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ABSTRACT
FACULTY OF ENGINEERING AND APPLIED SCIENCE _
INSTITUTE OF SOUND AND VIBRATION RESEARCH ¢

Doctor of Ph1Tosonhy " o «f ' ,' N

. SOUND ATTENUATION IN LINED DUCTS CONTAINING SUBSONIC MEAN FLOWS

by Brian John Tester

'ThTs'investigation js meinTy conoerned;with-a theoretical anaTysis‘of
o the invisoid; perturbed'or'acouéttodfier; at a'particular»freduency,
o in an 1nf1n1te two-dimensional duct of constant €ross- sect1on in which .~
the f]u1d propert1es, other than the mean ax1a1 ve]ocwty, are constant,
| one duct waTT has ‘a un1form, TocaTTy react1ng, frequency dependent wall
: - 1mpedance, the other wall 1s r1g1d
- The penturbed duct field due to an 1nf1n1te, un1form line source,
or the two-d1mens1ona1 Green's funct1on, is forma]]y der1ved for un1form-
:'_ or ‘plug’ flow 1in.the duct, and 15 expressed as an 1nf1n1te sum of
non orthogona] modes -
' The opt1m1sat1on of modaT, ax1a1 attenuat1on rates, in the sense
- defined by Cremer, is examined in detail for zero flow and for 'plug'
flow. 'Cremer's hesult, for the lowest order mode pair'Tndthe'absence j'rﬁ

‘.of f]dw,‘is generalised so that the optimum impedance and attenuation

- -
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rectangular, c1rcu1ar or annular cross-sectwon One qual1f1cat1on

to Cremer S result emerges’ in the der1vat1on of the Green's funct1on

at the 0pt1mum cond1t1on the mode pa1r degenerates 1nto a single mode |
L w1th the expected exponential attenuation rate but this 1s_offset

by an_ampTification rate which is directTy‘proportionaT to the distance

- from the source. In spite of th1s effect the ax1a1 decay rate of the

Green s funct1on can reach a max1mum for a. waTT 1mpedance cTose to
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Cremer's optimum value. The phyéica] mechanism by which this occurs
is understood, qualitatively, with the aid of a ray model. .

Under certain conditions»it is found that not necessari]y all the
Green's function modes in 'plug' flow decay away from the source :
in a particular example it is shown that one mode is spab1a11y amp11f1ed
in the downstream d1rect10n and is a modified form of the well known .

temparal 1nstab111ty of an incompressible vortex sheet adjacent to a

)

single flexible wall.

_An:ana1yt1ca1 study of the modal field in sheared flow reveals that
the pressure and normal particle displacement are constaﬁt through a

boundary layer of arbitrary profile, in the limit as the boundary

layer thickness tends to zero. Thus the physical effects of 'thin'
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boundary Tayers on mode solutions are correctly included in the 'plug'

flow model.  Approximate analytic solutions are obtained for the ;
pressure and normal velocity variations through boundary lTayers to E
first order in a parameter proportional to boundary layer thickness B
and are used to interpret the behaviour of some exact mode solutions. 3
. i
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- - CHAPTER 1

INTRODUCTION

Lining or replac1ng the 1nter1or surfaces of a duct with acousti-
ca11y absorpt1ve structures is a well estab11sh;d method of reduc1ng
| “the sodnd radiation from the duct term1nat1onf The method has been
“ applied with considerable success to the duct systems of aero-engines

that power the Boeing 747, Lockheed Tri-Staf and Dougtas DC-10 aircraft

~and will probably be applied to dther airéraft engines in the near
futdre?. The total effective cost per aircraft*, however, is not
insignificant»and there is an urgent need to reduce costs by,'%or,'

..'examp]e,_imprpying the hoise reduction performance of duct linings and

| dodifying fhe design tobminimise weight and'to simplify thair manu-

facture and insta]]ation ’ |
" The opt1m1sat1on of aero-engine duct 11n1ng design is gw1ded

pr1mar1]y by measurements from duct fac111t1es, scaled aero- englne '
models and from full-scale tests, either on the test bed or ‘in f]ight';
This in itself is a costly procedure, particularly the fu]] -scale tests,
and 1t is a considerable advantage to have available some form of

} theoret1ca11y based model in order to interpret and correldte test data,

to assess the potential of hypothet1ca1 design features and to gu1de the

des1gn of ]1n1ngs Jn project studies and. for future test1ng The leading .

et T A e ;'rs.} 5 ..,—.‘..‘a,._.:c,. - —-:.,- ey TR e AT T «';k"",“)’n"w;ﬂ-’— -.—.’—-r"‘

»,*»-“‘-..9 = ,:«m-c"‘ ,.;'“‘""' .._..“:.a-,.f _"'__,.,- ..:qr..c '“G;. r«r,-—-~.., ,.,._...._,-....,.ﬁ.._.:&

aero-engine and a1rcraft manufacturers have recognised this advantage
and now have mode]s in various stages of deve]opment not sdrprisingly,
most of these models are almost 1dent1ca] to one another.

The overall objectives of the present investigation are (i) to

*A progress report on the deve]opment of duct linings for these and
other aircraft eng1nes, together with cost estimates is given in (1)

MMW




’:fimprove the present understanding of results obtained from the theory

on which these mode]s are based, and (ii) to extend the theory in

“certain resoects To accomp11sh these obJect1ves and to overcome

:'_ dlfflcu1t1es exper1enced with standard methods of formu]at1on it has

been necessary to adopt a more fundamenta] approach than has_ been

usual in this f1e]d ‘and to 1ntroduce methods from other branches of
mathemat1ca] and computational phys1cs

" The models referred to above are meant to represent on]y some of

' ‘the phy51ca1 processes encountered 1n the rea] prob]em, the problem .

i'*can be brlef]y described as fo]lows The rotat1ng mach1nery and the

f',model wh1ch provwdes est1mates of th1s sound reduct1on is descr1bed in R

o

xlcompress1b]e flow field in an unlined duct are responswb]e for creat1ng
" .part of the sound field ex1st1ng outs1de the duct what is the

‘ reduct1on of this part of the sound f1e1d when acoust1ca11y absorpt1ve

structures are p]aced w1th1n the duct? - A typ1ca] 1nsert1on 1oss

»Append1x 1A,
" The 1mportant features and restr1ct1ons of the theoret1ca] bas1s

,for the part-of this 1nsertlon loss' model which describes phys1ca1

processes'within the duct are listed below. where poss1b1e with each

' restr1ct1on, references are g1ven to examples of theoretical stud1es

where that part1cu1ar restriction has been removed However, in order

e toupose y-. sdhb]e.problem,other unacceptab1e restrwctwons have usually. . -

’m’—“-’w R oot .a-Lq,c- - V-‘ AR i g P Faga __.-. v ey ——— Ww-.uwnu_amag;:-mt'

been imposed jn these studies; for examp]e the duct walls may have to
be rigid and/or nonrabsorptive. Therefore, at present, the following

restrictions remain.*

*The except1on to this is the mode] deve]oped by the Genera] Electric Co.

(USA) (8) in which the restrictions in (3), (6) and (7) are partly
or completely relaxed but this model has the restriction that the unper-
-turbed fluid propert1es cannot vary over the duct cross-section.

DN BRI S T Jon b praree i pon s et o




.] The propagat1on of -unsteady or perturbed compress1ble mot1on
(thhin the duct) 1s described by the 11near1sed (2)- (4), 1nv1sc1d
© mass,’ momentum and eneragy conservat1on equat1ons
2. The effect of the acoust1ca11y absorptive structures or duct
‘d11n1ngs on the perturbation field: is represented by a frequency depend-
"ent uniform (5), (6), locaTTy react1ng (7) 1mpedance boundary cond1t1on'
at the geometr1c surface of the 11n1ng i '
1 3.  The duct geometry is two- d1mens1ona1 (rectangular) of constant
‘w1dth or three d1mens1onal of constant rectangular c1rcu]ar or annu]ar
:cross sect1on (9) Each surface or wa]] must have a un1form Iocally
.reacting 1mpedance but th1s can differ between surfaces; for examp]e,‘
f.‘each wall of a rectangu]ar duct can have a: d1fferent 1mpedance
4. The unperturbed propert1es of the f]u1d (e.g. speed of sound
}mean ve]oc1tv) are 1ndependent of ax1a] p051t1on * but mav vary over
the duct cross- section (11). *sif.f'.ff?”', . f
}5. Only steady- state so]ut1ons are coﬁ§7dered (i.e., the equat1ons
‘ ffor the perturbed field are assumed to have 2 harmon1c t1me dependence,
vexp[1mt]) ‘ o L ‘ -
6. It is assumed that the spatlal deoendence of the perturbed f1e1d4
can be descr1bed by a finite sum of modes, the ax1a1 =X dependence of
each mode is of the form exp[&k x] where k., is 1ndependent of 'x
:;izﬁa—&adwtgi§s2f~vnsou -&a7*j~a%§= uadeﬁv;izt ;:intgche““t*tixasecﬂnplex:,zna,«aki
so that each mode decays exponent1a11y in either the pos1t1ve or negative
x,d1rect1on The va]ue of k and the dependence of each mode on the
transverse spat1al coord1nate(s) are determ1ned by the frequency, duct
geometry, the’ unperturbed f]u1d propert1es and the 1mpedance boundary

: cond1t1ons S ,,'

Y R

7. The modes that decay towards the duct term1nat1on are usua]]y

---—---

) *Mungur (10) has very recent]v proposed a method of numerwcal calcu]at1on
for overcom1ng th1s restr1ct1on , , o
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rates of var1ous c1rcumferent1a1 modes in Tined c1rcu1ar and annular

Essentially Chapters 2 and 3 are concerned with certain aspects of

the first stage of develobment Chapters 4 and 5 with the second stage
and Chapter 6 with the th1rd stage although, 1nev1tab]y, there 1S some
degree of over]ao between chapters

W1th some except1ons (16) the resu]ts from the most recent and

' comp]ete of these ‘'insertion 1oss models are in good quaT1tat1ve, and
‘often quantitative, agreement “with experimental measurements (see, e.g.,

~Appendix 1A for 'plug flow' model results and references (16a), ( 57)

for sbear flow model resutts} and consequently, in genera1, the validity-
of the theoretical framework outlined above need'not be quest%Oned, |
except in specia1 cases. '.fnddistinct contrast very 11tt1e exoerimenta1\
ev1dence is ava11ab1e which is sufficiently precise to unequivocally
establish the va11d1ty of the theoretical framework in detailed quant1t-
ative terms. To the author's know]edge only two sets of measurements
exist which can be regarded}as in fujty'conVincingiy‘close quantitatiue
agreement with theoretica1 results‘t' the measured attenuatwon rates of
the Teast attenuated mode in a lined rectangu]ar duct containing (sheared)

mean flow reported by Kurze and Allen (17) and the measured attenuat1on

ducts, conta1n1ng a fluid otherwise at rest obtained by Snow (]8) An

_examp?e.of Snow s (18) resu]ts is reproduced in F1gure (1.1) as h1s results

are not yet available in the open 1iterature. The theoretical attenuation

\%ﬁfﬁazkﬁhFﬂmpm@q%)hxsb&m~mﬂc1§2¢5# _m&‘%a#mmSﬂutw:baﬂnasz

e ,; g ST R e

Morse and Ingard (14), using measured 1mpedance values of a samp]e of the
duct lining structure, obtawned by the standing wave tube method.

One of the aims of the present work is to investigate the opt1-

. misation of theoretical attenuation rates of duct modes, in the

particular sense defined by Cremer (19). .The relevance of this particular
type of optimisation to practical problems is discussed in Appendix 1B.
Cremer's (19) result is extended and generalised in Chapters 2 and 4 but

in each case this is preceded by the derivation of an expression for a

s



tz " green's function, defined as the.acoustic or perturbed pressure within

:an infinite, two;dimensional (rectangular) duct doe to a oniform line
~ source of unit strength. ' . ‘h - | |
| ihevGreen's function has been‘obtained tor three.reasons:. first
jt-can be used to ca]culateithe acoustic orhperturbed field due to
'gnx_two-dimehsionai soﬁrce distribution._~_Second,;the method of -
derivation shows:quite c]ear]y_that Cremer'si(19),0ptimom condition is _'

'Aa special case of mode degeneracy. In-effect-a new mode solution

appears at this condition which does. not decay 1n a simple exponentialiir
fashion and hence the optimum moda] decay rates obtained by Cremer (19)
4 “must be modified. This aiso highlights the p01nt emphaSised in
: ;Appendix lB that the optimisation of the ax1a] decay of a perturbed
'f‘duct field, strictly ‘speaking cannot be carried out without a specifi-
'.oation-of:the source distribution. ' Netertheiess; the optimum impedance
.value defined by Cremer (19)'and-theagenera]ised raiues given_in this
. work can'be'used as a guide to the troe'optinum-valqe in certain
~i'-practicai problems and, where‘the'souroe'distribution cannot be speci-h
fied (as is often the case) these - vaUes are the on]y gu1de In | .
.;Chapter 2 (zero mean f]ow) and Chapter 4 (uniform mean flow) the
Green S function has been derived by using a fundamenta] method given [Qgi;;_

by Brekhovskikh (20); it is not essential that this method be used

- in Chapter 2 although from the phySical Vieprint it has. some merits

T e T T e 2 gt e s e
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over the method used by Morse and Ingard (14) ~In Chapter 4, however,

together w1th the app]ication of the Lorentz transform, this method
'.hgg to be‘empioyed because the modes no_ionger exhibit the orthogonality |
4 prOperty used‘by Morse and Ingard (14); The derivation of the two- - .
‘_dimensionainGreen's tunction, expressed as a‘sunuof non-orthogonal
modes, for a duct containing uniform‘mean.fiow'is a new theoretica].result
":and is one of the main ob)ectives of the present 1nvestigation. _ |

: Finaiiy, the third reason for der1v1ng a Green S function is as




.féllows: the description of the perturbed field in terms of a sum of .b,'
nodes does not allow a simple physical'interpretatton of why, for ' |
_ éxample, certain'foptimum"impedance va]ues~give,riseito a maximum
*.ariaT‘decay rate of the perturbed fiera_ Morfey (21) has sugdested that
a éimple'interpretation mioht'be‘possibie if the (duct) Green's function
s expressed explicitly as the sum'ofjthe freeefield Green's” function
and_simp]e functions'representing;4approximate1y,‘the ref]ection of the
‘.‘free—fieid by'the-duct wa]ls The ax1a] decay of the perturbed field is
.A-theh real1sed by a comb1nat1on of the free fxe]d decay and interference
between the free-f1e1d and its reflect1on$. Prov1ded this approach 1eads'
to a reasonably accurate description of the actua] perturbed fie1d it can
'be used tor-the purposes.of interpretation It mwght also be poss1b1e to
'use ‘this as an a]ternat1ve method of descr1b1ng duct fields, part1cu1ar]y
- where the duct geometry and 1mpedance boundary,cond1t1ons are such that a
‘s1mp1e moda] descr1pt1on cannot be obtawned In Chapter 3 the accuracy
of th1s approach is assessed with the ref]ect1on of the source free- f1e1d i
.{by the duct walls) represented by the free-field of an 1mage source (one . |
for each wall) each having a strength given by the”p]ane wave reflection .
coeff1c1ent eva1uated at an ang]e of incidence def1ned by the ray paths
- In other words the 1nf1uence of the duct walls on the source free- f1e1d |
is described as if each wall existed in 1so1at1on Further reflnements ‘
to th1s ray model are also assessed in Chapter 3 = |
;&‘fﬂg*ﬁ"”Tﬁe new*ﬁreen"‘Thnﬂﬁdﬁ”as ?tryt dertmafnﬁ‘€ﬁapter"¢1rﬁﬁﬁﬂﬁﬁﬁ*”:”ﬁz;::::
1mp11ed assumpt1on that the steady -state funct1on exists and that its |
' modu]us tends to zero at 1arge d1stances from the source Some ev1dence
is presented to support the va11d1ty of th1s Green S funct1on in the fOrm

of comparisons between eva]uat1ons of th1s functuon and of an approx1mate'

ray mode] Green s function (mod1f1ed to 1nc1ude un1form mean fﬁow)




Hovever, during the course of this work Ffowcs-Williams (22) claimed

that the available evidence indicates that a steady-state function

cannot exist because the line source triggers one or more modes of thé
perturbed field which grow with time. This situation has been )
encountered before, for examﬁ]e, in the Study of e]ec%ron—sttgam inter-.
action with plasmas, Qhere a procedure has been evolved by Briggs (23)

wh1ch takes into account temporal instabilities. By151ng this procedure

it s shown in Chapter 4 that prov1ded certa1n conditions are satisfied

it is poss1b1e to derive a steady-state Green's function but this now
contains at least one spatially amplified mode downstream of the 1ine‘-

s

source. o ' S - . L
‘Chapter.s is concerned with the (steady-state) energy flows
‘ associated with individual modéQ, particularly those that occur in fhe B
Green's function for a duct coniaining uniform mean flow. |
~The connection between the perturbed field MOdes iﬁ uniform mean-
flow and in mean flows w1th thin boundary layers is estab]1shed in
Chapter 6 with the aid of analytic approximations and numerical
so]ut1ons of the ord1nany d1fferent1al equat1ons as formu]ated for the

ana]ys1s of compress1b1e boundary layer stab111ty (24)
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A Brief Description of a Typical 'Insertion
' Loss' Model

[

~ The purpose of the model is'to provide an eetimate of—the reduct1on
: in acoustic energy rad1ated from a duct termination when a given 1ength
-of r1g1d duct wall 15 rep]aced by an acoust1ca11y absorptive surface.
The model 1s based partly on the theoret1ca] framework outlined in the
Introduction but this alone does not a]]ow an insertion loss to be
ca]cu]ated In p]ace of an extended theoret1ca] framework the follow1ng
assumpt1ons are made. _ ¢
. 1 - The modes 1dent1f1ed as represent1ng the reflected field at
the duct term1nat1on, and all ‘cut-off" modes, ‘are discarded. ‘
\ 2. The entrance to the 11ned section 1s regarded as the exc1tat1on
p]ane of the 'cut-on' modes. | )
~ 3. Each 'cut-on' mode is ass1gned the same axial energy f]ow at
the exc1tat1on plane* both for the unlined and ]1ned duct |
4. The total ax1a1 energy flow at the exc1tat1on plane 1s equated
R with the acoustwc energy. rad1ated from the unlined duct. ‘ -

. ‘ *-5. ‘The total axial energy flow at the end of the‘11ned sect1on'

is equated with the acoust1c energy radiated from the lined duct.

e o

rgzzzaxﬁhwumaﬁrz COTRNRSEIDS *&mgﬁmiﬁwa@gpg#S#Mjﬁéﬁﬁrﬂﬁﬁhﬂézf

Rolls Royce Ltd., which evaluates this ' jnsertion loss' model 1in 1ts
second state of development (uniform, subsonic, mean flow). Using.this
Program comparisons between model estimates and measured insertion Toss
data have been carried out by Wirt (25); a typical compar1son is
reproduced in Figure (1.2). ~ Two sets of mode] estimates of insertion

loss (fPredicted Duct Attenuat1on") are shown: the "145/]60 dB PREDICTION"

-

Cross- modal ax1a1 energy flow is 1gnored




js for liner impedance values, measured by standing wave tube method

with the maximum amplitude of the standing'wave, at the test frequency,

approximately equal to 145/160 dB. The average sound pressure level at

the entrance to the 11ned section was 159 dB and the "prediction" based

'on the 160 dB 1mpedance va]ues is in good agreement with the measured
datao » ._ ‘ . ‘ . ) . T :. “ . i

v

P '.":6-‘-:-\;-‘—-.} . A S e A B 0 ey BT e e 5
R R I oF ,—mc.* SRS TR SRR e Tt

AL e N T S o T R i g

4

R

10.




__‘J,_u‘.c S L TSt = et G VS ST

- APPENDIX 1B

Qgt1m1sat1on of the acoustic performance of
lined ducts

v .. ‘an e _

- \-.

-——

The c]ose agreement between measured 1nsert1on loss and model
dltest1mates obtained by Hirt (25) (see Figure (1.2)), supports-the
va11d1ty of the theoret1ca1 framework out11ned 1n the Introduct1on and
the assumptions listed in Appendix 1A, but on]y for the part1cu1ar
exper1menta] fac111ty used by Wirt (25) For examp]e the 1nsert1on
loss model ass1gns an 1dent1cal ax1a1 energy f]ow to each mode (and
-1gnores Cross- moda] ax1a1 energy f]ows) the agreement with measure—
ments suggests that in Wirt's (25) fac111ty the source d1str1but1on
over the plane at the lined section entrance is such that modal equwpar-
tition of energy flow actual]y occurs, In'otherAexper1menta1 fac1]1ties
and, particu]ar]y, in aero-engine-systems, the source distribution may
excite a tota]]y d1fferent modal energy distribution and un]ess thxs
can be spec1f1ed such insertion loss models are of 1ittle use.

In spite of this fact it s common pract1ce in. the aero-Space .
industry to carry»out-'thecretjca1' optimisation stud{es, based on
this type ot insertion 1oss model, to specify the:]iner impedance(s)

which give the maximum subjective1y weighted_insertion,loss. In

pract1ce therefore, the optimisation of the acoust1c;performance_qfwrs;

R T o et TP S TR ,~='_ 4-'. e wq—-cq:»- --" .,«z»v,,n’-iﬁ—w'"« I -vey" '-- —-»'-—«a-h—ﬁ-rwv._w, 2ok :’-; L

lined ducts cannot be carried out w1thout a spec1f1cat1on of the fre- -

quency spectrum of the acoust1c energy radiated from the unlined duct

and of the type of required frequency and amplitude subjective wejghting.
'The optimisation of modal attenuation rates referred to in the

'Introduct1on follows on from Cremer's (19) work and 1s carr1ed out at

a_Dart1cu]ar frequency. Th1s type of opt1m1sat1on is of academ1c
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interest but it can only be of direct use in

~

‘realistic’ optimisation

studies if a large insertion loss is required at and near a particular

frequency. For example in Figuré (12)

would indicate how the Tiner impedance

the results of the present work

is to be modified to obtain the

maximum insertion loss -at some frequency near 2000 Hz (MACH_jO.B),

1250 Hz (MACH = 0.0) and 1000 Hz (MACH
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ol 2T D1scuss1on

CHAPTER 2 f'

z{;, " THE OPTIMISATION OF MODAL SOUND ATTENUATION N DUCTS .
- IN THE ABSENCE OF - MEAN FLOW - ‘

—

A most 1ntr1gu1ng property of theoret1cal and exper1menta1

decay rates of modes 1n lined ducts, for wh1ch there is no obv1ou5' :

- . explanation, 1s the ex1stence of max1mum decay rates for values of

L the l1ner 1mpedance wh1ch, at f1rst s1ght are arb1trary and tota]]y

.* unconnected with any simple results assoc1ated with absorpt1on by

fbf ref]ect1ng boundar1es For examp]e the maximum absorption coeff1c1ent
~of a p]ane wave, 1nc1dent upon a 1oca11y react1ng, 1nf1n1te, plane |
boundary, is a]ways atta1ned for a pure]y resistive 1mpedance, irres-
‘pectlve of the wave 1nc1dence angle.* In d1st1nct contrast the
d_Optimum ?{ner impedance for the maximdh attenuat1on of the Jeast
'F.ettenuated,mode in a lined duct of uniform,’nectangular or cjrcular
“:crossfsect%on has a reactive component ofdfhe'same order of;magnitude
as the resfgtive one.' ’ ",. : e;dfﬂallli"f' e -

_ in the early stages of tnfs wonk'd considerable amount of effort B
. was expended in an atcempt to explain;fnfs.épparent anomaly end |

a]though the - Original attempts wereeﬁangely onsuccessful, a useful

—&'b‘_,— m_a =an, ,..'nf"' .,,a“‘-r,.— —-J*.,e__. w-»--’ Tlnieime T
e e e

g ]

d%y proouct emerged A theform ot E’généﬁauTSthon“ol‘*ne"”Vawwab?e-’~*~**xf~
results for optImum duct_]1ner Jmpedances, and this 1is descr1bed in
: sect1on(2 4) P |

A qua11tat1ve exp]anat1on of the phys1ca1 reasons for these

*Prov1ded the angle is. rea]
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peculiar optimum impedance values is given in Chapter 3, where it is

found to be necessary to specify an acoustic source. Physically,

of course, duct modes are generated by a source but it has been

common practice in many branches of physics to obtain modal solutions

(in’itse1f often a major task) and to make use of these solutions

without any specific reference to the source or source distribution.
It became apparenf that a complete re-formulation of the classical

duct hode problem, with a specified source, was urgentfy required once

it was discovered that tbe standard Green's function (and hence all

solutions for any source distributioh) does not exist for the so

called optimum impedance values. The method used to derive the

s

standard Green's function consists, in effect, of matching modes to

a source diéfribution, either analytically, using their orthogonality

property, or humerical]y, by an ecquivalent method.” This method which
is briefly réviewed in section (2.2) breaks down at optimum conditions.
By adopting a more fundamental approéch fo the derivation 6f the_
Green's function a new mode solution is found which rep]aces.the invalid
mode solution responsible for the non exfstence af the standérd Green's
function; th1s derivation is the subject of section (2 3). The method
used, wh1ch can be found in one particular standard text, is Tess well

known than that based on the orthogonality- match1ng or expans1on

procedure. -It appears to be completely 1ndependent of the propert1es

-‘-32 -—gjr_; f_. ——-W—.’:."““:-’_ £ ey (..._‘ﬂ_ ,_—. ‘,W,.‘
siihe

BT Tethe” mo&é functfdns”and, THTact; w&g'wntrUGUueﬂ“to‘UOtaﬁ '%ﬁéi ébn*?

function as a sum of non-orthogonal modes for a duct with nén-]oca]ly
reacting boundaries. Non-orthogonal modes also occur if the duct
contains uniform mean flow and the method is used agaiﬁ in Chapter 4

to obtain the Green's function for this case.

4.
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2.2 Review of Standard Theory; the Green's Function for an
" infinite, Two-dimensional, Lined Duct.

: Consider Figure (2.1): a 1eyer of fluid of uniform mean density,
"po,vand speed of sound, c, is bounded by tvwo jnfinite planes at y = 0
and at y = h. A line acoustic source, un1formw;h the z d1rect1on with
~unit strength and a time dependence exp[}1mt] is 1ocated at (xo, yo)

7 - where io is flxed and Y, can take any value in the interval 0 < Yo € h.
The Green's function G (x y/x > Y, ) s def1ned here as the complex
amp11tude of the acoust1c pressure, due to this source, in the interval
0 < y < h. 'There is no dependence of G ' on z because the model is
two dimensional. e ‘..“ - - o o ;A,_‘ |

The acoustic adm1ttance, B> (genera11y frequency dependent) is also
taken to be un1form everywhere at y h and zero everywhere at y = 0
(rigid wall). I R o f?

The Green's functidn satisfies, by definition, che wane equatidn

A - L
B Swi AR Gw'(x, Y/ %y yo) = =8(x - Xo)é(y - Yo (2.2.1)
. ‘BX ay . ‘ . : ‘
and. the given admittance boundary cond1t1ons at y 0, h.

The Green's function can be used to ca1cu1ate the pressure,

pw(x, y), due to any ‘plane’ source distribution fw(y)A‘such that

~{—3-2-+ i + (@)% p (.x'y) - -f (y) é(x'- X,)
ol ayf ST e T 0 |
e A R T I R R S e e e s e e s S ettt
through the relation N 8 i L
[} by ] . : Y
p,(Xs ¥) = j fw(yo) G ‘(x5 ¥/x s ¥ )dy, - (2.2.2)
- 0 - - . -

provided the Green's function satisfies the usual law of reciprocity:

G s = [ .

" (X,ry/xo, Yo) G,'(Xys ¥o/%s y).  The standard procedure for
obtaining this Green's function as a solution of equation (2.2.1) is to
assume that it can be expanded into an infinite series of orthogonal
eigenfunctions . ‘

15.




¢ . - - o

6, = 1 F(x) ¥ ()

' wh1ch when substituted into equation (2.2. 1) for G ‘5> gives, after

some man1pu1at1on (see Morse and Ingard (14))

i

S _'1 e tpn(y)wn(yo) . - o
3 Qw (Xs¥/%5¥,) = 7 ngo BN ] exp[1kxn|x - % 1] | (2.2.3)

2
Uy (y.) dy .

=
=
49}
-3
[¢9]
=3
=
n
Tl
O —

/

To derive equation (2.2.3) the orthogonality property_of-the

functions ¢~ is used, which is defined by

h

l] . _ -
I} J wn(y)wm(y)dy - 6mn mn( mn 0 m#n
° = ] ms=n
A= An).

nn

If the eigenfunctions y_  are simp]y the solutions of the
n . .

homogeneous form of equation'(2.2.1)

d2y R ‘ .
n . -2 e
— o+ kB =0 | T (2.2.4)
dy* Y B . B _
. 2 2 2
¥ ~ T o el - L e v IR TIETINT ¢ o e
m;;ﬂ.ﬁ',éheﬁ "_:lf\ It"‘l y«' —,*~~ rf_‘;‘;v K ﬁm-- Tl.{‘f’mﬁs \,f—%»ﬂ,ﬁ;%.wﬁgtJLm%ﬁﬁ_ﬁ*;a;;od“‘-‘

and each satisfies the admittance boundary conditions at.the duct
wa]]s,.defined below, then it can be shown that their orthogonality
propérty depends on the type of admitténée which is used.

Multiplying (2.2.4) by Ui and also writing the same equation

e R L SRR

with reversed subscripts m, n (m # n)

St AR < et o
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- kym

The first term caﬁ'be rewritten as
SL_'{ Efﬁ - dwm }
dy 'm dy n Tdy

SO that equation (2.2.5) can be 1ntegkated directly with respect-to

y from y =0 to y=h to give

‘dll’r‘n , : h e
Sy m ] kel - kD) [ gy = 0.0
0

h dy
@

The bbUndary conditions at the duct walls are

- . = = 3 t. = . — =
y = h: 5y 1kaGw ; at y = 0: By

= BMPOC-

zsm;ggégg&;ga*f 4%Sﬁ?nd;.39(£ﬂﬁh '4EEQQ§§§£;G§~h«e&q9nﬁdn€$4“ﬂze-

T % N S SN Y.

to satisfy this boundary condition, then

dy ' dy
- .'n n -
[EET' kswnwn]y =h’ [EET* - ojy=0

where Ew has now been allowed to depend on n. Using the first

relation the first term of equation (2.2.6) at y = h reduces to




s Erie o

w. e -**;.'4:;.

|
|
|
{
%

| mm(h){ikéwnwn(h)} ” wn(h){ikéomwm(h>}

. which is identically zero proVided;T'f:"ﬂ"

Bon T Bum

that is provided E - is independent of n’ or say Kyn/ %o the
-¥'s1ne of the angTe of 1nc1dence of th1s mode If th1s 1s the

z,_;;ase then equatton (2.2.6) showssthatc:,

. J o) v & =
o - N

L and the modes are orthogonal..

' If the wall is not locally react1ng, then it is not poss1bTe

"o app]y an overall boundary cond1t1on ‘as in_ equation (2. 2 7)., the :
" modes as . defined here are not orthogonal and the Greenfs function = -

“  cannot be der1ved on that bass ”NevertheTess once the Green's function

1s found-equat1on (2.2. 2) rema1ns va11d that is, the acoust1c f1er

can be determ1ned for any source distribution.

The angle- dependent or non- TocaTTy react1ng adm1ttance boundary

cond1t1on will not be considered as such but there is another reason

why 1t is necessary to return to a more fundamentaT der1vat1on of the

T T - pafieety

- Tk = ™
e BT e i oY ’V'~_;ﬂt"f -‘ v*"\‘. ,.,,..‘_..-,._......« .....’.--. ....J«.- ~_~«.-n.--.~l.. - ;2-1 o

-~Greenk§> tpetloneathat_as_,one.wbnch does not djgend on orthogonal L

'funct1ons The reason is that for the spec1aT condition of opt1m1sed

modal attenuat1on, to be d1scussed in sect1on(2ﬂ)the corresponding g

' enormaT1sat1on’factor A is zero. The standard Green's function,
" equation (2.2.3), found in standard texts (4 ) does not ex1st under
_this condition The Green's funct1on w1TT be reder1ved to ascerta1n
_the reason for th1s pecu11ar1ty and to obta1n a soTutwon wh1ch does

}rema1n finite.

Y




‘4iwhere ny is the normal to the surfaces 'y = 0 and y = h, at x = x

. pointing into the f1u1d

A

}: 2.3 Fundamenta] Der1vat1on of the Green S Functton w1th Emphasis
- -on the Optimum Condition. : :

. The principle to ‘be used in th1s der1vat1on is we]] known,
'_formally it can be expressed as fb]lows ' G1ven the Green's function,
‘.wa for free space (1n the absence of a]l boundar1es) then the

pressure fie]d in the presence of boundar1es as: def1ned above is
| fg1ven by (14) (p. 321) S |

S T | S e R coth
P, (X5 Y)“‘f"J faolG,(Xs ¥/xgs yoddygm o e

LW

o ép'(xo»h) R |
‘[q»(x,‘y/xo, h) _—E%ET———- =P, (x ,h) ” (x Y%y h)]dx
. RO .o'_. . ' f |

1‘ﬁ+ }:‘
'\—'_N;

4 _ o, . . aG :
G x y/x R Q) -2 (x R 0) - P, (x s 0) (x,y/x O)de

N
‘|~—_\_"_ B
r—1 §

- (2.3. 1)

3
LT

This express1on conta1ns the same 1ntegra1 as in equatlon (2. 2 2)
over the g1ven source d1str1but1on, but as it now uses the free space
s Green s.funct1on, Gw; there ere an extra two terms which come from
'.e surface integral oveh the duct boundartes Phy51ca11y these terms .
represent the reflection of the free space f1e1d from the duct boundaries.

sikﬁ@éfitﬁﬁiL}yx‘Jisttta“mgwaisﬁ*eau§2:f GRS AL R s S e et e

ki e
N

become an 1ntegral equatxon in’ 'pw.

A method of so]v1ng th1s equat1on for a s1ng]e surface (say at
y = 0) is to note, f1rst that any functwon X (x y) whlch sat1sf1es

the . homogeneous wave equat1on

BRI S

¢ 9 9 . -
=y + k

IR .'ax2 ;-:f;;z -

} X@(x, y)

o



can be added to the function Gw. 'If such a function is chosen so

' that the modified Green's function, Gé', has a zero gradient normal

“ to the surface then the pressufe field in the'presence of a single

Cee——

fef]ecting boundary is

p(Xs ¥) = J (y )G (% y/io, Yy )y, R
0 . S -
= o e ooy P d
. + J Qw (Xg .V/Xos O)B—n-(')' (XOf 0) x0

The function X which ensures that awa/ano = 0 1is well known;

it'ié the Green'é'function for the-image source at y = Yo'
| - __XmA = Gw(x,‘y/xo, Tyo).
If the surface is rfgid then apw/ané = 0, and thus_
pw(x’ y) - J ‘fll)('yO)Gwl(Xs ‘y/;(O’ yO)dyO; ,G(!J' = GU.) + Xw'
S

' This.is an exact solution for the pfessure fie1d due to a source distri-

- wihere K

but1on in the presence of a uniform, 1nf1n1te r1g1d boundary
“To obta1n an expression for the pressure f1e1d under the same

conditions, but with a 1oca11y reacting boundary of admittance 8

(at y = 0) 1ntroduces a complication which or1gxnates from the fact

that the reflected f1e1d can only be described exact]y for an 1nc1dent

field consisting of plane waves. Thus the free space Green s functlon

EEpTeEStcTn e sy e e e eSS St S e S Ty
has” to be expressed in terms bf p1ane ‘waves and fh in be done by~

means of the Fourier spatial transform, the formal expression being

' : 4o oo . - . '
_ - exp K, (x-x ) + iK (y-y_)]dK dK
6%, /5y ) = (202 [ ] X oy e Xy

‘-0 =00

K" -k

2

=k Zek2 T

i AT S T e — BE et
g 23 ?’ ’J-_- T “',4 '-\ et ot 3 g
e - R S --p-,,,\ =, ,

(2.3.2)



(Note that Morse and'ingard (14) use the opposite sign in the
: ,-enponentiaT. terms) | The free space Green s funct1on now cons1sts B
.'-of p]ane waves, with wave numbers 3( K ), wh1ch are 1nc1dent on
.. the loca]]y reactxng boundary at an angle cos (K /K) and their -
.ref]ectwon coeff1c1ent, cr; _is : ﬁﬁfzﬂtz,, : -“4;~' |
/K- 5

-y w o
K /K B,

~ The 1mage concept is now mod1f1ed in that an. 1mage source is used with
1a source strength given by the above ref]ect1on coeff1c1ent This
.. means that the image source has an ang]e»dependent strengthzand the
simpiicity of a simp1e image source of unit‘strength is lost. HoweVer;
_-an approx1mate resu]t can still be obta1ned for p (X, y) and th1s '
'.resuit 1s re]evant because it is to be used in Chapter 3, in an attempt
"to understand the optimum condi tions ana]ysed in sect1on.(2.4)-r
By choosing the additive functfon? X (x'*y)ito be .-‘ o
(o) - (2?)-2 j f |

- 00

C. exp[1K (x - % ) + iK WY+ Y, )]
| (K2 ) . oy )

,(physicalefth?total reflected field) the modified‘Green‘s function

" {the minus s1gn appear1ng because no' points-into'fhe f]uid) Thus

E the surface 1ntegrals in equat1on (2 3. 1)van1sh 1dent1ca11y and aga1n

o




Py (x> ¥) = J Vo) 6, (xsy/%,s ¥o)dy,
" (N.B. see below*) e ,
" The function X cannot be represented exact]y 1n closed form but,

'(Morse and Ingard (14), p. 371) prov1ded e1ther y or y is 1arger ' ﬁ

than half a wave]ength a good approx1mat1on 1s, for a po1nt source,

. , e cos®-By
Go' (X5 ¥)/Xs ) = Gy(Xs ¥/X s ¥o) + ————— G (Xs ¥/X 5 =¥ )
: _ . 7. . cos 8 +B .
| - © 0 (2.3.3)

where 5. is defined in F1gure (2 2) Th1s is assumed to be a valid

' approx1mat10n for a 1ine source as well.

Apart from introducing the approx1matevexpress1on in equat1on (2.3.3)
for use in Chapter 3 the above d1scuss1on has a]so served to introduce
the fundamenta] principle by wh1ch the Green's function for a duct w1]1
be der1ved.A The method is described in deta11 by Brekhovskikh (20)
for a point source. but here'hﬁs method Willlbe used for the line source
and a new resu]t w1]1 be obtained for the spec1a1 case, associated
W1th the opt1mum cond1twon where the so ca11ed norma]1sat1on factor

An " found in the denom1nator of the standard Green S funct1on is

equal to zero. _ _
To recapitulate, the Green's'function,,:GwY(x, y/io, yoy, for an

infinite two-dimensibnal duct is required for a 1ine source at‘(i Yo )

. - - s St v
LB 5y oy .Jp- v‘}l'~a"~"v vt el -—-’;: ‘t:__‘,“’"i,; oy e T -—"—'—". T gt
< .__mﬁ-g-f-

O rree space ~SaTiSTIes {Be
. 32 32 : | _2 . . R ) o
A S S k=3 G (X5 y/Xys ¥o) = ~6(x = X )6(y = ¥,)
X oy o , |
- (2.3.4)

nust have a singularity at x:=‘§O; y = yé and G, :)

*In fact prov1ded G,' satisfies the boundary conditions, either as a
vhole for a locally react1ng boundary, or in terms of its constituent
plane waves for non- locally reacting boundaries, the solution. p = G'
causes. the surface 1ntegra]s to van1sh 1dent1ca11y w @




!  must satisfy the radiation condition that it consists of outgoing waves
from the point (Xo’ yo).

'Defining the Fourier space transform of 'Gw

40 oo :
-2 L e e . .
Gw(Kx’ Ky) = (2m) I J Gw(x, y/xo, yo) exp[-1Kxx - 1Kyy]dxdy

\

with o o

_Gb(x, y/xo, yo) f AJ J Gw(Kx’ Ky) exp[1KXx + 1Kyy)] dede

-0 -0

and taking the Fourier space trans form of equation (2.3.4) and

inverting gives

' +o
s ~ -2

G, (Xs ¥/Xs ¥,) = (2n) j

- 0o

}w exp[in(x - io) + iKy(y.- yo)] i« dx
! (K - k%) Y
o (2.3.5) .

It can be shown [(14), p.366] that the evaluation of this double

[+

integral gives a solution for G, satisfying the above conditions, as

4 o

where R% "= (x - X ) + (y - ¥, )2 LT

Gw(xa )’)/ios -YQ)- - 4 H M (kR) - (2'3'-6)'-

Th1s solution is now to be modified by the presence of two infinite - —

Planes at y =0 and at y = h, the boundary conditions be1ng

”*@WMM" T ‘m m»:z:};(‘ —::: 35‘3‘1“.}‘“ n?——m-x‘-.&?}!ﬁ-’,—iﬂuﬁs*’Wﬁwxéw;‘:“fi'%m
s A W T 2o e = R G AR S t A S A CR T
: “ =TAke G YAt h R '
: Ty Y
i
¥
¥ :
aGw' S
—— =0 at =0
‘»‘ ay y
i )

- In terms of the ratio of the additive function Xw(x, y) to

G, (x, y/io, Yo) at these boundaries, the reflection coefficient, these




S
. A

boundary conditions can be rewritten as

K K - B | .
C = L ® 3t y=h"
Fox K+ 3 .

_ Before proceeding to take these boundary conditions into account

the integration in equation (2.3.5) is carried out with respect to

. Writin ST T

; so that the denominator in the integrand becomes . ,

(K - ky)(Ky + k&)

T

it is c]ear that the integrand has two simple po1es in the comp]ex

i ' 1 s K . .a:
, ‘Ky plane, at y = ky ‘ yhere

SRR .‘
ky = + KX : ] Kx |

When Kx is real and the former condition ho]ds’fhé Ky"integration

along the Re(Ky) axis is determined by the two poles at Ky = i_ky:
N if Y=Y,-? 0 the po]e Ky'= ky represents-annautgo1no wave from
| - the point (i A ) and the pole at Ky = —ky an 1ncom1ng wave, and

o et T i T TRy LR ﬂq_?;u.._’—h-:__‘ s i R e

o *'"V’Cé’“ NeTs é‘"ﬂrr "y““ “y’ Z 0*’ ‘*'m e"’?‘a’ma Emn TEONATCTon vwn““ e “"‘atﬁ ffi éd"'ﬁ‘* 57"
that is, the integral can be determined by the pole repfesenting an
outgoing wave, by a11owin§ the wavenumber >k to have a small imaginary-
F part*, corresponding to dissipation in the fluid. The imaginary parg :
of k can be set to zero in the final solution. For |K | < [k|

N

- - e

*The s1gn being such that ]ékp[ﬁkkj[ + 0 é§ X > e




the poles are no longer situéted on the Re(Ky) axis: the pole with
Re(Ky) >0 s situated just above the axis and the Po]e with Re(Ky)
< 0, just below. For y - Yo > 0 the contour can be closed in the
upper half plane, with an 1nf1n1te semi-circle, without changing the
value of the integral, and the integral is evaluated, by the Residue

" Theorem af the 'othoing-wave polé" The complete contour is shown in
F1gure (2.3) where the contour along the Re(ky) axis is deformed
to 1nd1cate its path in re1at1on to the poles. For y - y' < O‘the
contour is c1osed in the lower half p]ane but as the po1e is identical,
apart from the difference in sign, on]y one case, y -y, > 0, needs to

be considered. The Ky 1ntegrat1on is carr1ed out to nge

40 . . . . dKX
J exp[jKX(x - xo) + iky(y.— yo)] -
_ R y

. -0

] e
=

G (Xs y/ids yO) =

for “(y - yo) > 0 - _ (2.3;7)
' Gw is now to be modified.to éatisfy the boundary conditions by
considering a plane wave component of Gw and adding to that component
the total reflected field. First ignoring the lower boundary aty = 0,
the total reflected field is (see Figure (2.4a)) | )

k /k -8 o -
Y9 exp[iK (x - X o) + ik (2h -y - y)].
- X . . 0]
: ky/k + B :
A e e S R S T fi‘*«'-‘*s‘,;»:mmr S e et e R

e
./:,p-—-.— AW —‘-rv“"'u_._v--’- e
bl i I‘”m B t‘ ‘_A’A’"""g e _—cu-v‘t\v*x e-u

Note that the phase of the reflected f1e1d has the : same X deoéhdence

T e

- as the incident field, but the coeff1c1ent of ky is the proaect1on
on the y axis of the path traversed by the wave. This is the field
due to the image in the upper boundary. To take into account the image

in the Tower boundary the reflected field is modified to

-o%p[ij(x - iof]{cr.exp[iky(Zh‘- ié - )]+ {j) egp[jky(y + Y01}

2.



’ Th1s second term of course does not sat1sfy the boundary cond1t1on

at the upper boundary and the reflection from there (due to the
1mage in the upper boundary of the image in the lower one) (see Figure

(2.4b) gives rise to a third term so that the ref]ected field is now
“exp[iK, (x - X )]{C exp[ﬁk (2h - Yo " y)] +. 1) exp [ik (y +Y, )]
+ (1) (C.) exp[1k (2h +y - y)]} ' ) ]

It.is emphasised,that these leading terms of an infinite series are
for the reflection and re-ref]ection of an incident plane wave at one
particular angle co ~l(k /k). The continuous lines in Figures (2.4a)

and (2 4b) do not represent this wave or its reflect1ons, as such.

" They are not Tines normal to lines of constant phase as wou]d be the

1f_-case'br the ref]ect1on of a spherical wave in the plane (X, y), but

| simply indicate that, for example, (in Figure (2.4a), Tine OP) point
‘P receives a contribution from source 0, (line 0'P), po1nt P receives
a contribution from the source image 0' and so on. A simple
graphical representatwon of the plane waves 1is not str1ct1y possible
-because (see below) in generel the 'angle of incidence', cos (k /k),1s :
complex. o

The total field for the particular plane wageﬂcomponent,‘inc]uding

all reflections, can be obtained by repeating the above procedure and :

—~z—ean«:ﬁﬁﬁhe¢$tna=«ehnrosslnnwtafter s.ome. man1pu1at1on 1sJ (20),
T e

T £ 3 ey TR
A T j,.,,‘. o r_\ T I ey o R ""-""vw(.’-’:—‘""__:’;a’
P

3 ~:».~\,‘,---,r.

exp[1K (x - X )] 2 {exp[1k vy - v, ] + exp[1k (y +y )]
+C, erp[ﬁky(Zh - y - yo)] +C, exp[iky(Zh -y + yo]}'

L .
x C exp[21ky£h]

= exp [iK (x - ioy].? say _ .

’ L

.
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and the total field is

.+w.

: o o o CodK, |
6 (% ¥R ) = i J exp [iK, (x - X)]F. ‘Ef, (2.3.8)
for (y-y)>0 . - L.

The integration variable is now‘changed to 8 where 6 = cos'](ky/k);

K, ;.k sin 63 dK, = k cos6 de and as

sin 6 = s1n’er cosh b, + 1 ceser sinh 053 o = .er + 6,
: - cos 6 = cos o, cosh 61'- isin o, §1nh_ei s
“then the corresponding integration limits are:
K> 4= - e 5o, a >
—t . a ™ ‘ . ’ . —4 . . 1T .J." -
KX > cw o 6 > -5+ ia, a-~> w

(Note that if k s real then 0=+ when K = + k)
The choéen contour in the ] 'p]ane is shown in Figure'(2.5a); the
fact that k has a small imaginany,parf is ignofed for the present.

- Consider the infinite sum in the function ‘F- on this contour

s.= 7 c,* exp[zikn cos e_]2 = _g{ x* o  (2.3.9)

Provided |X] < 1, S canAbe given in a closed form

T, -“"“&‘*’ S 4'2’,,_.1,. et e S e TR X i e T _‘;4,3_-_-_——-5"1::" = G S ——*-q,‘ ST
e A T wfbt SR e b '34.:. - ..x..- u..m.-v*’“‘"" ._,qd..._:x'f‘ e SRS TR B e T 'ﬂ!‘:_t“l. X oAbl
o > P e

... S = {1 -C exp[21kh cos é]}-r ”’f e Tl

Brekhovskikh (20) assumes. IX] < everywhere on the contour
apparently without any detailed justification. Physically, [X] being
the reduction in amplitude of a plane wave after one reflection and two

traverseSof a duct width, it is reasonable to assume that |[X] s

less than unity. However, it is necessary to digress for a moment




and analyse the behaviour of X on the chosen contour because this
- may be a crucial point in a similar ana1ysi$ given in Chapter 4
whére mean flow is included.
For a locally reacting boundary, X -ii‘simp1y a function of
“cos 6; | | ' ' |

-595—9—:~§@- ‘exp [2ikh cos 6]

X =
: +
v Cos 6 + 8

‘Consider first contour BC (see Figure (2.5a)): 6 lies in the

- interval  (-w/2, +n/2), thus

"0 < cos6 g 1

and expreséing‘ Cr in terms of the real and imaginary paffs of éw:

{eoso - Re(B )} - i'Im(é )

"{coso + Re(s )} o+ Im(s )

d

it can be seen that ]C ] St Re(sw) > 0. Thus
IX] ¢ 1 on BC if Re(éw) 3 0
as  |exp[2ikh cos 6]| = 1. The equa]1ty X =1 cannot be allowed
' and this will be dealt with later. Qe

On contours AB and CD

cos 6 = 1 sinh a 0 g a go

S e R e ST e é;.'ll Re, ( 3 -*) (;&L({S .,3"1}‘, «‘5 wxl&vf*—)_u«-w‘\--mﬁ-fw ST e o e T S e S gy
e T R LA T i ,\,.., - R et T wﬂu—,»- R R St ) ﬂ,',“'.—,—-:-?ﬂ—ﬁ'f - — -
N L and AN W3 EX [_"éKh 5% h uj‘-‘ S R e sy VRS

“{Re (B ) ¥ i(sinh a + Im(s )3 o R

VSR F

“As 'a' can tend to zero* - ]Crl must be shown to be less than unity.
Clearly if Im(éw) > 0, then |Cr| < 1 but whereas the restriction

, Re(ém) > 0 on contour BC is a reasonable one (that is, a passive

- -

*Also kh can be arbitrarf]y small.




P 1

A

.::'adm1ttance) th1s condition is too restrtct1ve. | In fact 1t has arisen
| because the contour ABCD does not take into account the sma]] imaginary
" part of k. '1 Correspond1ng to th1s comp]ex k value the or1g1na1
' contour on the 6 . plane 1s changed to T] as shown in F1gure (2. Sa),
' fa1though 1t rema1ns asymptot1c to Tines AB and CD. On this 'new'

I contour AB' 6 now . takes the va]ue e

e dn= - %- + & +da . : 0,,<:‘a' § @
Cand T
B cos 6 =siné coéh‘a'+ i cos & sinh a
> giving | | | ‘
. {sins cosh a - Re( )}+ 1{cos 6 sinh.a - Im(B )}~
C. = .
'r {sin 6 cosh a + Re(Bw) + i{cos 6 sinh a + Im(Bw,}
‘or i'Cr.5= ‘1 + 2i cot & tanh a
- for the extreme case when Im(B ) = - cos § sinh a and Re(E ) = 0.

A a# 0 the exponent1a1 factor is less than unity and |X| canbe

5-,made less than unity by a suitable cho1ce of & prov1ded that in
ihdefonn1ng the contour no s1ngu]ar1t1es of the integrand of equat.on
’ . - (2.38) are. encountered and prov1ded the contour remains asymptot1c

“to the lines AB and CD. "'As 'a't ©, the_exponent]al factor is small o ,

s e e A

*f~""~"‘““ nwéff‘?i@,ﬁﬁ}} s Zﬁ STy "rj’

P

the equalwty IX[ =1 can be removed because [exp[21kh cos Q]] <1
. with k slightly imaginary ' Thus o Ix] <. 1. everywhere on the |
deformed contour prov1ded Re(B ) 2 0. u B
Equation (2.3. 8) can: now be wr1tten w1th equat1on (2 3. 9) as
'{exp[jk'sin'o(x - x,)] 2 cos iby,}
...."f..ijoo o . S .
2 .

nd:

"G (x y)/x,y)

{eXp[b(h -y] +. C exp]'_b(h —y)]} : Lo
“exp[-bA] (1 -,cr ep [2A]) d . (2.3.10)




' where b = ik cos o . The final step leading to the evaluation of this
integral is to change the path of integration. Again this‘is described

by Brekhovskikh (20); and in adequate detail, but it is a step which

AT R .
/_ B . - - -

has to be investigated for the purposes of Chapter 4 and thus is out-

11ned briefly here.

) Referrwng to F1gure (2 5b) the or1g1na1 integration path ABCD or

Iy is seen to be equ1va1ent to a sum of thevtwo contours r, and
r3§ "It can be shown that the ihtegral, I, over Iy is identically

zero. To do so the variable is changed to the'jgrazing incidence'

angle, o, where | l
=T ;
o 5 0 )
then
: +ie » _ o .
i vl - -
1= J {exp[ik cos a(x - xo)] 2 cos by,
» S ~Jew S :
- . > - . . ) ‘ ' = . . ‘;}‘
“xexp[-b(h - y)]+ Cola) exp[sb(h - ¥)]} .
exp[-BR] (T - C _(a) exp [20h]) do . (2.3.77)
where b = ik sin q S
and y e
;. ‘ . Sin a - B . . ,_,“ y 5, -.
Cila) = ————= U T S
_  sina + 8B . - - T
y w
Using
L S e Efﬁﬁrﬁl?ﬁﬁxzakzﬁfﬁz‘Csﬂ‘sgzr*tz?fiz;as=aa:‘“*«55a5;5;~41m;sag;:§5=3_;
3 ST SN It : N Cr( - C a) 1 _,.7 pent .- . . ‘ __‘,, d ‘ Y El T ‘_
oo G e e x- r L .‘:,,_- , i .»v_.... - .»«,‘, - , . JERps R .

the integrand cén be shown_to'be an odd function 6f o and hence the
integral over Ty is zero. | |

Fing]]y the contour Ty gan be closed inAthe upper half plane py
the infinifely remote path Tys Withoﬁ# changing the value Of the

integral, provided x ~ Xy > 0. Similarly, a closed contour can be
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formed in the lower half plane for x - id < 0 but as the poles of

the integrand, 0, where 6, satisfies the equation

(2.3.12)

1 - C.(e) exp[2ikh cos 6] = 0.__
are identical in upper and lower planes, apart from the difference in

sign, both cases can be covered by writing the (x - io) dependence as

exp[ik sin ofx - x_[].

Thus, by the Residue Theorem, the integral in equation (2.3.10),
(over the new contour) is given by
S wa(x, y/io, Y,) = -% hEO ReS{Q(en)} . (2.3.13)

where

exp[ik sin e]x - X |]J2 cos iby fexp[-b(h - y)] + C. exp[b(h - y)]}

o(6) =
- exp[ bh] (1 - C. exp[th])

It is at th1s point that the ana]ys1s of Brekhovskikh (20), whibh

assumes these to be simple po]es, needs to be extended to take into

acéount the existence of double poles. The simple pole is clearly the

origin of the usual eigenfunction or mode.” A pole of order’z; which

occurs when two simple po]es merge on the complex 8 p]ane, is evi—

””“Oeanixzhe reason’Tor HER non éstuente*ofgiﬁgffléiff?i ie%aa*sngwww—¢:#3%§§§~
However it is of interest to demonstrate first that the solution a

given by equation (2.3.13) for simple poles does lead to the solution

given in the previous section - a sum of orthogonal modes. |

Setting

H=1-C(6) exp[2ikh cos 6] | (2.3.14)




“then near a simple pole, en,"H behaves Tike

We e o
_H = (9 "en) [a'e_ ]9:_-_9"1

S 'eXp[jk sin énlx - idl]z coé(ibﬁyd) 2 cos(jbny)

,.and

(2.3.15) -
" where b_ = ik cos © .
B Pp TR

To obtain AGw'",in a suitable fpfm forléohpqri§on with thé standardb-'

 solution, the variable' is chahgéd’to:7%‘5f g

Py
]

e L d
yTkeos e o g5 =y &,
k sineg X'= - L

kx

5 , ; Then the’equation for kyn’ :H =0,  1is

-2 expﬁk h]. ‘ o _

0 = — Y = {k h sin(h h) + ikh B cos(k,h)}
kbt kh B yoooy e Y

-1kb3w - (kyh)~t§h(kyh)"A D (2'3']6),.;

: which is the eigenvalue equation fiﬁst introduced by Morse (13). The.
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. > . . B P - Rl oy

- 21k, h I :
XN - d - . L a
[ W) _ {kyh tan(kyh) ‘+‘ 1kh8w}] k.y=k

=6 - 2 -
- ?43 _kynh sec (kynh) )

o

e}
3
=
-t
(-f.
e

PN

. -de
=~
>
w
—d

#

*For a. 1oca]1y react1ng adm1ttance.'w




. cdH . - |
[Héle=en - 21kxnh _ A —— + 13

The fina]vexpression for the residue at 8, 1s

2 exp[ikXn [ x -.xol] cos(kynyo) cos(kynh)
0.5-sin(2kynh) '

ngnh

) Ré§{4¢(en)} =

: i(kxnh)'{ _+ 1}

and for tHe total acoustic field

. i ‘o cos(kynyo) cos(kyny) exp[ikxnlx-xol]
Gm‘(XsY/Xosyo) = -} nZO 0.5 Sin(2kynh) B
i(k,h) 0.5 [: kynh' : + 1]

(2.3.17)

This expression exhibits the required‘s{ngularity at (io, yo) and
is now independent of the sign of (y - yo) as it remains unchanged
: when y s interchanged with Yo It can nbw be compared difect]y

with the standard expression in equation (2.2.3): choo*jﬁg the

appropriate eigenfunction to be

a0 = cos(ky)

and evaluating A :

T h 2 | » ' . 0.5 Sin(Zkyﬁh). ; o —
A S w J cos (kan)dy = 0.5 [ kynﬁi' +1] (2.3.18)
, o ' | |
R R R S A R A R S e B e e e et T s

iy e ot =N 2 L
o S e e SR :‘L;v»?ﬁ-r&%m,w%‘hﬁuw

it can be seen that the expressions for Gw' ‘are identical.

For a 10cal]ylreacting-admittance éw it can be shown that all
the poles, 6> occur iﬂ the first quadrant of the complex & plane
so that Re(kx) > 0 and the phase velocity, w/Re(kx), is}positive
in the direction of modal decay. This may not be the case for a non-
locally reacting admittance which includes in a sense, the mean. flow

case considered in Chapter 4. . _ i,.'A  - — TN




When o¢(e) has a double pole at o= 8

n’ that is, when H
behaves, near 0 1ike

.b.
(6 -0 ) [ ] (6 - 6'{)3 d3H .
- '""'2“'— de” 6=0, 37 [d 1 - 6 (2.3.19)
" then the residue is . o
Res{o(o,)) = Limit $= (9 (o - 6)%)
S 976, B S : T
o Ao, AWM
B = 2 ~d6 {dBZ } -3 D, 3 {——z—de } . (2.3.20)

wheke D = exp[ik sin o]x - X |] 2'cos(iby ){exp[by] + (T‘- H)exp[¥by]}

.and the subscr{pts n indicate eva]uat1on, after d1fferent1at1on, at

L 6 = 06,- The requ1red quantities take the fo11ow1ng values at 0 = .en,
| x k | -
% ~in ﬁhe ( x® _y)_ n9t§t1gn.

. D = exppik*n[x - iol] 4 co;(kynyo) ;os(kyny)
1 . dp o ‘

;§ s = expliky Ix - §0J] 4 cos(k Yo ) cos(k y){1k [x - xO
ii - . + kxnyo tan(k nyo) * kxny Fan(kan)}'"

%; L -21 exp[1k h]cos (k h) '
33§%§5§ﬁ§%¥3é~:rr*§fyﬁﬁff%r?r{wﬁy ﬁwtﬁéﬂqéi*' }“"“ﬂ““*rﬁd~ww$%1

i y, Y O ; yn

% P | “k .h A "‘[' d '{(k Hjt%hfk h) ; %kh-:}] .

% de = “"xn" "n Hikyﬁ) y ey B ky =k -

yn
(by definition, for a double pole)

. -2i explik _h] cos(k h)
where A = i Y J Y

- S fi; ‘ kyh + kbéw : .




d%H_ [ 2 o ]
= (kA {k_h tan(k_h) + ikhd 3], _
xn d(k, h)2 y vy wky=kyn

d2

C .
- 3 n
= {=3(k g h) awm * 3An(kxnh)(kynh)} [
A y S d(k, h)
{k_h tan(k h) + ikhg J
3 y ‘ u‘)]ky—kyn

de
{k h tan(k h)

d3H

S
|

de

+ikhE 1), - (kAT |

Y T Pn d(k_h) .
S : Y X

and the derivatives in these expressions are

TheivaTuesAof A,
, o
o=t

wherg 'F,. tan(kynh)

A
L 2i(1 - t2)t7?

& '”kh' (k] Sy
{ tan My 2 = 2
d(kyh)2 | Y ky kyn

ey : _
- d
{k h tan(k h)}
lé(k h)3 ]ky k

.
where use has been made of .
H = 0 ° j
R R e P e T T
-ikhg -

1?r;b%¥&§34 R
or

Pt

f‘1
o

do =~ 7 _
nt/oc. 0.. .

tan(k, h) + (kyh) "sec?(k )




and as the admittance is locally reacting

v'azig‘yﬁ)(éw) =0

Thus the final expressions for the quantities required in the residue

L~

are C - o AU T o _:.4 ]
o VN
T3 = (k.. h)= 4it
.. - - ) _. B - . . 2 . i |
3 12i(k, h)  (kh) S .
dH M B2 . 5 _
) k., h)t = (k, h .
‘soithat equatfon (é.3.20) becomes B o - 7_»'__"i ,f:'/

Reé{o(eaf} 2{exp[1k Ix - X ]] cos k WYo) cos(k )}

e t

-i(k ) [1k | - xol +4k Yo tan(kynyo) + k N ten(kyny)]

s

ey et Sy e gD e

This expression for the residue at a pole, ‘en; i§ to be used in place
of that‘given by equation (2.3.15) Rf the pole is of second order. It
' 15 the main result of this section: whereas the‘standakd simple po1e

solution given by equat1on (2.3.15) leads to genera] solutions for the

T T e (e S Wy Sl S TR RS SR | T e T Rai o T e i e e o eer
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Green s functions which’ do’ ‘not exist for the double pole’ cond1t1on,"'“

this so]ut1on does allow a finite mode amplitude to be calcu]ated.
The question now arises: is this type of solution, containing a

mode with an x dependence of the form
,(A* + B) exp[ik  |x - xpl]

- associated only with the doubTe poTe condition or is it indicative of




the behaviour of two mode solutions near this condition? The answer
can be found by taking two modes resulting from two single poles which
1ie close together on the o plane, denoted by subscripts m and

n, and expanding the norma]isation factof“about its zero. The field,

.p » due to these two modes is, from the standard solution (equation ‘

(2.3.17), with y. =y =% =0
o 0 e""fl,'i?';’;] T+
: : ym ‘ : n
k2 ) R B3 Kxnt “‘?IR;%Ej‘"‘* 1
| T (2.3.22)

" where the wavenumbers satisfy the equations

(kyph) tan(k oh) = (k  h)tan(k  h) = -ikhd o
o : o o .(2.3.23)
ol 23, : - .
kg = 1k Kyn 323 kg = LK -
. ‘ i w
‘ and where, under these cond1t1ons, the normalisation factors can be

approximated by ] »
- 2 :
. k. h
_s1n(2kymh) 2 cos™{ Yo )

T +1 = (k,h -k h)
(2K, ) yﬁ<. Yo (kg

and similarly for mode n; -subscript zero denotes double poié con-

ditions. Carrying out an expansion of equation (2.3.23) about the

5 ‘“«_ T e T —_‘."—Dx:‘_:’;:— = e T e
TR shﬂw‘ﬁb‘nt*.u rSAeasTW'«snﬁW%f%“a?ﬁr~v4*~'=wkf*ﬂ*ffa' = *“Tf?i T

2

(k- k. h) (kyph = kyoh)

ym' ~ Fyo'
or A
..(k

11e

h - k_ h)
Yo

(kyuh =k oh) o

so that equation (2.3.22) can be rewritten as
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"i(kyoh) ' .{exp[ikme]/kxm - exp[ik, x]/k
h cosz(kyoh) Z(Eymh B kyoh)

pw(xs 0_) =

" The bracketed term, for small values of (kymh-F kyoh)’ can be
approximated by its derivative evaluated at the double pole condition:

g . exp[ikx] h(kyo ) o _ o
{ } = —— exp[ik, x] {1 - ik x}
d(kyh) Ky TS h) X0 o X0
. . 0 -
and thus ‘
, , i(kyoh)z | ) o c o
.p(x, 0) = {1 - ik, x} exp[1kxok] | - (2.3.24)

3 2
(kxoh) cos (kyoh)

of coﬁrée this result has been obtained By stng effective]y'the same
procedure as before,'but with approximations; nevertheless it doeé
.-serve as a §imb1e chec? and at the same time, shows that the Tinéak
x dependence does not appear abruptly but is character1st1c of the
. field near the double pole condition. ActuaT]y the linear x depeno-
ence in equation (2.3.24) is "identical to that in the exact solution

but the remaining part has some terms miésing, the comp]eté solution

being (with y =y = x_ =0)

. -0
. : . -
: (k. h)2 k. h
1 .
X
) p (X 0) = 12 0+ (E-Qﬁ)2 cosz(kyoh)
(k h) cos (k ) yo
(k h)2 | - |
- ik, X} exp[1kxox] (2.3.25)

T

-3 cos~(kyoh)

which has been obtained from equation (2.3.21) using the equation

tan(kyh) + (gyoh) sec”(kyoh) = 0.

e T

The x dependence of the mean square (time averaged) value of this

 mode is of fhe form




2

& (b + kn(x/h)3]

exp .[:-Z‘Im(kxl)h)x/hjt(] + a)

where 'kxh(x/h)‘ has been replaced by the high frequency approximation
kh(x/h) for the linear x dependence pantigf the solution; e and b
are conétants‘associated wtth the double pole condition}m Thus this
mode decays with the usual exponent1a1 dependence in the x direction
but is also amp]1f1e as the result of a sort of interference between
~two near]y jdentical modes with amplltudes tending to 1nf1n1ty. This
:dddb]é pole mode is not peculiar to the Green's function: - it will
.occur for any source distribution provwded the appropr1ate wa]]
:adm1ttance is present at y = h (see be]ow) | ’

It is ‘at precisely this double pole condition that Cremer (19)

deduced, by graphica] methods, that Im(kxh) attains its maximum

value.  However, Cremer (19) was apparently unaware of the non-
existence of the simple pole so1ution It 1s therefore of 1nterest
to evaluate the Green's funct1on at and near a doub]e pole cond1t1on,
:.to ascertawn the 1mportance of this 'linear amp11f1cat1on in the
_correct so]ut1on and to assess the relevance of Cremer s (19) resu]t
to the opt1m1sat1on of sound attenuation in ducts
" The Green's function is eva1uated for the foTlow1ng cond1t1ons

the frequency and duct width are chosen so that  kh = 5 and the

PR X

:E€§£;#~xaeﬁ§ﬁ;m&mﬁt<*WWV'gmx eymwewmwmsﬁcﬂWﬁ*ﬁﬁ%Pw%*@ =

o5 ~hes o e ;}M‘:‘pumn“

X : 2 <

1.47816 + jX
[1})

.

~ The reactance, Xw, (note the change to the +j notation) is varied,
in steps, between -2.5 and +0.5, one value being close to'-1.18441.
The impedance Zw (1.47816 - 3 1.18441) is the value which gives

rise to the double pole solution and hence the above choice df
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resistance. (The method used to determine this impedance is
described in section (1.4)) For each impedance value equation (2.3.16)
has been solved to obtain the first four (kynh) values; the

corresponding (kxnh) values are obtained-from the relation

L )
yh = (k)

-
- (ﬁynﬁ) y2

" The imaginary parts of the first two values of (kxnh), multiplied
by 8.69 are shown in Figure (2.6a) as a function of Ym. Apart from
the'double pole condition, é]ear]y shown at Xw = -1.2, Figuré
(2.6a) gives the individual; axial, modal decay rates of the so called

s g

‘cut-on’ modes .in dB's per duct w1dth _ _
- In Figures (2.6b) and (2.6c) the square of the modulus* of half
the Green's function (defined bx equation (2.3.17)), in dB, is shown
as a functionlof‘X/h for 12 reactance ya]ues in fhé specified range.
- Evé1uation of the Green's function is described in Chapter 3%*,
These graphs confain some interesting %eatures{ for égémp1e the
. field, particu]ariy for X = -2.5, -2.0 and 0.5 exhibit a d1st1nct
wavy, nonjlinear decay.- Th1s is evidently due to _modal 1nterference:

the decay (see Figure (2.6a)) of the more rapidly “decaying mode is

" not Targe enough to remove its influence until x/h > 12.0. For the

same reason, in effect, non—linear decay also occurs on both sides

Ry e

S&n“mcamm4*mn@%wmtﬁrmﬁ%ﬂég ewuw‘

{ due to the asymmetry jn decay rates. The field for the reactance. ‘
i value (-1.18) closest to the double pole value is shown as a dashed
i Tine on each graph: it is clearly not the best reactance value for
1 | the minfmisation of the field (at y = 0) in the chosen x/h range.

%’ Nor is it necessarily the value corresponding to the maximum decay

| . *That is, twice the time averaged or mean square va]ue :

i **In Chapter 3 examples are evaluated for kh = 10 and an identical

:

[

impedance at y = 0 (in place of a rigid surface); half the Green's
funct1on is used here to enable direct comparison with those examples.
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behaviour.

rate as is shown in Figure (2.6a), where the actual average decay
rate between x/h = 4.0 and 8.0 is superimposed on the modal decéy
rates*. The two cut;on modes, which completely &etermine the
field in this x/h fange, interfere in such a way that the decaj
rate between x/h = 4.0 and x/h = 8.0 is maximised at a reactance
value of'§pproximate]y -1.4 and éxcéeds that}of the ieast attenuated
mode. At larger disfancesifrom the soﬁrce'the decay rate, for this
two cut-on mode caée, will convergé to that of the least a?tenuated
_mode except for réactance values at and near the double pole value:
‘here the interference is 'permanent’ and is represented by the linear
'x dependence. Between x/h = 4.0 and x/ﬁ = 8.0.this 1ineaf amplifi-
cafioﬁ-reéults in a degradation'of the decay rate from 4;4 dB, due
to the exponential factor alone, to 3.3 dB - a reduction
of 25%. In spite of this the max mum decay'rate at Targer distances |
from the source can be seen in Figure (2.6b) to corréqu;d to the
reactance value closest to the déub]e pole value (-1.18). Also the

impedance for the maximum decay rate at smaller distances is quite

close to the double pole value. It can be concluded that the doubTe

pole impedance, 2wopt,'which gives rise to'the maximum exponential,

modal decéy rate of the least attenuated mode, at this frequency

(kh = 5), is approximately equal to the impedance for the maximum
o B AT e e, S e S T, R i R e et

Ay =y o
B o A gl e s TS TR

. 3 T : atianl’ e 3 v T v —W’i“w"'?w;w
decay and/or decay rate of the Green's function. : e o

Cremer's (19) contribution is the specification of 2wopt and
the corresponding exponential decay rate, both as a function of

frequency. Thus, although the actual decay rate corresponding to

-

Zwopt is somewhat less than Cremer (19) predicted (due to the

» =
- —

* Unfortunately it has not been possible to evaluate the acoustic
€nergy flows in these examples. It is preferable to use the axial
energy flow rather than the local mean square field value for the
reéasons given in Chapter 5 but in these examples it is assumed that
the Tatter gives a reasonable indication of the axial energy flow




linear amplification) his result is c]early relevant to the part1cu1ar ‘
examplé evaluated above. Unfortunately it cannot be assumed that the
optimum impedance for the decay of an arbitrary source distribution,

fw(y), will remain approximately equal to Z ¢» unless it can be

®wOP
established that the associated mode dominates the duct acoustic

field, for all imﬁedhnce values. I ,>";
. The evaluatwon of the Green's funct1on c]ose to the double pole
'cond1t1on (Xm';»-1 18) allows the actual doub1e pole so]utwon of
~ equation (2.3.25)'to be checked: the square of the modu1us of their

ratio, in dB, is shown below as a function of x/h.

R

x/h .25 .31 .40 .50 .63 .8 1.00 1.25 1.60 2.00
_d8 08 .08 .09 .07 .08 .07 .06 .07 .05 . .05

x/h 2.5 3.15 4.0 50 6.3 8.0 10.0 12.5 16.0 20.0
d8 .05 .04 .04 -.05 .06 .09 .14 .23 .37 .63

The diéagreément up to x/h = 6;3 is atfribuféd to the fact thaf the
“solutions must differ as the reactance Va1ué§ are not {deﬁtica1.j%0r:
- larger x/ﬁ values the dfﬁagreement is pfobab]y due'to "ampljfifl"

cation of small errors 1n the axial mode wavenumbers. | ’

No further use w111 be made of this doub]e po]e solution a]though

it is obviously an 1mportant one and shou]d be 1nc1uded 1n any multi-

1

" mode wave~ gu1de model for a more realistic estimate of the field at

o

oar Lontinuml. ¢ pdlho ) .
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Of course at sufficiently sma]] and large d1stances from the source
the double pole solution is asymptotic to one of simple exponential
dec&y, see equat1on (2.3. 25) .- ] ,
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2.4  Optimisation of Modal Attenuation Rates

Essentially there are three contributions to be made in this

area. In sub-sections 3 and 4 it is shown that Cremer's (]9).resu]t

can be logically extended to higher order modes in a two-dimensional
. ~rectangular duct and to modes in a circular duct. In the.next
.Chapter'a simple, duct ray model is constructed on the basis.of the

approximate source-image ray model for a'single wall (noted ih the

second section of this Chapter). This mode] is evaluated in an
R attempt to understand why Cremer's (19) optimum impedance has its
particular va]ue ‘and frequency dependence. dihe_extensiohs are
preceded by a detailed description of Cremerfs.(19) resu]t_end in
e the finai sub-section the application of optimum impedance results

-is discussed with the aid of a simple example. . :_i..

S o _ T
2.4.1 Diséussion . T o ‘?;f‘ ‘_: i'
. In general the optimum impedance. for the maximum attenuaéioh:
| of the local field or of the energy flow depends on the relative
mode ampiitudes and hence the source d1$tP’bUt10A:"Af (y). If
the source distribution is not known, mode ampiitudes can be

measured directly (26) or faiiing this, source distributions or

‘ reiative amolitudes can _be_as: med in the, 1Lcht af-a ronriate e
%}:’&'ﬁ;" '-u"' l“"h{ »w-—»r'\ -«f 1"“‘";"“‘,; Z.}'«-“ »—-—-—-1-&;:‘5'%;”"::';, e .W (—i il : : ? R e

theoretical modeis _ |
For example, Tyler and Sofrin (27) show that, under certain

conditions, the interaction between rotating and stationary b]ade

rows can produce a single uode; At the other extreme, Dyer's (2g)

theoretical analysis for “source-that is purely random in space" in

a hard walled circular duct shows that again under certain conditions,

a11\1811 cut-on modes have equai energy (See a]so the anaiy51s by




'Morfey (29) for rotatingrsourcos.)
(Using a theoretical model based on Dyer's.(285 result aioom—

) puter program written by the author while at Rolls Royce Ltd., was
found to be of cons1derab]e use by W1rt~(§5) in interpreting and
predictfng insertion loss data obtained from the Lockﬁééd'éo?ifornia
Lined.ouct Facility. See Appendix 1A. ) ;',%!f - |
. Cremer s (]9) result is supposed to be re]evant to the Dyer
(28) ;xgg of source d1str1but1on in a rectangu]ar duct. Here Cremer s
(19) result is extended to the c1rcu1ar duct and, for therrectahgular
duct, to a]i higher order modes in turn, so that the resu]ts can be -

used for the type of source distribution where only one part1cu1ar

’ mode is preferent1a11y exc1ted

2.4L2:wCremér's result

' To oe more precise the definitioo'of optimisation in thet;p
V‘fpkesént context is the maximisation of the deoay or aiténuation:rété_
of a mode pair. It is'obvious from Figure (2 6a) why the term - |
‘:'mode pair; should be osed although the def1n1t1on of a mode(1s
_arbitrary to some extent and it could be argued that the‘attenuationfv
of a single mode 'is being optimised' E o

fd

fégwwxﬁQQfswwaﬂmmma-qaﬁeﬁigh%ﬂ%&ég@ﬁ;ﬁ&Jd@gbiwagﬁ%&mﬁaw_ !

w-a‘l..-?,-.w s

T

1gnor1ng the 'Tinear amplification') s proport1ona1 ‘to the 1mag1nary
part of the axial wavenumber kxn’ and in the usual units the

attenuation is

8.69 Im(k h) dB per duct width = S (2.4.1)

_ Two parameters detefmine this quantity: one represents the influence
. of duct geometry, simply the ratio of the duct width to the sound

o wavelength in this two-dimensional model, or the reduced frequency
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“kh = wh/c. The other is, in generai, complex and frequency depend-

eﬁt_and is the non-dimensional (locally reacting) wall admittance
Eée'(or wall impedance Zm = (éw)-]) obtained by dividing the

actual admittance 8 " by (poc)f1‘ o

. The equations which determine Im(kxnh) from these two para-
meters were obtained in the previous section; these are A

3w, - (kh) tanlkp) L (24.2)
k) = - m? o L (2.43)
(N.B. In this section +j is used instead of -i. ) L

‘-,iApart from the trivial case of éw 0 (rigid wall at y h)

h) the so1ut1ons,

and éw,+»w  ('pressure release' wall at y

""(kxnh) n = i, 2, ...y =, all have imaginary parts whmch, 1h

general, are different, there being a minimum value of a sequence'

ef Im(k, h) va]ues/which increase fairly uniformly with n, with- L

~out limit. The fact that there is a mode with minimum attenuaffon

rate is extreme]y usefu] because provided the source distribution

does excate this mode to some extent then at some distance from the

source the sound field will consist of just thws one mode (except e

near a termination) and hence the sound etfenuation at larger dis-

%

tanres Will be, ent1re1v determgned by, this m1n1num.vaJu

e AR VR e e i 3 nwwn.w'*ﬂ._‘_..qw‘% S __,r—*..*

At ]ow frequenc1es the d1st1nct10n betxeen the mode W1th the
1east attenuation and a11<other modes is fairly clear because the
latter are, in éeneral, Eighly attenuated cut:off modes, where cut-
off modes can be loosely define@ as those with kynh values such o
that _ ‘ | |

¥ kynh j > kb ,A,izij', - (2.8.9)

With Tow frequeﬁcy systems in mind Cremer (19) carried out a
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definitive exercise aimed at determining the value of Ew which would

optimise the value of this minimum attenuation rate. -He obtained the
following result in terms of the wall impedance 2w: the maximum
" attenuation (for any value of kh)- of the Teast attenuated mode is

attained with a wall impedance Z  , where .
. . wopt B o

10 = (091-4o7e) K T(2.4.5)
and this meximum attenuation‘fs calculated using equation (2.4.3)
with a (kyh) value of | ] ; ‘ : _.*'-3‘ : s

(kynh)opt = (2.1 +31.1) . . - (2.4.6)

Cremer (19) observed that this va]ue of (k h) is the point oﬁ the
complex (k h) plane at which modes 0 and 1 merge and become 1dent1ca1

in every respect. In other words this optimum cond1t1on is identical

\: to the dbub]e pole treated in the previous section, although there the
complexv 8 piane was used'and then the fesu]t was transformed into the
(kxh) and- (k h) wavenumber parameters )
Morse (13) refers to this point as a branch p01nt of the funct1on
k h(jkhé ) and it is necessary to d1gress at this point to establish
r-**~r°fﬁ§€;§ﬁﬁ%ﬁe"Léneext~ﬂ1 ﬁﬁn?vggéﬁ#" §‘§§WU?GT’€E$§;ﬁEﬁfﬁ?;NM 6& ’E?Zé%ﬁ:ﬁﬁﬁ&z@gﬁ::
pole but here it appears. as a branch pownt | ”
Assume equat1on (2.4.2) is not satisfied éo that

f(kyh)“=4 (kyh) tan(kyh)- j(kh)éwopt | (2.4.7) -

This function can be  expanded about the point (kynh)’ where

‘ R . . Lo ‘.““




f‘kynh).= 0 = (kynh) tan(kynh) - thswopt

N\, s
Y .

IR ’ Cken - kom?
f(k h) = f(k ah) + (kb - Kynh) [f P et Ll A
| . _ yn R yn

CIf [£7] . #0 then near k h, f(kh) behaves like o
L S S

Ufaeny = (kh-komel .
( y}? ,(_y‘} ya L ]kynh . ]

and the function con51dered in the prev1ous sect1on which is essent1a11y

(f) , has a s1mp1e pole at kyh k h o 5_ R iﬂ/.; .
If [F ]k h = 0 then near _(k A f(k h) behaves Tike
. Tyn | . Y .
g | | X |
| o (k bk h) |
L f(kh) = z e L - (2.4.8)

e

“
e
M

and the inverse of f has a double poTe at ’(k h) (kynh),'proQided
[f"]k h #0. As [f"]k h - 2 where [f ]ky = 0 the pole cannot
be of order greater than 2 that is no more than 2 poles can accumulate
in the 8 or (kyh) plane. B

Inverting equation (2.4.8) it can be seéﬂ that near (kynh),-

(k,h - k_h ike
( y kyn ) behayes like

o P S . = : —_— ___; e
MIM*G”“‘ ‘f,;‘:fr -—u}— (T( ‘ﬁ’wﬁzt?k;‘"%'-ﬁ)*"’.f‘? "«Fﬁf,“ﬁ;ﬁ'i?%‘:"”‘iw ﬂ‘; _,,fa:-_-_"-;,“;‘-&.-::..rrh s

L y
or, treating (jkhéw) as a variable where S o
khE = (k.h) tan(k.h) .
‘JBth (ky )- an( y ) o ) _

| Ckm = o+ UknG - B :
(k= kygh) =+ LkA(E, ewopt)}

' " Thus there is a branch point 6f (kyh) when written as a function of




(jkhéw) at the point defined by the solution of the equation

[f']kynh = 0 = (kh)+ %’sin(ZKyh) o ; .J.(254.9)

-

The f1rst solut1on to this eouatxon 1S, approx1mate]y g1ven by
equat1on (2.4.6). . - R
_Evaluation of equations (2.4.2) and (2.4.3) for an infinite

'duct‘wave-guide model and an assumed, but fairly uniform excitation of

all cut-on modes will lead to overall energy attenuation or insertion
Toss results with a maximum value for an impedance value at or near
the optimum value given by Cremer (]é) (equation 2. 4.5) His'result
has been of cons1derab1e use in classifying and 1nterpret1ng trends
in theoret1ca1 results and, in some cases, experimental resu]ts as
wel]
There are five fa1r1y minor points to be d1scussed concern1ng
Cremer s (?9) result and related matters before proceeo.ng to
..describe the two extensions. o e e -31' e ®
;; : " (a) Cremer's (19) hypothesis centred on the fact that the

least attenuated mode was to be optimised for maxiﬁum'attenuation

To ensure that the mode under consideration was always the least atten-

uated Cremer (19) carrwed out a semi- quant1tat1ve study of h1gher

-~

order mode aetenuatwon rates which purported to show that these modes

e - T e 2o P ——— - P S Sy et 3 _q_.
:Mua,-«ﬁ_ rr" O Y B R ';.:’3:_,,-:: Ny “""'"“”w »w—:——_.-wc-v ,‘,. =y «z;:-w;»_g__-_—'xz-“{ w"';“:—«.,m-;v“x«.r"f ks

T TWEys'have"attenuatxon “Fates T 6XCESE of Tthe assumed 1east attenuited

one. The analys1s was based on approximate solutions of the eigenvalue
equation (2.4.2) and it is suggested here that, strictly speaking,
these are not adequate for the presenf purpose. One example which
invalidates Cremer's (19) assumption is'given here in Figures (2.8)

and (2.9). In these f{gures the attenuation as defined by equotion
(2.4.1) is shown for the first 6 modes for a (kh) value of 8r (that is

h/x = 4). " In Figure (2.8) the attenuation is plotted as a function




of _?w with ﬁw held constant at its optimum value of 0.93 x 8

= 7.4, In Figure (2.9) the parameters are reversed: the attenuation
is.a-function_of ﬁm with iw = -0.74 x 8 = -5.9. Notice slightly
‘ different:optimum valuee have been used from Cremer's (19); ‘tn faet_
 those given by Cremer (19) and Morse (13) ahe stightly in error, the

~ correct values being

Somen s e (0,929 - JO 744)“‘

(2.4.10)
- opt :

»to three signifﬁcant ftgures;: The method of obtaining.these values-is
described 1ater in section (2.4.1). ~ The method used to so]ve equat1on
(2.4.2) with (2.4.3) is faif]y standard (see, for example, Ko (30))
“and waé ca}hied out using the computer programhe written by the author
7"-wh1]e at Rolls Royce Ltd. by kind permission of thatﬂcomoany _ The.
main purpose of these f1gures is to demonstrate that the optww1sat1on
of the assumed 1east attenuated (0, 1) mode pair at high fhequenc1es
~(kh = 8r) can lead to a situation where a]most all the cut-on modes <;
haye.sihilar attenuatian rates and in fact mode 3 has a ;ma]Ter -
attenuation rate. Thus, in genera]t it cannot be said that either the
0 or 1 mode are-1east attenuated. I S o ~{2
Cremer (19) also. implies that his result can be'used’fdhla 4

symmetrical duct of twice the width, that is, w1th an 1dent1ca1 1mped—

e e T TT SR e T 'j-‘t" ;R‘Jﬂ'ﬂ«-—mf A e e o ,-— TR i wrtaeeat T, "'-i"' e T R T,

e At Y e ’Th]S“Ty”COPPeCt Hfov1uéd’fﬁe”Sdbrté”ﬂ1§t’ UUtTGn Ts“"”“?i?§;¢“
symmetric about the point y = 0. If it is not then odd_order modes

are excited which have wavenumbers given by solutions of the equation

jkhg = -(l(yh) cot (kyh)

As Morfey (31) has pointed out, the lowest order odd mode can also have

a similar attenuatien rate to that of the lowest order even mode pair




: 1opt1mwsed for maximum attenuat1on
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- (now referred to as the (0, 2) mode pair) thus providing another

qua]ification to Cremer's (19) result. ._Neverthe1ess; the result.'f
is sti]l a useful one-particu1ar1y at Tower“frequencies where |
this s1tuat1on should not armse and also for mode amplitude or energy
'dwstr1but10ns which decrease w1th 1ncreas1ng mode order ’
(b) In Figures Q.S)and (2.9) and elsewhere the modes have been
numbered»actording:to.Morse's (13) definition which is based onA

dividing the complex (k h) plane into modal regions by lines, of cons-

tant phase Of‘ éw, the phase va1ue be1ng that of B Sopt. . {n fact
_any constant property of 8 ~can be used: for example, the or1g1na]
" Morse chart reproduced by Crgggr (19) uses constant Re(s ) = Re(e )
"as does Plumblee (32). However the constant phase method has the Yopt

advantage of being recognised 1n f1gures of_th1s kind whether ‘the _

‘ impedance parameter is being used or its inverse the admittance'para-
meter Thus in the present context the mode pal__(o 1) are being~.

.(c) The type of graph. presented 1n F1oures (2 8) and (2 9)

‘does not represent a comp]ete proof that the optimum 1mpedance equat1on

(2.4.10) is valid, although c]ear]y the peak attendation'ot‘the (O, 1)

' mode pair doés occur at the predlcted optimum value. . An adequate proof

-‘i"?t #%%, ""Qv—u =
(0, =), each graph showing the complex impedance plane w1th contours :
of constant attenuation exhibiting a unjque maximum at the optimum )
impedance point. It has not been possible to carry out such an exhaust-
ive evaluation for the (0, 1) modes, or for higher order modes in the )
next subisection,-but it will be shown-by reference to nork published
- elsewhere that the type of verification oiven here is, in fact,

adequate for the present‘porpose; Certadniy_for the (0, 1) mode pa{r,

e




Cremet's (19) graphs for 5 values of kh appear to be adequate proof.
To give a rough idea of the attenuation dependence away from obtimum
conditions, in F1gure (2.8) the res1stance is a]so set equal to twice

and half its optlmum va]ue and the resu1t1ng attenuat1on shown for

the least attenuated mode. ) . | ‘
- (d) In any type of opttmisétion work the initia] approach weu1d
be to attempt to locate the maximum va]ue of .a ngen function by
sett1ng to zero the grad1ent (s) of the function with respect to the
parameter(s). This approach can be used here of course but’ it would
hot Tead to the present optimum cehditton Th1s is not obv1ous from
Cremer s (19 constant attenuat1on contours on the comp]ex 1mpedance
p]ane but in F1gures (2.8) and (2.9) 1t is clear that the gradient of
Im(k h) with respect to X and R s 1nf1n1te at the optimum
condition. (Th1s mlght also be deduced from the previous analytical
‘descr1pt1on of the optimum cond1t1on ) Th1s ob3ect1on does not apply
o to the Green s function which, 1n genera], w111 exh1b1t stat1onary
© maximum va]ues,- see, for example, Figure (2 6a). ol
(e) Finally, it is of interest to record the behav1our of the
attenuation (due to the exponent1a1 factor alone) at 0pt1mum con-
_d1t1ons as a funct1on of frequency. This is shown “in Figure (2.10)

in terms of dB per duct width as a funct1on of h/a. “An approximate

. Tasrw ma
= e v ..n..g-.- D T T 2 T =ty
e ey S ST --c::""‘""‘"—, ,;";;_;v: TR »""" ‘“’""‘“

ha:ﬁt:%éfﬁrmadahfﬂr“€%1s‘uepenaeu*é; Wi i STPEarKaD [y e ccrate for arT'“”ﬂ7ﬁ¢q'w~"~f
frequenc1es such that h/A > 0. 5, can be obtained by taking the first

term in the expans1on of the square root in equat1on (2 4. 3)

kh >> lkyh t

In(kh) = -ﬁetkyh)im(h;,h)/(kh) |




Us1ng equations (2.4.1) and a more exact form of equat1on (2 4.6) shows that

the maximum attenuat1on of the (0, 1) mode pair is then

Attenuation; dB/h : 15737 ; = u«h/x' s 0.5 O (2.4.11)

Equat1on (2 4. TT) is shown eva]uated in F1gure (2 10) The Tow

. ]
frequency approx1mat1on is s1mp1y

{

T ke «-jkyh; LK fkgh]

- or

18.3; h/x < 01 . ":.f (2.4.12)

“Attenuation, dB/h 2

“which is clearly the asymptotib limit as h/x > >Q in F1gure (2.10).

2.4.3 Optimisation of the atténuation>rates of higher order mode pairs'

Having considered'thé optimisation of the atténuation rate of the
(0, 1) mode pair in deta11, an extension for the next mode pa1r (1, 2),
(2, 3) .« (my m + 1) is straightforward although evidence is requ1red
.hto justify this step. | | » | ’ ‘: _
Equat1on (2.4.9) 1is solved for the new branch po1nt va1ues (k h),
details of the method of solution are ngen in Appendix 2A The first
three va]ues are, _ - - R
| (x, h)": 2.11 + j'l}ls

- g ’——,_ — et .——-—4L "
T SRR A K T r S S e R ,.f,..f-a{r"-‘a—*mﬂw\_«»_-.m——u e S TN e
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(k oh) = 8.54 4 j 1. 78

For ]arge vaTues of m it can be shown that (see Append1x 2A)

Limit (kyph) = (m+ 3)v + 35 an ((4m + ;)ﬁ} T (2.3

m->

In fact equation (2.4.13) is a good approximation for the lowest m

values as the table below shows.
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Re(k. h) | fq. (2.4.13) Im(k by Eq. (2.4.13)

ym _ ym

" 2.106 2.356 125 1.22
5.356 5.498 - "1.552 ©1.540
8.537 8.639 1.778 1.771

/ —

;

The corresponding optimum impedance values are

——

o = (0.928 - § 0.744)20/x | |
= (0513 -5 098)20A - St (2.44)
zwzl = (0.344 - j 0.0920)2h/x ST TR AR . , e

_For large m, Im(Kymh) is sufficiently large to permit the approximation
tan(kymh) SN

- §6 that equation (2.4.2) reduces to

- k. ' o . S
zwm . TE“;H) = [(m+ 3w+ jb zn_(fm +3)7]" " kh ; (2.4.15)

The f1rst part of equat1on (2.4.i5) looks {nteresting_because it %s of
the form ., | | |
_cos o = (kymh)/(gh)

This is the same condition as for zero reflection of a plane homogeneous
wave inclined at angle of incidence o to a single, uniform, infinite

wall of impedance Z . ‘However this condition holds for all modes with '

3 e - N *1_-—_-

';Q"’i’?' (35S %gfr;

¢4 hv')

-

cond1t1on. Cremer refers to waves of th1s type as surface waves, they

are characterised by large amplitudes at the Tined wa]]. Approximate

Zw values given by equation (2.4.15) are compared with exact values

in the table below.

.m Re(me) Eq. (2.4.15) Im(Zwm)

0 .9288 ~ 1.087 = 7642 -.5176
1 L5126 ..5298 0 -.1977 0 -.1484
2 .3840 . .3490  ~-.09197 -.07154

Eq. (2.4.15)
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Evidence that this is a valid extension of'the optimisation concept
is presented in Figures (2.11) - (2.14). As before the real and

imaginary parts of Zw are held constant in_turn, equal to the optimum

values given in (2;4;14). Again attenuation rates are shown for the

first 6 modes, all for h/x = 4? - As the arrows indicate, the peak
attenuation of the partieuler mode pair does occur at the bredicted
optimum impedance values. Notice that aTthough'the hodai_attenuations
are continuoUs-functions of impedance, the mode gigeg changes abrubt]y
whenfthe impedance phase equals that of the dptimum impedance for
that ﬁode pair. (Some changes occur off the graph.) .7 7
The,fhequency dependence of the attenuation (given by the exponential

term alone) is shoWn in Figure (2.15) for the two mode pairs considered.

The dashed curves and the horizonta1.1ines at ‘h/x = O are respect1ve1y

_ the h1gh and Tow frequency approx1mat1ons equ1va1ent to those given for

the (O 1) mode pair in the prev1ous section. But here the approx1mate
values of (k h), as g1ven by equat1on (2.4.13), have been used The
frequency range for wh1ch these h1gh frequency approx1mat1ons do not
apply is now much wider, because of the larger ]k h[ va]ues, and

hence these approx1mat1ons are of Tittle interest. v

A discussion of the application of th1s part1cu1af extension is

| oz 0G0, Jll.ﬁ"r'\"of‘«ztv‘ 2Ny *41,»' e ﬁ:~s.¢m;a-_~;ﬁ?%% ESe s
MAW%L TR T T erIirs T SR ~*".—. TR TR 2t

"y . -
Y . B . . -

2.4.4 Optimisation of modal attenuations in circular ducts_

A logical extension of the optimisation concept to circular ducts
simply requires the cosine eigenfunction for the two-dimensional duct

to be replaced by the Bessel eigenfunction, Jm. The equivalent

€quations to (2.4.2) and (2.4.3) are then

-




' kb J_L(k.b)
. _r m=1'"r . _ :
Jkbg, = m I (kD) PonTh s (2.4.76)

4

kb o=+ (kb)? - (krb)z " . o f_(2§4.17)

LT
wheré m defines thg order of circumferential yariatidh—d? the acoustic
field, (krb) is the nonjdimeh$1ona1 radia} wavenumber and b_‘is the

‘duct fadids. | | ._ |
4AThis extensﬁoﬁ-can be carried out for any m value but'hére it
is confined to the value m = 0. Then the'branch pointvcoordinates
are so)utions of |

a4 3, (k.b),

ek W oTweyt <0

“or, after some manipulation

T S Jl(krb) = Wtkd) ':‘ R }gz.g.18)

The optimum impedance is given (exactly) by

Zwopt‘ - %&b T L (ea9)
z' (compare ﬁhis with the previous result for higher";rder modes iﬁ
| rectangular geometry). A good approx1mat1on to the first so]ut1on, L
; o that is thewrad1a1 wavenumber wh1ch def1nes the optimum impedance for

W_!,;——.ibé \"ad"}_(‘;} Qdé‘}np a‘_) Q—--;:;}’}‘ 5 Wi Q;I{’ﬁdb}}t’dz Ll Q?k”ﬁza(“' ":'F'!"\;iir Y&«c‘« ol v—:—a’:

Y 3T ...xi\ sun--.ryf! o—v‘» .ﬂ ._,_‘_(\ -
.l
- ) R s s

" transformation" in Morse and Ingard (]4), p.910. Th1s yalue o Vv

iﬁt**"‘ﬁ‘

»\wnr} ‘4 N

. (krob)' = 3,0~ j1.3 S _— .(2.4.20)
and also the apprdximate optimum imbedance value

Z = (.88 - j.38)2b/A - (2.4.21)
Yopt -

~ have been refined by using a 'manual’ iteration based on equation (2.4.18)
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and a computer sub-routine for Bessel functions with complex arguments

(33). . However for the present purpose the values given by eduatjons

A‘(2.4.20)'and (2.4.21) are adequate.

Se——

- Numerical evidence in support of this extension is lacking as the

required computer program was not available, that is, one which

- computes modal decay rates in circular ducts for arbitrary impedance

values. In view of its limited use in the present work the writing

of such a program was considered to be unjustified.

. A Titerature review revealed that an attempt to verify this extension
using published data would be complicated by the fact that most-attenua-
tion data is preéented in the form of an energy attenuation summed
over a‘finite number of modes. An exception to this is the work pre-
sented by Benzakéin et al (34). As Snow (35) hés pointed out, it .
appears likely that é graph of the complex impedance pﬁané (Figure 2.13)

with lines of constant attenuation is incorrectly labelied m = 1. All

.the evidence suggests that this should be for m = 0. If this is the

usﬂfm

case then this graph, reproduced in Figure (2.16) shows that the

P

optimum impedance is

7 : (2.3 - 31.0) at 2b/x = 2.6
“opt . .
Equat1on (2 4 .21) gives the values

3 e R R G SR oy ey = ST T '\—-"-'-R" . - T
TS G :3$~§?&¢::f° R e e i Seantes Shaee

7 £ (2.29 - §°0.99) at 2b/n = 2.60
wopt

Thus it se¢ms Tikely that'thi; is a graph for m =0 and if.so it
provides a verification of the extension of this 6btimisation concept
to circular ducts (fdr m=0). The predicted optimum attendation,
using'an (apprdximate) equation of the form given in equation (2.4.11),

is approximately 14 dB which agrees with the highest contour values -

DA
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shown in Figure (2.16). It is eléo reassuring to note that from
Morse-and Ingard‘s'(14) chart for m =1 the branch point impedance
is

(Z (0.6 - 30.2).2b/x

wo)m ]

" which differs cons1derab1y from (zwo)m=0 in magnitude and-phase.

2.4.5. Application of optimum impedance results
‘

The main application of Cremer's (19) results and the extensions

.given in previous sections is to assist in the interpretation (and check-

ing) of theoretical data obtained from multi-modal wave-guide models.

The data is usually presented in the form of an energy attenuétfon, E,

‘where

: . " E.
-E = 10 log n
L 10 Eout

[
4

E;, s the acoustic energy summed over a finite number of modes at

some reference plane and E ut is the energ§ at a given distance L

“from that reference plane. The reference plane can be 1nterpreted

as the source plane and the 1atter plane as a duct term1nat10n or
simply the end of a ]1ned sect1on, ref]ect1ons be1ng ignored in both

cases. E s usual]y presented as a funct1on of frequency, kh or

kb, the iaspect ratio’ L/h and e1ther the wall impedance(s) o

cavity depth of He]mho]tz type ]1ners, the fac1ng sheet res1stance
and so on.

As far as presently available results are concerned, the most
relevant optimum result is that given by Cremer (19) for the (0, 1)
mode pair in a rectangular duct and the equivalent result obtained in
section (2.4.4) for the circular duct. A]though‘it has been shown that

the (0, 1) mode pair is not necessarily the least attenuated, at 1ower
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frequencies (such that h/x < 4 say) the h{gher order modes approach
cut-off and Cremer's (19) assumption is valid. It is probably valid
up to even higher frequencies if it is assumed that the impedance takes

values near the optimum value but not equal to-it. _Suppose the duct

;s sufficiently long so that E . ,.’. T e

Im(k L) = Im(k oh).L/h n=2,3, ...

is large enough to cause all the higher order mode energy contributione

to E to be negligible compared with that in the (0, 1) mode pair.

out
Then it is to be expected that the maximum energy attenuation from

multi-mode wave-guide mode]s-wi11 be found for an impedance close to

the opt1mum va1ue for the (0, 1) mode pair.

~This 1is found to be the case in Rice's (36) results for a circu]ar

duct (m = O) where the radial mode amp11tudes, and hence the modal

energ1es, have been determined by the condltwon that the pressure field

~be uniform for (0 s r <hb) at the reference or source Mane. His

resu]ts are particu]ar]j usefu1 because they are given in the form of

optimum impedance Toci on the complex impedance.plane_for variable

=D/x (= 2b/2) and L/D, as shown in Figure (2.17). The value

L/D =1 may not be large enough to allow sufficient decay of the high

order radial modes; at low frequencies. the 1arge difference may also

be caused by mode interference The constant L/D = 2 1ine is closer

ey ,‘ D o gt e T s G L e W,- o, ..,,_.p.— -_r-r., 3 ‘f"‘_.. T T
oo ~.-z ‘,.)'.x." o A ""““75 SR —-v-,‘«,_,,— N:,_#_‘ML.“..&:';Z_&M_N B i e T TR o ey R i':—"' w".‘h
il i . T

e e W LI kA o e ik ,.'ﬂ‘ !;?::;"Z’ T e e T ey B S AT s - 2 Bt T T S TN

,to the (0, 1) (dashed) Tine and, veers'off as might .be expected, at .

high frequencies; the constant L/D = 3 line is closer still. Both

L/D =2 and L/D = 3 lines, 1ike the one for L/D =1, are'probab1y not |

asymptoticito the (O, 1) line at low frequencies. The L/D =5 line is
asymptotic and does not deviate from the (0, 1) Tine until n = 3,

although the scales here, and elsewhere, can be rather misleading.

-t
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The Tack of agreement for low L/D and high n values is not '

: particu]ariy important:

L/D values are rarely less than 3 in any

practical system and n is usually less than 5 to obtain realistic

attenuation rates. Thﬁs, for a practicafurange of parameters, optimum

"impedances previousTy obtained from multi-mode models can now be pre- .

dicted (and checked) from the type'of formulae presented in the pre- '

vious sub-section.

~ An obvious extension of this work for aero-engine applications is

e

“to 1nc1ude the annular duct case and modes with non-zero m va]ues,

which are known to be generated by rotating machinery.

s

The most obvious app11cat1on of the results for h1gher order modes

‘given in Sectxon (2.4.3) is to data from mode]s in which an extreme

form of an energy distribution has been used, that is, the energy is

éonf1ned to one part1cu]ar mode or mode pa1r In a rigid-wall duct

* i

'modes are easily recognxsed by their spatla] distribution (transverse

wavenumber), but as has been shown modes are not generally so well 4'.‘ .

defined in a lined two-d1mens1ona1 rectangular duct. - In Tined circular |

ducts, while the circumferential mode order, m, remains unique and

we11—defined; the radial modes associated with each partitu]ar ~m value

do not. Thus for a rectangular duct, un1ess the energy is arbitrarily

. confined to a ) mode of one particular order (or a pair of adjacent

;;z:ngzgnﬁi“ﬁ‘**ﬁ§‘{ﬁﬁﬁ%ﬁsxu~:§«utaﬁu -gnkﬁ‘éfﬁﬁﬁg%&?_;taib éﬁﬁzQJQﬁiW%EF“‘?*:1§5§~*'

PP 'l
p "~

t1ve terms The1r va]ue 11es mainly in the simple trends exhibited,

that of a decreasing resistance and reactance with mode order and pro-

portionality With frequency; kh or kb. As there are no pubTished

theoretical results available for rectangular ducts with variable modal

energy distributions even approaching the required extremes these

particular trends cannot be used at present.

Part of this work in section 4, is summarised in a paper presented at

the 7th International Congress on Acoustics (37).
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- s | APPENDIX 2A . !

Approximate, Analytic Branch Point Solutions for High . )
 Order Modes in Rectangular Ducts, and the Method Used
To Obtain Exact Solutions: -— ..

Approximate branch point solutions of the equation L }
’ in(2k h dp) = 0 v 2.8.1)
sin(2kh) + (2k,h) C (2

| fofvﬁigh order ﬁodes can be obtained in:an aha]yt%c form. Insbectioh of
the first three.ekact solutions reveals that Re(kyh) increases uni-
formly with solution order, m, while Im(kyh)>incfeas¢s more’sioy1y SO
that In(kh)/Re(kh) > 0 as m>w; also In(kh) > 1.5 for |
| m > 1. Equation (2.A.1) is split into 1ts real and 1mag1nary parts,

" using the notation k h=x+ Jys s

'y . .
sin 2x cosh 2y = —Zx--‘  - "‘ L (iA.Z)
- . cos 2x sinh 2y = —Zy. - ‘: . (2.A.3)
‘Dividing equatidﬁ (2.A.3) by (z.Alzj gives ‘ | E
cot 2x fanh 2y = y/X | o - ‘ "f ' (2.A.45'

In view of the trends described above, equation (2.A.4) reduces for

large m to - B T e

{ 2
cot 2x = 0
[Em e o sV .‘-&F“w"\).f. ..Jw\ o v R R T e T SRR e
naa e 3 =5 T jw_;a*' Yo X o = O L I R
Gk 2 @"‘«f’ B N S e it e T s By B rn..., _r_‘,‘ ;,5-*3_?3;—%:_ ma—-.-.; e SEms
o i -

R TR L St
bl > - “ 2
ot A )

Inspection of equation (2.A.2) reveals that the even-m splutions are

not acceptable so that

x = (m+ 3)n | m=0,1, 2, ...

Substituting this solution into equation (2.A.2) and using

zn['ZX + /(Zx)2 -1]
en[ax].

i
(X

cosh"1(2x)

T

11
o




. gives

R j’% 3 2n't4(h +H2)h}';‘h:

kb = "[(m +j Dr o+ 5 3 }'a‘n{(4m~; 3. - . | (2.A.5)

Us1ng equatwon (2 A 5) as a start1ng value the exact solut1on is |

‘obta1ned by 1terat1on us1ng the standard Newton Ralphson scheme

f[k h)]
i [(k h)]

(k h)Irhq (k hy,

‘where

o

, ':'f[(kyh)n] P

[sm 2k h) + (2k h)]k h= (k h)

‘f.[(‘k)'/,?m‘_ [HTFTT {s1n(2k h) + (2k h)}]k =k, h)

and where (k h) denotes the ;nth 1terat1on va]ue of (k h). Th1s

'1terat1on has ‘always converged even for m = 0 when the start1ng

y -

vaIue is the 1east accurate
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FIG.

2.5a INTEGRATION CONTOURS ON THE COMPLEX 8 PLANE..
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FIG. 2.5b ORIGINAL AND CLOSED CONTOURS.

+1m/2

A e




GV /WU TR

———— — Modal decay rates

(Ry,=1'47816)

Rh =5

_—— Actual decay rate between

x/h=4:0 and x/h=80
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VERIFICATION OF CREMER'S OPTIMUM REACTANCE FOR THE (0,1)
MODE PAIR AT h/A =4, (RESISTANCE 1S CONSTANT AND EQUAL TO

THE OPTIMUM, (R, |

), EXCEPT WHERE IND!CATED)
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FIG. 2.9 - VERIFICATION OF CREMER'S OPTIMUM RESISTANCE FOR THE (0, 1)
MODE PAIR AT h/A =4.(REACTANCE IS CONSTANT AND EQUAL TO
TS OET!MUAA VALUE(XwOPt)) .




Approximation of equotion(2.4. 11)

FIG. 210  MAXIMUM ATTENUATION RATE OF THE (0,1) MODE PAIR.
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IG. 2.13 VERIFICATION OF (2,3) OPTIMUM REACTANCE AT h/A=4.
(RESISTANCE IS CONSTANT AND EQUAL TO THE OPTIMUM VALUE).
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CHAPTER 3 -

RAY IMODELS FOR SOUND PROPAGATION AND ATTENUATfON

IN DUCTS,.IN THE ABSENCE OF MEAN FLOW

r— T

-3.] Discussion " o
| in Chapter 2 the acoustic field due to e-]ine seurce situated
‘ between two infinite planes was constructed on the basis of plane
wave reflection feom a single infinite plane. The ref]ectioh_Of P
| homoéeneous (reel angie/of incidence) plane waves from a single wall
- with a locally reacting admiftance is we]T understeod apart'>pe;ﬁaps,
- ‘from the peculiar behav1our as the angle of incidence tends to 900
-Two complications arise when the homogeneous plane wave 1is rep]aced
‘by a source and when a second wall is 1ntroduced. F1rst, the source ' _??
fie]d is decomposed into a continuous distributien of homogeneousu | !
and inhomogeneous plane weves, and an ineident wave of the latter - S

| type is not easy to visualise because the angle of incidence has no

clear interpretation. The lines of constant amp]itude and phase
~are no longer eoincident Second there is reflection and re- \ | _  V *
reflection of these plane waves between the two walls. The resu1t1ng :
field can be represented by an infinite sum of modes but although
this‘is extremely useful in practice, it leads to difficulties ih
: phyéical interpretation. A good example appears in Chapter 2 where
optimum ihpedances are given for individual mode p;irs.' The question
immediate]y arises: why, from tﬁe physical viewpoint, do these take

part1cu1ar values they do, for examp]e

Iy = (0929 - g0, 744)Lh/1r



for the lowest order mode peir? Intuitively it appears unitikely that

. there is a simple, complete answer to such a question but a qualita-

tiYe physical explanation is clearly desirable.

It has to be recognised,-also, that the’simp]e'moda1 result

discussed in Chapter 2 has only been'derived for a gross]y'oVer—
“As1mp11f1ed system. In practice mdtuenatical modé]s are required for

systems w1th non- un1form 1mpedance boundary cond1t1ons and a var1ety
' of duct geometr1es, 1nc1ud1ng those that vary along the duct axis.

" In the light of these facts a pre]1m1nary study has been made of
uar1ous approx1mate ‘models, based on a ray approach suggested uy
Morfey (21), for represent1ng duct acoustic fields. Such tay-models,
by Virtue of the simplifications emp]oyed avo1d the comp11cat1on of

f inhomogeneous p]ane waves by retaining the field due to the source

in its original form. Also the simplest version of these models

féxc]udes all but the first ref]ection of the source field in each
duct wall, thus a]]owing the possibi1ity of direct interpretatiod
In the f1rst section the accuracy of ray models for a leg_ source
~ between two infinite planes is 1nvest1gated, A po1nt-source is chosen,
~in the first instance,'for the following reésoh: the only source ot
error in a multiple reflection ray mode] is the assumption‘emd1oyed
that the reflection of the source.fie1d is determined by the specular
plane waue refiection coefficient.‘vA correction factor for first oeder
>non-specu1ar reflection effects is évai]ab]e, but only for tue fiﬁEIL
veflection of a point source'fie1d.;4 'l - |
In the second section the line source is.re~introduced‘with
-part1cu1ar emphas1s on a- s1ng]e reflection, two image ray model. When'
fth1s model is in reasonab]e, qua11tat1ve agreement with the exact

— moda] mode] it can be used to interpret the behav1our of the modal f1e1d

at ‘and near optimum cond1t1ons - for the lowest order mode pair.




3.2 Evaluation of Ray Models for the Field Due to a Point Source

between Two Infinite Planes

Three ray models are evaluated below for é point source between
twb infinite planes; the first is represented by Figure (3.1). The
field at a point (x; y) is assumed to consist of the direct»field‘
' 'ffom the source at y.= Yo and the fef]ected'field,'from each wall,
_ due to image sources at y = -y, and at y-é 2h‘¥ ¥,-By using the
approximate expression (sﬁecular réflection) for the Green's function

for a point source in the presence of a single, uniform, infinite

A;‘wall (14) the Green's function in this case can be writtén as

P Va

el V{exp[}'kRo]] . c ) exp[ikR ,] , Cop(R 3) exp[ikR 5] X
w 4u Ro] _ ri‘ o2 R02 R03
o | » -0 - . (3.2.1)
where - R .
. cos 6 , - B L o o1
-crl(Roz) _02 — wl'; oS 6., = {1 - (ﬁé—)?é,
- _ cos 692 +8.1 E 92 (3.2.2)
cos 8 . - B 3 I
Cro(Ry3) = _03 ?2‘; cos 8,5 = {1 - (R—x—)2 2,
- s 03 * By om0 (32,3
S P
,RO] -— {(x= + (y - yo).}z, )
) Roo = 0 ¥ (V ¥ yo)z}2 ’ o S  _(3'2'4)
.- ) . - . l . B
Ry3 = {x2 + (2h - Yo ~ y)2}2.

Notice that, unlike the model used in Chapter 2, the plane at y =0
- has a finite admittance. In all the evaluation examples to be given

here By S set equal to gw2(= B, = ]/Zw) and the sourge is

placed at y = h/2 although the relevant computer programs are

designed to .take .unequal admittances and an arbitrary source location.




Under these special conditions the exact Green's function is

- | ] - .
5 cos{kynh(y/h 1) H, (kyX)
W 4h

1l t~1 8
~—
w‘ .
.
~N .
o
~r

n=0 . - S

. sinlk, h) :
{—TIT—%éy—— + 1}
yn

—

where the (kynh) values are solutions of the equation

(k.h) kh S -
(kM) tan (-5 0 (3.2.8)

™
o
N

Kk, = K-k, AR C(3.2.7)

"For tﬁé pﬁésent purpose the Hankel function can be replaced by its
asymptotic form, | '
oy (M) L2 43 ; Uyl
CHU (K x) = {1Tkxn —° exp [i(k,x 4)]. | (3.2.8)

~E

" This is not a valid approximation for the evaluation of modes near
the source.
i The aim of the present exercise is to eva1d;%e—£he ray model,
descr1bed by equations (3.2.1) to (3 2.4), for some vé]yes,of; Zw
and a fixed value of kh, at se]ected po1nts within the duct. The
accuracy of the model in these examp]es is determined by a d1rect
comparison w1th corresponding evaluations of the modal model, described
by equations (3.2.5)-(3.2.8). Clearly, for the ray model to be a
useful tool it should reproduce the actual field with a fair degree
of accuracy, although accuracy reqdirements will vary with the type R
of application. If the duct energy flow ié the parameter of interest,

for example, 1arge errors in the pressure field may not necessari]y

affect the energy flow to the same degree.




Here'tomparisons are confined to the mean square (time averaged)
value of the field as a function of the axial distance from the

source, x, and the distance, y, normal to the axis, from one of the

duct walls. [ P -

The reduced frequency, kh, is kept equal to 10 througﬁ'all

the examp]eé in this chapter, and the impedance values are cﬁosen

to be (1.0 - §.01), (1.0 + j.5) and (1.0 - j1.0). The sound field

variation in dB along the duct centre-line (y/h = 0.5) is shown in
Figure (3.2) for thése impedance values calculated using the mode
model. Five modes were used for this evaluation (See.AppendiijA),
two 'qﬁt—oq"and fhree ‘cut-off'. The field may contain.someAerrors

- for small x/h values, due to the use of the asymptotic fepresentation

: . of the Hankel function. The ray field, for the same conditions is

shown in Figure (3.3). Both fields exhibit thé greatest decay and
- decay rate; beyond x/h = 2.0, fbr the impedance (1.0 - j].O); this
can be understood in view of ihe fact that the optimum impedance is .
apbroximate]y (1.5-j1.2). The ray field for the.impedance (1.0 -
j1.0) falls below the direct field at the smallest X/h value. It

is now clear that, at large distances from the source, the ray field
aftempts to represent the modal decay of the actual fie]d By destruc—
tive interference between'the direct and reflected rays. Direct
comparisons of the twb fields are shown in Figures (3.4)-(3.6); the
fields are in good agreement, in general, but begin to.diverge with
increasing distance from_the‘source. | These differences become duite
.1arge for the impedance value (1.0 - j1.0) beyond x/h = 1.6 and |
also beybnd x/h = 5.0 (not shown). In fact the agreement is the
worst overall for this impedance, the best béing for (1.0 - j.01).

'-iThis suggests that the omission of re-reflections for impedance values




that differ from unity is a significant soﬁrce of error.
Strictly Speaking if re-reflections or multiple images are

included the ray field wi]]astill-not converge to the correct value,
because the specular reflection coefficient‘;; 6n1y'an gpproxﬁmatibn.
.FdrthermoreAthe inc]us%on of additional images, although a-simp1é '
" procedure, immediately removes much of the simp]itity of the ray
-model and equudes any simple interpretation of fhe field behaviouf.
'A,' In the next stage of the investigation the two-image model is
retained and the model is improved by inciuding-the correction factor
o fof the refTecfion cbefficient givén by Brekhovskikh (20)’, which
takes the form ' g
o | ‘_iNo3

kR 3

-1N02
kRoZ

where 2

A : dc S
N W [—lg - 5 I A B
02 | 402 @ = 85y + COt 8 5 [, }

= 602,

'ahd similarly for N03. For the locally reacting boundary condition

-used here N is given by

_ , 1 (3.2.9)
(cos & +

Adding thiS'correctfon,factor to the reflection coefficient gives fhe re-
evaluated ray field & shown in Figures (3.4)-(3.6). The results afe
somewhat disappointing: there is no dramatic improvement in accuracy

and where there is some improvement, for certain ranges of x/h,.for
example Figure (3.6) 1.25 < x/h ' 4.0, it appears to be cbincidenté]

~ for beyond x/h = 4.0 (not shown) the correction factor incréases the

~ inaccuracy. Based.on these results and on others, not given here, it

T
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is concluded that the major source of error is the omission of re-
reflections and no appreciable impfovement in accuracy can be
" obtained by inc]udihg this correction factor in a twb-image model.

~ Re-reflections can be described byié‘generalisption of equations

(3.’2.‘»1){(3.24): e

exp[ikRzi]

o1 Y e
G,' =z X [ )Cro(Ryy) e

w 4n 220 ] 21 re 9.] . RM.

i 2+] exp[ikRsz ' e exp[}kR ]
t+ (R )C (R ) —_— (R )€ (R g) —o——
T Tl TR, 1 23 23/ TR

SRR IS exp[ikR,,] T e '
) + ﬂ (R£4) r2 (R24) """‘R_“RA—_ 1> S :(3..2-.]0) .
: . -COS(E ) . '8' e o .' T -1 v
Cq(R) = Aol cos(,) = 1 -(Z9AE.
cos(ezm) +B8.4 m o (3.2.11)
o m=1s2,3,4
. cos(s, ) - B . T o
Cp(Ry ) = 92, cos(d, ) = (1 - (Z94E, |
) Acqs(ezm) +8 w2 R o am i (3.2.12)
o R m=]s 2’ 334’ | ~
. . ‘ N l. . ’
Rz] = {x2 + (2¢h +y - yo)z}z’
R22 = {x2 + (22h + y + yo)z}2 s o
. o . o 2‘ . | (3.2.13)
Rez = X"+ (2(2 +1)h -y -y )72, . :
Ry = '_{x2 +(2(2+1)h +y, - y)z}%.

These are a generalisation of the relations derived by Brekhovsk1kh

1(20). Two ray mode]s are considered: one described by the equations

4
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(3.2.i0>-(3}2.13) and the bther'eescribed'by the same equations but
with the correction factoh-incTuded in the first reflection at each
‘wall: that is, the factor is added to Cr](Roz) and Crz(ROB)' The
factor has not been included in terms representing re-reflections
because it is not clear whether such a procedure is valid. . The
correction factor,.of eourse, was derived only for the ref]eetion'of
a point source ‘field by a single wa]] ‘ |
These two models*, termed the multiple image ray model and the
corrected multiple image kay model, are compared in turn with the
mode model by taking the ‘square of the modulus of their rat1o,
expressed in dB. Included also is the corrected two-image ray mode]
the résulté are shown in Figures (3.7) - (3.9), again for the ‘centre-
line field. Both multiple image ray models show.a marked improvement
over the corrected two-image model, but for the cese Zw = (1.0 -
j1.0) the error still becomes_excessive'(> 3 dB) at x/h values greafer
than 4.0. For the other impedance values, the inelusidh'of multiple
reflections keeps the error less than 11 dB up to x/h = 10. (Errors
at small x/h values are probably due to the asymptotic Hankel function
approximation but this has not been d1rect1y verified.) |
With attention wmnfined to the 1mpedance va1ue (1.0 - §1.0)," the

transverse error var1at1on given by each ray model at axial 1ocat10ns
x/h = 0.5, 2.0 and 8.0 is shown in Figures‘(3.10)-(3.12)._ The range
of y/h is restricted to 0.0 - 6.5 es the fie]ds.are symmetric‘ |
about the centre ]ine (y/h-=.0.5)**. The actual mode (field) varia-

tion is also shown in each figure (as an inset). Clearly the multiple

*In the evaluation of equation (3.2.10)‘the value of ¢ is incremented
until |Gw'h{2, in dB, does not change by more than .01 dB; 2 rarely
exceeds 5. C : o ) '

**The fields are actually evaluated at intervals of y/h =




jmage model is more-accorate than the corrected two-image modef but
the corrected multiple image model prodoces the most significant
nprovement | »
The unm1stakab1e trends in all the results._ presented SO far are

that (1) the tvio-imagé models undoubted]y provide a qualltatwve
| representation of the duct acoust1c field in terms of its dependence
on the wall 1npedance, and (2) 1ncreased accuracy can be obta1ned_
with multiple images and a correction for tne specular, plane wave,
first reflection coefficient. It is suggested that the inclusion of
an appropriate correction factor for re-reflections would probably
“provide a ray model sufficiently accurate for mostipurposes.-"Evén
with this degree of sophistication the model wou}d be easier tof
evaluate than the mode model although in termé of computationaf'time
much depends on the actual information required and hence the type of
application. Ray models, if proven, would probably be superior inA
rost respects to the modal approach for more realistic boundary
conditions and variable geometries; an example of the ]atter is

given by Felsen and Yee (38) ("Ray method for sound-ware reflect1on-

N

in an open-ended circu]ar'pipe.")
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3.3 Evaluation of Ray Models for the Field Due to a Line Source

Between Two Infinite Planes; Qualitative Interpretation of
Optimum Conditions

Now that the feasibility and Tlimitations of the ray model for a

duct containing a point source-have been demonstrated it is preferable

that the Tine source be now re-introduced. Apart from the obvious
reason that‘it is the basic'source used throughout this workﬁ it is
preferable because, at large distances from the soufce,vthe character-

-

istic exponential decay of the Green's function can be easily recognised

(apart. from the decay near optimum conditions); and because Hankel
functions with complex arguments in the mode model cah be replaced by
simple exponential functions. This allows the mode model td be - |
evaluated accurately, if required; near the source without resorting
to non-standard computer sub-routines.* of coursé, the ray modé] nbwA

contains Hankel functions, but with real arguments, and these can be

o

evaluated with standard sub-routines.

-

The disadvantagesof using a 1ine source are that the correction

factor for the reflection coefficient is not available** (to the

author's knowledge), and that even the specularly reflected field is

not given explicitly in standard texts. However it is reasonable to
- assume that this is.sti1l given by the plane wave reflection coeffi~"
cient evaluated at the angle defined by the ray paths so that the two-

image ray model Green's function is given by (see Figure (3.1))

‘Gw' = '}{Ho(])(kRol).+ Crl(Roz)Ho(1)(kR 03)

02) * CrZ(R

. 1 ) ' . , R o
on (M ae )y o | _(_3.3.1‘)

*A sub-routine for Hankel functions with complex arguments is available
but it has not been thoroughly tested. :

**Although it presumably can be derived without too much- difficulty this
has not been attempted as the emphasis here is on a qualitative repre-
sentation of the field for the’'purposes of interpretation. As the
previous section has shown, the correction factor is of Tittle use
unless multiple images are included and this immediately precludes
any simple interpretation.

7.



where, in some examples, the Hankel function has been replaced by
. \
jts asymptotic form (see equation (3.2.8)). The exact Green's function

is

. o {cos k_h(y/h -3} . T
Gw.' - % Z_ ‘ynsm T exp[‘ikxnx]‘ - (3.3.2)

:'.where the »kynh “and kxﬁh' veJdes are:determined from equations
| (3.2.6)kand (3}2{7). Some evaluations of a mu]tible image ray model
- are given below, which is described by equatiens (3.2.]0)4(3.2;]3)
with the factors exp[ikR]/47R  replaced by‘ %-Hb(])(kR)A (or jts'

7asymptot1c form). ' - K -

In the f0110u1ng examp]es the same 1mpedance va]ues are used
:"Vas in the previous section but with an extra value, -m = (1.47816 -
- J1.0), which has a real part exactly equal to the optimuﬁ value fer

fhe lowest erder mode pair and an imaginary paft close to its
opt1mum value (— -1.2). The'same-parameters ere’eva1Uated as -
before except now the Green's function is itself non- d1mens1ona1 and

‘therefore is not mu1t1p11ed by the duct width. ~“'A“_u C

The mode centre-line fields are shown in Figure (3 13) and the
~ corresponding two-image ray fields in Figure (3.14): S1m11ar1ty is
evident.in the.region 0.12 < x/h £ 1.5 but at larger distances the
ray model cannot acéufate]y reproduce the linear decay. -Direct '
comparisons of the tWo models are ;hown in Figures (3.15)-(3.18)%

Nevertheless the ray mode1 cdrrect]y describes tﬁe tendency (for
X/hﬁ> 1.5) for the field to be reduced as the optimdm impedance .
ratio is approached. The reason for this trend is that this

_1mpedance value causes permanent' destructive interference to take

place nearest the source (at x/h 1.7 - see Figure 3.14)). Thus the

72,
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‘to kh; although it is not possible to deduce an explicit dependence

1 should also be a function of kh. According to the two-image ray . 1

ray model is capabie of indicating, qualitatively, the best impedance

value(s) for field minimisation but it cannot faithfully reproduce’

the corresponding decay rates. This is hardly surprising: destruc-

tive interference is inevitably sensitive to the exact value of the
- i

ref]ected fields relative to the direcf field. As the ray model is

* improved it must gradually converge to. the correct Tinear decay

behaviour, but this is of T1ittle interest here. The two-image ray
model has provided the information required for a qualitative

interpretation of bptimum impedance values: the optimum impedance

is roughly that value which allows the amplitude and phase of the

singly-reflected field to cause the most efficient destructive inter-

: ference with thé direct field.

From this interpretation it will be shown that the reactance

iw must be negative (in the +j notation) and directly proportional

for ﬁw on kh it can be deduced that ﬁw must be non-zero and

esaras o e % AT o RS P Lol T

model the field on the centre-Tine * (at a ngficient distance
from the source so that the Hankel function can be replaced by its - '
asymptotic form) js proportional to (in the +j notation) P, Where o ?5
: -3 2C,.| | |
preeloid D epfatt? + (k)P 4 3¢]
{kx} T {(kx)S + (kh)“} - 4
. ' : o (3.3.3)

and ¢ s the phase.of the reflection coefficient.

For h/x <<-1 this reduces to

*For the conditions assumed throughout this Chapter, that is, the
source is on the centre-line and the walls have equal impedance.

.
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D2 %5%51‘-"1'{1 + 2 | exp [3kh(h/2x) + Jol} (3.3.4)

YN

where ’ , -
C.= {Z,(h/x) = 1M, (h/x) 1}, - - (3.3.5)

For complete, destructive interference the reflection coefficient

must take the value

-

IC.] =0.5 and ¢ =+ + kh(h/2x).

Although Cr clearly does not attain this extreme value in the
examp]es‘eva1uated above, the actual values; for large x/h, must
be similar near the optimum condition. The phase of the reflection

coefficient, when [Zw_h/x | <<1, is, from equétion (3.3.5)

¢ = tan (- 2k (h/x)}

and-equating this with the extreme value given above, one obtains,

for kh(h/x) s 0.5

kh(h/2x) = -ziw(h/x)

or _
X, = ckn/a,

This agrees with the frequency dependence of the optimum impedance, ..
which is | o ,'
z = (0.929 - j0.744) s
- opt -
but differs in absolute value by a factor of 2. Of course, in this
approximétfon (small |2wh/x[), the modulus of the reflection coeffi-
- cient is unity and the resistance musf take a value, which vio]ates

the condition IZJVxl << 1, to obtain the extreme value |C | =

0.5. Also as Xw increases with kh, ﬁw ~ must also change in

B O ittt st A

[

-,

- i



 order to maiﬁtain the required‘refléﬁtion cdefficient. Thus ﬁw
must be non-zero and should be a function of kh but little more -
‘can be deduced.with this simp1e approximation.
Finally the'accurécy of the.two-iméég.m66e1 and the multiple
- fmage model is ind;caﬁed, again on the centre-line, fdémthé.four
impedance values in Figures (3.19)—(3.22). in the first three
figures the Hénkel functions in the ray‘mode]s héve>been replaced
- by the usual asyhptotic approximation but in the ]ast'figure.the
-acfualvHanke] functions have been used. These resd]tsAhave one
feature in common: where the two image modé] is relatively accurate
the multiple image model leads to an'impfOVehent, in genefa],-bdt
- gwhere fﬁe %ﬁo image model fails completely at large distances ffom
fhe source, so does the mQ]tip]e image modei. In this feéion'_

reflection coefficient corrections are essential for the actual

- field decay'to be described by the mechanism of destructive intef—‘.

ference.




ct, 'Mode' Green's Functions (Point

APPENDIX 3A

g

Source

Evaluation of the Exa

~and Line Source)

-——

For the value kh = 10.0 and the range of x/h and Zm values

used, the sum of the first four or five modes provides a sufficient]y

- accurate estimate of the Green's functions given by equations (3.2.6)

and (3.3.2) for ﬁhe present purpose. The wavenumber values for

" these modes, which are solutions df equation (3.2.6) with equation

(3.2.7), are given below for each impedance}"the mode number is

. 'qot necessarily equal to the mode ofder.

v‘..Impgdance Mod
S }

w

1.0430.5

1.47816 -
j1.0

WO PHPWN—~O HPWNHN—O HWNH—O

n

~ .

BN~ OOAPDWNO OPLPWNO

o~

e No. Re(kyhh)/4 In(ky h)/4 Re(kxnh)/g Im(gxnh)(4

.687329
.00629
. 36282
.84143
.37290

.752979
.10688
. 25386
.73124
.28871

961771
27285
.91746
.57303
.18097

.31302
;891023
.00672
.62640

' 0.123099

0.287664
0.266948
0.200839
0.155231

0.155117

0.503363
0.471446
0.292412
0.210150

0.230183

1.24012
0.201693
0.133746

- 0.0999752

0.703702
0.408750
0.198239
0.126776

2.40707

1.56328

0.395805
0.234426
0.168747

2.38945
1.58497

- 0.713364

0.344071
0.228996

2.32101
2.55896
0.382456
0.159686
0.109313

227724

2.37627
0.351552
0.150636

-’

s

- 0.0351505

-0.
.26803
.14778
. 86244

.0953824
.616848
.53856
.83017
.65299

5

P p
R R e ]

369183

.0488815
669112
.15040 ~
.02088 R
7715

.405744
.153268
.69548

-3.
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~ CHAPTER 4

THE PROPAGATION AND ATTENUATION OF SOUND IN LINED DUCTS
"CONTAINING UNIFORM OR 'PLUG' FLOW

4.1 Introduction

———

In Chapter 2 the line source Green's funct{on has been obtained
for an infinite, twojdimensiona1 duct with loéaily-reactingi
boundaries in which the unperturbed fluid is at rest relative to
the auct walls. Except where theAparameter values (reduced frequency

and wall admittance) give riée to the double pole conditibn, the

———— wa e+

Green's function could have been obfained by the standard method
based on the orthqgona] properties of the mode- or eigenfunctions®.
.Thfs method can also be used for three-dimensional duct geometries
(e.g. rectangu]ar,.circu1ar or annular). |

| If the unperturbéd fluid is not at rest but is in uniform motion
relative tolthe duct walls, the mode functions are no longer orthogon-
al unless both walls have a zero admittance or impedance. The-concept
of uniform motion is discussed in section (4.2) and the Green's
function for an infinite two-dimensional duct wifh'rigid walls (zero
admittance) is derived in section (4.3), using the standard method.h

In an.attempt to obtain the Green's function for a duct with an

arbitréry ioca]]y—reacting admittance on one wall (so that the modes
are non-orthogonal) the Lorentz type of transformation is applied to
the inhomogeneous wave equation (following a suggestion by Morfey (39))
and the Brekhovskikh (20) method is used in exactTy the same way as in

Chapter 2. This work, described in section (4.4), is incomplete owing

to difficulties encountered in establishing the convergence of an integral

on a specified contour. Thus the validiﬁy of the new Green's function cannot be

*Although there may be other methods of dealing with the double pole
or degenerate conditijon.
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‘eonsidereq as estabTished; bpt comparisons with a ray model construc-
fed on the basis of knowledge gained in the work of Chapter 3 suggest
fhat it is correct, at least for the parameter values used in the
compar1sons It should be emphasised that the s1mp11c1ty of the
Lorentz Brekhovsk1kh approach appears to rest on the absence of the
third d1mens1onf in contrast to the zero f]ow case the Green s

. funetion for three—d1mens1ona1 geometries does not fo]low directly

from the present result.

In sect1on (4.5) the opt1m1sat1on concepts of Chapter 2 are

extended to 1nc1ude un1form fTow and some of‘the resulTts obtained

there1n are shown to be of practical use. Other-resu]ts h1ghlwght

. the appearance of what will be referred to as ‘strange’ modes,f

_ldef1ned as modes with phase veloc1t1es in the oppos1te d1rect1on to
» :that of decay. HA,‘;_E;. _ - "A _-'h : ', - %h

ThlS type of mode can occur for any wa]l admwttance (1n uniform
flow) and, indeed, even if both walls have a zero adm1ttance or
“impedance; 1in these spec1a1 cases the Lorentz phase velocity
-(w/Re(kx')) wh1ch determ1nes the direction of ax1a1 energy f]ow*
' (see‘Chapter 5) is_either zero or positive in the QEtay direction.
However a duct Qith a finite, but-nonezero, wall admittance may have
~ modes with Lorentz phase'Ve]ocities in the ppposite direction to that
of decay and hence these 'strange' modes could be interpreted as ,4
amplifying modes. The prigin of the 'strange' modes is described in ew

section (4.6).

Finally, in section (4.7), it is recognised that an acoustic

" -

*Throughout this chapter 'energy flow' is the integral over the duct
width of the axial energy flux as defined by Cantrell and Hart (40).
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liﬁe sourcé, switched on at time t = 0, is cépab]e of triggering

instabi]fties that grow in time. These can be the compressible

counterparts of the incompressible, modified Helmholtz instabilities

that occur in uniform flow adjacent to a'gigglgunon—rjgid wall. The

available infofmatibn.suggests that these instabilities are of the - - 1
convective type and tﬁus, fpr a 6articu]ar>éxamp1e, a Green's function

has been obtained in the limit at i -+ 4o, wWith the same time

dependence as the sourée and in the form of the usual sum of

spatially decaying modes E]us'a single mode with spatial amplification

in the downstream direction. >In fhé—ups£ream direcé%on the Green's f
‘function remains as.a sum of spatially decaying modes. Both G;ééh‘s
functions:differ‘from the. one given in section (4.4), vihose cbrrectness'

dependson there being no instébi]ities present. The procedures

out]iﬁed in section (4.?) .a1so establish the true significance of tﬁe_

'strange’' modes.




4.2 Discussion and Definition of the 'Plug' Flow Model and the
Associated Boundary Condition .

- A precise definition of 'plug' flow in a uniform duct is as follows:
the steady constant motion of the duct fiujd‘relative to the duct walls
s in the axial direction only, that is parallel to‘the duot walls, at
all points in the duct. The fluid velocity retains this constant
value even at the duct wa]fs:‘vthere is no boundary layer of slower
moving fluid and the fluid is said to 'slip'. ‘The boundary condition
for the acoustic fie]d'in this uniform flow (see, for example, Morse

and Ingard (14)), is that the ratio of 1ts pressure and part1c]e dis-

p1acement normal to “the wall must equa] the ratlo of the pressure and
displacement, or the displacement impedance of the duct wall. ’
However, if 1t can be shown that the pressure and d1so]acement are
constant through a boundary 1ayer of f1n1te thickness which is 1ntro-
duced between the wall and un1form flow region, then the 'p]ug' flow
-acoustic‘boundary condition can a]so.be used for more rea]istic duct ‘
flows. - This aspect is considered in detail in Chapter 6. |
- For the purposes of.the following sections this boundary conditﬁon
needs to be expressed 1n terms of the rat1o of the acoustxc pressure
gradient normal to the wall and the pressure there, and in terms of
the ratio of the incident pressure field and the ref]ected field. To
obta1n these express1ons explicitly 1t 1s necessary to cons1der the
acoustic field ‘to be composed of 1nhomogeneous or homogeneous waves
“with wavenumbers kx’ kv vhere X, 3S before, is parallel to6 the wall
and y is normal to it. The plug flow boundary condition is -
A w_
Eyw wall B - : - -

* - Where Eyw is the particle displacement norma1 to the ualliand
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Zdw is the wall displacement impedance.

A]ternative?y, in terms

of the usual admittance parameter B, (time dependence exp[~iwt]),

The fluid particle displacement is related

by ,
Dg
=Y. b
v bt $ : where DE =
or

Al vy = e s

where M = U /c,
Finally the normal ve]oc1ty can be related

grad1ent by the y momentum equat1on

Dv _ . 9
o Dt ° 3y

or

~iwp, (1 - —%‘5?Vw s -

to obtain the required expression:

dp k.M
N 2
dy =1 k B ( ] - ""x"k'-x) . pm .

w ° —

to the normal velocity,

P) 3
(32' + Uy X

k.M ' :
X X .
(1 - —1;——)(-1wsyw) )

to the normal pressure

.

op
ay °*

> W

Vs

(4.2.1)

The effect of p]ug flow on the boundary condition is to introduce a

kM
factor (1 - —%~5)2

Notice that if kx/k is a large imaginary number such that

Ike/k | >> M1 then
dp

W . . - kX 2
@y = Tk (8) (Im(M " p

and the effective admittance appears to have a negative real part

A
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(the sign of the imaginary parf of the effective admittance being
opposfte to that of the wall admittance). -

The p]ane wave reflection coeff1c1ent can be obtained d1rect1y
from equation (4.2.1): - when the incident p]aé;~wave amp11tude at
the wa}i'(say'at y = 0) is denoted as p, and the.reflgcted as p.

then

- p; expikx + ikyy] + p,. exp[ikyx - ]ky vl

iky{pi exp(ik,x + ikyy)_— p,. exp(ik,x + ikyyj}

s IR
1k6m(
.211), and thug, where Cr is defined as pr/pi’
K k- B (11 kM /k)é 3
o y w X X
: - 2
A:ky/k_ f Bw(]. kxMx/k)

cos 6 - ( M, sin 9)2

cos 6 + s (1 - M sin 9)2

]

where cos 0 = k/k, sine = k/k. |
Equation (4.2.1) is to be used in the direct modal approach

discussed in section (4.3), and equation (4.2.2) in the attempt to

derive the Green's function for a 1iﬁed duct in section (4.4).

-t




4.3 The Lorentz Transformation and the Green's function for a

Duct with Rigid Yalls

As thevzero,flow duct has been analysed already in Chapter 2, clearly
there are advantages in reducing the wave-equation for dhiform flow to a’
form identical to that for zero flow, taking due care with the boundary
conditioﬁs. This ﬁan be done for the Green's function wave'?quatfon |
by using the Lorentz type of transformation and, here, this Qi]] be

perfoermed on the basic time dependent wave equation,

2 2 02g :

] ) .
25 + 2506 - = =-s(x - x)sly - y,) a(t),  (4.3.7)
px? ay2 c2 Dt2 0 o

where q(t) 1is the time dependence of the‘]ine source at (io,fyo).
For the uniform flow region the coordinateé are transformed as

follows:

x'l '= sz ‘yl = vy t! :t+'\{ —E(X";(o);

so that

226 326 1 3%

+ - 22y = ey s(x' - XD)s(y' - yg) a(t'). (4.3.2)
L A AT Y ° ° y :

Now the usual harmonic time dependence can be assumed in the form
q(t') = exp [Fint'] R

and the Fourier (time) transform of equation (4.3.2) is

B (57 G = sl S Koy -yl sw)e (4:3:3)
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Equation (4.3.3)-15 identical to the wave equation for the
Green' S funct1on used in the zero flow case, apart from the factor
y = (] - M ) s multiplying the source funct1on,and of course the
§(w' - w) factor wnich was implicitly assumed before. It remains

to transform the boundary conditions:l the differential relations for

these are . - o
- : . _ 2'.' a ) . - . a .v-' -
LR R o gy
or S ) : ‘ " A _."_,.',-~d. -
v 2(1 - X) (-iw'g ), |
w Y Tk Yo'’

(where it has been assumed that the X dependence of these quant1t1es

'expDk'x']) and

RN

Po (3H?r + Ux ax')V dy' -
or o I S o SR
- e KM ~dp S
o2 2 XX ! St .
- Tlelegy (1 -~ <), := '»'?ﬁ%r . N
It follows that =~ -_ilm_f S :
. dpwi i '.- - kxx —T“; . ) )
g = Ak B, (1 - )Y Pot (4.3.4)

. is the mod1f1ed adm1ttance re1at10nsh1p and the ref]ect1on coeff1c1ent

is now A _ - . o

_ocoset-g (1w sine)?
. = 2 3 - o . (4.3.5)
, _cos o' + B1Y (1 - M sin ¢') o |

where cns ' = k'/k', siné‘ - k'/k' and where it has been assumed
that the y dependence is of the form expf+ ik! Y 1. These boundary
conditions. are to be applied at y' =0 and at y' = h' = vy h.

The solution for 'G;, can be obtained immediately by expanding
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g', into an infinite serijes of eigenfunctions:
‘l’ .

Qe = I Pl dug ().

w -

If the functions wn(y') are taken to be solutions of the homogeneous

S

form of équation (4.3.3) : B

-
"'d"pn

2 e 2y, -
2 Ty 2 0 .

each function satisfying the bqundary'éonditions (see equation (4.3.4))

dp, ' k! M

A %)%y at y'=h', .

i

ik'g (1 - 2% ¥y

dwn - '
ay-r = 0 at y = 0,

then equation (2.2.6) shows that these functions aré'ﬁé}_orthogona1:
h* h'

. : ) dxp Sdyp
' 2 i 2 v no_ m-~
(kxm - kxn ) me\pndy - 0[ 1pm ayl q)n ayl d
o _ |

‘ ’ kUM kUM
1 ] XTE DN 3
=y e (n) KB S [0 - 2P - 0 - 2.

The right hand side does not equal zero unless §w, =0 or Zw; = 0*,

-

For the case of a rigid walled duct (Bw' = 0) the Green's function is,

by virtue of equation (2.2.4),

oy (YD, (yg) - i
T exp[ik; |x' = x']].
n=0 A kxn C xn OI]

G.w|(xla .Y'/>—<('): .Y(')) = 6((.0' " w) }2';?

(For a non-zero admittance at y' =0 and/or at y' = h' the Green's

function cannot be obtained directly in terms of the functions ¢n(y’).)

Hote, that in this case

. (4.3.6)



. h'- .
A o= %T J wnz(y')ay'
. ' o .o

and the appropriate eigenfunction is

’ ._ i ' ' ' |‘ _,;“"-'“n 2._ P 22
(') = eosligy'), kg s+ e/ - (%)
L T

Inversion with respect to the Fourier time transformation and return-

ing to the original coordinates gives

. ;= cos(k! ) cos (k!, Y, )
Gl (X, y/x ’y z .yr;:' . . yn

= 12y
- exp k! Ix - x_|v7]
xn’™n 3 xnoo, 0

. T exp[-in {t + Y —¢ (x - xo)j] A i
_or ' . ' _ BRI,
o cos(k W) cos (k y ) %
yn o exp[ik, [x - x |

Nl v L
Ga(%s Y/fo’ Yol = 7R

) ;
n=0 kXn n _ _ C e e
| ’ - jwt] . L (4.3.7)
vhere ky Yk}n | A, :’Aﬁ,
and ' .
-sqn(x - X )kM + J/kz n(l - MXZ) . :
Ky = 5 J .. (4.3.8)
. .;;. '(]f-Mx) : . -

l Equation (4.3.8) is the familiar re]ationship between wévenumbers
that wou]d have been obtaiﬁed by applying the same approach directly
to thé original equation (4.3.1) without utilising the Lorentz trans-
formation; Ho&ever, becausé this transférmation yields a w5ve equation
vhich is identical in form~to that for zero flow, a possib]y-arguab1e s

assumption has been glossed over in obtaining the solution (4.3.6) to

_ *If the x - %o dependence is wr1tten as exof§ (x - X )] then
4 kxn f - kM +sqn(x - X ) //k . yn( - MX )y /(1 - Mx ) .
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equation (4.3.3). |
This assumption concerns the choice of signs in the solution for

the x dependence of the modal solution, which satisfies the equation

2 R
d°F_(x")
———9§~—~ + (k'2 - k‘%
dx' Co. Y

LT e(x - xs(! - w)

)F,(x")

but for Elarity the original form of this equation will be used,

that is, _
. e |
: - dF,_(x) dF _(x) ‘
2 n - n ' 2 2
(] - MX ) —-—dXT—' + 2ik MX_ dx r+ (k - kyn )Fn(X)
el - sl mw) T
"f_?, 7 _ hAn — B (4.3.9)

Clearly the solution of this equation is of the form (x # io)

!

(- n2y/a -
L7 (4.3.10)

Fn(x) = An exp[i(x - io)(-k'Mx i_/('z - kyn2

where An is a consfént.
In the zero flow case (Mx = 0) the solution with the + sign is

taken for x - io > 0 and the solution with the minus sign for

X = X, < 0*; as the solutions are identical apart from. the change . i &

*hs ks real (in this rigid wall case) this statement can be
taken q51te literally if k. < k'. If k n > k' then it appears
that a second choice of sigx is called forY"because, for x - Xo> 0,

say, .
k.. =+ /é'? -k 2 + i(+

2' |2
xn ’ yn - k).

yn

This.difficu1t can be avoided by assuming the duct fluid to be stightly
dissipative; then both k' and k _ have small jmaginary parts such

th 1 : . ) t
at, for k' > kyn’ Ky has a small imaginary part. When kyn > k

‘taking the positive or negative sign"is defined as  taking the same
sign of the imaginary part as appears when Kk . -< k'. Thus the .
solutions are confined to the same branch of 7 'the function Atz - k2,
irrespective of the relative values of k' and k. Of course the yn
imaginary parts of k' and k__ can be set to zero’once the choice of

sign has been made. yn

87.




in sign the solution can be written as

-k

F (x) = A explik, [x = X |} where k= + kS = k™

This ekpression is then substituted into equéf?on (4:3.9) (with M = 0)
to determ1ne A When the Lorentz transformation is used, of course

th1s procedure is effect1ve1y repeated and thus, for examp]e, the

solut1on for X - x0 > 0 is

F (x) A eXp['l X - X )( kM + «(2 ynz( sz)yu - n4)].

: Superf1c1a1]y the reason for the choice of the sign for the

square root in the solutions for zero flow can be sa1d to be based on .
~the requirement that outgoing waves (that is ‘waves with a phase
~ velocity (w/k ) directed away from the source) should ex1st in the
duct between the source and the 'termination’ at [x - x | ==
App1y1ng th1s boundary or radiation condition to the un1form f]ow
solution does not necessar11y determine which square root sign is
to be used because of the extra factor —k M /(1 - M 2). In fact
this type of rad1at10n condition must be reJected on the grounds that
it can lead to solutions that grow with x when k' < kyn( - M 2)%
There can be no reason for this occurhence: even if it were to be
argued that this p]ughf]ow model has, in general, unrealistic
, boundary-conditions {t is difficult to see why this pahticu]ar boundary;f'v
condition of zero normal particle displacement and normal velocity
should lead to 'growing modes'.

If, instead of the phase velocity radiation condition, it is

argued that the Causality Law should be satisfied, a trensient analysis

must precede the above ‘steady state' analysis. Such an analysis has

_been carried out by Eversman (41), for identical conditions, but with
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the line source replaced by the requirement that the harmonic acoustic

field be uniform (in 0 ¢y <h) at x = 20. Eversman (41) claims
to have shown that as t » » modes with negative phase velocities

exist for (x - X ) > 0, that is: 'incoming' waves can exist as part

-of the steady state solution. . , . . -

CIf the phase ve]oc1ty radiation condition used for zero f]ow is
viewed as a requirement that there should be an outward flow of energy
from the source-(in‘both directione), then the generalisation to._
uniform mean flow follows from Chapter 5: the direction of the model
energy flow in un1form mean flow is g1ven by the sign of the factor

s

-

Re {/k'?- kynz(l - M En= Re(k;(r;)f
and not Re(k )
o The energy genera11sat1on is used here to 3ust1fy the cont1nuat1on
ﬂfrqm the zero flow case whereby the (downstream and ups@ream) mode
selutions are chosen according to the sign of Re(k;n)L& It is also
%)

interesting to note that the factor jk'MX/(l - MX which causes

this difficulty is completely independent of the particular mode

solut1ons

For completeness the constant A is determined by inﬁegrating
equation (4.3.9) from xO -a to x0 +a énd then letting o - O:

the right hand side is simply -y (y )/hA. and the left hand side is

i ta S ' X+ ' o
@ X +a S S :

(1 - M )[—d(—ﬂ}_ . 2ik'M [F (x)] > b (k8- kynz) '- J F_(x)dx.
X ~q ' IR

x—
0 _ : X o

The second and third terms are proportional to & as & + 0, leaving
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KM A2k 21 -MB) kM- K2 kynz(l - M

2)
A : yn X X :
iA. { — »
n . 2 ) _ 2 N . i
0-nh U
i
_ 9, (y,) 8(w' - w) : :
2A
han(1 - m2) | - -
that is> T S SR
' N f . iy, (y,)8(w - w')
n o 2kxnk An

~

which agrees with equation (4.3;7) és-it should.

Equation (4.3.7) is the Green's fUnction for a rigid walled
duct containing plug flow and has been_obféinedvby utiiisino:the értﬁo—
gonal property of the eigenfunction solutions of tﬁe homugeAéous wave
equation. For soft walled ducts these eigenfunctions are no longer 5
orthogonal and a]though it is presuhab]y possib1¢ to orthogonalise them
and then to.continue usfng the standard method,’iﬁ_tﬁéﬂnext section
Brekhovskikh‘s (20) analysis will be émp1oyed again, togethér yith-the
Lorentz transformation, as a preferred alternative method of.findingv

the Green's function. o -
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4.4 " An Attempt to Derive the Green's Function for a Duct with
Non-rigid Walls

 As the inhomogeneous wave equation for the Gheen’s function
with p]ug flow has been reduced to a zero f]ow form, by using the
Lorentz transformat1on the proposed method of der1vat1on 15 essentially
jdentical to that given in sect1on (2.3). The reason for referring to
it as an*attempted der%vatfoh is thaf the‘wall boundary condition
differe in form from that for.zero flow end this intreduces a problem
wh1ch has not been fully reso]ved ’if a certain-restrictive:condition

is 1mposed on the boundary cond1t1on then a valid Green s function can

LS -

be obtained. : o : ‘1-‘., R

' 'The.ana1ysis of section (2.3) can be uti]ised wifhout cohpli—u _
cation up to the pownt where the following comp]ete expression 1is .
obtained for the Green S funct1on in a lined duct, w1th wa]]s havwng

reflection coeff1c1entsA Crl at y' = h' and unity at y' = O:

Gl (x'uy /X" s ) = vo(w' - e) %F I exp[iK '(x' - io')]2=g{exp[ﬁky'(y'

=¥ +_exp[jky'(y' + yo')] + Cr' exp[iky (2h* - y' - y,")]
ey k!
+ Crl. eXp[1ky'(2h| - y' + yol)]} Crl exp[21ky'h‘2] __k;‘_ ,

.|'_- 12_ 02 | c'__Al ‘n
where ky = + /K Ky S y Yo' > 0.
Again theintegratien variable is transformed to o' where
[ - Il’ 1 ) -l_ ' Al
Ky =k sin 6%, o ky = k! cos o',
and the same contour is chosen as before (see Figure 2.5a).

The d1ff1cu1ty mentioned above now arises in the convergence of
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So that

the infinite sum

) Cr'z exp[2ik'h'2 cos ef]'
=0 C

on the chosen contour, where

. {1 - M sin o' }

On contour‘BC where -~ %—< Re(o') < % then, approximately,

0 <cos6' < 1,

and

cC' =

cos o' - é , {1 - MX sin e'}z
é

——

=1 <sin 6’ < +]

)

" {cos o' - Re(B, 1) (1 - M sin 0')?) - i{Im(B ) (1 -'stin 6')2)

r

It can be seen that prov1ded Re( .)(1 - M sin o' )

is always less than or equal to unity. The ref]ect1on coefficient can

equal unity because on the deformed contour,

has a magnitude less than unity.

On contour AB, -e' takes the value

o' = -‘%- + 8+ ias

cos o'

“sin o*

First let § = 0; then

-Re(éw.){] + M, cosh 6}2 + i{sinh a - Im(ém.)(l + Mg cosh a)z}

o : = X A2 . = _ X N2 ¢
~ {cos e- + Re(Bw.) a - Msin 6 )73 f 1{Im(8m.)(] st1e e.) }.

has a sma]l

imaginary part and the exponential term ensures that the factor X

" 0<a<o,

sin & cosh a + i cos & sinh a,

- ¢cos &§ cosh a + 1 sin 6 sinh a .

fRe(Ew.){l + M, cosh a)l + i{sinh a + Im(éw.)(l + M, cosh a)2}




1f Im(B ,) > 0 then lcr'l < 13 if Im(éw.) < 0, then as before,

the expression must be written with a finite 6 :

(- M sin o' ) = {1 + 2M cos & cosh a + M 2 coszs coshza

- sz sins s1nh2a} + 1{ -2M sin & sinh a - 2M 2 Cos &

" ¢in & cosh a sinh a}

= p + iq s Say

{51n6 cosha - pRe(B .) + qu( .)} + i{cosés sinha - pIm(E V) - qRe(é )3
c '

r {s1n6 cosha + pRe(B V) - qu(s )} + i{coss sinha + pIm(s V) o+ qRe(B )

This expression should be analysed to determine whether a va]ue*of S,
in the range 0 < 5 < w/2, cén be found which ensures that Ixf < 1
for all possible values of Ew. when ‘Im(éw.) < '0. The deformed
contour must of course remain asymptotic to the original contour and
the integrand musf not possess any singu1aritjes in the rec¢on betweenA
these two contours. Asyet this has not been achieved and thus the
final result to be obtained for the Green's funcfion is not necessarily
valid for Im(s ) < 0. -
~ The integration path can now be converted 1ntgﬁa closed contour-
in the upper half ‘e"plane for x - x> ‘0 and in the lower half -
plane for x - Xg < 0. (No difficulties are éncountered here as the
present reflection coefficient still satisfies the relation -Cr'(_ a) =
1/Cr'(a),.where o is the grazing incidénée angle- see Chapterlz.)
‘The poles of the integr@nd, en', are given by solutions of
the equation (reverting to the ‘kx', ky' hofatjon)
k!M

- 1Rt It LIRS - X X (2 _
Ho= (k') tan(igh') + 1 K'h'E (1 = =% )T = 0.

Unlike the zero flow case H is not an even function of o' and
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therefore, as might be expected, the poles differ in magnitude (as
well as in sign) for x - Xo >0 and x = Xo< 05 thus each case
must be treated separately, '

For the residue at each pole the factor-

dH; 2 L d 0y -
gl oo, - (kygh)sec?(k h) (kxhh) ['E?F;ﬁ)'{(kyh) tan(kyh)

‘ . k:M :
+ ikhg (1 - XX 2}]6 o

will differ because the admittance is multiplied by a function of
(k'h') | (In the above exbression and in the one below the dashed
notation of the Lorentz transformat1on is omitted. ) After. d1fferent1a—

t1on 1t becomes

d E sin(2k,, h) - ' .,
&Eﬂeze = 21(k h){ (kynﬁ) + 1) - 4stx(l -'kngx/k)cos (kynh)f
: n o C

L o . L (4.81)
' x‘1'
Provided no doub]e poles exist (1 e.|dH/de # 0) the final so]ut1on
96

follows 1mmed1ate]y ' ST o

o 'cos(klny0 ) cos(kyny )

G(:)c(x's.yl/;(oi3 .yol) = §(w' - “’) '2';{'

- n=0 k;(nAn
exp[1k' (x' - ié')]’ - (for, say, x' - ié > 0).
where ' ‘ls1n 2k! nh' o 18 M s 2 ,
= I — +1} + (1 - k! M /k')cos (k! h')
Ay ' H Zk;nﬁ‘) Xn' X yn
or in the original coordinates with time dependence exp[}ing- i
_ s+ o cos(k, y)cos(k, y ) - -_ S
G (xoy/%05Y,) = 5 ] P2 exp[ik, (x - X)] (4.4.2)
K n=0 Xn n - : ,
- » (x - x_>0) .

0
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where

-kM, + kg o
Kep = -—-——-—3;11 ' ‘ (4.4.3a)
(1 - M) o - S
and o —— ]
- . 2 _ 2,9 -2 — - :
Sk - t//k Ky (- 1), . (4.4.3b)
© o sin(ekh) i M, cos?(k,h) o
“An = %{f_~?E;;E——A+ 1} + Ry (1‘- kKenMy/K).  (4.4.4)
The wavenumbers Ken® gyn ~are solutions of the equation
(k h5 £an(; h) = -ikh é (i --kxM* 2, 4"~ ;A | (4.4.5)
Y y w k2 o o

y
-with equat%éﬁn(4.4.3) defining the relation between the wavenumbers.
For (x - x0)> 0; the éo called 'cut-on' so]utibns ’
(k > [kyl A - MXZ) are contained in the first quadrant of the o'
plane, er' > 0, ei' > 0, but the 'cut-off' solutions can appear in
\ the second quadrant, er' <.0, e{' > 0. When solving equation (4.4.5)
| with equatio@s (4.4.3) for solutions which undergo the transition from
'cut—on"to 'cut—off"the 1maginary'part of bky. can change sign (see

equations (4.6.9) and (4.6[10)) as

_ \ e e
ky ky : €os o, cosh 8y isine, sinh 8;"-

The sign of the correspording ’kx' solution must be chosen such that

its imaginary part remains positive*, because ei' > 0, and

t 3 W ] g 1 s | 2 1
o+ .
kx « Sin er. cosh 0 icos e, sinh 8;

O o

*This is identical to the definition in section (4.3), that is "take
the positive sign for x - x_ > 0", but it is worth emphasising here
because when 6. ' < 0 the Qequired root may not be the principal
value generated by a computer sub-routine.

s



Notice that the axial wavenumber, kx’ can have a negative real

.part,.not only because of the usual factor -kMX/(1 - MXZ) (if Mx > 0)

but also, when er' < 0, through the real par?ﬁgf ‘kxl‘*

The virtues of the abové analysis are that it proQidesla so]utiohvv
for the Greeh's function in terms of an infinite series of'gég;
orthogona1 modes and show§ that modal axial wavenumbef solutions ﬁith
negative real parts in excess of the common factor occur naturally with
the 'well behaved' 'cut-on' solutions. 0f course this may'oécur
because of the conditions imposed and thus the solutions may be'forced
to group together.  The problem of whether or ﬁot a'contouf ééﬁ,be -

defined to allow convergence of this solution for va(éw) < 0 also

remains.

4.4.1 Some Evidence to Support the Validity of the New Green s Function

A good test of the validity of the new Green's function, Gw',

is that its sum of modes shou]d‘converge to the ffee field Green's
function, G, near thelsource, &Eere the influence.of the duct walls
is neQ]igib]e (provided the source is at some finite distance from
each wall). Howevér, close to the source a large number of modes

vould be required and thus this test has been carried out only in a modified

e

S - - - .-

* Re(kx) can also be less than zero for Mx < 0.




ferm described in (i) below. In (ii) the new Green's function is

compared with those for the zero flow-lined duct and uniform flow-
unlined duct in order to establish the conditions under which its
new features are significant. The conditions are chosen accordingly

n @i, B
» (1) A mu]t1ple image ray mode] has been constructed (see
Append1x 4A for details) which, from the zero flow resu]ts of Chapter
3, is assumed to g1ve a good estimate of the total reflected field
near thevsource, as well as the exact* direct or free fie]d, in
uniform flow. Thus it has peen possible to extend this test to
points where the fef]ected field begins to modify fhe direcf‘field.
‘(i1) Inspection of the expression for G; (equation 4,4;2) and
the associated equations which determine the Wavenumbers (equation
4.4.5) and normalisation factor, An'(equation_474.4), reveals fhat
G; differs from the Green's functions for the zero flow-lined | o
duct and uniform flow-unlined duct (both walls rigid)_threugh the
factor (1 -k Mx/k)2 in equation (4.4.5) and the extpa term ‘ _
i, M, cos?(k, (1 - kM x/k)/(k h) in equation (4.4.4). The former.
modificati o0 is well known ( 14) but the latter has not appeared
elsewhere (to the author's know]edge)._‘ln_many cases of pract}cal
interest this extra term in An can be insighificant: for examp]e,
relative to the 'original; tepm,_it is ef order éwMX7{kh(1 + Mxi}
for ‘well-cut on' modes when | émkh/(l + Mx)2| << 1.
Thus for a meaningful test of this Green's %unct{on parameter
values are deliberately chosen so that this term ig_sighificant for

two particular modes. To avoid an impractical example (that is a

high Mach number or low frequency, or both) the other term is reduced

]

*Given by an exact evaluation of the Hankel function.
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to the same order, but with opposite sign, so that 'An + &, for
two modes , where |6] dis small compared with the modulus of each

termi The same 'test' is carried out, for comparison, wi th M =0,

. and again w1th An- > & for two partwcu]ar modes .

‘_(iii) As in Chapters 2 and 3, the frequency and duct width

- are chosen so that kh =10 and two Mach numbers are used

= +0.4 and 'Mx = -0.3. Impedance va]ues at y = 0 and at y =nh

v -

satisfying the conditions 1n‘(11) are as follows:

-'MX Zw

0°  1.47816  -j1.18
+.4 0.866525 -j0.55
-.3 2 83446 -j2.4
~The 1mpedance for M = 0 can be recogn1sed as a va]ue c]ose to the
~ Cremer (19) optimum 1mpedance used in Chapter 2 in the fo]]ow1ng |
section the 1mpedances for My = +. 4 and - 3 will be shown to be
c1ose to the optxmum values for un1form mean flow. The Green's

funct1on* is evaluated for Yo /h = y/h 0.5 as a function of x/h

' (io = 0) in the range .008 < x/h < .25 and the number of modes 1is

varied from 2 (the 'cut-on' modes), to 19.
. >The"rayd and 'mode’ Green's functions underlthese condmtions

. are shown in Figures (4.1a) and (4.1b) for M* = 0.‘ In Figure (4.1a),

the real part of the 'mode’ G& has'not converged at all with 2

modes (for this range of x/h). . With 19 modes it converges in the

range .020 - .25 and is v1rtua11y 1dent1ca1 to the ray' G!. In

Figure (4.1b), the 1mag1nary part converges more rap1d1y and 8 modes

give complete agreement with the 'ray’ G& over the entire range.

i
Y

*Equal to that g1ven by equat1on (4.4.2) multiplied by 3 and'W1th .
¥y replaced by y - h/2. - L




The comparison is repeated in Figures (4.2&) and (4.2b) for M, = +0.4

_and in Figures (4.3a) and (4.3b) for M, = -0.3. The results are
strikingly similar to thoée for zero flow despite the finité.Mach
numbers and dissimilar impedance values, butgfhe feature of impor-
tance in both casés is‘the ability of the new Greenls.funégion to
describe the ‘near fie]d‘ of the line source in unfform flow. The

" pumber of modes requiredifor canergence is similar to that required -
for thé zero flow Greén's function. These results const1tute the
major part of the eV1dence, presented here, in support of the va11d1ty
of the new Green's function. .

The comparison between the 'ray' and 'mode’ Green$ fdﬁctions
is now extended to large distances from the soufce, that is for -
k/h > 0.25 and up to x/h = ]0 0. The ray model, from the previous
work in Chapter 3, is known to describe the actual field with only
moderate accuracy, the error increasing with x/h. If tbe~accuracy
of the ray model for uniform flow is similar tovthaf fdglzero flow
then this can be regarded as tentative evidence that the uniform flow
Green's function is correct. Thus in this comparisoh‘the_accuracy of
the ray model for unifofm f]ow is cqmpared with tha%mat zero_f]ow by
inspecting the modulus squared of the ratio of the 'ray" and {mode‘
Green's functions as a function of x/h (agéin on the centre-line).

Both Green s functions are eva]uated for the following Mach

numbers and 1mpedance values (the latter are chosen so that the

decay rates of the 'cut-on' modes are approkimate]y the same in each

example (see next section)):
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M © o 10.4 0.0 . -0.3

- x - . . " - - -~
Example Figure Z 3 .Zw. | Z,
A 4.4 0.866525‘ -j0.55- 1.47816 -3j1.18 2. 83446 -j2.4
B 4.5 : “ -j1.0 4 -32.0 ~j4.0
c 4.6 " -30.25 "o =j0.5 " -31.0

The modulué squared, in dB, is shown as a function of x/h, “in the
range < x/h £ 10.0, in Figures (4.4)-(4.6). The;e re]atiyé
errors (in dB) for uniform flow are quite simi1af to those for zero
flow except for a cons1stent relatively largeserror, for M = +O 4
in the region 0.25 5 x/h < 0.4. It has been ver1f1ed that th1s
error cannot be eliminated by ﬁsing more modes in the‘evaluat1on of
‘the Green's function (4 being used throughout these exampfés){ ‘No

explanation can be given for this error and it is tentaﬁive1y:aséumed
‘ that it 1s caused by the ray model and not the mode Green's function.

‘ - Apart from this discrepancy, compar1son with the ray model in
the 'near' and 'far' field of the line source ggg§_support the

validity of the new Green's function for uniform f]ow.'
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4.5 Optimisatidn of Sound Attenuation

In the'first set of eXamples'of the phevious sub-section the
' reduced frequency and impedance values for eeeh Mach number were
chosen so that the normalisation factor Ay became smal]. In the
_11m1t A > 0 of course, the solution is no longer valid and a

new solution should be derived corresponding to the gggglg'po1e in
| the o' plane (as in Chapter 2). This double pole solution has not |
been derived mainly because it is clear that from the zero flow '
results of Chapter 2, the behav1our of such a solution is 11ke1y to
. be adequate]y described by that of the two §lﬂglg_po1e solutions
which l]e close together on the o' plane.

" The doub1e po1e solution is of 1nterest because a 1og1ca1

' extens1on of Cremer's (19) result is that this so]ut1on shou]d
orrespond to the maximum e exponential decay rate of the asrﬂc1ated
mode pair. Before attempting to ver1fy this the Green's function

is ‘evaluated near, and then away, from the doub]e po]e condition to

estab]ish the significance of this condition for the decay of a

spec1f1ed source distribution. _

In Figure (4. 7) the centre- Vine field, |G [2 in dB*, is shown
: a§ a funct1on of x/h, for the same cond1t1ons, Mach number and
impedance va]ues of Example A in the preV1ous sub-section: each
~ impedance is very close to the doub]e po]e or 0pt1mum value for
" that particular Mach number. The abso]ute values and decay rates are’
all simt]ar and the fields in uniform flow exhibit the same type of

.deviation from exponential decay as that established for zero flow,

i

*Again with the source on the centre-line, 1dent1ca1 1mpedances at
y=0andy =h, and kh 10.0 ) .
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indicating the expected modal jinterferences (which is represented by

the 1inear.‘x dependence in zero flow).

- Again it is recognised that the double pole impedadce does not
other source distribution, between two po1nts in the duct A deta1]ed
investigation of the Green's function decay near this condition is
therefore unnecessary. However, as it will be shown that this condition
does still define the optimisation of the'exgdﬁential decay rate it 1is
expected that impedance values which are s1gn1f1cant1y different from -
the doub]e pole value w111 Tead to reduced decay rates. This s |
demonstrated for zero flow in F1gure (4.8), the impedance values ‘of
Examples A B and C in the preV1ous sub~-section being used The corres-
ponding behaV1our for MX = +0.4 and -0.3 4s shown in Figures (4t9)
and (4.10). At least for the condition chosen (twb—dimensiona] duct,
sdurce on'centre—]ine, kh =.1 0) the approximate double po]e 1mpedance
is a good guide to the opt1mum impedance for maximum decay of the Freen S
function in uniform flow. | | - |

On the basis of those results and the arguments- put forward in
Chapter 2, attention is now focussed on the double po1e~1mpedance and

its var1at1on with Mach number and the reduced frequencv, kh.

4.5.1 Optimisation of modal attenuation

The extension of Cremer's (19) result to ducts containing -
uniform flow is confined here to mode pairs in the basic two-dimensional -
rectangular duct with a finite admittance at y=h and a rigid wall at i

¥ =0. The branch point values of kyh are solutions of the equation




-or
-2j(k; h*)

' d
(kynh )sec (kynh)

d (A o 2 .l T =

k M

[t}
O

which reduces to* (and reverting to the usual wavenumber'notation)'

d o 'kXMX -2 : - _ o o v
a0 ) T (khtantgh)y = 0 | T (4.5.1)

where

Y % R FU -
e = Lk s /’g kS0 - M2 - ).

X M (4.5.2)

ps

Examples of solutions of equation (4.5.1) for the (0, 1) mode
pair for kh = 8 (k/A = 4) are . |

(kh)y = 2,70 + §1.13 for M, = 40.4,

~2.11 + j1.12 for MX

1
1]

-0.3,

- where a positive Mach number indicates sound attenuation in the down-
stream direction, and a negative Mach number sound attenuation in the

upstream direction. THese values are almost identical to the zero

[ ol

flow value of -
. (kyh)0 = 2.11 + j1.13 ~ (for MX = 0.0)
and this is a common feature of all 'well cut-on' solutions where
. B . 7 1 ‘ . : ;“_
L I (YU U M2, o

For these solutions equation (4.5.2) is, approximately,

Ky A ' (4.5.3)

*The n subscript denoting a modal solution is now omitted.




and with this value equation (4.5.1) is

; . ,
THT {(khytan(k h)3(T + M) }: 0

which, with the equality sign, is identical to the branch point
equation for zero flow. The corresponding optimum impedance s
marked1y different however, being given bylequation (4.4.5), which
with equation (4.5.3) is ‘

. -jkh
. 2
© (kyh)tan(kyh)(l + M)

N
"

As the (kyh) values are virtua]]y jdentical to the zero flow va]hes

the optimum ihbedance with flow (zm)olM is clearly given by the
X

gl

simple relation

P

.
e

: i (Z,), o
(Z)lw T 2 (4.5.4) :

X (] + MX) e

vhere Mx may be positive or negative. In the present examples ?
(Zw)olMx takes the values B ?
(Zm)oian4 = 3.81 - j 3.03, e

(Zw)olM o3 =150 -] 12.2
=

(cf. (Z,), = 7.43 - j 5.95 from section (2.4)). o -
The factor (1 + MX)-2 takes the following convenient values: approxi-
mately 2 for Mx = +.4 and approximately } for M = -.3. Clearly the
above impedances obey the approximate'1aw given by equation (4.5.4).

The method_uéed to obtain solutions to equation (4.5.1) js. described

in Appendix 4B.

Verification of this extension of Cremer's (19) optimisation




concept is shown in Figures (4.11) and (4.13) for MX\= +.4 and in

Figures (4.12) and (4.14) for M, = -.3%. In Figures (4.11) and
(4.12) the imaginary part of the impedance is held constant and

equal to the optimum value and the real part is varied. In Figures

(4.13) and (4.14) the reaj part is he]d.constant a;d the imaginary
part varied. The impedance scales have been chosen so that disténce
along the x axis is proportional to Zw (1 + MX)Z. fhe evident‘
similarity of modes (0, 1) in each pair of figures demonstrates the

general validity of the above approximations, including the required

second approximation for (kxh) fof well 'cut-on' modeﬁ:

‘h  Re(k h)Im(k h) - o '
th = (m - J - kh )’ : : ~. (4.5.5)

‘that is, the attenuation of well cut-on modes is independent of the '?
flow Mach number fér constant kyh. The figufes also show the eXpected “
trend of deviation from this general rule as the mode order increases

_and approaches 'cut-off'. _ K '[. A. o ' v b
The actual variation of (7m)o wifh Mach number and kh_ (or |

| h/x ) is shown in Figures (4.15) and (4.16): for h7/x 3 0.5,(2(»)0

remains approximately proportional to kh(1 + Mx)'2 but, for ek

example, at h/a - 0.2 and M = -0.5 the real part of (Zéjo is

zero and for Mx < -0.5 becomes negative. For h/x = 0.05, (ﬁw)0 |

is neggtive'over the entire MX range apart from a small interval ?
centred at Mx = 0. This pattern is repeated for all smalier values |

of h/a, and similarly for (Yw)o.

*The evaluation of attenuation rates was carried out by using a modified
form of the Rolls-Royce computer program.
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4.5.2 Interpretation of active optimum impedances and

the appearance of 'strange' modes

values of (zm)0 for which (R ) <0 are shown as dashed
lines in Figures (4.15) and (4.16) becausg,q]though these values
-are'continuous with the (ﬁm)0 > 0 values, they are clearly not the
réquired solutions. Although the mode is well behaved in ;he sense
that its phase veTocity‘(not shown) is in the same direct{on as that
of its decay, active impedances will nof be consideréd here¥ In |
fact the solution is the complex conjugate of a required solution,
although the latter is no longer the optimum impedance for the (0, 1)
mode pair. It §orresponds to the (1, 2) branch point for an My
value -of the opposite sign. o

To illustrate this point consider the case h/x = 0.05,

M, = ~-.08 and MX - -.10 where the relevant parameters take the
following values: o ] : L L e
' ’ _ ‘ ’ ’ ’q.{:;
M= - .08 | | Mx = - .10 |
('Z'w)0 .018 - j.260 - .020 - j.323
(kyh)g 2.77 + §1.52 2.92 + j1.54
(kb 1.55 - j2.76 1.58 - j2.93

Ré{(zw)o} changes sign somevhere between M, -.08 and M, = - .10.

The complex conjugate of the governing equations

3 k, M . | B
kh(1 - 2X)2 (38) = (kh) tan(kh)

k

g e



BT 2 2 2 2
| kxh.= {-khM, + //(kh) - (gyh) (1 - M )}/(1 - 15

sndicates that the conjugate so]&tion is, for Mx = - .10,

(Z) = .02 - I
(k) 2.92 - §1.54 , ‘
" (kxh) 1.58 + §2.93 .
.As was noted in fhé previous section (following equation (4.4.5)5
solutions of (kyh) can be accepted bgt the sign of the imag%nary part
‘of (kxh) must remain the same; thu§ the alternative minus sjgn,for
the square root in the(above wavenumber equatioh must bé usedi This
changes the solution for My = - .10:but it is now the solution‘for
M .00 that s o ol 'j, .;_ - o
RIS S ;'_;,MX =‘f.1o e
@) = 0.0 - 5.323,
(k;h)' = 2.92- 1.8,

(k) -1.58 - j2.93 . _ 2
However this is no longer the branch pofnt solution-for_the (0, 1) mode
pairsat the transition péinf ('Rw)0 -0 another_§o1ution emerges, as
?xpected, with a real axial wavenumber (zero attenuatfon). fhiS'is‘the
new (0) mode and hencé tﬁe above so]utioﬁ corresponds to the (1; 2)
branch ppint.Byreferring to so]ufioné—for.this mode pair it is féund‘
that (as MX is increésed pésiti?ely from zero) .(ﬁmjl tends to zerd
at M = .06. 'Thﬁs in the range 0.06l< M, < 0.09 no branch points exist
for a positive ﬁw_‘value and hence the present optimisation‘appfﬁach |

breaks down. Standard, 'zero gradient' optimisation methods could

be used for this range but these have not been utilised here.

cog




_The attenuation is shown in Figure (4.17 as'a function of Xm‘

= -0.08 and ﬁw = 0.020, M._= + 0.1*. The

for R = .018, M 'y

X
:cdrrespohding attenuation curves for the fransition point ﬁw = 6.0,
MX 2 + 0.09 should lie close to those shown"in_Eigure!(4J7) but with
the addition of a néw mode with zero attenuation. For Rm = 0.020, -
"Mx = 0.1 the attenuation.of this mode is quite Iarge,especial}y for
Xw > 0, but it is well below the éttenuation of the new (1, 2) modg
pair, for the optimuﬁ Qalue. "

The 'strénge' mode solutions which require thig type of inter-
pretation are analysed in more detail in the following section where
- approximate analytic solutions are used to illustrate their‘afig{h and
geheka]'behaviour. It should be emphasised that these solutions are

not peculiar to optimum conditions, but they did emerge during'a

syétematic tabulation of branch point solutions. -~ L ,"'*i - N

4.5{3' App]icatioh of résu]ts.

The useful practical result to emerge from this optimisation
study for‘p]ug'flow is the approximate rule that the optimum impedance

for a fp]ug' f]owtat-Mach number Mx is simply equal to the optimum

b

impedance fdr zero flow divided byv (1 + MX)Z. The result can be used
to interpret theoretical predictions, and this is to be demonstrated
using a specific example. Aléo,-with-a 1ittle manipulation, a simple
rule will be derivéd'for‘direct app]icati&n to attenuation méasurémenté
with flow, | | |

As aﬁ illustration of predicted flow éffects the attenuatioﬁ
rate has been calculated for the 1eas% attenuated mode in an'infihite,

two-dimensional rectangular duct of width h, at the reduced frequency

values given in Table (4.1).

*Some solutions could not be obtained at this condition.

W
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" Table 4.1

No. 12 3 4 5 6 7 8 9

kb’ 2.984 3.730 4.700 5.968 7.460 9.325 11.94 14.52 18.65
No. n 12 13 14 I |

«h 29.84 37.30 47.00 59.68 e

" The resﬁlte are shown in figure (4.T8) for .Mx = -.073, 0 and 0.3; ‘The.
duct is 11ned on both wal]s (at y O and at y = h) with a-materiaf
having an 1mpedance characteristic shown in Figure (4 19)s the real
part of the 1mpedance is held constant while the imaginary part is’
taken to be - —cot(kh/12) ~ that is approx1mate1y the reactance of a
part1t1oned cav1ty or Helmholtz resonator liner of depth h/12 ’

As the least attenuated mode is a symmetr1ca1 one in thws case,

h can be cons1dered to be twice the w1dth of the equ1va1ent one wall

lined' duct considered in the opt1m1sat10n study, thus the opt1mum

TP

_ impedance for zero flow is R ‘-1_‘; R 3,<_

@

77 = (0.929 - j0.7amN . oo LT C
Yopt L o , .

This is shown in F1gure (4. 19) together with the va]ues at My - iJO.é _ :

“given by the above express1on d1v1ded by (1 + M )2 L ,;7 o BT B
If it is pre supposed that the maximum attenuatxon occurs at

the optimum reactance value, 1rrespect1ve of the resistance va1ue,

then from Figure (4.19), this should occur at JUSt be]ow frequency

.number 6 for zero flow, between 4 and 5 for M = -0.3 and between 6 ‘

and 7 for M, = +0.3. Inspect1on of Figure (4.18) shows that these

are good estimates of the frequency of maximum attenuation. In addition

. Figure (4.19) indicateé that the resistance of two is almost equal to

. the optimum value for M = -0.3 and hence the large attenuation shown




in Figure (4.18) is expected*. Without this guide-line of the

optimum impedance concept it wou]d be difficult to understand why'
the maximum attenuation occurs at.perticujar, finite negative reac-
tance values and why these values depend ohmthe~Mach number It atso
enables sensible ranges of parameter va]ues to be chosen for para—
metric stud1es, which are common in the aero-space industry. _

The supp051t1on that the ma X imum attenuat1on always occurs,
approx1mate]y, at the opt1mum reactance value appears to be correct
over a wide range of resistances although it has not been proved in
the preceding analysis. For exahp]e, in Ftoure (4.20) a gtaph taken
from the multi-modal pahemetric study by Ko (30} shows thatufor'e
large reéfstahce variation the maximum attenoation'remains et’rough1y'

- the same frequency and hence the same reactance.** ~ (The pertinent
data for this graph are: M, = 0.4, h = 7.37", duct Tength, L = 16",

]

= 1120 ft. sec—_.) The impedance formula can be found in reference

‘ (30) but to a good approx1mat10n it is s1mp1y

7 = R~ cot (kh/7.37).

w

Adopt1ng this approx1mate rule, and taking the 1ow frequencv

'approx1mat1on of the cavity reactance,

- cot ky % - ke << n/2,

1
_ ke ?
gives the frequency of maximum attenuation, f(O), for the lowest
order mode pair as the solution of |
' 1_ 1 ; Kh - . .
® 0 744-—— - - .
(-

D .

*The maximum attenuation is also 1arge because it occurs at a smaller
kh value (see Figure 2. ); also the maximum attenuation is no longer
completely independent of M, as the mode is not ‘well cut-on'.

“**This probably occurs because the reactance changes rapidly with fre-

quency; in other cases the maximum attenuation may change with resist-
ance.




-

. c - . o
which is  f(0) = o {2h0 744}% for zero flow.  For a finite
flow Mach number, using the well 'cut-on' approximation beinga used, the
frequency of maximum attenuation is

i _ c . 1_»» ’
Cf(M) = 5 (14 M)

T
2n  2h0.744
and the ratio {s R |
) T |
R () ni (1 + Mx). L ; s (4.576)
| This approximate-re1ationship'ié compared with some exberimenté1
results given by Eversman (42) in Figufe (4.21). ‘ Fi |
The exact relationship between frequencies of maxfmumlatéenuation
: fs more complicated than that given by eq&ation (4.5.6). NeVértheless
1t may represent a useful eng1neer1ng aporox1mat1on, 1t should be

app]1cab1e vhere kz < n/2 and kh > 2, or 2 < kh < h/z




' 4.6 " some Approximate, Analytic Examples of ‘Strange’ Modes

The origin of the 'strahge' mode solutions mentioned in

previous sections can be investigated by tak1ng some approximate

analytic solutions of the governing equat1ons, wh1ch can be wr1tten

_ k.M, o _ L : B
-ikh(1 - _Xk’f)z B, = (g wan(h)s (4.6.1_)
) KM .k o 3
- (kx>2 L T L

From the precedihg results it is clear that the appropriateiapproxi-
mation is that the mode is well 'cut-off'. Certain.well 'cut-off’

modes satisfy the condition

-

: ‘kxMx‘ ;; i o

, k |

and this will be used to simplify equations (4.6.1) and (4.6.2) to
obtain three different types of approx%mate so]ution In every éase

the 1eft hand side of equat1on (4. 6 2) is, in effect, rep]aced by

W2l sotnat - . oo .
kb -

kh = +1 :{_g_zhz s -
X A.> ; ‘ / _ Mx
and this re1at1on is used to reduce equat1on (4. 6. 1) to one var1ab1e
Once this has been so]ved, a second approximation is obta1ned by using

-khM k. h

) .. X ' . y
§xh a—y + )?”f‘;=7 ‘ . _(4.6.4a)
‘ - x . . x V
or
k' Ak, : | |
SRR PTL ... .. “(4.6.4v)
Y
M2, .
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in place of equation (4.6.3). This procedure could then be repeated,

substituting this second approximation into equation (4.6.1) and so
on, with due regara for convergence of this itération, but tﬁis has
not been attempted hefe. It will be shown in the next section that
.the'second approximation solutions are quite accuraéé for ques which
sétisfy the condition '4|kXMX/k] o> 1. Note that equation (4.6.4b)
is identical to equation (4.6.3) with er.rep1acéd by kx', and thus
the second approximation for kx/k- is identicé] to fhe first approxi-
mation for kx'/k which would have been obtained from the Lorentz
equivalent of equations (4.6.1) and (4.6.2) with the aséumptions‘
lkx'/kl'»] and - [k "M /K] >> 1. | R
'”§ub§tituting for kx in equétion (4.6.1) (us{ng equatioh

(4.6.3)) and retaining only the kszxz/k2 term, so that

- i

.2'

a- kM )2 . ) SEXE}__T&_ o s
S kT , (kh)z(l-sz) > @
gives ' :
(kyh)Zsz : - - -
- (k201 - 1.9 kh(- 8,) = (kyh)tan(ky“ﬁ). (4.6.6)

If (kyh)2 is a]mostAreél, equation (4.6.6) indicates-thé reaéon

for the appearance‘of these 'strange' mbdes: the passive

(Re(éw) > 0) wall admittance is now acting Tike an active admittance
because of the minus sigh introduced by equation (4.6.5). Conversely
an active (Re(éw) < Oi wall admittance can appear t; act like a-
passive one,vwhich accounts for the appearance of negative resistances

in the optimum impedance study of section (4.5).

The first two types of approximation are based on the

assumption that- (kyh)2 is almost real: one is used when the

L eTEm AL s b e
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ey

rodulus of the left hand side of equation (4.6.6) tends to zero,
corresponding to [éwl + 0, and the other where the modulus tends to
infinity. The latter Timit covers a wide range of .!ém(kh values

because the term in square brackets can be indefinitely large.

Denoting the left hand side of equation (4.6.6) by .

no= i) ey | kh(<8,) .
| (kn)“(1-4,%) . |
the approximate solutions are (see, for example, Doak and Vaidya (43))

for In| >0 .
' . . - D—-—i_ _ ‘ ‘ . - .‘ N 4 .

,kyh Eomm o4 og= s M= 15.2, ceis @y MFED | (4.677)
and for |[n| > e |

) ,’“. _11 -_l } :. - - .
kh (2n-1) 5 (1 -7)s n= 1,:2f ciiy ey N # o.. (4.6.8)

Substituting mx  for kyh in n “gives a first approximation for

ki in the Timit [n|~ O: o R

MZmE) M Re(B) 4.6.9)
S 4+ i } 0.

khz mm {1-. X e
y kh(1 - M.7) kh(1 - M%)

and similarly for |n| + =

| - NS -
k(1 - WA k() - M %)Re(Z, )
2 Ty 2 2 My 2
M2 ((2n-1) 3 M2 (2n-1) 33
(4.6.10)

These expressions show that. provided Re(éw) (or Re(?w)) is positive,

K3 - L
kh e (2n-1) F 1)

o

the imaginary part of the solutijons for kyh can have a positive sign

for well 'cut-off' modes, being normally negative for well ‘cut-on’ modes.
The possibility of this occurrence was noted in section (4.4) (note

ky'h' = kyh) and although there is nothing.in the analysis presented

there to suggest that this is in any way significant, the corresponding

\

114,

[

e A e s A v WS

B e



axial wavenumbers (both kx'h' and k) can have phase velocities
in the opposite direction to that of decay (see below). Thus the
.approximate solutions above are examples of the 'strange' modes.
Substituting the k h expressions 1nt0 equation (4.6. 4a) ]eads
to fhe second approximation for kx/k. In terms of kx'/k 'th1s is,

for [n] + 0,

mA - M2 M2 Re(d ) " 2 I8, )

&

X . W

o, { £ - 2y (4600
ko= kh kh(1 - M5 " kn(1 - M )

and, for [nf > oy

k' (2n-1)n/2A - w2 -kh(1-M,2)Re(Z. )
. ‘ { o

+ = 4
k - kh M 2((2n-1)n/232
kh(1 - MXZ) mZ) ...
- — 003 e (4.6.12)
M 2{2n-1)n/2} o : |

Notice that the p]usAor minus sign cannot be chosen indépendently for
the real and imaginary parts of k '/k. According“to the analysis of
section (4.4) the positive s1gn is chosen in the above expressions for
X = xO >0 so that the mode decays in the positive x d1rect1on, a]though

the phase ve]oc1ty is quite clearly in the opposite direction if
M > 0: '_ Lo R T

Re(k,) - Re(k '
= M- M(1-m2)-

In the third typeiof approximation it is assumed that
IIm(k h)] > 1.5

and then the tangent funct1on on the right hand s1de of equat1on (4. 6 1)

can be approximated by




isgn'(Im(Kyh))..

0? course the solution obtained for kyh must be checked to ensure
that it satisfies the above condition. Squaring equation (4.6.1) and

re-arranging gives

k.M ' k
o X X4 -2 . ¥\2
(1-25H% 85 = (P
hence, after substituting for (ky/k)2 from equation (4.6.2),
kXM

) k
0-2% 87 2 a- %P

k w

Each side is expanded and terms of order zero and one in kxMx/k are

neglected to give _ s
3 K 2M 4

5 kM '
= 2 2 X X X X e (1 .m2
B, (6MX -4 i k2 ) 2 -(1 M, )
or ‘
: ke ivem 2+ (1 - M2z 2 o
- z o 5 . ~ (4.6.13)
X : : Mx -

In this case, if Zw is real, the phase velocity is eqha] to half the

flow‘velocity and in the same direction. It is completely independent
of the decay direction or choice of signs.

The second approximation is

K M ioM2 (1 -ndHzie o
—% s - ———5——? +-%— P 5 X W (4.6.14a)
: 1-M X ' M
X X

so that : . |

k' 200-m%) i -n?) P >

3 S v S CL L S

X

If zm is real and M* > 0 the pole responsﬁb1e for this mode would

be Tocated in the first o' quadrant for x - io > 0, along with the
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weil 'cut-on' modes (+€), and in the fourth quadrant for x - io <0
With the other 'strange' modes (-i); but the former does not exist.
That is, the solution with tﬁe positive sign in equation (4.6.14) must
be_rejected* as' a solution of the above approximate equations due to
an 1ncons1stency in s1gns Th1s is not 1mmed1ately apparent because
the important 51gn is- lost when equat1on (4.6.1) is- squared.‘ :Con~
versely for Mx <0 (and again if Zw' 1s‘rea1) the solution with
the minus sign is rejatted. Thus, from equation'(4.6.1ﬂa), the
direction of the phase ve]ocity'is determined by‘the direction of the
flow velocity (for subsonic Mach numbers) and is a]ways in the opposite
direction to that of decay | ' o o fv'f.f

It is clear from these approximate solutiops‘that the prigin
~of the strange modes 11es in the pecu11ar behavwour of the factor '
’(] - k M /k) multiplying the admittance, Bw,‘ wh1ch or1g1nates from
the boundary conditiohs-used in the 'plug' flow model. It is there-
fore pertfnent to enquire whether the aéspmed boundary cohdition jsA
" realistic for such modes: this has led to_an'ipvestigation which is

described in Chapter 6.

:These solutions are also intriguing from the energy viewpoint

because, as was mentioned before, the direction of axial energy flow

is given by the signlof the real part of the Lorentz axial wavenumber,

which, for the above solutions, can be in the opposite direction to
-that of the decay. The energy aspect is discussed in detail in

Chapter 5.

by
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*At ]east for real frequenC1es
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4.7 The Existence of Temporal Instabilities and the Correct

Procedure for Obtaining the Green's Function

4.7.1 Introduction

DUrjng the course of the attempted derivation of the Green's function

(described in section'(4.4)) it was suggested B}meowcs—williams (22)
that the Green's function for a source which emits a pu1se at: say t =0

would grow in time even if the source is situated (in uniform flow) at a

finite distance from a single absorptivé,wal]. He aTsd pointed out that

the fundamental radiation condition is the Causality Law, that is for

t <0, with the source switched off, no disturbances can exist éhywhere‘

S

- A

_in the region under consideration.*
In tﬁe brief literature review which fo]]ows,.it is ghown that the
avai]éb]e inférmation'supports Ffowcs~Ni111ams’_(22) suggestjon but
possibly with an important qualification. Thfs'qua]iquation, if proven
for a lined duct containing uniform flow, means that a ‘steady staté‘
Green's functfon for a source-timé dependence exp[-iwt] does exist, in
. @ restricted sense,-buf it is necessary to examine the transient res- |
ponse after the source is switched on. The sdurce must be swftched on'
at, say, t = 0 in brder:to'apply the fundamental Ca&gé1iiy'Law and to
obtain the correct res&it. This procedure also leads to a satjsféctory
interpretation of the 'strange’ modes. HoweQer the conclusions g%ven _
- here must be .regarded as tentative as the analysié is by no means
rigorous: for example it has been assumed (again) that the o' integrand

converges on the specified contours.

4.7.2 Review of information on instability in related problems

The Green's function derived in section (4.4) is based on the

reflection of plane waves from a single, infinite, uniform boundary

*And not that |G ‘| > 0 as [x' - X
dition implied in the Brekhovskikh (
contour on the o' plane.

~ .

'| > » which is the radiation con-
80) method through the choice of
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which, in effect, is non-locally feaéting. Suppose the boundary to

be replaced by one whose admittance represents the mean boundary
between two semi-infinite streams in re1ative, uniform motion (see
Figure 4.22)). It is well known (44 that for incomopressible flows the
(unsteédy) motion of the fluid interface is d;;table7(in time) with
respect to an imposed spatially periodic disturbance (He1m66\tz
instability). Of more relevance in the present context is the

analysis by Miles (45 for compressible fluids: an initial velocity
(normal to the interface) of the form exp [ﬁkxx] (k, real) is imparted
to the fluid interface at t = 0 and the asymptotic (x; t) dependence
(that is, as t » =) of the interface displacement is shown to be of
the form o . _ - -

. exp [ik‘x(x‘ - Eﬁ t)]

vhere*

~

» M . . ' Y B
& - t_x = 5 ximE et - 22 - j}%. C o (4.7.1),

(These solutions ére valid for. MX < 2/2 but another neutral §o]ution
appears in the range 2 < M < 2/2 ). | _

Thus for subsonic Mach numbers there‘is a]way$ oné unstable dis~
turbance'(taking the + sign in equation (4.7.1)) fo]]owing-éﬁ aHrupt'

displacement of the interface. Equation (4.7.1) is a solution of the

equation

Y

~

“ik(1 - kM /K2 - (_E)-z}% - ik, =0 o (87.2)

K _ 2 2.1
Ky o= k- kM) -k TEE




which determines the location of the po]és in the complex (k/k,)
p]ané. (The omitted plus and minus signs for the square roots are
chosen to satisfy the ‘finiteness conditions' at infinity - see Miles

@)n. S

C]ear]y the 1n1t1a1 cond1t10n used by Mx]es (45) is 1ncons1stent
with that which would be caused by a plane wave component of a pownt
or line source field. In Friedland and Pierce?s (46) analysis a 1jhe
source is intréddcea at a finite distance, h, from the interface, and

emits a pulse at t =20 (described by the function §(t)). In thf$

case the fluid containing the sourbe is at rest - see Figure (4.23a).

) Aftér a certain time a spatial region develops (in y < 0) ih @hfch the
Solution'fs"sihgular', indicating instabi]ity in tiﬁé; this %s Shown
‘as a shaded reglon in Figure (4.23b). Each corner of this reg1on moves
71n the downstream direction with the velocity indicated in F1gure (4 23b);
these velocities are approximate and valid Qn]y for Mx < 1. (Th1s

. reg1on always deve]ops if M < 2/2 which is consistent with Mi]eS'

" :(45) result.) Thus the unstable region moves away from the source and
does not even exist at points (x, y) where Xx <h 7~y:~ Although “this

“result will be modified if the fluid containing the source also has a

uniform mean velocity, it is.a strong indication that the presence of
an acoustic source near a f]uid interface, switched on at t =0, will

trigger a convective instability and not one which'grows indefinitely

with time at any point: thisAis the important qualification mentioned
above.v h | ) | - .

“Tam (47) assumed this to be the case in'his analysis of a mode]
.for the 1nf]uence of pressure fluctuations on the (th1n) shear layer at“

“the boundary of a supersonic jet close to the nozzle (see Figure (4.24)).

- The pressure fluctuations are assumed to be 1oca1i§ed at x = O_ and to




" induce a pressure difference across the shear layer at this point.

The fluctuation at (reai) frequency o is switched on at t = 0.

'By using Miles' (45) results ano a hethod developed by'Briggs (23),
Tam (47) obtains the asymptotic (t » =) Ppressure dependence outside
the jet on x, r, 6 and t, the latter being simp]y" exp[-iwt];

the x dependence is exp[1k X ] ‘vhere k, 1s the Qnstab]e sotution

in equat1on (4.7.1): ‘thus the wave amp]1f1es spat1a11y w1thout 11m1t

in the x d1rect1on, trave111ng w1th phase velocity equa1 to one half
' the Jet veloc1ty 0f course when the amplitude becomes suff1c1ent1y
1arge non- 11near effects can no 1onger be neglected and th1s solution
is invalid. The spat1a] pressure pattern of this ampl1fy1ng wvave in
the x, r plane is shown by Tam (47) to be in excellent egreement
with the observed radiation from jets; . | o ’7 _
Tam's (47) philosophy and Briggs' (23) method are used below, |
but first it is necessary to re-introduce the rea] boundar5~qn place
of the fluid interface. (It is recogn1sed that this imposes a d1ff—
_'ereht boundary condition, not only for the normal particle d1sp1ace-
ment and pressure, but also for the tangentia1 particle velocity if
the fluid is viscous. The effects of viscosity and thermal conduct;
ivity are ignored throughout the present work but they may be part1-
cularly important in this context.) For an 1ncompress1b1e fluid the
modified Helﬁholtz instability is wei] known and appears in the
'pane1' flutter' problem (see, foh ekamp]e,Betchov and CrimineleA(49))
If the wall impedance is purely reactive and given by | “
7, = -ifem -5

the solutions of the boundary condition equétion,

1
{
Zw/p

3 ek, =0 (A7)

FEE _— ) 2
w1 - kU /) -




~ - onat t =0 and following Tam (47) Br1ggs

where

(cbmpare this with eduation (4.7.2)) —

P2 S R
ky = KR =ik k

are o . S 4 _
U+ itkm U2 - (1 + kmy Kyl
X — °xU Vx kT
LU ' X
K ' ~
X (1 + kxm)»
where W = m/p, s R = K/p .

(4.7.4)

For a suff1c1ent]y 1arge value of Ux’ so that the term w1th1n

':the square root is pos1t1ve one of the so]utlons in equatlon (4.7.4),

‘for a g1ven spatially per1od1c disturbance (kX

_amp11f1cat1on with time of that d1sturbance

- suppose is given and lkXUX/wl > 13 then the approximate

~solutions of equation (4.7.3) are

k 1

This conc]udes the review of the re]evant 1nformat1on in the

e 13;777 {0+ 42, /20 U, }.

real), gives rise to

For future reference,

= 7.5)

pub]1shed ]1terature, 1t is understood that Ffowcs-Wi]]iams and his

" co- workers are, at present, attempt1ng to ana]yse a mode] consisting

of a p01nt source (in uniform flow) em1tt1ng a pulse at. t

1ocated at a f1n1te d1stance from an absorptive wall.

&

. 4.7.3 Instabilities in ducts . LT

:In the éna]ysis which fo]?ows the duct model is modified in

0, and

that the source still has a time dependence exp[_1mt] but is sw1tched

(23) method js used'to




by Briggs (23). - f-“'—

obtain the Green's function as t » 4=. The analy;is is not

complete or rigorous but each important step is outlined and parti-

cular attentfon is giyen to the contour deformation procedure defined
The time deﬁéndent, inhomogéneous wave equation nbw has a source

time.dependence exé[?iwt] for t >0 only, and is‘iero for t <O0.

The Laplace transform is used in p]ace'of tﬁe Fourier transform and

all initial conditions are set to zero; consequently the term

§(w' - w) is replaced by {-i(w' - w)}-]. The major difference in

the analysis oﬁcurs in performing the inve;se trénsformations, that_

is, the,integrafions with respect to w' and Kx', or é', ‘to obtain

'Gw' as a function of t' and x'. The integration path (AB) for

o' is shown in Figure (4.25), together with the pole at w' = w,

the source radian frequency. The value of e 1is chosen so that

~ the integration path lies above all the singularities o/ the integrand

Yo satisfy the Causality Law. That is, the Green's function

: wtie _
.Gw' (X' ’ y'/;(ol s .Yo') = f G(L.(X'_,y'/;(0'~-,yoj_)exp[:iw't']dw'
; ehe e ©(4.7.6)
where s | | C R o
G;-‘(X',y'/xo',yo'v) = f G (K tsy ' /%"y K ! (4.7.7)

must be zero for t<O0. Upon rewriting the inteérand in equation (4.7.6)
as

_ M, . '

{6, exp[}k'-—e (x' - xé{]} exp[-iw't] (note that 4 (4.7.8)

' M
' o ey ___)_(_
th =t (x xo)),

it is clear that,provided the bracketed term satisfies certain con-

ditions, the integrand vanishes on the infinite semi-circle closing
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the infegratioﬁ path in the uepef half p]ane,'wﬁen t < 0. Thus the
inteéra]lis unaffected by this closure and, by the Residue Theorem,
is zero for t <0 provided this contour conta%ns no singularities.
If it could be established that no singularities existed any-
where in the w; upper half plane then theﬂa}iginal contour would be
Towered to lie just below the real axis (line A' B' in F1gure (4.25))
except for the deformation around the pole at o' = w. Aga1n provided
the bracketed term in the expression (4.7.8) satisfies certain con-
d%tions, the integrand vanishes on an infinite semi-circ]e in ihe _
lover half plane when t > 0 and the integration can be eva]uated.
by the Residue Theorem If the s1ngu1ar1t1es of the 1ntegrand are all
s1mp]e ‘poles then theijr contr1but1ons are negligible as t > e
except for the simple pole at w' = w. Then of course one obtains
the result of sect1on (4.4). A o |
However it is easily shown that s1ngu1ar1t1es can ex1st in the
upper half p1ane Suppose the KX' 1ntegrat1on is be1ng eva]uated
directly on the Re(KX') axis so that Kx' takes all rea] values
between +w. The pofes of the integrand for the Ef 1nte