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ABSTRACT OF THESIS.

In the field of structural vibration analysis using
finite element techniques and a distributed structural

mass representation the displacement method has

virtually received complete priority over the force
method, To date; no published work has been found on &‘Tf
force approach which adopts en automatic selection of
redundancy technique and a distributed structural

mass representation., This thesis formulates and
investigates such a force method ("The Rank Force Method")
and the ranlk technique i3 used for automatic selection

of redundancies, Distinction is made between static

and dynamic redundancy. Procedures for deriving element
dynamic flexibility matrices are preseﬁted and then
applied to give particular dynamic matrices. It is shown
that such matrices can be separated into an element

static flexibility metrix and an element inverse mass
matrix., Bndload, beam and rectangular plate elements

are considered, Using these elements the rank force

method is applied to a number of structural configurations
to evaluate their eigenvalues. These results are compared
with thoses obtained using alternative procedures, Element
loads and structural reactions for a given frequency and
applied loading are also given. A general discussion of the
rank force method for vibration analysis is given.

When adopting this force approach for eigenvalue



evaluation a highly reduced structural dypnamic flexibilty
matrix can be used, & method is presented and investigated.
It is also shown that in vibrationm analyses the
structural reactions need not be imposed until the final
stages 6f the force formulation. This is ideal when
anslysing large practical structures.

All results are obtained by writing the

rank force method as a computerized structural analysis

research system, such a system is presented and descibed.
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INTRODUCTION.

The analysis of complex structural configurations under
‘static and dynamic loading conditions has been revolutionized
by the introduction of finite element techniques which |
incorporate matrix formulation of the problem. These techniques
are ideally suited for solution by high speed electronic
digital computers. The structure to be analysed is replaced
A by.an equivalent mathematical model which is established
by idealizing the structure under considératiqﬁ into a
finite number of structural elements. The static and dynamic
properties of each structural element is expressable in
matrix form. f{he finite structural elements are assembled
in accordance with basic structural rules to give the
overall structural behaviour., Finite element techniques.
are classified into two main approaches, namely, the
displacement approach and the force approach. Ln the former
the displacements are considered as the unknowns and the
-equations of equilibrium are enforced to give the correct
displacement system. In the latter, the internal element
‘loads and external structural reactions are considered
as the unknowns, the correct system of loads being that
which satisfies the energy equations.

The advantages and disadvantages of
the matrix force and displacement approaches for computerized
structural matrix analysis have been a well discussed topic

for many years, particularly in static analysis and lumped



mass vibration analysis. A correlation study of these
methods was carried out by Gallagherﬁs. He found that no
impartial evidence existed upon which to base the view
that either approach is "best".

Any comparison of the two approaches should
be made when the amount of computer programme input data,
to be prepared by the engineer, is the same in both caéés.
This is the case when adopting a matrix force)approach
which incorporates an automatic selection of redundancy
technique, such as "The Rank Technique"

‘The main points for comparison for a given problem areﬁ;
1. Computer storage required.
2. Total computer running time for a solution.

3. Accuracy of solution.

Comparison should also be made for the same programme
generality, programming language and using the same compuﬁer.
Simplicity of theoretical derivation and apprehension should
‘not be overlooked. These points are very important, since,.
for practical applications, the programme user is only
interested in how much it will cost to solve a problem

in the quickest time possible. He also requires that the
amount of input data to be prepared by him is a minimum,
“that the results be well presented, meaningful and accurate.
The users confidence in the results has to be established.
The user is not very interested in the programming and

theoretical gimmickry which the programmers and theorists

enjoy and appreciate. However, the user must be made aware



of the limitations in the results.

The displacement and force approaches have
received much attention in the field of static analysis
with the displacement formulation being the most popular.
The lack of popularity in the force approach was initially
due to‘the excessive amount of computer programme input
data which had to be'prepared by the engineer. This
impediment was caused by the fact that structural redundancies
had to be manually selected and the basic and redundant
load systems generated by hand. Such a force approach is
referred to as a semi-automated force approach, To emphasize
this'problem further explanation of these load systemé |
will be given. To carry out a static analysis of a structure
by a semi-autom&ted force approach requires first of all
the realization of redundancy and then the selection of
redundancies. This is a difficult task when considering
a complex structural configuraiion and it is even more
difficult to select a satisfactory set of redundancies.
when a structure is redundant it means that the loads in
the structural elements cannot be found by equilibrium
considerations only. In mathematical terms, it means that
the system of equilibrium equations has an infinite number
of solutions. The correct system of redundants is that
which satisfies the energy equations which are derived
by minimizing the total complementary potential in the
structure., When a structure is determinate, non-redundant,

the structural element properties need not be known in



order to evaluate the internal load system. When selecting
.redundancies for an applied load condition the actual
redundant loads should be as small as possible, in which
case a determinate solution from equilibrium considerations
can be obtained with little possibility of error. This
demands that the determinate structure, that is , an
o, ‘ndeterminate structure with redundancies removed, behaves
Sop v as possible like the actual structure. This
s ~ssitates consideration of the applied load
'ic'&l :12 the 5 ‘awing the simi)le plane frame structure
e g, 16%1% ~ that for the applied load P
1>dw, + shown in figure 1(b).
If the applied low Q'd%{y T Iy . “toure 2(a)
the best determinate stru. QQ%% Ibehbﬁlﬂ ‘er
‘member, see figure 2(b). A more. K Veis , ing
‘can be established by considering the en. ions
obtained by mihimizing the total complementary rbential
'in the structure. These are given by, for a semi-automated

force approach,

k
[Foll Al + [Feli 1 { = O]
Therefore, the static redundancies 79% are given by,

.

F9%% = - [ Fud [ Fall Rt

It can bevseen that the inverse of matrix th[] is required.
For well conditioned equations this matrix should have

predominant terms on the diagonal. If matrix [Fre] was a



simple diagonal matrix its inverse would be & diagonal
matrix whose monzero elements are +the reciprocal of the

corresponding elements in the original matrix. In +this
(&3

&
case the equations are well conditioned.

rom these few points it can be seen that the manual selection

b

O
iy

redundancies such that ideal requirements exist is
impossible. Initially one could assume a set of redundants,
run the computer programme, and investigate the results

to see if the redundants had been well chosen, if not the
process would be continued., However, this would be very
time consuming.

ihe basic and redundant load systems will now be

explained. The generalized element boundary loads can be

expressed in terms of the generalized applied loads and

fg

selected redundancies by equilibriunm considerations. Therefore,

% =1 8y JTR T + [ 8ueliaky

where,

[ Xm??lﬁ,\g- bas

i
o
0
=
O
}.«.J
(@]
Qo
p}.'

systenm,

[$unlieh} = redundant load system.
To generate the basic and redundant load systems the following
procedure is adopted i

Basic Load System,

ot

First, all the selected redundant loads
, k . . X
are set equal to zero, that is, {Q {= {€>Z the structure
now becomes statically determinate, The first applied load F

is then set equal to unity and all other applied loads are



set to zero. The first column of the [KQﬂ matrix can then
be generated by considering static equilibrium of the

structural joints and elements. Therefore,

— : — _...X" -
5 :
fq,agz % = 3us = {Xm%
L 1 — L_X”‘_.,.

The second applied load #£  is then set equal to unity
and all other applied loads are set to zero, still keéping
all the redundant loads equal to zero. The second column
of the [3.] matrix caen then be generated, again by static

reasoning. Therefore,

- -
9, | Yo
" ;
| :
{qa}" qo« = Yoz = 55«25
| |
KR

This procedure is repeated for all the applied loads until
the complete [¥xa] matrix has been generated.

Hedundant Load dSystem.

¥irst, all the applied loads are set
equal to zero, that is, {F;%aifii, the first redundant q'
is then set equal to unity and all other redundants are set
to zero. Thé first column of the [XQJ matrix can then be

generated. Therefore,
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the need to generate the basic and redundant load systems
and therefore the need to select redundancies. This hybrid
system is presented for the analysis of rigid joint frames
and the unknowns are taken as particular generalized element
loads and displacements. The eigenvalues for two plane frame
configurations are given and these results will be used
for comparison purposes. The elementvdynamic representation
adopted was based on transcendental functions.

~ It can be seen that the same impediments
in the semi-automated force approach exist in both static
and vibration analysis., However, in recent years these
impediments have been investigated for staﬁic analysis
and one method of automatically selecting redundancies,
"The Rank Technique", is given in references 27,28,29 and 3l.
" In reference 31 the author describes how the rank technique
cén be used to automatically generate the basic and redundant
load systems but points out that there is no need to generate
these systems difectly if the rank technique is incorporated
into a force méthod. A force approach which incorporates
the rank technique for auvtomatic selection of redundancies
is referred to as "The Rank Force Method“gd.

The work carried out in this thesis is a
study of the rank force method for structural matrix
vibration analysis using a .distributed structural mass
representation. This is & pure force method where the
unknowns are the generalized element boundary loads and

generalized structural reactions. Since this is a research



project only simple structural configurations are analysed,
such as collinear beam structures, gemeral plane frames
and two dimensional rectangular plate structures.
The first chapter discusses structural dynamic

redundancy and differentiates between static redundancy
and dynamic redundancy. Also presented in this chapter
is the rank technique for vibration analysis and as a
computer programme subroutine, examples of redundancy sets
are also given., Chapter 2 formulates the rank force method
for vibration analysis but the work has been restricted to
internal stress distributions and structural response for
a given frequency due to harmonic applied loads. The work
also covers the eigenvalue problem. All loads and displacements
are assumed to vary harmonically with time and in phase.
The structure is assumed undamped and steady state conditions
are assumed to exist.

In Chapter 3 approximate procedures for the

derivation of element flexibility matrices are presented.

[l

These derivations have been specifically given for endload,
plane beam and rectangular plate elements but the general
procedures would be the same when considering other element
types. three derivation procedures have been investigated,

one of a more exact nature and the others being more
approximate. the more exact derivation adopts tramscendental
functions whereas the other derivations adopt series funcitions

(polynomials). These functions represent the respective

element intermal loadings. Having established derivation



10
procedures the next step is to obtain particular element

dynamic flexibility matrices by considering specific types
of elements and internal loading functions. This work is
contained in Chapter 4.

To carry oub vibration analysis of
structures, even for bthe very simple configurations, 1%
is essential to write a computerized system. Such a system
is presented in Appendix 4 using A.S.A.Fortran as the basic

programming language and written for an I.C.T. 1900 Computer.

To analyse a given configuration, using the
rank force method, a set of standard subroutines, a force-
subroubtine and a master programme are required. The force-
subroutine generates the system of joint eguilibrium
equations for the particular configuration, and by following
the force formulation and calling the standard subroutines
generates the internal loading system, structural response
and the siructural dynamic stiffness matrix for a given
frequency. The master programme controls the analysis, for
example, reading input data and selecting output. In the
case of eigenvalue evaluation an iterative procedure is
contained within the master programme., The master programme
and force-subroubine have been written for various types
of structural configurations but the general concepts are
the same for any configuration. The structural types
considered are ; collinear beam strucbures, general plane
frames and two dimensional rectangular plate structures.

I+ should be noted that the standard subroutines apply to

any configuration. The programmes have been written and



11
restricted to analyse problems within the computer core
storage mainly because this research project is concerned
with investigating the force formulation as a vibration
analysis bool, The various programme and subroutine listings
are given and their arguments, limitations and applications
are described,

Before an analysis can be carried out the actual
structure has to be transformed into a mathematical model.
This transformation is referred to as "structural idealiz-
ation". When undertaking a structural research project it
is desirable to keep in mind future practical application
of the worlk, therefore,in Appendix 5 +the practical
application of a computerized structural analysis system
is discussed.

Chapter 5 presents results obbained using
these computerized systems for various structural configurations.
Phese results are discussed and compared with results
obtained by alternative analysis procedures. Conclusions,
recommendations and arcas for future research are given,

During the latter stages of this research work
.5 number of important items appeared, these are discussed
in appendices. In the rank force method for vibration
analyses the inversion of a large matrix has to be carried
out in order to evaluate eigenvalues. In Appendix 1 a
method is proposed which only requires the inversion of

a very smell submatrix which is contained in the initial

large matrix. This reduced matrix is immediately extractable.
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Some results are given to help substantiate the proposed
method and they do encourage further investigations.

A procedure is presented in Appendix 2
for the delayed imposition of the generalized structural
“reactions iﬁ the rank force method for vibration analyses.,
. This enables unconstr@ined structural dynamic flexibility
matrices to be generated which are ideal for the wvibration
analysis of large structural configurations using "block
elements". A block element being itself an assembly of
finite elements, a substructure.

Appendix 3 suggests a further approach
for deriving & dynamic flexibility matrix for a rectangular
plate element uéing an S-system of element generalized

10&(130'
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Nomenclatbure.

{ART = generalized applied discrete loads. ™
{4°F = ;
column matrix of redundants. These are

[ Fer] - use in ‘a
structural

[F}x]

Iransformation matrices. static analysis

[Xa)\] o
see reference

[ Yurl ~ - 31,

[ 2«3 = submatrix of L&«f coefficients in the system
of joint ecuilibrium equations.
[e] = submatrix of feRel coefficients in the system
of joint equilibrium eguations.
[¥] = submatrix of 163§ coefficients in the system
of joint ecuilibrium ecuations.
E&S«i ® wvector of time dependent generalized element
boundary displacements. fb&ng 1 Saf Sinddt.
fe3.1 = vector of time‘&epen&ent generalized element
boundary loads. fefu f= {9t Sinedt .
ieRef = ~vector of time dependent generalized structural
reactions. Ltfef= IRt Smot
{Jii = vector of time dependent generalized appiied
loads, LeRE=1 RSt
feﬂAi = wvector of time dependént generalized structural
displacements., Lebat= 1 ANE St .
[ 3«7 = submatrix of &&fuf coefficients in the systenm
of joint equilibrium equations after applying

the rank technique.



[¥e]

[

submatrix of 1 ¢Ref coefficients in the systen
of joint equilibrium equations after applying

the ranlkt technique,

L]

1l

submatrix of {¢éRY coefficients in the system
of joint equilibrium ecuations after applying

bhe rank technique.

=]
il

total complementary potential in the structure.

NE

it

total number of finite elements in the structure.
{;ﬁ} = vector of automatically selected dynamic
redundancies, time dependent. {e%kf= {4%%Sm Wt
[dmad = element dynamic flexibility matrix.
{dmal = vector of time dependent generalized element
boundary loads for element m, { e f = £ Dmat Sin e
{eomal = vector of corresponding generalized element
boundary displacements for element m.
[eSmad =1 Smal Sin wt .
[F4] =  assembled element dynamic flexibility matrix,

band matrix.

{0t

]

null vector.

Ladx] =  matrix of partial derivatives, «%k is the
. . . . ‘ i’?
partial derivative of T« with respect to ¢ .
This matrix is contained in matrix [ ¥« i ¥el .
Lednd = natrix of partial derivatives, e¢dr is the

h
partial derivative of ¢fe  with respect to 1~ .

[

This matrix is contained in matrix [ ¥Y«! Ye] .

i

[4]

Lo J[F4] , used in energy equations and

generated for a given frequency.
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[Dan] = matrix which relates the generalized element
boundary loads, {¢f , and the generalized
applied loads, 1A% , for a given frequency.

[Aer] = matrix which relates the generalized structural
reactions, {eRef , and the gemeralized applied
loads, LeA f , for a given frequency.

Lr]l = aatrix of partial derivatives, o9 is the
partial derivative of éﬁ( with respect to Hﬁv
for a given frequency. This matrix is the
transpose of matrix L[ Aaxr] .

[e22] = matrix of partial derivatives, e is the
partial derivative of ¢Re  with respect to ¢4
for a given frequency. This matrix is the
transpose of matrix [ Aea] .

[323 = structural dynamic flexibility mabtrix for a given
frequency.

ZJQ} = L-JJ]-J= structural dynamic stiffness matrix

for a given frequency.

L

det[#4) = determinant of the structural dynamic stiffness

matrix for a given frequemncy.

~ '

Wi = complementary virtual work done by the virtual
generalized element boundary loads.

2 = complementary virtual work done by the element

inertia loading.

U’ = complementary virtual work done by the virtual

&

internal element loading.

P(x,t)

1]

internal element endload distribution, funciion
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of position (x) and time (1). P& = P> Su: LE.
element distributed loading in the x-direction,
function of position (x) and time (+).
element displacement in the x-~direction, funcition

of position (X)4and time (b). HUslox,e) = U, (%) Sm IE

row transformation matrices for an endload

element.

element static flexibility matrix.

element inverse mass matrix.

element dynamic stiffness matrix.

element static stiffness matrix.

element mass matrix.

internal element bending moment distribution,
function of position (x) and time (t).MPYE)=M)SndE,
internal element shear distribution, function

of position (x) and time (t). @&&) = Q(x)Sin Wt .
element distributed loading in the z-direction,
function of position (x) and time ().

element displacement in the z-direction, function
of position (x) and time (t). U3bs8 =Uzlx) Sinwt.
row transformation matrices for a plane

beam element,

element rotation in . .s-plane for a plane

beam element, funcition of position (x) and

time (t). 6O04e) = 680 5i 0t |
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F

element specifying nodes, endloa

!

y

elements.,

amplitude of element displacement in the
y-direction. Uy (%3,6) = Us(x3)Smdt = UygSin b
element distributed loading in the y-direction.

rectangular plate moments.

rectangular plate shears.

rectangular plate equivalen? shears.

rectangular plate nodal concentrated loads.

row transformation matrices for a rectangular

plate element.
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submatrix of L Imaf coefficients in the system

of overall equilibrium equations when using

£

an s-system for the generalized element boundary
loads, rectangular plate element.

submatrix of {bsmﬁﬁ coefficients in the system
of overall equilibrium equations, using an
s~-system.

vector of time dependent generalized equivalent
discrete nodal loads, rectangular plate element,
using an s-system. [ eSmed= & SmpiSinwt.
submatrix of {@wm«f coefficients in the systenm
of overall equilibrium ecuations after applying
the rank technique, using an s-system.

submatrix of {esm@i coefficients in the system
of overall equilibrium equations after applying
the rank technique, using an s-system.

matrix of wpartial derivatives when using an

s-system, rectangular plate element.

[«3n1M [ §d] , used in energy equations and

generated for a given frequency, using an s-system.
matrix which relates the g-system and the

s-system for a given frequency, rectangular

plate element.

element dynamic flexibility matrix for a
rectangular plate element corresponding to an
s—-system.

distribution constants.



(%53) =
Gﬁ’“/%) =
{b‘i:,(f =

{edmaf =

{ES;;§ =

[CM3 -

[Sod ) =

global axes and coordinates (in).

local axes and coordinates (in).
generalized element boundary loads
relative to the local axes.

{eql;g = { qi«? Sin Wt |

generalized element boundary loads
relative to the global axes,
corresponding generalized element
boundary displacements relative

to the local axes.

transformation matrix, rotabtion

of axes.,

element dynamic flexibility matrix
relative to the local axes,
element dynamic flexibility matrix
relative to the global axes.

ordinates of node i.

N

X and

X and ordinates ¢f node j.

N

Inclined
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plane beam

element.

rectangular plate moments (non-dimensional).

rectangular plate shears (non~dimensional).

transcendental funcitions used in the endload

and beam type elements using procedure 3.
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E = Young's modulus of elasticity for the element

. .2
material, 1b per in .
W = angular frequency, radians per second.
N - R . . 3
/# = density ol element material, 1Db per in .
Vo= Poisson's ratio.
&

= time, seconds.

3
I

element number.
X 2 . 2

3864 = g x12, in per sec (g=232.2 ft per sec ).

>,3 = local axes and coordinates (in). -

Ir = second moment of area of element

. .4
cross section, in .

: . 2

A = cross sectional area of element, in .

L = length of element, in.
(L, = element specifying nodes.

k3

2 T W Endload

N T Az T sEcae sndioa
= endload element frequency parameter and plane
wvhen using transcendental functions. beam
z 2 A

A oo il el elements.

2 T EX 3864ETL

= plane beam element frequency
parameter when using transcendental

functions.
/0907‘44
N = 840ET

= plane beam element frequency

parameter when using polynomials.

A
P = 3264

. 2 R
mass per unit length, 1b sec per in .

i




> Y4,% = local

axes and coordinates (in).

= plate thickness, in.

= rectangular plate element dimensions, in.

Fad
a
z
& 3

E&p
= 2 (1-v¥) = plate stiffness factor.
= b, - mass per unit area,

; z . 3
1b sec™ per in .

A.S.A. = American Standards Association.

ITC.T. =

ok

Rectang-—
ular
plate

element.

International Computers and Tabulators Ltd.



CHAPTER 1.

STRUCTURAL DYNAMIC REDUNDANCY.

Synopsis.

This chapter differentiates between static
and dynamic redundancy and the rank technique for vibration
analysis is described. This technique is a method for
automatically selecting redundancies in the matrix force
approach and was initially developed for static analysis.
The basic concept of the rank technique is to investigate
a system of linear equations by applying the fundamental
theorem for linear equations which compares the rank of the
coefficient and augmented matrices. The joint equilibrium
equations for a given frequency constitute such a system
in structural vibration analysis. Ev#luation of the rank of
a matrix and the general investigation of the system of
equations is carried out using the Jordan elimination
procedure. The rank technique has other capabilities which
are also described. Also contained in this chapter is the
rank ﬁechﬁique as a COmpﬁter programme subroutine and
examples of automatically selected redundancy sets are given,
In chapter 2 this technique is incorporated into a matrix
force approach thus presenting a fully automated force method
(The Rank Force Method). The computer programme input data
for the rank force method is the same as iﬁ the matrix

displacement method,
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1.1 The Question of Redundancy.

In the static analysis of elastic
structures the matrix force'formulation initially consists
of assembling the system of equilibrium and release equations.
The equilibrium equations consist of 3

l. Joint equilibrium equations.

2. Element equilibrium equations.

3. external equilibrium equations.,
This system of equations is investigated by applying . the
rank technique, which, among other things, automatically
isolates a consistent set of redundancies.

In the vibration formulation only the
~joint equilibrium equations are assembled. There are no
resulting element equilibrium equations since these equations
are a function of the inertia loading and the element
boundary loads, and the inertia 1oadihg is expressed in
terms of the boundary loads,vinitially from equilibrium
considerations, For simplicity the external equilibrium
equations will be replaced in the vibration analysis by
compatibility equations which are obtained by comsidering
the added redundancy.

| In vibratioﬁ analysis the degree of
indeterminacy is much higher than in the static analysis
although the number of unknowns, element boundary loads
and structural reactions, is the same. Since the number
of unknowns is constant for the two forms of analysis,

the maximum order of the system of equations required




for a ﬁnique solution of the element boundary loads and
structural reactions in terms of the applied load system
is the’same. The difference being in the percentage of
energy equations contained in the total system. In the
vibration analysis the redundancies will be referred to
as "dynamic redundancies" and in the static analysis as
"static redundancies", Because of the higher’degree of
indeterminacy in the vibration analysis the coeffiéient
matrix corresponding to the unknowns is more populated
thus increasing the numerical problem. However, it
should be pointed out that in frame type structures the
joint equilibrium equations contain Boolean matrices and
hence the automatic selection of redundancies becomes
numerically sound. The joint equilibrium equations for
plate structures also conbtain Boolean matrices depending

On.the,sysﬁem‘of\elegigﬁwlpgggdaddétea.xwkww
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1.2 "The Rank Technique" in Vibration Analysis.

The rank technique is a method for
automatically selecting»the redundancies, static or dynamic,
in the matrix force approach and was initially developed
for static analysis. This technique, among other things,
can automatically generate the basic and redundant load
systems if required. Lf the rank force method is adopted
these two systems are not required directly.

To solve the eigenvalue and harmonic
forcing function problems it is required to investigate
a system of joint equilibrium equations. These equations
can be investigated automatically and in a systematic manner.
Considering the prescribed load conditions, the ﬁechnique
automatically determines whether the structure is unstable,
determinate or redundant by using the notion of rank of a matrix.
If the structure is redundant, the technique not only
determines the degree of indeterminacy but also automatically
isolates a consistent set of redundants. The joint equilibrium
equations constitute a set of statements which relate the
internal element boundary loads and structural reactions
to the applied loading system. These equations are either
consistenﬁ or inconsistent. If the equations are inconsistent;
this implies that equilibrium cannot be formulated on the
structure, or the structure is unstable for the particular
applied loading system. 1f the equations are consistent, they

may be either sufficient or insufficient to determine the
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unknowns. in the former case, the structure is determinate;
in the latter, redundant. Consider the system of Jjoint
equilibrium equations: any set of values of the unknowns
which simultaneously satisfy these equations is called a
solution. When such a system has one or more solutions, it
is said to be consistent. The matrix of coefficients
corresponding to the unknowns (element loads and structurai
reactions) is defined as the coefficient matrix of the system
and the matrix obtained by connecting the coefficient matrix
and the matrix of coefficients corresponding to the knowns
(applied loads) is defined as the augmented matrix of the
system.
To determine whether a system is consistent or in-
consistent use the fundamental theorem for linear equations:
"A system of linear equations is

consistent if, and only if, the

coefficient matrix and the

augmented matrix have the same

rank,"
The rank of & matrix is defined as the dimension of the
largest square submatrix of the original matrix having a
non~zero determinant.
However, there is no need to calculate the rank of the
coefficient matrix directly. The system of equations can
be investigated by applying the Jordan elimination procedure
to the augmented matrix only. A systematic way of determining

the rank of a matrix, in particular the augmented matrix,
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will now be described:
Locate the largest absolute value in the first
row and divide all elements in this row by the
actual value corresponding to this. Now this
row 18 multiplied by the coefficient of the
corresponding element in the second row and
subtracted from the second row. This is continued
for each of the remaining rows. The column
corresponding to that element has now a one
in the first row and zeros in all other rows.
The same process is performed in turn for ﬁhe

remaining rows until either all of the rows
are exhausted or all-oflthe remaining rows

have all zeros as elements.va, after exhausting
all the rows, éhe largest absolute value in a
row has always been located in the submatrix
which corresponds to the unknowns in the augmented
matrix, then the rank of the coefficient matrix
and the augmented matrix are equal and the system
is consistent. If the largest absolute value in
any row is located in the submatrix which corres-
ponds to the knowns in the augmented ﬁatrix,
then the ranks are unequal and the system is
inconsistent.

Afterhgenerating a system of linear equations, it may not

be immediately apparent which, if any, are dependent equations.

On completion of the Jordan elimination procedure, the
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dependent equations will appear as null rows; the remaining
equations will constitute the system of independent equations.
The redundancies will be isolated in the process of rank
determination and are identified by noting the columns in
the coefficient matrix, in the independent system, which
were not selected in the elimination procedure, that is,
none of the elements in the columns were isolated as
maximum absolute values,

The rank technigue is shown as a
flow chart in figure 3. This technique is described in
detail for static analysis in references 27, 28, and 31
with the added sophistication of selecting the largest
absolute value in a row instead of the first non-zero value.

The method of locating redundancies is also different.
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1.3 "The Rank Technique' as a Computer Programme Subroutine.

To study the fank force method for
structural vibration analysis a computerized structural
analysis has been written in A.S.A. Fortran for an i.U.T. 1900
computer. rhe rank technique is used as a subroutine and

its listing is given in table 1.,

This subroutine ‘investigates & rectang-
ylar.array using the Jordan elimination procedure; Typically,
this array is an augmented matrix comsisting of a submatrix

.(coefficient matrix, which need not be square) corresponding
to the unknowns and a submatrix corresponding to the knowns.
Initially two vectors are formed, one null vector, denoted
by IDEP, and a wvector IQ. The latter vector contains integer
numbers starting at 1 and increasing in sequence to the actual
number of unknowns (N8). The next step is to locate the |
maximum absolute wvalue in the first row, scanning only
the coefficient matrix. tThe actusl maximum value is then
used to normalize the corresponding row in the augmented
matrix. The Jofdan eiiminafion pfoéedﬁre is then applied
to reduce the element in the other rows which has the same
column location as the maximum value(used for normalizing)
to zero. This procedure is repeated until all rows have
been normalized. At each stage the actual maximum value
in a row is stored in & vector which can be used to
evalﬁate & determipant. This vectof is referred to as the

normvector, XMAX,



If the maximum absolute value in a row is zero
the remaining elements in that row, contained in the
submatrix corresponding to the known quantities, are
investigated. If they are all zero a dependent equation
has been found, the corresponding row number of such an
equation is stored in vector IDEP. If any of the elements
are nonzero it means there is no solution to the system
of equations, that is, the coefficien% and augmehted_matrices
have unequal rank. A statement NO SOLUTION is printed out.
In the case of a rectangular coefficient matrix tﬁe redundeant
column numbers are stored in vector IQ. Each time a maximum
value in a row is located its column location is noted
and the corresponding row in the IQ vector has its value
se%vequal to zero. The redundancies are given by the
remaining»nonzero elements,

This subroutine can be usedbfo evaluate a

determinant and to invert a matrix. In a matrix inversion
the augmented matrix would consist of the matrix to be

inverted and a unit matrix. The inverse would appear in

submatrix corresponding to the unit matrix. It should be

noted that this subroutine has not been optimized.
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From the subroutine listing it can be seen that the subroutine

has been given the name RANTEC.



34
The subroutine arguments will now be described;
XKD = rectangular (or square) afray.
N9 = actual number of rows.
N8 = number of columns in coefficient matrix.
N7 = total number of coiumns, that is, number of

~.columns in the augmented matrix.

NOMAX
‘NS8MAX corresponding maximum values, dyhamic
NTMAX dimensioning.

IDEP = vector of dependent equatipns, row numbers.
XMAX = normvector, vector of normalized row elements.
IQ=vector of redundant load numbers., This
vector initially consists of the element
load numbers, element loads which are not
isolated as redundants have their correspond-

ing load number set 1o zero.

Figure 4 gives added definition for some of the arguments.

As an>example, consider the joint equilibrium equations given by

[ﬂaiﬂe]{fidf@p&} + [\J/Ajiép)\} = {D%

The coefficient matrix is given by [aidLle]
of order, say, N1x MC and the augmented matrix by [JSluifle, X ]
of order, say, N1 x LM. Let the maximum number of unknowns,
element boundary loads and structural reactions, be 84,
maximum number of joint equations be 42 and the maximum

number of applied loads be 38. The augmented matrix will be
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denoted by OM. The program call statement to investigate

matrix OM using subroutine RANTEC would be,

CALL RANTEC(OM,N1,MC,LM,42,84,122,IDEP,XMAX,IQ)

Figure 5 gives added definition for the example.



1.4 Redundancy Sets.

To illustrate the rank ‘technique for
dynamic redundancy selection two simple structural config-
urabions will be investigated.

As a first example consider the simply supported beam shown

in figure 6.

The sysvem of joint equilibrium equabions is.given by,

i“‘é ﬁ{ﬂa‘:e?éf +"’* m{bfif=50}
/ 't -
!
1
/ / ' -1
H
J i f -
R
T
’E n "L
or in contracted matrix form as,
[ﬂ«;ﬂe]{bﬁng?e} +[\7P>\]{EPXE"'{OE
The augmented matrix is therefore,
: - H ! ]
["[2'9(:"(2‘“)\/’)\1: H g.,f { :
, e
! 1 § l -
R B -
TR
E ! 2
- ;,5 | ]
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Applying the rank tecihnitue results in an equivalent

augmented matrix given by,

1

. - JTEts: IURNURUNG S S S——

Prday
~—

1]

The isolated redundancies are therefore q.,q, ,R,and E,,
considering amplitudes only. in the static analysis this

beam would be determinate.

As a second example consider the plane

frame shown in figures 7 and 8 .

37
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The isolated redundancies are therefore
q7,q3yqsﬁqn,qm,qm,qw......,..........qM?R,yﬁzand R34 consid-
ering-amplitudes only. In the static analysis this plane
frame would have six degrees of indeterminacy.

It can be seen that in both these
examplés the augmented matrix is the same before and after
applying the rank technique. Lt should be noted that this
would not always be the case. It should also be noted that
the choice of redundants is influenced by the method of

numbering thé nodes and element loads.
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60

SUBROUTINE RANTEC(XKD, NG, N8B, N7 NIMAX , NEMAX ,NTMAX, IDEP , XWAX, 1Q)
JORN ROBINSON, 1,S.V.R. ‘
AUTUMATIC SELECTION OF REDUNDANCIES IN THE MATRIX FORCE METHOD,
THE RANK TECHNIQUE,

DIMENSTON XKD(NGMAX ,NTMAX ), IDEP (NGMAX ), XMAX(NYMAX ), IQ(NBMAX I
D09 L=1,N9

IDEP(L =0

DOT M=1,N8

IN(M) =M

BO3C¢ I=1,N9

MAX ABS VALUE IN A ROW ANUD ITS COLUMN LUCATION
INITIAL ABS VALUE

IMAX=ABSIXKD(T, 1))

K= 1

D06 J=2,N6

RABS=ABS(XKD(T ., J))

IF(RABS=ZMAX )6 ,8,5

MAX ABS VALUE IF DIFFERENT FRUM INITIAL VALUE
IMAX=RABS

LOCATION OF MAX ABS VALUE

K=

CONTINUE

ARRAY OF NORMALIZED ELEMENTS FOR DETERMINANT B0OLUTION
Xpx (D )=XKD{T, K}

1Q{K)I=0

IOENTIFICATION OF DEPENUDENY EQUATIONS
[F{ABSOXMAXCT) ), 6T, 1, 0E=082G0 TO 14
[F(NEB~NT7)3,8,8

D02 J=NB+1 ,N7

IF(ABS(XKD(I,J)),6T.1.0E-UBIGU TO 4

CONY INUE ‘

GO 10O 8

HRITE(G6,160)

FORMAT(I2H NO SOLUTION)

GO TO &0

IDEP(T)=]

GO 10 30

XKD ROW NORMALIZING

DOte J=i,N7

XKDCL,JISXKDOT, JI/XMAX(T)

D028 M=i,NS

IFiMm1j20,26,20

AXKLUSAKD(M K}

D022z J=1,N7

KKDEM, JI=XKD{M, J)~AXKDR XKD (I, Jd)

CONTINUE

CONTINUE

RETURN

END

A.S.A. Fortran listing of subroutine RANTEC.

Table 1 .,




L3

BN

Makrix XKD

1 f 1
|
N i
o . : :
3 Submatrix | Submatrix
N _ :
g corresponding to i corresponding
[
2 the unknowns. i to the knowns.
| I
. S S : . ]
N8 (NaMAX) _E
i i
N7 (NTMAX)
i
Fige bhes
N | -
§
i
i
E
N , |
J Nuifle | Y
g ,
2 !
!
E
! —d
|
. mc (34) o
L (122) .

s

| Matrix OM

Fig. 5.



/25/&()6‘
s el
A 2 L

Noo{e. 1 3

Applied harmonic forcing system.

(a)

9
ol

R
4, 9,
(n Al 1| SOl A
. ‘ Qz %4 | %,
R,

Freebody diagram showing complete generalized
load system, amplitudes only. A1l loads are

shown positive.

(b)

Simply supported beam idealized as two

finite elements.

Fig. 6 .

Ll



Z Sk AT
)\ J
AT —~
£ Sinidt ([ £Z5inat
\ 2
RSk
5 Sin 0k
BSindE C«Z\“ Aé_ﬁ B St

Node | 4

kApplie& harmonic forcing system.

Fig. T.

s



L6

Freebody diagram showing complete generalized
load system, amplitudes only. All loads are

shown positive.
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CIAPTER 2.

"TIT RANK FORCE METIIOD. "

-

Synopsis.

A matrix force approach which incorporates the
rank technique for automatic selection of redundancies is
referred to as the rank force method. This method is presented
for the vibration analysis of redundant elastic structures
and uses a distributed mass representation of the structure.
Only undamped structures are considered and it is assumed
that steady state conditions exist. All generalized loads
and displacements are assumed to vary harmonically and in
phase., The first step in the rank force method is to gener#te
a system of joint equilibrium equations for a given idealization.
Such equations relate the generalized element boundary loads
and structural reactions to the generalized applied load
system. The joint equilibrium equations form a rectangular
system, that is, there are less equations than unknowns.

This means that the element loads and structural reactions
can't be evaluated from equilibrium considerations alone

and thus the structure is dynamically redundant. The rank
technique is applied to the system of joint equilibrium
equations and a consistent set of redundancies is automatically

selected and hence the degree of redundancy. Therefore, in

order to obtain a unique solution for the unknowns it is
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required to generate a further set of independent linear
equations. The number of required equations being equal to
the degree of redundancy. The additional equations are
obtainedvby minimizing the total complementary potential
in the structure with respect to each selected redundancy.
The total energy is obtained by summation of the individual
element energies . The element energy is described by its
dynamic flexibility matrix and procedures for deriving such
matrices are given in Chapter 3 and particular matrices
are derived in Chapter 4. The sysfem of energy equations is
assembled with the investigated system of joint equilibrium
equations thus forming a system of independent equations with
the same number of equatibns as unknowns. Applying the rank
technique to this system of equations'results in & unique
solution for the element loads and structural reactions in
terms of the applied load system for a given frequency. The
structural response for a given frequency can then be obtained
by differentiating the total complementary potential
with respect to each of the applied discrete loads. This also
gives the structural dynamic flexibility matrix. The
eigenvalue formulation is achieved by inverting this matrix.
In order to investigate the vibration
characterisgics of typical structures the rank force method
has been written in the form of a computerized system, this
is described in Appendix 4. Using this system collinear
beam structures, general plane frames and two dimensional
plate structures are investigated and the fesults ére

given and discussed in Chapter 5.



2.1 The Rank Force Method. kg

It is assumed that the structure
to be analysed can be idealized into a system of discrete
structural elements, finite elements, The force approach
is described for an undamped structure and steady state
conditions are assumed. The generalized load system,
element boundary loads, structural reactions and applied
loads, and their respective corresponding displacements
are assumed to vary harmonically and ih phase. In this
presentation it is assumed that the structural reactions
have no corresponding displacements., The generalized
applied loads are assumed to be point generalized loads
and act at the selected nodes, Therefore, for a given >
idealization, a system of joint equilibrium equations
can be assembled which relates the generalized element

boundary loads and the generalized applied nodal loads.
In this formulation all applied loads are assumed time

dependent, however, it should be noted that static applied
loads can be included in the vector of applied loads if

required. By
In the case of a constrained structure the respective

applied loads are replaced by unknown reactions. Therefore,
considering a constrained structure, the system of joint
equilibrium equations can be written in contracted matrix

notation as,

[ﬁq?ﬂe]{fgd;éﬁef+[“/;]{EPX§={O} 2ele1

Although no direct releases are considered in this presentation
it will be pointed out that they can be accounted for by

nulling the respective columns in the submatrix [n.] .
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“xample, one direct release for a plane beam type element

is a pinned end, therefore, the column corresponding to the
moment at the respective boundary of the element would
be nulled.

The system of equations given in equation 2.1.1 can
now be investigated by applying the rank technique. This
technique will automatically isolate a consistent set of
redundancies and hence the degree of redundancy. This gives
the number of additional equations which are required for
a unique solution of the generaliied element bbundary
loads and structural reactions in terms of {he applied
load system for a given frequency. After applying the rank

technique the resulting equations are given by,

[ i Be 18 190 ! cRef + [ §,1{,R} = {0} 2.1.2
The coefficient matrices corresponding to the unknowns
and knowns, as given in equations 2,1.1 and 2.1.2 need only be
generated once for a given structural configuration since
- their matric coefficients are independent of frequency.
However, this means that the coefficient matrices in
equation 2.1.2 have to be stored separately in the computer
and made available for all values of assumed fréquency
before combining with the energy eqﬁations. This has the
disadvantage of taking up considerable additional storage
space but would given significant time saving because of the
iterative nature of the eigenvalue problenm.

The additional equations, which ére energy



51
equations, are generated by minimizing the total complementary
potential in the structure with respect to the automatically
selected dynamic redundancies, It is assumed that the

»
total complementary potential, W , is given by,

NE
™= 55 L dma Il foodl eFma§  2.1.3

me/
where,

[$md] = element dynamic flexibility matrix.

This can be written as,

= 3L A JLFali3ut 2.1.4
It should be noted that the vector of isolated dynamic
redundancies, {eiﬂ, is contained in the vector of unknowns,

{ dui tRe ! . Therefore,

)n*} g :
¢ = s )
{ 24" { . 2.1.5
or
oAt L I L R ook
29 24, ¢ 2% 24 IR 29’ 2Re 34
i § | § } i § i §
o - | o
i , | ; : : ' ; !
ELAN Ll LD i Aok . aM*oke o
9k T 34, 39k 9. Ig* OR, I9F FYIYL) =
b L o b
| o r oo P
2.1.6

Note ; when the equations are expanded the t-subscript

is dropped.



Hence, in contracted matrix form,

: LA L
Ex’ak :0‘)/2.]{ )éiu' )gke f = fo} 2.107

Assuming that no work is done by the reactions and no lack

of fit of elements the energy equations can be written as,

[k ILR1T i = fOF O Lig
In the actual computer programme the matrix product
[«3xJLF4] is performed without assembling [F«l .
The L[ ¥xi¥e] matrix will give the rélationship between
the element loads and the dynamic redundancies, that is,
the %%ﬁ terms., These terms form the array [«dr] .
Therefore, the L«dk] matrix can be automatically extracted
from the [Y«i¥e] matrix and it should be noted that this
is constant for a given structural idealization but the
same remarks apply as for the [¥ci¥e)l matrix. The %%: terms

are obtained by assembling the individual element energies

and differentiating to give,

‘4‘
{%“ = [Fd]{tq‘o(g 2.1.9

Combining equations 2.1.2 and 2.1.8 gives,

R

3
I
]
e b -
i
I
'
)

7 o

fﬂ,,.’f_'?e; + ¥, {R} ={o}

201,10

0

where,

1

[9]= [Ox )L Ful
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Continuing the elimination procedure, as used in the rank
technique, to this system of equations gives a unique

solution for the element boundary loads and structural
reactions in terms of the applied loads for a given

frequency. To obtain the .direct relationships some rearranging
is generally necessary to give a unit coefficient matrix

for the unknowns, Therefore, in partitioned form,

- f =4

ba{ == AdA {bxf

e - — 201011
eKe JAYRN

This equation gives the generalized element boundary loads
and structural reactions due to a system of harmonic

forcing functions, that is,

| = | g, | SRt {R1=1R1Snat
T T 2.1.12

¢ Ke Re
The generalized structural displacements, structural response,
corresponding to the applied load system are obtained

using the matrix equation,

o™ .
{ 24 f = tedy 2,1,13
or
aT*_am* oY R PLMPAY N IR JT* Ke A
2P 234, 2R 2% 2P JR, 3P 2Re P, !
' ' 1 i | | 1 i : [
b | b o !
: Voo : ] : , ' i !
Y 4 4« ol » *
%JI" 3 3 + +QE .)_?_';( o+ 3" é—‘-e-'- + ‘.élr a£5'+ = A)\
§
i
'

- ‘Q{
Sl
L%
———-
R
W
TR
-+
v
ol
A
»
—_— &
&
D)
»U



In contracted matrix form,

PLUMENEDY
] e | -
{éAA ? = [qg)\ , eox ]{ abi‘{: -}L_Eg g 2»1.15
Therefore,
fly§ = [0 Rl At 2.1.16
2%y X X : 3 ar*
The 3R terms are contained in matrix [«d»] and the 33,

an*
terms have previously been defined. As before {3JQE={OZ.

It should be noted that,

[h]l=104u] 2.1.17

Substituting from equations 2.1.11 and 2.1.17 into equation

2.1.16 gives,

[ M= LAn] [T RIL AR 2.1.18
or
Fely f= [£]1R 1 2.1.19
wvhere,
[5&] = structural dynamic flexibility matrix.

[ A TT F‘ﬂ[A&x]  2.1.20

L

5

In the actual computer programme the assembled element dynamic

flexibility matrix is in fact not generated. The structural
dynamic flexibility matrix can be readily assembled by
taking advantage of the band form of [Fi] and using a

submatrix multiplication and summation technique. BEquation

2.1.19 gives the structural response due to a system of



harmonic forcing functions, that is,

[ebsf=1 403850t ; [ RE=T RiSimot 2.1.21

The eigenvalue problem can now be formulated. Rearranging

equation 2.1.19 gives,

[ {00 f = { R § 2.1.22

where,

-1
[F4]=[%#:]""= structural dynamic stiffness matrix.
The eigenvalue evaluation requires the solution of the

system of homogeneous equations,

[Z41febr§ = (O} - 2.1.283
In this equation the frequency ié contained in matrix [*4] .
The structurai dynamic stiffness matrix has to be generated
for every assumed value of frequency. The frequency values

which give a zero determinant, that is,

det [Xu)= o | 2.1.24
are the eigenvalues which have corresponding eigenvectors.,
When the structural dynamic stiffness
matrix has to be generated for every assumed value of the
frequency parameter, displacement or force approach, the
formulation will be referred to as a "continuous generation
process" otherwise it will be referred to as a "singular

generation process",
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The rank force method has been writiten as a computerized
system for the analysis of collinear beam structures,
plane frames and two dimensional rectangular plate
structures., In Appendix 4 this system is presented and
further detailed explanation of the various steps in

the rank force method are given., It should be noted

that any theoretical presentation does not necessarily
appear in the same manner when it is written as a

computer programme or subroubine.
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CHAPTER 3.

APPROXIMATE PROCEDURES FOR THE DERIVATION OF ELEMENT
DYNAMIC FLEXIBILITY MATRICES. '

Synopsis.
The total complementary potential in a
structure is obtained by summation of the individual element

energies. This is expressable in a quadratic form, that is,

NE
ﬂ’*:: 'é’ Z Léqma(.! [!Md]{kq’md{

m:=g

The [fma] matrix is the element dynaﬁic flexibility matrix
which represents the approximate vibraﬁion behaviour of the
respective structural element. This matrix is derived using
the pfinciple of virtual forces, that is,

Mh* W, - UY =o0o
where, ﬁh* is the complementary virtual work done by the
virtual generalized element boundary loads, ﬁé* is the
complementary virtual work done by the element inertia
loading and O* is the complementary virtual work done by
the virtual internal element loads.

The element dynamic flexibility matrix can be

derivea in a number of ways and vérious procedures are

presented in this chapter. However, each procedure adopts

the principle of virtual forces.
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In actual fact three procedures have been formulated
and presented for the following element types,
1. Endload element, used for inclined plane beam
element.
2. Plane beam element, shear and bending.
3. Inclined plane beam element, endload, shear and
bending.

4, Rectangular plate element.

In order to assess the various methods
of derivation particular element dynamic flexibility -
matrices have been derived and are given‘in Chapﬁer 4, Bach
of these particular matrices have been investigated by
analysing simple structural configurations, the results

and their discussion are given in Chapter 5.
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Introduction.

In ihe theoretical formulation of the rank
force method the assembled element dynamic flexibility
matrix is a band matrix formed simply by using the
individual element dynamic flexibility matrices. A minimum
band width is obtained by numbering the generalized element
boundary loads consecutively on an element and continuing
the sequence on subsequent elements. No element numbering
is required since this is carried out automatically within
the computer programme. Bach element is recognized by ité
specifying nodes, Thé elements are numbered in the order in
which they are given in the computer programme input aata
and the element load numbering is automatically established
in conjunction with this. |

Each element dynamic flexibility
matrix représents the approximate vibration behaviour of the
respective structural element and alternative approximate

procedures for deriving this matrix will now be presented.
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3.1 Derivatbtion Procedure 1.

3.1.1 ©ndload Wlement.

The generalized element boundary
loads for the endload element shown in figure 10 are
denoted by % and w43 . The endload vibration equation
for this element is derived by considering -equilibrium

of the. element -increment shown in figure 9. “.

Therefore,
Pl
2P . Wxddx = o
dx
and hence,
_ P(xE)
W, (258) = S o 3.1.1.1

When o 8 is an inertia loading,

Blu,((x,(:)
[/J;‘(.DIJC):‘. *’F B&z 30191.2

Therefore, the general endload vibration equation is,

—AP("H”) - azuu(-x_,b) R
20 e 3.1.1.3
where,
D U (5,6
Plue) = AE 57 3.1.1.4

Wwhen the time function of +the endload and displacement

distributions is assumed harmonic, that is,
P(",(f) = Plx) S it 3,1.1.5

u‘”(.x,b) = L(_,((X) S/’W&Oé 3;111.6'
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and hence,

D% U (2,6)

—~H- = - DSl Ly () 3.1.1.7

N

Bquation 3,1.1.3 reduces %o,

AP
oloe

= - pdU
P U (x) 5.1.1.8

The procedure for deriving the element dynamic flexibility
matrix for an endload element is first of all to assume

an endload distribution in the form of a polynomial and
then evaluate the constant terms by consideration of the
element boundary load conditions.

This results in the contracted matrix equation,

Pl) = L T,y | [ Qo } | 3.1.1.9

this equation relates the amplitude of the internal endload
at station x in the element to the amplitudes of the
generalized element boundary loads. Considering amplitudes
only the element dynamic flexibility matrix can now be

derived using the principle of virtual forces, that is,

~o

W* + W - O% = o 3.1.1.10

The complementary virtual work done by the virtual generalized

element boundary loads, W, , is given by,

W= L Gma ) Sl 3.1.1.11

where,
[ Imxl= virtual generalized element boundary loads.

and
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! Smul = generalized element boundary displacements
corresponding to the actual generalized element
boundary loads, I %mai,(amplitudes).

m

The complementary virtual work done by the inertia loading,
e

2 s 1S given by,

AL é ~J
W, =fo W (%) Use(x) dox 3.1.1.12

It will be assumed that the displacement function Ux(x in
equation 3.1.1.12 is obtained by rearranging equation 3.l1l.1.8,

| o P9

LI

U = p* s 5.1.1.18

Differentiating equation 3.1.1.9 gives,

o P69 |
doc = [ Tua JT Cmacf 3.1.1.14
Therefore,
I
Un () = " oo L Tug I Lot § 3.1.1.15
and
W (2) = — L7;¢J{@MNZ=-L€mefﬁq} 3.1.1.16

Substituting from equations 3.1.1.15 and 3.1.1.16 into

equation 3.1.1.12 results in,

~ ~ 4
W, = p{'z*L@mo(J(fa g § L Tuq | dx) { 4o 3.1.1.17

The complementary virtual work done by the virtual internal

endload is given by,

-~ L. A Us(x)
u¥ = v[ Pl = A 3.1.1.18
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From equation 3.1.1.4,

Au:‘c:’() = P(D") _
doe A

0
e L7l T Gmat 3.1.1.19

It can be seen at this stage that the first derivative of

the displacement as given by equation 3.1.1.19 is not the

same as if equation 3.1.1.13 were differentiated. The
assumption regarding the displacement, “x(>9 (equation 3.1.1.19),
will be appreciated when considering the plate element
derivation. It is felt that such an assumption is acceptable
in view of the approximate nature of finite element techniques
and particularly if good results are obtained. It should be
noted that for a linear endload distribution the first
derivative of the displacement would be zero if equation
3.1.1.13 were used which is of course unrealistic,.

Substituting from ecuation 3.1.1.19 results in,

~ ¢
~ !
U*‘=Z’E~[_gm0(.}(~/;{nizL—nq_Jo(xyf‘lmaf 3,1.1.20
Therefore by substituting the respective terms in equation

3.1.1.10 the element dynamic flexibility matrix for an

endload element is obtained, that is,

¢ Y
lhnd] = e Jo DT 3L Tog L e = o [ 17g 3 [ Ty | d 8.1.1.21

In contracted matrix form,

[Fna = [ 4] = 52 [ Mng] 3.1.1.22
where,

- [£,]=element static flexibility matrix.

[Muns]= element inverse mass matrix.



6L

The sign convention for the generalized element boundary
displacements corresponding to the generalized element
boundary loads is given in figure 10 .

In the displacement method the element
dynamic stiffness matrix is separated into a static stiffness
matrix and a mass matrix. Before progressing to further
derivation procedures a clarification of definition will
be presented. In the displacemend metho&,\considering

amplitudes only,

{imx%” [@mdli qui
= [T Smad =" [mupdlSmat
%clrm(}, - fgmdzz

i

Now,
P Gmade = D D] Scd = [P T Sy}
where,
fg;dg - & &““z= acceleration amplitudes.
Therefore, considering the relationship force equals mass
times acceleration the definition of mass matrix is established.
In the force approach, again considering

amplitudes only,

{5mx} [§mdjz‘4MNZ

[UCM]{QMME - i} [mm-j‘]{imo{f

it

i

f gm«.%; - { SMo(zz

Therefore, following a similar procedure as in the displacement
approach the definition of inverse mass matrix becomes

obvious.
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3.1.2 Plane Beam &lementd.

The beam element to be considered
is shown in figure 12 . The generalized element boundary
loads are denoted by . , Jwrz, laws  and  ZTuss
The relationships between the incremental loads and the
displacement in the z-direction, see figure 11 , are,

D Uy,
M) = EL TR 3.1.2.1

DM E)
Qlxe) = = 2x 3.1.2.2

3 O(x,6) M0
Glxe) = T S0 T L 3.1.2.3

When Jg@@ is an inertia loading the general bending vibration
equation is given by,

DM _ o D'uy (%8
‘sz )62 3; 1- 204

If & harmonic time function is assumed equation 3.1.2.4

reduces to,

O(M(x) — PLDZM}(:X)
dax 3.1.2.5

A bending moment distribution is now assumed in the form

of a polynomial and the constant terms evaluated by consid-
eration of the element boundary load conditions, The
following contracted matrix expression is then obtained

for the intermnal bending moment at station x in the element



to the amplitudes of the generalized element boundary loads.

MeD = L Tug I Imad 3.1.2.6

vhere,

! %an= { Tuw y S Totr4 Dot s } 3.1.2.7
The complementary work done by the virtual generalized

element boundary loads is given by,

N#' o~

W‘ = L qmo( J { gmo(.z 3.10 208
The complementary virtual work done by the inertia loading
is,

~4 [ ~)
W, = fo Wy () Uy (%) ol 3.1.2.9

Now, from equation 3.1.2.5,

0 d*MGY
Uy (<) = PO* s 83.1.2.10

Differentiating ecuation 3.1.2.6 twice gives,

A*M (28
o = LTug JT Smat 3.1.2.11
Therefore,
Y ¢
W' = oo Lqul(fo gma%LRede}?‘lmdz 3.1.2.12

If a third degree polynomial is assumed for the bending

moment distribution the second derivative of the moment

66

expression gives a linear function for the displacement Uz(x).

This says that the inertia loading is linear along the
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length of the element. Considering lumped mass representation
this linear variation seems reasonable as an initial assump=-
tion. It should be realized that in the matrix displacenent
approach when a third degree polynomial is assumed for the
beam displacement function that this gives a linear bending
moment distribution which again is not quite realistic

but it is an approximation.

The complementary work done by the virtual internal moments
is given by,

. . Q -~ dzu (x.)
U =~[o M () Aac? olx 3e1.2.18

To be realistic in representing the internal complementary
energy the second derivative of the displacement in equation

3.1.2.13 will be that given by equation 3.1.2.1, therefore,

d*uzl) M) 3

e

i
doc* ET  EX L Toq J U Bt 3.1.2.14

Hence,

0% - 2z LGQJWJ([‘,Z{TM;LTMJ m) § Tmct 8.1.2.15
Note ;3 if the second derivative of the displacement was
obtained using equation 3.1.2.10 it would give zero
curvature, that 1is, 4%%£9==o . Again this is unrealistic

but the displacement function given by equation 3.1.2.10
is only used for inertia calculations.
Therefore, by applying the principle

of wvirtual forces and substituting the respective terms

the element dynamic flexibility matrix for the beam element



shown in figure 12 is given by,

¥y R4
[fud] = ELIfo 57;@{LTM¢JA:¢ - E‘:)‘L 51'7:,_1}[_7'“1] doe 3.1.2.16

In contracted matrix form,

: i
['-pmo(]: E:‘:mj - ;b?[:mmf]
The sign convention for the gencralized element boundary

loads and corresponding displacements is given in figure 12.
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3.,1.38 Rectangular Plate Zlement.

3.1.3(a) g-system of boundary loads.

69

The generalized element

boundary loads for this derivation are distributed moments

and distributed equivalent shears along the respective

boundaries and four concentrated nodal loads. This system

of loads will be referred to as a g~system. One such system

is shown in figure

to vary harmonically with time.

The relationship between the incremental loads,

in figure

The shears

Q-

D(i1-v3)

13. All generalized loads are assumed

as shown

14, and the displacement in the y-direction are,

E &
12(1-v*)

/ - Mg

-\ | My

o o = (1+V) My,
ot s aroach

3.1.8.1

and moments are related by the'equations,

- Mo

—tty

D¢

Mz
23

L

3.1.3.2
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In deriving the clement dynamic flexibility matrix an

equivalent plate loading system will be adopted, sece figure 15.

This equivalent system is given by,

3Mx}> —

:(_Qs‘ * &=o

. O Mz
. VZ =’ﬂ( @ * 5;3 >x=.a.

“Vs"'( _ 5“435)% b

V4 . (@x 4 Bst)xzo

B8.1.3.3

W/ = Z(M“.%) %30, 350

‘ Wz = Z(M"3>xua.,}=o ‘ - o

Wy = Z(M"3>xira, J=b

- e ns $

V/.q» = ZKM"‘S’>>¢=O,3:,{, -

The M,. and Mz moments axe unqhanged.



the relationship between the moments, bending and twisting,
and the distributed load applied perpendicular to the

plane of the plate is,

BzMx ~ 2 Blwxs - BzM%

~ = Wy
BDC)L szzf 032 ' 30103:4.
Therefore, when wy  is an inertia load,
k3 2 . ~NE
'BDC‘ 23493 'B}: 80 lc} 305

The next step in the procedure is to assume distributions
for the moments Mx, My and Msxy ., The constant terms
in the assumed ﬁolynomials are evaluated using equations
5.1.3.2~and 3.1.3.3 and the boundary load conditions as
given by the generalized elemeﬁt load system.

The complementary viritual work done
by the virtual inertia loading is given by,

~
£

bra
W ’JO/Q Wy Uy dx oy 3.1.3.6

Substituting from equation 3.1.3.5 gives,

b 2 z z 2
I’A"/# _ _L.,f fa( 3 My uzb__M__“é +?.M§> SMx _ 5 dMuy *‘M}>o{xd;
2 PLD o Jg

a2 3.::35 .25" ot BxD} 93"
3.1.3.7
where, from the final moment expressions,

O M

For = LTeus [T % —

a'M :

-

\déz - Lﬁuijg%mxz 801.3.8
v QIng '

‘29(3} = Lszuq_.&{ QMD‘Z —
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The complementary work donc by the virtual internal momentis

is given by,

~ ~ du ~ 0 4 Ju
O% = L, (A5 -~z g "M %;iﬁ‘xds 8.1.38.9 -

~. / f{f“ » ~ ~
U = 50 Jo Je (M_,c (M,‘-\JM3)+2(/+V)M,¢§M,(3, + /v/§ (-—VM;&-M;)) dxds

Therefore,

b.a
~ /

W b 2 N N
ul‘ = D(I-\l‘) oJo (/V/xM,( +M5M5, +2{I+V)M;’¢3 M,;.;% - \)(M,( M} 'f‘M}M,‘)) G{XG{S»

3.1.3.10

The assumed final moment distributions can be written as,

M= L Tamg | T Gpral —_

My L Tome J T Gmia 3.1.3.11

st, = [. Tx}m?ﬂ_{ { mez

The complementary work done by the virtual generalized

element boundary loads is given by,

I Ll
- :
W, = L el Sl 3.1.3.12
Hence, applying the principle of virtual forces the element
dynamic flexibility matrix for a rectangular plate element

is given by,

[}md]:‘" [:Cm]-;é’;[mm;]



where,

(4] = clement static flexibility matrix

bra
= (Elza>/¢jo <{7;M<LEL7:‘M‘L_§ + {EM‘LE LT—}M%J

P

+z2(1+v) ﬁszmq,?LngLJ

"V ([ Toema L Togmes |+ £ Tjoug FL Tyms J>> docd 3

¥
3.1.3.13
fmm§]¥e1ement_inverse mass mairii
, pbpa ,
i PLL»“T«%ELE%JO{“‘} o 3.1.8.14

and

LT;Q’J = (LTach.( "ZL;rxguﬁ,'_l + LT;MLJ > 3.1.3.15
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3.1.3(b) s~system of boundary loads.

The g-system of generalized
element boundary loads is not a convenient system for

4

use in the rank force method. It would be more convenient
to have equivalent discrete generalized nodal loads, these
will be referred to as an s-system. The s-system for plate
bending is shown in figure 16 . Such a system would then
be consistent with the element nodal displacements as
adopted in the displacement approach. Now, how can a
q-system be replaced by an s-system so that the two systems
are equivalent. The two element boundary loading systems
have a dependency which is established from equilibrium
considerations., In other words, the two systems must have
the same generalized load resulbants.

I'c derive the element dynamic flexibility matrix corresponding
to the s-system the g-loads are considered as the unknowns

and the s-loads as the applied loads.

Therefore, for overall equilibrium between the two systems,

[} Tmad + [ Vs 11 Smp ! = 0T 51516

Applying the rank technique to these equations results in

the following system of independent equations,

[ 8mn 11 Tt + me]fesm@} = {0} 3.1.3.17
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This now presents a redundant problem with a set of
redundancies, contained in {eQm¢z, being isolated by the
rank teéhnique. Therefore, to obtain & unique solution
for the g-system in terms of the s-system the total
complementary potential in the plate is minimized with
respect to the isolated g-redundancies. The resulting

energy equations are given by,

[u)k]m [f}:w\di]z éimﬁtf”[d?m:]féim"iz{oz 3.143.18

Assembling these equations with the system of independent
ecuations and again applying the rank technique results

in the relationship,

[ dma {= [ Amq@] i tSm(sE 3.1.3.19

Therefore, for the same plate potential, the element
dynamic flexibility matrix corresponding to the .s-system

is given by,

[ £t 1= [ Amapd [ 4md] [ Douas] 3.1.3.20

Having found the equivalent s-loads in an analysis the
more meaningful g-loads can be calculated using equation

© 3.1.3.,19.

It would appear that to derive more complex element
representations the g-system can be increased to include
prescribed values of the distributed loads at other points
on the boundaries. The snsytem)will still contain the same
number of terms for this element but this enables more

complex loading distributions to be considered.
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3.2 Derivation Procedure 2.

This procedure derives a
displacement function by integration which is adopted
when calculating the complementary work done by the virtual

inertia loading.

3.2.1 Endload &lement.

Considering & harmonic btime function

equation 3.1.1.4 reduces to,

A U ()
P(-"‘): AE dDC 3.2.101

Rearranging this equation gives,

o U (%) ’
e L P6) = L | T[T G

dDC AE 3. 2.102

Therefore, a displacement function can be obtained b
b I

integrating equation 3.2.1.2, that is,

Une () = /T/Ts((f [ Teq J dx)f‘imx? + C) 3.2.1.3

The constant of integration will be evaluated by applying

d*Alembert's principle to the overall element, that is,

£
L Wy (50) el + fo( + 1o{+3 = O 3.2.1.4

where,

Wi () = PO U ()

3.2.2 Plane Beam Blement.

Considering a harmonic time function,
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equation 3.1.2.1 can be rearranged and integrated twice

to give,
L(}(x) = E/:“C (( jf M(x) dxdx> + Cy o+ C2> S3e2.2.1
Uy () = Ex ((/f [ Tong ] o(xofx>f‘imo<§ G +c,,> 3.2.2.2

The constants of integration are evaluated by considering
overall ‘equilibrium of the beam element, for equilibrium

in the z-direction,

¢
_/; LJ;CX) s+ io{+i 4 io{+4~ = O 3.2.2.83

~and Tor moment equilibrium about node i,

14
'"fa W‘;(") s¢ doc + iwz 4 Zx+4 + Lurs =0 3.2.2.4

where,
w‘é () = ﬂlbz Uy (x)

3.2.3 Rectangular Plate Zlement.

Incremental considerations
give the expression,

T

2ty Suy Yuy
o&(j = o dxdie + 2550 dxds + 33> A3y 3.2.3.1

The second partial derivatives contained in equation 3.2.3.1
are replaced by the moments as given by equation 3.1.83.1.
LT equation 3.2.3.1 is integrated twice the resulting

displacement function is given by,
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L('H: b‘,"f‘“z +LL3 8;2.8;2

where,

I 5% i 4 £ + £ 5) ——

3e2.3.3
we= I 255 ey + K3+ 4,6

SIS g 351 didy + Fo(x)3 + £ (%) ]

This approach gives the general displacement function if
the f-functions can be evaluated. One solution for Uy ,

not the general solution, is,
auj
j./ 2 dxdlo  *+ fz 3’_;35 o(xo(; + ff }3 dgd}

+Cx + L2y 4+ O 3.2.8.4
The constants of integration are evaluated using the
equilibrium equations,

b,a
LA Py dedy + F(Y) = o

L 0 Uy 3 dudy + M(X) =0

\/‘als/oapbyug o dxdy + /VI(Z) =0

where,
F(Y), ¥(X) and M(Z) are the element boundary load

resultants,



3.3 pverivabion rrocedure 3.

3.3.1 Tndload wlement,

This procedure adopts two previously

given equations, they-are,

_ QP8
Wi (xl ‘l—"> = B 2
and
Plt) = AE Bm:’; bo8)

Differentiating equation 3.1.1.4 gives,

BP(:’[}&) - AE 310(»34(3460

2 doc?
and hence,

A O Use (4,&)

D ac®

= 03;:("‘169

When wh(xt) is an inertia load,

Dlux (34, £)
s C-’Qé‘) =T /) DEF

Therefore,

Yuelo) 3 e (2, )
AE Doa* /? dEF
or

AE 221/(.;((395) - P QZ“X(DCJ“*—) = O
o™ Pl

Assuming a harmonic time function, that is,

Use (%,6) = U, (2) Sin D&

3.1.1.1

3.l.1.4

3e3.1.1

3.3.1.2
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equation 3.3.1.3 becomes,

dzuzz(%) *
AE it * P“) ux(") = O
or
AU
) + >\z Uy (2) = O
0(362 / 3. 8-1.4
where,
z u)zﬁ - e
A= AE 3864 E 8.3.1.5
Solving equation 3.3.1.5 gives the general form,
U (5 = Ay losh, x + Ay Son Ny 3.3.1.6
The constant terms are evaluated using equation 3.1.1.4 ,
considering a harmonic time function, that is,
ol U (56)
Pl) = AE L 3.8.1.7
and the element boundary load conditions.
3.3.2 Plane Beam alement,.
This procedure adopts three
previously given equations, they are,
2
2”3[3\’/&)
ML) = Ex —5 5 5.1.2.1
M & 3
Qe = = 20D g 28
o 2c? 8.1.2.2
and
2 m(x,6)
D 361.2‘8

b‘g(xlkD = D=



Differentiating ecuation 3.1.2.1 twice gives,

FMor) ¥ u; 60,6

doc* Do
and hence,
a4u3‘ (x,é)
EL Do - LJ; (x/ A—')

When «%é&é is an inertia load,

azu%(u,,g)'
ljﬁ [J{/k) = mﬁ Dx®

Therefore,

% us (26,5 3uy (6,5
T 2 Y8l R i
£ Do r Dx*

o}
3

st
=

D% s lx,&) . p Dy (x,8)

EL —=%.% e

Assuming a harmonic time function, that is,

l'(é {.I'/é—) = [/(3(-’() 5/)1, wE

equation 3.3.2.3 becomes
] ¥

4
EI d-—ﬂ((:iégff)— - pb} u}(k):.‘o

oxr
4
j”;{‘:%@ - X: Us () = O
wherey
PR o MA
Xe = Er T 3864 ET
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3.3.2.2

3.3.2.3

3.3.2.4

3.3.2.5
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Solving equation 3.3.2.4 gives the general form,

Uy () = Ay Gshyx + Az Siadyx + As (osh Ay + Ay Sinh hyoe 3.3.2.6
The constant terms are evaluated using equations 3.1.2.1
and 3.1.2.2, considering a harmonic time function, that is,

. o d*uy (o
M(x) = &L oloc*

and

013613 {x}

R() = —E£T T

and. the element boundary load conditions.

This chapter has presented derivation
procedures for evaluation of the dynamic flexibility
matrix for various types of eleménts. Basically, the
general formulation can be applied to any type of element
and in the next chapter particular element dynamic

flexibility matrices are derived.
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m—%%’

W, (",L‘.)
Ploe) 3 i’(x,r):&i’ﬁg)dx
L wmly  Com | wy ey ey | eEm) x ; m—:
= - doc
R=O | 2

Positive sign convention for incremental loading.

(a)

~a

e u"’ (x) &) -

mo

Positive sign convention for displacement in the x-direction,

L (b)

Fig. 9 .
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Ko K= g

Positive sign convention for the generalized element
boundary loads,

(a)

b4

Positive sign convention for the generalized element

boundary displacements.

(b)

Fig. 10.
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Q28 +290x¢e) 4
C P

*=e ‘—LJ JC:Q

Positive sign convention for incremental loading.

o (a)

Positive sign convention for displacement in the z-direction

and rotation.

(®)

Fig. 11 .



x
=e x=d

Positive sign convention for the generalized element
boundary loads.

(a)

(41

Positive sign convention for the generalized element

boundary displacements.

(b)

Fig. 12 .
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Concentrated loads.

Nodal wvalues of
! distridbuted loads,.

A q"(&)?

3

B R A AT

One g-system of generalized element boundary loads.
These are shown positive and the corresponding

displacements will have the same convention.

Fig. 13 .
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Vits are
M's are
W's are
Vs and

systems

g €S

5 a
1 €

r
|
{
i
i
i
}

equivalent shears (1b/in)

moments (1b.in/in)

concentrated nodal loads (1lbs.)

Wrs are equivalent to the Q, ,(Q% and Mx}

at the plate boundaries.

Zquivalent plate loading system.

Fig. 15..
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prs

s—-system of generalized element boundary loads
for plate bending. These are shown positive
and the corresponding displacements will have

the same convention.
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CHAPTER 4.
PARTICULAR ELEMENT DYNAMIC FLEXIBILITY MATRICES.

Synopsis.,

Particular element dynamic flexibility matrices
are derived in this chapter and a type designation system
has been established. Three derivation procedures were
presented in Chapter 3 but all the procedures are not applied
to the various element types. All three procedures have been
applied to a plane beam element, shear and bending, which
is used in the analysis of collineér beam structures. Based
on the results for such structural coﬁfigurations the
second procedure, see Chapter 3, was disregarded for other
types of elements. Procedure 3 is a so called exact solution
and is only used for beam type elements, that is, the plane
beam element and the inclined plane beam element. Procedure 1
was applied to a rectangulaf plate element whose generalized
element boundary load vector contains twelve terms. In
this plate element derivation the bending'moments and
equivalent shears are assumed constant along the respective
boundaries. This element has been used to analyse two
dimensional plate structures and the results have been
compared with those obtained by alternative methods. The
inclined beam element has been used for the analysis of

general plane frames and again a comparison of the results

have been made, See Chapter 5 for results and their discussion,
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Introduction.

In this chapter particular element dynamic
flexibility matrices will be derived using the procedures
presented in Chapter 3. In each case the section and elastic
properties are assumed constant throughout the element. In
all derivations only amplitude values are considered.

An element type designation system will

now be established for ease of reference. This is given by,

Blement Type PI/NFD

where,

PI = procedure 'I' adopted to derive the element
dynamic flexibility matrix. In the work
contained in this chapter 'I' will take on
values from 1 to 3.

N = number given to an element type derived using
procedure 'I'.

FD = dynamic flexibility matrix.
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4,1 Derivation Procedure 1.

4.1.1 Endload Element (Element Type P1/1FD).

‘The endload distribution for the
endload element shown in figure 10 will be assumed linear,

that is,

Pl = Ar + A2 () | | 4.1.1.1
The boundary conditions for evaluation of the constant

terms are,

P(x>= .-qo( at K=o o
and 4,1.1.2

P(x) = Vs at =24 —

The resulting endload distribution is given by,

plx) = L ("”"f‘) (%) _H‘i« Yues § 4.1.1.83

or,in contracted matrix form,

"P(xJ“‘ LTPQ‘J{QMNZ

where,

% %
[Ti=L (-1+%) (7) ] 4.1.1.4
The displacement function required for the complementary
work done by the virtual inertia loading is obtained from

the relationship,

| L dP
Use (-"-) = —.‘OLD" 0(1



ol
From equation 4.1.1.3,

4P i L
Ax =L 2 £ IR P O 4,1.1.5

or, in contracted form,

AP0
doe Lnijiimaf

where,

!

z
LTwwd =L 7 7 | ' 4.1.1.6
Therefore, using equation 3.1.1.21, the element dynamic

flexibility matrix is given by,

) é
['-'Fmd‘] = AJ;EL {7;1}LTPQJ0(9< - p—{s"f; {7:4@}[. 7:41,.] A
4

’A“f?ff“ [y (3 ] AN EONCNES

()

Therefore,

(.41 = L [
[M]_ CAE ' !

4,1.1.7
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4,1.2 Plane Beam Element (Element Type P1/2FD),

It will be assumed that the internal

bending moment varies as a 3rd degree polynomial

y that is,
2 3
M(x) = A, + Ayx + Ay x® + Ay x 4.1.2.1
Therefore,
Q(x) = ~( A+ 2Agx + 3 A, x*) 4.1.2.2
Using the boundary conditions,
Mx) = D4z
abt x=o0 B
R(») = = Qost
4,1.2.3
M{x) = —=9Gus
at =4 —d

Q(x)’a €u+4

to evaluate the constant terms results in the moment

distribution,

Mx) = LTMq,,I{ Do §

4.1.2.4
where,

LT | = L (= +5) (1-7%+22) (5-3) (5+%) |

4.1.2.5
Differentiating equation 4.1.2.4 twice with respect to x

gives,

AH o [ Tug df




where,

[Tugl = | (7%

[
E‘a

) (

) G-%) (&

=

The element static flexibility matrix is given by,

/ 4
I6.d= 5 L I Tt L Tae d dw

and the element inverse mass matrix by,

y 4
[ Mus] = ;J; Eng,}LTuq,J o

96

4.1.2.6

The element dynamic flexibility matrix is found using the

relationship,

[$dl= [dm)= 32 Mme]

Therefore, making the respective substitutions and

integrating results in,

e —
4 2 2
X 4.8% | 220 | 38 | -i34
228 | 156 | 138 | ~54
30* | 38 | 48% |-320
~138 | -84 |-220 | 156

This can be written as,

28 | 3¢ |-0° 311

3 | 6 |-38 ] &

-0 | -3¢ | 28| -34

34 6 (-3¢ &

T —
4,1.2.7
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4
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420EX .

wvhere,

A

> 1=
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~—;’(4X~z) t(z2)~3) 2 (3n+1) L(-132-3)
4 (z2x-3) (156x-6) e(:.sx +3) (~s4r-6)
Lr(3n41) 2(132+3) £ (4r-2) t(-222+3)
e(-13n-s) (-54)-¢) 0(-225+3) (1se)-6)
4.,1.2.8
pot* MA
= 840ET and P~ 3804 4.1.2.9




4,1,3 Inclined Plane Beam Llement (Blement Type PI/3FD),

In all derivations the genersalized
element boundary loads and corresponding displacements
are relative to the global axes (X,y,z). For element types
P1/1FD and P1/2FD the local axes (x,y,z) and the global
axes have been assumed the same, In order to develop an
inclined beam element for general plane frame analysis
the element dynamic flexibility matrix will be derived
relative to the local axes and then transformed relative
to the global axes, The genecralized element boundary loads
and corresponding displacements relative bo the local axes
will be denoted by {Qzaﬁa@d.ggﬁxf, amplitudes only.
Figure 17 shows the two systems. An inclined beam element
showing local and global axes is given in figure 18.
The dynamic flexibility matrix for an inclined beam element,
relative to the local axes, is derived by assembling the

dynamic flexibility matrices for element types P1/1FD

and P1/2FD. Therefore,



[$ra ] =

The

the

{‘Z:;xf = { ‘L: q‘:(:v

1.1 o o -4 _ 1 o o
A6 Qo ehe  Qpi-
_li '(4)"‘3) £ (@22-3) (LN CIVD ) [ AN )
o qzoex )\ |He€T )\ | O 4uEL ), [dwexr Ty
| @] (sex-6) £ (33|, (Fs4r-6)
& 42061 T 426X ) o 46 )\ 46T )\
-4 -1 L _
GAE Cp® © o 3AE  Cpu* © ©
LN OYDR LIV £ .@-2) |1 os)
o 4BET ) |4WEL 3, o] d€T )\ |dwer
| &) 4 fsoee) & Eares)|f  (se)-e)
o ArET ") [4ET N © auEx )\ |[4uET )
4,1.3.1

local axes is,

qi&

ol+ 2

®*

Tors

P

Ve

generalized element boundary load vector

#
ol4$

The generalized element boundary load wvector

the

{imaz = é ?o( ia-rl

global axes is,

Tusa

Luss

»

relative to

|

4.1.3.2

relative to

Tues §

4.103‘3
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The two element load systems are related by a simple

transformation matrix, rotation of axes, that is,

f%:“ [ [CM:H czm“g » 4.1.8.4

vhere,

100

ERCY SN I |
! 3y - 3 Bt
l{ i v I Q (OJ 3&) o o o o
¢ ¢
. ’ ~0Gi-5) | (F-3) e o o o
' ¢ F4 ‘ :
I o o) ] O O O
(%-%y | (35-5¢)
O
| O O O ) 0
N ' -(3;-3.y | (&;-7)
. N , . Jd b 4 [ o)
O . FD O 7 7
| o o o o o ?
A maind
4,135

The element dynamic flexibility relative to the global

axes is found by equating the element energy formulated

- in terms of the respective element load systems.
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Therefore, the element dynamic flexibility matrix for an

inclined plane beam element is given by,

[ Fna] = [CnTT[ dax 10 Cal] 4.1.3.6
Therefore, |
['fmo(] = ‘
£(11) #(12) 0! F(i,4) #(i/5) #(0)
6D | 46D | Hn | D | £
#(3,3) ~F(16) | =£(z,6) #(3,6)
3’"01‘) §('zz> '?f('rg)
L
—SYM~
d{(zﬂ-} -f(z,z)
+(3,9
AAAAA o - h W - 4 G’l @ 3.‘7
vhere, - é? ( 4r-2)
Bp-xivs 0 _ L 5i-3 V4 (42
F ,f(/'/) = (%) (5\77::‘ (’Pu)l) * (f.-h@—.—“} 420EX A
| 55 ' ¢ (4h-2)
; #(z2) = ( ) 3AE @pd‘) l/ )420&31 |

y, (1567—~6)
420ET A

£(59)



(as—xa(a 50/ & L A& (4x-2)
Jc(/,2>-—' ¥l < )

A dp0* 4z0Ex

_(3i-3)) 4* (22)2-3)
f('r’) = T 7 420EX A

Eeom 2 5-3; . £ (3r+1)
f(/,4> _ <xJ1x¢ )z(—e?{é é}b‘> +,;(. '-J—*z—b-*> ;;:EI X

(F-%) (33 o4 1 X '(3>\H>>
£(15) = Z 2\ shE Qpat 40ET )

(3i-3) AL (B3
F(Lb) = T 7 4206z A

_%) 4P (222-3)
{‘(2,3}) = 4 420EL A

o

3i-

!

‘ : xJ_-;‘ 1 QS (3h+i)
N TF (z g) » ( GAE '?{J“b} ( 4 /4‘2°EI :‘\

'.'(52._.53&-\ o* (13%+3)
5‘ (‘2;L>‘ = A 420EL A

-y (—54) ~0)
;f'[?,b) =  {Z0EX A

and

i 4
VR | 4
/= (("‘J“"cl} + (§J"3«;} J ) )\”‘ E40ET f"
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4.1.4 Rectangular Plate Zlement (Zlement Tyne P1/45D).

The g-system of generalized elemendt
boundary loads will be adopted for this element type. It 1is
assumed for this particular plate element that the distributed
boundary loadings are uniform along each respective boundary.
The generalized element boundary load system is shown in
figure 19. In the derivation of the element dynamic
flexibility matrix non-~dimensional forms of the relevant

elasticity equations will be used. Therefore,

i 2 My i BM“S"S’ R
Q»g = a :S"E i b 3%
IMeg . Mg

oMgg
]
vV, = (Qf*"a‘. < >s=o
2 My
== Q L {* == L™
o= (@ u 5y >*’ 4.1.4.1

o Mgy
i
\/4’”(@{*7;’2)*5 f=0

W= 2( Meg)gmo, =0
W, = 2{ Meg)sa, 3=0

Wy = Z(Mgrg)f:/,@;i

Wg = Z(M‘ff )g’no, g= Rp—



The assumed moment distribﬁtions are, .
ﬁ@’c A+ AT +‘A3?z+-A4f3
om e b e
M*s'f = A * A, F 4 Anf.* A/;?‘ff

Therefore,

My
S T ALt 2AsE » 34,87

My .
53 T Ag v zArS + 348"

> Mes

>f Ao + A1z ¥

dMyg B
>¢ = Ayt A%

Hence,

Qg = =& (A + 285 + 34,%%) + £ ( 4 *AnE)

Ry = "é(/%é«ﬁ-ZA;;“f +3/"tg3¢2) + é(/‘la *A/z.f>

i

p
o
N
>
=3
g

10k

4.1.4.2



-WZ. - Z(AS""AID)

Wz = 2[A9+A10+Aﬂ 'l'A/z)

W‘;.“' 2(/5‘5 +AII>
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401.4.3

The constant terms are evaluated using equations 4.1.4.2

and 4.1.4.3 with the following boundary load conditions,

1.

2.

3e

M«g = = Qusz at T=o

/fo = y Py até § o=

M.S’v_: idb at"~3’,=0

/V/f =5 ..—id"z a(_& {:f/

Viz = Zuse al Y=o

Yy €m«»s at F=i




8.
9.

10.
11,

12.

% = Yers ab S=1

Vg = = Zutr at E=o

Therefore,

Ao

An

A

]
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4.1e4.4
W= = Tuse ot T=0, fmo
Wy = iawﬁ at ?-’-’/, <=0
Wy = = Latro at €ai, $=1
W4 = Q.x-.wl at ”§ = O / Fa/
o loejo|~ijojo o |oclololo | olld,
' L, a
o |ololo o |loio &« | ¢ | o o 7 g
, b L olet
“2a | & | & |=za
o o - a1 & | a a
3 3 o Q. o 26 L L T L ti»m
4 |- =& | &
O - O - O . - i — — —r ey .
2 ¢ & © & b b b b tia(w
I e joloilo|oiolo oo oo ||%
! b b g
c | o o 1) b o o < = 2 1o o G s
. —z - ~zh =26 | b b p
S O 3 o 2b < b o Y & a G tg&(*‘g'
“ ' ) b |-~k | ~b a
2 o 2 (& b o Ll o 2 & = a Lot
o o | o ojoloilolci-filo o G Lns
Lo
o o () o) o] o o] o - z G o YA
G ~ , L 7 _
| oo oo lo iz olo i l%.
. - { H
o) o ! o L LA R 9
o © © © c 2 < i = Yele bt
bovsmronn - i ¢ wmnmon  Gooen et
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substituting fof the constant terms in equation 4.1.4.2 gives,

M‘ﬁlz’”’" _ : —ﬂr{%wwééa%:}mézfggg — _ ??5%;««&
3§2-27%3 5'}(4,—12*{)
o o
A s Za(6=12%)

o o
alt* =) | 41,48 x(z-¢3)

o o
a(f,zgz+§§> 4,1.4,7 . L(~4+ég}
&(s-2v2+3%) - L (earet)

%(f’”?’E jglz*éf>
%(Y?—iﬁ : gg(z~é?)
2 (f-2€%7%) | (-4 +6¥)

- — | L2 —
— — 2, a — —
My = 1- 3% 233 "{ %t 5 %W;%“éa%i - = (~6+12%) .TMM%

- ;A

-34% 233 L‘%(né,ﬂzf)
o o
p(5-25*+ 31) Ll eed)
- 4,1.4.8
< o
b3 | 4,1.4.9 B (z-¢%)
o - o
2 (g-22*+ %) L (~4v %)
Z(FHes %) | . L (4 +69)
L(4*-2%) A (z-e8)
%(fa*ff’J | 1 jﬁ [;wé;i’)




and

kG o

T 2 z
{Qmot§ ; ZW‘BM""%z Z BM%”@’ -

Therefore,
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o
3:4‘33, ab L
o
<
o
W o
4,1.4,10
o
. o
4,1.4.11 .
o
—y
ab
-1
abs
.
Gl
“—-L
ab
B (-ev28)
L(6=i2%)
%x(”é#‘/ﬁ‘f)
2{‘2. (é——-t’?_‘g’)
PRy
-4+ 6%)
/ e
Tus % = '5.( z-6%)
y
z(z-6%)
L (~q+e¥)
£ (63 + 65 -7)
Lleg+68—i)
4,1.4.12
7
a
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The element inverse mass matrix is given by,

2

2 N -
! B Mg _2:. b Mf’fﬁ _;". P/ lﬁ"fﬁ | 21,&/?_3, '2: 5f«”g@) + 1 Ble

ab rl,s1
et — M-S % RACRM - ¢ "
[M"‘fl = P jojo (a‘ 2€* oab 2%9% b 3‘5')(:1‘ 2g> abafag b }g’)af;w(‘f

il

ab plp1
S L T L Tasd g s
4.1.4.13
substituting from equation 4.1.4.12and integrating results

in the element inverse mass matrix,

[imid= L [ )

Mimgd® — | 120, 1z2a 6o -68 b b -6 (&

o i » 1 © e © P T B R Pl

A 2 ; 7 ¢ 2

12k | o (122 b b= | & | 2 [-&

& “ at | @ o* o oo oar o o a*

\ tza L &b, & b (-6 -0

- b‘% o] —:;z. O 5;;" < b’x. Q. o o

125 6b ok | -6 5 & |-t

3 < T o 3 o B, 'S ~

ﬂ;‘ &'x. o P & &l
48 ~24 J 4 4 | -2 (-2 !
| | f |5 | B B
| 4b | ) l-2p |-z p & |2 -2 |
H &, (78 (=% a [+ :
I i

t

| & -z -2 1 4 | % i
i AR IR SN

L. Ll 4 (=2 | =2 | 4

\-JE§XY/ - 4212 | a | &1 =

1

v A bes 1L

- E Sols ab als G b

| : 7 | -2

v ab b ab

5 . N

’ ab | ab

2

bb

S, —

i e s i e e e o et e o e i e e s
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The element static flexibility matrix is given by,

L:lcm] Eé'a> aéfj ({TQM&%L M‘},J + {TfmﬂiLTgM“j

+2(1+V) {Tf%@_ (LT tgma 1 =V (fT-mq,i LT‘gMj # 1 Tgma {-T‘i“""‘}\ ) a8dt
H

40104615
where,
LTymgl is given by equation 4.1.4.6
LTkmq} vis given by equation 4.1.4.8

LT%&ﬂj is given by equation 4.1.4.10

Therefore,
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The element dynamic flexibility matrix can now be obtained

. . f
i o

using the relatiomnship,
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the s-system of generalized element boundary loads as
shown in figure 16. The element dynamic flexibility

matrix corresponding to this system will be derived usin

[Ge]

s n

the g-system and corresponding dynamic flexibility matrix
as adopted and derived for Zlement Type P1/4FD.

Figure 20 shows the g-resulbtants which must be in overall
(] 1
equilibrium with the s-system.

Therefore, the equilibrium equations

[./Zmo/.]{bimxi + [ anﬁj zbsm/&} =[Ot

are given by,
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13

he remaining procedure for the derivation

r

¥

iy
<t

of the element dynamic flexibility matrix corresponding

to an s-system, Chanter 3 (3.1.3(b)), becomes too involved

(43

for manual generation. The derivation is completed by

writing the procedure as a computer programme subroutine,

the element dynamic flexibility matrix being evaluated within
o o) o

the computer. Gquation 4.1.5.1 is written into the

subroutine. This subroutine (FMD50) is described in

Appendix 4.,
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4,2 Derivation Procedure 2.

4,2,1 Endload Element (Element Type P2/1FD).

In this procedure the required

displacement function is given by equation 3.2.1.3, that is,

Wy (20) = ,5"5 <(fLTPq,_idac>{‘l‘;nc(f + C)

Substituting from equation 4.1.1.4 gives,

et = i (L= 22) (33) 118l + C ) 42101

The constant of integration, C , is evaluated using the
equilibrium equation,

0
Ji p,,btu,c(x) dx + 9o + Qusz = 0

Therefore,

4.
C=- ( 3 »ZPL.)) ( [Pl)) j {q’”"* : 4,2.1.2

and

Us (2¢) = LTwQ_‘; (imn(g : 4,2.1.3

where,

LT 1J=AE‘(L(("+24+1) ,glw ( “ ,g,;w’)_!) 4,2.1.4

The element inverse mass matrix is derived from the expression

for the work done by the virtual inertia loading, that is,

W, = f 0(,044@:(@) U ) d ¢
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In order to retain the usual form for the_element dynamic

flexibility matrix, that is,

[$mad = [ dm] -~ e [ Mg ]

the inverse mess matrix is given by,

” ¢ -
[Magd= pL L. {Tw@}LTwQJ o 4,2.1.5

Equation 4.2.1.4 can be written as,

L Turg [ = %LZ:—‘(L“J*?%‘ Lsz> 4,2.1.6

where,

it

o

L ﬂ(“"*?’%*%) (3e- )| 4,2.1.7

and

Ini=L Cz) %) | 4,2.1.8

Therefore, the element inverse mass matrix is given by,

#

[t = (A%‘;I@(w cre gt ) (imas 2 ) .

S !
= «Z%)‘ﬁ (WUTJ *‘me?UJ*Pm?TELTJ

)'2.
+ ZA )w-{T§LTj> ol

Hence,
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put .0 2 ¢
[M,,,] = (Ag)”./, ITELT 1de + f);fo §T 11T, | dse

L é
o IR e+ A [T S e

Y

Evaluating the integrals results in,‘
¢
f, {77;[.7;._{ Adsx = [O]

9
L InmiLT dx = [O]

_f;@.& $ p13134' " -
(AE)’J{, fq’T “_77.1 oAx = 3¢o (Ae)" 8 -7
...7‘ 4

L fng’ZLTLJ dx = L B -
PoJ, b pL i i
| |

_ ]

Now, the element static flexibility matrix is the same
as element type P1/1FD. Therefore, the element dynamic

flexibility matrix is given by,



[T = [ md = 35 [ Mag]

Hence,

g
(AE)".;[o

2 -
oy 7
& -7
-7 8

118

_ i ¢ 4
L8 - S pliminie « 55 {r}L‘EJAu)

4.2,1.9
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4.2.2 Plane Beam Element (Element Type P2/2FD).

The required displacement

function is obtained using equation 3.2.2.2, that is,

UJ(") = éfr ((I/LTMQ_IO(::J::){%M«; + £y 2 "’Cz)

Substituting from equation 4.1.2.5 gives,

Ug(")= E/E: (L (g Ze 202") (2 4.8‘ :f:*) (752 ;2*) (413 we’)qum«i
+ C,oc + Cy )

4.2.2.1

The constant terms of integration are evaluated using the

equilibrium equations,

4
./; Plbz(,(l;(x) ose  + ﬁn(#—f * Qo(+4. =0

and
é 2
"‘"/: 2 ua(x)ac dse  + iou—z -4 1«4»4 * Qs = 0
Therefore,
il g3 EL i3 EEI /3 ___E_Z_I‘
L (zroe ;23*) ( 35 £+4’ pu* (aol ot
) 12 EI
( -‘;:, 11 P‘A‘ ) J { imdg 4.2.2.2
and

£</o$—%%‘) (é—iaez“%i—i) (14-0 Sii"')

..faol"._ 'Z:t %ﬁ») J fqmui

4.2.2.3
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Hence,

113@0 = LT JmeK£ 4.2.2.4

where,

[T 1= & E.I L (( ¢ zoe‘) ( ”:,: ¢ EI%) (105 pw*))

(-3 20+ (B 50 (5542)
] —
(2 -2 + (£ 250+ (£ 15)

(520« (a0 55) (2062 ]

4o26245

The element inverse mass matrix is given by,

¢
{Mm§] = /0"*)4L fT.,.,-Q § LTw@J o(ac

and the element static flexibility matrix is the same as
element type P1/2FD. Therefore the element dynamic flexibility

matrix is given by the relationship,

A
[de] = [fm} - W* [M'W:}

Hence,



[{MJ = -!-.. B " / 2 '——'z L
lzopr | 4L | 228 | 30* |-l | - ,w"l’s 24 e |- | 3¢
22 | 1s6 | 138 | -s4 32 |6 |-3¢] o
381 138 | 4l | -228 -0* | -34 | z8* | -3¢
-1l | -s4 |-22¢] 156 38| 6 |-38] &
‘. prasiip——e ) ore—
L T N I TR S+ * S S (1L AL 7" 1
— j039% s %6320 5544
(ex)* 420 | e haa
223 4 "ug 168/ - 298§
69320 BT £5 440 21860
1097 4 les/ i g - 223
Hi320 $5440 0398 6930
-ibBi ~298( - 223 "e
564400 21860 ‘ggq’e 770 4,2.2.6
verteiny o pi—
This can be written as,
”‘”J]H‘L -4 ‘(4) 2~Tx840 s Ofz2r-3-223x 84050 ) | £(3A#1-1097 204032 |Q(-132~3 4 /8Ix240))
. oEX L A 2253~ % 840 - x ok ) N =
42 >‘ 0 o198 A ) 6930 %br2o 85440
U(z25-3-223x8400%) | (156X-6~11Tx 840 32 ) | (1343 -168Ix540 32) (-54\-C 4 251x842 32
6930 BT #8440 2iSkho
2 - IODTR B4 (2 3 0Rix 840 o5 [ ..,_ 71 ngdo 45 223\ ¢34 223840 32
O(sh+1 - 227284238 | pfishes- LELRReS W) |ar-2- Tixudos) | plen), 2212 040 )
Ush-pa fefxmio Y| ooy oy 2981 n0d0 0| 0 g0) o3 4 ZRRRRa0 )8 | (1565 G - 1BXE40 3o
BE 440 )( . 2860 x) ( R ""Z;;;‘x) ( 7o )
where, - 4,2.2.7
7.

s =

pd ¢

840 EL



4,3 Derivation Procedure 3.

4.3.1 Endload Element (Element Type P3/1¥D).

122

To derive the element dynamic

flexibility matrix using this procedure requires the

solution of equation 3.3.1.6, that’is,

Ux () = A, &le-" + A, S )\,:x

The constant terms are evaluated using this equation in

conjunction with the relationship,

dux(x)
Plx)y = AE ~foe
wvhere,
a“llx(x) ’
A = AN Sk + Ak, Gos k>

and the element boundary load conditions,

P(x) = ”id ab x=o
Plx) = Lurs abt x=4

the endload distribution is given by,

pl) = AE (A, Sinhx + Az Goshix )

therefore, the constant terms are given by,

e B : ominsssn oy o omninns

A - p [, Cos)l,a - ’—L q
" AE)‘R Sim Xk ‘ Sin)\,( o«
Az -/ o qd-!-!
d —— L—- i Rwommrem o

4.3.1.1

4.3.1.2

4,3,1.3

4,3.1.4
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Hence, the general displacement function is,

Ubt) COSX| S |
- l © zau-s
4‘3.1‘5

The generalized element boundary displacements corresponding
to the generalized element boundary loads are obtained
using equation 4.3.1.5 by evaluating the displacement

at x=0 and x=4 .

Therefore,

L - —_— -
/
= =~ _6
; jey,| ~EeMd L 7.
o Siax & Sin M
S "".._..L. «-&s)\n@ Q
o+3 . Sfﬂ.)\g 5, ),_ﬁ o3
] - ' e | 4.3.1.6

The element dynamic flexibility matrix is therefore,

jomoomeinn Po——

s L
L™ 3E5, |~ tnt 1
. Sk, 4 s’h)\l‘?
-1 — Cosi ¥
Sinh# Sinhd
e pre——: 40 30 107
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3
Using the notation given by Bishop and Johnson,

[~ -
[£.] = —
AE), F F,
Fz F,
em—— [—— 403.1.8
where,
—-65)\1@
Fuo= S5t
4,3.1.9

1
F;—Z =2 S/H)”'é

and \

A= W ( 3i45>‘5.




4.3.2 Plane Beam Element (Element Type P3/2FD).

125

The element dynamic flexibility

matrix for this element is derived uéing equation 3.3.2.6,

\

that is,

Us) = A, Lshgoe + A, Sindax + Ay Gsh Xyoc + Ay Sink Xy x

The constant terms are evaluated using this equation in

conjunction with the relationships,

Ay 0
M(") = EI dxa
and
T d3u3(x)
Q) = —EL ——=
where,
plZU}(JC)

dx:, = _—-A,A: &skzx——Azfz S/'n>\2x ‘f'A_‘X’;_(:?SL)\zx +A4XI:&~SH‘)L)21 4. 3. 2.1

d?'us(x) 3 2 3 3
dxg = Aikz SI’RAZJ( "‘"A;)\z &Skzx b3 A3>\2 S[’y]l, sz + A4 )\1 &SAX,_X

and the element boundary load conditions,

M(1) = Quiz
at x=o —
Qll’“) = iow&
Mlx) = —%uss
at x={ —d

Q (x) = ixwﬁ

4.3.2.2

4¢ 39'2.3



126

The resulting general displacement function, displacement

in the z-~direction, and the general rotation function,

given by B8()=

oluslx)
——ty

¢ :

Uy | = |FalosdirsGoshda) 4 (Rirks)Sinhox HUF FYSmbX] (F-Fy) Coshx + (5ot F) Coshha X = B (Simhax + Sinkhed)
3 ~2Ex)\ F 2EINF,
o) 0“; +F3) s hax +(FFy) Losh ax = Fg (Sin Y a2 - Sin‘\)t") Fe (Gshar s Cosh MX) +(F- F.) Stnhg % = (FdFg) Sinh)ax

)

F; (&S)zx * GSAX@"O ~Fio (S'hxzx+S:hL N30

~2861)\,F

Fro (fos )y # Cosh }s2) # Fy (Sindax + Sink Aax)

2EI N F,

~261%,Fs

Fro ((os 3304 Coshhgx) + Fp (Sindax=Sinhha)

Fry (Gosha ¢ +Cosh M23¢) = Fo(Sm b ~Sinhda20)

2

X. { i&-ﬂ io!-l-?.

Toes

~2EIL h, Fy

iuo-s’ ‘?

4.3.2.4



The generalized element boundary displacements corresponding
to the generalized element boundary loads are obtained
using equation 4.3.2.4 by evaluating the displacement in

the z-direction and the rotation at >x=o and x=¥

Therefore,

— = ; — SR —
S“H = EI X F s Fha Fa “FoAs Ve
Surz Fhe | AN | Fda | AN || %
Surs Bl B | 7B | “Aha || Yue
Sz«s “Fora| B Xiz ~F ) e %2 qo@s

. - .

4,3.2.5

When evaluating these generalized displacements it should
be remembered thaf‘thé sign convention for the displacement
in the z-direction is the same in both equation 4.3.2.4
(theory of elasbicity, see figure 11 ) and for the
corresponding boundary-displacement. However, in the case

of rotatidns the two sign conventions are opposite, see
figures 11 and 12 . For example, from equation 4.3.2.4
the rotation at x=0 due to Dusr = 1.0 is given by,

dw}(—"aﬁ | e F;
0(-’”— K=o EXL )‘:; F_zz

it

From equation 4.3.2.5 the rotation at x =0 .due to %;,=1.0
is given by

F
( S¢>¢+2 )i,mnho = [,:I“)\st

127
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See figures for further c¢larification. Therefore, when
~evaluating the generalized element boundary rotations
using equation 4.3.2.4 the sign of the resulting quantity
L, must be reversed.
The element dynamic flexibility matrix

i8 therefore,

£ Y S
[ motj 2NN )\32 F:‘g MF;' /:[‘)\7' FS' 'EoAz
Fhe | BNy | Foda | AN,

4,3.2.0

where, again using the same notation as Bishop and Johnson,

F, = Sinh,2 Sinhh,0 —

F, = Cosh? Coshh,{¢ -1

Fg= Coshf3inhh{ - Sin ), ¢ Cosh x4

F, = Cosh{Sinhh{ + Sinh{ Coshh.l 4.5, 0.7
F, = Sinh? + Sinh\.?

Fg = Sinh, 4 ~ Sinh )4

F, = Cosk < - Coshi,{ |

386°4 ET

e (Y
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4,3.3 Inclined Plane Beam Element (Element Type P3/3FD).

The general derivation of the element
dynamic flexibility matrix for this element type is the
same as element type P1/3FD. However, in this case the
element dynamic flexibility matrix relative to the local
axes is derived by assembling the dynamic flexibility

matrices for element types P3/1FD and P3/2FD. Therefore,

L B - i
Ly = [ ;
Y o ®) o O O
|5 5 o A Fo
EIN R, | EIN R ETNFR | EINF,
o F; . ’:@: o 'C;o F:"
ELIN,E | ELAA - L BINIE | ETMF
E
—= o o L o o
AE)\, AEN;
Fé F;a had FS - ’:I
© | zng | &g | © EINIF, | EINF,
o - Flo F‘7 - F; Fé
—_— o —3
EXIN}F | EIMNF exN,F | ETMF

4,3.3.1

The element dynamic flexibility matrix relative to the,

global axes is given by,
‘ [dmad = LCmI L dma JLCm]

where [Cm} is given by equation 4.1.3.5. Therefore,



Cfmd]

where,

'f(’t’) = ( D‘J-é
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IF(’I’) (12 35(/13) 36(1'4) :;(’,‘Sj £(16)
F2) | #(29 | £0,9 #(2,5) £z,6)
£(3,3) —$0,6) | ~f(2,6) | #(3b)
S| #02) | —40)
— SYM= *
{(212) - ‘5(213)
§(33)

”""';L._)z 'T}i
AE \

gj"gi 7’___6[, -
Flem) = (375 ) gax,

%

#j 3

4

2

[ ERN s

\"Z7/) ezN, R,

s
3
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("‘J“XQ (5.;“3‘,)( - Fg >
AEN

£0,2) = ETNF;
fos =~ ER e
£(h4) = ( [x) AZ;, (aﬂgb) EIX‘ A
£(15) = (xrw (% 3 ( A?A, - EZQ)\?;_F3> ,
:;(/,@ = (51:5&) EI;;;’ZF; |

. (i) =
f(2,3) = 2 EX XL Fy

-

r-

/3'.: F\* Fm o, =% o
Fzs) = \ T3 ) aen, ( ) o

—:F(Z,é) = ETL >\sz5

%(3,6) » EI)W_ F‘;

= ( (% -3 + (33'3&}&)5



F, = Sin)4.Sinh )\,

F,= CosA{ Cosh).d -1..

F, = Cos) Sinhld - Sin)d Cosh).?
F,= CoshfdSinhA{+ Sinkf Cosh).?
F, = SinAf+ Sinh). 4

F, = Sinhf~ Sinh )4

F_= Coshf~ Cosh),{

F,,z - Cos )uﬁ
Sin )\p-ﬁ

F =~ 1
Sin ), ¢

/
()
M= W \seas

{
@' A )"41'
Ay = \3864EL

132
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In the initial research study of the

rank force method for vibration analysis only certain

typés of structural elements have been considered. These
were felt sufficient for the initial investigation. ln
future work the element loading systems should be considered
in a more complex form, particularly for the rectangular
plate element. Also, elements of irregular shape should

be investigated and consistent beam and plate element
matrices should be derived for use in structural configura-

tions consisting of beam/plate combinations.
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Generalized element boundary loads relative to the global axes
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Fig. 17.
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le—— (tlobal axis.

Local axis.

X

Local axis,

!

8l §

)

Global axis.

Inclined plane beam element showing local and global axes.

Fig. 18 .
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Concentrated nodal loads.

Nodal wvalues of

/ distributed loads.

Assumed g-sysbem of generalized element

boundary loads. Positive as shown.
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CHAPTER 5.

RESULTS AND DISCUSSION.

5.1 Collinear beam structures.

The rank force method was
applied to a series of collinear beam structures and the
corresponding eigenvalues evaluated. These are given in
tebles 2 and 3 o+ The numbers in parentheses give the

ercentage error of eigenvalues, that is
> o y 4

WJ{(calculated) - & (reference) 100 %

W (reference)
where,
W (calculated) = calculated eigenvalue using the
respective representation.
& (reference) = reference eigenvalue. This is
taken as that evaluated using

Element Type P3/2FD, see table L .

The structural model, a simply supported beam, was idealized
into wvarious arrangements of finite elements of equal
length up to a maximum of six elementso The beam properties
are given in table 5 . The accuracy of the results depends
on the structural element representation and the number
of discrete elements used in the structural idealization.

In Element Type P1/2FD the assumption of

a 3rd degree polynomial to represent the bending moment
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results in a linear displacement function for the element
inertia loading. This 1is of course not realistic but is an
approximation which is better than a lumped mass
representation for a continuous structural system. In
reference 8 Archer derives a dynamic¢ stiffness matrix for
a plane beam element and adopts a 3rd degree polynomial

to represent the distorted shape of the element. This
results in a linear bending moment distribution which
again is not realistic. As a consequence of this the
dynamic flexibility matrix for & plane beam element
(Zlement Type P1/2FD) is somewhat similar to the dynamic
stiffness matrix derived by Archer. The eigenvalues of

a simply supported beam evaluated using Zlement Type P1/2FD
are given in table 2 . Fo} the lower modes the eigenvalues,
as shown in table 2, are identical to those obtained by
Archer using the displacement approach but for higher
modes differences in the two sets of results would be
ex?ecte&. An explanation can be obtained by formulating
the determinantal ecuation for a simply supported beam
idealized as one finite element (NE=1) using the
displacement and rank force methods. The determinantal
equation given by the displacement method would be a 2nd
degree polynomial in the freguency parameter, A , which
has two eigenvalues. The determinantal equation given by
the rank force method would be a higher degree polynomial
which would give a higher number of eigenvalues, two of

which would be equal to those given by the displacement
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method. This equality of eigenvalues 1is due to the
éimilarity in the dynamic flexibility and stiffness
matrices for the plane beam element.

When the structural dynamic stiffness matrix,
using the displacement method, can be separated into the
structural static stiffness matrix and mass mabtrix the
number of eigenvalues that can be calculated is given by

he order of these matrices, or in other words, the

number of unconstrained degrees of freedom for the structure.
In the rank force method this separation is not possible
and the number of eigenvalues which can be computed is
difficult to assess. The force determinantal equation
cannot be formed simply even for the most trivial
configurations. When trying to formulate this equation it
is essential not to make simplifications by cancellation
and rearrangement of terms otherwise artificial or
spurious eigenvalues (single and double) will be present.
To evaluate higher modes than those given in table 2 it
is necessary to divide the beam into a higher number of
structural finite elements.

Element Type P2/2FD was then investigated
because it doesn't use a linear displacement function for
the element inertia loading. However, it should be
remembered that the incremental loading equation is not
satisfied. Initially it was felt that this representation
would give better results than Zlement Type P1/2FD but this

is not the case as can be seen from table 3.
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To investigate the variation of

=

particular generalized element boundary loads with frequency
in a cbllinear beam structure a simply sypported beam
idealized as two finite elements was again taken as the
structural model, The applied and internal loading systems
for this model are shown in figure 21 and table 5 gives
the beam properties.

The variations of shear load ¢, and
bending moment 9y with frecuency for the separate unit
applied loads are shown in tébles 8 and 9 and
figures 27 to 31 using BElement Type P1/2FD and in tables 6
and 7 and figures 22 to 26 using Element Type P3/2FD
(reference element). Table 10 gives the percentage error
in q, using Element Type P1/2FD. The percentage error is
given by,

q,(P8/2FD) - q, (P1/2FD) 100 %

q, (P3/2FD)

It can be seen that the error changes with frequency and
applied load, close to the first eigenvalue the error in
q, is very large for P, ,P, and P, . The error for P; is
mall simply because g, does not resonate at the first
eigenvalue as can be seen from figure 28 Away from the
first eigenvalue the error is small but generally speaking
this error is higher than that in the corresponding
eigenvalues. It should also be noted that when q, resonates

the error is lower bound below the first eigenvalue and

upper bound above the first eigenvalue. Further
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eigenvalues cannol Dbe investigéted with this structural
model because of the error in the corresponding second
eigenvalues.

Table 11 gives the percentage error in 9g
using Blement Type P1/2FD. The percentage error is given
by,

q 4 (P3/2FD) - q, (P1/2FD) . 100 %
Qe (P3/2FD)

The same comments as for q, apply to the bending moment q, .
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In figure 3k a bent cantilever is shown
with element »nropertvies as given in table 15 . The {first
i i £

two eigenvalues of this simple frame structure were

evaluated using 2lement Type P3/3FD and are compared with

;
i

L'

those given by Bishopn and Johnson in table 16 , The
i
=N

element loads and structural reactions for this frame were

also evaluabved at a frequency of 150 radians per second
and are given in table 17 and figures 36 and 37T .
The applied loading system is shown in figure 35 (a) and

the numbering system for the element loads and structural

reactions in figure 35 (b).



145

U~ -
na -
o @
g o
e e [0} §
® e 42 5
N w0 n A
- [S] 2
@ 0] e—i = 3 It
0) B pe) o
2 -2 <o 0] [0} N o
9] e [se] 20 0] - i~ o
7y 4 ™ = o} -
WIJ, 2 -1
> @ o S
@ © o »
3 = . $2 n §ug
] -3 e u
) S| o3 s
® =3 :
Gy It %
3 a o
~ o] G Kol o
4 O - o]
-t g D ) y
g0 SR 5
o (e} O] Q 3
by S £ o 4D
o 16} [} o e
Q
o G ¢} 3 W
o £ : O 4 ® y
4 ] 0 Q = H
i o
S L
5 o} 3
5 o a
| +2 $-4
~ W
® 3
O] o 4
= O o
N n
2 e}
E 0 O
o o o
o3 o3 o ©
@ [6] A
o] &
® i o
2 o} £ 4
2 .l, (@]
B g Ke 0
3 o} 3 3
) O S - P
5 © .l a ay
o =t o
5 &) I
2 3 o =
* i wu* o
0 s




1k6

arnGonn

ab

tThis

s

25,24

21322

O

oy
celdl U

o

Sl

. pd

1

ay

b oy
Ui Gis

4

que,

eCcnni

N

<

U

ne

1

@D
O Ko
§ed QD
o] 4
G 3
@
< n
o 0]
+ fot
&)
G4 Ko
O d
<3
o
(O]
o1
in
]
mn
n
o3 v
O]
ST
4 o
NS -
6]
»r4
4
S
9]
]
(6]
B2 o
o ad
o1
o
s O
(O] e
[
o4

o3

ner

it

¥

5

[}

418Dl

£
I

ed undamped

assum

is

tuare

uc

T

n




147

o]
o
3 e
54 = K 0
a3 o4 < . oy
4 O §t < 8t
.] fas ® Q e} 3
20 @ = £ &
» n Q o o IS -
I B I A N 3
+2 [} et o] I <3 - o
O O 4> » Ee
D &) 0] @
S T & & -
3 +2 e 5
o3 P O
>0 [} i
4 s ®
-l o o] =
» 4 K ]
m;m 3 42
o I TR o
o] et Q Gy o))
o3 o 4 ey Q N
fan 3 o
e O = v} o] 4
b sy O .l ja a
n ol ot et a £~
o oz IS el o]
o O =N o o O > in ol
-4 v © © )
F 4> I b > b 4D - 0
o : o i o Q ©
w3 t =h) a 42 m
o A o] - a
W 7.,M 0 PR i o
= s [£2] &3 +2 n
S < <3 o m nooo
- w » A o >
e P 2 K o BNV
it 1 b} 42
@» TS - o
4D B 8 j =3
n & VX 3 o - N
2 j £ < 4
n a3 — g 1) s 54 @
10} o} N (o] 3
& 3 A
o 4 4 & )
¢y 9 I 0 ©
b = ®» 3 ge]
o) o3 o = [ 4
« S @ ) 0] ot ® - o]
= O = —1 0 ts] 0 n £
[ o} (@) B T ot ad (@] 4
1 o e Ty ﬂ 6} 0} 3 3 0]
{ 2 P §4 0} Q >y LA
W 3 o [an !} )] W] o i~ Tf
O e i g o, [ N 0 o4 A3 o] 4
0 ol 3 O o3 et 10 %4 = i o




@
1 ‘Tu
$4 w3
®
. ! - o~ b -~
3 s 5 & oo T o
- O A e MM o =
o [0} -+ O 4 £4 +2
o ! o3 e G Q O [ [0
a3 2 3 o4 ol o . N N
< o ~ - el b ved
t G @ 0 S om ) »
o I ] P o 3 N o o
o) I = -+ R ~ 3
a e O « 3 w o 3
+ 4 © n §4 42 : ~ 5] =
5 e} in 0] { o o
O Sy o +> 3 By it -~
+2 i ~ b D +2 w4 -+
in 3 St 3 = o r— -4 o
I » G4 o)) o = O 1 5 ] d
e} n . [ Q 9] Sy =] k 42 o
<% ] $+2 f - [} A2 3 22
IO 1) " I o~ 59 S40 e - g @
: 5 > 2 @ : by @ O
ol m Q M\A 1 1] e Mc 3 » el 1
o ) 2 g n e o
§4 ) P = =y st Sy 5 G4
ke j® “ & I < —1 Q ) o
g o3 rd <l W <3 O P 3 e
£ > o o I 54 o
® 42 i3 4 ® = e P ] @
Bl ad 3 o3 i a3 — et} -
> 1 - - ] o ®» &
5 () o TN m% AM “\uu 4 Ko L
0 - — b 5w g 1+ S
173} 3 o oy} et o
@ 3 » 1 4 . - .
51 Gy ny e a3 /m\. - s o3
G » 4 0 “ » 4
G4 » bt V] e} g ] o
o A3 0] 42 — i @
1 1 ~< ot e 13} - - £ o e
w i G jan ] N o 43 4
w3 4 -t N 4 ©
MY.N. © i -4 w > W\M e o h
L Iy o o7 n ¢ o4
pot b 2 k . P i « M
2 - —s O ¢ —- O
. . o
= . @ O 1¢)] i 42
o’ A — S ) ] ~ e )
A2 n - ord % - e}
- o 0 ) vm O
4 o i [V G I
® 3 w 1 ® et 3 b
> 0] o] G s -t 1
® i AL Gt i & @
i ) » 4 of +2 &)
o) Ko - 0 W 42 A4 o
v 4D 3] ot 0 0 ) « a4y




149

%
L
54
10} 4
-] 43
zo] o D &3
o a Ko £
e n oo 4> 43
+2 o} ® o o] =
[ o} v} ~ s3] e - ol +2 43
S o 72 jo -t 3 O] +2 ard 0] ]
&) = © O n & 3 -
3 ) ! ) o le] o =~ -~ 4
" o Q Q ) I e Qg Q O -+ Kol
) e S d ! (9] I} 0] o 4 -
[} o O [®] “+ $ 42 4 n Q a3 5
~ g = o © Q [0}
4 w3 [ O £ 0 > -
3 i 54 = o ] e o -+ Sy
fut 3 o} o3 a3 n 4
) ] +2 n )] « 4 e o~ Q
) = 4 Q 0] - 4 3 © e
C D = [ D o = =
o3 J] o2 O K o) Iis]
4 K o 42 -y -
2 £ o] 42 » =
w ] i e
(o)
QO Ly o T,w
- + A
Ay D =< 4
3 A ) -3
< o i ; S
43 -4 s o) ) [9)
42 & u
Ny o : 4D o) 4
i 0 a ,w . Mu
o 3 ~ - 5
n = o)
af o R Q .t o =
U o} A aad K S
s 3 O r 4> o n
O Q 4 4
™ &~ 4 w.ﬂ»w Gy W
~ ja O O 42
1~ o g g i
o3 3 4
L .7 g4 o
+2 ] 14 i
3 o3 -+ o)
R @ § £ 3 1=
= +3 O
6] e} o 3 0] @ =]
9] » 0] 4 o 4 -
o 53 0 £ +2 = i
1 = 0] 13
{24 P -4 ')} N
i D ot +2 o
~ A2 1 » Ko
w3 e} Q 4 =




150

o
) )
e} e » §4 @ R
n Q e W] @ +2 @
- 4 = + " o =
G -+ 0 vl 1} A 3
n < o 'Y > 7
® ~ v 3 s i®! e n
I @ 3 to =3 o )
o ot} < O S -
3 i jo el +2 1
Ol o] 6]
3 ] Es 0] = e
@ a R <t <
L2 O o4 4 By o
» -4 - 4 42 (&3]
A2 < 2 4 wn e g e
3 an 4 ) —~4 D
O ) = 0y “r 4] 1
o Ko @ 0
ey u ﬁQ ped A opd n Ke
O 3 2 < o3 e} >
@ Ee! ) e <
A2 12 ~ o R D/é P § w d
¢ X < o -
s 5 a M ~ 8 4 &
0 W 3 N 3 ) ] £24 3
3 ) w N o ax &) < i Ke
O o o] P = o i = ey i 4 Q
4 A4 Ea 1 - o o) D O 3
- v vl - - < ]
o 4+ £ o3 \m ! IN a3 3 o o o
D 6} O o ) ™ [ < -~ 4
S 2 12 s .0 Y " 3 % o g Q3 0 o
N 10} o My 0 s % 4 fa
i 3 -+ @ 2 W 4 w3 o - A2 Ko 3
@ s S " 1 4+ a i O
N o] - it 2 3 i 4 ™ 42
e K n o] ~ e © 3
N 4 3} ) ~ n o o~y 1> 1,» £ @
N - i G =] ® ®» < © . =
- L
et 4 o) X > < pol 0]
e} o = O«H. 4 o - 1] ©
o ) o ] © 18h] Ee —_ 42 &)
3 W @) o (V] 42 m i
3D epd o) Cig A b g 3 0] N
3 3 , mn Q V] { w0
3 £3 3 S B +2 S S &G i
e @ I35 5] Q o > 42 0} e
) = [0} 3 @ @] o] s} >
0 ) @ o o)} 3 £ +2 8] o ®
~ e o3 « ~ i IS A4
) 43 et = o 3 O >
g O ] o] V) 3 4 b 4D
4 O o 4 @] L3 £ o) Gt
el ) Q g 4 o3 e -4 ] o]
o
9] ¢ N . 'y ®
P 4 — [aS] )




151

73 o4 ’
0] o3 3
= +2 54 [
- i) o3 o ]
§ " Q + Q 3
5] O Q o pd ~ e .
Eo) P >} 2 19} 73 oy
[ D 0] 2 a3 3 o} 0]
3 Ko @ - e 42 = B 4+ oY
~~ -+ 0] $4 4 ) 0 ® o Q o0
ot Kal a IS el o 4 o)
> D © +3 A =3 ]
~ )] - o Kol D I 3
£ @ ] +2 + Cng n ¢ Q
@ 3 o0 o) s
[9] -~ o4 Ko O w
el o3 o Q 42 4 +43 »
= 8 = D e 3
< O 4 o] 1
10} 4 1 O 3
3 & - e e} 1} B
o ) e o 0] - [
3 in @ 3 @ e b e [
3 N e} 3 0} %))
mn o 0] oy 42 o3 0 . o4
] Q A% +2 4 o 1o £ " »
s W > o » 0] F - O o
oA = © i ) e £
0} 1 4 o ) e
o o] ] G e Q 0] » 4 «
2 ot 0} [ O a el Re! s ]
T ) 4 9} A 42 o] 3
4 @ o] [ 3 o n O
o] fq ! (o] 4 1] IS n ) n £
G4 e Q ] » o <& [0)) [J] 42
3 n Q n % [}
53 G n < o] + w4 o 4 G =
o) O i3 = ] ~ D e = Gy
IS e 4 “w 3 < 4 3> 3 o +2
e 3 Gy 4> 2 ] © +2 o
3 D 3 3 b 2 n D
0} ) V) o £ 3 i3
54 42 ) o4 n -3 O )
Kot &) n 0] i 4 I3
> " o 103} & [} = 3
o » ® = [ a —
i 4 Ke = ) £ 2
O e G 3 = )
o G4 ® D 3 e
4> . o o] A0 3
) 0] 198 + i
po o] 1] 6] ) o3 [&
)] e w 0 1=
1 . 2 Q oY O o K
e o 3 4 o 2 9]
= 9 o3 8] 4 e © 3
» . ot o Qg [®) ] "
e S I £ i o £+
O i f 3 3 A +3 3
< © [0 L] m g m fong




¢
«

~rd

oVl

LoLiw T

Fa

7

[

3

FaaVaD
SORY)

)

4

mes a

oeCo

T
i

ke!
iie

aulatio

iii

Or

W



153

S.%4.2 Zlement loads and structural respnonse.

The main objectives of a
structural vibration analysis is to evaluate the generalized
elemeént loads and structural displacements (response) for
a given frecuency and a given system of applied forcing
functions, harmonic in this work. In the displacement
approach these can be obtained in two ways ;

l. By evaluating the displacements for a given frequency

using the equations,

'['J(d]{eAxi"' {68\5

which give,

Fub, § = [ X1 "1.RY

The structural displacements correspond to element
displacements, the equality of displacements being
decided from>compatibility considerations, Therefore,
using the individual element dynamic stiffness matrices
the respective element loads can be calculated, The
disadvantage of this method is having to invert the
structural dynamic stiffness matrix, this becomes very

difficult close to an eigenvalue.

7

v
L ]
oy

sing the normal mode approach in which the structural
displacements are expressed in terms of eigenvectors.,

This method can become difficult when the eigenvalues

are clustered together,

Because of the numerical difficulties in the displacement
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computer Janguage, accuracy of resulbts, programming and

derivation effort and in each case the programmes should

be optimized.
| One programme for the eigenvalue evaluation

of collinear beam structures using the displacement

approach (Direct Stiffness Method) was available. Taking

this programme and accepbing it as it stood showed that

this programme could analyse & collinear Dbeam structure with

approximately twice the number of finite elements than

possible with the rank force method for a given storage.

Although no actual comparison of running times has been made

for these respective programmes it is felt that the displace-

ment approach would take less time. In this particular

case the displacement formulation was a singular generation

process. Again this type of comparison is difficult for

the same reasons as stated for. the storage problem. Any

bime comparison which is undertaken for eigenvalue

evaluation should be made for the same method of evaluation,

initial value and step size. Accuracy should also be comnsiderecd.

5.,4.4 Other commentits,

1. It will be noticed that procedure 2
for the derivation of element dynamic flexibility matrices
was only applied to a plane beam element (Blement Type
P2/2FD). The reason for this is that based on the collinear
beam results{procedure 1, which also adopbts polynomials
to represent the element internal loading, gave better

results and ig simpler to apply.
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NMumber of finrte elements = NE
Mode
NE =] 2 3 4 =Y &
o6 672 .
| 15071 15024 /501 IS0 /4. IS0 /3
(11.0) (0.395) (o0-081) (0-0259) | (0-0i07) | (0-00s3)
- b6k S/ 607 Go 60287 60/ 56 600-99
(11.0) (1-18) (0-395) (0-165) (0-081)
s 1439.45 | 1375 g2 136787 | 135647
o {11.0) (7-83) (0794) (0:394)
4 266608 2457.36 24.30.4.]
(11.0) (z-3) (118)
c 4165 70 3852:72
(1.0) (2.66)
. S998- &/
(i/.o)

Zigenvalues ( @ radians per second) for a simply supported
beam using Element Type P1/2FD. The numbers in parentheses

give the percentage error of eigenvalues.

Table 2.



Number of Ffinike elements = NE
Modle
NE = | 3 4 5
]
| 20814 §/S/-sz is50-37 /S0 20 15016
(38-6) 3 (0794 (o0162) {0-049) |(0.0224)
|
2 832:58 | 6/S-o05 6os zg | boZ5e
it
(38:6) | (242 (0:79¢6) (o 332)
5 1873.3) % j4-02-28 1372-%6
(38-6) & (37g) (i)
i
oo

) 4 3330.3%3 2517214
(38°6) (4-81)
5203.¢4

=3
(38-6)

&

Eigenvalues (& radians per second) for a simply supported

beam using Slement Type P2/2FD. The numbers in parentheses

give the percentage error of eigenvalues.

Table

3

@
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Mode Eiganvalve
/ /50-/2645
2 boo.Sos7
3 /135¢-137¢
4 2402.0227
5 3753./605
& 5404.55/

Zigenvalues ( @ radians per second) for a simply

supported beam using Zlement wype P3/2FD.

Table L,



P Simnut

4
43

£ Sin W
7 E” /iL&esmse > B Sk

]

Node. | 3

Applied harmonic forcing system.

(a)
b .
G /rg
/V Q, qg q’s q’r
By Iy @y I
‘12 G (i‘b Qif
%
3

Freebody diagram showing complete generalized
load system, amplitudes only. 41l loads are
shown positive.

(b)

Simply supported beam idealized as two

finite elements. -

Fig. 21 .

..

16k

Q

+0

®



Total beam length.

60.0 in.

Cross-sectional area.

1.366 in.

Second moment of area.

0.1 in?t

Material density.

0.283 1b per in,

Young?®s modulus.
o

b .2
30,0 =10 1b per in.

Beam properties.

Table 5.
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: N ) Shear 9, /lbs
@ radians [sec. Po=r0 Ib.in. =10 lb, |F=10 lbim | B=10l.in
, 700 -0 C-0ll/bk -] 00665 -0 0I75é - 004244
1 /400 0 208720 -4 T4 454 - 0-0/84-8 =~ 023740
1490 2:-/8zo00 — 4243473 - 0-0/874 - 2:2/062
v /50.0 18.71357 - 37726227 -0.0/877 ~ 1974212
| /56 | 93.70422 - 179/-52547 ~0-0/877 -93.79277
E /502 ! ~B4 . 16/85 b5/ BBALZ -0 01878 34 /3341
/503 -4 B7LES 275 68499 —-0.0/878 /444612
/510 ~2-9%90380 54 -6986! -0-01880 2:8753]
/1520 - /. 374 40 25. 49006 —~0:0/883 /34598
prd-YeR¥w] ~0 08767 0. 86274 ~0 02062 ©-0L326
Foo-0 —0.04737 035960 —0.02730 ©-03754
4000 -0 .-02387 0-260/3 - 0.04244 - 044620
Soo-o ©:030/7 ©-Z23/4.0 - - 09072 0. .09/
59}5'0 3227689 ©0-22822 - 3.9824-9 3:98003
bos-0 19. 68746 022840 ~19-742/2 1973867
boo-2 32-568/8 o.2284/ ~32:62283 3762037
boo- 4 93.-738}/ 022842 ~83.79274 93.-79028
soo- o —107-3325] 022343 10727789 ~/07-28036
boo:-8 ~ 34.-1880) 022844 34.-/3340 ~34~/3587‘
o/ O - 20.3534.5 02284 6 20-2988%5 ~ 2030133
7000 -0, /5387 ©+24-/23 o-/122 1 —-—0 11792
See-o -0 07457 ©-3174] 0 048/2 ~0+06S00
/2000 004869 o 22672 003754 -0/ 4332
i: /3450 3.874672 T R3-31769 003847 - 2 5533
§ /350.0 1966723 12571637 0.0 3854 ~19.739%0
/3505 35.08/l0 223 94574 0.03855 - 35./4972
135/.0 /60 6BoSy 162347289 0-03856 - /o0 T59/3
/3818 -6Z L5562 ~398-3297/ 0-£3856 62577/
/352.0 ~26-27794 — b 7424 ] 0.03857 2619948
/355 ¢ - 5.924383 - 37,1712/ 0.03%8%862 5 84LT0
S ro0 O ~ 0. 54978 ~Z- 9804 0.03945 @ 475553
1Z2-2= 07 06342 —~0 0 b221] 0.0d4620 o /56T
Boo.o ~p5./0134 ~-o.3784 4 o obozs 00927
2000.0 -0 04689 ~5.294-84 c-09 /1! e-jo72.3
22000 006694 -0:260672 0. /8759 o /9490
23900 3. 2/065 - 25097 3 3I&15 331676
2 4o0-c /9. 63498 - 25093 7973967 /9:73993
2407.6 38-87211 ~0-25093 38.97672 38.97625
24020 1494 46368 -0 25093 1494 56820 /494 - 54840
24030 ~ /- 25278 -0:25093 =l /834 ] 14318
2404 -0 - 20 40569 - 0:25023 ~ 20:30/33 ~ 20 3c/Z0
2408 . 0 ~ & 819071 -0 25093 — 71497 ~&-714.98

Unit variations of “shear load q, with frequency Q.
Element Type P3/2FD.

Table 6.
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W radians|sec Moment %4 loiin.
FP=10 b s, PB=/0 /b, B=10 b 4. Fa=1.0 /b jn.
otoRy el -/ 00bbS 247051 O So0od /00665
/400 - e T G 86 12707 O - Sovon 474484
| s o — 4743472 9/5- 95865 0. Sooto 4243473
’ /500 - 377.26227 72/0 69450 O Sovco 377 26227
( 150 - 179 /. 52547 | 3422/(-13/92 o . Scooo 1797 S254.7
156-2 65168462 |~ 1244074361 0. So00o - ~ o5/ 68462
/503 275 . 68#£93 - 5259567956 o Soooo —-275. 6R49
/510 Sq 6986 ) ~ /039 -./500/ 0-Soooo -S54 69861
/520 25" 4500 & - 48/ 30688 o .So000 - 25 49006
2000 ©-96274 —/z-élase 0:Soo00 - 0.946274
30060 0:35940 ~ 114679 0:-Soooo ~o0.35%60C
G000 0 203 0-2843e ¢-Sacoo —6.26013
Soo o 023/t o /86141 o 'Soooco —~023 |40
598 0 022829 236758 0-Sooco ~-0:22829
Hoo-o 022840 237623 0. 50000 ~o. 22840
éoo»z 02284 2:37770 PR Y-T-T-¥~ - 22841
Loo -4 22842 237796 o Sovos —~o-2284%2
Looo ©-22343 237882 o -50000 ~ ©&-2284.3
'i oo 8 0 22344 2-379&9 o-5oo0o ~0.2284 4
% boi o 0-22846 2.38054 6-Sooso - 02284l
Too-o 0247123 277743 O rSeoco —O 2RI
9000 03174/ 3260563 o-Sooeo -0 3174
oo o 092672 7785782 o Soooe —e . 9Rb7T2
/345 0 2331769 /5035882 o Soocoe - 2331769
/38500 /2{-7/é3:/ doz-29222 0 Socoo - 125716377
/3508 22354574 1427 G4or2 o:Scooo — 22394574
! /I35/.0 (02347289 651758836 o0:Socoo ~}023:47289
: /135/.5 ~ 298.3297/ ~ 2533 8790 o-S0000 398.3297]
/352. 0 - b 74247 - J)O59 - 5570 ©:50000 /b 74242,
/3s5.6 - 37-17/9/ - 23468370 650000 BT 0TI
/4000 ~2.96304 —1b 90735 o Sooca 2-96804
/oo -0 62%/] -/ 85/28 o-So000 G-622/]
/8o0- o ~0: 37844 - 17219 0. 50000 2. 37 B4-4
Zooe.-o —0.29494 0 -Sob3z o0 Sovoo 029484
2200.0 ~02L062 05020/ 0 So0os 0260672
2380.0 —-0:25097 /17780 ¢.Soovo 25087
24000 -0-2%093 /190959 R Y-Y-T-2 025093
207 O “~Q. 25093 118230 0:So0c0s 025093
2402 .0 ~0-25693 /419361 0 Sooco 025093
24030 - 025093 1. /8493 650000 0-25093
24040 - 025093 /- 19624 0-Socos 025093
2408-0 - ©-25093 / 20148 o Soooce 0- 250923

Unit variations of bending moment q with frequency w .
Zlement Type P3/2¥D.

Table 7 .
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ool o-e7s 0-0i75 0-0424

Tl If’/.‘i “'('JF) ’.'(’ J 1. 4
Z=1e o.j424

e

] 00bé 253 K o5 I-00bb
[ J Py (=LY (A 1l 1G]
24705 24 -705] V A
/-00bb !éoeb
0-0175 0:0i56 ) 6-0156 0-0175

mn Py (dEPY T P B

00175 00115
}'z::/.o
O 0424 ©-0\78 G075 0-0li}
s dl Py (dEP ) (A | R T
‘ o6l 10066 I ‘ ‘
0-04-24 [« ZR - ¥}

Unit load distributions for « = 100.0 radians per second,

amplitudes only. Zlement Type P3/2FD.

Figs 25 .
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00876 c.0206 0-0206 00632
U RSN 3| (N I 1=
lo 0-9627 0:9627
|
% . 60632
00876 .
0-9627 o5 o5 o-9627
b 1 Y HEy It 4
12-8195 12-8i8s ‘
o-j;‘l7 ©:9627
Ps= /-0
0-0206 o-0i22 ©.0)22 ©-0206
o Py dEbYy Tl b &
‘ | o5 oS A
o.jzoé ’ 0206
0 0682 00206 0020k 00376
L il by w@Ery ot b
‘ 0:5627 09627 la

T

0-Cp32

Unit load distributions for W = 200.0 radians per second,

amplitudes only. Blement Type P3/2FD.
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179 racuans/sec.

Shear 21 /bs.

]

lement Type P1/28D.

Table & .

B=1.6 thin. A=rs0 /b Py = 1O lboon, Fa= 10 lhan,
2o —0 .00/ —-0:5/14 5 -0/ bTo —001 723
so —-0.-00989 -0 6204-5 ~0:0/698 -0 02270
/700 O-0/087 - /. 00360 -0 01756 —-0e04 226
140 ©-15¢87 -g.53252) ~0:0/84¢ -0:220/
Yo ©-q03/3 ~8.-47785 —o.0/860 -0+ 43206
/50 347674 T 28/ 28 ~o-0/874 -3.50538
/55 —~0-62950 1287746 —0.0/883 0-60/23
/60 —-o-3//20 £. 20207 —0-0/905 028328
Z2oo —0 08898 095063 -~ 002053 o 06439
240 -0 064 /0 0567/ -0 0225/ < 04392/
280 ~0.05257 04 /)367 —-—0-r02S/0 0- 03808
soo 0 -008/8 0239585 -0 06868 006897
540 0.036/3 025583 -0.09438 009349
580 ©. 08855 02350/ - 0 /444G O /4242
tzo ©-22838 023654 ~0-22/8) 02786/
L0 206374 024009 - 2/ 455 2://0/2
H65 S. /o8 b4 024067 -9./5% o 515452
&7 —-Z8 59024 0-Z4 09/ 28-5359/ ~28.544.56
Lo -4 05000 024127 2.992987 — s 000G b2
Too -0-4£B8072 024 54.9 043273 -0 43846
740 —5.25267 025262 2077/ —-0.2/488
/400 20 L 83 094102 o, 05272 -0 17489
/440 o 10099 /Il ez4 005303 -0 20703
/Soo o /8459 /' 53044 0 085379 -0 28468
1580 ©- 45459 2:898%0 005538 — 0546467
/620 0878493 S.06906 005632 ~0:9664-&
/640 /4L 8 T 79983/ 0. 05687 ~/-S34466
70 1030694 5257637 005776 ~70:389 &4
/80 -)2-085T78 —-pl 5225 005808 /1-876/5
1700 ~2:38023 ~/1 723838 005874 220079
/740 088279 -4-‘54 /02 0.060/9 080725
2gce 0’105 /4. ~0. 38832 033463 03834
2840 o 176L07 -0 38069 039982 o 44T7)8
Z900 033976 -0+ 36955 0. Sz O bobS2
2960 070874 ~0.35950 092733 0-97/55
Ef=X=T) (~God87 -0.35334 /L2273 /I e6S527
3050 202603 6 ~0.34.6/8 2047666 2651794
2o 55 ~/3L-bbdod -0-34.549 3644789 - /3640672
3/00 ~2+/8305 ~0+33955 ~/968/9 — /92807
3/60 - 707357 —0-33223 ~0-86024 ~0-82140
Unit variations of shear load q, with frequency w .
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Moment 24

1b. 1

W radinns/sec. B=/o lbin. Zo=7.0 b Ps=10 Joyn, Pa=10lhon,

20 —-0-51145 /1S-27997 o5 G- 5/145
&0 ~0-62042 1731089 o5 0-62042
/o0 ~/+00326 2t 3784 o5 /003726
/4o ~d- 52977 892-/2895 0.5 452977
/4.8 ~ g.4bb30 167 45945 05 8- 4ob30
/50 —~67:17775 /230-79024 o5 6717779
/55 /126825 —-2)0 11667 o-s ~/1-26825
/6o 5. 1920/ ~ 9385676 o5 —-5./520/
200 0-9865/ —-~]3-365]0 -5 ~0-9865]
240 056290 ~5.272578 o5 ~0+562.90
280 046849 ~-2-2340] o5 —0- 40869
Soo GC-2263/ /62058 o5 —~o2263/
S40 0-22036 /83057 o5 ~0:22036
£go 0:2/703 2:00/23 o5 -0:21703
bzo o-2157¢8 2+ /4433 05 ~0-2/57%
Lbo 021624 2-26790 o5 ~ 021624
Lo’ 0-2/640 2-28227 o5 0+ 2/bd O
b&7 021648 228794 05 ~0+ 21643
oo 0-2/659 229644 o5 -0+ 2659
7e0 0-2/18/9 23770 o5 —0+2/18/9
740 0 22/50 247767 o5 —-0:22/50 .
1400 065278 5. 188272 o5 ~0: 65275
1440 076428 $77207 05 -0 728
ISo0 1-0279% T 14287 [« XX ~/i02799
/580 /-89939 1-e43/5 S ~ /89939
o2 228225 187667 | -5 ~3.28225
/640 5. /4956 2837456 o-5 ~5./4856
670 34../8929 17782543 o5 ~ 3418829
/680 ~ 3914552 ~-199-56325 o5 39145572
/700 -7 41743 -36-28410 5. 741743
/740 ~2:84/02 -/2:7270b o5 2-84 /02
2800 ~0: /9655 095449 05 0:/9655
2g4o -0 j9/39 09823/ o5 ©-19/139
2900 -0-18432 /-o205%2 o5 0-/84-32
2960 -0 17795 /05507 o5 017795
KL-T-7~3 ~0: 17404 l1re7e2e o5 017404
3050 - 016949 /+]0088 05 016949
308% -0 /o200 /103724 (o= Q- 16906
300 —0 )52 /12374 o-5 0 NeS23
3/&o -0 ] (o bg /- 14304 o5 0-1bobd-

Unit variations of bending moment q, with frequency w .

Blement Type P1/2FD.

Table

9 .
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00422

] 0036

o 01785 ¢ 0i75
Py TERY T
} 0032 . /0032

[p Sl

o-0l7s5

by (db ) LAl
2446473 246478
FR=1o0
00158 D-0IS6

V| S|

T
© 0422
<0034
1 ‘i
1-0036
QI OI7S

| SN ANIE | S O

o015

00422 0-0\78 00785
P dl Ty (dEhy LA
i j-0032 (0032

.

Unit load 4

£

amplitudes only. &

lement Type P1/2FD.

istributions for « = 100.0 radians per second,
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00889 o.0z0% 00208 00643
Tl | AR 2 | S A | I 18 {3
Io 6-586S 0-9846S ‘

0:9996& 0-S9ak

A Y tamy oA P4
‘ 13-3651 13-36S1 ‘

0:.0Zos o -oi22 6.0122 - 0.az08

mh s by @y b 4
05 o8

©.0208
0:064-3 010205 ‘ 00205 0-0885
ML Al by THEIEY el I
A 0-9865 6-9865 e
00643 i ) 00889
Unit load distributions for «) = 200.0 radians per second,

amplitudes only. 3lement Type PL1/2FD.
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Frequency Applrecdd  foad
L‘} N
radians/second E= /.0 /b in. B= /0 /b /? =/.0 i Ja. Fp=1.0/b.in,
PB/Z‘“-D Q,ZO'O’//(O —~ /- 00465 —-0-0/756 —D-O4TE 4
y=¥ /ZFD €z=0'0/097 ——fe OO3LC NN -V - A S -T A
/oo .o
Ditference ©-000/3 ~ o 00305 o0 —ooo/8
Percentaspe
error. /70 03B/ o0 o 425
£3/2F0  |9,=19-7/357 ~377-26227 | — 0-0/877 -19-742/2
1 /ZFD ‘Z,‘—‘ 347674 — &7 28126 -0 O/8T 4 — 3-50535
/50 :
o DiFference 1623483 —309.98/0/ | —0-00003 ie-23077
Fercentage
error 82-4 8z-3 o 17 82 -4
F3/2F0 1= —0- 08767 0: 96274 ~0- 02062 o 06326
rJ/ /Z’,UD 1,:.-»0-08‘898 ©-99%9063 -0 02053 ©-D& 432
Zoo-o
D[J{fe/‘ence o 00/3) -0 02789 — 000009 -05- 00/I3
Pé‘/‘cenr"aje
error, -1 49 -~ 23 0436 — 178

Percentage error in shear load g, when using

Zlement Type P1/2FD.

Table 10

®
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,C}%uency A/ﬂ/a//.éd /oaé/
A
rodians/second F=10 lb.sx . P =/0 /b /%;ﬁ@/@,,}h /f;.—::/.o /b in .
P32/2FD - 1 00645 24-705/8 o5 /05665
P//ze) - /00326 2d- 64784 o5 /00326
/000
D/’J‘(jff/’eﬂéf - 000339 005734 oo @ . 00335
Percentage
eriok 0337 0232 0.0 o337
P3/2FD —-377.26227 721069450 0-5 377-26227
/QC/zfap — T 17779 (29079024 o5 &7-17179
/00
Oifference ~3/0-08448 | §9/9-90426 o0 3)0 08448
Percerntage
orro, 87 4 8Z./ oo 82.4
P3/2 0 096274 ~12-8/956 o5 -0-96274
P//ZFD 09865/ ~/3:365/0 o5 -0 9865]
2000 )
DiFference -0.02377 -0.54554 0.0 002377
fercentage
er o -2-47 ~ 425 oo -2:47
Percentage error in bending moment 9y when using
Zlement Type P1/2FD
Table 11 .
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Ergenvalve D radians per secord.
Mode
Hy brid Lrsplacement
/ Fank Force nrilefh .
nomber, Melhod . Me thod. 7 od
Elerment 7. Element Type
23,24 o gpe
(/,ew'en > [Burcl, + > P3/3 ~p il /3FD
/ 1943 1885 = 1948 194 -3 194 4
2 Tob T V54 —TB5 4 Teé 6o 2602
3 1250 /1226~ 1257 /250 .5 /5324
4 /387 /358 /3540 —
Comnarison of eigenvalues for a single storey hlane

B "
irames.
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Eigenvalve 0 radians per second.
Made
Hybrid Disp/e
placement | 24,k
nombet. Method . o ank Force pMethod
23,24 4o Element Type |Evement Type
(Levien ™) | (Boret®) P3/3FD Pl /3FD
/ /037 1006~ 113/ loo. 2 /00-2
2 3/4.-2 3679 3/4-2 3073 3000
32 754 -} 74.1.5 - 754/ 7402 7392
4 log/ 1100 - 213/ /o803 /130-.0

Comparison of eigenvalues for a two storey plane

frame,

Table

13 .
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Bent cantilever.

Fig. 3k .
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Cross sectional area. 0.0313 inzf

Second moment of area. 0.00004068 in”.
Material density. 0.283 1b per in .
Young's modulus. 30.0x10% 1b per in .

Zlement properties for bent cantilever.

Table 15 ,



Aode Ergenvalve O radians per Second.
number , 3 Rank Force Mellod .
Bishop and Tbhnson Element Type P3/350 .
/ 33-2 85.¢
£ 226 233

Comparison of eigenvalues for a bent cantilever.

Table 16,

189



%4
A
> o
‘: ’”'”7”""'?’"’ it
™ i
A
Bent cantilever,
N ; , _ F e P
Applied loading system, @ i Ty,
\‘ ,/
Amplitudes only. B
F
ot
(a)
4R i e
| f I
Lbod
#
/?3 ' i& Ci)’b
1
Bent canbilever.
Complete loading system.
Amplitudes only. s
(b)
P
'Ké;

Loading system for a bent cantilever.

Fig.

35

e
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q/d, Re F=r0% ji, E= 0% |, B=10%lb.in | 1= 10% b, =, | fZ:/c’fl/{’-p./h,
?’( ~lo0oo (487 L2979 -873.25 —det 7T 07 812944 — 43735
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APPENDIX 1.

SIGINVALUS EVALUATION BY THE RANK

i1

FORCE METHOD USING A

HIGHLY RuDUCSD STRUCTURAL DYNAMIC FLeXIBRILITY TRIX.

u‘l&. 4L

Synopsis.

In the rank force method for vibration analyses
the eigenvalue evaluation requires the inversion of &
large matrix, structural dynamic flexibility mabrix.
A method 1s proposed which only requires the inversion
of a very small submatrix which is contained in the overall
structural dynmamic flexibility matrix and can be extracted

immediately. Results are given which help to substantiate

the method and which encourage further research

A @
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ere $0ul is now the vector o
unloaded nodes, in

loads, due vo

202

ds are now set Lo zero, [Pt = fi)E , therefore,

P At = [ F. 10 A Al,1.4

{Aug = [—?21.7{ Pa? | Al.1.5

-

B
&

vctual displacements a

the direction of the corresponding

the actual generalized applied loads.
¢ the structurel flexibility matrix is given
[}

order 1x 1, Therefore, for a given siructure

structural flexibility

o~

be obteained, each with its corresponding

system. Because of this the author intuitively

nd )
i

luced structural dynemic flexibility matrix.

o}
bl
o
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could be used for the eigenvalue evaluation. This now
presents the problem of how to reduce the structural
dynamic flexibility matrix. In two dimensional problems
two generalized applied loads can excite all the modes.
Therefore, the simplest way is to select a reduced matrix
which corresponds to the second leading submatrix of the
overall structural dynamic flexibility matrix. See figure U2
This procedure was applied to a simply supported beanm
.

idealized as six finite elements using Blement Type P1/2FD.

The beam properties are given in table 5 .

i

irst eigenvalue for a simply

o

Obviously, to compute the
supported beam it would not be idealized as six finite
elements but this was chosen since, for example, in a two
storey frame, figure 33 , the minimum idealizatioh
consists of six elements and therefore the votal structure

has to be considered even for the first eigenvalue. In

3

irst five elgenvalues

o

o

the simply supported beam example the
were evaluated using different order leading submairices,

FEN

These are compared with those obtained using the full
structural dynamic flexibility matrix, order 12 = 12, and

are given in table 20 . It can be seen that by investigating
the first leading submatrix no eigenvalues were obtained

but for all the remaining leading submatrices the same
results were computed. This shows that two loads can

excite all the modes and for the collinear beam problem

these correspond to a vertical load and a moment as shown

in figure 43(a). This method presents a simple inversion
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and notable time saving on the computer. The first three

eigenvalues were obbained for a single storey plane frame

using a 2 x 2 leading submatrix and Blement Type P1/3FD. The

frame dimensions and element properties are given in

figure 32 and btable 1k ., The results are shown in

o

G

s
3

able 21 and there is agreemen?t with those obtained using
the full metrix, The loads corresponding to the reduced
matrix are shown in figure 43 (b). The elcments of the
structural dynamic flexibility matrix are funciions of

the frequency but it is virtually impossible to obtain

these analytical expressions since the sitructural dynamic
Tlexibility matrix, full or reduced, is obtained for a

given frecquency. If the eigenvalue evaluation was the only
consideration this reduced matrix approach would also save
considerable computer storage. This is because the coefficient
matrix corresponding bto the applied loads in the general

case can be reduced to two columns in the two dimensional

problems. The system of joint equilibrium ecuations is

given by,

[Nt Ne]l 3 1 eRef + [ IIRT={0}

Two columns
for eigenvalue
evaluation only.

In the general case the number of columns in matrix [ ]

is given by,
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{(number of nodes) x (number of assumed coordinates per node-
possible appiied loads or displacements)

~ (number of reactions)

summarizing, bo evaluate the element
boundary loads, structural reactions and structura
displacements due to a general applied load system loads

are assumed to act at all nodes. This results in an overall

structural dynamic flexibility matrix. However, the

2]

ot

elgenvalues can be evaluated using a 2 =2 submatrix for

o

two dimensional structures and a 3 X3 for three dimensional
structures (to bhe investigated). This reduced matrix has

7
&

been extracted immediately from the upper left hand

corner of the overall matrix. The applied loads corresponding
to the 2x 2 leading submatrix are the first two that appear

in the applied load vector for the consitreined structure,

- 3

Although this submatrix has given the desired results it

is very likely that in the two dimensional frame structures

4

these two loads, Ffigure 43 (b), would not excite all the

Lo

modes, Perhaps a moment and load would be recuired.
Therefore, for different two dimensional configurations
combinations of two loads may have to be considered imn
order to evaluate all the eigenvalues. In fact a criteria

may exist for the choice of loads such that the numerical

work is an optimum., This is an aree for future investigotions.
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r 3rd leading submabtrix.

r 2nd leading submatrix.

o ] 54, 1eading submatrix.,

Matrix leading element.

i' i i Lo
L] ¥
' 1 t
L S A S
------- PO
Roox o x
X X X
R PO -
Complete
structural
dynamic
flexibility
matrix, LF4] .
oo p—

Leading submatrices.

Fige Lo .
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_»—m%p.b

Collincar bheam.

(a)

Plane frame.

(b)

Loads corresponding bo the second

Fig.

L3

leading submatrix.



Eigenvalves Lsing  Element Type PlI2FD
for different order lead ing  svbmialrices.
Keference
e/:yé/wa/ues
in
rad [sec. | Full
Elemen malrrx, /x/ 2%z 3x3 4% 4 5xS
Gpe P3(zip | J2x%/2
148 — 228
/5072 /5073 no zero 156:/3 /5013 150-/3 ISa/3
crossing
550~ é670
60050 60095 no zero &00.99 Goo.89 400.-99 boo.95
Cross/ng
1350 = 430
/1357)-/3 135647 | no zere /35647 135647 1356+ 47 /35647
crossing )
2428 - 2508
240202 2430 -4/ ne zero 2430 4t 243049 2430.41 | 24304
Ccrossing
7840-3920
3753 /& 3852 .79 ne 3ero 288279 385279 285278 385275
CrosSing
Zigenvalues of a simnly supnported beam using the
overall structural dynamic flexibility matrix and
leading submatrices convteined in this maitrix.
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Eigenvalves  using
Element Type P1/3FD .
Reofererce
eigenvalves 4,
rad [sec .
Element Type Full malrix Leading sobmatrix.
P3/3FD . 6x6 2xz
/2425 /1944 194 -4
To bl 24,5-2 g6 .2
/2505 /5324 /532-4
aigenvalues of o single storey plane franme
using bhe overall structural dynamic Tlexibility
of oxrder 2x 2,
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APPINDIX 2.

TOTOMITD /U T Y

YZD IMPOSITICN OF ALL THZE GENZIRALIZED STRUCTURAL

~(

THZ RANK PFORCS METHOD FOR VIBRATICN ANALYSES.

In this appendix a procedure is presented for
the delayed imposition of the gemeralized structural reactions
in the rank force method for siructural vibration analysis.
This procedure enables unconsitrained structural dynamic
flexibility matrices to be generated which are ideal for
the vibration analysis of large practical structural

configurations using "block elements" . A block element

being itself an assembly of discrete elements, or in other

<

words a substructure.
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In the displacement approach the structural
constraints need not be imposed until the latter stages
of both the static and vibration formulations. This means,
for a given structural configuration, that the unconstrained
structural stiffness matrix (static or dynamic) can be
generated and stored and then various constraint patierns
considered without regeneration of the stiructural stiffness
matrix for each case., 'This is also ideal for the analysis
of large practical structures by the method of substructures
since bhe unconsitrained structural stiffness matrix for each
substructure can be generated separately. Zach substructure
then Decomes an element ("block element") with its own
stiffness matrix, These block elements are then assembled
in the normal manmer (Direct Stiffness Method) to give
the overall unconstrained structural stiffness matrix
(static or dymamic). At this stage the actual constraints
are imposed.

In the static rank force method at least the rigid
body reactions have to be considered immediately in the
system of equilibrium eacuations otherwise no solution can be
obtained. In fact in reference 31 all reactions are considered
immediately. If the system of ecuilibrium equations were
assembled withoult at least the rigid body reactions and then
investigated using the rank technique it would be found that
there was no solution to this system of equations. In other
words the rank of the coefficient matrix and the augmented

matrix would be unequal. Because of this the analysis of large
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42.1 Delaved imposition.

Initially when generating the
system of joint ecuilibrium equations all applied loads
are assumed to act at the nodal points, no reactions are
considered. The next step is then to consider the structural
reactions and to isolate the corresponding applied loads.
The unlinowns are now generalized element boundary loads
and structural reactions. However, if this latter step is
omitted and the rank force procedure continued an
unconstrained solution will result.

ceneralized element boundary loads (unknowns) will De

§,0.% =101l R1 A2.1.1

and the generalized structural displacements by,

szxi=£5—’;{]{téf ) 5£2.1.2

In equations A2,1.1 and A2.1.2 the bar is used to denote

the unconsirained structure.

The unconstrained structural dynamic flexibility matrix,fjéj

can now be partitioned such that the applied loads

corresponding to reactions are separated from the possible

applied loads. Therefore,

e — — :
- !

eAx '% i /2 &&

- T T 4“”““““”“’“““ 42,1.3

ebe 7,

- o bn
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]
a3s8umin

that the displacements corresponding to the
structural reactions, WPE; » are zero equation 42,1.8 can

be expanded to give the equations,

febyt = [ £, 78R + [ F.T1eRe? 42.1.4

and

fot = [ £, J{R] + [F2]1Re] A2.1.5

A

Therefore, from ecuation A2.1.5, the structural reactions

are given by,

{Re¥= =[5, [ F,TIR? 42.1.6

where, as for the previous formulation, Chapter 2,

- B )
[Aex]= "“[,321] f-}zzj A2,1,.7
Substituting for the structural reactions into equation

A2.1.4 gives,

L= (137- 1500517 CE,1) LA sns

where, as for the previous formulation, the constrained

structural dynamic flexibility matrix is given by,

EARGER B ERIERNEND A2.1.9

Zquation a2.1.2 can now be partitioned to give,

[tidz:z [ ZH : Ziz:I{éF;E bkfz
ox

[edb= LB, 10RY + [ B2]LeRe} 42,1,10



N
A

ubstituting for the stiruciural reactions gives the
generalized eliement boundary loads for the constrained
structure, that 1s,

{ﬂwz = ([ Z/IY - [ E/z-][ 5zz‘ju(£§z}l~]>{ta f AZ.1.11

Therefore, as for the previous formulation,

[Aa{kl"" ([ Zn]" [ le:” jzzj-./[j;lj> A2.1.12

This procedure has been applied 1o a

-

collinear beam structure consisting of two finite elements
and using Zlement Type P1/2FD. These results were compared

with those obtained by applying the structural reactions

immediately and agreement was established.

216
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4
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The procedure is then the same as for Glement Type P1/5FD,
This approach has so far not been investigated with an
example but a listing of the subroutine is given in

4

table 22 ., See Appendix 4, Subroutine FMD50 (Zlement
Type P1/5FD) for argument description and other comments.
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cooo

U CALL RANTEC(D 8, 12 24.12.12,24,
“CALL PARDER(D,IR,8:12,12,24, NN)

2 D(B+M NI=PHI(M N = e
~ CALL RANTEC(D,{2, 12, 24, 12.&2 24,10 XM‘IR) )

- pot4; 4-13 24 ~
- DELQS(I,V- 12)=-D(I o)
D016 Is=f,12 e
DO16 uJ=mi,12
fDELQST(I J)I=DELQS(J, 1}

SUBROUTINE FMD50(A,B,T,EM, XMUM, XNUM,OMEGA,FMD)
JOKN ROBINSON I,S,V.R.
RECTANGULAR PLATE ELEMENT

© " ELEMENT TYPE P{/6FD
 ELEMENT DYNAMIC FLEXIBILITY MATRIX

" DIMENSION D(12,24),1D(12),XM(12),PAR(4,12),PHI(4,12),IR(12)
~ DIMENSION OELQS(12,12),DELQST{12,12),FMD(12,12),6(12,12)

EQUIVALENCE (DELQS(l 1), D(l.i)).(DELQST(l 1) D(i,13))

- D05 I=1,12
- D05 J=1,24

D(1,4120.0

0(1,5),0(2,1),D(7,7).D(8,3)=A

D(3,8),0(4,4),D(5,6).D(6,2)=B

D(1,9),0(1,10),D(3,9),0(3,12), 0(5 IO) D(5,11),0(7,11),D(7,12)=0,5

- D(1,13),0(01, 16).0(2 14).0(2 17) D3, 13) D(3,22),D(a,15).,D(4,24),
1D(5, 16) 0(5 19) 0(6 18).0(6 21) 0(7.19) D(7 22) D(8,20), D(& 23)=

D010 M=1,4 o
D010 N=i,12
PAR(M,N)=D{84M,N)

~~ CALL FMDGO(A,B,T,EM,XMUM,XNUM,OMEGA,FMD)
CALL MATMULT(PAR (FMD,PHI,G.12,12,4,12,12)

-Dot2 M=i,4
D0t2 N=1,12

CALL REAR(D,12,24,12,24,XCH)

D014 =1, 12'

:CALL MATHULT(FMD DELQS G 12 12 32 i2»12 i2})

A.S.A, Fortran listing of subroutine FMD50, Blement

Type P1/6FD.

Table 22
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APPENDIX 4,
A COMPUTERIZED STRUCTURAL ANALYSIS RESEARCH SYSTEM TO
STUDY THE RANK FORCE METHOD.

Synopsis.,

In this appendix a computerized structural research
system to study the rank force method for vibration analysis
is described in detail. The basic concept of any
computerized system is to write the programme as a series
of small programmes {subroutines) which are connected
together by a master programme. Each subroutine carries
out a specific step in the analysis. All subroutines used
in this research system are described and were necessary
examples of their usage and capabilities are given. Some
subroutines are only applicable to a computerized system
which adopts the rank force method, these are referred to
as special subroutines. However, some are applicable for
all systems, even nonstructural, these are referred to as
standard subroutines.

Master programmes are then described
for the vibration analysis of collinear beam structures,
general plane frames and two dimensional plate structures.
Many of the subroutines are commom to all of the master
programmes. In order to analyse & structure using the
master programmes certain input data must be prepared by
the user and in & certain way. Input data preparation is

described for each master programme and typical examples are



given. The size of structural problem which can be
analysed by the wvarious programmes has been limited by
the computer core storage (I.C.T. 1900 Computer). All
structures are analysed completely in core but this is a
self imposed restriction., Within the -computer programme
system efficient use is made of the EQUIVALENCE statement
and temporary transfer of parts of matrices, these are

described,
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Introduction,

In any computerized structural analysis
system the basic concept is to break down the computer
programme into a series of smaller programmes called
subroutines. These subroutines are connected together
to form one system by a master programme. Bach subroutine
carries out & specific step in the analysis. Some subroutines
are common to one system only, these will be referred to
as special subroutines, others are common to all structural
systems and even nonstructural work, these will be referred
to as standard subroutines. Since subroutines are
continually being improved this chain approach to writing
a computer programme enables a subroutine to be replaced
by an improved version with very little, if any, alterations
to the overall system,

The computerized system written to study
the rank force method is by no means optimized and the
numerical methods and programme formulation are not
necessarily the best possible. It is also possible that
errors exist in the system which have not been brought
to light by the examples used for checkout purposes.

The author also realizes that numerical difficulties
could arise when analysing a structure in which a wide
range of element properties existed and when analysing

larger configurations than those investigated in this. work.
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However, the aim of this research work is to assess the

rank force method for vibration analysis to sece if it offers
anything over the popular displacement approach. It was felt
that the assessment could be made on the basis of simple
structural configurations for which results existed in the
published literature which were obtained using the
displacement approach. The master programmes and subroutines
developed to study the rank force method have been written
in A,S,A. TFortran for an I.C.7T. 1900 Compuber. These will

now be listed and then described individually.

Subroutines.

1. RANTEC.

2. RIEAR.

3. MATINV,

4, MATMULT.

5. PARDER.

6., FMD1O..eveeuus . olement Type P1/2FD.
7. FMD1O............Blement Type P2/2FD.
8. I'MD10..vevswsss..mlement Type P3/2FD.

™

*
*
°*
s
*
*
®
*
L]

10. FI‘VIDBO. e 06 b 0@ o »a b .Elemen’t Type P3/3FD.
11, FMD40e..veeseses.blement Type P1/4FD.

12, VARDZT.

17. FMDBO-...........Elemen‘t Ty?e Pl/SED.



Functions.
1. KINT.

Master Programmes,

2. PORCE-PLANE FRAME.

3. FORCE-RECTANGULAR PLATE.
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A4.1 Subroutines.

1. Subroutine RANTEC.

This subroutine has been described

in Chapter 1.

2. Subroutine REAR.

2.1 Description of subroutine.

After applying subroutine RANTEC
to a system of linear equations, containing the same
number of independent equations as unknowns, the coefficient
matrix will, in general, be a permuted unit matrix.
Subroutine REAR rearranges the final augmented matrix
to give a unit coefficient matrix. The required solution
of the system of equations is then immediately available.

2.2 Subroutines called by REAR.

This subroutine calls no other subroutines.

2.3 Subroutine listing.

The 1listing of subroutine REAR is
given in table 23,

2.4 Description of subroutine arguments.,

The first card of any subroutine
contains the word SUBROUTINE, then the subroutine name
followed by its arguments, given in parentheses. That is,

for subroutine REAR,
SUBROUTINE REAR(XKD,N9,N7,NIMAX,NTMAX,XCH)

where,
XKD = rectangular{or square) array.

N9 = number of rows in XKD.

" NT total number of columns in XKD.
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NOMAX
corresponding maximum values,
NTMAX
. , . ) NOINT
XCH = interchange constant, that is, (=)
NOINT = number of row interchanges to give a unit
coefficient matrix. This can be used to evaluabe
a determinant.

See figure Wi (a) for further clarification.

2.5 Lxample of usage,

After applying RANTEC to a system

of linear equations the resulting system can be written

as,
[ATi>] + [B]f3] =[O}
where,
{“§== vector of unknowns (internal loads and
structural reactions as an example).
{41 = vector of knowns (applied loads),
[A] = permuted unit matrix (square).
[B] = matrix corresponding to knowns (rectangular
or square).
Let;
1. actual number of unknowns = 100

2. actual number of knowns = 20
3. maximum possible number of unknowns likely
to be considered = 1000

4. maximum number of knowns likely to be considered = 200
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and

[¢]= augmented matrix [A,B7J.

Thereforé, in this case, the call statement to apply

subroutine REAR would be,
CALL RZ2AR(C,100,120,1000,1200, XCH)

See figure (b) for further clarification.

As a further example, if,

[A:I:O / [o] anc[ [8]:3 2 !
o o | /] © 4
| ©o o 2 | 2
then,
]
[¢c]= o o3 2 |
o © I;I [o]
I © c{z iz

After applying REAR,

[c]l=1]1 o o lz 1 2
|

o t o3 2 [/

o o | E/ o 4

Therefore, expanding into the original form gives,

1o oflfxl +1l2 1 z|{y} = {O}

and the solution for {x} is,

$xt = — 2 4 =z2|14%

z |/
/ o 4
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44
42
45
46

48

53

55

56
70

SUBROUTINE REAR(XKD,NG N7, NIMAX ,N/MAX,XCH)
SOHN ROBINSON, I.3.V.R,

REARRANGING ROWS TO GIVE A UNIT COEFFICIENT MATRIX
DIMENSION XKD(NQMAX , NTHAX)

NOINT=0

RDOB0 J=i,NY

D04z I=1,N9Y

IF(XKD(TI,J1144,42,44

I=1

GO TO 45

CONTINUE

IF{1~Jd)46,50,46

DO47 LA=RT, NG

IF(XRD(J,LA))48,47,48

LA A

GO 10 49

7 CONTINUE

XKD (J, 1 =XKD (T, J)
XKD(I,J)1=0.0

XKD (I, LAI=XKD(J,LA)

XKD (J,LA)=0,0

U053 LA=NG+1,N7

X=XKD(J,LA

XKD(J,LAI=XKD (] LA)

XKO(I, LAY =X

NUMBER OF INTERCHANGES IF DIFFERENT FROM INITIAL VALUE
NOINT=NOINT+{

CONT INUE

IF(NUINT)56,55,56

XCH=1,0

GO TO 70

XCH=(~1,0)x«NOINT

CONTINUE

RETURN

END

A.S.A, Fortran listing of subroutine REAR.

Table 23 .
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T [ I ]
|
|
Svbmatrix [ Svbmalrix
N9 corresponding o { corresponding fo
(vomax) the unknowsns, } the fnowns, Augrented
, nialrix
[ ‘K XKD
!
No ( NOMAX) J
i
N7 (N7MAX)
(a)
T ; T
J
]
N9 = /OO {
NIMAX = JooO LA] ! {81
!
VK
| e
l
|
) T | —
N9 =loo (N?MAX=IOoo)=J
N7 = 120 ( N 7ATAX = /200) o

(b)

Argument definitions for subroutine RIAR.

Fig. Uk,
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AT

3. Subroutine MATINV.

3.1 Description of subroutine.

iV

ihis subroutine forms an
augmented matrix using the matrix to be inverted and

a unit matrix of the same order. The Jordan elimination
procedure is applied to this assembled matrix and

after some rearranging the inverse of the original
matrix is found in the submatrix corresponding to the
original unit matrix. The matrix to be inverted 1is not
required to have any special properties other than being
real. The inversion procedure used in this subroutine
was adopted because of the existence of RANTGEC. A
disadvantage of this procedure is that the computer
storage required to invert a matrix is twice that required
by the matrix to be inverted.

3.2 Subroutines called by MATINV.

This subroutine calls
subroutines RANTEC and REAR. See figure  L6.

3.3 Subroutine listing.
o

The listing of subroutine MATINV is
given in table 2k.

3.4 Description of subroutine arguments.

The first card of this subroutine is,

SUBROUTINE MATINV(A,B,C,N9,NOMAX,N8MAX,NTMAX,IDEP, LMAX,1Q)
where,
A = matrix to be inverted.
B

= jinverse of matrix A.
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C = augmented matrix formed, within the subroutine,
by matrix A and a unit matrix of the same

order as A,

N9 = actual order of matrix A.
NOMAX = maximum possible order of matrix A likely
to be considered.
N8MAX = NO9MAX, this is used since it is passed over
by RANTEC.
NTMAX = 2x NOMAX, maximum number of columns likely to
be considered in the augmented matrix.
IDEP = vector of dependent equatiéns(row numbers).
AMAX = normvector, vector of normalized row elements.
This can be used Vo evaluate a determinant.,
I0 = vector of redundant load numbers.

If the mabtrix has no inverse a statement NO SOLUTION 1is
printed out. Vectors XMAX,IDEP, and I are formed within the
subroutine, see RANTEC. See also figure U5(a)for further

clarification.

3.5 Bxample of usage.

To invert a matrix [Fl of order
200 » 200 and maximum possible order of 2000 x 2000 would

recuire the call statement,
CALL MATINV(F,X,D,200,2000,2000,4000,MDEP,WMAX,LQ)

where,
-
[K]= inverse of [F)=1[F]
[D]= augmented matrix [F, U], formed within the
subroutine. Note [U] is & unit matrix.

See figure U5 (b) for further clarification.



To demonstrate the procedure adopted for matrix inversion
consider the following example.

Let,

[F]: 4. 32 2

]
[Dl = |4 3 21/ © °
3 2 ;;O/ o
2 ! I:ool
Matrix to Unit
be inverted. matrix.

Applying RANTEC to [DI would give,

|
[D] = I o o= 1
@ o | ;/ -2 |/
o I ol o -2

subroutine REAR is now applied to give,

(D] = I o o=l 1 |

!
|
|
o | ojJ o =z
i
|

OOII-*ZIJ
Fd
Unit Inverse of (PI.
matbrix.

Therefore, the inverse of matrix [FJ] is given by,

[k]= [FJq= -t 1
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In this work on the rank force method the evaluation
of a determinant, in particular the structural dynamic
stiffness matrix for a given freqguency, is carried out
using subroutine VARDET (described later). However, it
will now be shown how subroutines RANTEC and REAR can
be used for determinant evaluation.

At each stage of the elimination
procedure, when using RANTZC, a normvector is being
generated, XMAX(see RANTEZC), and when applying subroutine
REZAR an interchange constant, XCH(see REAR), is being

computed. The determinant value is given by,

it

det [A] XCH x (continued product of the normvector terms)

il

XCH x (MMAX(L) x AMAX(2) X veurvansnss ® XMAX(ND))

To demonstrate the procedure consider the last example.

[Fl= |4 3 2
3 =z

2 i

RANTEC is now applied to matrix [FJ] . The procedure of
forming the normvector is best shown in a step by step

presentation as follows,



3 L
4 2
- @
| N
-1 o
}
> O
7 |1
(e,
] (o]
o 1
1 O

3 XMAYX Y
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Applying REAR to give a unit matrix would require
rows two and three to be interchanged. Therefore,
NOINT = 1
hence,
1
XCH = (=1) = =1

therefore,

deé[f?]: 4 3 2 = (-/)(4x—%x_é):“l
3 2 1
2 0
Note

l. If a zero appeared in the normvector then the
determinant would be zero and in fact the matrix

would be singular. The degree of degeneracy

would be given by the number of zeros. The locabion

of the dependent rows (or equations) is given
by vector IDEP.

2. (-1)%=1
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SUBROUTINE MATINV(A.B,C,N9,NIMAX NBMAX ,NTMAX, IDEP  XMAY,

JOHN RORINSON, 1.8.V.R,

MATRIX INVERSION,

DIMENSION A(NGMAX NOMAY ) , B(NGMAX NOGMAX) ,CINGMAY  NTMAX)
DIMENSION IDEP(NGMAX) XMAX(NIOMAX ), IQ(NBMAX)

N7=2%Ng

DO& 1=4,N9

DNB Jei N9

Ctr, Jy=macy,h)

C(I,JeNG)=0.0

CONTINUE

C(1.I+NG)=1{,0

CONTINUE

CALL RANTEC(C,N9.NG,N7, NIMAX ,NBMAX ,NTMAX , IDEP ,XMAX K 1Q)
CALL REAR(C,NQ.NT7.NOMAX NTHAX ,XCH)

DOg Imi NG

DOG JmeNB+{ N7

BOT,Jd=NQY=C(Y,J)

RETURN

END

TQ)

A.S.A., Fortran listing of subroutine MATINV.

Table 24 .




Bd

NS
(NIMAYX)

e

|

|
Origmal  matlrix I
fo be jnverted | A . E
| !

. , |
Unit mabrix after l
|

I

applying RANTEC
and REAR .

NS MAX = NIMAX _]

NTZMAX = 2% NIMAX

Oﬁ/jina/ unik

mabrix . M

!

Zaverse of mabrix A,
denoted by 8, afler ™
applying RANTEC and
REAR .

[Ram——

No = 200

NOM AN = 2000

()

LF]
!
LU]

NEMAX = 2000

N7MAX = 4 OO0

[u] et
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[Dl=[A,uU]

[D] :’[’U: B]

[k1=[F1" _

Argumend

(b)

definitions for subroutine MATINV.

Pige ks

[D)=[F,u]

[p]=[u, K]



Subroutine

MATINV,

This subroutine calls

Subroutine
HANTEC,

Subroutine

REAR,

Subroutines called by subroutine MATINV.

Fig. ke .
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4, Subroutine MATMULT.

4,1 Description of subroutine.

This subroutines multiplies
two matrices together.

4,2 Subroutines called by MATWMULT.

This subroutine calls no
other subroutines.

4,3 Bubroutine listing.

the listing of subroutine MATMULT is
given in table 25.

4.4 Description of subroutine arguments.

the first card of this subroutine is,

SUBROUTINE MATMULT(A,B,C,NI,NJ,NK,NIMAX,NIMAX, NIMAX)

where,
A = matrix to be postmultiplied by matrix B.
¢ = continued matrix product, Ax B.
NI = number of rows in matrices C and 4.
NJ = number of columns in matrices € and B.
NK = number of columns in matrix A and number of

rows in matrix B.

2ko

NIMAX
NJIMAX corresponding maximum values, maximum dimensions.
NEMAX .

See figure U47(a) for further clarification.

4,5 Bxample of usage.

To evaluate the matrix product,
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[Fpal = [mupllDELA]
where,
[miD] is of order 6x 6 with maximum dimensions,
that is, maximum possible order likely to
be considered, 6 x 6.
and

[DELA)  is of order 6 x 9 with maximum dimensions 6 x 33.
the required call statement would be,

CALL MATMULT(FMD,DELA,FDA,6,9,6,6,33,6)

See figure LT(b) for further clarification.
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SUBROUTINE MATMULT(A,B,C, NI, NJ,NK,NIMAX, NIMAX, NKHAX )
JOHN ROBINSON, [.S.V.R.
MATRIX MULTIPLICATION C(I,J)=A(1,K)}*B(K,J)
OTMENSTON A(NIMAX,NKMAX ) ,B(NKMAX,NJMAX) ,CINIMAX ,NJMAX )
DOs I=i,NI
DO5 J=1,NJ
CO1,d1=0,0
DO5 K=1,NK
5 CUI,Jd1=CI,J)+ACL, KIWB(K,J)
KETURN
END

A.S.A. Fortran listing of subroutine MATMULT.

Table 25.



NI
(NTMAX)

NT (NTMAR)

NI=b
NIMAX

— o
c(z,7) NI
7
NT =9 (NTMAX=33)
[FpAl NI=b
] L

2h3

Argument definitions for subroutine MATMULT.

- N ( NKMAX) . NT
T ”"“ T
Alz,K) B(K,T)
NK
S ......4...._....1
(a)
NK =6 NT =3
NEMAX = &
e ——T
[FMD] [DELA] NK=b
Lo X
(b)



5. Subroutine PARDEIR.

-

5.1 Description of subroutine.

This subroutine generates
the matrix of partial derivatives, [wdk {ede] , which

i1s required to generate the enersy enuations
4 o O & b4

[Pk ILFRTE Gl = {O} 2,1.8

This matrix is assembled from the system of equations

. e
given by,

{:b’azXe]{baq;tﬁe_%""[Xx]ibR‘g:{Oz 241.2

whose augmented matrix is given by,

L8 Yo s ¥ ]
The final augmented matrix for a unique solution of
the unknowns, generalized element boundary loads and
generalized structural reactions, is obtained from

equation 2.1.10 and is given by,

!

« €

e g
J

g
i

O o

where,

[P] = [udr JLFAT

However, before generating submabtrix [] this augmented

matrix appears in the computer storage as,

i
[oml= | %, | % ¥,

e

o o o

I

2kk
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which i1s input to subroubtine PARDIR for generation of

. o . : . H :
the matrix of partial derivatives. The [wdniedn] matrix
is assembled immediately into the storage space allowed
for submatrix [4] and the null submatrix directly
below matrix [de] , that is,
i
i
|
i

[OM] = Ko{ b’e z')n

ek o

Mah iegk O

\—7\/

LTemporary storage.
Matrix [«deiedk] will finally be replaced by matrix [4:©] .
Carrying oult bthis method of temporary storage saves
considerable storage space, Subroubtine PARDIR is only
called when the system of joint equilibrium equations has
an infinite number of solutions, that is, dynamic redundancy
exists. In other words, additional independent linear

eaduations are recuired for & unidque solution.

5.2 Subroutines called by PARDER.

This subroutine calls no
obther subroutines.

5.3 Subroutine listing.

The listing of subroutine PARDER is
given in table 26 .

5.4 Description of subroutine arguments.

The first card of this

subroutine is,

SUBROUTINE PARDER(OM,IQ,N1,MC,NOMAX,NTMAX,N)
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This matrix is formed by first of all generating
a null matrix and then superimposing the system
of jeint equilibrium equations. RANTZC is then
applied to investigate this system which gives
an independent system of equations, the degree
of redundancy and a set of redundancies. This
matrix is generated by the FORCE-subroutines
which are described later.

IQ0= vector of redundant load numbers, generated by
RANTEC,

N1= number of joint equilibrium equations, independent
equations,

MC = number of unknowns, generalized element boundary
loads and generalized structural reactions.

NOMAX = maximum row dimension for matrix OM.

NTMAX = maximum column dimension for matrix OM.

i

N = actual number of redundancies, this is determined

within subroutine PARDER,

See figure Uu8(a) for further clarification.

5.5 bxample of usage.

Consider the stage of analysis where
it is required to form the matrix of partial derivatives.

Having generated matrices OM and IQ for a given structure
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with 24 generalized element boundary loads, 2 generalized
strucbural reactions, 14 joint equilibrium equations
and maximum OM dimensions of 84 x 122 (rows x columns) the

call statement would be,

CALL PARDER(OM,IQ,14,26,84,122,N)

See figure 48 (b) for further clarification.

The matrix of partial derivatives will now be discussed
further using a simple example. The matrix of partial

derivatives is given by,

, i
Lowiodl=| 33, 3t .3 ¥ W W
29 2¢' 29 a9t 294 CIA
Lo ; P i
i : { E ; : |
2 e %25___”~_§ 2R 2K *_“_éfi mmmmm
3¢ 2% 2q% JEECANEL °9
b | P f ;
‘ f | l . X
i ! ] é : : !
I i (I ! ]

-

The elements of this matrix are the partial derivatives
of the generalized element boundary loads, {9t , and the
generalized structural reacﬁians,f?ﬁeﬁ , with respect to
1 £ L2 5 ; T : f Qh{
each of the automatically selected redundancies, &¢& i.
The redundancies are given by vector IQ in subroutine RANTEC,

Let,

[oM] =



{ Cq’ol } .‘u{/f)e z - {L-P,\}
4, 4. 2 1, 4, q:* 3 * r R
g m— i o
== © QO O | Qs O | O by bia
I a2z 0 O G35 © g Qav by baa
O a’32 I O agg O ! a37 bg, bag
(@] a-42 @] o} 0.4_5 l E a4.'[ 54.[ b47.
Lo e e s e e Tl T e
|
!
!
O | O O
E
i
- ! _
The redundancies are given by,
q' %
{4 = & |- q
£Y
¢ R,

Writing the investigated system of joint equilibrium

equations in expanded form gives,

[ont, Xe]{ ﬂzd;tl?e} + [b’ﬂ{ki’ﬁ:{o;
which for the example are given Dby,

(O)oll + 7 42 +(0)%: + 94 + Qs 4s +(0)%é * Qe K+ anl + IDIZPZ

9, + a9, + (0 13 + (o) ‘14 + st‘ls + (0 + a, R
4 + a3, 9, + 95 + (o) Uy + Az Is # () + ay R
(0) 4, + Q2 ¢, + (0) ‘?,3 + (0) 44 + 44525 +

%¢ %f ?f

i

t* by B+ bR
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Joink
2 vilibriom
equations
afler
applying
RANTEC.

(@]

= QO
+ by B + bz P =0

U +ay R +byh + by b =0



Rearranging these equations and makin

the relevant

o
<

substitutions results in,

! 3
Ci/:"azzi”azs‘lz”aQO = b2 A = bas B
LI’.? = —d3zz q' - Q3s qu = Agay q‘g - 1331 R - by, P2
Q‘?— = "'a/zle - a/5‘€2 - Q4 i? - by B - b P
Qo= —0429 — 452" a9 = b B - by P
Therefore,
21 24 9 04
.._..__.” - ._sz J' — Ay ;.._._f o .—.Q.z "“(’ = Cl4_2
29 , 24 NE-EA . 29!
29 2 29, 29,
. = T %25 — = —d;s i = —a
21 ., 29 , 24 s, 247 4s
21 Py 29 29
#%m = Aoy mi"“q = — Ay Mﬁzz”am
2‘1» b B‘Z 37 4 ziz > qu
Now,
LA ,
290 T since %.=1
4.
z =C . q ._q’ . . -
24 since 2= , the partial derivative
Eﬁ;__o of a redundancy with respect to another
PEA

redundancy is zero. Partial differentiation

of a quantity with respect to omne of a

set of wvariables means the wvariation of
that cuantity with the selected variabl
whilst keeping all the remaining
variables constant. Therefore, when

2

partially differentiating a redundancy

with respect to another redundancy this

is the same as differentiating a constant
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245
243

250
with respect to a variable, which is
of course zero. Note that the P's are

constants.

= o & o
) 29!
= | P
) 2¢r ~ ©
2R,
=0 YL

Therefore, the matrix of partial derivatives is given by,

l—_wblz ; e)h ]

= L]
~Qy | ~A3; -~ A o =~ G4y I )
|
- a5 O ~0zs -~ Qg / - Qg ‘ o)
l
“Qn © -4y -a, O 4y I
L |
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SUBROUTINE PARDERCOM, 1O, N1, MCyNGHMAX ,NTMAX, N
SOMN ROBINSON, 1,S5,V.R.
MATRIK OF PARTIAL DERIVATIVES FOR ENERGY EQUATIONS
ALSO IMMEDIATE ASSEMBLY INTO MATRIX OM
DIMENSTON OM(NSMAX,NTMAKX), IQ(NOMAYX)
N=0
Doz R MC
IF(IQ(M)IIB, 2,5
N=N+1
CONTINUE
D012 I=m1,Ni
D04 J=i,MC
PFCABS(OMUT,J) ) LE,1,0F=08)G0 TO 9
IF(J=1Q(J1)9,9,8
8 Jd=J
GO TO 10
9 CONTVINUE
10 NN=1
D012 M=1,HC
IFPCIQMI I3, 02,153
13 OMONN+NL,JJI==0M(1,M)
NN=NN+{
12 CONTINUYE
NN
DOLS H=i,MC
IFCIGIM) 16,15, 16
10 OM{NN+NL,MI=1,0
NN=NN+1
15 CONTINUE
RETURN
END

OOy

LR

A, 3. A, Fortran listing of subroutine PARDER.

Table 26.



NIMAX

NeMAX
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N7MAX —
- MC -
a A T l )
|
!
NI l
|
|
[ BN E S
|
|
|
|
N i v?
| OM
E
|
1 . | J—
(o)
N7MAX = 122 -
OM MC =26 -
! b T |- ]
\ | Note ;
Ni=id J NI+ N 2 NIMAX
:;—‘-"‘"”“”"“ mmmmm i""""’""""‘? T T T T (on/y I;’) /‘Ae
| maximuna ca.se> .
N={2 i NIOMAX and NTMAX
X i are mMoximom
.1 | —

dimensions.

(b

Argument definitions for subroutine PARDER.

Fig. k48,
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6. Subroutine FMDIO..........2Zlement Type P1/2FD,

6.1 Pescription of subroutine.

This subroutine generates
the dynamic flexibility matrix for a plane beam element,
Slement Type P1/2FD. See 3.1.2 and 4.1.2.

This element dynamic flexibility matrix
was derived using a 3rd degree polynomial for the element
internal bending moment distribution. The displacement

function used for the inertia loading was obtained using

the incremental loading equation, that is,

AFM (50 Z
Wil) = T = pe Uy(x) 3.1.2.5

The generalized element boundary loads consist of a shear

and a moment at each node. This type of element is used

for the analysis of collinear beam sbtructures.

o)
oo

subroutines called by FMD1O.

This subroutine calls no obvher
subroutines.

8.3 Subroutine listing.

The listing of subroutine IFMD1IO 1is
given in table 27.

arcuments.

L

e

8.4 Description of subroutin

The first card of this subroutine is,

SUBROUTINE FMD10(XLM,XIM,EM,XMUM,CSAM,OMEGA, FMD)
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XIM = length of beam element (in).
XIM = second moment of area of beam cross secbion (in%}.
ZM = Young's modulus of elasticity for the
element material (1b per in ).
XMUM = density of element material (1D per in ).
CSAM = cross secbional area of beam element (in ).
OMZGA = angular frequency (radians per second).

ITMD = element dynamic flexibility matrix (order 4= 4).

6.5 Sxample of usage.

The structural element properties
for the analysis of a complete structure are read by the
masbter programme in matrix form, A typical read statement

would be,

R&AD(E)g OO )( (“ﬂ) Kl(k\l,)?u(x\«i>,z (KZ) ’:Csi'k(h:ﬁ}"\,{z lyNE

where,

NE = total number of structural elements.

Therefore, the call statement required to generate the
element dynamic flexibility matrix for element 1 (M=1)

would be,

CALL TMDIO(XL(1),XI(1),8(1),XMU{1),C5A(1),0M3GA, FKD)

However, the generation of the element dynamic flexibility
matrices is usually in the form of a DO-loop. In this case

the call statement would be,

CALL FMD1O{XL(M),XT(M),B(M), MU (M) ,CSA(M),0MEGA, FND)
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SUBROUTINE FMDEO%XLM,XEM,EM.XMUM,CSAM,DMEGA,FMQ)
JOMHN ROBINSON, 1,85,V.,R,

PLANE BEAM ELEMENT,

ELEMENT TYPE PL/Z2FD,

ELEMENT OYNAMIC FLEXIBILITY MATRIX,
DIMFENSION FMD(4,4)
RHOM=XMUMKCSAM/ 386, 4
XLAMmﬁH@%ﬁOMEG&ﬁwZ#XLM«w&/(&40,*&MwXIM)
AK=XLM/ {420 % EMxX IMERXLAM)

FMD (L, { ) sXKeXlbes2x(d , aXLAN=2,)

FMD (2,1 taXKeXlLMa (22, «XL.AM~D,)
FRD(B, 1) eXKeXLMre24 (3, #XLAKYL,)

FMD (4, 1) =XKaXbhw{ =13 *XLAM~3, )
FMD(Y , 2 IBFHD(2, 1)

FHD(2, 0 eXKa( 156,k LAM=0, )
FMD(3,21=-FRD{4 1)

KK*{ =54 2 XLAM~E, )

FHMUO(3, 1

FMD(2,3)=FMD(3,2)

FMD(3,3)1=FMD(1,1)

FHD(4 ,3)=~FMD(2,1)
FMDCL, 4 =FuD(4, 1)

FMD(2,4)sFMD(4,2)

FMD(3,6)=FMD(4,3)

FrD(4,4)=FMD(2,2])

RETURN

END

OO On

s
=
L)
o I
b
[ U

A.S.A. Forbran listing of subroutine D10,

@lement Lype P1/2FD.

Table 27.
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ceeeee.....ilement Type P2/2FD,

7. >Subroutine i

7.1 Description of subroutine.

This subroutine generates the
dynamic flexibility matrix for a plane beam element,
Llement Type P2/2FD. See 3.2.2 and 4.2.2.

this element dynamic flexibility
matrix was derived using a 3rd degree polynomial for the
¢lement internal bending moment distribution but the
incremental loading equation is not satisfied. the displacement
function used for the inertia loading is obtained by
‘double integration of the bending moment expression and
evaluating the integration constants by applying d'Alembert's

principle for the overall element, that 1is,

i
U, (=) = £x ((ff M) dsceloe ) + €, + € ) 3.2.2.1
and
2
The gneralized element boundary loads consist of a shear
and & bending moment at each node. This type of element

1s used for the analysis of collinear beam structures.

7.2 Subroutines called by FMD1O.

This subroutine calls no
other subroutines.

7.3 Subroutine listing.

The listing of subroutine IFMD1O is

given in table 28.
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£
T

7.4 Descrintion of subroutine argumenis.

This is bthe same

as subroutine FMDIO.....alement Type P1/2FD,



DI O

SUBROUTINE FM&EO{XhM,XiM,&M,XMUM,CSAM,QMEGA,FMO)

JOHN ROBINSON, 1.S,V.R.
PLANE BEAM FLEMENT,

ELEMENT TYPE P2a/2FD,

ELEMENT DVYNAMIC FLEXIBILITY MATRIX,

DIMENSITUN FMD(4,4)

RHOMSXMUMRCSAM/ 386, 4
XQAMmRHOMﬁDMEGQﬁﬁZ@XLM%ﬁQ/(6&0,*EMﬁXIM3
XK%XLMI(QEO,ﬁ&%wxgﬁﬁKLéMﬁ

YY®REA0, w XL Amwew)
F%D(i,s)mxwwKL%*ﬂzﬁéé.ﬁxaﬁm~2.«f71.ﬁ?Y!iQB%ﬁ.))
?ﬁaﬁzvzszKﬁKLMﬁé22.*XLAM"3,~€223.ﬁYY/&%30,i)

FROCS 1) sXKaXLMAn 2 (5, wXLAN®L, = (1097 %Y Y/ 166320, ))
FHDCA 1) sXKAXLM (=13 aXLAM=3 ,+(1681.%YY/55440,))

FMDOL,2)=FMD (2, 1)
FMDO2,2)=XKo (156, #XLAK=6,~(118,%YY/770,))
FMD (3, 2)s=FMD(4, 1)
%MD(@,2}%X%ﬁ4M§4¢%XLAM~6.+€2952.*YY/215@O.))
FMD(L, 3)=FnD{3,1)

FMD(RZ,3)=FKD{3,2)

FMD(B, 3)=FuD (1, 1)

FMD(4,3)==FMD(2, 1)

FMDOL,4)=FD(4, 1)

FMDC2,4)8FMD(4, 2)

FMD(3, 4 =FHD(4,5)

FHD(G 4 )=FMD(2,2)

RETURN

END

A.S. A, Portran listing of subroutine FMD10O,

Element Type P2/27D.

Table 28,

258
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8. Subroutine iD10..........3lement Type P3/2ID.

8.1 Description of subroutine.

This subroutine generates
the dynamic flexibility matrix for a plane beam element,

Llement Type P3/2FD. See 3.3.2 and 4.3.2.

m

his element dynamic flexibility

i« e }

matrix is derived using a differential equation approach
(transcendental functions). This requires the solution
of the equation,

ET )4(1}[::,[;) . /) 321/13(’96) - o
‘23(4' ’Eéz 3.8»2»8

where,

Uy (48) = Uy (x) S é

and

A
r = 3864

4

and the relationships,

gzu}(J(Jt>
M{J(,é‘)?—*‘ £z Doe* 3.1»2';1
andc
M e 31y (x
®(x6) = — - %>= —Ex 2L &)
g PE Dt 3.1.2.2

The gemeralized element boundary loads consist of a shear
and a moment at each node. This type of element is used

for the analysis of c¢ollinear beam structures.

8.2 Subroutines called by D10,

This subroutine calls no

other subroutines.
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8.3 Subroutine listing.

The listing of subroutine IMD1IO is

given in table 29.

8.4 bDescription of subroutine arguments.

This 1s the same

as subroutine FMD1O0..........tlement Type P1/2FD,

“
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OO,

SUBROUT INE FMDLGURALM X {M EM, XMUM, CSAM, QMEGA, FMD )
JOMN ROBINSON, 1,.5,V.R.

PLANE BEAM BELEMENT.

ELEMENT TYPE Px/2F0,

ELEMENT DYNAMIC FLEXIBILITY MATRIX,

DIMENSION FMD(4,4)

RHOMB M CSAN/BEG,4

ALAMB (OMEGA** 28 RHOM/(EM*XIM) I #%0Q, 25

KAl aMsXLHM

AKB=w~XA

XCOSH=CUSHIXA)

ASINH=SINHXA)

KSIN=SIN{XA)

KCOS=COS XA

KD=EMued IMa X LAMe w3 { X COga X COSHm1, )

FROUL, L1 m{XSIN*XCOSH~XCOS*XSINKHI/ZXD

FRO(Z2, 1) asXLAMSXSIN®AXSINHARD

FHD(S, 1 )= (XS IN=XSINH} /YD

FHMOCG , § ) =XLAM® ( XCOSH=XCOS ) /XD

FMD(1,2)=FMD(2, 1)

FHMDUZ2, 218X AM%42% (XCOS#XSINH+XSIN®XCOSH) /XD
FHD(B 2 a=FMD(4,1) .

FHO(A , 2oL AWM w29 {XSINSXSINHI/ZXD
FMDOL 3 mFMD3, 1)

FMD(Z2,31sFN0(3,2)

FHDOB A )mFMD{], 1)

FHD(G, 5 jua-FrD(2, 1
FMODOL, G =FMDIS 1)
FHOLZ, G I=FND4, 2)
PMDLE & aFMDT4,3)
FMD(G,4)=FMD(2,2)
RETURN

END

j

D o ow

A.S. A, Fortran listing of subroutine FMD1O,

Zlement Type P3/2FD.
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) A N . Y Y €Y kN o b y
9., Subroutine D30, ..eeeeeeresomtement Type Pl/udJ~

9,1 Description of subroutine.

This subroutine generatles

the dynamic flexibility matrix for an inclined plane beam
element, ilement Type ?1/37D. See 4.1.3. This element
dynamic flexibility matrix is derived by assembling the
matrices for element types P1/1FD and P1/2FD  and then
carrying out a transformation from local axes to global
axes. Therefore, for this element the internal bending
moment is assumed to vary as a Srd degree polynomial and
the endload as a 1st degree polynomial (linear variation).
The generalized element boundary loads comsist of a load
in the X-direction, & load in the Z~direction and a moment
at each node, see figure 17(b). This type of element is

sed for the analysis of general plane frames.

9.2 Subroutines called by IFMD30.

This subroutine calls no

cther subroutines.

9.3 Subroubtine listing.

The listing of subroutine IFMD30 is

given in table 30.

9,4 Description of subroutine arguments.

The first card of this

Pl

subroutine is,

SUBROUTING FuDS0( XBI,ZBI,XBJ,ZBJ, XIM,EM, XMUM , CSAM, OMEGA , FMD)



where,

L TTTAA
Yild jvi
C AR
(o NIy

R A
LN

See figure

X-ordinate of

z—ordinate of
X-ordinate of
zZ-ordinate of

second momend
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node i (in).

node i (in).
node j (din).
node j (in).

of area of beam cross section (in‘).

Young's modulus of elasticity for the element

) . . 2
material (1b per inm ).

- . . . 3
density of element material (1b per in ).

. . 2
cross sectional area of beam element (inm ).

angular frequency (radians per second).

element dynamic flexibility matrix (order 6x6).

L9

for further clarification.

Assuming that the generation of the

element dynamic flexibility matrices is in the form of

a DO-loop a typical call statement would be,

CALL FMD3O(XBI(M),2BI(M), £BJI(M),ZBJI (M), XT(M),B(M),U(M),

|

LCSA(M) ,OMEGA, FMD)

Continuation line.
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3¢, ( XB7) ,

%; (x8x)

.

34‘ (2:83')

3, (z87)

Global axes.

Node coordinates for an inclined plane beam

element.

vig. k49,
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SUBROUTINE FHDIO(XBI.IBRI . XBJ,ZBJ, XIM, EM, XHMUM, CSAM,OMEGA, FMD)
JOHN ROBINSON, I.8.V.R,

INCLINED PLANE BREAM ELEMENT,

ELEMENT TYPE P1/3FD, ;

ELEMENT DYNAMIC FLEXIBILITY MATRIX,

DIMENSION FMD(6.6)

XDIF=YRAJ=-XBI

YDIF=7RJ=-7RI

A{=XDIFw=%2

A2eYDIFaw?2

XLMSO=AL+A2

XEM=SORTIXLMSQ)

A=zXDIF/XLM

BaYDIF/XLM

RHO=XMUM*CSAM/XA6,4
XLAM=(RHOAOMEGA# % 2 XL Mexd ) /(BAO , 04EMAY IM]
XaXLM/{A420, 0*xEMeX IMRXL M)

Yol , 0/ {XLM&*RHOXOMEGA®#2)

I=XILM/(CSAMYEM)

FMD(1, 1 )2 %x2%(7/3,0=Y 1 +Bax24X XL Mew24 (4 0% XLAM=2,0)
FMD(1,2)=A%B#(7/3,0YrmXeXLHax2u (4, 0%XLAM=2,0))

FMD (), 3)s=BaXaXLMu(22, 0«XLAM=3,0)

FMDIL Q) =hx22%(=7/6,0~Y ) +Bhr2aXaXLMan2% (3, 0nxLAM+L . 0)
FMD(L (BIspxRe{(wl/6 OmYuX kXL Me ¥ 2% (3, OrXLAM+{,0))
FMD(OL ,B)=BaXaXi M2 (43,00 XLAM+3,0)

FMOD(2,1)=FMD(1,2)
FMD(2,2)=R%%2%(7/3,0=Y ) +Aka24XaX L Med24(4,08XLAM~2,0)
FMDI2 , 3 aps X *# X Mx (22,06 XLAM~3,0)

FMD(2,4)=FMD(1.,53)
FMD(2,5)=B4%2%(«7/6,0mY ) +An® 20Xk XLMa*2% (3, 00X AM+1,0)
FMD(2 ,B)mefe X XL M* ({3, 0*XLAM+3,0]}

FMD(A,4)=FMD(1 .3}

FMD(3,2)=FMD(2.3)

FMD(3 , 3 )sX*(156,0%XLAM=6,0)

FMD(3,4)=2=FMD(1,6)

FMD(3,85)=~FMD(2,6)

FMD(3 ,8) =) % (=54, 0% XL AM=6,0)

FMD (4, 1 )=FMD(Y1.4)

OO0

FMD(A , 2)=FMD(2.4) s =

FMD(4,3)=FMD(3.4)
FMD(A,8)=FMD(1,1)
FMD(4 ,5)1=FMD(1,2)
FMD(4,6)==-FMD(1{,3)
FMD(S,1)=FMD(1,5)
FMD(B3,2)=FMD(2.53)
FMD(5,31=FMD(3,5)
FMD(5.4)=FMD(4.5)
FMD(5,5)=FMD(2,2)
FMD(5,8)==~FMD(2,3)

)

FMD(B.,1)=FMD(1,8)
FMD(6,2)=FMD(2,8)

- FMD(6,3)=FMD(3,6)

FMD(6,4)=FMD(4,6)
FMD(6,5)=FMD(5,6)
FMD(6,8)mFMD(3,3)
RETURN

END

Table 30 .

A.S.A. Fortran listing of subroutine FMD30, Element Type P1/3FD.
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.

10. Subroutbine FDS0............slement 1ype ?3/3FD.

oy K o . el T = e
10.1 Descripblon of SudTOUCLBC.

s suoroutine generates

Pl

the dynamic flexibility matrix for an inclined plane

[

heam element, Lioment Type vo /D3, See 4.3.3. This elenend

dvnamic fTlexibility matrix is der ved by assembling the
J &

; -
; [

mabrices of element Types P3/1TD and . /28D and then

e

carrying out a Lransformation from local axes 1O global

axes. Therefore, for this element the internal bending
moment and endload distributions are expressed in terms

L

of transcendental functions, see 3,8.1,3.3.2,4.3.1 and
4,3.2. The generalized element boundary loads are the same

as Blement Type P1/3FD.
§

10.2 Subroutines called by D30,

This subroutine calls no

other subroutines.

10,3 Subroutine iisting.
s

"he lisbting of subroutine D30 1s

given in table 31 .

10.4 Descripbion of subroutine arguments.

This is the same as subroubine

PD30u e ... .. Glement Type P1/3TD.
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A.S.A. Fortran listing of subroutine FMD30, Element Type P3/3FD,

Table 31 .,

OO0

. SH=SINH(XAZ2)

. SI=SIN(XAL)

SUBROUTINE FMD3U(XBI, ZBI XBJ,4BJ, XIM,EM,XMUM,CSAM,OMEGA FMD)
JUHN ROBINSON, 1.S,V.R.
INCLINED PLANE BEAM ELEMENT, .
ELEMENT TYPE P3/3FD,
ELEMENT DYNAMIC FLEXIBILITY MATRIX.
DIMENSION FMD(6,6)
XDIF=XBJ=~XBI
YDIF=78J=~7IBI
Al=XDIF*x#%2
A2=YDIF*#2
XLMSQ=A1+A2
XLM=SQRT{(XLMSQ)
KLAMI= OMEGA*SQRt(XMUM/(jab 4*EM))
XLAM2=(OMEGA#**2xCSAMRXXMUM/ (3806, 4%EM*XIM) )nn(, 25
XAT=XLAMI*XLM — s
XAZ=X AM2* XL M
$2=SIN(XA2)
C2=COS(XA2)

CH=COSH(XAZ)

Fi=%2#»SH

F3=C2%CH-1.0

F5=C2%SH~S2%2CH
F6E=C2%SH+S2%xCH

F7=852+SH

F8=82~SH

Fi10=C2-CH

F11=-COS(XA1)/S1
Fi2=m=1,0/S81

A3=A1/7XLLMSQ

Ad=A2/XL.MSQ
AS=XDIF*YDIF/XLMSQ
Ae=XDIF/XLM

AT=YDIF/XLM
BI=CSAM*EM*XI_AM1

C2=EMaX IM*F3

Di=C2%XLAM2

D2=D1aXLAM2

D3=D2«XL.AM2 e
FMD(1,1)=A3*F11/B1=AG*F5/0D3
FMOD(1,2)=A5%(F{1/BL{+F5/03)
FMD(1,3)==A7%F{/D2
FMD(1,4)=A3%F12/B1+A4=F8/03
FMD(1,5)=A5«(F12/B1=F&/03)
FMD(1,6)1=A7%F10/02 :




Subroutine FMD30 listing continued.
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FMO(Z2,1)=FMD(1L, 2)

FMD(2,2)=A4%F{1/Bi~A3%F5/D3

FMD(2,3)=A6%F1/02
FMD(2,4)=FMD(1,5)

FMD(2,5)=A4%F12/B1+A3%F8/03
FMD(2,6)=-Ab%F10/02

FMD(3,1)=FMD(1,3)
FMD(3,2)=FMD(2,3)
FMD(3,3)=F6/D1
FMD(3,4)==FMD(1,6)
FMD(3,5)=~FMD(2,6)
FMO(3,6)=F7/0D1
FMO(4,1)=FMD(1,4)
FMD(4,2)=FMD(2,4)
FMD(4,3)=FMD(3,4)
FMD(4,4)=FMD(1,1)
FMD(4,5)=FMD(1,2)
FMD(4,6)==FMD(1,3)
FMO(5,1)=FMD(1,5)
FMD(5,2)=FMD(2,5%)
FMD(5,3)=FMD(3,5)
FMO(5,4 )=FMD(4,5)
FMD(5,5)=FMD(2,2)
FMOD(5,6)=~FMD(2,3)
FMD(6,1)=FMD(1,0)
FMD(6,2)=FMD(2,6)
FMD(6,3)=FMD(3,0)
FMD(6,4)sFMD(G,5)
FMD(6,5)=FMD(5,6)
FMD(6,6)=FMD(3.3)
RETURN

END
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11l. Subroutine MD40............521ement Type P1/47D,

G

11.1 Descrintion of subroutine.

This subroutine generates the dynamic flexibility
matrix corresponding to a g-system of generalized element
boundary loads for a rectangular plate element, Zlement
Type P1/4FD, see Chapter 3 (8.1.3(a)) and Chaptermﬁﬁ4.1.4).The
distributed boundary loadings for this element are assumed
uniform along the respective boundaries. The moment
distributions have been talken in the form of polynomials.

In deriving the element dynamic flexibility matrix an
equivalent plate loading system has been adopted. The
generalized element boundary loads consist of a uniform
distributed shear and moment along each boundary and a
concentrated load at each node, see figure 19 . This gives
a total of 12 generalized element boundary loads. This

type of element is used for the analysis of two dimensional

plate structures.

11.2 Subroutines called by FMD40.

This subroutine calls no

other subroutines.

11.3 Subroutine listing.

The listing of subroutine FMD40 is

given in table 32.

11.4 Description of subroutbtine arguments.

(%]

The first card of this subroutine is,

SUBROUTINE FMD40(4A,B,T,EM,XMUM, XNUM, OMEGA, FMD)



270
AP
WOeT e,
A = length of the plate boundary in the x-direction

£

B = length of © bhlate boundary in the z-direction

a8
o
-

T = »nlate thickness (in).
I = Young's modulus of elasticity for the element

- . a ! h z\

material (1b per in ).

ATTY ] s - - . B 3
AUM = density of element material (1b per in® ).
ANUM = Poisson's ratio for the element material.

OMEGA = angular frequency {(radians per second).

TLD

i

element dynamic flexibility matrix.

11.5 LExanmple of usage.

Assuming that the generation of the
element dynamic flexibility matrices is in the form of
a DO-loop and that A,B and T are constant for all elements

a typical call stabemend would be
yp 5

CALL PMD40{A,B,T,5(M),XsMU(M),XNU (M) , OMEGA, FMD)
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A.S.A. Fortran listing of subroutine FMD40, Element Type P1/4FD.

Table 32,

DOODOD

SURROUTINE FMDAO(A.B.T.FEM,XMUM,XNUM,OMEGA, FMD)
JOHN ROBINSON., 1.S.V.R.
RECTANGULAR PLATE ELEMENT,
ELEMENT TYPE P1/4FD.
ELEMENT DYNAMIC FLEXIBILITY MATRIX,
DIMENSION FMD(12.12)
Pa(A*R)/(EM*T**B*BS.Q)
R=386,4/( XMUM&T*OMEGA*®2)

Cmy,0/A%%?2

D=1.0/B*x2
Gmb /B

FMD(1,4)1=2156,0%P=12,0%x6%D%R
FMD(1,2)2=108, 04X NUM=P
FMN(1,3)=~54,0*P=12,0%G*D*R
FMN(1,8)==FMD({,2)

FMD(1,5)=22,0%R*P=6, 0% A*N*R
Fun(i,6)=~17 , SxAxXNUMRP
FMD(1.,7)=13, 0%R*P+6, 0k A*D*R
FMD(1,8)=FMD(1.,.6)
FMD(1,9)=(22,0/G-17.5%G*XNUM) P~ 6 0*D#R
FMD(1,10)=FMD(1,9)
FMD(1,11)=2(13,0/G~17,5%G*XNUM)«P+6 ,0%xD#R
FMD( 1, 12)=FMDLE.14) :
FMD(2,2)=156,04P=12,0%xC*R/G
FMD(2,3)=FMD(1.4)
FMD(2,8)==54,0%#P=12, 0+C*R/G
FMD(2,.5)m=17,5%BaXNUM*P
FMD(2.,8)=22, 00 A*P=8, O#R*C#R
FMD(2,7)=FMD(2.58)
FMD(2,8)=13, 0« A+P+8, 0#R*C*R

FMD(2,9)=(13,04G=17,8/G*XNUM)*P+6,0%CxR

FMD(2.10)=(22,0#%G=17. SIG*XNUM)*P"O 0% C#R
FMDU2 11 )=FMD(2,10)
F¥p(2.42)sFMD(2.9)
FHD(3.3)=FMD(1.1)
FMD(3 ,a)=FMD(1.2)
FMD(3 ,5)=~FMD(1.,7)
FMD(3,6)==FHMD(1,6)
FMD(3,7)=~FMD(1{.5)
FMD(3,8)=FMD(3,6)
FMD(3,9)==FMD(1.11}
FMO(3,10)=FMD(3,8)
FMD(3, 41 )=~FMD{(1,9)
FMD(3,12)=FMD(3,11)
FMD (A  aY=FMD(2,2)
FMD(4,B8)2=-FMD(2.5)
FMD(4 ,B)=~FMD(2, 8)
FMD(4,7)=FMD(4,.5)
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Subroutine FMD40 listing continued.

~1 P

FMD(A4,B)=FMD{?2,8)

FMD(4 ,9)=wFMD(2.10)

FMD(4,10)=~F¥N{2,9)

FHD(A , 11 )=FMD(4.10)

FMD(4,12)=FMD(4,9)

FMD(S,5)=4 , 0%Br224P~4 , 0%xG*R

FMD(5,6)1==35 0/12,0%AxR*XNUMXP=R"

FMD(S ,7)1=3 , 04B##%2%P+2,0%G¥*R

FMD(S ., R)Y=FMD(B.,.6)
FMD(5,9)1=(4,0¢B/Gm35,0/12,0*A*XNUMI*P~4 ,0/B%R
FMDI(5,{0)1=FMD(5,9)
FMD(5,11)=(3,0%R/G=35,0/12,0%A«XNUMI*P+2,0/BxR
FMD(S5 121 =FMDI(5,11)
FMD(B,6)=4,0%A+*24P~4,0/G*R

FMD(& , 7I=FMD(5 6)

FMD(B,R)=% , 0% Aw%2%P+2 ., 0/G*R
FMD(B,9)=(3,040%G=35 ,0/12, 0O«B*XNUM)*P+2,0/A%R
FMDOB,10)=(A4 , 0% A%G=35,0/12,0«BaXNUM)#P=4,0/A%R
FMD(B, 11 ) =F¥D(A, 10}

FMD(6,{2)1=FMD(K.9)

FMO(T , 7)=FMDI(B, 5)

FMD(T7 ,8)Y=FMD(5,6)

FMD(T7,9)=FMD(8,11)

FMD(7,10)=sFMD(7.9)

FMD{T7, 41 )=FMD(5 . Q)

FMD(T7 ., 12)1=FMD(7.11}

FMD(R,B)=2FMD(6 .8}

FMD(8,9)=FMDIB,10)

FMD(B8,10)=FMD(&,9)

FMD(8,11)=FMD(8,10)

FMD(AR,12)=FMD(R,9) ,
FMD(Q.9)=(4,0«(D/C+C/N)+T70,0/3,0%(1.0+0,75«XNUM))«P~=T,0#R/(A%B)
FMD(G,10)=(3,0#D/C+4 ,0xC/D=35,0/3,0%(1,0+1,54XNUM) ) #P=R/(A%B)
FMDLG, 1) =(3,0%{(D/C+C/D)+38,0/6.0)%P+5,04R/(A*B)
FMD(G 12)=(4,08D/C43,04C/Dw38,0/3,0%(1,0+1, 5&XNUH))*P R/(AgR)
FMD(to 10)=FMD(9.9)

FMDO1O, 11 =FMD(G, 12}

FMD(10,12)=FMD(9,11)

FMDOI1, 41 =2FHD19.9)

FMD(14,12)=FMD(9.40)

FMD(12,12)=FMD(9.9)

DOo7 1I=my,12

DO6 Jmi, {2

IFI1,EQ,J)60 TO 7

FMD(OI, J18FEMDOJ. 1)

CONTINUE

RETURN

END
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12. Subroutine VARDET.

12.1 Description of subroutine.

This subroutine was
written by Dr.C,A.Mercer, 1.3.V.R. Using the Gaussian
elimination procedure and partial pivoting this subroutine
evaluates the determinant of a matrix stored in conventional
manner. In the case of a band matrix the evaluation can
be speeded up by specifying the bandwidth and number
of nonzero subdiagonals below the main diagonal.Note, this
subroutine can evaluate the determinant of the first

(Nx N) elements of a square matrix [Al .

12.2 Subroutines called by VARDET.

This subroutine calls

no other subroutines.

12,3 Subroutine listing.

The listing of subroutine VARDET

is given in table 33.

12.4 Description of subroutine arguments,

¥

N = actual order of matrix whose determinant
is to be evaluated. This can be the order
of the actual matrix [Al or any submatrix
(square) contained in [ Al whose determinant
is to be evaluated. Note, only submatrices
with leading element A(1,1) can be
considered. ‘

NR = number of nonzero subdiagonals.



NC = matrix bandwidth.
DETA

]

determinant of matrix (or submatrix).
A = actual matrix whose determinant (or
sﬁbdeterminant) is to be evaluated.
MXY = maximum possible order of [A]l , maximum

dimension.,

Note, for a general matrix put NR = NC=N.

See figure 50 for further clarification.

27k
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Londl 20

(S0~

i1
10

14

15
13

22
18

23

19

SUBROUTINE VARDET(N,NR,NC,DETA,A,MXY)
C'A.MERCER! I'SIVOR.

EVALUATES THE DETERMINANT OF A GENERAL REAL MATRIX,

DIMENSION A(MXY,MXY)
INTEGER R :
DETA=1,0

DO 19 R=1,N

NT=R+NR '

IF(NT=-N)1,1,2

NT =N

NA=R+NC=1

IF(NA=N)3,3,4

NA=N

J=R

DO 10 L=R,NT

IF(ABS(A(L R})= ABS(A(J R)))IO.IO 11
J=i,

CONTINUE

IF(J=R)16,13,14

DETA--DETA

DO 15 K=1,NA

TEM=A(R,K)

A{R,K)=A(J,K)

A(J,K)=TEM

KAz=R+1

IF(KA=N)6,6,5

CONTINUE

DO 23 K=KA,NT
IF(A(K,R))22,23,22
A(K,R)=A(K,RI/A(R,R)

PO 18 J=KA,NA
A(K,J)=A(K,J)=A(K, R)*A(R J)
CONTINUE :
CONTINUE

DETA=DETA®A(R,R)

CONTINUE '

RETURN

END

Ae S¢ A Fortran listing of subroutine VARDET,

Table 33,
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Matrix A .

S
X
by
~
=
XKXXX__
»x§ x| x| x| x| %
XXl x| x| x| X} X
VY
b
X x| xf x| x| X| x| X 2
N
Xl x| x| x| x| %
X1 X1 X Hm
1 ] Xi x| X| x| x| % M
X x| L] x| x| x| % X
N
x| x| X} x| x| = LA
x| xi ¥} Xi x
x| X} X X
x| x| X
x { X

Argument definitions for subroutine VARDET.

@

Fig. 50
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18. Subroutine MODE. '

13.1 Description of subroutine.

This subroutine was
written by Dr.C.A.Mercer and C.Seavey, I.S.V.R.
Using the Gaussian elimination procedure and Backsubstitution
this subroutine computes the eigenvector of a system of
homogeneous linear equations whose coefficient matrix
has a zero determinant (must be one degree degenerate).
For the normal mode analysis of structures the coefficient
matrix corresponds to the structural dynamic stiffness
matrix at the respective eigenvalue. The homogeneous

equations are of the form,

[AT{x{ = O}
Both the determinant (det A ) and ERROR SUM are crude
measures of the error involved in the process. These two
items are printed out. If the computed eigenvector is
substituted back into the original system of homogeneous
equations, in general, the following result is obtained,

[ATfxE =18l % [O}
The ERROR SUM is the summation of the epsilon vector

-terms, that isgf(l)+g‘(2)+lhOOOCOQDOOOOQ

13.2 Subroutines called by MODE.

This subroutine calls

subroutine VARDET.
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13,3 Subroutine listing.

The listing of subroutine MODE

is given in table 34,

13,4 Description of subroutine arguments.

X = eigenvector corresponding to (Al . If
the eigenvector of a submatrix formulation
of [Al is being computed, say order .
(N xN), then the result is stored in
the first N locations of vector X.
See VARDET description.

XLAM = eigenvalue of system [AT{X1= 10}

The remaining arguments are the same as subroutine VARDET,
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21
22

2
18

104

101

SUBROUTINE MODE(N,NR NC,A,MXY, X, XLLAM)
C.A,MERCER AND C,SEAVEY. I.S.V,R,
EJGENVECTOR EVALUATION,

DIMENSTION A(MXY MXY ), X{MXY) Climiiiis

CALL VARDET(N,NR,NC,DETA,A, MXY) .
BACKSUBSTITUTION
X(N)=1{,0EQ
DOY I=2,N
M=N-1+1
MA=M+{

X{(M)=0,0

D032 K=MA N
X(MI=X(M)+A(M,KI*X (K}
X(M)z=X(M)/A(M M)

NORMALTIZATION
BIG=X(1{)

DO 4 I1=2,N _ U
IF(A&S(X(I))~ABS(BIG))4,4,5 SO e >
BIG=X(]) .
CONTINUE
D06 K={,N
X(KI=X(K)/BIG
CONTINUE
ERROR ROUTINE
ER=0,0E0
bpié I={,N
D018 K=i,1]

D018 JmK,N
IF(K=1)24,22,2
ER=ER+A(T  K)®A(K J)INX ()
60 -T0Q 2 :
ER=ER+A(K,J)*X{J)
CONTINUE
CONTINUE
MRITE(G,104) X AM,ER,DETA
FORMAT(iH /[P E2H EIGENVALUE”.ﬁld 7///11H ERROR SUM: E!5 7.13H DETE

ARMINANT=,E15,7///12H EJGENVECTOR, {H //) . :

WRITE(6,101) (X(I),I=1 6N}
FDRMAT(EiB 7)

RETURN

END

A.S.A. Fortran listing of subroutine MODE.

Table 34 ,
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ORCE-Series of Subroutines.

his serxries of subroutines have much

=

in common and therefore the general points will be discussed
first before considering the individual subroutines.
The FORCE-subroutines were written to investigate particular
vibration characteristics of specific types of structures
using the rank force method., Since this work was part of
a rescarch project all computer programming was core limited,
that is, all the analyses were carried out within the
computer core storage. The types of structures considered
are,

1. Collinear beam structures (FORCIB).
2. General plane frames (FORCLF).

3. Two dimensional rectangular plate structures (FORCEP).

A programme flow chart which covers all the FORCS-subroutines
is shown in figure 51.

Matrix OM is formed initielly as a null matrix of order
MC»LM, 1t can be seen from the flow chart that this matrix

is continually changing throughout the analysis. Whe flow
chart alsoc defines the various submatrices which are
contained in matrix O at the various stages. In the latter
nart of an analysis other matrices are sbtored in matrix OM

by taking advantage of LQUIVALENCE (storage assignment

statement), the use of this will be presented when discussing

the individual FORCE-subroutines. Iigure 52 shows the
integer parameters used in the FORCE~-subroutines to define

o
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the order of matrix OM and its submatrices. These parameters

will now be defined;

N2 =number of equilibrium equations.

M1l = number of generalized element boundary loads,

loads per element) x (number of elements),

N1= (number of generalized applied loads allowed
at each node)* (number of nodes), no structural
reactions are consi&ere& in this parameter.

NC = number of siructural reactions.

]

NL

1]

number of possible applied loads, N1-NC.
MC = total number of unknowns, element loads and
structural reactions, M1+ NC,
N = degree of redundancy, MC-N2.

LM

(total number of unknowns) + (number of possible

applied loads) = MC+ NL =ML+ N1.

The subroutines called by the series of FORCE-subroutines

is shown in figure 53,
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Fig.51 continued.
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N

M NG NL

N2

Tl

McC

MC

LM

Integer parameters used for matrix OM and its submatrices.

by

ig. 52 .
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This suvbrouvtine calls
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40
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14,1 Descrintion of subroutine.

This subroutine is usead
for the vibration analysis of collinear beam structures.
The subroutine generates the transformation
matrix which relates the generalized applied loads to the

generalized element boundary loads and structural reactions
for a given frequency. The subroutine then generates
the structural dynamic flexibility and stiffness matrices,

again for a given frequency. The latter matrix is required

alue problem which is solved in

o
=

for the eventual eigen
the master programme FORCE-BEAM which is described later.

A theoretical description for this subroutine is given in

chapter 2. A flow chart for the programming formulation
is given in the general discussion for the FORCE-series
subroutines, see figure 51 .
In this subroutine,
N2 = N1
M1 = 4xNE, four generalized element boundary

loads per element.

=
ot
i
Do
K
~
=
=
.{.-
.

o= (4xNE)#(2%(NE+1)) = (6xNE) + 2

The following limitations have also been imposed,
NC = 4

Figure 5k (a) shows the apnlied load system which is assumed

acting on a collinear beam structure. The initial formulation
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of the joint equilibrium equations considers no reactions,
this formulation is then general for all collinear beam
structures. The specific reaction system is then comsidered
and the annlied load system amended accordingly, see
figure 54(b). Pigure 55 shows the equivalencing carried
out in this subroutine and in the master programme which
11s it (FORCE-BBAM, described jater), also in this figure
zre shown the maximum order of the respective matrices. 1%
can be seen that certain matrices use the same storage bub
one shou.d consider hierarchy of matrices as decided by the
order of apnearance but keeping in mind the period over
which & matrix is detained in the programme. To accommodate
for the equivalencing of matrices PAR and PHI a temporary
transfer of part of matrix OM is carried out. See figure 56
(a) and (bj. mquivalencing 18 carried out on maximum
matrix dimensions and therefore it can be seen that this
temporary transfer is not necessary for all collinear
beam structures that can be analysed by this subroutine,
the compleve “transfer is accomplished using the DO~loops

with statement numbers 29 and 46, see subroutine listing.

14.2 Subroutines called by FORCEB.

This subroutine calls
subroutines RANTZC, PARDER, MATMULT, REAR, Fﬁﬁlo and MaTINV.
See figure 53 . When calling subroutine FMD10 the appropiate
subroutine should be used, that isy

1. &lement Type P1/2FD.

2. Blement Type P2/2FD.
3. Element Type P3/2FD.
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Subroutine FORCH

e

3 has Dbeen written assuming that all

elements in the structure are of the same type.

L
n
o
1**’
&

919
-

The listing of subroutine FORCER

is given in table 35,

14.4 Description of subroubine arguments.

o

The first ¢

o
4
o

of this subroutine is,

SUBROUTINE FORCEB(OMZGA,NE,IS,JS,4L,XI,q, MU, CSA,NC,NL,

UKD, DEL,F,MC, 1)

‘. OMZEGA = angular frequency(radians per second).

NZ = number of structural elements(finite elements),

ol e

IS = vector....first specifying node for each

o e
glemenv,

oot

Jo = vector....second specifying node for each
element.

{L = wvector....length for each element{in).

AL = vector....second moment of area for each
element(in’).

& = vector....Young's modulus fof each element
(1b per i ).

MU = vector....material density for each element

{1b per id

Y
J

CSA VeChOT.ewsCross sectbional area for each

fi

element{in® ).

&

LONS.

o

NC = number of structural reac

bt
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vector of applied load numbers which are
be considered as structural reactions.
[he applied load numbers are those vaken
from figure 54(a) using figure 54 (b) to give

the corresponding reactions. The applied load

ywumbering shown in figure S b) is the
amended svstem, This is carried out within

the subroutine.

order of the structural dynamic flexibility

and stiffness matrices{constrained structure).
structural dynamic stiffness matrix(consﬁraine&}

for a given frequency.

vransformation mabtrix which relates the

el

ne

e
‘”i

ralized applied loads to the generalized
element boundary loads and structural reactions
for a given frequency.

structural dynamic flexibilivy matrix for a
given frequency.

total number of unknowns, that is, generalized

element boundary loads and structural reactions.

w.

vector of aubomatically selected redundancies.

See chapter 1,part 3, that is 1.3.
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ORDE R 84-% 122 | B4-%42 42xq72| 4-%X42 | 42%4 G4-X42 | GaAngz | 42%47 | 42AC4 | Az2xd 42xt 42x%f

Matrices equivalenced in matrix OM and vhe maximuan

order of t

b}

=

ig. 55 .

he respecbive matrices,.
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4 Co(umns -
LM-3 LM

Temporary transfer before equivalencing matrices PAR and PHI.

(a)

4 columns
Py,

[15:] il

J

MATRIX PAR PHL

34 MAX IMUM

ORDER

PA R
PHI

42x4 | 42x4

o

3

Matrices ecuivalenced in medbtrix OM and the maximumn

order of the respective mairices.
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A.S.A. Fortran listing of subroutine FORCEB.

Table 35 .

OO0

10

il

12
14

16
20

SUBROUTINE FORCEB(OMEGA,NE,IS,JS, XL, X]1,E,XMU,CSA,NC,IC,NL,UKD,DEL,
iF . MC,IQ)

JOHN ROBINSON, I1.$.V,.R.

THE RANK FORCE METHOD FOR COLLINEAR BEAM STRUCUTRES,

VIBRATION ANALYSIS.

DIMENSION IS(20),JS(20),XL{(20}),XI(20),E(20),XMU(20),CSA(20)
DIMENSION OM(84,122),IDEP(84),XMAX(64),1Q(84),FMD(4,4)

DIMENSION PAR(42,4) ,PHILGZ2,4),DEL(B4,42),F(42,42),DELA(4,42)
DIMENSION DELB(42,4),FDA(4,42),DF(42,82),C(42,84)

DIMENSION MDEP(42) ,WMAX(42),LU(42),UKD(42,42),1C(4),J0(84)

COMMON OM
EQUIVALENCE(MDER(L),0M(1,483)) ,(wMaXCL ), 0M(1,44)),(LQ(1),0M(1,458)),
1(FDACL,1),0M(1,46)), (DELBCL,1),0M(1,48)),(DELACL,1),0M(1,501]),
2(0F(1,1),0M08,52)),(C(1,1),0M¢1,46)),(PARCL,1),0M(1,119)),
3(PHIC(L,1),0M(1,121)) .

JOINT EQUILIBRIUM EQUATIONS,

LM=gx*NE+2

Mi=qaNE

MC=ML+NC ' B

INITIAL NULL OM(I,J) MATRIX -

DO1U J=1,LM o e

DOty I=X.MC

OM(1,J1=0,0

OMEGA ALPHA JOINT

OM(1,1)=1.0

OM(2,2)=1,0

OM(Z2*NE+1 ,4#*NE~1)=1,0

OM{2*NE+2,42NE)=1.0

NO FURTHER OMEGA  ALPHA aoxmr hQUATIUNS FOR ONE ELEMENT
IFINE~1)20,20,11 :

ADDITIONAL OMEGA ALPHA JOINT hQUATIONS FOR MORE THAN ONE ELEMENT
N2=da(NE={) R , ‘

N3=3

Ng=4 Sl
Do16 K=3,N2 4 e
M2=K

D014 I=N3,N§ .
M3=M2+2 e
D012 J=M2,M3, 2
OM(I,J)=1,0
M2=M2+1

NG=NG+2 e L .
Ni=gw(NE+1) : e e o TR
NL=N1=NC

REACTIONS AND APPLIED LOQAUS

IFINC,EQ,0)60 TO 4

NNJ=1

D06 N=i,NC ,

OMCICI(N) Mi1+N)==1,0
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22

24

29

28

30

32

33

007 I=1,N1

D09 N={,NC
IFtI,EQ,ICI(N)Y)IGO TO 7
CONTINUE

OM(l ,MC+*NNJ)=~1,0
NNJ=NNJ+1

CONTINUE

GO TO 5

po21 I=4,Nt

M5=MCe ]

D021 J=M5,M5
OM(i1,J)==4,0

CONTINUE

SOLUTION OF FQUATIONS
CALL RANTEC(OM,N1,MC,LM,84,84,122,10EP,XMAX,IQ)
CHECK FOR DYNAMIC REDUNDANCY

DOz?2 M={,MC

IF(IQ(M),EQ.0IGD T0O 22

GO 10 24

CONTINUE

GO 10 600

CALL PARDER(OM,IQ,N1,MC,64,122, N
KP=4-NC~NL -
029 1=1,Nt

L0229 J=LM-3,LM

OM(NI+I,J+KP)I=0OM(]I , J)

ENERGY EQUATIONS

JJ=0

D033 M=1,NE

CALL FMDiO(XL(M),XI(M) E(M),XMU(M) CSA(M),OMEGA,FMD)

Dozé 1=1,4

DO28 J=1,4 ’
FMDCI, J)"iOOOO U*FMD(i J)
Do3c I~l N

DO3u J=1.4

JK=U+JJ
PAR(I,J)=0OM(NI+],JK)

CAaLL MATMULT(PAR FMD,PHI,N, 4 4,42,4,4)
D032 I=1,N

DO32 J=1,4

JK=UG+JJ
OMOI+NL , JKI=PHIUT,J)
JI=JJ+4

CONTINUE
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Subroutine FORCEB listing continued.

406

48

600

34

23

37

38

40,

42

44

2
400

D046 1=1,N1
DO4® J=LM=3,LM

OM(I1,J)=0M(Ni+1,J+KP)

D048 I=N1+1,MC

D048 J=Mi+1,LM

OMt1,d)=0,0

CALL RANTEC(OM Ni+N,MC,LM, 84,84, 1@2 IDEP, XMAX,JQ)
CONTINUE ,

CALL REAR(OM,MC,LM,84,122,XCH)

DEL MATRIX

D034 I=1,MC

00341J=MC+1,LM

L=J~MC

DEL(I,L)==0OM(I,J)

D023 I=1,NL

0023 J=1,NL

F(I,J)=0,0

I11=0

D044 M=1,NE : .

CALL FMDIO(XL(MJ.XI(M) E(M),XMU(M),CSA(M),OMEGA,FMD)
D038 I=1,4 - B

D038 J=1,NL

IK=1+11

DELACT ,J)=DEL(IK,J)

D040 I=1,4

DO40 J=1,NL

DELB(J,I)=DELA(],.U)

CALL MATMULT(FMOD,DELA,FDA,4,NL,4,4,42,4)

CALL MATMULT(DELB FDA,DF, NL NG, 4, 42 42 4)

D042 I=1,NL

DOG2 J=1,NL

F(I, d)-F(I J)+DF(I J)
I1=11+4

CONTINUE

STRUCTURAL DYNAMIC STIFFNESS MATRIX

CALL MATINV(F,UKD,C,NL,42,42,84,MDEP,WMAX,LQ)
GO 70 400

STOP

RETURN

END
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15. Subroutine FORCEF.

15.1 Description of subroutine.

This subroutine is used

for the vibration analysis of general plane frames. The
formulation assumes rigid joints but the programme can
readily be amended to allow various joint conditions.
txample, in the case of a Pinned joint connection the
column in the [{’«] matrix corresponding to the respective
element load (moment) is nulled. See figure 57 .
It should be noted however that there is no restriction
on the structural reaction system. Typical systems are
shown in figure 58 . | |

The first step in this subroutine is
to generate a matfix of element load numbers. The first
row of this matrix gives the element boundary load numbers
assigned to the first element, the second row are for the
second element, and so on. The elements are not numbered
in an actual idealization but are accepted in the order
in which the element input data are assembled { to be
described later in the master programme FORCE-PLANE FRAME).
The element load number matrix is of order (NEx6).
The element specifying nodes are denoted by i and j. The
first three coefficients in any row of the element load
number matrix give the generalized element boundary load
numbers at node i for the respective element. The remaining

three coefficients in a row are for node j. The load

numbers in & row correspond to,



1. load in the X-direction. |

2. load in the Z-direction. node i
3., moment. _—
4, load in the X-direction. |
5. load in the Z-direction. node j
6. moment, —

The loads are taken in this order.

This subroutine also generates,

1. equilibrium and energy equations.

2. matrix [#;] , structural dyneamic
flexibility matrix.

3. matrix [.z] ¢ Structural dynamic

stiffness matrix.

4, matrix [}hx] , transformation matrix
which relates the
unknowns and knowns.

See description of subroutine FORCEB.
In subroutine FORCEF,

o
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For a given

frequency.

N2 = N1

Ml = 6 x NE, six generalized element boundary loads
per element.

N1 = 3% NJ (NJ= number of nodes).

LM = {(6x NE) + (3% NJ).

The following limitations have been imposed,

NE = 13
NJ = 11

NC = 9
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Figure 59 shows a plane frame consisting of three elements.
Figure 60(a) shows the applied load system which is
assumed acting on the frame, the initial formulation of
the joint equilibrium equations considers no reactions.
The specific reaction system is then imposed, see
figure 60(b).

| Figure 61 shows the equivalencing carried
out in this subroutine and in the master programme which
calls it (FORCE-PLANE FRAME, described later), also in
this figure are shown the maximum order of the respective
matrices. To accommodate for the equivalencing of matrices
PAR and PHI a temporary transfer of part of matrix OM is
carried out. See figure ¢2(a) and (b). The complete
transfer is accomplished using the DO-loops with

statement numbers 29 and 46, see subroutine listing.

15.2 Subroutines called by FORCEF.

This subroutine calls
subroutines RANTEC, PARDER, MATMULT, REAR, FMD30 and MATINV.
See figure 53 . When calling subroutine FMD30 the appropiate
subroutine should be used, that is;

1. Element Type P1/3FD.
2. Element Type P3/3FD.
Subroutine FORCEF h;é been written assumiﬁg that all

elements in the structure are of the same type.

15.3 Subroutine listing.

The listing of subroutine FORCEF

is given in table 36,
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15.4 Description of subroutine arguments.

The first card of this

subroutine is,

SUBROUTINE FORCEF(OMEGA,NE,NJ,XB,ZB,IS,JS,XI,E,XMU,CSA,
NC,IC,NL,UKD,DEL,F,MC,IQ)

where,
OMEGA = angular frequency (radians per second).
NE = number of structural elements(finite elements).
NJ = number of nodes.
XB = vectoTss....X-ordinate for each node(in).

ZB = vectoT......z-ordinate for each node(in).

IS = vector......first specifying node for
each element.
JS = vector......second specifying node for
each element.
XI = vector......second moment of area for
each element(in®).
E = vector.ss...Young"s modulus for each
element(1b per in ).
MU = vector......material density for each
element(1b per in’).
CSA = vector......cross sectional area for each
element(in® ).
NC = number of structural reactions.
IC = vector of applied load numbers which are to

be considered as structural reactions. The
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applied load numbers are those taken from

figure 60 (&) using figure 60 (b) to give
the corresponding reactions. The applied
load numbering shown in figure 60(b) is
the amended system. This is carried out
within the subroutine,

NL = order of the structural dynamic flexibility

and stiffness matrices(constrained structure).

UKD = structural dynamic stiffness matrix
(constrained) for a given frequency. :
DEL = transformation matrix which relates the

generalized applied loads to the generalized
element éoundary loads and structural
reactions for a given frequency.
F = structural dynamic flexibility matrix for
a gi%en frequency. |
MC = total number of unknowns, that is,
generalized element boundary loads and

structural reactions.

it

vector of automatically selected redundancies.

19
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A.S.A. Fortran listing of subroutine FORCEF.

Table 36 .

leRe e

SURROUTINE FORCEF(OMEGA ,NE,NJ,XB,ZB,1S5,JS ., XI,E,XMU,CSA NC.IC,NL,UK
1D,DEL,F,MC,10)

JOHN ROBINSON, 1.8.V.R.

THE RANK FORCE METHOD FOR GENERAL PLANE FRAMES, VIBRATION
ANALYSTS, ALL JOINTS HAVE BEEN ASSUMED RIGID,

DIMENSION NOQ({3.6).0M(B87,111),IDEP(BT7) ., XMAX(87).,10(87).J0(8T)

{ L 1S(13),J8 (13, X1 (13) , EC13),xMU(13),CSA(13) . FMD(B.6). 1C(9)  MDEP(3

C23),WMAX(33),LQ(33) ,DF(335,33),PAR(54,6),PHI(534,8),DEL(AT.33), F(33.3

i1
12

16

22
26
24
27

28

3%3),C(3%%,66),UKD(33,3%) DELA(G, %%) . DELB(33.6) FDA(6,33).XB(11),
4781 1)

COMMON DM

EQUIUALENCE (MDEP({),0OM( 1,340 ), (WMAX({),0M(L, E8) ), (LOCLY.OM(1.36))

LIFDACTL . 1).,0M(1.37)) . (DELBC(Y, 1).0M(1,40)) (DELACL . 1).AM(1L ., 431,

2(DF(1 1), 0M(1,46)), (C(i.1).0M(1446)).(PAR(1.1) OM(1.104)) . (PHI(1,1
3),0M(1,108))

JOINT EQUILIRRIUM EQUATIONS FOR GENERAL PLANE FRAMES {via, ANALYS)
MATRIX QF ELEMENT LOAD NUMBERS

~JJdd=0

D12 I={i.NE

DOty Jmi .8

NOQ( I, J)=0JJ+J

Jdd=JdJJ+8

JOINT EQUILIRRIUM EQUATIONS

Nim3*N,]

LMafsNE+34NJ

Mi=fweNE

MC=M{+NC

INITIAM, NULL MATRIX. .

D018 Jmi. LM

DO16 Imi,MC

OM(T,J¥m0.,0

LiL=1

D028 111=mi.NJ

DO27 M=y, NE

D27 Jmi .3

IF(IS{(M)=111)26,22,26

OM (LLL+J=1 NOQ{M,J)i=i,0

IF(JS(MI=T11127,24,27

OM (LLL+J={ NOQ(M,J+3)i=1.0

CONTINUE

LLL=LLL+3

CONTINUE

REACTIONS AND APPLIED LOADS

IF(NC.EQ,0)G0 TO 4

NNJ=1 .

DN6 N={ ,NC o

OMUIC(N)  Mi4N)m~{,0
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Subroutine FORCEF listing continued.

83

65

29

53

DOT7 I=(, Nt

D09 N={,NC
IF(I,FO,IC(N)Y)YGO TO 7
CONTINUE :
OM(I,MC+NNJ)==q.0
NNJ=MNN1+1

CONTINUE

GO TO 8

DO1LA T=1,MN{

MBaMC+Y

D018 JmM5 M5

OM{T ., J)m=y,0

-CONTINUE . o

SOLUTION OF EQUATIONS

CALL RANTEC(OM,N{ ,MC.LM,B7,87,411,1DEP,XMAX,10Q)
CHECK FOR DYNAMIC REDUNDANCY

DOB3 Mz MC .

IF(IQ(M) ,FO,0)GO TO 63

GO TO 65

CONTINUE

GO TO /00O

CALL PARDER(OM,IQ,N{.MC,87,111, NY

KP=8~NEC~NL

DN29 1=1,N1

D029 JwlM=7 LM

DMINL+T, J+KP)N0M(I J)

OM MATRIX INCLUOING ENERGY EQUATIONS

SJd=0 o

DO6O M={ NE.

IN®mIS{M)

JN=JS (M)

XBI=XR{IN})

ZRI=ZR(IN)

XBJ=XB(JIN)

ZBJ=ZR(JN)

CALL FMD3O(XRI, zax XRJ B4, XI(M).E(M) xmutu) CSA(MY, OMEGA FMD)-
DOS3 (mi,.6 , e
D033 Jmi,6

FMD(I,J)=10000,0%FMD(1,J) .

DOBA I=i.N

pos8 Jmi,B

BN ENENE

58

59

80

PARCT ,J)=0OMIN{+1,JK)

CALL MATMULT(PAR,FMD,PHI ,N,8,6,54,6,6)
DOSG Tmy N

DNsg J=i .8

NI ENLNN

OM{I+N{, JK)‘PHI(I J)

NNLIVNE ]

CONTINUE
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Subroutine FORCEF listing continued.

Do4as t=1,N1
CO0A6 . J=lM=7, LM
A6 OM{T,J1=0M(Ni+T, JeKP)
DOAA Ta=Ni+{ MO
DOGR JmMi+],LM
48 OM(71,J)=0,0
CALL RANTECIOM NI+N.MC, LM, 87,87, 111 IDEP,XHAY, JO)
800 CONTINUE '
- CALL REAR(OM, MC,LM,A7.111,XCH)
DEL. MATRIX
DOBA =i, MC
DOGR JaMC+i, LM
LeJ=MC
68 DELIT, L)==0M({],J)
D031 I=m1i,NL
DoAY Jsi,NL
3 F(OT,0)=0.0
11=0
DNaa Mzl NE
IN=TS (M)
JN=JS M)
XARI=XR{IN}
ZRI=ZR{IN)
XBA=XR{JN)
IRJ=TIR(JN)
Cal.L FMD30(XBI.ZBI.XBJ.Zﬁd.XI(M).E(M).XMU(M).C$%€M3.DMEGA.FMD}

D038 I=m{.B
DO%8 =i, NL
IKei+11
38 DELACT,J)I=DELLIK )
DOAO 1=1i.6
DNAD J=1i ., NL
40 OFLB(J,1)=DELA(T.J) _
CALL MATMULT(FMD,.DELA.FDA,H,NL.6,6,33,6)
CALL MATMULT(DELRB,FDA,DF.NL,INL,6.33,3%,6)
DNa2 1={,NL
DO4a2 J=1,NL
42 F(1, ¥ =F(1,.J)+DF(1.J)
I1=17+48
44 CONTINUE
STRUCTURAL DYNAMIC STIFFNESS MATRIX
CALL MATINVI(F,UKD.,C.NL.33,33,06.MDEP,WMAX.LQ)
RETURN
END
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1., 1
E e —[[ {
q’39
q’“ q’32 q’tﬂ-a
"‘“/;\
9,

Rigid joint connections.

(a)

Null column 22 in

matrix [ J42.1.

Joint with pinned connection.

(b)

Fig. 57 .
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| A
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| /_\
(S]e]e]
. Pe-o»z
<N
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Kesz

Keus

Typical structural reaction systems.

Fig. 58 3
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2 3
Node 1 4
San = ~

Simple plane frame, three elements.

Fig. 59 .
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G | i w‘g
\I/@*Q
o0

AN

wyY
X
j

Xi

Initial applied loading system without reactions.

(a)
A 4
| .
g 2 3 7
{
> K, 4 ‘LF.’,

Rg \1/ P\{/
5
1 R E4

Possible applied load system when comsidering reactions.
(b)
Fign 60 L3



310

wmax ¥
MDEP \ \
37
\ 3s 3 1 1043 4 59 72 99
i \\\ / j
{
UKD
C
4
0«
87 - PEb NE F
wiajag K
DE OM
I ommcs e
A
11
MATR Iy oM DEL F DELA | DELB FDA DF UKD C MDEP | WMAY | L@
MAXIM
oRDst:eM 8% M| 87x33 33x33 | (33 33x6 | G%B3 |33x33 | 33x33 | 33%66 ) 33x | B3x{ | 33xy

Matrices equivalenced in matrix OM and the maximum

order of the respective matrices.

Fig. 61.



2 co‘umﬂs

oM

Temporary transfer before equivalencing matrices PAR and PHI.

(2)

& coluvmne
PN
{04 [X=3:1
!
MATR 1% PAR PHI
W H
87 & F MAX IMUM
ORDER S4x6 545
: B OM

i

Matrices equivalenced in matrix OM and the maximum

order of the respective matrices.

(b)

Fig. 62.

311
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16. Subroutine FORCEP.

See master programme

FORCE-RECTANGULAR PLATE,
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17, Subroutine MDE0...............5lement Type P1/50D,

17,1 Description od subroutine.

This subroutine generates
the dynamic flexibility matrix corresponding to an
s-system of generalized element boundary loads for a
rectangular plate element, Zlement Type P1/5FD, see
Chapter 3(3.1.3(b)) and Chapter 4(4.1.5).

This type of element is used for the analysis of two

“dimensional plate structures.

17.2 Subroutines called by FMD50.

This subroutine calls
subroutines RANTEC, PARDER, FiMD40, MATMULT and REAR, see

figure 63,

17.3 Subroutine listing.

The listing of subroutine IMD50

is given in table 3T .,

17.4 Description of subroutine arguments.,

The first card of this subroutine is,

SUBROUTINE FMD50(4,B, T, M,XMUM,XNUM,OMEGA , TMD)

where the argument definitions are the same as for

subroutine FMD40 (Al.4.1(11.1)).
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SvbrevFine

FMD 50

This svbrookine calls

| !

Svbrevtine Svbrovhine Subrovline Svbrovfine Subrovkine

KANTEC PARDER FMD4o MATMULT REAR

Subroutines called by subroutime IMD50.

Fig. 63 .
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Fortran listing of subroutine FMD50, Zlement Type P1/5FD.

Table 37 .

I 3

i0

1a

14

16

SUBROUTINE FMOSOQUA,B,T,EM, XmUn, XNUM, OMEGA , FMD)
JOHN ROBINSON 1,8,V .R,
RECTANGULAR PLATE ELEMENT

ELEMENT TYPE P1L/SBFD

ELEMENT DYNAMIC FLEXIAILITY MATWIZX

DIMENSION D(12,24),I0012),XM082),PARIS,12),PRI(9,42),IR(12)
DIMENSION DELQS(12,12),0ELASTI12,12),FM0(12,12),6(12,12)
EQUIVALENCE (DELAS(L, 1), 008,17, (DELQST(4, 1,008,143}
PO =i, 12

D05 Jmi, 24

O(1,J)=0,0
D(i,5),0(1.?).D(a,i).Déz,ﬁk.&£3,202,ﬁ(3,ii)%~ﬁ
D(3,16),D(3,191=4A
D(i.6),Uii.&)‘0(2,19),D€2,22),&(5,2),0(3,é)m-ﬁ
D{2,11),D(2,i2)=8

D(2,7)=hng

DIB,6)a=A%f

DO3,51,D(3,7im=A%%2/2,.0

D(2,6),0(2,8)=B%%2/2,0
ROL,9),D01,10), DL, 18),D(4,12)8~0,0

LL=C

ROB K=1,3

bOB L=i13,24,3

DR, L+l =1, 0

LL=bL+d

CONT [NUE

CALL RANTEC(D,3,42,264,12,12,24,1D,XM,IR)

CALL PARDER(D,IR,3,12,12,24 ,NN)

VOLTO M=1,9

DO10 N=i,12

PAR{M NI=D{B+0 ,N)

CALL FMDAO(A,B,T,EM, XMUM, ANUNM,OMEGA, FMD)

CALL MATMULT(PAR,FMD.PHI,9,12,12,9%,12,12)

RO{2 M=1,9 ‘

CO12 N=1,12

RUB+M NIPHI (M, N)

CALL RANTEC(D,{2,12,26,12,12,24,10,Xm,IR)

CALL REAR(D, 12,26 ,12,24,%XCH)

D014 1=y, 12

DUsa J=i3%,24

DELQS(I,J=12)==0¢1,4)

DOYG Ime,§2

POLe J=i, 12

DELQSTL,J)=DELQS (U, 1)

CALL MATMULT(FMD ,DELQS,G,12,12,12,12,12,12}
CALL MATMULT(DELGST,G,FMD,12,12,12,12,12,12)
RETURN

END
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A4,.2 Punctions.

1. Punction KINT.

1.1 Description of function.

This function is used in the
master programmes to be described later. It appears in
the eigenvalue evaluation and was ;ritten by C.Seavey.
This function uses function INT which takes the sign of
a real number, say A, and multiplys it by the largest
integer £ A, Function INT is an intrinsic function, I.C.T.
1900 Computer.

Examples,

A INT KINT would give
2.235 2 2
1.235 1 S |
0.235 o 0
-1.235 -1 f 2y
\\ ’/

1.2 Functions called by KINT.

this function uses function INT.

1.3 Function listing.

The listing of function KINT is

given in table 38 .,

1.4 Description of function argument.

The first card of this
function is,
FUNCTION KINT(A)

where,

A = real number.
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: FUNCTION KINT(A)

C C.SEAVEY, I.8.V.R,
KINT=INT(A)
IF(A)1,2,2

f KINT=KINT=f ...
2 RETURN
END

A,S.,A, Fortran listing of function KINT.

Table 38 ,
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A4,3 Master Programmes,

Master programmes have been
writ£en for the vibration analysis of collinear beam
structures, general plane frames and two dimensional plate
structures. The master programmes contain the procedure
for eigenvalue evaluation which is the same for all
programmes except that the respective FORCE-subroutine is
called to obtain the structural dynamic stiffness matrix
for a given frequency. It should be remembered that in the
force formulation the structural dynamic stiffness matrix

cannot be separated into the familiar iteration form
(tx3-)IMI) 1B, = (O}
The eigenvalue formulation in the force approach is

[*411eby} = [Of

where the frequency parameter A is contained in the
structural dynamic stiffness matrix [Kul .
The procedure adopted to find the eigenvalues
of the system of homogeneous equations is based on a
stepping method %o find a change in sign of & determinant
and is as follows 3
1. Calculate the structural dynamic stiffness
matrix for an assumed value of the frequency
parameter, A .
2. Evaluate the determinant of matrix [%;]. If

the determinant value is zero an eigenvalue
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has been found, otherwise continue through

a range of assumed values of A until a
sign change of the determinant value occurs.
If no sign change is found a ﬁessuge
NO ZERO CROSSING FOUND IN RANGE is printed
out.
On finding a sign change the two adjacent

A -values are isolated and termed A, and X\, .
These values are then fed into an iteration
routiﬁe for calculating the actual eigenvalue
within specified limits. If after ten
iterations the eigenvalue has not been found
to the desired accuracy the message
ITERATION TERMINATED AFTER 10 STEPS is-
printed out. The previous estimate of the
eigenvalue and the determinant are printed'
along with the current estimates. The current
estimates are then used to find the
eigenvector,
This cycle is repeated to obtain & range of

eigenvalues.

The stepping procedure adopted is the same as that contained

in subroutine PRVS1 which was written by Dr.C.A.Mercer,

M.Petyt and C.Seavey.

As structural configurations become

more complex the more difficult the task of finding

eigenvalues. Even when an eigenvalue is located it may not
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be known which one it corresponds to until the corresponding
eigenvectof has been computed., Although a sign change has
occured between A, and X\, it is quite possible that more
than one eigenvalue is contained within these boundaries.

It should also be realized that eigenvalues can exist
without a sign change occuring . . In the procedure adopted
in the master programmes they are located by examining the
variation of the determinant value and can easily be missed
if the step size is too big. This situation of no sign
change constitutes a double eigenvalue., The symptoms to
observe are that the determinant value is increasing, it
then drops and thén increases again. At each step the sign
of the determinant value is the same.rFigure 64  shows
eigenvalue conditions. Having found an eigenvalue it is fed
into subroutine MODE to evaluate the corresponding
eigenvectbro

The master programmes also control the allocation
of computer storage, reading of input data and the output

of desired results.,

&
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1. Master programme FORCE~-BEAM.

This programme is for the
vibration analysis of collipear beam structures using the
rank force method. The programme has been written so that
a number of problems can be solved together, that is, the
programme has multiple case capability. The vibration
analysis of a structure has been divided into two forms
of analyses,

(a) Determination of element boundary loads,
structural reactions, structural dynamic
flexibility matrix (this gives the unit
structural responses) and the structural
dynamic stiffness matrix, all for a given
frequency and a general system of harmonic
forcing functions,

{(b) Eigenvalue and eigenvector evaluation.

Both analyses can be carried out for a range of frequencies.
The collinear beam structures can be idealized into any
number of discrete elements and uses the plane beam type

of element (FMD1O series of subroutines), Each discrete
element can have a different length, Young's modulus,
material density and section properties and the structure
can be constrained in any way consigtent with the basic

assumptions,

The listing of master programme FORCE~-BEAM is given in
table 39 .
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1.1 Input data.

KASES = number of cases being run (maximum= 9).
MR = form of analysis being undertaken, that is,
MR = 1 for element boundary loads, etc.
MR =

Ahw

2 for eigenvalue and eigenvector evaluation.

KE = number of frequencies being considéred (maximum = 42),
When MR = 2 this maximum is based on the number of
lowest frequency estimates, this has nothing to
do with the incremental frequencieso‘

£XaM(K) ,DDLAM(K) ,NNST(K),IIEPS(K) = frequency data,

where K = 1,KEB.

This data is punched as one frequency data per card, that is,

XXAM(1) ,DDLAM(1) ,NNST(1),IIEPS(1)eeeeessss . first card,

XXaM(2),DDLAM(2) ,NNST(2) ,IIEPS(2) eveaveessssecond card,

| i

|
}
i
i
th
XXAM(KE) ,DDLAM(KE) ,NNST(KE) , IIEPS(KE) e o....KE  card.

When MR = 1

XXAM = frequency at which the element boundary loadg,
structural reactions, etc., are required (radians
per second). |

DDLAM = frequency increment or step size (radians per second)

=1.0

NNST = maximum number of increments to be considered = 1

IIZPS = number of significant figures for answers (maximum= &)

=1
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DDLAM, NNST, IIEPS are not actually used in this analysis
so they are quite arbitrary. These wvalues (1.0,1,1)
can be adopted for all considered frequencies but they

must be punched on each card.

When MR =2_;

XXAM = lowest estimate of the eigenvalue being evaluated
(radians per second).

UDLAM = frequency increment or step size (radians per second).

NNST = maximum number of increments to be considered, It is
quite possible that an eigenvalue may be located
after only a few increments and therefore this
maximum will not be reached., On the other hand if no
eigenvalue is located in this range NNST will have
reached its maximum value,

IIEPS = number of significant figures for the answers

(maximum = 8).. In general this maximum is adopted.

Note 3 the frequency data will take KE cards,

NE = number of discrete (finite) structural elements.

~ (maximum = 20).

IS(M),TS(M),XL(M),XI(M),E(M),XMU(M) ,CSA(M) = element data,
where M = 1,NE.

This data is punched as one element data per card, that is,

1S(1),78(1),XL(1),XI(1),E(1),XMU(1),C8A(1)......Pirst card.
15(2),75(2),XL(2),XI1(2),B(2),XMU(2),CSA(2)......second card.

g ! |
i i
' i
: i

;
8 $

IS(NE),JS(NE),XL(NE),XI(NE),E(NE) ,XMU(NE) ,CSA(NE). . .NE card.
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IS = first element specifying node.

JS = second element specifying node.
XL = discrete element length (in).
XI = element second moment of area (in+).

= Young's modulus for the element (1b per in ).

&

XU = density of element material (1b per in3).

. . R T
CSA =element cross sectional area (in ).

Note ; the element data will take NE cards.

NC, IC(N) = constraint data, where N = I,NC.
b4

NC = number of structural reactions (= 0 (zero) for no
reactions)., Maximoni = 4

IC = vector of applied load numbers which are considered as
structural reactions. These numbers are established

assuming initially that no reactions exist.

The input data formats and data card columns used for the
respective parameters are given in table L0 . The method
of data deck assembly for a multiple case analysis is shown
in figure: 65 and the complete programme/data assembly

is shown in figure 66 .
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AeSeAs Fortran listing of master nrogramme FORCE~-BIAM.

Table 39.

MASTER FORCE=BEAM

SOMN ROBINSON, I,§. V. R, :
VIBRATION ANALYSIS OF CULLINEAR BEAM STRUCTURES USING THE
RANK FQORCE METHOD,

UIMENSION I1S(20),J8(20),XL{20),XI1(20),E(20),XMUL20),C8AC20),1C
LUKD (472 4?) X(a?>,xxAMfa2>,DULAM(42;, Nhf 421, 11EPS(42),DEL (84,
2F(42,42),0M(88,122),10(64)

COMMON OM
EQUIVALENCE (DELCL, ), 0M01, 1)) (FUL,1),0M(1,1G2))
EQUIVALENCE (UKDCL,1),08(1,48))
READ(B, B85 )KASES

&5 FUQM&T(Ei)
POSC0 KA=1{,KASES
WRITE(S,BT7IKA

87 FORMAT(14H CASE NUMBER ,11)
WEITE(S,3000)

3000 FORMAT(23H JOMN ROBINSON 1.S,V,.R.,)
BRITE(6,900)
G900 FORMAT(22H PROGRAM FORCE~BEAM, )

READ(SB,86)MR :

BB FORMAT(I1)
READ(5,88)KE

B8 FORMAT(IZ)
HRITE(H,16)KE

{6 FORMAT(42H NUMBER (OF FREQUENCIES BEING INVESTIGATED=, 14
READ(5,90) (XXAM(K) ,DDLAMIK) (NNST(K), [IEPS(K) K=l ,KE)

g0 FO&MAT{aFiZ ,14,1%)
WRITE(O, 18) (XXAMIK) ,DDLAMIK) NNSTIK) , TIEPSIK) K=l ,KE)

1e ?WRNAT<25H ASSUMED FREQUENCY UATA///533H LOWER ESTIMATE STEP 51

ST SIG///(2F20.6,14,13))
READ(5, 92 INE
92 FORMAT(12)
WRITE(6,20)NE
20 FORMAT(20H NUMBRER OF FLEMENTS=,13)
REAUCS 94 ) CISIM) , JS(M)Y (XLOM) KT OM) E(M)  XelU{M) ,CSA(M) Ml NE)
34 FORMAT(12,15,F12.4,F12,4,89,1,F12,4,F12.4)

o

MRITE(G,22)(ISIM) ,JSIM), XLIM) , XT(M) ,B(M)  AMU(K),CSA(M) , M=1  NE
22 FORMAT(13H ELEMENT DATA///E2H NUDES LENGTH SEC MOM AREA

IMOD  DENSITY C,SLAREA///L13,15,4F12,4,69,1,2F12.68))
READ(S,96)INC, (ICIN), N={,NE)

96 FORMAT(I1,414)
WRITE(B, 246 INC, {ICIN) Nml,NC)

24 FORMAT(23H NUMBER OF CONSITRAINTS=,14///20H IMPUSED CONSTRAINTz 7/

tdtdy)

14
YA NEIEM
[ 3
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Master programme IFORCE~BLAM listing continued.

PO3L0 K=1,KE
XAM=XXAM(K)
IF{MR~{)15,354,153
15 DLAM=DDLAMIK)
NET=NNET(K)
TEPS=TTEPS(K)
WRITE(B, 141K, XAM, DLAM NST, JEFS

14 FORMATL(5H FREQUENCY DATA,14Y//7/5H XKAk= ,F12.8,3% 6K DLAM=,F{2,0, )

{9H NS8T=,14,6H TEPS=,13)

CALL FORCEB(XAM ,NE,IS,J5, XL, X1 ,E, XU, CEA NG, IC, NLyUKD, DEL (F, MG, 10

CALL VARDET(NL,NL,NL,DET1,UKD,42)
WRITE(6,400)XAM,DETY ,

400 FORMAT(17H LOWER FREQUENCY=,F12.86///13KH UDETERMINANT=,E15,7)
10161 J=1,NST
XAM=XAMADL AM

Cat.l., FORCEBIXAM ,NE , IS, JS hL X1, E,XMU,CEANC, IC, NL UKD, DEL JF MG, 11

CﬁLL VARDET (NL  NL,NL,DETZ2, UKD, 42)
ARITE(B,402)d, XAM, DFT

402 FORMAT(13H STEP NUMBER=,13///19H CURRENT FREQUENCY=,F12.6///15"

S TERMINANT=,EL5,7)
FIDETI{#DETZ2)200,2048,102
102 DETI=DET?2 :
101 CONTINUE
NS T==1
ARITE(H,103)
$03 FﬁRVAT(EEH NO ZERQ CROSSINGS FQUND IN RANGE)
6N YO 310
ITERATION (PHASE 2)
200 Fi=xhM=-DLAM
F2aXAM
IF(TIEPS~8)203,203,202
207 1EPS=8 :
203 CONTINUE
D02C7 1=1,10
IF(I-~1)205,205,204
204 FizmXAM
DETi=NET
205 CONTINUE
XdM=(F{sDET2~F2aDETL)/(0ET2=DET 1)
A=ALOGLOXAM]
IEX=KINT(A)
EPS=10,0%n( JEPS~=IEX=1)
HoUB={XAM=F 1}
TF(XAM=HEUBYERS 206,204,209
206 CONTINUE
IF(I=1)2580,250,255
250 FINT=F2=XAM
CF=0,2
251 FR=XAMCF4FINT

o
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Master programme FORCE-BAAM listing continued.
- (&)

CatLl, FORCEB(FR NE,IS,J8, XL, X1,E, XMy, a“ﬁewi LCONL UKD, DEL P ovg,
CALL VARDET(NL,NL,NL,DFT,UKD,4%2)
1F€QETﬁD€T2)252.253.254
282 CF=CF+0.
GO TO. 251
253 XARW=FR
GO TO 209
2504 F2nFR
DETZ2=DET
453 Call FORCEB(XAM NE, 18,08, AL, X1, E,XMU,C8A,NC,1C,NL., Uh} OElL. .
CALL VARDETINL NL,NL,DET UKD, %23
207 CUNTINUE
HRITE(GH,208)F1 ,DET L, XAK,DET
208 FORMAT(///36H ITERATION TERMINATED AFTER 10 STEPS//29
{ESTIMATE =,E16,8,15H DETERMINANT=,E16,8///18K CURRENT i
2E€16,8, 13H DE?ERMIN&NTﬁqEI@-é/fQQH CUR%&N} ESTIMATE USED)
209 CONTINUE
VECTOR EVALUATION (PHASE 3)
354 CALL FORCEB(XAM,NE,IS,JS, KL, X1 ,E,XMU,CSANC, IC NL,UKD,OEL, B, MO
IF(MR,EQ, 1160 TO 386 -
CALL MODE(NL  NL NL,UKD,42,%X, XAM)
GO TO 3310
TF(RK,NELLIGO T 408
DOGLO =i, MC
IP{I ‘w«.ei)GO ?Q 5&12
WRITE(B,414)
414 FC%MhT(iﬁH REDUNDANCIES)
412 CONTINUE
[FOIQUTY L, EQ.O0YG0 TO 4610
KRITE(B,401)1Q(1)
401 FORMAT(IB®)

410 CONTINYE

406 HWRITE(E,360 )% AM

260 FORMAT({1H FREQUENCngﬁiZ-é)
WRITECS,358)((1,J,0EL(T,J), L)y, I=1,4C)

358 FORMAT(24H UNIT MATRIX OF UNKNJ%N I 4,24 ,,12,3%,E19,11)
WRITE(B, 3590 (L, J,FT, ) M=t iy, Is1,NLD .

359 FORMAT(38H STRUCTURAL QYN&MEC FLEXIBILITY MATRIX///3(14, 20 ,, 10, %
yE19,11,2%)) : ~

WRITE(H,350) ((KK,J,UKDIKK,J) ,um1l,NL) ,KK={,NL

L
G
s

oo

350 FORMAT(Z6H STRUCTURAL D¥Nﬁ%fc ETiFFN%5% MA&REX{!/@{Zw.&H e LA D5, B

119,41))
310 CONTINUE
500 CONTINUE

STOP
END
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Lrpok Tupe of FORMAT | Data card
parameber | nomber shatenrent (C;:I:;:’s?fz) ) Remarks.
oné
KASES | Inkeger Ti ] cord
One
MR Inteqer Ii | card
_ L Right odjusted. KE <10 one
RE Lnteger zz 2 Purch in column 2. card
Floatirg Punch anywhere smn /45 column
XXAM pcl'nf Fiz-e [ te e range .
Floating Punch angwhere rn fhc columan One
boLAM Po/'nl‘ Fiz-6 135 24 ranrge . . card
, Right adjusted . NNST < 10 punch iy rer
NNST Integer T4 25l 28 colvnin 28, 10 % NNETZ 100 Columns 27,28 J,’eivc”cy
: ; data.
Right adjvsted . Ponch 15 B
TIEPS Znteger 3 29 31 | furn 31 (TIEPS=8 maximom),
Right adjusted. INE <10 One
NE Integer rz {h2 purnch i colvm 2 card .
Right adjested. IS5 < 1o
s TInteger Iz k2 punch siv colomn 2
: Right adjvsted. TS <10
Js Znleger s 367 ponch in column T
Floating Ponch amywhere n this colvmn
XL point Fiz-4 8/l 19 ranse .
Floating . Porneh angwhere in Bk column ;:Zj(
XL . Fi2-4 2o fo 3/
pont range., por
. E= 30.0%10% puonch 30-0E+06 J
E Floating E5-1 32/ 4o | ET 41%108  punch 4108408 ep(mlq-mb
pornt starFirg i column 33 aca
Floating b Ponch anywhere sm th; colvmn
XMU poink Fiz-4 417052 | pge.
Floating FPonch angwhere 15 iz colvmn
CSA pornt Fiz-4 53 e 64 rande .
NC Lnteger I /
. Rrght adjusked.
s A ()] Tnteger I4 2fhs
: i i
] } ! One
i ! ; card
1 i |
! )
L i f
' ' ' Right adjosked.
Tc(ne) | Integer I4

~Input data for master programme FORCE-BEAM.

Table 4O

4
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1.2 Cutput data.

The first part of the output data consists

£ the title data and the input data for each case, that is,

CASE NUMBER  —

JOHN ROBINSON I.S.V.R.

PROGRAM FORCE-BEAM .

NUMBER OF FREQUENCIES BEING INVESTIGATED= __
ASSUMED FREQUENCY DATA

LOWER ESTIMATE STEP SIZE NST SIG

[
l
|
I
i

NUMBER OF ELEMENTS =

SLEMENT DATA

NCDES LENGTH SEC MOM AREA YUNG MOD DENSITY C.S.AREA
|

]
]
!
]
|
|
i

i
s
i
]
!
|
}

i
NUMBER OF CONSTRAINTS = .
INMPOSED CONSTRAINTS

v ——— o— Ooo—

The second part of the output consists of the required

results depending on the value of MR.
MR = 1

1. Automatically selected redundancies.

The dynamic redundancies which are

isolated by the rank technique are printed out for each -
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case.

RZDUNDANCIES

2. Frequency being considered.

When MR = 1 the analysis for one case
is carried out for one frequency or a range of frequencies.
The frequency at each stage is printed out.
FREQUENCY =

3, Unit element loads and structural reactions.

The element boundary loads and '
structural reactions are given in the form of & DEL-matrix
which is generated for a given frequency and a general
system of harmonic forcing functions. In the programme
formulation all possible applied loads are assumed to exist.

Therefore,

bq'x = Ao()\ {er }
bpe Ae)\ e \
Vector of DEL-matrix Vector of all
unknowns., (this gives the possible applied
unit unknown loads. '

distributions).

The DEL-matrix is printed out and the actual unknowns
corresponding to an actual applied load system are obtained
by multiplying this matrix by the actual vector of applied

harmonic forcing functions. This is for a given frequency.

This latter operation is not presently in the programme



but requires very little effort to incorporate it.

The DEL-matrix is printed out in the following manner,

UNIT MATRIX OF UNKNOWNS

U i
, J DEL(I,J)! » four per line.
’V“\‘“*“\
Row Column fatrix coefficient,
pumber. number. E-FORMAT. Examples ;

= ~166.7

2. 0.3857E-1
=0,03857

4, Structural dynamic flexibility matrix.

The unit structural responses for
a given frequency and a general system of harmonic forcing
functions are given by the structural dynamié flexibility

matrix, that is,

fe8,7 = [ TR

Structural  F-matrix. Vector of all
response Structural possible applied
~vector, dynamic flexibility loads.
matrix. '

The structural dynamic flexibility matrix is printed out,
the actual structural response vector corresponding to an
actual applied load system is obtained by multiplying the
F-matrix by the actual vector of applied harmonic forcing
functions, This is for a given frequencyayThis latter

operation is not presently in the programme but again this

is a simple amendment.
4

33k
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The F-matrix is printed out in the following. manner,

STRUCTURAL DYNAMIC FLEXIBILITY MATRIX

i

:I , J F(I,J): four per line.
L.\._._._.\..:E\

Row Column Matrix

number. number. coefficient.

E~FORMAT.

5. Structural dynamic stiffness matrix.

The unit harmonic forcing functions
for a given frequency and a general system of structural
responses are given by the structural dynamic stiffness

matrix, that is,

LR = [ X110
Vector of UKD-matrix., Vector of all
harmonic Structural possible structural
forcing dynamic stiffness responses,
functions, matrix.

The structural dynamic stiffness matrix only is printed

out and in the following manner,

T T T = ,
|
}RK y J  UKD(KK,J)| four per line.
[ D N o
Row Column Matrix
number. number, coefficient.

L-=FORMAT,
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FREQUENCY DATA -

Lowest Step Number . Number of
estimate. size. of steps. significant
: figures for
answers,

LOWER FREQUENCY = __ ______
DETSRMINANT = e e e
STEP NUMBER =1
CURRENT FREQUENCY = _ . _____
DATERMINANT = e e e
STEZP NUMBER = 2 |
CURRENT FREQUENCY = ____.____
DETERMINANT 2 e e e e
and so on until a change in sign of the determinant value
has occured. Two possible conditions exist 3
(a) No change of sign.
When the sign of the determinant
doesn't change through the range of frequencies
considered (decided by the wvalue of NNST in the

input) the following statement is printed out,

NO ZERO CROSSING FOUND IN RANGE

When this statement is printed out investigate
the variation in the determinant value to see if

a double eigenvalue is indicated.
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(b) Change of sign.

After locating & change of sign
an iteration routine is entered and the eigénvalue
is computed to the desired accuracy. This is then
used to find the corresponding eigenvector.
The output is as follows,
EIGENVALUE = | oo '
BRROR SUM = __._. “___,___ DETERMINANT = oo o e

EIGENVECTOR
]

i

i

{

i

f

'
See subroutine MODE (Al.4.1......13).

If during the iteration phase
“the eigenvalﬁe is not found to the desired
accuracy the statement
ITERATION TERMINATED AFTER 10 STEPS
is printed out along with, |
PREVIOUS ESTIMATE = _ . .
DETERMINANT = mm e e e
CURRENT ESTIMATE = < cecewe- 4gmm This is fed into
subroutine MODE.

DETERMINANT = me e e e =

CURRENT ESTIMATE USED

After computing the eigenvector the following
is printed out,
EIGENVALUE = o« cumea

-BRROR SUM = w oo o DETERMINANT = oo
BIGENVECTOR

i
1
i
[



1.3 Example of usage,

The simply supported beam shown in

figure 67 is idealized as two discrete elements, usin

K

Element Type P3/2FD evaluate ;
(a) The first and second eigenvalues.
(b) The unit distributions for the element

boundary loads and structural reactions,

structural dynamic flexibility and stiffness

matrices at a frequency of 200 radians per

second.

The input data preparation for this problem is given in

table L1 .,

338



v é 3 <
£ = 30.0x10 1b per in.
A = 1,366 in .
£
y I =0.1 in .
L. 6o ! ' 3
I bt | »
A= 0.283 1b per in .

Simply supported beam.
(a)

£ -
% @7 T~ TNode number.

)

NO
/\&@ e
N b
N\

N

Applied loading and
numbering before imposing

constraints,

(b)

1 | 5

Applied load Applied load
number corresponding numbexr corresponding
to reaction. to reaction.

Possible applied loading and numbering
with reactions.
(c)
Fig. 67 .
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2. Master programme FORCE-PLANE 7

-

This programme is for the
vibration analysis of general vnlane frames, ®this is

presently restricted to rigid element joinbs but can

readily be amended for arbitrary joint conneciions as

e

indicated in the descripbtion for subroutine FORCIF, page 298 .
The programme has been written for multinle case capabilitby
and the vibration analysis has been divided in the samnc
wvay as for masﬁer programme FORCE~BEAM, page 322,
The general plane frame structure cen be idealized into
any number of discrete elements within the specified limits
and uses the inclined plane beam type of element (FMD30 serice
of subroutines). HBach discrete element can have a different
length, the length of each element being calculated within
the computer programme using the coordinates of the element
specifying nodes., Zach element can also have a different
Young's modulus, material density and section properties
and the structure can be constrained in any way consistent
with the basic assumptions.

The listing the master programme FORCE-PLANS

FRAME is given in table L2 ,
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2.1 Input data,

KASES = number of cases being run {(maximum =9).

.
This
MR = form of analysis being undertaken.
18
K& = number of frequencies being considered
Toin

(maximum = 33),

XXAM(K) , DDLAM(K) ,NNST(X) , IIEPS(K) = frequency data,

where X =1,K8, —

NE = number of discrete siructural elements
(maximam = 13),
NJ = number of nodes (maximum = 11).

NODE, XB(NODE), ZB(NODZ) = nodal data, where NODE =1,NJ.

-

This data is punched as one nodal da

ot
©
J
[0}
H
[
o
H
8]

1)’.‘.0...'.'...":53.;-?5 Car&b

ot

1, XB(1), 2I

B(
2’ XB(Z)’ ZB(g)ovo..............SOCO.‘Q@ C&I‘d.

i

i
i
i
5
|

Il
NT ,XB(NT) ,ZB(NT) e e vnvvnnnnneaa NT " card,

NODL = nodevnumber.

£B = X~ordinate of respective node (in).

ZB = Z-ordinate of respective node (in).

Note ; the nodal data will take NJ cards.

o



. Is(bi) JS(L’I) AI(X\L),L&(\L) }C\LU( ) COI‘(EI

\_,,
]
®
},.. ot
W
=
[0
5
ct
o
Q')
(*L
jav]
W

o

ta is

jaX]

This da efined in the same way as master programme
FORCE-BEAM. It should be.noted that in the frame bprosramme
A L)

no element length is given in the element data.

NC, IC(N) = constraint data, where NC = 1,NC.
NC = number of structural reactions ( = 0(zero) for no

£

reactions). Maximum = 9.
IC = vector of applied numbers which are considered as
structural reactions. These numbers are esbtablished

assuming initially that no reizctions exist.,

The input data formats and d@*a card columns used for the

4

respective parameters are given in table 43, The method of
data deck assembly for a multiple case analysis is shown
in figure 68 and the complete programme/data assembly 1s

shown in figure 69 .

2.2 Output data.

The first part of the output data consists

of the title data and the input data for each case, that 1s,

CASE NUMBER
JOHN ROBINSON I.S.V.R.

PROGRAM FORCE-PLANE TFRAME.

INVESTIGATED = o

G

oy
]
=
s
)
€3]
H
£
(S
3
v
E
h<<
[€6
i
s
=
-
Ty
———
3
[€)]
Py
fon}

R

343
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\le uiu O‘ E 31‘ T‘:TS T
NUMBIR OF JOINTS =

NCDAL COCRDINATES

NCDE Xu—ORDIQ TE ZB-ORDINATE
l

!
I
i
i
i
i
i

LLENENT DATA

|

NOD= NCDE SEC MOM AREA YCUNGS MOD DIENSITY Co. B¢ AR
» i
i
i
i
i
i
i

t
i
i
;
[
l

oy

NUMBER OF COD

STRAINTS =

IMPOSED CONSTRAINTS

— w— — dn—— — o— - s atonirs

The second part of the output consists of the required
results depending on the -value of KR. This is +the same

as for master programme FORCE-BEAM, page 332 .
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AeS.A. Fortran listing of master programme FORCH-PLANG FRal. ..

Table Lo

HASTER FORCE~PLANE FRAME

JOHN ROBINSON, .S, V, K, .

VIBRATION ANALYSIS OF GENERAL PLANE FRAMES USING THE
RONK FORCE METHOD,

PIMENSTON XX(33),XXAM{33),0ULAK(A%),NNET (331, 11EPS(43)

Lo 080133 ,d8013) , XT043),8013), XPU(iikgc AOLB T, 1C(9),URD(83,38) 1 ‘
2,111, D§L<a7.33),F(EE.ﬁB),zuéé?},Xuiii)gzméiii

COM wuN Ond

EGUIVALENCE (DELCL 40,0008, 000 (FCE, 00 ,0M01,99) ), (UKDLL, 10,0807, 00
13

HEAD(5,85)KASES
85 FORMAT(IL)
DOS00 KA=1 ,KASES
WRITE(6,87)KA
&7 FU MavexaH CASE NUMBER ,11)
HRITE(D,3000)
3000 FGRMA?(EBH JOKN ROBINSON 1,8,V ,R,)
WRITE(S,3001)
300{ FORMAT(27H PROGRAM FORCE=-FLANE FRAME,)
READ(S, 86 ) MR
B FORMAT(IL)
READ(S, B8 KE
88 FORMAT(IZ)
WRITE(K,16)KE
{e FORMAT(42H NUMBER OF &RPQu&NC&&& BEING INVESTIGATED=, 14,
READ(B,90 ) (XXAM(K) ,DOLAMIK) NNST(K}, [IERS(K) ,Kel , KE)
490 ?ORMAT(Esz.ﬁ.I&aE3>
WRITE(E, {8) OXXAMIK) ,ODLAMOK )  NNST(K) , TIERSIKY , K=l K&
18 FORMAT(23H ASSUMED FREQUENCY OATA/flzﬁw LOWER ESTIMATE aTeEp S17.
IST SI1G///7(2F20,6,14,131)
READ{(B,8INE,NJ
6 FDRMA?(zz.za)
RRITE(H,3INE,NJ

3 FORMAT(Z2{R NUMBER OF ELEMENTS &,14//19H NUMBER OF JOINTS =,14)
READ(S,8) (NODE ,XB(NODE) ,Z8(NOLE) ,NOUE=T,NJ}

8 FORMAT(12,2F12,4)

RRITE(G,4) (NODE,XB(NODE) , ZB(NUDE ) ,NODE=]L, J

4 FORMAT(18H NODAL CGURDENﬁT%b/K;X 5H NODRE, 2X, 13K XB=0RDINATE ,24, 553
iR ZB=0RDINATE //(14,3%X,F12,4,4X,F12.4))
Rﬁ&@fﬁ,?)(xscm).Jscm>,X£€M),aéwigxmuéﬂkgﬁiﬁ(%),%ﬂi.wﬁb

7 FORMAT(12,15,F142,4 E9,1,2F12,4)

MRITE(S, 51 (ISIM) ,JE(M) , KT(M) , 6(M) , XMUIM),COALM)  Mat, NE)

5 FORMAT (13K ELEMENT DATA//1%,B5eH NORE NODE SEC MOM AREA  YOUNG
100 DENSITY CiS AREA//EI4,2X, 14,30 ,F12,9,3X,E12,3,2K.F7.5,2%,F
2))

HEAD(S, {OINC, (JCIN),N={,NC)
10 FORMAT(I1,914)
WRITE(6, 1 INC, (1C(NY N=i,NC)

I FORMAT(23H NUMBER OF CONSTRAINTS=,14///20H IMPOSED CONSTRAINTS// /¢
19141

<
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Master programme IFORCE-PLANZ FRAMZI listing continued,

DO310 K=i ,KE
XAM=X X AM{K)
IF(MR=1)15,3%4,15
{5 DLAMSDDLAM(K)
NST=NNST(K)
JEPS=]1I1EPS(K])
WRITE(6, 141K, XAM,DLAK,NST, [EPS
{4 FORMAT({15H FREGQUENGY DATA,147//¢5H FAME F12,6,34,6H DLAMs,F12,
15H NST=,14,6H IEPS®,I13)
CALL FORCEF(XAM,NE,NJ,XB,ZB,18,J8,X1,E, %My, CSA,NC, 1C,NL UKD, DE!
{MC,1Q) '

400

402

102
101

103

200

202

203

204

203

CALL VARDETINL NL,NL,DET{,UKD,33)

WRITE(GH,400)XAM,DET

FORMAT(17H LOWER FREQUENCY=,F12,6///13H DETERMINANT= ,E{5,7)
LOIOL J=1,NST

KAM=XAMEDL AM

CALL FORCEF(XAM ,NE ,NJ,XB, 28,15 ,J8, X1, 6, XU, CSA,NC, IC, NL UKD, DEL , ~
iMC, 1Q)

CALL VARDET(NL ,NL,NL,DET2,UKD,33)
ARITE(GE,402)J ,XAM,DET2

FORMAT(13H STEP NUMBER=,I13///19H CURRENT FREQUENCY=m,F12.6///13H 0
ITERMINANT=,E15,7)

IF(OET1#DET2)200,209,102
DETI=DET?Z

CONTINUE

NGT=wq

HEITELG,103)

&nm*ATcaﬁH N3O ZERO CR&S&INGS FOUND IN RANGE)
GO TO 310

ITERATION (PHASE 2)
FlaXAMaDLAM

F2=XAM
FF(IERPS~8)203,203,202
IEpsS=a

CONTINUE

L0207 1=1,10

1?(1*1)205 205, 204

FizmxAM

DETI=DET

CONTINUE
KAM=(F{#DETZ2nF2%0ETL )/ (DET2-DETL )
AzBLOGLO(KAM )

TEX=KINT(A)
EPE=10,0% 0 { IEPS=IEX=])
HEUURm (X AM=F])
IF{XAM=HSUB®*ERS)206,209,20%
CONTINUE

JF(I=11250,250,255
FINTRF2mEAM

CFs0,2

FRaXAMSCFHFINT




Master programme FORCE~PLANE FRAME listing continued.

CALL FORCEF(FR ,NE NJ KB, 28,15, U5 XTI, 8, KU, C8A NC, JC,NL, UKD, Del, -,

1mC, 10
Call, VARDET(NL,NL,NL.DET ,UKD,33%)
IFIDETwDET2) 252,253,254
252 CF=aCF+0,14
GO 70 2851
253 XAM=FR

GO T0 209

234 F2sFR
DETZ=DET

255 CALL ?URCEF(XRM,NE,NJ.XE,@%,Eb,J5,XigﬁgXMU3C§A,NC,ECQNL,UKﬁgﬁiLQ”
1wC, 1Q)

CaLl VARDET(NL NL,NL,DET ,UKD,33}
207 CONTINYE
WRITE(H,208)F(,DETL, XAM,DET

TESTIMATE =,E(6,8,13H DETERMINANT=,EL16,8///18K CURRENT ESTIMATEs.
2E1B,8,{3H DETERMINANT= , E16,8//22H CURRENT ESTIMATE USED)
209 CONTINUE
VECTOR EVALUATION (PHASE 3)

354 CALL FORCEF(XAM,NE NJ,XB,28,15,J5,%1,E,XMU,C8A,NC, 10, NL. UKD, DEL, -,

M, 1Q)
IF(MR,EQ,{)G0 TO 356
CALL MODE(NL NL,NL,UKD,33,%X%,XAM)
GU T3 %10
330 IF(K,NE,LIGO TO 406
D0A10 =1, ,MC
IFCTNE,EI60 TO 412
BRITE(G,414)
414 FORMAT(13H REDUNDANCIESR)
412 CONTINUE
IFCIQUI),EQ. QG0 TO 410
HRITE(G,401)1Q(1)
301 FORMAT(I®)
410 CONTINYE
406 WRITE(G,B360)XAHK
360 FORMAT(1IH FREQUENCY=,F12.6)
WRITE(B,388)( (] ,J,DEL(Y,J),Jd=l NL),Isi,MC) ]
358 FORMAT(24H UNIT MATRIX OF UNKNOWNS//3(14,2nW ,,12.3%,E49.01,2%1)
FRITE(G,359 3 {1, J,FL{I,J), dmi NL)Y I NL G

359 FORMAT(36H STRUCTURAL DYNAWIC FLEXI®ILITY #ATRIX///3(16,2H ,,12,

1,E19,14,2X))
WRITE(H,380) ( (KK, J,UKD(KK,J},dmi NL) KK=1 , NL)

350 FORMAT(36H STRUCTURAL DYNAMIC STIFFNESS MATRIX///3(16,25 ,, 12,30,

119,11,2x))
310 CONTINUE
300 CONTINUE

STOP

END
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Fnpof Type of FORMMAT Dala card
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Input data for master programme FORCE-PLAND T

Table k3 .
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2.3 Lxample of usage.

The simple »nlane frame shown in
figure 70  is considered as being idealized in its present
form, that is, as three discrete elements. Using Zlement
Type P3/3FD evaluate the second eigenvalue of the frame
assuming a lower estimate of 760.0 radians per second.

The input data preparation for this problem is given in

table ULk
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55" o Constant frame properties.

® ® , .

- .2
0.0% 10 1b per in .

O

¢
i
o

B P
A = 0.09388 in .

FX]

- I
" I = C,00006866 in .
9-s 5
M= 0.283 1b per inm .
i3
Lo e 3 < e Simple plane frame.
Node number. (a)
% £
% F
7
5
Applied loading and numbering
o p before imposing constraints.
4
3 '—J—-”'—-—-h - ----—b-'?o
A (b)
Ex e:
A 5
; f &
%
Applied load number
corresponding to reaction,
% |3
e 1] &, [10 obtained from figure (b).
R TR
Re | 11
£ 12 Re |1 Possible apnlied loading and

numbering with reactions.
(c)

Fig, 70 .
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3., Master programme FORCE-RECTANGULAR PLATE,

%

Introduction.

The research worlk carried out for plate
structures has been limited to in core problems. The plate
programmes are very restricted and only of use for this
initial reseamrch project, therefore, they will not be
described in the same detail as for coliinear beam and
plane frame structures, These programmes were
written purely to obtain some results to show that the
suggested derivation procedures were valid., lurther research
will be continued in this area and more rigorous
investigations carried out.

3.1 Plate programmes.

3.1.1 g~8ystem.

The first attempt to derive a dynamic
flexibility matrix for & rectangular plate element under
shear, bending and twist was to adopt distributed boundary
loads and four concentrated nodal loads as the generalized
element unknowns, In order to incorporate such an elenent
{Element Type P1/4FD) in & plate structure a method of
formulating a system of joint equilibrium equations had to
be established, The master programme using this type of
element was written to analyse  a cantilever plate structure
only, this consisted of six finite elements and fixed
properties. The assembled structure and loading 1s shown
in figure TL ¢

The first method investigated to formulate



the joint equilibrium ecuations was to distribute equally
the resultants of the uniformly distributed element boundary
loads to the nodes. Zxample, for node 1,

b
7% +5 % + 14, - =0

a
29 -~/ =0

After completion of all node ecuations the assembled system
is investigated using the rank technique. It was found

that this system had no solution, the reason for this

was that a dependency existed between certain applied

loads. This can be seen clearly by investigating the moment
equilibrium equations about the z-axis for nodes 2,6 and 10,

Now for a=1.5
075 933 + 075 95 = FBoo =o

075 42 + 075 %% —F =o0
and

Therefore, '
2+ o = Fg = O

The next method to be investigated was that of equilibrium
of orthogonal grid lines., Examples;

l. Grid line 1,2,3,4.

~See figure T2(a).
Vertical equilibrium.

a(qs‘f‘ i/?‘f' ng) + é(?g*ilp*f q2,+ qzz + q33+€34)"ﬁ"P4"P7'P;°:: O

355
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Moment eguilibrium about the x-axis.
a(4 + 43 * s )—Pa—Fec—Fp —F =0
Moment ecuilibrium about node 1 (z-axis).
%“-is * %(‘lm +€2/> * '—}3 a Yy +all;+ %&3) * g a*Qyg + g & 234-

n@—a@_—%—ZaP7~/’9 -3aF, -F, =0

2. Grid line 2,6,10.

See figure 72 (b).

Vertical ecuilibrium.

z (147 *iéo> + 1’(142"‘256) *35(2+%2a+ Yae * %7) + é(%,-/'%m)

+*4(%+9y) P -B, - Py =0
Moment equilibrium about the zZ-axis,

b(+ % + 938 + Us2) ~F —Fg —Foo = O
Moment equilibrium about node 10 (x-axis).

£ (92 +956) + £ (20 Log+ Tao+ 957) + 36 (Tet%20) + 6( Yo+ T2))

26l —Fc ~ bl —Fy Py =0

After assembling thé ecuations for all grid lines the
system was investigated and a solution was indicated.
The rank force method was then formulated using these
equations and the element dynamic flexibility matrix of
Element Type P1/4¥D ., The listing of the master programme
is given in table 45 and the cofresPonding FORCE~subroutine
in table 46 .

3.1.2 s-system.

Clearly, the g-system is not practical for
the analysis of plate structures and an attempt was made

to transform this system into a more convenient equivalent

one using discrete nodal loads as the generalized unknowns.



357
A suggested procedure has been presented in Chapter 3
(3.1.3(b)), see also Appendix 3., The joint equilibrium
equations using an s-system consist of Boolean matrices
and are established simply from ecuilibrium of the
individual joints as for collinear beam and plane frame
structures., The assembled structure and loading is shown
in figure 73 . The ranlk force method is formulated using
these equations and Llement Type P1/5IFD. The listing of
the master programme is given in table 47 and the

corresponding FORCE-subroutine in table 48 .

3.1.3 General comment.

It should be noted that when
boundary equilibrium equations are being formulated each
concentrated nodal load of the g-system is in actual
fact a resuitant of two equal.loads due to twisting moments.

See figure h
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Grid line loadings for
equilibrium considerations.

a

(

12 .

Fig.

(b)
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Actual form of the concentrated nodal loads

in the g-system.

Fig., Tk,
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Eiath

AeS.A, Fortran listing of master nrogramme IFOACH-
RECTANGULAR PLATZE. (q-system).

Table 45 .

85

87
406
9200

86

88

16

90

18

13

14

MASTER FORCE-RECTANGULAR PLATE
JOWN ROBINSON, I1.S,V.R,

VIBRATION ANALYSIS OF THO DIMENSIONAL RECTANGULAR PLATE
STRUCTURES USING THE RANK FORCE METHOD,

DIMENSION X(36),XXAM(12),0DLAM(12) NNST(12),11EPS(12)
DIMENSION UKD(36,30),DEL(84,36) ,F(36,36),0M(84,108),1Q(84)
COMMON OM
EQUIVALENCE (DEL(1,1),0M(1,1)) ,(UKDCL,1),0M04,37)) (F(4.1),0M(1,58
1)) :
READ(5,85)KASES

FORMAT(I{)

DOSGO KA=1,KASES

WRITE(S,B87)KA

FORMAT(14H CASE NUMBER ,it)

WRITE(6,406) ,

FORMAT(23H JOHN ROBINSON [,S,V,R,)

WRITE(6,900)

FORMAT(35H PROGRAM FORCE~RECTANGULAR PLATE,)

READ(5,86)MR

FORMAT(]1)

READ(S5,88)KE

FORMAT(12)

WRITE(6,16)KE

FORMAT (42K NUMBER (OF FREQUENCIES BEING INVESTIGATED=,14)
READ(5,90) (XXAM(K) ,DDLAM(K) NNST(K),TIEPS(K) K={ KE)
FORMAT(2F12,6,14,13)

KRITE(B, 18 (XXAM(K),DDLAMIK) ,NNSTUK) ,TTEPS(K) , K=1,KE)
FORMAT(23W ASSUMED FREQUENCY OATA///33W LOWER ESTIMATE STEP 'SIZE N
1ST SIG///(2F20.,6,14,13))

NE=6& '

NJ=12

A={,3333

B=1,5

T=0,1%

XMU=0,098

XNU=0, 34

E=0,9%10,0%*7

NC=¢g

DO3{0 K=1,KE

XAMSXXAM(K)

IF{MR=1)15,354,15

DLAM=DDLAM(K)

NST=NNSTI(K)

IEPS=]IEPS(K)

WRITE(®,14)K,XAM,DLAM NST,IEPS

FORMAT (154 FREQUENCY DATA,I8///5H XAM= F12,6 3% ,6H DLAM=, F12,6 63X,
15K NST=,14,6H 1EPS=,13)




liaster programme FORCE-RACTANGULAR PLATAE listing continued.

(q=svstem).

363

CALL FORCEP(XAM,NE,NJ, T yXMU,XNU,E,A,B,NC,NL UKD, DELF.MC.1Q)
CALL VARDET(NL,NL,NL,DETY,UKD,36)
WRITE(6,400)XAM,DETY

400 FORMAT({7H LOWER FREQUENCY=,F12.6///13H DETERMINANT=,E15.7)
DOf0f J=1{,NST

XAM=XAM+DL AM
CALL FORCEP(XAM, NE | JNJ, T, XMU, XNU,E,A,B,NC,NL,UKD,DEL,F ,MC,10Q)

CALL VARDET(NL,NL, NL DETZ UKD 36)
NRxTE(S,&OZ)J.XAM,DETZ

402 FORMAT(13HW STEP NUMBER=,13///19H CURRENT FREOUENCY:.FXZ.&/!713H DE

{1 TERMINANT=,E15,7)
IF(DET1#DET2)200,209,102
102 DET1=DET2
101 CONTINUE
“ NST==1

MRITE(B,103)

103 FORMAT(SSH NO ZERO CROSSINGS FQUNO IN RANGE)
GO 70 310
ITERATION (PHASE 2)

200 Fi=sXAM=DL AM
F2=XAM
IF(IEPS~8)203,203,202"

202 1EPS=8

203 CONTINUE
D0207 1=1,10
IF(1-1)205,205,204

204 Fi=XAM
DETI=DET

205 CONTINUE
XAM=(Fi*DET2=F2+«DET1{)/(DET2=DETY)
A=ALOGI{Q(XAM)
TEX=KINT(A)
EPS=10,04+( [EPS~IEX=1)
HSUBs(XAM~F{)
IF(XAM=HSUB*EPS 206,209,209

206 CONTINUE
IF{]1=-11250,250,255

250 FINT=F2=-XAM
CF=0,2

251 FR=XAM+CF#FINT
CALL FORCEP(FR NE,NJ,T,XMU,XNU,E,A,B,NC,NL,UKD,DEL,F.MC,1Q)
CALL VARDET(NL ,NL,NL,DET,UKD,36}
IF(DET«DET2)252,253,254

252 CF=CF+0,1
GO T0O 25%

253 XAM=FR ¢
GO 70 209 '

254 F2sFR
PET2=DET
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Ind

Master programme FORCEZ-RICTANGULAR PLATE listing continued,

(q-svstem).

255
207

208

209
354

356

414
412

401
410
408
360

328
359

350

310
500

CALL FORCEP(XAM,NE,NJ,T,XMU,XNU,E,A,B,NC,NL,UKD,DEL ,F,MC,IQ)
CALL VARDET(NL,NL,NL,DET,UKD,36)

CONTINUE

WRITE(B,208)F ,DETL,XAM,DET

FORMAT(///36H ITERATION TERMINATED AFTER 10 STEPS//22H PREVIOQUS
1LESTIMATE =,E16.8,13H DETERMINANT=,E16,8///18K CURRENT ESTIMATE=,

2616,8,1{3H DETERMINANT=,E16.,8//22H CURRENT ESTIMATE USED)

CONT INUE

VECTOR EVALUATION (PHASE 3)

CALL FORCEP(XAM,NE ,NJ,T,XMU XNU,E,A,B,NC,NL,UKD,DEL ,F.MC,IQ)
IF(MR,EQ,1)G60 TO 356

CALL MOOE(NL,NL,NL,UKD,36,X,XAM})

G0 TO 310

IF(K,NE.1)GO TO 408

D0410 I=1,MC

IFCI.NE.1)GO TO 412

WRITE(6,414)

FORMAT{13H REDUNDANCIES)

CONT INUE

IF(IQ(1),EQ.0)1GO TO 410

WRITE(6,401)1Q(1)

FORMAT(16)

CONTINUE

WRITE(6,360)XAM

FORMAT(11H FREQUENCY=,F12,6) ,
WRITE(6,358)((1,J,DEL(T,J),J=1,NL),I=1,MC)
FORMAT (24K UNIT MATRIX OF UNKNQOWNS//3(16,2H .,12,3%X,E19.11,2%X))
WRITE(6,359)((1,J,F(1,J),d=1,NL),Is1,NL)

FORMAT(38H STRUCTURAL DYNAMIC FLEXIBILITY MATRIX///3(14,2K ,,12,3X

1,E19,11,2X))
WRITE(H,350) ((KK,J,UKD(KK,dJ),v=1,NL) ,KK=1,NL) .
FORMAT(36H STRUCTURAL DYNAMIC STIFFNESS MATRIX///3(14.2H ,.12,3X,E
119.11,2%))
CONT INUE
CONT INUE
STOP

END
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A.S.A, Fortran listing of subroutine FORCE (q-system).

Table L6 .

OO0

12

SUBROUTINE FORCEP(OMEGA ,NE,NJ,T,XMU,XNU,E,A,B,NC,NL,UKD,DEL,F,MC,
11Q)
JOHN ROBINSON, I.S.V,R,
THE RANK FORCE METHOD FOR TwO DIMENSIONAL RECTANGULAR
PLATE STRUCTURES, VIBRATIUN ANALYSIS,
DIMENSION OM(B84,108),FMD(12,12)
DIMENSION UKD(356,36),DFEL(84,30) ,F(36,36),IDEP(84),XMAX(84),1Q(84)
DIMENSION DELA(12,36),DELB(36,12),FDA(12,36),DF(36,36),C(36,72)
DIMENSION MDEP(36),WMAX(30),0Q(36) ,PAR(AG8,12),PHI(48,12),J0(84)
COMMON OM
EQUIVALENCE(MDEP(1),0M(1,74)), (WMAX(1),0M(1,75)),(LQ(L1),0M(L,76)),
f(FDA(1,1),0M(1,80)),(DELB({,11,0M(1,86)),(DELA(CL,1),0M(1,92)) , (DF(
21,1),0M(01,92)),(CCL,1),0M0L,77)),(PARCE 1), 0MCL,95)),(PHICE,1),0M(
A1,102))
Mi=12«NE
Ni=3eNJ
LM=MieN]
MC=M{+NC
NL=N{=NC
N2=21
1, INITIAL NULL MATRIX
0012 I={,MC
DO12 J=1,LM
OM(TI,4)=0,0
2, EQUILIBRIUM EQUATIONS BY METHOD OF SECTIONS,
OM{1,5),0M¢1,17),0M(1,29),0M(2,1),0M(2,13),0M(2,25),0M(3,22),
10MI3,33),0M064,7),0M(4,19),0M(4,31),0M(4,41),0M(4,53),0M(04,65),0MK(5
2,3),0M(5,1{5),0M(5,27),0M(5,37),0M(5,49),0M(5,61),0M(6,2%),0M(6,36)
3,0M(6,58),0M(6,69),0M(7,43),0M(7,55),0M(7,67),0M(8,39),0M(8,51),0M
4(8,63),0M(9,59),0M(9,72)=1,3333
OM(3,82),0M(6,91),0M(9,100)=~1,3333
OM{3,10),0M(3,21),0M(6,11),0M(0,24),0M(6,46),0M(6,87),0M(8,47
1),0M(6,60)=0,6667
OM(3,5),0M(6,7),0M(6,41),0M(9,43)=0,888%
OM(3,34),0M(6,35),0M(6,70),0M(9,71)=2,0
M{3,17),0M(6,19),0M(B,53),0M(9,55)=2,6667
OM({3,29),0M(6,31),0M(6,65),0M(9,67)=4,4445
OM(3,85),0M(6,94),0M(9,103)=~2,6667
OM(3,88),0M(6,97),0M(9,106)=-4,0
OM(10,8),0M(10,44),0MC11,4),0M(11,40),0M(12,9),0M(13%,6),0M(13
1,20),0M(13,42),0M(13,56),0M(14,2),0M(14,16),0M(14,38),0M(14,52),0M
2015,10),0M0135,21),0M(16,18),0M(16,32),0M(16,54),0M(16,68),0M(17,14
3),0M(317,28),0M(17,50),0M(17,64),0M(18,22),0M(18,33),0M(19,30),0M(}
49,66),0M{20,26),0M(20,62),0M(24,34)=1,5
OM(12,76),0M015,91),0M(18,94),0M(21,97)s~1,5
OM(12,12),0M(142,45),0M(15,11),0M(15,24),0M(15,46),0M(15,57),0
iM(18,23),0M(18,36),0M(16,58),0M(18,69),0M(21,55),0M(21,70)=0,75




366

Subroutine FORCEP listing continued. (g-system).

800

26

29

27

30

32

33

OM(12,44),0M(15,82),0M(12,56),0M(18,54),0M(18,68),0M(21,66)=
11,125

OM(12,8),0M(15,6),0M(15,20),0M018,18),0M(18,32),0M(21,30)=
13,375 . '

OM(12,73),0M(15,82),0M(18,85),0M(21,881=2=3,0

OM(1,9),0M(1,10),0M(1,21),0M(1,22),0M(1,33),0M(1,34),0M(4,11)
1,0M(4,12),0M(4,23),0M(4,24),0M(4,35),0M(4,36),0M(4,45),0M(4,46),0M
2(4,57),0M(4,58),0M(4,69),0M(4,70),0M(7,47),0M(7,48),0M(7,59),0M(7,
360),0M(7,71),0M(7,72),0M(40,91,0M(40,12),04(10,45),0M(10,48),0M(13
4,10),0M013,14),0M0¢3,2¢),0M(013,24),0M013,46),0M(13,47),0M(43,57),0
SM(13,60),0M(16,%22),0M(16,23),0UM(16,33),0M(16,36),0M(16,58),0M(16,5
69),0M(16,69),0M(16,72),0M(19,34),0M(19,35),0M(19,70),0M(19,711=0,5

OM(1,73),0M(01,82),0M(1,85),0M(1,88),0M02,74),0M(2,83),0M(2,86
1),0M(2,89),0M(3,75),0M(3,64),UM(3,87),0M(3,90),0M(4,76),0M(4,91),0
2M(4,94),0M(4,97),0M(5,77),0M(5,92),0M(5,95),0M(5,98),0M(6,78),0M(6

3,93) ,0M(6,96),0M(6,99) ,0M(7,79),0M(7,100),0M(7,103),0M(7,106)},0M(8
4,80),0M(8,101),0M(8,104),0M(8,107),0M(9,81),0M(9,102),0M(9,105),0M
5(9,108),0M(10,73),0M010,70),00(10,79),0M(11,75),0M(11,78),0M{11,81
6),0M(12,74),0M(12,77),0M(12,80),0M(13,82),0M(13,91),0M(13,100),0M(
714,84),0M(14,93),0M(16,102),0M(15,83),0M(15,92),0M(15,101),0M(1b,8
85),0M(16,94),0M(16,103),0M(17,87),0M(17,96),0M(17,105),0M(18,86),0
9M({18,85),0M(18,104),0M(19,88),0M(19,97),0K(19,106),0M(20,901,0M(20
1,99),0M(20,108),0M(21,89),0M(21,98),0M(21,107)=~1,0

SOLUTION OF EQUATIONS

CALL RANTEC(OM,N2,MC,LM,84,84,108,IDEP,XMAX,1Q)
KRITE(®,800)

FORMAT (6H MARKY{)

CALL PARDER(OM,I1Q,N2,MC,84,108,N)
KP=14=NC=NL

Dp2g 1=1,N2

D029 J=lLM=13,1M

OMINZ2e¢ ], J+KPI=0OM(L , J)

ENERGY EQUATIGONS

CALL FMDAO(A B, T,E XMU XNU,OMEGA ,FMD}
D027 1=1,12

RO27 Jd=1,182

FMD(OI,J)=10, 0endxFMD(],J)

JU=E0

L0333 M=1,NE

0030 1=1,N

DO3C U=y ,12

N NL NN

PAR(T,J)=0M(N2+] ,JK)

CALL MATMULT(PAR,FMD,PHI N,12,12,48,12,12)
D032 I=1,N '
Do3z J=1,12

wK=J+J,)

OM(I+N2,JKI=PRI(],J)

wdmJde i 2

CONTINUE




Subroutine FORCEZP listing continued., (g-system).
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46
48

8§02
600

34

25

38

40

42

44

804

D046 I=1,N2

D046 J=LM~13 LM

OM{I,J)=0M(NZ2+],JtKpP)

D048 I=N2+1,MC

DOGE J=Mi+1l , LM

OM(1,4)=0.,0

CALL RANTEC{OM N2Z+N,MC LM, 84,064,108, I0EP,XMAX,JQ)
HRITE(S,802) '
FORMAT(6H MARKZ)
CONTINUE

CALL REAR(OM MC,LM,84,108,XCH)
DEL MATRIX

D034 I=1,MC

D034 JsMC+1 LM
L=J=M(C
DELCT,L)==0OM(T,J)
D023 1=1,NL

Do23 J=1,NL
F(I1,J1=20,0

11=0

D044 M=1,NE

pO38 1=1,12

D038 J=i,NL

IK=1+11

DELACI ,J)=DEL(IK,J)
D0&C 1=1,12

- b040 Jsi,NL

DELB{J, D)=DELA(],J)

CALL MATMULT(FMO,DELA,FOA,12,NL,12,12,36,12)
CALL MATMULT(DELB,FDA,DF,NL,NL,12,3b,36,12)
0042 I=1,NL

D042 J=1,NL

FOIL,Go=F0T,J)4DF 0L, )

IT=11+42

CONTINUE

STRUCTURAL DYNAMIC STIFFNESS MATRIX

CALL MATINV(F,UKD,C.NL,36,36,72,MDEP,WMAX L Q)
WRITE(6,804)

FORMAT(6H MARK3Z)

RETURN

END
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A.S. A. Fortran listing of master programme FORCZ-
RAECTANGULAR PLATE. (s-system).

Table 47,

OO0

&5

87
4086
SOO

§8

16

90

i8

700

800
702
802
704

804

706
806

708

MASTER FORCE~-RECTANGULAR PLATE

JOHN ROBINSON, I,8.V.R,

VIBRATION ANALYSIS OF TwWO DIMENSIONAL RECTANGULAR PLATE
STRUCTURES USING THE RANK FORCE METHOD,

DIMENSION X{(36),XXAM(2),DOLAME2) NNST(2),I1EPS(2),LSN(6,4)
DIMENSION IC(12),UKD(36,36),DEL(84,36) ,F(36,36),0M(84,408),1Q(84)
COMMON OM

EQUIVALENCE (DEL(f,.1),0M05,1)),(UKD(1,1),0M(1,37)),(F(},1),0M(1,58
1))

READ(5,85)KASES

FORMAT(I)

DO500 KA=1,KASES

WRITE(B,87)KA

FORMAT(14H CASE NUMBER s i1}

WRITE(6,4086)

FORMAT(23H JOHN ROBINSON T1.S.V,R,)

WRITE(B,300)

FORMAT(35H PROGRAM FORCE~RECTANGULAR PLATE,)

READ(5,88)KE

FORMAT([2)

WRITE(H,16)KE

FORMAT(42H NUMBER (OF FREQUENCIES BEING INVESTIGATED=,14)
READ(5,90)(XXAM(K) ,DDLAM(K) ,NNST(K) ,JIEPS(K) ,Kni ,KE)
FORMAT(2F12.,6,14,13)

WRITE(G, 18I (XXAM(K) ,DDLAMIK) ,MNST(K),TIEPS(K) ,K=] ,KE} :
FORMAT( 23K ASSUMED FREQUENCY VATA///33H LOWER ESTIMATE STeEp SIZE N
1ST SIG//7/7{2F20,6,14,13))

READ(5,700)NE,NJ

FORMAT(12,14)

WKRITE(B,800)INE, NJ

FORMAT(20H NUMBER QOF ELEMENTS=,13//18M NUMBER OF JOINTS=,.1%)
READ(S 7020 CLLSNCT  J) U314} I NE]

FORMAT(I2,314)

KRITE(S,802){({LSN(],J),J=1,4),1=1,NE)

FORMAT(25H ELEMENT SPECIFYING NODES//(4141))
READ(5,704)7T,XMU,XNU,E

FORMAT(3F{10,3,E9,1)

WRITE(B,804)T,XMU,XNU,E

FORMAT(IT7H PANEL THICKNESS=,F7,4//18H MATERIAL DENSITYS.F7.4//17H
{POISSON'S RATIO=,FT.4//717H YOUNG'S MODULUS=,E9,1)
READ(5,706)A,8

FORMAT(2F10,3)

WRITE(6,806)A,8

FORMAT(21H FINITE ELEMENT SIZES//3H A=,F7.3//3rW B=,F7.3)
READ{5,708INC,(ICIN) N=1,NC)

FORMAT(12,1214)
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Master programme FORCE-RECTANGULAR PLATZ listing continued.

(s=sj3 rstem).

WRITE(6,808)NC, (IC(N),N={,NC)
808 FORMAT(23H NUMBER OQF CONSTRAINTS=,14///20H IMPOSED CONSTRAINTS///(
11214))
00310 K=1,KE
XAM=XXAaM{K )
15 DLAM=ODLAM(K)
NST=NNSTIK)
IERPS=ITEPSI(K)
MRITE(6,14)K,XAM, DLAM NST, 1EPS
14 FORNAT(i5H FREQUENCY DATA,14/7/5H XAM=,F12.6,3%,6H OLAM=,F12,6,3X,
15H NST=,14,6H JEPS=,13)
Call FORCEP(XAM NE NJ,T,XMU XNU,E, A,B,NC, IC,NL UKD, DEL ,F.MC.LLSN,
i1a)
CALL VARDET(NL ,NL,NL,CETY,UKD,36)
HRITE(H,400)XAM,DET
400 FORMAT(17H LOWER FREQUENCY=,F12.6///13H DETERMINANT=,E{5.7)

DOICY J=t,NST
XAM= XAH+DLAM
CALL FORCEP(XAM, NE JNJL T XMYU XNY B, 4,8, NC 1C,NL, UKD, DEL ,F, MC,LSN,
11Q)
CALL VARDET(NL,NL,NL,DET2,UKD¢36)
WRITE(6,402)J,XAM,DET?2
402 FORMAT(13H STEP NUMBER=,13///19H CURRENT FREQUENCY=,F12.6///13K DE
ITERMINANT=,E15,7)
IF(DET{*DET21200,209,102
102 DETi=DET2
101 CONTINUE
NS T=
. WRITE(6,103)
103 FORMAT(33H NO ZERO CROSSINGS FOUND IN RANGE)
GO TQ 310
c ITERATION (PHASE 2)
200 Fi=XxAM=DLAM
' F2sxAM
IF{IEPS-8)203,203, 202
202 1EPS=8
203 CONTINUE
00207 1=1,
IF(I~1)205 205 304
204 Fi=XAM
DET1=DET
205 CONTINUE
KAM=(F{*DET2~F2+DET{)/(DET2-DET!)
ASALOGIO(XAM)
IEX=KINT(A)
EPS=10,0*=x(JEPS~[EX=1{)
HSUB=( X AM=F1) .
IF(XAM=HSUB*EPS)206,209,209




370

(s-system).

206 CONTINUE
IF(I~1)250,250,255
250 FINT=F2~XAM
CF=0,2
251 FR=XAM$CF®FINT
CALL FORCEP(FR ,NE,NJ,T,XMU,XNU,E,A,B ,NC,IC,NL,UKD,DEL,F,MC,LSN,
11Q)
CALL VARDET(NL,NL,NL,DET,UKD,36)
[F(DET#DET2)252,253,254
252 CF=CF+0,1
GO . T0 251
253 XAM=FR
GO 10 209
254 F2=FR
DETZ=DET
255 CALL FORCEP(XAM,NE,NJ,T,XmU, XU ,E,A,B,NC,IC,NL,UKD,DEL,F,MC,LSN,
11Q)
CaLlL VARDET(NL,NL,NL,DET,UKD,386)
207 CONTINUE
WRITE(6,208)F1,DETY,XAM,DET
208 FORMAT(///36H ITERATION TERMINATED AFTER 10 STEPS//22H PREVIOUS
1ESTIMATE =,E16,8,134 DETERMINANT=,E16,8///18K CURRENT ESTIMATE=,
2E16,8,13H DETERMINANT=,E406,8//22H CURRENT ESTIMATE USED)
209 CONTINUE
VECTOR EVALUATION (PHASE 3)
CALL FORCEP(XAM,NE,NJ,T,XmU,XNy,E, A, B,NC,IC,NL,UKD,DEL,F,.MC,LSN,
11Q)
CALL MODE(NL NL,NL,UKD,36,X,XAM)
310 CONTINUE
500 CONTINUE

STOP
END
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A.S.A. Fortran listing of subroutine FORCZP. (s-system).

Table 48

OO0

10

12

16
19

20

21

SUBROUTINE FORCEP(UOMEGA,NE,NJ,T,XMU,XNU,E,4,B,NC,I1C,NL,UKD,DEL,F,
{MC,LSN, 1Q)

JOHN ROBINSON, 1,$.V.,R.

THE RANK FORCE METHOD FOR TwO DIMENSIONAL RECTANGULAR

PLATE STRUCTURES, VIBRATIUN ANALYSIS, ‘
DIMENSION LN(6,12),0M(84,108),LSN(6,4),FMD(12,12),1C(12)
DIMENSION UKD(36,36),DEL(bB4,30) ,F(36,36),10EP(84),XMAX(84),1Q(84)
. DIMENSION DELA(12,36),DELB(36,12),FDA(12,36) ,DF(36,36),C(38,72)
DIMENSION MDEP(36) ,WMAX(36),LU(36),PAR(48,12),PRI(48,12)

COMMON OM

EQUIVALENCE(MDEP(1),0M(1,74)), (WMAX(1),0M(1,75)),(LQ(1),0M(1,76)),
FCFDACL 1) ,0M(1,80)),(DELBLT, 1) ,0M(1,86)),(DELA(L,1),0M(1,92)0),(DF(
21,10 ,0M01,92)),(C04,1),0MC1,77)),(PARCL,1),0M01,95) ), (PHI(L,1),0M(
31,102)) , '

MATRIX OF ELEMENT LOAD NUMBERS

N=Q

DO1G M=1,NE

DO1O NN=1,12

NaN+1{

LN(M NN)=N

CONTINUE

f, INITIAL NULL MATRIX

Mi=12«NE

Ni=3aN

LM=M{+N]

MC=M{eNC

NL=Ni=NC P

DOt12 I=1{,MC

DOL2 J=1,LM

OM(T,J)=0,0

2, JOINT EQUILIBRIUM EQUATIONS

LL=1

D018 JN=1,NJ

D015 M=1,NE

DO17 L=1,4

IF(LSN(M,L)=UNY17,16,17

GO TQ(19,20,21,22).L

LLl=1

GC 10 3

LLL=4

GO TQ 3

LLL=7

GO T0 3

LLL=10

OMOLL,LNIM, LLL))=1,0

OMOLL+1,LN(M LLL*1))=1,0

OM(LL+2,LN(M, LLL+2))51,0

GO 710 15
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17
15

18

800

26

29

27

30

CONT INUE

CONTINUE

LL=Li+3

CONT INUE

REACTIONS AND APPLIED LOAUS
IF(NC,EQ,0)G0 TO 4
NNJ=1 _

D06 N=1{,NC

OM{IC(N) Mi+N)=~1,0
D07 1=1{,Nt

P09 N={,NC
IF(LL,EQ,ICINYIGO TOQ 7
CONTINUE
OM(I,MC¥NNJ)==1,0
NNJ=NNJ+1

CONTINUE

GO 710 5

D023 1=1,Nt

ME=MC+ ]

DO23 J=M5 M5

OM(y,d)= -1 0
CONTINUE

SOLUTION OF EQUATINONS
CALL RANTEC(OM, N1 ,MC, LM, 84,84,108, IDEP XMAX 1Q)
WRITE(B,800)

FORH&?(&H MARKYL )

CALL PARDER(OM,IQ,N{,MC,84,100,N)
KP=14~-NC=NL

D029 I=1,Nt

Do29 U= M~13,0LM

OMINI+],JEKPI=0M{] , J)

ENERGY EQUATIONS

CALL FMDB0(A,B,7T,E,XMU,XNU,OMEGA, FMD)
bo27 1=1,12

poz27 J=1,12

FMDOL ,JI=10,0%ndeFMD(T,J)

NS ESe

D033 M=i,NE

P03¢ I=4{,N

DO30 J=mi, 12

JKEJeJ,]

PARCL,J)SOMINI+],JK)

CALL MQTMULT(PAR FMD ,PHI,N,12,12,48,12,12)
PO32 1=1,N

JK=JeJdd

OMOTI¥NE ,JKI=PHI(]I ,J)

JsJddei2

CONTINUE

D046 1=1,NI

D046 J=LM=13,LM
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Subroubtine FORCEP listing continued. (s-system).

66 OM(1,J)=0M(N{+],J¥KP)
D0g& 1=Ny+1,MC
PO4s J=Mi+l, LM
48 OM(],J31=0,0
CALL RANTEC(OM,Ni#N.MC,LM,84,04,108,10EP,XMAX,1Q)
WRITE(6,802)
802 FORMAT(er MARKZ2)
600 CONTINUE _
CaLl REAR(OM,MC,LM,84,108,XCH)
DEL MATRIX o
Do3a 1=1,MC
D034 J=HMC+1,LM
L=eJ=MC
24 DEL(I ,L)=-0OM(],J]
po25 1={,NL
DO23 J=i,NL
25 F(1,41=0,0
I1=0 -
D044 M=1,NE
DO38 I=t,12
DO3& J=i,NL
IK=]+11
38 DELALT,Ji=DEL{]IK,J)
DO4C 1=my1,12
Po&C J=mi  NL
40 DELB(J, II=DELA(TL . J)
CALL MATMULT(FMD ,DELA,FDA,12,NL,12,12,36,12)
CALL WATMULT(DEL®,FDA,DF,N.,NL,12,36,36,12)
D04z I=1,NL
D0&2 J=i , NL
42 FII, J)=F(1,J)+DF(T,J)
Iis=ll+12
44 CONTINUE .
STRUCTURAL DYNAMIC STIFFNESS MATRIX
CALL MATINV(F,UKD,C,NL,36,36,72,MDEP,WHAX,[ Q)
WRITE(B,804)
804 FORMAT(6H MARK3)
RETURN
END
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APPENDIX 5.
PRACTICAL APPLICATION OF AN AIRCRAFT STATIC STRUCTURAL
ANALYSIS SYSTEM.

Synopsis.,

The first part of this appendix discusses practical
structural idealization, that is, the transformation of an
actual structure into a practical model. Examples of typical
aircraft structural idealizations are given, The practical
model is established so that it meets the requirements of
the computer programme which will be used to analyse the
given structure. In order to use a structural computer
programme certain data are prepared and input to the programme,
Typical data required and comments on its preparation are
- given, examples are used for further clarification., The
general discussion is based on static structural analysis
but it is equally applicable to structurel vibration analysis.
The discussions are typical of a practical computerized
system used in the aircraft industry, however, even at the
research stage of analysis one should consider the possible
future application, Initial structural research using finite
element techniques is carried out using simple structural
models, even then the work has to be computerized, particularly
for vibration investigations. Therefore, a great deal of the
discussion for practical analysis is relevant at the research
stage since this helps in developing the work from the

standpoint of theoretical formulation, numerical techniques

and computer programme formulation.
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Introduction.

To analyse & structure using finite element
techniques recuires a computerized system. In aircraft
engineering, and to a lesser extent in civil engineering,
computers are actively employed for development and design
purposes., It is essential that an engineer thinks in terms
of computerized design since a great deal of laborious
work can be removed from his normal activities, thus allowing
more time for new thinking. A computerized system enables
many more alternative designs to be considered in a much
shorter time than ﬁould normally be possible. A large number
of designs are carried out using experience and by comparison
with similar previously designed structures. When the
structural configuration is a new concept experience in
selecting the critical loading case for a particular piece
of structure becomes questionable. this is when a computerized
system is most effective. On the other hand one must
appreciate that all development and design activities are
not easy to computerize, if at all, and in any case the
results obtained from any computerized system are influenced
very strongly by engineering judgement. The biggest
disadvantage of a computerized system is in acquiring one
in the first place, and having acquired one establishing

confidence in its capabilities. It must then be maintained
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to meet changing recuirements. To develop a comprehensive
system capabie of analysing large structures efficiently
costs a great deal of money and takes many years to write
and check out. The development of such a system also requires
experienced and qualified theorists, engineers and computer
programmers. An adequate computer and supporting devices
are also essential including a reliable staff. In order to
apply a computer programme it is absoluteiy necessary to
have good documentation for the users manual. This point
cannot be emphasized enough. Certain checks can be incorporated
into a programme but it is impossible to include a number
of important ones. They are, ensuring that the structural
element properties (cross sectional area, second mo@ent of
area, plate thickness, material constants), nodal coordinates
and applied loads are correct or that the structural constraints
have been imposed in the right manner. This responsibility
lies with the engineer who is preparing the programme
input data. Much money is wasted on bad computer runs because
of these types of errors and wrong interpretation of the
users manual. If an analysis was run on an I.B.M. 7094
Computer which took one hour to obtain a solution it would
cost 3450(%]_61 as a straight conversion). If the input
was wrong this would be a write—off, and this doesn't
include the delay in obtaining the results.

| To try and give at least some indication of
computer utilization for structural analysis in the aircraft

30,31
industry a world survey was undertaken by the author .
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Some of the results are shown in figure 75 . This figure
shows the computer running time for structural analysis
as a percentage of the total computer running time, denoted
by C%. The numbers in parentheses give the years over
which the percentage is based. In the survey it was requested
that 3

1. The computer running time for structural analysis

should include the phases ;

1.1 Stress and deflection distributions.

1.2 Generation of the structural flexibility
or stiffness matrix for dynamic analysis,
based on lumped masses.

1.3 Phases 1.1 and 1.2 should include research,
development and production work.

2. The total computer running time should be based
on engineering work only, that is, stress dynamics,

serodynamics, weights and loading.

Figure 75 can be misleading and references 30 and 31 shouid

be consulted for further details, limitations and remarks

for the survey.
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A5,1 Practical structural idealization.

Probably the most important
step in an apalysis is the transformation of an actual
structure into a practical model, this is known as
"structural idealization". the degree and nature of the
idealization obviously depends on the computer available,
programme capabilities, type of structure being analysed,
time and money allocated and the desired accuracy of the
results. However, the most valuable asset in structural
idealization is engineering judgement. The first step in
an analysis is to obtain drawings of the structure to be
analysed and with members of the wvarious groups involved
discuss the structural problem. Points for discussion are ;

1. Stage»of design.

If the structure is at the project
stage the concept will be continually changing.
Under these circumstances the idealization would
not be as rigorous as in & production analysis.

2. Hierarchy of importance.

If for a particular analysis
critical structural areas exist then these will
infiuence the idealization. in areas of importance
a more rigorous idealization is adopted, this
would include using.a larger number of disére%e
(finite) elements and a more complex structural

element representation as compared with the

unimportant areas,
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3. Loading cases.
Much effort can be saved if the
ceritical loading cases for a particular structure
can be isolated., This is not always possible,
particularly wiﬁh new concepts.
4. Results required, |
Time can be saved, both manually
and computerwise, by only asking for results
which are essential. Some items which can also be
teken advantage of;, if applicable, are ;
4.1 Material of structural elements is
constant.
4.2 Only certain structural displacements
are required.
4,3 No vibration characteristics are
requested,
4.4 Constant temperature enviroment.
4,5 Using as simple an element representation
a8 possible which is compatible
with the immediate requirements.

4,86 No element stresses are required.

Numerous saving devices exist but are obviously dependent
on the programme capabilities. A large amount of work is
required to idealize a structure but the effort can be
reduced by good work planning. If many loading cases are

to be considered each case will generally design a particular
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part of the structure. By careful consideration a few
idealizations can be used to satisfy many loading cases.

In the case of cellular semi-monocoque structures the
section properties of the idealized structure should be
the same as the actual structure. However, for this type

of structure, this recuirement cannot be satisfie

Qu

; 2
numerical example showing this is given in reference 31.
Therefore,; when idealizing such a structure the loading
case becomes a strong criteria. For example, in aircraft
design if a "rolling case" is being comnsidered in the
design of a fin then it is desirable +that the section
properties about the rolling axis are correct; in this
ﬁase the section properties about the pitching axis would
be in error, but this is perhaps not too drastic.

To discuss structural idealization further consider
an aircraft wing, see figures 76 to 80 . Typical endload
carrying elements are the stringers, rib caps, spar caps

-

and, depending on the element representation, the panels.

To idealize a wing structure siringers are lumped together

to form an equivalent endload carrying member. 1f the

plate type elements are assumed bto carry shear only then

an equivalent amount of skin areca is added to form the
equivalent area, see figure 81. Reference 31 should be consulied
for further details. In the case of a wing surface design

a grid system is formed by the equivalent endload carrying
elements and chordwise ribs, plate elements being bounded

by the grid lines, see figures 76 and 77 . the intersection



381
of such lines designate nodal points, however, if for example
&, displacement was required at a point were no intersection
of elements existed a nodal point can be established by
using ficticious grid lines, These ficticious lines don'#t
represent endload carrying elements but are used to advantage
in acquiring information. Therefore, nodal points designate
junction points, load application points, and any other
points were information is desired.,

Having established an idealization
the nodal points are numbered. The method of numbering
is something which improves with experience, in more
sophisticated structural computer programmes the numbering
can be quite arbitrary but avoid using the same number
twice. However, even in the general programme a well prepared
numbering system can save considerable time and increase
the size of problem Which can be analysed, To prepare &an
efficient nﬁmbering system requires more concentrated
effort from the engineer but once a routine is established,
by experience, there will be very little difference in
effort compared with numbering in an arbitrary manner.
One convenient guide line is to number the nodes in as
cyclic a manner as possible. Figures 76, 7T, 78, 79 and 80
show the idealization and numbering system for varioﬁs
parts of a project wing design. These were established by
the author at the Boeing Company, Seattle, U.S.,A. for
static and lumped mass vibration analyses. Other idealizations

are shown in figures 82 and 83. When idealizing a structure
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the placing of a node on an element boundary which is not
one of the element specifying nodes must be avoided. This
error often occurs, particularly when first meeting the
subject of idealization. 'This error can be seen more clearly
by referring to figure 84 . One method of avoiding this
error is shown in figure 85 , the plate element 1,10,2,12
is now subdivided into two plate elements, 1,10,11 and
1,11,2,12,
In selecting the various types of elements for
an idealization the engineer has to be very careful that
he selects the best type possible for a particular analysis.
the type of element adopted can affect the results considerably
and one can see why engineering judgement and experience
are an asset. Choosing the best elements for an idealization
presents a problem which only lessens with experience based
on continual usage and in many cases on “suck it and see"
approaches., Mr., J. Rotter, Dynamics uUroup, Airplane Jivision,
The Boeing Company, Seattle, U.S.A., carried out a very
useful study using a cantilever spar structure, figure 86,
and the displacement approach of analysis. A computer
programme called "COSMOS"ﬁ;as used to obtain the results.
three types of element representations were used ;
1, Element stiffness matrix derived by application

of beam theory but extending the derivation

to include shear web flexibility. Zlement

type A, see figure 87(a).

2. Element stiffness matrix derived by assembling



the stiffnesses of constant endload elements
and a web., Continuity between web and chords
does not exist between nodes. #lement type B,
see figure 87(b).

3. Blement stiffnesses derived by assembling
the stiffnesses of constant endload elements
and an isotropic plate element. ‘The stiffness
of the isotropic plate element is itself assembled
using four isotropic triangular plate elementsjo
Continuity between web and chords does not
‘exist between nodes. Zlement type C, see

figure 87 (c).

The vertical deflection of the free end of the spar shown

in figure 86 was evaluated using the various representations
and two applied loading systems, This deflection is compared
with that obtained using engineers bending theory for a

range of element aspect ratios, that is, span of element/ depth
of element. The results are shown in figures 88 and 89,
Therefore, when selecting the various structural element
representations it is essential to consider the applied

loading system, Further, if for example the generalized
boundary vectors for elements meeting at a particular

node did not contain moments or rTotations this would mean

that no moments can be applied to the structure at this

particular node,

383
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A5.2 Programme input data.

Having established an idealization,
numbering system and applied loading system(from the loading
group) the next step is to prepare the computer programme
input data. The best method of presenting data to a keypunch
operator is to write the data down on input sheets which
are arranged similar to an enlarged computer date card,
figure 90, The data is written according to a predetermined
format, decided by the programmer and coordinating engineer.
One method is to write the various input parameters in certain
specified columns on the input sheet, the number of columns
being chosen to accomodate the largest expected value.

This approach works but a more convenient method which

is less prone to error is to write down the parameters
allocated to a line (card) as they come but separating

the individual parameters by a comma, A blank could be used.
The completion of data on a card is indicated by, say, two
commas, Figure 91 shows data prepared to a predetermined
format and figure 92 shows data separated by commas. By
comparing the two forms it can be seen that the use of
commas reduces the chance of error. With the former
presentation one is inclined to use & different type of
input sheet for each kind of data such that the columns to
be used for the various parameters can be clearly marked
and perhaps titled. The latter presentation gives a sﬁandar@
input sheet for 511 data and also reduces the computer

time for reading data. It should be noted from figures 91
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and 92 that some parts of the input data are written
with a decimal point and others without. This 1is very
important and the programme users manual should be carefully
read regarding this éoint.
Input data for a static/vibration structural
analysis would include ;
1.'Noda1 data (nodal point numbers and coordinates
relative to a fixed set of axes). One node
per card.
2. Blement data (type designation, specifying
nodes, section properties and material properties).
One element per card.
3, Structural constraints (number of constrainits,
degrees of freedom to be constrained or reactions).
4, Generalized applied load system ( node, generalized
loads). One node loading per card.

5. Frequency data (number of frequencies, frequency

parameters).

The nodal data is punched as one node per card, the element
data as one element per card, the applied loading system
as one node loading per card. This form of presentation
enables amendments to be made readily and conveniently
to the data. This can be extended to the other forms of
data.

When writing down the element specifying nodes it

is preferable to be systematic. One successful procedure

will now be described. Start at the first node, say 1, the
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node numbering need not commence at 1, and write down

the specifying nodes for all elements meeting at this node,
moving in as cyclic a manner as possible. After an element

is accounted for mark it on an idealization drawing, this
helps in the book keeping. Next move to node 2 and write

down the specifying nodes for elements meeting at this

node, some elements may have been accounted for by consideration
of the previous node., This is were a marking system helps.
Continue this procedure until all nodes have been exhausted.
The final system of element specifying nodes will now be
orderly since the first specifying nodes will be in sequence.
All elements with node 1 in its specifying nodes will

come first, then those with node 2 (if not previously accounted
for by node 1), then node 3, and so on. This helps in
cheéking the work and is most convenient when making
amendments. An example is given in table 49 which is compiled
for the cantilever box structure shown in figure 93 .

Having written down the element specifying nodes the element
data can now be completed systematically. In writing down

the element data many errors can be avoided and time saved

by having two people doing this systematic procedure, that
is, one reading and one writing. A simple check should

now be made, sum the number of structural elements from

the data, do the same using the idealization, and the

two summations should be the same. This check has saved

or produced many red faces, As a final check the whole

procedure should be repeated without actually writing
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down the data but simply changing partners, that is, the
person who was originally writing now does the reading,

and going through the motions, checking with the previously
compiled data. This is a boring task but for the time it
takes compared with hte computer running time and cost,

and schedule delays it is essential. All other data should
have similar checks.,

When all data are completed they are transferred
from input sheets to computer data cards by a keypunch
operator. This now presents a further and very common
source of error. Therefore, a listing of the punched data
should be obtained before running the programme and checked
against the initial input sheet data. Further discussion
on structural idealization and practical computer programme

application can be found in references 31 and 10.
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A5.3 Research stage of structural analysis.

The foregoing discussion has
been concerned with practical computerized structural
analysis. However, even at the research stage of structural
analysis one should consider the possible future application,
which is of course in a practical analysis system. Initial
structural research using finite element techniques is
carried out using simple models. Even then the work has
to be computerized. Therefore, a great deal of the discussion
for praétical analysis applys at the research stage since
this helps in developing the work from the standpoint of
theoretical formulation, numerical techniques and computer
programme formulation. Once a system has been shown to
work on simple models it can then be expanded to large
configurations. When carrying out research in new areas of
analysis many unforseen problems present themselves. These
may be theoretical, numerical or programming. Adopting
simple structural models for initial research appears to be
ideal since one can follow the various steps of an analysis
more readily. Also, the more common simple structural models
have either 'exact’ solutions or have been analysed using
alternative approximate procedures. Simple models can also be
investigated experimentally at low cost. There is no point
in going to large configurations until a new concept or new
development has been tried out on simple known solution
problems. To validate the theoretical work presented in this
thesis a computerized structural enalysis system was written

and developed to analyse simple structural configurations.
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Structural idealization and nodal numbering system

of a fuselage frame.

Fig. 8o2.
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Endload elements,
Plate element.

Endload
element
finishes at

node 11.

Idealization error. This would result in a

discontinuity at node 1ll.

Fig. 8k.
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This is only a fictitious line

used to give continuity. This is

. not an endload element

since none exists,
see figure Ok.

Correction of continuity error.

Figo 85"



AN

400

4 U ] "
Deptl, b= o io.o
UEUS—
Span of
element,
200.0" Area of endlood

elemant = (.0 0

’

Cantilever spar structure.

Fng 86.



Lol

v\
[
r b
»S Element type A.
: I
(a)
v
1(\ P
=S Element type B.
¢ i (b)
Discontinuity of
displacement.
v
L
v\-\l.;.\;»;;y"
— S Element type C.
i i . (e)

Various beam element representations.

Fig. 87.



vertical deflection (inches) .

Moximum

Lo2

A
S0
45
Element A and Endgineers Bending Theory,
&/,
e”’“n‘f.
@-
400 fomm
3.5
m
®
2.
()
3
«
O
30 ’
28
o 2 4. o 8 o) A 14 113 i3 20
Span of efemenb
Depth of element
{000.0 |bs.
rd
/
/]
A
A

Beam deflection due to a 1ateraliload applied at the
free end.

Fig. 88.



Lo3

3s T T T T T T T | I
Element A, Element B and Engineers Bending Theory.
o ¥
O
-
U 13
_§
(-
<
9
e
g 2
kY %
- 3
Lt
— 3
(3 «
J
3 ©
L 2:0
[} &
5
b
3
2
& s
2
8-0 $rom
o 2 4 A 3 10 1z 14 T 18 20
Span of element
Dephs of element
y j0000.0 lhs.
T —
,
g, .
A

joovo.o Ibs.

Beam deflection due to & herizontal differential loading
system applied at the free end.

Fig. 89.



“gaays Jaduy  paopuvls paysabbng ‘06 B4

Gelge L€ |98 |se| pE|EE|2E ~m%Sﬁﬂﬂﬁmmw:wﬁaomﬁstsm\& szl ulorlel gl Lla|s|vig|2z|!

0 "3ovd *3iva

TLINIWINVYL3Q T IwyN

WITFGoMd




Lo5

‘16 big

“Jowsof ﬁmc..igfiu 2dd v buisn  wjop  jopolN

P s N -y . ~ 1 ‘_ ,4\44
T -
11
8| -9}/ sl-lgi6le 6| -lciols el lel 1) VI LI 1] (8le
gl-1ell ol -le|2|e o|-jolol ¢ REERENEARIIBIBEITEE
|
MomﬁnmvS?vm.vvvﬁn.v?o&omwmﬁﬂmmémmmum ﬁqmewNPNﬁVNﬁNuNNNRQ«Q@E.Sm\,ETE Hlotie|dlL |9)s|Pisg}jz] !

‘yivya TVYJON 40 ‘Fovd "3 1vda

" WITGoad TINIWIYVETL =144




406

‘26 - big

‘sowwoy  buijosodss  buisn wyop  jupeN

S |LP|FF|solvPlev 2] P lobles gs les (9t sslbs s las | ig ot lee) szl fozisepe lsniza] el iet |8/ Lifwseiwristler nlotiGgidl L iotisiPlel 2|

30 ‘39Vd ‘31va

"VAva 1vgoN
" Wa1goNd s LNINL¥VL3Q " BWYN




Element | Element  specifang  nodes Materint | * e
Fype. - : code Hockress

A v

/ 5

/ s

! 3

/ 3

I 2z

I pa

z 6

z A
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S 7

3 7

3 4

4 8

»

wlement specifying nodes showing sequence,

this table is only to clarify a point and

is not the actual data format.

fable L49.
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Cantilever box structure.
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