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ABSTRACT

FACULTY OF ENGINEERING AND APPLIED SCIENCE
INSTITULE OF SOUND AND VIBRATION RESEARCH

Doctor of Philosophy

VIBRATIONS OF AND SOUND RADIATION IFROM SOME PERIODIC STRUCTURES
UNDER CONVECTED LOADIKGS

by Kewal Krishan Pujara

This thesig deals with the forced vibrations of infinite periodically
supported beams, orthogonally stiffened plates and ring stiffened cylind-
rical shells excited by random convected loadings. The sound power
radiated under these conditions is also dealt with. The stiffened
structures are represented by uniform beams, plates or shells on period~
ically spaced elastic supports which represent stiffener-skin interaction
forces and moments.

The available literature on the response of stiffened structures is
first reviewed. A special infinite series of spaéé harmonicé is then
evolved and employed to obtain the response of infinite stiffened beams,
plates and cylindrical shells to spatial and temporal harmonic loadings.
The coefficients of this series are determined by applying the principle
of virtual work. The series is shown to be satisfactorily converging so
that only a limited number of terms need be included for an actual
solution of a reasonable accuracy. The method easily predicts and
explaing the sound radiation by structures excited by loadings convected
al subsonic convection velocities. The terms in the series contributing
to this rediabion can be easily identified with the help of a simple
diagram included in the thesis.

The response bto boundary layer pressure field has been obtained by

analysing this field inte a wave length frequency spectrum and then

(i)



numerically integrating the response due to each wave length component.
The low wave numbers in the spectrum are imporbant for sound power ’
radiated by the structure especislly at subsonic convection velocities
of loading.

An experiment has been carried out to determine the sound power radiated
by an orthogonally stiffened damped panel representative of aircraft

construction under excitation by acoustic plane waves. A satisfactory

agreement has been obtained between experimental and theoretical results.

(ii)
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1. INTRODUCTION AND REVIEW OF PREVIOUE WORK «

1.1 The Aim of the Investigation

The chief aim of the investigation reported in this thesis is to
present a wave theory for the determination of response of some stiffened
structures to random convected loading in a manner that facilitates the
calculation of sound radiation and to evaiuate this radiation.  Such struc-
tures are used in the construction of aircraft fuselage and are sometimes
referred to and treated as periodic structures. Since they are extensively
employed in aerospace applications where jét noise and boundary layer pressure
provide the exciting field, attention in this thesis has been mainly directed
to obtain their forced response and raqiated power resulting from these two
types of excitation.  Though the work applies in the firs®t place to aero-
nautical structures, the results are expected to have wider applications, 
e.g. in the design of missiles and underwater structures. In the particular
case of airecraft fuselage, the sound power radiated by the vibrating struc-
ture has obvious relevance to passenger comfort, crew efficiency and

efficiency of voice communication.

1.2 Nature of the Structure, Excitation and Response

1.2.1 The typical structure

The actual construction of stiffened structures varies with
application. It is generally a curved panel with stiffeners ruaning in
mutuslly perpendicular directions. In the case of an aircraft fuselage,
one common construction involves a continuous panel rivetted or bonded to a

network of relatively flexible stringers and relatively stiff frames.



Where the fatigue considerations are important, the stiffeners may be made
integral with the panel. The material used for construction is usually
aluminium alloy. The thickness of the panel (or the 'skin') may lie
between 0.025 inch and 0.1 inch.

Figure 1.1 shows two typical structures between the frames.
Figure 1.1(a) shows the conventional construction involving open section
stringers rivetted to the skin. Figure 1.1(b) shows the more recent
integrally stiffened structure machined out of a solid slab of metal by

mechanicsal or chemical means.

1.2.2 The excitation

The excitation in the case of aircraft structures may be due to
jet noise or boundary layer pressure field or both. Both of these excita-
tions are broad band and random in naﬁure. Though each of the above
excitations can be idealised by a random acoustic plane wave, their exact
nature is usually described by their space-time cross correlation
functions.

The jet noise is caused by the hydrodynamic and acoustic
pressure fluctuations associated withvthe turbulence in the jet as it
enters and mixes with the surrounding air. It is characterised by a
broad peak spectrum, the peak moving to lower freguencies as the distance
from the Jet increases. The total noise is quite directional, the
maximum sound power levels being radiated out from the Jjet at approxi-
mately 35° to the jet axis.

The boundary layer pressure fluctuations or the normal pressure






This wave length-freguency spectrum has been obtained by the appropriate
Fourier transformation of the crOSanprrelation function of the press;re
fluctuations (Appendix A gives this transformation.)  The spectrum for
a convected boundary layer pressure field is continuous and peaks at a
wvave number approximately equal to frequency f convection velocity.

In terms of the wave length-~freqguency spectrum referred to
above,.an acoustic plane wave may be considered as a special case of a

boundary layer pressure fluctuation.

1.2.3 The nature of response

The word 'response' of the structure used here means quantities
like stresses in the structure, displacements at different points in the
structure, the sound power radiated by the structure, etc, which are
induced by the excitation.

Since the excitation considered is random, the response must
necessarily te random. The peaks in the response spectrum, however, do
not necessarily correspond to the peaks in the excitation spectrum. They
are modified by the impedance of the structure.

The stiffened structures are complex vibratory systems in which
the rotational and flexural motion of the stiffeners is coupled with the
flexural motion of the skin. There are a number of modes present in
the frequency band of excitabtion and these modes tend to be bunched in
bands of freqguencies. Some of these modes are good acceptors of energy
from the excitation and respond well while others respond poorly. It is
difficult to identify 'good acceptors' from the large number of modes
present. Damping in the structure can cause modal overlap and modal

coupling. The availlable test dabta for the structures show a power



spectrum of response concentrabed in wide frequency bands.

1.3 Previous Methods of Vibration Analysis

Many theoretical investigations have been made to obtain the
response of stiffened structures. Usually they have had the assumpbtion
of negligible interaction between the plate vibration and the excitation
field. This excludes the possibilities of instébilities like panel flutter.
Most structures considered in the literature are of finite size. The
excepbions are the infinitely large plates considerad by Ribner [{] and
by Corcos and Leipmann [é]. Corcos and Leipmann claimed that the infinite
model is satisfactory since the mean square acceleration integrated over
the panel area does not depend significantly on the boundary conditions
imposed by the stiffeners.

Many investigators have concentrated on a row of aircraft fuse-
lage panels having stringers and frames. A norﬁal mode approach has
generally been applied in which the modes had to be .determined in the
first place. This approach will be briefly discussed before the wave

approach is introduced.

1.3.% The normal mode approach

In o multimodal structure W(w) the response at a given freguency
may be obtained by adding the contribution of each individual mode. This
method of determining the response by addition is generally known as the
normal mode approzach. The following equation due to Powell [ﬁ] way be

written down to represent the sumation referred to above.



W(w) = Z Z . 252 ®
rs [Z.(w)] 1z ()] P et
— 2 1 2
= L -];—-*,"2 Vpo(w)A _— + g?{g m . Trz“T Wpo(w)A reT (1.1)
r
with
I 2 _ 1 R{w; ', ' t
rar = Zé- wy; T, r'y T)ar(r)as(r )ardr (1.2)
A A ‘
2 1 ' ¥ 1
Iy = Xg f j Rlwy; r, r'; O)ar(r)ar(r ) drdr (1.3)
A A
where

A = overall area of the structure
Wpo = pressure power spectrum at a reference point

o O = normal modes

3
r = co-ordinate (co-ordinates) of a point on the structuie
dr = differential area
R = pressure correlation, a function of frequency w, locations r, r'
of the two points on the structure and the time separation 1.

1 = difference in response lags for two modes r and s when excited

at freguency .
The dimensionless quantity Jrsr is called the 'joint acceptance' of
the pressure field and the modes o and G

It is clear that before Powell's equation can be used, the

normal modes o and O must be determined or must be known. These

modes have been determined by using different methods or different

structural idealizations.



1.3.1.1 Structural idealisations s

Lin [h«6] considered a rowiéf panels between two frames assuming
the panel skin to be continuous over the intermediate stringers which are
considered simply supported on both sides by a rigid structure. The edges
of the panels are simply supported as well. Using this model and employ-
ing the boundary conditions resulting from compatability and equilibrium
considerations at the stringer locations,'he discussed the detefmination
of the natural freQuencies and normal modes of vibration of the structure.
As a result of extensive work on skin stringer structures by him and
others, it is now known that their characteristic frequencies fall into
groups . Lin gave the frequency equations and normal modes for the limiting
frequencies of ﬁhese modal groups. Once the natural freguencies and normal
modes are known, equation (1.1) is empioyed to obtain response to a random
input. A simplifying assumpbion may be made that most of the response
comes from the frequencies within the modal bands. Presence of only a
light damping may be assumed to minimise modal correlation which is repre-
sented by the last term in equation (l.l)ﬂ

Clarkson and Ford [7] have eXPerimentaily justified the assumpticn
of simple supports at the frames as the basis of estimating stress levels
in the actual sircraft panels. The theoretical basis of this assumption

must, however, be examined in terms of the effect of the modal coupling.

1.3.1.2 Modal coupling

There are two types of modal coupling. One is the modal coupling
which is caused by tﬁe presence of damping in the structure. The second is
the coupling as a result of the different modes of the structure being ex~
cited by the same input loading. The latter may better be called response

correlation effect.



It is very difficult to account for true damping modal coupling
in the normal mode methodi The latter type of coupling has, however, been
considered by Mercer [8]. Assuming the same structural idealisation as
used by Lin, he obtained the response of a multi-supported finite beam to
a random pressure field. In his expression for the response spectral
density terms representing joint and cross acceptances arise, the cross
terms giving the interactions of different modes. The joint and cross
terms correspond respectively to the first and second terms of the last
right hand side of equation (1.1). In Mercer's case showing maximum
coupling the cross terms contributed 20% to the overall r.m.s. response
level. In more typical cases, the contribution waé of the order of 5
to 10 percent. It 1s argued by Clarkson [9] on this basis that only
relatively small errors are likely to arise from the neglect of the cross
terms. This may actually be taken as true only‘for light damping. How=
ever, even if the cross terms are small, a large number of direct terms
will be significant if the excitatién forces have a broad freguency band-

width.

1.3.1.3 Flexibility of the supports

In the models analysed in the literature reviewed above, the
bending rigidity of the stringers has been assumed to be infinite. This
assumption may be examined in relation to the relative rotational and
transverse stiffnesses of the stiffeners. The conventional stiffeners
and the integral stiffeners have different relative bending and torsional
stiffnesses. For a given material weight or stringer cross sectional
area, for a built up structure the ratio of bending stiffness to torsional

stiffness might be of the order of 200:1. For the integrally stiffened
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structure, the figure is more likely to be 20:1.

1.3.1.4 The difficulties of the modal analysis

In employing the foregoing normal mode techniques, a number of
assunptions have tc be madevin order to simplify the analysis. A low
degree of damping is assumed so that the responses in different modes may
be considered to be uncorrelated. The approach implies well separated
resonant frequencies. Perhaps the most notable assunption is
that the stringers are transversely rigid. Scmetimes even with the gbove
assumptions the design calculations seem difficult. Then a further assump~
tion may be made that the major part of the response results from the
contribution of one predominant mode. The assumption of simple supports,
both at stringers and at frames is not realistic. The simple supports at
the frames cannot be theoretically justified even in the case of conven-
tiénél type of construction where the stringers ma& be considered with a
fair degree of accuracy, to be simple supports for practical purposes.

The model with simple supports both at stringers and fremes is in any case
a poor representation of the integrally stiffened panels which are
currently being employed in aircraft construction. The stringers in the
latter case are certainly more flexible than in the case of conventional
construction. The assumption of low damping also becomes unrealistic

in cases where a damping layer may have been added to the skin [le in
order to reduce the response. The normal mode approach is in fact least
convenient in fhe case of a row of large number of panels having a high
degree of damping. A kxnowledge of all the natural frequencies and uormal
modes is necessary and the number and complexity of possible vibration

modes in such a configuration increases rapidly with the number of bays.



As a result, in spite of the assumptiéns made, the work reguired to cal-

»
culate the random response of this type of structures soon becomes
prohibitive. Since the modal frequencies are not widely separated but
are rather grouped together into distinct bands (the number of frequencies
in each band being equal to the number of panel bays), the correlation
between different modes will not, in fact, be negligible, thereby increas—
ing the complexity of the modal analysis still further. Besides it is

most difficult to determine the modes of vibration exactly when the damping

is high, because the mechanism of damping modal coupling is complex.

1.3.2 Other methods and idealisations

Hoppmann (II) and Magness [11] treated the orthogonally
stiffened plates as orthotropic plates énd used the measured values of
stiffnesses in bending and twisting of the plate for the analysis to obtain
the natural frequencies and the nodal patterns. Olson aﬁd Lindberg»[lé]
in their finite element method assumed all the oufer‘edggs of their panel

to be clamped.

1.3.3 The direct formulation finite elementrethod

The Direct formulation finite element method can yield the
response directly without first finding the normal modes (see for example
[li])‘ This numerical method is in general very powerful for analysing
structures. Any boundary conditions can in theory be considered. However,
the number of elements into ﬁhich the structure must be divided has in
general to be high if a good accuracy is to be achieved. The number of

elements must be increased still further if the structure is built up or
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complicated in some other manner. Consequently in the development of,
such methods, there are always problems of computer storage adequacy

and the cost of the computer time. BStiffness and mass matrices generated
by the computer may be of a very high order, and may lead to associated
round off errors. The problem would be aggravated if the acoustic
effects of the surrounding medium were to be considered. Even if the
acoustic effects are not considered in the first place, the response
obtained is in a form which is not readily adaptable to the problem of

calculating sound radiation.

1.k Sound Radiation from Panels

There are difficulties in analysing exactly a finite structure
for éetermining sound radiation. The simultaneous satisfaction of the
wave equation, the equation of the structure and its boundary conditions,
the compatibility conditions at the fluid structure interface together
with the 'radiation extinction at infinity' principle is a tedious task.

The most well known work on sound radiation from stiffened
structures is due to Maidanik [ih] but before that is reviewed, attention

may be drawn to the work on sound radiation from uniform panels.

1.h.1 Sound Radiation from Uniform Infinite Plates

The mechanism of sound radiation from an infinlte plate which is
uniform is not very difficult. The mechanical properties of the plate
determine its admittance at a given frequency. If random excitation is
considered, the pressure field can be resolved into wave length and fre-

quency components. The response of the plate has the same components,
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and the corresponding pressure field generated by the vibrating plate can
be determined. Only the components of vibration having supersonic
phase velocities give rise to true acoustic radiation.

Most of the work involved with sound radiation from panels is
inspired by its application to the airecraft fuselage. Some of this work

w1ll now be described.

1.h.2 Transmission of sound into an aircraft fuselage

The estimation of sound levels inside the aircraft fuselage
must involve the study of vibrations of the fuselage structure coupled
with that of air inside and outside the cabin, when it is subjected to
the exciting pressure field. The fuselage construction involves a finite
curvature but most of the authors whose work is being reviewed here have
neglected the effects of curvature. This is Justifiable if the wave
lengths excited are small in comparison with the fuselage diameter and
this is so for most cases of interest when the excitation is by boundary
layer pressure field. Another factor 5ften ignéred ig the effect of the
interior of the fuselage as a closed acoustic space. This is explained
on the basis that the fuselage is so full of sound absorbing objects that
the internal reflections are negligible.

Under the assumptions given above, Ribner [l], Corcos and
Liepmann [2] and Kraichnan [15] have investigated the problem of noise
due to boundary layer induced vibrations. Dyer [16] has considered in
addition the effects of a clbsed space on the vibrations of the structures.
However it is assumed by all the authors that there is no interaction
between the plate vibrabions and the excitation field. The work done by

the above authors can be reviewed with respect to three factors:
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is simply supported on all its edges.‘ Both the authors employ the 'normal
mode approach'. ”
Kraichnan obtains the joint acceptance expression in terms of
the Fourier transforms of the mode shapes and pressure space time correla-
tion and meking use of the homogeneity hypothesis, the joint acceptance is
expressed as a double integral involving the wave number frequency spectrum
rather than a quadruple integral involving the space time correlation.
Kraichnan assumes further that in the special case of low damping, the
discrete set of resonant frequencies of the plate are replaced by a con-
tinuous distribution.  His sPectfum therefore has no peeks found in
practice. Dyer uses the impulse response function expanding it as the

sum of responses in the plate normal modes. The response to a given

loading is obtained by integrating the effect of a large number of impulses.

(p) The excitation field

All the authors quoted have dealt with excitation due‘tg 2
boundary layer. The most important properties of the assumed model for
the excitation are

(i) the convection characteristics

(ii) +the spatial distribution or wave length spectrum

(iii) +the effects of decay of the turbulence.
Out of the aBove three, the first two are the most important. The models
assumed in any investigation should be checked against the above.

Ribner and Kraichnan assume the field to be composed of a »igid
pattern of turbulence which does not decay with time. Kraichnan assumes
a two dimensional turbulence pattern, the wave lengths in the flow

direction having a greater contribution to the mean sguare pressure
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fluctuation than those at right angles to the flow direction. He also
assumes a cut-off in the wave number spectrum such that the wave lengZhs
of the turbulent pressure fluctuations are all greater than the boundary
layer thickness.  Ribner considers a one dimensional pattern of turbu-
lence with a wave length spectrum concentrated about a wave length which
is equal to the boundary layer thickness.

Dyer describes two representations of the space~time correlation
function. The first one uses exponential functions and allows for both
convection and decay of the turbulent pressure fluctuations. The second
is a product of two Dirac Smfunctions and ‘an exponential function repre-
senting convection, spatial separation and time dél sy, respectively. This
corresponds to a turbulence pattern consisting of pressure fluctuations
with very sm;ll wave lengths.

Corcos and Liepmann have made an assumption that the wave mumber-
frequency spectrum of the pressure fluctuations is symuetrical in its two
wave nunber components and is fairly swmooth. By usipg an extens;oﬁ of
the first mean value theorem for integrals to obtain appfoximate values
for their integrals, they obtain their noise intensity results in terms of
a function which is the wave number-frequency spectrum of the boundary
layer pressure Ffluctuations evaluated at those wave numbers and frequencies

which satisfy the coincidence condition for the plate.

(c) Method of analysing transmitted sound
The usual acoustic theory for small pressure fluctuations is used,
and & solution is attempted so that the velocity of the air particles

adjacent to the walls of the structure is the same as the velocity of

the wall.



i

Corcos and Liepmann use a solution in the form of the well known
integral which rglates the sound field to the normal acceleration of the
plate normal displacement. The mesn square pressure fluctuations are
then given as a function of the space time correlation of the plate normal
accelerations. Introducing the concept of correlation length, the result
is obtained which involves correlation area of the plate displacement and
mean square normal scceleration.

Kraichnan relates the Fourier transform of the sound pressure
fluctuations to the Fourier transform of the plate normal velocity. The
radiation efficiency at a given frequency is greatest when the panel wave
length is the same as the acoustic wave lengbth for the same freguency. If
the panel wave length is smaller than the corresponding acoustic wave
1ength,»thelsound field is a reactive one and the mean square pressure
fluctuation falls rapidly away with increasing distance from the plate,
with no radiation energy. The radiated sound power is obtained as an integral
involving the wave number frequency spectrum of the plate normal velocity.

Ribner states that the sound is fadiated by supersonic waves
running along the fuselage wall. The subsonic waves will generate sound
only if there are discontinuities or boundaries in the structure. Since
these boundaries always exist in practice, sound is radiated and Ribner
produces a result similar to the approximste one by Corcos and Liepmann
except that he has included a 'universal correlation length' whereas Corcos
and Liepmann have rebained a general correlation length.

Dyer expresses the sound field within his enclosure as a sum of
the acoustic normal modes of the space.  The modal pattern on the vibra-
ting plate of the normal modes of the room corresponds exactly to the

modal pattern of the normal modes of the plate. Thus the effect of the
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room is the same es that of an additional generalised mass in the equation
N

for the response of the plate in each normal mode. By equating the
velocity of the air particles adjacent to the plate with that of the
plate, the plate acoustic medium coupling has been obtained.

It is seen from the above that onl& Dyer has allowed for
coupling between sound radiated and the structural vibration. It is also
clear that the analyses for the most part apply to uniform panels and not

to stiffened panels. Nobody seems to have considered the effects of

stiffeners on the plate vibration.

1.4.3 Sound radiated by finite panels

Apart from the problem of‘Sound raediation into an alrcraft
fuselage, the problems associatea‘with sonic boom have necesgitated
investigations into the sound radiated by a flexible panel. For example,
Bhattachanya and Crocker [18] have considered a flexible uniform panel
which separates the open space from an enclosed room, the walls of the
room being considered as acoustically hard. Usiﬁg the modal technique,
a general analytical solution of the wave equation with inhomogeneous
boundary conditions has been found. In such a finite panel, and a finite
room, the critical coincidence is shown to occur when the room eigen-
vector grazes the flexible panel under conditions of maximum coupling
and panel resonance. Subsequent coincidences occur at frequencies
grester than the critical coincidence freguency when the room eigenfregquency
becomes equal to the forced frequency under the conditions of maximum

coupling and panel response.
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1.4.% Sound radiation from stiffened panels

One of the best known works on the response of stiffened pa;els
is by Gideon Maidanik [i%]. He analysed the response of such panels to a
reverberant noise field by using a statistical method. The analysis pre-
dicted that the ribbing increases the radiation resistance of the panel and
hence its coupling to the acoustic field. In the stsatistical method, he
employed, he argued that the modal density of the ribbed panel is the sum
of the modal densities of the individual panels because the modal density
of the ribs is small compared with the modal density of the panel. Since
ve are not interested in the statistical energy method in this work, we
shall not review this work in detail here. However his experimental
results may be generally inﬁeres@ing. He found that the response of the
ribbed panels is considerably higher than that of unribbed panels. The
increase due to ribbing was as much as 15 to 20 dB in some frequency
ranges.

A study by Wnite and Cottis [19] may be interesting. They
dealt with the pressure field in the vicinity of a rib on a homogeneous
infinite plate excited by a turbulent boundary layer pressure field and
surrounded by & dense fluid medium. The rib was idealised by three
cases, a simply supported line, a clamped line and a line supporting
two independent plates. A very important conclusion of this study is
that the boundary conditions at the line are found to have a significant
effect on the radiated pressure field.

A work in this fiéld reported during the present investigation is
bf Konovalyuk [?OJ who has investigated the reflection of a plane sound

vave from an elastic plate reinforced with stiffness members. Using
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second order systems. Thése studies therefore are not directly applicavle
*
to beams and plates which follow the governing equations of the fourth
order. His general approéch, however, has been used by Morse [22} and
Cremer and Leilich,[23]. Cremer and Leilich considered lateral and
rotational velocities, bending moments and shear forces at the discontin-
uities. (These discontinuities between segments of uniform structure,
make it spatially periodic.) Since he emphasised the quantities at the
discontinuities, it was difficult to predict easily the beam behaviour
between these discontinuities. Morse's work, followed by Ungar's [?h]
(see also [25J) treats the excitation at discontinuities. This approach
is not directly amenable to utilisation for obtaining response of the beam
as a whole. Ungar slso studied the excitation between continuities but
formulated the problem as Heckl [26] bad done, in terms of transmission
and reflection coefficients. He (Ungar) considered the results of inject-
ing a flexural vave of a given amplitude at one or more locations between
discontinuities. The general apprbach consists of tracing the entire
history of a wave and of all of its bransmitted and réflected porbions,
and of superposition of all the resulting effects. This is the approach
similar to that of Heckl. Ungar, however, simplified the analysis by
assuming that only the regions of the structural elements well away from
the discontinuities are of interest, and that the flexural wave lengths
in all cases are considerably smaller than the spacing of the discontin-
uities. With these assumptions, it is possible to neglect the 'near
field' effects in the vicinity of the discontinuities and to considerably
simplify the analysis. However, in spite of these simplificabicns, the

analysis is too involved to be applied to the problem of response of air-
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craft type structures, which may be two dimensional. Ungar's work
emphasises one dimensional systems. He mentions no relation between a

discontinuity impedance and the dimensions of the discontinuity.

1.5.2 Mead's Wave Approach

In dealing with a very large, highly damped structure with
periodic stiffening (i.e. stiffening at regular intervals) a wave approach
yields the response much more readily than the normal mode approach. This
has been demonstratbted by Mead and Wilby [27] vwho used a closed form
solution to represent the random displacement generated in an infinite
uniform periodically supported beam subjected to random convected pressure
field. A relatively simple formula was developed for the displacement,
curvature»or stress at any point in the beam. The closed form solution
is not convenient, however, if sound radiation and acoustic damping effects
are to be included as the acoustic pressure at a point on.the structure is
not proportional to the local displaceﬁent (or velocity). Rather it is
proportional to an integral function of the velocity all over the vibrating
surface.

Sound radiation effects are easily incorporated in response
calculations if the transverse displacements are expressible as a series
of sinusoidal travelling waves or 'space harmonics'. This approach has
been developed in this thesis, for the forced vibration due to convected
loads. But before the forced problem is taken up, the free wave propaga-

tion studied by Mead [28] will be reviewed.

1.5.2.1 The notion of a propagation constant

A wave may be crudely defined as disturbance that propagstes

itself. The disturbance travelling may be a displacement of a structure.
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1.5.2.2 The free wave motion as a wave group

In the band of free propagation (i.e. without attenuation) where u

is purely imaginary, equation (1.5) gives the values as

u o i Ui +  2mw , m = o +to +o (1»6)

The values of u associated with +ui represent a negative going wave
group and those associated with ~y; represent a positive going wave group.
Corresponding to each value of m there is a different amplitude of wave
motion and a different free wave length and wave velocity. The total
displacement, W(x) at a point x‘ due to the positive going wave group
of free waves may therefore be expressed as

m=+eo ~i{u. + 2mn) S~ iwt

Wix) = Z Ae * x e (1.7)

m:.,.oo

and the wave velocity due to n®P component wave is given by

wl
¢ ) S S . T (108)

m “i + 2mw

Figure (1.4) gives the phase velocities of free waves in the
stiffened structure as a function of frequency. It is clear that unlike
in the case of unstiffened beam, there are more than one phase velocity
at a given frequency. These different velccities correspond to different
integral values of m 1in equation (1.8). VWhen the stiffened beam is
vibrating under a convected loading, the coincidence could be caused when
any one of these phase velocities equals the velocity of convection of
the excitation. Thus in a stiffened beam there is a greaster possibility
of coincidence at a frequency under given conditions of convected loading

than in the case of a uniform beam.



The wave coincidence can also be inberpreted as matching cof
wave length of excitation with the wave length of free propagation.
Since at a given frequency, there are an infinite number of free compo-
nent wave lengths, any one of them could match the imposed wave length
.. ] th
and thus cause coincidence. The value of the m component wave length
is given by

ZWEX
A E (1.9)

m sy + 2mw
The convergence of the éeries of equation (1.7) has been studied

in Figure 1.5 which compares the amplitudé ratios (Am/AO) of the successive
components of the free wave group of the multisupported beam at = 17.0 for
which My ; n/2 (Q is a non dimensional frequency parameter and equals
(mﬁwg/EI)%zi where m s EI are the mass per unit iength and the stiffness

of the beam respectively, and @ is the frequency in radians per second).

It can be seen that as m increases, the value Am/AO falls rapidly, thus
testifying to the satisfactory convergence of the series of equation (1.7).

If the beam were unstiffened, all Am's would be zero except Ao'

1.5.3 The Wave Approach and the Structural Models of this Thesis

The ideas presented in section 1.5.2 can be extended to obtaln
the forced response of stiffened structures to convected loading [29}.
This will be explained here by taking the example of a stiffened beam like

the one shown in Figure 1.2.









guite adequabtely be computed by assuming the beam to be infinite and
periodic. This is shown to be true for a wide range of damping valueg.
The forced wave propagation in infinite stiffened structures is therefore
of great practical utility. The concept of the forced wave propagation
is derived from Mead's wave approach [?8] which in turn has been shown
by Sengupta [31] to be inter-related with transfer matrix approach adopted
by Lin [3?]. At any frequency the propagation constant of the free
flexural waves equals the natural logarithm of the eigenvalue of the

transfer matrix relating the state vectors at the two ends of the basic

element constituting the periodic structure.

1.6 Arrangement of the Text.

The 'space harmonics' approach will be applied in Chapter II %o
obtain the curvature response of a pericdically supported beam when it is
excited by an acoustic plane wave or by a boundary layer pressure field.
It will be extended in Chapter III to obtain the radiated power of such &
one dimensional model. Chapbter IV will extend this method to the case of
orthogonally stiffened plates, obtaining results for the sound power
radiated. Chapbter V will describe the experimental work undertsken to
obtain the values of sound power radiated by a pasnel under excitation by
acoustic plane waves of different angles of incidence. It will compare
the results with the computed values and will discuss the extent of their
agreement . Chapter VI will extend the method to the ring stiffened
cylindrical shells of infinite length. This extension is intended to
confirm that the general method adopted may be employed to deal wilh a
class of elastically supported structures when they are large and highly

damped.









multi supported finite beam in relation to that of an infinite beam. They
have concluded that in the case of finite beams of more than.S bays, the
infinite model may give reasonable snswers for response. Such a model is
analysed in this chapter.

This infinite stiffened beam then is visualised (Sece Figure 1.2)
as a uniform beam continuous over periodically spaced (spacing zx)
elastic supports having transverse stiffness K, wper unit deflection at

the support and rotational stiffness Kr per unit rotestion at the support.

2.1.2 The excitation and the analysis of response

The problem is first solved for the fundamental case of a
convected harmonic sinusoidally distributed pressure field and from this
the solutions for the more general pressure fields are developed. Random
pressures of two types are considered:

(a) Corresponding to a random acoustic plane wave field, in
vhich the instantancous pressure distribution is convected
along the beam surface without chénge of wave form. Such
a field can be analysed into a continuous frequency spectrun
of harmonic 'components' each of which cen be associated
with a unique wave nusber.

‘(b) Corresponding to a boundary layer pressure field in a btoundary
layer of constant thickness. The instantaneous pressure Gis-
tribution does change as it 1s convected along, so each
harmonic 'component'! of the continuous freguency spectrum is
now associated with a continuous spectrun of wave numbers.

3

The curvalure response ab the centre of one of the beam ‘bays’

Fa

is analysed theoretically under each of these. The series for the response
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adjacent baye then have the same amplitude but they differ in phase by
L When this imposed vqlue of My is equal to the characteristic
value of 4 for the beam at the same frequency (see section 1.5.2), the
coincidence phenomenon occurs and the response is large.

.

2.2.2 The Series Representation of the Forced Flexural Motion

A simple harmonic flexural wave of the form Woexp(—iuxx/ﬁx).
exp(iw@) cannot exist on its own in the multi supported beam. The
presence of elastic constraints at the supports introduces numerous
reflections and 'near Tield' type flexural waves into the beam motion.
However, when the beam is excited by the loading poexp(~iux/zx)exp(imt)g
the forced flexural motion is spatially periodic over the wave lenglh
given by EWRX/UX (= 2N/KX) and so may be analysed into spatial harmonic
wave components. The total wave motion s0 represented must have the
same amplitude at any two points, distance QX apart, but the two total
motions must differ in phase by M_. This will be satisfied by a series
of harmonic waves which have phase differences of uX, ux +o2n,

Ux.i 2m" over the interval QX since all these phase angles are in
effect, identical.

Hence we can write a series for the transverse displacement
W(x) in the form

M=o , ":'L(HX + 2 )%‘" Tk
W(x) = ) A e X e (2.h)
U i

This series must be made to satisfy the boundary conditions et

elastically restrained supports by appropriate restrictions on the co-

-
7

efficients Am, We observe that if & particulsr value of e 18 imposed
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makes this component wave length nearest the free flexural wave length
in the beam. Rapid convergence of the series may again be observed
from the relabive magnitude of the Am's at this frequency.

That one of the coefficients is much larger than the others
is in accordance with the known theory of propagation of waves in a
continuous medium with periodic perturbations. Sections 28 and 35 of
reference [2{] deal with free vibrations of such structures in the
longitudinal directién.

Tables 2.2-2.3 show how the magnitude of each term is affected
by including the higher order terms. They correspond to the beam with
K. = 4.0, Kp 7 @ n = 0.25 excited by losding of convection velocity
parameter (CV) = L.0. The tables are self explanatory. In particular,
the Re(Ao) term in the 5 term solution at © = 1L.80 (table 2.2) is
different from the same term in the 9 term solution by just over 3 per-

cent, For © = 8.0 (table 2.3) the corresponding difference is about

1.22 percent.

2.4 Response to Harmonic Plane Waves

By solving a suitably restricted set of the . simultaneous
equations (eguation 2.17) the Amfs can be determined. Once the Am‘s

are known, we can find the response at any point on the beam. For a

given beam, this response is evidently & function of by and 2, and
is directly proportional to P, In fact we can write
Wix) = p Y (0 u )eiwt (2.26)
' o'x Y Tk

where Yx may be called the 'displacement admittance function' for the

point x. The curvature of beam deflection (which is proportional to

e )4‘1 e









2.5.2 Numerical response calculations

The double integration required to obtain < W”Q(X)> can only
be accomplished numerically.  This has been done for a beam with

n = 0.25, Kp = 4,0 and = 107 excited Dby:

g
(a) a random acoustic plane wave field having a pressure
power spectral density which is constant over the
frequency range 0< Q < 32.0 and a convection velocity
parameter of CV = 4.0. The spectral density of the
pressure has been arbitrarily chosen as unity;
(b) a boundary layer pressure field having a point pressure
spectrum of constant unit value over the frequency range
8 < g < 24, Outside this range, the spectrum was
assumed t6 be zero for reasons given below. The
boundary layer decay parameber®was 0.1, and the con-
vection velocity was CV = L.0.
The restricted frequency range of the pressure spectrum was
sufficient to cover the whole of the first freguency band of free
wvave propagation in the beam (see Ref. 28) in which the beam response
is high. It excluded the possibility of response in the higher pro-
pagation bands. The method of this ciapber however, can be used for
any range of frequency whatsoever. The above restriction was
desirable in order to reduce computation time.
The double intggration for the boundary layer problem was

first performed in the ux~domain at a fixed frequency. Figure 2.2

2

shows a typical variation of Y%(Q , ux){ and SP(Q, uy) with
u at a given frequency. The integral of their product may, in fact,

X

* Zee Appendix A
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derive principally from two narrow B, ranges in the vieinity of the
two peaks if the peaks are very sharp. Numerical integrabion of the
product need then only be performed over these ranges to obbain resuits
of acceptable accuracy. On the other hand, if these peaks are not
sharp (i;e. the beam is heavily damped giving relatively flat response
curve and the boundary layer decay parameter b is large)., then the
integration must be performed over g much wider range of ux's. Iin
the present calculations, the integration exbended over the vwhole U
range from W, = 0 to w = 850. Trapezoidal rule integrabion was
used with increments of = 0.k,

The integration with respect to Hy vields the response power
spectral dgnsity at the given frequency. Integration of this power
spectral density over the frequency range yields the mean square value
of the response. This integration. was conducteé numerically using
the trapezoidal rule with increments of frequency (Q) of O.4. It was
found to be sufficiently accurate to integrate only over the range
8 < Q <24 for there was no significant contribution to the mean
square response oubside this range.

Computatbtions were performed on an ICL 1907 computer. The
flow diagram Ffor the whole computational process 1s shown in
Appendix B. Curvature results were normalised by dimensional quantity
pozxg/D'.

2.6 Discusgsion of Results

2.6.1 Acoustic plane wave excitation

Figures 2.3, 2.4, 2.5, 2.6 and 2.7 show computed results for
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the beam excited by acoustic plane waves. Spectra for the beam
curvature at mid~span are shown in Figures2.3 and 2.4; peak values
of power spectral densigy at different convection velocities are
shown in Figure 2.5; r.m.s. values of the curvature are shown in
Figure 2;6. Figure 2.3 shows the curvature spectra computed using ele-
ven terms in the series for the beam responge. These curves are actually
guite indistinguishable from accurate qalculations performed by Mead and
Wilby [27] (also reported by Mead in Ref. 10) who used a closed-fornm
solution for the response. It will be observed that the spectrum peaks
move to higher frequencies as the pressure field cpnvection velocity
increases. This can be easily explainéd by the arguments presented
in Reference 28.

It may be mentioned here that computations by the method of
Section 5 (Kt +~ o) and those by the method of Section U taking «, =

t
lOT differ only in the fourth or fifth significant decimal place. This
should confirm that in the limit (very high Kt), the generzl method
will give results agreeing completely with those frém the method for
the special case of rigid supports (Kt+ @),

The different curves of Fig. 2.4 show the responses calculated
by taking a different number of terms. The ll-term curve can be
regarded as representing the exact response, and it is clear that the
T-term curve scarcely differs from it. With only three terms, the
peak power spectbral density is about 2% less than the exact value,

and with five terms it is about W% greater than the exact values,

Hence, & very crude approximabion to the beam deflection (by using only

6]

three or five terms) yields surprisingly accurate values of the curvature

spectral densiby.



Such high accuracy is not maintained with higher values of
the convection velocity parameber ($ee Fig. 2.49). When CV = 16, the
3~term peak spectral response is 22% greater than the e¥act value,
whereas the S5-term response is 9% less. The 7-term response maintains
close agreement throughout.

The r.m.s. response (obtained by integrating the spectra) are
in rather closer agreement over the whole CV range than the peak values
(see Figures 2.5, 2.6). The peak in thése curves at CV = L has been
found before by Mead and Wilby and occurs at the lowest convection
velocity at which a 'primary coincidence' effect can occur (ref. 28).

Fig. 2.7 shows the influence of ﬁeam loss factor n on the
spectral density of curvature at midspan of the beam for CV = 4.0
obtained by including eleven terms iq'the series. It is seen that the
effect of damping is most marked at frequencies where there are peaks
in the response curve. The damping sensitive peak value for a very
low value of 1 = 0.01 (not plotted) ﬁas within 1.55 percent of the
accurabe valvue of Mead and Wilby. Inclusion of only:three terms in the”
series in this case gave a peak value which differed from the exact

solution by about 4 percent only.

2.6.2 Boundary layer excitation

Response spectra Tor boundary layer excitation are shown in
Fig. 2.8. The curves for different numbers of terms are very similar
in shape, and the peak and f.m.s. values differ at most by only 5%, the
T-term curve follows the ll-term (exact) curve very closely. The r.m.s.
value from the 3-term curve is only 2% higher.

For the purpose of stress-calculation, therefore, ve may deduce
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that approximate values of sufficiént accuracy may be obbtained from
compubations using Just three terms in the response series, so long
as the dominant part of the response stems from the first band of
free~wave propagation.

These results were obtained from a boundary layer pressure
spectrum having a constant value over the frequency range & < 9 < 24,
It is generally accepted that a real boundary layer pressure spectrum
has a broad, flat top (between about 200 Hz and 3000 Hz) but above a
certain cut-off frequency it drops off with frequency. Such a varia-
tion of pressure spectral density could easily be included in the cal-
culation of the response spectrum and r.m.s. values, simply by multiply-
ing the response spectral density presented in Fig. 2.8 by the known

real value of the pressure spectral density.

2.7 Conclusions

The method of space harmonics as described and illustrated
in the foregoing sections offers a powerful techniquebfor obtaining
the response of periodic structures to random acoustic wave and
boundary layer pressure. It has been seen that the inclusion of only
three terms in the series solution ylelds results which agree accept-
ably with the closed form solubion in the frequency range of the first
propagation band. ‘

From the point of view of computation, this is a relatively
simple method.  After the linear algebraic equations are sebt up, it

only uses a Library subroubtine for the solution of simulitansous

equations with complex coefficients.

There is no restriction on the magnitude of damping
14

- 48 -



in the structure for the methed to succeed. Normal mode methods of
analysis often assume that the damping is small enough for distinct
resonant peaks to occur without ‘'modal overlap'. No such restriction
is necessary in the method of space harmonics, and the respcnse of &
system with large damping is computed as easily and accurately as that
of a system with small damping.

The method lends i1tself readily to the determination of the
sound radisted by the structure. This is so because each term of the

series solution represents a travelling wave and is spatially harmonic.
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3. SOUND RADIATION FROM"ONE DIMENSIONAL STIFFENED PLATES
UNDER RANDOM CORVECTED TOADING

3.1 Introduction

In Chapter 2 it was explained how the orthogonally stiffened plate
could be treated as a one dimensional structure for low order lateral modes,
especially when its aspect ratio was high. It was explained that the res.-
ponse of such & one dimensional model to random convected loading (including
that to boundary layer pressure field) could be obtained in a series of
space harmonics. The coefficients of this series were shown to be satis-
factorily converging so that only a limited number of terms were to be
included in the series to yield a solubtion of reasonable accuracy.

We turn now to the problem of sound radiated by such structures.
This is important, for instance, in theicase of an aeroplane fuselage,

.
VS

the structure of which can be regarded as periodiq5 and which transmi
undesirable sound into the interior by virtue of the surface vibration.
This analysis of sound radiation is usually made by the application of the
normal mode approach and working in terms of resistance ratio, i.e. the
ratio of the energy dissipated to the fluid to that dissipated within the
structure (for the concept of radistion resistance, see for example,
reference 35). It is also somebimes sassumed that the radiation dges not
appreciably influence the response. However, even under this assumption,
the analysis can be very difficult. On the other hand if the response of
the Structﬁre is known in a form which ig spatially harmonic, it can be
done rather easily. The response in such a form (as a series of space

harmonics) was chtained in Chapter 2. Each one of the terms in this

infinite series is spatially harmonic and represents a forced travelling
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wave with its own velocity depending upon the freguency and convection
velocity of excitation and also on its order in the series. Some of
- these terms will have supersonic phase velocities, even at subsonic
convection velocities of loazding.

In this chapter the above series of space harmonics is adapted
for the problem of sound radiation. The influence of radiation damping
can be easily incorporated in the analysis.  The amplitude of each travel-
ling wave 1s determined by the principle of virtual work as in Chapter 1.
Following that an expression for the pressure radiated is derived for each

harmonic and the associated power 1s then calculated.

3.2 The-Structure and Excitation

The plate considered is assumed to be flat and infinite in both
directions and has parallel, equi~spaced stiffeners in the Y-direction only.
The stiffeners are assumed to be identical line supports exerting trans-
lational and rotational constraints on the plate. The plate ig excited
by a loading intensity p_ exp(éiKXx) exp(iwt) per unit area. K, is the
wave number of the loading in the X-direction. This loading corresponds
to harmonic pressure waves traversing the plate in the X-direction only.

Since the loading is independent of Y, so also must be the
response. It is therefore convenient to consider & unit width of the
plate which extends infinitely in the X~direction.  This makes it

effectively equivalent to a periodically supported beam (see Figure 1.2)

been reported in Chapter 2.  Following the outline of that analysis this

chapter will include these aspects. The extended analysis of the plate





















The critical radiating condition for the zeroth harmonic may be said to

exist when

i.e.

when lu.] = — = 2 (3.26)

This simple condition is equally simply represented in Figure 3.1 in
which the abscissa is § and the ordinate is oo The lines OP, OR
have the slopes + 1/SV at a given Q. If the excitation on the beam
imposes a value M at a frequency @ whigh lies within the triangle
POR, the condition represented by equation (3.26) is satisfied and the
Zeroth harmonic will radiste. 7e shall call the triangle POR the 'priumary
zone of radiation' to indicate its correspondence with the zeroth space
harmonic which is the dominant term in the series.

If plane~wave harmonic excitation is being convected at speed

CV, then  w_ is related to § through

Thus a line of slope 1/CV represents all the values of o imposed by
this pressure field over the frequency range. If this line lies outside
POR, the convection velocity of the excitation is less than the speed of
sound, and the zeroth term cannot radiate. However, it 1s possible that
one of the higher terms in the series will radiate as the following argu-
ment shows.

One of the higher terms will radiste, provided

+ 2mr
“x )
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3.5.2 The freguency bands of radiation

We now show that bands of frequencies exist in the range
0 < Q < n(8V) in which sound can or cannot be radiated. Suppose plane
harmonic pressure waves of all frequencies are convected over the beam
at a speed corresponding to, say,‘ CV = 8V/T (see now Figure 3.2). The
values of By, in this wave field are represented by the line OABCDEF....
Since the segments OA, BC, DE lie in the dark zones, no sound is radiated
in the corresponding frequency bands by any of the space harmonics genersted.
These segments therefore define frequency bands of no radiation. Between
these bands of real radiation exist.

It is easily shown that the frequency corresponding to point A

on Figure 3.2 is given by

o, = —— (3.27)

.. . : th . s .
Similarly the upper bounding frequency of the N band of no radiation is

k - 2Nw ‘
QN+ ) 1 (3.28)

W
and the lower bounding frequency of this band is

_o2(0 - )m A
QN_ = i:f*“““““ (3.29)

.
cv " sV

h

The fregquency bandwidth of the v band for radistion is

Y/

bga ™ Yaw)- T
Llm 1 1 =l .
SV l PR 2 (3.30)
cv SV
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If radiation is to occur at all frequencies, i.e. AQrad = o, then we

must have CV = SV which also defines the boundaries of the primary zone
of radiation.,
It is evident also from Figure 3.2 that with a pressure field

<y

convected at speed CV (< SV) there must be NI(;EV) bands of no

radistion where NI(X) signifies 'nearest integer to X'.

3.6 Sound Power Radiated by Random Convected Loadings

3.6.1 The sound power spectrum and mean power radiated

SW(Q, ux), the spectral density of the power radiated and
SP(Q, UX) that of the exciting pressure, are functions of Q and Vs
and are related by

5 (9, w,) =8 (2, w) ¥ (0, )| (3.31)

where IYP(Q, uX)|2 is the power admittance function. It equals the

power radiated per unit length of the beam when excite@ by hermonic pres-

sure of unit amplitude at frequency  and phase constant Mo e It can

be derived from equation (3.15) in the following manner (see Section 3.3.2).
Let the value of Am per unit harmonic pressure ampliitude at

frequency $ and phase constant My be Em(ﬂ, ux); then

o meke oW, C 2
Y (9, w)|® = o A% )] (3.32)

where the summation extends over all real values of Km”' It is convenient
L

to represent this in a non-~dimensional form for computational purposes. For

Y

. 2 AN
this we can divide equation (3.32) by the dimersional parameter zx/(mbu'; .

N
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(3.33)

The power spectral density of the radiated power can be obtained as =

function of frequency alone by integrating equation (3.31) over all u_,

A
l.e.

s (0, u)= j sp(n, ux)]Yp(Q, uX)I2 Gy, - (3.34)

0

The total time averaged power radiated <> in the frequency band

0<qn < 9, cen be found by integrating over this band, i.e.
Ql )
<> = j { SP(Q, UX)IYP(Q, ux)qude . (3.35)
o o0

<II> may be referred to as the total mean power or mean power in a freguency
band 0 < Q < @, . ‘

The non-dimensional form of this is

97 -
<> - [ J s (o, w7 (2, w24 a9 (3.36)
W o o P uX ! p UX ! UX

This is in a general form suitable for caleulating the response due to
any form of convected pressure field including a boundary layer pressure

field.

3.6.2 Computation of sound power spectra

Computations have been performed to determine the influence of
the number of terms on the calculsated power spectral density of sound power
radiated at different frequencies and on the total mean values. As in Chapter
2, the computations were performed on ICL 19CT computer. The general

scheme of computabion is the same as given in Appendix B, except that the
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sound power has been computed rather than the curvature. The computation
was performed with an £ step of 0.k.
The specific structure for which the computations were made had

the following non-dimensional characteristics.

ko= L,0
r

Ky = lO7
n = 0.02

Two specific excitation fields were considered.

() PRandom plane waves having a constant pressure spectral density over
the non-dimensional frequency range 8 < @ < 2h. Different convection
velocities from CV = 2 to GV = (0 were considered.

(b) Boundary layer pressure fluctuations having the same constant power
spectrél density over the non-dimensional frequency range 8 < O < 2k,
Only one convectiop velocity was considered, i.e. CV = 4.,0. The
boundary layer decay parameter (see Appendix A) = O0.1.

The sound velocity parameter SV = 10.

3.6.3 Results for plane wave excitation

Figure 3.3 shows the spectral density of the power radisted at
different frequencies, when a different number of terms are included in
the series and the beam is excited by subsonic plane waves having CV = 2.0,
SV = 10.0. It is seen that when three terms are included in the series,
the evaluated radiation is very different from the results when five,
seven or eleven terms are included. The values given by five terms and
seven bterms are however gquite close to each other. Seven berms give
results so close to those given by eleven terms that it is very difficult

5

to show the difference on the graph.
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It is seen that there is no radiated power till a frequency & =
10.8. Then there is a band of radiatich up to € = 15.6. Thereafter
there is a dark band up to @ = 21.2 wherefrom the radiating band of fre-
quencies again starts. In the latter radiating band, i.e. from o = 21.2,
the power fadiated is of the order 1072 times that in the first radiating
band. In this band the three term curve does not appear at all because
if only three terms are included in the series fcr the displacement, none
of these terms yields a supersonic velocity.

Figure 3.4 shows the variation of the mean value when different
number of terms is included in the series solution for the beam excited by
a plane wave with CV = L.0, SV = 10.0. if is seen that except for 3 term
solubtion, the agreement between 5, 7 and 11 term soluticns is very good.
At CV = 5 the T term value differs from the 11 terﬁ value by only about
one per cent while the 5 term value varies by about three per cent. Thus
it may be seen that when mean value is to be calculated for the frequeﬁcy
ranges lying in the first band of ffee propagation, only 5 terms need be
included in the series.

It may be noticed that there is a peak in the curves around CV =
3.5. It is because for all convection velocities most of the contribution
to mean , value is derived from values near the peask and these peak values
are very high for CV = 3.5 (see Figure 3.11). his may be explained by
studying Figure 1l.h. In the band of free propagation, segment BY'C' will
cause secondary coincidences for CV = 3.5. Hence a large response for
this convection velocity.

Figure 3.5 shows the effect of the nuuber of terms on the peak

spectral density of the power radiated in the frequency range 8 < Q < 24

S T






explained by the fact that for CV's > 6.0, the minimum frequency to be
in the radiation zone is outside the range 8 < Q < 2k, over which the
power is being averaged in the case presented. This may be verified
from Figure 3.2.

Figure 3.7 studies the effect of including different numbers
of terms on the peak value of sound power radiated in the given frequency
band at different convection velocities. Since the convection velccity
corresponding to the velocity of sound was assumed to be 10.0, all the
convection velocities plotted are supersonic. As a result of this
situation the zeroth term in all cases is radiating. This explains
why even the three term solﬁtion peak is gquite near the 11 term solution

peak for the cases plotted.

3.6.4 Boundary Layer Excitation

Figure 3.8 sﬁows the wave number spectrum of the radiated power
or the contribution to the sound power from different wave lengths
present in the boundary layer pressure field. This corresponds to
different UX'S where Hy = KXQX. It may be noted that for the case

= 4.0, « = Jdramd n = 0.02) the

plotted (Q = 24.0, CV = L.0, « &

T
. . - . .

sound power radiated at L = 8.0 is of the order of 10~ times that

at u = 2.0. This variation enables us to obtain the sound power

radiated in the case of excitation by boundary layer pressure field by

integration over a limited range of ux's, though theoretically speaking,

all wave lengths must be considered for the exact analysis. The diasgranm

also illustrates that at a given freguency., it is possible to have a

range of wave lengths which will not radiate (see range of ,_'s betwean
VoA
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2.0 and 4.0). This is consistent with the principles illustrated by
FPigures 3.1 and 3.2.

Figure 3.9 shows the effect of the number of terms on the peak
value of the sound power radiated for the same beam under excitation by
boundary iayer pressure field of convection velocity CV = 4.0 and boundary
layer decay parameter O0.1. The results by including only three terms
are very different from 5, 7, or 11 term values. The S5-term value is
approximately 11 percent higher than the ll-term value, whereas the T-
term value is approximately k percent higher.

Figure 3.10 shows how the computed mean power varies with the
number of terms used in the series for the same dats as applies to
Figure 3.9. - Except the 3-term value, all values have a very much closer
agreement than they have in the case of the peak response which is shown
in Figure 3.9. The maximﬁm veriation then is between the 5 term and

the 11 term value, and is of the order of 6 percent.

3.6.5 Comparisons of Sound Power Spectra

Figure 3.11 shows the spectral density of sound power radiated

when excitation is by subsonic plane waves with CV = 2, 3.5, 4.0 and 5.5.
Also drawn on the same figure for comparison 1s the spectral density of
sound power radiated when the excitabion is by boundary layer pressure
field having CV = L.0. It is seen that in the case of excitation

by = plane waves, there are bands of real sound radiation. As the
convection velocity increases, these bands start at higher freguencies.
Such bands of radiation have been predicted in Section 3.5.2. It is
alsc seen that the sound radiated by plane wave with CV = 3.5 (also see

is explained

[&]
Q

Figure 3.4) is higher than for any other plane wave. Thi
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in Section 3.6.3 with the help of Fiéure 1.4,

In the case of boundary layer excitation, there is sound
radiation at all frequencies (see the chain dotted curve). This is
explained by the fact that at a given frequency (for boundary layer
excitationj, there is a continuous spectrum of wave lengths, some of
which must radiate. The presence of peaks in the sound power curve
may also be explained by this spectrum of wave lengths. However, the
maximum contributiocn to sound power for boundary layer excitation is in
the frequency band where the plape wave of the same convection velocity
(CV = 4.0) radiates, though the corresponding levels are on the whole
higher in this case. This difference in levels may be explained by the
fact that atxa given frequency the boundary lsyer pressure field contains
all wave length components including the one corresponding to the plane
wave at that convection velocity. The difference in the sound power in
the two cases then will be the contribution by these additional wave
length components not present in the plane wave. (The exact comparison
between powers radiated in the two cases must, hOWever,‘take account of
the corresponding spectral densities.) At subsonic velocities of
loading, the contribution by low wave numbers can be considerable because
the corresponding component phase velocities are supersonic. This enables
the zeroth order space harmonic to radiate, though the falling spectrum at
these wave numbers makes 1ts contribution smaller. But it could still be

comparable with the contribution by the wave number L (Q/C\/‘)/;’&y9

(S

corresponding to which only one of the higher terms may radiabe, and for
which the spectrum peaks.
At supersonic convection velocities of the boundary layer, the

th | . , .
zeyo  term can radiate. Also, the pressure power spectral density peaks

S
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at the wave number of thé zeroth term. The sound radiation contribution
from this wave number in the case of boundary layer is, therefore, large
compared to the contribution from other wave numbers. Thus the sound
pover radiated by plane wave loading and that by boundary layer pressure
field will)be of similar magnitudes when convection velocities are super—
sonic. For such convection velocities the modelling of the boundary
layer pressure field by a plane wave of the same convection velocity is
therefore a more reasonable approximation than for subsonic convection
velocities, where the contributions from small wave number components of
the boundary layer may be significant. lowever, this could alsc be a
reasonable approximation for subsonic velécities i1f the frequencies of
interest are high enough to ensure sound radistion by the zeroth order

term in the series.

3.7 Conclusions

In this chapter the series solution proposed in Chapter 1 has
been applied to -obtain the sound power radiated by the stiffencd beam.
It was seen that sound radiation was possible even at a subsonic velocity
of loading and thls was seen to be due to the presence of periodically
spaced stiffeners. A simple diagram was developed to identify the terms
in the series which would lead to true sound radiation. At supersonic
velocities the zeroth term is able to radiate, and since this term is a
dominant term of the series, the minimws number of terms necessary to be
included in the series for reasonable accuracy is smaller than for the
case of subsonic convection velocities where only the higher order terms

nay radiate.



"It is seen that the series‘representing the sound power radiated
converges satisfactorily. All available evidence suggests that if eleven
terms are included in the series, the sound power evaluated would be very
accurate. Inclusion of only five terms gives reasonable results. The
convergence is better for the mean value than for the peak value in the
frequency range discussed.

It has been shown that for a plane wave loading convected at
subsonic velocities, there are bands of radiating frequencies when the
frequencies of excitation are below a certain value. This value depends
for a given velociby of sound, oﬁ the characteristics of the vibrabing
structure.

The comparison of the sound power radiated by stiffened and un-
stiffened be;ms has shown that at supersonic convection velocities of
loéding, the stiffened beam radiates much more powér than the unstiffened
beam. (There can be no sound power for unstiffened infinite beams at
subsonic velocities of loading.)

This chapter deals with the sound radiation when the excitation
frequency range is in the first band of free propagation [28]. However,
it is expected that in the higher bands of propagation, the number of
terms required to be included in the series solution for a given accuracy
will be smaller. This is because at higher frequencies, the zeroth
harmonic is more likely to be a radiating harmonic.  Since this is a
dominating term, only a small number of terms will then be necessary to
be included in the series for obtaining a result with a reasonable accuracy.

In the case of excitation by boundary layer pressure, there 1is
a range of wave numbers Kx present at a given frequency. It is possible

that low values may radiate. If the radiated sound power is to be calcu~
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lated accﬁrately, the wave number spectrum must be known accurately in the
region of these low wave numbers. It would thus be of practical interest
to investigate the effect of taking different expressions for the wave
length spectrum on the sound power radisted by the structure. This aspect
is outside‘the scope of the present study. However, the method presented
in this chapter can be used to calculate the sound power radiated by

ideal, infinite, periodic structures subjected to any general excitation

if the wave length-frequency spectrum of that excitation is known.
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L. - RESPONSE OF ORTHOGONALLY STIFFRENED PLATES TO CONVECTED LOADTHNGS

k.1 Introduction

Chapters 2 and 3 dealt with the response of a stiffened beam to
random coﬁvected loading obtained in a series of space harmonics. Stiffen-
ers were assumed to be line supports exerting rotational and translational
constraints on the beam. Such an elastically supported beam can be con-
sidered as a good representation of many stiffened aerospace structures
if it is assumed that their response is uncorrelated across one set of
stiffeners, usually the frames. However, such a situation does not
exist in practice when the excitation is a boundary layer pressure field.
Proper corre;ation between responses across the frames nust then be taken
into account. This requirement calls for a more realistic model. One
such model is provided by a plate on line supports which extend in the
two perpendicular directions. . This chapter deals with the analysls of
such a model. ,

As in the previous chapter, stiffened plate will be treated as
a uniform plate subject to the forces and moments applied by the supports

which simulate the stiffeners.

k2 Reprezentation of the Two-Dimensional Convected Pressure Field

The periodically supported plate is excited by a loading intensity

mip I iy 2
p = poe x & e v Qy elmu (h¢l)

This generszl form is considered because most actual pressure fields can be

analysed into components of this form. The random acoustic plane waves
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and the boundery layer pressure field considered in the last two chapters
were analysed into components of its one-dimensional version obtained by

putting Hy = 0 in equation (L.1).

One of the usual cases in actual practice is the excitation by
plane sound waves incident on the structure at an angle ¢ +to the normal
to the plate. If the velocity of sound‘is C the velocity with which
the loading is convected across the structure is then given by trace
velocity

C, = C/sin ¢ i ' (h.2)

ir QX is the distance between stiffeners measured along X

direction, then
wzy
= — )40
u G | (k.3)

1

If there is no convection in the Y direction, then uy 0.

It is possible to visualise an acoustic wave which moves across
the plate at an angle inclined to both sets of stiffeners. This situation
is also allowed for by the assumed loading intensity given by equation
(4.1), which includes a Y-dependent term. The wave number K of this

loading can then be resolved into two components K, and Ky for the

X and Y directions respectively, as follows:

K = K cos 6 (L.h)
X

K =K sin 6 (k.5)
y

. T3 =






The X and Y axes are in the mid-plane of the plate and the 2 axis is
normal to this plane. The origin is taken av the point of‘intersection
of two perpendicular stiffeners. The plate is thus divided into an
infinite number of elementary sub-panels formed by the intersecting
stiffeners; Let 2 be the spacing measuféd in the X direction between
the Y-wise stiffeners and let zy_ be the spacing between the X-wise
gbiffeners. Zx and Ry are not necesssrily equal to each other but are
constant.  The properties of all the X-wise stiffeners are identical.
This also applies ﬂo Y-wise stiffeners. However, the properties of one
set may be different from the properties of the cother set.

In an asctual structure of the alrcraft fuselage type, the X-wise

set could refer to the frames and the Y-wigse set to the stringers.

4.3.2 The rotaticnal and translational constraints of the

Supports

Though the method employed in this chapter to analyse the res-
ponse of the multi-supported plate can allow for any type of constraints
applied by the supports, expressions in terms of the actual physical
properties of the stiffeners will be used so that a comparison can be
made between theoretical and experimental results in an actual case.

Lin [A] has derived these expressions for fages and‘moments
applied by the stringers to the skin of a skin-stringer array. His
expressions will be used here for both sets of stiffeners, viz the
stringers and fremes. In these expressions the inertia effects of both
the sets of stiffeners will be allowed for. In the following paramcters
of the stiffeners the subscript =x refers to the X-wise stiffeners and

v refers to the Y-wise stiffeners.
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equations (L.56) and (4.57)). However, the knowledge of the wave length
frequency spectrum can enable us to cut down considerably the summation
required for a reasonable accuracy. It is shown in equation (A.24) that
most of the contribution to the pressure spectrum will derive from low
values of uy (low order y-modes) and from px's near the value given
by H = Q/CV, approximately. If while selecting the values of M
and uy over which the response 1s integrated, these facts are taken into
consideration, the results obtained will be reassonably accurate for
curvature response. (For sound power contribution other wave numbers
may be significant, see section 3.6.5.)

| When the boundary layer convection is inclined to the X-axis,

the value of -the spectral density of excitation is best obtained in terms

of- Kl and KB’ which are the wave numbers of the excitation in the
direction of convection and the lateral direction respectively. ( See
Appendix A). A set of Ki and K3 has é corresponding unigque set of
M, and uy imposed on the structure.

The procedure for determining the response of the plate due to
a boundary layer pressure field convected in a direction inclined at ©
to the X-axis may be set out in the following steps:
1. Select the range'of Kl's and K3's over which the integration of the
response is-to be obtained. This is decided by the accuracy desired
in the light of the fact that the spectrum of the boundary layer falls

rapidly at high values of lateral wave numbers and that the spectrun

tends to peak al a wave number Kl = %_w (See Appendix A for details.)
C

2. Take one set of values of K3 and K3 in the above range. Calculste
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the corresponding My and Uy imposed on the structure as follows:

Mo = Kl cog 8§ - K3 sin 6

(k.59)

poo= Kl sin 0§ + K3 cos B

3. Compute the admittance Y(Q, ) uy) of the response under these
conditions.

Lo Murtiply |Y(%, Hys uy)]2 found in étep 3 by the spectral density
of excitation for Kl and KB taken in step 2. The result is the
spectral density correspondiﬁg to the actual excitation for Kl and
K3'

5. Repeat steps 2-4 with a new value of Kl for the same K3, aﬁd add the
response‘to that found in step L.

6.‘ Continuve steps 2-5 till all values of Kl are ekhausted.

T. Repeat steps 2-6 with a new value of K-

8. Repeat step T till all values of K., are exhausted.

3
The result then would yield the spectral density of res@onsc contributed
by one freguency component. This may be integrated over all frequencies
to obtain the r.m.s. value. The flow diagram corresponding to the
procedure outlined sbove is shown in Appendix D.

When the e%citation is a random acoustic plane wave of a given
convection veloéity CV inclined at angle 6 to the X-axis, (9, Moo uy)
spectrum is non zero only for unigue values of Mo and uy which are
then functions of @, CV and 6 (see equations (k.4)-(L4.5)). The mean
square response to such an excitation is then given by

{4
<w,’ > 5 ()Y w (@, u (Q), (gz))}gcm (h.60)
< ) - 4 X??y Sy 1)( s Hy ¢ L

il

b
0
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By analogy similar expressions could then be written down for the mean

square of other response quantities.

L.6 Computation and Results

Computations have been performed to debermine the influence on

the response of the following factors:

(a) the number of terms included in the series,

(b) the damping in the structure,

(¢) different stiffnesses of stiffeners and of the direction of convection.

As in earlier chapters, these cpmputaticns were performed using
an ICL 1907 computer, the system of simultaneous equations for the co-
efficients being solved by using a standard ICL Fortran subroutine
FLCXACSL.  This subroutine allows for complex coefficients in the system
of simultaneous cquations which is the case when there is damping in the
structure or when acoustic radiatiop effects are included.

Since some of the broad features of the solution of one
dimensional version of the stiffened plate problem have already been
illustrated in Chapters 2 and 3, computation for this chapter was kept
to the minimum to minimize computation cost. No actual computation has
therefore been made for the boundary layer excitation. However, a com-
putational procedure for this case has been included in Eection h.5.3

and the flow diagram for this procedure has been given in Appendix D.

Curvature and sound power results presented were normalised as in Chap. 2 and
.6.1 Structural details

The structures computed for have the following properties and

dimensions.
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h = 0.028 inch Ax = 0.1176 square inch
£X = 4.5 inches Ay = 0.0585 square inch
_ . _ .t
zy 9.0 inches (%QX = 0.01037 in
b . L
- Q o s
(CWS)X 0.002666 in an>y 0.002499 in
. A
(cws)y =0.0000099 in' b = 0.101/386 Ib.sec/in®
JX = 0,000003414 inh v o= 0.3‘
J_ = 0.0000034 inh E = 10.5 (106) lbs/sqg.inch.
<1S¥X; 0.32808 in (Is)y = 0,022756 inh
(p) Structure B
b = 0.028 inch Ax = 0.1176 square inch
lx = 4.5 inches Ay = 0.0565 square inch
. ) : . .k
= - i = S
zy 9.0 inches ( n)X 0.09335 1in
: . b ’ : L
= I =
(cws)X 0.023996 in ( n)y 0.011245 in
)
(Cws)y =0.0000L4Y in? p = 0.101/386 lb.sece/inh
J, = 0.000030732 inh v o= 0.3
J_ = 0.0000153 in” E = 10.5 (106) 1b/sq.inch.

(ISXX = 0.32808 inh (IS) = 0.022756 inu
(The above values correspond to the type of structure used for cxperi-

mental work described in the next chapter.)
The above structures were considered with N, = 0.05,

np = 0.15 and np = 0.25. Also considered was the effect of varying the
stiffness of stiffeners (relative to those of structure B) with other
characteristics being constant.

The curvature resuvults refer to x-wise curvature computed for

x/i’,X = 0.5, y/SZ,y = 0.5.
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4.6.2 The excitation considered

The following sﬁecific types of excitation were considered.
(a) A random acoustic plane wave al sn oblique angle of incidence.
This effectively means a random plane wave of supersonic trace velocity
convected in the direction of the X-axis. The angle of incidence

considered gave the trace velocity as 1.5 times the veloeity of sound.

(b) A random plane wave convected across the plate in a direction

inclined to the X-axis. A subsonic velocity of 0.28 times the velocity

e}

of sound inclined to the X-axis at 800, ho™, 20° and 10° was considered.

Also considered was a subsonic velocity = %g times the velocity of sound
convected in a direction at 45° to the X-axis.
The frequency ranges considered extend from 100 Hz to 1,200 Hz.

Over this range the spectral density of excitation has been sssumed to

be unity. The response was computed at g frequency interval of 10 Hz.

4.6.3 The relative magnitudes of the coefficients

Table 4.1 shows the relative magnitudes of different Amn's.
49 terms were included in the series. This may be interpreted as T
terms for the longitudinal direction and 7 in the lateral direction for
each of the above T. The convection velocity of the loading was 1.5
times the velocity of sound and the direction of convection was parallel
to the X~axis so that “y = 0, The results are for the structure A with
n = 0.15.

The relative magnitudes of the coefficients tabulated show that
the Aoo term is dominant and that as m,n increase, the magnitudes of

the corresponding coefficients fall.  This is in line with the observation
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made in Chapter 2 regarding the convergence of the coefficients of series
of displacement for the stiffened bean.
From the table it may be noticed that A o = A, ) for all values

. m,n m,
of m. This is explained by the fact that there is no convection in the

Y-direction in the pressure field, so u_ = 0. The two components
~i(p +omr) (/0 ) ~i(p +2nu)(y/9. ) .Y,
A e * * e J y eleU and
m,n )
~iu +emm) (x/2 ) -ifu ~2om)(y/e ) . o
e * * e J Y erot  ign P = 0 and with A =
m, n ¥ 1,0

A -n combine to yield no resultant wave motion in the structure in the
Y-direction.

Table 4.2 shows the relative magnitudes for the above structure
and excitation at a freguency of 500 Hz. The symmetry of the coefficients
with respect to n may again be observed and can again be explained by
the reasons applicable to Table L.1.

Table 4.3 lists the relative magnitudes of Amn‘s when Structure B
with np = 0.25 is excited by a plane wave of a convection velocity 1/9
times the velocity of sound convected at 45° to the X-axis at a frequency
of 150 Hz. A sabisfactory convergence is zgain Qbserved but the symmetzry
with respect to n which.was observed in the carlier two tables has now
disappeared. This is explained by the fact that 45° convection amounts

effectively to a convection in both the perpendicular directions.

4.6.4 Influence of different variables on the response

The influence on response of including a different number of
terms in the series, of dsmping in the structure, of stiffnesses of stiffeners
and of the direction of convection of loading were studied. The response in
each case has been plotted against frequency in Hz. The rms values of
curvabture and mean values of sound power tabulated on the figures are only
relative.

h,6.4.1 Influence of the pumber of terms in the series

Figure 4.2 shows the effect of including a different number of

terms on X~wise curvature response of the stiffened plabe at midpoint of

[

a sub-panel (Structure A with np = 0.15). 'The acoustic plane waves

...9)4».,









L.6.4,3 Influence of the stiffnesses of stiffeners

Figures 4.7 and 4.8 show the effect of the transverse stiffness
of the Y-wise stiffness D? of Structure B on the spectral density of
X-wise curvature and on the spectral density of sound power radiated in
a frequency.range Loo - 1,000 Hz, ng = 0.25. The loading is con-
vected in the direction of the X-axis at a speed 1.5 times the speed of
sound. 25 terms were included in the series solution. It is difficult
to conclude any straightforward law between the transverse stiffness and
the response. It is, however, possible to say from the results pre-—
sented that at fairly high values of Dy’ any further increase in stiff-
ness will not result in any appreciable chéﬁge in the response. At the
lower end, however, the effect of varving Dy suggests that there may be
an optimum stiffness for minimizing both curvature and sound levels.

0.01 value of Dy yields the minimum response in the resulis presented
for the case considered. (See tables in Figures 4.7 and 4.8)

Figures 4.9 and 4.10 show ﬁhe‘effect of varying the transverse
stiffness of the X-~wise stiffeners of Structure B (np :'0.25) at one of
the higher bands of sound radiation, on curvaebure and sound pover. The
convection velocity is 0.28 times the velocity of sound and the direction

- of convection is bs© to the X-axis. The variations observed again do not
follow any straightforward law and point to the necessity of the structure
being studied from the point of view of optimisastion. Also it is seen that
sound radistion is not affected by these variations in stiffness in the same

-

pabbern agc is followed by curvabture response.
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The influence of rotational stiffness of the stiffeners on the
response is more difficult to determine because it has two components
depending on warping constant and torsion constant respectively. They are
both wave length dependent but their dependence is of a different order.
A computation was made to study the response.by varying warping constant
while keeping constant the torsion constant for Structure B, np = 0.25,
CJG = 1,5C with convection parallel to the X-axis. 25 terms were included
in the series. The reduction of the warping constant to one tenth its
value reduced the mean sound power by only 3.3 percent. Further ten
fold reduction in the constant reduced it by 2.5 percent while a third
ten fold reduction reduced it by only O.h percent. The corresponding
reductions in r.m.s. curvature were 18 percent, 0.6 percent and -2.5

percent respectively. From these computations again no straightforward

law can be deduced about the variation of response with A&.

h.6.h. 4 Influence of the direction of convection

Figures L.11 and 4,12 present‘results thch study the influence
of varying the angle of inclination of the acoustic plane wave with a
subsonic velocity equal to 0.28 times the velocity of sound. Structure
considered is B with np = 0,25,

Figure 4,11 shows the effect of the inclination on the X-wise
curvature (values for all inclinetions are not actually plotted to avoid
crowding of the diagram). As the angle decreases, the main pezk of
the response becomes higherxand moves to a smeller frequency. The r.n.s.
value salso incresases, Decrease in the angle progressively reduces the
convection veloeity in the X-direction so that b gets larger and py

v,

smaller. Prediction of the effect of the angle of convection on the

response can only be made in exact terms by studying the free wave values
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of o and uy which would in turn depend upon the various stiffnesses
of the stiffeners involved.

Figure 4.12 studies the effect of inelination on the sound
power. it is seen that there are bands of frequencies which do not
radiate any sound. The location of these bands 1s affected by the
inclination because 1t affects the values of Hy and py. The mean
value decreases with the décrease in inclination with the X-axis down
to 200, then increases and decreases without any simple order. The
study of the effect of inclinsation and in fact of obher parameters as
well shows that the behaviour of sound radiabtion is more complex than

the behaviour of curvature respense.

b7 Conclusions

It has been shown that the method of space harmonics used to
obtain the curvature response and sound power radiated in earlier chapters
can be successfully extended to the case of the doubly stiffened plate to

to

n

obtain its response. Only 25 terms need be included in the serie

obbain the solution with & reasonable sccuracy. This would corregpond to



5 terms ih the X-direction and 5 terms corresponding to each such term
in the Y-direction. It is possible to deal with the excitation by
random acoustic plane waves and by boupdary layer pressure convected
in a direction inclined to the X-axis. In the case of boundary layer
pressure, it is possible to allow for the lateral correlation of the
field.

The effect of damping on the curvature response has been seen
to be marked. Damping is, however, relatively ineffective in reducing
the sound radiation except near the peak values. These peaks can be due
to one of the space harmonics matching with the free wave length and
thus causing coincidence. A number of such coincidences may be present
- in the case of a stiffened structure in a given frequenecy range (see
Chapter 1) as opposed to only one coincidence present in an infinite
uniform structure. Thus damping is seen to be more effective in the
case of the stiffened structure than in the cagse of uniférm structure
for reducing sound radiasbtion. But this is so only in relative terms, and
damping as a means of reducing noise cannot be recommended on the basis
of the studies made.

The study of the variation of response with the variation in
stiffnesses of stiffeners does not allow any generalisations to be meade.
The varistions do not necessarily affect the sound power in the same
pattern as they affect the curvature response. There are indications,
however, that the type of structure considered may be optimised with

respect to the stiffener psrameters.
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5. EXPERIMENTAL WORK AND COMPARISON WITH THEORY

5.1 Introduction

The theorebtical work reported in the foregoing chapbers applies
strictly to infinite periodically supported structures. It is expeclted
that the behaviour of finite heavily damped panels would approximate to
that of the infinite panel'(Section 1.5.3.3). Though the theoretical
approach presented could be adapted for the case of finite structures
(see [30]) it was decided to check experimentally the 'infinite' theory.
If the agreement was reasonsble, it would be confirmed as a quick method
of evaluation of sound power radiafed. S0 the experimental work
described in this chapter was undertaken before the attempt was made
to extend the theoretical work to the case of the reinforced cylindrical
shells described in the next chapter.

An aircraft type of panel was excite@ by acoustic plane waves
with oblique incidence and the acoustic-measgrements made for compariscn
with values predicted by the theory presented in the previous chapters.
The measurements were made by making use of the ISVR anechoic and
reverberant rooms. These rooms are adjoining and there is an opening

»

between the two in the common wall. This opening was used for

mounting the specimen. The anechoic room could house the loudspezsker
for exciting the panel while the absence of reflections in this room
ensured unidirectional sound waves. There wag proper space for test

equipment outside these rooms but near enough to be conveniernt for

the necessary control on the experimental conditions,
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Quantity to be Measured and the Technigue of Measurement

1
o

5.2.1 Quantity to be determined

The aim of acoustic measurements in engineering is sound
control. Such measurements are therefore followed by sound control
caleculations which are usually based on statistical concepts of
acoustic energy and acoustic power. It was therefore decided to deter-~
mine the acoustic power transmitted at different freguencies in the
experimental work reported in this chapter.  These have then been com~
pared with those obtained by the theory advocated in the previous
chaypters. -

For theoretical celcuwlations, the actusl value of damping in
the experimental panel and its stiffness were required. The damping
was directly measured and stiffness %as calculated from the natural
frequency of a test specimen having the same properties as the panel.

Mass per unit area was determined. by actual weighing of a test specimen.

5.2.2 Free field versus diffuse field measurements

The acoustic power is calculated from sound pressure measure—
ments. This is accurately determined in 2 simple manner in two limiting
cases: A
{(a) In the region of a free field beyond the near radiation field.

(b) In a diffuse sound field.

Measurement in the free field provide not only scoustic power
spectra but also directivity informabion. The facility and test effort
however are relatively costly. There is another method of measurenment

in the free field, i.e. that of near field measurcments. This method
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5.3 The Specimen and Test Details

5.3.1 The specimen and its mounting

The specimen is constructed completely from 22 s.w.g. LT3
alloy. The main 4' by 6' panel is sub~divided into smaller panels,
each 9" by 4.5" by six channel type frames and sixteen z-section
stringers, all of which are rivetted to the skin. Figure 5.1 shows the

details of the construction. The stringer constants are as follows:

A = 0.0585 in2

In = 0,0112L45 in”
IS = 0,022756 inh
C.__ = 0.0004LL inh
w8

J = 0.0000153 in“

Similarly the constants of the frames are as follows:

A = 0.1176 in2
Iﬂ = 0.09335 inh
IS = 0.32808 inh
_ ol
Lo = 0.023996 in
J = 0.000030732 in"

The above constants.have been obtained from EB?] and the Royal Aero-
nautical Society data sheets. The panel so constructed represents
aircraft btype of comnsbruction.

The specimen was mounted with the longer side horizontal, in
a wooden frame, which was surrounded by a brickwork partition between
the anechoic chamber and the reverberation chamber (see Figure 5.2).

The wooden frame work had recesses in it Lo contain the stringers and
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frames of the panel. The side of the panel having stringers and frames
faced the reverberation rcoom and the flat side loocked into the anechoic
room. The joint between the panel and the wooden frame was sealed by
using two layers of draft excluder and screwing a wooden strip from the
anecholic room sgide so that the panel and the draft excluder packing was
contained bebtween the wooden strips and the wooden frame in the brick-
work surround. Care was taken to ensure that there were no cracks in
the masonry work or ab obther points and the rivet holes in the panel
were filled up by squeezing silicone rubber into them. To obtain the
damped panel, sheets of aguaplas (D8/SA sheets manufactured by Revertex

Itd) were pressed on to the flat surface of the panel.

5.3.2 Excitaticn and the measurement of pressure levels

5.3.2.1 Ixcitabtion of the panel

The panel was excited by & 15 watt loudspesker placed in the
anechoic room at a distance of 21 ft. from the panel so that the sound
waves falling on the panel could be reasonably considered to be plane
vaves. The sngle of incidence was varied by changing the location of
the loudspesker in the anechoic room while keeping its vertical position
at mid height of the panel, at a constant distance of 21 ft.

The panel is thus seen to be excited under conditions similar
to those in actual practice, where the flat side is exposed to excitaticn
and the stifféner side locks into the cabin.

Figure 5.3 gives a general arrangement for the test and Appendix
F gives a list of instruments used Tor experimental determination of sound

power radilabted and for determining the dsnmping of the panel.



5.3.2.2 Measurement of the excitation pressure

Before the actqal panel was excited, the loudspeaker was made
to face a wall of the anechoic room. Pressures at a distance of 6' angd
21' from the loudspeaker were measured at different frequencies in the
range 100 Hz to 1000 Hz by sweeping through this range using a B. & X.
level recorder and a B. & K. beat freguency oscillator. This gave a
measure of the loss of pressure over a distance of 15' of travel of sound
waves at different frequencies without involving errors due to reflection
at the panel. During the actual experiment, pressure was measured only

at a distance of 6 £t from the loudspesker, and the pressure at the panel

B

deduced by the assumpbion that the same dB loss will occur at a given

frequency for the same distance of travel of the sound wave.

5.3.2.3 Measurement of pressure in the reverberant
chamber

The power radiated by the p@nel vibrating under given conditiéns'
was determined Trom the average soﬁnd pressure in the reverberant room.
This was done by keeping a microphone at & position iﬁ the reverberant
room and sweeping the excitation of the panel through 100-1000 Hz fre-
quency range while recording the pressure picked up by this microphene.
This was repeated For a number of microphone positions in the reverberant
room under one, set of conditions of excitation which was also recorded.

A mean was then taken of all the recorded pressures under one set of

conditions at one frequency of excitation.

5.3.3 The reverberant room and the reverberation time

The details of the reverbersnt room used are given in reference

36, Some relevant detalls will, however, be included here. The room has
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plane, non-parallel walls and an inclined ceiling. The mean edge lengths
are 6.4 metree and 4.6 metres and the mean height is 4.3 metres. The
volume enclosed is 131 cubic metres. The walls and the ceiling are
finished with a hard gloss paint. Three sets of doors in this room
connect it to a larger reverberation room, a large anechoic room (used

in these experiments) and the common control area. The average trans-—
mission loss of these doors of sandwich construction is 50 dB. In the
wall of the room dividing it from the control arsa, there are four

cable ports and a double glazed observation window.

During the experiment, the panel was mounted in the position
of the door between the anechoic room aﬁd the re&erberation room. ‘The
second door leading to the larger reverberant room was kept shut all
the time and the door leading to the control areé was shut at the time
of taking observations.

The empty room is claimed to have the following 1/3 octave

reverberation tinmes {36]

Centre frequency 100 125 160 200 250 315 L0OO 500 530

R.T. seconds 7.4 7.6 8.7 9.9 10.8 9.2 6.8 5.2 k.7

In spite of the above information being available, it was
considered desirable to record the reverberation time at discrete
frequencies for the conditions under which the experiment was being
performed.

For this purpose, the loudspeaker was placed in the reverberant
rOOm., It was excited by the beal frequency oscillabor at a discrete
freguency. The power was then cut off to the loudspeaker and the

decay of the pressure recorded by the help of the level recorder. The



reverberation time was then found by the slope of the decay curve as
the time for the level of sound to decay 60 dB. The procedure vas

repeated at a number of freguencies, yilelding the reverberatlion btime
at these freguencies. The following reverberation time was obtained

at these discrete freguencies.

Frequency 100 150 200 260 300 400 500 600 700 800‘ 900 1000
Reverberation
Time, Secs. .9 5.1 5.3 5.3 L7 L.s L7 L7 by Lo L6 4.6
The reverberation time has been plotted against frequency in
Figure 5.4%. It is seen that the above reverberation times are different
from those recorded for the empty room in reference 36. The general level
is lower. Thisg is expected since the room at the time of use had plaster
boards and some other miscellaneous items in it which would absorb sound.
Also the varietion with frequency is different. It was not considered
necessary to remove the miscellaneous items from the room at the time of
experiment, since their presence would not affect the results as long as
the reverberabion time was known and was constant at a given frequency.

5.3.4  The meassurement of the panel demping and determinetion
of effective stiffness

s

5.3.4.1 The panel damping

In order to compute the theoretical response of the panel
tested, the damping present must be known. This was therefore experi-
mentally measured.

Two methods were abbempted to messure the damping present.

(a) A special transient test method developed at the Institute of Souud

and Vibration Research, in which a sine wave excitation is swept



through the frequency range of interest, in a relatively short
time with the help of a special ISVR sweep oscillator, and the

tape recorded data is analysed by an analog-digital computer.

(b) By testing separately a specimen built up of the same material as
the actual panel in a device (originally used by Mead [3?]) where
the desired modes can be excited, and by méasuring by a vibration
meter the induced response and its phase around the resonsnt fre-
quency. A Kennedy-Fencu diagram can again be obbained by this

method.

(a) The method of transient excitation by the ISVR sweep oscillator

The debtails of this method may be seen in reference [38[, but
for the sake of completeness, the following briefvremarks are made:

The method consists in exciting the structure by a sine wave
loading sweph through a frequency range of interest in a short time, say
0.5 seconds. The (accelerometer)’reéponse of the structure 1o this tyne
of excitstion is recorded on a magnetic tape. The data is then con-
verted into the digital form by the help of an A to D converter. A
Fourier transform of this response is obtained digitally to obtain the
frequency spectrum of the response. The peaks in this spectrum may
then be identified as resonant Trequencies of the sbtructure. Since
both the amplitude and phase of response in the frequency range of
interest are available, Kennedy-Pancu phase plots may be obtained. From

these plots the resonant frequencies may be identified more accurately

and the loss factor measured. It is claimed that this method preserves
the accuracy of the steady state methods (and considerably reduces the

test time).



The above method was tried. The loading was acoustic,
cbtained by feeding the ISVR sweep oscillator signal to the loudspeaker
which excited the panel at normal incidence. The signal was swept
through 100-1000 Hz in 0.5 seconds. Figure 5.5 gives the response
spectrum when the acceleromeber was on the skin, and Figure 5.6 gives
the spectrum when it was on the stringer. The peaks correspond to
different modal frequencies. The resulting phase plots were, however,
not such as could be interpreted conveniently. Since the strucbure is
built up, very many modes are present and interlinked. As a result the
vector plot contained so many loops that it wes very difficult to pass
a reasonable circle through the points. This method of transient test-
ing was therefore dropped as wnsuitable for this type of built up structure
and use was made of a rig originally‘developed by Mead Tor the measure-
ment of damping. The method of this rig alsc employs Kennedy Pancu
vector plots to determine the damping in the specimen.

Before the work using Mead's rig is described, it may be
mentioned that White [32] has dealt with the problem of resolution of
close natural frequencies of the structure in relation to the method of
trangient testing. But before the applicability of this method is
established in the tase of a complicated structure with a high damping,

it is best to -depend upon a simpler method of determination of dauping.

(b) Measurement of damping using Mead's rig

In this method the specimen is made to vibrate in a single
mode by an approprisbe excibation. The phase plot is then obtained by
plotting the actual measured values of the in-phase and quadrature com-
ponents of response al diffevent freguencies. Pigure 5.7 shows the rig
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employed. The specimen tested consisted of a strip of the same metal
as formed the panel with allayer of aquaplas damping, which was actually
used for the panel tested. The specimen, 0.3 inch wide and 11 inches long,
was held in brass supports (see Figure 5.7) in a clamped clamped condition.

The general arrangement of the test is outlined in Figure 5.8.
in audio oscillator was used to generate the exciting frequency signal.
It was input to a power amplifier whose output was passed through a step
down transformer and measured before being fed to the specimen (up to
T amperes could be passed through the specimen). This oscillating
current passing through the metal part of the test specimen together with
the steady transverse magnetic flux provided by the permanent magnets
(see Figure 5.7) results in an éscillating load on the specimen. By
suitable arrangement of the polarity of the mmgnets, up to the first
four modes of the strip could in theory be excited.

The vibration of the strip was measured by employing Wayne-
Kerr proximity probes and the Wayne Kerr vibration meter, together with
Ehe resolved component indicator.  Thus fhe method of excitation as
well as the method of measurement of vibration, did not change the
impedance of the structure under hest. The resonant frequency was
first detected approximately by using the Wayne-Kerr meter alone and
then the in phase and quadrature components were measured around this
freguency in order to obtain the vector plot.

Figure 5.9 shows the phase plot obtained for the fundamental

mode of the beam specimen. The modal frequency is 125.5 Hz and the

N>
A

corresponding damping is n = 0.25.

The basis of the method employed to determine damping from

the phase plot is outlined in Appendix (.
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the ambiént sound pressure level alone is 10 decibels or more, the sound
pressure level due to both the sound source and the ambient sound is only
0.4 dB more then the sound pressure level due to the sound source. If
the increase is 3 dB or less, the sound pressure level conbtributions

of the source and the smbient level cannot be separated with the con-
ventional measuring technigues. For other increases over the ambient

levels the following corrections are suggested by USA standard [MQ}

Increase in 4B Iy 5 6 7 8 9 10
Correction 2,2 1.7 1.3 1.0 0.8 0.6 0.4

(to be subtracted
from the reading)

To keep the pressure levels as high as possible compared to
the background levels, the experimenté vere COHdugted during quiet
evenings.  The differerce between the two was always greater than 104B
and the corresponding correction in the observations 'béing very small

was not therefore considered necessary.

5.4.2 Linear versus logarithmic averaging

As expected, there was a spread in the values of pressure levels
recorded by placing the microphone at different positions in the rever-—
berant room. For ghe purpose of compubing the sound power, the spatial
averages of these values was to be taken. It could be a linear aversge
or a logarithmic average. Cox [Hl] and Mitchel [MEJ have discussed
thisg point in the light of the fact that both these methods are used in
acoustic practice. Cox has investigated the lower bound on the ratio
of geometric mean to the arithmetic mean of a set of dabta. He has noted

that for a data having a spread of 10 dB, the geometric mean is less
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than 1.5 QB below the arithmetic mean. For a spread of 6 dB, the
geomebric mean is less ﬁhan 0.52 4B below the arithmetic mean. Mitchel
has introduced further refinements in the averaging process by including
the influence of statistical distribution of data. In view of the
bounds of error given above, and for the obvious reasons of convenience,
the arithmetic average was taken of the values of recorded pressure
levels in the reverberant room. The data averaged in this chapter

had a spread of around 9 dB.  Thus g meximum error of 1.5 dB is likely

in the averaged result. The true average will be lower by this level.

5.4.3 Determination of the sound power

Sound power radiated by the panel was debtermined indirectly
from the average sound pressure level in the reverberation room obtained
by measuring at a number of points, and then taking thelr spatial aver-
age. This pressure is in terms of dB. The actual pressure, B, may

be calculeated by the relation

}')
g
SPLTotal = 20 log Po (5.2)
where SPLTo*al is the averaged sound pressure level with all corrections
[
and - PO =2 x lONh ubars (5.3)

After the pressure, B, is known in ubars, the following relation [hj}

is used to.obtain the sound power I

8

Togg = 2.8 x 100 x (P2V/1) (5.4)

where 11 is the sound power in Watls

A

¥
V  is the wvolume of the reverberant room in cubic feet
P, is the sound pressure in microbars

S

T is the reverberation time of the rcom in seconds.
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5.5 Theoretical Calculations

5.5.1 Considerations of the mass law

For the purpose of comparison, it is useful to know how much
transmission loss would be there if the panel and the added damping
sheet were acting as a massive partition. This transmission loss may

then be esbimated from the Tollowing equation, usually called the mass

law [ul]:
R Wi coso o,
DO = 10 log Ll 4 ("***é-‘gb ) J
wm_ COs ¢
or DO = 20 log o0 (5.5)

where DO is the transmission loss
m is the mass per unit area of the partition

w is the frequency of the sound wave impinging on the
partition normally

pC 1is the characteristic impedance of air

¢ is the angle of incidence

The above equation is based on £he assumption that the wall
acts as a mass and that the wave length at  all frequencies in the
wall is very large in comparison with the wall thickness, and that the
characteristic impedgﬂce of the wall material is very large in comparison
with that of the air (a condition fulfilled at all frequencies).

Ié may be seen from bthe egquaticn for the mass law that DO
would increase 6 dB for e?efy doubling of me The same applies to the
dependence upon frequency, i.e. for every octave increase in frequency
D, should increase by 6 aB.

The transmission loss according to the mass lav has been calcu-

lated and incorporated into the curves presented. For these calculabions
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it is assumed that the mass of the stiffeners is uniformly distributed
over the area of the panel. The total mass taking into account the
skin, the stiffeners and the damping material works out to be 1.090 1b.

per sq. {6,

5.5.2 Theoreticel determination of radiated power

For the purpose of computing radiasted power, the method
presented in Chapber 4 was employed. The parameter of the actual
structure was used. The stiffness and damping wers as follows {sec

section 5.3.4.2)

¥
1

D! 104.2 1b.in. unite
n = 0.25.

Properties of the stiffeners and skin have already been listed
in section 5.5.1. Mass of the dasmped panel was found to be 0.006040 1b
per square inch. This was determined by actually weighing the specimen
which was later tested to determine the value of damping (see section
5.3.4.1b). This mass does not include the contribution of the
stiffeners which was considered concentrated at the boundary of two
sub~-panels.

5.6 Thecretical and Experimental Results

ﬁor the sake of convenience of comparison between theoretical
and experimental resulbs, both sets of resulbs for a given set of con-
ditions have been included in the same dlagrsm. The curve corresponding
to the mass law with the correct angle has also been plotted. The sound
power radiated has been plobtted in decibels in accordance with the usual

. . . . . -12
practice in acoustics work, and 1s yeferred to as 10 wabte. The
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~results correspond to an incident pressure of 80 db constant over the
frequency range of interest.

Figures 5.10, 5.11 and 5.12 give the values of radiated sound
vpower against ffequency when the panel vibrated under the action of
acoustic plane waves incident at the panel at different angles. The
full line in each case gives the values determined by computation on
the basis of the theory presented in the previous chaphers. These were
computed for & unit value of the exciting pressure and then brought down
to correspond to the actual exciting pressure on the basis that the
radiated power is proportional to the square of the exciting pressure.
The broken line in each case represents the experimental values deter-—
mined from the actual pressure levels measured in the reverberant room
by using relation given by equatioh (5.4)., The chain dotted line in
each figure gives the value of tie sound power radiated based on the

Mass Law.

5.6.1 Discussion of Results

Figures 5.10-5.12, showing theoretical and experimental values
of the sound power radiated by the panel under excitation by acoustic
plane waves with different angles of incidence, have some common features.
In each case the experimental curves have some pcaks. It intersects thé
theoretical curve at many points, and is on the whole lower than the
Mass Law curve. This is, of course, subject to the averaging errors.
It a true logarithmic averaging were done, ithe experimental curve wiil
move down (see section 5.4.2). The peaks in the experimental curve,

e.g. around 120 Hz, 185 Hz and those around 600 Hz, suggest a broad
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correspondence with the modal frequencies (see Figures 5.5-5.6).
| The total value of sound power radiated at a given frequency may
be visualised as the sum of two components: (a) the forced response,
or the contribution by thetforced waves in the infinite stiffened panel
excited by the convected loading; (b) the resonant response or the
contribution from the free waves reflected at the bﬁundaries. Subject
to the expérimental and averaging errors, the difference between the
experimental and theoretical values may be attributed to the resonant
response.

In Figure 5.12 representing results for acoustic plane waves
incident on the panel at an angle = Sinhl 2/3. the difference between
the theoretical and experimental curves varies at different frequencies,
the maximum being 5 db and the minimum being O db. The two curves inter-
sect at nine different points. In the complete frequency range considered,
the agreement between the computed results is within 3 db except near the

peaks of the experimental curve.

1 1/3), the difference

In Figﬁre 5.10 (for angle of incidence = Sin~
between the non peak parts of the experimental curve and the computed
curve is small ~ less than 2.5 dB over most of the frequency range. The
two curves intersect at nine different points. The agreement between
the two sets of results has broadly the same features for normal incidence
of acoustic plane waves (Figure 5.11).

Over most the frequency range of the experiment, for the panel tested,

the sound power radiated falls linearly with frequency in the computed
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curve. This behaviour is similar to that of the uniform panel where
the Mass Law would then give a fairly exact answer to the sound power
radiated. The Mass Law applied to the panel tested (the stiffened
panel) gives results which are higher than the experimental and
theoretical values. The maximum difference between the Mass Law results
and the theoretical calculagtions (see Figure 5.12) is about 5 dB.

It is relevant to emphasis again that the experimentsl curves
plotted have been obtained by linear averaging of different observations
of pressure levels. This was done for the sake of convenience. However,
if the logarithmic averaging were performed, the curve will be expected
to be about 1.5 dB lower, thus making the computed values higher than
the experimental values over most of the frequency range.

It is difficult to evaluate the influence of the assumption that
the loudspeaker sound impinging on the panel 21 feet away from it in
the anechoic room is an acoustic plane wave. Perhaps this assumption will

lead to no appreciable error in the analysis.

5.7 Conclusions

The experimental resulits for sound power presented in this chapter
have been seen to agree with the theoretical calculations within an
average of 3 dB (except near the peaks of the experimental curve), The

agreement at higher frequencies (i.e. over 1000 Hz) is expected to be

better because of reduced influence of finiteness on the response. It may
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therefore be stated on the basis of the work reported in this chapter
that for obtaining the sound power radiated by an orthogonally stiffened
panel with heavy damping, the stiffened panel may be treated as infinite.
The method of space harmonics presented in this thesis méy then be

enployed to compute the results.

- 120 -~



6. RESPONSE OF INFINITELY IOI‘ - RING STIFFENED CYLINDRICAL SHELLS
TO CONVECTED RANDOM LOADING

6.1 Introduction

In previous chapters the method Oi space harmonics was developed
and then gpplied to obtain the response of periodically supported beams
and plates. The method was found to yield results which agreed reason=—
ably with experiment. To confirm that the general theory presented can
be applied to all periodically supperted structures, it was decided to
preliminarily test the method for yet another csse. This is to determine
the response of periodically supported cylinder which is infinite in the
axial direction. This is a simple representation of an aeroplane fuselage
structure.

The actual stiffened cylinder will be treated as a uniform
cylinder subject to the constraints applied by the stiffeners. The
réesponse will be obtained in a series of gpace harmonics, and the co-
efficients of this series will be determined. Once these coefficients
are known the sound radiation characteristics may be determined from
methods in analogy with the treatment in the previous chapters. The
purpose here is not to go into detalls of determining the sound field
after the response hé; been obbained in & series form. (Such associated
problems are dealt with in references 45-L9) This chapter will,
therefore, £estrict itself mainly to obbaining the expression for the
coefficients of the series of response and to examining the convergence
of response, apart from including & few comments about the pressure fleld
inside and oubside the cylinder which will clarify the aspplication of

this approach to the actual problem.
i ;
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6.2 The Structure Considered

The structure considered is dlagremmatically shown in Figure
6.1. The cylinder is infinite in the axial direction and has ring
stiffeners at uwniform intervals QX slong the axial direction. The
rings shown are external but they could as well be inside the cylinder
skin and then could in a practical case represent frames in the fuselage
construction.

The ring stiffness will be considered as line supports apply-—
ing constraints bto the cylinder skin which are given by Lin's expressions
(see Chapter L) applicable to the flat panel. For s rigorous analysis,
however, the more exact shell-ring interaction forces and moments should

be considered. These are not actually used but are given in Appendix H.

6.3 The Excitation Considered

In the previous chapters, the response of the structure con-

LERRY

sidered is in the first place determined for a harmonic loading. he
response to a general random loading could then be determined by
analysing the excitation field into a wave length frequercy spectrum.

Following the seme procedure, the response in this chapter will be

determined to the basic loading excitation

ip =
—ip o )
. x 2 Lo .

P o= Poe X cos nd e (6.1)
acting on the cylinder. This pressure field represents n
standing waves around the circumference of the eylinder and is

cenvected along the cylinder at a velocity Uc = wl /u .
' x'"x

Any general excitatlon may theovetically be asnalysed into

o



components of the form of equation (6.1). The response to a general

excitation may therefore be determined from the method of this chepter.

6.k Shell Displacements and Shell Theories

6.4.1 Shell displacements and the importance of flexural
vibration in sound radiation

>

When the cylinder is excited, the vibrational displacement of
any point on the surface of the cylinder has three components, viz,
radial, axial and bangential. These different displacements are
actually coupled but the radial vibrations can be said to be analagous
to the transverse vibrabions of the beam or a plate and correspond to
the bending action. The sxial and tangential vibrations on the other
hand are chiefly due to extensional deformation and in-plene shear
deformation. A1l these components of displacement have corresponding
components of the velocity of the sﬁrfaee which are capable of trans-—
mitting energy to the surrounding fluid. The axial and tangential
‘velocity components radiate this energy by a sheariﬁg action as\opposed
to compression and rarefaction as in the case of flexural or radial
components., In actual situation, in the case when the acoustic medium
is air, the amount of energy radiated by shear waves is very small and
is therefore neglec%ed here. For the purpose of this chapter, it will
be assumed thet the %coustic medium ig a perfect gas baving zero viscosity.
Under these circumstances, the flexural vibrations are the most important

from the point of view of sound radiabion.

Before the cylinder can be analysed for displacement response

Yo the applied loading, its eguations of motion must be known in terms






different theories in this respect, one must know the strain displacement
relationghips corresponding to different theories J:Sl] . Tﬁhese will now
be examined after the constitubtive laws of the thin shell theory are
given.

After using the Maxwell's p'x":i,ncip]:e for a linear strucbure, the

constitutive laws of the thin shell linear theory are written as follows:

- r g '"‘\
N, k, kK, 0 0 0 0 | ey )
N k, k, O O 0 o0 €
2 y
v | 0O k, 0 0 0 £
Xy &i N 3 LRy
- Lo S
M % 0o 0 0 Db D, 0 k) (6.2)
f _
M © 0 0 D, D O <
\Pd o 0 0 0 0 D «
xy _ 3 Xy
4N
or {N} = |E|[{e} (6.3)

where {N} vector of shell forces and moments
[E] matrix of elastic constants

{¢} vector of strains and curvatures

For the isotropic maberial for the cylindrical shell, the

values of the elastic constants may be calculated as follows:

kl = &N 5 (6.1)
1 -
= 6.
k2 \)kl (6.5)
kB = 0,5(1 - \))Kl (6.6)
R s S 6.7
Dy = 12{1 -v?) (6.7)
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(¢) According to Novozhilov

/o 0 0 1
i
0 5/0y 1/r
|
8/0y o/8x 0 %
g 0 0 82 /ax" |
I |
- . 2 /ol ‘
0 3/1"0:{ -394 /3y %
|
0 23/rdx -2092 /3x8y _3, (6.13)
(d) According to Naghdi

a/8x 0 0 |
!
0 2/0y 1/r %
3/0y 3/0x ' 0 *
i
[D] = 0 0 —82/8x2 E
o !
0 28/rdy ~32/3y° + = |
= |

0 28 /rox ~232 faxay l (6.1L)

rl'
Canti%)gé

s shown that theory {(a) introduces artificial con-
straints under two components of rigid translation and all the three

components of rigid rotation. Theory (b) introduces two artificial

constraints for two rigid robtations sbout the Y and 7 axes. Theories

(c) and (d) are completely strain free for all rigid motion. It is

also shown by the converse process that if the thecries are employed

with the assumption {¢} = {0}, theory (a) gives five erroncous

.

strain free modes that should be really straining. Theory (b ields
g

two erroncous strain free modes. However, theories (c¢) and (d) lead
to strain free npodes for, and only Tor, rigid body motions.
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Equation (6.40) shows that the power radiated is reactive

for real values of Km. This is expected because in a closed space,

¥

there is no possibility of energy dissipation unless the acousbic

medium contains sound absorbing materials. In thig case, D,n and
m
Emn in equation (6.34) will become complex.

6.6.2 Sound pressure distribution inside the cylinder

In the absence of any material inside the cylinder except the
acoustic medium, the distribution of pressure inside will be determined
by n and Jn(Kmr). Since the Bessel Function is an oscillatory function
with r, it will result in nodal circles. The nodal diameters will be
given by n. The sound field inside the shell will thus contain n
nodal diameﬂers and nodal circles whose number will depend upon the
value of (K a).

1m

The pressure at the centre (r = 0) is very much dependent
on n, since Jn(o) = O for n 3 1. Hence when the pressure at the
centre is of the greatest interest, n = 0 is the most important mode.

The actual sound field inside the cylinder will in practice
be greatly modified by the presence of various sound absorbing and
reflecting materials as in an actual sircraft fuselage. The actual
distribution of these materials is very difficult to deal with in a
tﬁeoretical podel.  However, the problem could be tackled by assuming
that the sound absorbing material is spread as a 'blanket' around the
inside of the cylinder. Tﬁe pressure could then be treated as propaga-
ting through the blanket with attenuation. In other words it would
correspond to a 'damped' Bessel function, damping depending upon the

sttenuation provided by the absorbing maberial. The approach then 1is















given below: C__, the warping constant = 0.0004kk
a, the radius of the c¢ylinder = 4O inches
the thickness, h, = 0.04 inch
spacing L. = Ji.5 inches

0.011245 inbr

i

I, the moment of inertis of the stiffening ring

. . . . L)
J the torsion constant of the stiffening ring = 0.0000153 3.114

H

The zbove structure was considered with n = 0.0 and n = 0.25., The X~
wise curvature ab x/,QX = (.5 and the reactive power due to acoustic
medium inside the cylinder are presented. These results are presented
in terms of the non-dimensional frequency parameter  Q, and convection

velocity parameter, CV, which are defined as follows:

2 C

L = Wl V/ o
T
eV o= UCQX/ o

where m, is the mass of the cylinder per unit surface area eand D!

. 2 .
= Eh3/12(l - v ). Curvature results were normalised as in Chapter 2.

6.8.1 Relative magnitudes of the coefficients Cm

The convergence of the series of space harmonics has already
been demonstrated in the cases of stiffened beams and plabes. In
Table 6.1 the values of the different coefficients are given for the
case of the ring stiffened cylinder. CV = 8.0, n = 0.0, n = 2,
for 9 = O:h, 5.6 and 22.4. It is clear from the table that the higher
order terms are small canpared to the zeroth order term except for
0 = 22.54,

Table 6.2 shows relabtive mognitudes of the coefficients

for ¢V = 16.0, n = 0.25, n = 2 for = 1.6 and 16.0. Table 6.3
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gives the values for CV = 80.0, n = 0.25, n =1 for 0 = 19.6. The
satisfactory convergence of the coefficients may again be clearly seen

from their relative values given in these tables.

6.8.2 Discussion of results

Figure 6.2 shows the effect of the number of terms on the
curvature at midspan of the cylinder for 6 = w/4, n = 0.25, CV = §0.0,

n = 1. The maximum response is given by the 3 term solution and the
results corresponding to 7 and 9 terms lie between those obtained by
including 3 and 5 terms. The curves for T terms and 9 terms are so

close to each other that only one curve has been drawn for them. The

3 term solution which reflects maximum variation from the 9 term solution
is out by less than 5%, for the‘feak value, and by about 2.6% in the
r.m.s. value. These features are very similar to the case of the
stiffened beam in Chapter 2.

Figure 6.3 presents results for the reactive sound power. The
structure and loading is the same as cbrrgspondé to Figure 6.2. Difference
in response by including different numbers of terms was not appreciable
so that only one curve has been drawn for all of them. This close
agreement between resulbts obtsined by including a different number of
terms may be explained by the fact that the convection velocity is super-—
sonic so that the zeroth term is associated with a contributing Km,

This term being very large compared to others dominates the result.

The peaks across the frequency scale are explained by

J o+ P
Py 7€ o

ZHN I S
K° [= ()7 -« P )

becoming small for different values of m.

This should e clear from almost equal freguency intervals between the

first and second peak on one hand and between the second and third on
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T. GENERAL CONCLUDING REMARKS

The theoretical work presented in this thesis leads to the
conclusion that for obtaining the response of an infinite pericdic
structure, the method of space harmonics may be successfully employed.
Because of the satisfactory convergence of the series of such harmonics,
only & Jimited number of such terms need be included to obtain the res-—
ponse with accepbtable accuracy. For obtaining the sound power radisted
at subsonic convection velocities of loading, the number of terms in the
series must include the lowest radiating harmonic. (The method of
identifying the radiating harmonics has been included 1n the thesis.)

In general, 5 term series is sufficient for obtaining the response of
stiffened beams and ring stiffened cylindrical shells, and 25 terms are
sufficient for the response of an orthogonally stiffened plate. For
supersonic velocitles of lecading, smaller number of terms is necessary
because the zeroth order term(in the series 1s then a radiating harmonic.
For a given convection velocity of loading, this term is more likely to
be radiating harmonic, at higher fregquencies so that the accuracy of

the calculated response will be bebter abt these frequencies than at
lower freguencies.

The results for sound power radiated by the orthogenally stiffened

-

plate predicted by this theory agree reasonsbly well with the experimental

results for the frequency range covered by the experiment. At higher fre-

quencies the agresment is expected to be closer, since at higher Treguencies
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the influence of the finilteness of the structure

The method adopbed 1s obvicusly simpler than the normal mode

T
2

- 1h2 -



appreoach where all the modes would have to be determined first, and then
the response integrated taking proper account of modal coupling. VWhile
the greater degree of daﬁping in the structure makes the exact normal
node analysis very difficult (and the approximate normal mode analysis
less accurate) it enhances the validity of the method of space harmonics
because the higher degree of damping in the structure brings its behaviour
closer to that of the infinite structure.

The theory presented can be applied to any infinite periodic
structure, that is to any infinite multi-suvpported structure drrespective
of the characteristics of the supports. This is because any displace-
ment, wave length or frequency dependencé ol the Supporh stiffness can
be readily taken into account while formulating the set of simultaneous
equations for the coefficients of space harmonics‘employed.

The theory explainsg sound radiation by stiffened structures
even when excited by subsonic convection velocities of loading. It has
been found that for subsonic velocities of loading, below a certain
frequency determined by the structural parameters, there are bands of
frequencies where real sound power is radiated. These bands may be
easily determined from a simple diagram included in the thesis.

For the purpose of applying the method of space harmonics bo
obtain the response of a structure to boundary layer, this excitation
is analysed -bo obbtain wave length frequency spectrum. This enables the
visualisation of the boundgry layer field as an assemblage of plane
waves of different convection velocities at a given freguency. The
wave length components leading to a large response can then be identified.
The method cmployed therefore reduces the computation necessary to
analyse a particular problem by identifying the most significant wave
numbers. It must be emphasised that the low wave numbers of the bouncdary
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layer can be important especially at subsonic counvection velocities of
loading. Therefore the importamce of the correctness of the wave length
spectrum for the excitation fleld for low wave numbers is clearly seen.

The study brings out some differences bebween the uniform
structures and the stiffened structures. Por example, unlike the uni-
form infinite structure which radiates for only supersonic velocities of
loading, the infinite stiffened structure can radiate sound power at
subsonic velocities of loading as well. For supersonic convection
velocities of loading, the power radiated by infinite stiffened beam has
been seen to be much higher than that by the uniform infinite bean.

It has been seen that introduction of démping in the structure
cannot be recommended as an effective means for reducing sound power
radiated over a band of frequencies. - Carefully designing the dimensions
of the stiffeners with this end in view may offer a better alternative.

Future work should be done to optimise the structural parametefs
to minimise the sound power radiatéd by the structure. The influence on
sound power radiated of various wave length spectra of cross correlation
functions to represent a boundary layer pressure field also offers a

useful area for future work.



APPENDIX A

THE EXCITATION FIPLD

Al Introduction

The excitation field considered in this thesis may generally
be described as a boundary layer pressure field. Such a field in
practice is a broad frequency phenomenon, bhe frequency range in the
case of a subsonic aireraft being from approximately 100 Hz to 3000 Hz.
As will be shown in this appendix, the acoustic plane wave may be con—
sidered as a special case of this general field.

For obtaining the response of the structures to boundary layer
pressure, the excitation has been analysed into a wave length frequency
spectrum. This spectrum is obtained by the Fourier transform of the
spatial cross correlation coefficienf of the excitation. The actual
e#pression used, for this coefficient 1s based on the laboratory measure-
ments by Bull et al [5%]‘ The frequency wave leﬁgth spectrum‘has‘
been earlier discussed by Wills [55]. Though the expressions
given by him have not been actually used for the computations reported,
these expressions have been included in this appendix for completeness
and comparison.

“

A2 The Narrow Band Cross Correlation Cocf{ficient

The narrow band cross correlation coefficlent of a pressure

field is one of its mosb important properties and contains a lot of

statistical information about it. The field considered here is a
homogeneous and stationary boundary layer pressure. The space—time
























b = 0.1 c = 0.715

The one dimensional spectrum corresponding to equation (A2 7) has been
shown in Figure A.k. It has been plotted in Figure A.5 again to
compare with the spectrum presented by Wills.

An acoustic plane wave has a ¢§-function form of wavelength-

N o £ " N . . . N
frequency spectrun at K = — . If the acoustic plane wave is inclined
U

. e )
at 6 to the x axis, the non zerc values are for

n, = KRX cos
' (A.28)
v = K¢ sin 8
v ¥
When the boundary layer is inclined at 6 to the X-axis
U = K. cos 6 -~ K., sin 0
x * . (A.29)

My = Kl sin 8 + K3 cos 8

The wavelength-frequency spectrum i1n that case is most conveniently
found in terms of Kl and KB. This is given by cquaﬁion (A.23).
The response, however, may be more conveniently calculated in terms
of M and uy given by equation (A.29).

™

Al.2 Wills' wavelength spectrum

Wills has presented the values of wave number—freguency and
wave number phase velocity spectrum of the wall pressure for a two
dimensional turbulent boundary layer in zero pressure gradient obhbained
from a Fourier transform of experimental filtered spatial correlations.
He found that in the region of significant energy the wave number
spectra are similar at all fregquencies measured within experimental

accuracy. This means that the height of the main peak of the wave

- 153 -



nunber spectrum is proportional to the integrabted spectral density at
each frequency. Thus the complete (Kl, w) spectrum can be approxi-
mated by

¢

LK @) = $(w)F(Z5) (A.30)
1w

where ¢{w) is the freguency spectrum and Uw ig the convecbion
velocity. The subscript o  is there to emphasise that it is freguency
dependent.

Figure A.5 shows the function F under the relation shown by

equation (A.30). This has been seen to fit a normal distribution curve

—-(w/KlUw - 1)2/0.22
e very closely, except at very small values of the

argument. Figure A.5 also shows (chain double dotted line) the spectrum
obtained from equation (A.27) for b = 0.1 and for b = 0.2 (chain
dotted line). It is interesting to cbserve that Wills has proposed that

the more general spectrum  ¢(K, w) may be given by

§(Ks 0) = do(kss w)F(E ) (4.31)
1w

This form may be seen to be similar to the form presented in this thesis

(see equations (A.23-2L)).






APPENDIX C

TIME AVERAGE OF THE PRODUCT OF REAL PARTS OF TWO COMPLEX FUNCTIONS

Let the product of real parts of two complex functions f

and F be reguired.

Let f=7 ei(mwz‘b) » (c.1)

and F = Foel(‘*’t“’) (c.2)

Now,

< 7Re(f)>< Re(¥)>

I

T ro<co<‘a(wt =) cos(wt = ¢)>

7
= L - c - )
- e7 3 [ Wt~ ) cos(ut - ¢)dt  (C.3)
o
where T is the period of f and F  and eguals 2101)_
Expanding the integrand of .(C.3)
£
<Re(f) x Re(F)> = M—a?—f cos(wt - \{))COS(UJ't -y oty - qs)dt-
a A

£F T
= T« ( cos(wb ~ xp)[ cos(uwb — y)eos(y = ¢)
o

~ sin{wt = ¢lsin(y - q;)] at (c.h)
Let (b = ¢) = 0 (c.5)
Then
£ Fo T ) o
<Re(f) x Re(F)> = MQ‘:T_“‘W J '[ﬂcos 6 cos”{wt = ¢) ~ sin 6 sin(uwt - y)
© os(wt - y)]dt (c.6)

The second term in the integrand of eguation (C.6) becomes zero on

Uk
integration while the first term yields 5 cos Y.



Therefore

£ Yy s o ..:.]I‘. s ..T_ m 3 o
<Re(f) x Re(F)> = T fF 5 cos 6=3f F cos © (c.7)
Now

{1 e = 1 . '_ie

giol‘o cOs QRG(fOFO e )
e mlut-0) o —i(wt-4)
= QR\L [foe }Oe j
=3Re(£F¥*) (C.8)

where T¥* is the complex conjugate of F.

From eguations C..7) and € .8)

< Re(f) x Re(F)> = iRe(fF¥) (c.9)

or the time average of the product of real parts of two complex
functions is given by half the real part of the product of one and

“the complex conjugate of the other.






APPENDIX T

THE RADIATING HARMONIC FOR THE STIFFENED PLATE

. th . . . o, )
CAn (m,n) term in the series of space harmonics given by

equation (L.27) will result in true sound radiation if the corresponding

K is real, i1.e. 1f
w7
w oD Mo + 2mn o Ut 2nrw -
=) = ) (e ) > 0
C 2 L
X Y

The above relation is similar to that for the case of the beam (see
section 3.5.1) except for the additional term involving . (and n).
For a given iy s it should therefore be possible to draw a diagram
like Figure 3.1 for each value of n. However if only one diagram
is desired for all values of m and n, it will have to be three
dimensional.  The straight lines parallel to the sides of the primary
radiation triangle POR in Figure 3.1 will now be surfaces parallel to
the surface of the primary radiating cone. An'(m,n)th term will now
radiate if it is possible to bring the value of by and My within
the primasry radiabting cone by adding 2mm to M and 2n7  to “y'
A more general case of the plane wave loading inclined at
an angle 6 to the X-axis will introduce still further complication
in the diagram. The mechanisﬁ by which the (m, n)th term radlates, may
therefore be better 1llustrabted by looking at a given freguency as the
following analysis indicates.

The harmonics {(m,n) will radiate if

K is real
mnz
or 1T P+ D ;. + Pnu
(%)9 - [Kﬁiiwlwm;w'g + (1#W* M_)g ia sitive
¢ L I3 ) Q,_ l 15 positive.
x N



In the critical case

M.+ 2mm . u. o+ 2nm
wy2 X 2 2
(©)? = (Fe)® ¢ () (£.1)
L .
or
wl W+ 2on
£ 2 2 2.
()7 = oy + 2om)” + () (£.2)
C Uy @
Or . o
D22 in 8+ 2ng
Q.2 Qecos 6 ., 2 o, CVTT e N
(o = (- aam)® v (e ) (£.3)
equation (E.2) may also be rewritten as
p, + Z2mmw y ok 2nmw
P z N2 54
( )" ()T =L (E. )
RX Ry
wly 0
where R, =5 =4y (E.5)
wh wl
X a2 "
and Ry = gy s mgx = év (£.6)

Equa%ion (E.h)‘represents an ellipse where Ry and R, give
the major and minor axes respectively. Substituting m=n = 0 in
this equabion would yield equation of the primary radiasbting ellipse.

If particular values of (m,n) satisfy equation (E.L), the (m, n)th
harmonic will be & radiabing one.

The above statements are illustrated by Figure E.l. Ellipses
have not been drawn because only their major and minor axes are of
importance. These are alcng the Y and ¥ axes of the figure respectively.

] is drawn on the X-axis and Uy o the Y-axis. Concentric circles

with O as cenbtre and radial lines at different angles to the ¥-axis have
been drawn to facilitate locabing points on the diagrams. The numbers

1, 2, 3,... on the ¥X-axis on bthe left of the crigin represent the
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ratio q. Any value OF on the Y—axis may be multiplied by q by
drawing a line through E parallel to one of the lines joining P to
these numbers. For multiplying OFE by g = 2, draw EF' parallel to
. P2. Then OF' = g.0E. Evidently OE' = OF' = g OE.

.. Q 0
Let us consider a case where — = 0A, g = 2, v = 0B and

SV

Tet ATA" = ¢.0A' = OA™!

The primary radiating ellipse for these conditions is given by major
diameter OA"' and minor diameter OA. Thus if the value of u L, can
be brought within OA by adding 2mr to it, and the value of W, cen
be brought within OA"' by adding 2nw to it, the (m, n)th harmonic
will radiatg.

For E%'m OB and g = 2, ux = OD and_ Uy = OR', By adding
—2m to u it can be brought within OA. Also Uy is within 0A""'.
So the radiation will take place for m = -1 and n= 0. It will radiate
for all values of m, n for which My, is brought within OA, and ﬁy
within OA"!'.

Other conditions of excitabtion may similarly be tested Ffor

true radiation.
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APPENDIX T

INSTRUMENTS USED FOR BXPERIMENTAL DETERMINATION OF RADJATED POWER

AND FOR MEASUREMENT OF DAMPING

B. & K. beat frequency oscillator Type 101h.
15 Watt loudspeaker.

B. & K. 3" condenser microphone S.N. 16L4197.
B. & K. 3" condenser microvhone S.No. 218312.
B. & K. audiofrequency spectrometer type 2111.

B. & K. sudidfrequency spectrometer type 2112.

E.M. Ltd. Acceleromster S.N. 299 (sensitivity 11.8 mv/g).
Tape recorder T.3000

B. & K. level recorder type 2305.

Power amplifier Cape 25. Serial No. VLI ME2.

Cathode ray oscilloscope. Type SOQV(Tektronix Inc.)
Universal avometer no. 1375k — 3A.

6 Watt audio oscillator (Dawe) type Llh.B, serial no. 685.
Step down transformer Inst. No. 13088,

Wayne~Kerr probes.

Wayne~Kerr vibration meter. +type BT31A, serial no. 85.

Sclartron resolved component indicator, model VP. Serial no.
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APPENDIX G

THE DETERMINATLION OF DAMPING FROM THE VECTOR PLOT

The method applied to a continuous system vibrating in a
single mode has been derived from the analysis of a single degree of
freedom system. The equation of motion of a single degree of freedom

system with mass M, stiffness Ks and hysteretic damping n under a

i wb

constant harmonic excitation Poe is
. ) iwb
Mw + Ks(l +oAin W o= Poe (G.1)
. -~ it "
Assume a solubtion w = w e - : (G.2)

Substituting (G.2) into (G.1) ylelds

— PO )
w o= 5 (G.3)
(KS ~ Mw©) + ink
Let static deflection %s = PO/KS (G.4)
Ky
the resonant freguency of the system wn = e {G.5)
and non dimensional freguency ratio Qr = 3** (G.6)
n
Now
_ v (1-2%)
Re(w) = 5 5 (G.7)
(L -07) +n

where Re represents the real part of

Differentiating (G.T) with respect to .,

— ~ %
. . v 20 [“(l - 2)(“ - nL_J
a - gyl T 8)
a0 Re(w) = 55 5 (G.8)

d - - . i I
- Re(w) therefore has a maximum ab Q, = 1 and has then a value









surfaces of the shell and the ring. The stiffness coefficients may be

expressed as follows:

nA 2 T '
Kog 7 B; n” (1 - ”%”) {Except for n = O when Kyg = ~§~g~
R RA R™/EA
" A 3
K = B n(l - wl;ﬁ
Br 2 2
R R7A
- - o ® - 0® 1/Ea
K, = 25 {1-—=+ — }
R R°A n® 1/R°h + C
2 2
- . . _ _a- i, n_-
Ko (for a thin ring) = 5 o [ T
(n"-1)
where A is the area of cross section of the ring

T is the moment of inertia of the ring cross section
R 1s the mean radius cf the ring

1
ET is the bending stiffness of the ring

GJ is the torsional stiffness of the cross section

C. ig the shear coefficient (may be taken as %~after [

o

2

e 1is usually small compared to a. Assuming it to be negligible

equations (H.3-5) sinplify to

YR(G) = KygVe T Kg, W, tan 6

ZR(Q) = Krevs cot nd + Krrw

=

oW

Me(0) = Ky 5y

(H.6)

(H.7)

1)

(H.10)

(H.11)

(H.12)
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Rivets

(2). Conventional skin stringer structure

(b). lnte'gralty stitfened structure machined f{rom a
solid slab .

Fig.1+ Skin stringer configurations
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Fig 5.9 Vector plot obtained by measured

values of vibration.
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Fig A3 Convection velocities derived from narrow
band longitudinal space-time correlations of
the pressure field. From Bull [54)
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Figure A.4 (see above and below) The wave number frequency spectrum
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Diagram to locate the radiating harmonic in case of orthogonal(y

stiffened plate.
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