inserts - without much
success. The best results achieved were loss factors of about 3 dB higher

when columns were filled with dry sand compared to empty columns.

As column internal cavity dimensions are of 4" to 6", optimum damping
provided by sand was expected to occur in the frequency range of 300 to

500 Hz.

If damping improvements at frequencies zround 2 kHz is sought, column

cavities should have cavities with a typical dimension of about 1".

Similar levels of damping observed in a C-framed punch press (figure
2.14), Punch press joints are characterised by having bolted (dry

friction) joints and lubricated sliding bearings.

Corrosion, lubrication oils, grease and moisture are impurities being
deposited during use which greatly modify coaditions from an ideal dry
friction joint.

It is interesting to note the high damping levels (= 5 x 10-2)

already existent in machines at low frequencies. To further increase



these damping levels is a difficult task. 2ulky components such as
solid drop hammer components could perhaps be made from a number of parts

or laminated to deliberately introduce frictional damping at joints.

Dry frictional damping decays rapidly zs amplitude is reduced, making
it very much a low frequency damping technicue. Modern viscoelastic
materials with a high elasticity modulus could possibly be introduced
into joints without creating serious structcral stiffness problems to
improve damping at higher frequencies. Such joints however act as isolators

and could lead to increased sound radiation.

Figure 2.15 shows loss factors of varicus panels tested as part of
a program to quieten a stillage (container for transporting pieces inside
factories). A 10 gauge perforated steel parel had very little inherent
damping, resulting mainly from the plate boundaries (welded). Loss factors
were around 10-3. A sandwich construction with viscoelastic material
between two steel sheets (sound deadened steel - SDS) marketed by British
Steel, showed loss factors of the order of 10—2, as would be expected from
a constrained configuration. Reasonably high damping was also shown by
the three layered panel in which air pumping was the predominant mechanism.
No spacers between plates were used. | A rapid decay of damping with
frequency is apparent but average values were of 10_2. The woven construc-
tion proved to be very successful from an acoustic point of view despite
its relatively low damping level. Friction between strips is the main

source of energy dissipation.

Rock drills have two major sources of noise, the pneumatic noise
of the exhaust system and the noise radiated from the rod vibrating in
flexural modes. Damping is the most importaat noise control parameter. One
damping technique tested on drill rods consisted of winding around the rods,
metal springs with various degrees of tightmess. Best results were
achieved for a loosely fitted spring, perhaps because contact forces
approach optimum conditions for dry friction and energy dissipation (fig.
2.16). -
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2.7 Conclusions

- The actual damping of machine structures is of the order of 1 x 10—2
to 5 x 10_2, and it is attributed almost entirely to dissipation at joints.
Damping levels of machine structures show a distinct decrease with
frequency. This is thought to be by amplitude-dependent rather than
freauency-depnpdyut mechanlsmb. ' _The actual mecnanlsms_or_energy dissi-
bpatlon at joints, particularly at higher freguencies, is at present to some
extent unknown. In fact it could be said thzt the whole area of damping
of industrial machinery is still in its infaccy. Further work is required
Lo promote better understanding of damping iz joints under various
conditions (oil films, viscoelastic inserts znd dry friction). There is
a need for improvements at medium frequencies (500 Hz to 3000 Hz) where
most of the industrial noise energy lies. Arplications of conventional and

new techniques to machine components should zlso be encouraged.

27.



Twin
2| A 77\ boundaries
E | [N Intersticial
= _3 ‘8' ’ “ ‘ ' l 1 te
| " 10 -1 ® | 5 | ': fi v Transverse ]
| S AR A | 57N thermal
g 10 I 2 Vo ! \ currents .|
b 7}_ g ! I e i i l i - F* ~ —
SR B VAR VA
" © -
S R & M 1 | I
-6 |/ 4 Vg | Iy
10° g & \ 7 \ [ a
' \_7 \ )
1077 ! ! | | ! ! D=1 NS
14 - - -
107! 10710 1076 1572 10° 10°

Frequency (at constant temperature)

Fig 2.1 Typical relaxation spectrum as suggested by
Zener for a "hypothetical" material, showing the several
mechanisms of damping and their relative levels

1000 7
’ /
/ /
" / .
100 / ./
/
J— 1 / /
™ 0+ / / 4
£ /. Ve
< -~ / /
" - . Ve
- -
> 1.0 F ° "/ L7
o . - -
e Pt //L. - //
o N s
c. T o -
9 0.1 r PR _ -
(&) 7~ ./' P
b0 7 - ~= 4
o / L~ //“; ~
opd / / //
g 0.01 I P
< el -~
[o=] s 1
0.002 L=< i : ‘ L
0.05 0.1 0.2 6.5 0.8 1.5
1.0 2.0

Ratio of cyclic stress ta fatigue strength (f/‘})

Fig 2.2 Dependence of unit darcing energy of various
anelasto-plastic materials upor ratio of cyclic stress

to fatigue strength, as observes by Lazan (5). (Materials:
sarnvik steel, glass laminate, titanium alloys, SAE 1020
steel, aluminium, magnesium alioy, grey iron).




A Micro mechanism Secondary
, transitions

B Micro structure Primary
R chemical

Al
O

Micro geometry

- segment

structure-

Glass
transitign

Chain

Flow

Macro
molecule

Low frequency |TransitionHigh frequency!
?lassy region

Fig 2.3 Micro-mechanisms ir damping of polymers

Rubbery regiorl r=zgion
|

=

L.

00

2]

E

|
¢

—

@

o

&
2

o0

)
—

-4

A B

its loss factor

Increzsing frequency ™

Fig 2.4 Effect of frecuency on the real and
imaginary parts of a twpical polimer and on



| (101) sajdues Jpd 103 s3Insai urdueq ¢*7 814
| (zZH) Aduanbaxg
000°0T1 !
Hm 000% 000t 0001 006 002 001
I ] _ I |
— ;.01
— .01
|
|
7
| i
|
01

sso7]

=1

u 1032

30.




i
TS S

(15
Fig 2.6A Test rig as used by ITO and MASUKQ . )
for dry friction damping stucies of bolted joints

a) h=" 40mm

1b)h= 24mm
a
= b ~
C

0.1 0.2 0.3 0.4 2
Clamping pressure (Kg/mm?)

Logarithmic
decrement
o
st
]

Fig 2.6B Effect of thickness of the bar u

pon damping
(H=100mm, So=60mm), from reference (15).

Logarithmic
decrement

o

\

\

—
\

0.2 o0.: 0.4 2
i Clampizg pressure (Kg/mm*)

Fig 2.6C Effect of bolt spacirz

£ upon damping
(H=100mm, h=40mm), from reference (15).




clamping pressure

VLA

Fig 2.7A Test Rig for dry frictional damping
analysis of a double-leaf cantilever, as studied
by Goodman and Kiumpp (16).

—— Theoretical
e Static Test
o dynamic test

o
O
oo

Loss factor.n

| ] | )
120

1

C.6 0.8 1.0
Ratio> of slip load to maximum applied load

Normal pre%ggre (psi)
1 ] |

2.7B Comparison between theoretical and experimental
results for a double-isaf cantilever, from
reference (16)




Hazrmonic force applied

p

s

Fig 2.8A Diagramatic represexztation of the system

showed by Earls and Beards (17).

pation per cycle

(1bf in/olbf)

—theor
o6 Hly

a 150H=z
x 17082

Specific energy dissi

experimental results of

.2 0.4 0.5
(1bf/1bf)

Specific frictional force

Fig 2.8B Comparison between theoretical and

cantilever beam

having a dry friction dac—per at the free end,
from Ref (17)




loss factor Ng '

. | | | 1 1

100 200 400 80C 1600 3200 6400
Frequency (Hz)

Fig 2.9 Effects of gap thickness between plates
(from ref (23)). All plazes are 2mm thick.

no spacers
between plates

-

1ﬁ( O.5mm




Loss factor, Ng

10

Loss factor, Ng
N
|

single plate

-4 ] ] | !

10
100 200 400 80C 16

Fig 2.11 Effect of plate thickne

00 3200 6400
Frequency (Hz)

sses (Ref (23))

(b)
b ]
a
| 1 1 ] I i
100 200 400 800 1600 3200 6400

Frequercy (Hz)

Fig 2.10 Effect of number of bolts (Ref (23))




0.1

w 0,03
=

-

9
&)

3]

.
W
o
o 0.01
—

0.003 I 1 ] Lo | ! ! 1 |

500 1000 2000 5000 (Hz)

Fig 2.12 Loss factor measurements results c= a Drop Forge Model

e--—a Anvil
Column

o——— Column with rubber insert between anvil and column .
guides

o= Column with rubber inserts between anvil/column and eolumn/tu
o—— Column with both rubber inserts and filled with sand

0:1
0.03 |

w

[y

~ -

o]

)

(]

3]

Y

w 0.01 —

(@)

'q -,
0;003 l | 1 | 1 l 1 1 1 l

500 1000 2000 5000 (Hz)

Fig 2.13Loss Factors comparision measurec on a column of a drop forge

ro-~—-2  Column - no dazwping treatment

& Column - full =f sand and rubber inserts at
anvil/column a2nd column/tup guides joints

36.




93e1q pag e

[ QU
,

due1-) Jo 3pIs§

aweag-) jo dog o

| ssaxd yound ® uo s3[Nsaa sjuswainseaw s§1030®83] ssoT H1'z 814 |

(2zH) 0006 , 000¢ 0001 00§ | 00¢

_ I _ — T T T ﬁ I _ 100°0
i | 00’0
L f _ .
o ﬁ o
9;/// ! @ ~
RN /// . D «
Sl N\ . — 10°0 m

*u




S

Loss factor n

0.0001 [ I I Lt
500 1000 5000 10000 (Hz)

Fig 2.15 Loss Factors of several panels

o——— Three layers spot welded panel
o———-o SDS panel

woven pansl
10 gauge sheet panel

10 gauge perforated sheet panel

Loss factor

0:.0001
100 2000 5000 10,000 (Hz)

Fig 2.16 Lloss Factors of a rock drill rod, having various damping treatments

o——o Rock wizh long spring loosely fitted
Rod wit> long spring welded ends
Rod wit> long spring as reed.

StandarZ rod - untreated




CHAPTER 3

BASIC EXPERIMENTS ON DAMPING OF GRiNULAR MATERIALS

3.1 Introduction

The broad survey undertaken of the several damping mechanisms existent
in machine structures (presented in Chapter 2) has lead to the conclusion
that the loss factors of machine structures exhibit a distinct decay

with frequency (approaching 10 dB per decade). It has not been possible
from the present work to conclude confidentiy whether this decay is caused
by amplitude or frequency dependent processes of energy dissipation,
although the former is more likely. Dampirg levels of machine tools such
as power presses, drop forges, etc., are typically 5 x ].0—2 at low

frequencies (around 300 Hz), and 10_2 at higher frequencies (around 5000 Hz).

For noise control it is important to mzximise the damping, particularly
in the medium frequency range to achieve significant reductions in Leq'
Hence, one of the main objectives of this tkesis has been the study of a
damping technique capable of producing additional loss factors of at least

10 7, especially at medium frequencies.

The reason for choosing granular materials, and specifically sand, was
based on two major factors which showed some of theirlpotential as damping
material. The first one is the internal darping which can be very high.
According to published daté, for instance, internal loss factor of sand is
about 0.1. The second, and perhaps most convincing, has been the work
reported by WOlf(27) in which steel boxes filled with sand were attached
to a large I-beam raising loss factors from 10-4 to between 0.01 and 0.2,
depending upon the amplitude of vibration. Considering that sand is cheap
and cani be applied into cavities of machine components without altering
their external dimensions, and because of its high temperture resistance,

sand could be used as an effective damping material.
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3.2 Review of Previous Work on the Damping of Sand~filled Structures

/

Although very little work has so far been done in this field, the

results have led to important indications atout the dynamic character-
istics and damping of sand. Wolf(27) carried out experiments to determine
the damping efficiency of gravel and sand, particularly at low frequencies.
Steel boxes filled with gravel were attachec to an I-beam (0.15m high,
0.10m-wide-and-3.0m- long) and damping was measured at the three first
resonances (40 Hz, 110 Hz and 220 Hz) for several acceleration levels

(from 1 to 6g). Loss factors tended to increase for higher order modes
(0.05 for the first mode and 0.1 for the second and third modes). Beams
positioned horizontally produced somewhat higher loss factors than in

vertical positions.

In a second experiment, Wolf measured the damping of a large concrete
panel (1.25 m squared, 0.10m thick) whose czvities (4.5 x 15 x 15 cm3)
were filled with sand. The ratio mass of sznd to mass of concrete was
l:4. Loss factors varied from 0.015 (at 17C Hz) to 0.078 (at 880 Hz)
for measurements at acceleration levels of C.lg. As acceleration increased

to lg, low frequency loss factors increased to 0.075.

It was generally observed in Wolf's work that the strong damping
dependence upon amplitude of vibration occurred especially at low
frequencies. The amplitude dependence was cbserved for beams either positionéd

horizontally or vertically.

Based on Wolf's results, Kerwin(28) presented an empirical relation-

ship between loss factor and the amplitude cf vibration, as follows:
nZ 0.013a1"°

where a = x/g, the maximum vibratory acceleration of the beam relative

to g, the acceleration of gravity. This result is valid for the range

2 <a g6, for the three first modes of vitration of the beam in the

’

horizontal position.

Similar acceleration amplitude dependerce was reported by Kuhl and

(29)

Kaiser on their damping studies of short concrete bars and aluminium
tubes filled with sand. Relative motion between grains of sand and
between sand and the bar (at higher accelerztion levels) increases the

damping by up to three times its previous vziue.
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Two sands of quite different grain size were also tested; the results

showed damping level variations of less thar 2 dB.

A concrete bar vibrating in flexural mcedes and loaded with granular
material showed a maximum damping region at zbout 1000 Hz (the dimension
of the cavity was 4 cm). Different sand grzin sizes showed very little

effect upon frequency curve and damping level.

Kuhl and Kaiser also showed that a mixtare of sand and soft granular
substance such as sawdust, resulted in a reduction of the sound velocity
and the frequency associated with the maximum damping value for the case
of equal cavity volumes. The total amount ¢Z maximum damping was also
reduced. Cremer and Heckl refer to this wcrk in reference (21), and
explain the maximum damping being due to resonance in the granular material,
i.e., for cavities whose dimensions are equal to two thirds the wavelength
of longitudinal waves reaction forces are produced by the standing waves,

opposing free vibrations of the structure.

The damping dependence upon the direction of the vibrations was also
investigated by Kuhl and Kaiser. Flexural wzves normal to the plane which
carries the sand was noticed to produce damping up to ten.times higher
than for flexural vibrations in this plane o= for longitudinal vibrations.
Rougher surfaces would reduce such differenczs. The energy dissipated in
the granular material is then predominant compared with the energy dissi-

pated at contacts between cavity surfaces ani grains.

The precise mechanisms of energy dissipztion in granular materials is

. . (28 . .
still very much unknown. Kerw1n( ) summarises three most likely

mechanisms as being friction between grains, local nonlinear deformations
at sharp points of contact between grains an3i resonances in the granular

material.

A possible but controversial dissipatioca mechanism that caused concern
amongst workers in the field was the inelastic nature of impacts between
particles and the structure to be damped. In such cases, particles could
be spread loosely over a vibrating surface cr trapped in cavities. Kerwin
reports that preliminary theoretical analysis has lead to conclusions

contradictory to observations made in experiments.

It is obvious from the limited results Zescribed in the literature

that there is great uncertainty concerning tae exact mechanisms of damping




of granular materials, the related parameters, the structural damping
levels capable of being produced, as well as other dynamic characteristics,
including the speed of waves. One concern of the present thesis has there-
fore been to investigate the physics involved in the damping of granular
materials to allow future mathematical modelling and applications to the

quietening of industrial machinery.

3.3 Project Objectives

The complexity of the dynamic behaviour of granular materials is quite
obvious. It was felt necessary to start the investigation with experiments
seeking first of all the determination of tks important parameters and
their relative effects upon the energy dissipation. The parameters

referred to here areamplitude of vibration, pressure, grain sizes, dimension

of cavities and frequency of vibration.

3.4 The Choice of a Damping Measurement Method

The method used for making damping measurements on hollow beams filled
with sand was the input power measurement method. The main reasons for
such a choice were the previous knowledge that sand had relatively high
internal loss factors and also the high levels of structural damping which
may be produced when sand is used as a damping treatment. These factors,
and others, made the alternative methods of decay rate and the half power
bandwidth measurement unsuitable for the expsriments. Structures with
cavities filled with sand can have loss factors of the order of 0.1 or
even higher in some cases; such high dampirz levels cause a rapid decay
of free vibrations so that the reading of thz slope in the decay rate method
is very imprecise. A fact that has been obsarved in Wolf's experiments
where the decay rate method consistently indicated lower values (loss
factors were always less than 0.1) than thos= measured by other methods.
Another disadvantage of the use of the decay rate method is the damping

dependence upon the amplitude of vibration waich produces a decay of
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reducing slope instead of a straight line zs expected from linear systems.

This effect has been observed by Kuhl and Faiser. This method therefore

does not allow an appropriate amplitude cortrol during measurements.

The half power bandwidth method is only applicable to well defined
and separated spectral peaks. Its use is therefore limited to the first
 few structural resonances as modal density (for flexural modes) increases
with frequency and baﬂdwidth~feading 3 dB cown from the peak becomes

impossible for higher order modes.

Damping determination by measurement ¢ the decay of amplitude of
waves travelling along a beam has also beer considered inadequate because
it would require excessively long beams espacially for low frequency

measurements.

Despite some disadvantages, i.e., time~consuming and requiring careful
measurement of the input power to structures, the input power method was
found the most suitable method because of the high damping levels under
investigation, and for ease of control of z—plitude of vibrations. An
important feature of this method that also influenced the choice was that
the measurement of power dissipated by the structure, after conversion into
energy dissipated per cycle, can provide vaZuable information with regard

to the damping mechanisms under investigaticn.

3.5 Damping Measurement Description

The measurement consisted of exciting flexural vibrations with an
electrodynamic shaker in sand-filled beams oy a pure sinusoidal force.
The RMS force (Frms) and RMS velocity (Vrms;’ at the excitation point were
measured by a force transducer (B & K 8200), an accelerometer (B & K 4344)
and an RMS electronic voltmeter (B & K 2417} . The phase difference, ¢,
between force and response was measured usicg a phase meter with accuracy
of one degree. A two-channel phase matched filter eliminated spurious
signals from force and response (fig. 3.1). The power input was determined
by the product

Awin = Frms X Vrms X cos ¢.
The space averaged velocity squared was determined by measuring the

velocity at points uniformly spaced along tkz beam length. The distance




between the points was maintained at one third of the beam standing wave-—
length (measurements at discrete points leaZ to exact estimation of <v<>
whenever n points per wavelength are take=Z, n being equal to or greater
than 3). Thevleast possible number of poi—ts was chosen to save time.

Loss factor values were then determined from the relationship:

W.
A _ in_ . I .

s p—
2TEM <v2>

where M 1is the total mass (including the =ass of sand which was about

70% that of the beam) and £, the excitation frequency.

Phase mismatch errors between transduczr pre-amplifiers (B & K 2635)
were compensated for by a correction table »reviously made to cover the
frequencies of interest. The table was prbiuced from measurements made
by attaching two accelerometers to a shaker, passing their signals through
the pre—amplifiers and the phase difference read on a phase meter. Errors

were of the order of 5 to 7° except at frezuencies around 2 kHz where the

o
error was of 11 .

'3.6 The Structure

The structures chosen for the experimeats were hollow commercial beams
of several cross sections, i.e., square 2" = 2"; rectangular 3" x 2";
2" x 1" and round 2}" diameter, all with wz1ll thicknesses of }".
Rectangular cross section beams were choser to allow comparison of the
damping produced by the granular material when vibrations were excited in
the different directions of the cross section. A circular cross section
beam was also included to investigate the shape of cavity effect by comparing

results to the square cross sectional beam.

All beams were made 1.5m long so that their first natural frequencies
would be low - around 100 Hz. Shorter beacs would increase their natural
frequencies and information with regard to sand behaviour at this low

frequency region would be missed.

The exciting force was applied at one 2nd of the beam which is always
an antinode for all bending resonances, as the beam was suspended it

vibrates in free-free modes.
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Because these beams have quite thin walls, the excitation was applied
via a 10 mm thick plate welded to one end of the beam to excite bending
modes (figure 3.2). The direct application of the force at the beam walls
could excite circumferential modes which was not of interest in this experi-
hent. As power input was measured by use of accelerometers and force
transducer, local deformations would produce false phase readings between
force and velocity signals. 1In fact, in a preliminary test in which the
force was épplied to the wall of the beam, significant variations were
noticed when the accelerometer was positione3d at several points around the
excitation point. These variations were eliminated by the plate welded
at the end of the beam. An impedance head +was not used because it is very

sensitive to lateral deflections which coulé not be controlled in the

experiment.

3.7 The Suspension

Although beams were suspended by thin wires and despite being thin
and flexible, some energy flow to the rig, increasing the apparent damping,

was unavoidable.

Loss factor measurements for empty beams were carried out to-estimate
how much 'damping' the suspension was providing. Values not greater than
10_3 were observed, so that the energy escaping through the supports is
at least 10 dB lower than the energy being dissipated on the beams when
full of sand (whose loss factors were always greater than 10—2). The sus-
pension was thus considered adequate for the experiment. It should be
mentioned that suspensions and supports offer measurement difficulties only

when the structure under test is lightly dacped (for instance, in material

damping measurement), or in the absence of zny damping treatment.

3.8 The Sand

Dry sands with various grain sizes were employed to investigate the
size effect of granules upon the damping. Sznd was chosen for being a
typical and cheap granular material, whose dwvnamic properties had already

been the subject of some attention. Very li:tle of the previous work,
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however, is directly comparable with resultsz obtained in this work. The
sand was dried before use in the experiments to reduce the effects of water
content. Four different gradings were used, the actual grains diameters
were as follows: 0.3 mm to 0.6 mm; 0.6 mm to 1.18 mm; 1.18 mm to 2.36 mm

and 2.36 mm to 4.75 mm.

3.9 Results and Discussion

Measurements were made at discrete frecuencies corresponding to beam
bending resonances. As damping is amplitude dependent, measurements were
also made at four or five different vibraticn levels and each point then
represents the amplitude averaged damping, for the cases where the parameter

amplitude is not being analysed.

3.9.1 Quantity of sand

An experiment was first carried out to investigate the loss factor
variation with the amount of sand in a vertical beam. Beams half full of
sand have loss factor values about 3 dB higker than beams one-quarter full,
as shown in figure 3.3, and the damping of z beam full of sand is also about
3 dB higher than for half full. One notices the approximately linear
relationship between damping and mass of the granular material, which is
an important parameter to be considered in the damping prediction of sand-

filled structures.

It was noticed that the location of the granular material in relation
to the beam mode shape had some effect on dzmping levels. This is because
displacements are greater if the granular mzterial is located around the
antinodal regions. Damping variation with modes of vibration is particularly
noticeable at low frequencies, and for smallsr proportions of sand

variations are less than 3 dB.

3.9.2 The grain size effect

Results obtained for beams filled with sand of different grain sizes
are shown in figure 3.4. It can be seen thz: loss factors do not differ

much except at 1 kHz where a 5 dB difference is observed. It suggests then
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that some sort of compensation must be takizg place. Although the number
of contacts per unit volume is less for larzer grains, tangential and
normal forces at contacts must be higher wken stresses propagate through
the material. The nonlinearities between forces and relative displace-~
ments at contacts makes difficult any a priori prediction with regard to
wave propagation and damping of granular mz=zerials. Theoretical work
_which is described in the next chapter indizate that the diameter of grains
has no influence on damping or the speed of waves which agrees‘with

observations made experimentally.

3.9.3 The effect of the cavity dimensions

The effect that the cavity's dimension may have upon the damping of
structures was investigated by measuring thkz loss factor of sand-filled
rectangular cross section beams for vibrations excited at different
directions of the cross section. Figure 3.5 shows results for beams
positioned vertically and Figure 3.6 for bzams in horizontal positions.
The dimension effect is better shown in figures 3.7-3.10 where the same

results are repeated.

The first observation of the damping curves is the already familiar
maximum region éppeéring at frequencies around 1 kHz. One can also see
that vibrations excited in the direction of the larger dimension of the
cavity shifts the maximum damping frequenciss to lower values, and vice-—
versa. Such experimental observation that cavity dimension and maximum
damping frequency are inversely proportional to each other, indicates some

sort of resonance in the sand caused by the presence of elastic waves.

Published values for the speed of longitudinal waves in sand vary
considerably, 50 to 100 m/s by Kuhl and Kaiser, and 150 m/s by Heckl
for example; assuming an average value of 100 m/s, it is evident that a
cavit§'5 cm wide will accommodate a full stznding wavelength at the
frequency of 2 kHz. Sand particles near bozh walls (of the cavity) have
antiphase motion which minimises sand impedznce at these regions, and
consequently the energy transfers from the structure to the sand. This
also explains the minimum damping that follows the region of maximum

damping.
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Halving the frequency, the cavity woulé accommodate half a standing
wavelength only, so that sand impedance is maximum at the walls which

maximises the energy transfer.

3.9.4 The effect of cavity shape

In order to determine the effect of cavity sﬁape'uébn damping, a cir-
cular cross section beam was selected and results compared.to those of a
square cross section beam (2") the choice of the diameter was based on
cross sections of equal areas, and it was estimated a diameter of 21/4".
As at the time of the experiment such beam was not readily available, a
bean with 2172" in internal diameter was selacted. Such dimensions,
aeliberately chosen to be as close as possible, made the cavity dimension
variable to have little influence, and any daviation on the results should
therefore be attributed to variation in the shape of cavity only. The
square and circular shapes were considered two possible extremes found in
usual machine >components and their influence upon damping was the objective

of the experiment.

Similar results were obtained from both beams for damping levels as
well as for frequencies of maximum damping, as shown in figures 3.11 and
3.12. The results'strengthen the above explanation that maximum damping
is due to resonances in sand, since both beams present identical loss
factor spectra. It can then be concluded that the shape of cavities is

not important. The important factor is their typical dimensions.

3.9.5 The pressure effect

Static pressure on sand restricts the movement of the grains and
reduces the internal damping and the damping of sand-filled structures.
This effect was studied on beams suspended in horizontal and in vertical
positions so that the sand was subjected to differente pressures caused by
gravitational forces. It is noticeable from Zigures 3.13-3.18 that
frequencies of maximum damping have been slizhtly shifted towards lower

values and that horizontal beams present higher damping at lower frequencies.

It would be expected that sand under lower pressure will dissipate
extra amounts of energy due to the increased freedom that loose grains have
to slide relative to each other. Horizontal Seams were, however, found to

have higher loss factors (by 3-4 dB) at low Zrequencies only, below about
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500 Hz.  As displacements at high frequencies drop considerably, the

invariance observed in damping with pressure above 500 Hz indicates that
sand damping mechanisms at high frequencies zre independent of amplitude

of vibration.

The maximum damping frequency shift towards lower values is attributed
to variation in the speed of waves with pressure. The irregular shape of
grains may cause the“nOﬁlineéfhrelatioﬁEHip Detween speed of waves and
pressure, especially in the low Pressure ranze where the experiments were
conducted. TIn such a range, any variation in pressure may well change the

dynamic characteristics of the granular material.

It can be concluded-from the experiment that pressure has also some
influence upon the frequency of maximum damping, but this is small compared

to the influence of the cavity dimensions.

The pressure range tested varied from a minimum, when sand is simply
resting inside a horizontally positioned bear, to about 5 x 104 N/m2
(0.5 atm.). This corresponds to approximately the maximum Pressure existent
in typical machine structures when sand is urnder the pressure of its own
weight. Higher pressure effects were not investigated because previous
damping measurements on sand samples under pressures up to 2 x 105 N/m2
indicated a decrease in loss factor with pressure and that was against the

interests of this project.

A perspex beam of 2" x 2" was specially constructed in an attempt to
observe the sand behaviour inside structures. 1In the vertical position the
beam showed movement of sand particles on the upper 10 cm of the beam for
the first few resonances only. Grains ascendesd in the middle, along the .
beam axis, and descended near the walls. Such near field effects were
observed along the whole of the beam length wzen positioned horizontally.
Sand tended to localise itself at antinodes, leaving little mass at nodes.
Above about 500 Hz particle movement ceased tc occur. At low frequencies
it was possible to see through the beam walls, the relative motion of some

of the grains.




3.9.6 The amplitude of vibration effect

Loss factor values as presented so far represent, for each frequency,
an average value for four or five different vibration amplitude levels.
Damping was found to be amplitude dependent for a certain frequency range
(figure 3.19). At frequencies below about 1 kHz, loss factors were noticed
to vary linearly with amplitude, while that dependence was not observed at
higher frequencies.

In order to determine loss factor, the powér dissipated by the
granular material was measured. This was latter converted into energy
dissipated (Ediss) per cycle ( Wdiss = Ediss/cycle), and plotted against
beam amplitude of vibration, seeking a bettar insight into the actual

damping mechanism.

Figures 3.20 - 3.23 show a few examples of Ediss variation with beam

displacement.

For large displacements, E varies linearly with displacement at

a rate of 30 dB/dec., i.e., 1osglzzctors are linearly dependent upon the
amplitude, as it is also shown in figures 3.20-3.23. For - a ller displace-
ments, a 20 dB/dec. variation is observed, showing the damping independence
of the damping mechanism. Another important observation in these results

is also the frequency independence which suggests dry friction damping

mechanisms as expected from dry sand.

-

Ediss/cycle of maximum frequencies follow the same pattern as other
frequencies indicating that the energy supplied to the beam is dissipated
at all frequencies depending directly upon the amplitude. The damping
maximisation is then concluded to be caused by reaction forces of the granular
material acting against the walls of the beam. Sand therefore behaves as a

tuned damping device.

The variable displacement as can be seemn in Figs. 3.20 - 3.23, represent
beam displacement, since sand particle displacements, once trapped inside
cavities are difficult to measure. Although it is not necessarily equal to
the seam displacement, it is expected not to be very much different though,
and considering that it extends itself for over four orders of magnitude,

they are here assumed to be identical.

3.9.7 The effect of air pumping between grain interstices

Air trapped at interstices is forced t> move from one region to another
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as the structure vibrates, dissipating energy by viscous forces related to
the velocity gradiants of the air. The objective of this particular experi-
ment was to determine the contribution of this mechanism to the overall

damping.

The square cross section beam was specially sealed for vacuum, and
damping measurements were carried out for two air pressures inside the L
beam, atmospheric and for an absolute pressure of 3 cm Hg. At 3 cm Hg

"the density of air is reduced by a factor oz 11. -

Damping variations of less than 1.5 dB were observed between the two
cases which leads to the conclusion that viscous damping by air flow through

interstices is insignificant compared to frictional damping.

3.10 Conclusions

The series of experiments here describad have permitted the identification
of the important parameters involved in the dissipations of energy in granular
materials and the damping of sand-filled structures. The maximum damping
has been attributed to resonances in the granular material and the possi-
bility of tuning is an important factor, since it can be matched to frequencies
where the reduction of sound radiation is desirable. The internal dimension
of cavities and the quantity of granular material are the two most important

parameters to be considered in the estimation of the damping.

Pressure has little effect on the speed of waves, to an extent that it
can be ignored provided it does not exceed levels caused by the material's
own weight, as applied to typical components. Higher damping is, however,
achieved when the granular material is loose=ly placed in cavities, but that
is the limit one can reach. If even higher damping is sought, new materials

should then be studied.

From the experiments it was also possidle to observe a double mechanism _
of damping in sand, which depends upon the amplitude of vibration. The
energy dissipation is thought to be caused by friction between grains or
internally inside grains. Possibilities of other mechanisms such as air
pumping at interstices and friction betweer cavity walls and sand particles

have been shown to contribute insignificantly to damping levels.

Further work aiming at a deeper understanding of internal damping
and of the speed of waves in granular materials, was carried out as

described in the following chapters.
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CHAPTER 4

DAMPING IN GRANULAR MATZRIALS

4.1 Introduction

~———The experimental work (described in Chapter 3) has shown that sand filled

beams exhibit a two regime damping characteristic related to the level of

beam displacement. Damping was observed to be proportional to amplitude of

vibration for large displacements (> 10_7m) and independent of amplitude

for small displacements (< 10-%®. The experiments have also shown that

the amount of energy dissipated per cycle of vibration is independent of

frequency, particularly for small displacements.

The actual mechanisms of energy dissipation in granular materials are

to some extent still unknown and those described in the literature only

supply a vague description of the physical phenomena involved. Experi-

mental work has been carried out with the obect of seeking answers to

many uncertainties, especially as to whether energy is dissipated by

friction at contacts between grains or interzally within the grains them-

selves. The determination of parameters anc laws dictating the amount

of energy dissipation in granular materials zre discussed in this chapter.

Several materials found both naturally and man made are basically

granular (e.g., rocks, bricks, concrete, cast iron, etc) as their micro-

structure is composed of granules. The difference between this type of

granular material and others such as sand, lies in the freedom that grains

have to move relative to each other. The dzmping of some of the granular

materials mentioned above have already been the subject of studies,

particularly internal damping of rocks by geophysicists. This work is

reviewed in this chapter and the relationships developed for the damping

of rocks extended to sand.




4.2 Internal Damping of Rocks

Most of the work prior to this present study on the damping of sand

and rocks has been aimed towards seismic waves which are characterised by

low amplitude and frequency. Strains are normally of the order of 10_9 F

and frequencies range from 1 mHz to 10 Hz. Damping measurements at such

low strain levels can present a very difficult practical problem as

conventional measurement techniques may no longer be applicable. The

stress-strain relationship for example cannot be used because only a

- - small hysteresis area is produced which is greatly affected by external

factors such as the deformation of supports.

The measurement technique usually adopted, as reported in the

(30)

literature

» consists of determining the internal damping at high fre-

quencies (ultrasonic frequencies) by driven resonance methods. This
5

. -10 - . .
covers a strain range from 10 to 10 ©. A piezoelectric resonator made

exactly one wavelength long for the frequency to be used is cemented to

the specimen to be studied. The length of the specimen is made half the

excitation wavelength. The resonator is then forced to vibrate by applying

a harmonic voltage (up to 1000 Volts) to its end. The resultant amplitude

of vibratio
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n 1s measured by the voltage generzted in

piezoelectric component cemented between specimen. and resonator.

Although frequencies associated with this technique are of the order

of 100 kHz, it can be used for damping studies of seismic waves because,

as will be discussed in a later section, damping of rocks is independent -

of frequency.

4.2.1 Damping level of some types of rocks

Several experimental results can be found in the literature, one of

which is reproduced in figure 4.1. The significant characteristics of the

results are.that internal damping of all rocks is much greater than that

of the single crystals that constitute the rocks (such as quartz) and that

internal damping is also quite insensitive to the strain amplitude lower
than about 10—6. It is also noticeable from the results of Gordon and
B0)

Davis that damping of rocks is related to the details of the micro-

structure of the particular sample studied. This conclusion results from

the observation that the highest and lowest dzmping observed in their




=sas-Tements both occur in quartzite. The observed damping must taen be

rezlated to interfaces and cracks present in the rock.

. -3
Internal loss factors of the various types of rocks vary from 10

to 3 x 10--2 (for dry rocks), and it is interesting to compare with loss

factcrs of steel, about 3 x 10—4 and cast iron, 10—3.

%.2.2 The effect of frequency on the internal damping of rocks

Damping measurements a- various frequencies, differing by a factor of
zOore tThan 106 (14 mHz and 9) kHz), have been made by a number of researchers
using stress—strain and driven resonance methods. The results obtzined are
remar=ably close, supportinz the idea that interface (frictional) demping
is, to a very good approximztion, frequency independent. Attewell and

Ramana(31)

have catalogued :znd analysed results from twenty five reports
on the frequency effects of damping in rocks (in a wide range, 0.001 Hz
to 10° Hz) and their work screngthens the conclusion that damping is

independent of frequency.

4.2.3 The effect of arplitude of vibration

It has been generally cbserved from experimental results(BO)thac damping
of rocks varies with the amplitude of waves travelling through the
specircen. For very low strains (< 10—6) damping is amplitude independent
while that for larger strains (€ 10—6) damping is proportional to amplitude.
Loss factors are noticed to increase about 10 dB per decade increase in
strain (in the large amplitude region). It is clear that a double_damping

mechanism is occurring in rocks.

&.2.4 The damping mechanism of rocks

One of the most intuitively accepted and widely discussed mechanisms
proposed for seismic energy loss is based on simple Coulomb friction,
because it commonly occurs on macroscopic sliding surfaces and is also

frequeacy independent.
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Frictic=al sliding at crack s:rfaces and grzin Soundaries has been

suggested as an important if not d:minant mechanism of wave attenuation
in rocks, at low confining pressur: (a few atmospneres), and particularly
in the abserc-e of fluids.

An exazInation of the microstructure of rocis reveals the existence

(33) O.1 mm to . mm long. Relative slips caused by

of cracks tycically
the passage of a wave will obviously be of "partial siip" nature, where,

as discussecd in Chépter 2, the amomnt of energy dissipation by frictional

forces is prcportional to the amplitude cubed, and consequently, the

loss factor ZIs proportional to amp-itude. Such amplitude dependence is

in fact obsezved experimentally le:zding to the conclusion that friction

at cracks mar dominate for large s:rains but must be secondafy to linear
mechanisms 2z low strains (seismic waves). It is observed experimentally(32’33)
that the trazsition region occurs :zt strains of about 10-6.

If craci lengths are of about 1 mm, the actual amount of slip at

o
8 m (100 A), which is comparable to atomic spacings.

strains of 16_6 is 10~
At small strzins then (less than 1C-6 or so), dry friction probably cannot

be the mechazism responsible for the damping.

Unfortucately, the actual linear mechanisms observed at low strains
are not yet imown. Some suggestiors have been put forward, for instance,
grain boundary relaxation as described by Jackson and Anderson(34) or
dislocation cechanisms similar to those discussed by Mason(35) where layers
of atoms or colecules are forced tc slide relative to others which are
restrained by tiny impurities acting as pins. This is the general
Granato—Lucke(s) theory of dislocation which closely describes the internal
damping of metals. Mavko(36) also pointed out that the presence of even
minute quantities of fluid can easily increase loss factors of rocks to
10—2. Whatever the cause may be, however, it is almost certain that the
mechanism does not involve any concept of macroscopic friction as it does

at large strzins, herein now considered larger than 10—6.




4.2.5 The effect of external pressure

It is thought that wave attenuation in rocks at large strains requires
cracks barely closed to allow relative :§lip. As external pressure is
applied, such loose contact interfaces in the rock would begin to disap-

pear due to the compression of the solid.

The effect of a large contact pressure is to clamp interfaces
responsible for the internal friction. Large contaéﬁm;}géSdre prevents
relative slips taking place at the interfaces and also restricts micro-
structural dislocations which occur at low strains. As a consequence of
the increased pressure, the internal loss factor of rocks is decreased to
about 10—3 for hydrostatic pressures in the crder of 1000 bar, compared to

(30)

-2 .
about 10 in the absence of external pressure .

4.2.6 The effect of fluid

Since perfectly dry rocks, such as those used in many laboratory
experiments, are not expected to be found in the earth because of the
presence of ground water or air humidity, the contribution of small
amounts of water on the overall internal damping of the rock has been
studied by geophysicists. The process of drying a rock sample consists
of soaking it in volatile liquids (such as alzohol) and leaving it to dry
in a vacuum oven. The damping of the sample is measured at regular
periods and it is assumed to be dry when the damping level does not change
after two successive dryings. On the other hand, a sample is saturated in

water by soaking for several weeks.

The most noticeable feature of the results is that the addition

(30) (bx about one full order of

of water greatly increases the damping
magnitude). This is associated with fluid fliow inside pores and cracks
which dissipates energy by the viscous forces produced by the velocity

gradients.

It is noticed that internal damping of saturated samples varies with
frequency, i.e., in the milliHertz region, dazping is frequency independent,
whereas the presence of water in the kiloHertz region increases damping by

almost an order of magnitude.
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4.3 Experimental Studies of Damping of Some Granular Materials

Some work can be found reported in the literature on damping and
other dynamic characteristics of sand in reference to the speed of
elastic waves in soils and their attenuatiorn. It is these parameters
which are necessary for the calculation of vibrations emanating from

earthquakes and ground vibrations transmitted from roads to residences

built nearby.

Laboratory damping measurements were performed by Hall and Richart(39)
on a column of sand enclosed in a thin plastic layer. Longitudinal
vibrations were excited along the axis of tke column by a magnetic shaker.
A short metal cylinder was placed on the tor of the column to simulate a
single degree of freedom system to facilitate damping measurement. The
system was driven at its first resonant frecuency and damping was
measured by cutting off the power and recording the rate of decay of the
amplitddes. Air was removed from the insié¢e of the column to subject
sand to different hydrostatic pressures froc- the atmosphere. Hall and
Richart present their results plotted against the amplitude of vibration
level immediately before the power was cut o=f. Loss factors vary between
10_2 and 8 x 10_2, depending upon pressure zad amplitude. In general, they
found that the loss factor for dry sand incrzased with amplitude at an

approximate rate of 5 dB per decade and decrase with pressure at a rate of

about 3 dB per decade.

Although Hardin(ao) and Hall and Richart(39) describe in detail every
precaution taken to ensure accurate measurem=nts, the method employed is
perhaps not adequate for wide amplitude rang=s, since it extends for one
order of magnitude only and measurements at nigher frequencies are
virtually impossible due to the very rapid d=cay of vibrations. The method

is therefore of limited use.

The major disadvantage of this method is the limited amplitude range
over which measurements can be made, because as was observed in damping
measurements on rocks, changing the strain by several orders of magnitudes
permitted the detection of a double damping wmechanism which could also

occur for sand.
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The frequency range over which experiments have so far been carried

out is very much limited to the lower part of the audio spectrum (up to a
few hundred Hertz). Such a range should be eztended to a few kiloHertz
in order to test the frequency dependence upor damping.

Richart et a1(41) concluded from his experimental studies that some
viscous-type mechanism of damping is apparent in sand based on the observa-
- tion that the rate of decay of free vibrations in a column of sand followed
a straight line when the logarithm of amplitucde was plotted against time

in linear scale. The conclusion is, however, incorrect because all
quadratic damping mechanisms present such behzviour and viscous damping

is only one type of such a mechanism.

In view of so many contradictions, it has been felt necessary.to carry
out a series of experiments to investigate in more detail the effects of
the various parameters upon damping, including other materials such as
lead shot, which had not been studied yet. These are described in the

following paragraphs.

4.3.1 Experiment description

Based on the experience learned from published works dealing with
damping measurements of sand, it soon became clear that the method employed
(the decay rate method) has serious amplitude and frequency range disadvant-

ages and limitations which excluded its use ir. the present research.

The experiment consisted of making a column of the sand specimen to
be studied, contained by a thin-walled plastic and flexible tube of 5 cm
diameter, just thick enough to contain the material to avoid the propagation
of energy through the walls. Any.applied force or movement had thus to be
transmitted through the material only. The lower end of the tube was
bonded to a metal cylinder which served a double function: firstly, to
permit the column to be fixed on a large mass and, secondly to allow its
connéction to a vacuum pump for air removal, s shown in figure 4.2.

The internal vacuum caused an extern;l hydrostatic pressure to be

applied by the atmosphere. The attachment of the column to the large
mass held the lower end firm and it was assumed to have zero displacement
(tests confirmed this). At the top of the column, a metal disc 5 mm

thick was placed and connected to an electrodymamic shaker. Dynamic
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weaknesses associated with threads in the ccanector caused the combination
mass—-connector to behave as a single degree of freedom system. Its
resonant frequency originally was 2000 Hz, tut after reducing its thickness
to 5 mm and changing the material to aluminium, the frequency was shifted

to 5 kHz. Resonances in the lower connecting bolt of the lower end of
the column were also found to be higher thar 5 kHz so that the system
\

allowed measurements up to 5 kHz before protliems of spurious signals

associated with such resonances were observed.

A harmonic signal generated by a decade oscillator (Muirhead D-890-A)
was used to drive an electrodynamic shaker (Goodman 380), through a power
amplifier (Power AmplifierABeam Echo DL7-35) as shown in figure 4.3.

Force and response signals were measured by means of an impedance head

(B & K 8201) placed between the aluminium disc and the connector. The
impedaﬁce head signals were passed through z pair of charge amplifiérs

(B & K 2635) and a band pass filter. The filter had adjustable central
frequency and bandwidth. The phase mismatch error of the charge
amplifiers and filter is around 1°, which wes considered satisfactory

for the experiments. An oscilloscope was used to monitor the signals.
Phase between signals was measured by a phasz meter (AD-YU 406L) and their

amplitudes by a voltmeter.

4.3.3 Damping calculation

|
4.3.2 Equipment lay-out

Loss factor determination was by the pcwer input method. This required
measurement of the power supplied to the sacd specimen and of its maximum
vibratory energy. The impedance head provided force and velocity signals
at the point of application of the force, wkich give the power supplied to
the column: '

= F XV X coSs ¢
supp rms rms

where ¢ 1is the phase angle between the twc signals. It is assumed here

that the power is entirely dissipated by the sand column. As measurements
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were always made at resonances of the coluzm, the phase angle was 90°

and was constantly monitored by the phase meter.

Column resonant modes are such that ar the lower end, particle dis-
placements are always zero (mode) ,and are z maximum at the top (antinode)
where the force is applied. The first resonant mode consists of a
standing wave of one quarter of a complete wavelength in the column, the
second three—quarters of a wavelength, the third one and a quarter

wavelengths. The maximum vibratory energy of the column is given by

max 2 rms
where M is the mass of the column and loecs factor is given by

W
_ supp
2nf E
max

3

4.4 Damping Measurement Results

Damping results presented in this chapzer are plotted against strain
so that better comparisons could be made with data on internal damping of
rocks which is usually presented in this form. Strains indicated in the
figures represent maximum values which occur at the top of the column
~(the strain follows a sinusoidal distribution along the column). The
strain was then computed as the ratio maximim dlsplacement to one quarter

of the wavelength.

Three hydrostatlc pressure values were used in the experiment:
1.3 x 10% N/m ; 6 x 10 N/m and 3 x 10 N/m » corresponding to
maximum pressures existing in columns of sand of 1 m, O.5m and 0.25 m
high, respegtively, which are regarded as tspical dimensions for machine
compoﬂénts. The effects of higher pressures were not investigated because,

as already mentioned, damping levels of gracular materials are reduced.

Frequencies indicated in the figures ccrrespond to resonances of

longitudinal vibrations in the column.




4.4.1 Sand loss factor results

Figure 4.4 shows loss factors of sand wita grain diameters 0.6 mm to
1.18 mm, subjected to the highest pressure applied. The major feature
of the results is the damping variation with strain which is similar to
that of rocks, i.e;, independent of amplitude at low strains but increasing
with strain at a rate of about 3 dB/decade at Qigher strains. Results for
three different frequencies show remarkably good agreement which confirms
the conclusion that damping of sand is not influenced significantly by

frequency; the small deviation being attributzd to experimental accuracies

only.

The transition region between the two regimes occurs at strains around
10_7, unlike rocks for which transition occurs at somewhat higher strains,
10_6. This is attributed to the loose and indzpendent nature of grains in
sand whose energy dissipation at contacts may =zmount to larger quantities,

compared to the limited energy dissipated at cracks in rocks.

Damping at .low strains agrees very well with results obtained from
rock samples, which leads to the conclusion thzt at low strains damping of
sand is entirely due to energy dissipated inside grains, and the damping
contribution provided by dry friction at contzzts is negligible. The
contribution of individual minerals to the overall damping of a particular
type of sand should be considered since their ZJamping can vary by factors
of up to ten. Granite, pheldspar and mica co—monly occur in rocks, and
if present in large proportions, as is often tnhe case for granite, the

overall damping of the rock can be greatly affected.

Damping loss factors at large strains show good agreement with values
of sand found in the literature (typically, n = 0.06 to 0.2), i.e., for
measurements carried out at low frequencies, which are associated with

large amplitudes of vibration.

Hydrostatic pressure was found to have liz-tle influence upon damping,
in accordance with theoretical predictions bas=d on energy dissipation at
contacts of spheres, as described in section 4.5.3, where damping due to
friction at contacts under partial slip is invearsely proportional to

pressure to the power 1/6 (figure 4.7).
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Damping of sand of a different grain size (2.36 mm to 4.75 mm) was also

tested for analysis of the grain size effect (figures 4.8, 4.9 and 4.10).

No significant variation of damping with graic size was found, as is shown

in figure 4.11.

4.4.2 Lead shot loss factor results -

Most of the work in this project has beer performed with sand because
it is easily accessible and absorbs high energy. Sand, however, lacks
high internal damping and density, which enabies the material to generate
larger reaction forces against vibrations of structures. With these two
characteristics in mind, lead shot was tested and results are presented in

figures 4.12, 4.13 and 4.14.

The major observation was that damping variation with strains followed
a reverse pattern to that of sand, constant dzmping for small strain and
decreasing with amplitude at larger strains. The oxide layer covering
the tiny lead spheres is thought to form a lutricant, reducing the ability
of the material to dissipate energy by fricticn at contacts as is the case

in sand.

Internal damping of lead p;edominates at small strains because dis-
placements are so small that they make fricticn unlikely to contribute to
the overall damping in this region. Atvlarge ampligudes, granules are
forced to slip relative to each other without being able to dissipate

energy.

The experiment was also used to test the accuracy of the measuring
system since internal loss factor of lead is known (from 0.05 to 0.3

(

. . 5,21 .
according to various sources '’ and good agreement was achieved.

Pressure was noticed to have no significznt effect upon damping.

The damping variation with amplitude, as shown in figures 4.12, 4.13
and 4.14, is an important feature for machinery noise control purposes.
High damping levels exist at the middle and high frequencies (low vibrational

amplitudes) usually associated with noise radiation. As density is also about
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four tices higher than sand, ti= filling of cavities with lead shot permits
high mass of granular material to mass of structure ratios; important for

increasing structural damping.

4.4.3 Loss factor result: from spheres of glass

Results obtained from mea:urements carried out on sand showed a double
damping behaviour, according tc the amplitude of waves excited at the
sample under study. The dampirg increase with strain observed for large
amplitude waves has been attri:uted to friction taking place at grain
contacts, in the form of gross and partial slips. The actual configuration
of the contacts existing throughout the sample may vary significantly from
sharp edges to almost flat suriZaces, due to irregularities in the shape of
sand grzins. Experiments were therefore carried out on a sample composed of
spheres of glass (whose diamet:zrs vary from 1 mm to 2 mm), seeking
observation of the damping variation in a material where all contacts are
of spherical shape. The objective was to compare results from both
materials. As can be seen froz figures 4.15 and 4.16, damping of glass
spheres follows an identical pzttern to that observed in sand. It is
concluded that as long as gran:les are not perfectly spherical, occurrence
of both forms of slip (partial and gross)Ais inevitable, yielding to

identical damping as obtained Zrom irregularly shaped granular material.

4.5 Theoretical Analysis of the Parameters Associated with Energy

Dissipation at Contacts of Spheres

Theoretical models involving description of granular materials,
assume as a first approximation, that granules can be represented by spheres,
i.e., neglecting the irregularities in the actual shape of grains which, if
taken into account, could make theoretical analysis very complex. Despite
this approximation, theoretical results discussed in this section accurately
represent the mechanisms of energy dissipation at grain contacts in sand
and other granular materials. Use is made of the Hertzian contact theory

of elastic bodies for the determination of stress and deformation relations

as the basis for the damping analysis.




Hertz thz-r7 of contact applied to spheres has been clealt with in
detail in man> piblications including textbooks of elast1;1ty<43) and
specialised bcoks’ 42). Thus, only the essential expressicns, enough to
support an uncers:anding of the physical phenomena involved, will be

presented, rather than deriving them in a step—by-step proccedure.

4.5.1 Stres; distribution and contact area

If two eizst.c spheres are pressed together with a force N, the
direction of whici passes through the centre points of the spheres (normal
to the contact pl line), the normal stress distribution over the contact

(42)

area, as showz by Goldsmith » 1s of quadratic (parabolic) form, given

by the expressior

A 1
o(r) = 3N 2 !ﬁ [5}]2 2 (4.1)
21r0 L

where r 1is the distance from the centre of the contact surface and

r, is the racius of the contact area, which is given by

[3(1 -~ Y)RN ]1/3 (4.2)

8G

R is the radius :f the spheres, Yy 1is Poisson's ratio and G the shear
modulus of the ma:erial of the spheres. It is assumed that both spheres

have equal racdius

4.5.2 Shear Stress and Annular Slip Area when Tangential Forces
are Atded

As shown in section 4.5.1, normal stresses are of parabolic form
with the maxir—m ralue at the centre of the contact area and decreasing to
zero at its circusference. Analysis carried out for elastic spheres
where relative ‘diiplacements of opposing points on the contact area are
taken into accour: show that the application of a tangential force produces

shear stresses owv:r the contact area as shown in figure 4.15.




In an annular region close to the circucference of the contact area,

shear stress is greater than the friction resistance which causes

relative slip to occur, dissipating energy. It is assumed that Coulomb's
law of friction holds at each point on the slip area. As the tangential
force T 1is increased, the inner radius of the annulus of slip diminishes

according to the expression(44) _ -

T

_p_f_N_)l/.B . ‘ (4.3)

r, = ro(l -

As long as relative displacement is allowed to occur over part of
the contact area only, the "joint" is said tc be of the "partial slip"
type. If the tangential force is increased to values greater than the
total frictional resistance caused by normal stresses, a ''gross slip"

type of friction is obtained.

4.5.3 Energy dissipation per cycle by aa oscillating tangential force

As long as the tangential force is kept smaller than the frictional
resistance provided by the normal force (T g qu), slip is confined to

an annulus and the energy dissipated per cycle is given by the following

expression
) 2 2
9(2 = Y)u.“N :
£ [ T .5/3 5 T T .2/37 ]
E,. /cycle = 1-1-— - == [1+a- —)
diss 56r | WX 6 uN ueN J
(4.4)

For very small values of T (<< qu), the above expression reduces to

; |
(2 - YT (4.4a)

18G r, qu

n
E.. =
dlss/CyCIe
which corresponds to the limiting case when forces at contacts caused by
the passage of elastic waves are small compared to those caused by the

hydrostatic pressure applied to the granular material. Equation (4.43)

therefore represents the case of waves of very small amplitude.




The equation is also limited to maximum values of T (= pr) which

is the limit before gross slip starts to occur. It is difficult to
determine an exact expression for the gross slip case because contact

area and especially the associated normal stresses, may assume values

which are difficult to predict, but it is expected, however, that parameters
involved in Ediss/cycle will follow closely those for simple lap joints

under gross slip.

Maximum values for Ediss/cycle, prior to gross sliﬁ taking place,

are given by

9(2 - Y)uszZ

diss/cyc1e = 30Gr0 )

E

The variation of Ediss/CyC1e with T follows a cubic law (30 dB
per decade), as would be expected from partizl slip conditions.

Several experiments.have been carried out in the past to test the
validity of this theory. Mindlin et a1(45) used a pile of three polished
glass lenses, pressed together with a normal force, and an oscillating
transverse force (60 Hz) was applied to the central lens. As expected,
relative displacements at the contact surface occur only in an annulus,
the dimensions of which were compared with tke theory by measurements of
wear patterns. VMeasurements of energy dissipation have shown good agree-
ment with theory at large amplitudes, but at small amplitudes energy
dissipationwvaried as the square of the tangential force rather than the
cube as the theory predicts.

(46)

Johnson reports a careful series of experiments in which hardened
steel spheres were subjected to cyclic tangertial loading. Also, by

means of wear patterns, it was possible to verify the dimensions of the
slip annulus given by the theory. His energy dissipation results did

not at first follow the expected theory since they appeared to indicate the
presence of a geometrical factor not accounted for, but later it was found
to be due to a variation in the friction coefficient over the contact area

caused by an oxide layer not removed prior to the experiment.

Goodman and Brown(47) have carried out the most complete series of
experiments in this particular area. Experimental results were observed
to follow very closely predictions made by the theory so that it can be

assumed accurate enough for engineering applications. Reported in this




reference is an attempt to measure the interral material damping of the
spheres. However, this attempt failed because the amplitude range of the
experiments was such that the damping provided by friction at contacts

predominated.

Material damping at low amplitudes has been measured by Johnson(és)
with only an oscillation normal force. Although shear at the contact did
not exist, ~measurements at very small amplltudes 1nd1cato damping did not
fall to zero as anticipated by the theory, but to a small constant value,

indicating the presence of material damping.

Duffy and Mindlin(ag) carfied out measurements on a granular bar 10 cm
long and 1.5 cm wide, constructed of steel bzll bearings held in place by
an externally applied hydrostatic pressure. Ball diameters were 3 mm and
within .25 x 10—6 m of tolerance. Damping wzs determined by observation
of the decay of free vibrations from an initial vibration amplitude of
about 10“8 m. Results indicated that the logarithmic decrement is
amplitude independent in this range, suggesting therefore that the damping
mechanism is linear. Considering strains in the bar were always lower
than 10—7, Duffy and Mindlin's results confirm the conclusion that at very
small amplitudes internal damping of granules predominates and provides
linear damping, rather than the direct amplitude dependence which occurs

at high amplitudes, due to the friction at contacts.

In the analyses of the several parameters involved in equation (4.4),
it was observed that Ediss/CyC1e per unit volume is inversely proportional
to the hydrostatic pressure to the power 1/3, independent of granule
diameter, proportional to the cube of the amplitude and inversely propor-

tional to the friction coefficient, as shown below

Ediss/cycle

(¢

%3
173
g ¥

1
hyd "=

The theoretical analysis discussed above shows that partial slip at contacts
provides damping directly proportional to amplitude, which is equivalent to
an increase of 10 dB per decade increase in strain. However, the irregular
shape of grains allows gross slip to take place at some of the contacts so
that the resultant damping variation with strain is expected to be less

than that caused by partial slip alone.
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4.5.4 The friction coefficient of brittle materials

The mechanism of friction in metals is characterised by plastic
deformations of the asperities when two surfaces are brought together,
cold welded junctions are formed at the contact points, and the frictional
resistance represents the summation of forces required to ‘shear the

junctions (or close to the junctions).

Rocks, howe#er, are characterised by their brittle nature, i.e., they
are fragile materials in which fracture occurs soon after the elastic limit,
and therefore do not exhibit any plastic deformation. If the surfaces of
two brittle materials are brought into contact and caused to slip relative
to each other, asperities are thought to fracture at their base, where

(37) analysed theoretically this

bending moments are higher. Byerlee
situation assuming the "frictional" energy loss is entirely due to the
work required to fracture the triangular shaped asperities at their base
by tangential forces applied at their top. This model predicts friction
coefficients of the order of 0.4 - 0.5. Experiments carried out by

(37)

Byerlee agree very closely with such prediction, but for.very few
oscillations, after which measured values drop to about 0.1 - 0.2. This is
thought to be due to residues of fractures being formed between the

surfaces.

4.6 Conclusions

The experimental work on damping of granular materials, particularly
sand, described in this chapter, éhows that granular materials exhibit a
double damping characteristic according to the strain level. At small
amplitudes loss factors were found to be independent of amplitude and
similar to those of rocks, suggesting that damping of sand at this strain
range is entirely concentrated at the interior of grains and evidence has
also been presented supporting this conclusion, based on reports available
in the literature where similar conclusions-were reached. At larger strains,
energy dissipation by friction at contacts between grains predominates,
showing amplitude dependence characteristics attributed to a combination
of partial and gross slips. Amplitude of vibration is therefore an
important parameter related to internal damping of granular materials.
Hydrostatic pressure has less influence since damping is proportional to the
cube root of pressure, according to the theory, while the present experiments ,

suggest it is proportional to the power 1/6.
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CHAPTER 5

SPEED OF ELASTIC WAVES 1IN GRANULAR MATERIALS

5.1 Introduction

The expefimeﬁtai work on dampingiof tollow beams filled with sand,
as described in Chapter 2, showed that le-els of damping were a maximum
in distinct frequency regions due to reso—ances in the granular material.
It is interesting to mention that for our configuration the region where
the first maximum occurs is around 1000 Hz. This is of great practical
importance, since most of the noise energ> radiated from machine structures
lies in the 500 Hz to.3000 Hz range, so t=at there is a need for additional
structural damping in this range, and a nzed to know exactly how to tailor

the geometry to provide maximum damping a- the relevant frequency.

Although the maximised damping peak ras a broad shape, ccvering a wide
frequency range, it is desirable to "tune' it to frequencies of interest
for any particular application. To do tkis an accurate knowledge of

wave speed values in granular materials is essential.

The available literature is rather icprecise as to the exact speed of
waves in sand; quoted values vary betweer 55 m/s and 150 m/s. Such
variation is unacceptable for an accurate prediction of maximum damping
frequencies. Also, the influence of parzmeters such as amplitude of

vibration and frequency upon wave speed are very much unknown.

This chapter describes experimental work, carried out to determine
an accurate value of wave speed and how lcngitudinal and shear wave speeds
are influenced by amplitude of vibration, irequency, grain size and
pressure. A theoretical analysis of wave speeds in a pack of spheres is

presented and comparison made with behavicur found experimentally.
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5.2 A Review of Measureme=t Methods and Some Results

5.2.1 The vibrating zable method

Some of the earliest work done to measure the speeds of waves in
granular materials has beez reported by Iida(so). Specimens to be tested
were formed into columns supported by a cellophane tube. The column was
placed upright on a vibrating table which could produce either longitudinal
or ﬁorsional ﬁqdes of vibrztion into the specimen. The wave velocity was
calculated from resonant frequencies and their corresponding wavelength
along the column. A displacement transducer was used at the top of the

column to detect the resonznat frequencies.

Iida investigated the effect of confining pressures on the wave speeds
by using columns of different heights, i.e., the pressure is provided by
gravitational forces. This is a limitation to this work; if a partial
vacuum had been formed inside the column the pressure range could have
been extended and also a mcre uniform pressure distribution formed

throughout the column length.

The experiments were cevertheless useful and accurate control upon
amplitude of vibration, frequency and confining pressure - the main
parameters to be tested - ware achieved although the results are limited
to low pressure} The resclts showed wave speeds to vary only slightly
with grain size and wave velocities to be proportional to the sixth root

of the confining pressure.

Speeds of about 100 m/s were measured for longitudinal waves and 65 m/s
for torsional waves at frecuencies around 100 Hz. There is no indication

of the amplitude of vibration at which measurements were made.

5.2.2 The pulse propzzation method

The second method consists of determining the speed by timing a pulse
travelling through a known distance in the specimen. Usually a column of
the specimen is used with cdisplacement transducers placed at both ends.
Since impact times are of the order of one millisecond, the time taken by
the pulse to propagate froz one end to the other must be much higher to
avoid inaccuracies in time _apse readings. For this reason, column

lengths of not less than or2 metre are recommended. If hydrostatic pressures
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are low, grains can easily slide relative to each other and the pulse
enérgy is then quickly dissipated, giving zanother source of error. The
method is limited to high éonfining pressures and there is no control of

amplitude and frequency.

5.2.3 The cross correlation method

The cross correlation method uses an experimental set up similar to
the pulse propagation method, except that the excitation is continuous
rather than impulsive. By cross correlating the response signals from
both ends, a peak is obtained at the time taken by waves to propagate
through the column. The peak is sharper if a broad frequency band
excitation is used. Discrete frequencies excitation is not Possible
because the cross correlation function would be of sinusoidal type without
showing any distinct peak. Although the method permits control of ampli-
tude and, to some extent, pressure, measurements are only possible in
frequency bands, which could also lead to erroneous results if the medium

is of a dispersive nature.

5.2.4 The resonant column method

The resonant column method overcomes limitations discussed in the two
previous methods. It consists basically of-using a column made of thin
plastic tube containing the specimen to be tested; vibrations are excited
at the top by a shaker while the lower end is fixed to a large mass which
assures zero displacement (a node) for all frequencies. Speed is deter-
mined from resonant frequencies and their corresponding wavelength distri-
buted along the column. The method is a variation of the vibrating table
method, with the advantage of not requiring a vibrating system applied to
a table. Accurate amplitudé, frequency and pressure control with this

method are possible.
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5.2.5 Some experimental results

5.2.5.1 Pressure effects

(51)

Hardin and Richart carried out quite an extensive series of
experiments on wave velocities of sand using the resonant column method.
They used a column of 0.275 m high and 3.& cm in diameter, and displacements

during measurements were always less than 2.5 x 10 m, which in terms of
5

strain -is of- the -order-of 10 °. _ . -

For all the sands tested, shear and longitudinél wave velocities
varied with the 1/4 power of the confining pressure (pressure range tested:
104 N/m2 to 3 x 105 N/mz). Several authcrs report velocity dependence upon
pressure varying between 1/3 and 1/6 power, which depends primarily upon the
state of consolidation of the specimen.

(49)

Duffy and Mindlin describe experimental work in which compressive
wave velocities were measured in bars of high tolerance spheres (" in
diameter, + 10_5 in. and + 5 x 10—5 in. tclierances). They noticed that
the power of confining pressure with which the velocity varied was higher
for the lower tolerance spheres and also cecreased as the confining
pressure was increased. Their initial variation at the lower confining
pressure was approximately the 1/4 power; their theoretical analysis for
a bar of perfect spheres predicted a variztion with the 1/3 power. It is
therefore quite significant that only a szall departure from perfect
spheres causes a large departure from thecretical predictions. This

means that the wave speed is very sensitive to the number of contacts and

possibly to geometrical factors.

5.2.5.2 Grain size effect

(51)

Grain size was found by Hardin and Richart to have no effect on
the speed of waves in sands. (A similar independence of grain size was
found.for internal damping measurements - Section 4.3.) Consolidation

of the granular material, however, has soce effect. Wave speed increases
with the density of consolidation, possibly because the number of contacts
per unit volume is higher, presenting a more rigid aspect to the
propagation of elastic waves. The prediction of the exact effect of
consolidation is difficult, given the irregular shape of sand grains.

However, in practical applications, consolidation is of secondary importance

and has been neglected in the current analysis.




5.2.5.3 Water content effect

The effect of water or any other liguzid is to reduce the wave speed
because of the added mass which moves with grains. Most experiments on
this effect have been carried out at low Zrequencies and the exact effects
of moisture content at higher frequencies is still unknown. At high
frequencies, fluid flow through interstices may alter the mechanisms of

propagation and dissipation of waves.

Small amounts of water in the granular material can reduce the stiff-
ness of a chain of contacts through which the stress wave travels. The
water acts as a lubricant at the contacts and as a result, reductions of
(50)

up to 157 in the speed has been observed » for small percentages of

water content.

5.2.5.4 The propagatioh mechanism ¢Z pressure perturbations in

granular materials

A packed material of irregularly shaped grains present chains of
'stress—linked grains which actually trans—it pressure perturbations
through the material. Elastic moduli of compacted media are therefore
usually treated in terms of grain-grain contact properties. In free
grained materials, as studied here, slips between grains can occur which
have great influence upon speed of waves. Some adjacent grains may
have little lateral linkage and, consequexatly, those grains do not form

part of the structure that carries stresses and determines elastic moduli.-

Compaction and externally applied hydrostatic pressures have the
effect of altering elastic behaviour of contacts to that of a continuously
welded material with flat cracks (as is the structure of rocks). This
explains the increase in wave speed with pressure. The presence of
moisture, even in minute quantities, introduces weaknesses at contacts by
preventing "welded contacts' being formed, and consequently wave speed 1is

reduced.

(38) suggest that

At high pressures (above a few bars) experiments
Hertzian contact theory is the best way to describe the changes in velocity

with pressure. Below a certain pressure, contacts loosen and the stresses

associated with waves propagating through the material may be higher than
the hydrostatic pressure, thus having direct effect upon the formation of

the chain of grains responsible for stress transmission.
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5.3 Experimental Studies of Speed of Waves in Granular Materials

The discussion presented in the preceding sections of this chapter
shows that the effects of pressure on wave speed are reasonably understood,
but some doubts still remain about the influence of other parameters,
particularly the amplitude of waves. ~Granular materials when used for
filling cavities of machine components for structural damping purposes, are
subjected to structural vibrations which czn vary by several orders of mag-
nitude throughout the spectrum. This section describes a series of
experiments aimed towards an understanding of amplitude effects upon the

speed of waves.

5.3.1 Experiment description

The method employed has been the resonant column method as it permits
accurate control upon the variables of interest in this study, i.e., ampli-
tude of vibration, frequency and external pressure. Attempts to use pulse
propgation and cross correlation methods failed because of their inherent

inefficiency in controlling frequency and amplitude.

The experiment set—up for measurements of longitudinal waves was the
same as that used for damping measurements and was described in Chapter 4
and shown in figure 4.2. Vibrations were excited at resonant frequencies
of the column and speeds determined from their corresponding wavelengths.
Measurements were made at the three firsg resonances which were in the
frequency range 300 Hz to 2500 Hz. Resonances were detected by constant
observation of the phase angle between force and response and by monitoring

the response level.

Shear waves were measured by a similar method after slight modifications
to the test rig so that torsional vibrations could be excited. Two shakers
connected in opposition to the top disc produced the driving torque (figure
5.1). In order to transmit shear stresses from disc to column, sand
grains were glued to the lower face of the disc in contact with the material,

thus providing an '"indentation" effect capable of transmitting shear forces.

Wavelengths were taken as four times the length of the column for the

first mode, 4/3 of the length for the second mode and 4/5 for the third.
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5.3.2 Equipment lay-out

/Wave speeds were measured on the same equipment as had been used
for the damping measurements (figure 5.2). The excitation of torsional
waves, without inducing other types of vibration, required a careful
balance of both driving forces so that bending deflections would not be
induced. A two-channel power amplifier with independent gain controls
was used. Two _identical force transducers were placed between shaker o
and disc for monitoring the applied forces. Every precaution was also
taken to ensure that the connectors had about the same masses. An
accelerometer was attached to each side of the disc for detecting resonances,

but response readings were only taken from one of them.

5.3.3 Results of longitudinal wave speed measurements in dry sands

The parameter used to represeht amplitude was the maximum strain.
This was defined as the ratio between maximum displacement (measured at the
top of the column) to one quarter of the wavelength. Results for dry
sand (grain diameters 0.6 mm to 1.18 mm) are shown in figures 5.3, 5.4
and 5.5. The main feature of the results is the variation of wave speed
with strain, i.e., independent of amplitude at low strains (< 10—6). Wave
speed gradually drops to lower values as amplitude increases. The speed
of longitudinal waves varies from about 50 m/s for very large strains to
about 300 m/s at small amplitudes,depending upon the pressure. Comparison
with published results suggests disagreement, as values of 50 m/s to
150 m/s'are normally quoted in the literature. However, an analysis of the
tests which were carried out reveals that most of the results available
were obtained from experiments using resonant columns. These vibrate at
very low frequencies (large displacements) and very often without external
Pressure applied. The experiment was repeated simulxing these extreme
conditions, and as shown in figure 5.6, speed can indeed be as low as

50 m/s at very large strains.

Hardin and Richart's work on wave speeds in sand resulted in values
of 250 m/s to 300 m/s at strains of 10—5 and pressures of 104 N/mz. These
results are in agreement with the present results. It is concluded that
amplitude effects are directly related to stresses produced in the material
by the propagation of waves. There must, however, be a limit where wave

stresses become greater than the hydrostatic pressure, causing failure of

the chain grain-grain contacts responsible for the transmission of stresses.




The frequency variation in the tests (ranging from 300 Hz to 2500 Hz)

showed no significant alteration in the speed, suggesting that stress
propagation mechanisms are not frequency cependent, confirming the

hypothesis of pure friction at contacts.

Figures 5.7, 5.8 and 5.9 show wave speed results for sand of larger
grain sizes (2.36 mm to 4.75 mm). Conclusions drawn above are still
generally valid. Hardin and Richart's results show that grain size does
not alter the speed of waves, but the voic ratio (defined as the volume
proportion of empty space to grain volume) has some effect upon the speed;
void ratios of sands are altered by the degree of compaction. Compacting
sand increases the number of contacting grains per unit volume, shortening
the path through which stresses propagate. Speed variation with grain

size is attributed to possible differences in void ratios.

Pressure influence in the low strain region were observed in this
experiment to follow 1/4.6 power law for the 0.6 mm to 1.18 mm sand and
1/7 power law for the 2.36 mm to 4.75 mm sand, in contrast to 1/3 power
suggested by Duffy and Mindlin's theoretical predictions for a pack of

perfect spheres.

5.3.4 Results for longitudinal waves in glass spheres

Sand has irregular grains which renders its transmission and damping
properties sensitive to compaction and external pressure. In this experi-
ment tiny glass spheres 1.5 mm to 2mm in diameter were used to study the
speed of waves in a medium composed of spherical granules. The glass
spheres used are normally used for plate mode shape visualisation and as
such were not manufactured to a high degree of tolerance. It is assumed
that the material properties (modulus of elasticity, Poisson's ratio and
density) of the glass spheres do not vary from those of rock, any deviation
in wave speéd may be attributed to grain shape and particularly to their

curvature at contacts, neglecting possible differences due to compaction.

Figures 5.10 and 5.11 show results for glass spheres in which
longitudinal wave speeds are observed to hrave almost identical values to
those of sand. Thus, despite the spherical shape of granules, the wave
speed is still about the same as for an irregularly shaped granular medium,

so that, as pointed out by Duffy and Mindlin(49>, a small tolerance in the
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manufacture of the spheres is enough to significantly reduce the wave

speed. It is therefore concluded that the looseness of grains is the
important parameter influencing wave speed, rather than their pPrecise

spherical shape.

5.3.5 Results for longitudinal waves in lead shot

Lead shot was used in this series of experiments to study the effect
of éeﬁéit& (1ead shot is about four times heavier than sand). It is
difficult to predict the precise influence of density but as a first
approximation it would be expected that wave speed will vary with density
to the power -} because it is proportional to density and to the elasti-

city of the granular material as follows:

Thus lead shot should present wave speeds about half as fast as those
in sand. The experimental results showed a dependence slightly smaller
(figures 5.12, 5.13 and 5.14) which is attributed to the low elasticity

of lead compared to that of rock.

5.3.6 Results for torsional waves in sand

Shear wave speed in sand (grain diameters 0.6 mm to 1.18 mm) was
measured by the resonant column method as described in 5.3.1 and results
are sBOWn in figures 5.15, 5.16 and 5.17. Shear wave speeds are
noticed to vary with strain at large amplitudes in a similar manner to
longitudinal waves. Torsional wave speeds showed a smaller variation with
pressure than was observed for longitudinal waves but this could be due to
measurement accuracies. A possible source of error is the long time
requiréd by the granular material to accommodate a new mode shape'when

the excitation frequency is changed.

Torsional wave speed values are of about 160 m/s, i.e., about 60%
of longitudinal speeds. This is an interesting conclusion because the

relationship between shear and longitudinal waves in granular materials is

identical to the one observed in solids.




5.3.7 A summary of amplitude influezce upon wave velocity

As described earlier in this chapter, conditions at contacts and their
number per unit volume are governed by compaction and external pressure.
This dictates the elasticity of the grain—-to-grain chain which transmits
stress waves through the material. It is also concluded that pPressure
has great influence because it holds grairs together avoiding collapse,
due to the stresses induced by the waves themselves. Obviously, the chain
strength can-be reinforced by compaction tecause it'incréé§é§”the number of

contacts per unit volume of the material.

Assuming force-deformation relations at contacts follow Hertzian
contacts, an analysis of normal and tangerntial components at contacts show
they are both inversely proportional to tke hydrostatic pressure to the
power 1/3, indicating a nonlinear relationship in which speeds are expected
to increase with pressure. If hydrostatic pPressure is kept constant,
however, speeds would be expected to increase with amplitude because forces
at contacts produced by the passage of waves have identical effects to those
produced by external pressure. Experimental results presented in this
section, however, show a different variation with strain. At large ampli-
tudes, forces at contacts can be greater than those produced by the external

pressure, causing failure of the rigid chain of contacts.

If one considers the fact that at small strains actual displacements
may only be similar to the atomic dimensions, deformations at contacts are
no longer expected to account for the elasticity of the granular material.
Elastic deformations of the actual grains will then predominate, rendering
the wave speed velocity independent of vibration amplitude at low strain

levels.

5.3.8 The calculation of wave speed in granular materials

The propagation of waves in granular media as discussed in the
preceding section occurs through several mzin paths of grain-grain contacts.
The path framework is of a macroscale nature, determined by the grain size.
Values of wave speed obtained from the experiments will represent an
average constant speed through the material. It has been assumed that

wave speed is independent of the direction of propagation and also of




position within the material, i.e., the mzterial is considered isotropic.

The elasticity can therefore be represented in complex form, related to

the internal dissipation, as follows:
E = E(1 + in)

E 1is the Young's modulus and n the loss factor of the granular material.

The speed of longitudinal waves is given ty
i
c = (E/p)

where p 1is the density.

5.4 Predictions of Wave Speed in Granular Materials

5.4.1 The Duffy and Mindlin Approach

Duffy and Mindlin carried out wave propagation analysis in a fully
consolidated arrangement of spheres which represents a face-centred cubic
array (as shown in figure 5.18) and provides the most dense packing. The
approach consisted of determining increments of stress, assuming the cube
is in equilibrium under the initial stress state. The deformation of the
block is obtained from compliance relatioas of contacts determined from
force and the relative incremental displacement as studied in a pair of

spheres.

Since each sphere in a face-centred cubic array is in contact with
twelve others, thirty-six components of coatact force in each sphere will
have to be taken into account. Despite half the components being equal
pairs (leaving only eighteen to be found, of which six are normal and
twelve tangential) the solution of a generzl three-dimensional problem is

a difficult task. ' .

If, however, the cubic array is subjected to a uniaxial variable stress
perturbation (oa) as well as the constant hydrostatic pressure (00),
only three components of contact force (two> normal and one tangential)
have to be determined. In this case the problem can be expressed in the

form as follows:

109.



; dNi = fi(oo) + gi(oa).

. The coefficients involved (fi and gi) depend on the instantaneous
values of normal and tangential forces, which makes the above integration
rather complex however. Thurston and Deresiewicz have carried out such
an integration, and the results (see Appendix A) allow determination of

the component forces {as well as th

o

e
(999

m
»

sses and deformations produced

in the cube), which govern the speed of waves in the granular material.

Thurston and Deresiewicz's results were plotted using a computer
with quadruple precision since terms involving subtraction require an
accuracy of up to 30 digits if strains as low as 10—10 are to bé analysed.
Figure 5.1 shows the variation of the speed of longitudinal waves in a
pack of perfect steel spheres 2 mm in diameter (friction coefficient of
0.5) when the pack is subjected to a hydrostatic pressure of 1.6 x 104 N/mz.
Three curves are shown, for B8 values of 0.1, 0.2 and 0.5. The parameter
B represents the tangent of the angle between normal and the tangential
components of the contact forces (B = unity for their model). Thurston
and Deresiewicz's theory, however, presents singularities for this parti-
cular value, so that our computing results had to be limited below 0.5
because the theory is also limited to B values smaller than the (static)
friction coefficient. Despite such limitations, the theory is useful in

the analysis of the influence of the several parameters.

The main feature of the results, as shown in figure 5.19, is the speed
variation with amplitude at large strain, a behaviour opposing that found
experimentally. This is probably due to the assumption that gross slip
does not take place, which is not the case in practice, since large ampli-
tude waves are capable of producing forces larger than those produced by
the hydrostatic pressure. At low strains, speeds are constant, suggesting
that relative displacements at contacts are negligible compared with the
deformations of the granules themselves. Speeds are noticed to be
strongly dependent upon B; longitudinal waves for B = 1.0 are estimated
to be as high as 2000 m/s. Duffy and Mindlin estimated an approximate
value for the longitudinal wave speeds (valid for very small wave ampli-
tudes only) so that the approach overcomes singularity problems as B tends

to unity. The speed values obtained were of the order of 500 m/s. Their




comparison with experiments carried out on steel spheres of two different

tolerances showed a rapid decrease in speeZ, demonstrating how the theory

is sensitive to the looseness of granules in the pack.

Figure 5.20 shows a comparison betweez theoretical and experimental
results for sand 2.36 mm to 4.75 mm, subjected to a hydrostatic pressure
of 1.3 x 104 N/m2. Agreement is achieved for B values between 0.1 and
0.2.  For the irregularities of granules of sand, 8 can assume a wide
variety of values, and it is observed fro— the pfesent experiments that

an effective B value for sand lies between 0.1 and O.2.

5.4.2 The "failure" strain

In the theoretical analysis of wave speeds in granular materials,
contact forces were calculated and their variation with strain in the
cube observed to compare with forces produced by hydrostatic pressure.
It was generally observed that forces due to external pressure are smaller
for strains larger than 10_6 to 10_5, depending, obviously, upon the
magnitude of the pressure. This indicates that gross slip can indeed
take place at strains greater than 10—6. As noticed from experimental
results, speeds begin to drop at the strain range mentioned above, con-
firming the failure of the main frame which carries the wave. The

incapability of granular materials to take tension due to their loose

nature is responsible for the frame failure, as described here.

5.4.3 Brandt's approach
(52)

Brandt's approach is somewhat more realistic because it takes into
account the shape and arrangement of the granules. Brandt's model is
composed of four sizes  spherical particles. Particles of the largest
size are distributed randomly and smaller ones placed in the interstices
without disturbing the arrangement. The speed is determined from the bulk
modulus of the aggregate, which by itself is determined from volume-

pressure relationship developed by means of the Hertz theory for the

deformation of elastic spheres.




Two parameters are involved in the theory; the void ratio and

the average number of contacts per particle. Because of the random
distribution of the particles, these parameters were determined empiri-
cally; wvalues of 0.393 for void ratio and 8.84 contacts per particle
were obtained. It is interesting to compare the 8.84 contacts of the
-random distribution with 12 contacts for perfect spheres in a face-

centred cubic array.

The theory can be extended to aggregates ofrnonspherieel’granules,
as long as granule surfaces have an average radius of curvature conducive
with the Hertzian theory of contact. The average number of contacts
is also altered if irregular granules are used. The theory is simplified
if a single constant is used to represent the shape dependent parameters.

This constant must be determined experimentally.

The speed of longitudinal waves in dry granular materials in

Brandt's analysis is proportional to the following parameters:

ko 1/6
o

11 1
p2e2 (1L - ¢)*2

cm

where k is the constant, o, the external pressure, p the density
and ¢ the porosity, i.e., fraction of void volume per unit volume of

the material.

This result confirms some of the experimental observations, particularly
the porosity or the compaction, the pressure dependence to the power 1/6

and the influence of density upon wave speed (from the lead shot results).

5.5 Conclusions

The present experimental work has broadened the understanding of the
parameters influencing wave velocity in granular materials, particularly
with regard to vibrational amplitude where a two regime dependence was

observed according to the strain produced by the waves. At large amplitudes,

speeds drop with strain due to the greater forces being produced by the




waves than those supplied by the external pressure. Gross slip then

takes place, destroying the main structure of grain-grain contacts through
which the waves are transmitted in the material. This effect causes a
reduction of the wave speed. Below a certain strain (which in most cases
was found to lie between 10—6 and 10—5) the hydrostatic pressure is
capable of holding together the granular material and wave speed is then
noticed to be constant with strain. A possible reason for this is
related to elastic deformations ofgrains which may predominate over

contact deformations.

The main conclusion with regard to the amplitude influence is that

it is directly related to the pressure caused by the waves themselves.
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CHAPTER 6

THEORETICAL ANALYSIS

6.1 Introduction

The series of experiments on the damping of hollow beams filled with
sand, describedvin Chapter 3, has led to the observation that regions of
ma%imuﬁ damping occur at frequencies with wavelengths directly associated
with the internal dimensions of the beam cavities. Maximum damping was
observed when the cavity dimensions were equal to one-half the 1ongitﬁdina1
wavelength, such that antinodal points were formed at the surfaces of the
cavity (other regions of maximum damping were observed for A = 2, 11, 12,
etc.). In these regions the transfer of energy from the beam to the sand,

and consequently the damping, is maximised.

Later experiments on the speed of waves in sand showed that under
certain conditions longitudinal waves can travel at speeds up to 300 m/s,
which is almost three times the speed normally quoted in the literature
(100 m/s). Thus a different number (or fraction) of standing waves may
be occurring and be the actual cause for the maximum damping.j,A theoretical
study of the conditions at which damping of structures filled with granular

materials is maximised is presented in this chapter.

6.2 Basic Expressions

6.2.1 Flexural wave equation for beams with a uniformly
distributed load

A segment of a beam having a uniformly distributed load is shown in
fig. 6.1. The load is assumed to be of constant magnitude along the beam

length, and is given by

- 7 9%
Load = Z ot dx

where Z 1is the impedance (per unit length of the beam) of the granular

material at the surface of the cavity.
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Summing the moments gives:

F(x) + %jlﬁﬁﬁz_El ax - 2M(x, ©) _ 4 (6.1)

ot 9x

where F(x) 1is the shear force; M(x), the moment and £E(x, t) the

beam displacement. Summing the forces:

2
7 ag(xp t) F(X) 9 E(X, t) = .
Z 3t + 3% + ps —_3:2— =0 (6-2)

If the moment is written in terms of beam flexural stiffness B (= EI),

2%E(x, )

M(x) = -EI =

b4

a new classical beam equation is obtained, which takes into account the

effect of the reaction forces produced by the granular material, i.e.,

4 5 7 82 |
pr 2860, [ _2_] 2eGu0) (6.3)
ax s i ot

P, Tepresents the beam mass per unit length, w 2rf and £ the

frequency.

6.2.2 TImpedance expression for a column of granular material

Assuming flexural wavelength is much larger than the cavity dimensions
of a beam filled with granular material an expression for the impedance of
the granular material is determined by considering the column of material
containgd in a short section of the beam along which the reaction forces
exerted on the beam walls by the granular material are considered constant,

see fig. 6.2,

The material inside the cavities is also assumed to be in contact with
the walls throughout the period of vibration, including when the wall is
moving away from the material (fig. 6.3). As the beam deforms in flexural
modes, the forces acting at both ends of the column are identical in

direction and magnitude. Impedance expressions can then be developed,
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beginning with the longitudinal wave equaticn in rods,

whose solution is of the form

~1

~ - t(y, t) = Aed Wt —ky) o J@t +ky)

where ¢ 1is the particle displacement, A and B are constants, and
k 1is the longitudinal wavenumber in complex form for taking into account

the internal damping of the granular material.

From boundary conditions, one obtains,
at y = 0, JKES [A-B] = F (6.5)

%, jkes[ae I - pedkF ] - F (6.6)

and at vy

S represents the cross—sectional area of the colummn, given by dAx, and
E is the Young's modulus of the granular material. From equations (6.5)

and (6.6), the constants A and B can be isolated, as follows,

F jke
- A= - S [ 1_+ e _ ] (6.7)
jkES -jke _ jke
and =
~F -3k%
B = _°{1je _ ] (6.8)
JKES e—Jk£ _ eJkQ
Substitﬁfing A and B into equation (6.4), gives,
-Fo [ 1 + cos Ez'1 jwt
kES sin k&
-F - - .
and L(y=2) = — o ['1 + coi k2 jejwt (6.10)
kES sin k&




from which impedance expressions are obtained,

7 - _ —gES ['51n k2 _ ] (6.11)
=0 Juw Ll + cos kz
and
Z, . = —XES |__sin Lo 1. (6.12)
(y=42) 3w 1 4 cos kg L -

The impedance at both ends of the column is the same, so that the total
reaction force acting upon the beam will be twice the force exerted by one

side only.

6.2.3 Impedance expression including internal damping

If internal damping of the material (ngm) is taken into account, the
wavenumber k of longitudinal waves can be expressed in the simplified form

(see section 6.3.1):
k = k(1 - Jngmlz).

This approximation deviates from exact values only by about 47 when

n = 0.5.
gm -

Its substitution into the impedance expression (equation (6.11) or

(6.12)) leads to:

“kES (6.13)

[81n k& - j sinh klngm/z ] .

Z, =2, =k
(y=0) (y=2) juw Lcos k + cosh kingm/Z




6.2.4 The new flexural wave equation

If the impedance expression is substituted into the beam wave equation

(equation (6.3)), one obtains:

4 2kE sin k2 - j sinh k& 2 2
3 £(x, t) 1 b 4 g 1 sin ngm/.l 378 (x,t)
8x4 _ EbeamIbeam L s w2 cos k& + cosh klngm/Q_J at2
=0 (6.14)

The validity of the above equation can be checked by letting the frequency
tend to zero, in which case the second term inside brackets reduces to
K’E_dg
gm
2
w
which is the column mass per unit length (along the beam), as expected at
low frequencies. The granular material therefore behaves only as an

added mass.

6.3 Damping Prediction in Hollow Beams Filled with Granular Materials

6.3.1 From the beam flexural wa;enumber

One of the methods used for expressing the damping of vibrating beams
consists of calculating real and imaginary parts of the beam wavenumber, which _

in this case are given by,

2 2kE d sin k% — j sinh k&n /2
. *-—-——(gl) p_+ %m ke + h kg gt}lz ] (6.15)
beam ["s o cos + cos om

Since the imaginary part is small compared to the real part, the fourth root

can be approximated to

ibeam = kbeam[l - jnS/‘Cl
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where n is the loss factor of the beam, -hich can therefore be calculated

as follows

ima
n_ = 4 128

real

The error involved in this approximation is less than 107 in the

magnitude of k when n, = 0.5.

An example of real and imaginary parts of the flexural wavenumber for
a hollow beam filled with granular material of density 1500 kg/m3 and 1loss

factor 0.1, is shown in fig. 6.4.

Figure 6.5 shows the loss factor prediction of a beam filled with sand.
Regions of maximum damping are evident when k& = =, 3w, 5m, which
correspond to cavity dimension (&) being ecgua2l to one half, one and a half,

and two and a half wavelengths.

A column as shown in fig. 6.3, with izpedance given by:

. _dkEgm sinh klngm/Z -jsin k&

W cos k& + cosh kxign/2

shows a maximised real part for the same ki values as those mentioned above.
The resistance to vibration produced by the granular material produces
maximum absorption of energy. It is assumed in the analysis that once

energy is absorbed it is totally dissipated within the material._

Two sharp peaks are observed at k& = -. These are considered to be
of a purely mathematical origin, stemming from the approximation made for the
internal damping to the granular material (x = k(1 - ingm/Z). The effect

disappears as k& assumes larger values.

6.3.2 From impedance expressions

Impedance expressions give a rather sizpler method of calculating the
impedance. The results may not be as accurate, however, since the inertia
of the structure itself is not included. The prediction of damping is via

the loss factor definition, thus energy dissipated per cycle and beam

vibratory energy must be stipulated.




Assuming all the energy transferred to the granular material 1is

dissipated within the material itself, the energy dissipated per cycle can

be expressed as:

_ Re ¥
Ediss/cycle == {Veloc.beam x Forcebeam}
or
e = lu— 2 Re (5 - -
Ediss/cyc1e I beamI w t gm}

per unit length of the beam. The vibratory energy of the beam is given by:

2
= 1
Evib 2(p.5) |

beam’vbeam
and loss factor by:
Re{Z }
gm

n =
S w(ps)beam

Substituting equation (6.16) into the above equation, gives:

2kE d sinh k&n /2
gm gm

n =

. . (6.16)

2 cos k& + cosh k&n /2
w (ps)beam gm

An example of loss factors predicted by this method is shown in fig. 6.6

and a comparison with the previous method (section 6.3.1) is given in fig. 6.7.

The present method assumes that the dynamic behaviour of the structure
is not affected by the reaction forces provided by the granular material,
which in some cases may exceed beam inertia forces. Despite this, agreement

between both methods is very good.

6.3.3 Comparison with experimental results

Theoretical predictions require accurate estimation of the speed of

longitudinal waves in the granular material, which as discussed in Chapter 5,

varies significantly with the amplitude of the waves. It is therefore




essential to determine the amplitude of vibration of the structure (assuming
it is of the same order of magnitude as amplitude of waves in the material).
This is necessary so that the speed of waves can be specified at the

various frequencies at which predictions are made.

It was observed during damping measurements of sand-filled beams that
their surface displacements were of the order of 10—4 m at 100 Hz and 10 ° m
at 3000 Hz. Considering their internal dimensions were 5 x ].0—2 m, strains
in the granular material were of the order 10—3 at low frequencies, and 10"7
at high frequencies. The main ijéctive of this chapter is to predict levels
and frequencies at which maxima of beam damping occur; strains for this

5

particular region are 10 ° to 10_6, and according to experimental results,

longitudinal wave speeds vary between 250 m/s and 300 m/s.

The expressions presented above predict that maximum damping occurs at
frequencies two or more times higher than those observed experimentally, as
can be seen in fig. 6.8. Thus the expressions were considered inadequate

to model the physical problem.

It was assumed in the derivation of the expressions that the filling
material was always in contact with the walls of the cavity and that energy
transfers existed in both stress states, i.e., when the structure was being
compressed by the material and when it was moving away from it. Obviously,
the loose grain characteristics of granular materials make it incapable of
resisting tensional stresses so that the boundary conditions assumed may not
represent the actual physical problem. Modifications were therefore made

to the expressions detailed as follows in section 6.4.

6.4 Damping Predictions in Hollow Beams Filled with Granular Material -
Assuming Improved Boundary Conditions

6.4.1 Impedance expressions

Again analysing a section of the beam containing a column of the
filling material, this time, however, with the boundary conditions of
one end free (force term vanishes) and the other end forced (the force

being that exerted by the beam). Figure 6.9 shows the segment under study.
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Applying boundary conditions to the solution of the longitudinal wave

equation,

z(y, t) = ped (WE - ky) + ed (WE + ky)

one obtains

at y S jkES[A ~ B] = F_ (6.17)

2, Ae kb _ g k2 (6.18)

From equations (6.17) and (6.18), constants A and B can be isolated;

their expressions are:

JkL e—_]k.Q. -l

jEES[e

The displacement expression at y = O (where the force is applied) 1is

j -3ke
[ +e J
— - . (6.19)
L e3k2 _ e-sz

g, _ - _

The impedance expression is therefore as follows:

= _ kES =
Z(y=0) = P tan k&

7 _ _ kES
(y=0) jw

sin 2k% - j sinh kingm
[cos 2k2 + cosh k&n ]'
gm




Equation (6.20) contains the internal loss factor of granular material,

ngm’ expressed in the form of a complex longitudinal wavenumber,
k = k(1 - jngm/Z), as discussed in 6.3.2.

|

icn

6.4.2 Damping prediction from impedance expres

It was shown in section 6.3 that damping predictions by both the flexural
wavenumber and the impedance methods gave almost identical results. The
predictions made in this section will, therefore, be restricted to the
impedance method only because of the simpler calculations and determination

of the influence of the several parameters involved.

The loss factor as derived in section 6.4.2 is

Re{Z }
P ——
s Zﬂf(pS)beam

and substituting equation (6.20), one obtains,

KEgmd sinh klngm

u)z(’pS)beam cos 2k% + cosh kin

n = (6.21)

The similarity of the resultant equation with equation (6.16) is apparent
(see fig. 6.10), except at the maximum damping frequencies, which are half the
values previously obtained. The damping levels are also half the values
given by equation (6.16) because of the assumption that energy is transferred

during half the period of vibration only, i.e., at the compression stage.

6.4.3 Comparison with experimental results

Equation 6.21 is compared with experimental results in Figs. 6.11, 6.12
and 6.13. This time the agreement between maximum damping frequencies is very
close, indicating that the model representing the physical problem is more
accurate. It can also be seen that measured damping levels agree at low
frequencies with predicted values assuming internal loss factor of sand of
0.05 - 0.1. Experiments carried out on columns of sand, as described in
chapter IV resulted in internal loss factor values dependent upon the stain.

strains associated to high amplitudes of vibrations at low frequencies are
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such that loss factors are indeed of the order of 0.1.It can then be concluded
that the model predicts the damping of beams filled with granular
materials with good accuracy at low frequencies. At higher frequencies,
experimental curves present a broad shape approaching the theoretical curve

for internal loss factors much higher than values obtained in laboratory.

The influence of parameters related to_ the damping of granular materials
will be discussed next.

6.4.3.1 Amplitude of waves

Experiments on longitudinal waves speed in sand indicate that speed
varies significantly with amplitude. For intance, sand (0.6mm to 1,18mm in

3 N/mz, have speed

diameter) subjected to a hydrostatic pressure of 6 x 10
of 150 m/s when the strain is 10—4 and it increaseés to 250 m/s at strains

of 10_6.
This non linear regime may cause a broadening of the damping curve.

A record of beams displacement amplitudes show that ﬁhe strain of the
granular material, which is roughly estimated by the ratio beam
displacement to cavity length, is of the order of 10_6 at frequencies
around 1000 Hz. An example of beam acceleration and displacement levels
measured during the series of experiments on sand filled beams are shown

in Figs. 3.19 and 3.30.

The transition between the two regimes thus lies in the frequency

-region where the first damping peak occurs and it is therefore expected that

amplitude of vibration have only a minor effect upon the damping curve
broadening.

6.4.3.2 Pressure effect

The granular material trapped inside cavities of beam tested in vertical
position are subjected to pressure varying from zero at the top to about

22500 N'/m2 at the lower end. The beam is 1,5m long.

Experiments on longitudinal waves speed in sand carried out for several
hydrostatic pressures showed some variation in the results. For constant
strains of 10_6, for instance, speed varies from 220 m/s for no external
applied pressure to 300 m/s for a pressure of 13.000 N/mz. It would
therefore be expected some influence upon the damping curve. However, a
comparison of results for beams positioned horizontal and vertically shows

that only in some cases horizontal beams present a slightly broader

damping peak, apart from being shifted towards lower frequencies. See

figures 3.14, 3.15 and -3.18.




This leads to the conclusion that pressure variation has some influence
to such broad damping peak observed experimentally but may not be the

predominant parameter.

6.4.3.3 Comparison between measured and predicted maximum damping

frequencies

- The damping of three of the beams studied experimentally was predicted
and results are compared in Figures 6.11, 6.12 and 6.13 . A good agreement
is observed for peak damping frequencies, particularly for predictions
assuming a very high internal loss factor for the granular material. This
confirms the hypothesis that damping maximization is caused by resonances in
the material, but its inability to react to tensimal stresses causes a
free-end effect as the walls of the structure moves away from the material.

The frequency of the first damping peak is given by

fang:
m 49

Cavities accommodate one quarter of a wavelength for the first damping

peak.

This work also explains the incertainty with regard to the mechanisms
of damping described in the literature. Kerwin’zsl for instance, suggested the
possibility of maximum damping being caused by shear wave resonances whose half

wavelength matched quite closely the internal dimension of the cavity.

' 21 . :

HecklI I, however, suggested that maximum damping occurs when cavities
accommodate three-quarters of a wavelength. It must be mentioned that the
reason for such divergencies was probably the lack of accurate information

about the speed of waves in granular materials.

6.4.3.4 Comparison between damping levels -

As longitudinal wavelength is higher than cavity dimensions at low
frequencies,grains inside the beam move almost in phase with its walls. The
impedance of a segment of material is low in this frequency region and little
energy is transfered to it from the beam. It is being assumed that the
granular material dissipates all the energy absorved.

Damping thus is very low at low frequencies as can be seen is Figs. 6.11,

6.12 and 6.13.

As the frequency increases, impedance is maximized at the resonances of

the material and consequently damping peaks are observed at these frequencies

139.



The first peak occurs when the cavity dimension is one-quarter of the

wavelength.

Figures 6.11 to 6.13 show that theoretical results become closer to
measuréd values when predictions are made assuming internal loss factors are of
the order of unity. This observation can be explained in terms of inability such
materials have to transmit tension stresses. During the propagation of waves
through granular materials it is expected that compression stresses mantain their
half sine shape whereas this may occur for tensios tresses. Their amplitudes
are reduced with respect to compression stresses sﬁéﬂifhat standing waves
resultant are different than those existent in a homogeneous and isotropic

material.

The material thus behaves as it has much higher internal loss factor than

values measured in laboratoty.

This explains the broad shape of peaks in the experimental damping curres.

6.5 Conclusions

Theoretical models presented for analysis and determination of the actual
mechanism of damping of hollow beams filled with granular material showed that
maximun damping occurs when cavities accommodate one-quarter of a longitudinal
wavelength in the filling material. This is caused by the inabibity of the
material to resist tensional forces, which produces a "free-end" effect to the

material as the beam wall moves away.

The model is accurate enough to determine the mechanism of damping and the
maximum damping frequency. Agreement between theoretecal and experimental
results is satisfactory if it is assumed that granular materials have internal
damping (of the order of unity) much higher than actual values measured in
laboratory. The reason lies in the fact that granular materials do not transmit

tension stresses as efficiently as for compression stresses.
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CHAPTER 7

CONCLUSTIONS

The broad review on the mechanisms of energy dissipation of machine
components (Chapter 2) has led to the conclusion that most of -the energy-
is dissipated in the joints by friction. Experimental measurements of
typical machines such as presses and drop forges have shown frequency
dependent loss factors varying from about 10_1 at 300 Hz to about 10-2 at
3000 Hz. The precise nature of the mechanisms involved are to some
extent unknown. Previous works on dry'frictional damping in joints show
that reasonably high levels can occur at the large relative displacements,
usually associated with low frequency vibrations. For small relative
displacements (high frequencies) negligible energy is dissipated. Thus,
dry frictional damping is only significant at the lower end of the spectrum.
The loss factors of the order of 10-‘2 occurring at high frequencies in
machine structures may be attributed to the viscous damping produced by
films of lubricant oils trapped at joint gaps or impurities such as corro-

sion by-products and humidity which present viscous behaviour.

Most of the acoustic energy radiated from machine structures is in
the medium frequency range so that for noise control this is the range
where addition of structural damping is useful. This makes the use of
granular materials an important damping technique because high loss factors
can be achieved at mid-frequencies and also the damping can be maximised at
certain frequencies corresponding to resonant conditions in the structure.
Maximum levels of damping are obtained when the internal dimension of
cavities are equal to one quarter, three quarters, one and a quarter, etc.
of the longitudinal wavelength in the material. Thus, the frequency at
which optimum conditions are obtained can be selected to be any desired

value by proper specification of the internal dimension of the cavities.

Energy dissipation and hence the damping is caused because reaction
forces generated by the material oppose the structural motion, absorbing

energy in the process and dissipating it into heat within itself.

The damping of granular materials was found to have two distinct regimes

related to the amplitude of the vibrational waves. At large amplitudes,




Coulomb friction at grain contacts is the dominant source of energy dissi-

pation, while at low amplitudes, damping is totally provided by the dissi-

pation taking place inside grains in the form of material damping.

Experimental studies on the speed of waves in granular materials have
shown that the amplitude of waves also presents a two regime characteristic
related to the strain produced by the waves. As granular materials are
held together by forces at contacts generated by pressure (either externally
applied or that due to its own weight) this causes the build-up of a chain
of grain-grain contacts through which waves propagate. For low amplitudes
of vibration the forces generated at contacts by such waves are, normally,
much smaller than those produced by the external pressure. Thus the chain
of contacts is not affected by the waves. Large amplitude waves, however,
can produce the collapse of the chain, which reduces the effective

elasticity of the granular material, and so reduces the wave speed.

Theoretical analysis of the damping of hollow beams filled with granular
materials has shown that loss factors are dependent upon the density of the
filling material, leading to the conclusion that denser materials, such as

lead shot, are preferable.

The possibility of tuning the maximum damping frequency to any desirable
value by altering cavity size is the main feature of granular material damp-
ing. The tuning can be achieved by the introduction of spacers inside
cavities, positioned one quarter of the longitudinal wavelength at which
maximum damping is required. If the structure is solid, boxes filled with
granular material can be attached at antinodal points, to achieve similar

results.

It is considered that further work is needed to investigate the practical

validity of granular material damping treatments:

The columns of drop forges represent a typical application. The
acoustip energy is radiated from these components with levels around 700 Hz.
A treatment with cavity spacings of 8 cm is suggested to maximise dampingAat
this frequency. Granular materials can also be useful to provide damping
improvements in the walls of Buildings which have a poor transmission loss
at their. first resonance. Granular materials are suitable for the

absorption of very intense sounds because of the occurrence of gross slip.

152.




A sound level of 120 dB has an RMS pressure of 20 N/mz, which is high
enough to produce gross slip at contacts if the material is subjected to
low external pressures. Granular materials could, therefore, be used in
the walls of close fitting enclosures as an alternative to conventional
enclosure walls with a high mass and stiffness. For a wall made entirely
of supported granular material sound waves would have to pass directly
through the granular material rather than be tramsmitted by flexural

vibrations as in stiff walls.




APPENDIX A: The Duffy and Mindlin Approach for the Study of Waves

in Granular Materials

The Duffy and Mindlin approach for the analytical study of speed of
waves in a pack of perfect spheres considers a unit cube in a face-centred
cubic arrangement. Each sphere in the array is in contact with twelve
others, so that there are thirty-six independent rectangular components of
contact forces per sphere. For homogeneous state of stress, forces are
diametrically opposed, contacts are equal and oppositely directed, and
as a result, the number of independent components is reduced to eighteen

(six normal, N, and twelve tangential, T).

The incremental relative displacement between centres of spheres is
given by each component of incremental contact force multiplied by the

associated instantaneous compliance, as follows:

da. = C.dN.
i i1

and
de. = S.dT.
i i1
where Ci’ Si are normal and tangential compliances, respectively, and

ass ei are normal and tangential relative displacements.

The incremental strains in the array are expressed in terms of the
relative displacements of centres of spheres, so that stress-strain
relations are determined when the incremental contact forces are found

in terms of stresses applied to the unit cube.

For an initial hydrostatic pressure 0, all initial contact forces

between spheres are purely normal, with magnitude,
N =R% /3
o o

where R 1is the radius of the spheres.

154.




If one-dimensional waves only are assumed to propagate through the

granular material whose amplitude of stress is 0,0 the number of components
of contact forces is reduced to three (two normal and one tangential), which

can be expressed in the form:

le = fldo0 + gldoa

f doo + gzdoa

sz 2

dT = f3d00 + g3d0a

where f and g are functions of compliance.

The analysis is restricted to constant obliquity of contact forces
at each contact, i.e., dT/dN = B, and it is also assumed that B 1is
less than or at most equal to the coefficient of friction of the contact.

(54)

Thurston and Deresiewicz have carried out the integration of the

above equation resulting in expressions as follows:

/3

@ e mmEP - w4 - moa e )

T, = BN2

and

L+ N /N = (20 /o +38)/[(1 + 38% - 1] .

An expression for o, was also found as follows:

g
o, =5 [0 -D/0 - Pla - +1] - 2 -8

a.

and for the strain

1 + kB [2(1 - v)2]1/30 2/3 €% -1

1 -x8 | 367 o G

- 3
£ =13

where § = ((NO + NZ)/(NO + Nl))1/3’
k=(2-v)/21 - v),
and A= (1 - kg) L

v 1s the Poisson's ratio and G the shear modulus of the

material of the spheres.
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