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In the field of structural vibration analysis using ; 

finite element techniques and a distributed structural 

mass representation the displacement method has 

virtually received complete priority over the force 

method. To date, no published work has been found on a 

force approach which adopts an automatic selection of 

redundancy technique and a distributed structural 

mass representation. This thesis formulates and 

investigates such a force method ("The Rank Force Method") 

and the rank technique is used for automatic selection 

of redundancies. Distinction is made between static 

and dynamic redundancy. Procedures for deriving element 

dynamic flexibility matrices are presented and then 

applied to give particular dynamic matrices. It is shown 

that such matrices can be separated into an element 

static flexibility matrix and an element inverse mass 

matrix, Bndload, beam and rectangular plate elements 

are considered. Using these elements the rank force 

method is applied to a number of structural configurations 

to evaluate their eigenvalues. These results are compared 

with thoses obtained using alternative procedures. Element 

loads and structural reactions for a given frequency and 

applied loading are also given. A general discussion of the 

rank force method for vibration analysis is given. 

When adopting this force approach for eigenvalue 



evaluation a highly reduced structural dynamic flexibilty 

matrix can be used, a method is presented and investigated. 

It ia also shown that in vibration analyses the 

structural reactions need not be imposed until the final 

stages 6f the force formulation. This is ideal when 

analysing large practical structures. 

All results are obtained by writing the 

rank force method as a computerized structural analysis 

research system, such a system is presented and descibed. 
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INTRODUCTION. 

The analysis of complex structural configurations under 

static and dynamic loading conditions has been revolutionized 

by the introduction of finite element techniques which 

incorporate matrix formulation of the problem. These techniques 

are ideally suited for solution by high speed electronic 

digital computers. The structure to be analysed is replaced 

by an equivalent mathematical model which is established 

by idealizing the structure under consideration into a 

finite number of structural elements. The static and dynamic 

properties of each structural element is expressable in 

matrix form. The finite structural elements are assembled 

in accordance with basic structural rules to give the 

overall structural behaviour. Finite element techniques 

are classified into t"^) main approaches, namely, the 

displacement approach and the force approach, in the former 

the displacements are considered as the unknowns and the 

equations of equilibrium are enforced to give the correct 

displacement system. In the latter, the internal element 

loads and external structural reactions are considered 

as the unknowns, the correct system of loads being that 

which satisfies the energy equations. 

The advantages and disadvantages of 

the matrix force and displacement approaches for computerized 

structural matrix analysis have been a well discussed topic 

for many years, particularly in static analysis and lumped 



2 
mass vibration analysis. A correlation study of these 

19 

methods was carried out by Gallagher . He found that no 

impartial evidence existed upon which to base the view 

that either approach is "best". 

Any comparison of the two approaches should 

be made when the amount of computer programme input data, 

to be prepared by the engineer, is the same in both cases. 

This is the case when adopting a matrix force approach 

which incorporates an automatic selection of redundancy 

technique J such as "The Rank Technique" . 

The main points for comparison for a given problem are ; 

1. Computer storage required. 

2. Total computer running time for a solution. 

3. Accuracy of solution. 

Comparison should also be made for the same programme 

generality, programming language and using the same computer. 

Simplicity of theoretical derivation and apprehension should 

not be overlooked. These points are very important, since,, 

for practical applications, the programme user is only 

interested in how much it will cost to solve a problem 

in the quickest time possible. He also requires that the 

amount of input data to be prepared by him is a minimum, 

that the results be well presented, meaningful and accurate. 

The users confidence in the results has to be established. 

The user is not very interested in the programming and 

theoretical gimmickry which the programmers and theorists 

enjoy and appreciate. However, the user must be made- aware 



of the limitations in the results. 

The displacement and force approaches have 

received much attention in the field of static analysis 

with the displacement formulation being the most popular. 

The lack of popularity in the force approach was initially 

due to the excessive amount of computer programme input 

data which had to be prepared by the engineer. This 

impediment was caused by the fact that structural redundancies 

had to be manually selected and the basic and redundant 

load systems generated by hand. Such a force approach is 

referred to as a semi-automated force approach. To emphasize 

this problem further explanation of these load systems 

will be given. To carry out a static analysis of a structure 

by a semi-automated force approach requires first of all 

the realization of redundancy and then the selection of 

redundancies. This is a difficult task when considering 

a complex structural configuration and it is even more 

difficult to select a satisfactory set of redundancies. 

when a structure is redundant it means that the loads in 

the structural elements cannot be found by equilibrium 

considerations only. In mathematical terms, it means that 

the system of equilibrium equations has an infinite number 

of solutions. The correct system of redundants is that 

which satisfies the energy equations which are derived 

by minimizing the total complementary potential in the 

structure. When a structure is determinate, non-redundant, 

the structural element properties need not be known in 
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order to evaluate the internal load system. When selecting 

redundancies for an applied load condition the actual 

redundant loads should be as small as possible, in which 

case a determinate solution from equilibrium considerations 

can be obtained with little possibility of error. This 

demands that the determinate structure, that is ^ an 

indeterminate structure with redundancies removed, behaves 

'f. ®Oh "• T as possible 1 ike the actual structure. This 

iif ' ^ssitates consideration of the applied load 

"Awing the simple plane frame structure 

n that for the applied load P 

the best . ^ shown in figure 1(b). 

If the applied lo^ 2(a) 

the best determinate struy her 

member, see figure 2(b). A more 

can be established by considering the en. ions 

obtained by minimizing the total complementary tential 

in the structure. These are given by, for a semi-autom&ted 

force approach, 

[ /x f ^ ^ f 

Therefore, the static redundancies are given by, 

- - [fkAf'LFk>^lP>.i 

It can be seen that the inverse of matrix C^Wtl is required. 

For well conditioned equations this matrix should have 

predominant terms on the diagonal. If matrix L^kkl was a 



simple diagonal matrix its inverse would be a diagonal 

matrix whose nonzero elements are the reciprocal of the 

corresponding elements in the original matrix. In this 

case the equations are well conditioned. 

^rom uuese zew points it can be seen that the manual selection 

01 redundancies such that ideal requirements exist is 

impossible. Initially one could assume a set of redundants, 

run the computer programme, and investigate the results 

to s&e ii tne redundants had been well chosen, if not the 

process would be continued. However^ this would be very 

time consuming. 

ihe basic and redundant load systems will now be 

explained. The generalized element boundary loads can be 

expressed in terms of the generalized applied loads and 

selected redundancies by equilibrium considerations. Therefore. 

f ? - f a.). i * [ i 

where, 

basic load system. 

redundant load system. 

fo generate the basic and redundant load systems the following 

procedure is adopted : 

Basic Load System. 

First, all the selected redundant loads 

are seu equal to zero, that is, , the structure 

now becomes statically determinate. The first applied load ^ 

is bhen set equal to unity and all other applied loads are 



set to zero. The first column of the matrix can then 

be generated by considering static equilibrium of the 

structural joints and elements. Therefore, 

% 
1 

4 
1 

n j -

t 

i 

_ 

The second applied load % is then set equal to unity 

and all other applied loads are set to zero, still keeping 

all the redundant loads equal to zero. The second column 

of the matrix can then be generated, again by static 

reasoning. Therefore, 

% 
1 
1 

(̂Z 
t 

1 
1 1 

( 
! 

This procedure is repeated for all the applied loads until 

the complete matrix has been generated. 

Redundant Load aystem. 

first, all the applied loads are set 

equal to zero, that is, ( ihe first redundant t' 

is then set equal to unity and all other redundants are set 

to zero. The first column of the [X*k] matrix can then be 

generated. Therefore, 



i 

1 

i 

! 

_ 

I K dl 

This procedure is repeated for all the redundant loads 

until the complete DLik] matrix has been generated. 

ay now the lack of popularity in the 

semi-automated force approach should be appreciated, yor 

large, complex problems the task of manually generating 

the basic and redundant load transformation matrices (fydx] 

and respectively) is very time consuming, laborious, and. 

prone to error. This effort is completely impractical. 

In the field of structural vibration analysis, 

using a distributed structural mass representation, the 

displacement approach has virtually received complete 

priority over the force approach. The only published work 

that has been found which adopts the force approach using a 

distributed structural mass representation is that by 
2^24 

Levien and aartz . The initial part of their work 

discusses the semi-automated force approach for static 

structural analysis. They then continue to discuss the 

basic and redundant load systems such that inertia loads 

are considered. They quickly conclude that the semi-automated 

force method of analysis is of no practical use for the 

dynamic analysis of general frame structures. Levien and 

Hartz then present a hybrid system of analysis which removes 



the need to generate- the basic and redundant load systems 

and therefore the need to select redundancies. This hybrid 

system is presented for the analysis of rigid joint frames 

and the unknowns are taken as particular generalized element 

loads and displacements. The eigenvalues for two plane frame 

configurations are given and these results will be used 

for comparison purposes. The element dynamic representation, 

adopted was based on transcendental functions. 

It can be seen that the same impediments 

in the semi-automated force approach exist in both static 

and vibration analysis. However, in recent years these 

impediments have been investigated for static analysis 

and one method of automatically selecting redundancies, 

^The Rank Technique", is given in references 27,28,29 and 31. 

In reference 31 the author describes how the rank technique 

can be used to automatically generate the basic and redundant 

load systems but points out that there is no need to generate 

these systems directly if the rank technique is incorporated 

into a force method. A force approach which incorporates 

the rank technique for automatic selection of redundancies 
31 

is referred to as "The Rank Force Method" . 

The work carried out in this thesis is a 

study of the fank force method for structural matrix 

vibration analysis using a distributed structural mass 

representation. This is ft pure force method where the 

unknowns are the generalized element boundary loads and 

generalized structural reactions. Since this is a research 



project only simple structural configurations are analysed, 

such as collinear beam structures, general plane frames 

and two dimensional rectangular plate structures. 

The first chapter discusses structural dynamic 

redundancy and differentiates between static redundancy 

and dynamic redundancy. Also presented in this chapter 

is the rank technique for vibration analysis and as a 

computer programme subroutine, examples of redundancy sets 

are also given. Chapter 2 formulates the rank force method 

for vibration analysis but the work has been restricted to 

internal stress distributions and structural response for 

a given frequency due to harmonic applied loads. The work 

also covers the eigenvalue problem. All loads and displacements 

are assumed to vary harmonically with time and in phase, 

^he structure is assumed undamped and steady state conditions 

are assumed to exist. 

In Chapter 8 approximate procedures for the 

derivation of element flexibility matrices are presented. 

These derivations have been specifically given for endload, 

plane beam and rectangular plate elements but the general 

procedures would be the same when considering other element 

types, ihree derivation procedures have been investigated, 

one of a more exact nature and the others being more 

approximate. I'he more exact derivation adopts transcendental 

functions whereas the other derivations adopt series functions 

(polynomials). These functions represent the respective 

element internal loadings. Having established derivation 
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procedures the next step is to obtain particular element 

dynamic flexibility matrices by considering specific types 

of elements and internal loading functions. This work is 

contained in Chapter 4. 

To carry out vibration analysis of 

structures, even for the very simple configurations, it 

is essential to write a computerized system. Such a system 

is presented in Appendix 4 using A.S,A.Fortran as the basic 

programming language and written for an I.C.T. 1900 Computer. 

To analyse a given configuration, using the 

rank force method, a set of standard subroutines, a force-

subroutine and a master programme are required. The force-

subroutine generates the system of joint equilibrium 

equations for the particular configuration, and oy following 

the force formulation and calling the standard subroutines 

generates the internal loading system, structural response 

and the structural dynamic stiffness matrix for a given 

frequency. The master programme controls tne analysis, for 

example, reading input data ^id selecting output. In Wie 

case of eigenvalue evaluation an iterative procedure is 

contained within the master programme. The master programme 

and force-subroutine h&ve been written for various types 

of structural configurations but the general concepts are 

the same for any configuration. The structural types 

considered are ; collinear beam structures, general plane 

frames and two dimensional rectangular plate structures. 

It should be noted that the standard subroutines apply to 

any configuration. The programmes have been written and 
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restricted to analyse problems within the computer core 

storage mainly because this research project is concerned 

with investigating the force formulation as a vibration 

analysis tool. The various programme and subroutine listings 

are given and their arguments, limitations and applications 

are described. 

Before an analysis can be carried out the actual 

structure has to be transformed into a mathematical model. 

This transformation is referred to as "structural idealiz-

ation". When undertaking a structural research project it 

is desirable to keep in mind future practical application 

of the work, therefore,in Appendix 5 the practical 

application of a computerized structural analysis system 

is discussed. 

Chapter 5 presents results obtained using 

these computerized systems for various structural configurations, 

These results are discussed and compared with results 

obtained by alternative analysis procedures. Conclusions, 

recommendations and areas for future research are given. 

During the latter stages of this research work 

a number of important items appeared, these are discussed 

in appendices. In the rank force method for vibration 

analyses the inversion of a large matrix has to be carried 

out in order to evaluate eigenvalues. In Appendix 1 a 

method is proposed which only requires the inversion of 

a very small submatrix which is contained in the initial 

large matrix. This reduced matrix is immediately extractable. 



12 

Some results are given to help substantiate the proposed 

method and they do encourage further investigations, 

A procedure is presented in Appendix 2 

for the delayed imposition of the generalized structural 

reactions in the rank force method for vibration analyses. 

This enables unconstrained structural dynamic flexibility 

matrices to be generated which are ideal for the vibration 

analysis of large structural configurations using "block 

elements", A block element being itself an assembly of 

finite elements, a substructure. 

Appendix 3 suggests a further approach 

for deriving a dynamic flexibility matrix for a rectangular 

plate element using an s-system of element generalized 

loads. 
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Nomenclature, 

[Py] -
[ -

t F/,*] 

fF*xl 

r%*A] 

r ?«t3 

[ -^etl •* 

ftS«f ' 

ft**; . 

f tfx f "" 

[%*1 . 

generalized applied discrete loads, 

column matrix of redundants. 

Transformation matrices. 

These are 

use in a 

structural 

static analysi: 

see reference 

31. 

submatrix of coefficients in the' system 

of joint equilibrium equations. 

submatrix of coefficients in the system 

of joint equilibrium equations. 

submatrix of coefficients in the system 

of joint equilibrium equations. 

vector of time dependent generalized element 

boundary displacements. I 5*$ . 

vector of time dependent generalized element 

boundary loads, f 6̂ «( f f 

vector of time dependent generalized structural 

reactions, I I = . 

vector of time dependent generalized applied 

loads. ^ ^ ~ i Pk I Sin. i2k . 

vector of time dependent generalized structural 

displacements. - 1 Set (J6 . 

submatrix of coefficients in the system 

of joint equilibrium equations after applying 

the rank technique. 
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[3^:3 = submatrix of coefficients in the system 

of joint equilibrium equations after applying 

the rank technique. 

= submatrix of coefficients in the system 

of joint equilibrium equations after applying 

the rank technique. 

total complementary potential in the structure, 

total number of finite elements in the structure, 

vector of automatically selected dynamic 

redundancies, time dependent. f ^ . 

= element dynamic flexibility matrix. 

vector of time dependent generalized element 

boundary loads for element m. i i . 

vector of corresponding generalized element 

boundary displacements for element m. 

f k «1 ~ f S /net \ Stn . 

= assembled element dynamic flexibility matrix, 

band matrix. 

" null vector. 

= matrix of partial derivatives, * is the 

partial derivative of with respect to 

This matrix is contained in matrix f . 

= matrix of partial derivatives, is the 

partial derivative of with respect to 

This matrix is contained in matrix . 

[4̂  ] = [Fkl , used in energy equations and 

generated for a given frequency. 
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r A * x ] = matrix which relates the generalized element 

boundary loads, , and the generalized 

applied loads, , for a given frequency. 

fAgxl = matrix which relates the generalized structural 

reactions, , and the generalized applied 

loads, , for a given frequency. 

- matrix of partial derivatives, is the 

partial derivative of with respect to ^ 

for a given frequency. This matrix is the 

transpose of matrix 

e matrix of partiaJ derivatives, is the 

partial derivative of with respect to 

for a given frequency. This matrix is the 

transpose of matrix [ Agx] 

— structural dynamic flexibility matrix for a given 

frequency. 

^ 3 = structural dynamic stiffness matrix 

for a given frequency. 

= determinant of the structural dynamic stiffness 

matrix for a given frequency. 

= complementary virtual work done by the virtual 

generalized element boundary loads. 

= complementary virtual work done by the element 

inertia loading. 

M * 

" complementary virtual work done by the virtual 

internal element loading. 

= internal element endload distribution, function 
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t) = 

LT^^J 

LT,J 

L7;j 
[f*] , 

M 

^1 (.•'sO 

i T i ^ l J 

LT^^J 

8 (;'<,6) 

of position (x) and. time (t). 

element distributed loading in the x-direction, 

function of position (x) and time (t). 

element displacement in the x-direction, function 

of position (x) and time (t). 

row transformation matrices for an endload 

element. 

element static flexibility matrix. 

element inverse mass matrix. 

element dynamic stiffness matrix. 

element static stiffness matrix. 

element mass matrix. 

internal element bending moment distribution, 

function of position (x) and time (t). = 

internal element shear distribution, function 

of position (x) and time (t). 4 ^ ^ = 4̂ *̂ ) <-06 . 

element distributed loading in the z-direction, 

function of position (x) and time (t). 

element displacement in the z-direction, function 

of position (x) and time (t). 

row transformation matrices for a plane 

beam element. 

element rotation in ^-plane for a plane 

beam element, function of position (x) and 

time (t). = S(xj S/n 6 
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/ J 

a. 

V, 

Vz 

Ka 

4 

W, 

Hi 

element specifying nodes, endload and beam 

elements. 

amplitude of element displacement in the 

y-direction. 

element distributed loading in the y-direction. 

rectangular plate moments. 

rectangular nlate shears. 

rectangular plate equivalent shears, 

rectangular plate nodal concentrated loads, 

L Tj.t J 

J 

L J 

LTiwiJ 

L J 

LTutJ 

row transformation matrices for a rectangular 

plate element. 
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= submatrix of coefficients in the system 

of overall equilibrium enu&tions when using 

an s-system for the generalized element boundary 

loads, rectangular plate element. 

= submatrix of coefficients in the system 

of overall equilibrium equations, using an 

s-system. 

vector of time dependent generalized equivalent 

discrete nodal loads, rectangular plate element, 

using an s-system. ^ ^ = I . 

submatrix of coefficients in the system 

of overall equilibrium equations after applying 

the rank technique, using an s-system. 

submatrix of coefficients in the system 

of overall equilibrium equations after applying 

the rank technique, using an s-system. 

matrix of partial derivatives when using an 

s-system, rectangular plate element. 

, used in energy equations and 

generated for a given frequency, using an s-system. 

matrix which relates the q-system and the 

s-system for a given frequency, rectangular 

plate element. 

element dynamic flexibility matrix for a 

rectangular plate element corresponding to an 

s-system. 

distribution constants. 



22 

f ! 

[C*3 

"j,3j 

M 

global axes and coordinates (in), 

local axes and coordinates (in), 

generalized element boundary loads 

relative to the local axes. 

[ ^ I S,k . 

generalized element boundary loads 

relative to the global axes, 

corresponding generalized element 

boundary displacements relative 

to the local axes. 

transformation matrix, rotation 

of axes. 

element dynamic flexibility matrix 

relative to the local axes. 

element dynamic flexibility matrix 

relative to the global axes. 

X and z ordinates of node i. 

X and z ordinates of node j. 

rectangular plate moments (non-dimensional) 

rectangular plate shears Inon-dimensional). 

Inclined 

plane beam 

element. 

6/ 

transcendental functions used in the endload 

and beam type elements using procedure 8. 
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^ = Young's modulus of elasticity for the element 

2 

material, lb per in , 

(0 = angular frequency, radians per second, 

yw = density of element material, lb per in . 

^ = Poisson's ratio. 

6 = time, seconds. 

m " element number. 

386^ " g %12, in per se^ (g = 82.2 ft per se^ ). 

= local axes and coordinates (in). 

^ " second moment of area of element 
, . .4" 

cross section, in . 

cross sectional area of element, in^, 

length of element, in. 

A 

I 

4 J 

x," 

x: 

X 

p 

element specifying nodes. 

AS 3S(,-4-B 

endload element frequency parameter 

when using transcendental functions, 

dj* = 
£X 3S6-4-£X 

plane beam element frequency 

parameter when using transcendental 

functions. 

34-o£X 

plane beam element frequency 

parameter when using polynomials. 

j^A 

326-4 
2 ^ 

mass per unit length, lb sec per in 

Endload 

and plane 

beam 

elements. 
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a, 6 

-f = >c -f = a. 

•f = 
> 

•f = 
b 

D 

r 

local axes and coordinates (in). 

plate thickness, in. 

rectangular plate element dimensions, i n. 

396 4 

plate stiffness factor, 

mass ner unit area. 

1 3 
lb sec per in 

Rectang-

ular 

plate 

element. 

A.s. A. American Standards Association. 

JTC.r. = International Computers and Tabulators Ltd. 
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CHAPTER 1. 

STRUCTURAL DYNAMIC R3DUNDANCT. 

Synopsis. 

This chapter differentiates between static 

and dynamic redundancy and the rank technique for vibration 

analysis is described. This technique is a method for 

automatically selecting redundancies in the matrix force 

approach and was initially developed for static analysis. 

The basic concept of the rank technique is to investigate 

a system of linear equations by applying the fundamental 

theorem for linear equations which compares the rank of the 

coefficient and augmented matrices. The joint equilibrium 

equations for a given frequency constitute such a system 

in structural vibration analysis. Evaluation of the rank of 

a matrix and the general investigation of the system of 

equations is carried out using the Jordan elimination 

procedure. The rank technique has other capabilities which 

are also described. Also contained in this chapter is the 

rank technique as a computer programme subroutine and 

examples of automatically selected redundancy sets are given. 

In chapter 2 this technique is incorporated into a matrix 

force, approach thus presenting a fully automated force method 

(The Bank Force Method). The computer programme input data 

for the rank force method is the same as in the matrix 

displacement method. 
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1.1 The Question of Redundancy. 

In the static analysis of elastic 

structures the matrix force formulation initially consists 

of aasembling the system of equilibrium and release equations 

The equilibrium equations consist of ; 

1. Joint equilibrium equations. 

2. Element equilibrium equations, 

3. External equilibrium equations. 

This system of equations is investigated by applying, the-

rank technique, which, among other things, automatically 

isolates a consistent set of redundancies. 

In the vibration formulation only the 

joint equilibrium equations are assembled. There are no 

resulting element equilibrium equations since these equations 

are a function of the inertia loading and the element 

boundary loads, and the inertia loading is expressed in 

terms of the boundary loads, initially from equilibrium 

considerations. For simplicity the external equilibrium 

equations will be replaced in the vibration analysis by 

compatibility equations which are obtained by considering 

the added redundancy. 

In vibration analysis the degree of 

indeterminacy is much higher than in the static analysis 

although the number of unknowns, element boundary loads 

and structural reactions, is the same. Since the number 

of unknowns is constant for the two forms of analysis, 

the maximum order of the system of equations required 
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for a unique solution of the element boundary loads and 

structural reactions in terms of the applied load system 

is the same. The difference being in the percentage of 

energy equations contained in the total system. In the 

vibration analysis the redundancies will be referred to 

as "dynamic redundancies" and in the static analysis as 

"static redundancies". Because of the higher degree of 

indeterminacy in the vibration analysis the coefficient 

matrix corresponding to the unknowns is more populated 

thus increasing the numerical problem. However, it 

should be pointed out that in frame type structures the 

joint equilibrium equations contain Boolean matrices and 

hence the automatic selection of redundancies becomes 

numerically sound. 1%^ joint equilibrium equations for 

plate structures also contain Boolean matrices depending 

on th& system of element loads adopted. 
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1.2 "The Rank Technique" in Vibration Analysis. 

The rank technique is a method for 

automatically selecting the redundancies, static or dynamic, 

in the matrix force approach and was initially developed 

for static analysis. This technique, among other things, 

can automatically generate the basic and redundant load 

systems if required, if the rank force method is adopted 

these two systems are not required directly. 

To solve the eigenvalue and harmonic 

forcing function problems it is required to investigate 

a system of joint equilibrium equations. These equations 

can be investigated automatically and in a systematic manner. 

Considering the prescribed load conditions, the technique 

automatically determines whether the structure is unstable, 

determinate or redundant by using the notion of rank of a matrix. 

If the structure is redundant, the technique not only 

determines the degree of indeterminacy but also automatically 

isolates a consistent set of redundants. The joint equilibrium 

equations constitute a set of statements which relate the 

internal element boundary loads and structural reactions 

to the applied loading system. These equations are either 

consistent or inconsistent. If the equations are inconsistent, 

this implies that equilibrium cannot be formulated on the 

structure, or the structure is unstable for the particular 

applied loading system, if the equations are consistent, they 

may be either sufficient or insufficient to determine the 
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unknowns, in the former case, the structure is determinate; 

in the latter, redundant. Consider the system of joint 

equilibrium equations: any set of values of the unknowns 

which simultaneously satisfy these equations is called a 

solution. When such a system has one or more solutions, it 

is said to be consistent. The matrix of coefficients 

corresponding to the unknowns (element loads and structural 

reactions) is defined as the coefficient matrix of the system 

and the matrix obtained by connecting the coefficient matrix 

and the matrix of coefficients corresponding to the knowns 

(applied loads) is defined as the augmented matrix of the 

system. 

To determine whether a system is consistent or in-

consistent use the fundamental theorem for linear equations; 

"A system of linear equations is 

consistent if, and only if, the 

coefficient matrix and the 

augmented matrix have the same 

rank." 

The rank of a matrix is defined as the dimension of the 

largest square submatrix of the original matrix having a 

non-zero determinant. 

However, there is no need to calculate the rank of the 

coefficient matrix directly. The system of equations can 

be investigated by applying the Jordan elimination procedure 

to the augmented matrix only. A systematic way of determining 

the rank of a matrix, in particular the augmented matrix, 
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will now be described: 

Locate the largest absolute value in the first 

row and divide all elements in this row by the 

actual value corresponding to this. Now this 

row is multiplied by the coefficient of the 

corresponding element in the second row and 

subtracted from the second row. This is continued 

for each of the remaining rows. The column 

corresponding to that element has now a one 

in the first row and zeros in all other rows. 

The same process is performed in turn for the 

remaining rows until either all of the rows 

are exhausted or all of the remaining rows 

have all zeros as elements. If, after exhausting 

all the rows, the largest absolute value in a 

row has always been located in the submatrix 

which corresponds to the unknowns in the augmented 

matrix, then the rank of the coefficient matrix 

and the augmented matrix are equal and the system 

is consistent. If the largest absolute value in 

any row is located in the submatrix which corres-

ponds to the knowns in the augmented matrix, 

then the ranks are unequal and the system is 

inconsistent. 

After generating a system of linear equations, it may not 

be immediately apparent which, if any, are dependent equations. 

On completion of the Jordan elimination procedure, the 
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dependent equations will appear as null rows; the remaining 

equations will constitute the system of independent equations. 

The redundancies will be isolated in the process of rank 

determination and are identified by noting the columns in 

the coefficient matrix, in the independent system, which 

were not selected in the elimination procedure, that is, 

none of the elements in the columns were isolated as 

maximum absolute values. 

The rank technique is shown as a 

flow chart in figure 3. This technique is described in 

detail for static analysis in references 27, 28, and 31 

with the added sophistication of selecting the largest 

absolute value in a row instead of the first non-zero value. 

The method of locating redundancies is also different. 
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1.3 "The Technique" as a Computer Programme Subroutine. 

To study the rank force method for 

structural vibration analysis a computerized structural 

analysis has been written in A. S.A. Fortran for an i.U. T. 1900 

computer. Ihe ran^ technique is used as a subroutine and 

its listing is given in table 1. 

This subroutine investigates & rect&ng-

ylar.array using the Jordan elimination procedure. Typically, 

this array is an augmented matrix consisting of a submatrix 

(coefficient matrix, which need not be square) corresponding 

to the unknowns and a submatrix corresponding to the knowns. 

Initially two vectors are formed, one null vector, denoted 

by IDSP, and a vector IQ. The latter vector contains integer 

numbers starting at 1 and increasing in sequence to the actual 

number of unknowns (N8). The next step is to locate the 

maximum absolute value in the first row, scanning only 

the coefficient matrix. The actual maximum value is then 

used to normalize the corresponding row in the augmented 

matrix. The Jordan elimination procedure is then applied 

to reduce the element in the other rows which has the same 

column location as the maximum value(used for normalizing) 

to zero. This procedure is repeated until all rows have 

been normalized. At each stage the actual maximum value 

in a row is stored in a vector which can be used to 

evaluate a determinant* This vector is referred to as the 

normvector, XMAX. 
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If the maximum absolute value in a row is zero 

the remaining elements in that row, contained in the 

submatrix corresponding to the known quantities, are 

investigated. If they are all zero a dependent equation 

has been found,, the corresponding row number of such an 

equation is stored in vector IDEP. If any of the elements 

are nonzero it means there is no solution to the system 

of equations, that is, the coefficient and augmented matrices 

have unequal rank. A statement NO SOLUTION is printed out. 

In the case of a rectangular coefficient matrix the redundant 

column numbers are stored in vector IQ. Each time a maximum 

value in a row is located its column location is noted 

and the corresponding row in the IQ vector has its value 

set equal to zero. The redundancies are given by the 

remaining nonzero elements. 

This subroutine can be used to evaluate a 

determinant and to invert a matrix. In a matrix inversion 

the augmented matrix would consist of the matrix to be 

inverted and a unit matrix. The inverse would appear in 

submatrix corresponding to the unit matrix. It should be 

noted that this subroutine has not been optimized. 

From the subroutine listing it can be seen that the subroutine 

has been given the name RANT2C. 
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The subroutine arguments will now be described; 

XKD= rectangular (or square) array. 

N9 = actual number of rows. 

N8* number of columns in coefficient matrix. 

^7"total number of columns, that is, number of 

columns in the augmented matrix. 

N9MAX 

N8MAX \ Corresponding maximum values, dynamic 

N7MAX J dimensioning. 

IDEP= vector of dependent equations, row numbers. 

XMAX=normvector, vector of normalized row elements. 

IQ" vector of redundant load numbers. This 

vector initially consists of the element 

load numbers, element loads which are not 

isolated as redundants have their correspond-

ing load number set to zero. 

Figure k gives added definition for some of the arguments. 

As an example, consider the joint equilibrium equations giv&n by 

t / J . i-fte " J o ? 

The coefficient matrix is given by [Jlw i ] 

of order, say, Nl* MC and the» augmented matrix by 

of order, say, Nl* LM. Let the maximum number of unknowns, 

element boundary loads and structural reactions, be 84, 

maximum number of joint equations be 42 and the maximum 

number of applied loads be 88. The' augmented matrix will be 
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denoted by OM. The program call statement to investigate 

matrix OM using subroutine RANTBC would be, 

CALL RANTGC(0M,NlrMC,LM,42,84,122,IDBP,XMAX,IQ) 

Figure 5 gives added definition for the example. 
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1.4 Redundancy Sets. 

To illustrate the rank technique for 

dynamic redundancy selection two simple structural config-

urations will be investigated. 

As a first example consider the simply supported beam shown 

in figure 6. 

The system of joint equilibrium equations is,given by, 

/ l - l 1 
/ 

: 
[ 

1 - / 

/ / 1 
1 

- / 

/ / 1 - / 

1 "1 

/ t - / 

or in contracted matrix form a( 

] I j * [ Yx 3 ̂  ! - [ o j 

The augmented matrix is therefore 

[ -^e , ̂  3 1 - f 1 
! 

I 

I I i - I 

1 1 i 
1 

1 
1 - i 



Applying the rank technique results in an equivalent 

augmented matrix given by, 
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1 -/ 1 

1 
1 
! 

1 / 1 - / 

1 / 
I 
1 

- ( 

i - / ; 

i 
I 
i 

~l 

The isolated redundancies are therefore qy,q ,R,and 

considering amplitudes only, in the static analysis this 

beam would be determinate. 

As a second example consider the plane 

frame shown in figures 7 and 
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The isolated redundancies are therefore 

^3f consid-

ering amplitudes only, in the static analysis this plane 

frame would have six degrees of indeterminacy. 

It can be seen that in both these 

examples the augmented matrix is the same before and after 

applying the rank technique, it should be noted that this 

would not always be the case. It should also be noted that 

the choice of redundants is influenced by the method of 

numbering the nodes and element loads. 
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"The Rank Technique, 
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S U B R O U T I N E R A N T E C ( X K D , N 9 , N 8 , N 7 , N 9 M A X , N 8 M A X , N 7 M A X , I D E P . X M A X . I Q ) 
C J O H N R O B I N S O N . I . S . V . R . 
C A U T O M A T I C S E L E C T I O N O F R E D U N D A N C I E S IN T H E M A T R I X F O R C E M E T H O D , 
C T H E R A N K T E C H N I Q U E . 

D I M E N S I O N X K D ( N g M A X , N 7 M A X j , I D E P ( N 9 M A X ) , X M A X ( N 9 M A X ) , I Q ( N 8 M A X ) 
U 0 9 L = 1 , N 9 

9 I D E P ( L ) = 0 
u o i M = 1 , N 8 

1 I Q ( M ) = M 
D 0 3 0 1 = 1 , N 9 

C M A X A B S V A L U E IN A R O W A N U I T S C O L U M N L O C A T I O N 
C I N I T I A L A B S V A L U E 

Z M A X = A B S ( X K D ( I , 1 ) ) 
K=l 
D O b J = 2 , N 8 
R A B S = A B S ( X K D ( I . J ) ) 
I F ( R A 8 S - Z M A X ) 6 , 6 , 5 

C M A X A B S V A L U E IF D I F F E R E N l F R O M I N I T I A L V A L u E 
5 Z M A X = R A 8 S 

C L O C A T I O N O F M A X A B S V A L U E 
KaJ 

b C O N T I N U E 
C A R R A Y O F N O R M A L I Z E D E L E M E N T S F O R D E T E R M I N A N T S O L U T I O N 

X M A X ( I ) = X K D ( I , K ) 
I Q ( K ) = 0 

C I D E N T I F I C A T I O N O F D E P E N D E N T E Q U A T I O N S 
I F ( A 8 $ ( X M A X ( I ) ) , G T . l . u E - 0 0 ) G O TO l4 
I F ( N 8 " N 7 ) 3 , 8 , 8 

3 D 0 2 J = N 8 + 1 , N 7 
I F ( A B S ( X K D ( I , J ) ) , G T , l , 0 E - U 8 j G U TO 4 

2 C O N T I N U E 
G O T O 8 

4 W R I T E ( 6 , 1 6 0 ) 
1 6 0 F 0 R M A T ( 1 2 H N O S O L U T I O N ) 

G O T O 6 0 
8 I D E P ( I ) = I 

G O T O 3 0 
C X K D R O W N O R M A L I Z I N G 

14 D 0 1 6 J = 1 , N 7 
16 X K D ( I , J ) = X K D ( I . J ) / X M A X ( I ) 

D 0 2 8 M = 1 , N 9 
I F t M - I } 2 0 , 2 8 , 2 0 
A X K U = X K D ( M , K ) 
D 0 2 2 J = 1 , N 7 

2 2 X K D t M , J ) = X K D ( M , J ) - A X K U * X K D ( I , J ) 
2 8 C O N T I N U E 
3 0 C O N T I N U E 
6 0 R E T U R N 

E N D 

A.S.A. Fortran listing of subroutine RANTSC. 

Table 1 . 
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CHAPTER 2. 

"Tng RANK P0RC2 METHOD." 

Synopsis. 

A matrix force approach which incorporates the 

rank technique for automatic selection of redundancies is 

referred to as the r^^k force method. This method is presented 

for the vibration analysis of redundant elastic structures 

and uses a distributed mass representation of the structure. 

Only undamped structures are considered and it is assumed 

that steady state conditions exist. All generalized loads 

and displacements are assumed to vary harmonically and in 

phase. The first step in the rank force method is to generate 

a system of joint equilibrium equations for a given idealization. 

Such equations relate the generalized element boundary loads 

and structural reactions to the generalized applied load 

system. The joint equilibrium equations form a rectangular 

system, that is, there are less equations than unknowns. 

This means that the element loads and structural reactions 

can't be evaluated from equilibrium considerations alone 

and thus the structure is dynamically redundant. The rank 

technique is applied to the system of joint equilibrium 

equations and a consistent set of redundancies is automatically 

selected and hence the degree of redundancy. Therefore, in 

order to obtain a unique solution for the unknowns it is 
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required to generate a further set of independent linear 

equations, the number of required equations being equal to 

the degree of redundancy. The additional equations are 

obtained by minimizing the total complementary potential 

in the structure with respect to each selected redundancy. 

The total energy is obtained by summation of the individual 

element energies , The element energy is described by its 

dynamic flexibility matrix and procedures for deriving such 

matrices are given in Chapter 3 and particular matrices 

are derived in"Chapter 4. The system of energy equations is 

assembled with the investigated system of joint equilibrium 

equations thus forming a system of independent equations with 

the same number of equations as unknowns. Applying the'rank 

technique to this system of equations results in a unique 

solution for the element loads and structural reactions in 

terms of the applied load system for a given frequency. The 

structural response for a given frequency can then be obtained 

by differentiating the total complementary potential 

with respect to each of the applied discrete loads. This also 

gives the structural dynamic flexibility matrix. The 

eigenvalue formulation is achieved by inverting this matrix. 

In order to investigate the vibration 

characteristics of typical structures the rank force method 

has been written in the form of a computerized system, this 

is described in Appendix &. Using this system collinear 

beam structures, general plane frames and two dimensional 

plate structures are investigated and the results are 

given and discussed in Chapter 5. 
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It is assumed that the structure 

to be analysed can be idealized into a system of discrete 

structural elements, finite elements, the force approach 

is described for an undamped structure and steady state 

conditions are assumed. The generalized load system, 

element boundary loads, structural reactions and applied 

loads, and their respective corresponding displacements 

are assumed to vary harmonically and in phase. In this 

presentation it is assumed that the structural reactions 

have no corresponding displacements. The generalized 

applied loads are assumed to be point generalized loads 

and act at the selected nodes. Therefore, for a given 

idealization, a system of joint equilibrium equations 

can be assembled which relates the generalized element 

boundary loads and the generalized applied nodal loads. 

In this formulation all applied loads are assumed time 

dependent; however, it should be noted that static applied 

loads can be included in the vector of applied loads if 
required. 

In the case of a constrained structure the respective 

applied loads are replaced by unknown reactions. Therefore, 

considering a constrained structure, the system of joint 

equilibrium equations can be written in contracted matrix 

notation as, 

C n , : / } , ] ! A i * Px I - f o l 2 . 1 . 1 

Although no direct releases are considered in this presentation 

it will be pointed out that they can be accounted for by 

nulling the respective columns in the submatrix . 
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example, one direct role as e for a plane be am type element 

is a pinned end, therefore, the column corresponding to the 

moment at the respective boundary of the element would 

be nulled, 

The system of equations given in equation 2.1.1 can 

now be investigated by applying the rank technique. This 

technique will automatically isolate a consistent set of 

redundancies and hence the degree of redundancy. This gives 

the number of additional equations which are required for 

a unique solution of the generalized element boundary 

loads and structural reactions in terms of the applied 

load system for a given frequency. After applying the rank 

technique the resulting equations are given by, 

[ '> t % : • { o ] 2.1.2 

The coefficient matrices corresponding to the unknowns 

and knowns, as given in equations 2.1.1 and 2.1.2 need only be 

generated once for a given structural configuration since 

their matric coefficients are independent of frequency. 

However, this means that the coefficient matrices in 

equation 2,1,2 have to be stored separately in the computer 

and made available for all values- of assumed frequency 

before combining with the energy equations. This has iWie 

disadvantage of taking up considerable additional storage 

space but would given significant time saving because of the 

iterative nature of the eigenvalue problem. 

The additional equations, which are energy 
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equations, are generated by minimizing the total complementary 

potential in the structure with respect to the automatically 

selected dynamic redundancies. It is assumed that the 

total complementary potential, TT , is given by, 

N6 
TT •= 2 ^ L J C fwol] { ki-ma( ? 2.1.3 

nits/ 

where, 

[ fmdl = element dynamic flexibility matrix, 

This can be written as, 

TT* = z L J L i t^c< I 2 , 1 , 4 

It should be noted that the vector of isolated dynamic 

redundancies, { , is contained in the vector of unknowns, 

f i * Therefore, 

J I j 2.1.5 

or 

—" - _ —— ^ —— —— —i —— —— ^ — — — —-T — - -f* - gg 
at' 3 ^ ; ^ 

i M i i i ! 
° 

I I : : : : : : 
I ; : : : : : : 

2.1.6 
Note 5 when the equations are expanded the t-subscript 

is dropped. 
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Hence, in contracted matrix form, 

f = 2.1.7 

Assuming that no work is done by the reactions and no lack 

of fit of elements the energy equations can be written as, 

E fc ] [ Fk 3 C I - i*^l 2 . 1 . 8 

In the actual computer programme the matrix product 

]C is performed without assembling f Prfl . 

The [ ̂ci ; ̂ g] matrix will give the relationship between 

the element loads and the dynamic redundancies, that is, 

^ r -s -] 

the terras. These terras form the array LotOkj . 

Therefore, the Lx^kl matrix can be automatically extracted 

from the CX<:3el matrix and it should be noted that this 

is constant for a given structural idealization but the 

same remarks apply as for the I matrix. The terms 

are obtained by assembling the individual element energies 

and differentiating to give, 

Combining equations 2.1.2 and 2.1.8 gives. 

2.1.9 

X, I K 

O 

ft/I J " (oi 

where. 

2.1.10 

£<P] = Fx] 
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Continuing the elimination procedure, as used in the rank 

technique, to this system of equations gives a unique 

solution for the element boundary loads and structural 

reactions in terms of the applied loads for a given 

frequency. To obtain the direct relationships some rearranging 

is generally necessary to give a unit coefficient matrix 

for the unknowns. Therefore, in partitioned form, 

^a\ 

This equation gives the generalized element boundary loads 

and structural reactions due to a system of harmonic 

forcing functions, that is, 

S/rt iDb . ] = f ! 5/neOfc 

2.1.12 

6 4 

The generalized structural displacements, structural response, 

corresponding to the applied load system are obtained 

using the matrix equation, 

2.1.18 

or 

I i I 
* aa. 

: I 
I # 
I I 

1 I 
t I 

I t 

# ( 

A, 

2 . 1 . 1 4 
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In contracted matrix form, 

r . , r ^ . 1 r 12' , lir' ; 
J t f 2 . 1 . 1 5 

Therefore, 

F^]r / L f 2.1.16 

S t t * 

The terms are contained in matrix E«3x3 and the 

terms have previously been defined. As before [ I ® . 

It should be noted that, 

[ ] = I 2.1.17 

Substituting from equations 2.1.11 and 2.1.17 into equation 

2.1.16 gives, 

[ F^][ f 2.1.18 

or 

2 . 1 . 1 9 

where, 

- structural dynamic flexibility matrix, 

= [ A o < x l [ f v ] [ 2 . 1 . 2 0 

In the actual computer programme the assembled element dynamic 

flexibility matrix is in fact not generated. The structural 

dynamic flexibility matrix can be readily assembled by 

taking advantage of the band form of fPkl and using a 

submatrix multiplication and summation technique. Equation 

2.1.19 gives the structural response due to a system of 
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harmonic forcing functions, that is, 

[ ] = [ Ay J s,n u)k • f S/rt. 2 . 1 . 2 1 

The eigenvalue problem can now be formulated, Rearranging 

equation 2 . 1 . 1 9 gives, 

= I tPxl 2.1.22 

where, 

'= structural dynamic stiffness matrix. 

The eigenvalue evaluation requires the solution of the 

system of homogeneous equations, 

I ^ [ o ] 2.1.23 

In this equation the frequency is contained in matrix . 

The structural dynamic stiffness matrix has to be generated 

for every assumed value of frequency. The frequency values 

which give a zero determinant, that is, 

dkt O 2 . 1 . 2 4 

are the eigenvalues which have corresponding eigenvectors. 

When the structural dynamic stiffness 

matrix has to be generated for every assumed value of the 

frequency parameter, displacement or force approach, the 

formulation will be referred to as a "continuous generation 

process" otherwise it will be referred to as a "singular 

generation process". 



The rank force method has been written as a computerized 

system for the analysis of collinear beam structures, 

plane frames and two dimensional rectangular plate 

structures. In Appendix 4 this system is presented and 

further detailed explanation of the various steps in 

the rank force method are given. It should be noted 

that any theoretical presentation does not necessarily 

appear in the same manner when it is written as a 

computer programme or subroutine. 
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CHAPTSR 8. 

APPROXIMATE PROCEDURES FOR THE DERIVATION OP ELEMENT 

DYNAMIC FLEXIBILITY MATRICES. 

Synopsis, 

The total complementary potential in a 

structure is obtained by summation of the individual element 

energies. This is expressable in a quadratic form, that is, 

we 

TT ~ 2 J [ 
meg 

The [fn̂ d] matrix is the element dynamic flexibility matrix 

which represents the approximate vibration behaviour of the 

respective structural element* This matrix is derived using 

the principle of virtual forces, that is, 

LV; +- U/g — LJ ~ o 

where, 1a/, is the complementary virtual work done by the 

virtual generalized element boundary loads, is the 

complementary virtual work done by the element inertia 

loading and U is the complementary virtual work done by 

the virtual internal element loads. 

The element dynamic flexibility matrix can be 

derived in a number of ways and various procedures are 

presented in this chapter. However, each procedure adopts 

the principle of virtual forces. 
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In actual fact three procedures have been formulated 

and presented for the following element types, 

1. Endload element, used for inclined plane beam 

element. 

2, Plane beam element, shear and bending, 

8. Inclined plane beam element, endload, shear and 

bending, 

4. Rectangular plate element. 

In order to assess the various methods 

of derivation particular element d y n a m i c flexibility 

matrices have been derived and are given in Chapter 4. Bach 

of these particular matrices have been investigated by 

analysing simple structural configurations, the results 

and their discussion are given in Chapter 5. 
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Introduction. 

In the theoretical formulation of the rank 

force method the assembled element dynamic flexibility 

matrix is a band matrix formed simply by using the 

individual element dynamic flexibility matrices, A minimum 

band width is obtained by numbering the generalized element 

boundary loads consecutively on an element and continuing 

the sequence on subsequent elements. No element numbering 

is required since this is carried out automatically within 

the computer programme. Gach element is recognized by its 

specifying nodes. The elements are numbered in the order in 

which they are given in the computer programme input data 

and the element load numbering is automatically established 

in conjunction with this. 

Each element dynamic flexibility 

matrix represents the approximate vibration behaviour of the 

respective structural element and alternative approximate 

procedures for deriving this matrix will now be presented. 
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8,1 Derivation Procedure 1. 

8.1,1 y&dload Element. 

The generalized element boundary 

loads for the endload element shown in figure 10 are 

denoted by and . The endload vibration equatio 

for this element is derived by considering -equilibrium 

of the, element-increment shown 'in figure 9. " 

Therefore, 

r , _ A , 
— 0 

n 

and hence 

ITJ" 3.1.1.1 

When is an inertia loading, 

2 ax(x,fc) 
3.1.1.2 

T^^refore^ t^e general endload^vibration equatioA is, 

f 16' 8.1.1.8 

where, 

/UF 3 • 1 • 1 • 4 

when the time function of the endload and displacement 

distributions is assumed harmonic, that is, 

5%, <06 8.1.1.5 

u„ C-^,fr} - Ujf (><•) Sfn, 3.1.1.6 
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&nd hence, 

Uy: Cx,e) 
"2) ~ S/nt^t U-x.L^^ 3«1«1»7 

Equation. 8.1.1.3 reduces to, 

8 .1 .1 .8 
doc 

The procedure for deriving the element dynamic flexibility 

matrix for an endload element is first of all to assume 

an endload distribution in the form of a polynomial and 

then evaluate the constant terms by consideration of the 

element boundary load conditions. 

This results in the contracted matrix equation, 

P î O - L Tpĉ_ \ I 1hno<} 3.1.1.9 

This equation relates the amplitude of the internal endload 

at station x in the element to the amplitudes of the 

generalized element boundary loads. Considering amplitudes 

only the element dynamic flexibility matrix can now be 

derived using the principle of virtual forces, that is, 

r\* k/, + - U = o 3.1.1.10 

The complementary virtual work done by the virtual generalized 

element boundary loads, , is given by, 

[A/ | = L J I ^mo( f 3 . 1 , 1 . 1 1 

where, 

virtual generalized element boundary loads. 

and 
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generalized element boundary displacements 

corresponding to the actual generalized element 

boundary loads, (amplitudes). 

The complementary virtual work done by the inertia loading, 

IVg , is given by, 

-JL 8.1.1.12 

It will be assumed that the displacement function in. 

equation 3.1.1.12 is obtained by rearranging equation 8.1.1.8, 

that is. 

I 

aU: 8.1.1.13 

Differentiating equation 8.1.1.9 gives, 

oLx. = L Tw^Ji 8.1.1.14 

Therefore, 

ttjc L ̂  t J ̂  ^ 8.1.1.15 

and 

= — L J f I = -~ L ̂ /YtK J I ~fu<i } 3.1.1.16 

Substituting from equations 8.1.1.15 and 3.1.1.16 into 

equation 3.1.1.12 results in. 

1 J j 3.1.1.17 

The complementary virtual work done by the virtual internal 

endload is given by, 

(J ̂  = uL 8.1.1.18 
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prom equation 3,1.1,4, 

CLuxL^) _ P(^) _ I 

de AE 8,1,1.19 

It can be seen at this stage that the first derivative of 

the displacement as given by equation 3.1.1.19 is not the 

same as if equation 8.1.1.18 were differentiated. The 

assumption regarding the displacement, (equation 8.1.1.19), 

will be appreciated when considering the plate element 

derivation. It is felt that such an assumption is acceptable 

in view of the approximate nature of finite element techniques 

and particularly if good results are obtained. It should be 

noted that for a linear endload distribution the first 

derivative of the displacement would be zero if equation 

8.1.1,13 were used which is of course unrealistic. 

Substituting from equation 3,1,1.19 results in, 

U*" = ik L f 7^ J 3,1,1,20 

Therefore by substituting the respective terms in equation 

3,1,1,10 the element dynamic flexibility matrix for &n 

endload element is obtained, that is, 

= r B l o l T n R T n i 3.1.1.21 

In contracted matrix form. 

where, 

- element static flexibility matrix, 

= element inverse mass matrix. 

8,1,1,22 
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The sign convention for the generalized element boundary 

displacements corresponding to the generalized element 

boundary loads is given in figure 10 . 

In the displacement method the element 

dynamic stiffness matrix is separated into a static stiffness 

matrix and a mass matrix. Before progressing to further 

derivation procedures a clarification of definition will 

be presented. In the displacement method, considering 

amplitudes only, 

f I " f \ I S»vio( f 

- L kfV,'] I ^ 

Now, 
O*. 

^ ÎVI I 2 ~ ^ ^ f 1 = 1 ê»k. ] { <S/y|a< i 

where, 

^ acceleration amplitudes. 

Therefore, considering the relationship force equals mass 

times acceleration the definition of mass matrix is established. 

In the force approach, again considering 

amplitudes only, 

f SMO( ̂  — Z f 3 f ̂ M0( J 

= I f 

Therefore, following a similar procedure as in the displacement 

approach the definition of inverse mass matrix becomes 

obvious. 
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3,1.2 Plane Beam a^ement. 

The beam element to be considered, 

is shown in figure 12. The generalized element boundary 

loads are denoted 2*^5 

The relationships between the incremental loads and the 

displacement in the z-direction, see figure 11 , are, 

"2)30̂  8.1.2.1 

^ M (x^ fr) 

3.1.2.2 

2̂ 

3.1.2.3 

When is an inertia loading the general bending vibration 

equation is given by, 

^6* 8.1.2.4 

If a harmonic time function is assumed equation 8.1.2.4 

reduces to, 

fCj'ujW 

3.1.2.5 

A bending moment distribution is now assumed in the form 

of a polynomial and the constant terms evaluated by consid-

eration of the element boundary load conditions. The 

following contracted matrix expression is then obtained 

for the internal bending moment at station x in the element 



to the amplitudes of the generalized element boundary loads. 

- L "Tw» 3.1,2,6 

where, 

1 - t û-f-z '̂ u+4. ôt+s \ 3,1.2,7 

The complementary work done by the virtual generalized 

element boundary loads is given by, 

l A / j = L J i ^ 3 , 1 . 2 . 8 

The complementary virtual work done by the inertia loading 

IS , 

* 
r{ _ 

IV/ = Jo 3.1.2.9 

Now, from equation 3.1.2.5, 

_L ^2!^) 
3.1.2.10 

Differentiating equation 3,1.2,6' twice gives, 

3.1.2.11 

Therefore, 

/V 
IVg* = L ^ ^ 3,1,2,12 

If a third degree polynomial is assumed for the bending 

moment distribution the second derivative of the moment 

expression gives a linear function for the displacement 

This says that the inertia loading is linear along the 
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length of the element. Considering lumped mass representation 

this linear variation seems reasonable as an initial assump-

tion. It should be realized that in the matrix displacement 

approach when a third degree polynomial is assumed for the 

beam displacement function that this gives a linear bending 

moment distribution which again is not quite realistic 

but it is an approximation. 

The complementary work done by the virtual internal moments 

is given by, 

U =Jo 4^ 8.1.2.18 

To be realistic in representing the internal complementary 

energy the second derivative of the displacement in equation 

8.1.2.13 will be that given by equation 8.1.2.1, therefore, 

M M _ I 

Hence, 

ez L 3.1.2.14 

" ei ^ j ^ j 3.1.2.15 

Note ; if the second derivative of the displacement was 

obtained using equation 8.1.2.10 it would give zero 

curvature, that is, . Again this is unrealistic 

but the displacement function given by equation 8.1.2.10 

is only used for inertia calculations. 

Therefore, by applying the principle 

of virtual forces and substituting the respective terms 

the element dynamic flexibility matrix for the beam element 



shovn in figure 12 is given by, 

[ ] - £ x fo ^ " ^ 1 ^ LTmi J d x ~ puP" •fo ^ ~^u.i I i doc 3 . 1 . 2 . 1 6 

In contracted matrix form, 

The sign convention for the generalized element boundary 

loads and corresponding displacements is given in figure 12. 



8.1.8 Rectangular Plate Element. 

8.1.8(a) q-system of boundary loads. 

The generalized element 

boundary loads for this derivation are distributed moments 

and distributed equivalent shears along the respective 

boundaries and four concentrated nodal loads. This system 

of loads will be referred to as a q-system. One such system 

is shown in figure 13. All generalized loads are assumed 

to vary harmonically with time. 

The relationship between the incremental loads, as shown 

in figure &&& the displacement in the y-direction are, 

PCI'V) 
/ ~\J o 

— \ ) I o , 

o o 

8.1.8.1 

where, 

D 
5 6; 

The shears and moments are related by the equations. 

8.1.8.2 
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In.deriving the element dyn&mic flexibility matrix an 

equivalent plate loa&ing system will be adopted, see figure 15. 

This equivalent system is given by, 

3a: / I' 

t/z = ( - V r ' ) J ^ = A, 

V3 - ( Ot* ) J. t 

1 4 . r ^ ) . . . 

Wl — 2 3C30^ g.: 

M/i =» 2 [ Mx g 3 %*&, g.S0 

a , Z^A/*%)*aa 

8.1.3.8 

The M* and moments are unchanged. 



fhe relationship between the moments, bending and twisting, 

and the distributed load applied perpendicular to the 

plane of the.plate is, 

3 Mat y (3 3 M, 

Therefore, when is an inertia load, 

3,1,3,4 

2 
' ' 8.1.3.5 

The next step in the procedure is to assume distributions 

for the moments and , The constant terms 

in the assumed polynomials are evaluated using equations 

8.1.8.2 and 8.1,8.8 and the boundary load conditions as 

given by the generalized element load system. 

The complementary virtual work done 

by the virtual inertia loading is given by. 

6 , A. 

IVa i l 
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^ dx. 8.1.8.6 

Substituting from equation 8.1.8.5 gives, 

^ r A / _ 2 4. ̂  
57-J''""'s-

8.1.8.7 

where, from the final moment expressions,-

3'M 

"a 

= L J f 4**2 

8.1 .8 .8 



The complementary >,oric done by the virtual internal moment 

is given by, 
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us 

,6,4 
W 

J ^ J iJ-x dx G.1.8.9 

Substituting from equation 3.1.3.1 

^ ~ Jo J. 

Therefore, 

gives, 

-ij ̂ A 

3.1.3.10 

The assumed final moment distribu tions can be written as, 

f^x. ~ LTx.M<1 J [ 

° ^ J r i -ma I 

~ L j f ^ 

8.1 .8 .11 

fne complementary work done by the virtual generalized 

element boundary loads is given by. 

8.1.3.12 

Hence, applying the principle of virtual forces the element 

dynamic flexibility mal 

is given by. 

'•urix for a rectangular plate element 
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wherGy 

[^^3= element static flexibility matrix 

and 

,2 \ 
) Jo -io ( I I J 

^ ^ ^ J f f 1 J j J 

3.1.8.18 

C^mf] = elenac 'rtifJ = eienaeno inverse mass matrix 

p i C I %.t I L Ut J 8.1.8.14 

j 8.1.8.15 
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3.1,3(b) s-system of boundary loads. 

The q-system of generalized 

element boundary loads is not a convenient system for 

use in the rank force method. It would be more convenient 

to have equivalent discrete generalized nodal loads, these 

will be referred to as an s-system. The s-system for plate 

bending is shown in figure , Such a system would then 

be consistent with the element nodal displacements as 

adopted in the displacement approach. Now, how can a 

q-system be replaced by an s-system so that the two systems 

are equivalent. The two element boundary loading systems 

have a dependency which is established from equilibrium 

considerations. In other words, the two systems must have 

the same generalized load resultants. 

^o derive the element dynamic flexibility matrix corresponding 

to the s-system the q-loads are considered as the unknowns 

and the s-loads as the applied loads. 

Therefore, for overall equilibrium between the two systems, 

f mo! J ̂  o< i I yS ] i. 6 I =: 1 3 1 3 1S 

Applying the rank technique to these equations results in 

the following system of independent equations, 

3.1.3.17 
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This now presents a redundant problem with a set of 

redundancies, contained in being isolated by the 

rank technique. Therefore, to obtain a unique solution 

for the q-system in terms of the s-system the total 

complementary potential in the plate is minimized with 

respect to the isolated q-redundancies. The resulting 

energy equations are given by, 

[ I I - L ^ r » 1 1 & f 3 . 1 , 3 . 1 8 

Assembling these equations with the system of independent 

equations and again applying the rank technique results 

in the relationship, 

I 1 =• I I 1 3 , 1 . 3 , 1 9 

Therefore, for the same plate potential, the element 

dynamic flexibility matrix corresponding to the s-system 

is given by, 

I 1 f A n i u ^ l [ 3 , 1 . 3 . 2 0 

Saving found the equivalent s-loads in an analysis the 

more meaningful q-loads can be calculated using equation 

3.1.3,19. 

It would appear that to derive more complex element 

representations the q-system can be increased to include 

prescribed values of the distributed loads at other points 

on the boundaries. The s-sytem will still contain the same 

number of terms for this element but this enables more 

complex loading distributions to be considered. 
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3.2 Derivation Procedure 2. 

This procedure derives a 

displacement function by integration which is adopted 

when calculating the complementary work done by the virtual 

inertia loading. 

8.2.1 Sndload Element. 

Considering a harmonic time function 

equation 3.1.1.4 reduces to, 

d Ux (x.) 

A S 8.2.1.1 

Rearranging this equation gives, 

_L 
= Jh L 71 46 L VtJLtw*! 8.2.1.2 

Therefore, a displacement function can be obtained by 

integrating equation 8.2.1.2, that is, 

^ ^ 3.2.1.8 

The constant of integration will be evaluated by applying 

d'Alembert's principle to the overall element, that is, 

f ̂  
uL ^ W + 2* f 8.2.1.4 

where, 

6j^ ̂ '0 " fO U.3cC^^ 

3.2.2 Plane Beam Element. 

Considering a harmonic time function. 
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equation 8.1.2.1 can be rearranged and integrated twice 

to give, 

(•^) — B.X. J'J" cLx-dx. C! X. C 3 , 2 . 2 . 1 

or 

^ ^ JC ^ ^ •/"J L. IM ̂  J C(occI:K ̂  t ^ 7̂̂  J 8 2 2 2 

The constants of integration are evaluated by considering 

overall equilibrium of the beam element, for equilibrium 

in the z-direction. 

Jo f f 2*^* =» o 

and for moment equilibrium about node i, 

Jo ^ ^ ôfy-2 ~ iet.-h4. ^ 2 

8.2.2.8 

*+* + " O 3.2.2.4 

where, 

8.2.8 Rectangular Plate Element. 

Incremental considerations 

give the expression, 

,1 
(Xacf/jc + 3*3% ^ 3.2,8.1 

The second partial derivatives contained in equation 8.2.8.1 

are replaced by the moments as given by equation 8.1.8.1. 

if equation 8.2.8.1 is integrated twice the resulting 

displacement function is given by, 
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Liu = ci/ -f 8.2.8.2 

where, 

U, 

3 
2^ + J~I [i) PC + ^2. {^) 

/ / ^ ^ 4 M 

3.2.3.8 

This approach gives the general displacement function if 

the f-functions can be evaluated. One solution for u. 

not the general solution, is, 

h * 

. 1 a u, 

+ C, % f C 2 & f 3.2.8.4 

The constants of integration are evaluated using the 

equilibrium equations, 

.4,4 

o "'o 

Jo 

cLxJ.^ + p{y} =• O 

2) AdcJ.^ + A/I ~ o 

oc Ax M [z) ~ o 

8.2.8.5 

where 

P(T), M(X) and M(2) are the element boundary lo^i 

resultants. 
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3.8 ueriv&tion procedure 3. 

8.3.1 %ndload Element. 

This procedure adopts two previously 

given equations, they^are, , 

la* 3.1.1.1 

3 . 1 . 1 . 4 

Differentiating equation 8.1.1.4 gives, 

3=^ 3.3.1.1 

and hence, 

= 3 . 3 . 1 . 2 

When an inertia load, 

3 Vx L^> 0 

Therefore 

or 

/US _ /) = o 
2*^ 36* 3.3.1.3 

Assuming a harmonic time function, that is, 

- 64*^^ S/]n 6^6 
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equation 8.8.1.8 becomes 

AE * p-S-uA") - o 

or 

+ A' « . M = o 
46^ ' 8.8.1.4 

where, 

. 2_ 
A, - /5 3*^45 8.8.1.5 

Solving equation 8.8.1.5 gives the general form, 

Waf*) = 8.8.1.6 

The constant terms are evaluated using equation 8.1.1.4 , 

considering a harmonic time function, that is, 

8.8.1.7 

and. the element boundary load conditions. 

8.8.2 Plane Beam Element. 

This procedure adopts three 

previously given equations, they are. 

8 . 1 . 2 . 1 

4A,.) = - ^ = - £ X 
3a:3 8.1.2.2 

and 

8 * 1 * 2 * 3 



Differentiating equation 8.1.2.1 twice gives, 

^ ^ % (^j£•} 
— = c Z 

and hence, 

^ fx, 6-) 

When is an inertia load, 

3=' 

Therefore, 

3*4- ' 1)=-

or 

O 
3x* ' 36* 

Assuming a harmonic time function, that is. 
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8.3.2,1 

3.3.2.2 

3.3.2.3 

equation 3.3.2.8 becomes, 

4 ^ - o 

or 

A 2 ^ 

where, 

X fz jg6 "4 ar 

3.8.2.4 

3.3.2.5 
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Solving equation 3.3.2.4 gives the general form, 

= A, Cos\j_x. -t-A2.S/n\j,x. -f-A-^ CosL Si»k 3.3.2.6 

The constant terms are evaluated using equations 3.1.2.1 

and 3,1.2,2, considering a harmonic time function, that is, 

and 

= - £ X 

and, the element boundary load conditions. 

This chapter has presented derivation 

procedures for evaluation of the dynamic flexibility 

matrix for various types of elements. Basically^ the 

general formulation can be applied to any type af element 

and in the next chapter particular element dynamic 

flexibility matrices are derived. 



C=''jb) 
A 
T 

positive sign convention for incremental loading. 

( a ) 
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3C 

& A 

(•>:, k) 

Positive sign convention for displacement in the x-direction. 

: / (b) 

Pig. 9 
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JC 

3C SB O 

Positive sign convention for the generalized element 

boundary loads. 

(a) 

5. 

Xsso 

'*+3 

x = ^ 

Positive sign convention for the generalized element 

boundary displacements. 

lb) 

Pig. 10 



' ] 

^ T T 

\ 
(?('',0 

Oc=o 

Q(^jt) + ̂ QC^j t) 

doc 

Positive sign convention for incremental loading. 

: ( a ) 

2u^[>tjb) 

lix 
->- DC 

-Xzg 

3C~0 

Positive sign convention for displacement in the z-direction 

and rotation. 

^ (b) 

Pig. 11 
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042 / 
L 

1 (K'+S 

ci+4. 

Positive sign convention for the generalized element 

boundary loads. 

(&) 

\ y 

0̂+2 
V 

w+i 

JC=o 

*+4 

K+S 

3C= i 

Positive sign convention for the generalized element 

boundary displacements. 

lb) 

Pig. 12 



87 

Conceatr&ted loads. 

Nodal values of 

distributed loads. 

/\ j| A 0̂̂4-g 

0(47 A 

«(+*4 

«<++ 

One q-system of generalized element boundary loads, 

These are shown positive and the corresponding 

displacements will have the same convention. 

Pig. 13 . 



1 . 

Mxp + 0 !. 

---'f 

<s>jS?h---"' 

h----

, ' i : ^X^X/ 4-

ax 

3% 

Positive sign convention for incremental loading. 

^is. 1^ 



w, 

V s are equivalent shears (lb/in) 

M's are moments (lb.in/in) 

V/'s are concentrated nodal loads (lbs.) 

V's and are equivalent to the iQ* a 

systems at the plate boundaries. 

Equivalent plate loading system. 

Pig. 15.. 
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P+B 

s—system of genera-lized element boundary ±o&ds 

for plate bending. These are shown positive 

and the corresponding displacements will have 

the same convention. 

Pig. 16 
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CHAPTSR 4. 

PARTICULAR 3L3M3NT DYNAMIC FL3XIBILITY MATRICES. 

Synopsis, 

Particular element dynamic flexibility matrices 

are derived in this chapter and a type designation system 

has been established. Three derivation procedures were 

presented in Chapter 3 but all the procedures are not applied 

to the various element types. All three procedures have been 

applied to a plane beam element,, shear and bending, which 

is used in the analysis of collinear beam structures. Based 

on the results for such structural configurations the 

second procedure, see Chapter 3, was disregarded for other 

types of element s. Procedure 3 is a so called exact solution 

and is only used for beam type elements, that is, the plane 

beam element and the inclined plane beam element. Procedure 1 

was applied to a rectangular plate element whose generalized 

element boundary load vector contains twelve terms. In 

this plate element derivation the bending moments and 

equivalent shears are assumed constant along the respective 

boundaries. This element has been used to analyse two 

dimensional plate structures and the results have been 

compared with those obtained by alternative methods. The 

inclined beam element has been used for the analysis of 

general plane frames and again a comparison of the results 

have been made* See Chapter 5 for results and their discussion. 
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Introduction. 

In this chapter particular element dynamic 

flexibility matrices will be derivea using the procedures 

presented in Chapter 3. In each case the section and elastic 

properties are assumed constant throughout the element. In 

all derivations only amplitude values are considered. 

An element type designation system will 

now be established for ease of reference. This is given by, 

Element Type Pl/NPD 

where, 

PI = procedure 'I' adopted to derive the element 

dynamic flexibility matrix. In the work 

contained in this chapter 'I' will take on 

values from 1 to 3, 

N = number given to an element type derived using 

procedure 'I'. 

PD » dynamic flexibility matrix. 
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4.1 Derivation Procedure 1. 

4.1.1 Sndload Element (Element Type Pl/lFD). 

The endload distribution for the 

endload element shown in figure 10 will be assumed linear, 

that is, 

= // +4% 6*) 4.1.1.1 

The boundary conditions for evaluation of the constant 

terms are, 

P(x) =: ~ Im. a.t 

and 

P(>c) = ^tK-t-3 at X = — 

4.1.1.2 

The resulting endload distribution is given by, 

L (2%) Jf 'kw, f 4.1.1.8 

or,in contracted matrix form, 

P =» L 7},̂  J f I 

where, 

= L 7 ) ( 2 ) J 4.1.1.4 

The displacement function required for the complementary 

work done by the virtual inertia loading is obtained from 

the relationship, 

(x) = dx 



Prom equation 4.1.1.3, 

L ^ J I i 

or, in contracted form, 

i n r " 

where. 

9I1 

4 . 1 . 1 . 5 

L T ^ t J - L % 4 J 4.1.1.6 

Therefore, using equation 3.1.1.21, the element dynamic 

flexibility matrix is given by. 

• 6 

Asi' Ir,^!LTnJ - ^^iUx^ilLTui J d 

I 

ab I (-/+?) (< \ dx 
pti'-

( i ) 

J 

( 4 ) dy 

Therefore 

[4,^ ] " 

2 

L 
4 . 1 . 1 . 7 
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4.1,2 Plane Beam Element (Element Type P1/2FD). 

It will be assumed that the internal 

bending moment varies as a 3rd degree polynomial, that is, 

= A, •*' *- AiX^ * X 

Therefore, 

4.1.2.1 

(x) = — ( Az ^ zA^x. + 3 Ajf. X*) 

Using the boundary conditions, 

"tx+z 

- % * + / 

-

(».k X. "O 

at ss ̂  

4.1.2.2 

4.1.2.3 

to evaluate the constant terms results in the moment 

distribution. 

M (-x) =a L ~T~tuH, J I ^IUC( I 4.1.2.4 

where, 

4 . 1 . 2 . 5 

Differentiating equation 4^1.2.4 twice with respect to x 

gives, ^ 

= LTLtJf 



where, 

4.1.2.6 

= i ^ ( % " % ) ("1̂ ^ «') J 

The element static flexibility matrix is given by, 

I = ix X ^ ? LTmI, -J c(x 

and the element inverse mass matrix by, 

I r ̂  
p J. db 

The element dynamic flexibility matrix is found using the 

relationship, 

[ W ] = [ - a* [Mwf ] 

Therefore, making the respective substitutions and 

integrating re suits in, 

[4.,] 
4-zoax 

tzi ~I36 - ' & fd* j' si 34 

zz4 /St, tsi ~S4- S'i k 6 

34* n i 4.P sz4 -f -3^ zl* —34 

'IS-i -«4 -z%f 
" 1 

3i 6 ' -s^ 

4.1.2.7 

This can be written as. 
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[ W ] A .1 
42oEit X 

where, 

i*(3X*l) 4(-»SX-3) 

i fzzX-s) ^6sx + ») (—S"4X"~<») 

jifsx+i) e(4\-i) ff-zzX + s) 

((-m-s) —̂s'4X ""4) (/S4X-fc) 

4.1.2.8 

S4^£X and 

jufi> 

4.1.2.9 
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4,1,3 Inclined Plane Beam Element (Element Type P1/3FD). 

In all derivations the generalized \ 

element boundary loads and corresponding displacements 

are relative to the global axes (x^y\z). For element types 

Fl/lFD an& Pl/SPD the local axes (x,y,z) and the global 

axes have been assumed the same. In order to develop an 

inclined beam element for general plane frame analysis 

the element dynamic flexibility matrix will be derived 

relative to the local axes and then transformed relative 

to the global axes. The generalized element boundary loads 

and corresponding displacements relative to the local axes 

will be denoted by , amplitudes only. 

Figure 17 shows the two systems. An inclined beam element 

showing local and global axes is given in figure 18, 

The dynamic flexibility matrix for an inclined beam element, 

relative to the local axes, is derived by assembling the 

dynamic flexibility matrices for element types Pl/lFD 

and P1/2FD, Therefore, 
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LJ-:, ] 
1 
3AC 

1 o O 
Me 

o o 

o 
(4X-z) 

4Z0EI X 
i! 
4toei X o 

(! (*\+0 
4W6I X 

JL' .{-ISX-3) 
4»ei — 

O f .M-A 
4a>ec X 

_i_ Os<,\-(,) 

4U6X X 
O 

C .('5X+S) 
4j»er X 

1. 
4WI X 

- _1_ 
6AE 

o O 1 --i. 
3AE gptk* 

O O 

O 
(* fA+O 
4i»6l X 4%E1 X O 

£ 
4zAei X 

il .(-«X+5) 
4wei X 

L° r 
4l06E X 

£ 
4to€t X 

O 
fwX»s) 

m*6x X 

t .0%X-6) 
4»6t X 

4.1.3.1 

The generalized element boundary load vector relative to 

the local axes is, 

f $ 4^1.3.2 

The generalized element boundary load vector relative to 

the global axes is. 

f f/nt ? " f ^(x+s ^e(^s I 4.1.8.3 
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The two element load systems are related by a simple 

transformation matrix, rotation of axes, that is, 

where, 

4.1.3.4 

[4,1 

O 

L_ 

o 

— I 

o 

o 
i " ~ T " 

O 

i , 

4.1.8.5 

The element dynamic flexibility relative to the global 

axes is found by equating the element energy formulated 

in terms of the respective element load systems. 
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Therefore, the element dynamic flexibility matrix for an 

inclined plane beam element is given by, 

[C„TL ]ff 
4 . 1 . 3 . 8 

Therefore, 

where, 

-f i" f 3/ (o) 

5YM L 
f(v) ;(\z) 

< 5YM 
-f(v) 

1 

L 1 

1 j 

1 1 
1 1 

4 . 1 . 3 * 7 

J-(l,l) ~ (• i ) i 3AE ipu>^) I I J 4zo£X A 
^ -.A \ 

I f V 

: r^A-z) 

f4X-2) 

4%^:% A 

f/ \ (/f6X-6) 
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and. 

f, \ __L _ f4X-2)\ 
4 4 \3AE p̂iy ^zogz X / 4 \ JAe *%)gz X 

fi'&O _^L f zzX-a) 
IZ ^ZoEI X 

,/ \ /*,-*; Y/-i _JL \ ^ / M i y ^ ( i l l 4 
^r/^) " (. 2 y I 64^ .,'1 / / 42ogz A 

, . / - A _J_ 
— 3 j ^ 6/46 4*^Z X y 

( D - W _^L 
f ^ 4.206% X 

ffz,)) " 4ZogZ X 

)'(-1 - ^ A + H i i 
6A6 I ^ j4.2oeZ X 

4 4ZogZ X 

^ ^—S4-X --c^ 

= ^ g z X 

/ ,\ z ;4 
^ J X — &#o6Z " 3g6'4 



103 

1.4 Rectangular Plate Element (Element Type PI/4PD). 

The q-system of generalized element 

boundary loads will be adopted for this element type. It is 

assumed for this particular plate element that the distributed 

boundary loadings are uniform along each respective boundary. 

The generalized element boundary load system is shown in 

figure 19. In the derivation of the element dynamic 

flexibility matrix non-dimensional forms of the relevant 

elasticity equations will be used. Therefore, 

A IMT 

V, = ( o- "3^ J-S='0 

( Q. f ^ L /*«/ 

/ ^ \ 
% " I 4^ + au /i=/ 

/ f ^ "( \ 
V* - I C&f f 

4.1.4.1 



lOit 

The assumed moment distributions are, 

^ /4,r V. ,4,^^ v. ̂  

AVf = XjT ^ ^6f + X? f* 

" /4, + + A, ̂  

4 » 1. 4. 2 

Therefore 

=/4, 

Xt Zdyf + jA.i' 

3 

3f ^ ^/z 

Hence 

- - i" f /Az + z/ljf ^ A„ + ) 

% - + 

Vz = ^ 
- - X; - - 4* & & a ^ ) ^ A/; + A 
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/ — '̂6 
I 6 "̂7 ^ + 4,z) 

r z » ! Aw) 

W) a Z/4g 

IV% " 2 + <4/o) 

4J1.4»3 

*Vg = 2 ̂ /Ag f ̂ /o + <4̂  f /U%) 

W4 - z (/t, f /4/, ) 

The constant terms are evaluated using equations 4.1.4.2 

and 4.1.4.3 with the following boundary load conditions, 

1* M * - - a6 Y=a 

2, at f <* / 

3, e 2* af 

5. 

6.. % - %*,+ s f=/ 
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7. ^ af 3"/ 

8. At '̂ aO 

9. "" "f*o 

10. Wa— a/" f = // -f«o 

11. 1^= .af ^*/, fa/ 

12. " %**" af ^ = o / "f» / 

Therefore, 

4,1*4*4 

1 i ] 1 r 
o o o ~i 1 o o o 1 o 1 ° 1 <) o ° 

o o o O o 
' 

o o & 1' St 
1 

o o 

<41 o 3 o 3 o CI o —24 
-za 
L 

A & 
k 

• 

-ZA 
b 4 

o -2 o -2 o -a. o <% ! a 
b L 

-& k t 'Z ' 

1 o o o O O O o O <? 

o O o 
' 

o o o o 6 
zc -

o o 4 

/A, 1 -3 O -3 o -Zk o L o -zk 
a. 

—Zjj & b 
A 

i) 
5. 4 1 

Vft 1 

Ag 2 o o I o — 6 o k 
5. 

k 
ci. 

- & 
5. 

•wt ̂  
2. 'L 1 

k̂+7 

1 O o o o o . 1 
• 

o o o o o 
'i 

1 
o o o o o O I o o i o o % 

w ) 

1 A, • 

o i 
I 

o 1 6 1 o o i O 1 o o J. 
2 o o 1 

2 % 1 

o 1 
— 1 

o 1 o 1 
._... ! 

o O 1 
__ 1 

o o Z z i 
2 j 

IIWtol»LLIU» 

1 
? 
"W+Mj 

lew* iiiiiijiiiiiĵ  

4,1,4*5 
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Substituting for the constant terms in equation 4.1.4.2 gives, 

/VI, o "I 

O 

O 

aff'-?:) 

<=• 

o(?-zf' + sO 

|(t- n ' f J") 

S(J.-J') 

Lii.ii— •*— j 

O 

1 

! 
i 
I ° 

1 

j 1 

_ 1 

1 1 

1 f ) I 

1 A. ̂  

j "of o 

, (6-/2?) 

I ' l VWK ) 

JL 
A*" (6-/Zf) I 

4.1.4.6 a 

4.1,4.7_ 

o 

Ab ^(^4 + 6^3 

^ (2-6?) I 

Ab 

^ ̂ —6 •f' /2'S^ twKf 

o 

6 I 

4.1,4, 

4.1.4.9 f 
o 

2̂̂  %, (̂ —4' ̂  j 

| _ j % i ' ^ - ^ ^ 3 J 



and. 

O 

o 

o 

o 

fz-f-f+ f<) 

_j 

Therefore, 

4*1»4,10 

4.1.4.11 
—fit— 

L— 

_L 

J. 
A* 

o 

O 

o 

o 

/ 

-_L 
ab 

. J-
At) 
,-L 
Ak 

"T*. ( —6 
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T_ 

{ t ; . J 

i./S-'Z?) 

4"̂  

^ 4- C- % J 

- f 6f-7) 

4 if ^J !! 

afp 

4*1»4«12 
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The element inverse mass matrix is given by, 

: Sf'af ^ as 

- p ji f %i. f [TLi. J ff f d/% 

4.1,4.13 

Substituting from e q u a t i o n 4.1.4.12 a n d i n t e g r a t i n g r e s u l t s 
in the element inverse mass matrix. 

F 'za k' o 
| I 2 & 

IZ 6 
a* 

o 

a* 

'Z& O 

O 

o 66 

" 6 A o 

6 ̂ 

/Z A 

I 4A 

o 

66 

• & < % 

o 

6 
a> 

6 

' & . 

6 I 

6 6 
a* 

fa b 

A I a. a. I & 

.2 

a . 

- ^ 

.2 & 

.Z 
<% 

^ A. a. 
.2 
3, 

% _L 

4 4" 

CL 

I ̂  
I ak 

-iS. 
a.k 

; 

dJ* ab 

lab t 
I 8 

( I "? 
I At I 
f eaMw*!* 

4 * 1 * 4 . 1 4 
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The element static flexibility matrix is given by, 

/ i % 

4.1.4.15 

where^ 

LlfMij is given, by equation 4.1.4.6 

LTiMtj is given by equation 4.1.4.8 

is given by equation 4.1.4.10 

Therefore, 



Ill 
iZ a i 
5 6. / 4zo 

/S6 ZZk "Ua\) % ok %3b_3S4,, IZh_3;a^ 
A Zb" 13 b - If 6 T) 

A z k 
i:b_3f6\, 

A Z b* 

f»a\) -4FW 22* 13*. k V 
k 2 

2Ze 
k z. A 

Z3a_SSbY 
k z a k Z A. 

156 -Z*b 
A Z k 

-13k +. I* S Y 
^ Z b 

-nb+l?S^ 
A, Z b 

-Mb + ^ 
a. Z b 

;s6 -124 
.,_ . 

-Z2^+3Sk\; 
b z a k 

-^a+»b^ 
k z a. 

-ZzS+lSk^ 
^ CK 

i 1 
-KaW 11 3î  l-lfakV 1% A. ML 

4& — eiV a. It 3^ — 2F dV a. Iz a. 11 

I ( 4 ^ :«L 
b M. 4^-11 W 4f.HLV k 'a-

M M 46^ "If 5k'-!S aV 
A. 1% 

aV 
A. *% 

- j SYM 
/ 

- j SYM 
. i 

I 

. 1 1 

^Pi-) 
i" 

- g ( ' + i 0 + 22 
6) 

• 

1 i - ! 

4(%r+W 4^4*b* 
1/ 

+ ^ (? 

1 1 

1 
1 

i 
11 •f 

^ n+|v) 

i 1 1 i -
L i I. I 

' 1 •| . + 

4.1.4.16 

The element dynamic flexibility matrix can now be obtained, 

using the relationship. 

-i 1 j 
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4.1.5 Rectangular Plate Element (Element Ty^e Pl/ol 

This element type will adopt 

the s-system of generalized element boundary loads as 

shown in figure l6. The element dynamic flexibility 

matrix corresponding to this system will be derived using 

the q-system and corresponding dynamic flexibility matrix 

as adopted and derived for Element Type P1/4PD. 

Figure 20 shows the q-resultants which must be in overall 

equilibrium with the s-system. . 

Therefore, the equilibrium equations 

are given by, 



- — 

0 + — 

+ 
<c 

~Q 
1 

+ • — 

r~ + 
<L 

+ 
CO. 1 

Q 
sS 
1 

V* 
<6. 

— 

+ 
<0. 

M + -

N + 
(0. 

& 
COL 

$ i 

0 + 
f -j) d 

I 

+ T <i 
t 

i 

-6 \ ^IN 

\A + < 
i 

-0 % ""dlN 

V) "t" "25 \ 
M : 
-«1 w < 

I 

\r d 
1 

? _a 
1 

3 
<( 
1 

*-W 
i 

% d 
i 

113 

V) 
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The remaining procedure for the derivation 

of the element dynamic flexibility matrix corresponding 

to an s—system. Chapter 3 (8.1.3(o)), becomes too involved 

for manual generation. The derivation is completed by 

writing the procedure as a computer programme subroutine, 

the element dynamic flexibility matrix being evaluated within 

the computer. Equation 4,1.5.1 is written into the 

subroutine. This subroutine (FMDSO) is described in 

Appendix 
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4«2 Derivation Procedure 2. 

4.2,1 Sndload Element (Element Type P2/1PD), 

In this procedure the required 

displacement function is given by equation 3.2.1.3, that is, 

Substituting from equation 4,1.1.4 gives, 

+ 4 , 2 . 1 , 1 

The constant of integration, C , is evaluated using the 

e q u i l i b r i u m e q u a t i o n , 

Jo + toe +• = O 

Therefore, 

c = 4*2.1.2 

and 

= L 4.2,1.3 

w h e r e , 

4.2.1.4 

The e l e m e n t i n v e r s e mass m a t r i x i s d e r i v e d , from t h e e x p r e s s i o n 

f o r t h e work done by t h e v i r t u a l i n e r t i a l o a d i n g , t h a t i s . 
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In order to retain the usual form for the element dynamic 

f l e x i b i l i t y matr ix , t h a t i s , 

[ - [jvw] - A* ] 

t h e i n v e r s e mass matr ix i s g i v e n by, 

f ̂  

[TWmf ] = Jo LTLti J 4.2.1.5 

Equation 4 . 2 . 1 . 4 can be w r i t t e n a s , 
A ̂ \ 

= / W ( L n j ^ [T; J j 4.2.1.5 

where, 

[ T i j = L (-*+#% + 4 ) J 4 . 2 . 1 . 7 

and 

LHJ - L ("?) ( - 4 ) J 4 . 2 . 1 . 8 

Therefore, the element inverse mass matrix is given b y , 

= fA6) 

( 

Hence, 
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f ̂  f ( 
- (Ae.y-J» IXlL^iId^K + JB Jo f 7; f [7; j / 

A*) 
xa L {r^\LT,lcl^ # p f j !r^}LT^J 

E v a l u a t i n g the integrals results in, 

j I ^ f 7 ; K 7 l J =: [<9] 

1 fTifliTJ = [ o ] 

r<4Ey j. f ̂  34,0 (ab) 

p / / / ' i l L T z J d. = 

1 1 
8 

^ 

-7 

"7 

i-i-—w 

r 1 
- — 

1 1 

Now, t h e e l e m e n t s t a t i c f l e x i b i l i t y m a t r i x i s t h e same 

as element type Pl/lPD. Therefore, the element dynamic 

f l e x i b i l i t y m a t r i x i s g i v e n b y , 



f f/ytU 3 - [ ~ t03- [ 

Hence, 

118 

C U ] 
6Ae 

4 . 2 . 1 . 9 
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4,2.2 Plane Beam Element (Element Type P2/2FD). 

The required displacement 

function is obtained using equation 3.2.2.2, that is, 

(m) e ^ ff Z. J [ Htmn f + C, 

Substituting from equation 4.1.2.5 gives, 

+ c,* * J 

4 . 2 . 2 . 1 

The constant terms of integration are evaluated using the 

equilibrium equations, 

pc^ U^(3c) CIM + ^ %X4-4 —O 

) 
and 

i 
"~J1 X die *• «̂f+4 ^ ^*t4s - O 

Therefore, 

C,^ I (. '&•> ^ ' ) ( 'Sr " " i-' '^0 ?>•) 

4 . 2 . 2 . 2 

and 

c, = L ( £ - ! f s O ( % ) ( , S 4 g . ) 

A 4.2.2.3 
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Hence, 

u^Cx.) — L J f f 4,2.2.4 

where, 

L T ^ l J = EX L (( ^ 

( ( t : - 5 - : . ) - ( r L ^ - - r ^ 0 ^ ( £ ^ ? 7 4 

^ ^ & ) ^ ^ ? f g ) ^ f - i i ' ' - ^ " 4 J -£C 
44 

4 . 2 . 2 . 5 

The e lement i n v e r s e mass matr ix i s g i v e n by, 

and the e lement s t a t i c f l e x i b i l i t y matr ix i s the same as 

e lement type P1/2PD. Therefore the e lement dynamic f l e x i b i l i t y 

matr ix i s g i v e n by t h e r e l a t i o n s h i p . 

Hence, 
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f W I 
4-Z06Z 41' Z2i se -is€ zl^ it -r 3l 

zzf fSh tai -34 il b si 6 

34* isA -zzl -i* ~ti zt^ -si 

-lii —S^ -z*l ISt, 3i 6 "Si 6 

r f . r 
Cex)* 4%o 

11 jt 
M9S 

.1 
M3 € 

j 6930 
££27 i* 
lUktW 

1 -'Ml i 1 
1 «44» 1 

2T3 g 
4930 * 

/>8 
1 77© 

!Ml i 
SS440 

-ZMI 
1 «»Sfe<9 1 

IOS7 
/USio 1 SS440 

f> 4S 
M*W* 

"2*2 6 
I &9S« 1 

-Ml § 1 -*9M 
1 t**e 

1 — 1 
1 77* 1 

4 . 4 . 2 . 2 . 6 

This can be written as, 

* M9S / 

UJ]'l .1 
4a®fiX X ?/z»X-X-B3j«e£e 

<>9So 
tYsX* I - M W « 84» x*') 

Ikktio 

thtX-S~nt*f4'>\*-\ /'lS6X-&-Mil84e X*) \efl%\4-S-MI)tW> f-S4\-k * 1SS12I^ X*-') I ' —- ' « — ' *• « ' 

/MSto 
X") 

8S440 

t(-n\~s + /fc«>«»4o X*) 
SS440 

%#St» 

SS4-40 •' '#1** I &*** ^ 

e('n%4^s f X*) -6- X*) 
& * * # 

where, 

, 
^ " f*»&r 

4 * 2 . 2 . 7 

#6 4 
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4.3 Derivation Procedure 3. 

4.3.1 Sndload Element (Element Type P3/1MD). 

To derive the element dynamic 

f l e x i b i l i t y matrix u s i n g t h i s procedure r e q u i r e s the 

solution of equation 3,3,1.6, that is, 

Ux = A, 

The constant terms are evaluated using this equation in 

c o n j u n c t i o n with the r e l a t i o n s h i p , 

^ Hx i^') 
P(x) = A£ gix 

where, 

A.^jSmXfX At.\i ^s\i^ "i 

and t h e element boundary load c o n d i t i o n s . 

4 . 3 . 1 . 1 

A* jc =o 

The endload d i s t r i b u t i o n i s g i v e n by, 

P{x) •« AJE # y^zX/^s X/-*^ 

t h e r e f o r e , the cons tant terms are g i v e n by. 

. Cos Xf s . / r 
° J i. V-fS 

4 . 3 . 1 . 2 

4 . 3 . 1 . 3 

4 . 3 . 1 . 4 
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Hence, the general displacement function is, 

X / * S/H \,X. 
— C>sX» ̂  _ / 
S*A,4 Sin),, A 

— / O 

4.3.1.5 

The generalized element boundary displacements corresponding 

to the generalized element boundary loads are obtained 

u s i n g e q u a t i o n 4 . 3 . 1 . 5 by e v a l u a t i n g t h e d i s p l a c e m e n t 

at x s o and x a M. . 

Therefore, 

Sf 'n \f t 

s,*.A,e 

The e l e m e n t dynamic f l e x i b i l i t y m a t r i x i s t h e r e f o r e , 

4 . 3 . 1 . 6 

4 . 3 . 1 . 7 



Using the notation given by Bishop and Johnson, 

ABX, P.Z 

F,. .. 
4.8.1.8 

where< 

— CisXi-i 

A, ̂  

and 

4 . 3 . 1 . 9 

X, =• a) (' 386-4 e") 
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4.3.2 Plane Beam Element (Element Type P3/2PD). 

The element dynamic flexibility 

matrix f o r this element is derived using equation 8 . 3 . 2 . 6 , 

that is, 

~ ^ y \z ̂  ^ X 2 -X As Coslt ^2 'c A4. Siy\L\ 

The constant terms are evaluated using this equation in 

conjunction with the relationships, 

and. 

where, 

f 4 . 8 . 2 . 1 

3 2 2 3 

and t h e e l e m e n t boundary l o a d c o n d i t i o n s , 

A41x) -

Q(x) « 

- %*+, 

-%*+s 

a6 acm o 

at 3c « ̂  

4 . 3 . 2 . 3 
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The resulting general displacement function, displacement 

in the z-direction, and the general rotation function, 

given by 8 W = , are, 

_ I Fg 

aexX^ fr 

I +(FrF%̂  CkiLXiX - Ft {Sm \tx- f Xx*) +(F,- % - (F.-fF,̂  SmkX%x 

I ̂ 8(Ces^t^ ̂ X z % F j g (Coi,G>sli(SmXt?*- •>• Smk 

z6zy,f^ 251 \,F^ 

fjo FgCSmliX-Sinklx^) Fi (C»t)i%x4-Cotk X»x)- f)€>(Sm ̂ x̂-S/nUix) 

26Z\*F; 

I ^<x*% '^off4 f 

4 . 3 . 2 . 4 
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The generalized element boundary displacements corresponding 

to the generalized element boundary loads are obtained 

using equation 4.3,2,4 by evaluating the displacement in 

the z-direction and the rotation at and ocs.il 

Therefore, 

TA. 

1 -^3 

sfz 1 -fyA. 1 
4 . 8 , 2 . 5 

When e v a l u a t i n g t h e s e g e n e r a l i z e d d i s p l a c e m e n t s i t s h o u l d 

be remembered t h a t t h e s i g n c o n v e n t i o n f o r t h e d i s p l a c e m e n t 

i n t h e z - d i r e c t i o n i s t h e same i n b o t h e q u a t i o n 4 . 3 . 2 . 4 

( t h e o r y o f e l a s t i c i t y , s e e f i g u r e 11 ) and f o r t h e 

corresponding boundary displacement. However , in the case 

of rotations t h e two sign conventions are o p p o s i t e , s e e 

figures 11 and 12 • For example, from equation 4 . 3 , 2 , 4 

t h e rotation at x = 0 due to - 1.0 is given by, 

•' x.~a 

jfrom equation 4*3.2.5 the rotation at x = 0 due to —1.0 

i s g i v e n by 
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See figures for further clarification. Therefore, when 

evaluating the generalized element boundary rotations 

using equation 4,3,2.4 the sign of the resulting quantity 

must be reversed. 

The element dynamic flexibility matrix 

is therefore, 

/ 

6% 

& 

-^:Az 

4.8.2.6 

where, again using the same notation as Bishop and Johnson, 

P, « SinX,4 8inh)^2 

F;= CosX^CoshX*^ -1 

Pg= CosX^SinhX*^ - SinX%f CoshXi^ 

F^= CosX&^SinhXi^ + SinXi^ CoshXi^ 4.3. j.7 

P? = SinXi^ + SinhXi^ 

F, = SinA*^ - SinhXi^ 

P* . CosX,^ - CoshX,2 

and 

\ = I y 
I 396 4 6%; 
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4.3,3 Inclined Plane Beam Element (Element Type P3/3FD). 

The general derivation of the element 

dynamic flexibility matrix for this element type is the 

same as element type P1/3PD. However, in this case the 

element dynamic flexibility matrix relative to the local 

axes is derived by assembling the dynamic flexibility 

matrices for element types P3/1PD and P3/2PD. Therefore, 

[ C I = 

O 

o o 
^1% 

o 

5 

O 

AE-Xi 

fy 

o 

— 

21X1% 

ft 

4 . 3 . 3 . 1 

The element dynamic flexibility matrix relative to the, 

g l o b a l axes i s g i v e n by, 

where is given by equation 4.1.3*5. Therefore, 



230 

iff/,3) 

zf̂ yZ) ;f/2,3) //A6) 

/&3) -if fs/t) 

I 

?YAAJ 
L 

. 

—f (',3) 

I *. ?YAAJ 

f &,*) 

1 

1 

MMMMHRaiB 

' 
' 

_ J 
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/ ^ /:k 

= ^TX.Fg 
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F, = SinXz^ Sinh Xx-̂  

F, = Cos CoshXi-f -1 

Fy - CosXi^ SinhXi^ - SinX^^ Cosh Xz^ 

Pfe - Cos Xi^ Sinh + SinXi^ Cosh Xi-̂  

SinAj+ SinhXz^ 

Fg = SinXz,^- SinhXi-^ 

Co S - Co shXai 

F/) — — Co s XI-C 

P,z-

Sin Xil 

SinX,^ 

X, - ^ I 3 9 6 E 

/ \ 
I 3g6 '4 E%/ 

4 
A," l3g6'4E% 
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In the initial research stu&y of the 

rank force method for vibration analysis only certain 

types of structural elements have been considered. These 

were felt sufficient for the initial investigation, in 

future work the element loading systems should be considered 

in a more complex form, particularly for the rectangular 

plate element. Also, elements of irregular shape should 

be investigated and consistent beam and plate element 

matrices should be derived for use in structural configura-

tions consisting of beam/plate combinations. 
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e<+4-

Generalized element boundary loads relative to the local 

(a) 

X 

axes. 

Generalized element boundary loads relative to the global axes 

(b) 

Pig. 17. 
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Global axis 

Local axis 

Global axis. 

Inclined plane beam element showing local and global axes. 

Pig. 18 . 



Concentr&bea no&al loads. 
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1 '%+9 

Nodal values of 

distributed loads. 

«+ 10 

Assumed q-system of generalized element 

boundary loads. Positive as shown. 

Pig. 19 
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Origin lor 

overall 

equilibrium. 

y ̂  

3C 

A+7 
<a+8 

q-system and s-system for the derivation 

of Element Type P1/5PD. 

Pig.20 
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CHAPT3R 5. 

R2SULTS AND DISCUSSION. 

5.1 Collinear beam structures. 

The rank force method was 

applied to a series of collinear beam structures and the 

corresponding eigenvalues evaluated. These are given in 

tables 2 and 3 . The numbers in parentheses give the 

percentage error of eigenvalues, that is, 

^(calculated) - ^(reference) 100 # 
^(reference) 

where, 

^(calculated) = calculated eigenvalue using the 

respective representation. 

^ (reference), reference eigenvalue. This is 

taken as that evaluated using 

Element Type P3/2PD, see table 4 . 

The structural model, a simply supported beam, was idealized 

into various arrangements of finite elements of equal 

length up to a maximum of six elements. The beam properties 

are given in table 5 . The accuracy of the results depends 

on the structural element representation and the number 

of discrete elements used in the structural idealization. 

In Element Type P1/2PD the assumption of 

a 8rd degree polynomial to represent the bending moment 
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results in a linear displacement function for the element 

inertia loading. This is of course not realistic but is an 

approximation which is better than a lumped mass 

representation for a continuous structural system. In 

reference 8 Archer derives a dynamic stiffness matrix for 

a plane beam element and adopts a 3rd degree polynomial 

to represent the distorted shape of the element. This 

results in a linear bending moment distribution which 

again is not realistic. As a consequence of this the 

dynamic flexibility matrix for a plane beam element 

(Element Type P1/2PD) is somewhat similar to the dynamic 

stiffness matrix derived by Archer. The eigenvalues of 

a simply supported beam evaluated using Element Type P1/2PD 

are given in table 2 . For the lower modes the eigenvalues, 

as shown in table 2, are identical to those obtained by 

Archer using the displacement approach but for higher 

modes differences in the two sets of results would be 

expected. An explanation can be obtained by formulating 

the determinantal equation for a simply supported beam 

idealized as one finite element (NE = 1) using the 

displacement and rank force methods. The determinantal 

equation given by the displacement method would be a 2nd 

degree polynomial in the frequency parameter, A , which 

has two eigenvalues. The determinantal equation given by 

the rank force method would be a higher degree polynomial 

which would give a higher number of eigenvalues, two of 

which would be equal to those given by the displacement 
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method. This equality of eigenvalues is iue to the 

sinilarity in the dynamic flexibility and stiffness 

matrices for the plane beam element. 

When the structural dynamic stiffness matrix, 

using the displacement method, can be separated into the 

structural static stiffness matrix and mass matrix the 

number of eigenvalues that can be calculated is given by 

the order of these matrices, or in other words, the 

number of unconstrained degrees of freedom for the structure. 

In the rank force method this separation is not possible 

and the number of eigenvalues which can be computed is 

difficult to assess. The force determinant&l equation 

cannot be formed simply even for the most trivial 

configurations. When trying to formulate this equation it 

is essential not to make simplifications by cancellation 

and rearrangement of terms otherwise artificial or 

spurious eigenvalues (single and double) will be present. 

To evaluate higher modes than those given in table 2 it 

is necessary to divide the beam into a higher number of 

structural finite elements. 

Element Type P2/2PD was then investigated 

because it doesn't use a linear displacement function for 

the element inertia loading. However, it should be 

remembered that the incremental loading equation is not 

satisfied^ Initially it was felt that this representation 

would give better results than Element Type P1/2PD but this 

is not the case as can be seen from table 3. 
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To investigate the variation of 

particular generalized element boundary loads with frequency 

in a collinear beam structure a simply sypported beam 

idealized as two finite elements was again taken as the 

structural model. The applied and internal loading systems 

for this model are shown in figure 21 and table 5 gives 

the beam properties. 

The variations of shear load q, and 

bending moment q with frequency for the separate unit 

applied loads are shown in tables 8 and 9 and 

figures 27 to using Element Type P1/2FD and in tables 6 

and Y and figures 22 to 2^ using Element Type P3/2PD 

(reference element). Table gives the percentage error 

in q ̂  using Element Type P1/2FD. The percentage error is 

given by, 

q,(P8/2PD) _ q, (Pl/2PD) ^ ^ 

q, (P8/2PD) 

It can be seen that the error changes with frequency and 

applied load, close to the first eigenvalue the error in 

q is very large for P, ,P, and P* . The error for P, is 

small simply because q does not resonate at the first 

eigenvalue as can be seen from figure 28 . Away from the 

first eigenvalue the error is small but generally speaking 

this error is higher than that in the corresponding 

eigenvalues.lt should also be.noted that when q^ resonates 

the error is lower bound below the first eigenvalue and 

upper bound above the first eigenvalue. Further 
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eigenvalues cannot be investigated with this structural 

model because of the error in the corresponding second 

eigenvalues. 

Table 11 gives the percentage error in q 

using Element Type P1/2PD. The percentage error is given 

by, 

1+ (P3/2FS) - (F1/2FD) , joq ^ 

(P3/2PD) 

The same comments as for q apply to the bending moment q. . 
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rhe first four eigenvalues for 

the fraze structures sho^n in figures ^ and 33 &nd 

vith element ^^operties &s given in table l4 have been 

cc^^uted using the rank force nethod. These ^^re evaluated 

lezent ±ynes P1/8FD and P3/3PD an 1 the respective 

23,24 

eigenvalues and those obtained by a hybrid method iLevien ) 

and the displacement method (Burch* ) are given in tables 12 

and 13. There is good agreement between all the results 

when using Slenent Type P3/3F3 in the rank force method. 

However, this vas expected since all three sets of results 

adopt transcendental functions for the element dynamic 

representation. The hybrid method uses particular generalized 

element boundary loads and displacements as the unknowns, 

the displacement method uses displacements as unknowns and 

the rank force method uses generalized element boundary 

loads as unknowns. 

Element Type P1/3PD gives good results 

for the lower modes but the frames must be idealized into 

a larger number of discrete structural elements in order 

to obtain the higher eigenvalues more accurately. This was 

also shown by the collinear beam results when adopting 

polynomials to represent the element internal loading 

distribution. 

The eigenvalues given by Burch are in the 

, this is b( 

approach for the evaluatic 



In figure 34 & bent cantilever is shown 

with element properties as given in table 15 . The first 

two eigenvalues of this simple frame structure were 

evaluated using Element Type P3/8FD an& are compared with 

a r 
those given by Bishop and Johnson in table lo . The 

element loads and structural reactions for this frame were 

also evaluated at a frequency of 150 radians per second 

and are given in table and figures 36 and 37 

The applied loading system is shown in figure 35 (a) and 

the numbering system for the element loads and structural 

reactions in figure 35 (b). 
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:sin:< e. 

' ' ;ysten) /D^^^s-sys V Id . 
q 

• ' ? 
ationsj the 

) two eigenvalues of & rectangular cantilever ?late 

ccn^nted an& are shovn in table l8 . The ^late 

.tion ane properties are shown in 

!sults are co^^areu with those of 

figure 38 

^,arton 

20 

z.ethoa; 

Yo give 

comparison witn u-c 
2o 

,ienKiewicz %4 

,s twelve i: 

ave been rnotea out nis plate was 

hree generalized 

ais lents were assumet 

. 1/ 5 , 

( n 10 Slope continuity 

between nodes) and the assumed displacement function is 
2o 

.re also ouote( 

erence lumped mass results of Zienkiewicz 

U -

in the rectangular plate analyses a great 

jrouble was encountered in keeping the analyses 

eaent limit) and also numerical difficulties. . core ^0 eiemeno iiuiu; 

though some results have been obtained, .cn show gooa 

agreement with results calculates ay a 

the author feels that the derivation procedures are sound 

but the results and other configurations should be further 

investigated. Before carrying out other investigations tne 

^irogrammes should be rewritten to enable more finite 

elements to be considered. 

The plate boundary loadings for a finite 

element were assumed uniform along the respective boundaries, 

more complex distributions could be investigated. 
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es :o: LC^ur&i vi: 'sis the aisDl&cemenu 

^osc ^oni AO nuoiiSi 

Lion ap^lic&uion of a force cetho& which adopts 

of redunJ&ncv technique and. uses & 

^ributed structural ^ass representation has been found 
2%,2* 

Late, i'he author has onlv found one aaper which starts 

out to a^^lv a force a^nroach and f ii±y uevelops a 

e reason for this abandonment was that lyoriU 3^tnou. 
Z%24 

,evien had no automatic selection of redundancy technique 

.vailable to hi^ and it was this impediment which led to 

lis development of a hybrid approach. This impediment 

SXIS" for many years for static analysis whicn accounts 

leal for the ^onularity in the displacement 

ag^roacn. it was tnereio ; JL c a-Gib L̂ at lorce approach 

lich adonts an automatic selection of redundancy technique. 

1 particular the rank force method, and uses a distributed 

structural mas: renrese ntation should be studied in an 

U. J. U J. ,0 give a more realistic assessment of the force 

^roacn based on an a ctual investigation. Ihe researcn 

^^5 uceu limited to the eigenvalue problem, element 

loads and structural reactions anu structural displacements 

due to a system of harmonic forcing functions. All loads 

and displacements have been assumed to vary harmonically 

with time and in phase, the structure is assumed undamped 

and steady state conditions are assumed to exist. Only simple 
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,ons vere 
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rea, 

. It can be 

1, plane frame rectangular 

force method gives good results 

; not deficient from this point 

of viev. rne comparison of the displacement and force 

a^oro^ches now becomes a matter of comparing the manner 

in Thich the results are obtained. 

treiore tnis meuno 

r. The comn; 

.01 lOT/: 

;embled for 

Sysuem oi 

.ve: 

In the displacement approach 

lations can be immediately 

lency parameter, 

senvalue problem is given oy 

I = fol 

le eigenvalues are tnose values oi 

iich give a zero determinant value 

)he frequency parameter 

for tne matrix 

= o 

^nen us: : an element dynamic stiffness matrix which 

contains transcendental functions or a condensed element 
IS 

dynamic stiffness matrix as developed by festel , using 

polynomials for the distorted shape of the element and using 

higher order derivatives as generalized element ooundary 
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.ceiT^nts,. Che '^yna^ic s^ili^^ss n^i,rix, 

, has to be ja-er&os^ for every assumed value of the 

'ncy nara^e^er. Under these circumstances the procedure 

:ontinuous generation process, &5 previously defined. 

he distorted sha^e of JV U 5 . Doivno^iazs lo. 

a u X Uiic 

IS possiDle 

)e exnanae 

M^en conaens&uion 

he structural dynamic stiffness matrix can 

to the familiar eigenvalue iteration form, 

^ — X CtX/lJ ^ f ? — f o ] 

.ere is the ghructural static stiffness maurix and 

[ ^ ] is the structural mass matrix. Both these matrices 

are independent oi ireouency nd the 'eiore constant lor 

ceo^re tnen becomes a given structural iuwazi%&uiuu, uac vru 

a singular generation process. Having found an eigenvalue 

it is then a relatively simple matter to calculate the 

corresponding eigenvector. 

At an eigenvalue the structural dynamic 

stiffness matrix is singular and therefore it has no inverse, 

10 strucTi fi -cr'n r, rr: nic !Xioility maur .X. Aow, at 

-I -J— 1 
[ - % J = I 3^ I a 

/he: ne terms iverse 

iniiniui his nov brings u 

.X can be zero 

)oint, what is the 

eis^nvalue criteria in the rank force method ? 
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UL/ul. Uj 

Lx, 

:or eve: 

"iv: 

.n the structural uyn^mic 

and this matrix has to be 

uency irrespective 

foment dynamic flexibility 

. cL Lf ̂  ^ ces, i&ividual elenjnt dynamic flexibility 

.ces can taemseives oe ex^an&ea into a static flexibility 

%rix ana 1 inverse ca 

) a continuous % 

a, s\'5 ukx.i 

matrix. The rank force metnoa 

oration process. In the 

cement approach the eigenvalue formulation is 

ed by nulling the applied load vector which presents 

homogeneous linear equations and tne eigenvalue 

comes obvious, following the same reasoning 

nk force method ^ives, 

= f i 

^iroblem the e: 

.s, it is not a null vector. Therefore, one 

interpretation of this latter equation is : 

isformation matrix exists such that 

.s multiplied by a null vector it 

gives and finite vector ? 

inis }eral interpretation is therefore, at a trne 

Lue there is no structural dynamic flexiDility matrix. 
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.Id' 

,renvaiuc. 

r&n^ lorce 

.lie lorce criteria aiso 

fnvector can be foun&. The nusstion 

'genvalues be found in the 

ree methods ^hich can be adopted are: 

Plot each generalized element boundary load against 

frequency for each unit generalized applied load. See 

collinear beam results. This method will then give the 

individual eigenvalue bounds and adopts the equations, 

eacn %eneralize& struC" az uispiacement against 

b generalized applied load. Again 

Individual eigenvalue bounds 

adopts the eruations. 

requency lar eac 

his r^thod . VA e s 

39 

inv 

;nod was usea oy aurcn 

,he structural dynanic flexibility matrix to 

LV( 

The inverse can be oDtained providing tne irenuency is 

not an eigenvalue. This formulation now becomes that 

of the displacement approach and the eigenvalues are 

found bv investigating the sign of the determinant. In 
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^r^cuice the Svructur^^ ^yn&:%ic flexibility matrix can 

be inverted simnly because the matrix vill never be 

singular but as the frequency approaches a true eigenvalue 

^his zethod becones numerically difficult and in fact 

the eigenvectors beco^^ unreliable. 

?he eigenvalues obtained for the collinear beam, nlane 

fr^me and olate structures w^re computed using method 5 

and are in good agreement vith the exaco values. However, 

as expected bhe eigenvectors were generally unreliable. 

^hich eigenvalues had been computed vas established by 

covering a full range of frequencies and plotting the sign 

change. Method three was chosen because it could be 

computerized and subroutines for determinant, eigenvalue 

and eigenvector evaluation had already been written and 

proven. Methods 1 and 2 are very time consuming for the 

user with method 2 being the better of these graphical 

approaches. In these two methods the eigenvalues are located 

by the variables tending to infinity. 

One further comment on the eigenvalue 

evaluation. When in the displacement approach the structural 

dynamic stiffness matrix can be expanded into the static 

stiffness and mass matrices the number of eigenvalues 

which can be evaluated is equal to the order of the 

structural dynamic stiffness matrix. Also it is known 

that the first eigenvalue obtained is either the lowest 

or the highest depending on the iteration form adopted. 

In such a displacement method the eigenvalues can be placed 
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iz viuAouu of corresoo^tlin^ 

ei^snvactor. ?his is ^ d^Svinct advantage vhjn investigating 

az ^zf-^iliar struczure. In & continuous generation ^irocess, 

in y&rticul&r the ran^ force method, it is not knovn how 

^any eigenvalues can be cocputei. ^hen an eigenvalue is 

located it is nou readily knovn which one it corresponds to. 

Finally, for future eigenvalue 

evaluation using the rank fores ^^thod the procedure 

proposed in Appendix 1 should be considered. In fact, if 

this procedure can be proven conclusively it becomes a 

very powerful process in a force formulation. 
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5.4.2 Element loads and structural response. 

The main objectives of a 

structural vibration analysis is to evaluate the generalized 

element loads and structural displacements (response) for 

a given frenuency and a given system of applied forcing 

functions, harmonic in this work. In the displacement 

approach these can be obtained in two ways ; 

1. By evaluating the displacements for a given frequency 

using the equations, 

f 6^^ j " f j 

which give, 

The structural displacements correspond to element 

displacements, the equality of displacements being 

decided from compatibility considerations. Therefore, 

using the individual element dynamic stiffness matrices 

the respective element loads can be calculated. The 

disadvantage of this method is having to invert the 

structural dynamic stiffness matrix, this becomes very 

difficult close to an eigenvalue. 

2. Using the normal mode approach in which the structural 

displacements are expressed in terms of eigenvectors. 

This method can become difficult when the eigenvalues 

are clustered together. 

Because of the numerical difficulties in the displacement 



15% 

approach /or evaluating :he element loaJs una structural 

dis^lacsnants it has been a natural reeling thau this is 

vAere the force, approach coul& be at ^n' advantage, fhis 

is because the element loads and structural displacements 

can be evaluated without using normal modes or having to 

invert a structural dyna-ic stiffness ^latrix. Therefore, 

the unreliabilty of the eigenvectors in the rank force 

zethod presents no problem, however, this is a misconception 

due to the fact that in a structural static analysis the 

matrix to be inverted in the force approach, order enual 

to the decree of static redundancy, is in nany cases 

snaller than in the displacement approach. In vibration 

analyses the dynamic redundancy is ^uch higher than the 

static redundancy for a given structure. Therefore, the 

matrix to be inverted in the rank force nethod for 

vibration analysis is, in general, larger than in the 

displacement approach. In the rank force method the inversion 

of concern is in the for^ of an elimination procedure and 

occurs when the rank technique is extended to the energy 

equations. The- number of energy equations being equal to 

the degree of dynamic redundancy. ±o emphasize this point 

consider a simply supported beam idealized as six finite 

elements, see figure 39 . The degree of static redundancy 

is zero but the degree of dynamic redundancy is 12. If the 

same beam was analysed by the displacement approach the 

matrix to be inverted would be of order (12*12) for both 

static and dynamic analyses. As a second example consider 
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:ra:nc in ^0 . Lajree of static 

reiunJ&ncy is 3 bu^ .%e Lsjrse of dynamic r^^unuancy 

is 30. Usinj the iis^l^ce^ent approach ^^trix to 

be inveroe^ vould b5 of orc^r (JxG) for both sbacic 

iyr&^ic analyses. 

5 . 4 . 3 C :er S T - o r a ^ e j.nJ. runnin,g tirne. 

The cisplacsnent a^^roach (Dirsct 

Stiffness Method) enables a nuch larger problem to be 

analysed than the rank force method for a given computer 

storage. The computer programmes for the vibration 

analysis of the various structural configurations, adopting 

the rank force rethod, were written so that the analyses 

vsre carried out within bhe computer core storage. Table 

sho^^ the respecbive structural limitations. These 

programmes use all the core storage efficiently at the 

expense of computer running time. In the eigenvalue 

evaluation no advantage can be taken of sparse matrix 

techniques , hovever, these techniques would save storage 

for element load evaluation only since the assembled 

independent and energy ecuations are sparsely populated. 

A realistic comparison of the two approaches from the point 

of view of computer storage and running time could not be 

made since apart from the collinear beam work no displacement 

programme was available. In any case it is very difficult 

to realistically assess the two methods in this respect 

unless the programmes for both approaches are written for 

the same gen&rality, storage limitations, computer, 
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computer language, accuracy of results, programming and, 

derivation effort and in each caae the programmes should 

be optimized, 

^ One programme for the eigenvalue evaluation 

of collinear beam structures using the displacement 

approach (Direct Stiffness Method) was available. Taking 

this programme and accepting it as it stood showed that 

this programme could analyse a collinear beam structure with 

approximately twice the number of finite elements than 

possible with the rank force method for a given storage. 

Although no actual comparison of running times has been made 

for theae respective programmes it is felt that the displace-

ment approach would take less time. In this particular 

case the displacement formulation was a singular generation 

process. Again this type of comparison is difficult for 

the same reasons as stated for the storage problem. Any 

time comparison which is undertaken for eigenvalue 

evaluation should be made for the same method of evaluation, 

initial value and step size. Accuracy should also be conside] 

5,4,4 Other comments. 

1, It will be noticed that procedure 2 

for the derivation of element dynamic flexibility matricea 

was only applied to a piano beam element (Element ^ype 

F2/2FD), The reason for this is that based on the collinea,] 

beam results procedure 1, which also adopts polynomials 

to represent the element internal loading, gave better 

results and is simpler to apply. 
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:iic flexibility matrices. 

)atic flexibility 

'IX ana an inverse matrix. 

eie-^^nt 

lod nas been estabiishea lor 

tv matrix for 1 ip-yi A.X U_ 

-act: ezent corresponding to tne aistrioutec 

nn to a matrix corresponding to oounaary loaa 

nt discrete nodal loads. This labies oore complex 
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uo bo consiJor2& for tAS number 

of e "ivalent loaas. other ^oras, although the nuuber 

of ^ozsrclized distributed lo&is z&y increase,defending on 

on t^e co^-lexity of the assuned distributions, the nunber 

of eruivalont nodal loads ^^11 be the sa^e. 

5. A technirue is suggested for the 

eigenvalue evaluation by the rank force method using a. highly 

reduced structural dyn^.^^c flexibility matrix. This will 

save computer storage and running tine. 

G. In structural vibration analyses 

using the rank force ^^thod a delayed i^^osition of the 

structural reactions can be ^ade. This is ideal for the 

analysis of large practical structures using block elomenbs. 

5.4.S Possible areas for continued research. 

The anount of computer input 

data required by the displacement method and the rank force 

method is the sa^^. Although it is presently felt that 

the displacement approach is a more practical tool this 

vork on the rank force aethod does keep the force approach 

abreast vith its counterpart in the advancement of the 

state-of-the-art; if only as an educational tool, however, 

innedinents that nov exist in the force approach ^ay in 

future years be removed but only if further development 

and research in this area is continued. An automatic 

selection of redundancy technique vas only developed 

because of continual research and at the time of development 
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t^is' to be an i^nossible task. 

Therefore, suggested research &ro&s ^re ; 

1. Development of i^^roved element 

dyn&zic flexibility matrices vith consideration towards 

irregular shapes. 

2. Methods of reducing computer 

stor&je and running tine. 

3. further investi^'&tions of the 

le&dinj sub:-^trix technique for eigenvalue calculations. 

4. Investigate possible numerical 

^roblens Then using an assemblage of finite elements with 

a vide variation of properties betveen the ele^^nts. 

5. Develop progra^^es ^hich use 

combinations of element ty^es, such as, plates and bea^s, 

3. Considerations to general loading 

and damping. 

7. Develop programmes for analysis 

by block ele^^nts in order to analyse large practical 

structures. 
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Modt 
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HSigsnvalues ( u) radians per second.) for a simply supporter 

beam using Slement Type P1/2PD. The numbers in parentheses 

give the percentage error of eigenvalues. 

Table 2. 
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A^oc^e 
Num be r- o/ -finite elements = A'fi 

A^oc^e 
1 Z 3 4- S" 

1 
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|/C/. 3% 

1 

/fa 37 

foV6zj 
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(0-O334) 
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f3s 6) a /z 4̂ z) 
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(on9(.) 
6o2 -So 
(o-nz) 
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_ 

/973-3/ q /faz zg 
ii 

A M 6) g f^7e) 

/37Z 96 

" 4 a33a 33 

i^3g'6^ 

i zg/y-z/ 
j , , 
1 6*80 

g 
fZOS 64 

fSg 6) 

6 

SigenTalues (&A radians per second) for a simply supported 

beam using Slement Type P2/2FD. The numbers in parentheses 

give the percentage error of eigenvalues. 

Table 3 
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Mods. anvOklue. 

I /fo /264 

2 6oo • Sos-f 

3 /37f 

4 Z^oZozz? 

s 37S3.^oS 

6 

Eigenvalues (cJ radians per second) for a simply 

supported beam using Slement Type P8/2FD. 

Table b 
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P, Si'i\.t^k 

Node, i 

P-2_ S/n-cit 

S/'n, (it BS/kc^b 

3 

P> 

I ] I ) ( 1[ 
't. 

/?/ 

Applied harmonic forcing system. 

(a.) -

& 

] U U E l t ) ( i 
1. '4 

r ) ( 4 [ 3 

Freebo&y diagram showing complete generalized 

load system, amplitudes only. All loads are 

shown positive. 

(b) 

Simply supported beam idealized as two 

finite elements. « 

Fig. 21 
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Total beam length. 60.0 in. 

Cross sectional area. 1. 366 in^ 

Second moment of area. 0.1 int 

Material density. 0.283 lb per inl 

Young's modulus. 80.0*10 lb per in\ 

Beam properties. 

Table 5. 
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ZOO • o o @6z74 - /2 - g/9S6 O • S'oooo - o- 96274 

3oo -a o 3 f 9 6 o I -/•/4fo79 o - .s'oooo -o.3S3fco 

^Loo o o ' 2 6o / 3 o • 92430 O •5"ooo o — 0 2 6 0 / 3 

oZ3Afo /-g6/4/ o -5"oooo — 0 - Z 3 / 40 

a s g o O Z2g29 1 2 3673"* O-Soooo - 0 22929 

6c>a -o o -22 840 2-376%3 o • s'oooo - 0 - 22940 

O- 22^4/ 2-377/0 a - 5*000 o - 0 2284/ 

6 o o 1 o . 22242 2 37796 o • Soooo — 0-ZZ84Z 

600-6 I o • 22 g43 2 37292 o • s'oooo — 0•22843 

Uoo-Z 0 229*4 2 37969 O - .s'oooo - 0 . 2Z244 

1 0- 2 2 346 2 3 g o f 4 o - 5"o oo o — 0 - z 2^46 

1 oo • o OZ4/Z3 2-77/43 O ' S'oooo - 0 24/23 

9 o o o 0-3/74/ 3-6*563 o • s'oooo -o - 31741 

1 J-ZOO . G o 92672 7. 7$'7S'2 o•Soooo — 0 - ^ 67Z 

1 23 • 3'769 /S'o- 39322 o • S'oooo - 2 3 - 3 '769 

j /35o ' o /25--7/63r 2o2•Z9Z22 £> - Soooo - / Z ^ 7/637 

I /SSO'S ZZ3 94S74 /427.64W/Z o - s'oooo - 223•94574 

1 / 3 f A o /OZ3- 4-72?9 &S'7- S2Z3h o - 5*0 o o o - / 0 2 3 •4-72?9 

! - 3 9 2 - 3 2 9 7 / - 2 f a 3 - ?9 790 o • Sooo o 3*2-3297/ 

! nS2-a — /66' 742*2 - / o f 9 - 557o o - S'oooo /66 74242 

/3S5-0 - 37- /7/9/ - 2 3 4 6237a O• So ooo 37 '7/*f 

1 /4-00-0 — 2'S6S0* - / 6 . 907J5- o-5'oooo 296904. 

I /Ssoa • o - o • 6zz// - / - ^5-/29 o-5'oooo 0 6 2 2 / / 
1 
1 /Soa-o — o 37644 - a - / 7 2 / 9 O - S'oooo 4 37244 

! ZOOO'O ~ o•2 9424 0-^663% ' Sooo o 0-29494 

\ 22.00.6 - 0 26*62 o •$oZol 0•Soooo e Z 6 0 6 Z 

1 23900 -0-25097 A / ? 7 f o a Soooo 0 'Z3097 

24-00' o -o-3?o93 /- /9o99 o • S'oooo 0 - 2 S 0 9 3 

2"f£>/- o -0.25-093 / /9Z3o o -Soooo a ^ ^ o 9 3 

2 "far. o -o -25o93 A/936/ O-^oooo 0 2fo93 

Z4-OZ • o - o-25'o93 o-Soooo e Z f o 9 3 

2'^o4-- o — o•2 5o93 /- /9624 0-Soooo o- 2S093 

^ - o — o • 2 So 9 3 /•2o/4g o - Sao oo o- ZS^93 

Unit variat 

Element Typ 

i o n s o f b e n d i n g m o m e n t 

e P 8 / 2 f D . 

T a b l e , 7 . 

q w i t h f r e q u e n c y 



I T O 

'4-j 
-r 

- • i -1 -1- i - ' I 

N 

N 

? 
vi 
» 

'f 

w 

II 

J.. 

c 
8 V 

6 
q. 
V) 

1 

"—rr^ 

:.: .. 

A ' t 
4 I 

4J 
-3 

i n - ' 
" H 

O 
3 

m ^ 

" W 

0 
h o 
0 

U_ 

1 

y) 

II 
<e 

k 
0 M, 

c % 

I 
- ? 

I-
V 

s, 
Q 

•C' 
"C 
-4 

VI 

. OJ 

: u: 

5» 

s 
M 

S! 

V 

-L 
t 
<M 
g 

I , , , 

j . I ' 

-)—4—i-J— 

6 : ; ' 0, 
0 

I' 1' t ' 
t frcff. \:^u9vu0f^ . . . \ 

- 1 -

—1 p 
# 
0 
I 



1 7 1 

O'OIII 

IL: 
I-O 

o-ons 0 - 0 1 7 S 

: r j m r ) rji 
/•OOjjfc !'00<,fe 

0-0424 

O'OIII 
= ho 

; I 
00-4-24 

%]h 

t 
A0066 

I]^ 

wr\-

0-OI7S" 

t 

/. 0066 

c 

0-0I7S 

c 

004.24-
xjCZZZ 

o-S OS 
] ^ ) ( ( i [ 
Z 4 - 7 0 S I 24-705 i 

o-a\Sb 
Ik ) c 
OS 

= /* o 

1.^ 
O-OlSfc 

O'S 

o-o\lS 
1 k 

o-ons" 

i U S f i i 
f'0064 / '00(o(s, 

I • 0 0 6 6 

31 

o-oits" 
—1^ 

o-o;i! 

1 ® 

Y 
!'00(o(o> 

^ = /'0 

) { I'SI -

/'O 

O'OfU 

U n i t l o a d d i s t r i b u t i o n s f o r < 0 = 1 0 0 . 0 r a d i a n s p e r s e c o n d , 

a m p l i t u d e s o n l y . E l e m e n t T y p e P 8 / 2 P D . 

Pig; 25 



1 7 2 

ho 

0-og7fe 

0 0376 
m r j[ 

/ • o 

O-O-Zoh o-ozois 

Df : U E f i i-ic 
0 3617 09617 

^=/.o 

o•ofcSZ 

V 
00632 

0^^27 

0-ozo(> 

IL 

A 

?. o 632 

09627 

]]L 1[ 

O-oZob 

4 1 = 

0'O6?2 

o 5̂  O 5̂  
I f ) r i i 

I2-SI9S 12-SISS 

/̂ = / o 

0-O/22. oolzz 

i ( w ; t 
0'5̂  

0'0zo6 00206 
][• ? T j a r ; r 
o-3tZ7 0 3617 

o 96Z7 

o -0204 
—i N 

o-o$7(. 

I'O 

A 

0-9627 

I 

0-020fe 

/ O 

If3 i j g ' -

o og7(. 

U n i t l o a d d i s t r i b u t i o n s f o r l O = 2 0 0 . 0 r a d i a n s ^ e r s e c o n d , 

a m p l i t u d e s o n l y . E l e m e n t T y p e P 3 / 2 F D . 

F i g . 2 6 



Shea.^ ?/ lbs. 
u) raaiamjsec. 

P, =• !-o . fl= /-o /6 . = /• 0 /h./h . = ho ly.in. 

2 o 0 • 01(oC^! — 0 • S114- 5" — 0 - o/CaTo — 0 0 / 7 2 3 

6 0 — 0• ooS83 - 0 - 6 2 0 4 . 5 - 0 - 0/i>S8 - 0 - 0 Z 2 7 0 

too 0 • 0 / 0 9 7 — / • 0 0 SdpO - 0 - 0 / 7 5 6 — 0 - 0 4 2 2 6 

0 . ^ ^ 8 7 - 4 - 5352/ - 0 • o / g 4 6 - 0 - 2 2 6 / / 

0 • 4 . 0 3 / 3 - 8 4 7 7 2 ^ — 0 - 0/S&20 — 0 - 4 3 2 0 6 

/ 5 o 3 - 4 - 7 6 7 4 - - 6 7 . 2 g / 2 6 - O - 0 / 8 7 4 - a . ^ o ^ a s 

- 0 6 2 ^ S o / / . 2 ^ 7 7 6 - a - 0 / S S 3 O - 6 0 / Z 3 

/60 — 0 • 3! ! ZO 6 ^ 2 0 2 0 7 - a - 0 / 9 0 S O . Z g 3 2 g 

2 0 0 — o o g s g g 0'99063 - 0 - 0 2 0 5 3 0 - 0 6 4 . 3 9 

2 4 L 0 — 0 0 6 4 / 0 0 - 5 6 7 / 6 . - o - OZ2S/ 0 - 0 4 3 9 / 

Z 2 0 - 0 0 5 2 5 7 0 4 / 3 6 7 — 0- 0zS/o 0 - o a g o g 

0 • o o s ^ s 0-2395S — c:? • 06S 65 0 0 6 8 9 7 

5 - 4 . 0 0 - 0 3 & / 3 a 2 3 g a 3 -o-09438 0 - 0 9 3 4 . 9 

f g o 0-02255 o-zzSol — 0 • / 4-4- 4 6 o- / 4 - 2 4 2 

6 Z O 0 ' Z 2 8 3 g 0-23 654 — o z g / g / 0 ' Z 7 g 6 / 

6 6 0 2 o 6 3 / ^ 0•24009 - 2-//-4-SS 2 / / 0 / 2 

6 6 S 9 . / o g 6 4 0 • 2 4 - 0 6 7 - 9 ' / 5 ' 9 / o 9 / g 4 5 2 

i ^ 6 7 - Z g ' & 9 0 Z 4 0'24- 09/ 2 2 . ^ 3 9 9 / - 2 g . 5 4 4 S 6 

6 7 o — 4 . •oS'ooo 0 ^ : 4 / 2 7 3 - 9 9 9 8 7 — 4 - 0 0 4 - 6 2 

" f o o - 0 • 4 -2 0 7 2 0 4 3 2 7 3 — 0 - 4 5 ^ - 4 6 

7 4 . 0 — 0 2 5 2 6 7 o-ZSZ 6 2 0 - 2 . 0 7 7 ! - 0 . 2 / 4 8 8 

/ 4 I 0 0 0 0 6 4 ^ 3 iJ-34./o2 0 . OS2.72 

/ 4 4 a o- / o o 9 9 / . ^ 6 2 4 0 - 0 5 3 0 3 — 0 • Zo7o3 

/Soo 0 • / ^ 4 5 9 /•S304-C0 o-oSi79 - 0 - 2 2 4 6 8 

/5^2o o- 4 S ' 4 - S9 Z g 9 8 S O 0 0 5 S 3 3 — 0 -54667 

/ 6 Z 0 S- o(s 9o 6 O . O S 6 3 Z ~~ 0 • 9 6 6 4 6 

A 4 4 ^ 7 6 7 . 9 9 2 3 / o - o 5 < £ . S 7 — / - S 3 4 6 6 

/ 6 , 7 o / 0 . 3 0 6 9 4 5 ^ - 5 7 ^ 3 7 0 - oS77ta — /O - 33 ^ (3 4-

/ 6 2 o - / Z - O S 7 7 S — 6 / - SZ/Z^ o-o SSo 8 ^ ^ 9 7 6 A ? 

1700 - 2 - 3 8 0 2 3 - / / ' 7 2 3 8 3 0-0SS74- 2 - 3 0 0 7 9 

/ Z 4 L 0 - 0 9 2 Z / 9 - 4 - - 5 4 /<52 0 - 0 6 0 / 9 0 9 o 7 2 S 

2 '2 00 0 . /0 9 / 4 . - a 3 S 8 8 Z 0 3 3 4 6 3 4 - 3 2 3 4 4 

Z g ^ o 0 / 7 6 0 7 —• 3 S ̂  0 - 3 9 9 2 2 0 - 4 4 7 ^ 

Z $ 0 0 o - 3 3 9 7 6 - 0 3 6 9 5 ^ 0 . 5 6 / / Z 0 - 6 0 6 5 2 

2 9 6 0 a 7 a g 7 4 . — 0 . 3S9SO 0 9 2 7 9 3 O ' 9 7 / S S 

3 0 0 0 / . . 4 0 4 3 7 - 0 . 3 ^ 3 3 4 / . 6 2 2 7 3 A 6 6 S Z 7 

3 0 5 ^ 2 0 . z 6 o 3 Co — 0 - 3 4 - 6 / 5 ' 2 o - 4 7 6 6 6 Z 0 . 5 V 7 9 4 

30 S 3 /3^ - 6 6 4 - 2 ^ - 0 • 34-549 - /3(=-44789 - / 3 6 4 0 6 7 2 

3 / o a - 2 -0-3395S - / - 9 6 3 / 9 — / ' 9 Z g o 7 

S/Coo - / • 0 7 S S / - • 0 . 3 3 2 2 3 0 • S 6 0 2 - 4 - — o - S Z / 4 0 

U n i t v a r i a t i o n s o f s h e a r l o a d q , w i t h f r e q u e n c y u ) 

E l e m e n t T y p e P l / 2 y D . 

T a b l e 8 



-"n 



175 



\ . 

P/ ~ / , 0 fa. /n,. P4. - / -O fh./'n.. 

Zo - o - 5 ^ 4 S /^.2/997 0 -5 O- S//4-S 

60 - 0 - 6 Z 0 4 2 '7- 3/099 o-s 0 - 6 Z 0 4 Z 

/CO - / oa3z6 Z<(- 6'!l7g4 0-5- / 0 0 3 2 6 

/4o -4<-- 22977 92-/J33^ 0-5^ 4-52977 

/4-g — S ' 4 6 6 3 o / 6 7 - 4 ^ 9 4 ^ 0 5 g-4663o 

/S-o -67-/7779 / Z 9 0 . 7 9 0 2 4 0 5 67-/7779 

/S5' /AZ6a2g —- 2/0 - / / 6 7 0-5" - / ^ 2 6 8 2 5 

1^0 <^/920/ - 9 3 - 8 5 ^ 7 6 o-S - 5 - / 9 2 0 / 

2 00 0-9865/ — / 3 - 3 6 S ^ 0 • 5 — 0-^3 6S / 

Z'Ao 0 ' & 6 2 9 0 o-S - 0 - 5 6 Z 9 0 

2 8 0 0'4og69 -2-2340/ o-S —o-4og69 

5*00 0-2263/ o-S —0-2263/ 

SA-O 0-ZZ036 /-g3oS7 0-5 - 0-2Z036 

Sgo o-2/7<33 2-00/23 o-S - 0 • 2 / 70 3 

62a 0-2/572 Z-/4433 o-S - 0 2/S7» 

6 60 0 2/6Z4 Z-%679a 0 • s - 0-2/6Z4 

0 • 2/6-^-0 2-29227 0-5- -0-2/640 

6 67 0-2/642 Z-ZS796 0 • s — o-2/64^ 

67o 0'Z/6f9 2 - 2 9 6 4 4 0 - 5 -0-2/659 

7 a 0 0-2/2/9 2-3776/ O-S - o-2/8/9 

7^0 0 22/So 2-47767 0 -s — 0-22/50 

14-0 0 0-65^79 /gg22 0 5 -0-65Z79 

o-76 4-Zg 5^-77207 0-5 -0-76 4 28 

I Zoo ^02799 7-A4ZS7 0 - S -/•02799 

/eso ^-39939 //- 0-5^ -/-g9939 

/ b Z O ?-ZgZ2S /g-7667/ 0-5" -3-22225 

g- / 4-g ZS- 37456 o-S -5V4g56 

34../g%z9 /77- ̂ 25-43 0 . 5 -34-/2829 

/bgo -39- /4SS2 -/99-56g25 o-S 39-/45S2 

lloo -7- 4-1743 -36-284// o-S • 7-4/743 

/ 7 4 L 0 - 2-S4/02 -/Z-7z7o6 0.5 Z-g4/0Z 

2S00 - 0 - /g66'5' 0 - 9 2 4 4 9 o-S O V 9 6 5 5 

2g4o -a- /9/39 0-92Z3/ o- 5 0-/9/39 

2 9 a a - D - /g432 J • OZOST. 0 • S 0-/S4-3Z 

296e -0•177$S J • 0 sSo / o-S 0-/7795 

2ooo -0-/7^0^ /.0762e 0-5 e- /7404 

3o5o — 0 • /694 9 /./oogg O-S 0 - /6949 

3oSS — 0 • )(a'^o io A/03Z4 o - S 0- /69o6 

3 /oo — 0 • lioSz 9 / . / Z S 7 4 0 -5" 0/65Z9 

3/60 - 0 • / 4 . 0 & 4 /• /4904 05- o-ii,<pG4-

U n i t v a r i a t i o n s o f b e n d i n g m o m e n t q w i t h f r e q u e n c y 

E l e m e n t T y p e P 1 / 2 P D . 

Table 9 . 



(if 

. i 

4-t-

!-

I . ## ' 

-3' 

-

h ,— 
i ̂  

I • 

r 

* 5 

i 

1 . 

:3 

•> 

iQ , 
..; i.t ... 

'^o.' 

"=0 

1 7 7 

II 
''C 

Xj 
s 

I ^ 

. ...s 

1 \ 

o 
o\ 
cu 

I? 

< 
.Y* 

5 

4j ' 

r r 

•V 

. I 

u . . . . i 

j d 

' *(/ y u9U/e^ 



178 

Pl = hO 

V mi': 

o-o/o 9 

o • oioS 
f 1̂' 
I'O 

0'Oi7S o-o\TS 

1 7 r j s r ? t 
!• O032. /•003Z 

/% = /'0 

o 04z,% 

i r 

O 04Z% 

Y 
I. oo3t> 

Y 
o-ans 

)• OOSit 

o-ons 

c 

%]h 41 

O'04-2 2 
4[ 

f-i i 
24*6478 

0'5 

Z4'647g 

^ / • o 

0'OJj6 
iPk ) £JII]['5 t 

O-o (56 

^ I— 
Of 

0'0\-js oons 

= ] r : 
/0032 /.oo3Z 

0'0#7J 
Ik 

oofoS 

I B 

V 
;'0036 

0-017S 

f+=^o 

ho 

V 

0-04-ZZ 

U n i t l o a d d i s t r i b u t i o n s f o r t Z ) = 1 0 0 . 0 r a d i a n s p e r s e c o n d . , 

a n p l i t u d e s o n l y . E l e m e n t T y p e P 1 / 2 F D . 

o o/og 

Pig. 30 



1T9 

Y 
o-aSZS 

o o8g9 

r 
l-Q 

o-ozoS O'OZOS 

i3r > i ) ( c 
* 936$ 

=. /-o 

o^^*3 
=]|. I g 

V 
o 064-3 

0-S9°i-

3 k 11 
O .g O'f 

^ — 
ir? u m u r 
/3'3L̂f 365/ 

o * Sp o4 
= ] r ^ 0 

0-5506 

I]^ |̂[ 

7 
O'olos 

o 064-3 

0-OZoS 

0.064-S 

= /.O 

l u i j s r j N [ 
o OfZZ 00/22 

O'S" OS 

oo:#5 o'ozos 
z m r-iEir'i ? 

0')g6S 0 9865 

o-o2oS & 

O Oggs 
=] r i 

/'O 

O 99̂ 6 

4 

o-ozoS 

^4=^0 

O 6883 

U n i t l o a d d i s t r i b u t i o n s f o r < 0 = = 2 0 0 . 0 r a d i a n s p e r s e c o n d , 

a m p l i t u d e s o n l y . S l e ^ e n t T y p e P 1 / 2 P D , 

Pin. 31. 



l8o 

ft-ei^uenc u 

LJ 
ratJia/) s/seco/^d 

App//€£^ /oad 
ft-ei^uenc u 

LJ 
ratJia/) s/seco/^d /?= /• o Jh. 'm . = /.o X6. /^ =• /• 0 &. jn. /%. — ! "O /y . In , 

I O O • O 

/'a /z '^ = o • 0///6 — / • 0 0 ^>5 - 0 • o/ysi, ~ 0 . 0 4 - Z 4 4 

I O O • O 

/ ' Z / Z v C / ) <), = O 0 / 0 9 7 — / . 0 0 3 6 0 - 0 • 0/756 - 0 • 0 4 - 2 . 2 6 

I O O • O 

0 • 00 0 J ̂  — 0 • 0 0 3 0 S 0 • 0 — £3 • 0 CiO/S 
I O O • O 

P-e.rc^f^i'a. 2-e 

•£/-r o/-. 
/ 7 o 0 3 / 6 0 • 0 

/ 5 " O • o 

/ z / :" /> % , = / 9 7 / 3 5 7 ^ 3 7 7 . Z 6 2 Z 7 — 0 0 / 8 7 7 - / 9 . 7 4 Z / 2 

/ 5 " O • o 

J . 4 . 7 6 7 4 1 - r 6 7 . Z 2 V Z 6 — 0 • o / S 7 ^ - 3 5 0 5 3 s 

/ 5 " O • o 
/ 6 ' Z 3 6 2 3 — 30 9 • 9Zlot — 0•00003 -«• /<c»" 23 ̂ o~I~7 / 5 " O • o 

•e^/-o/-. # 2 - 4 2 2 - 3 0 . / 6 7 2 2 4 

2oo-o 

,, 

/ ^ 3 / 2 / ^ D <( = - 0 0 9 7 6 7 o - 9 6 2 ^ 7 ' ^ — 0•02062 0 • o65%6 

2oo-o 

,, 

/ : ' / / z / r ^ g = - o . o g g M a-99 o&>3 — o- 02c>S3 0 • 0 6 4-S 9 

2oo-o 

,, 

Z ) / / 0 • 00/31 - o . o z 7 f 9 _ 0 • 0 0 0 0 9 - 0 • 0 0 / / 3 

2oo-o 

,, 

P^/^ceri /-A^^e 
— / • 4-9 - 2 9 0 • 4-36 — / 7 g 

P e r c e n t a g e e r r o r i n s h e a r l o a d q , w h e n u s i n < 

E l e m e n t T y p e P 1 / 2 P D . 

Table 10 . 



l8l 

/4 / y i / A x a ^ 

/^ = / 'O lb. /n , /̂  = / 0 / 6 -— f 'O !y.jt%, / ^ = : / -O /^ . / /;, 

/oo • o 

— I • oo 6 <oS" Z^-7o5^/g O' S l ob 665" 

/oo • o 

— / e o 3 z 6 2^ ' 6 ^ 7 ^ ^ O-S A e o 3 2 6 

/oo • o 

— o - 0 0 3 3 S 0 0 5 7 3 4 0 • 0 0 6 0 3 3 5 

/oo • o 

•Cri-oh 
0 ' 3 3 7 0 2 3 2 0 • 0 0 337 

/So • o 

- 3 7 7 2 6 2 2 7 7 2 / 8 - 6 9 4 - 2 0 0 5 - 377 2 6 Z Z 7 

/So • o 

- 4 ^ ^ / 7 7 7 ) / 2 9 o 7 9 o z ^ 0 6 7 - / 7 7 7 9 

/So • o 
"* 3 / 0 " 0 ^ ̂ ^2 ^ 9 / 9 - 3 0 4 2 6 0 • 0 3 / o - o & » 4 f 

/So • o 

2 Z ^ g z v 0 - o 2 2 4 

Z O O ' O 

0 ' 9 6 Z 7 f - / 2 g / 9 ; r 6 0 ^ - 0 9 6 2 7 ^ 

Z O O ' O 

O'St&Sl - / 3 ' 3 6 g / o 0 S — o*9̂ fc»S/ 

Z O O ' O 
- 0 - 0 2 2 7 7 - 0 g + 5 ^ 4 o- 0 0 - O Z 3 7 7 

Z O O ' O 

€/'/-0/-
— 2 4 7 — 4 - 2S o-o - Z 4 7 

Percentage error in ben&ing moment q when using 

Element Type P1/2FD. 

Table 11 



182 

nffrt Is-ef. 

Bi^-e./^ Va !u^ Co raci f s pSf second. 

nffrt Is-ef. 
//y ^ 

/./&/& Ad/ 

/, . 
/ 

P/'Sp /ucement 

A^-e /'I'od. 
/=3/-Cg 

nffrt Is-ef. 
//y ^ 

/./&/& Ad/ 

/, . 
/ 

P/'Sp /ucement 

A^-e /'I'od. 

/'S/' 3 /=-/> 
Bletvtenl- 'T'jpe. 

Z'/ 

1 /fjl g 5" - /9^ g l^4-- 4-

2 766-7 75-,̂-/ —725" 4- 7666 86o2 

3 /Z^o /Z26— /2S7 /ZSo -S /S3Z * 

4 /357 /3s4- -o — 

C o m p a r i s o n o f e i g e n v a l u e s f o r a s i n g l e s t o r e y p l a n e 

f r a m e . 

T a b l e 1 2 



1 8 3 

€ 

£i^€nvAlu^ radtans pef second. 

€ 
Hybi-i d 

Method. 

iLe.\//en ) 

t>ispfacrme»t 

Me/ftod. 

(3tjt~c.U '^3 

k Force A^etl^od. 

€ 
Hybi-i d 

Method. 

iLe.\//en ) 

t>ispfacrme»t 

Me/ftod. 

(3tjt~c.U '^3 

S/e/rte/tt T^pt 

Ps/sp-a 

S/e/yftnf- T^pi 

yC'/ /g/r/) 

/ /o3 -7 too G - II3-I too -2 /oo-t 

2 3/4--Z 307-5- 3/^-2 3o7 3 3oo • o 

3 7 5 4 • / 14-IS - 754-1 74-0-2 739-2 

4 loS/ I foo — //3 / loto-9 //90-0 

Comparison of eigenvalues for a two storey plane 

frame. 

Table 1 3 , 



184 

Cross sectional &re&. 0.0030G in*. 

Second of arsa. 0.0000G38S in*. 

Material density. 0.288 lb per in^ . 

Young's modulus. 30.0x10^ lb ^er i ^ . 

V U J. o^erties. 

ible l4 



185 

9 5 

9 5 

© 
\\\\ 

S i n g l e s t o r e y p l a n e f r a m e , 

Fi^.32 



186 

% W \ \ 

' w o s t o r e y D l & n e i r a m e 

Pig. 33. 



/oo 

187 

B e n t c a n t i l e v e r , 

o 
6 

f i g . 3 k . 



i l e m e n t p r o p e r t i e s f o r b e n t c a n t i l e T e r . 

Table 15 

188 

C r o s s s e c t i o n a l a r e a . 0 . 0 8 1 8 i n * . 

S e c o n d m o m e n t o f a r e a . 0 . 0 0 0 0 4 0 6 8 i n * . 

M a t e r i a l d e n s i t y . 0 . 2 8 3 l b p e r i n * . 

Y o u n g ' s m o d u l u s . 3 0 . 0 * 1 0 * l b p e r i n ' . 
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t \V * ^ IV J. * 

/A 
3 

0.008 lb per in . 

0 0.84 

s 9*10^ lb per i ^ . 

Bectanjular c&ntilever plate idealized as six finite 

elements. 

38 
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A 

Cu ulcus 14 

s 

Structural reaction s 2 

Total nu3ber of unc Tms 

Static redundancy 

12 

0 

Direct Stiff ss ^et hod 

Order of matrix to inver tecL 12 

(unconstrained degr e e s of 

freedom. Sane for s t atic 

and dynamic analys es .) 

bizi-oiv su^Dorted. oeam idealized as six finite elements, 

Fig. 39 . 
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Joint e -L 

Element boundary loads 2 

Structu r&l reactions 0 

i 0 u u. i i i ^^iber of unknowns 3 

Dyn&mic S 

Static redundancy 'o 

D irect Stiffness Method 

Order o f matrix to be inverted b 

(uncons trained degrees of 

freedo 3a^e for static 

na^ic analyses.) 

-me consistiae oi lour aie^ent: 

40 
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lar oea^ struc" u ei 

s^rucuura,. 
reactions. 

^i&ne fr&nes. 

joinus. 

structural 
re&ctions. 

'WO nsion&i rec-

Dl IC ULlie, 

o elements. 

12 structural 
reactions. 

Structural limitations for analyses within, the computer 

core storage. 

Table I9 . 
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APPENDIX 1. 

3IG3NVALU3 EVALUATION BY THO RANK FORCE UGTUOD USING A 

HIGHLY RGDUCdD STRUCTURAL DYNAMIC FLEXIBILITY MATRIX. 

bynopsis. 

In the rank force method for vibration analyses 

the eigenvalue evaluation requires the inversion of a 

large matrix, structural dynamic flexibility matrix. 

A method is proposed which only requires the inversion 

of a very small submatrix which is contained in the overall 

structural dynamic flexibility matrix and can be extracted 

immediately. Results are given which help to substantiate 

the method and which encourage further research. 
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in tne present ran^ lorce metno^ ±or 

vibration analyses the eigenvalues are evaluated by 

investigating the sign of the determinant value of the 

structural dynamic stiffness matrix. This is obtained by 

inverting the structural dynamic flexibility matrix for a, 

given frenuency. The order of these matrices is given by 

the number of generalized coordinates (applied loads or 

structural displacements) assumed at the unconstrained 

nodes for the constrained structure. In the rank force method 

no difficulty has been encountered in obtaining a symmetric 

structural dynamic flexibility matrix but on inverting 

this matrix nonsymmetry has resulted. However, the 

nonsymmetrical coefficients have been small compared with 

the large coefficients. The biggest impediment in this 

method of eigenvalue evaluation is the mere fact of having 

to invert large matrices. The following problem therefore 

presents itself ; 

How can the order of the overall structural 

dynamic flexibility matrix be reduced and 

still obtain the desired eigenvalues ? 
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by the "dunny lo&d." method as used for static structural 

analysis. If a structure is being statically analysed to 

obtain the structural displacements at various locations 

on the structure, in order to obtain displacements at the 

unloaded points dummy loads aust be applied. The dummy loads 

are then set to zero at the final st&ge of the analysis. 

Consider the structure shown in figure 4l . The actual 

applied load system consists of one load (P) but it is 

required to calculate the displacements Ag 

0 do this the applied load system has to be considered as 

p where pP* are 

dumny loads. Therefore, the structural displacements are 

naily given oy, 

A, 

A. 

P, 

fi 

P. 

This equation can now be partitioned to givS; 

A1, 1, 

A, 

^ 2 1 
1 
1 

I 1 
1 
1 
! 

Pi = P 

& 

P. 
Al.1.2 
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4/ 

•^12 /I 

fAw? 

f % ? ' 

T h e d u n n v 

.sniac o a a e d n o & e s i n ^ h e a i r e c t i o n 

o f t h e c o r r e s p o n d i n g a c t u a l a p p l i e d l o a d s , 

d i s p l a c e a e n t s a t u n l o a d e d n o d e s i n t h e d i r e c t i o n 

= v e c t o r o f a c t u a l g e n e r a l i z e d a p p l i e d l o a d s . 

= v e c t o r o f g e n e r a l i z e d d u m m y l o a d s . 

. o a d s a r e n o w s e t t o z e r o , , t h e r e f o r e , 

f A* 2 * j AI.1.4 

a n c L 

f A w 3 - [ & 7 A l . 1 . 5 

w h e r e f A u l i s n o w t h e v e c t o r o f a c t u a l d i s p l a c e m e n t s a t 

t h e u n l o a d e d n o d e s , i n t h e d i r e c t i o n o f t h e c o r r e s p o n d i n g 

d u m n y l o a d s , d u e t o t h e a c t u a l g e n e r a l i z e d a p p l i e d l o a d s . 

I n t h e e x a m p l e t h e s t r u c t u r a l f l e x i b i l i t y m a t r i x i s g i v e n 

b y , o r d e r 1 % 1 . T h e r e f o r e , f o r a g i v e n s t r u c t u r e 

a n d t h e s a m e n o d e s a r a n g e o f s t r u c t u r a l f l e x i b i l i t y 

m a t r i c e s c a n b e o b t a i n e d , e a c h w i t h i t s c o r r e s p o n d i n g 

a p p l i e d l o a d s y s t e m . B e c a u s e o f t h i s t h e a u t h o r i n t u i t i v e l y 

f e l t t h a t a r e d u c e d s t r u c t u r a l d y n a m i c f l e x i b i l i t y m a t r i x . 
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could be used for the eigenvalue evaluation. This now 

presents the problem of how to reduce the structural 

dynamic flexibility matrix. In two dimensional problems 

two generalized applied loads can excite all the modes. 

Therefore, the simplest way is to select a reduced matrix 

which corresponds to the second leading submatrix of the 

overall structural dynamic flexibility matrix. See figure ^2 

This procedure was applied to a simply supported beam 

idealized as six finite elements using Element Type P1/2PD. 

The beam properties are given in table 5 

Obviously, to compute the first eigenvalue for a simply 

supported beam it would not be idealized as six finite 

elements but this was chosen since, for example, in a two 

storey frame, figure 33 , the minimum idealization 

consists of six elements and therefore the total structure 

has to be considered even for the first eigenvalue. In 

the simply supported beam example the first five eigenvalues 

were evaluated using different order leading submatrices. 

These are compared with those obtained using the full 

structural dynamic flexibility matrix, order 12 * 12, and 

are given in table ^ . It can be seen that by investigating 

the first leading submatrix no eigenvalues were obtained 

but for all the remaining leading submatrices the same 

results were computed. This shows that two loads can 

excite all the modes and for the collinear beam problem 

these correspond to a vertical load and a moment as show^ 

in figure 43(&). This method presents a simple inversion 
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and notable time saving on the computer. The first three 

eigenvalues were obtained for a single storey plane frame 

using a 2 x 2 leading submatrix and Element Type P1/3FD. The 

frame dimensions and element properties are given in 

figure 32 and table Ik , The results are shown in 

table 21 and there is agreement with those obtained using 

the full matrix. The loads corresponding to the reduced 

matrix are shown in figure k3(b). T%e elements of the 

structural dynamic flexibility matrix are functions of 

the frequency but it is virtually impossible to obtain 

these analytical expressions since the structural dynamic 

flexibility matrix, full or reduced, is obtained for a 

given frequency. If the eigenvalue evaluation was the only 

consideration this reduced matrix approach would also save 

considerable computer storage. This is because the coefficient 

matrix corresponding to the applied loads in the general 

case can be reduced to two columns in the two dimensional 

problems. The system of joint equilibrium equations is 

given by, 

X S f i = { o ? 

A 

Two co]umns 
for eigenvalue 
evaluation only. 

In the general case the number of columns in matrix 

is given by. 
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(number of nodes)* (number of assumed coordinates per node-

possible applied loads or displacements) 

- (number of reactions) 

Summarizing, to evaluate the element 

boundary loads, structural reactions and structural 

displacements due to a general applied load system loads 

are assumed to act at all nodes. This results in an overall 

structural dynamic flexibility matrix. However, the 

eigenvalues can be evaluated using a 2 * 2 submatrix for 

two dimensional structures and a 3 % 3 for three dimensional 

structures (to be investigated). This reduced matrix has 

been extracted immediately from the upper left hand 

corner of the overall matrix. The applied loads corresponding 

to the 2 * 2 leading submatrix are the first two that appear 

in the applied load vector for the constrained structure. 

Although this submatrix has given the desired results it 

is very likely that in the two dimensional frame structures 

these two loads, figure 43 (b), would not excite all the 

modes. Perhaps a moment and load would be required. 

Therefore, for different two dimensional configurations 

combinations of two loads may have to be considered in 

order to evaluate all the eigenvalues. In fact a criteria 

may exist for the choice of loads such that the numerical 

work is an optimum. This is an area for future investigations. 
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Actual applied loading system, 

(a) 

Structural displacements requirea 

( b ) 

Dusav load a^^roach. 

fig. 4l . 

4 

Applied loading system required 

to obtained, desired displacements, 

(c) 
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Complete 

structural 

dynamic 

flexibility 

matrix, [^3 

3ra leading submatrix. 

2nd leading submatrix. 

1st leading submatrix. 

Matrix leading element. 

% X % 

loading submatricGG, 

Fig. 42 
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p, 

1: 

P. 

Colline&r beam, 

(a) 

P, ^ 

W W 

Plane frame. 

(b) 

Loads corresponding to the second leading submatrix. 

Pic. k3 . 
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6ix iinite elements, 

a'-aA /eai^isoh'y^a f-^/c es.. 

ei^enva lues. 

lA. 

cH/y^en t 

/ I v / / 
ma tf/K, 

/ Z x / Z 

/ X / 2 X Z 3X3 . 4 x 4 S * 5 

A & e / Z 

/ 4 9 — 2 2 g 

/3£> ̂ efo 
cros-sin^ 

' /J / g o /3 /So /3 

iooo -Sci iiOO •$& 
f 9 6 - 6 7 b 

no ̂ ero 
£ros, £ /'^S 

6 6 0 ^ 9 ^oa 'SS &00-99 &>oa • s 3 

4 7 

/ J 5 o - / ^ 3 o 

/3o j f r o 

crosii/^S 
/ 3^6 4 7 / J 5 6 .47 tSSh• 47 / , ; s 6 . 4 7 

Z f a z a z Z 4 3 o ' 4 V 

Z 4 Z g - 2 3 o 8 

/?« 
C/-ass//^g 

24-io. 4-/ 2 4 3 8 4./ 2 4 ^ 0 . 4 / Z 4 3 A . 4 f 

3 2 ^ 2 - 7 2 

J g * a - 3 9 3 o 
/7o ^ez-o 
cross.) 

a g g z 7 a 3 3 5 2 - 7 4 J g a ^ 7 9 3 6 5 2 7 a 

ligenvaiues of a simply supportea oeam using tne 

overall structural dynamic flexibility matrix and 

leaainn submatrices contained in this matrix. 

uble 20 
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£/ament- Type. P//SPD . 

Fu/>7A//-/X 

Z*Z 

7&6'6 366-2 

/Z5^^ 

eigenvalues oi a single storey plane irame 

using the overall structural dynamic flexibility 

a&trix and a leading submatrix of order 2*2. 

able 21 
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APP3KDIX 2. 

D3LAT3D IMPOSITION OP ALL THJ G3Nj%ALI23D STRUCTURAL 

R3ACTI0NS IN TH3 RANK PORC^ METHOD PGR VIBRATION ANALYSES. 

Synopsis. 

In this appendix & procedure is presented for 

the aelayed imposition of the generalized structural reactions 

in the rank force method for structural vibration analysis. 

This procedure enables unconstrained structural dynamic 

flexibility matrices to be generated which are ideal for 

the vibration analysis of large practical structural 

configurations using "block elements" . A block element 

being itself an assembly of discrete elements, or in other 

words a substructure. 
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Introduction. 

In the displacement approach the structural 

constraints need not be imposed until the latter stages 

of both the static and vibration formulations. This means, 

for a given structural configuration, that the unconstrained 

structural stiffness matrix (static or dynamic) caA be 

generated and stored and then various constraint patterns 

considered without regeneration of the structural stiffness 

matrix for each case. This is also ideal for the analysis 

of large practical structures by the method of substructures 

since the unconstrained structural stiffness matrix for each 

substructure can be generated separately. Each substructure 

then becomes an element ("block element") with its own 

stiffness matrix. These block elements are then assembled 

in the normal manner (Direct Stiffness Method) to give 

the overall unconstrained structural stiffness matrix 

(static or dynamic). At this stage the actual constraints 

are imposed. 

In the static rank force method at least the rigid 

body reactions have to be considered immediately in the 

system of equilibrium equations otherwise no solution can be 

obtained. In fact in reference 81 all reactions are considered 

immediately. If the system of equilibrium equations were 

assembled without at least the rigid body reactions and then 

investigated using the rank technique it would be found that 

there was no solution to this system of equations. In other 

words t&e rank of the coefficient matrix and the augmented 

matrix would be unequal. Because of this the analysis of large 
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atractures usizj block elements oecoz^s involved than 

uhe direct stiffness method. 

In the present dynamic r&nk force method all 

the structural reactions have been considered immediately 

in %he generation of the joint equilibrium equations as 

influenced by the static formulation in reference 31. 

However, it is now realized that because of inertia loading 

a delayed imposition of all the generalized discrete 

structural reactions can be made for vibration analyses. 

This is nov consistent with the dynamic stiffness method. 

The rank force method now becomes ideal for the vibration 

analysis of large structures using block elements since' 

unconstrained dynamic flexibility matrices can now be adopted. 
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i2.1 Delayed imposition. 

Initially when generating the 

system of joint equilibrium equations all applied loads 

are assumed to act at the nodal points, no reactions are 

considered. The next step is then to consider the structural 

reactions and to isolate the corresponding applied loads. 

The unknowns are now generalized element boundary loaas 

and structural reactions. However, if this latter step is 

omitted and the rank force procedure continued an 

unconstrained solution will result. 

The generalized element boundary loads (unknowns) will be 

given by, 

fa?*! = [ /xj A2.1.1 

and the generalized structural displacements by, 

f i ̂ X i ~ [ ~1 I I A2.1.2 

In equations A2.1.1 and A2.1.2 the bar is used to denote 

the unconstrained structure. 

The unconstrained structural dynamic flexibility matrix, 

can now be partitioned such that the applied loads 

corresponding to reactions are separated from the possible 

anvlied loads. Therefore, 

4, I 
1 

t 

A 

4 i 
_ ! 

4% 

A2.1.3 
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Assuming that the displacements corresponding to the 

structural reactions, , are zero equation Ag.l.S can 

be expanded to give the equations, 

ffA* 3 = I ] ff/x f + r J f f A2.1.4 

and 

= [ ^ , ] f J + I 1 7 A 2 1 5 

Therefore, from equation A2.1.5, the structural reactions 

are given by, 

f 6^ - r .̂ 21 ] 'f A / ] f i A2.1.G 

where, as for the previous formulation. Chapter 2, 

[ Agx] = - '[ ̂ z,] a.2.1.7 

Substituting for the structural reactions into equation 

A2.1.4 gives. 

where, as for the previous formulation, the constrained 

structural dynamic flexibility matrix is given by, 

I-3^]= ( [ ] - I '[-3̂ %,] 
A2,1.9 

Equation A2,1.2 c^a now be partitioned to give. 

oir 

/ f = I ; A,z ] f ^ 

A2.1.10 



Substituting for tne structural reactions gives tne 

generalized element boundary loads for the constrained 

structure, that is. 

A2.1.11 

Therefore, as for the previous formulation. 

A2.1.12 

This procedure has been applied to a 

collinear beam structure consisting of two finite elements 

and using Element Type P1/2PD. These results were compared 

with those obtained by applying the structural reactions 

immediately and agreement was established. 

216 
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leTeloy^ent, ?his procedure adopts the s-system as usea 

'or Pl/o^D (figure ^ ) but the equilibrium 

»ru&tioas Till not be based on total resultants ( 8 equations) 

)u% on boun&arv resultants (S 

;hovn in figure 20 are given bv. 

& ^^4 * 2 ^ Z + 9 = O 

a 4 

— ^^+5 — /̂3fg = 0 

^ '*' 2 "^ot-l-io z ^o(-t-li " ®̂-i>-i4, — a O 

^ '^Dt+7. ~ '̂/S + 7 "" lo 

.X lorr ' J 
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<=0. j T T 

1 : ' T 

i ! T 

1 4 T 1 

s 
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W i 

c. i T 

N 
4. 1 

+ 
T 

< 1 1 T « 1 

% 
- I N ~.\(M 

0 
5 

— J N - I t s 

i - I N 

i 
vi 
4 

% 

V* 4- - 0 

1 

m -a 

% 

t 
<J 

- J ) 
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The procedure is then the same as for Element Type P1/5PD, 

This approach has so far not been investigated with an 

example but a listing of the subroutine is given in 

table 22 . See Appendix*, Subroutine PMD50 (Element 

Type P1/5FD) for argument description and other comments. 
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SUBROUTINE FM050(A,B,T,EM,XMUM,XNUM,OMEGA,FMD) 
C JOHN ROBINSON I.S.V.R. 
C RECTANGULAR PLATE ELEMENT 
C ELEMENT TYPE P1/6FD 
C ELEMENT DYNAMIC FLEXIBILITY MATRIX 

DIMENSION D(12,24),ID(12),XM(12),PAR(4,12),PHI(4,12),IR(12) 
DIMENSION OELQS(i2,12 ) .OELQST(12,1 2>,FMD(i2,12),G(12.12) 
EQUIVALENCE (DELQS(1.1) ,D(I,D ) ,(DELOST(I,1),0(1,13)) 

D05 1*1,12 
DOS J=l,24 

5 D(I,J)*0.0 
D(1,5),D(2.1),D(7,7).D(8.3)=A 
D(3.8).D(4.4).D(5,6).D(6,2)"B 
D(L,9),0(1.10),0(3,9).0(3,12),0(5,10),0(5.11),0(7,11).0(7,12)=0.5 
0(1,13),0(ii16).D(2,14),0{2,I 7),0{3,13),0(3,2 2),D{4,15).D(4,24), 
lD(5,16),D(5,l9).DI6;18),D(6,21).D(7,19),D(7,22),D(e.20).D(8,23)" 
2-1.0 
CALL RANTEC(0.8.12.24,12,12,24,ID,XM.IR) 
CALL PARDER(D,IR,8,12.12,24,NN) 
DOlO Mai,4 
0010 Nal,12 

10 PAR(M,N)=D(8+M,N) 
CALL FMD40(A.B,T,EM.XMUM,XNUM,0MEGA,FMD) 
CALL MATMULT(PAR.FMD.PHI.4.12,12,4,12,12) 
D012 M*l,4 
D012 Nml.l2 

12 D(6+M.N)=PHI(M.N) 
CALL RANTEC(D,12,12.24.12.12.24,10,XM,IR) 
CALL REAR(D,12,24,12.24,XCH) 

0014 1*1,12 
0014 J»13,24 

14 OELQS(I,J-12)*-D(I.J) 
0016 1*1,12 • 
0016 J«L,12 

16 DELQST(I,J >=DELQS<J.I) 
CALL MATMULT(FMO,DELQS,G,12,12,L2,12,12,12) 
CALL MATMULT(DEL0ST,G,FMD,i2,12,12,12,12,12) 
RETURN 
END 

A . S . A . Fortran listing of subroutine FMD50, Element 

Type P1/6FD. 

Table 22 
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APPENDIX 4. 

A COMPUTERIZED STRUCTURAL ANALYSIS RESEARCH SYSTEM TO 

STUDY THE RANK FORCE METHOD. 

Synopsis. 

In this appendix a computerized structural research 

system to study the rank force method for vibration analysis 

is described in detail. The basic concept of any 

computerized system is to write the programme as a series 

of small programmes (subroutines) which are connected 

together by a master programme. Each subroutine carries 

out a specific step in the analysis. All subroutines used 

in this research system are described and were necessary 

examples of their usage and capabilities are given. Some 

subroutines are only applicable to a computerized system 

which adopts the rank force method, these are referred to 

as special subroutines. However, some are applicable for 

all systems, even nonstructural, these are referred to as 

standard subroutines. 

Master programmes are then described 

for the vibration analysis of collidear beam structures, 

general plane frames and two dimensional plate structures. 

Many of the subroutines are commom to all of the master 

programmes. In order to analyse a structure using the 

master programmes certain input data must be prepared by 

the user and in a certain way. Input data preparation is 

described for each master programme and typical examples are 



222 

given. The size of structural problem which can be 

analysed by the various programmes has been limited by 

the computer core storage (I.C.T. 1900 Computer), All 

structures are analysed completely in core but this is a 

self imposed restriction. Within the computer programme 

system efficient use is made of the EQUIVALENCE statement 

and temporary transfer of parts of matrices, these are 

described. 
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Introduction, 

In any computerized structural analysis 

system the basic concept is to break down the computer 

programme into a series of smaller programmes called 

subroutines. These subroutines are connected together 

to form one system by a master programme. Each subroutine 

carries out a specific step in the analysis, borne subroutines 

are common to one system only, these will be referred to 

as special subroutines, others are common to all structural 

systems and even nonstructural work, these will be referred 

to as standard subroutines. Since subroutines are 

continually being improved this chain approach to writing 

a computer programme enables a subroutine to be replaced 

by an improved version with very little, if any, alterations 

to the overall system. 

The computerized system written to study 

the rank force method is by no means optimized and the 

numerical methods and programme formulation are not 

necessarily the best possible. It is also possible that 

errors exist in the system which have not been brought 

to light by the examples used for checkout purposes. 

The author also realizes that numerical difficulties 

could arise when analysing a structure in which a wide 

range of element properties existed and when analysing 

larger configurations than those investigated in this work. 
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H o w e v e r , t h e a i m o f t h i s r e s e a r c h w o r k i s t o a s s e s s t h e 

r a n k f o r c e m e t h o d f o r v i b r a t i o n a n a l y s i s t o s e e i f i t o f f e r s 

a n y t h i n g o v e r t h e p o p u l a r d i s p l a c e m e n t a p p r o a c h . I t w a s f e l t 

t h a t t h e a s s e s s m e n t c o u l d b e m a d e o n t h e b a s i s o f s i m p l e 

s t r u c t u r a l c o n f i g u r a t i o n s f o r w h i c h r e s u l t s e x i s t e d i n t h e 

p u b l i s h e d l i t e r a t u r e w h i c h w e r e o b t a i n e d u s i n g t h e 

d i s p l a c e m e n t a p p r o a c h . T h e m a s t e r p r o g r a m m e s a n d s u b r o u t i n e s 

d e v e l o p e d t o s t u d y t h e r a n k f o r c e m e t h o d h a v e b e e n w r i t t e n 

i n A . S . A . F o r t r a n f o r a n I . C . T . 1 9 0 0 C o m p u t e r . T h e s e w i l l 

n o w b e l i s t e d a n d t h e n d e s c r i b e d i n d i v i d u a l l y . 

S u b r o u t i n e s . 

1. R A N T E C . 

2. R E A R . 

3. M A T I N V . . 

4. M A T M U L T . 

5. P A R D E E . 

6. P M D I O E l e m e n t T y p e P 1 / 2 F D . 

7. F M D I O T y p e P 2 / 2 F D . 

8 . P M D I O E l e m e n t T y p e P 8 / 2 F D . 

9. F M D 3 0 . . . . . . E l e m e n t T y p e P 1 / 8 F D . 

1 0 . P M D 8 0 E l e m e n t T y p e P 8 / 8 F D . 

1 1 . F M D 4 0 . E l e m e n t T y p e P 1 / 4 F D . 

1 2 . V A R D 3 T . 

1 8 . M O D E . 

1 4 . F O R C E S . 

1 5 . F O R C E ? . 

1 6 . F O R C a p . 

IT. F M D 5 0 1 T y p e P 1 / 5 F D . 
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Function; 

1. KINT, 

M a s t e r P r o g r a m m e s . 

1 . P O R C E - B S A M . 

2 . F O R C E - P L A N E F R A M E . 

8 . F O R C E - R E C T A N G U L A R P L A T E . 
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A 4 . 1 S u b r o u t i n e s . 

1. Subroutine RANT8C. 

T h i s s u b r o u t i n e h a s b e e n d e s c r i b e d 

in Chapter 1. 

2 . S u b r o u t i n e R S A R . 

2 . 1 D e s c r i p t i o n o f s u b r o u t i n e . 

A f t e r apply ing subrout ine RANT13C 

to a system of l i n e a r e q u a t i o n s , c o n t a i n i n g the same 

n u m b e r o f i n d e p e n d e n t e q u a t i o n s a s unknowns, t h e c o e f f i c i e n t 

m a t r i x w i l l , i n g e n e r a l , b e a p e r m u t e d u n i t m a t r i x . 

S u b r o u t i n e R S A R r e a r r a n g e s t h e f i n a l a u g m e n t e d m a t r i x 

t o g i v e a u n i t c o e f f i c i e n t m a t r i x . T h e r e q u i r e d s o l u t i o n 

o f t h e s y s t e m o f e q u a t i o n s i s t h e n i m m e d i a t e l y a v a i l a b l e . 

2 . 2 S u b r o u t i n e s c a l l e d b y R S A R . 

This subroutine calls no other subroutines 

2 . 3 S u b r o u t i n e l i s t i n g . 

T h e l i s t i n g o f s u b r o u t i n e R I S A R i s 

g i v e n i n t a b l e 2 3 . 

2 . 4 D e s c r i p t i o n o f s u b r o u t i n e a r g u m e n t s . 

The f i r s t card of any subrout ine 

c o n t a i n s the word SUBROUTINE, then the subrout ine name 

f o l l o w e d by i t s arguments, g iven i n p a r e n t h e s e s . That i s , 

f o r subrout ine REAR, 

SUBROUTINE REAR(XKD,N9,N7,N9MAX,N7MAX,XCH) 

where, 

XKD = r e c t a n g u l a r ( o r square) array. 

N 9 = n u m b e r o f r o w s i n X K D . 

N 7 = t o t a l n u m b e r o f c o l u m n s i n X K D . 
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NOMAX ) 
I c o r r e s p o n d i n g m a x i m u m v a l u e s . 

N 7 M A X J 

X C n = i n t e r c h a n g e c o n s t a n t , t h a t i s , 

N O I N T - n u m b e r o f r o w i n t e r c h a n g e s t o g i v e a u n i t 

c o e f f i c i e n t m a t r i x . T h i s c a n b e u s e d t o e v a l u a t e 

a d e t e r m i n a n t . 

S e e f i g u r e 4 4 ( a ) f o r f u r t h e r c l a r i f i c a t i o n . 

2 . 5 E x a m p l e o f u s a g e . 

A f t e r a p p l y i n g R A N T 3 C t o a s y s t e m 

o f l i n e a r e q u a t i o n s t h e r e s u l t i n g s y s t e m c a n b e w r i t t e n 

a s , 

CA ]f*7 + - lo] 

w h e r e , 

v e c t o r o f u n k n o w n s ( i n t e r n a l l o a d s a n d 

s t r u c t u r a l r e a c t i o n s a s a n e x a m p l e ) . 

= v e c t o r o f k n o w n s ( a p p l i e d l o a d s ) . 

] = p e r m u t e d u n i t m a t r i x ( s q u a r e ) . 

[ 6 ] = m a t r i x c o r r e s p o n d i n g t o k n o w n s ( r e c t a n g u l a r 

o r s q u a r e ) . 

L e t ; 

1 . a c t u a l n u m b e r o f u n k n o w n s = 1 0 0 

2 . a c t u a l n u m b e r o f k n o w n s = 2 0 

8 . m a x i m u m p o s s i b l e n u m b e r o f u n k n o w n s l i k e l y 

t o b e c o n s i d e r e d = 1 0 0 0 

4 . m a x i m u m n u m b e r o f k n o w n s l i k e l y t o b e c o n s i d e r e d = 2 0 0 
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a n d . 

a u g m e n t e d m a t r i x 

T h e r e f o r e , i n t h i s c a s e , t h e c & l l s t a t e m e n t t o a p p l y 

s u b r o u t i n e R S A R w o u l d b e , 

C A L L R 3 A R ( C , 1 0 0 , 1 2 0 , 1 0 0 0 ^ 1 2 0 0 , K C H ) 

S e e f i g u r e ( b ) f o r f u r t h e r c l a r i f i c a t i o n . 

A s a f u r t h e r e x a m p l e , i f , 

fA ] = o / o 

o o / 

t o o 

txnd [6J= 3 2 / 

1 o 4. 

2 ; 2 

t h e n , 

= 0 1 
0 1 3 2 / 

0 0 ; 1 ; 0 4 
/ 0 0 i 2 1 z 

A f t e r a p p l y i n g R E A R 7 

f c ] / 0 
1 0 i 
1 
•2 ) 2 

0 / 0 1 3 2 / 

0 0 
' 1 

/ 0 "4" 

T h e r e f o r e , e x p a n d i n g i n t o t 

/ 0 0 + 2 / 2 

0 / 0 3 2 / 

0 0 1 1 0 4 

= [oi 

i n d t h e s o l u t i o n f o r i s , 

z / 2 

3 Z / 

/ o 
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S U B R O U T I N E R E A R ( X K D , N 9 , N 7 , N 9 W A X , N 7 M A X , X C H ) 

C J O H N R O B I N S O N , I . S . V . R . 

C R E A R R A N G I N G R O W S T O G I V E A U N I T C O E F F I C I E N T M A T R I X 

D I M E N S I O N X K D ( N 9 M A X , N 7 M A X ) 

N O I N T = 0 

D 0 5 0 J = 1 , N 9 

D 0 4 2 1 = 1 , N 9 

I F ( X K D ( I , J 1 ) 4 4 , 4 2 , 4 4 

4 4 1 = 1 

G O T O 4 5 

4 2 C O N T I N U E 

4 5 I F ( i - J > 4 6 , 5 0 , 4 6 

4 6 D 0 4 7 L A = 1 , N 9 

i F ( X K D ( J , L A ) ) 4 8 , 4 7 , 4 8 

48 LACLA 
G O T O 4 9 

4 7 C O N T I N U E 

4 9 X K D ( J , J ) = X K U ( I , J ) 

X K D ( I , J ) = 0 , 0 

X K D ( I , L A ) = X K D ( J , L A ) 

X K D ( J , L A ) = U . O 

0 0 5 3 L A = N 9 + 1 , N 7 

X = X K D ( J , L A ) 

X K D ( J , L A ) = X K D ( I , L A ) 

5 3 X K D ( I , L A ) = X 

C N U M B E R O F I N T E R C H A N G E S I F D I F F E R E N T F R O M I N I T I A L V A L U E 

N 0 I N T = N 0 I N T + 1 

5 0 C O N T I N U E 

I F ( N 0 I N T ) 5 6 , 5 5 , 5 6 

5 5 X C H = 1 , 0 

G O T O 7 0 

5 6 X C H = ( - 1 , 0 ) * * N 0 I N T 

7 0 C O N T I N U E 

R E T U R N 

E N D 

A ^ S . A . F o r t r a n l i s t i n g o f s u b r o u t i n e E 3 A R . 

T a b l e 2 3 . 
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(nf^MAx) 

A/9 = /GO 

A/g/VAX = looo 

Subma h^ix 

Cof'/'esponol i tb 

tUe unk/>ouns. 

Suhrt^O-thLK 

coff-espondin^ to 

the hrtoi^ns. 

HS C N3MAX ) 

N 7 (N7MAX^ 

(a) 

[ A ] 

N& = loo (NSMAX^JOOOS 

[B] 

yV7 = /2o C /V7A*dX = /Zoo) 

230 

Au^t^^ei^ted 

tt-i X 

- XKD 

A r g u m e n t d e f i n i t i o n s f o r s u b r o u t i n e B J S A R . 

P i g . 
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8. Subroutine MATINV. 

8.1 Descrintion of subroutine. 

This subroutine forms an 

augmented mabrix using the matrix to be inverted and 

a unit matrix of the same order. The- Jordan elimination 

procedure is applied to this assembled matrix and 

after some rearranging the inverse of the original 

matrix is found in the submatrix corresponding to the 

original unit matrix. The matrix to be inverted is not 

required to have any special properties other than being 

real. The inversion procedure used in this subroutine 

was adopted because of the existence of RANTEC. A 

disadvantage of this procedure is that the computer 

storage required to invert a matrix is twice that required 

by the matrix to be inverted. 

3.2 Subroutines called by MATINV. 

This subroutine calls 

subroutines RANT3C and REAR. See figure 46. 

3.8 Subroutine listing. 

i'he listing of subroutine MATINV is 

given in table 24. 

8.4 Description of subroutine arguments. 

The first card of this subroutine is, 

SUBROUTING MATINV(A,B»C,N9,N9MAX,N8MAX,N7MAX,IDEP,XMAX,I0) 

where, 

A = matrix to be inverted. 

B = inverse of matrix A. 
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C = augmented matrix formed, within the subroutine, 

by matrix A and a unit matrix of the same 

order as A. 

N9 = actual order of matrix A. 

N9MAX = maximum possible order of matrix A likely 

to be considered. 

N8MAX = N9MAX, this is used since it is passed oTer 

by RANTSC. 

N7MAX = 2 X N9MAX, maximum number of columns likely to 

be considered in the augmented matrix. 

IDEP = vector of dependent equations(row numbers). 

XMAX = normvector, vector of normalized row elements. 

This can be used to evaluate a determinant. 

IQ = vector of redundant load numbers. 

If the matrix has no inverse a statement NO SOLUTION is 

printed out. Vectors XMAX,ID#P, and IQ are formed within the 

subroutine, see RANTGC. See also figure ^5^0for further 

clarification. 

3.5 Example of usage. 

To invert a matrix [P] of order 

200* 200 and maximum possible order of 2000 * 2000 would 

require the call statement, 

CALL MATINV(P,K,D,200,2000,2000,4000,MDEP,WMAX,LQ) 

where, 

inverse of [P] = [P3 

[D]- augmented matrix [P,U] , formed within the 

subroutine. Note [U] is a unit matrix. 

See figure ^5 (b) for further clarification. 



2 3 3 

To demonstrate the procedure adopted for matrix inversion 

consider the following example. 

Let, 

[F] = 4- 3 Z 

3 2 I 

2 I I 

Therefore, the original augmented matrix [D] would be, 

[D] = 4 3 2 

a 2 I 

2 / I 

' / 

Matrix to 

be inverted. 

/ o o 

o / o 

O o I 

\ 
Unit 

matrix. 

Applying RANTSC to fD] would give, 

[D] I o o I -/ / I 

O O , j , -2 / 

o / o I y o -z 

Subroutine R3AR is now applied to give. 

[D] = I o o 

o / o 

-I / I 

/ O -2 

° o I \ I -2 1 

Unit Inverse of [P]. 

matrix. 

Therefore, the inverse of matrix [F] is given by. 

-I [K]= [Fj = -I ; I 

I O -2 

I -Z I 
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In this work on the r&nk force method the evaluation 

of a determinant, in particular the structural dynamic 

stiffness matrix for a given frequency, is carried out 

using subroutine VARDET (described later)^ However, it 

will now be shown how subroutines RANtEC and R8AR can 

be used for determinant evaluation. 

At each stage of the elimination 

procedure, when using RANT2C, a normvector is being 

generated, XMAX(see RANTEC), when applying subroutine 

REAR an interchange constant, XCH(see REAR), is being 

computed. The determinant value is given by, 

det [A] = XCH* (continued product of the normvector terms) 

= XCHx(XMAX(l)* XMAX(2)* xXMAX(N9)) 

To demonstrate the procedure consider the last example. 

[F] 4 3 2 

3 2 / 

2 / / 

RANTEC is now applied to matrix [P] . The procedure of 

forming the normvector is best shown in a step by step 

presentation as follows. 



2 3 5 

[ F ] fXMAX^ 

3 2 

3 1 

\ 

2 1 

1 

/ 

i 

T 

3 
4 

i. 
z 

O 4 @ 
O 2 

1 

\ 
o 

1 

T 

1 

2 o 

o 
2 i 

o 
V3/ 

i 

o 

i o o 

o o 1 

o i o 

4 

z 
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Applying K2AR to give a unit matrix would require 

rows two and three to be interchanged. Therefore, 

hence 

Therefore, 

NOINT = 1 

XCH =(-!)'= -1 

[Pj: f 3 2 

3 Z / 

2 / ' 

4 % ) 

Note 

1. if a zero appeared in the normvector then the 

determinant would be zero and in fact the matrix 

would be singular. The degree of degeneracy 

would be given by the numoer of zeros. The location 

of the dependent rows (or equations) is given 

by vector ID2P. 

(—1) * 1 
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S U B R O U T I N E M A T I N V ( A . B . C , N 9 , N 9 M A X , N 8 M A X , N 7 M A X . I D E P , X M A y . ? Q ) 

C J O H N R O S I N S O N . I . S . V . R . 

C M A T R I X I N V E R S I O N . 

D I M E N S I O N A ( N 9 M A X . N 9 M A X ) . B ( N 9 M A X r N 9 M A X ) , C ( N 9 M A X , N 7 M A X ) 

D I M E N S I O N I D E P ( N 9 M A X ) . X M A X ( N 9 M A X ) . I Q ( N 8 M A X ) 

N 7 « 2 * N 9 

0 0 8 1 * 1 . N 9 

0 0 9 J a l . N Q 

C ( I . J ) " A ( I . J ) 

C ( I . J + N 9 ) = 0 . 0 

5 C O N T I N U E 

C ( I . I + N 9 ) « 1 . 0 

8 C O N T I N U E 

C A L L P A N T E C ( C . N 9 . N 9 . N 7 . N 9 M A X , N a M A X . N 7 M A X . X D E P . X M A X . I Q ) 

C A L L R E A R ( C . N 9 . N 7 . N 9 M A X . N 7 M A X ; X C H ) 

0 0 9 1 * 1 , N 9 

0 0 9 J " N 9 + 1 . N 7 

9 B ( I , J , N 9 ) " C ( I . J ) 

R E T U R N 

E N D 

A.5.A, Fortran listing of subroutine MATINV. 

Table 24 . 
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N9 

Ohi^it^ctl rrtat^ix 

h-e in\jefted 4 

U/)i t nnathix a-fter 

/̂)/V7SC 

/VgM/*X = /V9MAX 

O/^ijlntx! w^ib 

/y?a tfix _ 

Xnycts€ <»/ 

denoted 6y B, a-ftct 

afifihjing RANTBC and 

#54*. 

rD].[A,u] 

[D]=DU,8] 

NVMA:^ - 2 * nsmax 

(a.) 

= 2.00 

N9MAX = Zooo 

[F] 

i 
[U] 

[u] 

I [Kj-CF]" 

NSMA t — Zoo G 

' [ D ] = [ F , u ] 

.[D].[U,K] 

yV7AV/tX 40OO 

(W 

A r g u m e n t d e f i n i t i o n s f o r s u b r o u t i n e M A T I N V . 

P i g . 4 5 . 



2 3 9 

T h i s s u b r o u t i n e c a l l s 

S u b r o u t i n e 

R G A R 

S u b r o u t i n e 

R A N T 2 C . 

S u b r o u t i n e 

S u b r o u t i n e s c a l l e d b y s u b r o u t i n e M A T I N V . 

- g . 
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4 . S u b r o u t i n e M A T M U L T . 

4 . 1 D e s c r i p t i o n o f s u b r o u t i n e . 

T h i s s u b r o u t i n e s m u l t i p l i e s 

t w o m a t r i c e s t o g e t h e r . 

4.2 Subroutines called by MATMULT. 

T h i s s u b r o u t i n e c a l l s n o 

o t h e r s u b r o u t i n e s . 

4 . 8 S u b r o u t i n e l i s t i n g . 

T h e l i s t i n g o f s u b r o u t i n e M A T M U L T i s 

g i v e n i n t a b l e 2 5 . 

4 . 4 D e s c r i p t i o n o f s u b r o u t i n e a r g u m e n t s . 

T h e f i r s t c a r d o f t h i s s u b r o u t i n e i s , 

SUBROUTINE MATMULT(A,B,C,NI,NJ,NK,NIWAX,NJMAX,NKMAX) 

w h e r e , 

A = m a t r i x t o b e p o s t m u l t i p l i e d b y m a t r i x B . 

C = c o n t i n u e d m a t r i x p r o d u c t , A * B . 

N I = n u m b e r o f r o w s i n m a t r i c e s C a n d A . 

N J = n u m b e r o f c o l u m n s i n m a t r i c e s C a n d B . 

N K = n u m b e r o f c o l u m n s i n m a t r i x A a n d n u m b e r o f 

r o w s i n m a t r i x B . 

N I M A X 

N J M A X > c o r r e s p o n d i n g m a x i m u m v a l u e s , m a x i m u m d i m e n s i o n s . 

N K M A X . 

S e e f i g u r e 4 7 ( a ) f o r f u r t h e r c l a r i f i c a t i o n . 

4 . 5 E x a m p l e o f u s a g e . 

T o e v a l u a t e t h e m a t r i x p r o d u c t , 
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[ P D A ] = [ P M D ] [ D 3 L A ] 

where, 

[PMD]' is of order 6% G with maximum dimensions, 

that is, maximum possible order likely to 

be considered, 6% 6. 

and 

[D3LA] is of order 6 * 9 with maximum dimensions 6 %33. 

the required call statement would be, 

C A L L M A T M U L T ( P M D r D 2 L A , P D A , 6 , 9 , 6 , 6 , 3 3 , 6 ) 

See figure 4T(b) for further clarification. 
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S U B R O U T I N E M A T M U L T ( A , B , C , N I , N J . N K , N I M A X , N J M A X , N K M A X ) 

c J O H N R O B I N S O N . I . S . V . R , 

c M A T R I X M U L T I P L I C A T I O N C ( I , J ) = A ( I , 

D I M E N S I O N A ( N I M A X , N K M A X ) , 8 ( N K M A X , N J M A X ) , C ( N I M A X , N U M A X ) 

D 0 5 1 = 1 , N I 

D O S J = 1 , N J 

C ( I , J ) = 0 . 0 

D 0 5 K = 1 , N K 

5 C ( I , J ) = C ( I , J ) + A ( I , K ) * B ( K , J ) 

R E T U R N 

E N D 

A.S.A. Fortran listing of subroutine MATMULT. 

T a b l e 2 5 . 
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NX 
(NIMAX) 

(N^max) A/K ( /VKWAX) 

NI Afz.x) 

NT 

B{Kp^ 
NK 

(a.) 

NI = 6 

NIMAX 
— 6 

NJ = 9 (njmAK°33)_ 

[FDA] 

NK56 
ysjKf̂AX » 6 

NI«k 
[FMCQ 

NJ= 9 

[DELA] NK=6 

cw 

A r g u m e n t d e f i n i t i o n s f o r s u b r o u t i n e M A T l v K J L T , 

P i g . 4 7 , 



5. Subroutine PARD3%. 

5.1 Description of subroutine. 

This subroutine generates 

the matrix of partial derivatives, , which 

is required to generate the energy equations, 

= [O i 2.1.8 

This matrix is assembled from the system of equations 

given by, 

i 1 Xe J 1 I I •*• [ Ky J I iPx j = [ o j 2,1.2 

whose augmented matrix is given by, 

[<L : 2^ , Yx] 

The final augmented matrix for a unique solution of 

the unknowns, generalized element boundary loads and 

generalized structural reactions, is obtained from 

equation 2.1.10 and is given by. 

[ON] 

O 

w n e r e . 

14)] = [*ak][F4] 

However, before generating submatrix IdP] this augmented 

matrix appears in the computer storage as. 

[OM] = 

o 
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w h i c h i s i n p u t t o s u b r o u t i n e P A R D E E f o r g e n e r a t i o n o f 

t h e m a t r i x o f p a r t i a l d e r i v a t i v e s . T h e m a t r i x 

i s a s s e m b l e d i m m e d i a t e l y i n t o t h e s t o r a g e s p a c e a l l o w e d 

f o r s u b m a t r i x f v P ] a n d t h e n u l l s u b m a t r i x d i r e c t l y 

b e l o w m a t r i x f i b ] , t h a t i s , 

£om3 = 

ci^h. i e"k 

T e m p o r a r y s t o r a g e . 

M a t r i x w i l l f i n a l l y b e r e p l a c e d b y m a t r i x . 

C a r r y i n g o u t t h i s m e t h o d o f t e m p o r a r y s t o r a g e s a v e s 

c o n s i d e r a b l e s t o r a g e s p a c e . S u b r o u t i n e P A R D 3 R i s o n l y 

c a l l e d w h e n t h e s y s t e m o f j o i n t e q u i l i b r i u m e q u a t i o n s h a s 

a n i n f i n i t e n u m b e r o f s o l u t i o n s , t h a t i s , d y n a m i c r e d u n d a n c y 

e x i s t s . I n o t h e r w o r d s , a d d i t i o n a l i n d e p e n d e n t l i n e a r 

e q u a t i o n s a r e r e q u i r e d f o r a u n i q u e s o l u t i o n . 

5 . 2 S u b r o u t i n e s c a l l e d b y P A R D G R . 

T h i s s u b r o u t i n e c a l l s n o 

o t h e r s u b r o u t i n e s . 

5 . 8 S u b r o u t i n e l i s t i n g . 

T h e l i s t i n g o f s u b r o u t i n e P A R D E E i s 

g i v e n i n t a b l e 2 6 . 

5 ^ 4 D e s c r i p t i o n o f s u b r o u t i n e a r g u m e n t s . 

T h e f i r s t c a r d o f t h i s 

s u b r o u t i n e i s , 

S U B R 0 U T I N 2 P A R D 3 R ( 0 M , I Q , N 1 , M C , N 9 M A X , N 7 M A % , N ) 



where, 
r- I 

OM: I 

O I o o 
^ I 

This matrix is formed by first of all generating 

a null matrix and. then superimposing the system 

of joint equilibrium equations. RANT2C is then 

applied to investigate this system which gives 

an independent system of equations, the degree 

of redundancy and a set of redundancies. This 

matrix is generated by the FORCE-subroutines 

which are described later. 

IQ= vector of redundant load numbers, generated by 

RANTEC. 

N1« number of joint equilibrium equations, independent 

equations. 

MC= number of unknowns, generalized element boundary 

loads and generalized.structural reactions. 

N9MAX= maximum row dimension for matrix OM. 

W7MAX= maximum column dimension for matrix OM. 

N= actual number of redundancies, this is determined 

within subroutine PARDER. 

See figure ^^(a) for further clarification. 

5.5 Example of usage. 

Consider the stage of analysis where 

it is required to form the matrix of partial derivatives. 

Having generated matrices OM and IQ for a given structure 
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w i t h 2 4 g e n e r a l i z e d e l e m e n t b o u n d a r y l o a d s , 2 g e n e r a l i z e d 

s t r u c t u r a l r e a c t i o n s , 1 4 j o i n t e q u i l i b r i u m e q u a t i o n s 

a n d m a x i m u m O M d i m e n s i o n s o f 8 4 * 1 2 2 ( r o w s * c o l u m n s ) t h e 

c a l l s t a t e m e n t w o u l d b e , 

C A L L P A R D E R ( O M r I 0 , 1 4 , 2 G , 8 4 , 1 2 2 , N ) 

S e e f i g u r e 1 * 8 ( b ) f o r f u r t h e r c l a r i f i c a t i o n . 

T h e m a t r i x o f p a r t i a l d e r i v a t i v e s w i l l n o w b e d i s c u s s e d 

f u r t h e r u s i n g a s i m p l e e x a m p l e . T h e m a t r i x o f p a r t i a l 

d e r i v a t i v e s i s g i v e n b y , 

[w'̂ k ! e^k] '• 
3%' 3^ 

« ; 
3^^ 

at' 3%' 

I I 
I ( 
i \ 

i ' 

I 1 
I 
I I 
1 I 

T h e e l e m e n t s o f t h i s m a t r i x a r e t h e p a r t i a l d e r i v a t i v e s 

o f t h e g e n e r a l i z e d e l e m e n t b o u n d a r y l o a d s , , a n d t h e 

g e n e r a l i z e d s t r u c t u r a l r e a c t i o n s , , w i t h r e s p e c t t o 

e a c h o f t h e a u t o m a t i c a l l y s e l e c t e d r e d u n d a n c i e s , 

T h e r e d u n d a n c i e s a r e g i v e n b y v e c t o r I Q i n s u b r o u t i n e ^ A N l A C . 

L e t , 

[OM] = 
^ 1 /x 

1 

o 1 o o 
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ft*.; 

% 9«. 

0 0-12 0 1 a,g 0 a.i-7 

I O.z'z 0 0 G-ts- 0 1̂7 

0 '^32 I 0 0 

0 4̂2 0 0 ^45 f ^̂4.? 

o o 

ia/i t»,z 

2̂/ 3̂% 

^31 i>31 

i>4/ 64% 

o 

ecj^uH ibnufft 

afip/ijin^ 

/F/t/Vrf c. 

T h e r e d u n d a n c i e s a r e g i v e n b y . 

f 
— % 

f 

W r i t i n g t h e i n v e s t i g a t e d s y s t e m o f j o i n t e q u i l i b r i u m 

e q u a t i o n s i n e x p a n d e d f o r m g i v e s , 

[ : %< ]f ; tf« 3 + 6% 3 = 

w h i c h f o r t h e e x a m p l e a r e g i v e n b y , 

(o) ̂ 1 + a,2. $2 + (p) I3 * 14. + 0,s +• lo) %i, +* 4,7 /?/ + h,! Pi + biz P2 = o 

ll + All H-i. + -̂3 + (°) "̂4 + ̂2J ?s + (°) ̂ 6 + ̂ 27 & * '02I Pf 2̂1 ^ ~ ^ 

(o) 'I, + M 4̂ + <̂35 ̂5 + <!'») "̂6 + ̂ 17 ^ 6,/ ^ & = O 

(o) ti + ^4-z ^ ^o) ^ ^6 ^ ^47 ^ ^ ^4/ ̂  ^4% P-j. ~ O 
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R e a r r a n g i n g t h e s e e q u a t i o n s a n d m a k i n g t h e r e l e v a n t 

s u b s t i t u t i o n s r e s u l t s i n , 

'i/ - — <^zz. ? — ̂ ZS 1 " <̂ 27 % " 2̂/ ̂  — h'ZZ Px 

^3 = -4*2 <%' - Qjs — 63, /? — Agz Pa 

'̂•4 •= —Q/a?.' — £ " '̂,7 — i?// <9 — ̂ /z P-3. 

^6 = "^43 "Z' - <3̂ 5%̂  - " 4̂.% & 

T h e r e f o r e , 

_ -a _ - a _ ^ a 
3%' " ^ 3%'" " , 34' " '* ^ 3%' ** 

at, )%, ^ a%+ )%6 

l i ' - . i ? 

3^3 ^ ^ '̂6 
1%:" , 3%:= "*:? , 

Now, 

3 "Zz. 
3 % ' " s i n c e % 2 = % 

"ati 
o ) ^ 

/ s i n c e % z - 4 t h e p a r t i a l d e r i v a t i v e 

) < * I o f a r e d u n d a n c y w i t h r e s p e c t t o a n o t h e r 

^i''° 

r e d u n d a n c y i s z e r o . P a r t i a l d i f f e r e n t i a t i o n 

o f a q u a n t i t y w i t h r e s p e c t t o o n e o f a 

s e t o f v a r i a b l e s m e a n s t h e v a r i a t i o n o f 

t h a t q u a n t i t y w i t h t h e s e l e c t e d v a r i a b l e 

w h i l s t k e e p i n g a l l t h e r e m a i n i n g 

v a r i a b l e s c o n s t a n t . T h e r e f o r e , w h e n 

p a r t i a l l y d i f f e r e n t i a t i n g a r e d u n d a n c y 

w i t h r e s p e c t t o a n o t h e r r e d u n d a n c y t h i s 

i s t h e s a m e a s d i f f e r e n t i a t i n g a c o n s t a n t 
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with respect to a variable, which is 

of course zero. Note that the P's are 

constants. 

H e n c e 

o 

o 

o 

T h e r e f o r e , t h e m a t r i x o f p a r t i a l d e r i v a t i v e s i s g i v e n b y , 

4^, / -^32 -4^, O -Q 4-z O 

O •<3/s / —#4S O 

' ^ Z J O — <3 3 7 " - 1 7 Anr O -a +7 
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S U B R O U T I N E P A R D E R ( Q M , I 0 , N 1 , M C , N 9 M A X , N 7 M A X , N ) 

C J O H N R O B I N S O N . I , S . V . R . 

C M A I R I X O F P A R T I A L D E R I V A T I V E S F O R E N E R G Y E Q U A T I O N S 

C A L S O I M M E D I A T E A S S E M B L Y I N T O M A T R I X O M 

D I M E N S I O N 0 M ( N 9 M A X , N 7 M A X ) , I Q ( N 9 M A X ) 

N = 0 
D 0 2 M = 1 , M C 

I F ( I Q ( M ) ) 3 , 2 , 3 

3 N " N "4" 1 

2 C O N T I N U E 

0012 1=1,N1 
0 0 9 J = 1 , M C 

I F ( A 8 S ( 0 M ( I , J ) ) , L E , 1 , 0 E " 0 8 ) G 0 T O 9 

I F ( J - I Q ( J ) ) 9 , 9 , 8 

6 J J = J 

G O T O 1 0 

9 C O N T I N U E 

1 0 N N = 1 

0 0 1 2 M = l , M C 

I F ( I Q ( M ) ) 1 3 , 1 2 , 1 3 

1 3 0 M ( N N + N 1 , J J ) = - 0 M ( 1 , M ) 

N N = N N + 1 

1 2 C O N T I N U E 

N N = 1 

0 0 1 5 M = 1 , M C 

I F ( I Q ( M ) ) 1 6 , 1 5 , 1 6 

l b O M ( N N + N 1 , M ) = 1 , 0 

N N = N N + 1 

1 5 C O N T I N U E 

R E T U R N 

E N D 

A / S _ A . F o r t r a n l i s t i n g o f s u b r o u t i n e P A & D & a . 

T a b l e 2 6 . 



2 5 2 

N7MAX 

W9MA% 

MC 

O M 

O M 

N/-/4 

N9WA% 
a S4 

W7MAX = I2Z 

MC=Z6 

f x 

(W 

Nobe; 

fJJ + N N3MAX 

(_onl^ tn tk & 

mcKxi'T^U'Vi ca.se^ 

N9MAX AMof N7M4X 
are. wAximun^ 

Argument definitions for subroutine PARDER. 

P i g . % 8 . 
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6. Subroutine PMDIO Zlement Type P1/2PD. 

G.l Description of subroutine. 

This subroutine generates 

the dynamic flexibility matrix for a plane beam element, 

Element Type Pl/SPD. See 3.1.2 and 4.1.2. , 

This element dynamic flexibility matrix 

was derived using a 8rd degree polynomial for the element 

internal bending moment distribution. The displacement 

function used for the inertia loading obtained using 

the incremental loading equation, that is, 

8.1.2.5 

The generalized element boundary loads consist of a shear 

and a moment at each node. This type of element is used 

for the analysis of collinear beam structures. 

6.2 Subroutines called by PMDIO. 

This subroutine calls no other 

6.3 Subroutine listing. 

The listing of subroutine PMDIO is 

given in table 27. 

6.4 Description of subroutine arguments. 

The first card of this subroutine is, 

SUBROUTINE PMD10(XLM,X1M,SM,XMUM,CSAM,0MBGA,PMD) 

where, 
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XLM = length of beam element (in). 

XIM = second moment of area of beam cross section (in 

EM = Young's modulus of elasticity for the 

element material (lb per i ^ ) . 

KMUM = density of element material (lb per in ). 

CSAM = cross sectional area of beam element (in ). 

0M3GA = angular frequency (radians per second). 

PMD = element dynamic flexibility matrix (order 4*4). 

6.5 3xam#le of usage. 

The structural element properties 

for the analysis of a complete structure are read by the 

master programme in matrix form. A typical read statement 

would be, 

BaAD(5,85)(XL(M),XI(M),2(M),XMU(M),CSA(M),M-l,NB) 

where, 

N&=total number of structural elements. 

Therefore, the call statement required to generate the 

element dynamic flexibility matrix for element 1 (M = l) 

would be, 

CALL FMD10(XL(l),XI(l),3(l),XMUil),CSA(l),0MaGA,FMD) 

However, the generation of the element dynamic flexibility 

matrices is usually in the form of a DO-loop. In this case 

the call statement would be, 

CALL yMD10(%L(M),Xl(M),S(M),XMU(M),CSA(M),0M3GA,FMD) 
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SUBROUTINE FMD10(XLM,XIM,EM,XMUM.CSAM,OMEGA,FMQ) 
C JOHN ROBINSON. I.S.V.R. 
C PLANE BEAM ELEMENT, 
C ELEMENT TYPE P1/2F0, 
C ELEMENT DYNAMIC FLEXIBILITY MATRIX, 

DIMENSION FMD(4,4) 
RH0M=XMVM*CSAM/386,4 
XLAM=RH0M*0MEGA**2#XLM**4/(840.*EM*XIM) 
%K=XLM/(420,*EM*XIM*XLAM) 
FMD(l,l)=XK*XLM**2*(4.*XLAM-2,) 
FMD(2,1)=XK*XLM*(22.*XLAM"3,) 
FMU(3,1)=XK*XLM**2*(3,*XLAM+1,) 
FMD(4,l)aXK*XLM*(-13,*XLAM-5.) 
FMD(l,2)=FMD(2.i) 
FMD(2,2)=XK*(156,*XLAM"6,) 
FMD(3,2)=-FMD(4,1) 
FMD(4,2)=XK*(-54.*XLAM-6.) 
FMO(1,3)=FMO(3,1) 
FMD(2,3)=FMD(3,2) 
FMD(3,3)=FMD(l,l) 
FWD(4,3)=-FM0(2,1) 
FMD(1,4)=FWD(4,1) 
FMD(2,4)=FMD(4,2) 
FMD(3,4)=FMD(4,3) 
FMD(4,4)=FMD(2,2) 

RETURN 
END 

A.S.A. Fortran listing of subroutine FMDIO, 

Element Type P1/2PD. 

'able 27. 
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7. Subroutine FMDIO j^ement Type P2/2PD. 

7.1 Description of subroutine. 

This subroutine generates the 

dynamic flexibility matrix for a plane beam element, 

Element Type P2/2FD. See 3.2.2 and 4.2.2. 

This element dynamic flexibility 

matrix was derived using a 8rd degree polynomial for the 

element internal bending moment distribution but the 

incremental loading equation is not satisfied. The displacement 

function used for the inertia loading is obtained by 

double integration of the bending moment expression and 

evaluating the integration constants by applying d'Alembert's 

principle for the overall element, that is, 

3.2.2.1 

and 

[x) •=. p u) (x) 

The gneralized element boundary loads consist of a shear 

and a bending moment at each node. This type of element 

is used for the analysis of collinear beam structures. 

7.2 Subroutines called by PMDIO. 

This subroutine calls no 

other subroutines. 

7.3 Subroutine listing. 

The listing of subroutine PMDIO is 

given in table 28. 
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7.4 Description of subroutine arguments. 

This is the same 

as subroutine FMDIO Element Type P1/2PD. 
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C PLANE BEAM ELEMENT, 
C ELEMENT TYPE Pg/ZFD. 
C ELEMENT DYNAMIC FLEXIBILITY MATRIX. 

DIMENSION FMD(4,4) 
RH0M=XMUM*CSAM/386,4 
XL4M=RHOM*OMEGA**2*XLM**4/(84o,*EM*XIM) 
XK=XLM/(420,*EM*XIM*XLAM) 
YY=840,*XLAM#*2 
FM0(l,l)=XK*XLM**2*(4 .*XLAM"2.-(71 ,*YY/10395 ) ) 
hMD(2 , l )=XK*XLM*(22 ,*XLAM-3.-(223 .*YY/6930,)) 
rMD(3 , l )cXK*XLM**2*(3 , *XLAM+l,?(1097 , *YY/16632O )) 
FMD ( 4 , l)axK * X L M * ( - 1 3 , * x L A M - 3 , + ( 1 6 8 1.*YY / 5 5 4 4 0 ) ) 
FMD(1,2)=FMD(2,1) 
FMO(2,2f=XK*(156,*XLAM-6,~(iia,*yy/77o.)) 
FMD(3,2)=-FMD(4,1) 

FMD(4,2)=XK*(-54,*XLAM^6,+(295l.*YY/2l560 )) 
FMD(1,3)=FM0(3,1) 
FMD(2,3)=FMD(3,2) 
FM0(3,3)=FM0(1,1) 
FMD(4,3)=*FM0(2,1) 
FMD(1,4)=FMD(4,1) 
FMD(2,4)3FMD(4,2) 
FMD(3,4)=FMD(4,3) 
FMD(4,4)=FMD(2.2) 
R E T U R N 
END 

A.S.A. Fortran listing of subroutine FMDIO, 

Element Type P2/2FD. 

Table . 
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8. Subroutine PMDIO Element Type P8/2rD. 

o.l Description of subroutine. 

This subroutine generates 

the dynamic flexibility matrix for a plane beam element, 

Element Type P8/2FD. See 3,8.2 and 4.8.2. 

This element dynamic flexibility 

matrix is derived using a differential equation approach 

(transcendental functions). This requires the solution 

of the equation, 

. / ) 

^6^ 8.8.2.8 

U--yC^/id = {x) S/n,cd6 

and 
A 

and the relationships, 

8.1.2.1 
and 

Tne generalized element boundary loads consist of a shear 

and a moment at each node. This type of element is used 

for the analysis of collinear beam structures. 

8.2 Subroutines called by PMDIO. 

This subroutine calls no 

other subroubines. 
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8.3 Subroutine listing. 

The listing of subroutine FMDIO is 

given in table 29. 

8.4 Description of subroutine arguments. 

This is the same 

as subroutine PMDIO Element Type P1/2PD. 
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C 
C 

c 
c 

SUBROUTINE FMD10(XLM,X%M,EM,XMUM,CSAM,OMEGA,FMO) 
JOHN ROBINSON, I.S.V.R. 
PLANE BEAM ELEMENT. 
ELEMENT TYPE P3/2Fq, 
ELEMENT DYNAMIC FLEXIBILITY MATRIX, 
DIMENSION FM0(4,4) 
R H Q M = X M U M * C S A M / 3 8 6 , 4 
XLAM=(0MEGA**2*RH0M/(EM*XIM))#*0,25 
XA=XLAM*XLM 
XB=-XA 
XCOSH=COSH(XA) 
XS1NH=SINH(XA) 
XSIN=SIN(XA) 
XCOS=COS(XA) 
XD=EM*XIM*XLAM**3*(XC03*XC0SH"1,) 
FMD(1,1)=(XSIN*XCOSH-XCOS#XSINH)/XD 
FMD(2,1)=XLAM*XSIN*X$INH/X0 

1)=(XSIN"XSINH)/XD 
1)=XLAM*(XC0SH-XC0S)/XD 
2)=FMD(2,1) 
2)=XLAM**2*(XC0S*XSINH+XSIN*XC0SH)/XD 
2)="FM0(4,l) 
2)sXLAM**2*(XSIN+XSINH)/XD 
3)=FMD(3, 

PM0(3 
FM0(4 
FMD(1 
FMD(2 
FMD(3 
FMD(4 
FMD(1 
FM0(2 
FMD(3 
FMD(4,3) 
FM0(1,4) 
PM0(2,4) 
FMD(3,4) 
FMD(4,4) 
RETURN 
END 

3) 
3 ) 

:FMD(3,2 
:FMD(1,1 
:-FMD(2, 
:FMD(4,1 
:FMD(4,2 
'FMD(4,3 
^MD(2.2 

A.S.A. Fortran listing of subroutine FMDIO, 

Element Type P3/2PD. 

Table 29 . 
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9. Subroutine PHD80. element Type P1/8PD. 

9.1 Description of subroutine, 

This subroutine generates 

the dynamic flexibility matrix for an inclined plane beam 

element, Element Type Pl/SPD. See 4.1.8. This element 

dynamic flexibility matrix is derived by assembling the 

matrices for element types Pl/lFD and Pl/2P2 and then 

carrying out a transformation from local axes to global 

axes. Therefore, for this element the internal bending 

moment is assumed to vary as a 8rd degree polynomial and 

the endload as a 1st degree polynomial (linear variation). 

The generalized element boundary loads consist of a load 

in the x^direction, a load in the z—direction and a moment 

at each node, see figure lT(b). This type of element is 

used for the analysis of general plane frames. 

9.2 Subroutines called by PMD30. 

other subroutines, 

This subroutine calls no 

9.8 Subroutine listing. 

;iven in table 30, 

The listing of subroutine PMD80 is 

9.4 Description of subroutine arguments. 

The first card of this 

subroutine is, 

SUBROUTINE P%D80(XBI,ZBI,XBJ,2BJ,XIM,3M,XMUM,CSAM,OMEGA,FMD) 
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where, 

XBI = x-ordinate of no&e i (in), 

ZBI = z-ordin&te of node i (in). 

XBJ = x-or&inate of node j (in). 

2BJ = z-or&inate of node j (in). 

XIM = second moment of area of beam cross section (in*). 

EM = Young's modulus of elasticity for the element 

material (lb per in ). 

XMUM = density of element material (lb per i^). 

CbAM = cross sectional area of beam element (in ). 

OMEGA = angular frequency (radians per second). 

= element dynamic flexibility matrix (order 6*6). 

See figure for further clarification. 

9.5 Example of usa&e. 
Assuming that the generation of the 

element dynamic flexibility matrices is in the form of 

a DO-loop a typical call statement would b 

CALL FWD80(XBI(W),ZBI(M),XBJ(M),2BJ(M),XI(M),E(M),XMU(M 

CSA(M),OMEGA,EMD) 

Continuation line. 
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fxBz) 

3; (ZBl) 

Global axes 

Node coordinates for an inclined plane beam 

element. 



c 
c 
c 

c 

a£ii! 
SUBROUTINE FMD30(XBI.ZBl.X8J.Z8J.XIM,EM,XMUM.CSAM.OMEGA.FMO) 
JOHN ROBINSON. I.S.V.P. 
INCLINED PLANE BEAM ELEMENT. 
ELEMENT TYPE P1/3FD. 
ELEMENT DYNAMIC FLEXIBILITY MATRIX, 
DIMENSION FM0(6.6) 
XDIF=XBJ-XBI 
YDIF=78J-78I 
A1=XDIF**2 
A2=Y0IF**2 
XLMSQ*A1+A2 
XLM=SmRT(XLMSO) 
AaXDIF/XLM 
B"YOIP/XLM 
RH0=XMUM*CSAM/386.6 
XLAMa(RH0*0MEGA**2*XLM**4)/(840.0*EM*XIM) 
X*XLM/(A20.0*EM*XIM*XLAM) 
Y«1.0/(XLM*RH0*0MEGA**2) 
ZaXLM/(CSAM*EM) 
FMO(1.1)«A**2*(Z/3.0.Y)+B**2*X*XLM**2*(4.0*XLAM.2.0) 
FMD(1.2)»A*B*(Z/3.0"Y"X*XLM**2*(4.0*XLAM.2.0l) 
FMn(i,3)=-B*X*XLM*(22.0*XLAM-3.0) 
FMD(1.4)=A**P*(-Z/6.0-Y)+8**2#X*XLM**2*(3.0*XLAM+1.0) 
FMD(1.5)=A*B*(-Z/6.0-Y-X*XLM*#2*(3,0*XLAM+1.0)) 

,6)=B*X*XLM*(13.0*XLAM+3.0) 
1)=FMDfl.2) 
2)=B**2*(Z/3.0-Y)+A**2*X*XLM**2*(4,0*XLAM-2.0) 
3)eA*X*XLM*(22.0*XLAM~3.0) 

FMD(1 
FM0(2 
FMD(2 
FMDf2 
FM0(2 4)=FMD(1.5) 
PMD(2.5)=B**2*(-Z/6.0"Y)+A**2*X*XLM**2*(3,0*XLAM+1 
FMD(2.6)*.A*X*XLM*(l3.0*XLAM+3,0) 
FMD(3.1)=FMD(1.3) 
FMD(3.2)=FM0(2.3) 
FMD(3,3)eX*(l96.O*XLAM-6.0) 
FMD(3.4)srFM0(l,6) 
FMD(3.5)a-FM0(2.6) 

6)*X*(-94.0*XLAM-6.0) 
1)«FMD(1.4) 

0) 

FMD(3 
FMD(4 
FMD(4 
FMD(4 
FMD(4 
FMD(4 
FMD(4 
FMD(5 
FMD(5.2) 
FMD(9.3) 

2)=FMD(2.4) 
3)*FMD(3.4) 
6)*FMD(1.1) 
5)eFMD(1.2) 
6)=-FM0(1.3 
l)aFMD(1.5) 

FMD(2 
FMD(3 

FMD( 5.4)1 
FM0(5.5)! 
FMD(5.6) 

:FMD(4. 
'FMD(2. 
:-FMD(2 

5) 
5 ) 
5) 
2 ) 
.3) 

FMD(6.*)=FMD(i 
FM0(6.2)=FMD(2 
FMD(m.3)aFMD(3 
FMD(6.4)«FMD(4 
FMD(6.9)"FMD(5 
FM0(6.6)=FMD(3 
RETURN 
END 

6 ) 
6 ) 
6 ) 
6 ) 
6 ) 
3 ) 

A.S,A. Fortran listing of subroutine FMD30^ Element Type P1/3FD. 

Table 30 . 
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10. Subroutine element lype i8/3F%^ 

10.1 Description of subroutine. 

aauroutine generates 

the dynamic flexibility matrix for an inclined plane 

beam element, Element ^ype PB/^DS. See 4.3.8. This element 

dynamic flexibility matrix is de. -od by assembling the: 

matrices of element types PS/lPD and ,. /2PD and then 

carrying out a transformation from local ^xes to global 

axes. Therefore, for this element the internal bending 

moment and endload distributions are expressed in terms 

of transcendental functions, see 8.8.1,8.8.2,4.8.1 ana 

4.8.2. The generalized element boundary loads are the same 

as Element Type P1/8PD. 

t 

10.2 Subroutines called by ^"MPSO. 

This subroutine calls no 

other subroutines. 

10.8 Subroutine listing. 

The listing of subroutine PMD80 is 

given in table 31 « 

10.4 Description of subroutine arguments. 

This is the same as subroutine 

FMD30 , Element Type ?l/8f%. 
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A.S, A. Fortran listing ,of subroutine FMD30, Element Type P3/3FD, 

Table 31 . 

SUBROUTINE FMD30(XBI,ZBI,X8J,4BJ,XIM,EM,XMUM,CSAM,OMEGA.FMD) 
C JOHN ROBINSON, I.S.V.R. 
C INCLINED PLANE BEAM ELEMENT, 
C ELEMENT TYPE P3/3FD, 
C ELEMENT DYNAMIC FLEXIBILITY MATRIX, 

DIMENSION FM0(6,6) 
XOIF=XBJ-XBI 
YDIF=ZBJ"ZBI 
A1=XDIF**2 . 
A2=YDIF*#2 
XLMSQ=A1+A2 
XLM=SQRT(XLMSQ) 
XLAM1=OMEGA*SQRT(XMUM/(380.4*EM)) 
XLAM2=(OMEGA**2*CSAM*XMUM/(38b.4*EM*XIM))**u,25 
XA1=XLAM1*XLM 
XA2=XLAM2*XLM 
S2=SIN(XA2) 
C2=C0S(XA2) 

_ SH=SINH(XA2) 
CH=C0SH(XA2) 
S1=SIN(XA1) 
F1=S2*SH 
F3=C2*CH-1.0 
F5=C2*SH-S2*CH 
F6=C2*SH+S2*CH 
F7=S2+SH 
F8=S2-SH 
F10 = C2-CHI 
Fll=-C0S(XA1)/Sl 
F12=-1.0/S1 
A3=A1/XLMSQ 
A4=A2/XLMSQ 
A5=XDIF*YDIF/XLMSQ 
Ab=XOIF/XLM 
A7=YDIF/XLM 
B1=CSAM*EM*XLAM1 
C2=EM*XIM*F3 
D1=C2*XLAM2 _ 
D2=D1*XLAM2 
D3=D2*XLAM2 
FMD(1,1)=A3*F11/&1-A4*F5/U3 
FMD(1,2)=A5*(F11/B1+F>/D3; 
FMD(1,3)=-A7*F1/D2 
FM0(1,4)"A3*F12/B1+A4*F8/U3 
PMD(1,5)=A5*(F12/B1-F0/U3; 
FM0(1,6)=A7*F10/D2 
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Subroutine PMD30 listing continued. 

FMD(2 
PMD(? 
PMD(2 
PM0(2 
FMU(2 
FMD(2 
PMD(3 
FMD(3 
FMU(3 
FMD(3 
FMD(3 
FMD(3 
FMD(4 
FMD(4 
FMD(4 
FMD(4 
FMD(4 
FMD(4 
FM0(5 
FMD(5 
FMD(5 
FM0(5 
FMD(5 
FMD ( 5 
FMD(6 
FMD(6 
FMD(6 
FMD4 6 
FMD ( 6 
FMD(6 
RETURN 
END 

sFMD(1.2) 
=A4*F11/B1-A3*F5/D3 
=A6*Fl/02 
=FMD(1,5) 
=A4*F12/B1+A3*F8/D3 
=-Ab*F10/D2 
=FMD(1,3) 
=FMD(2,3) 
=F6/D1 
=-FMD(i,6) 
=-FMD(2,6) 
CF7/01 
=FMD(1,4) 
=FMD(2,4) 
=FMD(3,4) 
=FMD(1,1) ^ 
:FMD(1,2) 
:-FMD(l,3) 
:FMD(1,5) 
:FMD(2,5) 
^MD(3.5I) 
: F M D ( 4 , 5 ) 
FMD(2,2) 
- F M D(2,3) 
FMD(l,b) 
FMD(2.6) 
FM0(3,o) 
FMD(4,6) 
FMD(5.b) 
FMD(3 ,3 ) 



11. Subroutine PMD40 Element Type P1/4PD. 

11.1 Description of subroutine. 

This subroutine generates the dynamic flexibility 

matrix corresponding to a q-system of generalized element 

boundary loads for a rectangular plate element, Element 

Type P1/4PD, see Chapter 3 (8.1.8(a)) and Chapter 4(4.1.4).The 

distributed boundary loadings for this element are assumed 

uniform along the respective boundaries. The moment 

distributions have been taken in the form of polynomials. 

In deriving the element dynamic flexibility matrix an 

equivalent plate loading system has been adopted. The* 

generalized element boundary loads consist of a uniform 

distributed shear and moment along each boundary and a 

concentrated load at each node^ see figure 19 . This gives 

a total of 12 generalized element boundary loads. This 

type of element is used for the analysis of two dimensional 

plate structures. 

11.2 Subroutines called by PMD40. 

This subroutine calls no 

other subroutines, 

11.8 Subroutine listing. 

The listing of subroutine PMD40 is 

given in table 32. 

11.4 Description of subroutine arguments. 

The first card of this subroutine is. 

SUBR0UTIN3 PMD40(A,B,T,2M,XMUM,XNUM,0MaGA»EMD) 
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where, 

A = length of the plate boundary in the x-direction 

(in). 

B = length of the plate boundary in the z-direction 

(in). 

T - plate thickness (in). 

SM = Young's modulus of elasticity for the element 

material (lb per in*). 

XMUM = density of element material (lb per in^). 

.{NU&l = Poisson's ratio for the element material. 

0M3GA = angular frequency (radians per second). 

PMD = element dynamic flexibility matrix. 

11.5 Example of usage. 

Assuming that the generation of the 

element dynamic flexibility matrices is in the form of 

a DO-loop and that A,B and T are constant for all elements 

a typical call statement would be, 

CALL PMD40(A,B,T,E(M),XMU(M),XNU(M),0MaGA,PMD) 



A,3,A, Fortran listing of subroutine PMD40, Element Type P 1 / 4 P D , 
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Table 32 . 

M A T R I X 

S U R R O U T I N F F M D A 0 ( A . 8 . T . E M . X M U M . X N U M , 0 M E Q A . P M D ) 
C J O H N R O B I N S O N . I . S . V . R . 
C R E C T A N G U L A R P L A T E E L E M E N T . 
C E L E M E N T T Y P E P i / 4 F D . 
C E L E M E N T D Y N A M I C F L E X I B I L I T Y 

D I M E N S I O N F M D ( 1 2 . 1 2 ) 
P = ( A * A ) / f E M * T * * 3 * 3 5 . 0 ) 
R a ? @ 6 . A / ( X M U M * T * 0 M E G A * * 2 ) 
C a l . 0 / A * * 2 
0=1.0/8**2 
G a A / B 
F M D ( i . l ) = 1 5 6 . 0 * p - 1 2 . 0 * 0 * D * R 
F M n ( 1 . 2 ) a " i 0 9 . 0 * X N U M * P 
F M 0 ( 1 . 3 ) e - 5 4 . 0 * P - 1 2 . 0 * G * D * R 
F M n ( 1 . 4 ) e - F M 0 ( 1 . 2 ) 
FM0(1.5)a22.0*B*P"6.0*A*n*R 
F w n ( 1 . 6 ) * - t 7 . 9 * A * X N U M * P 
F M D ( 1 . 7 ) s l 5 . 0 * B * P + 6 . 0 * A * D * R 
F M D ( 1 . 8 ) " F M D ( 1 . 6 ) 
F M O ( 1 . 9 ) e ( 2 2 . 0 / G - 1 7 . 5 * G * X N U M ) * P - 6 . 0 * D * R 
F M 0 ( 1 . 1 0 ) a F M D ( 1 . 9 ) 
F M O ( l . l l ) a ( 1 3 . O / G " 1 7 . 5 * G * X N U M ) * P + 6 . 0 * D * R 
F M D ( 1 . 1 2 ) = F M n ( l . l l ) 
F M D ( 2 . 2 ) e i 5 6 . 0 * P - 1 2 . 0 * C * R / G 
F M 0 ( 2 . 3 ) = F M D ( 1 . 4 ) 
F M D ( 2 . 4 ) = - 5 4 . 0 * P - 1 2 . 0 * C * R / G 
F M D ( 2 . 9 ) a - l 7 . 9 * 8 * X N U M * P 
F M D ( 2 . 6 ) = 2 2 . 0 * A * P - 6 . 0 * P * C * R 
F M D ( 2 . 7 ) = F M D ( 9 . 5 ) 
F M D ( 2 . @ ) « 1 3 . 0 * A * P + 8 , 0 * B * C * R 
F M O ( 2 . 9 ) = ( 1 3 . 0 * Q - l 7 . 3 / G * X N U M ) # p + 6 . 0 * C * R 
F M D ( 2 . 1 0 ) = ( 2 2 . 0 * G - 1 7 . 5 / G * X N U M ) * P - 6 . 0 * C * R 
F M D f 2 . 1 1 ) = F M D ( 2 . 1 0 ) ' 
F M 0 ( 2 . 1 2 ) = F M D ( 2 . 9 ) 
F M D ( 3 . 3 ) = F M D ( 1 . 1 ) 
F M D ( 3 . 4 ) = F M D ( 1 . 2 ) 
F M D ( 3 . 5 ) = - F M n ( 1 . 7 ) 
F M D ( 3 . 6 ) a - F M D ( 1 . 6 ) 
F M D ( 3 . 7 ) = - F M D ( ( . 5 ) 
F M D ( 3 . m ) e F M D ( 3 . 6 ) 
F M 0 ( 3 . g ) a . F M D ( 1 . 1 1 ) 
F M 0 ( 3 . 1 0 ) * F M n ( 3 . 9 ) 
F M D ( 3 . 1 1 ) * - F M D ( 1 . 9 ) 
F M D ( 3 , 1 2 ) a F M D ( 3 . 1 1 ) 
F M 0 ( 4 . 4 ) = F M D f 2 . 2 ) 
F M 0 ( 4 . 5 ) K - F M 0 ( 2 . 5 ) 
F M D ( 4 . 6 ) e m F M 0 ( 2 . a ) 
F M D ( 4 . 7 ) = F M D ( 4 . 5 ) 
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Subroutine FMD40 listing continued. 

FMD 
FMD 
FMO 
FMD 
FMD 
FMD 
FMD 
FMD 
FM0(5 
FM0(5 
FMD(5 
FMD(9 
FMDf? 
FMD(6 

8 ) = _ F M D ( 2 . 6 ) 
g ) e _ F M O ( 2 . l O ) 
1 0 ) = - F y n ( 2 . 9 ) 
1 1 ) = F M 0 ( A . 1 0 ) 
1 2 ) e F M 0 ( d . 9 ) 
5 ) s 4 . 0 * B * * 2 # P ~ 4 . 0 * G * R 
6 ) = - 3 5 . 0 / 1 2 . 0 * A * m * X N U M * P - R 
7 ) = 3 . 0 * B * * 2 * P + 2 , 0 * G * R 
8 ) = F M D ( 5 . 6 ) 
9 ) = ( 4 . 0 * B / G m 3 5 . 0 / 1 2 . 0 * A * X N U M ) * P - 4 . 0 / 8 * R 
* 0 ) = F M D ( 5 . 9 ) 
1 1 ) * f 3 . 0 * 8 / 0 - 3 5 . 0 / 1 2 . 0 * A * X N U M ) * P + 2 , 0 / 8 * R 
1 2 ) = F M D ( 5 . 1 1 ) 
6 ) = 4 . 0 * A * * 2 * P - a . 0 / G * R 

FMD(6.7)=FMD(5.6) 
FMD 
FMO 
FMO 
FMD 
FMO 
FMD 

6 . 8 ) c 3 . 0 * A * * 2 * P + 2 . 0 / G * R 
m . 9 ) = ( 3 . 0 * A * G " 3 3 . 0 / 1 2 , 0 * B * X N U M ; * P + 2 . 0 / A * R 
6 . 1 0 ) « ( 4 . 0 * A * G - 3 5 . 0 / 1 2 . 0 * B * X N U M ) * P - 4 . 0 / A * R 
6 . 1 1 ) = F M Q ( 6 . 1 0 ) 
6 . 1 2 ) = F M D ( A . 9 ) 
7 . 7 ) = F M D f 9 . 5 ) 

F M D ( 7 . 8 ) = F M D ( 9 . 6 ) 
F M D ( 7 . 9 ) = F M D f 3 . 1 1 ) 
F M D ( 7 . 1 0 ) s F M D ( 7 . 9 ) 
F M D ( 7 . i l ) a F M 0 ( 9 . 9 ) 
F M D ( 7 . 1 2 ) a F M D ( 7 . 1 1 ) 
F M D ( m , m ) e F M D f A . 6 ) 
F M D ( e . 9 ) e F M 0 f 6 . 1 0 ) 
F M D ( 8 , * 0 ) = F M 0 ( 6 . 9 ) 
FM0(8,11)=FN0(8.10) 
F M D ( 8 . 1 2 ) = F M D ( 8 . 9 ) 
F M D ( 9 . 9 ) = ( 4 . 0 * ( D / G + C / D ) + 7 0 , 0 / 3 . 0 * ( 1 . 0 + 0 , 7 5 * X N U M ) ) * P - 7 . 0 * R / ( A * B ) 
FMD(9.tO)c(3.O*n/C+4.O*C/D"35.O/3.0*fl.O+1.5*XNUM))*P-R/(A*B) 
F M D ( 9 . 1 1 ) a ( 3 . 0 * ( D / C + C / D ) + 3 9 . 0 / 8 . 0 ) * P + 5 , 0 * R / ( A * B ) 
F M O ( 9 . l 2 ) = ( 4 , 0 * 0 / C + 3 . 0 * C / 0 " 3 9 , 0 / 3 . 0 * ( l , 0 + i , 5 * X N U M ) ) * p . R / ( A * R ) 
F M D ( 1 0 . 1 0 ) = F M D ( 9 . 9 ) 
F M D ( 1 0 . 1 1 ) = F M D ( 9 . 1 2 ) 
F M D ( i n . l 2 ) = F M D ( 9 . l l ) 
F M n f l l . l l ) = F M D ( 9 . 9 ) 
F M 0 ( 1 1 , 1 2 ) = F M D ( 9 . 1 0 ) 
F M D ( 1 2 . l 2 ) e F M D f 9 . 9 ) 
0 0 7 1 * 1 . 1 2 
Dno 
I F ( I . E Q , J ) G 0 T O 7 

6 F M O ( I . J | « F M D f J . I ) 
7 C O N T I N U E 

R E T U R N 
E N D 
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12. Subroutine VARDBT. 

12.1 Description of subroutine. 

This subroutine was 

written by Dr.C.A.Mercer, I. 3. V. R. Using the Gaussian 

elimination procedure and partial pivoting this subroutine 

evaluates the determinant of a matrix stored in conventional 

manner. In the case of a band matrix the evaluation can 

be speeded up by specifying the bandwidth and number 

of nonzero subdiagonals below the main diagonal.Note, this 

subroutine can evaluate the determinant of the first 

(N * N) elements of a square matrix tA1 . 

12.2 Subroutines called by VARDST. 

This subroutine calls 

no other subroutines. 

12.3 Subroutine listing. 

The listing of subroutine VARDET 

is given in table 33. 

12.4 Description of subroutine arguments. 

N = actual order of matrix whose determinant 

is to be evaluated. This can be the order 

of the actual matrix [Al or any submatrix 

(square) contained in [A] whose determinant 

is to be evaluated. Note, only submatrices 

with leading element A(l,l) can be 

considered. 

NR m number of nonzero subdiagonals. 



NC * matrix bandwidth. 

DGTA = determinant of matrix (or submatrix). 

A = actual matrix whose determinant (or 

subdeterminant) is to be evaluated, 

MXT = maximum possible order of [A] , maximum 

dimension. 

Note, for a general matrix put NR = NC « N. 

See figure 50 for further clarification. 
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S U B R O U T I N E V A R D E T ( N , N R , N C , D E T A , A , M X Y ) 
C C , A , M E R C E R , I . S . V . R . 
C E V A L U A T E S T H E D E T E R M I N A N T O F A G E N E R A L R E A L M A T R I X , 

D I M E N S I O N A ( M X Y , M X Y ) 
I N T E G E R R 
D E T A = 1 . 0 
D O 19 R * l , N 
N T = R + N R 
I F ( N T - N ) 1 , 1 , 2 

2 N T = N 
1 N A = R + N C - 1 

I F ( N A m N ) 3 , 3 , 4 
4 N A = N 
3 J = R 

D O 10 L = R , N T 
I F ( A B S ( A ( L , R ) ) " A B S ( A ( J , R ) ) ) 1 0 , 1 0 , 1 1 

11 JaL 
10 C O N T I N U E 

I F ( J - R ) 1 4 , 1 3 , 1 4 
14 D E T A s - D E T A 

D O 15 K = 1 , N A 
T E M = A ( R , K ) 
A ( R , K ) « A ( J , K ) 

15 A ( J , K ) « T E M 
- 13 K A = R + 1 

I F ( K A ^ N ) 6 , 6 , 5 
() cof^T I Nue; 

D O 2 3 K = K A , N T 
I F ( A ( K , R ) ) 2 2 , 2 3 , 2 2 

2 2 A ( K , R ) = A ( K , R ) / A ( R , R ) 
D O 18 J = K A , N A 
A(K, J)BA(K,J)-A(K,R)*A(R,J) 

18 C O N T I N U E 
2 3 COr^T IfjUE 
5 D E T A = D E T A * A ( R , R ) 

19 C O N T I N U E 
R E T U R N 
lEhlD . . . 

J 

A. 8, A. Fortran listing of subroutine VARDET, 

Table 33. 
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Mal-Hx A 

Bandu>idtk (nc) 

X X X X X 

X y X X X X 

X X X X X X X 

X X X X X X X X 

X X X X X X X X X 

K X X X X X y. X X 

X X X X X X X X y 

X X X X X X X X X 

X X X X X X X X 

X X X X X X X 

X X X X X X 

X X X X X 

N,/wxy 

Argument definitions for subroutine VARDST. 

Pig. 50 . 
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13. Subroutine MODE. 

13.1 Description of subroutine. 

This subroutine was 

written by Dr.C. A. Mercer and C. Seavey, I.8.V. R. 

Using the Gaussian elimination procedure and backsubstitution 

this subroutine computes the eigenvector of a system of 

homogeneous linear equations whose coefficient matrix 

has a zero determinant (must be one degree degenerate). 

For the normal mode analysis of structures the coefficient 

matrix corresponds to the structural dynamic stiffness 

matrix at the respective eigenvalue. The homogeneous 

equations are of the form, 

c ;= to! 

Both the determinant (det A ) and ERROR SUM are crude 

measures of the error involved in the process. These two 

items are printed out. If the computed eigenvector is 

substituted back into the original system of homogeneous 

equations, in general, the following result is obtained, 

fAj; % ; = F 6 ? 4= fol 

The ERROR SUM is the summation of the epsilon vector 

terms, that is, f (l) + 8(2)+ 

13.2 Subroutines called by MODE, 

This subroutine calls 

subroutine VARDET. 
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13.3 Subroutine listing. 

The listing of subroutine MODE 

is given in table 3^ . 

13.4 Description of subroutine arguments. 

X = eigenvector corresponding to [A] , If 

the eigenvector of a submatrix formulation 

of [A] is being computed, say order 

(NxN), then the result is stored in 

the first N locations of vector X. 

See VARDET description. 

XLAM = eigenvalue of system [A][X ? =lo? 

The remaining arguments are the same as subroutine VABDET. 
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SUBROUTINE MODE(N,NR,NC,A,MXY,X,XLAM) 
C C.A.MERCER AND C.SEAVEY. I.S.V.R, 
C EIGENVECTOR EVALUATION, _ -

DIMENSION A(MXY,MXY),X(MXY) 
CALL VARDET(N,NR,NC,DETA,A,MXY) 

C BACKSUBSTITUTION 
X(N)al.OEO 
DOl I=2,N 
M=N-I+1 
MA^M+l 
X(M)aO.O 
D032 K"MA,N 

32 X(M)*X(M)+A(M,K)*X(K) 
1 X (M) a-X (fd) / A( M ,M) 

(: N(]RM Al̂ I Z A IT I Oiy 
BIG=X(1) 
DO I''2, N . . . 
IF(A8S(X(I))-ABS(BI0))4,4,5 

5 8IG=X(I) 
4 CCHNT If̂ UE 

006 K=1,N 
X(K)=X(K)/BI6 

6 CONTINUE 
C ERROR ROUTINE 
I ER=0,0E0 

D018 1=1,N 
0018 K=1,I 
DOl 8 JmtS, N 
IP(t<-I )21 , 22, 2 

21 ER=ER+A(I,K)*A(K,J)*X(J) 
GO TO 2 

22 ER=ER+A(K,J)*X(J) 
2 CONTINUE 
18 CONTINUE 

WRITE!6,104) XLAM,ER,DETA 
104 FORMAT*IH ///12H EIGENVALUE*,E14,7///11H ERROR SUM",E19.7,13H OETE 

1RMINANT",E15,7///12H EIGENVECTOR,IH //) 
WRITE(6,101) (X(I),I"1,N) 

101 FORMAT(E15.7) 
RETURN 
END 

A.8.A. Fortran l i s t i n g of subrout ine MODE. 

Table 34 . 
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P0RC3-8eries of Subroutines. 

This series of subroutines have much 

in common and therefore the general points will be discussed 

first before considering the individual subroutines. 

The PORCE-subroutines were written to investigate particular 

vibration characteristics of specific types of structures 

using the rank force method. Since this work was part of 

a research project all computer programming was core limited, 

that is, all the analyses were carried out within the 

computer core storage. The types of structures considered 

are, 

1. Collinear beam structures (PORC^B). 

2. General plane frames (PORC^P). 

8. Two dimensional rectangular plate structures (PORC^P). 

A programme flow chart which covers all the PORCE-subroutines 

is shown in figure 51. 

Matrix OM is formed initially as a null matrix of order 

WC*LM, it can be seen from the flow chart that this matrix 

is continually changing throughout the analysis, ihe flow 

chart also defines the various submatrices which are 

contained in matrix OM at the various stages. In the latter 

part of an analysis other matrices are stored in matrix OM 

by taking advantage of EQUIVALENCE (storage assignment 

statement), the use of this will be presented when discussing 

the individual PORCE-subroutines. Pigure 52 shows the 

integer parameters used in the PORCB-subroutines to define 
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tne ordGi of m&urix UM and ios subm&^ric6s, Tb6S6 p&r&M6t6rs 

will now be defined; 

N2 = number of equilibrium equations. 

Ml= numoer of generalized element boundary loads, 

Ghat is, (number of generalized element boundary 

loads per element)x (number of elements). 

Nl= (number of generalized applied loads allowed 

at each node)* (number of nodes), no structural 

reactions are considered in this parameter. 

AC=number of structural reactions. 

ML= number of possible applied loads, Nl-WC. 

MC=total number of unknowns, element loads and 

structural reactions, Ml+NC. 

degree of redundancy, MC-N2. 

LM= (total number of unknowns)* (number of possible 

applied loads) = MC+NL-'Ml* Nl. 

ln& subroutines called by the series of FORCE—subroutines 

is shown in figure 53. 
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Pi#. 51 continued.. 
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N2 

Nl 

N 

M l NC NL 

rvlC 

LM 

MC 

Integer parameters used for matrix OM and its submatrices. 

fig. 52 



287 

Sobroi^ t 

F O R C E F 
P 

T h i s subroutine calls 

Sulotoo h LnS. 

RANTEC 

Subroubirie 

MATMULT 

Suhrouri rie 'bobrooiri fte 

/o 
F/4D30 

4-0 

Subl-ouf-ine 

PARDER MATZNV 

I— 

This c a f i s 

— 

SubrouP/ag Subi-ool'ine 

R^ANTEC ;?EAR 

L J 

Subroubines called by fORCj—series of subroutines. 

Pig.53 . 
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Subroutine 

14.1 pGscri^tion of subroutine. 

This subroutine is used 

for the vibration analysis of collinear beam structures. 

The subroutine generates the transformation 

matrix which relates the generalized applied loads to the 

generalized element boundary loads and structural reactions 

for a given frequency. The subroutine then generates 

the structural dynamic flexibility and stiffness matrices, 

again for a given frequency. The latter matrix is required 

for the eventual eigenvalue problem which is solved in 

the master programme P0RC3-B&AM which is described later. 

A theoretical description for this subroutine is given in 

chapter 2. A flow chart for the programming formulation 

is given in the general discussion for the PORCE-series 

of subroutines, see figure . 

In this subroutine, 

N2 = N1 

Ml = 4KNE, four generalized element boundary 

loads per element. 

N1 = 2*(Nd+d) 

LM = (4%^d)+(2*(N^+l))=(G*N^^ + 2 

The following limitations have also been imposed, 

N3 = 20 

NC = 4 

Figure $4 (a) shows the applied load system which is assumed 

acting on a collinear beam structure. The initial formulation 
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of the joint equilibrium equations considers no reactions, 

this formulation is then general for all collinear beam 

structures. The specific reaction system is then considered 

and the applied load system amended accordingly, see 

figure Figure 55 shows the equivalencing carried 

out in this subroutine and in the master programme whicn 

calls it (POBCa-BaAM, described later), also in this figure 

are shown the maximum order of the respective matrices, it 

can be seen that certain matrices use the same storage but 

one should consider hierarchy of matrices as decided by the 

order of appearance but keeping in mind the period over 

which a matrix is detained in the programme. To accommodate 

for the equivalencing of matrices PAR and PHI a temporary 

transfer of part of matrix OM is carried out. See figure 56 

(a) and (b). &quivalencing is carried out on maximum 

matrix dimensions and therefore it can be seen that this 

temporary transfer is not necessary for all collinear 

beam structures that can be analysed by this subroutine, 

fhe compleue transfer is accomplished using the DO-loops 

with statement numbers 29 and 46, see subroutine listing. 

14.2 Subroutines called by PORCEB. 

This subroutine calls 

subroutines %ANT3C, PARD2R, MATMULT, REAR, FMDIO and MATINV. 

See figure 5 3 . When calling subroutine FWDlO the appropiate 

subroutine should be used, that isy 

1. Element Type P1/2PD. 

2. Element Type P2/2PD. 

3. Element Type P8/2FD. 
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Subroutine PORCgb has been written assuming that all 

elements in the structure are of the same type. 

14.3 Subroutine listing. 

The listing of subroutine PORG^B 

is given in table 35. 

14.4 Description of subroutine arguments. 

The first card of this subroutine is, 

SUBROUTINE P0RCSB(0M3GA,Ng,IS,JS,XL,XI,E;XMU,CSA,NC,NL, 

UK2,D2L,P,WC,IQ) 

0M2GA. = angular frequency(radians per second). 

NE = number of structural elements(finite elements) 

IS = vector....first specifying node for each 

element. 

JS:= vector....second specifying node for each 

element. 

XL = vector....length for each element(in). 

XI = vector....second moment of area for each 

element(in*). 

2 " vector....Toung^s modulus for each element 

(lb per i^). 

XMU = vector....material density for each element 

(lb per i^). 

CSA= vector....cross sectional area for each 

element(in^). 

NC = number of structural reactions. 
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IC = vector of applied load numbers which are 

to be considered as structural reactions. 

The applied load numbers are those taken 

from figure 5k(a) using figure 54(b) to gî ê 

the corresponding reactions. The applied load 

numbering shown in figure 5l|(b) is the 

amended system. This is carried out within 

the subroutine. 

NL= order of the structural dynamic flexibility 

and stiffness matrices(constrained structure). 

UKD = structural dynamic stiffness matrix(constrained) 

for a given frequency. 

D3L = transformation matrix which relates the 

generalized applied loads to the generalized 

element boundary loads and structural reactions 

for a given frequency. 

P = structural dynamic flexibility matrix for a 

given frequency. 

MC e total number of unknowns, that is, generalized 

element boundary loads and structural reactions. 

IQ = vector of automatically selected redundancies. 

See chapter l,part 8, that is 1.3. 
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/? 

% 

& 

% 
NT-1 

NE 

p 

I 

P 

nitial applied loading system without reactions, note NJ-N3+1 

(a) 

f? P 
(ZXNZ) -MC-

! P 
p 
f̂ KWz)—Nc 

N& 

P 
( 2*Nl)— NC-1 

/vc 

Possible annlied load system when considering reactions. 

(b) 

Pig.54 
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84 

Moep 
WMAX LQ 

4.3 4 4 So Sz 6,7 -73 gg 

DEL 

UKD , ^ 

I 1 

DF 

J L 

<22 

F 
O M 

OM DEL F DELA DEL& FDA D F UKD C MDE P WMAX Lq 

W/IX/MUM 

O/ZDBfi 
84x122 04x42 4-2x4.-2. 4X+2 4*42 4?x+z 4#x4Z 4Z%%4 4-2x1 4Zxl 4 2 ^ 

Matrices equivalence^ in matrix OM and. the maximum 

order of the respective matrices. 
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4 Columns 

LM-3 (.M 

1 
1 

1 

1 
|MI+I ' 

1 

1 
i 
1 

O M 

Temporary transfer before equivalencing matrices PAR and PHI. 

(a) 

4- Columns 

n9 

8 4 

122 

MATRIX PM/% /)/v% 

MAX WUM 
42*4 

ON\ 

Matrices equivalence^ in matrix OM and the maximum 

order of the respective matrices. 

(b) 

Fi%. 56. 
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A.8.A, Fortran l i s t i n g of subrout ine P0RC2B. 

Table 35 . 

SUBROUTINE FORCEB(OMEGA,NK,IS,JS,XL,XI,E,XMU,CSA,NC,IC,NL,UKD,DEL, 
1F,MC,IQ) 

C JOHN ROBINSON. I.S.V.R, 
C THE RANK FORCE METHOD FOR COLLINEAR BEAM STRUCUTRES, 
C VIBRATION ANALYSIS. 

DIMENSION IS(20),JS(20),XL(20),XI(2U),E(20),XMU(20),CSA(20) 

DIMENSION 0M(84,122),IDEP(84),XMAX(B4;,IQ(84),FMD(4,4) 
DIMENSION PAR(42,4),PHI(4/;4),0EL184,42),F(42,42),DELA(4,42) 
DIMENSION DELB(42,4),FDA(4,42),0FL42,42*,C(42,84) 
DIMENSION MDEP(42),WMAX(42),LU(42),UKD(42,4Z),IC(4),J0(84) 
COMMON OM 
EQUIVALENCE*MDEP(1),0M(1,43)),(WMAX(1),0M(1,44)),(LQ(1).0M(1,49)), 

1(FDA(1,1),0M(1.46)),(DELB(1,1).0M(1,48)),(DELA(1,1),0M(1,50)), 
2(DF<L,L),0M(L,5Z)),(C(L,L',0M(L,46)),(PAR(L,L),0M(L,119)), 
3(PHI(1,1),0M(1,121)) 

C JOINT EQUILIBRIUM EQUATIONS. 
LM=6*NE+2 
M1=4*NE 
MCAML+NC 

C INITIAL NULL OM(I,J) MATRIX 
DOLU J=1,LM 
DOLU 1=1,MC 

10 0M(I,J)=0.0 
C OMEGA ALPHA JOINT 

OM(1,1)=1.0 
OM(2,2)=L.O 
0M(2*NE+1,4*NE-1)=1.0 
0M(2*NE+2,4*NE)=1,0 

C NO FURTHER OMEGA ALPHA JOINT EQUATIONS FOR ONE ELEMENT 
IF(NE-1)20,20,11 

C ADDITIONAL OMEGA ALPHA JOINT EQUATIONS FOR MORE THAN ONE ELEMENT 

11 N2=4*(NE-1) 
N3=3 
N4=4 
DO 16 K=3,N2,4 
M2=K 
D014 I=N3,N4 
M3 = fd2 + 2 
1301 2 J=M2,M3, 2 

12 OKA( I , J )::1 ,0 
14 M2::M24-1 

N3=N3+2 
16 1̂ 4=1̂ 4 + 2 
2u r,! =2*(lye:* 1) 

NL=N1-NC 
C REACTIONS AND APPLIED LOADS 

IF(NC,EQ,0)GO TO 4 
NNJ*1 

D06 N"1,NC 
6 ON(IC(N),M1+N).-1.0 
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Subroutine F0RC3B listing continued. 

U07 1=1,Nl 
D09 N=1,NC 
IFil .EQ.IC(N))GO TO 7 

9 CONTINUE 
0M(1,MC+NNJ)«-1.0 
NNJ=NNJ+1 

7 CONTINUE 
GO TO 5 

4 U021 1=1,Nl 
N5=MC+I 
0021 J=M5,M5 

21 0 M ( I , J ) = - 1 . 0 
5 CONTINUE 

c SOLUTION OF EQUATIONS 
CALL RANTEC(0M,N1,MC,LM,84,84,122, IOEP,XMAX,IQ) 

c CHECK FOR DYNAMIC REDUNDANCY 
0022 M=1,MC 
IF(IQ(M).EQ.O)GO TO 22 
GO TO 24 

22 CONTINUE 
GO TO 600 

24 CALL PAR0ER(0M,IQ,N1,MC,64,122,N) 
KP=4-NC-NL 
D029 1*1,Nl 
0029 JaLM-3,LM 

29 OM(Nl+I,J+KP)=OM(I,J) 
c ENERGY EQUATIONS 

JJ = 0 
D033 Mal,NE 
CALL FMD10(XL(M),XI(M),E(M),XMU(M) ,CSA(M),OMEGA,FMD) 

27 0028 1=1,4 
0028 J = l , 4 

28 PMD(I,J)=10000.0*FMD(I,J) 
0030 1=1,N 
D030 J = l , 4 
JK = J +JJ 

30 PAK( I ,J)=GM(N1 + I ,JK) 
CALL MATMULT(PAR,FMD,PHI,N,4,4,42, 4 , 4 ) 
0032 1=1,N 
0032 J = l , 4 

32 0M(I+N1,JK)*PHI(I ,J) 
U U J + 4 

33 CONTINUE 



Subrout ine FORCEB l i s t i n g cont inued . 

D046 1=1,N1 
D046 J=LM-3,LM 

46 0M(I,J)=0M(N1+I,J+KP) 
D048 I=N1+1,MC 
D048 J=M1+1,LM 

48 0 M ( I , J ) = 0 . 0 
CALL RANTEC(OM.N1+N.MC.LM,84,04,122,IDEP,XMAX,JQ) 

6U0 CONTINUE 
CALL REAR(0M,MC,LM,84,122,XCH) 
DEL MATRIX 
0034 1=1,MC 
D034 J=MC+1,LM 
L=J—MC 

34 DEL(I,L)=-OM(I,J) 
D023 1=1,NL 
D023 J*1,NL 

23 P ( I , J ) = 0 . 0 
1 1 = 0 
D044 Mai,NE 
CALL FMOiOC XL(M J,XI(M),E(M),XMU(M>,CSA(M),OMEGA,FMD) 

37 D038 1=1,4 _ _ 
D038 J=1,NL 
IK=I+II 

38 UELA(I,J)=DEL(IKrJ) 
D040 1=1,4 
D040 J=1,NL 

40, DELB(J,I)=OELA(I.J) 
CALL MATMULT(FM0,0ELA.FDA,4,NL,4,4,42,4) 
CALL MATNULT(DELB,FDA,DF,NL,NL,4,42,42,4) 
D042 1 = 1 ,NL ^ .. 
0042 J=1,NL 

42 F ( I , J ) = F ( I , J ) + D F ( I , J ) 
11=11+4 

44 CONTINUE 
STRUCTURAL DYNAMIC STIFFNESS MATRIX 
CALL MATINV(F,UKD,C.NL,42,42,84,N0EP,WMAX,LQ) 
GO TO 400 

2 STOP 
400 RETURN 

END 
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15, Subroutine FORCE?. 

15.1 Description of subroutine. 

This subroutine is used 

for the vibration analysis of general plane frames. The 

formulation assumes rigid joints but the programme can 

readily be amended to allow various joint conditions. 

Example, in the case of a pinned j oint connection the 

column in the matrix corresponding to the respective 

element load (moment) is nulled. See figure 57 . 

It should be noted however that there is no restriction 

on the structural reaction system. Typical systems are 

shown in figure 58 . 

The first step in this subroutine is 

to generate a matrix of element load numbers. The first 

row of this matrix gives the element boundary load numbers 

assigned to the first element, the second row are for the 

second element, and so on. The elements are not numbered 

in an actual idealization but are accepted in the order 

in which the element input data are assembled ( to be 

described later in the master programme FORCE-PLANE FRAME). 

The element load number matrix is of order (NEx6). 

The element specifying nodes are denoted by i and j. The 

first three coefficients in any row of the element load 

number matrix give the generalized element boundary load 

numbers at node i for the respective element. The remaining 

three coefficients in a row are for node j. The load 

numbers in a row correspond to, 
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1, load in the x-direction. 

2» load in the z-direction, 

3. moment. 

4. load in the x-direction. 

5. load in the z-direction. 

6. moment. 

node i 

node j 

The loads are taken in this order. 

This subroutine also generates, 

1. equilibrium and energy equations. — 

2 . matrix t structural dynamic 

flexibility matrix. 

3. matrix ^ structural dynamic 

stiffness matrix. 

4. matrix Aei\ 

For a given 

frequency. 

, transformation matrix 

which relates the 

unknowns and knowns. 

See description of subroutine FORCBB. 

In subroutine PORCEF, 

N2 . N1 

Ml = 6xNE, six generalized element boundary loads 

per element. 

N1 = 3* NJ (NJ" number of nodes), 

LM = (6x NE)+(3%NJ). 

The following limitations have been imposed, 

NB - 13 

NJ . 11 

NC = 9 
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Figure 59 shows & plane frame consisting of three elements. 

Figure 6^{a) shows the applied load system which is 

assumed acting on the frame, the initial formulation of 

the joint equilibrium equations considers no reactions. 

The specific reaction system is then imposed, see 

figure 60(b). 

Figure 6l shows the equivalencing carried 

out in this subroutine and in the master programme which 

calls it (FORCE-PLANS FRAME, described later), also in 

this figure are shown the maximum order of the respective 

matrices. To accommodate for the equivalencing of matrices 

PAR and PHI a temporary transfer of part of matrix CM is 

carried out. See figure 62(a) and (b). The complete 

transfer is accomplished using the DO-loops with 

statement numbers 29 and 46, see subroutine listing. 

15.2 Subroutines called by FORCEF. 

This subroutine calls 

subroutines RANTEC, PARDER, MATMULT, REAR, FMD30 and MATINV. 

See figure 53 » When calling subroutine PMD30 the appropiate 

subroutine should be used, that is; 

1. Element Type P1/3FD. 

2. Element Type P3/3FD. 

Subroutine FORCEF has been written assuming that all 

elements in the structure are of the same type. 

15.3 Subroutine listing. 

The listing of subroutine FORCEF 

is given in table 36 . 
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15,4 Description of subroutine arguments. 

The first card of this 

subroutine is, 

SUBROUTINE F0RCEP(0MBGA,NG*NJ;XB,ZB,I8,J8,XI,B,XMU,C8A, 

NC»IC,NL,UKD,DEL,F,MC»IQ) 

where, 

OMEGA" angular frequency (radians per second). 

NE = number of structural elementslfinite elements) 

NJ = number of nodes. 

XB = vector x-ordinate for each node(in). 

ZB = vector z-ordinate for each node(in). 

IS = vector first specifying node for 

each element. 

JS = vector second specifying node for 

each element. 

XI " vector second moment of area for 

each element(in*). 

E - vector......Toung^s modulus for each 

element(lb per in*). 

X M U = vector material density for each 

element(lb per in*). 

CSA = vector cross sectional area for each 

element(in'). 

NC = number of structural reactions. 

IC a vector of applied load numbers which are to 

be considered as structural reactions. The 
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applied load numbers are those taken from 

figure 60 (a) using figure 60 (b) to give 

the corresponding reactions. The applied 

load numbering shown in figure 60(b) is 

the amended system. This is carried out 

within the subroutine. 

NL = order of the structural dynamic flexibility 

and stiffness raatrices(constrained structure). 

UKD = structural dynamic stiffness matrix 

( c o n s t r a i n e d ) f o r a g i v e n f r e q u e n c y . % 

DEL = transformation matrix which relates the 

g e n e r a l i z e d a p p l i e d l o a d s t o t h e g e n e r a l i z e d 

element boundary loads and structural 

reactions for a given frequency. 

F = structural dynamic flexibility matrix for 

a g i v e n f r e q u e n c y . 

MC «= total number of unknowns , that i s , 

g e n e r a l i z e d e l e m e n t boundary l o a d s and 

s t r u c t u r a l r e a c t i o n s . 

IQ = vector of automatically selected redundancies. 
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A.S.A. Fortran listing of subroutine FORCE?. 

Table 36 . 

SUBROUTINE FORCEF(OMEOA,NE.NJ,XB,ZB,IS.JS.XL.E.XMU.CSA.NC.IC.NL.UK 
ID.DEL.F.MC.IQ) 

C JOHN ROBINSON. I.S.V.R. 
C THE RANK FORCE METHOD FOR GENERAL PLANE FRAMES. VIBRATION 
C ANALYSIS. ALL JOINTS HAVE BEEN ASSUMED RIGID. 

DIMENSION N0Q(13.6).0M(87,ill).IDEP(87),XMAX(87).I0(87).J0(87) 
1 .IS(13).JS(13).XI(13).E(13).XMU(13).CSA(13).FMD(6.6).IC(9).MDEP(3 
23).WMAX(33),LQ(33).nF(33.33).PAR(54.6).PHI(96.e),DEL(m7.33).F(33.3 
33).C(33.66).UKD(33.33).DELA(6,33).DELB(33.6).FDA(6.33).XB(ll), 

4ZB(11) 
COMMON OM 
EQUIVALENCE ( M D E P ( 1 ) . 0 M ( 1 , 3 4 ) ) . ( W M A X ( 1 ) , 0 M ( 1 . 3 5 ) ) . ( L 0 < 1 ) . 0 M ( 1 . 3 6 ) ) 

l . ( F D A ( l . l ) . 0 M ( 1 . 3 7 ) ) . ( D E L B ( l . l ) . 0 M ( 1 . 4 0 ) ) . ( D E L A ( l . l ) . m M ( l . a 3 ) ) . 
2 ( D F ( l . l ) . 0 M ( 1 . 4 6 ) ) . ( C ( l . l ) . 0 M ( 1 ^ 4 6 ) ) , ( P A R ( l , l ) . 0 M ( 1 . 1 0 4 ) ) . ( P H I ( l . l 

3).0M(1.108)) 
C JOINT EQUILIBRIUM EQUATIONS FOP GENERAL PLANE FRAMES fVIB. ANALYS) 
C MATRIX OF ELEMENT LOAD NUMBERS 

• J J J ™ 0 
D012 1*1.NE 
0011 Jml.8 

11 NOQ(I.J)=JJJ+J 
12 JJJ=JJJ+6 

JOINT EQUILIBRIUM EQUATIONS 
Nla3*NJ 
LMB6*NE+3*NJ 
M1*6*NE 
MCaMl+NC 
NL«N1-NC '' ' ' 
INITIAL NULL MATRIX 
D016 Jsl.LM 
0016 I«1.MC 

16 0M(I.J)*0.0 
LLL = 1 -
D02A 111*1.NJ 
D027 M*1.NE 
0027 J*1 
I F ( I $ ( M ) ^ I I I ) 2 6 . 2 2 . 2 6 

2 2 OM ( L L L + J " l . N 0 Q f M . J ) ) e l . 0 
26 I F ( J S ( M ) * I I I ) 2 7 . 2 4 . 2 7 
24 OM (LLL+J-l.NOQ(M,J+3))al.O 
27 CONTINUE 

LLL=LLL+3 
28 CONTINUE 

I REACTIONS AND APPLIED LOADS 
IFfNC.EQ.OIGO TO 4 
NNJel 
006 N*1,NC 

6 0M(IC(N).M1+N)"-1,0 
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Subroutine PORCGF l i s t i n g cont inued . 

007 
D09 Nal.NC 
IF(I.FO.IC(N))GO TO 7 

9 CONTINUE 
OM(I,MC+NNJ)aml.O 
NNJeNNj+i 

7 CONTINUE 
GO TO 5 

4 0018 1=1.N1 
M5=MC+I 
0016 

18 0M(I.J)=-1.0 
5 CONTINUE 

SOLUTION OF EQUATIONS 

CALL RANTEC(0M.N1,MC.LM.87.87,111,IDEP.XMAX,IQ) 
CHECK FOR DYNAMIC REDUNDANCY 
0063 Mal.MC 
IF(IQ(M),E0.0)G0 TO 63 
GO TO 65 

63 CONTINUE 
GO TO 600 

65 CALL PARDER(0W.IQ,N1.MC,67,111.N) 
KP=8*NC"NL 
0029 1*1.N1 
0029 JeLM-7,LM 

29 0M(N1+ I.J+ K P)"0M ( I.J) 
OM MATRIX INCLUDING ENERGY EQUATIONS 
*J ^ 0 
D060 Mel.NE 
INalS(M) . . 
JN*JS(M) 
XBTsXRfIN) 
ZRI=ZR(IN) 
XAJ=X8(JN) 
ZBJ=ZR(JN) 
CALL FMD30(X8I.ZBI.XRJ.ZBJ.XI(W),E(M).XMU(M)iCSA(M).0MEGA.FMD) 
D053 I n l . 6 
0033 J«1 .6 

93 FMD(I.J)=10000.0*FMn(I.J) 
D058 1*1.N 
D058 Jel.6 
JKaJ+JJ 

96 PAR(I.J)=0M(N1+I.JK) 
CALL MATMULT(PAR.FMD.PHI.N.6,6.54,6,6) 
D059 I.I.N 
0059 J*1.6 
JKaJ+JJ 

59 0M(I+N*.JK)=PHI(I.J) 

60 CONTINUE 
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Subroutine FORCEP listing continued. 

D04 6 1=1.N1 
D046 J=LM-7.LM 

66 OM(I.J)snM(Nl+T.J+KP) 
D048 I=N1+1.MC 
0068 JsMt+l.LM 

48 ON(I.J)=0.0 

CALL RANTEC(0M.N1+N.MC.LM,87.87.111.IDEP.XWAX.JQ) 
600 CONTINUE 

CALL REAR(0M.MC.LM.A7.111.XCH) 
DEL MATRIX 
0068 lal.MC 
0068 JaMC+l.LW 
L=J-MC 

68 DFLfI.L)=-OM(I.J) 

D031 lel.NL 
0031 Jal.NL 

31 F(T.J)=0.0 
1 1 = 0 
DO&A Hcl.NE 
IN=IS(M) 
JN=JSfH) 
XRI=XB(IN) 
Z R I = Z A ( I N ) 
XBJI = XR(JN) 
Z H J = Z R F J N ) 

CALL FMD30(X8I.ZBI.X8J.ZBJ,XI(W),E(M).XMU(M).CSA(M).0MEGA.FM0) 
0038 1=1.6 
0038 J=1.NL 
IK=I+II 

38 DELA(I.J)=DEL(IK/J) 

0040 1=1.6 
0060 Jcl.NL 

40 DELB(J.I)=DELA(I.J) 
CALL WATMVLT(FMD.DELA.F0A.6.NL.6,6.33.6) 
CALL MATMULT(0ELB.FDA.DF.NL.(NL\6.33.33,6) 
0042 1=1.NL 
0042 Jal.NL 

42 F(I.J)=F(I.J)+DF(I.J) 
11=11+6 

44 CONTINUE 
STRUCTURAL DYNAMIC STIFFNESS MATRIX 

CALL MATINV(F.UKD,C.NL.33.33.66.MDEP.WMAX.LQ) 
RETURN 

END 
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Rigid joint connections, 

(a) 

Null column 22 in 

_ matrix 

Joint with pinned connection, 

(b) 

Fig. 57 
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( \ \ \ \ 

/?. e+-( 

e+j 

Z 
O O P 
\\\\\ 

e+i 

Typica l s t r u c t u r a l r e a c t i o n systems, 

Pig. 58 
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HoAe. 

Simple plane f r a m e , three- elements, 

P i g . 59 . 
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P, 

P, 

Pz 

Pn 

P,. 

Pn 

Initial applied loading system without reactions. 

(a) 

fk Ps 

/(V 

I 1^% 

Py 

P o s s i b l e a p p l i e d load system when c o n s i d e r i n g r e a c t i o n s , 

( b ) 

Fig. 60 ' 
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87 

WMAX LC? 
MDEP 

D E L 

•J4 
3S y f° f 44. 53 93 

UAfO 

o r 

/ ; / 

/ I 

\ 
O M 

MATRIX OM PEL F , pet A OB LB FDA. PF VXD C Mmp (V/vfAX L(? 

MAXIMUM 

OI?DEfi 87X«| 97x3? 33*33 <0*33 33x6 6*s; 33*33 33x33 33*66 33x ( B3X 1 33*1 

Matrices eg_uiva.lenced in matrix (M and the maximum 

order of the respective matrices. 

Fig. 6l. 
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9 Colorvms 

IM-7 LM 

•S-O. 

Ml+i 
Nl+I K-fV! 

O M 

Temporary transfer before equivalencing matrices PAR and PHI, 

(a) 

104- I OS 

\ 

S7 

III 

PHI 

ofioe/z 
S4-%t> 5-4* 6 

OM 

Matrices equivalenced in matrix OM and the maximum 

order of the respective matrices. 

( b ) 

Fig. 62, 
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16, Subroutine FORCSP. 

See master programme 

P0RC3-R2CTANGULAR PLATS. 
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17. Subroutine EMD50 Element Type Pl/SPD. 

17.1 Description oi subroutine. 

This subroutine generates 

the dynamic flexibility matrix corresponding to an 

s-system of generalized element boundary loads for a 

rectangular plate element, Element Type P1/5FD, see 

Chapter 8(8.1.3(b)) and Chapter 4(4.1.5)* 

This type of element is used for the analysis of two 

dimensional plate structures. 

17.2 Subroutines called by PMD50. 

This subroutine calls 

subroutines RANTEC, PARDER, PMD40, MATMULT and REAR, see 

figure 63, 

17.8 Subroutine listing. 

The listing of subroutine EMD50 

is given in table 37 . 

17.4 Description of subroutine arguments. 

The first card of this subroutine is 

SUBROUTING FMD50(A,B,T,3M,XMUM,XNUM,OMEGA,EMD) 

where the argument definitions are the same as for 

subroutine FMD40 (Al.4.1(11.1)). 
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FMDSO 

7% is suh roo /-/fie ca //s 

t 

Sobraot'ini Subrouhn^ Subroohhe SobroOf-me Subroohnt 

RANTBC, PAfZDBK FMD40 matmult 

Subroutines called by subroutine JMD50. 

Fig. 63 . 
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A. S.A. Fortran listing of subroutine PMD50, Element Type Pl/SPD. 

Table 37 . 

S U 6 R 0 U T I N E F M 0 5 0 ( A , B , T , E M , X M U N , X N U M , O M E G A , F M O ) 
C J O H N K U B I N S O N I , S , V , R , 
C H E C T A N G U L A H P L A T E E L E M E N T 
C E L E M E N T T Y P E P l / S F O 
C E L E M E N T D Y N A M I C F L E X I b l L I T Y M a T d l X 

D I M E N S I O N D ( 1 2 , 2 4 ) , I 0 ( l 2 ) , X M ( 1 2 ) , P A R ( g , 1 2 ) , P h I ( 9 . 1 2 ) , I R ( l 2 ) 
D I M E N S I O N 0 E L Q S ( 1 2 , 1 2 ) , 0 E L 0 S T ( 1 2 , 1 2 ) , F M 0 ( 1 2 , 1 2 ) , G ( 1 2 . 1 2 ) 
E Q U I V A L E N C E ( D E L 0 S ( l , l ) , D ( l , l ) ) , ( D E L Q S T ( l , l ) . D ( 1 . 1 3 ) ) 
U 0 5 1 = 1 , 1 2 
D 0 5 J H ) , 2 4 

5 D ( I , J ) s 0 , 0 
D ( 1 , 5 ) , 0 ( 1 , 7 ) . D ( 2 , 1 ) . D ( 2 , 3 ) , D ( 3 , 1 0 ) , D ( 3 , 1 1 ) = . A 
D ( 3 , 1 6 ) , 0 ( 3 , 1 9 ) = A 
D ( I . 6 ) . U ( 1 , 8 ) , 0 ( 2 , 1 9 ) , 0 ( 2 , 2 2 ) , 0 ( 3 , 2 ) , 0 ( 3 , 4 ) = . 6 
D ( 2 , 1 1 ) , D ( 2 , 1 2 ) = 8 
D ( 2 , 7 ) a A * a 
D ( 3 , 6 ) a - A * 6 
D ( 3 , 5 ) , D ( 3 , 7 ) = - A * * 2 / 2 , 0 
U(2,6),0(2,8)=a**2/2.0 
U ( 1 , 9 ) . D ( 1 , 1 0 ) , D ( 1 , 1 1 ) , D ( 1 , 1 2 ) = - 1 , 0 
L L ~ 0 
U 0 6 K = l , 3 
D O B L = 1 3 , 2 4 , 3 

8 D < K , L + L L ) = 1 , 0 
L L = L L + 1 

6 C O N T I N U E 
C A L L R A N T E C ( 0 , 3 , 1 2 , 2 4 , l 2 , 1 2 , 2 4 , l D , X N , I p ) 
C A L L P A R 0 E R ( O , I R , 3 , 1 2 , 1 2 , 2 4 , N N ) 
UOlO Msl,9 
0010 N=l,12 

10 P A R ( M . N ) = 0 ( 3 + M , N ) 
C A L L P M D 4 0 ( A , 6 , T , E M , X M U M , X N U M , 0 % E G A , F M D ) 
C A L L M A T M U L T ( P A R . F M D . P H l , 9 , 1 2 , 1 2 , 9 , 1 2 , i 2 ) 
U 0 1 2 M a i , 9 
0 0 1 2 N = i , 1 2 

12 0 ( 3 + M , N ) = P H I ( M . N ) 
C A L L R A N T E C ( D . 1 2 , 1 2 . 2 4 . 1 2 , 1 2 , 2 4 , I 0 , X M , I R ) 
C A L L R E A k ( D , l 2 , 2 4 , 1 2 . 2 4 , X C H ) 
0 0 1 4 1 * 1 , 1 2 
D 0 1 4 J a l 3 , 2 4 

14 D E L 0 S ( I , J - 1 2 ) = - D ( I , J ) 
0 0 1 b 1 = 1 , 1 2 
0 0 1 6 J a l , 1 2 

16 O E L O S T ( I , J ) = D E L Q S ( J , I ) 
C A L L k A T M U L T ( F M D , D E L Q S , Q , 1 2 , l 2 , 1 2 , 1 2 , 1 2 , 1 2 ) 
C A L L M A T M U L T ( D E L Q S T , Q , F M D , 1 2 , 1 2 , 1 2 , 1 2 , 1 2 , 1 2 ) 
R E T U R N 
E N D 
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A4.2 Functions. 

1. Function KINT. 

1,1 Description of function. 

This function ia used in the 

master programmes to be described later. It appears in 

the eigenvalue evaluation and was written by C.Seavey. 

This function uses function INT which takes the sign of 

a real number, say A,, and multiplys it by the largest 

integer A. Function INT ia an intrinsic function, I.C. T. 

1900 Computer. 

Examples ̂  

A INT KINT would give 

2.235 2 2 

1.235 1 1 

0.235 a 0 
z' ~ S 

-1.235 -1 f-2 \ 

1.2 Functions called by KINT. 

this function uses function INT. 

1.3 Function listing. 

The listing of function KINT is 

given in table 38 , 

1.4 Description of function argument. 

The first card of this 

function is, 

FUNCTION KINT(A) 

where, 

A = real number. 
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F U N C T I O N K X N T ( A ) 
C . S E A V E Y , I . S . V . R . 
K I N T " I N T ( A ) 
I P ( A ) 1 , 2 , 2 

1 K I N T s K l N T - 1 
2 R E T U R N 

E N D 

A, S, A. Fortran listing of function KINT. 

Tkble 38 . 
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A4.3 Master Programmes, 

Master programmes have been 

written for the vibration analysis of collinear beam 

structures, general plane frames and two dimensional plat© 

structures. The master programmes contain the procedure 

for eigenvalue evaluation which is the same for all 

programmes except that the respective PORCE-subroutine is 

called to obtain the structural dynamic stiffness matrix 

for a given frequency. It should be remembered that in the 

force formulation the structural dynamic stiffness matrix 

cannot be separated into the familiar iteration form 

The eigenvalue formulation in the force approach is 

- n o ; 

where the frequency parameter X is contained in the 

structural dynamic stiffness matrix . 

The procedure adopted to find the eigenvalues 

of the system of homogeneous equations is based on a 

stepping method to find a change in sign of a determinant 

and is as follows ; 

1. Calculate the structural dynamic stiffness 

matrix for an assumed value of the frequency 

parameter, X 

2. Evaluate the determinant of matrix If 

the determinant value is zero an eigenvalue 
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has been found, otherwise continue through 

a range of assumed values of X until a 

sign change of the determinant value occurs. 

If no sign change is found a message 

NO ZERO CROSSING FOUND IN RANGE is printed 

out. 

3, On finding a sign change the two adjacent 

X -values are isolated and termed X, and Xj, . 

These values are then fed into an iteration 

routine for calculating the actual eigenvalue 

within specified limits, If after ten 

iterations the eigenvalue has not been found 

to the desired accuracy the message 

ITERATION TERMINATED AFTER 10 STEPS is 

printed out. The previous estimate of the 

eigenvalue and the determinant are printed 

along with the current estimates. The current 

estimates are then used to find the 

eigenvector. 

4. This cycle is repeated to obtain a range of 

eigenvalues. 

The stepping procedure adopted is the same as that contained 

in subroutine PRVSl which was written by Dr.C.A.Mercer, 

M.Petyt and C.Seavey. 

As structural configurations become 

more complex the more difficult the task of finding 

eigenvalues. Even when an eigenvalue is located it may not 
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be known which one it corresponds to until the corresponding 

eigenvector has been computed. Although a sign change has 

occured between X, and Xj it is quite possible that more 

than one eigenvalue is contained within these boundaries. 

It should also be realized that eigenvalues can exist 

without a sign change occuring . In the procedure adopted 

in the master programmes they are located by examining the 

variation of the determinant value and can easily be missed 

if the step siz& ±6 too big. This situation of no sign 

change constitutes a double eigenvalue, The symptoms to 

observe are that the determinant value is increasing, it 

then drops and then increases again. At each step the sign 

of the determinant value is the same. Figure 64 shows 

eigenvalue conditions. Having found an eigenvalue it is fed 

into subroutine MODS to evaluate the corresponding 

eigenvector. 

The master programmes also control the allocation 

of computer storage, reading of input data and the output 

of desired results. 
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+• oe 

d.et M 

£i^ef^\>alue. 

U) ̂ radians peh second) 

- U € "X 

Iteration to find single eigenvalue. 

(a) 

Double ai^'eMoloe 

Appatefit dete^rM/nant 

VO-^/'A tion / / /h^. step 

si^t is too biq . 

DgZ-g A-zM/ViAMif va^tof/'on uUen 

a double f fgf/iva/t/f dccur-s. 

4 

Iteration to find double eigenvalue. 

( b ) 

Fig. 6k . 
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1. Master programme PORCa-BS&M. 

This programme is for the 

vibration analysis of collinear beam structures using the 

rank force method. The programme has been written so that 

a number of problems can be solved together, that is, the 

programme has multiple case capability. The vibration 

analysis of a structure has been divided into two forms 

of analyses, 

(a) Determination of element boundary loads, 

structural reactions, structural dynamic 

flexibility matrix (this gives the unit 

structural responses) and the structural 

dynamic stiffness matrix, all for a given 

frequency and a general system of harmonic 

forcing functions, 

lb) Eigenvalue and eigenvector evaluation. 

Both analyses can be carried out for a range of frequencies. 

The collinear beam structures can be idealized into any 

number of discrete elements and uses the plane beam type 

of element (FMDIO series of subroutines). Each discrete 

element can have a different length. Young's modulus, 

material density and section properties and the structure 

c a n be constrained in any way consistent with the basic 

assumptions. 

The listing of master programme FORCE-BEAM is given in 

table 39 . 
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1,1 Input lata. 

KAS2S = number of cases being run (maximum* 9). 

MR — form of analysis being undertaken, that is, 

MR = 1 for element boundary loads, etc. 

MR = 2 for eigenvalue and eigenvector evaluation, 

KS = number of frequencies being considered (maximum = 42), 

When MR = 2 this maximum is based on the number of 

lowest frequency estimates, this has nothing to 

do with the incremental frequencies. 

XXAM(K),DDLAM(K),NN8T(K),II2P8(K) - frequency data, 

where K = 1 ,KJS. 

ihis data is punched as one frequency data per card, that is, 

XXAM(1),DDLAM(1),NNST(1),II2P8(1) first card. 

XXAM(2),DDLAM(2),NNST(2),IISP8(2)^ second card. 
\ 
f 
f 

1 
1 

I I 
I I t), 

XXAMIK2),DDLAM(KB),NN8T(KB),IIEPS(KE) K & card. 

When MR - 1 ; 

XXAM " frequency at which the element boundary loads, 

structural reactions, etc., are required (radians 

per second). 

DDLAM — frequency increment or step size (radians per second) 

-1.0 

NNST = maximum number of increments to be considered « 1 

II2P8 m number of significant figures for answers (maximum* 8) 

= 1 
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DDLAM, NNST, IIBPS are not actually used in this analysis 

so they are quite arbitrary. These values (1.0,1,1) 

can be adopted for all considered frequencies but they 

must be punched on each card. 

When MR-2:; 

XXAii = lowest estimate of the eigenvalue being evaluated 

(radians per second). 

JJDLAM = frequency increment or step size (radians per second). 

NNST = maximum number of increments to be considered. It is 

quite possible that an eigenvalue may be located 

after only a few increments and therefore this 

maximum will not be reached. On the other hand if no 

eigenvalue is located in this range NN8T will have 

reached its maximum value, 

U S P S - number of significant figures for the answers 

(maximum - 8) #. In general this maximum is adopted. 

Note ; the frequency data will take KB cards. 

KET = number of discrete (finite) structural elements 

(maximum = 20). 

IS(M),J8(M)»XL(M),XI(M),S(M),XMU(M),CSA(M) = element data, 

where M =1,NE. 

This data is punched as one element data per card, that is, 

IS(1),JS(1),X1(1),XI(1),2(1),XMU(1),CSA(1) first card. 

IS(2),J8(2),XL(2),Xl(2)rE(2),XMU(2),CSA(2) second card. 

IS(NE),JS(NE),XL(Na),XI(NB),S(N2),XMU(NB),C8A(Na)...Na*card. 
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IS = first element specifying node. 

J3 = second element specifying node. 

XL = discrete element length (in). 

XI - element second moment of area (inf). 

3 — Young's modulus for the element (lb per in' ). 

XKU= density of element material (lb per in*). 

C3A » element cross sectional area (in'). 

Note ; the element data will take ME cards. 

NO; IC(N) " constraint data, where N " 1,NC. 

NC = number of structural reactions ( = 0 (zero) for no 

reactions), MaKln<ufi\ ̂  4 . 

IC — vector of applied load numbers which are considered as 

structural reactions, fhese numbers are established 

assuming initially that no reactions exist. 

The input data formats and data card columns used for the 

respective parameters are given in table Uo . The method 

of data deck assembly for a multiple case analysis is shown 

in figure? 65 and the complete programme/data assembly 

is shown in figure . 
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A.8.A. Fortran listing of master programme PORCE-B&AM. 

Table 39 . 

M A S T E R F O R C E - B E A M 
C JOHN R O B I N S O N , I . S . V . P . 
C V I B R A T I O N A N A L Y S I S O F G O L L I N E ^ R B k A M S T R U C T U R E S U S I N G T H E 
C R A N K F O R C E M E T H O D , 

D I M E N S I O N I S ( 2 0 ) , J S ( 2 0 ) , X L ( 2 0 j , X l ( 2 0 ) , E ( 2 0 ) , X M U ( 2 0 ) . C S A ( 2 0 ) . 
l U K n ( 4 2 , 4 2 ) , X f 4 2 ) , X X A M ( 6 2 ) , D U L A N ( 4 2 ) , N N S T ( 4 2 ) , I I E P S ( 4 2 ) . n E L ( 
2 F ( 4 2 , 4 2 ) , 0 M ( 8 4 , 1 2 2 ) , I 0 ( B 4 ) 
C O M M O N O M 
L O U I V A L E N C E ( D E L ( l . l ) , O M ( l , l ) ) , ( F ( l , l ) , O M ( l , 1 0 2 ) ) 
E Q U I V A L E N C E ( U K D ( 1 . 1 ) , 0 M ( 1 , 4 6 ) ) 
K E A D ( 5 , 8 5 ) K A S E S 

8 5 F O R M A T * I I ) 
0 0 5 0 0 K A = 1 , K A S E S 
k H I T E f 6 , 8 7 ) K A 

8 7 F 0 R M A T ( 1 4 H C A S E N U M B E R , 1 1 ) 
W P I T E f 6 , 3 0 0 0 ) 

3 0 0 0 F 0 R M A T ( 2 3 H J O H N R O B I N S O N I . S . v . R . ) 
H R I T E ( 6 , 9 0 0 ) 

9 0 0 F 0 R M A T ( 2 2 H P R O G R A M F O R C E - B E A M . ) 
R E A D ( 9 . 8 6 ) M R 

8 6 F O R M A T ! I I ) 
R E A D ( 5 , 8 8 ) K E 

8 8 F 0 R M A T ( I 2 ) 
W R I T E ( 6 , 1 6 ) K E 

16 F 0 R M A T ( 4 2 H N U M B E R O F F R E Q U E N C I E S B E I N G I N V E S T l G A T E D a , ! * ) 
R E A n ( 5 , 9 0 ) ( X X A M ( K ) . D D L A M ( K ) , N N $ T ( K ) , I I E P $ ( K > , K = l , K E ) 

9 0 F 0 R M A T ( 2 F 1 2 , 6 , I 4 , I 3 ) 
W R I T E ( 6 , 1 8 ) ( X X A M ( K ) . 0 D L A M ( K ) , N N S T ( K ) , I I E P S ( K ) , K = 1 , K E ) 

18 F n R M A T ( 2 3 H A S S U M E D F R E Q U E N C Y U A T A / / / 3 3 H L O W E R E S T I M A T E S T E P 5 
I S T S I K / / / ( 2 F 2 0 , 6 , I 4 . I 3 ) ) 
R E A D ( 5 , 9 2 ) N E 

9 2 F 0 R M A T ( I 2 ) 
W H I T E ( 6 , 2 0 ) N E 

2 0 F O R M A T ! 2 0 H N U M B E R O F E L E M E N T S * , 1 3 ) 
h E A 0 ( 5,94)(I$ ( M),JS ( M),XL ( M),XI ( M ) , E ( M),XMU ( M).C$A ( M ) . M=l , N F I 

9 4 F 0 R M A T ( I 2 , I 5 . F 1 2 . 4 , F l 2 . 4 , d 9 . 1 , F l 2 , 4 , F l 2 , 4 ) 
H R I T E ( 6 , 2 2 ) ( I S ( M ) , J S ( N ) , X L ( M ) , X I ( M ) , E ( M ) , X M U ( M ) , C S A ( N ) . M = l . N i 

2 2 F 0 R M A T ( 1 3 H E L E M E N T D A T A / / / 6 2 H N U D E S L E N G T H S E C M O M AREA r 
I M O O D E N S I T Y C , S . A R E A / / / ( i 3 , I 2 , 2 F l 2 . 4 , E 9 . 1 , 2 F l 2 . 4 ) ) 
R E A D ( 3 , 9 6 ) N C . ( I C ( N ) . N = 1 , N C ) 

9 6 F O R M A T ! 1 1 , 4 1 4 ) 
* K I T E ( 6 , 2 4 ) N C , ( l C ( N ) . N a l , N C ) 

24 F O R M A T ! 2 3 H N U M B E R O F C 0 N S r R A I N T S = , I 4 / / / 2 0 H I M P O S E D C O N S T R A I N 
1 4 1 4 ) ) 
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Master programme FORCE-BEAM listing continued. 

D 0 3 1 0 K = l , K E 
X A H = X X A M ( K ) 
I F ( M R - 1 ) 1 5 , 3 5 4 , 1 5 

15 D L A M = n D L A M ( K ) 
N $ T = N N S T ( K ) 
I E P S = I I E P S ( K ) 
h H r T E f G , 1 4 ) K . X A M , D L A M . N S T , I E P S 

14 F 0 R M A T ( 1 5 H F R E Q U E N C Y n A T A , I 4 / / / 5 h X A M = , F 1 2 , 6 , 3 X , 6 H ' 0 L A M = , F 1 2 , o 
1 5 H N S T = , I 4 , 6 H I E P S = . I 3 ) 
C A L L F O R C E B ( X A M , N E . I S , J S , X L , X l , E , X M U , C S A , N C , I C , N L , U K D . D E L , F , M C 
C A L L V A R D E T ( N L , N L , N L , D E T 1 , U K D , 4 2 ) 
* R I T E ( 6 , 6 0 0 ) X A M . D E T 1 

4 0 0 F O R M A T * 1 7 H L O W E R F R E Q U E N C Y = , F 1 2 . b / / / 1 3 H D E T E R M I N A N T S , E 1 3 . 7 ) 
D O l O l J = l , N S T 
XAW=XAM+DLAM 
C A L L F 0 R C E B ( X A M , N E , I S . J S , X L , X 1 , E , X M U , C S A , N C , I C . N L , U K 0 . D E L . F . M C 
C A L L V A R 0 E T ( N L . N L , N L . D E T 2 , U K D , 4 2 ) 
W R I T E ( 6 , 4 0 2 ) J , X A M , D E T 2 

4 0 2 F D R M A T ( 1 3 H S T E P N U M B E R S , I 3 / / / 1 9 H C U H R E N T F R E Q U E N C Y * , F l 2 . 6 / / / 
i r E R M l N A N T = , E 1 5 , 7 ) 
I F ( n E T l * D E T 2 ) 2 0 0 . 2 0 9 . 1 0 2 

1 0 2 U E T ) = D E T 2 
101 C O N T I N U E 

N S T = ~ 1 
M R I T E ( 6 , 1 0 3 ) 

1 0 3 F O R M A T ! 3 3 H N O Z E R O C R O S S I N G S F O U N D IN R A N G E ) 
G O TO 3 1 0 
I T E R A T I O N ( P H A S E 2 ) 

2 0 0 F 1 = X A M - D L A M 
F 2 = X A M 
I F ( I E P S - 8 ) 2 0 3 , 2 0 3 , 2 0 2 

2 0 2 I E P S = 8 
2 0 3 C O N T I N U E 

0 0 2 0 7 1 = 1 , 1 0 
I F ( 1 - 1 ) 2 0 5 , 2 0 5 , 2 0 4 

2 0 4 F 1 = X A M 
D E T l = n E T 

2 0 9 C O N T I N U E 
X A M = ( F l * 0 E T 2 - F 2 * D E T l ) / ( D E T 2 - 0 c T l ) 
A = A L 0 G 1 0 ( X A M ) 
I E X = K I N T ( A ) 
E P S = 1 0 , 0 * * ( I E P $ - I E X ~ 1 ) 
H S U B s ( X A M - F l ) 
I F ( X A N - H S U B * E P S ) 2 0 & , 2 0 9 , 2 0 9 

2 0 6 C O N T I N U E 
I F ( 1 - 1 ) 2 5 0 . 2 5 0 . 2 5 5 

2 5 0 F I N T = F 2 - X A M 
C F = 0 , 2 

2 5 1 F R = X A M + C F * F I N T 
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Master programme PORCa-BaAM listing continued. 

CAUL F 0 R C E B ( F R . N E , I S . J 5 , X L , X I , E . X H U , C S A , N C . I C , N L , U K D , D E L , 
C A L L V A R D E T ( N L , N L , N L . n R T , U K D , 4 2 ) 
I F ( D E T * 0 E T 2 ) 2 5 2 . 2 5 3 . 2 5 4 

2 5 2 C P = C F + 0 , 1 
G O T O 2 5 1 

2 5 3 X A M s F R 
G O TO 2 0 9 

2 5 4 F 2 = F R 
DET2S0ET 

2 5 5 C A L L F 0 R C E 8 ( X A M , N E , I S , J S , X L , X I , E , X M U , C S A . N C , I C , N L , U K 0 . D F L . 
C A L L V A R 0 E T ( N L . N L , N L , n E T , U K D , 4 2 ) 

2 0 7 C O N T I N U E 
W R I T E ( 6 , 2 0 8 ) F l , 0 E T l . X A M , D & T 

2 0 8 F O R M A T ; / / / 3 6 H I T E R A T I O N T E R M I N A T E D A F T E R 10 S T E P S / / 2 2 H P R E V I O U : . 
l E S T l N A T E = , E 1 6 , 8 , 1 3 H D E T E H M I N A N T = , E 1 6 . 8 / / / 1 8 H C U R R E N T E S T I M A T E : ; 
2 E 1 6 . 8 , 1 3 H 0 E T E R N I N A N T = , E l b . 8 / / 2 2 H C U R R E N T E S T I M A T E U S E D ) 

2 0 9 CONTINUE 
V E C T O R E V A L U A T I O N ( P H A S E 3 ) 

3 5 4 C A L L F O R C E B ( X A N . N E , I S , J S , X L , X I , E , X M U , C S A . N G , I C , N L , U K D . D F L , F , M C . 
I F ( M R . E Q . 1 ) G 0 T O 3 5 6 
C A L L M 0 O E ( N L , N L . N L , U K 0 , 4 2 , X , X A M ) 
G O T O 3 1 0 

3 5 6 I F ( K . N E . 1 ) G 0 T O 4 0 6 
0 0 4 1 0 1 = 1 , M C 
I F ( I , N E . 1 ) G 0 T Q 4 1 2 
* R I T E ( 6 , 4 1 4 ) 

4 1 4 F 0 R M A T ( 1 3 H R E D U N D A N C I E S ) 
4 1 2 CONTINUE 

I F ( I Q ( I ) . E O . O ) Q O T O 4 1 0 
W % I T E ( 6 , 4 0 1 ) I Q ( I ) 

4 0 1 F 0 R M A T ( I 6 ) 

4 10 CONTINUE 
4 0 6 W A I T E ( 6 , 3 6 0 ) X A M 
3 6 0 F 0 R M A T ( 1 1 H F R E Q U E N C Y : , F 1 2 . 6 ) 

w R I T E ( 6 , 3 5 8 ) ( ( I . J , 0 E L ( I . J ) , J = l . N L ) , I s l , M C ) 
3 5 8 F O R M A T ! 2 4 H U N I T M A T R I X O F UNKN0WNS//4(I4.2W , , I 2 , 3 X . E 1 9 . 1 1 ) ) 

W R I T E ( 6 , 3 5 9 ) ( ( I , J , F ( I , J ) , J = 1 , N L ) , I = 1 , N L ) 
3 5 9 F 0 R W A T ( 3 8 H S T R U C T U R A L D Y N A M I C F L E X I B I L I T Y M A T R I X / / / 3 ( I 4 . 2 H , 

l , E i q , l l , 2 X ) ) 
w R I T E ( 6 , 3 5 0 ) ( ( K K , J , U K D ( K K , J ) , V = l , N L ) , K K s l , N L ) 

3 5 0 F 0 R M A T ( 3 6 H S T R U C T U R A L D Y N A M I C S T I F F N E S S M A T R I X / / / 4 ( I 4 . 2 H ,.I 
1 1 9 . 1 1 ) ) 

3 1 0 CONTINUE 
5 0 0 CONTINUE 

S T O P 
END 
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One 
co-f-d. 

X X A M 
Ploethm^ 

pa /„ /• 
FlZ-i> / h > 12 

funcU at*yu i^ere. /m M/s column 

/•an36 . 

1 On^ 
1 CO- t-d-
f 

I JhCivtuc^ 

1 data. 

P O i - A M poJftt FIZ-& 13 fb Z4-
Punch OA'jtJhefe in /4/( Column 

f-anse . 
1 On^ 

1 CO- t-d-
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/^an$e . J 

0 / 7 « 

ca.fj. 
h pej-
e.le/nenb 
datA 

N C Xnte^er- X i / 

) i c O ) 1 4 1 toS 
^ijht fidjusheef. ) 

1 

1 
1 

j 

! 

1 

1 

1 

1 

1 
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*• etx^d 

1 

i 

1 

1 

I 

I 

1 
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- - f -
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- 1 1 
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J 

One 
*• etx^d 

Input data for master programme FORCE-BEAM, 

Table 40 » 
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1.2 Output data. 

The first part of the output data consists 

of the title data and the input data for each case, that is, 

CAS3 NUMBER __ 

JOHN ROBINSON I.S.V.R. 

PROGRAM FORCB-BEAM. 

NUMBER OP PR2QU2NCISS BEING INVESTIGATEDe 

ASSUMED PREQUENCT DATA 

LOWER ESTIMATE STEP SIZE 

I 

NST SIG 

NUMBER OP ELEMENTS,: 

ELEMENT DATA 

NODES LENGTH SEC MOM AREA TUNG MOD DENSITY C.8.AREA 

I i 

NUMBER OP CONSTRAINTS = 

IMPOSED CONSTRAINTS 

The second part of the output consists of the required 

results depending on the value of MR. 

MR - 1 

1. Automatically selected redundancies. 

The dynamic redundancies which are 

isolated by the rank technique are printed out for each 
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case. 

a a D U N D A N C I S S 

2. Frequency being considered. 

When MB 1 the analysis for one case 

is carried out for one frequency or a range of frequencies. 

The frequency at each stage is printed out. 

l#3QU2NCY -

3. Unit element loads and structural reactions, 

fhe element boundary loads and 

structural reactions are given in the form of a D3L-matrix 

which i@ generated for & given frequency and a general 

system of harmonic forcing functions. In the programme 

formulation all possible applied loads are assumed to exist, 

Therefore, 

_ 6 _ 

6'% 

f / x l 

Vector of 

unknowns. 

DEL-matrix 

(this gives the 
unit unknown 
distributions). 

Vector of all 

possible applied 
loads. 

The DEL-matrix is printed out and the actual unknowns 

corresponding to an actual applied load system are obtained 

by multiplying this matrix by the actual vector of applied 

harmonic forcing functions. This is for a given frequency. 

This latter operation is not presently in the programme 
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but requires very little effort to incorporate it. 

The DEL-matrix is printed out in the following manner, 

UNIT MATRIX OP UNKNOWNS 

I 

I I , J DEL(I,J)L 
J 

.four per line. 

Row Column 
number, number. 

Matrix coefficient, 

2-FORMAT. Examples ; 
1. -0.1667E 3 
.-166.7 

2. 0.38578-1 

"0.03857 

4. Structural dynamic flexibility matrix. 

The unit structural responses for 

a given frequency and a general system of harmonic forcing 

functions are given by the structural dynamic flexibility 

matrix, that is. 

= [-3% ] I ( 

Structural 
response 
vector. 

P-matrix. Vector of all 
Structural possible applied 
dynamic flexibility loads, 
matrix. 

The structural dynamic flexibility matrix is printed out, 

the actual structural response vector corresponding to an 

actual applied load system is obtained by multiplying the 

P-matrix by the actual vector of applied harmonic forcing 

functions. This is for a given frequency. This latter 

operation is not presently in the programme but again this 

is a simple amendment. 
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The F-matrix is printed out in the following.manner, 

STRUCTURAL DYNAMIC FLEXIBILITY MATRIX 

four per line, 

Rov 
number. 

Column 
number. 

Matrix 
coefficient. 
2-FORMAT. 

5. Structural dynamic stiffness matrix. 

The unit harmonic forcing functions 

for a given frequency and a general system of structural 

responses are given by the structural dynamic stiffness 

matrix, that is. 

Vector of 
harmonic 
forcing 
functions. 

UKD-matrix. 
Structural 
dynamic stiffness 
matrix. 

Vector of all 
possible structural 
responses. 

The structural dynamic stiffness matrix only is printed 

out and in the following manner. 

UKD(KK,J) 

Rov 
number 

Column 
number. 

Matrix 
coefficient. 
E^fORMAT. 

four per line. 
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MR = 2. 

PRSQUSNCT DATA __ 

XAM = DLAM == NST " ISPS'-

t ! t t 

Lowest Step Number Number of 
estimate. size. of steps, significant 

figures for 
answers. 

FR2QUSNCT = ' 

D3T3RMINANT = 

STEP NUMBER = 1 

CURRENT PREQUENCT -

DETERMINANT -

STEP NUMBER = 2 

CURRENT PREQUENCT -

DETERkllNANT 

ana so on until a change in sign of the determinant value 

has occured. Two possible conditions exist ; 

(a) No change of sign. 

When the sign of the determinant 

doesn't change through the range of frequencies 

considered (decided by the value of NNST in the 

input) the following statement is printed out, 

NO ZERO CROSSING POUND IN RANGE 

When this statement is printed out investigate 

the variation in the determinant value to see if 

a double eigenvalue is indicated. 
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(b) Change of sign. 

After locating a change of sign 

an iteration routine is entered and the eigenvalue 

is computed to the desired accuracy. This is then 

used to find the corresponding eigenvector. 

The output is as follows, 

21G2NVALUE - ' 

iiZRROR Sm,i . DETERMINANT -

EIGENVECTOR 
I 
I 
I 
I 
I 
I 
! 

See subroutine MODS (Al.4.1 13). 

If during the iteration phase 

the eigenvalue is not found to the desired 

accuracy the statement 

ITERATION TERMINATED AFTER 10 STEPS 

is printed out along with, 

PREVIOUS ESTIMATE « 

DETERkilNANT = 

CURRENT ESTIMATE 4 — This is fed. into 
subroutine MODE* 

DETERMINANT = 

CURRENT ESTIMATE USED 

After computing the eigenvector the following 

is printed out* 

EIGENVALUE -

ERROR SUM - DETERMINANT = 

EIGENVECTOR 
I 
f 

I 
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1.3 Example of usage. 

The simply supported beam shown in 

figure 67 is idealized as two discrete elements, using 

Element Type P8/2FD evaluate ; 

(a) The first and second eigenvalues. 

(b) The unit distributions for the element 

boundary loads and structural reactions, 

structural dynamic flexibility and stiffness 

matrices at a frequency of 200 radians per 

second. 

The input data preparation for this problem is given in 

t a b l e 1 + 1 , 
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1 
11 

<aO 
I 
. 

J"! 

80.0*10 lb ner in. 

1. 866 ia 
•4-

I = 0.1 in 

0.283 lb per in 

Simply supported beam, 

(a) 

Node number 

3o 3o 

Applied loading and 

numbering before imposin, 

Constraints. 

( b ) 

Applied load 

number corresponding 

to reaction. 

Applied load 

number corresponding 

to reaction. 

Possible applied loading and numbering 

with reactions. 

(c) 

Pig. 67 . 
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2. Master programme P0RC3-PLAM2 

This programme is for the 

vibration analysis of general plane frames, this is 

presently restricted to rigid element joints but can 

readily be amended for arbitrary joint connections as 

indicated in the description for subroutine 203C3P, page 

The programme has been written for multiple case capability 

and the vibration analysis has been divided in the same 

way as for master programme P0RC3-B3AM, page 322. 

The general plane frame structure can be idealized into 

any number of discrete elements within the specified limits 

and uses the inclined plane beam type of element (FMD80 seri 

of subroutines). Each discrete element can have a different 

length, the length of each element being calculated within 

the computer programme using the coordinates of the element 

specifying nodes. Each element can also have a different 

Young's modulus, material density and section properties 

and the structure can be constrained in any way consistent 

with the basic assumptions. 

The listing the master programme PORCE-PLAN^ 

FRAME is given in table ^2 . 
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EAS38 = number of cases being run (maximum = 9 ) . 

MR = form of analysis being undertaken. 

KZ = number of frequencies being considered 

(maximum - 88). 

XXAM(E),DDLAM(K),N^ST(K),IIKPS(K) = frequency data, 

where K=1,E3._ 

This 

IS ac 

in 

same -

as ma. 

progr 

F0RC3. 

N2 = number of discrete structural elements 

(maximum = 13). 

NJ m number of nodes (maximum = 11). 

NODE; XB(NODS), ZB(NODE) — nodal data, where N0D2=1,NJ. 

This data is punched as one nodal data per card, that is 

1, XB(1), ZB(1).. 

2, XB(2), ZB(2).. 

first card, 

second card. 

NJ,XB(NJ) ,ZB(NJ). NJ card. 

NODE - node number. 

XB = x-ordinate of respective node (in) 

Z B - z-ordinate of respective node (in) 

Note ; the nodal data will take NJ cards. 
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I8(M),JS(M);XI(M),E(M),XMU(M),C8A(M) = element data, 

where M = 1 

This data is defined in the same way as master programme 

i.'ORCxii—BiiALi. It should he , noted that in the frame ^irogramme 

no element length is given in the element data. 

NC, IC(N) = constraint data, where NC = 1,NC. 

NC = number of structural reactions ( = O(zero) for no 

reactions). Maximum - 9. 

IC " vector of applied numbers which are considered as 

structural reactions. These numbers are established 

assuming initially that no reactions exist. 

The input data formats and data card columns used for the 

respective parameters are given in table 43. The method of 

data deck assembly for a multiple case analysis is shown 

in figure 68 and the complete programme/data assembly is 

shown in figure 69 . 

2,2 Output data. 

The first part of the output data consists 

of the title data and the input data for each case, that is 

CASa NUMBER 

JOHN ROBINSON I. 8.V. R. 

PROGRAM FORCE-PLANS FRAME. 

NUMBER OP FREQUENCIES BEING INVESTIGATED = ____ 

ASSUMED FREQUENCY DATA 

LOWER ESTIMATE STEP SIZE NST SIG 
I 
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NUMBER OP SL3M3NT8 

NUMBZR OP JOINTS 

NODAL COORDINATES 

NODS XB-ORDINAT: 2B_0RDINATJ 
1 

NUMBER OP CONSTRAINTS 

IMPOSED CONSTRAINTS 

ELEMENT DATA 

NODE NOD& SEC MOM AREA YOUNGS MOD DENSITY C.S. 

The second part of the output consists of the required 

results depending on the-value of MR. This is the same 

as for master programme PORCE-BEAM, page :#2 . 
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A.S.A. Fortran listing of master programme FORCa-fLANS PRAL. 

Table 42 . 

M A S T E H F O R C E ^ P L A N E F R A M E 
C JOHN R O b l N S O N , I . S . V . k . 
C V I B R A T I O N A N A L Y S I S O F G E N E R A L P L A N E F R A M E S U S I N G T H E 
C H A N K F O R C E M E T H O D , 

D I M E N S I O N X X ( 3 3 ) , X X A M ( 3 3 ) , D U L A M ( 3 3 ) , N N $ r ( 3 3 ) , I I E P S ( 3 3 ) 
l , I S ( 1 3 ) , J S ( 1 3 > , X I ( i 3 ) , E ( 1 3 ) , X h U ( 1 3 ) , C S A ( l 3 ) , I C ( 9 ) , U K 0 ( 3 s . 3 t ) , U 
2 , l l l ) , 0 E L ( 8 7 , 3 3 ) , F ( 3 3 , 3 3 ) , i q ( O 7 ) , x w ( i i ) , Z b ( l l ) 
COMMON OM 

^ E Q U I V A L E N C E ( D E L ( 1 , 1 ) , 0 M ( 1 , 1 ) ) , ( F ( 1 , 1 ) , 0 M ( 1 , 9 9 ) ) , ( U K D ( 1 , 1 ) . 0 H ( 

H E 4 D ( 5 , 6 5 ) K A S E S 
8 5 F O R M A T ! I I ) 

D 0 5 0 0 K A = 1 , K A S E S 
k R I T E ( b , 8 7 ) K A 

6 7 F 0 R M A T ( 1 4 H C A S E N U M B E R , 1 1 ) 
W R I T E * 6 , 3 0 0 0 ) 

3 0 0 0 F 0 R M A T ( 2 3 H J O H N R O B I N S O N I . S . V . R , ) 
W R I T E * 6 , 3 0 0 1 ) 

3 0 0 1 F 0 R M A T ( 2 7 W P R O G R A M F O R C E - P L A N E F R A M E , ) 
R F A D ( 5 , 8 6 ) M R 

86 FORMAT*II) 
R E A D ( 5 , 8 a ) K E 

8 8 F O R M A T * 1 2 ) 
h R I T E ( 6 , 1 6 ) K E 

16 P 0 R M A T ( 4 2 H N U M B E R O F F R E O U E N C i E S 6 E I N G I N V E S T I G A T E D : , 1 4 ) 
R E A D ( 5 , 9 0 ) ( X X A M ( K ) . D 0 L A M ( K ) , N N $ T ( K ) , I I E P S ( K ) , K B l , K F ) 

9 0 F 0 R M A T ( 2 F 1 2 , 6 , I A , I 3 ) 
W k l T E * 6 , 1 8 ) ( X X A M ( K ) , D D L A M ( K ) , N N $ T ( K ) , I I E P S ( K ) , K e l , K e ) 

16 F O R M A T * 2 3 H A S S U M E D F R E Q U E N C Y W A T A / / / 3 3 H L O W E R E S T I M A T E S T E P S i ) 
I S T S I Q / / / ( 2 F 2 0 , 6 , I 4 . I 3 ) ) 
R E A D ( 5 , 6 ) N E , N J 

6 FORMAT*12,14) 
* A I T E * 6 , 3 ) N E . N J 

3 F O R M A T * 2 1 H N U M B E R O F E L E M E N T S = , I 4 / / 1 9 H N U M B E R O F J O I N T S = , I 4 ) 
R E A D ( 5 , 6 ; ( N O D E , X 8 * N O O E ) , Z b ( N O U E ) , N O U E = l , N J ) 

8 F 0 R M A T ( I 2 , 2 F 1 2 , 4 ) 
W R I T E ( 6 , 4 ) ( N 0 0 E , X B ( N 0 D E ) , Z B * N U D E ) , N 0 D E * 1 , N J ) 

4 F 0 R k A T ( 1 8 H N O D A L C 0 O R D l N A T e S / / l X , 5 H N 0 D E , 2 X , 1 3 H X 8 - 0 R 0 I N A T F , 2 ; 
IM Z 6 - 0 R 0 I N A T E / / ( I 4 , 3 X , F 1 2 , 4 , 2 X , F 1 2 . 4 ) ) 
R E A D ( 5 , 7 ) ( I S ( M ) , J S ( M ) , X I ( M ) , E ( M ) , X M U ( M ) , C $ A ( M ) , M = 1 , N E ) 

7 F0RMAT*I2,I5.F12.4.E9.1,2F12,4) 
WRITE(G,5)(IS*M),JS(M),XI(M),L(M),XNU(M),CSA(M),M=l,NF) 

9 F n R M A T ( 1 3 H E L E M E N T D A T A / / l X , 5 o H N O D E N O D E S E C M O M A R E A Y O U ^ , 
1 0 0 D E N S I T Y C , $ , A R E A / / ( I 4 , 2 X , I 4 , 3 X , P 1 2 , 9 , 3 X , E 1 2 , 3 , 2 X . P 7 , 5 , 2 X , 
2) ) 
K E A D ( 5 , 1 0 ) N C , ( I C * N ) , N = 1 , N C ) 

10 FORMAT*I 1,914) 
W R l T E * 6 , l ) N C , * I C ( N ) , N = l , N C ) 

1 F O R M A T * 2 3 H N U M B E R O F C O N S T R A I N T S = , I 4 / / / 2 0 H I M P O S E D C O N S T R A I N T S 
1 9 1 4 ) ) 

;) 
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Master programme FORCE-PLAN^ PRAM3 listing continued. 

U0310 Kal.KE 
X A M = X X A M ( K ) 
I F ( M H m i ) 1 5 , 3 5 4 , 1 5 

15 D L A M = O D L A M ( K ) 
NST=NNST(K) 
I E P S = I I E P S ( K ) 
W R I T E ( 6 , 1 4 ) K , X A M , D L A M , N S T , I E P S 

14 F 0 R M A T ( 1 5 H F R E Q U E N C Y D A T A , l 4 / / / 5 h X A M = , F i 2 , 6 , 3 X , 6 H 0 L A M = . F 1 2 , 6 . 
15W N S T " , I 4 , 6 H I E P $ = . I 3 ) 
C A L L F O R C E F ( X A M , N E , N J , X B , Z S , I S , J S , X l , E , X M U , C S A , N C , I C , N L . U K n , O ^ L 

I M C . I Q ) 
C A L L V A R D E T ( N L , N L , N L , D E T 1 , U K D , 3 3 ) 
W R I T E ( 6 , 4 0 0 ) X A M , D E T 1 

4 0 0 F 0 R M A T ( 1 7 H L O W E R F R E Q U E N C Y * , F 1 2 , 6 / / / 1 3 H D E T E R M I N A N T S , E I S . 7 ) 
D O l O l J = l , N S T 
X A M = X A M + D L A M 
C A L L F 0 R C E F ( X A M , N E , N J , X 8 , Z B , I S , J $ , X I , E , X M U , C S A , N C , I C , N L . U K D , D k L 

I M C . I Q ) 
C A L L V A R D E T ( N L . N L , N L , 0 E T 2 , U K D , 3 3 ) 
W R I T E ( 6 , 4 0 2 ) J , X A M , 0 E T 2 

4 0 2 F O R M A T ! 1 3 H S T E P N U M B E R * , I 3 / / / 1 9 H C U R R E N T F R E Q U E N C Y * , F l 2 . 6 / / / I 3 h 
1 T E R M I N A N T = , E 1 5 . 7 ) 
I F ( D E T 1 * D E T 2 ) 2 0 0 , 2 0 9 , 1 0 2 

1 0 2 D E T 1 = D E T 2 
101 C O N T I N U E 

N S T = "1 
W R 1 T E ( 6 , 1 0 3 ) 

1 0 3 F 0 R M A T ( 3 3 H N O Z E R O C R O S S I N G S P Q U N U IN R A N G E ) 
G O T U 3 1 0 
I T E R A T I O N ( P H A S E 2 ) 

2 0 0 F l = X A M m O L A M 
F 2 = X A M 
I F ( I E P S * 8 ) 2 0 3 , 2 0 3 , 2 0 2 

202. I E P S = 8 
2 0 3 C O N T I N U E 

0 0 2 0 7 1 = 1 , 1 0 
1 F ( 1 - 1 ) 2 0 5 , 2 0 5 , 2 0 4 

2 0 4 F l = X A M 
D E T 1 = U E T 

2 0 5 C O N T I N U E 
X A N = ( F 1 * U E T 2 * F 2 * D E T 1 ) / ( D E T 2 " D E T 1 ) 
A a A L O G l O ( X A M ) 
I E X = K I N T ( A ) 
E P S = 1 0 , 0 * * ( I E P $ - I E X " 1 ) 
HSURs(XAM*Fl) 
I F ( X A w , H S U B * E P S ) 2 0 6 , 2 0 9 , 2 0 9 

206 CONTINUE 
I F ( 1 - 1 ) 2 5 0 , 2 5 0 . 2 5 5 

2 5 0 F I N T a F 2 " X A M 
CFsO,2 

2 5 1 F H a X A M + C F * F I N T 
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Master programme P0RCG-PLAN2 FRAME listing continued. 

CALL FORCEF(FR ,NE,NJ,XB,Z9,iy,JS,XI,E,XMU,CSA.NC,IC,NL.UKD,DcL 
IMC.IQ) 
C A L L V A R U E T ( N L , N L , N L , D E T , U K D , 3 3 ) 
I F ( n E T * D E T 2 ) 2 5 2 . 2 5 3 . 2 5 6 

2 5 2 C F = C F + 0 , 1 
G O T O 2 5 1 

2 5 3 X A M = FR - - - - -- ' 
GO T O 2 0 9 

2 5 4 F 2 = F R 
D E T 2 = D E T 

2 5 5 C A L L F 0 R C E F ( X 4 M , N E , N J , X U , Z B , I b . J S , X I , E , X M U , C S A , N C , I C , N L . U K 0 , D C L 
I M C . I Q ) 
C A L L V A R O E T ( N L . N L , N L , D E T , U K D , 3 3 ) 

2 0 7 C O N T I N U E 
W R I T E ( 6 , 2 0 8 ) F 1 , 0 E T 1 , X A M , D & T 

2 0 8 F 0 H M A T ( / / / 3 6 H ITERATION T k R M I N A T E O A F T E R 10 S T E P S / / 2 2 W P R E V I O U S 

l E S T I M A T E = , E 1 6 , 8 , 1 3 H nETERkINANTa,E16,8///18H C U R R E N T E S T I M A T E S 
2 E 1 6 , 8 , 1 3 H 0ETERNINANT=.E16,8//22H C U R R E N T E S T I M A T E U S E O ) 

2 0 9 C O N T I N U E 
V E C T O R E V A L U A T I O N ( P H A S E 3 ) 

3 5 4 C A L L F 0 R C E F ( X A M . N E . N J , X B , Z 8 , I S , J S , X I , E , X M U , C S A , N C , % C , N L . U K 0 , 0 E L 
I M C , 1 0 ) 
I F ( M R , E Q , 1 ) G 0 T O 3 5 6 
C A L L M 0 0 E ( N L , N L , N L , U K 0 , 3 3 , X X , X A M ) 
G O T O 3 1 0 

3 5 6 I F ( K , N E , 1 ) G 0 T O 4 0 6 
D 0 4 10 1 * 1 , M C 
I F ( I , N E , 1 ) G 0 T O 4 1 2 
h R I T E ( 6 , 4 1 4 ) 

4 1 4 F 0 R M A T ( 1 3 H R E D U N D A N C I E S ) 
4 1 2 C O N T I N U E 

I F ( i a ( l ) , E Q , 0 ) G 0 T O 4 1 0 
W R I T E ( 6 , 4 0 1 ) 1 0 ( 1 ) 

4 0 1 F O R M A T * 1 6 ) 
4 1 0 C O N T I N U E 
4 0 S W R I T E ( 6 , 3 6 0 ) X A M 
3 6 0 F 0 K H A T ( 1 1 H F R E Q U E N C Y * . F 1 2 , 6 ) 

W R I T E ( 6 , 3 5 8 ) ( ( I , J , D E L ( I , J ) , J = i , N L ) , I = i , M C ) 
3 5 8 F 0 R W A T ( 2 4 H U N I T M A T R I X O F U N K N 0 W N S / / 3 ( I 4 , 2 H , , I 2 , 3 X . E 1 9 . 1 1 . 2 X ) ) 

h R I T E f 6 , 3 5 9 ) ( ( I , J , F ( I , J ) . J = l , N L ) , I a l , N L ) 
3 5 9 F 0 R M A T ( 3 0 H S T R U C T U R A L D Y N A M I C F L E X I a l L I T Y M A T R I X / / / 3 ( I 4 . 2 H ,, 

1 , E 1 9 , 1 1 , 2 X ) ) 
W R I T E ( * , 3 5 0 ) ( ( K K . J , U K D ( K K , J ) , U = 1 , N L ) , K K = 1 , N L ) 

3 5 0 F 0 R M A T ( 3 6 H S T R U C T U R A L D Y N A M I C S T I F F N E S S M A T R I X / / / 3 ( I 4 . 2 H , , I 2 , 3 ' 
1 1 9 , 1 1 , 2 X ) ) 

3 1 0 C O N T I N U E 
5 0 0 C O N T I N U E 

S T O P 
E N U 
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/̂ /̂•e , J'o/• 

ZS" 

f/z 

5 9'/ 

f/z 4 

/̂ /z 

3 A 7 

g /& /) 

Zo 6 Zg 

/ /-f 

/k 46 

'̂y 6 Sz 

XI 

% 4 

X/?i'e^e/^ Z4 

Z/: g 
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ca.r<pf 

I 0/?t 
Car̂aC 
/l&A 

A'a/a 
J 

/)e/-

C)/?f 

/) c/-

\ / ̂  

Input data for master programme FORCE-PLANl 

Table 43 . 

i!, ĵ 'RAAIE. 
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2.3 Example of usage. 

The simple plane frame shown in 

figure 70 is considered as being idealized in its present 

form, that is, as three discrete elements. Using Element 

Type P3/8PD evaluate the second eigenvalue of the frame 

assuming a lower estimate of 760.0 radians per second. 

The input data preparation for this problem is given in 

table . 
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8. Master programme PORCG-RBCTANGULAR TLATW, 

t 

Introduction. 

The research work carried out for plate 

structures has been limited to in core problems. The plate 

programmes are very restricted and only of use for this 

initial research project, therefore, they will not b^ 

described in the same detail as for collinear beam and 

plane frame structures. These programmes were * 

written purely to obtain some results to show that the 

suggested derivation procedures were valid, further research 

will be continued in this area and more rigorous 

investigations carried out, 

8.1 Plate programmes, 

3,1,1 q-system. 

The first attempt to derive a dynamic 

flexibility matrix for a rectangular plate element under 

shear, bending and twist was to adopt distributed boundary 

loads and four concentrated nodal loads as the generalized 

element unknowns. In order to incorporate such an element 

(Element Type P1/4PD) in a plate structure a method of 

formulating a system of joint equilibrium equations had to 

be established. The master programme using this type of 

element was written to analyse: a cantilever plate structure 

only, this consisted of six finite elements and fixed 

properties. The assembled structure and loading is shown 

in figure 71 « 

The first method investigated to formulate 
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the joint equilibrium equations was to distribute equally 

the resultants of the uniformly distributed element boundary 

loads to the nodes. Sxample, for node 1, 

# = o 

I ^̂ 4 " ^ 

After completion of all node equations the assembled system 

is investigated using the rank technique. It was found 

that this system had no solution, the reason for this 

was that a dependency existed between certain applied 

loads. This can be seen clearly by investigating the moment 

equilibrium equations about the z-axis for nodes 2,6 and 10, 

Now for a =1.5 

O-75" ^3$ ^ " -is ~ /go ®= O 

0-7S iz -f- O -JS — P(, =• O 

and 

Therefore, 

The next method to be investigated was that of equilibrium 

of orthogonal grid lines. Examples; 

1, Grid line 1,2,3,4. 

See figure 72(a). 

Vertical equilibrium, 

^'7 ̂  ^29) %o^ Izt ^St ̂  ̂ 34^ ~ ̂ n' p4~pl~ P,o~ ^ 
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Moment equilibrium about the x-axis. 

4^4/ ^ ^ "̂ 25 ̂  ~ — P/l — o 

Moment equilibrium about node 1 (z-axis). 

T f'z (^1° ̂  ^ ̂  ^ ^'7 + ^('^2Z ̂  ^ ^ ^29 ^ i ^ is4-

— — a /^ — /^ — Za Py — — So. P,o — ^ 

2. Grid line 2,6,10. 

See figure 72(b). 

Vertical equilibrium. 

% ^ A (^^2 f- ^ z ("̂/z Ẑ4- ̂  ^ ̂ S?) + 4,(̂ 6̂ / 

^ z ^ ̂ 1/) -/^ - ̂  - /%; = O 

Moment equilibrium about the z-axis. 

bl^VL /̂6 tsS •̂S'z) — /& "" //g — P30 ~ o 

Moment equilibrium about node 10 (x-axis). 

Z ^ A // ̂  ^ ^ 7 ) +" T̂-o} 

- 7.i^ ̂  -• Ps - h P,(, -- Pfy -' Pzs =0 

After assembling the equations for all grid lines the 

system was investigated and a solution was indicated. 

The rank force method was then formulated using these 

equations and the element dynamic flexibility matrix of 

Element Type Pl/4#D . The listing of the master programme 

is given in table 1+̂  and the corresponding FORCE-subroutine 

in table ^6 . 

8.1.2 s-system. 

Clearly, the q-system is not practical for 

the analysis of plate structures and an attempt was made 

to transform this system into a more convenient equivalent 

one using discrete nodal loads as the generalized unknowns. 
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A suggested procedure has been presented in Chapter 3 

(3,1.3(b)), see also Appendix 3, 'The joint equilibrium 

equations using an s-system consist of Boolean matrices 

and are established simply from equilibrium of the 

individual joints as for collinear beam and plane frame 

structures. The assembled structure and loading is shown 

in figure 73 , The rank force method is formulated using 

these equations and Element Type Pl/SED. The listing of 

the master programme is given in table ^^1 the 

corresponding PORCE-subroutine in table Ui . 

3.1,3 General comment. 

It should be noted that when 

boundary equilibrium equations are being formulated each 

concentrated nodal load of the q-system is in actual 

fact a resultant of two equal loads due to twisting moments, 

See figure 7^ » 
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Grid line loadings for 

equilibrium considerations. 
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Actual form of the concentrated nodal loads 

in the q-system. 

Pig. 7k 
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A.S.A. Fortran listing of master nrogramme P0RC3-

RSCTANGULAR PLAT3. (n_system). 

Table ^5 . 

MASTER FORCE-RECTANGULAN PLATk 
C JOHN ROaiNSON, I,S,V.R. 
C VIBRATION ANALYSIS OF TWO OIM&NSIONAL RECTANGULAR PLATE 
C STRUCTURES USING THE RANK FORCE METHOD. 

DIMENSION X(36),XXAM(12),UDLAM(12),NNST(12),IIEPS(12) 
DIMENSION UKD(36,3o),DkL(@4,)6),F(3S,36),0M(84.l08),IQ(84) 
COMMON OM 
EQUIVALENCE (0EL(1,1),0M(1,1)),(UKD(1,1),0M(1,37)),(F(1.1),0M(1,58 
1 ) ) 
READ(5,65)KASES 

85 FORMAT*II) 
D0500 KA=1,KASES 
WRITE(&,87)KA 

87 FORMAT*14H CASE NUMBER ,11) 
WRITE(6,406) 

406 P0BMAT(23H JOHN ROBINSON I,S,V,R,) 
WRITE(6,900) 

900 F0RMAT(35H PROGRAM FORCE-RECTANGULAR PLATE,) 
READ(9,86)MR 

86 FORMAT;II) 
READ(5,88)KE 

88 FORMAT*12) 
HRITE(6,16)KE 

16 F0RMAT(42H NUMBER OF FREQUENCIES OEING INVESTIGATED*,14) 
READ(5,90)(XXAM(K),DDLAM(K),NNST(K),IIEPS(K),K=1,KE) 

90 F0RMAT(2F12,6,I6,I3) 
WRITE(6,18)(XXAM(K),0DLAM(K),NNST(K),IIEPS(K),K»1,KE) 

18 FORMAT*23H ASSUMED FREQUENCY PATA///33M LOWER ESTIMATE STEP SIZE N 
IST SIG///(2F20,6,I4,I3)) 
NEa6 
NJ=12 
A=l,3333 
8 = 1.5 
T«0.19 
XMU=0,098 
XNU=0,34 
E=0,9*10,0**7 
NC = 9 
00310 K=l,KE 
XAM=XXAM(K) 

IF(MRml)15,354,15 
15 DLAM=DDLAM*K) 

NST=NNST(K) 
lEPSallEPS(K) 
WRITE(6,14)K,XAM,0LAM,NST,IEPS 

14 FORMAT*13H FREQUENCY DATA,I4///5H XAM*,F12.6,3%,6H 0LAM*.F12,6,3X, 
15H NST«,I4,6H %EPS",I3) 
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Master programme PORCE-R^CTANGULAR PLAT^ listing continued, 

(q-system). 

CALL FORCEP(XAM,NE,NJ,T,XMU,XNU,E,A,B,NC,NL,UKD,DEL .F.MC.IO) 
CALL VARDET(NL.NL,NL,DETl,VKD,3b) 
WRITE(6,400)XAM,DETl 

400 F0RMAT(17H LOWER FREQUENCY',F12.6///13H DETERMINANT *,E15,7) 
D O l O l jal.NST 
XAM=XAM+OLAM 

' CALL F0RCEP(XAM,NE,NJ,T,XMU,XNU,E,A,8,NC,NL,UKD,0EL , F , M C , I Q ) 
CALL VARDET(NL,NL,NL.DET2,UKD,36) 
WRITE(6,402)J,XAM,DET2 

,F12,6///13H DE 402 FORMAT*13H STEP NUMBER*,I3///19H CURRENT FREQUENCY* ,F12,6///13H DE 
1TERMINANT=,E15.7) 
IF(DET1*DET2)200,209,102 

102 DET1=DET2 
101 CONTINUE 

NST=-1 

WRITE(6,103) 
103 F0RMAT(33H NO ZERO CROSSINGS FQUNO IN RANGE) 

GO TO 310 
C ITERATION (PHASE 2) 

200 F1=XAM*0LAM 
F2=XAM 
IF(IEPS^8)203,203,202 

2 0 2 IEPS=9 
203 CONTINUE 

D0207 1=1,10 
IF(1-1)205,205,204 

204 'Fl=XAM 
OETl'DET 

205 CONTINUE 
X A M = ( F l # 0 E T 2 ^ F 2 * D E T l ) / ( D E r 2 - D E T l ) 
A=AL0G10(XAM) 
IEX=KINT(A) 
EPS=10.0**(IEPS-IEX-1) 
HSUBafXAM-Fl) 
IF(XAM^^SUB#EPS1206,209,209 

206 CONTINUE 
IF(1-1)250,250,255 

250 FlNTaF2-XAM 
CF=0,2 

2 5 1 FH=XAW+CF*FINT 
CALL FORCEP(FR ,NE.NJ,T,XMU,XNU,E,4,B,NC,NL,UKD,0EL ,F.MC.IQ) 
CALL VAR0ET(NL,NL,NL,DET,UKD,36) 
IF(DET*DET2)252,253,254 

252 CF=CF+0.1 
GO TO 251 

253 XAN=FR 
GO TO 209 

254 F2=FR 
DET2"DET 
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Easier programme F0aC3-R3CTANGULAR PLATE listing continued. 

Iq-systea). 

255 CALL FORCEP(XAM,NE.NJ,T,XMU,XNU,E,A,B,NC,NL,UKD,DEL,F,MC,IQ) 
CALL VARDET<NL,NL,NL,DET,UK0,36) 

207 CONTINUE 
WRITE(6,208)F1,OET1.XAM,OET 

208 F0RMAT(///36H ITERATION TERMINATED AFTER 10 STEaS//22H PREVIOUS 
l.ESTIMATE «,E16.8,13H DETEKMINANT»,E16.8///18H CURRENT ESTIMATE", 
2E16.8,13H DETERMINANT*,Elb.8//22H CURRENT ESTIMATE USED) 

209 CONTINUE 
VECTOR EVALUATION (PHASE 5) 

354 CALL FORCEP(XAM,NE,NJ,T,XMU,XNU,E,A,B,NC,NL,UKD,DEL,F.MCtIQ) 
IF(MR,EQ.1)G0 TO 356 
CALL M00E(NL,NL.NL,UKD.36,X,XAM) 
GO TO 310 

356 IF(K.NE.1)G0 TO 406 
004 10 1=1,MC 
IF(I.NE.1)G0 TO 412 
WRITE(6,414) 

414 FORMAT;13H REDUNDANCIES) 
412 CONTINUE 

IF(IQ(I),EQ,0)G0 TO 410 
WRITE(6,401)IQ(I) 

401 FORMAT!16) 
410 CONTINUE 
408 WRITE(6,360)XAM 
360 FORMAT!IIH FREQUENCY:,F12,6) . 

WRITE(6,358)((I,J,DEL(I,J),J»1,NL),I*1,MC) 
358 FORMAT!24H UNIT MATRIX OF UNKN0WN$//3(I4,2W ,,12,3X,E19.il,2X)) 

WRITE(6,359)((I,J,F(I,J),J=1,NL),I=1,NL^ 

359 F0RMAT(38H STRUCTURAL DYNAMIC FLEXIBILITY MATRIX///3(I4.2H ,,I2,3X 
1,E19.11,2X)) 
WRITE(6,350)((KK,J,UKD(KK,J),Jal,NL),KK.l,NL) 

350 F0RMAT(36H STRUCTURAL DYNAMIC STIFFNESS MATRIX///3(I4.2H ,,I2,3X,E 
119.11,2X)) 

310 CONTINUE 
500 CONTINUE 

STOP 
END 
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A.S.A, Fortran listing of subroutine P0RC3P. (q-system). 

Table ^6 , 

SUBROUTINE F0RCEP(0MEGA,NE,NJ,T,XMU,XNU,E,4,8,NC,NL,UKD.DEL,F,MC, 
IIQ) 

C JOHN R08INS0N. I.S.V.R. 
C THE RANK FORCE METHOD FOR TwO DIMENSIONAL RECTANGULAR 
C PLATE STRUCTURES. VIBRATION ANALYSIS, 

DIMENSION 0M(84,108).FM0(12,12) 
DIMENSION UKD(36,36),DEL(64,30),F(36,36),IOEP(84),XMAX(84).IQ(64) 
DIMENSION DELA(12,36),0ELB(36,12),F0A(12,36),DF(36.36).C(36.72) 
DIMENSION MDEP(36),WMAX(36),LU(36),PAR(48,l2),PHI(48,i2).JQ(84) 
COMMON OM 
EQUIVALENCE(MDEP(1),0M(1,74)),(WMAX(1),0M(1,75)),(LO(i).OM(1,76)), 
l(FDA(l,l),OM(l,80)).(DELB(l,lf,OM(l,86)),(OELA(l,l),OM(1.92))/(DF( 
2l,l),0M(l,92)),(C(l.l),0M(l,77)),(PAR(l,l),0M(l,95)),(PHl(l,l),0M( 
31,102)) 
M1=12*NE 
N1*3*NJ 
LM=M1+N1 
MC=M1+NC 
NL*N1"NC 
N2 = 21 

C 1, INITIAL NULL MATRIX 
0012 1=1,MC 
D012 J=1,LM 

12 0M(I,J)=0.0 
C 2, EQUILIBRIUM EQUATIONS BY MkTHOD OF SECTIONS, 

0M(*,5),0M(1,17),0M(1,29),0M(2,1),0M(2,13),0M(2.25).0M(3,22), 
lOM(3,33),OM(4,7),OM(4,19),OM(4,31),OM(4,41),OM(4,53),OM(4,65),OM(5 
2,3),0M(5,15),0M(5,27),0M(5,37),0M(5,49),0M(5,6l),0M(6,23),0M(6,36) 
3,0M(6,58),0M(6,69),0M(7,43),0M(7,55),0M(7,67),0M(6,39),0M(6,51),0M 
4(8,63),0M(9,59),0M(9,72)=l,33a3 

0M(3,82),0M(6,91),0M(9,100)"-1.3333 
OM(3,10),OM(3,21),OM(G,11),OM(6,24),OM(6,46),OM(6,57),OH(9,47 

1),0M(9,60)=0,6667 
OM(3,5),OM(6,7),OM(6,41),OM(9,43)30,8889 
0M(3,34),0M(6,35),0M(6,70),0M(9,71)=2.Q 
OM(3,17),OM(6,19),OM(6,53),OM(9,55),2,6667 
OM(3,29),OM(6,31),OM(6,65),OM(9,67)*4,4445 
OW(3,85),OM(6,94),OM(9,lU3)»-2,6667 
0M(3,88),0M(6,97),OM(9,lO6)*»4.O 
OM(10,8),0M(10.44),0M(ll,4),0M(ll,4O),OM(l2,9),OM(l3,6),OM(l3 

1,20),OM(13,42),OM(13,56),OM(14,2),OM(14,16),OM(14,38).OM(14,52),OM 
2(15,10),OM(15,21),OM(16,18),OM(16,32),OM(16,54),OM(16.68),OM(17,14 
3),OM(17,28),OM(i7,5O),0M(17,64),OM(18,22),0M(18,33),OM(l9,3O),0M(l 
49,66),0M(20,26),OM(20,62),0M(2l,34)'1.5 

OM(12,76),OM(15,91),OM(18,94),OM(21,97)*~1,5 
OM(12,12),OM(12,45),OM(15,11),OM(15,24),OM(15.46),OM(15,57),0 

1M(|6,23),OM(16,36),OM(18,58),OM(18,69),OM(21,35),OM(21,70)*0,75 
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Subroutine P0RC3P listing continued, (q-system). 

OM(12,44),OM(15,42),QM(19,56),OM(18,54),OM(18,68),OM(21,66)= 
11.125 

OH(12,8),0M<15.6),OM(15,aO),0M(ie,l6),OM(ie,32),OM(2l.30)= 
13.575 

0M(12,73),0M(15,82),0M(18,85),0M(21,86)=-3.0 
OW(1,9),OM(1,10),OM(1,21),OM(1,22),OM(1,33),OM(1,34),OM(4,11) 

1,OM(4,12),OM(4,23),OM(4,24),OM(4,35,,OW(4,36),OM(4.45),OM(4,4&),OM 
2(4,57),OM(4,58),OM(4.69),OM(4,70),OM(7,47),OM(7,48),OW(7.59),OM(7, 
36O),0M(7,71),0M(7,72),0M(10,9),OM(lO,12),0M(l0,45),0M(l0,48),QM(13 
4,10),0M(13,ll).0M(l3,2l),OM(l3,24),0M(13,46),0M(13,47).0M(l3,57),0 
5M(13,60),OM(16,22),OM(16,23),OM(16,33),OM(16,36),OM(I6,58).OM(16,5 
69),0M(l6,69),0M(16.72),0M(19,j4),0M(19,35),0M(l9,70l,0M(l9.71)=0,5 

OW(1,73),OM(1,82),OM(1,85),OM(1,88),OM(2,74),OM(2,83),OM(2,86 
l),OM(2,89),OM(3,75),OM(3,86),UM(3,87),OM(3,90),OM(4,7S).0M(4,91),0 
2M(4,94),OM(4,97),OM(5,77),OM(5,92),OM(5,95),OM(5,96),OM(6,78),OM(6 
3,93),OM(6,96),OM(6,99),OM(7,79),OM(7,100),OM(7.103),OM(7,106),OM(8 
4,8O),OM(8,lOl),OM(8.l04),OM(8,lO7),OM(9,81),0M(9,lO2).OM(9.1O5),OM 
5(9,l08),OM(10,73),OM(10,76),Oh(10,79),OM(ll,75),OM(11.78),OM(ll,8l 
6),OM(l2,74),OM(l2,77),0M(12,8O),OM(l3,82),0M(13,9l),0M(i3,100),OM( 
7l4,84),OM(l4,93),OM(14,104),OM(i5,83),OM(l5,92),OM(l5.lOl).OM(16,8 
85),ON(16,94),OM(16,lO3),OM(17,87),OM(17,96),0M(17,lO5).OM(18,66),O 
9M(18,95),OM(18,l04),0M(19,88),0M(l9,97),OM(l9,106),0M(20,90),OM(20 

^1,99),OM(20,108),OM(21,83),OM(21,98),OM(21,107)*-1.0 

SOLUTION OF EQUATIONS 
CALL RANTEC(0M,N2,MC,LM,84,84,108,IOEP,XMA%,IQ) 
WRITE(6,800) 

600 F0RMAT(6H MARKl) 
26 CALL PARDER(0M,IQ,N2,MC,84,108,N) 

KP=14*NC-NL 
D029 1*1,N2 
0029 J=LM-13,LM 

29 0M(N2+I,J+KP)=0M(I,J) 
ENERGY EQUATIONS 
CALL FM040(A,B,T,E,XMU,XNU,OMEGA,FMD) 
0027 1=1,12 
D027 J*l,12 

27 FMD(I,J)*10,0##4*FMD(I,J) 
U U ̂  U 
D033 M*1,NE 
D03O 1=1,N 
0030 J=l,12 
JK=J+JJ 

30 PAR(I,J)=0M(N2+I,JK) 
CALL MATMULT(PAH,FMD,PW1,N,12,12,48,12,12) 
0032 1=1,N 
0032 J=l,12 
JK=J+JJ 

32 0M(I+N2,JK)=PHI(I,J) 
1 2 

33 CONTINUE 



Subroutine P0RC3P listing continued. Iq-system). 

D046 1=1,N2 
D046 J=LM-13,LH 

46 0M(I,J)=0M(N2+I,J+Kp) 
0048 I=N2+1,MC 
0046 J=Ml+l,LM 

48 0M(I,J)=0.0 
CALL RANTEC(0M,N2+N,MC,LM,84,*A,108,I0EP,XMAX,JQ) 
WRITE(6,802) 

802 FORMATfGH MARK2) 
600 CONTINUE 

CALL REAR(0M,MC,LM,84,108,XCH) 
DEL MATRIX 
0034 1=1,MC 
00)4 J"MC+1,LM 
L=J.MC 

34 OEL(I,L)=-OM(I,J) 
0025 1=1,NL 
0025 J*1,NL : 

25 F(I,J)=0.0 
11=0 
0044 Hal.NE 
0038 I«1,12 
0038 Jsl.NL 
IK=I+II 

38 DELA(I,J)=DEL(IK,J) 
0040 1=1,12 
0040 J=1,NL 

40 DELB(J,I)=DELA(I,J) 
CALL MATMULT(FM0,DELA,F0A,12,NL.12,12,36,12) 
CALL MATMULT(DELB,FDA,DF,NL,NL,12,36,36,12) 
0042 1=1,NL 
0042 J=1,NL 

42 F(I,J)*F(I,J)+DF(I,J) 
11=11+12 

44 CONTINUE 
STRUCTURAL DYNAMIC STIFFNESS MATRIX 
CALL MAT%NV(F,UKD,C.NL,36,36,72,MDEP,WMAX,LQ) 
WRITE(6,804) 

804 F0RMAT(6H MARK3) 
RETURN 
END 
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A.S.A. Fortran listing of master programme fORCZ 

R3CTANGULAR PLAT3. (s-system). 

Table . 

MASTER FORCE-RECTANGULAR PLATE 
C JOHN ROaiNSON. I.S.V.R. 
C VIBRATION ANALYSIS OF TWO DIMENSIONAL RECTANGULAR PLATE 
C STRUCTURES USING THE RANK FORCE METHOD, 

DIMENSION X(36),XXAM(2),DDLAM(2),NNST(2),IIEPS(2),LSN(6.4) 
DIMENSION IC(12),UKD(36,36),DkL(84,36),F(36,36),0M(8a.l08).lQ(84) 

. COMMON OM 
EQUIVALENCE (DEL(l.l),0M(l,l),,(UKD(l,l),0M(l,37)),(F(l.l),0M(l,58 

1 ) ) 

READ(5,85)KA$ES 
85 FORMAT;II) 

D0500 KA=1,KASES 
WRITE(6,87)KA 

87 F0RMAT(14H CASE NUMBER ,11) 
WRITE<6,406) 

406 F0RMAT(23H JOHN ROBINSON I.S.V.R,) 
WRITE(6,900) 

900 FORMAT*35H PROGRAM FORCE-RECTANGULAR PLATE,) 
READ(5,88)KE 

88 F0RMAT(I2) 
WRITE(6,16)KE 

16 F0RMAT(42H NUMBER OF FREQUENCIES BEING INVESTIGATED=,14) 
READ(5,90)(XXAM(K),DDLAM(K),NNST(K),IIEPS(K),K«l,KE) 

90 F0RMAT(2F12,6,I4,I3) 
WRIlE(6,ia)(XXAM(K),DDLAM(K),NNST(K),IIEPS(K),K"l,KE) 

18 F0RMAT(23H ASSUMED FREQUENCY UATA///33H LOWER ESTIMATE STEP SIZE N 
IST $IG///(2F20,6,I6.I3)) 
READ(5,700)NE,NJ 

700 FORMAT;12,14) 
WRITE(6,800)NE.NJ 

800 FORMAT;20W NUMBER OF ELEMENTS=,I3//18H NUMBER OF J0INTSa,I3) 
READ(5,702)((LSN(I,J),J=1,4),I=1,NE) 

702 FORMAT;12,314) 
WRITE;6,802)(;LSN(I,J),J=1,4),I=1,NE) 

802 F0RMAT(25H ELEMENT SPECIFYING N0DES//(4I4)I 
READ(5,704)T,XMU,XNU,E 

704 F0RMAT(3F10,3.E9.1) 
MRITE(6,804)T,XMU,XNU,E 

804 FORMAT;17H PANEL THICKNESS*,F7,4//18H MATERIAL DENSITY=.F7.4//17H 
IPOISSON'S RATI0=.F7.4//17M YOUNG'S MODULUS*,E9,l) 
READ(5,706)A.B 

706 FORMAT;2F10.3) 
WRITE($,806)A,B 

806 F0RMAT;21H FINITE ELEMENT SIZES//3H A=,F7,3//3H B=.F7,3) 
READ(5,708)NC,(lC(N>.N8l,NC) 

708 FORMAT;12,1214) 
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Master programme P0RC3-R3CTANGU1AR PLAT3 listing continued, 

(s-system). 

WRITE(6,a08)NC,(IC(N),N=l,NC) 
808 fORNAT(23H NUMBER OF CONSTRAINTS*,I4///20H IMPOSEO CONSTRAINTS///* 

11214)) 
00310 K=l,KE 
%AM=XXAM(K) 

15 DLAMsODLAMfK) 
NST=NNST(K) 
IEPS=IIEPS(K) 
*RITE(6,14)K,XAM,DLAM,NST,IEPS 

14 FORMAT*15H FREQUENCY DATA,I4///5H XAM*,F12.b,3x,6H 0LAM=.F12.6,3X, 
15H NST=,I4.6H IEPS=.I3) 
CALL F0RCEP(X4M.NE.NJ,T,XMU,XNV,E,A,W,NC,IC,NL,UKD.DEL,F,MC,LSN, 
IIQ) 
CALL VARDET(NL.NL,NL,DET1,UKD,36) 
WRITE(6,400)XAM.DET1 

400 FORMAT*17H LOWER FREQUENCf=,F12,6///13H DETERMINANT*,Elg.7) 

DOlOl J=1,NST 
XAM=XAM+OLAM 

^CALL F0RCEP(XAM,NE,NJ,T,XMV,XNU,E,4,B,NC,IC,NL,UKD,DEL,F,MC,LSN, 

CALL VARDET(NL,NL,NL,nET2,UKDf36) 
WRITE(6,402)J,XAM,DET2 

402 FORMAT*13H STEP NUMBER*,I3///19M CURRENT FREQUENCY",Fl2.6///13H OE 
1TERMINANT=,E15.7) 
IF(DET1*DET2)200,209,102 

102 DETl=DET2 
101 CONTINUE 

NST=-1 
. WRITE(6,103) 

103 FORMAT*33H NO ZERO CROSSINGS FOUND IN RANGE) 
GO TO 310 
ITERATION (PHASE 2) 

200 F1=XAM*DLAM 
F2=xAM 
IF*IEPS-8>203,203,202 

202 IEP$=8 
203 CONTINUE 

00207 1=1,10 
IF*1-1)205,205.204 

204 Fl=XAM 
DETl=OET 

205 CONTINUE 
XAM=(Fl*0ET2mF2*DETl)/(DET2-0ETl) 
A=AL0G10(XAM) 
IEX=KINT*A) 
EPS=10,0*#*IEPS-IEX-1) 
H$UB"(XAM-F1) 
IF*XAM-HSU8*EPS)206,209,209 
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Master programme P0RC3-%dCTANGULAR PLAT3 listing continued^ 

(s-system). 

205 CONTINUE 
IF(1-1)250.250,255 

250 FINT=F2-XAM 
CF=0,2 ' - -

251 FR=XA^+CF#FINT 
CALL FORCEP(FR ,NE.NJ,T,XMU,XNU,E, A,B,NC,IC,NL,UKO.DEL,F.MC,LSN, 
110) 
CALL VARDET(NL.NL,NL,DET,UK0,36) 
IF(DET*0ET2)252.253.256 

252 CF=CF+0.l 
GO TO 251 

253 XAM=FR 
GO 10 209 

254 p2=FR 
PET2*DET 

255 CALL FORCEP(XAM.NE,NJ,T,XMU,X%U,E, A,B,NC,IC,NL,UKD,DEL.F,MC,LSN, 
110) 

A,B,NC,IC,NL,UKD,DEL.F,MC,LSN, 

CALL VARDET(NL.NL,NL.DET,UKD,36) 
207 CONTINUE 

WRITE(6,208)Fl.DETl,XAW,DkT , 
208 F0RMAT(///36H ITERATION TERMINATED AFTER 10 STEPS//22H PREVIOUS 

lESTIMATE =,E16.8,13H DETEhMINANTa, El6.8///iaw CURRENT ESTIMATE", 
2E16,8,13H DETERMINANT:.Elb.8//22H CURRENT ESTIMATE USED) 

209 CONTINUE 
C VECTOR EVALUATION (PHASE 3) 

CALL FORCEP(XAM.NE.NJ,T,XMV,XNV,E, A,b,NC,IC,NL,UKO,OEL.F,MC.LSN, 
IIQ) 

A,b,NC,IC,NL,UKO,OEL.F,MC.LSN, 

CALL M0DE(NL,NL,NL,UKD,36,X,XAM) 
310 CONTINUE 
500 CONTINUE 

STOP " 
END 
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A.S.A. Fortran listing of subroutine FORC^P. (s-system). 

Table 48 . 

SUBROUTINE F0RCEP(0MEGA,NE,NJ,T,XMU,XNU,E,A,8,NC,IC,NL,UK0,DEL,F. 
1MC,LSN,IQ) 

C JOHN ROBINSON. I.S.V.R. 
C THE R A N K FORCE METHOD FOR TWO DIMENSIONAL RECTANGULAR 
C PLATE STRUCTURES, VIBRATIUN ANALYSIS, 

DIMENSION LN(6,12).0M(84,108),LSN(6,4),FMD(i2,12),IC(12) 
DIMENSION UK0(36,36).DEL(64,3b),F(36,36),IOEP(84),XMAX(84),lQ(84) 
DIMENSION 0ELA(12,36),DEL*(36,12),FDA(12,36).DF(36,36),C(36,72) 
DIMENSION MDEP(36),WMAX(36),LU(36),PAR(48,12),PHI(48,12) 
COMMON OM 
EQUIVALENCE*MDEP(1).0M(1,74)),(WMAX(1),0M(1,75)),(L0(1).0M(1,76)), 
l(FDA(l,l),OM(l,60)).(DELB(l,l),OM(l,86)),(OELA(l,l).OM(i.92)),(DF( 
21,1),OH(1,92)),(C(1.1),OM(1,77)),(PAR(1,1),ON(1,95)),(PHI(1,1),UM( 
31,102)) 

C MATRIX OF ELEMENT LOAD NUMBERS 
N = 0 

0010 M=1,NE 
DOlO NN=1,12 
N = N + 1 
LN(N,NN)=N 

10 CONTINUE 
C 1. INITIAL NULL MATRIX 

M1=12*NE 
N1=3*NJ 
LM=M1+N1 
MC=M1+NC 
NL=N1-NC 
D012 1=1,MC 
0012 Jel,LM 

12 0M(I,J)=0.0 
C 2, JOINT EQUILIBRIUM EQUATIONS 

LL=1 
D018 JN=1,NJ 
D015 M=1,NE 
D017 L=l,4 
IF(LSN(M,L)-JN)i7,16,17 

16 GO T0(19,20,21.22),L 
19 LLL=1 

GO TO 3 
20 LLL=4 

GO TO 3 
21 LLL=7 

GO TO 3 
22 LLL=10 
3 0M(LL,LN(M,LLL))=1.0 

0M(LL+l,LN(M,LLL+i))=1.0 
OM(LL+2,LN(M,LLL+2))al.O 
GO TO 15 
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Subroutine F0RC3P listing continued, (s-svstem). 

17 CONTINUE 
15 CONTINUE 

LL=LL+3 
18 CONTINUE 

REACTIONS AND APPLIED LOAUS 
IF(NC.EQ.O)GO TO 4 
NNJ=1 
DOG N=1,NC 

6 0M(IC(N),M1+N)=-1.0 
D07 1=1,N1 
D09 N=1,NC 
IF(I.EQ.IC(N))G0 TO 7 

9 CONTINUE 
0M(I,MC+NNJ)=-1.0 
NNJsNNJ+r" 

7 CONTINUE 
GO TO 5 

4 D023 1*1,N1 
M 5 = M C + I 
D023 J=M5,M5 

23 0M(I,J)=-1.0 
5 CONTINUE 

SOLufToN^dF EQUATIONS 
CALL RANTEC<0M.Nl,MC.LM,84,84,10e,IDEP,XMAX,IQ) 
WRITE(6,800) 

600 FORMAT;6H MARKl) 
26 CALL PARDER(0M.IQ,N1.MC,84,104.N) 

KP=14-NC-NL 
D029 1=1,N1 
D029 J=LM-13,LM 

29 0M(N1+I,J+KP)=0M(I,J) 
ENERGY EQUATIONS 
CALL FW050(A,B,T,E,XMU,XNV,0M&GA,FM0) 
0027 1=1,12 
0027 J=l,12 

27 FMD(I,J)=10.0##4*FMD(I,J) 
JJ = 0 
D033 H=1,NE 
D030 1=1,N 
D030 J=l,12 
ij K ™ vi 4' fcj tJ 

30 PAR(I,J)aOM(Nl+I,JK) 
CALL MATMULT(PAR,FND.PHI,N,12,12,48,12,12) 
0032 1=1,N 
D032 J = l , 1 2 
JK = J 4- J J 

32 0M(I+N1,JK)=PHI(I,J) 
»J«J — JJ4'12 

%3 CONTINUE 
0046 1=1,N1 
0046 J=LM-13,LM 
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Subroutine PORCSP listing continued, (s-system). 

46 0M(I,J)=0M(N1+I,J+KP) 
0048 I=Nl+l,HC 
D048 J=Ml+l,LM 

48 0M(I,J)=0,0 
CALL RANTEC(OM.Nl+N.MC.LM,84,04,108,lOEP.XMAX.IQ) 
WRITE(6,602) 

802 F0RMAT(6H MARKg) 
600 CONTINUE 

CALL REAR(0M,NC,L*.66,108,*CH) 
DEL MATRIX 
0036 1=1,MC 
0034 J=MC+1,LM 
L=J-MC 

34 DEL(I,L)=-OM(I,J] 
0025 I=1,NL 
0025 J=1,NL 

25 F(I,J)=0.0 
11=0 -
0044 M=1,NE 
D038 1=1,12 
D038 J=1,NL 
IK=I+II 

38 DELA(I,J)=DEL(IK,J) 
0040 1=1,12 
0040 Jal.NL 

40 DELB(J,1)=DELA(I,J) 
CALL MATMULT(FWD,DELA,FDA,12,NL,l2,12,36,i2) 
CALL MATMULT(DELW,FDA,DF,hL,NL,i2,36,36,12) 
D042 1=1,NL 
0042 J=1,NL 

42 F(I,J)=F(I,J)+DF(I,J) 
11=11+12 

44 CONTINUE 
STRUCTURAL DYNAMIC STIFFNESS MATRIX 
CALL WATINVfF.UKD,C,NL,36,36,72.MDEP,WMAX,LQ) 
WRITE(6,804) 

804 FORMAT!6H MARK3) 
RETURN 
END 
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APPENDIX 5. 

PRACTICAL APPLICATION OP AN AIRCRAFT STATIC STRUCTURAL 

ANALYSIS SYSTEM. 

Synopsis. 

The first part of this appendix discusses practical 

structural idealization, that is, the transformation of an 

actual structure into a practical model. Examples of typical 

aircraft structural idealizations are given. The practical 

model is established so that it meets the requirements of 

the computer programme which will be used to analyse the 

given structure. In order to use a structural computer 

programme certain data are prepared and input to the programme. 

Typical data required and comments on its preparation are 

given, examples are used for further clarification. The 

general discussion is based on static structural analysis 

but it is equally applicable to structural vibration analysis* 

The discussions are typical of a practical computerized 

system used in the aircraft industry, however, even at the 

research stage of analysis one should consider the possible 

future application. Initial structural research using finite 

element techniques is carried out using simple structural 

models, even then the work has to be computerized, particularly 

for vibration investigations. Therefore, a great deal of the 

discussion for practical analysis is relevant at the research 

stage since this helps in developing the work from the 

standpoint of theoretical formulation, numerical techniques 

and computer programme formulation. 
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Introduction, 

To analyse a structure using finite element 

techniques requires a computerized system. In aircraft 

engineering, and to a lesser extent in civil engineering, 

computers are actively employed for development and design 

purposes. It is essential that an engineer thinks in terms 

of computerized design since a great deal of laborious 

work can be removed from his normal activities, thus allowing 

more time for new thinking. A computerized system enables 

many more alternative designs to be considered in a much 

shorter time than would normally be possible. A large number 

of designs are carried out using experience and by comparison 

with similar previously designed structures. When the 

structural configuration is a new concept experience in 

selecting the critical loading case for a particular piece 

of structure becomes questionable. This is when a computerized 

system is most effective. On the other hand one must 

appreciate that all development and design activities are 

not easy to computerize, if at all, and in any case the 

results obtained from any computerized system are influenced 

very strongly by engineering judgement. The biggest 

disadvantage of a computerized system is in acquiring one 

in the first place, and having acquired one establishing 

confidence in its capabilities. It must then be maintained 
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to meet changing requirements. To develop a comprehensive 

system capable of analysing large structures efficiently 

costs a great deal of money and takes many years to write 

and check out. The development of such a system also requires 

experienced and qualified theorists, engineers and computer 

programmers. An adequate computer and supporting devices 

are also essential including a reliable staff. In order to 

apply a computer programme it is absolutely necessary to 

have good documentation for the users manual. This point 

cannot be emphasized enough. Certain checks can be incorporated 

into a programme but it is impossible to include a number 

of important ones. They are, ensuring that the structural 

element properties (cross sectional area, second moment of 

area, plate thickness, material constants), nodal coordinates 

and applied loads are correct or that the structural constraints 

have been imposed in the right manner. This responsibility 

lies with the engineer who is preparing the programme 

input data. Much money is wasted on bad computer runs because 

of these types of errors and wrong interpretation of the 

users manual. If an analysis was run on an I,B.M. 7094 

Computer which took one hour to obtain a solution it would 

cost $450(^161 as a straight conversion). If the input 

was wrong this would be a write-off, and this doesn't 

include the delay in obtaining the results. 

To try and give at least some indication of 

computer utilization for structural analysis in the aircraft 

30,31 
industry a world survey was undertaken by the author 
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Some of the results are shown in figure 75 . This figure 

shows the computer running time for structural analysis 

as a percentage of the total computer running time, denoted 

by C#. The numbers in parentheses give the years over 

which the percentage is based. In the survey it was requested 

that ; 

1. The computer running time for structural analysis 

should include the phases ; 

1.1 Stress and deflection distributions. 

1.2 Generation of the structural flexibility 

or stiffness matrix for dynamic analysis, 

based on lumped masses. 

1.3 Phases 1.1 and 1.2 should include research, 

development and production work. 

2. The total computer running time should be based 

on engineering work only, that is, stress dynamics, 

aerodynamics, weights and loading. 

Figure 75 can be misleading and references 30 and 81 should 

be consulted for further details, limitations and remarks 

for the survey. 
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A5,l Practical structural idealization. 

Probably the most important 

step in an analysis is the transformation of an actual 

structure into a practical model, this is known as 

"structural idealization". The degree and nature of the 

idealization obviously depends on the computer available, 

programme capabilities, type of structure being analysed, 

time and money allocated and the desired accuracy of the 

results. However, the most valuable asset in structural 

idealization is engineering judgement. The first step in 

an analysis is to obtain drawings of the structure to be 

analysed and with members of the various groups involved 

discuss the structural problem. Points for discussion are ; 

1. Stage of design. 

If the structure is at the project 

stage the concept will be continually changing. 

Under these circumstances the idealization would 

not be as rigorous as in a production analysis, 

2. Hierarchy of importance. 

If for a particular analysis 

critical structural areas exist then these will 

influence the idealization, in areas of importance 

a more rigorous idealization is adopted, this 

would include using a larger number of discrete 

(finite) elements and a more complex structural 

element representation as compared with the 

unimportant areas. 



379 

3, Loading cases. 

Much effort can be saved if the 

critical loading cases for a particular structure 

can be isolated. This is not always possible, 

particularly with new concepts, 

4. Results required. 

Time can be saved, both manually 

and computerwise, by only asking for results 

which are essential. Some items which can also be 

taken advantage of, if applicable, are ; 

4.1 Material of structural elements is 

constant. 

4.2 Only certain structural displacements 

are required. 

4.3 No vibration characteristics are 

requested. 

4.4 Constant temperature enviroment. 

4.5 Using as simple an element representation 

as possible which is compatible 

with the immediate requirements, 

4.6 No element stresses are required. 

Numerous saving devices exist but are obviously dependent 

on the programme capabilities, A large amount of work is 

required to idealize a structure but the effort can be 

reduced by good w^rk planning. If many loading cases are 

to be considered each case will generally design a particular 
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part of the structure. By careful consideration a few 

idealizations can be used to satisfy many loading cases. 

In the case of cellular semi-monocoque structures the 

section properties of the idealized structure should be 

the same as the actual structure. However, for this type 

of structure, this requirement cannot be satisfied, a 

numerical example showing this is given in reference 81. 

Therefore, when idealizing such a structure the loading 

case becomes a strong criteria. For example, in aircraft 

design if a "rolling case" is being considered in the 

design of a fin then it is desirable that the section 

properties about the rolling axis are correct; in this 

case the section properties about the pitching axis would 

be in error, but this is perhaps not too drastic. 

To discuss structural idealization further consider 

an aircraft wing, see figures 76 to 80 . Typical endload 

carrying elements are the stringers, rib caps, spar caps 

and, depending on the element representation, the panels. 

To idealize a wing structure stringers are lumped together 

to form an equivalent endload carrying member, if the 

plate type elements are assumed to carry shear only then 

an equivalent amount of skin area is added to form the 

equivalent area, see figure 81. Reference 81 should be consul 

for further details. In the case of a wing surface design 

a grid system is formed by the equivalent endload carrying 

elements and chordwise ribs, plate elements being bounded 

by the grid lines, see figures 76 and 77. I'he intersection 
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of such lines designate nodal points, however, if for example 

a.displacement was required at a point were no intersection 

of elements existed a nodal point can be established by 

using ficticious grid lines. These ficticious lines don't 

represent endload carrying elements but are used to advantage 

in acquiring information. Therefore, nodal points designate 

junction points, load application points, and any other 

points were information is desired. 

Having established an idealization 

the nodal points are numbered. The method of numbering 

is something which improves with experience, in more 

sophisticated structural computer programmes the numbering 

can be quite arbitrary but avoid using the same number 

twice. However, even in the general programme a well prepared 

numbering system can save considerable time and increase 

the size of problem which can be analysed. To prepare an 

efficient numbering system requires more concentrated 

effort from the engineer but once a routine is established, 

by experience, there will be very little difference in 

effort compared with numbering in an arbitrary manner. 

One convenient guide line is to number the nodes in as 

cyclic a manner as possible. Figures 76, 77, 78, 79 and 80 

show the idealization and numbering system for various 

parts of a project wing design. These were established by 

the author at the Boeing Company, Seattle, U.S.A. for 

static and lumped mass vibration analyses. Other idealizations 

are shown in figures 82 and 8 3 . When idealizing a structure 
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the placing of a node on an element boundary which is not 

one of the element specifying nodes must be avoided. This 

error often occurs, particularly when first meeting the 

subject of idealization. This error can be seen more clearly 

by referring to figure 84 . One method of avoiding this 

error is shown in figure 85 , the plate element 1,10,2,12 

is now subdivided into two plate elements, 1,10,11 and 

1,11,2 ,12 . 

In selecting the various types of elements for 

an idealization the engineer has to be very careful that 

he selects the best type possible for a particular analysis. 

The type of element adopted can affect the results considerably 

and one can see why engineering judgement and experience 

are an asset. Choosing the best elements for an idealization 

presents a problem which only lessens with experience based 

on continual usage and in many cases on "suck it and see" 

approaches. Mr. J, Rotter, Dynamics Uroup, Airplane division. 

The Boeing Company, Seattle, U.S.A., carried out a very 

useful study using a cantilever spar structure, figure 86, 

and the displacement approach of analysis. A computer 

programme called "COSMOS" was used to obtain the results. 

Three types of element representations were used ; 

1, Element stiffness matrix derived by application 

of beam theory but extending the derivation 

to include shear web flexibility. Element 

type A, see figure 87(a). 

2. Element stiffness matrix derived by assembling 
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the stiffnesses of constant endload elements 

and a web. Continuity between web and. chords 

does not exist between nodes, element type B, 

see figure 8T(b), 

8. Element stiffnesses derived by assembling 

the stiffnesses of constant endload elements 

and an isotropic plate element, 'i'he stiffness 

of the isotropic plate element is itself assembled 
iO 

using four isotropic triangular plate elements. 

Continuity between web and chords does not 

exist between nodes. Element type C, see 

figure 87(c). 

The vertical deflection of the free end of the spar shown 

in figure 86 was evaluated using the various representations 

and two applied loading systems. This deflection is compared 

with that obtained using engineers bending theory for a 

range of element aspect ratios, that is, span of element/ depth 

of element. The results are shown in figures 88 and 89 . 

Therefore, when selecting the various structural element 

representations it is essential to consider the applied 

loading system. Further, if for example the generalized 

boundary vectors for elements meeting at a particular 

node did not contain moments or rotations this would mean 

that no moments can be applied to the structure at this 

particular node. 
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A5,2 Programme input data. 

Having eatablished an idealization, 

numbering system and applied loading systera(from the loading 

group) the next step is to prepare the computer programme 

input data. The best method of presenting data to a keypunch 

operator is to write the data down on input sheets which 

are arranged similar to an enlarged computer data card, 

figure 90, The data is written according to a predetermined 

format, decided by the programmer and coordinating engineer. 

One method is to write the various input parameters in certain 

specified columns on the input sheet, the number of columns 

being chosen to accomodate the largest expected value. 

This approach works but a more convenient method which 

is less prone to error is to write down the parameters 

allocated to a line (card) as they come but separating 

the individual parameters by a comma, A blank could be used. 

The completion of data on a card is indicated by, say, two 

commas. Figure 91 shows data prepared to a predetermined 

format and figure 92 shows data separated by commas. By 

comparing the two forms it can be seen that the use of 

commas reduces the chance of error, with the former 

presentation one is inclined to use a different type of 

input sheet for each kind of data such that the columns to 

be used for the various parameters can be clearly marked 

and perhaps titled. The latter presentation gives a standard 

input sheet for all data and also reduces the computer 

time for reading data. It should be noted from figures 91 
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and 92 that some parts of the input data are written 

with a decimal point and others without, This is very 

important and the programme users manual should be carefully 

read regarding this point. 

Input data for a static/vibration structural 

analysis would include ; 

1. Nodal data (nodal point numbers and coordinates 

relative to a fixed set of axes). One node 

per card. 

2. Element data (type designation, specifying 

nodes, section properties and material properties). 

One element per card. 

3. Structural constraints (number of constraints, 

degrees of freedom to be constrained or reactions). 

4. Generalized applied load system ( node, generalized 

loads). One node loading per card. 

5. Frequency data (number of frequencies, frequency 

parameters). 

The nodal data is punched as one node per card, the element 

data as one element per card, the applied loading system 

as one node loading per card. This form of presentation 

enables amendments to be made readily and conveniently 

to the data. This can be extended to the other forms of 

data. 

When writing down the element specifying nodes it 

is preferable to be systematic. One successful procedure 

vill now be described. Start at the first node, say 1, the 
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node numbering need not commence at 1, and write down 

the specifying nodes for all elements meeting at this node, 

moving in as cyclic a manner as possible. After an element 

is accounted for mark it on an idealization drawing, this 

helps in the book keeping. Next move to node 2 and write 

down the specifying nodes for elements meeting at this 

node, some elements may have been accounted for by consideration 

of the previous node. This is were a marking system helps. 

Continue this procedure until all nodes have been exhausted. 

The final system of element specifying nodes will now be 

orderly since the first specifying nodes will be in sequence. 

All elements with node 1 in its specifying nodes will 

come first, then those with node 2 (if not previously accounted 

for by node l), then node 3, and so on. This helps in 

checking the work and is most convenient when making 

amendments. An example is given in table 1*9 which is compiled 

for the cantilever box structure shown in figure 93. 

Having written down the element specifying nodes the element 

data can now be completed systematically. In writing down 

the element data many errors can be avoided and time saved 

by having two people doing this systematic procedure, that 

is, one reading and one writing. A simple check should 

now be made, sum the number of structural elements from 

the data, do the same using the idealization, and the 

two summations should be the same. This check has saved 

or produced many red faces. As a final check the whole 

procedure should be repeated without actually writing 
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dovn the data but simply changing partners, that is, the 

person who was originally writing now does the reading, 

and going through the motions, checking with the previously 

compiled data. This is a boring task but for the time it 

takes compared with hte computer running time and cost, 

and schedule delays it is essential. All other data should 

have similar checks. 

When all data are completed they are transferred 

from input sheets to computer data cards by a keypunch 

operator. This now presents a further and very common 

source of error. Therefore, a listing of the punched data 

should be obtained before running the programme and checked 

against the initial input sheet data. Further discussion 

on structural idealization and practical computer programme 

application can be found in references 31 and 10. 
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AS.3 Research stage of structural analysis. 

The foregoing discussion has 

been concerned with practical computerized structural 

analysis. However, even at the research stage of structural 

analysis one should consider the possible future application, 

which is of course in a practical analysis system. Initial 

structural research using finite element techniques is 

carried out using simple models. Even then the work has 

to be computerized. Therefore, a great deal of the discussion 

for practical analysis applys at the research stage since 

this helps in developing the work from the standpoint of 

theoretical formulation, numerical techniques and computer 

programme formulation. Once a system has been shown to 

work on simple models it can then be expanded to large 

Configurations. When carrying out research in new areas of 

analysis many unforseen problems present themselves. These 

may be theoretical, numerical or programming. Adopting 

simple structural models for initial research appears to be 

ideal since one can follow the various steps of an analysis 

more readily. Also, the more common simple structural models 

have either 'exact' solutions or have been analysed using 

alternative approximate procedures. Simple models can also be 

investigated experimentally at low cost. There is no point 

in going to large configurations until a new concept or new 

development has been tried out on simple known solution 

problems. To validate the theoretical work presented in this 

thesis a computerized structural analysis system was written 

and developed to analyse simple structural configurations. 
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of the upper surface of a project wing design. 
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Structural idealization and nodal numbering system 

of a fuselage frame. 
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used to give continuity. This is 

not an endload element 

since none exists, 

see figure 84. 

Correction of continuity error. 

Fig. 85. 
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