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ABSTRACT

FACULTY OF ERGINEERIRG ANU APPLIED SCIENCE

INSTITUTE OF SOUND AND VIBRATION RESEARCH

Doctor of PhilosoT)hy

VIBRATIONS OF AND SOUND RADIATION FROM SOME PERIODIC STRUCTURES 
UNDER CONVECTED LOADINGS

by Kewal Krishan Pujara .

This thesis deals with the forced, vibrations of infinite periodically 

supported beams, orthogonally stiffened plates and ring stiffened cylind­

rical shells excited by random convected loadings. The sound power 

radiated under these conditions is also dealt with. The stiffened 

structures are represented by uniform beams, plates or shells on period­

ically spaced elastic supports which represent stiffener-skin interaction 

forces and moments.

The available literature on the response of stiffened structures is 

first reviewed. A special infinite series of space harmonics is then 

evolved and employed to obtain the response of infinite stiffened beams, 

plates and cylindrical shells to spatial and temporal harmonic loadings. 

The coefficients of this series are determined by applying the principle 

of virtual work. The.series is shown to be satisfactorily converging so 

that only a limited number of terms need be included for an actual 

solution of a reasonable accuracy. The method easily predicts and 

explains the sound radiation by structures excited by loadings convected 

at subsonic convection velocities. The terms in the series contributing 

to this radiation can be easily identified with the help of a simple 

diagram included in the thesis.

The response to boundary layer pressure field has been obtained by 

analysing this field into a wave length frequency spectrum and then 

. . . (i) 



numerically integrating the response due to each wave length component.

The low wave numbers in the spectrum are important for sound power 

radiated hy the structure especially at subsonic convection velocities 

of loading.

An experiment has been carried out to determine the sound power radiated 

by an orthogonally stiffened damped panel representative of aircraft 

construction under excitation by acoustic plane waves. A satisfactory 

agreement has been obtained between experimental and theoretical results.



NOTATIONS

A Area of cross section of stiffener

A , A , 
mn m'n

D etc. 
m

Coefficients of different terms in the series of space 
harmonics

A^* Complex conjugate of

A^.A^ (EC ) of X-wise and

a radius of cylindrical

A
mn

Y-wise stiffener respectively

shell

B^, B^ (GJ) of X-wise and Y-wise stiffener respectively

b Boundary layer decay parameter in the longitudinal direction

C Velocity of sound in air

c Boundary layer decay parameter in the lateral direction

CV

=y

Vs

non-dimensional convection velocity parameter = (mb/D’)S,^U^ 

(pA) for X-wise and Y—wise stiffeners respectively

Warping constant with respect to S

Stiffness of the plate or beam (may be complex)

C 
X

D

D' Real part of D

D^, Dy Transverse stiffness of X-wise and Y-wise stiffener respectively

E Young's modulus of elasticity

F^, F (P^g) f°^ "*^^® X-wise and Y-wise stiffeners respectively

f(Z) Function of Z

G Shear modulus of elasticity

H Hankel function" of order n 
n

h thickness of beam, plate or shell 

I^ Second moment of area

I Polar moment of stiffener section about S 
s 

/ -1

J Torsion constant of stiffener section



J 
n Bessel fimction of order n

J 
rsT

K, K

Joint acceptance

Wave number of loading

Ki, Kg Wave number components of loading in the direction of 
convection and the lateral direction respectively

K The wave number of sound (= m/C)

K 
r

Rotational stiffness of the support

Transverse stiffness of the support

Wave numbers in X and Y directions respectively

Wave number component of the m^^ harmonic in the radial direction

Wave number component of the m harmonic in the Z-direction

Wave number component of the (m,n)^^ harmonic in the Z-direction

X
Distance between two consecutive supports measured in the 
X-direction

Distance between two consecutive supports measured in the 
Y-direction

m,m', 
n,n'

Integers

Mass of the beam per unit area

w

Mass of the plate per unit area

Reference no. N in the list

p The loading parameter

p 
s

Sound pressure

P pressure intensity

^r Radiated pressure

^d Amplitude of the harmonic exciting pressure intensity

q The aspect ratio (i/&^)

Re( ) Real part of ( )

^ Cross correlation function of pressure

r Radial coordinate for the cylindrical shell



S , Projection point of the shear centre on the 'skin'

GPL Sound pressure Level

8 (w) Spectral density of pressure at frequency w

Spectral density component corresponding to p , p » 0 
y

Cross power spectral density of pressure

T Reverberation time in seconds

t Time variable

U Convection velocity of loading

U^, U^(w) (Frequency dependent) convection velocity of loading

u Axial displacement in case of cylindrical shell

V Tangential displacement in case of a cylindrical shell

w Radial displacement in case of a shell and transverse displace 
meht in case of a beam or a plate

W(x", y) X-wise curvature at point (x, y)

X,Y,Z The coordinate axes

|Y(n, p^JI Power admittance fimction corresponding to 0 and p^ 

n Averaged sound power per unit area

<11 > Mean power

^ Separation

^1* ^3 Separation 

in a frequency

vector

in the direction of convection and lateral directioj
respectively

n, n Beam and plate loss factors

K Non dimensional rotational stiffhess parameter

K, Non dimensional translational stiffness parameter

p (Complex) propagation constant for free flexural wave motion

p. Imaginary part of p

p^ Real part of p

\) Poisson's ratio

p Density of cylinder material



p Density of the acoustic medium 
a * 

p^ Cross correlation coefficient of pressure

T Time delay

m Frequency in radians per second 

m Natural frequency in radians per second 

n Non dimensional frequency parameter (= m^/D')^mt^

Other notations in the text are defined where employed.
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1. INTRODUCTION AND REVIEW OF PREVIOUS WORK

1.1 The Aim of the Investigation

The chief aim of the investigation reported in this thesis is to 

present a wave theory for the determination of response of some stiffened 

structures to random convected loading in a manner that facilitates the 

calculation of sound radiation and to evaluate this radiation. Such struc­

tures are used in the construction of aircraft fuselage and are sometimes 

referred to and treated as periodic structures. Since they are extensively 

" employed in aerospace applications where jet noise and boundary layer pressure 

provide the exciting field, attention in this thesis has been mainly directed 

to obtain their forced response and radiated power resulting from these two 

types of excitation. Though the work applies in the first place to aero­

nautical structures, the results are expected to have wider applications, 

e.g. in the design of missiles and underwater structures. In the particular 

case of aircraft fuselage, the sound power radiated by the vibrating struc­

ture has obvious relevance to passenger comfort, crew efficiency and 

efficiency of voice communication.

1.2 Nature of the Structure, Excitation and Response

1.2.1 The typical structure

The actual construction of stiffened structures varies with 

application. It is generally a curved panel with stiffeners running in 

mutually perpendicular directions. In the case of an aircraft fuselage, 

one common construction involves a continuous panel rivetted or bonded to a 

network of relatively flexible stringers and relatively stiff frames.
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Where the fatigue considerations are important, the stiffeners may be made 

integral with the panel. The material used for construction is usually 

aluminium alloy. The thickness of the panel (or the 'skin') may lie 

between 0.025 inch and 0.1 inch.

Figure 1.1 shows two typical structures between the frames. 

Figure 1.1(a) shows the conventional construction involving open section 

stringers rivetted to the skin. Figure 1.1(b) shows the more recent 

integrally stiffened structure machined out of a solid slab of metal by 

mechanical or chemical means.

1.2.2 The excitation

The excitation in the case of aircraft structures may be due to 

jet noise or boundary layer pressure field or both. Both of these excita­

tions are broad band and random in nature. Though each of the above 

excitations can be idealised by a random acoustic plane wave, their exact 

nature is usually described by their space-time cross correlation 

functions.

The jet noise is caused by the hydrodynamic and acoustic 

pressure fluctuations associated with the turbulence in the jet as it 

enters and mixes with the surrounding air. It is characterised by a 

broad peak spectrum, the peak moving to lower frequencies as the distance 

from the jet increases. The total noise is quite directional, the 

maximum sound power levels being radiated out from the jet at approxi­

mately 35° to the jet axis.

The boundary layer pressure fluctuations or the normal pressure 

— 2 —



fluctuations on a surface adjacent to the boundary layer of a high speed 

flow originate in the hydrodynamic pressure associated with the turbulent 

velocity fluctuations. This turbulence may be considered to be composed 

of pressure eddies of different sizes or wave numbers. Broadly speaking 

a unic^ue value of convection velocity may be associated with each wave 

number. These eddies build up to a maximum and then decay as others are 

formed.

Precisely speaking the eddies associated with the boundary layer 

pressure fluctuations are convected downstream at a frequency dependent 

velocity (see Appendix A). The mean speed may, however, be taken as 

approximately 0.8 times the free stream velocity. Different flying speeds 

of the aircraft will therefore be associated with different convection 

velocities of the loading due to boundary layer.

The r.m.s. value of the normal pressure fluctuations exerted on 

an aeroplane surface may be expressed in terms of the free stream dynamic 

pressure as 0.6% of its value up to a Mach ho. = 1.2. In dB's the 

empirical pressure level is

i.e. ikS db at 600 mph and at sea level.

(U^g is the equivalent air speed, in feet per second) .

The boundary layer pressure field is usually described in terms 

of its space-time cross correlation function. However, in this thesis, 

this field has been visualised as an infinite assemblage of harmonic 

pressure components of various amplitudes, frequencies and wave lengths. 

- 3 -



This wave length-frequency spectrum has been obtained, by the appropriate 

Pourier transformation of the cross-correlation function of the pressure 

fluctuations (Appendix A gives this transformation.) The spectrum for 

a convected boundary layer pressure field is continuous and peaks at a 

wave number approximately equal to frequency - convection velocity.

In terms of the wave length-frequency spectrum referred to 

above, an acoustic plane wave may be considered as a special case of a 

boundary layer pressure fluctuation.

1.2.3 The nature of response

The word 'response' of the structure used here means quantities 

like stresses in the structure, displacements at different points in the 

structure, the sound power radiated by the structure, etc, which are 

induced by the excitation.

Since the excitation considered is random, the response must 

necessarily be random. The peaks in the response spectrum, however, do 

not necessarily correspond to the peaks in the excitation spectrum. They 

are modified by the impedance of the structure.

The stiffened structures are complex vibratory systems in which 

the rotational and flexural motion of the stiffeners is coupled with the 

flexural motion of the skin. There are a number of modes present in 

the frequency band of excitation and these modes tend to be bunched in 

bands of frequencies. Some of these modes are good acceptors of qnergy 

from the excitation and respond well while others respond poorly. It is 

difficult to identify 'good acceptors' from the large number of modes 

present. Damping in the structure can cause modal overlap and modal 

coupling. The available test data for the structures show a power 



spectrum of response concentrated in wide frequency bands.

1.3 Previous Methods of Vibration Analysis

Many theoretical investigations have been made to obtain the 

response of stiffened structures. Usually they have had the assumption 

of negligible interaction between the plate vibration and the excitation 

field. This excludes the possibilities of instabilities like panel flutter. 

Most structures considered in the literature are of finite size. The 

exceptions are the infinitely large plates considered by Ribner [1] and 

by Corcos and leipmann [2]. Corcos and Leipmann claimed that the infinite 

model is satisfactory since the mean square acceleration integrated over 

the panel area does not depend significantly on the boundary conditions 

imposed by the stiffeners.

Many investigators have concentrated on a row of aircraft fuse­

lage panels having stringers and frames. A normal mode approach has 

generally been applied in which the modes had to be,determined in the 

first place. This approach will be briefly discussed before the wave 

approach is introduced.

1.3.1 ,^Rie jipimal mqde approach

In a multimodal structure W(w) the response at a given frequency 

may be obtained by adding the contribution of each individual mode. This 

method of determining the response by addition is generally known as the 

normal mode approach. The following equation due to Powell [3] may be

written down to represent the summation referred to above.



1 1
W(w)

|Z^(w)| no rsT

(1.1)

with

r s

T 1J = --

A A

R(w; r, r

T)a^(r)a^(r')drar' (1.2)

1

A
rr

O)a(r)a(r') drdr' (1.3)

where

A = overall area of the structure

V = pressure power spectrum at a reference point

Ar* a - normal modes 

r = co-ordinate (co-ordinates) of a point on the structure 

dr = differential area

R = pressure correlation, a function of frequency m, locations r, r' 

of the two points on the structure and the time separation i.

T = difference in response lags for two modes r and s when excited 

at frequency w.

The dimensionless quantity J^^ is called the 'joint acceptance' of 

the pressure field and the modes a and a .

It is clear that before Powell's equation can be used, the 

normal modes a and a^ must be determined or must be known. These 

modes have been determined by using different methods or different 

structural idealizations.

6



1.3.1.1 Structural idealisations *

Lin [4-6] considered a row of panels between two frames assuming 

the panel skin to he continuous over the intermediate stringers which are 

considered simply supported on both sides by a rigid structure. The edges 

of the panels are simply supported as well. Using this model and employ­

ing the boundary conditions resulting from compatability and equilibrium 

considerations at the stringer locations, he discussed the determination 

of the natural frequencies and normal modes of vibration of the structure. 

As a result of extensive work on skin stringer structures by him and 

others, it is now known that their characteristic frequencies fall into 

groups. Lin gave the frequency equations and normal modes for the limiting 

frequencies of these modal groups. Once the natural frequencies and normal 

modes are known, equation (1.1) is employed to obtain response to a random 

input. A simplifying assumption may be made that most of the response 

comes from the frequencies within the modal bands. Presence of only a 

light damping may be assumed to minimise modal correlation which is repre- 

sented by the last term in equation (1.1).

Clarkson and Ford [7] have experimentally justified the assumption 

of simple supports at the frames as the basis of estimating stress levels 

in the actual aircraft panels. The theoretical basis of this assumption 

must, however, be examined in terms of the effect of the modal coupling.

1.3.1.2 Modal couplin^

There are two types of modal coupling. One is the modal coupling 

which is caused by the presence of damping in the structure. The second is 

the coupling as a result.of the different modes of the structure being ex­

cited by the same input loading. The latter may better be called response 

correlation effect.
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It is very difficult to account for true damping modal coupling 

in the normal mode method. The latter type of coupling has, however, been 

considered by Mercer [8j. Assuming the same structural idealisation as 

used by Lin, he obtained the response of a multi-supported finite beam to 

a random pressure field. In his expression for the response spectral 

density terms representing joint and cross acceptances arise, the cross 

terms giving the interactions of different modes. The joint and cross 

terms correspond respectively to the first and second terms of the last 

right hand side of equation (1.1). In Mercer's case showing maximum 

coupling the cross terms contributed 20^ to the overall r.m.s. response 

level. In more typical cases, the contribution was of the order of 5 

to 10 percent. It is argued by Clarkson [9] on this basis that only 

relatively small errors are likely to arise from the neglect of the cross 

terms. This may actually be taken as true only for light damping. How­

ever, even if the cross terms are small, a large number of direct terms 

will be significant if the excitation forces have a broad frequency band- 

width.

1.3.1.3 Flexibility of the supports

In the models analysed in the literature reviewed above, the 

bending rigidity of the stringers has been assumed to be infinite. This 

assumption may be examined in relation to the relative rotational and 

transverse stiffnesses of the stiffeners. The conventional stiffeners 

and the integral stiffeners have different relative bending and torsional 

stiffnesses. For a given material weight or stringer cross sectional 

area, for a built up structure the ratio of bending stiffness to torsional 

stiffness might be of the order of 200:1. For the integrally stiffened 
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structure, the figure is more likely to he 20:1.

1.3.1.4 The difficulties of the modal analysis

In employing the foregoing normal mode techniques, a number of 

assumptions have to be made in order to simplify the analysis. A lew 

degree of damping is assumed so that the responses in different modes may 

be considered to be uncorrelated. The approach implies well separated 

resonant frequencies. Perhaps the most notable assumption is 

that the stringers are transversely rigid. Sometimes even with the above 

assumptions the design calculations seem difficult. Then a further assump­

tion may be made that the major part of the response results from the 

contribution of one predominant mode. The assumption of simple supports, 

both at stringers and at frames is not realistic. The simple supports at 

the frames cannot be theoretically justified even in the case of conven­

tional type of construction where the stringers may be considered with a 

fair degree of accuracy, to be simple supports for practical purposes. 

The model with simple supports both at stringers and frames is in any case 

a poor representation of the integrally stiffened panels which are 

currently being employed in aircraft construction. The stringers in the 

latter case are certainly more flexible than in the case of conventional 

construction. The assumption of low damping also becomes unrealistic 

in cases where a damping layer may have been added to the skin [lo] in 

order to reduce the response. The normal mode approach is in fact least 

convenient in the case of a row of large number of panels having a high 

degree of damping. A knowledge of all the natural frequencies and normal 

modes is necessary and the number and complexity of possible vibration 

modes in such a configuration increases rapidly with the number of bays. 
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As a result, in spite of the assumptions made, the work required to cal­

culate the random response of this type of structures soon becomes 

prohibitive. Since the modal frequencies are not widely separated but 

are rather grouped together into distinct bands (the number of frequencies 

in each band being equal to the number of panel bays), the correlation 

between different modes will not, in fact, be negligible, thereby increas­

ing the complexity of the modal analysis still further. Besides it is 

most difficult to determine the modes of vibration exactly when the damping 

is high, because the mechanism of damping modal coupling is complex.

1.3.2 Other methods and idealisations

Hoppmann (II) and Magness [11] treated the orthogonally 

stiffened plates as orthotropic plates and used the measured values of 

stiffnesses in bending and twisting of the plate for the analysis to obtain 

the natural frequencies and the nodal patterns. Olson and Lindberg [12] 

in their finite element method assumed all the outer edges of their panel 

to be clamped.

1.3.3 The direct formulation finite elementmethod

The Direct formulation finite element method can yield the 

response directly without first finding the normal modes (see for example 

[1^). This numerical method is in general very powerful for analysing 

structures. Any boundary conditions can in theory be considered. However, 

the number of elements into which the structure must bo divided has in 

general to be high if a good accuracy is to be achieved. The number of 

elements must be increased still further if the structure is built up or 
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complicated in some other manner. Consequently in the development of* 

such methods, there are always problems of computer storage adequacy 

and the cost of the computer time. Stiffness and mass matrices generated 

by the computer may be of a very high order, and may lead to associated 

round off errors. The problem would be aggravated if the acoustic 

effects of the surrounding medium were to be considered. Even if the 

acoustic effects are not considered in the first place, the response 

obtained is in a form which is not readily adaptable to the problem of 

calculating sound radiation.

1.4 Sound Radiation from Panels

There are difficulties in analysing exactly a finite structure 

for determining sound radiation. The simultaneous satisfaction of the 

wave equation, the equation of the structure and its boundary conditions, 

the compatibility conditions at the fluid structure interface together 

with the 'radiation extinction at infinity' principle is a tedious task.

The most well known work on sound radiation from stiffened 

structures is due to Maidanik [14] but before that is reviewed, attention 

may be drawn to the work on sound radiation from uniform panels.

1.4.1 Sound Radiation from Uniform Infinite Plates

The mechanism of sound radiation from an infinite plate which is 

uniform is not very difficult. The mechanical properties of the plate 

determine its admittance at a given frequency. If random excitation is 

considered, the pressure field can be resolved into wave length and fre­

quency components. The response of the plate has the same components, 
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and the corresponding pressure field generated by the vibrating plate can 

be determined. Only the cdmponents of vibration having supersonic 

phase velocities give rise to true acoustic radiation.

Most of the work involved with sound radiation from panels is 

inspired by its application to the aircraft fuselage. Some of this work 

will now be described.

1.4.2 Transmission of sound into an aircraft fuselage

The estimation of sound levels inside the aircraft fuselage 

must involve the study of vibrations of the fuselage structure coupled 

with that of air inside and outside the cabin, when it is subjected to 

the exciting pressure field. The fuselage construction involves a finite 

curvature but most of the authors whose work is being reviewed here have 

neglected the effects of curvature. This is justifiable if the wave 

lengths excited are small in comparison with the fuselage diameter and 

this is so for most cases of interest when the excitation is by boundary 

layer pressure field. Another factor often ignored is the effect of the 

interior of the fuselage as a closed acoustic space. This is explained 

on the basis that the fuselage is so full of sound absorbing objects that 

the internal reflections are negligible.

Under the assumptions given above, Ribner [1], Corcos and 

Liepmann [2] and Kraichnan [15] have investigated the problem of noise 

due to boundary layer induced vibrations. Dyer [16] has considered in 

addition the effects of a closed space on the vibrations of the structures. 

However it is assumed by all the authors that there is no interaction 

between the plate vibrations and the excitation field. The work done by 

the above authors can be reviewed with respect to three factors:
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(a) The plate model and the plate vibration.

(b) The excitation field.

(c) Method of analysing transmitted sound.

(a) The plate model and the plate vibration

Corcos and Liepmann have chosen an infinite plate as their model. 

They argue that the mean square acceleration of the typical aircraft 

structures when integrated over the surface of the plate, will not be too 

dependent on the plate boundary conditions in the case of boundary layer 

excitation. They use the space time correlation of the plate normal 

acceleration to find the mean square acceleration integrated over the 

surface of the plate which can be expressed in terms of the wave number 

frequency spectrum integrated over all'wave numbers and frequencies. By 

means of Fourier transforms a relation is established between the wave 

number frequency spectrum of the plate response and the wave number 

frequency spectrum of the boundary layer. This result exhibits the 

coincidence effect (the concept of coincidence was first given by Cremer 

[17J), and would lead to infinite plate response at the coincidence 

frequency in the absence of damping.

Ribner’s approach is the same as that of Corcos and Liepmann 

except that the model assumed is an infinite beam rather than an infinite 

plate.

Dyer employs a finite model and Kraichnan has an infinite 

assembly of finite independent plates. Kraichnan assumes that all parts 

of the infinite wall are vibrating while Dyer considers a rectangular space 

bounded on one side by an elastic wall (the vibrating panel) and on the 

remaining five sides by pressure release surfaces. In both cases the plate
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is simply supported on all its edges. Both the authors employ the 'normal 

mode approach'.

Kraichnan obtains the joint acceptance expression in terms of 

the Pourier transforms of the mode shapes and pressure space time correla­

tion and making use of the homogeneity hypothesis, the joint acceptance is 

expressed as a double integral involving the wave number frequency spectrum 

rather than a quadruple integral involving the space time correlation. 

Kraichnan assumes further that in the special case of low damping, the 

discrete set of resonant frequencies of the plate are replaced by a con­

tinuous distribution. His spectrum therefore has no peaks found in 

practice. Dyer uses the impulse response function expanding it as the 

sum of responses in the plate normal modes. The response to a given 

loading is obtained by integrating the effect of a large number of impulses.

(b) The excitation field '

All the authors quoted have dealt with excitation due.to a 

boundary layer. The most important properties of the assumed model for 

the excitation are

(i) the convection characteristics

(ii) the spatial distribution or wave length spectrum

(iii) the effects of decay of the turbulence.

Out of the above three, the first two are the most important. The models 

assumed in any investigation should be checked against the above.

Ribner and Kraichnan assume the field to be composed of a rigid 

pattern of turbulence which does not decay with time. Kraichnan assumes 

a two dimensional turbulence pattern, the wave lengths in the flow 

direction having a greater contribution to the mean square pressure 
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fluctuation than those at right angles to the flow direction. He also 

assumes a cut-off in the wave number spectrum such that the wave lengths 

of the turbulent pressure fluctuations are all greater than the boundary 

layer thickness. Hibner considers a one dimensional pattern of turbu­

lence with a wave length spectrum concentrated about a wave length which 

is equal to the boundary layer thickness.

Dyer describes two representations of the space-time correlation 

function. The first one uses exponential functions and allows for both 

convection and decay of the turbulent pressure fluctuations. The second 

is a product of two Dirac 5-functions and an exponential function repre­

senting convection, spatial separation and time delay, respectively. This 

corresponds to a turbulence pattern consisting of pressure fluctuations 

with very small wave lengths.

Corcos and Liepmann have made an assumption that the wave number­

frequency spectrum of the pressure fluctuations is symmetrical in its two 

wave number components and is fairly smooth. By using an extension of 

the first mean value theorem for integrals to obtain approximate values 

for their integrals, they obtain their noise intensity results in terms of 

a function which is the wave number-frequency spectrum of the boundary 

layer pressure fluctuations evaluated at those wave numbers and frequencies 

which satisfy the coincidence condition for the plate.

(c) Method of analysing transmitted sound

The usual acoustic theory for small pressure fluctuations is used, 

and a solution is attempted so that the velocity of the air particles 

adjacent to the walls of the structure is the same as the velocity of 

the wall.
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Corcos and Liepmann use a solution in the form of the well ^nown 

integral which relates the sound field to the normal acceleration of the 

plate normal displacement. The mean square pressure fluctuations are 

then given as a function of the space time correlation of the plate normal 

accelerations. Introducing the concept of correlation length, the result 

is obtained which involves correlation area of the plate displacement and 

mean square normal acceleration.

Kraichnan relates the Fourier transform of the sound pressure 

fluctuations to the Fourier transform of the plate normal velocity. The 

radiation efficiency at a given frequency is greatest when the panel wave 

length is the same as the acoustic wave length for the same frequency. If 

the panel wave length is smaller than the corresponding acoustic wave 

length, the sound field is a reactive one and the mean square pressure 

fluctuation falls rapidly away with increasing distance from the plate, 

with no radiation energy. The radiated sound power is obtained as an integral 

involving the wave number.frequency spectrum of the plate normal velocity.

Ribner states that the sound is radiated by supersonic waves 

running along the fuselage wall. The subsonic waves will generate sound 

only if there are discontinuities or boundaries in the structure. Since 

these boundaries always exist in practice, sound is radiated and Ribner 

produces a result similar to the approximate one by Corcos and Liepmann 

except that he has included a 'universal correlation length' whereas Corcos 

and Liepmann have retained ageneral correlation length.

Dyer expresses the sound field within his enclosure as a sum of 

the acoustic normal modes of the space. The modal pattern on the vibra­

ting plate of the normal modes of the room corresponds exactly to the 

modal pattern of the normal modes of the plate. Thus the effect of the 
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room is the same as that of an additional generalised mass in the equation 

for the response of the plate in each normal mode. By equating the 

velocity of the air particles adjacent to the plate with that of the 

plate, the plate acoustic medium coupling has been obtained.

It is seen from the above that only Dyer has allowed for 

coupling between sound radiated and the structural vibration. It is also 

clear that the analyses for the most part apply to uniform panels and not 

to stiffened panels. Nobody seems to have considered the effects of 

stiffeners on the plate vibration.

1.4.3 Sound radiated by finite panels

Apart from the problem of sound radiation into an aircraft 

fuselage, the problems associated with sonic boom have necessitated 

investigations into the sound radiated by a flexible panel. For example, 

Bhattachanya and Crocker [18] have considered a flexible uniform panel 

which separates the open space from an enclosed room, the walls of the 

room being considered as acoustically hard. Using the modal technique, 

a general analytical solution of the wave equation with inhomogeneous 

boundary conditions has been found. In such a finite panel, and a finite 

room, the critical coincidence is shown to occur when the room eigen- 

vector grazes the flexible panel under conditions of maximum coupling 

and panel resonance. Subsequent coincidences occur at frequencies 

greater than the critical coincidence frequency when the room eigenfrequency 

becomes equal to the forced frequency under the conditions of maximum 

coupling and panel response.
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1.4.4 Sound radiation from stiffened panels

One of the best known works on the response of stiffened panels 

is by Gideon Maidanik [1,4]. He analysed the response of such panels to a 

reverberant noise field by using a statistical method. The analysis pre­

dicted that the ribbing increases the radiation resistance of the panel and 

hence its coupling to the acoustic field. In the statistical method, he 

employed, he argued that the modal density of the ribbed panel is the sum 

of the modal densities of the individual panels because the modal density 

of the ribs is small compared with the modal density of the panel. Since 

we are not interested in the statistical energy method in this work, we 

shall not review this work in detail here. However his experimental 

results may be generally interesting. He found that the response of the 

ribbed panels is considerably higher than that of unribbed panels. The 

increase due to ribbing was as much as 15 to 20 dH in some frequency 

ranges.

A study by White and Cottis [1$] may be interesting. They 

dealt with the pressure field in the vicinity of a rib on a homogeneous 

infinite plate excited by a turbulent boundary layer pressure field and 

surrounded by a dense fluid medium. The rib was idealised by three 

cases, a simply supported line, a clamped line and a line supporting 

two independent plates. A very important conclusion of this study is 

that the boundary conditions at the line are found to have a significant 

effect on the radiated pressure field.

A work in this field reported during the present investigation is 

by Konovalyuk [20] who has investigated the reflection of a plane sound 

wave from an elastic plate reinforced with stiffness members. Using 
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impedances of the rib in the longitudinal and flexural vibrations, he sought 

to estimate the influence of W arbitrarily situated ribs on the amplitude of 

the reflected wave. The resulting eq_uation became very complicated and the 

attention was therefore focussed on the plate with an infinite number of 

ribs. The calculations show that it is not always possible to replace the 

ribs with perfectly rigid supports in order to assess the influence of 

stiffening members in the scattering of sound from an elastic plate. No 

torsional restraint of the supports is considered in this analysis nor is 

the effect of inertia of stiffeners taken into account.

This work should confirm the conclusions of White and Cottis 

regarding the importance of correct boundary conditions at the stiffener 

locations.

An attempt on the survey of the literature on sound radiation 

from stiffened panels leads to the conclusion that there is a need for 

more work on the subject - both theoretical and experimental. Whether the 

theoretical model should be a finite or an infinite structure, would 

obviously be decided by the convenience of analysis. Since, as claimed 

by Corcos and Liepmann, the mean sq^uare acceleration integrated over the 

panel area does not depend significantly on boundary conditions, treatment 

of a finite periodic structure as an infinite structure is expected to 

yield fairly accurate results.

1.5 Methods Applicable to Periodic Structures

1.5-1 Earlier Work

Brillouin [21J has made excellent studies of the spatially 

periodic structures. Unfortunately the structures he considered are 



second order systems. These studies therefore are not directly applicable 

to beams and plates which follow the,governing equations of the fourth 

order. His general approach, however, has been used by Morse [22] and 

Cremer and Leilich,[23]. Cremer and Leilich considered lateral and 

rotational velocities, bending moments and shear forces at the discontin­

uities. (These discontinuities between segments of uniform structure, 

maJce it spatially periodic.) Since he emphasised the quantities at the 

discontinuities, it was difficult to predict easily the beam behaviour 

between these discontinuities. Morse's work, followed by Ungar's [24] 

(see also [2^]) treats the excitation at discontinuities. This approach 

is not directly amenable to utilisation for obtaining response of the beam 

as a whole. Ungar also studied the excitation between continuities but 

formulated the problem as Heckl [26] had done, in terms of transmission 

and reflection coefficients. He (Ungar) considered the results of inject- 

ing a flexural wave of a given amplitude at one or more locations between 

discontinuities. The general approach consists of tracing the entire 

history of a wave and of all of its transmitted and reflected portions, 

and of superposition of all the resulting effects. This is the approach 

similar to that of Heckl. Ungar, however, simplified the analysis by 

assuming that only the regions of the structural elements well away from 

the discontinuities are of interest, and that the flexural wave lengths 

in all cases are considerably smaller than the spacing of the discontin­

uities. With these assumptions, it is possible to neglect the 'near 

field' effects in the vicinity of the discontinuities and to considerably 

simplify the analysis. However, in spite of these simplifications, the 

analysis is too involved to be applied to the problem of response of air­
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craft type structures, which may be two dimensional. Ungar's work 

emphasises one dimensional systems. He mentions no relation between a 

discontinuity impedance and the dimensions of the discontinuity.

1.5'2 Mead's Wave Approach

In dealing with a very large, highly damped structure with 

periodic stiffening (i.e. stiffening at regular intervals) a wave approach 

yields the response much more readily than the normal mode approach. This 

has been demonstrated by Mead and Wilby [27J who used a closed form 

solution to represent the random displacement generated in an infinite 

uniform periodically supported beam subjected to random convected pressure 

field. A relatively simple formula was developed for the displacement, 

curvature or stress at any point in the beam. The closed form solution 

is not convenient, however, if sound radiation and acoustic damping effects 

are to be included as the acoustic pressure at a point on.the structure is 

not proportional to the local displacement (or velocity). Rather it is 

proportional to an integral function of the velocity all over the vibrating 

surface.

Sound radiation effects are easily incorporated in response 

calculations if the transverse displacements are expressible as a series 

of sinusoidal travelling waves or 'space harmonics'. This approach has 

been developed in this thesis, for the forced vibration due to convected 

loads. But before the forced problem is taken up, the free wave propaga­

tion studied by Mead [28] will be reviewed.

1.5'2.1 The notion of a propagation constant

A wave may be crudely defined as disturbance that propagates 

itself. The disturbance travelling may be a displacement of a structure.
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A simple sinusoidal wave propagating aJ,ong an infinite, damped, 

unsupported beam may be characterised by a wave number K^ = 27r/A where A 

is the wave length. This wave number is equivalent to the difference in 

phase between the wave motion at any two points unit distance apart. Let 

the wave decay as it propagates so that the amplitude of wave motion at 

one of these points is e^ times the amplitude at the other. The complex 

number (6 ± i^^^ then may be termed as a 'propagation constant* which 

describes the phase change and decay rate per unit length of the wave 

motion.

The above motion of propagation constant may be extended to the 

case of the multi-supported beam. Suppose an infinite beam on equispaced 

supports is excited at a single point by the harmonic load Fe^'^"*^ (see 

Figure 1.2). A harmonic wave motion is set up in the whole beam propaga­

ting outwards from the point of application of the load. On examining the 

motions at corresponding points in any pair of adjacent bays (see Figure 

1.3) it is found that the. phase difference (p.) • and the amplitude ratio 

(e ) are the same for all adjacent pairs of bays along the whole beam. 

P£ represents the phase difference in the motion over the distance between 

the supports, 5,^, and p^ represents the decay rate over the same 

distance. The characteristic propagation constant for this infinite multi­

supported beam is therefore ;+ (p^ + ip^)

The value of the characteristic propagation constant has been 

found by Mead by making the free wave motion satisfy the equation of 

motion of the beam subject to the boundary conditions imposed by the 

supports. This value is independent of the imposed, loading but is a 

function of frequency of vibration and the beam/support physical character­

istics. The number of va-lues of the propagation constant equaJ.s the number 
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of degrees of freedom allowed at the supports. Associated with each such 

value of propagation constant is a unique mode of free vibration of a*bay 

of the beam.

The details of the method of determining the propagation 

constants may be seen from the original reference and will not be repro­

duced here. But it is interesting and important to record here that the 

final equation giving the value of p (in general complex) is of the 

following form

cosh p = - 3— (1.4)

where g^^ and g^^ represent the end receptances of the repeated 

beam element, and obviously are frequency dependent'. If | cosh pj > 1,- 

p will correspond to a decaying wave with no propagation. However, if 

J cosh p] < 1, p is purely imaginary and represents a propagating wave . 

with no decay. Equation (1.4) will then modify to

cos p. = - --- (1.5)

It has actually been found that in certain frequency bands, p is purely 

imaginary, and the natural frequencies of finite stiffened beams must 

therefore lie in these bands of frequencies. From equation (1.5) it is 

clear that in these bands of frequencies (or in ’propagating bands’) p^ 

will be multivalued, the values differing by 2m7r, where m is an integer 

lying between and +“ . Also +p^ and -p^ both represent solutions 

of equation (I.5).
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1.5.2.2 The free wave motion as a wave group

In the hand, of free propagation (i.e. without attenuation) where p 

is purely imaginary, equation (1.5) gives the values as

U = j: p. + 2mm, m = -«» to +« (1.6)

The values of p associated with fp. represent a negative going wave 

group and those associated with -p. represent a positive going wave group. 

Corresponding to each value of m there is a different amplitude of wave 

motion and a different free wave length and wave velocity. The total 

displacement W(x) at a point x due to the positive going wave group 

of free waves may therefore be expressed as

-i(p. + 2mm) imt 
'W(x) = 2 A^e e (1.7)

and the wave velocity due to m component wave is given by 

C =   (1.8) 
m Pj^ + 2miT

Figure (1.4) gives the phase velocities of free waves in the 

stiffened structure as a function of frequency. It is clear that unlike 

in the case of unstiffened beam, there are more than one phase velocity 

at a given frequency. These different velocities correspond to different 

integral values of m in equation (1.8). When the stiffened beam is 

vibrating under a convected loading, the coincidence could be caused when 

any one of these phase velocities equals the velocity of convection of 

the excitation. Thus in a stiffened beam there is a greater possibility 

of coincidence at a frequency under given conditions of convected loading 

than in the case of a uniform beam.

24



The wave coincidence can also be interpreted as matching of 

wave length of excitation with the wave length of free propagation.

Since at a given frequency, there are an infinite number of free compo­

nent wave lengths, any one of them could match the imposed wave length 

and thus cause coincidence. The value of the m component wave length 

is given by

2TT&
)^ = ------- -----
m n. + 2m^

1
(1.9)

The convergence of the series of equation (1.7) has been studied 

in Figure 1.5 which compares the amplitude ratios (A^/A ) of the successive 

components of the free wave group of the multisupported beam at 0 = 17.0 for 

which p. = ir/g (O is a non dimensional frequency parameter and equals 

(m^cij /El)^^^ where 111^5 EI are the mass per unit length and the stiffness 

of the beam respectively, and m is the frequency in radians per second).

It can be seen that as m increases, the value A^/A falls rapidly, thus 

testifying to the satisfactory convergence of the series of equation (1.7).

If the beam were unstiffened, all A 's would be zero except A . 
m o

1.5.3 The Wave Approach and the Structural Models of this Thesis

The ideas presented in section 1.5.2 can be extended to obtain 

the forced response of stiffened structures to convected loading [29]. 

This will be explained here by taking the example of a stiffened beam like 

the one shown in Figure 1.2.
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1.5•3.1 Loading and response of mi infinite stiffened beam

Consider a harmonic distributed loading p^ exp i(a)t - K^x) = 

Pq exp -i (p^x/j!-^)exp(ia)t) acting on the periodically supported beam shown 

in Figure 1.2. The phase difference between pressures at two points 

distance L apart is K .A = p . This p may therefore be regarded 

as the propagation constant imposed by the loading on the beam. The phase 

characteristics of the wave motion forced in the beam must follow those 

of the loading. As a result the total wave motion at points separated by 

distance A^ along the beam must have the same amplitude but must differ 

in phase by p^. This condition will be satisfied by a series of harmonic 

waves which have phase differences of p^, ^x — ^^’^ over the interval 

A^ since all these phase angles are in effect identical.

Hence we can write the transverse displacement W(x) in the 

form

W(x) = (1.10) 
m=-”

The series of equation (l.lO) represents a spatial counterpart of the 

well known temporal Fourier series. We shall refer to this series as a 

series of space harmonics.

The details of the application and extension of this series of 

space harmonics to different structures and loadings will be the subject 

of the following chapters. ■ In each case the response will be determined 

in the first place to a spatially and temporally harmonic component 

pressure. The response to any general loading may then be determined, by 

the help of the wave length-frequency spectrum into which the excitation 

field must be analysed. (See Appendix A.)
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Some remarks which are common to all the structures considered 

in this thesis are included 'in the next subsection.

1.5•3.2 The structural models considered

All the structures analysed in this' thesis viz. stiffened beams, 

stiffened plates and stiffened cylindrical shells are ass'umed to be 

infinite (in practice the behaviour of highly damped large structures will 

very closely approximate to this model [^30^). All the structures considered 

are periodic. The ’skin’ of the structure considered is of unifonn thick­

ness. The complete stiffened structure may be visualised subdivided into 

identical substructures of uniform thickness continuous over uniforaily 

spaced elastic supports. These .supports simulate the characteristics of 

the stiffeners, and therefore apply constraints to the continuous structure 

appropriate to the type of stiffeners employed. The stiffened structure 

is thus a periodically supported structure and the two terms will be inter­

changeably employed in the text,

1.5•3•3 Application to the finite structures

Though only infinite structures have been considered in this 

thesis, the general theory presented can be applied to the finite structures. 

Mead and Sen Gupta [^30j have applied the wave approach to the determination 

of the response of finite stiffened beams. This has been done by adding 

the forced response of the infinite beam and the free wave response, and 

then making the total response satisfy the end conditions of the finite 

beam. It is shown that when a finite stiffened plate structure of at 

least five bays is modelled by a periodically supported beam, the space- 

averaged rms response to a frozen random convected pressure field C8.n
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quite adequately be computed, by assuming the beam to be infinite and 

periodic. This is shown to.be true for a wide range of damping values. 

The forced wave propagation in infinite stiffened structures is therefore 

of great practical utility. The concept of the forced wave propagation 

is derived from Mead's wave approach [28] which in turn has been shown 

by Sengupta [31J to be inter-related with transfer matrix approach adopted 

by Lin [SSj. At any frequency the propagation constant of the free 

flexural waves equals the natural logarithm of the eigenvalue of the 

transfer matrix relating the state vectors at the two ends of the basic 

element constituting the periodic structure.

1.6 Arrangement of the Text..

The 'space harmonics' approach will be applied in Chapter II to 

obtain the curvature response of a periodically supported beam when it is 

excited by an acoustic plane wave or by a boundary layer pressure field. 

It will be extended in Chapter III to obtain the radiated power of such a 

one dimensional model. Chapter IV will extend this method to the case of 

orthogonally stiffened plates, obtaining results for the sound power 

radiated. Chapter V will describe the experimental work undertaken to 

obtain the values of sound power radiated by a panel under excitation by 

acoustic plane waves of different angles of incidence. It will compare 

the results with the computed values and will discuss the extent of their 

agreement. Chapter VI will extend the method to the ring stiffened 

cylindrical shells of infinite length. This extension is intended to 

confirm that the general method adopted may be employed to deal with a 

class of elastically supported structures when they are large and highly 

damped.
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2. SPACE HARMONIC ANALYSIS OF PERIODICALLY SUPPORTED B.EAMS; 
RESPONSE TO CONVECTED RANDOM LOADING

2.1 Introducti-on

The general approach for obtaining the response of stiffened 

structures introduced in Chapter 1 will now be applied to such structures. 

One such structure viz. the orthogonally stiffened plate, is shown in

Figure 2.1 along with the co-ordinate system employed. £ and £ are 
X y 

the regular spacings between the two consecutive stiffeners extending in 

the Y and X directions respectively. These stiffeners are assumed to 

be line supports which apply suitable constraints to the skin depending 

upon the properties of the stiffeners employed.

2.1.1 Approximation of a Plate by a Beam

Consider the vibrations of a plate of dimensions £ and £ , 
X y’ 

stiffness D and mass per unit area m, 'at a frequency u. It can vibrate

in many modes each of which corresponds to a number of half waves in the Y

direction. Consider the
th
n Y-mode. Then V7^(x,y) the displacement res-

ponse at a point (x, y) of the plate, may be written as follows:

(2.1)

where
X x' -X x' iXgx' -iA_x 

W (x) = A e + Ar,e - + A_e + A, e 
n o 4 

(2.2)

^1' '^2' ^3' ^4
x/4 
are the constants and 
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—1 — £ 
y 

x_^= x^ - (—A)^ (2.3)

^ D

nirA _
Equation (2.3) shows that when the term —— is small, 2;^^ 

and ^2 ^^ approximately equal. If the aspect ratio (2y/^^) is high, 

this term will he small specially for low values of n or low order Y- 

modes. Thus for n = 1 and an aspect ratio of say 3, the difference 

2 2- between X^ and A^ will be negligible, for accepted engineering 
/ 

accuracy. Now n = 1 often represents the most important Y-mode that 

is excited. So if a plate has an aspect ratio of 3 or so, it can be 

adequately represented by a beam for the purposes of response calculations. 

In fact it has been found that for an aspect ratio of 2, the bounding 

frequencies of the bands of frequencies (within which the natural frequen­

cies lie), differ from those of the plate by only 5g per cent, while the 

width of the band is almost unaffected. For an aspect ratio of 3, the 

difference in the frequencies is about 3 per cent. This should confiim 

that for at least low order Y-modes, the beam should be a reasonable 

approximation to a plate. Thus if in a stiffened plate, it is assumed 

that there is no response correlation across x-wise stiffeners, it could 

reasonably be considered as a beam with Y-wise stiffeners only. Such a 

representation has in fact been used by Lin [^-6j, Mercer [8] , Ford [33J 

and Mercer and Seavey f3-Q in their normal mode analysis of stiffened 

plate response. Mead and Sengupta [30J have discussed the response of a 
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multi supported finite beam in relation to that of an infinite beam. They 

have concluded that in the Case of finite beams of more than 5 bays, the 

infinite model may give reasonable answers for response. Such a model is 

analysed in this chapter.

This infinite stiffened beam then is visualised (See Figure 1.2) 

as a uniform beam continuous over periodically spaced (spacing A) 

elastic supports having transverse stiffness K, per unit deflection at 

the support and rotational stiffness K per unit rotation at the support.

2.1.2 The excitation and the analysis of response

The problem is first solved for the fundamental case of a 

convected harmonic sinusoidally distributed pressure field and from this 

the solutions for the more general pressure fields are developed. Random 

pressures of two types are considered:

(a) Corresponding to a random acoustic plane wave field, in 

which the instantaneous pressure distribution is convected 

along the beam surface without change of wave form. Such 

a field can be analysed into a continuous frequency spectrum 

of harmonic 'components' each of which can be associated 

with a unique wave number.

(b) Corresponding to a boundary layer pressure field in a boundary 

layer of constant thickness. The instantaneous pressure dis­

tribution does change as it is convected along, so each 

harmonic 'component' of the continuous frequency spectrum is 

now associated with a continuous spectrum of wave number^.

The curvature response at the centre of one of tne oeam 'bays- 

is analysed theoretically under each of these. The series for the response 
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contains an infinite nnmtier of terms and. attention is given to the loss 

of accuracy incurred, hy restricting the series to as few as three terms 

and as many as eleven.

The basis of the response analysis stems from the fact that the 

structure is infinite and periodic and that the pressure field can be 

regarded as having harmionic, sinusoidally distributed components. Under 

the action of one of these components, the response in the structure at 

a point in any one of the periodic elements must be identical to that 

at the corresponding point in another periodic element, apart from a phase 
cohi'ch ‘<5 ^^uaii /; Aa f^nd^e. el/ ff-e-ence. 

difference^between the ccmponent pressures at the two points. This res­

ponse can be represented by a speciaJ, series of sinusoidal waves, which 

constitutes a wave group. The relative magnitudes of the components in 

the wave-group are evaluated in the analysis and it is shown that rela­

tively few of them contribute significantly to the response at any one 

frequency, with pressure fields of the above types.

2.2 Forced waves and their Series Renresentation

2.2.1 The Forced Waves

Consider a harmonic distributed loading p^exp(-iK^x)exp(iut) = 

PQexp(-ip^ x/ £^)exp(itot) acting on the beam of Figune 1.2. This is 

being convected over the beam at the velocity w /K^- The phase difference 

between pressures at two points distance apart is K^^^ - d^- 

p^ (with subscript x) may thus be regarded as the propagation constant 

of the loading. The flexural wave motion which is excited in the 

structure by this loading has this propagation constant p, imposed 

upon it. The forced response quantities at corresponding points in 
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adjacent bays then have the same amplitude but they differ in phase by 

p . When this imposed value of p is equal to the characteristic 

value of p for the beam at the same frequency (see section 1.^.2), the 

coincidence phenomenon occurs and the response is large.

2.2.2 The Series Representation of the Forced Flexural Motion

A simple harmonic flexural wave of the form W^exp(-ip^x/^^). 

exp(iwt) cannot exist on its own in the multi supported beam. The 

presence of elastic constraints at the supports introduces numerous 

reflections and 'near field' type flexural waves into the beam motion. 

However, when the beam is excited by the loading pexp(-ip^/&^)exp(imt), 

the forced flexural motion is spatially periodic over the wave length 

given by 2^&/p^ (= 2^/K^J and so may be analysed into spatial harmonic 

wave components. The total wave motion so represented must have the 

same amplitude at any two points, distance & apart, but the two total 

motions must differ in phase by P . This will be satisfied by a series 

of harmonic waves which have phase differences of p , p + 2m, 

P 2mm over the interval &^ since all these phase angles are in 

effect, identical.

Hence we can write a series for the transverse displacement

W(x) in the form

+ 2mm )^m=+^
W(x)

iwt 
e (2.4)

This series must be made to satisfy the boundary conditions at 

elastically restrained supports by appropriate restrictions on the co­

efficients A . We observe that if a particular value of p is imposed 
m X 
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by the loading, wave components with smaller and greater values of i^ 

are present in the response. This implies that wave components are 

present which are propagating at speeds greater than, and less than 

(respectively) the convection speed of the loading. It is possible 

that the faster waves may be supersonic, and so will radiate sound, 

even though the loading itself is being convected at subsonic velocity.

Furthermore, some of the wave components have negative values 

of p^ + 2miT, and are therefore propagating in the negative direction, 

opposite to the direction of the loading propagation. These are 

associated with the reflections which occur at the supports.

2.3 Determination of the Coefficients of the Series

2.3.1 Derivation of the equations for the coefficients

The coefficients will be obtained by the principle of virtual 

work. Consider, in the first place, the differential equation of 

motion of the beam between the supports. This has the form

D = p^e (2.5)

where D = beam flexuzral rigidity 

m^ = beam mass per unit length.

V/hen the forces on and in the beam are in equilibrium, then 

these forces, represented by 

2
to w " P^e

ia)t 
e

together with the clastic constraint forces and moments of the supports 

must do no virtual work when moved through any one of the virtual dis-
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placements

When W is represented "by the series form of equation (2.1i-), this 

statement leads on to a set of equations for the A^'^. Since the 

structure is spatially periodic, the virtual work contribution from 

only one bay element (including supports) need be considered. As 

usual in complex algebra the conjugate of the virtual displacement
■^^(p^ "*" 2m'iT)~ 

applied is used to calculate the virtual work, i.e. 5A^,e

The contribution from the beam alone (less supports) to the 

virtual work is then found to be

0

U + 2mTT + 2mTr)" i(p + 2m'ir) —

m=-oo
Ji-.

+in=+'” -i(p
e

2mTT)xA i(p + 2m'Tr)x/-

m=-«>

2m'Tr)x/^
(2.6)

where the origin of X has been taken to be at the left hand support

2

o

r

o

^o

-ip : 
e

of the bay element under consideration.

The contribution to the virtual work from the trsnslational

stiffness of one support (at x = 0) IS equal to

K^ W(0). gA^,

A 
m

111= "*co

- 35 -



Likewise the contribution from the rotational stiffness of the support

at X = 0 is 

p + 2m' TT 
V(0) i6A^,(—  ) 

X

+oo |j + 2iii':T p + 2m' tt

in=-oo X X

The virtual work principle requires that

6W, + dW. + gW — 0
D t r

(2.9)

Evaluating the integrals involved in gW. we can find from

equation (2.9) that

[D(-
+ 2m'Tr

2.
K co

‘m' r Z

X m='

A
in

X m=-co

= 0 when m* / 0

= p when m' = 0
o

p + 2m'TT

SL.

(2.10)

This constitutes a set of simultaneous equations for the A 's. Con- 
m

sideration of the virtual work in any other bay element would yield

an identical set of equations.

Equation (2.10) may be written in the following non-dimensional

form by dividing through by

[(p^ + 2m'Tr)^' co K & m=co
Z &i XA^(p +2m,r)(p +2m'?).
m=-w m=-«'

= 0 m' ?( 0; = (p JI )/D m' = 0 (2.11)

^x

D/Jl/.

2 U 3

K p» + 2mK

^x
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If structural damping is to "be introduced into the "beam, then

B may "be expressed in the complex form

D = D'(l + in) (2.12)

when n is the heam loss factor.

The following non-dimensional quantities may "be identified

in the above equation:

Frequency parameter n
D'

(2.13)

Transverse stiffness parameter
w

B'
(2.1^1)

Rotational stiffness parameter
B'

(2.15)

t

:"r

4

Loading parameter P (2.16)

Using these non-dimensional parameters the equation (2.11) now "becomes

[(p^ + 2m'Tr)^(l + in) - fi^] A^,
00 co

■^ "^t ^ ^m "^ i^r ^"^ ^^c"*" 2mTr).()j +2m = 7r)

= 0 when m' 7^0

- P when m' = 0 (2.17)

Another non-dimensional parameter which is used in the text later is 

™h -
the convection velocity parameter GV = (pT^^ ^c^x where U is the 

convection velocity of the loading (= w/K ).

- 37 -



2.3- 2 The special case of transversely rigid supports

If the supports have infinite translational stiffness (k^.

no heam displacement is possible at the support locations.

Hence at the support at x = 0

m=<»
W(0) = X A^ = 0 

00

or 
m=oo

A = - y A (2.18)
o m

Ill=-oo 
m^O

so that
00 -i(u + 2nnr)^ -ip

W(x) = y A^{ e ^x - e ^X} (2.19) 

m=-oo

This type of series can therefore he used for a beam with 

rigid supports, instead of the series of eq.uation (2.i|), to allow 

exactly for the infinite translational stiffness.

To apply the principle of virtual work in this case, the 
-i(p +2m'K)^ 

virtual displacements considered will be of the form gA /e 
-ip^ (xA^)

- e t since they have to he compatible with the condition of

zero displacement at the supports.

Following the procedure detailed already for the case of 

flexible supports,'the following non-dimensional system of simultaneous 

equations for A^'s i obtained for the rigid support case:

my^O

K m=oo

1 + in 

m/0

2m.Tr 
J2,

4 »^ ,A

-p
1 f in

(2.20)
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Equation (2.20) has been obtained by suppressing the term 

Aq, using equation (2.18). Actually any one of the other coefficients 

could have been suppressed and the same final answer for the coefficients 

will emerge.

2.3.3 The special case of zero rotational stiffness of 
the support

When Kj, = 0, equation (2.17) modifies to

[(p^ + 2m'Tr) (1 + in) - n k^ I A^ 
in=-oo

= 0 when m' / 0 m' = -co to

= P when m' = 0 , (2.21)

By successively subtracting one equation from the next in the above 

system of equations, it is possible to express all other coefficients 

in terms of any one of them. This particular coefficient can then be 

evaluated by using any one of the equations. This procedure leads to 

the following expression for the coefficients:

-P K. /p (1 + in)
= -----------------L_X----------------- ;----

■ m^O [1 - (■^)^J [(iJ^ + 2mir)^(l + ip) - fi^J [1 + sj

-P K^/p^^(l 4- ip)

[1 - (^)^J f^x^.^^ + iri) - fi^J [1 + s] 

(2.22)

u^"^(i + ip) - n^

(2.23)

where

s =

(2.24)
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and. ij) -

2
HL oj 1 2 1

(2.25)

2.3.4 Relative magnitudes of the ^ i^

It is of considerable interest to know which of the A 's are 

of greatest importance in particular cases. Some computed values of the 

A_'s are presented in TableZ.l which applies to a beam having = 10 

K = 4.0, n = 0.25. The pressure field is that of a plane harmonic 

wave with a velocity parameter 4.0. Table2J,(a) is for a non-dimensional 

frequency parameter 12.80 which is just above the lowest frequency for 

the propagation of free flexural waves in the undamped beam (see Ref. 28). 

The convection velocity of the pressure field is then nearly equal to the 

free flexural wave speed in the beam.at this frequency.

Table 2.1b presents values of the A^'s for a frequency para­

meter 22.4 and a convection velocity parameter 4.0. This frequency is. 

near the upper frequency bound of the same zone of free propagation 

which begins at about = 12.80.

When n = 12.80 and CV = 4.0 (see Table 2.1a), the A^ term is 

dominant with A_^ slightly less. This is due to the fact tha.t the 

free wave speed of the A^ wave is closer to the convected pressure 

wave speed than the free wave speeds of any of the other wave components. 

As m increases"or decreases, the magnitudes of A^'s get progressively 

smaller. It is significant that both A_^ and A^^^ are approximately 

1/1000 times A^, thus showing that the series of terms for (a) converges 

rapidly.

When 2 = 22.4 and CV = 4.0 (see Table 2.1(b)), the A term 

has the highest value. This is again explained by the fact that m = -1 
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makes this component wave length nearest the free flexural wave length 

in the beam. Rapid convergence of the series may again be observed 

from the relative magnitude of the A 's at this frequency.

That one of the coefficients is much larger than the others 

is in accordance with the known theory of propagation of waves in a 

continuous medium with periodic perturbations. Sections 28 and 35 of 

reference [21] deal with free vibrations of such structures in the 

longitudinal direction.

Tables 2.2-2.3 show how the magnitude of each term is affected 

by including the higher order terms. They correspond to the beam with 

K = 4.0, K^ on, n = 0.2$ excited by loading of convection velocity 

parameter (CV) = 4.0. The tables are self explanatory. In particular, 

the Re(A ) term in the $ term solution at 0 = 14.80 (table 2.2) is 

different from the same term in the 9 term solution by just over 3 per­

cent. Por 0 = 8.0 (table 2.3) the corresponding difference is about 

1.22 percent.

2.4 Response to Harmonic Plane Waves

By solving a suitably restricted set of the simultaneous 

equations (equation 2.17) the A 's can be determined. Once the A 's 
m m 

are known, we can find the response at any point on the beam. For a 

given beam, this response is evidently a function of p and 0, and 

is directly proportional to p . In fact we can write

W(x) h
imt 

e (2.26)

where Y 
X

may be called the 'displacement admittance function' for the

point X, The curvature of beam deflection (which is proportional to
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the tending stresses) may be related, to a 'curvature admittance function'

defined, (by analogy) by

W"(]c)
X

(2.27)

Evidently if

W(x) =

then :
in=+oo

w"(x) = y -A^
111=-oo

p + 2nTr

X

2
e e (2.28)

Since all the A 's are proportional to p , then Y^(0 p ) and

are found directly from these two series.

2.5 Response to Boundary Layer and Random Acoustic Plane Waves

2.5.1 The response to random convected pressure fields

The beam response must now be obtained in the first place 

in the form of a response spectral density ^ (o).

As shora in Appendix A, the convected boundary layer pressure 

field can be analysed into a wave length frequency spectrum. This 

essentially means that at a given frequency o), there is a range of 

p^'s present in the excitation (see Figure A.U). Hence, the spectral 

density of boundary layer ■ pressure at frequency co and wave number 

K (= p /£ ) can be denoted in the functional form as 
X XX
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The power spectral density of the response is also a function of fi

and u . 
X

The excitation 'and response are related as follows:

^w(x)^"' ^x^ %("' ^x?l^x(^' ^x^l (2.29)

kx("' ^x?! (^-30)

When these functions are integrated over the whole range of p^, the 

power spectral density is obtained as a function of frequency alone, i.e.

(2.31)

The total meen square value of .,Wn(X) in the frequency band 0 < n <

is found by integrating this over the band, i.e.

<W"^(X)> Q

(2.32)
O'"

This is in a general form suitable for calculating the response due to 

a boundary layer pressure field. The form often taken for 5 (n, p ) 

for a boundary layer is given in Appendix A.

A random acoustic plane wave pressure field has a Q, p^ 

spectrum of 6-function form in p^ domain, having a non-zero value only 

at the value of p^ given by p^ = fi/CV. The mean square curvature is 

then given by

< 1^(X)> = I s(o) |Y^Xn, p^Xn))| do 

0

(2.33)
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2.5.2 Numerical response calculations

The double integration required to obtain < W" (X)> can only 

be accomplished numerically. This has been done for a beam with

n = 0.25, K = 4.0 and K^ = 10 excited by:

(a) a random acoustic plane wave field having a pressure 

power spectral density which is constant over the 

frequency range 0< 0 < 32-0 and a convection velocity 

parameter of CV = 4.0. The spectral density of the 

pressure has been arbitrarily chosen as unity;

(b) a boundary layer pressure field having a point pressure 

spectrum of constant unit value over the frequency range 

8 < 0 < 24. Outside this range, the spectrum was 

assumed to be zero for reasons given below. The 

boundary layer decay parameter* was 0.1, and the con­

vection velocity was CV = 4.0.

The restricted frequency range of the pressure spectrum was 

sufficient to cover the whole of the first frequency band of free 

wave propagation in the beam (see Ref. 28) in which the beam response 

is high. It excluded the possibility of response in the higher pro­

pagation bands. The method of this chapter however, can be used for 

any range of frequency whatsoever. The above restriction was 

desirable in order to reduce computation time.

The double integration for the boundary layer problem was 

first performed in the p -domain at a fixed frequency. Figure 2.2 

shows a typical variation of |Y^/n , p )|^ and 8 (Q, p ) with 

p at a given frequency. The integral of their product may, in fact,

* See Appendix A 



derive principally from two narrow p ranges in the vicinity of the 

two peaks if the peaks are very sharp. Numerical integration of the 

product need then only he performed over these ranges to obtain results 

of acceptable accuracy. On the other hand, if these peaks are not 

sharp (i.e. the beam is heavily damped giving relatively flat response 

curve and the boundary layer decay parameter b is large), then the 

integration must be performed over a much wider range of p's. In 

the present calculations, the integration extended over the whole p 

range from p = 0 to p^ = 8.0. Trapezoidal rule integration was 

used with incrementscf p = 0.4.

The integration with respect to p yields the response powei 

spectral density at the given frequency. Integration of this power 

spectral density over the frequency range yields the mean square value 

of the response. This integration.was conducted numerically using 

the trapezoidal rule with increments of frequency (o) of 0.4. It was 

found to be sufficiently accurate to integrate only over the range 

8 < 0 < 24 for there was no significant contribution to the mean 

square response outside this range.

Computations were performed on an ICL 190T computer. The 

flow diagram for the whole computational process is shown in 

Appendix B. Curvature results were normalised by dimensional quantity

2.6 Discussion of Results

2.6.1 Acoustic plane wave excitation

Figures 2.3, 2.4, 2.5, 2.6 and 2.7 show computed results for



the beam excited by acoustic plane waves. Spectra for the beam 

curvature at mid-span are shown in Pigures2.3 and 2.4; peak values 

of power spectral density at different convection velocities are 

shown in Figure 2.5; r.m.s. values of the curvature are shown in 

Figure g.6. Figure 2.3 shows the curvature spectra computed using ele­

ven terms in the series for the beam response. These curves are actually 

quite indistinguishable from accurate calculations performed by Mead and 

Wilby [27] (also reported by Mead in Ref. 10) who used a closed-form 

solution for the response. It will be observed that the spectrum peaks 

move to higher frequencies as the pressure field convection velocity 

increases. This can be easily explained by the arguments presented 

in Reference 28.

It may be mentioned here that computations by the method of 

Section 5 (<+ =") and those by the method of Section 4 taking K^ = 

10^ differ only in the fourth dr fifth significant decimal place. This 

should confirm that in the limit (very high K.), the general method 

will give results agreeing completely with those from the method for 

the special case of rigid supports (<1^ ™)«

The different curves of Fig. 2.4 show the responses calculated 

by taking a different number of terms. The 11-term curve can be 

regarded as representing the exact response, and it is clear that the 

7-term curve scarcely differs from it. With only three terms, the 

peak power spectral density is about 2% less than the exact value, 

and with five terma it is about 4% greater than the exact values. 

Hence, a very crude approximation to the beam deflection (by using only 

three or five terms) yields surprisingly accurate values of the curvaturi 

spectral density.
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Such high accuracy is not maintained with higher values of 

the convection velocity parameter (see Pig. 2.^). When CV = 16, the 

3-term peak spectral response is 22% greater than the e^act value, 

whereas the $-term response is 9% less. The 7-term response maintains 

close agreement throughout.

The r.m.s. response (obtained by integrating the spectra) are 

in rather closer agreement over the whole CV range than the peak values 

(see Figures 2.9, 2.6). The peak in these curves at CV = 4 has been 

found before by Mead and Wilby and occurs at the lowest convection 

velocity at which a 'primary coincidence' effect can occur (ref. 28).

Fig. 2.7 shows the influence oT beam loss factor n on the 

spectral density of curvature at midspan of the beam for CV = 4.0 

obtained by including eleven terms in the series. It is seen that the 

effect of damping is most marked at frequencies where there are peaks 

in the response curve. The damping sensitive peak value for a very 

low value of n = 0.01 (not plotted) was within 1.99 percent of the 

accurate value of Mead and Wilby. Inclusion of only three terms in the 

series in this case gave a peak value which differed from the exact 

solution by about 4 percent only.

2.6.2 Boundary layer excitation

Response spectra for boundary layer excitation are shown in 

Fig. 2.8. The curves for different numbers of terms are very similar 

in shape, and the peak and r.m.s. values differ at most by only 9%; the 

7-term curve follows the 11-term (exact) curve very closely. The r.m.s. 

value from the 3-term curve is only 2% higher.

Por the purpose of stress-calculation, therefore, we may deduce 
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that approximate values of sufficient accuracy may be obtained, from 

computations using just three terms in the response series, so long 

as the dominant part of the response stems from the first band of 

free-wave propagation.

These results were obtained from a boundary layer pressure 

spectrum having a constant value over the frequency range 8 < 0 < 2^. 

It is generally accepted that a real boundary layer pressure spectrum 

has a broad, flat top (between about 200 Hz and 3000 Hz) but above a 

certain cut-off frequency it drops off with frequency. Such a varia­

tion of pressure spectral density could easily be included in the cal­

culation of the response spectrum and r.m.s. values, simply by multiply­

ing the response spectral density presented in Fig. 2.6 by the known 

real value of the pressure spectral density.

2 .T Conclusions

The method of space harmonics as described and illustrated 

in the foregoing sections offers a powerful technique for obtaining 

the response of periodic structures to random acoustic wave and 

boundary layer pressure. It has been seen that the inclusion of only 

three terms in the series solution yields results which agree accept­

ably with the closed form solution in the frequency range of the first 

propagation band.

From the point of view of computation, this is a relatively 

simple method. After the linear algebraic equations are set up, it 

only uses a Library subroutine for the solution of simultaneous 

equations with complex coefficients.

There is no restriction on the magnitude of damping allowable 
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in the structure for the method to succeed. Normal mode methods of 

analysis often assume that the damping is small enough for distinct 

resonant peaks to occur without 'modal overlap'. No such restriction 

is necessary in the method of space harmonics, and the response of a 

system with large damping is computed as easily and accurately as that 

of a system with small damping.

The method lends itself readily to the determination of the 

sound radiated by the structure. This is so because each term of the 

series solution represents a travelling wave and is spatially harmonic
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3 . SOUND RADIATION FROM^ONE DIMENSIOMAf' STIFFENED PLATES 

UNDERRANDOM CONVECTED LOADING

3'1 Introduction

In Chapter 2 it was explained how the orthogonally stiffened plate 

could he treated as a one dimensional structure for low order lateral modes, 

especially when its aspect ratio was high. It was explained that the res­

ponse of such a one dimensional model to random convected loading (including 

that to boundary layer pressure field) could be obtained in a series of 

space harmonics. The coefficients of this series were shown to be satis­

factorily converging so that only a limited number of terms were to be 

included in the series to yield a solution of reasonable accuracy.

We turn now to the problem of sound radiated by such structures. 

This is important, for instance, in the case of an aeroplane fuselage, 

the structure of which can be regarded as periodic, and which transmits 

undesirable sound into the interior by virtue of the surface vibration. 

This analysis of sound radiation is usually made by the application of the 

normal mode approach and working in terms of resistance ratio, i.e. the 

ratio of the energy dissipated to the fluid to that dissipated within the 

structure (for the concept of radiation resistance, see for example, 

reference 35). It is also sometimes assumed that the radiation does not 

appreciably influence the response. However, even under this assumption, 

the analysis can be very difficult. Oh the other hand if the response of 

the structure is known in a form which is spatially harmonic, it can be 

done rather easily. The response in such a form (as a series of space 

harmonics) was obtained in Chapter 2. Each one of the terms in this 

infinite series is spatially harmonic and represents a forced travelling 



wave with its own velocity depending upon the frequency and convection 

velocity of excitation and also on its order in the series. Some of 

these terms will have supersonic phase velocities, even at subsonic 

convection velocities of loading.

In this chapter the above series of space harmonics is adapted 

for the problem of sound radiation. The influence of radiation damping 

can be easily incorporated in the analysis. The amplitude of each travel­

ling wave is determined by the principle of virtual work as in Chapter 1. 

Following that an expression for the pressure radiated is derived for each 

harmonic and the associated power is then calculated.

3.2 ThenStructure and Excitation

The plate considered is assumed to be flat and infinite in both 

directions and has parallel, egui-spaced stiffeners in the Y-direction only. 

The stiffeners are assumed to be identical line supports exerting trans­

lational and rotational constraints on the plate. The plate is excited 

by a loading intensity p exp(-iKx) exp(imt) per unit area. K is the 

wave number of the loading in the X-direction. This loading corresponds 

to harmonic pressure waves traversing the plate in the X-direction only.

Since the loading is independent of Y, so also must be the 

response. It is therefore convenient to consider a unit width of the 

plate which extends infinitely in the X-direction. This makes it 

effectively equivalent to a periodically supported beam (see figure 1.2) 

tha analysis of which (excluding the sound radiation aspects) has already 

been reported in Chapter 2. Following the outline of that analysis this 

chapter will include these aspects. The extended analysis of the plate 
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stiffened, in both perpendicular directions will form the subject of the 

next chapter and will then include the Y depend.ence of the loading as 

well as that of the induced response.

3.3 Acoustic Effects

3.3.1 Inclusion of the acoustic radiation in the equation 
of motion

The pressure at any point in the acoustic medium adjacent to 

the plate must satisfy the wave ec[uation

(3.1) 
c at

dubject to the boundary condition that at the surface z = 0, the normal 

particle velocity in the medium adjacent to the beaia must equal the normal 

velocity of the plate.

From equation (2.^+) the normal beam velocity is given by 

m=-!-co -i(u -i-2miT)-^ 

V7 (x, t) = itu /^ A^e (3.2) 
GO

from which it follows that the pressure must be expressed in the form 

in=+co -i(y .+ 2m7r)-^ . , 
^(x,z,t) = I e X f^(z)e^“ (3.3) 

in=-co

Each term of the series of equation (3-3) must satisfy the wave equation. 

Substituting the general term in the wave equation, the following ordinarj^ 

5_ifferential equation for ?g^(2) is obtained
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Evidently then

EL

-iK
B e 
m

where

K ^ 
mz

2mTr 2
(3.6)

The B 
m

term in equation (3.5) represents the pressure being radiated away

from the beam surface by virtue of its vibration. The C term represents

f c
m

ti) \ 2 
c'

t
X

the reflection of the B wave 
m by another boundary. It will be assumed

here that no such other boundarie exist so that the pressure will be given

by only one of the terms in equation (3.5). Thus it may be written as

V = e

The velocity V of the particles of the acoustic medium at z = 0 is

given 13y

V

where K

s^=

ni=-oo

*9z 'z=0

K 
mz

(3.8)

is the wave number of sound

and p is the density of the acoustic medium.

After equating (3.2) and (3.8), B is found to be equal to

A imp C/(K /K) and 
m mz - the radiated pressure may then be expressed as

m=:f 00

m=-oo

imp C -i(h +2tmr)-^ 
e ^

-iK z . , 
mz imt 

; e (3.9)

Kp C ^m^ 
- a

? -^ e

r

m
C

A
m
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This represents the pressure radiated from one side of the beam. If the 

contribution of both the sides of the beam is to be considered, this 

expression may again be used with values of C and p applying to the 

other side and the two contributions added.

The radiated pressure at the surface of the beam (i.e. at

, affects the beam vibration and must therefore be included in the equation

of motion of the beam. After the assumed displacement solution has been

substituted into this it becomes

[dC
p + Pmir imp C --i(p +2mTT)-^ -ilj

J?.
X

(3.10)

4 2
X

Po^
X

3.3.2 Sound pressure arid sound power radiated

From equation (3.9)

^r
m=-°°

iwKp C 
-a
K
mz

-i(lj +2miT)^ ' 

e e
-iK 

mz iojt 
e

ni=+co

ni=”

. 2 
iw Pg^ 

mz

-i(p +2miT)-— 
e ^

-iK 
mz iwt 

e (3.11)

Next we obtain Il(m) the space time average of the sound power radiated

per unit length of the beam at frequency m The contributions from

all the harmonics must be added.

Power radiated per bay length

SL
X

p Vdx (3.12)

A 
m

e
z

o

where p and V are the pressure and velocity for z = 0.

Hence, Il(m) the space-time average power radiated per unit length is
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given by the following relation:

1
&

X _______

If P. and are complex quantities

(3.13)

as is the case hereV

o

1
2 
X

r X
g Ee(p^V*)dx

o

(S.lli)

where V* is the complex conjugate of velocity.

(See Appendix C for the method to find the time average of

the product of two complex functions.)

%ien the expressions for p and V* are substituted from

equations (3.11) and (3.2) respectively, equation (3.1^) yields

2 
m=+°° 0) p C

\ K /K
2]]^=:^oo mZ

(3.15)

where the summation extends over all real values .of K 
mz

3.U Equations for the Coefficients of the Series

As in Chapter 2, we may use the principle of virtual work to

derive the system of simultaneous equations for the determination of

A *s 
m

VJhen the acoustic loading terms are included, these equation:

become for m to

[d(- K , /K 
m'z —

u + 2mTr 
X

TT

0 for

= p j?. for m’ = 0 (3.16)

+ 221'fr . 2

I K. 

m=-'^

P

X

2

A 
m

m=:—00
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This equation is identical to the corresponding equation (2.1o) in 
icop C

Chapter 2, except for the term (-^—/i^^ which allows for the effect of 
mz —

radiation. When K
mz

is real, it is equivalent to additional damping

in the "beam, and when K^^ is imaginary, it has an additional mass or

stiffness effect.

As in Chapter 2 equation (3.16) may be written in the non-

dimensional form, by use of the following non-dimensional parameters:

4
Frequency parameter fi = (3.IT)

where D' is given by D = D*(l + iri)-

(y^ is the beam loss factor).

Transverse stiffness parameter

Rotational stiffness parameter

G X

D'

D'

Loading parameter P

p h
Medium-beam density ratio p = .--- 

b

z-wise phase parameter p = K h

(3.18)

(3.19)

(3.20)

(3.21)

(3.22)

(3.23)

K

K

Using these non-dimensional parameters the equation (3.16) now becomes

[(1L.+ 2m’TT) (1 + ip) - n + —-—- 3 A I 
mz 

m=+<»
A
m

m=+™
K y (p + 2m'n')(p + 2m'tr)A 
r X m

_00

= 0 when m* t^ 0 m* = _ca "to +”

= P when m’ = 0 (3.24)

Another non -dimensional parameter which is used later in the text is
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the convection velocity parameter

where U 
c

CV = U 5-
c X

(3.25a)

is the convection velocity of the loading (= m/K ). The

convection velocity parameter corresponding to the velocity of sound C

K

8V (3.25b)

By solving a suitably restricted set of the above simultaneous 

equations, the A ’s can be determined. Once the A ’s are known, we can 

find the response at any point of the beam. This response would then 

include the effects of radiation damping. Also we would then be able to 

write the radiation pressure and the radiated power as given in the 

preceding sections.

3.5 Conditions for Real Radiation-

3.5.1 The radiating harmonics

Any one of the space-harmonic wave components will radiate real 

sound power provided the z-wise wave number of the corresponding sound 

wave component is real. Such a component will be called a ’radiating 

harmonic’. From section 3.3 (see equation (3.6) it is seen that the

z-wise wave number K^^ is given by

K 
mz

to \ 2 
c>

^x 2

The zero"^^ space harmonic (m = O) will therefore radiate provided

^Xx2 to \2
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The critical radiating condition for the zero harmonic may be said to 

exist when

i.e.

when (3.26)

This simple condition is equally simply represented in Figure 3.1 in 

which the abscissa is 0 and the ordinate is p . The lines OP, OR 

have the slopes + 1/8V at a given 0. If the excitation on the beam 

imposes a value p at a frequency n which lies within the triangle 

POR, the condition represented by equation (3.26) is satisfied and the 

th . . 
ge^o harmonic will radiate. We shall call the triangle POR the 'primary 

zone of radiation' to indicate its correspondence with the zero space 

harmonic which is the dominant term in the series.

If plane-wave harmonic excitation is being convected at speed

CV, then is related to 0 through

. X CV

Thus a line of slope 1/CV represents all the values of p imposed by 

this pressure field over the frequency range. If this line lies outside 

POR, the convection velocity of the excitation is less than the speed of 

th sound, and the zero term cannot radiate. However, it is possible that 

one of the higher terms in the series will radiate as the following argu­

ment shows.

One of the higher terms will radiate, provided 

p + Pmir 
X , m
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or if p-^ + 2miT < ^

Hence if point X on Figure 3.1 represents the imposed value of p^ at 

frequency fi, the m^^ harmonic will radiate, if the value of p^ + 2nnT 

lies within the primary zone of radiation. For the particular value of 

X shown, the harmonics m = -U, -5, -6 and -7 all satisfy this condition, 

so all these will radiate. If p lies within the primary zone of 

radiation (at Y say) several harmonics may still radiate provided p^ + 2mTi 

also lies within the zone.

Next consider the frequency zone fi < ^(^* ■ The diagram here is 

dixdded into triangles the sides of which are parallel to OP and OR (slopes 

+ 1/SV) and the apiiStces of which are Pit apart. If p in this zone falls 

inside one of these hatched triangles, then subtraction (or addition) of an 

integral number times Pit will not bring the value into the primary 

radiation zone, so no wave components can radiate. These hatched triangles 

may therefore be tenned as ’dark zones’ or 'zones of no radiation’. If 

p^ for n < fi^ lies outside these hatched triangles^ the subtraction (or 

addition) of an integral number times Pit will bring the value into the 

primary zone and true sound radiation will then result. It is easily 

shown that the value of fi^ is it,SV.

To evaluate the sound power radiated at a given frequency, the 

number of terms included in the series (equation 3.11) must include all 

"^^e radiating harmonics otherwise the misleading conclusion may be drawn 

that no sound radiation is possible at that frequency. However, very 

high order harmonics may still be neglected because their contributions 

to sound power will be negligible.

— 59 —



3.5.2 The frequency bands of radiation

We now show that bands of frequencies exist in the range

0 < n < ^(8V) in which sound can or cannot be radiated. Suppose plane 

harmonic pressure waves of all frequencies are convected over the beam 

at a speed corresponding to, say, CV = SV/7 (see now Figure 3.2). The 

values of p in this wave field are represented by the line OABCDEF.... 

Since the segments OA, BC, DE lie in the dark zones, no sound is radiated 

in the corresponding frequency bands by any of the space harmonics generated. 

These segments therefore define frequency bands of no radiation. Between 

these bands of real radiation exist.

It is easily shown that the frequency corresponding to point A 

on Figure 3.2 is given by

CV SV

similarly the upper bounding frequency of the band of no radiation is 

N+
2NiT

CV SV

(3.28)

and the lower bounding frequency of this band is

The frequency bandwidth

2(N - 1)^
1 1
CV " SV

(3.29)

of the N band for radiation is

AO
rad ^(N+1) N+

(3.30)'sv '

" ^0



If radiation is to occur at all frequencies, i.e. AO then we
—:— ' rad 

must have CV = 8V which .also defines the boundaries of the primary zone 

of radiation.

It is evident also from Figure 3.2 that with a pressure field 

converted at speed CV (< 8V) there must be Nl('g^) bands of no 

radiation where Nl(x) signifies 'nearest integer to X'.

3.6 Sound Power Radiated by Random Convected Loadings

3.6.1 The sound power spectrum and mean power radiated

8^(0, p), the spectral density -of the power radiated and 

that of the exciting pressure, are functions of 0 and 

and are related by

s (n, p) = 8(a, p) |Y(n, p,J|^ (3.31)

where Y (Q, p ) is the power admittance function. It equals the

power radiated per unit length of the beam when excited by harmonic pres­

sure of unit amplitude at frequency 0 and phase constant p . It can 

be derived from equation (3.15) in the following manner (see Section 3.3.2).

Let the value of A per unit harmonic pressure amplitude at 

frequency 0 and phase constant p^ be A(n, p^J; then

m p C g

m=-™ mz —

where the summation extends over all real values of K* It is convenient 

to represent this in a non-dimensional form for computational purposes. For 

this we can divide equation (3.32) by the dimensional parameter &^/(ymDO'^.
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Thus

|Yp(n, (3.33)

The power spectral density of the radiated power can be obtained as

function of frequency alone by integrating equation (3.31) over all p_, 

(3.34)

The total time averaged power radiated <n> in the frequency band

can be found by integrating over this band, i.e.

<n> = f f 8(n, p^J|Y^(n, p,)pdu^dn

0 0

<n> may be referred to as the total mean power or mean power in 
band 0 < 0 <
The non-dimensional form of this is

a frequency

<n> S_(o, p )|Y (o, p)|'^dpd^

0 0

(3.36)

This is in a general form suitable for calculating the response due to

any form of convected pressure field including a boundary layer pressure

field

3.6.2 __Ci^putation__of_smmd_2gw6r_^pect^

Computations have been performed to determine the influence of 

the number of terms on the calculated power spectral density of sound power 

radiated at different frequencies and on the total mean values. As in Chapi 

2, the computations were performed on ICL 1907 computer. The general 

scheme of computation is the same as given in Appendix B, except that the

0 < n < 0^
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sound, power has been computed rather than the curvature. The computation 

was performed with an H step of 0.4.

The specific structure for which the computations were made had 

the following non-dimensional characteristics.

K = 4.0 
r 

= 10^

n = 0.02

Two specific excitation fields were considered.

(a) Random plane waves having a constant pressure spectral density over 

the non-dimensional frequency range 8 < 0 < 24. Different convection 

velocities from CV = 2 to CV = fO were considered.

(b) Boundary layer pressure fluctuations having the same constant power 

spectral density over the non-dimensional, frequency range 8 < 0 < 24.

Only one convection velocity was considered, i.e. CV = 4.0. The 

boundary layer decay parameter (see Appendix A) = 0.1.

The sound velocity parameter SV = 10. .

3.6.3 Results for plane wave excitation

Figure 3.3 shows the spectral density of the power radiated aL 

different frequencies, when a different number of terms are included in 

the series and the beam is excited by subsonic plane waves having CV = 2.0, 

SV = 10.0. It is seen that when three terms are included in the series, 

the evaluated radiation is very different from the results when five, 

seven or eleven terms are included. The values given by five terms and 

seven terms are however quite close to each other. Seven terms give 

results so close to those given by eleven terms that it is very difficult 

to show the difference on the graph.
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It is seen that there is no radiated power till a frequency si = 

10.8. Then there is a hand of radiatidh up to 0 = 1^.6. Thereafter 

there is a dark hand up to 0 = 21.2 wherefrom the radiating hand of fre­

quencies again starts. In the latter radiating hand, i.e. from n = 21.2, 

the power radiated is of the order 10 times that in the first radiating 

hand. In this hand the three term curve does not appear at all because 

if only three terms are included in the series for the displacement, none 

of these terms yields a supersonic velocity.

Figure 3.4 shows the variation of the mean value when different 

number of terms is included in the series solution for the beam excited by 

a plane wave with CV = 4.0, SV = 10.0. It is seen that except for 3 term 

solution, the agreement between 5» 7 and 11 term solutions is very good. 

At CV = $ the 7 term value differs from the 11 term value by only about 

one per cent while the 5 term value varies by about three per cent. Thus 

it may be seen that when mean- value is to he calculated for the frequency 

ranges lying in the first hand of free propagation, only 5 terms need he 

included in the series.

It may be noticed that there is a peak in the curves around CV = 

3.5. It is because for all convection velocities most of the contribution 

to mean , value is derived from values near the peak and these peak values 

are very high for CV = 3.5 (see Figure 3.11). This may be explained by 

studying Figure 1.4. In the hand of free propagation, segment B'C* will 

cause secondary coincidences for CV - 3.5. Hence a large response for 

this convection velocity.

Figure 3.5 shows the effect of the number of terms on the peak 

spectral density of the power radiated in the frequency range 8 < C < 24
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for a range of convection velocities. The sound velocity parameter 

assumed for the purpose of this computation is 10.0 so that the power 

radiated is plotted for subsonic convection velocities. The beam considered 

has K^ = Ij-.O, K^ = 10 and n = 0.02. For CV = 4.0 if 5 terms are included 

in the series, the computefl value of the peak radiated power is approximately 

ten per cent higher than the value obtained by including eleven terms. The 

power computed by including seven terms in the series is approximately five 

per cent higher than the value obtained with eleven terms in the series. 

The values at other convection velocities also show agreements of about the 

same order. Maximum variation from the values obtained by eleven terms 

occurs when only three terms are included. At CV =^ 5-0 the 3 term value is 

twenty per cent higher than the 11 term value though at CV = 6.0 the agree­

ment is considerably better.

Figure 3.6 gives the mean value of the power radiated per unit length 

of the beam at different convection velocities of plane waves. Eleven 

terms are included in the series. The full curve refers to the stiffened 

beam and the dotted curve is for the unstiffened beam, other particulars 

remaining the same. The sound velocity parameter assumed for computations 

is taken as 10.0 so that the convection velocities with CV < 10.0 are sub­

sonic. It may be observed that even for subsonic convection velocities 

of the loading, some radiated sound is present for the stiffened beam while 

no such power is expected for the unstiffened beam. For super-sonic convec­

tion velocities (CV > 10) the power radiated by the stiffened beam is about 

7 dB higher than for the uhstiffened beam. It is well known that the 

radiation resistance of structures carrying supersonic flexural waves is 

p(^ per unit area. Therefore the difference in levels of sound power radiated 

by stiffened and unstiffened beams for CV > 10 is explained by the difference 

in the corresponding response levels.

It may seem surprising that for the stiffened beam there is no sound 

power radiated for subsonic velocities greater tha,n 6. This may be
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explained by the fact that for CV's > 6.0, the minimum frequency to be 

in the radiation zone is outside the range 8 < 0 < 24, over which the 

power is being averaged in the case presented. This may be verified 

from Figure 3.2.

Figure 3.7 studies the effect of including different numbers 

of terms on the peak value of sound power radiated in the given frequency 

band at different convection velocities. Since the convection velocity 

corresponding to the velocity of sound was assumed to be 10.0, all the 

convection velocities plotted are supersonic. As a result of this 

situation the zero term in all cases is radiating. This explains 

why even the three term solution peak is quite near the 11 term solution 

peak for the cases plotted.

3.6.4 Boim^in/^^jayei^Excitati^on

Figure 3.8 shows the wave number spectrum of the radiated power 

or the contribution to the sound power from different wave lengths 

present in the boundary layer pressure field. This corresponds to 

different p *s where p = K & . It may be noted that for the case 
X XXX 

plotted (n = 24.0, CV = 4.0, K = 4.0, K^ = k/ and p = 0.02) the 

sound power radiated at p = 8.0 is of the order of lO"^ times that 

at p =,2.0. This variation enables us to obtain the sound power 

radiated in the case of excitation by boundary layer pressure field by 

integration over a limited range of p's, though theoretically speaking, 

all wave lengths must be considered for the exact analysis. The diagram 

also illustrates that at a given frequency, it is possible to have a 

range of wave lengths which will not radiate (see range of p_?s between 
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2.0 and 4.0). This is consistent with the principles illustrated by 

Figures 3.1 and 3.2.

Figure 3.9 shows the effect of the number of terms on the peak 

value of the sound power radiated for the same beam under excitation by 

boundary layer pressure field of convection velocity CV =. 4.0 and boundary 

layer decay parameter 0.1. The results by including only three terms 

are very different from 5, 7, or 11 term values. The 5-term value is 

approximately 11 percent higher than the 11-term value, whereas the 7- 

term value is approximately 4 percent higher.

Figure 3.10 shows how the computed mean power varies with the 

number of terms used in the series for the same data as applies to 

Figure 3.9. Except the 3-term value, all values have a very much closer 

agreement than they have in the case of the peak response which is shown 

in Figure 3.9. The maximum variation then is between the 9 term and 

the 11 term value, and is of the order of 6 percent.

3.6.9 Comparisons of Sound Power Spectra

Figure 3.11 shows the spectral density of sound power radiated 

when excitation is by subsonic plane waves with CV =. 2, 3.9» 4.0 and 9.5. 

Also drawn on the same figure for comparison is the spectral density of 

sound power radiated when the excitation is by boundary layer pressure 

field having CV = 4.0. It is seen that in the case of excitation 

by plane waves, there are bands of real sound radiation. As the 

convection velocity increases, these bands start at higher frequencies. 

Such bands of radiation have been predicted in Section 3.9.2. It is 

also seen that the sound radiated by plane wave with CV = 3.9 (also see 

Figure 3.4) is higher than for any other plane wave. This is explained 
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in Section 3.6.3 with the help of Figure 1.4.

In the case of boundary layer excitation, there is sound 

radiation at all frequencies (see the chain dotted curve). This is 

explained by the fact that at a given frequency (for boundary layer 

excitation); there is a continuous spectrum of wave lengths, some of 

which must radiate. The presence of peaks in the sound power curve 

may also be explained by this spectrum of wave lengths. However, the 

maximum contribution to sound power for boundary layer excitation is in 

the frequency band where the plane wave of the same convection velocity 

(CV = 4.0) radiates, though the corresponding levels are on the whole 

higher in this case. This difference in levels may be explained by the 

fact that at a given frequency the boundary layer pressure field contains 

all wave length components including the one corresponding to the plane 

wave at that convection velocity. The difference in the sound power in 

the two cases then will be the contribution by these additional wave 

length components not present in the plane wave. (The exact comparison 

between powers radiated in the two cases must, however, take account of 

the corresponding spectral densities.) At subsonic velocities of 

loading, the contribution by low wave numbers can be considerable because 

the corresponding component phase velocities are supersonic. This enables 

the zero order space harmonic to radiate, though the falling spectrum at 

these wave numbers makes its contribution smaller. But it could still be 

comparable with the contribution by the wave number K = (n/CV)/2, 

corresponding to which only one of the higher terms may radiate, and for 

which the spectrum peaks.

At supersonic convection velocities of the boundary layer, the 

zero term can radiate. Also, the pressure power spectral density peaks 
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at the wave number of the zero term. The sound radiation contribution 

from this wave number in the case of boundary layer is, therefore, large 

compared to the contribution from other wave numbers. Thus the sound 

power radiated by plane wave loading and that by boundary layer pressure 

field will be of similar magnitudes when convection velocities are super­

sonic. For such convection velocities the modelling of the boundary 

layer pressure field by a plane wave of the same convection velocity is 

therefore a more reasonable approximation than for subsonic convection 

velocities, where the contributions from small wave number components of 

the boundary layer may be significant. However, this could also be a 

reasonable approximation for subsonic velocities if the frequencies of 

interest are high enough to ensure sound radiation by the zero order 

term in the series.

3.7 Conclusions

In this chapter the series solution proposed in Chapter 1 has 

been applied to obtain the sound power radiated by the stiffened beam. 

It was seen that sound radiation was possible even at a subsonic velocity 

of loading and this was seen to be due to the presence of periodically 

spaced stiffeners. A simple diagram was developed to identify the terms 

in the series which would lead to true sound radiation. At supersonic 

velocities the zero term is able to radiate, and since this term is a 

dominant term of the series, the minimum number of terms necessary to be 

included in the series for reasonable accuracy is smaller than for the 

case of subsonic convection velocities where only the higher order terms 

may radiate.

- 69 -



It is seen that the series representing the sound power radiated 

converges satisfactorily. All available evidence suggests that if eleven 

terms are included in the series, the sound power evaluated would be very 

accurate. Inclusion of only five terms gives reasonable results. The 

convergence is better for the mean value than for the peak value in the 

frequency range discussed.

It has been shown that for a plane wave loading convected at 

subsonic velocities, there are bands of radiating frequencies when the 

frequencies of excitation are below a certain value. This value depends 

for a given velocity of sound, on the characteristics of the vibrating 

structure.

The comparison of the sound power radiated by stiffened and un­

stiffened beams has shown that at supersonic convection velocities of 

loading, the stiffened beam radiates much more power than the unstiffened 

beam. (There can be no sound power for unstiffened infinite beams at 

subsonic velocities of loading.)

This chapter deals with the sound radiation when the excitation 

frequency range is in the first band of free propagation [28]. However, 

it is expected that in the higher bands of propagation, the number of 

terms required to be included in the series solution for a given accuracy 

will be smaller. This is because at higher frequencies, the zero 

harmonic is more likely to be a radiating harmonic. Since this is a 

dominating term, only a small number of terms will theh be necessary to 

be included in the series for obtaining a result with a reasonable accuracy.

In the case of excitation by boundary layer pressure, there is 

a range of wave numbers K^ present at a given frequency. It is possible 

that low values may radiate. If the radiated sound power is to be calcu-
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lated. accurately, the wave number spectrum must be known accurately in the 

region of these low wave numbers. It would thus be of practical interest 

to investigate the effect of taking different expressions for the wave 

length spectrum on the sound power radiated by the structure. This aspect 

is outside the scope of the present study. However, the method presented 

in this chapter can be used to calculate the sound power radiated by 

ideal, infinite, periodic structures subjected to any general excitation 

if the wave length-frequency spectrum of that excitation is known.
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4. RESPONSE OP ORTHOGONALLY STIFFENED PLATES TO CONVECTED LOADINGS

^'^ Introduction

Chapters 2 and 3 dealt with the response of a stiffened beam to 

random convected loading obtained in a series of space harmonics. Stiffen­

ers were assumed to be line supports exerting rotational and translational 

constraints on the beam. Such an elastically supported beam can be con­

sidered as a good representation of many stiffened aerospace structures 

if it is assumed that their response is uncorrelated across one set of 

stiffeners, usually the frames. However, such a situation does not 

exist in practice when the excitation is a boundary layer pressure field. 

Proper correlation between responses across the frames must then be taken 

into account. This requirement calls for a more realistic model. One 

such model is provided by a plate on line supports which extend in the 

two perpendicular directions. This chapter deals with the analysis of 

such a model.

As in the previous chapter, stiffened plate will be treated as 

a uniform plate subject to the forces and moments applied by the supports 

which simulate the stiffeners.

4.2 Representation of the Two-Dimensional Convected Pressure Field

The periodically supported plate is excited by a loading intensity 

. X . y
p . p . >= " = (11.1)

' o

This general form is considered because most actual pressure fields can be 

analysed into components of this form. The random acoustic plane waves



and the boundary layer pressure field considered in the last two chapters 

were analysed into components of its one-dimensional version obtained by 

putting p = 0 in equation (4.1).

One of the usual cases in actual practice is the excitation by 

plane sound waves incident on the structure at an angle to the normal 

to the plate. If the velocity of sound is C the velocity with which 

the loading is convected across the structure is then given by trace 

velocity

C^ = C/sin * ' (4.2)

If A is the distance between stiffeners measured along X 

direction, then

W^ = (4.3)

If there is no convection in the Y.direction, then p = 0. 
y

It is possible to visualise an acoustic wave which moves across 

the plate at an angle inclined to both sets of stiffeners. This situation 

is also allowed for by the assumed loading intensity given by equation

(4.1), which includes a Y-dependent term. The wave number K of this 

loading can then be resolved into two components K and K for the 
X y

X and Y directions respectively, as follows:

K^ = K cos G (4.4)

K = K sin 6 (4.$)
y
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where 6 is the angle between the direction of convection and the X- 

axis.

It can be seen from equations (i^.^l) and (^1.5) that

K^ = + K^ (4.6) 
X y

Now w and p are the phase differences in the exciting pressures at 
X y

two points apart in the X-direction and 5.^ apart in the Y-direction.

They are related to K^ and K through:

K 2^'x

K & 
y y^y

(4.7)

(4.8)

The boundary layer pressure field exciting the stiffened plate

may also be analysed into component pressures of the form given by equa­

tion (4.1). This is done in terms of a wave length-frequency spectrum . 

obtained by a triple Fourier transform of the space-time cross-correlation 

function of the boundary layer. This takes care of both longitudinal

and lateral correlations of the excitation. Appendix A gives details of

this transformation and obtains the (n or (0, IC Kg) spectrum

of the excitation where ^1 and K_ are the wave numbers in the

direction of convection and the lateral direction respectively.

4.3 Representation of the Structure and Stiffnesses of Supports and 
response

4-3.1 Representation of the structure

The structure considered may be visualised as a flat infinite 

imifoimi thin plate with two sets of equi-spaced stiffeners (see Figure 2.1). 

- 74 -



The X and Y axes are in the mid-plane of the plate and the Z axis is 

normal to this plane. The origin is taken at the point of intersection 

of two perpendicular stiffeners. The plate is thus divided into an 

infinite number of elementary sub-panels formed by the intersecting 

stiffeners. Let k be the spacing measured in the X direction between 

the Y-wise stiffeners and let & be the spacing between the X-wise 

stiffeners. & and & are not necessarily equal to each other but are 
X y 

constant. The properties of all the X-wise stiffeners are identical. 

This also applies to Y-wise stiffeners. However, the properties of one 

set may be different from the properties of the other set.

In an actual structure of the aircraft fuselage type, the X-wise 

set could refer to the frames and the Y-wise set to the stringers.

4.3.2 The rotational and translational constraints of the 
supports

Though the method employed in this chapter to analyse the res­

ponse of the multi-supported plate can allow for any type of constraints 

applied by the supports, expressions in terms of the actual physical 

properties of the stiffeners will be used so that a comparison can be 

made between theoretical and experimental results in an actual case.

Lin [4] has derived these expressions for faces and moments 

applied by the stringers to the skin of a skin-stringer array. His 

expressions will be used here for both sets of stiffeners, viz the 

stringers and frames. In these expressions the inertia effects of both 

the sets of stiffeners will be allowed for. In the following parameters 

of the stiffeners the subscript x refers to the X-wise stiffeners and 

y refers to the Y-wise stiffeners.



Thus »

k' = (EC ) k' = (EC ) 
X ws X y ws y

B^ = (aj\ B^ . (QJ)^

Cy-(PA)y (^.g,

^ = '"^'x ^y ' (P^.'y

where

C is the warping constant of the stiffener cross section about the 

point S, i.e, the point which is the projection of the shear centre 

on the ’skin’ (see Figure ^4.1)

E is the Young’s modulus of elasticity of the stiffener material 

I^- is the moment of inertia of the stiffener cro-ss section

G is the shear modulus of the stiffener material

J is the torsion constant of the stiffener cross section 

p is the density of the stiffener material

A is the area of cross section of the stiffener

Ig is the polar moment of inertia of the stiffener about S

The following expressions for the transverse and rotational 

constraints applied by the stiffeners to the skin may then be written 

down after Lin [4].

Rotational moment of the Y-wise stiffener

<"L=>y
3 ^w

4
3y 3x

(GJ)
9^w

Sy'-Sx

9w
Sx

(4.10)'^L'y
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Rotational moment of the X-wise stiffener

(4.11)

Transverse force applied, "by the Y-wise stiffener

(4.12)

Transverse force applied, by the X-wise stiffenei-

C^h’x
9^w

9x
+ (pA)^w (4.13)

The above expressions for the restraints of the stiffeners 

rivetted to the skin may be used for the integral stiffeners as well.

Figure 4.1 gives the correspondence between the rivetted stiffeners and 

the integral stiffeners for this purpose.

4.3.3 The governing equation for the plate motion 

The equation of motion

of stiffeners and excited by the

of the plate reinforced by the two sets 

loading intensity p e

IS

D
S^w

9x^3y^
2

2 -iu,(i/t^) -ip (%/tJ 
m w w = p e e e

where D is the flexural stiffness of the plate 

and m is the plate meass per unit area.

Hysteretic damping present in the structure may easily be 

allowed for by malting the stiffness D in the above equation complex,
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i.e., by substituting D = D*(l + iri^) where n is the plate loss

factor.

U.3.^ The series representation of the response

As observed in the work reported in the previous chapters, under 

a steady state forced vibration of the infinite stiffened structure, the 

phase characteristics of the response must follow the phase character­

istics of the loading. On this basis, the displacement W(x, y) of a

point (x, y) on the stiffened plate under excitation by a loading 

intensity p exp(-ip x/t ) exp(-ip y/J!, )exp (itut) may be expressed as 
o XX y y

follows

^)t iwt 

y e
m,n=+«'

W(x,y) =
m,n=-'»

A 
mn

-i(p +2imr)— -i(p + 
e e (4.15)

Equation (4.15) satisfies the condition that the phase difference 

between the displacements at any two points in different elementary sub­

panels is the same as that between the excitation pressures at these points.

If the plate has only X-wise stiffeners, m in equation (4.15) 

is put equal to zero. If it has only Y-wise stiffeners, n is put equal 

to zero. In either of these special cases the series is summed over only 

one integral variable, n in the former case and m in the latter.

In the particular case when the supports have infinite trans­

lational stiffness (EI -> «■) and infinite mass (pA -> »), no plate 

displacement is possible at support locations.

Hence at the support x = 0, W = 0,

m,n=+“ “i(p +2mT)^ . , 
W(0,y) = I y = 0 (4.16) 

m,n=-oo
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Equation (4.16) must be true for all values of y. This is possible if 

m,n=+<”

m,n=-°o

Condition (4.17) must therefore be fulfilled by coefficients of the 

series in the case of the plate with transversely rigid supports.

4.4 The Acoustic Radiation

4.4 .1 IllclJjai^on_oi2_acoust_ic_rg:dhati^on_effect_2n_t2  ̂
governing equation

When the plate is vibrating in an acoustic medium the effect 

of the acoustic radiation on the vibration must be considered.

The pressure p^ at any point in the acoustic medium adjacent 

to the plate must satisfy the three dimensional wave equation

2

9P_ =-0 --- (4.18)
C 9t

Subject to the boundary condition that at the surface z = 0 (i.e., at 

the plate sumface) the normal particle velocity in the medium adjacent 

to the plate must be equal to the normal velocity of the plate.

From equation (4.15) "bhe noxmal plate velocity is given by

W(x,y,t) 10)
mn 

m,n=-=°

-i(y2n,)L .^^^

e e ye (4.19)

Fromihere it follows that the pressure must be expressed in the form 

m,n=+<” -i(p +2mTr)-^ ■-i()i +2mr)^ . ,
P^(x>y,z,t) = 2 e X e y y f^(z)e^'^ (4.20) 

m,n=-°°

Each term of the series of equation (4.20) must satisfy the wave equation.
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Substituting the general tenn in the wave equation, we obtain the 

following ordinary differential equation for f^|^(z)

.^f 
mn

-K f mnz mn
(4.21)

Evidently then

nm i e 
mn

-iK 
mnz

z
+ C e 

mn

iK z 
mnz,

(4.22)

where

K 
mnz

2 ^x 2mTT 2 2mT 2

c SL
y

(4.23)

The B 
mn

term in equation (4.23) represents the pressure being radiated

away from the plate top surface by virtue of the plate motion The C 
mn

term can only derive from the reflection of the B wave from 
mn

another

boundary We shall assume that such other boundaries do not exist

This makes C = 0 
mn

Thus

P^(x,y,z,t)

m,n=+°o -i(iJ +2mTr)-^ -i(p -i-2nTr)^ 
y B e e

mn
m,n=-«»

e
iK z . 
mnz imt

e

(4.24)

The velocity V of the particles of the acoustic medium at

z = 0 is given by

1

Kp C 
- a

1^1 z=0

1 Cl)where K = —
— C

p = the

m,n=+oo 
z

m,n=-oo

mnz
Kp C 
- a

density of the

Be ^e ye
mn

acoustic medium

(4.25)
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Equating (4.19) and. (4.25), B^^ can be expressed in terms 

of A^^. The radiated pressure may then be expressed as

Pr
m,n=+«> iu3p C

V A a- 
mn /Kj 

m,n=-« muz -

-i(p +2mTr^ -i(y +2mr)^ ~iK z . ,
X fy y mnz icute e ye e

(4.27)

Equation (4.2?) expresses the pressure radiated from one side

of the plate. If the contribution of the other side of the plate is to be 

considered, this expression could again be used but the velocity of sound

C and density p of the medium must then correspond to the acoustic

medium on the other side.

The radiation pressure expressed above can now be included in

the governing equation of the plate motion which modifies to

Dl^ 2

Bx Bx 3y^
+

11
9 w- 2

m (1) w + 
P Pr = Po

-iV^(x/l^) -it-yfy/ty) 
e e e

(4.28)

It is clear from the expression for p (see equation (4.27) that when 

^mnz ^^ real, it results in additional damping of the plate, and when 

K. g is imaginary, additional, mass effect results. Only in the former 

case is there a true sound radiation.

4.4 .2 Expression for sound power

Following the procedure of Chapter 3, the following expression

for 11(a)), the^time average sound power radiated by a unit area of the

structure at a frequency o), is obtained

m,n=+=o
11(a)) = I 9

m,n=-=°

2
0) p C
1- --7^ A A*
K /K mn mn 
mnz -

(4.29)

where A^^ is the complex conjugate of A 
mn
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For the deteimination of the power radiated only those values 

of m, n need he considered which lead to real values of K . Imaeinarv 
mnz 

values of K^^^ woudd lead to a pressure field which decays exponentially 

with distance z and is responsible only for the near field pressure.

It therefore radiates no sound power. The values of m and n for 

which K^^^ is real may he determined by using equation (1J..23). Then 

the terms in series corresponding to these values are called radiating 

harmonics. A graphical method of identifying radiating harmonics is 

given in Appendix E.

^.5 The Response of the Plate to Harmonic and Random Pressure Fields

.5•1 Equation for the coefficients of the series

When the forces on and in the plate are in equilibrium, then 

these forces represented by

together with the elastic constraint forces and moments of the supports

must do no net virtual work when moved through any one of the virtual

displacements

^^m'D .e

-i (p^+Pm’-rr)^

e *^ Ye

When W is represented hy the series form of equation (4.1$) this equation 

leads to a set of equations for the A ’s. Since the structure is 

periodic, the virtue,! work contribution from only one elementary sub­

panel (including its supports) need be considered. As done in Chapters 2 

and 3, the conjugate of the virtual displacement applied is used to 
i(p +2m’Tr)x/t i(p +2n’iT)y/t 

calculate the virtual work, i.e. 5A , ,e "e ^
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Taking the origin at the left bottom corner of the sub-panel, the con-

tribution of the plate alone (less supports but including acoustic effects)

to the virtual work is then found to be

6W
P J 

o o

& 2
Xf y 

^^m'n {D[(-
p + 2miT

X_____________

& SI 
y

2 co

+ 2miT 1^

y

m I 
P

-i(p +2mTr)^ 
e ^

-i(lj +2mT)^ 
e y ^y

+i(p^+2ni'TT)-^ 

e

The above expression

It takes care of the

i(p +2n'TT)^ 

e y e dxdy (4.30)

has a non zero value only when m = m'

effect of acoustic, radiation since the

and n = n'.

term allowing

for it has been included.

The contribution to the virtual work from the transverse

stiffness and transverse inertia of the Y-wise stiffeners (x = O) from

eq_uation (4.12) is eq_ual to

j6 
y 
^\'n

[ + 2n7r ) 
y\4

o'

Similarly

stiffness

m,n=+”

m,n=.

^\y

- C co } A e 
y nm

i(p +2n''7T)^ 

.e y dy

^y

n = n’

(4.31)

5W the contribution to the virtual work by transverse 
tx

and transverse inertia of the X-wise stiffeners may be evaluated

"^-^m'n' \n
m-n—co

p +2mr ,
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as
m,n=+<» p +2mTr ,

m,n=-«» y

5W 
ry

the contribution by the rotational stiffness and rotational inertia

of the Y-wise stiffeners to the virtual work may be written as

&
+ SniT

5W 
ry

m.n—™

p + 2mTT 
X

2m'iT -i ((p +2mr)/& )
e y

i ' (p +2n*TT) Cy/& )
} dy (4.33)

The above expression a non zero value only for n = n’.

Similarly 6W , the contribution to the virtual 
rx

work from

rotational stiffness and rotational inertia of the X-wise stiffener

is written as
SL

6W 
rx

m,n=-™
A 
mn

p + 2m'n

X

0

e

0

+

j!,

1 
y

y t 
y

- F^w^

^y + 2mi p + 2n'tr -i((p 4-2mTr)/& )

y

i((p +2m'TT)/A ) 
e ^ * } dx (4.34)

The above expression has a non zero value only for m = m*.

Now the virtual work principle requires that

6W + + 5W + 5W = 0 (4.35)
p tx ty rx ry

Evaluating the integrals involved in the various terms of equation (4.35)



and re-arranging, this equation leads to the following set of equations

in the non dimensional form:

TT
+ 2n'Tr)^

q

n^

2
^^ ^ra

y 
mnz

m,n=+«'

m,n=-<”
A 
mn

m * n=-=°
A 
mn

where

}

K
rx

"^tx

Frequency parameter 0

Rotational

"^ry

Rotational

K
rx

in,n=~=°
A , K 
m'n ry

+ 2miT) (|i

y
+ 2mr)(y

= m

0

p

&

when m* / 0, n

when m n 0

2
m

D'

stiffness and inertia parameter of

4 
q

m,n=+'»
\'n "^ty

m to

(4.36)

(4.37)

Y-wise stiffener

^ [A; p + 2mi y + PniT

stiffness and

y
y

y

(4.38)

inertia parameter of X-wise stiffener

& 
X

A R + 2nTr B y + Zmtr
2

E m 
X

(1
^x 3 

q

(4.39)

Translational stiffness

y

and inertia parameter of Y-wise stiffener

"^ty ir [Dy (
y

y -
(4.40)

Translational stiffness and inertia parameter o stiffener

C 0)'4

q"^tx

& ^ D 
irE-
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1
Aspect ratio q = (4.42)

Loading parameter P = p^ — (4.43)

The density ratio p = --- 
ra

(4.44)

Phase parameter in the z direction p = K h
mnz mnz

(4.45)

The non dimensional convection velocity parameter CV used elsewhere is 

defined as follows: 

in. 1
CV = (^): (lt.M)

The convection velocity parameter corresponding to the velocity of sound 

is designated as SV (= (^)^

The different non dimensional stiffness parameters above involve 

p^ and Py terms and are therefore wave length dependent. Each space 

harmonic associated with a particular m and n has a different wave 

length in the X and Y direction, thus meeting, in'effect, a different 

rotational or translational constraint. This wave length dependence of 

the constraints could not arise in the cases of the beam considered in 

Chapters 2 and 3 but has been allowed here.

Equation (^.36) constitutes a set of simultaneous equations 

from which the ^^Y be determined. Since all the elementary 

sub-panels are identical in every respect, considerations of virtual work 

contribution of any other elementary sub-panel would yield an identical 

set of equations. By solving a suitably restricted set of the above 

equations, the A ’s can be determined. Once the A *s are known mn mn 

we can find the response at any point on the plate. 
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k.5.2 The harmonic response of the plate

For a given plate, the response is a function of fi, p^ and

and is proportional to the excitation pressure amplitude Po The

displacement W(x, y), the X-wise curvature W(x'', y), the Y-wise

curvature W(x, y”) and the sound power n per unit area of the plate

may then be written down in the following formal manner:

W(x, y) = pY(O, p, P )e^^*

W(x", y) = p Y „ (n, p , W )e^^^ 
u X J X

n = /p!|Yp(o, \, kyJl^

(4.47)

(4.48)

(4.49)

(4.50)

where Y , Y „ , Y „ and |Y l^are the 'admittance functions* of the 
xy’ x"y’ xy'V ' p'

appropriate response, and can be defined in each case as the appropriate

response due to harmonic excitation intensity of unit amplitude under

conditions specified in the parenthesis. For example, the Y^ ».

may be derived from equation (4.15) leading to

m,n=+=o
I -A e 

mn 
m.n—'x'

-i(p +2mTr)'^ p + 2miT „

^y

u

e J e (4.51)

where A 
m,n

have been determined for a unit amplitude of harmonic excita-

tion intensity. Since all A^^’s are proportional to p , the admittance
•'■o’

functions referred to above can be found directly.

4.5.3 Response to random convected loads

For any random excitation of the plate, the power spectral 
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densities of "both excitation and response being functions of fi, p^ and 

U are related as follows:

®W(x,y)^^’ ^x’ ^y) ®p^^’ ^x’ '"^y^l^xy^^’ ’^x’ '"^y^ I (^-52)

^W(x",y)("' '^x' ^y^ " %("' ^x' ̂ yH^x",y^"' ^x' ^y^l^ (^"^^^^

^W(x,y")^^' ^x' ^y^ "^ ̂p^^' "^x' ̂ yH^3qy."(^: P^: Wy)| (4.54)

^(n, :^ ' :^y^ "" %(^' l^x’ '"^y^ l^p(^’ ^x’ ^y^l^ (4.55)

When these functions are integrated over the whole ranges of and u , 
y

y

the power spectral density is obtained as a function of frequency alone.

For example,

®W(x'',y)< ‘^ = J, 

0 0
>00 >00

S (fi) = S (fi,

o 0

8^(n, y^, Py) k(x",y)((^,

aPx<^Py

(4.56)

(4.57)

The total mean square value of the response quantities in the frequency 

band 0 < Q < fi^^ is found by integrating this over this band.

When the response quantity involved is II, the sound power 

radiated per unit area, the total mean value is given by

<n>
j J J 

0 0 0

2
8p(o, P^'P y^'^p^^' ^x' ^y^' (^P^'^Py^ (4.58)

Appendix A shows how the two dimensional boundary layer pressure 

field may be analysed into a (p , p , o) spectrum. Theoretically 

speaking, the response to the boundary layer pressure field then can be 

obtained only by integrating the response over all p 's and p *s (see 
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equations (4.56) and (4.57))* However, the knowledge of the wave length 

frequency spectrum can enable us to cut down considerably the summation 

required for a reasonable accuracy. It is shown in equation (A.24) that 

most of the contribution to the pressure spectrum will derive from low 

values of p (low order y-modes) and from p^'s near the value given 

by = n/CV, approximately. If while selecting the values of p 

and p^ over which the response is integrated, these facts are taken into 

consideration, the results obtained will be reasonably accurate for 

curvature response. (for sound power contribution other wave numbers 

may be significant, see section 3.6.5«)

When the boundary layer convection is inclined to the X-axis, 

the value ofthe spectral density of excitation is best obtained in terms 

of- K^ and Kg, which are the wave numbers of the excitation in the 

direction of convection and the lateral direction respectively. (See 

Appendix A). A set of K^ and Kg has a corresponding unique set of 

p^ and p imposed on the structure.

The procedure for determining the response of the plate due to 

a boundary layer pressure field convected in a direction inclined at 8 

to the X-axis may be set out in the following steps:

1. Select the range' of K^'s and Kg's over which the integration of the 

response is-to he obtained. This is decided by the accuracy desired 

in the light of the fact that the spectrum of the boundary layer falls 

rapidly at high values of lateral wave numbers and that the spectrum 

tends to peak at a wave number K^ = (See Appendix A for details.) 
c

2. Take one set of values of K^ and Kg in the above range. Calculate 
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the corresponding p and p imposed on the structure as follows: 
X y

p = K cos 6 - K. sin G 

(4.59) 
p = sin G + K. cos G

3. Compute the admittance Y(0, p , p ) of the response under these 
y

conditions.

4. Multiply |Y(^l, p, p )|^ found in step 3 by the spectral density 

of excitation for K. and K. taken in step 2. The result is the 
13

spectral density corresponding to the actual excitation for K^ and

$. Repeat steps 2-4 with a new value of K^ for the same K , and add the 

response to that found in step 4. '

6. Continue steps 2-5 till all values of K, are exhausted.

7. Repeat steps 2-6 with a new value of K^.

8. Repeat step 7 till all values of K^ are exhausted.

The result then would yield the spectral density of response contributed 

by one frequency component. This may be integrated over all frequencies 

to obtain the r.m.s. value. The flow diagram corresponding to the 

procedure outlined above is shown in Appendix D.

When the excitation is a random acoustic plane wave of a given 

convection velocity CV inclined at angle G to the X-axis, (O, p^, p^) 

spectrum is non zero only for unique values of p and p which are 

then functions of 0, CV and G (see equations (4.4)-(4.5)). The mean 

square response to such an excitation is then given by

< w/„ \ > = s (n)lY „ (n, p (n), p (n))|^dn (4.6o) 

0
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By analogy similar expressions could then he written down for the mean 

square of other response quantities.

4.6 ComputaMon and^Bosj^^

Computations have been performed to determine the influence on 

the response of the following factors:

(a) the number of terms included in the series, 

(b) the damping in the structure,

(c) different stiffnesses of stiffeners and of the direction of convection.

As in earlier chapters, these computations were performed using 

an ICL I90T computer, the system of simultaneous equations for the co­

efficients being solved by using a standard ICL Fortran subroutine 

F4CXACSL. This subroutine allows for complex coefficients in the system 

of simultaneous equations which is the case when there is damping in the 

structure or when acoustic radiation effects are included.

Since some of the broad features of the solption of one 

dimensional version of the stiffened plate problem have already been 

illustrated in Chapters 2 and 3, computation for this chapter was kept 

to the minimum to minimize computation cost. No actual computation has 

therefore been made for the boundary layer excitation. However, a com­

putational procedure for this case has been included in Section 4.5.3 

and the flow diagram for this procedure has been given in Appendix B. 

Curvature and sound power results presented were normalised as in Chap. 2 an 
4.6.1 Structural details

The structures computed for have the following properties and 

dimensions.



(a) Structure A

h = 0.028 inch

& = 
X

4 .5 inches

& = 
y

9 .0 inches

(c ) = 0.002666 in'^
ws X

=0.0000099 in^)
ws y

J = 
X

0,
.000003414 in^

J = 0,
.0000034 in^

0,
.32808 in^

(b) structure B

A = 0.1176 square inch

A = 0.0585 square inch

t^) = 0.002499 in^ 

p = 0.101/386 Ib.sec/in^

\) = 0.3 

E = 10.5 (10^') Ihs/sq.inch. 

= 0.022756 in^

h = 0.028 inch

2 = 4.5 inches

A = 9.0 inches 
y
(^ws^x 0.023996 in^

(C ) =0.C000444 in^ 
ws y

J = 0.000030732 in^

J = 0.0000153 in^

(l^Tx = 0.32808 inA

A = 0.1176 square inch

Ay = 0.0585 square inch

(I^)^H= 0.09335 in^

(I^) = 0.011245 in^

p = 0.101/386 Ih.sec /in

E

(The above values correspond, to the ty

= 0.3 :

= 10.5 (10^^ Ib/sq.inch.

= 0.022756 in^

)e of structure used for experi­

mental work described in the next chapter.)

The above structures were considered with n = O.O5,

n = 0.15 and n = 0.25 . Also considered was the effect of varying the 
p .p 

stiffness of stiffeners (relative to those of structure B) with other 

characteristics being constant.

The curvature results refer to x-wise curvature computed for

x/&^ = 0.5 y/& - 0.5.
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4.6.2 The excitation considered

The following specific types of excitation were considered.

(a) A random acoustic plane wave at an oblique angle of incidence.

This effectively means a random plane wave of supersonic trace velocity 

convected in the direction of the X-axis. The angle of incidence 

considered gave the trace velocity as l.$ times the velocity of sound.

(b) A random plane wave convected across the plate in a direction 

inclined to the X-axis. A subsonic velocity of 0.28 times the velocity 

of sound inclined to the X-axis at 80°, 40°, 20° and 10° was considered. 

Also considered was a subsonic velocity = V times the velocity of sound 

convected in a direction at 45° to the X-axis.

The frequency ranges considered extend from 100 Hz to 1,200 Hz.

Over this range the spectral density of excitation has been assumed to 

be unity. The response was computed at a frequency interval of 10 Hz.

4.6.3 The relative magnitudes of the coefficients 

Table 4.1 shows the relative magnitudes of different

49 terms were included in the series. This may be interpreted as 7 

terms for the longitudinal direction and 7 in the lateral direction for 

each of the above 7* The convection velocity of the loading was 1.5 

times the velocity of sound and the direction of convection was parallel 

to the X-axis so that u = 0. The results are for the structure A with 
y 

n = 0.15.

The relative magnitudes of the coefficients tabulated show that 

the A term is dominant and that as m.n increase, the magnitudes of 

the corresponding coefficients fall. This is in line with the observation 

9



made in Chapter 2 regarding the convergence of the coefficients of series 

of displacement for the stiffened beam.

From the table it may be noticed that A = A ' for all values 
, m,n m,-n 

of m. This is explained by the fact that there is no convection in the 

Y-direction in the pressure field, so p = 0. The two components
-i(p +2mr)(x/& ) -i(p+2n^)(y/&) 7, 

A e "^ e :^ ^ and

-i(p+2m'if)(x/&) -i(M-2a^)(y/&) . 
A e e e with p = 0 and with A = m,-n y m,n 

A combine to yield no resultant wave motion in the structure in the 

Y-direction.

Table 4.2 shows the relative magnitudes for the above structure 

and excitation at a frequency of $00 Hz. The symmetry of the coefficients 

with respect to n may again be observed and can again be explained by 

the reasons applicable to Table 4.1.

Table 4.3 lists the relative magnitudes of A 's when Structure H 

with n = 0.2$ is excited by a plane wave of a convection velocity 1/9 

times the velocity of sound convected at 4^° to the X-axis at a frequency 

of 150 Hz. A satisfactory convergence is again observed but the symmetry 

with respect to n which was observed in the earlier two tables has now 

disappeared. This is explained by the fact that 4$° convection amounts 

effectively to a convection in both the perpendicular directions.

4.6.4 Influence of different variables on the response

The influence on response of including a different number of 

terms in the series, of damping in the structure, of stiffnesses of stiffener 

and of the direction of convection of loading were studied. The response in 

each case has been plotted against frequency in Hz. The rms values of 

curvature and mean values of sound power tabulated on the figures are only 

relative.

4.6.4.1 Influence of the number of terms in the series

Figure 4.2 shows the effect of including a different number of 

terms on X-wise curvature response of the stiffened plate at midpoint of 

a sub-panel (Structure A with n = 0.15) « The acoustic plane waves



were convected in the X-direction with the trace velocity which equalled 

1.5 times the velocity of sound. It can he seen that the 9 term 

solution gives an r.m.s. value which is different from the U9 terai 

solution hy about 85 percent while the 25 term solution yields a value 

which differs from the ^9 term solution by only 5 percent.

The effect of the number of terms on the sound power radiated 

under the above conditions is shown by Figure i+.3. The curves corres­

ponding to the 25 term solution and the 49 term solution agree so well 

that it is convenient to represent both solutions by a single curve. The 

total mean values corresponding to different number of terms are shown 

in the table given in this figure. The solutions hy including 25 terms 

and 4-9 terms-differ only hy about 1.5 percent.

Figure 4.4 gives the comparison of results of sound power hy 

including 25 terms and 49 terms for structure E, p = 0.25, when C^ = 

1.5c. Again the two curves are quite close for most of the frequency 

range covered. The peaks are within 5 percent of each other. Another 

calculation (not plotted) for the same structure for a subsonic velocity 

of loading (C^ = 0.5C) showed that mean power hy including 25 terms was 

only 2.5 percent different from that obtained by including 49 terms.

That 25 terms would yield a quite accurate result in the case 

of the stiffened plate could be guessed from the fact that 5 terms yielded 

accurate results in the corresponding one-dimensional case of the stiffened 

beam. This could also he expected from, the relative magnitudes of the co­

efficients for the two-dimensional structure presented already. This has 

now been confirmed by the computation presented above. It is therefore 

felt that no further computation need be done to prove thah 25 terms are 

sufficient for a reasonable answer. This number of terms will he included 
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in the series for obtaining other results presented in this chapter.

4.6.4.2 Inl^luence of dampi^

Figures 4-5 and 4.6 show the effect of damping on the X-wise 

curvature response of the plate (Structure A, 1]^= O.I5) and the sound 

power radiated per unit area from it respectively. The particulars of 

the loading are the same as correspond to Figures 4.2 and 4.3. It is 

clear from Figure 4.5 that the damping consideraioly reduces the cur-va- 

ture response. Increasing the damping three fold from n^ = 0.05 to 

rip = 0.15 reduces the r.m.s. response in proportion to 1 : /S approxi­

mately. However the effect on the value of the sound power (Figure 4.6) 

is not marked ‘except near the peak values. The difference between the 

mean values for n^ = O.O5 and 13^ = O.15 is only 3 percent, 

though the corresponding peak values are in the ratio 5 to 2 approxi­

mately.

The comparison of Figures 4.2 and 4.3 would indicate that the 

peaks for sound radiation occur at about the same frequencies at which 

the peaks for the curvature response occur. This is due to the fact 

that the convection velocity is supersonic so tha,t the zero"^^ order 

term is a radiating harmonic. Since this term has a dominant contri­

bution in'the determination of both responses, the correspondence between 

the peaks of the two responses is achieved.
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4.6.4.3 Influence of the stiffnesses of stiffeners

Figures 4.7 and 4.8 show the. effect of the transverse stiffness 

of the Y-wise stiffness D_ of Structure B on the spectral density of 

X-wise curvature and on the spectral density of sound power radiated in 

a frequency range 400 - 1,000 Hz, n^ = 0.2$. The loading is con- 

vected in the direction of the X-axis at a speed l.$ times the speed of 

sound. 25 terms were included in the series solution. It is difficult 

to conclude any straightforward law between the transverse stiffness and 

the response. It is, however, possible to say from the results pre­

sented that at fairly high values of D , any further increase in stiff­

ness will not result in any appreciable change in the response. At the 

lower end, however, the effect of varying D suggests that there may be 

an optimum stiffness for minimizing both curvature and sound levels. 

0.01 value of D yields the minimum response in the results presented 

for the case considered. (See tables in Figures 4.7 and 4.8)

Figures 4,9 and 4.10 show the effect of varying the transverse 

stiffness of the X-wise stiffeners of Structure B (n = 0.25) at one of 

the higher bands of sound radiation, on curvature and sound power. The 

convection velocity is 0.28 times the velocity of sound and the direction 

of convection is 45° to the X-axis. The variations observed again do not 

follow any straightforward law and point to the necessity of the structure 

being studied from the point of view of optimisation. Also it is seen that 

sound radiation is not affected by these variations in stiffness in the sam 

pattern as is followed by curvature response.



The influence of rotational stiffness of the stiffeners on the 

response is more difficult to determine because it has two components 

depending on warping constant and torsion constant respectively. They are 

both wave length dependent but their dependence is of a different order. 

A computation was made to study the response by varying warping constant 

while keeping constant the torsion constant for Structure B, n = 

C. = l.$C with convection parallel to the X-axis. 2$ terms were included 

in the series. The reduction of the warping constant to one tenth its 

value reduced the mean sound power by only 3.3 percent. Further ten 

fold reduction in the constant reduced it by 2.$ percent while a third 

ten fold reduction reduced it by only 0.4 percent. The corresponding 

reductions in r.m.s. curvature were 18 percent, 0.6 percent and -2.$ 

percent respectively. From these computations again no straightforward 

law can be deduced about the variation of response with

4.6.4.4 Influence of the direction of convection

Figures 4.11 and 4.12 present results which study the influence 

of varying the angle of inclination of the acoustic plane wave with a 

subsonic velocity equal to 0.28 times the velocity of sound. Structure 

considered is B with n = 0.2$.

Figure 4.11 shows the effect of the inclination on the X-wise 

curvature (values for all inclinations are not actually plotted to avoid 

crowding of the diagram). As the angle decreases, the main peak of 

the response becomes higher and moves to a smaller frequency. The r.m.s. 

value also increases. Decrease in the angle progressively reduces the 

convection velocity in the X-direction so that p^ gets larger arid p 

smaller. Prediction of the effect of the angle of convection on the 

response can only be made in exact terms by studying the free wave values 
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of p and p which would in turn depend upon the various stiffnesses 
X y 

of the stiffeners involved.

Figure 4.12 studies the effect of inclination on the sound 

power. It is seen that there are bands of frequencies which do not 

radiate any sound. The location of these bands is affected by the 

inclination because it affects the values of u and u . The mean 
X y 

value decreases with the decrease in inclination with the X-axis down 

to 20°, then increases and decreases without any simple order The 

study of the effect of inclination and in fact of other parameters as 

well shows that the behaviour of sound radiation is more complex than 

the behaviour of curvature response.

4 .T Conclusions

It has been shown that the method of space harmonics used to 

obtain the curvature response and sound power radiated in earlier chapter 

can be successfully extended to the case of the doubly stiffened plate to 

obtain its response. Only 2$ terms need be included in the series to 

obtain the solution with a reasonable accuracy. This would correspond to 



5 terms in the X-direction and 5 terms corresponding to each such term 

in the Y-direction. It is possible to deal with the excitation by 

random acoustic plane waves and by boundary layer pressure convected 

in a direction inclined to the X-axis. In the case of boundary layer 

pressure, it is possible to allow for the lateral correlation of the 

field.

The effect of damping on the curvature response has been seen 

to be marked. Damping is, however, relatively ineffective in reducing 

the sound radiation except near the peak values. These peaks can be due 

to one of the space harmonics matching with the free wave length and 

thus causing coincidence. A number of such coincidences may be present 

in the case of a stiffened structure in a given frequency range (see 

Chapter 1) as opposed to only one coincidence present in an infinite 

uniform structure. Thus damping is seen to be more effective in the 

case of the stiffened structure than in the case of uniform structure 

for reducing sound radiation. But this is so only in relative terms, and 

damping as a means of reducing noise cannot be recommended on the basis 

of the studies made.

The study of the variation of response with the variation in 

stiffnesses of stiffeners does not allow any generalisations to be made. 

The variations do not necessarily affect the sound power in the same 

pattern as they affect the curvature response. There are indications, 

however, that the type of structure considered may be optimised with 

respect to the stiffener parameters.

100



5. EXPERIMENTAL WORK AND COMPARISON WITH THEORY

5.1 Introduction

The theoretical work reported in'the foregoing chapters applie 

strictly to infinite periodically supported structures. It is expected 

that the behaviour of finite heavily damped panels would approximate to 

that of the infinite panel (Section 1.5-3.3). Though the theoretical 

approach presented could be adapted for the case of finite structures 

(see [30]) it was decided to check experimentally the 'infinite' theory. 

If the agreement was reasonable, it would be confirmed as a quick method 

of evaluation of sound power radiated. So the experimental work 

described in this chapter was undertaken before the attempt was made 

to extend the theoretical work to the case of the reinforced cylindrical 

shells described in the next chapter.

An aircraft type of panel was excited by acoustic plane waves 

with oblique incidence and the acoustic measurements made for comparison 

with values predicted by the theory presented in the previous chapters. 

The measurements were made by making use of the ISVR anechoic and 

reverberant rooms. These rooms are adjoining and there is an opening 

between the two in the common wall. This opening was used for 

mounting the specimen. The anechoic room could house the loudspeaker 

for exciting the panel while the absence of reflections in this room 

ensured unidirectional sound waves. There was proper space for test 

equipment outside these rooms but near enough to be convenient for 

the necessary control on the experimental conditions.
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5.2 Quantity to be Measured and the Technique of Measurement

5.2.1 Quantity to be determined

The aim of acoustic measurements in engineering is sound 

control. Such measurements are therefore followed by sound control 

calculations which are usually based on statistical concepts of 

acoustic energy and acoustic power. It was therefore decided to deter­

mine the acoustic power transmitted at different frequencies in the 

experimental work reported in this chapter. These have then been com­

pared with those obtained by the theory advocated in the previous 

chapters.

For theoretical calculations, the actual value of damping in 

the experimental panel and its stiffness were required. The damping 

was directly measured and stiffness was calculated from the natural 

frequency of a test specimen having the same properties as the panel. , 

Mass per unit area was determined by actual weighing of a test specimen.

5.2.2 Free field versus diffuse field measurements

The acoustic power is calculated from sound pressure measure­

ments. This is accurately determined in a simple manner in two limiting 

cases:

(a) In the region of a free field beyond the near radiation field.

(b) In a diffuse sound field.

Measurement in the free field provide not only acoustic power 

spectra but also directivity information. The facility and test effort 

however are relatively costly. There is another method of measurement 

in the free field, i.e. that of near field measurements. This method 
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does not require any special facilities and is thus ideal for on site 

tests. The test effort is, however, very nigh di to the large number 

of measurement points and corresponding dat-. prc.-cessing required. On 

the other^hand, measurements in the reverberant field require only 

moderate facilities and amount of effort. This method therefore was 

attractive.

The purpose of the experiment was to study the behaviour of the 

stiffened panel under excitation by acoustic plane waves. The best 

available method to create an acoustic plane wave (at least approximately) 

was to place a loudspeaker at a large distance from the panel in the 

anechoic room. The sound pressure level measurements were then made 

in the reverberant room in order to determine the radiated power.

5.2.3 The range of frequency

It was considered that for a built up structure of the aircraft 

fuselage type, the frequency range 100 Hz-1000 Hz was most difficult to 

analyse for response. The stiffeners are likely to influence the result 

most in this range. At higher frequencies the influence of the 

boundaries is expected to become less important, thus making the agree­

ment between the 'infinite' and the 'finite' theory much closer. Besides, 

at higher frequencies the zero"^^ term in the series of space harmonics is 

more likely to be a radiating harmonic. This would therefore enhance 

the accuracy of prediction of sound power with a. given number of terms 

in the series. Thus if the agreement between the experimental and 

theoretical results in the range 100-1000 Hz is proved to be acceptable, 

the theory could be considered acceptable.
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5'3 The Specimen and Test Details

5.3.1 The specimen and its mounting

The specimen is constructed complete]^ from 22 s.w.g. L73 

alloy. The main 4' hy 6' panel is sub-divided into smaller panels, 

each 9" by 4.5" by six channel type frames and sixteen z-section 

stringers, all of which are rivetted to the skin. Figure $.1 shows the 

details of the construction. The stringer constants are as follows: 

A = 0.0585 in^

I = 0.011245 in^

I = 0.022756 in^

C = 0.000444 in'^ 
ws 
J = 0.0000153 in^

Similarly the constants of the frames are as follows:

A = 0.1176 in

I = 0.09335 in

I = 0.32808 in^ 
s

C = 0.023996 in^ 
ws
J = 0.000030732 in^

The above constants.have been obtained from [33] and the Royal Aero­

nautical Society data sheets. The panel so constructed represents 

aircraft type of construction.

The specimen was mounted with the longer side horizontal, in 

a wooden frame, which was surrounded by a brickwork partition between 

the anechoic chamber and the reverberation chamber (see Figure 5-2). 

The wooden frame work had recesses in it to contain the stringers and 
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frames of the panel. The side of the panel having stringers and frames 

faced the reverberation room and the flat side looked into the anechoic 

room. The joint between the panel and the wooden frame was sealed by 

using two layers of draft excluder and screwing a wooden strip from the 

anechoic room side so that the panel and the draft excluder packing was 

contained between the wooden strips and the wooden frame in the brick­

work surround. Care was taken to ensure that there were no cracks in 

the masonry work or at other points and the rivet holes in the panel 

were filled up by squeezing silicone rubber into them. To obtain the 

damped panel, sheets of aquaplas (D8/SA sheets manufactured by Pevertex 

Ltd) were pressed on to the flat surface of the panel.

5.3.2 Excitation and the measurement of pressure levels

5.3.2.1 Excitation of the panel

The panel was excited by a 15 watt loudspeaker placed in the . 

anechoic room at a distance of 21 ft. from the panel so that the sound 

waves falling on the panel could be reasonably considered to be plane 

waves. The angle of incidence was varied by changing the location of 

the loudspeaker in the anechoic room while keeping its vertical position 

at mid height of the panel, at a constant distance of 21 ft.

The panel is thus seen to be excited under conditions similar 

to those in actual practice, where the flat side is exposed to excitation 

and the stiffener side looks into the cabin.

Figure 5.3 gives a general arrangement for the test and Appendix 

F gives a list of instruments used for experimental determination of sound 

power radiated and for determining the damping of the panel.
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^.3.2.2 Measurement of the excitation pressure

Before the actual panel was excited^ the loudspeaker was made 

to face a wall of the anechoic room. Pressures at a distance of 6' and 

21' from the loudspeaker were measured at different frequencies in the 

range 100 Hz to 1000 Hz by sweeping through this range using a B. & K. 

level recorder and a B. & K. beat frequency oscillator. This gave a 

measure of the loss of pressure over a distance of 1$' of travel of sound 

waves at different frequencies without involving errors due to reflection 

at the panel. During the actual experiment, pressure was measured only 

at a distance of 6 ft from the loudspeaker, and the pressure at the panel 

deduced by the assumption that the same dB loss will occur at a given 

frequency for the same distance of travel of the sound wave.

$.3.2.3 Measurement of pressure in the reverberant 
chamber

The power radiated by the panel vibrating under given conditions 

was determined from the average sound pressure in the reverberant room. 

This was done by keeping a microphone at a position in the reverberant 

room and sweeping the excitation of the panel through 100-1000 Hz fre­

quency range while recording the pressure picked up by this microphone. 

This was repeated for a number of microphone positions in the reverberant 

room under one.set of conditions of excitation which was also recorded. 

A mean was then taken of all the recorded pressures under one set of 

conditions at one frequency of excitation.

$.3.3 The reverberant room and the reverberation time

The details of the reverberant room used are given in reference 

36. Some relevant details will, however, be included here. The room has 
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plane, non-parallel walls and an inclined ceiling. The mean edge lengths 

are 6.4 metres and 4.6 metres and the mean height is 4.3 metres. The 

volume enclosed is 131 cubic metres. The walls and the ceiling are 

finished with a hard gloss paint. Three sets of doors in this room 

connect it to a larger reverberation room, a large anechoic room (used 

in these experiments) and the common control area. The average trans­

mission loss of these doors of sandwich construction is 50 dB, In the 

wall of the room dividing it from the control area, there are four 

cable ports and a double glazed observation window.

During the experiment, the panel was mounted in the position 

of the door between the anechoic room and the reverberation room. The 

second door leading to the larger reverberant room was kept shut all 

the time and the door leading to the- control area was shut at the time 

of taking observations.

The empty room is claimed to have the following 1/3 octave 

reverberation times [36]

Centre frequency 100 12$ 160 200 250 315 400 500 630

R.T. seconds 7.4 7.6 8.7 9.9 10.8 9.2 6.8 5.2 4.7

In spite of the above information being available, it was 

considered desirable to record the reverberation time at discrete 

frequencies for the conditions under which the experiment was being 

performed.

For this purpose, the loudspeaker was placed in the reverberant 

room. It was excited by the beat frequency oscillator at a discrete 

frequency. The power was then cut off to the loudspeaker and the 

decay of the pressure recorded by the help of the level recorder. The 
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reverberation time was then found by the slope of the decay curve as 

the time for the level of sound to decay 60 dB. The procedure was 

repeated at a number of frequencies, yielding the reverberation time 

at these frequencies. The following reverberation time was obtained 

at these discrete frequencies.

Frequency 100 150 200 260 300 400 5O0 600 700 800 900 1000

Reverberation
Time, Secs. 4.9 5.1 5.3 5.3 4.7 4.5 4.7 4.7 4.4 4.7 4.6 4.6

The reverberation time has been plotted against frequency in 

Figure 5.4. It is seen that the above reverberation times are different 

from those recorded for the empty room in reference 36. The general level 

is lower. This is expected since the room at the time of use had plaster 

boards and some other miscellaneous items in it which would absorb sound. 

Also the variation with frequency is different. It was not considered 

necessary to remove the miscellaneous items from the room at the time of 

experiment, since their presence would not affect the results as long as 

the reverberation time was known and was constant at a given frequency.

5.3.4 The measurement of the panel damping and determination 
of effective stiffness

5.3.4.1 %i^panel dampin^

In order to compute the theoretical response of the panel 

tested, the damping present must be known. This was therefore experi­

mentally measured.

Two methods were attempted to measure the damping present.

(a) A special transient test method developed at the Institute of Sound 

and Vibration Research, in which a sine wave excitation is swept 

- 108 -



through the frequency range of interest, in a relatively short 

time.with the help of a special ISYR sweep oscillator, and. the 

tape recorded data is analysed by an analog-digital computer.

(b) By testing separately a specimen built up of the same material as 

the actual panel in a device (originally used by Mead [3?]) where 

the desired modes can be excited, and by measuring by a vibration 

meter the induced response and its phase around the resonant fre­

quency. A Kennedy-Pancu diagram can again be obtained by this 

method.

(a) The method of transient excitation by the ISVB sweep oscillator

The details of this method may be seen in reference |38|, but 

for the sake of completeness, the following brief remarks are made:

The method consists in exciting the structure by a sine wave 

loading swept through a frequency range of interest in a short time, say 

0.5 seconds. The (accelerometer) response of the structure to this type 

of excitation is recorded on a magnetic tape. The data is then con­

verted into the digital form by the help of an A to D converter. A 

Fourier transform of this response is obtained.digitally to obtain the 

frequency spectrum of the response. The peaks in this spectrum may 

then be identified as resonant frequencies of the structure. Since 

both the amplitude and phase of response in the frequency range of 

interest are available, Kennedy-Pancu phase plots may be obtained. Prom 

these plots the resonant frequencies may be identified more accurately 

and the loss factor measured. It is claimed that this method preserves 

the accuracy of the steady state methods (and considerably reduces the 

test time).
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The above method was tried. The loading was acoustic.

obtained by feeding the I8VR sweeposcillator signal to the loudspeaker 

which excited the panel at normal incidence. The signal was swept 

through 100-1000 Hz in 0.5 seconds. Figure 5-5 gives the response 

spectrum when the accelerometer was on the skin, and Figure $.6 gives 

the spectrum when it was on the stringer. The peaks correspond to 

different modal frequencies. The resulting phase plots were, however, 

not such as could be interpreted conveniently. Since the structure is 

built up, very many modes are present and interlinked. As a result the 

vector plot contained so many loops that ib was very difficult to pass 

a reasonable circle through the points. This method of transient test­

ing was therefore dropped as unsuitable for this type of built up structure 

and use was made of a rig originally developed by Mead for the measure­

ment of damping. The method of this rig also employs Kennedy Pancu 

vector plots to determine the damping in the specimen.

Before the work using Mead's rig is described, it may be 

mentioned that White [3$] has dealt with the problem of resolution of 

cloge natural frequencies of the structure in relation to the method of 

transient testing. But before the applicability of this method is 

established in the base of a complicated structure with a high damping, 

it is best to -depend upon a simpler method of determination of damping.

(b) Measurement of damping using Mead's rig

In this method the specimen is made to vibrate in a single 

mode by an appropriate excitation. The phase plot is then obtained by 

plotting the actual measured values of the in-phase and quadrature com­

ponents of response at different frequencies. Figure 5-7 shows the rig 
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employed. The specimen tested consisted of a strip of the same metal 

as formed the panel with a layer of aqnaplas damping, which was actually 

used for the panel tested. The specimen, 0.3 inch wide and 11 inches long, 

was held in brass supports (see Figure 5'T) in a clamped clamped condition.

The general arrangement of the test is outlined in Figure $.8. 

An audio oscillator was used to generate the exciting frequency signal. 

It was input to a power amplifier whose output was passed through a step 

down transformer and measured before being fed to the specimen (up to 

T amperes could be passed through the specimen). This oscillating 

current passing through the metal part of the test specimen together with 

the steady transverse magnetic flux provided by the permanent magnets 

(see Figure 5-7) results in an oscillating load on the specimen. By 

suitable arrangement of the polarity of the magnets, up to the first 

four modes of the strip could in theory be excited.

The vibration of the strip was measured by employing Wayne- 

Kerr proximity probes and the Wayne Kerr vibration meter, together with 

the resolved component indicator. Thus the method of excitation as 

well as the method of measurement of vibration, did not change the 

impedance of the structure under test. The resonant frequency was 

first detected approximately by using the Wayne-Kerr meter alone and 

then the in phase and quadrature components were measured around this 

frequency in order to obtain the vector plot.

Figure 5.9 shows the phase plot obtained for the fundamental 

mode of the beam specimen. The modal frequency is 125.5 Hz and the 

corresponding damping is q = 0.25.

The basis of the method employed to determine damping from 

the phase plot is outlined in Appendix G.
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5.3 .^.2 Determination of effective stiffness

Figure 5-9 shows the vector plot obtained by testing the damped 

specimen in the fundamental mode of vibration. The natural freq,uency 

was found to be 125.5 Hz. The mass per unit length of this beam was 

then measured by actual weighing and the stiffness EI determined from 

the following relationship:

. 2^ (5.1) 

with SL as the length of the beam between supports (= 8.5 inches) 

where the value of \% for the fundamental mode of the clamped clamped 

beam (= U.73O) was taken from the standard tables (see for example 

'Mechanics of Vibration' by Bishop and Johnson). The value EI cal­

culated for a beam of unit width works out to be lOH.3 lb.in units.

The damping was found to be 0.25- These two values are used 

for the determination of computed sound power throughout the frequency 

range of interest.

5.4 Experimental Pete mi ination of Sound Power

The experimental value of the power radiated is detemiined from 

the corrected average values of the pressure levels measured in the 

reverberant room.

5-4.1 Ambient sound pressure level corrections

We wish to measur-e the sound pressure radiated by the panel. 

However, the microphone will also pick up the background noise or the 

ambient sound pressur-e for which a correction must be made. It is known 

that if the sound pressure level with the source operating compared to 
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the ambient sound pressure level alone is 10 decibels or more, the sound 

pressure level due to both the sound source and the ambient sound is only 

0.4 dB more than the sound pressure level due to the sound source. If 

the increase is 3 dB or less, the sound pressure level contributions 

of the source and the ambient level cannot be separated with the con­

ventional measuring techniques. For other increases over the ambient 

levels the following corrections are suggested by USA standard [4oj

Increase in dB 4 5 6 T 8 9 10 

Correction 2.2 l.T 1.3 1.0 0.8 0.6 0.4 
(to be subtracted 
from the reading)

To keep the pressure levels as high as possible compared to 

the background levels, the experiments were conducted during quiet 

evenings. The different between the two was always greater than lOdB 

and the corresponding correction in the observations being very small 

was not therefore considered necessary.

5.4.2 Linear versus logarithmic averaging

As expected, there was a spread in the values of pressure levels 

recorded by placing the microphone at different positions in the rever­

berant room. Por the purpose of computing the sound power, the spatial 

averages of these values was to be taken. It could be a linear average 

or a logarithmic average. Cox [41j and Mitchel [42] have discussed 

this point in the light of the fact that both these methods are used in 

acoustic practice. Cox has investigated the lower bound on the ratio 

of geometric mean to the arithmetic mean of a set of data. Be has noted 

that for a data having a spread of 10 dB, the geometric mean is less 
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than 1.5 dB below the arithmetic mean. For a spread of 6 dB, the 

geometric mean is less than 0.52 dB below the arithmetic mean. Mitchel 

has introduced firrther refinements in the averaging process by including 

the influence of statistical distribution of data. In view of the 

bounds of error given above, and for the obvious reasons of convenience, 

the arithmetic average was taken of the values of recorded pressure 

levels in the reverberant room. The data averaged in this chapter 

had a spread of around 9 dB. Thus a maximum error of l.S dB is likely 

in the averaged result. The true average will be lower by this level.

5.4.3 Determination of the sound power

Sound power radiated by the panel was determined indirectly 

from the average sound pressure level in the reverberation room obtained 

by measuring at a number of points, and then taking their spatial aver­

age. This pressure is in terms of dB. The actual pressure, ^, may 

be calculated by the relation

^^^otal " P (^^^^ 
o 

where SPL , _ is the averaged sound pressure level with all corrections 
Total

and - P = 2 x 10 pbars (5'3)
o

After the pressure, ^, is known in pbars, the following relation [43]

is used to.obtain the sound power ^tot

= 2.8 X 10 (Pg^V/T) (5.4)

where n,,^ is the sound power in Watts

V is the volume of the reverberant room in cubic feet

P_ is the sound pressure in microbars

T is the reverberation time of the rocm in second
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5.5 Theoretical Calculations

5.5.1 Considerations of the mass law 

Por the purpose of comparison, it is useful to know how much 

transmission loss would he there if the panel and the added damping 

sheet were acting as a massive partition. This transmission loss may 

then be estimated from the following equation, usually called the mass 

law [44]:

mm^ cos^ _ 
= 10 log [1 + --- -) ]

mm cos (() 
or D^ = 20 log   (5.5) 

where D is the transmission loss 
o

m^, is the mass per unit area of the partition

m is the frequency of the sound wave impinging on the 
partition normally

pc is the characteristic Impedance of air

is the angle of incidence

The above equation is based on the assumption that the wall 

acts as a mass and that the wave length at all frequencies in the 

wall is very large in comparison with the wall thickness, and that the 

characteristic impedance of the wall material is very large in comparison 

with that of the air (a condition fulfilled at all frequencies).

It may be seen from the equation for the mass law that D 

would increase 6 dB for every doubling of m^. The same applies to the 

dependence upon frequency, i.e. for every octave increase in frequency 

D should increase by 6 dB. 
o

The transmission loss according to the mass law has been calcu­

lated and incorporated into the curves presented. For these calculations 
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it is assumed that the mass of the stiffeners is uniformly distributed 

over the area of the panel. The total mass taking into account the 

skin, the stiffeners and the damping material works out to be l.OgO lb. 

per sg^ ft.

5.5.2 Theoretical determination of radiated power

Tor the purpose of computing radiated power, the method 

presented in Chapter 4 was employed. The parameter of the actual 

structure was used. The stiffness and damping were as follows (see 

section 5. 3.4.2)

D' = 104.2 lb.in. units 

n = 0.25.

Properties of the stiffeners and skin have already been listed 

in section 5.5.1. Mass of the damped panel was found to be 0.006040 lb 

per sguare inch. This was determined by actually weighing the specimen 

which was later tested to determine the value of damping (see section 

5.3.4,1b). This mass does not include the contribution of the 

stiffeners which was considered concentrated at the boundary of two 

sub-panels.

5.6 Theoretical and Experimental Results

For the sake of convenience of comparison between theoretical 

and experimental results, both sets of results for a given set of con­

ditions have been included in the same diagram. The curve corresponding 

to the mass law with the correct angle has also been plotted. The sound 

power radiated has been plotted in decibels in accordance with the usual 

2 
practice in acoustics work, and is referred to as 10 ' watts. The 
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-results correspond to an incident pressure of 80 db constant over the 

frequency range of interest.

Figures 5.10, 5.11 and 5.12 give the values of radiated sound 

power against frequency when the panel vibrated under the action of 

acoustic plane waves incident at the panel at different angles. The 

full line in each case gives the values determined by computation on 

the basis of the theory presented in the previous chaphers. These were 

computed for a unit value of the exciting pressure and then brought down 

to correspond to the actual exciting pressure on the basis that the 

radiated power is proportional to the square of the exciting pressure. 

The broken line in each case represents the experimental values deter­

mined from the actual pressure levels measured in the reverberant room 

by using relation given by equation (5.4). The chain dotted line in 

each figure gives the value of the sound power radiated based on the 

Mass Law.

5.6.1 Discussion of Results

Figures 5.10-5.12, showing theoretical and experimental values 

of the sound power radiated by the panel under excitation by acoustic 

plane waves with different angles of incidence, have some common features. 

In each case the experimental curves have some peaks. It intersects the 

'theoretical curve at many points, and is on the whole lower than the 

Mass Law curve. This is, of course, subject to the averaging errors. 

If a true logarithmic averaging were done, the experimental curve will 

move down (see section 5.4.2). The peaks in the experimental curve, 

e.g. around 120 Hz, 185 Hz and those around 600 Hz, suggest a broad 
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correspondence with the modal frequencies (see Figures 5. 5-5'6).

The total value of sound power radiated at a given frequency may 

be visualised as the sum of two components: (a) the forced response, 

or the contribution by the forced waves in the infinite stiffened panel 

excited by the convected loading; (b) the resonant response or the 

contribution from the free waves reflected at the boundaries. Subject 

to the experimental and averaging errors, the difference between the 

experimental and theoretical values may be attributed to the resonant 

response.

In Figure 5*12 representing results for acoustic plane waves 

incident on the panel at an angle = Sin ^ 2/3: the difference between 

the theoretical and experimental curves varies at different frequencies, 

the maximum being 5 db and the minimum being 0 db. The two curves inter­

sect at nine different points. In the complete frequency range considered, 

the agreement between the computed results is within 3 db except near the 

peaks of the experimental curve.

In Figure 5«10 (for angle of incidence = Sin ^ 1/3), the difference 

between the non peak parts of the experimental curve and the computed 

curve is small - less than 2.5 dB over most of the frequency range. The 

two curves intersect at nine different points. The agreement between 

the two sets of results has broadly the same features for normal incidence 

of acoustic plane waves (Figure 5*11)«

Over most the frequency range of the experiment, for the panel tested, 

the sound power radiated falls linearly with frequency in the computed 
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curve. This behaviour is similar to that of the uniform panel where 

the Mass Law would then give a fairly exact answer to the sound power 

radiated. The Mass Law applied to the panel tested (the stiffened 

panel) gives results which are higher than the experimental and 

theoretical values. The maximum difference between the Mass Law results 

and the theoretical calculations (see Figure 5.12) is about 5 dB.

It is relevant to emphasis again that the experimental curves 

plotted have been obtained by linear averaging of different observations 

of pressure levels. This was done for the sake of convenience. However, 

if the logarithmic averaging were performed, the curve will be expected 

to be about 1.5 dB lower, thus making the computed values higher than 

the experimental values over most of the frequency range.

It is difficult to evaluate the influence of the assumption that 

the loudspeaker sound impinging on the panel 21 feet away from it in 

the anechoic room is an acoustic plane wave. Perhaps this assumption will 

lead to no appreciable error in the analysis.

5.7 Conclusions

The experimental results for sound power presented in this chapter 

have been seen to agree with the theoretical calculations within an 

average of 3 dB (except near the peaks of the experimental curve). The 

agreement at higher frequencies (i.e. over 1000 Hz) is expected to be 

better because of reduced influence of finiteness on the response. It may
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therefore be stated on the basis of the work reported in this chapter 

that for obtaining the sound power radiated by an orthogonally stiffened 

panel with heavy damping, the stiffened panel may be treated as infinite. 

The method of space harmonics presented in this thesis may then be 

employed to compute the results.
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6. RESPONSE OF INFINITELY LONG RING STIFFENED CYLINDRICAL SHELLS
TO CONVECTED R^DOM LOSING

^"^ Introduction

In previous chapters the method of space harmonics was developed 

and then applied to obtain the response of periodically supported beams 

and plates. The method was found to yield results which agreed reason­

ably with experiment. To confirm that the general theory presented can 

be applied to all periodically supported structures, it was decided to 

preliminarily test the method for yet another case. This is to determine 

the response of periodically supported cylinder which is infinite in the 

axial direction. This is a simple representation of an aeroplane fuselage 

structure.

The actual stiffened cylinder will be treated as a uniform 

cylinder subject to the constraints applied by the stiffeners. The 

response will be obtained in a series of space harmonics, and the co­

efficients of this series will be determined. Once these coefficients 

are known the sound radiation characteristics may be determined from 

methods in analogy with the treatment in the previous chapters. The 

purpose here is not to go into details of determining the sound field 

after the response has been obtained in a series form. (Such associated 

problems are dealt with in references 4$-49) This chapter will, 

therefore, restrict itself mainly to obtaining the" expression for the 

coefficients of the series of response and to examining the convergence 

of response, apart from including a few comments about the pressure field 

inside and outside the cylinder which will clarify the application of 

this approach to the actual problem.
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6.2 The Structure Considered

The structure considered is diagrammatically shown in Figure 

6.1. The cylinder is infinite in the axial direction and has ring 

stiffeners at uniform intervals & along the axial direction. The 

rings shown are external hut they could as well he inside the cylinder 

skin and then could in a practical case represent frames in the fuselage 

construction.

The ring stiffness will he considered as line supports apply­

ing constraints to the cylinderskin which are given by Lin's expressions 

(see Chapter 4) applicable to the flat panel. For a rigorous analysis, 

however, the more exact shell-ring interaction forces and moments should 

be considered. These are not actually used hut are given in Appendix H.

6.3 The Excitation Considered

In the previous chapters, the response of the structure con­

sidered is in the first place determined for a harmonic loading. The 

response to a general random loading could then he determined by 

analysing the excitation field into a wave length frequency spectrum. 

Following the same procedure, the response in this chapter will be 

determined to the basic loading excitation

P = P e ^x cog n8 e"^^ ' (6.1) 
0 

acting on the cylinder. This pressure field represents n 

standing waves around the circumference of the cylinder and is 

convected along the cylinder at a velocity U^ =

Any general excitation may theoretically be analysed into 
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components of the form of equation (6.1). The response to a general 

excitation may therefore be determined from the method of this chapter.

6.4 Shell Displacements and Shell Theories

6.4.1 Shell displacements and the importance of flexural 
vnbrat2oip:m soimd^radta^

When the cylinder is excited, the vibrational displacement of 

any point on the surface of the cylinder has three components, viz, 

radial, axial and tangential. These different displacements are 

actually coupled but the radial vibrations can be said to be analagous 

to the transverse vibrations of the beam or a plate and correspond to 

the bending action. The axial and tangential vibrations on the other 

hand are chiefly due to extensional deformation and in-plane shear 

deformation. All these components of displacement have corresponding 

components of the velocity of the surface which are capable of trans­

mitting energy to the surrounding fluid. The axial and tangential 

velocity components radiate this energy by a shearing action as opposed 

to compression and rarefaction as in the case of flexural or radial 

components. In actual situation, in the case when the acoustic medium 

is air, the amount of energy radiated by shear waves is very small and 

is therefore neglected here. For the purpose of this chapter, it will 

be assumed that the acoustic medium is a perfect gas having zero viscosity. 

Under these circumstances, the flexural vibrations are the most important 

from the point of view of sound radiation.

6.4.2 Different shell theories

Before the cylinder can be analysed for displacement response 

to the applied loading, its equations of motion must be known in terms 



of its displacements. These are given by a number of shell theories 

in the literature. The most general analysis is obviously by three- 

dimensional theory of elasticity. If small deformations are assumed, 

linear theory of elasticity may be employed. Compared to this general 

treatment, the following approximations are made by some of the differ­

ent shell theories (see reference 50 for more complete treatment).

(a) Normals to the reference surface remain straight during deformation, 

(b) Normals to the reference surface do not extend during deformation, 

(c) Normals to the reference surface remain normal during deformation, 

(d) Rotary inertia is neglected.

(e) Tangential translatory inertia is neglected.

(f) Bending stiffness of the shells is neglected.

(g) Extensional stiffness of the shells is infinite.

Approximation (a) distinguishes a shell theory from the exact 

theory of elasticity. Assumptions (a) and (b) affect thickness stretch 

and thickness shear modes. Assumptions (a) to (d) lead to the classi­

cal theory dealt with by Love. Love's theory would therefore corres­

pond to small deformations of thin shells.

Assumption (e) is justified if the vibrational motion is 

transverse. Assumption (f) leads to the membrane theory of shells. 

This theory will not "predict the flex"ural modes correctly, and is 

therefore limited in scope. Assumption (^) leads to the inextensional 

theory of shells.

6 .^4.2.1 Consistency of the shell theories

One of the requirements of a reliable shell theory is that it 

shouJ-d be consistent. This means that it must predict strain free 

modes for rigid body motions. To be able to compare the behaviour of 

- 12k -



different theories in this respect, one must know the strain displacement 

relationships corresponding to different theories These will now 

be examined after the constitutive laws of the thin shell theory are 

given.

After using the Maxwell's principle for a linear structure, the 

constitutive laws of the thin shell linear theory are written as follows:

(6.2)

(6.3)

where {N) vector of shell forces and moments 

|E| matrix of elastic constants 

{e} vector of strains and curvatures

For the isotropic material for the cylindrical shell, the 

values of the elastic constants may be calculated as follows:

Eh

1 - u

^2

0.5(1 - v)k^

Eh

(6.4)

(6.5)

(6.6)

(6.7)

3

^1
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Dg = vD^

= 0.5(1 - v)D^

(6.8)

(6.9)

Also strain displacement relationships can be expressed 

as follows

{e} = [dJ{u} (6.10) 

where [d] is the matrix of operators

{u.} is the vector of displacements.

Thus different theories have some variations in fcj . These matrices 

according to different theories may be written as follows:

(a) According to Donnel and Flugge

[Dj =

9/9x

0

9/9 
y

0

0

0

0

3/9y

9/9x

■ 0

0

0

0

1/r

0

-9^/9x^

-92/9y^^

-292/9x9y (6.11

(b) According to Reissner and Wang

"9/9x 0 0

0 8/ay 1/r

h/9y 9/9X 0
M =

0 -9^/9x^

9/r9y -3^/3y^

i 0 9/r9x -29^/9x9y
1 (6.12
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(c) According to Novozhilov

S/9x 0

0 a/sy 1/r 1

a/sy a/ax 0

0 0 -a^/ax^

0 a/rBy -a^/ay^^

0 2a/rax -2B^/BxBy (6.13)

Cantih has shown that theory (a) introduces artificial con­

(d) According to Naghdi

a/Bx 0 0

0 B/By 1/r I

a/By B/Bx ' 0

0 0 -a^/Bx^

0 2B/rBy -B^/By^' +

r

0 2a/rax -2a^/axBy . (6.14)

straints under two components of rigid translation and all the three 

components of rigid rotation. Theory (h) introduces two artificial 

constraints for two rigid rotations about the Y and Z axes. Theories 

(c) and (d) are completely strain free for all rigid motion. It is 

also shown by the converse process that if the theories are employed 

with the assumption {e} = {0}, theory (a) gives five erroneous 

strain free modes that should be really straining. Theory (b) yields 

two erroneous strain free modes. However, theories (c) and (d) lead 

to strain free modes for, and only for, rigid body motions.

- 127 -



Theory (c) due to Novozhilov is thus shown to be consistent. 

It is also simple to use. Also, Warburton ["52J reviewing the current 

state of knowledge relating to shell dynamics has indicated Novozhilov's 

theory to be reasonable. In the sections to follow therefore, this 

theory will be employed.

6 .4.2.2 Novozhilov's thin shell theory

For uniform thin cylindrical shells, Novozhilov's theory leads 

to the following three equations in terms of axial displacement u. 

tangential displacement v and radial displacement w, when the vibration 
■ a . -a "^"xi^/^> . i.t
IS due to an excitation intensity p e cos n8 e

1+v
2a

2 2 2
3 u , 1-u 3 u , 1+v 3 V V 3w
8x2 2^2 g^2 2a 3x36 a. 3x

D (l-\)2 ) 
E

(6.15a)
3t

2 2
3 u 1-v 3 V 1--- ^   ---  ^ -- 
»:=»« 2 3x2-- ^2

2 2 2

38 a 38 3x

1_ 8v
2 38 

a 3x 38 a 38 3t
(6.15b)

2

4

3x 3x 38

1
2 

a

E ., 2 Eh
(6.15c)

where

a = mean radius of the shell
2

g = --- -, h being the thickness of the shell.
12a^

(6.16)

p is the density of the cylinder material.
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6.5 The Series Representation of Response and Derivation of the 
Governing Equation in Terms of Flexural Displacement

6.5.1 Series representation of response

The infinitely long cylinder being considered has ring stiffeners

at regular distance J2. along the axis. It is therefore a periodic

structure with the periodicity in the axial direction. The response

will follow the excitation and will therefore be constituted by the

displacements of the following form

-i(p +2m7r)^

A e ^ cos n6
m

ia)t 
e (6.18)

-i(p^+2miT)^

e ^ s-in n8
itut 

e (6.19)
m=-«»

w

B < 
m

C 
m

-i(lJ^+2mTr)^ 

e ■ ^ cos ne e (6.20)

The above forms of displacements represent a standing wave along the 

circumference and a travelling wave along the axis of the cylinder. 

Thus they follow the condition that the forced response must follow 

the excitation.

6.5.2 Equation in terms of one set of coefficients only 
(viz', in terms of C )

For simplifying the involved algebra it will be necessary to 

express the other two coefficients in terms of the third. Here A’s and 

B's will be expressed in terms of C's. For this purpose it is assumed 

that each term of the series of displacements u, v and w satisfies the 

eq,uations of motion (6.15a and 6.15b) for the shell. The m term of 
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each, displacement is substituted in these equations of motion and then

A and B are found in 'terms of 
m m C 

m
A
m

and B can then be 
m

eliminated from equation (6.15c) which then becomes

m=-«:

p + 2m7iF

^x
6[(2-v)(—

+ 2mTr

f
a

a

2

a

+ 1|^,4 y
+ 2(-

+ 2m7T 2 2

-i(p^+2Dnr)(x/&^) 
e cos ne

Fo'

X

COB nQ-
Eh

(6.21)

a

-ly 
e

P(1 - v^)

^x ^x a
E

w^}

(1 - 2

where

^2^2
(6.22)f 

a

^b
"I'll "'“2^2

::1^2
2

"^1
(6.22)

with
2

^1

^TT 2
)n^ (6.23)

^2 (6.24)
+ 2m7r

2a )n (6.25)

E

1 + V h

t.
2

1 - -
2a^

3 £

n
' 2 
a

4] 

a

y_ + 2mTT _
+ g[(2 - u)(-------- ) : 4- (6.26)

^1 2a

y
) (-

+ 2nnT
)n (6.27)

<^2

y^ + SriiTT 2 -r ^miT

1 + u
^x

2

2 a^

_ 2
PE"-^ - 2(l-v ) ( 

a

y

£

+
■ u2)(o2 

E
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EcLuation (6.21) applies to the cylinder between stiffeners.

6.6 Effect of the Acoustic Mediinn

6.6.1 Inclusion of the effect of acoustic medium inside 
the cylinder

The pressure at any point in the acoustic medium adjacent to 

the plate must satisfy the wave equation

V p = (6.29) 
c at 

subject to the boundary condition that at the cylinder surface r = a, 

the radial cylinder velocity must be equal to the radial velocity of 

the particles of the acoustic medium adjacent to the cylinder.

■ From equation (6.20) the radial velocity of the cylinder is 

given by ^ 
m=+« -i(^][+2mtT)— . , 

W(r,x,t) = ia)C cos nO e e^^ (6.30) 

m=-oo

from where it follows that the pressure must be expressed in the form 

m=4^ -i(lJ +2mTr)~ . 
p (r,x,t) = y cos n0 e f (r)e (6.31)

Each term of the series of equation (6.31) must satisfy the wave equation.

Substituting the general term in the wave equation in cylindrical 
2 2 

coordinate? (v^ = — (-^) + + ^o); ^"^ separating different 

variables, we are led to the following ordinary differential equation 

f"+-f'+K^f = 0 (6.32) 
mn r mn m mn 

p + 2m'n) 
with K^ = (^) - (——  ) (6.33)

which can be recognised as a Bessel differential equation. This has a
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solution in the form

J (K r) is the Bessel function of order n and N (K r) is the 
n m n m

Neumann's function of order n. It is known that the latter function

has a singularity at r = 0. For the pressure field inside the cylinder, 

this function cannot therefore "be included, so that

E 
mn

0.

Thus

p (r,x,t) = cos nQ V D J (K r)e 
m=-«»

(6.35)

from where the radial velocity y of the particles of the acoustic medium

is given by

i

wp

ap ) cos n8

3r r=a
m=-'»

m=+<» iD

■-i(lj +2mTT)^ 

e ^ iwt 
e

) cos n8 -i(p +2m'iT)^

iwt 
e

Equating (6.30) and (6.36), D can be expressed in terms

of as follows:

(6.37)

c m

D 
m .

2
^" Pa^m

The pressure then may be expressed as follows:

2 
np+oo 2a] p

^r cos nG y

m=-«'

a m n m
iwt 

e
(6.38)
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The pressure at the cylinder surface r = a affects its vibration and

should therefore he included in the governing equation, which will then

modify to

p + 2mTT

c { - m a JL
f 
a

+ ^ :^t, + B [(2 - V) (- 

a

+ 2miT

St.
2

a

1
2 

a

2,^x + p + Cmir „ p

a

p
p(l - V ) 2.

e

-i(p +2m7T)^

cos ne + p

2

Eh
^x cos .ne (6.39)

where p is given by equation (6.38) with a.

The pressure inside the cylinder given by equation (6.38)

does not result in any dissipation of energy for real value Of K . 
m

This may be seen from the expression for the time average sound power

per unit length of the cylinder obtained as follows by the method

adopted in Chapters 2 and 3.

2it

<n> de gRe(pv^-)

°2ir
m=-t<°

Re

P -i(p +2mTT)^

cos ne 2u) p J (K a)e 
 an m C 

m
0

X -iw cos n6
i(p + 2mTT)— 

e

m=4«' TT " Pa CJn'V C C # 
m m(VS) rvpV) 'j„,.hv)] (6.4o)
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Equation (6.40) shows that the power radiated is reactive 

for real values of K. This is expected because in a closed space, 

there is no possibility of energy dissipation unless the acoustic 

medium contains sound absorbing materials. In this case, D and 
mn

E in eq,uation (6.34) will become complex, 
mn .

6.6.2 Sound pressure distribution inside the cylinder

In the absence of any material inside the cylinder except the 

acoustic medium, the distribution of pressure inside will be determined 

by n and J^(Kr). Since the Bessel Function is an oscillatory function 

with r, it will result in nodal circles. The nodal diameters will be 

given by n. The sound field inside the shell will thus contain n 

nodal diameters and nodal circles whose number will depend upon the 

value of (K a), 
m '

The pressure at the centre (r =. O) is very much dependent 

on n, since J(0) - 0 for n ) 1. Hence when the pressure at the 

centre is of the greatest interest, n = 0 is the most important mode.

The actual sound field inside the cylinder will in practice 

be greatly modified by the presence of various sound absorbing and 

reflecting materials as in an actual aircraft fuselage. The actual 

distribution of these 'materials is very difficult to deal with in a 

theoretical ^odel. However, the problem could be tackled by assuming 

that the sound absorbing material is spread as a 'blanket' around the 

inside of the cylinder. The pressure could then be treated as propaga­

ting through the blanket with attenuation. In other words it would 

correspond to a 'damped' Bessel function, damping depending upon the 

attenuation provided by the absorbing material. The approach then is 
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similar to that used, by Beranek [53j for soimd. propagation through 

multiple (flat) structures-.

Alternatively the sound, absorbing material could, be assumed 

to be concentrated in an annulus concentric with the cylindrical shell. 

The proper matching at the annulus boundaries could also be accounted 

for. In such a situation the pressure field between the annulus and 

the cylinder will have an expression of the form 

m=-i^ -i(p +2mTf)^

m=

F^ and G^ could be determined by the boundary conditions at the 

annulus and the cylinder. A somewhat similar treatment is being 

employed by Hine [H9J for dealing with vibrations of a cluster of rods 

inside a cylindrical duct.

6.6.3 Radiation outside the cylinder

If the sound field outside the cylinder is considered, the

expression for the pressure will contain the Hankel Function, since 

the field does not cover the point r = 0 where the Neumann function 

becomes infinite. Also it represents an outgoing wave. Thus

r>a

y E H (K r) cos nG e ^ x g "^ (6.42)
m n m

00 -

can be determined by the condition that at r = a, i.e.The constant E

at the cylinder surface, the radial velocity of the cylinder must be the

same as that of the medium adjoining it.

Thus velocity of the medium - ---  (tT")
cop dr 

. m=-B” -i(p +2mTr)~ .

=--- y E H' (K a) Cos nG e x e (6.43) 
wp--------m n m 

a m=-«-



Equating this to the velocity of the structure given by

equation (6.30), we obtain

2
0) p

E
m

C 
a m

i; "'< V
(6.44)

r=a

The pressure may then he written as
m=4«o (jj^p c H (K r) cos n8 -i(p +2mTr)^ . . 

p^ _ ---- ------------------e . e 
^ ”(V> r=a

(6.1.5)

Since the (derivative of the Hanliel fimction in the above 

expression involves i, it can be seen then that this pressure would 

amount to an effective damping of the structure for real values of K . 
m 

This is different from the sound pressure field inside the cylinder 

which does not result in any energy dissipation, the sound power being 

reactive.

6.7 Evaluation of the Coefficients C

C^'s will be evaluated as in earlier chapters by applying the 

principle of virtual work. Since all the bays in the axial direction 

are identical, only one bay need be considered. This will involve 

the virtual work of the cylinder between one set of supports and the 

work of one of the supports. The virtual displacement assumed will

be of the farm
i(p^+2m*TT )^

e X cos n'8
i(ot 

e

Virtual work of the cylinder between supports

Sir
m="}<” -i()j 4-2miT

[P e
i(w +2m:,f 

eP

0 0

cos n'8d8dbc

= 6Wg (6.46)
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where

U + 2imr p + 2inTr 3
=m = t ^ —----- f. * -2 ^ + «[ (^)(—---- ) "ft " - \ ]

ax a
(6.47)

It may he noted that in the above expression, the two integrations are 

independent of each other.

For evaluating the virtual work done by the support stiffnesses, 

the values of the radial stiffness and rotational stiffness of the ring 

stiffeners are req,uired. For this purpose it is assumed that the 

stiffeners act as though they are straight and not curved. With this 

assumption and following the procedujre given in Chapter 4, the virtual

work of the rotational stiffness is

Similarly the virtual work of the radial stiffness is

Now the principle of virtual work states that

6 W + 6 W + 6 W,
c r t

0 (6.50)

Substituting the values of 5W^, 6W and 5W,, cancelling the 
r t

common integral over 6 and rearranging. the following system of
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eq,uations is obtained for evaluating ^j^'^*

C ,R
in=-oo L ws a JZ.

X

+ 2m'iT o Pv ■*" 2™-it
r—1" =^<l>

X X

+ 2in'7T

= 0 when m^V 0 m''= -■”

= p when ri' = 0. 
o

(6.51)

When the influence of the acoustic medium inside the cylinder

is included, the above eq.uation would modify to:

in=-i<» + 2m-n' p + 2m' it + 2mTT p + Rm'-rr

to

^o when m - 0. (6.52)

to +«

+

1 0

- ^x
+ GJ(l)^(-

^x A

when m'/ 0, nf =

6.8 Computation and Discussion of Results

Computations were performed to obtain the relative magnitude 

of coefficients C , and to study the effect of the number of terms 

included in the series' on the response. The excitation considered was 

by random 'plane' waves of CV = 8.0, 16.0, 80.0 and 160.0 with n = 1, 3 

convected in a direction parallel to the axis of the cylinder. The 

frequency range of excitation was 0 < fi <. 32. The spectral density 

of excitation over this range of frequency was assumed to be constant 

and equal to unity.

The values of the parameters for the structure considered are 
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given below: C, the warping constant = 0.00044^

a, the radins of the cylinder = 4o inches

the thickness, h, = 0.04 inch

spacing =. 4.5 inches

I, the moment of inertia of the stiffening ring = 0.011245 in^

J the torsion constant of the stiffening ring = 0.0000153 in 

The above strnctnre was considered with q = 0.0 and q = 0.25" The X- 

wise curvature at x/&y - 0.5 ^nd the reactive power due to acoustic 

medium inside the cylinder are presented. These results are presented 

in terms of the non-dimensional frequency parameter ^, and convection 

velocity parameter, CV, which are defined as follows:

0

OV

2
D'

m

where m is the mass of the cylinder per unit surface area and D' 

= Eh /12(1 - u ). Curvature results were normalised as in Chapter 2.

6.8.1 Relative magnitudes of the coefficients C  -

The convergence of the series of space harmonics has already 

been demonstrated in the cases of stiffened beams and plates. In 

Table 6.1 the values of the different coefficients are given for the 

case of the ring stiffened cylinder. CV = 8.0, q = 0.0, n = 2, 

for n = 0,4, 5.6 and 22.4. It is clear from the table that the higher 

order terms are small compared to the zero order term except for 

a = 22.4.

Table; 6.2 shows relative magnitudes of the coefficients 

for CV = 16.0, q = 0.25, = 2 for 0 = 1.6 and 16.0. Table 6.3 
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gives the values for CV = BO.O, n = 0.25, ii = 1 for 0 = 19.6. The 

satisfactory convergence of the coefficients may again he clearly seen 

from their relative, values given in these tables.

6.8.2 Discussion of results

Figure 6.2 shows the effect of the number of terms on the 

curvature at midspan of the cylinder for 6 = v/4, n = 0.25, CV = 80.0, 

n = 1. The maximum response is given by the 3 term solution and the 

results corresponding to T and 9 terms lie between those obtained by 

including 3 and 5 terms. The curves for 7 terms and 9 terms are so 

close to each other that only one curve has been drawn for them. The 

3 term solution which reflects maximum variation from the 9 term solution 

is out by less than 5%, for the peak value, and by about 2.6% in the 

r.m.s. value. These features are Very similar to the case of the 

stiffened beam in Chapter 2.

Figure 6.3 presents results for the reactive sound power. The 

structure and loading is the same as corresponds to Figure 6.2. Difference 

in response by including different numbers of terms was not appreciable 

so that only one curve has been drawn for all of them. This close 

agreement between results obtained by including a different number of 

terms may be explained by the fact that the convection velocity is super- 

sonic so that the zero term is associated with a contributing K^. 

This term being very large compared to others dominates the result. 

K 
m

The peaks across the frequency scale are explained by 
U + 2mr

-)" - (' --- - — ' — ) I becoming small for different values of m.

This should be clear from almost equal frequency intervals between the 

first and second peak on one hand and between the second and third on 

- 140 -



the other. The decreasing magnitude of the peaks is due to the fact 

that as m increases C decreases, 
m

Figure 6.U shows the spectral density of curvature at the 

midspan for 0 = ir/h for different values of n and CV, q = 0.25. It 

is seen that for the same convection velocity, the response for n = 3 

is much smaller than the one for n = 1. n = 3 corresponds to a higher 

mode and therefore this sort of "behaviour is expected.

6.9 Conclusions

The purpose of this chapter was to provide another check on 

the applicability of the method of space harmonics to periodic structures. 

As in other periodic structures, the response of the stiffened cylindrical 

shells dealt with in this chapter was expressed in the series of space 

harmonics and the coefficients of different terms in the series were 

determined. The series has "been seen to converge satisfactorily. A 

relatively small number of terms has been seen to be. necessary t.,o be 

included for the response to be determined with a reasonable accuracy 

compared with that which can be achieved by including a large number of 

terms.

The general eq.uations developed in this chapter are sim.ilar to 

those in the case of stiffened beams and plates. The general character­

istics regarding convergence of the series of space harmonics and the 

influence of including different numbers of terms are similar. It can 

therefore be stated that the series method will be equally successful 

for the stiffened cylinder.
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7. GENERAL CONCLUDING REMARKS

The theoretical work presented in this thesis leads to the 

conclusion that for obtaining the response of an infinite periodic 

structure, the method of space harmonics may be successfully employed. 

Because of the satisfactory convergence of the series of such harmonics, 

only a limited number of such terms need be included to obtain the res­

ponse with acceptable accuracy. For obtaining the sound power radiated 

at subsonic convection velocities of loading, the number of terms in the 

series must include the lowest radiating harmonica (The method of 

identifying the radiating harmonics has been included in the thesis.) 

In general, $ term series is sufficient for obtaining the response of 

stiffened beams and ring stiffened cylindrical shells, and 2$ terms are 

sufficient for the response of an orthogonally stiffened plate. For 

supersonic velocities of loading, smaller number of terms is necessary 

because the zero order term in the series is then a radiating harmonic. 

Por a given convection velocity of loading, this term is more likely to 

be radiating harmonic, at higher frequencies so that the accuracy of 

the calculated response will be better at these frequencies than at 

lower frequencies.

The results for sound power radiated by the orthogonally stiffened 

plate predicted by this theory agree reasonably well with the experimental 

results for the frequency range covered by the experiment. At higher fre­

quencies the agreement is expected to be closer, since at higher frequencies 

the influence of the finiteness of the structure will be smaller.

The method adopted is obviously simpler than the normal mode



approach where all the modes would have to be determined first, and then 

the response integrated taking proper account of modal coupling. While 

the greater degree of damping in the structure makes the exact normal 

mode analysis very difficult (and the approximate normal mode analysis 

less accurate) it enhances the validity of the method of space harmonics 

because the higher degree of damping in the structure brings its behaviour 

closer to that of the infinite structure.

The theory presented can be applied to any infinite periodic 

structure, that is to any infinite multi-supported structure irrespective 

of the characteristics of the supports. This is because any displace­

ment, wave length or frequency dependence of the support stiffness can 

be readily taken into account while formulating the set of simultaneous 

equations for the coefficients of space harmonics employed.

The theory explains sound radiation by stiffened structures 

even when excited by subsonic convection velocities of loading. It has' 

been found that for subsonic velocities of loading, below a certain 

frequency determined by the structural parameters, there are bands of 

frequencies where real sound power is radiated. These bands may be 

easily determined from a simple diagram included in the thesis.

Por the purpose of applying the method of space harmonics to 

obtain the response of a structure to boundary layer, this excitation 

is analysed -to obtain wave length frequency spectrum. This enables the 

visualisation of the boundary layer field as an assemblage of plane 

waves of different convection velocities at a given frequency. The 

wave length components leading to a large response can then be identified. 

The method employed therefore reduces the computation necessary to 

analyse a particular problem by identifying the most significant wave 

numbers. It must be emphasised that the low wave numbers of the boundary



layer can be important especially at subsonic convection velocities of 

loading. Therefore the importance of the correctness of the wave length 

spectrum for the excitation field for low wave numbers is clearly seen.

The study brings out some differences between the uniform 

structures and the stiffened structures. For example, unlike the uni­

form infinite structure which radiates for only supersonic velocities of 

loading, the infinite stiffened structure can radiate sound power at 

subsonic velocities of loading as well. For supersonic convection 

velocities of loading, the power radiated by infinite stiffened beam has 

been seen to be much higher than that by the uniform infinite beam.

It has been seen that introduction of damping in the structure 

cannot be recommended as an effective means for reducing sound power 

radiated over a band of frequencies. - Carefully designing the dimensions 

of the stiffeners with this end in view may offer a better alternative.

Future work should be done to optimise the structural parameter 

to minimise the sound power radiated by the structure. The influence on 

sound power radiated of various wave length spectra or cross correlation 

functions to represent a boundary layer pressure field also offers a 

useful area for future work.
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APPENDIX A

THE EXCITATION FIELD

A.l Introduetion

The excitation field considered in this thesis may generally 

be described as a boundary layer pressure field. Such a field in 

practice is a broad frequency phenomenon, the frequency range in the 

case of a subsonic aircraft being from approximately 100 Hz to 3000 Hz. 

As will be shown in this appendix, the acoustic plane wave may be con­

sidered as a special case of this general field.

For obtaining the response of the structures to boundary layer 

pressure, the excitation has been analysed into a wave length frequency 

spectrum. This spectrum is obtained by the Fourier transform of the 

spatial cross correlation coefficient of the excitation. The actual 

expression used for this coefficient is based on the laboratory measure­

ments by Bull et al [54]. The frequency wave length spectrum has 

been earlier discussed by Wills [55]' Though the expressions 

given by him have not been actually used for the computations reported, 

these expressions have been included in this appendix for completeness 

and comparison.

A.2 The Narrow Band Cross Correlation Coefficient:

The narrow band cross correlation coefficient of a pressure 

field is one of its most important properties and contains a lot of 

statistical information about it. The field considered here is a 

homogeneous and stationary boundary layer pressure. The space-time 



correlation of the field, with these properties will be independent of 

the instant at which the measurements are made and of the spatial 

locations of the points where the measurements are made. Thus it will 

be a function of the time delay t and spatial separation ^ only. 

Spatial separation is a vector ^ having two components, viz 61 "“

the longitudinal direction (or in the direction of convection) and ^3

in the lateral direction.

Under the above assumptions of homogeneity and stationarity, 

the narrow band cross correlation coefficient at freq.uency to may be 

defined as follows:

^p’Am ^^1’ ^3’ '"’ '^^
(A.l)

where

and

w) is the narrow hand cross correlation co­

efficient at freq.uency m and corresponding

to spatial separation components ?1> ?3

and to time delay t- 

w) is the corresponding narrow band space­

time cross correlation function.

The narrow band cross correlation function may be actually determined 

by measuring pressures at two points separated by g^ in the longitudi­

nal direction and ^_ in the lateral direction, with a time delay t, 

'and then passing the signal through a filter centred at frequency o) and 

having a bandwidth Am. The function can then be determined by the 

following relationship

‘61. 63, !;«.)= Limit — Pi„(x,t; m)p^^(x 5 , ttT;„)dt 
It (A.2) 
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where x is the vector locating one of the measurement points and 

p (x, t; w) is the filter output when the pressure signal is passed 

through a filter of bandwidth Am and centre freq,uency m.

A2.1 The frozen turbulence

In the case of frozen turbulence convected with velocity U 

in the longitudinal direction

^1

u 
c

,T - T ) where
P

(A.3)

and

1
Pp(^l' ^3 cos (A.4)

p

where S (g , g , m) is the pressure cross 
pl 3

power spectral density

and 'p^O, 0, co) is the pressure power spectral density.
P

A.2.2 Decaying turbulence

For decaying turbulence, Bull has shown that

S
= F(-[r' 

c

__ 3
U 
c

51
U 
c

cos (A.5)

except at small values and
c

^^3 

IT'

Bull's measurements also show that except at small values of

U ' 
c

|Pp(?> 5g, T;
3P

IA.6)

Also that

Ippkr °
c (A.7)e
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and |Pp^'^> ^g) t; oj) I = e (A.8)

where t and c are called the boundary layer decay parameters in the 

longitudinal and lateral directions respectively. 

.Figures A.1-A.2 show respectively the longitudinal correlation

coefficient as given by equation (A.?) and lateral coefficient as given

by equation (A.8). Combining"equations (A.6-8);

efficient

p/h

may be expressed (except for low values 
b^|g]| cw|g^|

5g) m) = e e cos a)(T

the complete

of as
c

CO-

(A.9)
fl

U
c

For T = 0

U '^c ''Si
COS —V- (A.lO)

A' 3 The Convection Velocity

Bull's measurements lead to the following expressions for the 

convection velocity in terms of free stream velocity U and boundary 

layer displacement thickness 6*.
-0.89a)5*

U
U = U (m) = r 0'59 + 0.30 e ° 1 (A.11)

Figure A.3 shows the relationship given by equation (A.11).

A.4 The Wave Number Frequency Snectzum

A. 4.1 The wave number frequency spectriun by Fo-arier transform­
ing the space-time correlation

The wave number frequency spectrum is the double Fourier 

transform of the space time correlation function R^(5, i) of the 

pressures at two points separated by g. Thus the wave number frequency

— 140 —



spectrum of the pressure field is

S(K, w) 1
(2^)^

(A.12)

Now the cross power spectral density of the pressures at points 

separated by g is 

4"00

and for a homogeneous pressure field with respect to the direction of 

convection is commonly expressed in the form

Sp(5. w) gp(")pp(^' (A.14)

where S (w) is the power spectral-density of the pressure at any point 

in the field and Pp^^’ “^ is in general a complex function.

From eq.uations (A. 12-14) we see

8(K, m) = 8(w) ^ Pp(5, d( . (A.l$)

where K can take any value between +» and -co for the most general 

pressure fields. It is reasonable however to suppose that a boundary 

layer pressure field has positive values of K only since all compo­

nent pressure waves are convected in the direction of flow (see 

reference ^5j for some relevant discussion).

Now express the complex p (g, m) in the form

w) = w) + w) (A.16)

and substitute in equation (A.15)- Since <^) is an entirely 

real function and must have zero value fornegative K, we find
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S^(K, ») = Sj^(»)^ Ppp(5> (^) cos Kg dg (A. if)

Thus the form of Pp^-^^’ ^^ only is required, and not of P ^(g 

The value of Pp^(5, w) is given by equation (A.10) as

b(^|gpl cw|g^l

U 
c

U 
ce cos —jj- 

c
e (A.18)

where b is the boundaary layer decay parameter in the longitudinal

direction and c in the corresponding parameter for the lateral direction.

When b = c = 0, Pp corresponds to the acoustic plane wave. The wave number

frequency spectrum then has zero val.ue for all K except for K 0)

at which it takes the form of a 6 function such that

or

(A.19)

(A.20)

When b and c are non zero, the S (K, 

. “ Cl)
but has a maximum' value at K = — .

cd) has non zero values for all K

K has two components

Uc 

^1 in the direction of convection and

K^ laterally. We may therefore speak of spectrum or of

6(Kp, Kg, w). When this is integrated over all K (or over all K^

K p , K g , CD

U 
c

and Kg) it yields power spectral density, or

fOO fOO

^p/^1' ^3 w)dKpdKg = S(m) (A.21)

0 0
Evidently then

4-00
S (K ,K_,(D) = p [ 

(2^)^ J

. 4-CO
-iK,g f -iKgCo

e dg^^ e Pp(gp) gg) CD» O)dgg (A.22)
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Pp(S^^> ?2’ ♦Substituting for O) from equation (A.18) and evaluating

the integrals yields after some arrangement

J2_L

2Tr

hw
U 
c (A.23)

The first term on the right hand side represents the contribution of K^, 

the lateral wave number. At high K.^, this contribution can be seen to 

be small. 'The second term represents the contribution of K^ components 

and peaks at K^ = ^ . 
c

If the direction of convection of the boundary layer is

parallel to the X-axis

Therefore» from equation (A.23) U , n) may be obtained as

Sp(“>

2
K C%(cgn/cv) 4

U 

c c

+

c

‘‘y ° ‘‘s^y

X
T^ CV I (^

(§!!^)^ + (g- + K]^)^ 

c e

P

[b^ + (1 - ^)"] [b^ + (1 + %^)"

= 8_(m) s (p , n).8 (p , n) 
p p y p -x-

(A.24)

- 151 -



where
^ §^ [(1 + ^2) + (p^ ^)2j

(A.25)

and.

'Lb + <1 - — > Hb ♦ (b + _X-------

(A.26)

The first term in equation (A.24) given by equation (A.2$), is 

2 
almost inversely proportional to p for large values of p . It wild. 

then become very small at fairly high frequencies. The contribution to

the overall .spectrum will then be only from or convection in the^x

longitudinal direction.

For a large value of q (-^ -> 

q. 
proportional to q. Hence for a beam (a

O), the first term is inversely

large q), the contribution of

the first term may be considered constant in the calculation of the wave­

length frequency spectrum. In that case the wave length frequency 

spectrum, is given by equation (A.25) as

w) = 8(p,w) = 
p X y p

Clearly then, for small values of h, the spectrum.
P^CV) 

at a value when --— = 1. This expression for 

of (a.27) would peak

the spectrum has been

used in computation of response due to the boundary layer pressure field 

described in Chapter 2.

The usual values taken for b and c are:
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b = 0.1 c = 0.T15

The one dimensional spectrum corresponding to equation (A2 7) has been 

shown in Figure A. 4. It has been plotted in Figure A.5 again to 

compare with the spectrum presented by Wills.

An acoustic plane wave has a 6-fUnction form of wavelength- 

frequency spectrum at K = ^ . If the acoustic plane wave is inclined 
U 

at 0 to the x axis, the non zero values are for

u = KA COE 6
(A.28) 

p = KA sin 6 
y y

When the boundary layer is inclined at G to the X-axis

u = K_ cos 8 - K_ sin 8 
. ' . (A.29) 

u = sin 8 + K_ cos 8 
y 1 3

The wavelength-frequency spectrum in that case is most conveniently- 

found in terms of K^ and K^. This is given by equation (A. 23). 

The response, however, may be more conveniently calculated in terms 

of p and p given by equation (A.29). 
y

A.4.2 wills' wavelength spectrum

Wills has presented the values of wave number-frequency and 

wave number phase velocity spectrum of the wall pressure for a two 

dimensional turbulent boundary layer in zero pressure gradient obtained 

from a Fourier transform of experimental filtered spatial correlations. 

He found that in the region of significant energy the wave number 

spectra are similar at all frequencies measured within experimental 

accuracy. This means that the height of the main peak of the wave 

— 1^3



number spectrum is proportional to the integrate! spectral density at 

each frequency. Thus the complete (K^^ m) spectrum can be approxi­

mated by

w) = (|)(w)F(;r^) (A;30) 

where ^(m) is the frequency spectrum and U is the convection 

velocity. The subscript m is there to emphasise that it is frequency 

dependent.

Figure A.5 shows the function F under the relation shown by 

equation (A.30). This has been seen to fit a normal distribution curve 
-(w/KU^ - 1)^/0. 2^ 

e very closely, except at very small values of the 

argument. Figure A.5 also shows (chain double dotted line) the spectrum 

obtained from equation (A.27) for b = 0.1 and for b = 0,2 (chain 

dotted line). It is interesting to observe that Wills has proposed that 

the more general spectrum ^(K, m) may be given by

^(K, m) = *^,(Kg, m)F(^^^) (A.3I)

This form may be seen to be similar to the form presented in this thesis

(see equations (A.23-24)).
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APPENDIX B
FLOW DIAGRAM FOR (:C)^v1F)Ln'/\^FI(:)^4

stiffened Beam Excited^ by BoLuidk^ry Layer

value of 
n

Pressure 
data

Structural dat

Take next value

over ail

until all values

L ,̂ Take next value of ,t!,, 
until all values are used

over all a<;s

of n 
used

RMS value
= square root of the above

" 1> 5 ~



APPENDIX C

TIME AVERAGE OF THE PRODUCT OF REAL PARTS OP TWO COMPLEX FUNCTIONS

Let the product of real parts of two complex functions f

and P be required.

Now

Let

and

Re(f)x Pe(P)>

i(wt-^) 
e

(C.l)

(wt — Ip) COs(wt - ({))>

f
o

P F , 
0

1

o o

f F
o o f cos(wt " Ip) cos(wt - ({))dt (C.3)

where T is the period of and P' and equals —

Expanding the integrand of (C.3) 

, T

<Pe(f) X Pe(F) cos(mt - ^)cos(wt — Ip + Ip - (p)dt

f cos(wt - ^)[ cos(wt - ^Ocos(^ - <p) 

o

- sin(wt - ^)sin(^ - cp)] dt (C.4)

Then

Let (C.5)

The second term

6 cos'(wt - Ip) - sin 8 sin(wt -

in the integrand of equation (C.6) becomes zero on

f F 
o o
I

o o
T

(ip -

f F

T

f

T

o

. T
integration while the first term yields ip.



Therefore

<Re(f) X Re(F)> = f P cos 8=gf P cos G 
J:. C) O O O

Now

P cos = 2Re(f P e ^^)
O 0 O 0

L O 0

=^Ee(fP*)

where P* is the complex conjugate of P.

Prom equations (C.7) and. ^.8)

< Re(f) X Re(F)> = iRe(fP*)

(C.7)

(C.8)

(C.9)

or the time average of the product of real parts of two complex 

functions is given by half the real part of the product of one and 

the complex conjugate of the other.
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APPENDIX D

FLOW DIAGRAM FOR COMPUTATION

Stiffened plate excited by boundary layer
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APPENDIX E

THE RADIATING HARMONIC FOR THE STIFFENED PLATE

An (m,n) term in the series of space harmonics given by 

equation (4.27) will result in true sound radiation if the corresponding

K is real, i.e. if 
mnz

u) -p Uy + 2miT p + 2mT p

The above relation is similar to that for the case of the beam (see 

section 3.5«1) except for the additional term involving p (and n). 

For a given it should therefore be possible to draw a diagram 

like Figure 3.1 for each value of n. However if only one diagram 

is desired for all values of m and n, it will have to be three 

dimensional. The straight lines parallel to the sides of the primary 

radiation triangle POR in Figure 3.1 will now be surfaces parallel to 

the surface of the primary radiating cone. An (m,n) term will now 

radiate if it is possible to bring the value of p_ and p within 
X y 

the primary radiating cone by adding 2mir to p^ and 2n'n' to p.

A more general case of the plane wave loading inclined at 

an angle 8 to the X-axis will introduce still further complication 

th 
in the diagram. The mechanism by which the (m, n) term radiates, may 

therefore be better illustrated by looking at a given frequency as the 

following analysis indicates.

The harmonics (m,n) will radiate if

K is real 
mnz

or if . p + 2miT p + Pnif

— 1$9



In the critical case

or

(E.l)

(E.2)

Or
sin 6 + 2mT

n\2 n cos 6 
cv

(E.3)

equation (E.2) may also be rewritten as

(E.4)

where R^ = —= g,^

and. R = q —=
y C C

(E.6)

Equation (E.4) represents an ellipse where R and R give 
y X 

the major and minor axes respectively. Substituting m = n = 0 in 

this equation would yield equation of the primary radiating ellipse. 

If particular values of (m,n) satisfy equation (E.4), the (m, n)" 

harmonic will be a radiating one.

The above statements are illustrated by Figure E.l. Ellipses 

have not been drawn because only their major and minor axes are of 

importance. These are along the Y and X axes of the figure respectively 

u is drawn on the X-axis and u on the Y-axis. Concentric circles 
X y 

with 0 as centre and radial lines at different angles to the X-axis have 

been drawn to facilitate locating points on the diagrams. The numbers 

1, 2, 3,... on the X-axis on the left of the origin represent the aspect 



ratio q. Any value OE on the Y-axis may be multiplied by q by 

drawing a line through E parallel to one of the lines joining P to 

these numbers. For multiplying OE by q = 2, draw EF' parallel to

P2. Then OP' = q.OE. Evidently OE' = OF' = q OE.

Let us consider a case where = OA, q - 2
n
cv OB and

G = 30°

Let A'A" = q.OA' = OA'"

The primary radiating ellipse for these conditions is given by major 

diameter OA"' and minor diameter OA. Thus if the value of p can 

be brought within OA by adding 2mTT to it, and the value of p can 

be brought within OA"' by adding 2nx to it, the (m, n) harmonic 

will radiate.

Por g^ = OB and q = 2, p^ = OD and p = OE'. By adding

-2? to p^ it can be brought within OA. Also p is within OA"'.

So the radiation will take place for m = -1 and n= 0. It will radiate 

for all values of m, n for which p is brought within OA, and p

within OA"'.

Other conditions of excitation may similarly be tested for

true radiation.
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APPENDIX F

INSTRUMENTS USED FOP EXPEPIMEMTAl DETEKMINATION OF RADIATED POWER 

AND FOR MEASUREMENT OF DAMPING

B. & K. beat freg^^ncy oscillator Type 1014.

1$ Watt loalspeaker.

B. & K. 2" condenser microphone 8.N. Ih^lgy.

B. & K. 2" condenser microphone S.No. 218312.

B. & K. audiofreguency spectrometer type 2111.

B. & K. andiofregnency spectrometer type 231.2.

E.M. Ltd. Accelerometer S.N. 299 (sensitivity 11.8 mv/g).

Tape recorder T.3ooo

B. & K. level recorder type 230$.

Power amplifier Cape 2$. Serial No. VLI MK2.

Cathode ray oscilloscope. Type 502 (Tektronix Inc.)

Universal avometer no. 13754 - 3A.

6 Watt audio oscillator (Dawe) type 44.B, serial no. 68$.

Step down transformer Inst. No. 13088.

Wayne-Kerr probes,

Wayne-Kerr vibration meter, type B731A, serial no. 8$.

Solartron resolved component indicator, model VP. Serial no. 39736.
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APPENDIX G

THE DETERMINATION OF DAMPING FROM THE VECTOR PLOT

The method, applied to a continuous system vibrating in a 

single mode has been derived from the analysis of a single degree of 

freedom system. The equation of motion of a single degree of freedom 

system with mass M, stiffhess K and hysteretic damping n under a 

constant harmonic excitation P e^^'^ is 
o

)6f + K(1 + in)w = Pe^^^ (G.l)

Assume a solution w = w e ' - (G.2)

Substituting (G.2) into (G.l) yields

P 
o

(K - Mw ) + inK
(G.3)

Let static deflection w = P /K 
s o s

the resonant frequency of the system m = /

and non dimensional frequency ratio D_ =

(G.4)

(G.5)

(G.6)

Nov

(1-0 ) + n 
r

where Re represents the real part of

(G.T)

(G.8)

4" — Re(w) therefore has a maximum at 0 = 1 and has then a value



I 5r ifi =1 ” <=-9i
r r n

The response vector w is entirely imaginary at 0=1 and 

therefore the resonant frequency is given by the point on the circle 

through which a tazigent drawn at the point is parallel to the reference 

axis. The diameter of this circle D can be found from equation (G.3) 

and is given by 
w

D = — (G.IO)
n

From equations (G.9) and (G.IO)

2D

Id Re(w)I
I dO '0=1 

r

(G.ll)

The diameter of the circle D can be actually measured from 

the vector plot obtained and the denominator of the above equation can 

be determined as the rate of change of the real part of the response 

vector with respect to the non dimensional frequency, 0^, in the 

region of the resonant, frequency. Then equation (G.ll) will readily 

yield the value of damping q.
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APPENDIX H

THE SHELL RING INTERACTION FORCES

(See also reference [%])

The ring displacements "^R’ ^R at the median axis of the

ring are related to the shell displacements w at the median 
s

surface hy
8w

Ss , e s
''r = <^ - f''s (H.l)

end (H.2)

where e is the distance between the median surface of the shell and

V
s

the median axis of the ring. These 'displacement relations are a 

consequence of the classical thin shell theory assumptions. According 

to this analysis the ring shell interaction forces Y^■ and Zp in the 

tangential and radial directions resulting from inplane deformation of 

the stiffening ring, and M^ the circumferentially distributed moment 

necessary to keep the out of plane rotation of the ring compatible with 

the slope of the shell in the axial direction, are given by the follow­

ing expressions (see Figure H.l).

Y^)=KB8[(l-{)^s+f^] +Kg^Wgtann6 (H.3)

where , K and are the stiffness coefficients in the 
6 6 9 r rr T

n " circumferential mode, and e is the distance between the median
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surfaces of the shell and the ring The stiffness coefficients may be

expressed as follows

Kaa " " n'(l ^) {Except for n = 0 when Egg = — ---
R/EA

(H.6)

K^ (for a thin ring) = — ^ [^ + ^]

(n -1)

(H.7)

(H.8)

(H.9)

where A is the area of cross section of the ring

1 is the moment of inertia of the ring cross section

R is the mean radius of the ring

is the shear coefficient (may be taken as ^ after 

EI is the bending stiffness of the ring

GJ is the torsional stiffness of the cross section

e is usually small compared to a. Assuming it to be negligible

equations (H.3-5) simplify to

^R(G) = K^gV^ + tan 6 (H.IO)

(H.ll)

(H.12)
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Re].ative Values of Coefficients A

CV = 4.0; K^ = 4.0; i^-j^ "^ lo'^, n = 0.25.

(a) Frequency parameter =12.8

m Re(A ) Iin(A ) 
m

-5 -0.0002098 -0.001420

-4 -0.0004833 -0.003027

-3 -0.001515 -0.008362;

-2 -0.009358 -0.03979

-1 -0.1542 +1.496

0 +0.1657 -1.496

+1 -0.0004751 +0.03768

+2 +0.0002659 +0.008091

+3 +0.0001586 +0.002957

+4 +0.00009114 +0.001394

+5 +0.00005571 +0.0007649

(b) Frequency parameter = 22.4

TABLE 2.1

m Im(A ) 
m

-5 -0.0002961 -0.0003890

-4 -0.0008553 -0.001069

-3 -0.003859 -0.004527

-2 -0.06167 -0.06005

-1 +0.1519 0.2569

0 -0.0797 -0.1868

+1 -0.004502 -0.003490

+2 -0.0007367 -0.0004701

+3 -0.000203 -0.00009428

+4 . -0.00007298 -0.00001824

+5 -0.00003073 0.0000005922
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Influence of including different number of terms in the series on the 
values of coefficients A

TABLE 2.2

(a)

CV = 4.0

Real Parts of

K^ = 4.0 K_^

A 's 
m

m n =0.25 n = i4.i

m 3 terms 5 terms 7 terms 9 terms

-4 -0.00201

-3 -0.00638 -0.00625

-2 -0.0409 -0.0394 -0.03876

-1 0.674 0.6639 0.655 0.6504

0 -0.68$ -0.632 -0.619 -0.6135

+1 0.0109 0.00746 -0.00664 0.00628

+2 0.002$4 0.00235 0.00226

+3 0.00102 ' 0.000988

+4 0.000510

(b) Imaginary Parts of A ’ s 
m

m 3 terms 5 terms 7 terms 9 terms

-4 -0.00103

-3 -0.00327 -0.00313

-2 -0.0208 -0.0189 -0.0181

-1 0.791 0.612 0.575 0.558

0 -0.800 -0.599 -0.560 -0.544

+1 0.00920 0.00611 0.00553 0.00529

+2 0.00174 0.00158 0.00151

+3 0.000647 0.000619

+4 0.000310
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Influence of including different number; of terms in the series on the 

values of coefficients

CV = H.O K

A ' s 
m

->• = ri =0.25 fi =8.0

(a) Real Parts of

m 3 tenns 5 terms 7 terms 9 terms

-0.00006170

-3 -0.00009606 -0.0001013

-2 -0.00268 -0.002715 -0.002739

-1 -0.2110 -0.2117 -0.2126 -0.21317

0 0.23$0 0.2415 0.2433 0.2441

+1 -0.0239 -0.0240 -0.02399 -0.02397

+2 -0.00306 : -0.003059 -0.003054

+3 -0.000865 -0.0008637

+4 -0.0003487

(b) Imaginary Part s of A 's 
m

m 3 terms 5 terms 7 terms '9 terms

-0.00009531

-3 -0.0001787 -0.0001747

-2 -0.0001146 -0.00008504 -0.0000668

-1 0.05341 0.0548 0.05567 0.05617

0 ■ -0.0618 -0.0643 -0.06535 -0.06590

+1 0.008441 0.00844 0.00843 0.008420

+2 0.001165 0.001160 0.001157

+3 0.000346 0.0003451

+lt 0.0001446

Table 2 . 3
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Relative Magnitudes of Ay^^'^

Stiffened plate, structure A, ri= 0.15, trace velocity = I.5 times the 
velocity of sound. Frequency 64O Hz.

a) Real Parts of A 
mn

-3 -2 -1 0 +1 +2 +3

-3 5.97 13.29 -358.8 612.8 250.2 -18.45 -3.92

-2 17.93 -28.73 -3342.06 6066.0-2320.4 -297.04 -88.79

-1 -16.03 12.43 1874.7 -3529.0 1381.9 228.2 67.29

n °

+1

-15.75 5.981 3652.3 -10753.1 2377.1 174.3 50.83

-16.03. 12.43 1874.7 -3529.0 1381.9 228.2 67.29

+2 17.93 -28.73 -3342.06 6066.0-2320.4 -297.04 -88.79

+3 5.97 13.29 -358.8 612.8 250.2 -18.45 -3.92

(h) Imaginary Parts of A^

-3 -2 . -1 ,0 -H +2 +3

-3 -10.5 -45.08 5.33 163.1 -87.8 -18.01 -5.34

-2 -20.86 -80.25 708.2 -885.9 232.3 39.76 14.45

-1 -41.22 -211.48 2301.8 1022.35 -914.6 5.241 7.28

n 0 145.2 673.4 -6034.8 -3712.4 1539.7 -53.9 -32.78

+1 -41.22 -211.48 2301.8 1022.35 "914.6 5.241 7.28

'+2 -20.86 -80.25 708.2 -885.9 232.3 39.76 14.45

-i-3 -10.5 -45.08 5.33 163.1 -87.8 -18.01 -5.34

TAILS Ij.. 1
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Relative Magnitudes of A^'s

Stiffened plate, structure A, n = 0.15- trace velocity =1.5 times 

the velocity of sound. Freq.uency 500 Hz.

(a) Real Parts of A 
mn

m

-2 -1 0 +1 +2

-2 21.7 ' 332.0 -673.0 323.0 41.3

-1 -16.1 -645.0 1370.0 33.8 -14.1

0 -11.9 509.0 -131000.0 -722.0 -55.0

+1 -16.1 -645.0 1370.0 33.8 -14.1

+2 21.7 332.0 -673.0 323.0 41.3

(b) Imaginary Parts of A^

m

-2 -1 0 +1 +2

-2 -0.454 -39.1 87.1 -53.2 -3.23

-1 -1.91 -108.0 210.0 -91.0 -9.72

0 4.74 295.0 -1001.0 288.0 12.99

. +1 -1.91

+2 -0.454

-108.0 210.0 -91.0 -9.72

-39.1 87.1 -53.2 -3.23

TABLE li. 2
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Relative Magnitudes of A^'s

Stiffened plate, structure B, p = 0.25, trace velocity 1/9 times the 

velocity of sound convected at 45° to the X-axis. Frequency I50 Hz.

(a) Real Parts of A

-2 -1 0 +1 +2

-2 -3.79 7.81 -4.20 0.239 -0.0673

-1 -131.5 904.0 -1204.6 356.1 108.44

0 164.2

+1 29.3

+2 ' 7.89

-1142.5 1666.9 -489.5 -162.9

147.5 -837.5 114.5 46.0

18.9 -53.3 17.9 8.43

(b) Lnaginary Parts of A^

TABLE 4.3

m
—2 —1 0 +1 +2

-2 -0.063 4.69 -8.46 3.07 0.763

■ -1 45.5 -231.7 299.6 -86.1 -27.1

n
+1

-40.3 295.7 -424.3 126.4 42.7

-3.61 -57.7 112.4 -37.2 -13.8

+2 -1.44 -8.21 18.3 -6.15 -2.48
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Ring

Relative Magnitudes of Coefficients

stiffened cylinder. CV^8.0; n =0.0; n = 2.

(a) For 2 = 0. ^1 (b) For 0 = 5.6

m A
m m A— m

-5 -2.997 25.25
-1^ -7.736 -4 59.84
-3 -26.06

-3 201.7
-2 -143.9 -2 1608.0
-1 -2775.0 -1 -26,240,000.0

0 1, 688,000.0 0 26,400,000.0
+1 -1676.0 +1 -202.7
+2 -124.1 +2 -60.02
+ 3 -26.53

■ +3 -25.31
+1| -8.864

+4 -12.95
+5 -3.794

+5 -7.498

c) For 2 = 22.4

m A
m

-5 2615.0

-4 -10,350,000.0

-3 -2445.0

-2 -311.1

-1 -92.72

0 10,320,000.0

+1 -20.12

+2 -11.65

+3 -7.346

+4 -4,924

+5 -3.460

TABLE 6.1
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Relative Magnitudes of Coefficients

Ring stiffened cylinder. ' CV = 16.0; n = 0.25; n = 2.

(a) For Q =1.6

m Real Part of A 
m

Imaginary part of A^

”5 -7.10 -2.10

-19.7 -5.26

-3 -71.6 -17.3

-2 -435.0 -96.9

-10300.0 -2120.0

0 46,300,000.0 -2,550,000.0

+1 -3740.0 -663.0

+2 -322.0 -53.4

+3 -73.9 -11.5

+4 -25.8 -3.78

+5 ' -11.4 ' -1.58

(Id) For 0 =16.0

m Real Part of A 
m

Imaginary Part of A

-5 7.329 -0.74

-4 14.51 -3.26

-3 12.3 -27.1

-2 -4620.0 -1780.0

-1 -29400.0 -5900.0

0 634,000,000.0 -54,600,000.0

+1 -61.44 -7.192

+2 -19.5 -1.97

+3 -8.45 -0.760

+4 -4.38 -0.366

+5 -2.55 -0.I9O

TABLE 6.2
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Relative Magnitudes of the Coefficients

Ring Stiffened Cylinder. CV = 80.0 n = 0.25 n = 1

(a) For n =19.6

m Real Part of A^ Imaginary Part of A

-4 1.59 -2.24

-3 -4.36 -7-64

-2 -81.2 -44.5

-1 -3320.0 109.0

0 255,000,000.0 -48,900.0

+1 -1420.0 -262.0

+2 -149.0 -22.74

+3 -38.90 -5.07

+4 -15.00 -1.71

TABLE 6.3
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Rivets

(a) . Conventional skin stringer structure

(b) . Integrally stiffened structure machined from a 
solid slab .

Fig. 1.1' Skin stringer configurations
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1.3a

1.3b

1.3c

Fig.1.3 Some typical waves of the beam of Fig.1.2 
(a) at a very low frequency (3^ < 12- 8) 
(b)at the lower bounding frequency. J^ =12-8 
(c) at the upper bounding frequency, 3^ = 22-4
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Fig.1.4 Variation of component wave speed 
with frequency; for first propagation 
band of beam of Fig.ta .
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Figi.S- Component amplitude ratios for the free 
wave group at Pi = l7-(for the beam of 
Fug 1.2 )
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Fig. 2.1

------------ Stringers

------------Frames

Identically constructed panels 
extending to infinity in the two 
perpendicular directions.
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Fig 2.2 The curvature admittance function /VxfT^A^)/^
for the beam of Figure 1.2 ■ and the 
pressure wave-number spectrum,- A =8-0, CV =6-0
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Fig2.3 Computed response at different convection 
velocities by including eleven terms in the 
series solution
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Fig 2.6 Computed response with different number
of terms in the series (cv = 6 O)
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Fig 2.5 The effect of number of terms on peak value of response
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Convection velocity parameter cv
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Fig2.6 Effect of the number of terms on the RMS 
value of response
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Fig 2.7 Response with different values of beam damping
Eleven terms are included in the series solution
c v=4
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No of terms I Peak spectral density I RMS value:
3 1 2.05 163
5 1 2.09 1.67
7 1 195 160
9 I 1 96 160
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22 0
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boundary layer 

number of terms :n





n

Fig. 3 2 Frequency bands of sound radiation.
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different terms in the series. Plane wave convection
velocity cv = 2 0, Kr = 4 0, 7} = 0 02.
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Fig. 3-4 Effect of the number of terms on th@ moan 
value of sound powor radiated at different 
convection velocities. 5v = 10 0.
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Fig. 3-6 Mean sound power radiated at different convection 
velocities. SV =10-0. The broken line corresponds 
to the power radiated by the unstiffened beam 
under similar conditions.
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waves. SV = 10 0.
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Fig. 3-9 Effect of the number of terms on the peak 
spectral density of the sound power radiated 
v/hen the beam is excited by boundary layer 
pressure field, cv = 40, boundary layer decay 
parameter=01, sv = 100.
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Fig. 3-10 Effect of the number of terms on the mean 
value of the sound power radiated when the 
beam is excited by boundary layer pressure 
field, cv =4.0, boundary layer decay 
parameter = 0-1, sv =10 0.
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10 12 14 16 A 18 20 22 24
Fig. 311 Spectral density of sound power radiated per unit length 

of the beam for acoustic plane waves and boundary 
layer pressure field sv = 10 0.
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a) Conventional structure.

b) Integrally stiffened structure.

Fig. 4-1 Correspondence of the stringer geometry 
in the case of two types of stiffeners.
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Fig. 4-3 Effect of the number of terms on sound power 
structure A , 7) =0-15. Trace velocity = 1-5 times 
the velocity of sound, convection parallel to 
x~axis.
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Fig. 4-5 Influence of damping on the curvature. Structure 
A. Trace velocity=1-5 times the velocity of 
sound. Convection parallel to x-axis. Number 
of terms = 25 .
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Fig. 4 7 Effect of variation of transverse stiffness of y-wisc 
stiffness on curvature. Structure G- ^ = 0 25. Number 
of terms included = 25. Trace velocity = 15 times the 
velocity of sound. Convection in the direction of x- axis.
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stiffeners on sound power. Structure B 7) =025. 
Number of terms included =25. Trace velocity = 15 
times the velocity of sound. Convection in the 
direction of x-axis.

Fig. 4 8
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Fig. 4 9 Effect of transverse stiffness of x-v/ise stiffners 
on the curvature at midspan. Structure B. 1?=025
Trace velocity = 0 28 times the velocity of sound.
Direction of convection 45° to x-axls .
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Fig. 4-10 Effect of transverse stiffness of x-wise -stiffners on the 

sound power radiated. Structure B, 7/”0-25. Direction 
of convection 45^ to x-axis. Trace velocity =0 28 times the 

nil, velocity of sound. No, of terms Included =25.
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Fig. 4.11 Effect of the angle of convection on curvature. 
Stucture B 17 =025. Trace velocity = 0 28time5 
the velocity of sound. Number of terms 
included = 25.
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FIG. 5.5 Modulus spectrum of the response of the panel to 0.5 second 
swept sine wave excitation. Accelerometer was on the skin.



FIG, 5.6 Modu3.us spectrum of the response of the panel to 0-5 second, 

swept sine wave excitation. Accelerometer was on the stringer.
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(1) - Massive base plate.

(2) - "brass supports.

(3) - mill steel pole piece,

(k) - The damped beam specimen.

(5) - wing nuts.

(6) - permanent steel magnets.

(7) - wooden supports for base plate

(8) -2 B.A. screw threaded bolts.

(9) - 2 B.A. alien screws.

(10) - Paxolin insupation.

Figure 5-7 The apparatus used for the measurement of damping.
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Fundamental mode 60^ = 1255 Hz 

n =025

Fig. 5 9 Vector plot obtained by measured
values of vibration.
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Fig 6 2 Influence of the number of terms on the curvature. 
CV=80'0, T) = 0.25, n=1
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different frequencies . CV=80-0 T)=:0-25 n=1
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Fig A-1 Amplitudes of narrow band space time 
correlations of the pressure field. 
Curve 1 represents the longitudinal correlation 
and curve 2 the lateral correlation
From Sul! [54]
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Fig A'3 Convection velocities derived from narrow 

band longitudinal space-time correlations of 
the pressure field. From Bull [54]
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