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UNIVERSITY OF SOUTHAMPTON
ABSTRACT

FACULTY OF ENGINEERING AND APPLIED SCIENCE
INSTITUTE OF SOUND AND VIBRATION RESEARCH
Doctor of Philosophy .
VIBRATIONAL POWER TRANSMISSION BETWEEN SOURCES AND SUBSTRUCTURES

by Roger James Pinnington

The thesis is in three sections. The first is a theoretical study, to

gain an understanding of the parameters which control the power transmission
between machine sources and seatings. For this study a simplified structure,
namely an end-excited beam, was selected with which to model a resonant
seating structure. Three types of simplified machine source were considered,
a pure force, a rigid body and a short resonant beam. These sources were
connected to the seating via a single isolator. The outcome of this first
study was to be able to express the frequency averaged power transmission or
the peak power transmission to the seating structure in terms of approximate
source and seating mobility formulae. Theoretical predictions were

compared with experimental measurements.

Although it is useful to be able to predict power transmission from
machines, a more profound understanding and a greater confidence in the
approach will not be gained unless measurements can be made. Theregore,
the second part of the thesis proposes three practical methods for measuring
power transmission. The methods use measured ffequency domain acceleration
data and structural frequency response informatibn, and are: power input to
a structure at a single point; power transmitted through an isolator usihg
accelerations above and below each isolator; and power absorbed by a finite
resonant structure, using accelerations at one, two or four points. Such
measurements require confidence in measured frequency response data in
complex form, and therefore the accuracy with which this quantity may be

peasured is discussed. - -

Finally, some pracfica}fexpgriments were conducted on a d.c. motor coupled
by four isolators to a beam stiffened plate. Power transmission measure-

ments were made and the results compared with simple predictions.
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CHAPTER 1

INTRODUCTION

In many engineering installations, machines are, by necessity,
mounted on large flexible structures, such as ship hulls or building floors.
The machine, when in operation, transmits vibrations to the structure,
thereby causing unwanted sound radiation at stations close to and remote

from the excitation region.

The most usual step taken to reduce such sound radiation is to attempt
to decouplé the machine from the structure by mounting it upon vibration
isolators. Naturally, such measures never achieve complete isolation and
a certain amount of vibration transmission still occurs, which must either
be tolerated, or quantified with a view to imposing further vibration

control.

Two questions then arise: what physical parameter should be used to
quantify either the vibration transmitted to a structure or the effective-

ness of isolation, and can this parameter be measured?

Traditionally the force or acceleration level at the mounting points
on the seating structure have been used to define the vibration trans-
mission; in the case of acceleration this may be because it is an easily
measurable quantity [1-6]. However, the answers provided vnly have
meaning in relation to the particular installation,as no account is taken

of the 'impedance' or frequency response of the vibrating structure.

An alternative approach, which is adopted here, is to define the
vibration transmission in terms of the vibrational power flowing into the
seating. Power is a single quantity giving an absolute measure of the
vibration transmission as it embodies both the force and acceleration at
the input points on the structure. This means that not vnly is the level
of vibration monitored but also the 'impedance' or frequency response of

the structure is also taken into account.

The power transmitted to a seating is a function of the character-
istics of the machine, the isolator and the seating. Therefore if
these characteristics are known it is puossible to predict the power trans-

mission. Little work has been done on the prediction of power transmission




between structures, nevertheless the already available methods for vibration
analysis of coupled structures would be still appropriate. These methods
may be split into two broad groups, namely, exact methods and approximate

methods, both of which are briefly reviewed in the following paragraphs.

For the exact approach, for example [}, 7] matrix equations of
machine, isolator and seating characteristics at all the connection points
are set up, and solved using a digital computer. However, this approach
requires a considerable amount of basic data which must be either measured

or predicted.

The measurement of the point and transfer characteristics of structures
with a view to making predictions of coupled behaviour has been carefully’
studied [8-11]. This involves great care, as for accurate prediction of
resonance frequencies all the degrees of freedom at each of the connecting
points must be considered [10]. This does not necessarily imply direct
measurement of each of the degrees of freedom as,a 'modal' model of the

structure can be made with the use of measured data at selected points [11,12],

although such models are likely to break down when heavily damped structures

are dealt with.

Alternatively it could be possible to predict the necessary character-
istics using the 'Finite Element technique', a type of computer modelling
[13,14]. However, such a method would only be useful at low frequencies
as at high frequencies a prohibitively large number of points would be
necessary to model the machine and seating. Also, the damping which would
still have to be determined experimentally, can be so large in practice as

to prevent clear modal behaviour.

Since these 'exact' approaches require much time and effort for their
application and the final result cannot be always relied upon to be
sufficiently accurate, some approximate methods for predicting power trans-
mission between structures have been proposed. To make these estimates,
much less data is needed than for the exact methods, and although the

answers are only correct in an average sense, this is often all that is
required.

The most well known, existing, approximate method for this type of
Structural study is Statistical Energy Analysis [15,16]. The method

predicts the space and time averaged energy content of each component of a




coupled system. The transmission of power is calculated on the basis that

the power flow between two arbitrarily coupled single degree of freedom
oscillators is directly proportional to the energy difference between the
oscillators. This principle is extended, with less rigour, to predict the
power transmitted between multimodal systems, each mode being modelled as
a single degree of freedom oscillator. Prediction is only straightforward
if it is possible to assume 'weak coupling' between components. If the
coupling is 'strong', rather complicated formulations become necessary

le.g., 17|, which offer little advantage over any other 'exact' approach.

However, there appears to be little evidence that Statistical Energy
Analysis has been applied to the machine isolator situation. This could be
because extensive seating structures such as ships are damped to the extent
that at higher frequencies they behave as systems of infinite extent rather
than multimodal systems. Also the method is only suitable for random
excitation, giving answers in terms of energy in a certain frequency band-

width, whereas some machines mainly generate pure tones.

An alternative approach was hinted at by Skudrzyk [iBJ on observing
that on a damped finite structure there was a frequency above which the
point characteristic was the same as that of a structure of infinite extent.
This phenomenon is explained thus: waves generated at the excitation point
which then return via the reflecting boundaries are too heavily attenuated
by losses to significantly interfere with the outgoing waves from the
excitation point. References |19,20,21] give tables of the point character-—
istics of various infinite beam and plate components of the type which are
incorporated in finite form in typical built up structures such as ships

and buildings.

Therefore, by making these high frequency approximations to the seating
characteristics it is relatively straightforward to predict approximate power
transmission from simple machine sources [22,23]. Goyder |}3] considers
power transmission from machines which apply a 'velocity source' or 'force
source' (see Section 1.2iv) at the top of an isvolator, single and two-stage

isolation systems are considered.

The first objective of this thesis is therefore to extend this work

and to consider:




(1) the low frequency vibration when the seating, being finite, has

resonant behaviour;
(ii) the effect of damping of the isolator;

(iii) not only rigid body motion of the machine (source) but also the

resonant high frequency behaviour;
(iv) both broad band and pure tone excitation.

However, the same approach is adopted, that is, to derive algebraic formulae
for power transmission in terms of frequency average or high frequency
approximations of machine and seating characteristics. The advantage of
this method is that the data are easily obtainable, and the significance

of the various parameters can be readily understvod, unlike those in a

numerical solution generated by a computer.

Unless practical measurements of power flow can be made any theoretical
predictions will have little credibility; therefore the second objective of
this thesis was to propose various methods with which to measure the power
transmitted to a structure from a machine. These methods require only

acceleration data and a limited amount of structural frequency response data.

The thesis is presented in three parts. First the theoretical basis,
second the power transmission measurement methods and, lastly, an experiment

on a semi-practical machine-seating system which demonstrates application

of the propvosed techniques.

The most important step in the theory was the choice of model with
which to represent a finite seating structure, having the resonant behaviour
of many modes excited to different extents depending upon the distribution of
the excitation. As only approximate formulae were being considered, the
simplest possible type of seating that supports flexural wave motion was
chosen, i.e., an end excited beam. The simplicity of this model is such
that all the resonance modes are equally excited and evenly spaced in fre-
quency. The advantage of this model is that the algebraic formula
describing its point characteristic can be readily manipulated to give

closed form solutions to various problems.

After the point characteristics of the structure are described, power
transmission from a rigid mass in an isolator to a finite beam are

calculated. The rigid mass could represent a machine in the low frequency

region. At high frequencies, a machine can move in its natural modesof




vibration and behaves as a resonant source of vibration at the top of the
isolator. Again a short finite beam was chosen to represent a machine in
this regi&n. Power transmission from this resonant source to a long

finite beam or infinite beam was calculated. The results are presented

in terms of frequency averaged power, appropriate for broad band excitation,
and the peak possible power transmitted for the case of pure tone

excitation.

The relevance of theoretical formulae have been checked using

appropriate experiments.

1.1 Conventions and Definitions

(i) The convention chosen with which to describe a wave propagating
in the positive x direction is
el(mt - kx) (1.1)

where w is the angular frequency or rate of change of phase with time,

and k 1is the wavenumber, the ra:ze of change of phase with distance.

(ii) Damping in solid structures is commonly modelled as being
proportional to strain, thus it is conveniently incorporated in a complex

Young's modulus [1].

= E(1 + in) assuming an e1mt frequency (1.2)
dependence

stress
strain

where E 1is the Young's modulus and 1 1is the hysteretic loss factor of

the material.

This representation leads to a complex wave number, k, which for

flexural wave motion of a beam is approximately

k(1 - — (1.3)

where

* -
k = (.0% /_p_é.o (1.4)

and I 1is the second moment of area of the cross section and A, the cross

sectional area.




(iii) All the analyses presented here assume the structural components

to be passive linear mechanical systems. If such a system is excited with
. . iwt
force of harmonic time dependence represented by Fe » then the
i . . .
response Xe wt is simply related by the frequency response function

ﬁ(w), l.e.,

= H(w). T

ST

Likewise, if the system is excited by a transient force F(t), the
force and response are simply related in the frequency domain by the

frequency response function,

ol

(w)
(w)

= H(w), (1.5)

i}

; where X(w) and F(w) are the Fourier transforms of the response x(t)

and force F(r), i.e.,

o0

{
F(o) = -;7} F(t)e ®t4c (1.6a)
(o]
1 )
X(u) = 3= J X(t)el®tq. (1.6b)
[

There are several types of frequency response function referred tv in

the text, which are defined as follows.

velocity - V(m) -

Forca F (o) = M mobilicy (1L.7)
torc? LA C) R Z ipedance (1.8)
velocity ?(w)

Complex functions or parameters are denoted with a bar, thus:

X, H, etc. Therefore complex frequency response functions which often

take the form H(iw) are equivalent to H(w) in this text.




acceleration alw) _ 1 inertance (iwM) (1.9)

force F(w)

force F(w) - 7 ‘
e —— = ——— 5 ~ont . - .
acceleration a(w) A apparent mass (I;) (1.10)

(iv) There are two idealised types of excitation which may be applied

to a structure; a 'force source' and a 'velocity source'.

A force source applies a constant force irrespective of the motion of
the structure.

A velocity source moves the structure, at its point of application,

inexorably with a constant velocity, irrespective of the loading.

' . . . = 1wt . .
(v) A force with harmonic time dependence Fe acting at a point
, e - i . - 1wt
on a structure of mobility M = lMIe Y causes a velocity Ve at

that point. The time averaged power input P is given by

2n
W

P = J Re{felwt}.Re{ﬁelwt}dt (1.11)
)

w__
27

which on integration leads to the following alternative forms.

P = }.Re{F.T%} = }|F|%.Re{fi} = }|v|%.Relz}. (1.12a-c)

In practice, acceleration rather than velocity would be monitored, and
forces of random rather than harmonic time dependence often vccur. In this
case the expectation of time averaged w x power/Hz is given as

w X P/Hz = Im{G. } = .In{T} = ¢ .Im{A}. 1.13a-c)
Fa aa

GFF

where aFa is the force acceleration cross spectral density, GFF’ G

are the 'force and acceleration spectral densities', respectively.

aa

Re{ }, Im{ } denote real and imaginary parts. M, Z, I, A are
mobility, impedance, inertance and apparent mass, respectively. Only time
averaged power P will be referred to in this text, as opposed to

instantaneous power (the integrand of equation (1.11)).




(vi) GFF’ Gaa’ equations (1.13a-c¢), would normally be referred toq

as power spectral densities to indicate that they have units (quantity) /Hz.
However, this title is misleading when there is the possibility of true
"power spectral densities" having units of Power/Hz. To avoid confusion
therefore, GFF’ Gaa will be referred to as 'force spectral density"

or '"acceleration spectral density" as appropriate.

(vii) Predictions for power transmission will be expressed in terms
of power P, averaged over various frequency bands. These are:
<P> is P averaged between two adjacent resonance frequencies of the
seating structure; <<P>> 1is <P> averaged between two adjacent
resonance frequencies of the machine source structure. The average
frequency interval bétween two source structure resonances will be much
larger than that for the seating structure on account of the fact that

the source structure is usually much smaller than the seating.

(viii) The envelopes of the peaks in power transmission will be
predicted and denoted as: P as the peak value of P, <p> as the

peak value of <P>,




PART 1

POWER TRANSMISSION TO RESONANT AND NON RESONANT BEAMS FROM RIGLD

AND RESONANT SOURCES

The power transmitted to a seating structure by a vibrating machine,
supported upon vibration isolators, is dependent upon the frequency response
characteristics of the individual components, namely: the machine or
source structure, the isolators aad the seating structure. In practice
these components are complex structures and a thorough analysis would only

be possible, for specific cases, using a digital computer.

However, in this first section, these complex structures are repre-
sented by simple elements, which, although very different in detailed
Behaviour, will have similar overall frequency characteristics. Using
these simple elements, algebraic eXpressions for power transmission are
obtained in terms of easily understood, controlling parameters. Further—
more, the results are preseunted in a form convenient for making approximato
power transmission calculations for more complex configurations, which are

less easily modelled.

The seating structure, which will be referred to as the receiver,
is modelled by a beam with one end free and the other with an afbitrary
termination. The excitation or coupling is always applied to the free end.
The beam is studied in Chapter 2, and is then used in combination with

various source structures in the subsequent chapters.

The isolator is always modelled by a simple stiffriess with hysteretic
damping. Only a single isolator is considered ia this section for

simplicity.

In Chapter 3, low frequency vibration is considered, that is when a
machine moves as a rigid body, and may therefore be modelled as a simple
mass element. At higher frequencies a machine can be a resonant source
of vibration, deflecting in its natural modes of vibration. 1In Chapters

4 to 6 a free-free beam was chosen to represent such a source of vibration,

being the simplest continuous Structure with resonant behaviour.




The power transmission is expressed in two ways. Firstly, frequency
averaged power, which is applicable for broad band excitation and,
secondly, peak possible power, which can occur for single frequency
excitation. In order to obtain these two quantities it is shown that it
is only necessary to know the frequency averaged values at the real and
imaginary components of mobility and the peak mobility, of the source and

receiver, at the connection points.

10.




CHAPTER 2

INPUT CHARACTERISTICS OF A FINITE BEAM AND POWER TRANSMISSION FROM A
FINITE BEAM

2.1 Introduction

The power input to a structure is a function of the excitation and
the input point characteristics of the structure. Equation (1.12) shows
that if a 'force source' is applied to the structure, the power input is
determined by the real componént of mobility at that point. Likewise,
when a velocity source is applied to the structure the power input is

controlled by the real component of impedance at that point.

The purpose of this chapter is therefore to investigate the form of
the real component of mobility and impedance of a finite continuous
structure such as a beam or plate, which has internal damping and

boundaries which allow for power transmission.

The structure chosen for this analysis is a damped finite beam termi-
nated at an arbitrary boundary, which is excited at the free end. It was
chosen because it was the simplest structure which satisfied the require-
ments, and the algebraic properties of the point mobility make it a

useful 'approximate® representation for modelling the point mobility of

general structures.

The real component of mobility of this structure is compared with

two models.

(1) A beam of infinite extent, the simplified model with which to

represent the point mobility of structures at high frequencies [21].

(i1) A single degree of freedom oscillator, which is commonly used
to represent each mode of a structure at low frequencies, see for
example [2 1] .

The theoretical work was supplemented by experimental measurements

comparing the point mobility of an infinite and finite beam.




2.2 Point Mobility and Impedance for an End Excited Beam

Figure 2.1 shows the beam chosen for the analysis. The force is
applied at the free end at x = 0. The beam at x = & 1is attached to

an arbitrary structure.

The discontinuity at this boundary causes flexural waves incident

upon it to be reflected with a fractional decrease in amplitude 'r'
. £ d wav ié ]
and a phase change & radians, so Fe }ecte wave - re . The beam
incident wave

also has a frequency independent loss factor M+ For harmonic excitation

by a force at x = 0, the displacement along the beam 'y', with reference

to figure 2.1, can be written as

_ -ikx(1-in, /4) _ ikx(l-in, /4)
y = Be b + be kx + xrBe b (2.1)

provided that kg > 2.3, which allows the near field term at x = & ‘
—nka/Z !
to be omitted. k 1is the flexural wavenumber, a = e is the ‘

attenuation due to damping of a wave travelling a distance 2%, r = rele.

0 = 6 - 2k% 1is the phase change in a wave travelling distance 22.

Inserting the boundary conditions at x = O,

3 2
A F=EIL§ O:-a—%
ax  [x=0 oxX~ | x=0

into (2.1), yields

b=B(l+ad), B= -t L — . (2.2)
EIk (1 +ar - i(1 - ar)

For harmonic excitation the velocity V 1is given as
v = iw?.

The mobility at x = 0, is found from equations (2.1) and (2.2) to be




12ar cos 6 .
- 1i}.

2ar sin 6

Likewise, the impedance

i2ar sin 6
+ 1

2ar cos 9

It is interesting to note that the point impedance and mobility are
of similar form, hinting at the versatility of these functions in algebraic

manipulation. On account of this similarity, only mobility will be con-

sidered in detail.

First, it can be seen that a and r are interchangeable. This

pemmits equation (2.3) to be written in a more convenient form, i.e.,

= cos B - i sin B cos 6
M=Q 1 - sin B sin 6

- i}’

2.2
where cos B = I—-—a—f—— sin B = ﬂfz_?’

»
1+ a2r2 1 +a°r

Note: Q = = 3 for a beam constrained to have zero slope at the
2EIk

excited end;

Q=—2 3 for a beam with identical supports, excited at the centre.
4EIk

A few observations may now be made.

(i) When ar becomes small, cos B tends towards unity and the

mobility tends to that of a semi-infinite beam, i.e.,

M= Q1 - 1) ar + 0




(1i) The real component of mobility is shown in figure 2.2 for
various values of ar. Only values for 0 < 6 < 27 are plotted as
the function is periodic. The beam resonance frequencies occur when
€ = 2m + g— where n 1is an integer. At these frequencies the real

component of mobility attains its maximum value of Q of magnitude

Q =Q(l + ar)/(l - ar)

2Q/cos B for moderate damping ar > } (2.6)

Therefore from equation (1.12) it may be deduced that for 'force source'
excitation, maximum power is input at these frequencies. Minimum power
. . . . . ki .

1s input for this type of excitation when 6 = 2mn - = ;3 at this

2
v
frequency the real component of mobility takes a minimum value of Q

6 Q(L - ar)/(1 + ar)
(Q/2)cos B

(iii) However, if a velocity source is applied to the beam, maximum

power is input when the real component of impedance is a maximum, which

from equation (2.4) is when 6 = (2n + 1w,

(iv) If a force source of constant spectral density, Wy <w < Wos
equivalent to 0 < 0 < 27 in the 6 plane, is applied to the beam, the
frequency averaged power <P> may be derived from equation (2.3),
<P>/Hz = GFF.<Re{ﬁ}>. In Appendix 1 it is shown that provided that 6
does not change at a rate comparable with ar then

<Re{M}> = Q (2.8)

i.e., the average value of the real component of mobility of a finite beam
is equal to that of a semi-infinite beam. (ar = O in figure 2.2.) There-

.Q. The
FF Q
restriction that 6 dves not change at a rate comparable with or means

fore the average power to a beam can be written as <P>/Hz = G

that the result does not hold rigorously for periodically supported
Structures, or structures with built in boundaries for frequencies below
the first resonance. 1In reference [24] the result in equation (2.8) has

been demonstrated for a finite plate using a modal approach.




Note that the frequency averaged value of mobility (eqn. (2.8) is

the geometric mean of the peak and trough values (eqns. (2.6), (2.7)).

2.3 The Ratio Between Power Input to and Transmitted from an End

Excited Beam

The ratio between the power input to the beam at x = 0, and that

transmitted through the boundary at x = %, can be determined from the

power flow along the beam at these two points.

The power flow at any point along the beam is proportional to
B, () |% - |B_(x) |2 (2.9)
i r * )

|Bi(x)[ and |Br(x)| are the moduli of the incident travelling wave
and reflected travelling wave at any position x on the beam. From
| . _ ~“knpx/4 _ knpx/4 .
| equation (2.1), IBi(x)I = Be . lBr(x)| =a rBe . The power
| input and power transmitted are found by substituting in equation (2.9)
with x =0 and x = £, respectively. Thus the ratio of power trans-

f mitted Ptr’ to power input, Pin’ is given as

|
2 2.2
| P P. = 1l -1« 1 ~a . .10
| ee’Fin a( ) /( ) (2.10)
This ratio, which is necessarily less than unity, is constant for
all values of 6. Therefore, maximum power is transmitted from x = &
when maximum power is input at x = 0, and minimum power 1is transmitted
when minimum power is input at x = O. Therefore the frequency averaged
power transmitted is simply
2

- — -
<P > = <Pi§ ol r ) /(1 o.

er %), (2.11)

For force source excitation, <Pin> is given from equation (2.8) as

1|F|2.q.

The importance of the relative magnitude of o and r is discussed in
Chapter 4.




2.4 The Vector Plot Form of the End Excited Beam Mobility

Finite continuous structures, composed of beam and plate-like
elements, theoretically have an infinite number of natural frequencies.
In the region of each natural frequency the behaviour can be modelled
by that of 3 single degree of freedom oscillator, and the overall
behaviour is therefore given by the sum from an infinite number of oscil-
lafors. It is therefore of interest to compare the behaviour of the
finite beam model, equation (2.5), with that of a single degree of freedom
system. This is best done by comparing the vector diagrams of the two

system responses.

Equation (2.5) can be written as:
M=X+iY

where

Q cos B . ¥ = - Q sin B cos

X = 1l - sin B sin 6 °? 1 - sin B sing Q.

By eliminating 6 from the above two equations, the vector diagram

form of the point mobility is defined by the function:
(Y + Q)2 + (X - Q/cus 8)2 = Q2 tan26. (2.12)

This function is plotted in figure 2.3. The following observations

may be made.

(i) The plot is circular like that of a single degree of freedom

system. The radius is - Q tan B, which for very heavy damping (cos B = 1)

tends to zero.

(ii) The centre of the circle is offset from the real axis by a distance
Q. This effect is characteristic of beam point mobilities, and is caused by
the wave which decays exponentially away from the driving point (see
equation (2.1)). This decaying wave term does not occur for point driven
plates or for longitudinal vibration of rods, and so the comparable form

of mobility vector plot would have no offset in this direction.

16.




(iii) The base of the circle is displaced from the imaginary axis by
a distance Q(1 - ar)/(l + ar), which is approximately (Q cos B)/2
for light damping. Thus it is seen that the real component of mobility
is always greater than zero, unlike that of a single degree of freedom

system, which tends to zero away from resonance.

u2<5 Modal Loss Factor in Terms of the Material Loss Factor and the

Boundary Reflection Coefficients

The loss factor of a piece of material vibrating in a certain mode,

is described as the 'modal loss Ffactor' Ny defined as

_ Energy dissipated/cycle of harmonic motion
m 27, maximum energy stored in the cycle ’

n

For a linear material the maximum energy stored is proportional to o2,
where o is the stress at a point, while the energy dissipated is propor-
tional to oo, n for low stress levels, lies between 2 and 3 (see, for
example, [?5]). This being the case, it can be seen that the loss factor
for a piece of material is a function of the stress, and therefore a
function of amplitude of vibration and mode shape. However, if n = 2,.
the loss factor N becomes independent of stress, and therefore mode
shape, and has the value of what is described as 'the material loss factor'
N In the following analysis it is assumed that n = 2, so that n, the

material loss factor, is independent of wavelength and stress level.

Practical structures usually have modal loss factors which are a
function of both the internal danping, and the energy transmission across
the boundaries. Such a structure is modelled by the beam in figure 2.1.
The modal loss factors of structures are often measured from the vector
plot of the point mobility. This is done on the assumption that the
behaviour in the frequency range close to resonance may be compared to that
of a single degree of freedom system with a loss factor equal to the modal
loss factor N, The objective of this analysis is therefore to express
the modal loss factors of the beam (figure 2.1), measured in this manner,

in terms of the material loss factor n and reflection coefficient r.

The vector diagram of the cantilever mobility for O < 6 < 2% is an

offset circle (see figure 2.3). If the offset is ignored the vector diagram

17.




becomes equivalent to that of a single degree of freedom system. Therefore,
a comparison of the two circular vector diagrams will yield the equivalent

modal loss factor n, for the cantilever. The two diameters are

1 = k ( 4aor

)
1 - a2r2

where m 1is the mass of the equivalent single degree of freedom system,
u 1is the mass/unit length of the beam. For higher modes of the beam
m = E%u On substituting for m in the equation above the modal loss

factor becomes

2.2
_ 1l -a"r 1

Above the first resuvnance, k& = pm, where p is the mode number.

Therefore the modal loss factor becomes

2.2
~ 1 -ar ,
n, = e et (2.14)

Considering now the two limiting cases:

]
|t

(1) no damping, i.e., o

n_ = —, —, (2.15)

The modal loss factor is therefore only a function of the reflection

L |

coefficient 'r

and the mode number. The apparent loss factor decreases

as the mode number increases. i

(11) no power transmitted through the boundary, i.e., r = 1.

By substituting for o (equation (2.1)), equation (2.14) becomes
n_ = — sinh ~—— . (2.16)
When n 2% is small, the modal loss factor nm is approximately
equal to the material loss factor. However, as the mode number increases

so the modal loss factor increases. The modal loss factor for a beam

excited at the centre may also be found to be

18.




The behaviour of the modal loss factor of a finite structure with
internal damping, and boundaries allowing for power transmission, may be
summarised as follows. At low frequencies, the modal luss factor will
be controlled by transmission through the boundaries (equation (2.15)).
The modal loss factor will decrease with increasing frequency until the
damping becomes dominated by the internal damping (equation (2.16)).
This value will then increase with increasing frequency. The material

loss factor is therefore the lowest value of the movdal loss factor.

2.6 Experimental Measurement of the Real Component of Mobility of an

Infinite and Finite Beam

In the previous section, the theoretical relationship between the
real components of mobilities of finite and infinite structures was
established. This section describes experimental mobility measurements

on a finite and 'infinite' beam* to verify these theoretical expressions.

The first mobility measurement was made vn the 'infinite' beam. The
experimental layout is shown in figure 2.4. A steel beam, of 6 mm by 5 cm
cross section, and 6.21 m length, was suspended by four piano wires;

80 cm at each end of the beam were embedded in sand boxes designed to be
anechoic terminations. The beam was excited in the centre of the 5 cm

face by a coil and magnet arrangement. The rapid sweep method was used

to measure the mobility [26].

Figure 2.5 shows the measured mobility of the 'infinite' beam in the
usual form of presentation, i.e., modulus and phase. The measured and
theoretical values agree well at frequencies above about 100 Hz. The

theoretical value of mobility for an infinite beam is [2f]

w

4EIk

M =

3 a-1i).

e s e s T G i . e e e e

*The experimental model of an infinite beam will be referred to as the
'infinite' beam.




The real and imaginary components are equal in magnitude, giving rise to

a constant phase of - Z. The low frequency data was corrupted by noise.

4
The second set of mobility measurements were made on the beam after
the sand boxes had been removed, as in figure 2.6. Both sides of this
finite beam were covered with AQUAPLAS damping tape. The loss factor, as
calculated from the decay time at free vibration, was found to have a
frequency independent value of 0.008 between O and 1 kHz, the frequency

range considered.
The same measurement conditions applied as for the 'infinite' beam.

The measured real component of mobility is shown in figure 2.7. The
form compares reasonably well with that expected from figure 2.2, with
the exception that all modes were not excited for the beam, as is the
case for an end excited cantilever. The value of the real component of
mobility of the infinite beam lies logarithmically between the peak and

trough values.

It is worth noting from figure 2.8 that the small steps in the integral
correspond to the contributions from each mode. The contribution by each
mode is equal to that of an equivalent single degree of freedom system of

mass mp, i.e., 1r/2mp [?1], where mp = u2/2 for a centre-excited beam.

The peak heights are less than predicted as the beam was excited
slightly off centre, thus causing the asymmetric modes to be excited more

with increasing frequency, and the symmetrical modes to be excited less

with increasing frequency.

In order to find the average value of the real component of mobility
a running integral of figure 2.7 was made, which is shown in figure 2.8.
It can be seen that this integral is close to that calculated for an
infinite beam over the same frequency range. This therefore verifies the

theoretical statement of equation (2.9).

2.7 Summarz

A useful formula for point mobility of a finite structure has been
derived having the following properties: (1) it has a similar form to the

point impedance; (ii) the frequency averaged value is equivalent to that

20.




of a structure of infinite extent; (iii) the formula models both high

frequency 'infinite' beam behaviour and low frequency modal behaviour,

The ratio between power input to and transmitted from a finite
structure is only a function of transmission coefficient at the boundary
and the structure internal damping. Therefore, for force source

excitation, maximum power is transmitted at resonance, when maximum power

is input.



CHAPTER 3

POWER TRANSMISSION TO A FINITE AND INFINITE BEAM FROM A MASS, SUPPORTED
UPON A SPRING, EXCITED BY A FORCE SOURCE

3.1 Introduction

In the previous chapter, the power input to a seating structure as a
result of force or velocity source excitation was considered. However, in
general the vibration of a machine at its support point cannot be repre-
sented so simply as it may have a mobility comparable with that of the
seating structure. Therefore this chapter presents a general expression
for power transmission between two structures coupled at a single point.
The structure that generatesthe vibration will subsequently be referred to
as the 'source', which transmits the power to the 'seating' structure or

'receiver'.

The general expression is applied to the specific example of power
transmission, from a mass upon a damped spring, to a finite beam. This
model was designed to represent the behaviour of an isolated machine upon
a finite structure in the lower frequency range, through which the structure
moves as a rigid body. The finite beam used in the theoretical adalysis was

that considered in the previous chapter.

Experimental measurements are made on a physical model of the above

configuration to confirm the results.

3.2 Power Transmission Between Two Coupled Structures

Two structures, shown in figure 3.1 are coupled at points 2 and 3 by

a hinge, which transfers normal force but no moments.

When the two structures are uncoupled, the velocity at point 2 1is

On coupling, the velocity at point 2 becomes 52

V2 = Vf + F2M2

which is equal to the velocity at point 3 on the receiving structure,




(3.2)

where ﬁz and ﬁ3 are the point mobilities at points 2 and 3, respectively.

Using equations (3.1) and (3.2) the force acting on the receiver F2 is

given as

M

The time averaged power transmission to the receiver, Ptr’ is

-— 2 -—
= 1
Py 2|F2| -Re {M,}

If only a single force Fl’ acts on the source structure

= 2

5 .Re{M3}

|ﬁ2 + ﬁ3|

where ﬁ12 is the transfer mobility between points 1 and 2.

‘'

3.3 Power Transmission Between Two Structures Coupled by a Damped Spring

Figure 3.2 shows the systems under consideration. The source and
(1)

receiving structures are coupled by a spring of mobility (i + n)w/K.

With reference to the previous sections, the mobility at point 3 is given as
M3 = (i + nN)w/K + M (3.6)

where MR is the point mobility of the receiving structure. Oun making this

substitution into equation (3.3), fz becomes

F, = Gf / (ﬁz + (i + Mw/K + ﬁR) (3.7)

The mobility of a hysteretically damped spring is (i + n)/(K(1 + nz)),
but the n? term in the denominator is generally small enough to be

neglected.




Because the force, EZ’ is the same at both ends of the massless spring,

the power transmitted tu the receiving structure becomes

v}
]

- 2 s
i
er = HIFp |7 Reity)

or l2

]

M i
12 . Re{MR}

1ZlFllz‘ e ) 3
M, + M + (1 + mu/K] (3.8)

P
tr

3.4 Power Transmission From a Mass to a Finite Beam via A Damped Spring

Equation (3.3) can be applied to the specific example shown in Figure
3.3, to calculate the frequency averaged and peak power transmission to a
finite beam from a mass, m, excited by a force, F1 sin wt. This model
is intended to represent a machine, vibrating at lgy'frequencies, which

is supported by isolators upon a finite structure.

The mobility ER at the end of the beam is given from equation (2.5)

as
ﬁR = Qr - iQi - 1Q

where
Q cos B Q sin B cus ©

Q. = ; Q. = (3.9)

T 1 - sin B sin 6 1 1 - sin B sin ©

Q 1s the frequency averaged value uof the real component of mobility,

i.e.,
w
Q:
EIk3

for a beam with an unconstrained end.

The source structure is the mass, so its point and transfer

mobilities are

= 1
M, = iwm
(3.10)
- 1
M12 " iom °
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By substituting equation (3.9) into equation (3.8), the power transmitted

to the beam, Ptr’ can be written as

1 Qr

: 2
w@n? @ + 2?4 (g, + 0

P =}.|F. |2

. , (3.11)

1

where
L _
wm

= w
C= (Q + K).

Substituting for Qr and Qi’ from equation (3.9) and using the
identity

Q‘Z +Q 2 _ Q2 1 + sin B sin 6

i r ‘l - sin B sin ©

(3.12)

in the algebraic manipulation, the power transmission becomes

P = 1[5 =2 1 Q cos B T
3 . .
tr 1 (wm)2 u2 + gﬁﬁ .Q cos B - sin B{U4 - (ggguq)z}zsin(e - v)
(3.13)
where u2 = Q2 + 02 + (nw)z,

2QcC
tan y = .
2 2 2
c”+ (DT -0

It can be observed that equation (3.13) is of the same form as the
real component of the beam mobility, equation (3.9), but is a function of
6 - vy, rather than 6. The peaks in power transmission occur when

m
8 -y = 2nm +-§ at the resonances of the coupled system, rather than when

D
]

m .
2nw +'§ at the beam resonance frequencies.

3.4.1 Frequency average power transmission <P>

If the mass is excited by a random force of constant spectral density,
GFF’ over a frequency range w] <w < Wy, equivalent to a § interval

2nm < ® < 2(n + 1)m, the frequency averaged power transmission <P> is




the solution to the integral

G 27
<P> = gF 12 s Q cos B A T T .do
i (wm) oJ u o+ —%—.Q cos B = sin B{u’ - (—E—Q) } sin(6 - y)
(3.14)
as it is assumed that 6 changes rapidly compared to w.
Using a standard result, see, for example, reference |27)
2w
L4 4= d b>c (3.15)
21 | b - ¢ sin x 2 2.3
(CRER
0
where b, ¢ and d are constants, the integral in equation (3.14) can be
solved, giving the frequency averaged power as
<P> = GFF' L 5 . Q s (3.16)
(m)® w2 o+ =2Q
K
where Q, the peak receiver mobility is
A ZQ
Q=58 B~
Therefore <P> to a general structure can be estimated if the
frequency averaged, Q, and peak values, 6, of the real compcnent of
receiver mobilities are known.
Equation (3.16) is plotted in figure 3.4, from which it can be seen
that there are three regions of interest:
(i) At the coupled mass-spring—infinite beam resonance frequency¥*,
W u2 takes its minimum value, causing <P> to reach a maximum value
of <§>, where
o 1 Q ,
<P> = G__. . . (3.17)
FF 2 2
em® Q” + 124 + (W

The coupled mass-spring-infinite beam resonance frequency, w., occurs

when C = 0, and is slightly higher than the resonance frequency of a
mass upon a blocked spring w, .




The maximum possible value of this expression occurs when the

receiver beam is so heavily damped that it behaves as an infinite beam,

and the isolator damping is light, i.e., if

i
€
[}
€

(wm) 2

However, by decreasing the receiver beam damping and increasing the

isolator damping until

<P> = GFF'

Q
(om)? 12 g !

Therefore it may be said that the isolator damping is important in

controlling power transmission at the mass-spring-infinite beam resonance

frequency, w, .
(ii), (iii) At frequencies above and below wys the force applied

to the beam is independent of the beam motion, i.e, it behaves as a

'force source'. This is because the mobility at the foot of the springand mass

is greater than the mobility of the beam. In these regions the frequency

averaged power transmission is given by the 'force source approximations'.

These are

<P>

[]
[}

FF-Q w < w) (3.18)

P> = G (—97.Q @ > wy (3.19)

where w2 =£<-.
o m

These values are independent of receiver beam and isolator damping and

hence are the same for a finite c¢r infinite beam receiver.




3.4.2 Peak and trough values of transmitted power, P, P

In the previous section the frequency averaged power tramsmission was
calculated. However, if the receiver beam is finite there is a peak and
a trough in power transmission associated with each beam mode of vibration,
as indicated by equation (3.13). The frequency averaged value is in fact
the geometric mean of these peak and trough values. In this section the

envelope of the peak ﬁ, and trough P values of power are calculated.

The envelope of peak values of transmitted power P can be found

. . . . coszﬂ
from equation (3.13) by letting sin(6 - y) =1, and sin B =1 - =
giving
P = <P>.g (3.20)
where 2 6
u
g = - .= . (3.21)
u2 + ﬂ% Q Q
Likewise, by substituting sin{(6 - y) = -1 into equation (3.13) the

envelope of the trough power is given as

P =< .
g
P is plotted on figure 3.4; its behaviour may be divided into three
regions.

(1) P = <P>'% uz > -Q%Q (3.22)

at high and low frequencies when the 'force source' approximations are

valid.

. . . 1 K 2 _nw 2 .
(ii) P GFF' (wm)z e ut o= Q. , (3.23)

This is the maximum possible value of power transmission and is only
a function of the mass and real component of the spring mobility. The
spring damping is therefore important in limiting the peak possible power

transmission. It should be noted that this value does not always occur,

but depends upon the correct matching conditions.




Now it is likely that u2 =rw¥K.6 at frequencies close to s in

which case equation (3.23) becomes

A w
P = GFF' 4nK °* o

(iii) P has a minimum at the mass—spring-infinite beam resonance
2 nw A
Q

when u® < —

X and <P> is a maximum.

3.5 Experimental Measurements of Power Transmission

Experiments were made on the type of system considered in the previous
section., There were two main objectives. First, to measure the power
input at the top of the isolator, and the power transmitted to the
"infinite' and finite seatings, and to make comparisons with the theoreti-
cal predictions. Secondly to compare two alternative means of measuring

the power transmitted to the seating.

3.5.1 Experimental layout

Figure 3.5 shows the arrangement for the power flow experiment. The
force excitation, provided by the coil and magnet, acted on a 4 cm x 4 cm
X 0.9 cm steel block, weighting 0.142 kg, at position 1. This mass was
supported at the corners by four colummns of natural rubber, each measur-
ing 1.2 ecm x 1.2 cm x 2 cm, arranged to accommodate an accelerometer at

the centre of the underside of the mass.

The feet of the four rubber columns were attached to an aluminium
block, position 2, which could be regarded as rigid and of negligible
mass for the frequency range considered. The aluminium block was counnect-
ed via a washer, to ensure point loading, to the centre of the beam con-

sidered in section 2.5. The beam was made ‘infinite' or finite as before

using the sand boxes.

w = W . (3.24)



3.5.2 Experimental procedure

Three experiments were performed with the following conditions:

(i) Experiment 1: broadband random excitation between 0-1 kHz, for
which frequency range the isolator behaves as a simple spring, 'infinite

beam' seating.
(ii) Experiment 2: as experiment 1, but with a finite beam seating.

(iii) Experiment 3: broadband random excitation between 0-4 kHz,

'infinite beam' seating.

As a preliminary requirement to each of the power transmission experi-
ments, it was necessary to measure, using the rapid sweep method, the
apparent masses of the system elements (apparent mass is defined as the

force per unit acceleration). The measurements were:

(a) the point apparent mass of the seating, KR (while the mass and

isolator were not attached).

(b) The point apparent mass of the assembled mass, isolator and beam at
position (1), ZS'
(c) The transfer apparent mass of the disconnected isolator le. This
involved blocking the base of the isolator while imposing an acceleration
at the top. The acceleration at the top, and the resulting blocked force
at the base were monitored. Figure 3.6 shows the real and imaginary
parts of the isolator transfer apparent mass in the 0-1 kHz frequency
range. For this range the isolator behaved as a simple spring with
hysteretic damping. The transfer apparent mass therefore took the form

N S
A12 = 2(1 + 1in). (3.25)

w

The stiffness, K, calculated from figure 3.6, agreed well with the
statically measured value of 7.6 x 10%4 N/m. The loss factor can be seen
to be 0.1. Figure 3.7 shows the modulus and phase of KIZ in the frequency

range 0-4 kHz. The first standing wave in the isolator occurred between
1 and 2 kHz.

For the power transmission experiments a band limited random force

acted on the mass. The acceleration signals a; and ays at points (1)

and (2) were monitored, the two signals were conditioned using matched




amplifiers and cut-off filters. The acceleration spectral densities
of the two signals Ga , Ga and the cross spectral density Ga were

a
calculated. 1 2 12

Using equation (1.13c), the power input at position (1), Pin’ is

given as:

Pin/Hz = Im{AS}.Gal.

Likewise, the power transmitted to the beam Ptr’ was calculated

using the imaginary part of the beam point apparent mass, Im{KR},

Ptr/Hz = Im{AR}'GaZ'

The power transmitted to the beam was also calculated using the

isolator transfer apparent mass KIZ in the expression

1

Ptr/Hz = Z-Im{Alz.G } .

S )

The use of this expression is justified in Section 7.4. Each of the
above expressions involves the multiplication of two data files. This is
only possible if both files have the same frequency increment, which is

ensured by using an identical sampling rate for both measurements.

All power flow spectra were normalised with respect to the force
spectral density, to permit comparison of results. In addition,
the power flow spectra are all multiplied by a factor of w, to provide

a compact presentation.

3.5.3 Discussion of results

(i) Figure 3.8 shows the power input to the isolator and that trans-

mitted to the 'infinite' beam, for experiment 1.

The curve for force source approximations, equations (3.18) and (3.19),
agreed reasonably well with the experimental results for frequencies above

and below the power flow peak at about 120 Hz. This power flow peak




occurred at the mass-spring-infinite beam resonance frequency. Its

magnitude was accurately predicted from equation (3.17).

The ratio between power input to the isolator, Pin’ and that trans-

mitted, Ptr’ is given by the relationship

Ptr/Pin = Re{ﬁR}/(Re{ﬁR} + nw/K), (3.29)

where HR is the point mobility of the beam.

Now Re{ﬁR} = nw/K at = 150 Hz. Therefore, at frequencies below
about 150 Hz the power transmitted was only slightly less than that input
to the isolator because Re{ﬁR} > nw/K, but for frequencies above 150 Hz
most power was dissipated in the isolator as nw/K > Re{ﬁR}. However,
although these trends are seen in figure 3.8, the measured level of Pin
above 150 Hz is suspected to be an over—estimation, caused by noise in the

measured value of Im{KS}, which is likely when the {Ké} >>Im{KS}.

(ii) Figure 3.9 compares the power transmitted to the finite bean,
from experiment 2, with that transmitted to the 'infinite' beam. It can
be seen that the frequency averaged power input to the finite beam was
equal to that transmitted to the 'infinite' beam for frequencies above
and below the mass-spring-infinite beam resonance. In the region of this
resonance the frequency averaged input power to the finite beam was less
than that to the 'infinite' beam as was seen in figure 3.4. The prediction
of peak frequency averaged power from equation (3.17) is seen to be of the
correct order of magnitude. In fact it is worth noting that the 'force
source' approximations (equations (3.18) and (3.19)) give reasonable esti-

mations of frequency averaged power through the whole frequency range.

The size of the fluctuations in power from the frequency averaged
level are seen to behave as predicted in figure 3.4, the minimum fluctua-
tion occurring when the frequency averaged power is a maximum. It can be
observed that the maximum possible value of peak power transmission did

not occur, as it is dependent upon the existence of ideal conditions.

Figure 3.10 compares the power input to the isolator with that
transmitted to the finite beam. It is seen that, around the region of

peak frequency averaged power transmission, only a fraction of the power




input to the isolator is transmitted to the beam. This is because in

this region when w = 0 the point mobility of the spring and mass in
series at the free end of the spring is a minimum. This low value is

less than the beam point mobility and so the spring and mass act as a
velocity source on the beam, thereby transmitting most power when the beam
impedance is a maximum, i.e., near the beam antiresonances when Re{ﬁR}

is small. Therefore, as the power being transmitted when Re{ﬁR} is small,

from equation (3.29) it can be seen that the isolator damping becomes very

effective as

nw/K >> Re{MR}.

(iii) Figure 3.11 shows the power input to the isvlator and transmitted
to the 'infinite' beam between O-4 kHz. It can be seen that there was a
peak in power transmission at the isolator resonances. Again the level of
the power input to the isolator is thought tv be an overestimation, as for

experiment 1.

Figure 3.12 compares the power transmitted as measured using the two
methods given in equations (3.27), (3.28). There is good agreement at
frequencies up to about 3 kHz when the isolator transfer apparent mass
method failed, due to either the cumulative inaccuracies inherent in multi-
plying two complex data files, or phase errors due to digitizing analogue
data. Despite this high frequency limitation, the isolator transfer
apparent mass method is probably the most useful for frequencies below
the first isolator resonance, as estimations of power can be made using
only the isolator dynamic stiffness and the measured accelerations at the

ends of the isolator.

3.6 Conclusions

Simple formulae for peak and frequency averaged power transmission
from a mass to a finite seating in a spring-like isolator have been

developed, describing the following behaviour.
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(i) At high and low frequencies when the mass behaves as a force
source or velocity source at the top of the isolator, the frequency
averaged power transmission to a finite or infinite receiving beam is
the same. -

(ii) Maximum power transmission occurs between the force and
velocity source regions, at the resonance frequency of the coupled
mass-spring and infinite beam. At this frequency the power transmission
decreases with increasing isolator damping or decreasing receiver beam
damping. Therefore in this frequency region the frequency averaged
power transmission to a finite beam is less than to én equivalent

infinite beam.

Two practical methods of measuring power were successfully used to

experimentally verify the above formulae. These were:-

(1) Power input at a point in the structure can be measured by
multiplying the imaginary component of the point apparent mass by the

acceleration spectral density at that point.

(ii) Power transmission through an isolator can be measured using
the isolator transfer apparent mass and the cross spectrum of the

accelerations above and below the mount.




CHAPTER 4

POWER INPUT TO AND TRANSMITTED FROM A FINITE SOURCE BEAM TO A SEMI-INFINITE
BEAM, VIA A DAMPED SPRING

4.1 Introduction

Low frequency power transmission from a machine to a seating structure
was considered in the previous chapter. It is followed here with an
investigation of power transmission in the mid-frequency range, when a
machine behaves as a resonant source of vibration, moving in its natural

modes of vibration.

It is obviously impossible to accurately model a machine with a
simple element. Nevertheless, in this chapter a free-free beam has been
chusen to represent a machine, this representation being simple enough
to permit analysis, but containing the essential features of a resonant
structure. Such a representation is not entirely fanciful, as it has
been observed in [13] that an automotive diesel engine behaves as a beam

in the mid frequency range, i.e., below the first resonance of the
individual panels.

The vibration isolator is again represented by a damped spring,

and the seating structure in this chapter is a semi-infinite beam.

The analysis is merely an application of section 2.3, predicting
power input to the source beam and power transmitted by the isolator
in terms of the source beam internal damping and the transmission

coefficient at the beam-isolator junction.

An experimental investigation of this arrangement is reported in
Chapter 6.
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4.2 Power Input to and Transmitted from a Finite Beam Coupled to

an Arbitrary Structure

A short finite beam, which will be referred to as the 'source beam',
is connected to an arbitrary structure at end 2, as shown in figure 4.1.
End 1 of the beam is excited by a force of sinusoidal time dependence

F1 sin wt.

When the source beam is disconnected from the arbitrary structure

the point mobility at each end of the beam is identical, and is given as

M1=M2=Sr"'lsi°8’

s = S cos € S. = S sin € cos ¢ (46.1)

where = : : - -
r 1 -sin € sin ¢ °* i 1l - sin € sin ¢ °

where S is the frequency averaged value of the real component of mobility
(that of a semi-infinite beam). € 1is the damping parameter defined,

setting r = 1 in equation (2.5), by

2
cos e = LT O tanh n k2/2 (4.2)
2 b
1 +a
-nbkzlz
where a,= e s is the attenuation due to damping of a wave travelling

twice the length of the beam, 2%. For a moderately damped end excited

beam cos € = nka/Z.

¢, the source beam frequency parameter, is the phase change in a wave
travelling twice the length of the beam, and for a free-free beam is given
Ui . .
as ~(2ke + 5). When ¢ = 2nm +'% s Wwhere n 1is an integer, resonance

occurs and the real component of mobility takes its peak value § “of
S = 2S/cos €, (4.3)

for light damping.

When the source beam is connected to a structure at point 2, the
reflection coefficient r at that boundary becomes less than unity and

the power input at point 1 can be written, using equations (1.12b) and
(2.3) as
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1 - azrz
1+ azrz = 2ar sin(¢ +~% + §)

* 2
<P, > .= i|F1| .S.

where"rela is the reflection coefficient at the boundary.

The form of this expression, shown in figure 5.2, can be seen to
be similar to that of the real component of mobility of the disconnected
source beam, equation (4.1),. However, the maximum power, <§>, is
input when sin(¢ + %-+ §) =1, at the coupled resonance frequencies,

rather than at the resonance of the uncoupled beam, where sin ¢ = 1.

The power transmitted to the arbitrary structure is given from

equation (2.10) as

2 2.2
< > = < >, - -— .
Ptr Pin a(l r7) /(1 a’r’) (4.5)
from which it can be seen that the ratio between input and transmitted
power is independent of ¢1, (i.e., it is the same at the resonance
frequency or remote from the resonance frequency) and is only dependent

upon the relative magnitudes of r and a.

The frequency averaged power input, <<Pin>>’ is obtained by averag-
ing equation (4.4) over the frequency range between two source beam

resonances, i.e., O < ¢ < 2w, giving

2
<<Pin>> = %IFII .S (4.6)

and can be seen to be independent of & and r.

Likewise, the frequency averaged power transmission <<Ptr>> can be

calculated from equations (4.5) and (4.6) as

Power as a function of the source beam parameter ¢ alone is denoted by
< >. In this chapter it is assumed that the receiving structure is of
infinite extent, having no resonances. Therefore the power is not a
function of 8, the receiver frequency parameter.




a(l - 2

(1r - a2r2)

<<Ptr>> = £|F1|2.S. (4.7)

The peak power input and transmitted occurs when the term sin(¢ +-§ + 8)

in equation (4.4) is equal to unity. Then the envelope of the peaks is

given as

>
p—
+

ar

i_n <<Pin>> 'T—"_(;; (4- 8)

A

a~}
v
]

and

>
ot
+

or
. T—, 4.9
e <<Ptr>> I —or ( )

A

2~
\%
i

. . . m
The trough power input and transmitted power occur when sin(¢ + = + §) = -1,

2
then

<
=
|

ar

<Pin> = <<Pin>> T ot (4.10)
95 > = <<P >> .-L—:JZE . (4.11)
tr tr 1 + ar

From equations (4.8)-(4.11) it can be observed that the frequency
averaged values of input and transmitted power lie geometrically between
the peak and trough values. Also the peak to trough ratio is identical
in both cases. From equations (4.6)~(4.11) it can be seen that the
frequency averaged peak and trough values of power are controlled by the
relative magnitudes of a and r. The behaviour may be summarised into

three regions, which are given in Table 1.

(i) At low frequencies r <a

or t2 > 2 cos €

where t, the modulus of the transmission coefficient is related to the

reflection coefficient r by

£2 =1 - ¢2, (4.12)

In this regime all the power input to the source beam is transmitted to the
arbitrary structure. The ratio between the peak and trough power is

governed by the transmission coefficient. The lower the transmission
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coefficient the greater the peak possible power input and transmitted at

resonance.

(ii) When r = a or t2 = 2 cos €,

half of the power input to the source beam is dissipated in the source
beam, and half of the power is transmitted from the source beam. This is

~

the condition for peak possible power, i.e., <Ptr> takes its maximum

value of

2 §
> = 3|F . 4.13
tr max HF] 4 ( )
Hence the maximum possible power transmitted from a resonant structure
is one quarter of the maximum possible power input to the uncoupled
2'\
resonant structure (}|F|“.S).

(1iii) When r > a or tz < 2 cos €,

the frequency averaged transmitted power becomes less than that input, as
most of the power is dissipated in the source beam. The size of the peak
to trough power ratio is controlled by the damping in the source beam;
hence end 2 of the source beam behaves as a velocity source to the attached

arbitrary structure.

It is worth noting that <Ptr> is independent of the damping in the

first beam and is controlled by t2,

4.3 Power Input to and Transmitted from a Finite Beam Coupled to a

Semi-infinite Beam by a Damped Spring

The configuration for this analysis is shown in figure 4.2. The
source beam is excited at end 1 by a force, while end 2 of the beam is
coupled to a semi-infinite beam by a damped spring. If the damping of
the source beam and the transmission coefficient at the boundary are known,
then the frequency averaged <<P>>, peak <P> , and trough <P> values of
power can easily be found from equations (4.6)-(4.11). For the sake of
clarity the effects of transmission coefficient and source beam damping

are considered separately, as follows:-
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4.3.1 The effect of transmission coefficient on <P>, <P> and <®> >

The general expression for the transmission coefficient, t, is
derived in Appendix II, equation (A.II.3). For the specific case of two
coupled beams, ﬁz and ﬁR in this equation are given by the respective

semi-infinite beam mobilities, of the source and receiver

I

S - 18§

Q - iQ

PleNl

giving
t = 4S(Q + T](D/Iz() 2. (4.14)
(Q +8S + nw/K)° + (Q +S - w/K)

If it is assumed that there is no isolator damping, equation (4.14)

can be rearranged in terms of the peak transmission coefficient Ez and

the spring mobility ratio @, i.e.,

~2

t2 = -t - (4.15)

1+ Q-9
where

2. S (4.16)

Q +59)
_ w/K
Q = 6—:j?r— s

A V
<P>, <P> and <<P>> for the power input to, and transmitted from the
undamped source beam can now be formed from equations (4.6)-(4.11), by

setting o = 1, and by making use of the approximation

- : 5 = 2, t° < 4. (4.17)

The frequency averaged power input and transmitted become

<<P, >> = <<P_ >> = %IFllz.S.

in tr




The peak and trough power input and transmitted are

A A 4
= ~ —_— - . 8‘
<P, > = <P > £|F1|2.S. ‘tz 21> (4.18)
2
v
<§in> = <Ptr> o %|F1I2.S I £ 5|9 (4.19)
4 - 2t

<<P>>, <P> and <>  are plotted in figure 4.3 as functions of § and
t2, In general it can be seen that decreasing the transmission coefficient

by varying t or § has no effect on <<P>> but increases the ratio

between the peak <P> and trough power P> . The effect of varying ¢t
and Q individually is now examined.

(a) The effect of varying EZ

At very low frequencies (f = 0.1) the spring mobility is so small
that the beams behave as if coupled by a simple hinge. The transmission
coefficient is governed only by the relative magnitudes of the two beam
mobilities, given by equation (4.15) as

2 2
t__z’

which is a frequency independent function.

Under this condition the maximum coupling occurs if the two beams

are identical, i.e., Q =S, giving EZ =1, and

Looking at values of power at = 0.1 in figure 4.3, it can be seen

that as t2 decreases, on account of the beam mobility mismatch, so the

. 2 v .
ratio between peak <P> and trough power <P> increases.

(b) The effect of varying &

If now a constant value of Ez is maintained, the envelopes of peak

and trough power in figure 4.3 may be divided into two regions:-




%< 2(S + Q) the

ratio between the peak and trough values of power is less than the

(1) First, at low frequencies when £ < 2 (i.e.,

£ = 0.1 value, on account of the spring improving the coupling between

the two beams. When @ 1, the maximum value of transmission coefficient
occurs, namely,
2 = ¢2.
(ii) At higher frequencies, when > 2, the spring causes a decrease
in the coupling between the two beams and the transmission coefficient

tends towards

R (46.20)
(w/K)

As a result of the decrease in t2 the envelopes of peak and trough power

are seen to diverge.

It is interesting to note that, when there is light source damping,
the maximum possible power input and transmission at the resonances is
very high. At these frequencies the power input is large because the
source beam response is large and is therefore able to absorb power very
easily from the force source excitation, which has been assumed in this

model.

~

4.3.2 The effect of source beam damping on <P>, <P> and <<P>>

of input and transmitted power

The effect of source beam damping upon <§>, <B> and <<P>> was
covered generally in section 4.2, parts (i), (ii) and (iii), and the results
are summarised in Table 1. These equations, as applied to the specific
example of a source beam coupled tv an infinite beam by a spring, are

plotted in figures 4.4-4.7.

Figure 4.4 shows <P>, <P> and <<P>> of the transmitted power for
€2 = 0.5 and 2/cos € = 30.

Figures 4.6 and 4.7 show the effect of varying the source beam damping,
while maintaining t2 constant.
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From figures 4.6 and 4.7 it can be seen that there are two regions

of different behaviour:-

(i) First, from figures 4.3 and 4.4 it can be seen that when

tz > 2 cos €
the source beam damping is ineffective, and all power input to the source
beam is transmitted to the infinite receiver beam. The values of <P>,
V .
<P> and <<P>> are therefore those given for the undamped source beam in

figure 4.3.

However, when the frequency is increased until t2 = 2 cos € then

only half of the power input to the source beam is transmitted to the
infinite beam, as seen in figure 4.7. Figure 4.6 shows that under this

condition the peak possible value of power transmission can occur, namely,

~ _ 2 $
B> nax %lFll 4
which is controlled by the source beam damping.

(ii) In the second zone, defined by t2 < 2 cos €, most of the power

input to the source beam is dissipated by the internal damping. The
source beam behaves as a velocity source connected to the spring, therefore
the ratio of peak to frequency averaged power is the same as the peak to

frequency averaged real component of mobility of the source beam, i.e.,

<p> _ S__ 2
<<P>> S cos €

Figure 4.6 shows that <P> decreases with increasing source beam

damping, but <P> is independent of the source beam damping, and is given
by

The frequency averaged power transmission <<P>>, given in figure

3 . -~ v 3 -
4.7 is the geometric mean of <P> and <P> and is given as

2

<<P__>> = }|F

|2 At
tr

.S. '_4', (4021)

1




which by substituting from equation (4. 20, is at high frequencies equal
to

2 2 QS .
<<P__>> = }|F l S, — (4.22)
tr 1 (w/K)2

In summary it can be said that an isolator is only effective in

reducing power transmission to a seating of infinite extent when

(E“)?' > §.Q. (4.23)

v

4.3.3 The effect of isolator damping upon <P>, <P> and <<P>>

The transmission coefficient for the system under consideration, when

the isolator is damped, is given in equation (4.14), as

nw
L et

-(Q+D;“<’-+S)2+(Q+S-“/r?2.

As the isolator is massless, the forces at the opposite ends of the isoclator
are identical. Hence the ratio of power input at the top of the isolator

to that transmitted to the infinite beam is given by the ratio of the real

components of mobility, namely,

Power input at top of isolator - Q (4. 24)
Power transmitted to infinite beam nw ' .

The power transmitted to the receiver beam is given from equations
(4.24) and (4.5) as

(4.25)




Therefore it can be observed that the isolator damping only has any
- significance when Q < ﬂ%’. This term is therefore not very important
at low frequencies when w/K 1is comparable with S + Q, neither is the
damping term important at high frequencies when the source beam behaves
as a velocity source. However, the damping term can be most significant
when tz = 2 cos €, in the region where comparable quantities of power

are dissipated in the source and receiver beams.

In this case the peak possible power transmission becomes

§

re - - - 4.26
A (4.26)

If Q < ﬂ% » by making use of equation (4.23) in equation (4.25)

the peak possible power transmission becomes

= w? = §.Q.K2. (4.27)

- 2
P=1|F .
2| 1I
Equation (4.27) has the same form as equation (3.24) (the peak power
transmission from a mass upon an isolator). Thus it is seen that the

isolator damping can limit the maximum possible power transmission between

two coupled systems.

4.4 Chapter Summary

The power input at one end of a short source beam, and the power
transmitted via an isolator from the source beam to a semi-infinite
receiver beam has been investigated. Formulae for peak power and

frequency averaged power have been derived.

(i) Power is input and transmitted at the resonances of the

coupled beam system.

(ii) At low frequencies all the power input to the source beam is
transmitted to the receiver beam, until a frequency is

reached when (w/K)2 = Q§, where (w/K) 1is the isolator
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mobility, S is the peak source beam mobility, and Q 1is

the real component of source beam mobility.

Above this frequency the source beam behaves as a velocity

source of magnitude Vf at the top of the isolator; the

power transmitted is then simply given by HVf]z.Q/(w/K)2




CHAPTER 5

POWER TRANSMISSION BETWEEN A SHORT FINITE SOURCE BEAM AND A LONG FINITE
RECEIVER BEAM COUPLED BY A DAMPED SPRING

S.1 Introduction

The previous chapter dealt with power transmission between a short
source beam and a semi-infinite receiver beam. Power transmission was
calculated in terms of ¢ the source beam frequency parameter, and the
w dependent mobilities, Q, S and w/K. It was seen that peaks in power
transmission are associated with each source beam mode of vibration,
there being one peak in each 2nm< ¢ < 2(n + 1)7 interval. The envelopes
of the peak <ﬁ>, and trough power <P> and the frequency averaged

power <<P>> were calculated.

However, when the receiver beam is long, but finite as in figure 5.1,
it exhibits resonant behaviour, and each mode of vibration is associated
with a peak in power transmission. In this analysis it is assumed that
the receiver dimensions are large compared to those of the source thereby
having a much higher modal density at a given frequency, i.e., the
receiver beam frequency parameter, 6, is much greater than ¢ the
source beam frequency parameter. The power transmission plots will
therefore take the form shown in figure 5.3, in which the rapid fluctuation
in power due to receiver resonances are superimposed upon overall trend

governed by the source beam characteristics.

Figure 5.3 indicates the quantities that are calculated in this

chapter.

First, <P>, a function of ¢, 1is the frequency averaged power trans-
mitted to the receiver beam obtained by averaging over a frequency interval
equal to that of the difference between two receiver resonance frequencies,

i.e., (2am < 06 < 2(n + 7).

Secondly, <P> and <P> are the envelopes of the peak and trough

values of <P>, respectively.

Thirdly, <<P>> is the frequency averaged value of <P>, obtained by
averaging over a frequency interval equal to the frequency spacing between

two source beam resonances, i.e., (2m7m < ¢ < 2(m + 1)7).
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Lastly, P and P, functions of ¢, are the envelopes of the peak

and trough values of power transmitted to the receiver beam.

These analyses are given in detail in Appendix 4 but the procedure

is summarised below.

5.2 General Expressions for Power Transmission to the Finite Receiver Beam

The general expression for power transmission is given in equation
(3.8) as

Iﬁizlz.Re{MR}

B, + Wy + 2G o+ n |2

- 2
P HF1| .

¢ (5.1)

For the source beam, ﬁz and ]ﬁlzlz are functions of ¢. ﬁz is

given in equation (4.1) as

= _ S.cos € =i sin € .cos ¢ _ . ’
M2 1 - sin €.sin ¢ 18, (5.2)

and it is shown in Appendix 3 that

= 12 _ .3 .

|M12| = SrS sin €, (5.3)
Likewise, for the receiver beam, the mobility ﬁR is a function of

9,

= cos B ~ i sin B cos 6 _ .
=0 —T5m B sin © 1Q 5.4

where it is assumed that 6 changes rapidly compared to ¢.

By substituting in equation (5.1) with equations (5.2)-(5.4) and

averaging Ptr over an interval O < 6 < 2m, the 0 averaged power trans-

mission <P> can be written as




S sin € .25Q
+ S cos ¢ [6 + 2 D%J ~ sine [uz 4s de];.sin(¢ -v)
(5.5)

(s +Q - ok +s%+ Q2 (5.6)

Q% + Qnu/K + (nu/K)> (5.7)

= 8.(5 +Q = w/kK) (5.8)

Equation (5.5) now has the form of the real component of the source
mobility, except that it is a function of (¢ = y) rather than ¢. This
means that the maximum value of <P> does not occur at the source beam
resonances when sin ¢ = 1, but at the resonances of the coupled system,
when sin(¢ - y) = 1. Equation (5.8) shows that Y is slightly less
for a finite beam compared with that for an infinite beam on account of
the presence of the 6nm/K terms. Thus, theoretically, the peak value

of <P> occurs at a slightly different frequency for a finite than for

an infinite beam.

The envelope of the peak values of <P>, mnamely <§>, is formed

by setting sin(¢ - y) =1, in equation (5.5), giving

2

2
u24 + u22.§[a + an/K] + |§2 - 282|Qd2

(§)2.Q sin € .u

A - 2
<P> = {|F |% .

Likewise, the envelope of the trough values of <P>, namely <P> is found
by setting sin(¢ - y) = -1 in equation (5.5), giving
SZ.Q sin €. u22

4 2 Y ra . 2nw
uy +u, .S [Q + —ﬂ ‘- S Qd

P> = 5|F1|2.

v
in which 8 = §—f§§iii .




The frequency averaged value of <P>, namely <<P>>, 1is found

by averaging equation (5.5) over an interval 0O < $ < 2n, giving

2 S.S sin €.Q
<<P>> = {|F |* P , ~ = -
1 (u24 + uzzs [Q + i{%ﬂj + [520_2 - 452Q2 + SZdej)z

(5.12)
It could be shown that <<P>> lies geometrically between <P> and <b>.

Equations (5.9)-(5.12) can be written in a more convenient form by

defining a transmission coefficient tys

2 _ 4GS _ 4QS

t =
d 2 824024 (s+q-92
d K

) (5.13)
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This term is very similar to the transmission coefficient to an infinite
beam receiver, defined in equation (4.12). Dividing equations (5.9)~-

(5.10) by u24, gives

L ALY S sin e —— (5.14)
(cos 8)2 (cos e) d GJQ)Z
£ty cos B 4 " Q
e o 2 S sin € :
P> = R0 e, (5.15)
7t (cos S)
t
d
Likewise, by dividing equation (5.12) by u22 gives
<<P>> = 4[F, |2, S sin e 3 (5.16)
2 cos €,.2 cos e, 4 cos €,2 d, 2,4
IC————jrﬁ + (cos B). 5 * (cos B) + G7? I
t4 ‘4

The parameters controlling the power transmission will now be discussed

more fully by comparing the power transmission to infinite and finite

receiver beams.




5.3 Power Transmission to a Semi~infinite Receiver Beam

The power transmission to a semi-~infinite beam receiver can be
found from equations (5.9)-(5.12), by substituting 6 = 2Q (as cos B =.l).

Also Qd from equation (5.7) becomes

and t;, by comparison with equation (4.12), becomes

%
» <P> and <<P>> can now be written as

A 2 S sin
<P> = §|F_|°. (5.17)
| 1 cos Ei . Sﬁ <
ta 2 q
. 2
S sin €.t :

P> = y|F |2 — (5.18)
<<P>> = HF]_IZ . S _sin Z (5.19)

2 cos € _i

t 2 Q

d

These equations are good approximations to those derived in section
(4.3), the only assumption inherent in these above being Q # S. Although
dealt with in the previous section, the effect of the paraheters controlling
the power transmission to a semi-infinite beam receiver are summarised

again here for convenience.

From equations (5.17)-(5.19) it can be seen that there are three main
parameters controlling the power transmission:- the transmission coefficient
2 . .
ty s the source beam damping parameter cose, and the ratio Q/(Q + 2%).

Equation (5.19) shows the two regimes of behaviour.
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(i) At low frequencies when td2 > 2 cos €, the power transmission

is controlled by the transmission coefficient and isolator damping.

(ii) At higher frequencies when td2 < 2 cos €, the power trans-

mission is controlled by the source beam damping.

5.4 Power Transmission to a Finite Beam Receiver

The power transmission as expressed in equations (5.14)-(5.16) are
summarised in Table 2, for convenience, but the main points are covered

as follows:

When the receiver beam is finite rather than infinite, cos B, in
equations (5.14)-(5.16) becomes much smaller than unity. This affects
the controlling parameters in a manner now described. First, Qd’
defined in equation (5.7) becomes larger than for the semi-infinite
receiver case, indicating that isolator damping is more effective when
the receiver is finite. Second, tdz, defined in equation (5.13),
decreases on account of the increase in Qd' Finally, a new parameter

is introduced, namely cos €/cos B, defined by

cos € _ Q ‘§
cos B Q ° § ’

which will be referred to as the 'damping ratio' between the two beams.
When the receiver beam is semi-infinite this ratio has its minimum value
of cos €, but the ratio increases as the receiver beam becomes more

lightly damped. For practical structures, with the source much smaller

than the receiver, one would expect

coSs €
cos B

< 1.




A~ (Ve
(i) The effect of OS5 € on <P>, <P> and <<P>>

cos B
. . . cos € Coal v .
The effect of this damping ratio s 8 o <P», <P> and <<P>>

is shown in figures 5.4 and 5.5,‘fespective1y, whepe it is assumed that

there is no isolator damping, i.e., Qd = Q.

First, looking at figure 5.4, it is seen that the <P> for the finite

beam receiver has a break point, on account of the cos ¢/cos B term, when
2 ,
td = cos B cos €,
' w2 .. '

. ° . 2 A ~
At high frequencies when t“ < cos B cos € , <P>, <P> and <<P>> are
the same as for a semi~infinite beam receiver, as in this frequency regime

the source beam behaves as a velocity source connected to the isolator.

. . 2 A
However at low frequencies when t“ > cos B cos €, <P> decreases

with decreasing receiver damping, taking the value

cos B

IR

S sin €, (5.21)

v - » 3 -
<P> remains the same as for a.semi-infinite beam receiver, namely,

t 2

<> = §|F1|2.S sine., —%— (5.22)

<<P>>, shown in figure 5.5, is simply the geometric mean of <P> and

<> namely,

t
2 d c 1
<<p>> = %IFll c Ty . (%:%)2- S sin € (5.23)

Figures 5.4 and 5.5 express the main difference in power transmission
to finite and semi-infinite beam receivers. The situation may be summed
up in practical terms as follows. A source structure such as a machine is
less well coupled to a finite receiver than to an infinite receiver if
there is no effective isolator. Therefore adding an isolator does not

cause as much further decoupling for the finite receiver case as for the




infinite receiver case. With regard to the frequency averaged powex
transmission it is obviously advantageous to make the ratio cos e/cos 8

as large as possible.
In the event of the source beam being so highly damped that
cos € 4

cos B 2
4

equations (5.14)-(5.16) and figure 5.4 show that <P> becomes so small

Vv
that it is equal to <P>, then

~ v .
<P> = <P> = <<P>> = }|F. |? .ssine . 088 (5.24)
1 cos €

which is independent of transmission coefficient.

(i) The effect of the isolator damping on <<P>>, <P> and <P>

The isolator damping can reduce the power transmission under two sets

of circumstances. The first is under the conditions given in the

2
d 3
as seen in equations (5.21)~(5.23). Now if Q > S, including isolator

previous section, when the power transmission is partly governed by t

damping causes Q +»Qd thereby decreasing tdz further. The effect of
~ ~*

this is shown in figure 5.6. <P> remains unaffected but <P> drops

with increasing isolator damping. The isolator damping effectively

causes a greater mismatch between the two beams.

The second set of circumstances for the isolator damping to have a

significant effect is when

d\2 _ cos € 4 -
4

i.e., when the source damping is light compared to that of the receiver

and whern. the source and receiver are well coupled. Under this condition,
equations (5.14)~(5.16) become




= %|F112.S sin € —%— ’

<<P>> = }|F |%.5 sine. &, (5.28)
1 Qd

which are the same expressions as given for the semi-infinite receiver case,
only in that instance Qd =Q + 3% . <P> and <P> are plotted in figure
5.7, for the example when § > Q. It is seen that the isolator damping
reduces <P> but leaves <b> unaffected. As <<P>> lijes geometrically

hag : V . * .
between <P> and <P> it also decreases as seen in equation (5.28).

5.5 The Envelope of the Peaks and Troughs in Powef Transmission to

a Finite Beam P and B

The final quantities to be calculated, as seen in figure 5.3, are

N A v

the envelope of the peaks and troughs in power transmission P and P,
and also the maximum possible value of the P. These quantities are

calculated in Appendix 4, and the-results are summarised as follows.

(i) At high frequencies when tdz < cos B cos €, the envelope of

the peaks P is simply related to <P> in the same way as the peak
value of receiver mobility § 1is related to the frequency averaged value

of Q in equation (2. 6), i.e.,

2

A=<>o .
P P cos B

Likewise the envelope of the troughs )5 is




This is true even at the coupled resonances when sin(¢$ — Y) =1,

thercfore the peak possible power in this regime is

3 B3

= <P>.
max cos B

(5.31)

The reason for this simple relationship between P and <P> is that
the source beam behaves as a velocity source driving the top of the
isolator at constant velocity irrespective of the receiver mobility.

(ii) At lower frequencies when t z, cos B cos € the relationship

d
between P, P and <P> is illustrated in figure 5.3.
In the region of the troughs in <P>, the relationship between P and

<P> 1is as given before in equation (5.29), i.e.,

2

A: >
P <P>. cos B

However at either side of the peak in <P> when <P>= L<P> two peaks

in P occur, both being of magnitude

>
]

. (5.32)

s

2
= 1
max 2 ' cos B ZIFl| :

Therefore, the maximum possible power transmission is limited by the
source characteristics, and is equal to one quarter of the maximum
possible power input to the uncoupled source structure. This is the
same maximum value as was calculated for the semi-infinite beam receiver,
in that instance this value could only occur at one frequency when
tz = 2 cos €. However, for the finite beam receiver this maximum can occur
in the region of every coupled resonance when sin(¢ - y) = 1, provided

2
t >cos B cos €. .

Although it has not been possible to include the effect of isolator
damping into this analysis on account of the complexity of the problem, it

can be estimated that the solution is approximately given from equation
(5.32) as

P =
max

= (5.33)

' cos B

where <P> is given in equation (5.26).

56.




5.6 Summary

When the receiver beam is finite, the frequency averaged power trans-
mission at low frequencies is always less than that to the equivalent
semi-infinite beam becaﬁse finite beam resonances lead to beam vibration
that tends to reduce the force transmitted by the isolator. 1In this
frequency range the power transmission is governed by one of the two
following factors. ) i

(1) If the source beam damping is light and the isolatqr damping
is high, most of the power input to the source beam is absorbed in the
isolator. The frequency averaged power transmission to the receiver

beam is governed by a parameter Q/Qd, i.e.,
Power input/Power transmitted = Q/Qd (5.34)

where de = Q2 + E%.Q + (3%)2, Q is the peak receiver beam mobility,
ﬂ% is the real component of the isolator nﬂﬁﬁﬁbn= In these circum-
stances the source beam acts as a velocity source upon the isolator

when
(w/K)Z > §Qd. (5.35)

(ii) If there is light isolator damping, the input power is partly
dissipated in the source beam and partly in the receiver beam. For this
to be so §/S must be of the same order as Q/Q, i.e., the source beanm
must be heavily damped. Under this condition the source beam behaves as

a velocity source upon the isolator when (w/K)2 > 8Q. (536)

At high frequencies when criteria (5.35) and (5.36) are both
satisfied, the source beam behaves as a velocity source, i.e., it moves
with the same velocity as if unconnected to the isolator. 1In this
frequency region the frequency averaged power transmission to a finite

beam is the same as to an equivalent infinite beam.
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CHAPTER 6

EXPERIMENTAL MEASUREMENTS OF POWER TRANSMISSION FROM A SHORT SOURCE
BEAM TO AN INFINITE OR FINITE RECEIVER BEAM

6.1 Introduction

This chapter describes measurements intended to experimentally
verify the theoretical predictions made in the previous chapters, 4 and
5. The physical configurations for these experiments are shown in
figures 6.1 and 6.2. The short 'source' beam was coupled, at end 2,
to a long 'receiver' beam, at point 3, by a rubber isolator. Power was
input at end 1 of the source beam by a force, provided by a coil and
magnet arrangement. For the first experiment the uncoupled end of the
long receiver beam was embedded in a sand box, providing an anechoic
termination, thereby simulating a semi-infinite beam. In the second
experiment the sand box was removed allowing the receiver beam to exhibit

resonant behaviour associated with a finite beam.

The objectives of the experiments were: first, to measure the
pover input at point 1 on the source beam, and the power transmitted to
the infinite and finite receiver beams at point 3. Second, to measure
the source and receiver beam properties and thereby predict the input

and transmitted power at points 1 and 3, respectively.

This chapter therefore may be divided into three parts: a
description of the properties of the individual components and an

account of the power measurements, and finally a discussion of the

results.

6.2 Description of Components

6.2.1 The soﬁrce beam

The source beam consisted basically of 50 cm x 3.2 cm x 6 mm
aluminium alloy bar. These parameters were chosen to satisfy the

requirements of (i) a structure mobile enough to admit a measurable

quantity of power; (ii) a source beam with a low modal density compared




to the receiver beam, but with resonances in the range of interest,

i.e., 100 Hz ~ 4 kHz. Both sides of the beam were covered with a
constrained layer damping treatment, which was composed of a layer of
Evostick 6508 rubber-based adhesive, sandwiched by a 1 mm thick steel
sheet. The damping treatment was applied to limit the dynamic range
of the input power, and also to go a small way towards modelling a

heavily damped machine structure.

The total mass of the beam was 0.49 kg.

6.2.1.1 The measurement of the source beam inertances

wS, wS and wS.

The disconnected source beam was suspended by piano wires. An
impedance head, B & K type 8001, was attached at end 1 to monitor the
input force and acceleration, while the response at end 2 was to be
monitored by an accelerometer, B & K type 4344. The point inertance

at position 1, Il’ and the transfer inertance to eund 2, vere

I12’
neasured using th: rapid swept sinewave method |26[. The imaginary
component of the point inertance at end 1 is given in figures 6.3 and
6.4, while the |transfer inertance|2 is shown in figure 6.5. Inertance
rather than mobility was used for all measurements as it is a more
convenient quantity when acceleration signals are uséd. The behaviour
of the beam, as shown in figures 6.3-6.5, may be split into three

frequency regions.

(i) From figure 6.5 it can be seen that, for frequencies less than
50 Hz, the beam moved as a rigid body. The point inertance at ends 1

and 2 of the rigid beam can be shown to be

sl

= 4 .

Il = 9 = o where m is the mass of the beam. (6.1)
This is four times larger than the point inertance at the centre of

the beam, because the beam rotates in addition to moving in translation.

Likewise the transfer inertance is given as

o=~

Bl

(6.2)




and

= 42 _ 4
1112' -2
m

where m 1is the mass of the beam.
(ii) From figure 6.5 it can be seen that at approximately 50 Hz

w?s? (6.3)

4

2
m
which becomes

kg =2 (6.4)

on making the substitution

s = k_ (6.5)

to equation 6.3), u is the mass/unit length.

Above this frequency the flexibility of the beam controls the
energy content, and the beam model described in equation (4.1) is
applicable. It is worth noting that this transition occurs below the

first resonance frequency.

By using the measured resonance frequencies in conjunction with the

th

approximate wavenumber for the n = mode of vibration of a free-free beam,

namely,
kn = (n + i)%-, n 1is an integer (6.6)
the wavenumber of the source beam was calculated to be
1
k = 0.72f£2, (6.7)

By substituting this expression into equation (6.3) the frequency

averaged value of the imaginary part of the inertance is given as

wS = 0.75¢%. ' (6.8)




This value is plotted on figures 6.3 and 6.4 and can be seen to be

the geometric mean of the peaks and troughs. Applying the measured

values of S and wS to equation (4.3) gives

S
—_— = = 0 . 6.
S 10°f (6.9

The loss factor of the beam,(which is not required for power
measurements,) can be calculated from equation (6.9) by substituting for
cos € 1in equation (4.2)

3

-3 1
= 1.5 x 10 “f%, (6.10)

b
From figures 6.3 and 6.4 it can be seen that at about 10 kHz the
envelopes of the peaks and troughs in the real componénts of mobility
coincide. This indicates that above this frequency the real component
of mobility of the finite beam is equal to that of an infinite beam,
having no resonant behaviour. The envelope of thevpeaks is given from

equations (4.2) and (6.9) to be § =4S/(nbk2).
Therefore 'infinite' behaviour occurs when 4/(nbk2) < 1.

This criterion may be compared with that stated by Skudrzyk [18]
who stated that 'infinite' behaviour occurred when the half power band-
width of the resonance (nbw) was greater than the spacing between the
modes (Aw), i.e., Aw < npw. . This equation can be applied to the
specific example of a beam by using the relationship between wave numbers

and frequencies, i.e.,

1
k o=uw ? by u/EI
n n

and equation (6.6). Skudrzyk's criterion for the onset of the infinite

behaviour then becomes 1 > 2ﬂ/(nbk2), which is close to that stated above.

A comparison of figures 6.4 and 6.5 verifies the simple proportion-
ality relationship between the real component of the point mobility and

the square of the transfer mobility modulus expressed in equation (5.3)

and Appendix 3.




(iii) At 300 Hz, in figures 6.4 and 6.5 there is a "noisy" trough
in the measured imaginary component of inertance and transfer inertance,
when the measured response becomes very small. Above this frequency the
average value of inertance became half that of the average at low

frequencies.

This phenomenon is anmalysed in Appendix 5. It is a result of the
rotational inertia of the impedance head at the end of the beam. At
800 Hz the rotational impedance of the impedance head about the attach-
ment point was equal in magnitude to the rotational impedance of the
beam at that point. This prevented any power input at this frequency.
At frequencies above 800 Hz the high rotational impedance of the
impedance head prevented the beam from rotating, thereby reducing the

point inertance by a factor of two, i.e.,

I - E’-z- (1 + i), (6.11)

The power input was halved, as reflected in the transfer inertance,
giving

lZ w-S

|1 = 22 g, (6.12)

12

6.2.2 The receiver beam

The receiver beam was made of steel and measured 6.12 m x 5 cm x 6 mm,
It was suspended by four piano wires and both ends were initially free.
A semi-infinite beam was experimentally modelled when the end remote
from the attachment point 3 was embedded in a sand box. Both sides of
the beam were covered with AQUAPLAS free layer damping tape, which was
added to control the resonant response when the beam was 'finite', i.e.,
without the sand box. The damping treatment gave the beam a frequency

independent loss factor of 0.008 through the range of interest.
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6.2.2.1 The measurement of the receiver beam inertances wQ,

wQ, wQ.

————— e e .

The point inertance at position 3 on the receiver beam, in the semi-
infinite configuration was measured using the rapid swept sine wave
method [26|. Position 3 was one centimetre from the end of the beam.
The real and imaginary components of the apparent mass are shown in
figure 6.6. Below 1 kHz the imaginary component of apparent mass was
equal to the predicted value for an unconstrained end of a semi-infinite

beam, i.e.,

5 = 1.36£7 . (6.13)
However, this prediction is grossly inaccurate at 2.5 kHz when there
was a large trough in the measured characteristic. This departure
from the predicted value occurred for the same reasons as given to
explain the change of behaviour, noted at 800 Hz, in the source
beam characteristics: 1i.e., it occurred because of an additional mass
having translational and rotational inertia at the beam tip. This mass
consisted of the combination of the monitoring transducers (a force
transducer B & K type 8200 and an accelerometer type 4333) and approxi-
mately 2 cm of the beam tip. The tip of the beam acted as a redundant
mass because the excitation was necessarily applied a finite distance
from the end. Appendix 5 shows that, in these circumstances the measured
real component of apparent mass is the sum of the real component'of the
beam apparent mass, the mass of the transducers and beam tip. From the
high frequency asymptotic value on figure 6.6 it can be seen that this

redundant mass is equal to approximately 100 gms.

The measured imaginary component of inertance shown in figure 6.7
is derived from the reciprocal of the apparent mass in figure 6.6. The
additional mass at the beam tip causes the measured imaginary component
of inertance to depart from the semi-infinite beam value at about 200 Hz.
Therefore, the measured value rather than that predicted for a semi-

infinite beam was used in the power predictions.

In figure 6.8 the imaginary components of apparent mass for the

finite and semi-infinite beams are compared. As expected, the curve




for the semi-infinite beam was the geometric mean of the peak and
:trough values in the data for the finite beam. The peak and average

values of imaginary apparent mass are related by equation (2.6 ), i.e.,

= 10°f %, (6.14)

6.2.3 The isolator

The isolator, inserted to couple the two beams between points 2 and
3, consisted of two adjacent blocks of natural rubber, each 1 cm deep
by 1.2 x 1.2 cm cross section. Natural rubber was chosen because its
properties did not vary rapidly over the frequency range of interest.

This was confirmed experimentally, in that the static stiffness 'K' was

5

measured as 107 N/m, but the dynamic stiffness had only increased to

1.2 x 10° N/m at 2 kHz. The first standing wave in the isolators
occurred at about 3 kHz. The isolators were secured in position with

cyranoacrylate cement, which provided a rigid bond.

6.3 Power Transmission Measurements

Having measured the source and receiver beam properties, the two
beams were coupled together by the isolator. For the power measure-
ments, the force input and the acceleration at position 1 (see fig. 6.2)
were monitored by an impedance head B & K type 8001, while the

acceleration response at point 3 on the receiver beam was monitored by

a B & K accelerometer type 4333.

For ease of measurement and clarity in presentation, the results
of the measurements were expressed in terms of power x w, per unit force
spectrum input, which have units of inertance. These quantities were

calculated from a single rapid swept sine wave test in the following way:

The power x w, for unit force spectrum input, at position 1, is

power X w _ Im{ilc}’

(6.15)
tr, |




where F1 is the input force, and ilc is simply the inertance at

point 1 when the two beams are coupled.

The power x w, for unit force spectrum, transmitted to the receiver

beam at position 3 is

-2
ta,]| _ - -
e e 3 miA) = |I.|%.m), (6.16)
1 1
where |53| is the modulus of the acceleration of position 3, f13 is
the transfer inertance between points 1 and 3, and A. is the apparent

3
mass at position 3 measured previously and shown in figure 6.8.

The advantage of this method chosen to measure the transmitted
power is that only modulus data is required in the measurement of
Iflslz. This was important in this case because the acceleration
response at point 3 was very small and accurate phase information could

not be provided due to the effects of background noise.

6.4 Presentation and Discussion of Results

6.4.1 Power input to the finite source beam and transmitted to

the semi-infinite receiver beam

The power input to the source beam and that transmitted to the
receiver beam are compared in figure 6.9, together with the predictions

of frequency averaged power <<P>>.

First, at frequencies less than 50 Hz the source beam moved as a
rigid body, absorbing no power, therefore the power input was equal to
that transmitted to the receiver beam. By substituting the source
beam properties of equations (6.1) and (6.2) into equation (3.8) the

predicted power P in this region is given as

.-%, (6.17)

which agrees well with the measurement.




For frequencies above 50 Hz the source beam behaved as a flexibl

beam. 1In this region the frequency averaged power input <<P>> to

e

the coupled beam was predicted in equation (4.6) to be the same as that

input to the uncoupled beam. This was confirmed as the frequency

averaged imaginary component of inertance for the coupled beam, figure

6.9, is the same as for the uncoupled beam, figure 6.3.

Therefore the frequency averaged power input is

w<<p>> = %lFllz WS,

Note the same change in level at 800 Hz in figure 6.9 as was

observed in figure 6.4.

Figure 6.10 gives the result of dividing the transmitted power b
the input power shown in figure 6.9. The result is a smooth functio
demonstrating that the peak to trough variations of both input and
transmitted power are the same. The ratio shown in figure 6.10 is
therefore the ratio between the averaged power <<P>> input and that

transmitted, which is given in equation (5.19).

This equation has two regimes. First, at low frequencies, the r

is controlled by the relative sizes of the real component of the isol

and receiver mobility, i.e.,

Power transmitted _ Q
power input

In the case considered it can be seen that the isolator damping
becomes significant at about 200 Hz when Q = nw/K, causing half the

input power to be absorbed in the isolator and half in the receiver.

At about 400 Hz the important transition occurred when

2
td ~ Q
2 cos € nw
Q + X
2 _ a nw
or (w/K)® = §.(@Q +—K .
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(6.19)
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td2 is calculated from equation (5.13). For our prediction it was
necessary to use the measured receiver properties from figure 6.7 rather
than the theoretical value for a semi-infinite beam, Q. Note the
trough, seen in figure 6.10at about 2.5 kHz, which was caused by the dip
in the receiver inertance, shown in figure 6.7. The source beam
properties at end 2 of the beam were not affected by the presence of the
impedance head at end 1, therefore the source beam inertance given in

equation (6.8) was used over the whole frequency range.

Figures 6.11 and 6.12 show the power input to the source beam and
transmitted to the receiver beam against the predictions of peak and
trough power. The two regimes are clearly shown. First, for frequen-
cies greater than 400 Hz, the source beam behaves as a velocity source,
therefore the frequencies of the power flow peaks, and the ratio of peak
to averaged power is the same as for the uncoupled beam. Second, for

frequencies less than 400 Hz, the peak to average power was predicted to
be

<§> 4 Q

) (6.21)
<<P>> t Q + —

and is seen to be in good agreement with the measurement data. At about
200 Hz, the peak to mean ratio in power is a minimum. This is the

frequency of maximum coupling between the two beams when

(Q+S-%)=O.

6.4.2 Power input to the source beam and transmitted to the

finite receiver beanm

The results from this experiment, together with predicted levels -
and comparative plots from the previous semi-infinite receiver case, are

shovn in figures 6.13-6.19.

Figure 6.13 compares the power input to the source beam with that

transmitted to the finite receiver beam. The plot appears somewhat
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confused on account of the peaks associated with the receiver resonances;

however, two observations can be made. First, at low frequencies the
power input is equal to the power transmitted, both exhibiting the large
peak to trough variations in power, indicating that the power is mainly
being absorbed in the receiver beam. Second; at high frequencies the
source beam behaves as a velocity source, the resonance frequencies
power input levels being almost identical to that of an uncoupled beam.
The transmitted power at these frequencies was a fraction of that input

to the source beam, and was mainly absorbed at the receiver beam resonances.

The power flow will now be discussed in greater detail; to aid this

the behaviour is divided into three frequency regimes.

(i) Below 50 Hz the source beam moved as a rigid body. 1In this
frequency region the source beam acted as a 'force source' that is, the
mobility of the source beam was greater than that of the isolator and

receiver beam, causing equation (3.8) to reduce to

, b2
P = £|F1| - —— .Re{My},

|

which on substituting from equations (6.1) and (6.2), with the source

beam properties, and equation (3.9), for the receiver beam mobility,

reduces to

Q

= ilF. 2. X
P §|F1| - (6.22)

Therefore the frequency averaged power is simply

2 Q

<P> = 1|F . =
lel 4,

which is the same as the power transmitted to the semi-infinite receiver

beam in this frequency range, as predicted in equation (6.17) and

demonstrated in figures 6.15 and 6.16.

As all the power input was dissipated in the receiver beam, the ratio

between the envelope of the peak P and the average power <P> is simply




P 2
cos B

<P>

as can be seen from figure 6.15.

(ii) At high frequencies, most of the input power was dissipated
in the source beam, and was the same as if the beam were uncoupled.
As the source beam behaved as a velocity source of magnitude |Vf| at

the top of the isolator, the transmitted power was simply

12 Qr

—_— (6.23)
(w/K)?

P = lv,

The frequency averaged power  <P> was the same as that for the semi-

infinite receiver beam, namely,

<®> = §. v |2 -2
(w/K)

as can be seen from figures 6.18 and 6.19.

The maximum power was transmitted at the source beam resonances

when Vf is a maximum.

The ratio of the envelope of the peaks, to the frequency averaged

power is again simply

(iii) It was only in the mid-frequency region, when the beams were
well coupled, that a difference occurred between the average power

transmission to the semi-infinite and finite beams.

By making the receiver beam finite, or alternatively less well
damped, its ability to absorb power is reduced and so a greater proportion
of the input power is absorbed by the source beam and isolator. If the
isolator damping is light and the source beam damping relatively heavy,

the power input to the source beam is shared between the source and
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receiver -beams as described in section 5.4 Pt. (i). Alternatively,

if the source beam damping is light and the isolator is relatively
heavily damped, the power is shared between the isolator and the

receiver beam, as described in section 5.4, Pt. (ii). It is this latter
case which occurred in experiments reported upon here, the criteria for
such behaviour being described by the inequality in equation (5.25),

namely,

Qd 2 cos € 4
—_— > -
Q cos B 2

where de from equation (5.7) is

2 _ 42, w A Nw, 2
Qd-Q+KQ+(K).

The frequency averaged power input to the source beam, <<P>>, is

seen from figure 6.16 to be the same as for the uncoupled beam, i.e.,
<<P>> = §|F1|2.S,

despite the complicated end condition at point 2.

The frequency averaged power transmitted <<P>> is given in

equation (5.28) as

.S sin e. %— i (6.24)

Note from equation (5.7) that de takes its minimum value when the
receiver beam is semi~infinite, and increases with decreasing beam damp-
ing. Thus the average power transmitted to the finite beam was less

than that transmitted to the semi-infinite beam.

Equation (6.24) is plotted on figure 6.16 below 500 Hz, and is seen

to be a good estimate of the frequency averaged power transmission.

At 500 Hz the power dissipated in the source beam became as great

as that dissipated in the isolator and receiver beam, occurring when
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Sﬂ.= 2 cos ¢
Q 2 )
4

Above this frequency the source beam behaved as a velotity source,
and the prediction shown in Figure 6.16 between 500 Hz and 1 kHz is given
by equation 6.23. This transition to velocity source behaviour occurred
at a higher frequency for the finite beam than for the semi-infinite

beam, on account of the increased isolator effectiveness.

Having looked at the averaged power over the Broad frequency interval
between two source beam resonances, i.e., <<P>>, the form of the power
averaged over the narrow interval between two receiver beam resomnances,
i.e., <P>, 1is considered together with the envelope of the peak power

P (refer to figure 5.3 for the relationship between these quantities).

Figure 6.14 compares the power input to the source beam when the
receiver beam was finite and semi~infinite. It can be seen that the
frequency averaged power <P> input for the finite receiver beam case
was almost the same as the power input for the semi~infinite beam case.
The maximum ratio of the envelope of the power flow peaks P to the mean

level <F> is f/<P> = 2/cos B.

This is, however, only true at low frequencies, when all the power
is dissipated in the receiver beam. The ratio decreases as an increasing

amount of power is dissipated in the isolator and source beam.

Figures 6.15-6.17 show the measured values of the frequency averaged
power <P>, this quantity lies on the geometric mean of the peaks and
troughs in power caused by the receiver beam resonances. From figure
6.15 it can be seen that the peak values of <P> at approximately 120
and 300 Hz were considerably less than the equivalent peaks of power
transmission to the semi-infinite beam. At these peak values of <P> the
fluctuations about the mean value were small because the power was mainly
being dissipated in the isolator, the properties of which did not vary
much with frequency. Note also the slight frequency shift in the peak
of <P> at 300 Hz, compared with the semi~infinite beam case. This was

caused by the increased size of de in the frequency equations (5.5)-
(5.8). '
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The predicted peak and trough values of <P>, namely <P> and <P>

taken from equations (5.26) and (5.27) are plotted in figure 6.17.

It is seen that the measured power is underestimated by a factor of
two. This is partly because of the technique used to obtain the
average value tends to smooth the data, but the main difference is probably
because the theory developed in this thesis will always predict the power

transmission for the maximum coupling, i.e., at the coincidence of the

o3

Peaks in the real components of the source and receiver mobilities.

From figure 6.15 the envelope of the peaks in power transmission
can be seen. In the trough between 120 and 300 Hz it can be seen that
the envelope of the peaks P is related to the average power <P> by the
relationship in equation (5.29). The maximum possible value of P

occurring near the peaks in <P> is given as

<P> 1

b= 2 ° cos B

in equation (5.33).

This value is plotted on figure 6.15 and appears to be a slight
underestimate. A possible reason for this is that in this frequency
region these particular beams become almost perfectly coupled, i.e.,

S = Qd’ as witnessed by the very shallow trough in <P> between 120 Hz
and 300 Hz. The theory, as developed in Appendix 4, is not strictly
applicable under these circumstances and so some inaccuracy could be

expected.

6.5 Summary

A short source beam was coupled by an isolator to a long receiver
beam. Power input to the source beam was measured along with the power
transmitted to the long receiver beam. These measurements were compared
with predictions of frequency averaged and peak power made using the
frequency average and peak values of the source and receiver mobilities;

satisfactory agreement was obtained. The following specific points arise:
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(1) At low frequencies the source beam behaves as a rigid body.
The transition from rigid body to flexural beam-like behaviour occurs
when the real component of mobility of the beam, due to flexural motion,

becomes comparable with the magnitude of the rigid beam mobility.

(i1) The real component of mobility at one end of a beam is proportional
to the square of the modulus of the transfer mobility to the other end.
This fact can be used to estimate the real component of mobility at a

. 2
point. Ret M) 2L [, |

(iii) The frequency averaged power input to the free end of the source
beam was independent of the termination at the other end, being the same
for no coupling, a semi-infinite beam via an isolator, a finite beam via

an isolator.

(iv) In the mid-Irequency range, the power transmitted to the finite
beam was slightly less than that to the semi-infinite beam. This was

because the isolator absorbed more power in the former case.

(v) A frequency was reached at which

nw A nw w, 2
S.(% + 2§ + (2f)s &2,

then the source beam behaved as a velocity source acting on the top of
the isolator. 1In this regime the frequency averaged power transmission

to the finite and semi-infinite beams was identical.




PART 2

PRACTICAL MEASUREMENT CONSIDERATIONS

Part 1 presented a theoretical investigation into some of the
parameters controlling the power transmission between coupled structures.
However it is also necessary to be able to measure power transmission
between coupled structures in order to confirm theoretical predictions
or to take suitable vibration control measures in a practical
situation. Therefore, three methods of measuring power input to a
structure are presented. These methods involve the use of acceleration

data and point and transfer frequency response data.

The power measurement methdds require the frequency response data
to be presented in the form of the real and imaginary component form.
Measurements of this kind require greater accuracy and care than is
necessary in making the modulus measurements more commonly made.
Therefore, the sources of inaccuracies in the real and imaginary

components of the point frequency response measurement are also considered

here.




CHAPTER 7

THE MEASUREMENT OF POWER TRANSMITTED TO A STRUCTURE

7.1 1Introduction

In marine engine installations, machines transmit power via their
seatings to remote parts of the ship. It is of interest to measure this
power, in order to determine the effectiveness of vibration isolation, or
to quantify the amount of power that could cause ! unwanted sound
radiation, or as input data for statistical energy analysis of the vibrational

energy distribution around the ship [28].

The power input to a structure from multipoint excitation could easily
be found from the time records of the force and acceleration at each point.
However, it is difficult to measure the applied forces as it is necessary
to interpose a force transducer between the machine foot and the seating,
therefore alternative methods are presented here which only require the

acceleration to be monitored when the machine is in operation.

The power is calculated using a digital computer to perform operations
in the frequency domain. In all cases, the power is obtained from the

product of the acceleration spectra and some structural frequency response
data.

General expressions for the power input to a structure via multipoint
excitation are derived using the force or velocity at each excitatiom point.
However, these expressions are shown to be too unwieldy except for the

simple case of very weak coupling between excitation points.

At the opposite extreme, it is shown that if the excitation points are
strongly coupled by modal behaviour, then the power input can be measured
using an alternative method which requires acceleration to be measured at

only one, two or four points on the structure.

Finally, for the special case of a machine supported upon vibration
isolators, a method is presented for measuring the power transmitted to

the seating structure using the accelerations above and below each isolator.

Laboratory experiments confirm the validity of these methods.




7.2 General Expressions for Power Input by Multipoint Excitation

N forces Fl oo FR ‘o fs ...FN are applied to a structure. The

velocity response at each of the N driving points V1 to VN can be
written as:

vl = M[F] - (7.1)
where

) v Fll

[V] = : ’ I.F] = . s

VN L FN
11 N an N x N square matrix of point

M = ]
. and transfer mobilities.

M "y

For harmonic excitation, the time averaged power input to the structure

is given as the sum of the powers input at each point, i.e.,

iRe{ [F*]T[V]} = ire([F*]T[H)[F]}, (7.2)

* denotes complex conjugate.

where T denotes the transpose matrix, and

If reciprocity between points on the structure is assumed then

Ygs = Mg
and equation (7.2) can be expanded to

N
[l z (7.3)

N N N
- = . = 12 by 1 F*F M
b L Re{F&V,} = } RzllFR] ‘Re{M ]+ ) Re{F{F JRe (M }.

R=1 S=1

! R=S R#S
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Using the definition

[F] = [2[7]

where the impedance matrix [Z] 1is the inverse of the mobility matrix, i.e.,
- - -1
(z] = M,

the total time average power input for harmonic excitation can be written

1Re([V*]T[F]} = iret[v*]T[Z] [V]}.

This may be expanded in the manner of equation (7.3) as
N N

N N
- 1 2 . - -~
) Rlee{VI’iFR} =} R§1IVR| -Relz ] + 4 R§1 Szl Re{VAV IRe{Z }. (7.4)

R =S R#S

Equations (7.3) and (7.4) show three possible ways of measuring the

power input to a structure.

(1) Using the left hand of equations (7.3) and (7.4)

N
Power = }§ RZI Re{FﬁvR}.

The power is simply a sum of the powers input at each point. For

random excitation the power/Hz is simply given as

N
Power /Hz = Z Re{GF v
R=1 R'R

}s (7.5)

where EF v is the cross spectral density between the force and velocity
. R R . . .
at point R. This is the best way to measure power but the method is

impractical because the force cannot usually be monitored.
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(1i) The right hand side of equation (7.3) has theoretical interest

but little practical use, as it is much more complicated than the left

hand side of this equation.

(iii) The right hand of equation (7.4) gives a possible but impractical
way of measuring power. There are two main objections. First, the
impedance matrix requires many measurements, N(N + 1)/2. Secondly, the
impedance matrix cannot be measured directly, but requires the inversion
of the measured N x N mobility matrix [M]. This process would create
inaccuracies, unless perhaps modal analysis of the measured data could

produce an appropriate mathematical model |[12].

However, one simple case can be treated, i.e., weak coupling between
excitation points,(which can occur on heavily damped marine engine
seatings [ZQD. In this case the transfer impedance 2 becomes

RS
negligible and equation (7.4) reduces to

D Iv|%re(E
R=1 R® R

i.e., the sum of the powers independently measured at each point.

7.3 Using the Envelope of Resonance Peaks to Estimate Power Absorbed

by a Finite Structure

The previous section outlined the difficulty in measuring power input
to an arbitrary structure by multiple forces. However, a method is pre-
sented here for the special case of measuring the power input by an
undefined excitation distribution, to a structure which is sufficiently
lightly damped for the vibrations to be governed by modal behaviour.
Subject to this condition, the power input to the structure can be equated
to the sum of the powers absorbed by each vibrational mode. The power
absorbed by each vibrational mode is calculated from the resonance peak
value of the boint or transfer inertance at selected positions on the
structure, and the acceleration spectra at those points. In order to gain
an estimate of the power levels between resonances, cubic spline curves

are fitted through the resonance peak inertance values.

Experimental work was carried out on a damped plate in order to study

the practibility and limitations of the method.
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7.3.1 Theory

The purpose of this section is to provide some theoretical justification
for the proposed method of measuring power absorbed by a structure. First
the general relationships between forces and velocities on a multimodal
structure are stated. These are used to deriveée the relationship between
the power absorbed by a mode and the generalised force associated with that
mode. The power absorbed is related to the product of two velocities on
the structure. Finally, single point excitation is considered and the
real component of mobility at a point is expressed in terms of the transfer

mobility to another point.

(i) General relationships

1
V -
r o F2
\Y
s
FR etc
If a structure is excited by N forces, flelwt, ﬁzelwt cees FRelmt .o
= iwt .
F e s the generalised force to the pth mode of the structure can be

N
written as

N
£ = § Fy P (7.7)

where is the eigenvector of the pth mode at position R. The time

(P)
g

it .
dependence e 1s suppressed.

The velocity at any point s, Vs’ is given by the sum of the modal

contributions as

m -
S 2 =)  (p) .
v pzl My fp, (7.8)

(p)

where ws is the eigenvector of the pth mode at position s. ﬁ(P) is

the modal mobility of the pth mode, defined by
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(7.9)

m 2 2.2 2.2
- W + nw
P (wp ) ( . )

where mp and wp are the generalised mass and angular natural frequency
of the p'th mode, respectively, n is the hysteretic damping coefficient

(loss factor).

For single point excitation at position s, the generalised force for

the p'th mode is given from equation (7.7) as

On substituting this into equation (7.8) the point mobility at position s

is given as

v m
Moo= == y g(p)_(ws(p))Z. (7.10)
F =

p=1

Likewise, the transfer mobility between points r and s is found

by setting fp = ﬁr'ws(p) in eqn.(7.9), giving

m
= ) B, @, @) (7.11)

rs P=1 s

Mllm<l

From equation (7.9) an important relationship is derived, namely:-

in the region of the p'th mode

5P |2 < re (i ®).5(P, (7.12)

€]

where M is the resonance peak value of ﬁ(p) (when w=w ).

Note that this statement for a single mode is similar to that derived

for a set of equally spaced modes in Appendix 3 (equation (A3.9).
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(ii) Power input in terms of generalised force

The total power input from N forces is given as the sum of the powers

input at each position, R, i.e.,

N
P=14 ] Re{F*_} (7.13)
R=1 RR

where * denotes the complex conjugate.

Substituting for VR using equation (7.8) gives

Y R . F oo () =
P=14 ] RefF, . J uP)y (P)E ;. (7.14)
- R R P
R=1 p=1
changing the order of the summation,
m N
P=14 J ret® % ) .fR*.wR(p)}, (7.15)
p=1 P Rr=1

which on substitution from equation (7.7) gives

=

P=14 J |EJ2 . Re(M(P)}, (7.16)
p=1

It can thus be seen that the total power input is equal to the sum of

the power input to each mode.

(iii) The estimation of Power input at resonances from the velocity

at two points

Using equation (7.8) the product of the velocities at two arbitrary

points r and s can be written as
(AL M(P).¢ ® f . ) M(Q).¢ (@) fg (7.17)

p=1 P 4=1 r

where q is an independent integer.
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Expanding the summations into two parts,

m m
+

L -

m
7 Uk = ®i2 @), () 2
AR YoM W .|fp|

aP)g(* ¢ oy (q)w (p)
p=1 P Par

)

1 g=1

P=4q P#q (7.18)
At frequencies near the p'th mode only the term from the left hand

summation contributes significantly to the velocity product, provided the

modes are well separated, i.e.,
®,2 , (), () 2 |
* = .
v V3 [M*F7 SN prl . (7.19)

Now, substituting equation (7.12) gives

v 2 (p) ~(p)
V V¥ = 2
where ﬁig) is the resonance peak transfer mobility of the p'th mode

between points r and s.

Therefore, using equation (7.16) the power to the p'th mode, Pp, can

be written as

#(P)
Irs

as the right hand side of equation (7.20) is real, this can be written as

1
rs

a-}
]
Nt

|vsv;|. . | (7.21)

Likewise, the power to mode p can be estimated from a single point

measurement by substituting r = s in equation (7.21)

1
. ——?5) (7.22)

where ﬁs(p) is the peak real component of mobility of the p'th mode at

point s.
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Therefore, equations (7.21) and (7.22) both represent practical means

of measuring power in the region of resonance of well-separated modes.

(iv) Estimation of power input between two resonances

Between two resonances when only the adjacent modes p and ¢
contribute significantly, the power absorbed is given from equation (7.16)

as
P - P t P » ;.23

where

P = 4|f |2.Reiu(P)}, P =4t |ZRen(?}.
P P q q

It can be seen that this is always non-zero and positive.

Equation (7.18) shows that there is no simple relationship between
VSV: and the power absorbed in this region. However, it is still useful
to make an estimate of the power absorption. It is shown in Appendix 7
that between two modes, Gsﬁr* may be approximated in the following way

v Uk o~
$|V V| P

8P o p 7O (7.24)
rs

P q Is

In practice it is possible for ﬁsﬁﬁ to go to zero, or become twice
the value given by (7.24). However, this expression gives a type of

expected average value from which the power may be estimated.

Between the two modes, the power is to be estimated by an expression

of the form of equation (7.21), i.e.,

- 2 1 _ +(P) () 1
E(P) = éIVSV;I ‘3 (PpMrs + B S ) 3 (7.25)

where E denotes estimate, and X is the factor to be selected to provide

an estimate of the true power P (equation (7.21). The ratio between

estimated and true power is therefore




1 p rs qrs
P - X . (7026)

For this ratio to be unity, X must take various values depending on
the relative sizes of Pp, Pq’ ﬁsz), ﬁi:). The following examples are

taken

(a) when P ﬁ(p) > P ﬁ(q), P > P , which is the example considered
P rs q rs q

earlier, i.e., close to the p'th mode. Substitution of these values into

equation (7.26) gives

- o(p)
X = Mrs (7.27)

as shown previously in equation (7.21).

(b) when Pp = Pq =-§ » 1l.e., at the trough of the input power when the

contribution from the two modes are equal. Equation (7.26) yields

X = 3P & ﬁ(:)) (7.28)

(¢) when Ppﬁiz) = Pqﬂi: » 1.e., when velocities from the two modes are

the same.

From equation (7.26)

1 + ...1—_)
#(P) gl 77
rs rs

-% = 3.( (7.29)

Therefore if a function X(f) could be constructed which would
satisfy equations (7.27) to (7.29) the power could be estimated at all
frequencies using 5GSV§. However, as most power is absorbed at
resonance it is only necessary for X(f) to be accurate in that region,
i.e., X = ﬁgz). At frequencies between the resonances it can be shown
from equations (7.28), (7.29), that

ﬁﬁz) > X > ﬁig) if ﬁﬁz) > ﬁig), (7.30)
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and in the particular case of

wP @
rs rs
then
AP o g - (O, (7.31)
rs rs

Therefore, between resonances it is sufficient to estimate the power by
joining the points X = ﬂﬁz) and X = ﬁﬁg) with a line satisfying
equation (7.30).

In practice, a cubic spline curve was fitted between the peaks. It
was constrained to have zero slope at resonance as only the one mode is
significant in that region. Between two peaks a cubic spline function
will usually satisfy (7.30). This cubic spline function X(f) will

subsequently be referred to as the envelope of the peaks.

(v) Summary of proposed methods

In the light of the previous two sections, the following formulae for

measuring power can be listed.

By setting r = s in equation (7.25), the power may be estimated
at a single point s from the velocity VS, and the envelope of the
Eeaks in the real component of mobility at this point, ﬁs' This envelope
MS is best obtained from the real component of mobility as the coupling
between modes is sometimes large enough to influence peaks in the mobility

modulus. The estimated power is

E(P) = 4|V , o (7.32)

or if acceleration signals are used and the structure is subject to random

excitation

1
Hz = G _. — (7.33)
I

where Gss is the acceleration spectral density at point s, and I
s

is the inertance at point s, and IS is the envelope of the peaks imn

the imaginary component of the inertance.




Likewise the power may also be estimated using the velocities at two

points r and s (using equations (7.25)),

E(P) = ;Ivsv: g ; (7.34)

|

or if acceleration is used and the structure is subject to random excitation

w x E(P)/Hz = |G ( 7.35)

where Ers is the cross spectral density between acceleration at points
r and s, and [Irsl is the envelope of the peaks in the transfer

inertance.

Some insight as to the meaning of the equations is gained by noting,

from equation (7.9), that in the region of resonance

1/Ms = Re{ZS},

where Zs is the impedance at point s. Thus, in this region, the total

power input to a structure with modal behaviour would be

E(P) = %IVSIZ-Re{ZS}

which by comparison with equation (7.6) is seen to be an 1/Nth of the
power that would be estimated in the assumption of weak coupling between

excitation points.

(vi) Estimation of the real component of a point mobility from

transfer measurements

If the system is excited by a single force FR at point R then the

power input is

P = %IFRIZ.Re{ﬁR} (7.36)

where ﬁR is the mobility at point R.
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By substituting equation (7.36) into equation (7.32), the real

component of mobility at point R is estimated as:-—

v 2
|

(7.37)

E(Re{ﬁR})

Z)l!—l

S

where IﬁsRI is the modulus of the transfer mobility between points R

and s. Likewise, substituting equation (7.36) into equation (7.24)

E(Re{Mp}) = IMSRI.IMr (7.38)

This procedure makes it possible to estimate the real component of

mobility at a point without the use of phase information.

7.3.2 Experimental measurements

Some experimental measurements were performed upon the plate shown in
figure 7.1. The objective of these experiments was to determine the

validity of the procedures outlined in section 7.3.1.

Power was only input at one point, position 2, and measured using
expressions (7.32) and (7.34) at points 1, 3, 4 and 5. As the measurement
points were remote from the excitation position it was immaterial whether

the excitation was single or multipoint.

All the power measurements were normalized to unit excitation force.
Accelerometers were used to monitor the vibration; therefore, for
convenience, the results are presented in terms of Power x w per unit

mean square force, i.e., effectively having the units of inertance.

As single point excitation was used, the results will effectively be

testing the validity of equations (7.37) and (7.38).

(i) Description of the physical model

An aluminium plate, measuring 30 cm x 60 cm X 6 mm was suspended
vertically, as shown in figure 7.1. One side of the plate was completely
covered with AQUAPLAS, an unconstrained layer damping treatment. This

gave the plate an almost frequency-independent loss factor of 0.012.
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Input power was to be measured at point 2, force and acceleration

were monitored by an impedance head, B & K type 8001l. The accelerations
were monitored at positions 1, 3, 4 and 5 by accelerometers, B & K type
4344. For point and transfer inertance measurements between these points
the force gauges, B & K type 8200 were used. When not in use, they were
left attached to the structure as masses. A coil and magnet arrangement
forming an electrodynamic exciter was used to apply the necessary forces.

The rapid swept sine method |26| was used for all tests.

(ii) Power experiments O - 1 kHz

First, the normalised power (imaginary component of inertance) input

at point 2 was measured, i.e.,

%ﬂ - Im{iz} (7.39)
F

where 52 is the inertance measured at point 2; it is shown in figure
7.2. This is the curve to be reproduced from measurements made at other
points. Three estimates of input power were made, two using point
measurements at positions 1 and 3 (equation (7.32) and a third using a
transfer measurement between points 1 and 3 (equation (7.34). When only
single point excitation is used the normalised power estimated from

equation (7.37) becomes, for point 1,

E(w % power) = E(Im{I,}) = li |2. %_ ’ (7.40)
2 2 12
|F| I
1
where E( ) denotes estimate. Likewise for point 3,
= T 2 1
E(Im{1,}) = |1_,]°. — . (7.41)
2 23
I3

- The normalised power estimated from the transfer measurement between

points 1 and 3 becomes, from equation (7.38),

-

E(Im{1,}) = .l'ile. . (7.42)

IT23 ™
13

=
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The power estimates in these equations required Il, i3 and 113 ’

which were obtained as follows:

The point and transfer inertances at points 1 and 3 were measured.
The imaginary components of the point measurements were plotted in
figures 7.3 and 7.4 and the modulus of the transfer measurement in figure
7.5.

The amplitude and frequency of the resonance peaks in the inertance
data were obtained using a program called XPEAK (Appendix 8). The program
also inserted data points, either side of the resonance point, with an
amplitude equal to that of the resonance peak. A cubic spline curve was
fitted through these points, the points at either side of the resonance
peak ensured zero slope in this region. The fitted curves (il, 13, |fl3|)
had the same frequency increment between data points as the original
inertance plots. Figures 7.3-7.5 show the curves il’ i3, li13l compared

with the original inertance data.

Finally, in order to estimate the normalised power, the accelerations
at points 1 and 3, normalised with respect to the input force at point 2,

were measured, i.e.,

Ii23[, |T21 . By inserting these values into
equations (7.40)-(7.42), the three estimates of power were made and these

are plotted in figures 7.6~7.8 together with the true input power at point 2.

(ii) Discussion of the results of power experiments O - 1 kHz

The comparative plots in figures 7.6-7.8 are now discussed in order.

Figure 7.6 shows the true power input at position 2, (Im{fz}) compared
with the estimate using data from position 1. Looking first at the form of
Im{Iz},. it can be seen that the resonances are well separated except for
the two close resonances at about 230 Hz. The data in the region of the
troughs are noisy, as is generally the case for this type of measurement,
because the imaginary component of inertance is small compared with the
real component in this region. Above 800 Hz the quality of the data is

poor as a sampling rate of only 2 kHz was used during acquisition.

The estimated power is seen to be accurate in the region of the

resonances, as would be expected from the theory. The two peaks at about

230 Hz are accurate despite the fact that the second peak is poorly excited,
in Im{il} (in figure 7.3).




However, the estimate in the regions of the troughs is rather poor.

Sometimes the estimate goes to zero, e.g., at 300 Hz and 375 Hz. This is
unavoidable since, for single point excitation, there is a 50% chance that

the acceleration contributions to |I from adjacent modes are of

12!
opposite phase and subtract (see equation (A7.5)). Alternatively, even
when the troughs do not go to zero they are sometimes not accurate as

seen in the region of 550 Hz and 700 Hz.

This inaccuracy occurred because a weakly excited mode is adjacent to
a strongly excited mode, as seen in figure 7.3. The cubic spline functions
therefore are unlikely to take the correct values when it goes through such
a large level change between two points. It is only when two adjacent
peaks in Im{fl} have a similar magnitude that the trough would be

accurately estimated (e.g., see 100 Hz in figure 7.6).

Figure 7.7 shows the power estimated from point measurement at position
3. In this plot the resonance peaks at 230 and 360 Hz are underestimated.
The reason can be seen in figure 7.4. First, the peak at 230 Hz is weakly
excited in Lm{i3}, and being so close to the larger peak is likely to be
in error. Second, the peak at 360 Hz was not located and so is not
accounted for in i3. However, it is worth noting that any error due
to close resonances or missing modes in the envelope i3 always leads to
an underestimation of the true value. This means that by taking the
larger value from a comparison of the power estimates at two points,

e.g., 1 and 3, would lead to the estimate being closer to the true value.

The trough estimates are generally better in figure 7.7 than in
figure 7.6. The overestimation at about 300 Hz occurred because, as shown
in figure 7.4, i3 is in error on account of the cubic spline program

being unable to accommodate the sharp change at 230 Hz.

Figure 7.8 shows the power estimated from the transfer inertance
measurement |f13|. The peaks are fairly accurate except for that at

230 Hz which was entirely missed by |i13l, in figure 7.5.

Estimating power using a transfer measurement lirsl has certain
advantages over the point method (using is). The first is that on a
practical structure, transfer measurements are more easily carried out,
not requiring the use of impedance heads. Secondly, use of the transfer

measurement for power flow estimation requires only modulus information,
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whereas the point measurement method requires phase information which is

difficult to obtain on heavy structures or in noisy environments. Finally,
it can be seen from equation (7.10) that point measurements (Is) contain
(p))2

a squared eigenvector term (ws from which it may be observed that

modes tend to be either strongly or weakly excited. This means that if

all modes are excited, a widely fluctuating envelope function is is

produced, which causes errors in the trough regions; alternatively the

strongly excited modes cause the weak modes to go undetected. However,

the transfer measurement, irs’ is seen in equation (7.11) to contain cross

terms wr(p)ws(p). This causes modes to be more evenly excited and )

therefore lirsl fluctuates less, yielding a more useful function than IS.
Figure 7.9 shows the running integral under the two curves shown in

figure 7.8, giving the sum of the power contributions from each mode.

Apart from the 'missed' mode at 230 Hz, it is evident that the agreement

between the two curves is quite good.

In summary it is shown that if resonances are well separated they
can be readily detected by a point or transfer measurement and success-—

fully used in the measurement of power absorbed by a vibrating structure.

(iii) Power experiments 1 kHz - 4 kHz

The power input in this region is shown in figure 7.2. It can be
seen that the modal bandwidths increase with increasing frequency, the
well excited modes tending to overlap and obscure those less well excited.
As the proposed method of estimating power relies on being able to detect

individual modal contributions, one would expect problems in this region.

From the observations made in the previous section, it was expected
that the transfer method would be more effective than the point method,
in this higher frequency region. This indeed proved to be the case and
only the results from the transfer measurements are reported here. The

point measurement method, although tried, did not detect enough modes.

The power input was estimated using the transfer inertance between
points 1 and 3 (see figure 7.10). The estimated power compared with
the true values is shown in figure 7.12. It can be seen that at frequencies

above about 3500 Hz, the estimate becomes rather poor, because the modes are

too heavily damped to be detected properly. However, the estimate is also

very poor between about 1250 Hz and 2250 Hz. The cause of this is seen in




figure 7.10. This region is a broad anti-resonance,occurring because the

transducers at points 1 and 3 are of the order of a quarter of a wave-
length from the edge of the plate. Thus ]?13| tends to 'miss' some
modes in this region. Such an anti-resonance would still be observed
even if the transducers were placed on the very edge of the plate, on
account of the rotary inertia of the transducers. However, below this

anti-resonance frequency, all modes have an antinode.

It was decided to make another power estimate using points 4 and 5
(see figure 7.1) which are not so close to the edge. The transfer
inertance between these points is shown in figure 7.11. The power
estimate using |i45| is shown in figure 7.13, and is seen to give
moderately good agreement with the true value up to about 2500 Hz. There
is a slight frequency shift from the true value on account of the additional

masses of the transducers applied to points 4 and 5.

It is worth making a general observation that the envelope function
|145| changes only slowly with frequency, implying that if there are
slight structural changes causing a shift in resonance frequencies the

method will still give a reasonable estimate of power.

The two power estimates, seen in figures 7.12 and 7.13 were compared
using a simple computer routine, and at each frequency point the larger of
the two estimates was selected to form a new data file. This new estimate
is compared with the true value in figure 7.14, and can be seen to be in

reasonable agreement up to about 3500 Hz.

It would be possible to improve this estimate further by comparing

it with more measurements and selecting the larger values.

7.4 The Measurement of Power Transmitted Through an Isolator using the

Accelerations at the ends of the Isolator

A method is presented here of measuring the power input to a structure
from a machine, multisupported by vibration isolators. The total power
input can be equated to the sum of the powers transmitted by each isolator,
which is calculated with a knowledge of the isolator properties and the
accelerations at each end of the isolator. A low frequency approach which

neglects isolator damping or frequency dependence in the isolator properties
is given in |30].
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The power transmitted through an isolator can be calculated with
reference to the figure below, where the end faces of the isolator are
permitted to move with the one degree of freedom shown. The dynamic
properties of the isolator are described by the point and transfer apparent
mass.

F
orce F1

l

acceleration a

1
Force F acceleration a2

Isolator

The transfer apparent mass is defined as

iz(m) i El(w)

(7.43)

and the point apparent mass

_ Fz(w)
A, == o,
az(w) a1=0

where El’ Fz and 51, 52 are the forces and accelerations at the top

and bottom of the isolator.

If accelerations are permitted at both ends of the isolator, for
harmonic excitation, the force at the base of the isolator, fz, may be

written as

F, = A3, +A,a, . ' (7.44)
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The time averaged power flow from the isolator, Ptr’ is given from

equation (1.12a) as

= F U %
Ptr iae{szz }

where ﬁz is the velocity at the foot of the isolator, defined as
1wV2 = az.
Therefore, by substitution into equation (7.43)

1 o= == == 2
= ———— * V/
er = Im{Alzala2 + A2|a2l }. . (7.45)

Likewise for random signals the 'power transmission spectral density'

may be written as
P_/Hz = L mi{i ¢ +A.G }
tr w

where éa . and G are the cross spectral densities and the acceleration

spectral “densities, %espectively.

For a machine isolator, 51 is generally greater than 52, and the
modulus ' of 512 is greater than the imaginary part of XZ
Therefore, for harmonic excitation
P = == In{A .3 a%) (7.46)
tr 2w 127172 '
or, for random excitationm,
P_/Hz =: m{X G }.
tr w 127a.a.
172
For a simple spring with hysteretic damping,
= _K _ink ,
A12 =+ > (7.47)
w w

where K 1is the dynamic stiffness (see, for example, figures 3.6 and 10.8).




The main advantages of using expressions (7.46) are

(i) only the isolator properties are required;

(ii) at frequencies below the first standing wave only the complex
dynamic stiffness of the isolator is needed to describe the

isolator properties;

(iii) the method accounts for acclerations at both ends of the isolator,
including contributions to a, from other sources of vibration
(see Chapter 10). Therefore, this method may be used to measure
power from a machine supported upon many isolators, as the power
flow through each isolator is measured independently. The total
power transmitted from the machine is the sum of the individual

contributions from each isolator.

The mathematics here describe vibration transmission via one degree of
freedom only. However, provided an isolator is symmetric in construction
(thereby eliminating cross terms), the power contribution from other
degrees of freedom, such as shear.or moment, could be simply included as
independent contributions. Although this would involve measuring the

transfer apparent mass in each of these components directly.

The use of equation (7.46) to measure power was demonstrated in

section 3.5.3 part (iii) and in section 10.3.

7.5 Summary

Three practical methods for measuring the power input to a structure
subject to multipoint excitation were presented. The methods required only

acceleration data and premeasured frequency response data.

If there is weak coupling between excitation points, the power can be
measured from the acceleration spectra and imaginary components of
impedance at each of the excitation points; this method tends to over-

estimate if the weak coupling assumption is incorrect.
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If there is strong coupling between excitation points because of

modal behaviour, the total power input can be found, for any excitation

distribution, by summing the power absorbed by each mode of the structure.

The power absorbed by each mode of the structure can be measured from

acceleration data at one or two pairs of points on the structure.

If power 1s input to the structure via vibration isolators it can

be measured using the accelerations above and below each isolator.
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CHAPTER 8

MEASUREMENT ERRORS IN THE REAL COMPONENT OF MOBILITY

8.1 1Introduction

It has been shown in the previous chapters that in order to predict
Oor measure power transmitted to a structure it is necessary to measure the
frequency response at driving or conmecting points on the structure, and
express it in complex notation (real and imaginary components). The
frequency response function (see note 1(iii)) can take several forms, and
the comments made in this chapter refer equally to all; however, for

brevity, here reference will only be made to mobility and impedance.

Techniques for measuring the point mobility and impedance have long
been established and are thoroughly described in |8, 9|. There are two
basic approaches; steady state testing and transient testing, both with
their merits. Steady state testing |9, 10| involves the use of continuous
sinusoidal or random excitation, during which the structure responds in a
'steady state' manner. For transient testing excitation is applied for
a brief duration and the structural response is then allowed to 'ring down'
in free vibration. The frequency response is calculated from the Fourier
transforms of the complete time histories, for forced and free motion of

the excitation and response.

The test method chosen for the work reported here is a transient
method, called, after the description of the excitation, the rapid frequency
sweep method |31, 26]. It was chosen as it is very convenient to use if
on line computer facilities are available as it requires only a short test
time. The division of the Fourier transform of the velocity signal by that

of the force, yields the complex mobility in the desired real and imaginary
form.

The real component of mobility is of greatest interest as it is the
component associated with the power transmission (see equation (1.12b)).
However, it is a difficult measurement to make because, except at resonance,
when it is dominant, the real component of mobility is much smaller than

the imaginary component, and is accordingly prone to inaccuracies. The




purpose of this chapter is therefore to consider some errors that can
occur when measuring the real component of mobility using a rapid frequency

sweep technique. The three main areas are:

(1) extraneous noise in the force and response signals when the

exciter has a finite impedance;
(ii) apparent noise due to a finite sampling rate;

{iii) the influence of the mechanical properties of the force and

acceleration transducers.

8.2 Error in the Measurement of the Real Component at Mobility and

Impedance Due to Extraneous Noise and Finite Exciter Impedance

The figure below shows a structure of point impedance Z, which is
driven with a rapid swept sine wave forcing function fl(t), by an
exciter of mechanical impedance Ee (this term also includes the back

EMF damping effects). It is assumed that the exciter imposes no rotational

restraint on the structure.

blocked force

£(t) "
fz(t) fl(t) ‘Y////test structure
exciter p—— EE—

, >
velocity v(t)
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f(t) 1is the ideal force which would be applied to a blocked structure
(v £ 0), as there would be no exciter impedance or back EMF effects.
However, on account of the velocity response, v(t), of the structure
and exciter, the actual force applied to the structure, fl(t), is reduced

to

fl(t) = £(t) - fz(t) (8.1)

where fz(t) is the dynamic force responsible for the exciter motion. If
the complete time histories of the transient forces and responses are

Fourier transformed, equation (8.1) can be written as

F(w) = F(u) + Fy(w) (8.2)
where F(w), fl(w) and §2(w) are the Fourier transforms of f£(t), fl(t)
and fz(t). As the exciter and structure have a common veiocity V(w) at

the attachment point, equation (8.2) can be expressed in terms of the

impedances,

F(w) = V() (Z + Z2.). (8.3)

It can be seen that the attached exciter modifies the velocity
response of the structure. If it is assumed that the exciter impedance
includes a mechanical damping term (caused by the shaker suspension) and
an electrical damping term (due to the back EMF caused by the movement of
the coil in the magnetic field), then it is clear that the coupled exciter

structure rings down more rapidly in free vibration than the uncoupled

system.

For transient testing it is shown in |31] that to adequately describe
a resonance peak in the frequency domain it is necessary to take a time
record of length T, > %f' where A = gfn, the bandwidth of the
resonance of the uncoupled system. Therefore, if the structure-exciter
system rings down rapidly due to large exciter damping, the remainder of

the required time record, of length T, will mainly contain extraneous

noise.
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However, it is not only exciter damping that is a problem but also
it is shown as follows that the mass and stiffness of the exciter can

exacerbate noise corruption.

The mobility of the structure is given as M,
M= V() /F, (w) (8.4)

where fl(w) is the Fourier transform of the force applied to the structure,
which is measured by a force transducer. If extraneous noise n(t) and
g(t) are added to the velocity and force signals, respectively, the

measured mobility ﬁm becomes

V(w) + N(w)
Fl(m) + a(m)

T, T,
where ﬁ(m)= %;fn(t)e_lwtdt, a(m)— fg(t) t dt, are the Fourier

0 . . b .
transforms of the noise signals. On osubstituting for Fl(w), using

equations (8.2) and (8.3), the measured mobility becomes

_ L+ (M) /F(w).(Z + Z)
M o= — (8.6)
Z + (G(w) /F(w)).(z + Ze)

The effects of the noise in the force and velocity signals are dis-

cussed separately:

(i) When Ia(w)/f(w)l is comparable with lZI/IZ +Z I the modulus
of the measured mobility will have noise corruption, with values of +=
possible. This effect will be most noticeable at resonance, when IZ] is
a minimum and the exciter impedance Ze could be comparatively large.
This type of noise corruption is therefore most likely when measuring the
mobility of a light structure with small damping. It is clearly important
to keep the exciter mass as small as possible, to minimise this preblem.

As this noise effect is in the denominator of equation (8. 6), averaglng

of noisy mobility data will not yield the correct result.




(1i) If the factor a(m)/f(w) is negligible, then equation (8.6)

reduces to the true mobility, influenced by the noise in the response,

i.e.,

M = Re(M} + In{} + (N(u)/F())(1 + Z_/2). (8.7)

It can be seen that errors in the real component of mobility occur
when Re{M} is comparable with lﬁ(m)l/l?(w)l, which is most likely between
resonances when Re{M} is small. Noise corruption of this sort is almost

always found in practical measurements, particularly on heavier structures.

If it is assumed that the noise is random, then either ensemble
averaging or averaging adjacent values in the frequency domain will
accurately smooth out the noise contamination. This is possible as the

noise term appears in the numerator in equation (8.7).

8.3 Sampling Rate Errors

When sampling contiunuous random data at discrete time intervals, for
the purpose of spectral analysis, the minimum allowable sampling rate is
twice the highest frequency of interest. This is known as the Nyquist
criterion |32|. Accurate estimates of the spectral properties of random
data require the averaging of many individual spectral records, each

record formed from a Fourier transform of a finite length of signal |[32].

However, when calculating frequency response functions from transient
test records, only one Fourier transform of each record (the force and
response) is used. In this case, it has been found that the Nyquist
criterion does not demand a high enough sampling rate to adequately describe

the data for modulus and phase information.

An experimental investigation [31] found that, for transient testing,
modulus data could be obtained with 5% accuracy at a frequency one-third

of the sampling rate.

However, to accurately measure the phase, or the real and imaginary

components, of the frequency response, is rather more demanding, as is

shown in figure 8.1.

101.




This figure shows the imaginary component of inertance, measured at
point 1 of the source beam in the configuration shown in figure 5.1, using
two different sampling rates, (a) 12,000 samples/sec; (b) 4,000 samples/
sec. Plot (a) is inaccurate at low frequencies due to the short record
length truncating the time record. Between 300 Hz and 1 kHz, (b) is
very noisy. However, this noise appears to be attributable to 'sampling
rate errors' as it is much reduced in (a) when a higher sampling rate was

used.

These 'sampling rate errors' occur because a finite set of evenly
spaced data points cannot perfectly describe a continuous data record.
There is inevitably a measure of indeterminacy, decreasing with increasing

sampling rate, which creates the effect of random ‘'noise' in the frequercy

response.

With reference to the previous section, the Fourier transforms of the
noise in the force and response records due to sampling rate errors can be

expressed as

dw) = d@F ;  Nw) = Bw)viw). (8.3)

This 'noise' is proportional to the signal size, the constants of proportion-
ality &(w) and g(w) are random variables of similar magnitudes. The
magnitudes of &(w), %(w) increase with increasing frequency, taking a
maximum possible value of unity at the Nyquist frequency, when the sampling
rate is twice that of the frequency of interest. 1In this case, it can be
seen from the figure below that it is possible for the waveform to be

undefined.

sampled points O

(a) waveform at Nyquist (b) possible interpretation
frequency of waveform




On substituting equation (8.8) into (8.5), the measured mobility

beccmes
n,
Moo= o (8.9)
Z(1 + B(w))
Therefore, when !&(w)l and Ig(w)l approach unity (i.e., at the Nyquist

frequency) large errors will occur (as seein in figure 8.1). At lower
frequencies when I&(w)[ and |§(w)l are small, the measured real

component of mobility becomes, from equation (8.9),
Re{M } = Re{M} + |M|(Ja(w)| * B(w)]|) (8.10)

Thus, there will be apparent mndom noise seen in the troughs between

resonances, when |M| > Re{M}.

8.4 Relationships between the Dynamic Range in the Time Domain of the

Response of a Single Degree of Freedom System, with the Dynamic

Range in the Measured Inertance

In section 8.2, part (ii), the general relationship between measured
mobility and the Fourier transform of the noise in the measured response
was given. It is the intention here to replace these frequency domain
terms with observable parameters in the time domain signals, for the
simple case of a single degree of freedom system. Such an analysis has
some usefulness because each mode of a multi-degree of freedom system can

be regarded as responding in the time domain, in the manner of a single

degree of freedom system.

As practical measurements generally use acceleration rather than ..
velocity, inertance rather than mobility will be used and noise in the
response n(t) will refer to noise in the acceleration signal. The
dynamic range in the frequency domain between the resonance peak value ol

the inertance (1/2mg¢) (assuming viscous damping), is given from equation
(8.7) as (1/2mg).|F(£)|/|N(E)]. (8.11)

It is assumed that the exciter impedance may be neglected.

F(f) is the Fourier transform of a swept sine wave of amplitude F

in the time domain which is given in f26l as
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F - B /L
IF(H] = 2/; (8.12)

where T, is the sweep time and Af 1is the swept frequency range.

If it is assumed that the noise in the acceleration signal n(t) is
band limited white noise of standard deviation S then cnz = GnAf,
where Gn is the magnitude of the noise spectral density and Af 1is
frequency range. Gn can be estimated from the Fourier transforms I32|

as

(»
1
HIN

.expectation of Iﬁ(f).ﬁ(f)*], (8.13)

o

where T_ 1is the duration of the time history to be Fourier transformed.

Therefore, the magnitude of the Fourier transform of the noise can

be expressed as

% T,
IN(E) | = =/ T (8.14)
2

The resonance peak value of the inertance of the single degree of
freedom system, 1/2mf, can be expressed in terms of the time domain

data.

It is shown in Appendix 6 that the mass m is related to the peak

acceleration response a by
max

w
— v o
I [F(£)]. — (8.15)

(This is an interesting and useful result as the peak response level is
exactly t@e same as that produced by an impulse Io of Fourier transform
modulus Iﬁ(f)l.) After the acceleration reaches its peak value, it
decays exponentially in free vibration; therefore the viscous damping
ratio can be expressed in terms of the time, Tn’ taken for the response

to decay from a to noise level o_, i.e.,
max n

-tw T (o]
e 90 . (8.16)
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Substituting equations (8.12)-(8.16) into (8.11) gives the dynamic

range in the frequency domain as

(a__Jo) o
0.3.72 “‘a’éa n 75y -To %f— (8.17)
g10 max n ©

where if Tn is approximately equal to T,, gives

a /o . .
0.3.-—22%X 10 :i . /AE.T
1og10(a /o) n

max n

The function in [_ ] is plotted in the figure below.
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For example:~ if in a test the sweep range (Af) was 1000 1'z;

the acquisition time (g) was 2.5 secs, and the dynamic range (amax/a“)
= 100. Then, using equation (8.17) the dynamic range in the frequency

domain would be = 1000.
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8.5 The Use of Impedance Heads in Making Measurements of the Real

and Imaginary Components of Inertance

It is well known that force and acceleration transducers add mass
to a structure under test, thereby reducing the high frequency values of
inertance. Impedance heads are carefully designed to have a minimal
'attached mass', typically 2-3 gm. However, other mechanical properties
of the impedance heads still influence the measured data. These
properties are the rotary inertia, the elasticity of the impedance head

body and force crystal, the contact area with the structure.

Dealing first with the final two points, the accelerometer device is
often located high in the body of the impedance head, above the force
crystal, as seen in figure 8.2. Therefore, because of the elasticity
of the impedance head body and the force crystal, the accelerometer is
effectively mounted on a spring. This has the effect of creating an
'added stiffness' contribution to measured inertance data. This term is
noticeable if the structure is heavy. However, it must be remembered
that these spring effects only contribute to the imaginary component of
mobility and do not affect the real component,.which is the most important
term, being associated with the power input. It has also been shown in
|33| that the distortion of local material around the contaét area of the
impedance head causes an apparent stiffness term, K, in the measured

inertance data of magnitude
K = 2aE/(l - v?)

where ‘'a’ is the radius of the circular contact area, E 1is the modulus

of elasticity, and v 1is the Poisson’s ratio. As before, this stiffness
term is only noticeable on heavy structures in the high frequency region.
Similar comments apply to this stiffness effect as to the previous one
mentioned. Of course, on heavy stiffened structures, Wavelehgths are

long (below the frequency when the structural element local to the excita-
tion is able to resonate). Therefore, it is not necessary to use impedance
heads but rather use an accelerometer adjacent to a force transducer,

thereby avoiding these undesirable local distortion effects.
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The rotary inertia of the impedance head reduces measured mobility

data, and can cause anti-resonant behaviour, when the impedance head
rotational impedance is comparable with the average rotational impedance
of the structure. This effect is therefore only seen when point measure-
ments are made towards the edge of structures, where vibration has a
significant rotational component. Appendix 5 gives an analysis of this
effect when an impedance head with mass and rotary inertia is placed at
the end of a semi-infinite beam. This effect was mentioned in section
6.2.1.1, part (iii), and it is also observable in figures 10;4 and 10.5

at 4.5 kHz and 2.5 kHz, respectively.

8.6 Summary

Power input measurement requires accurate measurement of the real
and imaginary components of the complex frequency response functions.
Such measurements are subject to errors due to extranecus noise, the
exciter and transducer mass and rotary inertia, the finite sampling rate

of digitisation of time data.

(i) The exciter moving element mass or impedance exacerbates noise effects
in the force signal. This causes noise corruption of data in the region

of resonances.

(ii) Low response levels at the time of measurement can result in noisy
frequency response measurements., If the noise is of a random nature, the
frequency response measurements can be ‘cleaned up' by averaging adjacent
points in the frequency response measurement. This method is particularly
appropriate if a large Fourier transform size is used, as averaging may

not cause a serious loss of frequency resolution.

(iii) Frequency response measurements made using ﬁhe divisicn of single
- Fourier transforms are subject to ‘random noise' type corruptions at
frequencies approaching the Nyquist frequency. This effect is particularly
noticeable in the real component of mobility as it is small relative to

the modulus (except in the region of resonances). There is therefore scome

meri: in keeping sampling rates high.
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(iv) The rotational inertia of impedance heads or force transducers

can cause anti-resonant behaviour and a lowering of values of point

mobility measurements made near the edge of structures.

(v) Elastic deformation of the impedance head or local structure do

not affect the measured values of the real component of mobility of the

structure.




PART 3 APPLICATION OF TECHNIQUES TO PRACTICAL MEASUREMENTS OF

POWER TRANSMISSION FROM A MACHINE TO A SEATING

-CHAPTER 9

DISCUSSION OF THE APPROXIMATE BEHAVIOUR OF PRACTICAL MACHINE-ISOLATOR-
SEATING CONFIGURATIONS '

9.1 Introducfion

The figure below shows a simplified diagram of a typical marine
engine installation. It is composed of a heavily damped machine, which is

/internal forces

N

— heavily damped machine

subjected to many internal forces and is multi-supported by vibration

isolators upon a built-up stiff structure of plates and beams.

The main objective of this thesis has been to investigate the péra—
meters which control power transmission between structures coupled by
isolators. With this understanding, it is then possible to make simplify-
ing assumptions of the practical situations, hence permitting approximate

estimates of power transmission to be made.

In the simplest cases it is possible to represent the problem in

terms of the free velocity Vf of the coupling points on the engine




structure, i.e., for single point coupling via a spring with complex

stiffness, from equation (3;8),

|2 ' Re{ﬁR}

£ = w,. - 2
oM - M
l 9 + K(]_ +n) + l

where ﬁz and ﬁR are the mobilities at the connection point on the
machine and the seating. This expression is only useful for frequency
averaged predictions of power transmission if the modulus of the denominator
does not change rapidly with frequency, that is, if the isolator is very
effective or the seating and structure are very heavily damped. This
assumption is probably valid in the higher frequency region where the
machine behaves as a velocity source above the isolator. In this

frequency region, the vibrations at the different points on the seating

are probably uncoupled and the total power transmission from N isolators

would be simply the sum of the individual contributions, i.e.,

2 Re Mg

0. ———— (9:2)

2
1 3 lw/K]
where Vj is the free velocity at point j on the machine. Although
this particular case was not considered, some relevant measurements of
engine velocity, and engine and seating mobilities are given by Ohlrich

in |34

An interesting attempt at accommodating the effects of multipoint

supports has been made by Petersson and Plunt I29 . This method expresses
the total power transmitted by the isolators in a form similar to

equation 0.1), except that IVfl2 is the mean square space averaged
velocity of the engine at the connection points and ﬁz and ﬁR are
'effective' mobilities or impedances, embracing the effect of the multi-
point supports. The 'effective impedances' (as they are referred to) are
obtained by experimental and computational procedures. A useful observa-
tion, which arose from experimental measurements on practical marine
seatings made in this reference, is that the vibrations at adjacent
mounting points do not appear to be strongly couple& (i.e., the local

force input at a point is mainly responsible for the velocity at that

point). This assumption greatly simplifies the analysis, but of course

110.




the proposed procedures become unnecessary as the result reverts to a
form similar to equation (9.2). However |29| appears to be the only

recorded attempt to tackle the multipoint problem in a practical way.

These two approaches mentioned above are both most effective in the
high frequency region where the machine tends to act as a velocity source
above the isolators. However, the more novel feature of this thesis has
been the attempt to make approximate power transmission predictions in
the lower frequency region where it camnnot be said that the source acts
independently from the receiver. In this frequency region it is possible
that the source and the receiver have marked resonant behaviour,

Although the theory for the proposed approximation was derived using
simple mass, beam and spring systems, the purpose of this chapter is to
discuss how these results may be applied to the more complicated practical
original installation. This involves a discussion of the approximate
behaviour of practical machine and seating structures, which is a pre-

requisite for power transmission estimates.

9.2 The Seating Structure

The seating in a marine engine installation is an extensive stiffened

configuration made up of interconnected beams and plate elements.

For such a structure there are broadly two regions of behaviour; low
frequency behaviour when the stiffening is effective, causing the built-
up structure to vibrate in whole body modes, and high frequency behaviour
‘when the individual plate or beam elements can resonate independently.

The transition occurs when the element local to the excitation has its
first resonance. Below this frequency, adjacent elements can be regarded

as being well-coupled, but above this frequency there is weaker coupling.

.
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9.2.1 The high frequency behaviour is considered first, when the

seating behaves as a simple element, beam or plate. The theory
developed in Chapters 2-¢ assumed that the seating could be represented
by an end-excited beam, but the results would hold equally rigorously to
any structure with evenly spaced and equally excited modes, which would

include a centre-excited beam and some centre excited plates.

However, in general the assumption of equally excited and evenly
spaced modes is not true, which causes some difficulty in the choice of
resonant peak value of point mobility (6) to be used in power trans-
mission estimates (see table 2). It was therefore decided to investigate
the form of the point mobility of a structure with unevenly spaced
unequally excited modes, with a view to selecting an appropriate resonant
peak value to use in the approximate seating mobility formula (equatioh
(2.5)). Selected for this study was the simplest structure which

satisfies these requirements, namely, a simply supported rectangular plate.

9.2.1 (i) The mobility of a simply supported rectangular plate

Equations (7.9) and (7.10) give the real component of mobility of
the‘p'th mode at point s on an arbitrary structure. The frequency
averaged value of the mobility at point s for a single mode is given

in |21] as

(P)y, = _T_ (p)\2 \

<Re{MS > = o (ws ) (9.3)
p

where mp is the modal mass (plate mass/4 for a simply supported plate)

and ¢S(P) is the eigenvector for the p'th mode at point s. The resonance

peak value of mobility of the mode at point s 1is

° (p) _ (p,2 1
M, = W )" —————nwpmp , (9.4)

where Wy is the angular resonance frequency and n 1is the loss factor.

The frequency averaged value of the real component of mobility of a
plate is given by summing the number a modal contribution, AN, in a given

frequency band Aw. Therefore, using equation (9.3), the frequency
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averaged value of the real component of mobility is

Y 52,
P P T Aw

For a simply supported plate of area AO

‘ 1
AN/Aw = (u/EI)z.Ao/(lm) (9.6)
and" ¢ ® sin k. x sin k y , where x )y are the coordinates of
s X s y’'s s’s
point s and k. and ky are the wavenumbers in the x and y directions.

)2 = } (if measured

" At any position the frequency averaged value of (wps
over at least five modes |24|). Thus it can be shown from equations (9.5)

and (9.6) that the frequency averaged mobility of a plate is

Q = 1/(8V4EI). | | (9.7)

Although the frequency averaged value at mobility Q 1is independent
of position, the choice of Q, the approximate resonance peak value,
depends upon the excitation position and is related to the number of modes

strongly excited, as is shown in the following two cases:

(i) For a centre excited plate, only symmetrical modes are excited,
i.e., AN/Aw 1is a quarter of the value given in equation (9.6). The

eigenvector for these modes is unity, therefore from equation (9.4), Q

(ii) If the plate were excited in such a position'that all the modes
were equally excited, i.e., AN/Aw 1is the value given in equation (9.6)
then from equations (9.5) and (9.7) the eigenvector of each mode is } and

~

Q takes its minimum average value of

Q = l/énmpwp).




For an arbitrary structure the modal density and the average resonance

peak values will be between these two limits. Therefore to minimise
errors in the choice of an approximate seating formula for a plate, it
would be reasonable to assume that half the modes are excited, each mode

with a resonant peak value Q of

Q= m‘ . (.9.10)
PP ’

The approximate plate mobility formula, in a form comparable with the

beam formula in equation (2.5), is

_ Qcos(8/2) + i sin(8/2) cos(a_k/4))

Q (9.11)

1 - sin(8/2) sin(Ak?/4)

where k is the flexural wave number and Ao. the plate area. B 1is defined

from the resonance peak value given in equation (9.10).

9.2.2 Marine engine seatings have the general appearance of plates
stiffened periodically in either one direction or two orthogonal directions.
As stated earlier, below the first resonance of the individual plate
elements, the stiffening controls the vibration of the structure and hence
the point mobility. It is worth noting here that stiffening is useful in
reducing the low frequency mobility of structures, thereby reducing power

transmission from any force source.

If the seating is stiffened in two orthogonal directions, the point
mobility becomes that of an orthotropic plate, with modes fairly evenly
distributed in frequency, and may therefore be modelled by an approximate

expression of the form of equation (9.11).

If the seating is stiffened in only one direction, then there is -
periodic structural behaviour with 'stop bands' and 'pass bands' over
broad frequency ranges |21|. Power can only be transmitted by the
structure in the pass band region and so the averaged real component of
mobility (related to the power input), is much larger in this frequency
region than in the stop band. Thus, in developing approximate seating

formulae, these two frequency areas must be considered separately. Some
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insight into the behaviour of this type of seating resulting from measure-

ments is given in the next chapter (see section 10.2).

The point mobility of one of the beams in a beam-stiffened plate tends
to that of an uncoupled beam at high frequencies (i.e., frequencies

greater than that of the first resonance of the intermediate plate elements).

In the low frequency region when the overall vibration of the seating
is governed by the stiffening, the real compdnent of mobility is the same
on the plate or on the adjacent stiffening beams. The flexibility of the
plate herely contributes a local stiffness term to the mobility, iw/kn,
which having a purely imaginary mobility, has no effect on power input to

the seating, if it is excited by a force source, i.e.,

= 1w
Mplate Tk

+ M. (9.12)
L " o

ﬁb is the mobility on the adjacent beam.

1f, however, a machine is rigidly connected to the seating, this local

stiffness could act as an isolator at low frequencies.

9.3 The Machiné

The machine structure is rather complicated, consisting of a jointed,
built-up casing, which is coupled to the internal moving parts by-various
types of bearing. The bearings, which rely upon the presence of oil films
between moving parts, have accordingly a stiffness which is load and speed
dependent, and tends to be non-linear |35|. When the machine is not running
the oil films are not generated and so the coupling between the casing and
the moving parts is reduced. This is seen in |36| where the measured loss
factor on the running machine was twice that of the inactive machine. To
be rigorous then in the measurement of machine mobilities, it wouid'be
necessary for the machine to be running during the test, as in |37|.

These problems of the fluctuation in bearing coupling are of course most
acute when considering the transmission of vibration through the bearings.
However, in the approach adopted here, the inner workings of the machine are

not deeply considered, but only the resulting velocities on the casing.
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It is assumed therefore that the machine is a casing acted upon by internal

force sources (from the combustion or bearings) which are independent of

the casing vibration level.

The machine has three regions of behaviour. At low frequency it moves
as a rigid body in translation and rotation. In the mid-frequency region
the internal stiffening is effective and the casing vibrates in overall
modes, in bending or twisting; for example in |13] in this mid-frequency
region it was considered that an automotive diesel engine behaved as a
~beam. The real component of mobility is the same on the unstiffened or
adjacent stiffened regions, the only difference between the two pointsvbeing
the Iocal stiffness effect, as given in equation (9.12). Finally, at-
high frequencies, when individual casing elements can vibrate indepehdently
the point mobility tends to that of the local element. In this frequency
region the structure does not vibrate in overall body modes but vibrations
tend to probagate around the machine, causing the césing close to the
internal excitation point to vibrate more than the casing remote from the

internal excitation point.

9.4 Power Transmission Approximations

Power transmission estimates can be made in the light of the various
simplifying assumptions based upon the known machine and seating behaviour.
The three frequency regimes mentioned above in the discussion of the

machine structure are maintained.

- (1) At low frequencies the machine moves as a rigid body. Equation
(3.16) gives the power transmitted by the vertical motion of the machine
alone. In Appendix 10 the expression is derived for power transmission
to a seating from a spring mounted rigid body. The rigid body is free
to move in translation and rotation, and it can be seen that the power
contributions of the two degrees of freedom are independent of each other.
This decoupling arises because of symmetry in the seating and isolator
arrangement, i.e., the point mobilities- ﬁl at the two coupling points
" are the same. Expression (A10.11) could easily be extended in like manner

to include the power transmission from the other four degrees of freedom




of the rigid body if necessary, provided that the assumption of symmetry

in the machine and seating arrangement could be made. It is worth

noting in equation (A10.11) that it is also necessary to know the trans-
fer mobility between coupling points. However, at these low frequencies -
the flexural wavelength in the seating is long and so that c¢arefully
selected groups of isolators could be modelled as simple isolators at

"each corner of the machine.

(ii) It is in the mid-frequency range that there is the possibility
of difficulty in predicting power transmission from the machine. This is
because both the machine and the seating would be behaving in a resonant
manner, and the isolator, if present, may not have large enough mobility

to decouple the two systems.

This case was considered in principle in Chapters 5 and 6. In
Appendix 9, it is shown how these results may be applied to estimate the
power transmission between two arbitrary structures coupled by a spring.

Equation (A9.6) gives the transmitted power by a singlé isolator to be

Re{ﬁz} Re‘{ﬁR}

Iﬁz + %(i +n) + ﬁR|?

where ﬁin = élVflz/Re{ﬁz}, which is the maximum power that can be input’
to the uncoupled machine at any frequency, and must be measured on the
machine in question. ﬁz, ﬁR are the mobilities of the source and
seating, for which the average resonant peak values S and Q and the
frequency averaged values S and Q must be estimated in order to

predict frequency averaged and peak power using table 2.

No account is made for multi-point coupling in the theory; and the
effect must therefore be estimated. 1In the next chapter it is seen that
reasonable estimates are obtained if it is assumed that if two isolators lie
within half the flexural wavelength of the seating they act as a singlg
isolator of twice the stiffness, while if the isolators are separated by a

distance greater than half a wavelength the power transmission contributions

can be regarded as independent and summed separately.




Finally, in the previous section it was noted that built-up machines
and seatings have a local stiffness which varies depending on whether the
point of interest is an unstiffened or stiffened region. It can be seen
from the following expression that the locél stiffness of the structure

has no effect on the power transmission, Ptr'

Re{ﬁR}
= . 1 1 1 = 2
'Mz“‘*’(x—z*_+‘i;’ + M|

Kr

: 2
Ptr - %lvfl ¢

provided the isolator stiffness (KI) is much less than the local stiffness
of the seating, and source (KR, KZ); However, if there is no isolator
these local stiffnesses are largely responsible for any decoupling between
the source and seating. In these circumstances, if some vibration isolation
is desired, it is advisable therefore to couple stiffened parts of the
source to unstiffened parts of the seating or vice-versa. This procedure
would also ensuré a measure of decoupling at high frequencies when the

vibration is governed by the local behaviour of the source and seating.

(iii) In the high frequency region it is most likely that the machine
behaves as a velocity source above the isolator. It was shown in

equation (5.36) that this velocity source region begins when

w,2 !
@ > My

where ww/K 1is the isolator mobility, and ﬁz and ﬂR are the resonance
peak values of the source and seating mobilities. At these high frequencies
it is likely that the connection points on both the source and seating

are uncoupled from each other and the total power transmission is given

as a sum of the contributions from the individual isolators, i.e., for

N isolators,

g2 o)

1 ] (w/K)2

s~
n
N
I~

tr .
J

where Gj is the free velocity at point j on the machine.
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CHAPTER 10

POWER TRANSMISSION EXPERIMENTS ON A SEMI-PRACTICAL MOTOR-ISOLATOR~
SEATING ARRANGEMENT

10.1 Introduction

An experiment was set up to test some of the theoretical and
experimental techniques developed in this thesis in a rather more. realis—
tic situation than considered earlier; the semi-practical model chosen
consisted of a D.C. electric motor mounted with four rubber isolators

upon a ship-like seating structure.

The D.C. motor was set in motion and the power transmitted by the
isolators to the seating structure was measured using two techniques
proposed earlier, namely, using the isolator transfer apparent mass, and

using the seating apparent mass.

Although the motor was mounted on four isolators in the final con-.
figuration, initial tests were also conducted with only one isolator

connected.

Three types of machine excitation were considered; first, an
external rapid frequency sweep forcing function applied to the stationary
motor; second, with the motor free running with all excitation provided
by out of balance forces and brush noises, etc.; third, "impulsively"
hammering on the motor casing in syncronization with the motor rotation.
This was to simulate the vibration of a periodically excited machine

such as a diesel engine.

The motor also radiated noise from the casing and from a cooling fan,
which caused an acoustic 'short circuiting' path around the isolators
to the seating structure, a situation that may not be uncommon in

practice.

To permit theoretical predictions of power transmission the properties

of the uncoupled motor, isolators and seating were measured.
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10.2 Description of Components

(1) The seating

Figure 10.2 shows the seating structure; designed to be an
approximation to a ! scale section of ship hull. The structure consisted
of a 6 mmx 2.4 mx 1.2 m steel plate stiffened by five beams each of
the section shown in figure 10.1, and spaced 17.8 cm apart. The
adhesive joints at the top and base of the web consisted of a 50/50
by volume, mixture of Araldite Resin 2003 and aluminium powder. This
mixture provided a hard and brittle bond between components. This
adhesive was used as it was thought that welding would buckle the plate
sections. The plafe was supported upon 10.2 cm of plastic foam: tests
made on an undamped plate indicated that the plate was well decoupled

ffom the floor.

The circumference of the plate was embedded in sand to a distance
varying between 30 and 60 cm, as seen in figure 10.2. This caused the
finite plate to behave vibrationally as part of a much more extensive

structure, as, for example, a ship's structure.

The point inertance was measured at the centre and edge of the top
flange of the central beam (positions a and b), see figures 10.1, 10.2;
The rapid frequency sweep method |26| was used, with excitation provided
by a coil and magnet arrangement. Force and acceleration were monitored
with a Force Transducer B & K type 8200 and Accelerometer B & K type 4333.
Sampling rates of 2k samples/sec and 20 k samples/sec were used in all

tests to provide data in the O-1 kHz and 1 kHz-10 kHz ranges, respectively.

Figure 10.3 displays the imaginary component of inertance and modulus
of inertance at the two measurement positions. Considering first. the
measurements made at the centre of the flange, it can be seen that abdve
400 Hz the inertance may be approximated to that of a single infinite
T-sectioned beam, with the neutral axis taken about the bottom edge of the
web (as it is assumed that the plate does not stretch). The beam

=2 X f%,

where u is the mass/unit length and the wave number is 0.85 x f?.

inertance was calculated on this assumption to be k/(4p) = 10

The first flexural wave resonance of the beam cannot occur until
above 600 Hz, therefore below this frequency it can be assumed that each-

J
beam moves as a rigid body. The point inertance of an equivalent system




stiffened plate cross section

r T X T T,

' t<—— 2-4*1 T
thickness t
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Model for low frequency behaviour of stiffened plate cross section

with an infinite number of parallel equi-spaced rigid beams can be found
with consideration of the figures above, where m is the mass of one
beam and one plate section, Kc is the stiffness of a cantilever of
length 2 and thickness t, i.e., 3EI/£3. Using the approach used

in |21, Ch. |, the point inertance on the beam can be shown by thié

representation to be

1 _ iw 1
; 2km (1 - P/ ax )’

and the transfer inertance between adjacent beams

F13) | 2D iy
s S

where cos y =1 - wZM/(ZK).

Below the cut-off frequency, which, using equation (10.1) is 120 Hz,
the point inertance is purely imaginary, indicating that the power is
readily transmitted through the structure, and the adjacent beams are
well coupled. Below the cut-off frequency, equation (10.1) predicts
Is(l) = 2.7 x 10-4f kg-l, and is shown in figure 10.3 to be a reasonable

estimate of average behaviour. Above the cut-off frequency power cannot




be input to the seating system with this mode of behaviour and the boint

inertance becomes purely real, tending to that of the mass of a rigid

beam.

As the plate is finite, with five beams rather than an infinite
number, there should be five resonances below the cut~off frequency, it
is possible that the three broad peaks in this region were associated with
the three symmetrical modes 1, 3 and 5 (which would be excited by the

force applied to the central beam).

The inertance of the edge of the flange was very similar to that at
the centre until about 1 kHz. At about 3 kHz a broad resonance occurred
which was identified as being the fundamental cantilever mode of the beam
section about the root. This frequency was calculated using a first mode
approximation based upon modelling the web as a free-pinned beam,mass

loaded at the free end with the flange |38, Ch. 9|. The effect of the

web root stiffness and top flange rotary inertance were negligible. The

resonance frequency was given as

2
£5 x M /4 /pA—. |
2 .0 . £ 2. £_4_5/ _o (10.3)

M4+ M (0(2))

where Mw, MF are the mass of the web and flange, respectively; ¢(2),
the eigenvector at the top of the web, is unity. fo is the resonance

frequency of a beam of length £, the web length.
The resonance frequency, fo, calculated on this basis was 3.09 kHz.

At very high frequencies the inertance at the edge of the flange

approached that of a 6 mm plate.

(ii) The motor

The motor chosen for the experiment was a compound wound, 1.5 hp,
D.C. electric motor, made by the Normand Electrical Company, frame size
7A. The motor casing was of cast iron, 6 mm thick, in the unstiffened
3

sections. The output shaft was of ; inch diameter and was located by

deep groove ball bearings, type RLS 62Z. The motor weighed 32.7 kg, and

can be seen in figures 10.6, 10.9 and 10.10.




The point inertance of the motor was measured at the front left

foot (position 1) and, the selected point for external excitation, at
the front of the top of the motor (position 5). The imaginary component
of inertance and modulus of inertance at these two points are shown in
figures 10.4 and 10.5. Below 300 Hz it can be seen that the machine

behaved as a rigid mass. The inertance at points 1 and 5 were approxi-

mately the same value of 0.1 kg_l. The point inertance of a body free
to rotate is given as
.2 ‘ : .
1,2 : (10.4)
m I .

'a' is the distance from the centre of gravity to the excitation

where
point, and I the moment of inertia about centre of gravity and m is

the mass of the motor. The moment of inertia can therefore pe deduced from

the measured data to be )

I=m§—§. - (10.5)

Between 300 Hz and 3 kHz the real component of the point inertance
was controlled by the local stiffness of the structure,.while the
imaginary component of inertance governed the power absorbed by the
motor vibrating in its overall modes of vibration. For force source
excitation the local stiffness of the motor does not affect the power

input to the structure (see section 9.4(ii)).

At about 4 kHz the resonance of the structure local to the driving
point occurred. Above this frequency the imaginary component of inert-
ance became the dominant component in the modulus, thus indicating the
frequency above which machine-like structures begin to behave as structures
of infinite extent, without strongly resonant behaviour. The high
frequency inertance at point 5, as seen in figure 10.5, approached that
of a 6 mm cast iron plate, where 6 mm was the thickness of the local

structure. ]

The broad troughs observed at 4.5 kHz at point 1, and at 2.5 kHz
at point 5 were associated with antiresonant behaviour at the measurement

position, exacerbated by the rotary inertia of the transducers, as

discussed in section 8.4.




(1ii) The isolators

Four isolators, 1-4 (see figure 10.6) were used to mount the motor,
one beneath each foot. Each isolator was a piece of natural rubber,
3cmx 3 cmx 1 cm, sandwiched between two 3 ¢m X 3 cm x 5 mm aluminium

plates. The rubber was bonded to the aluminium with cyanoacrylate cement.

The power transmission through each isolator can be measured with a
knowledge of the isolator transfer apparent mass (Séction 7.4). The
arrangement used to measure these quantities is shown in figure 10.7.
Rapid frequency sweep excitation was used, and the acceleration above
each isolator and the resulting blocked force beléw each isolator were
monitored. The isolators were mounted in pairs for stability, and
suspended weights‘were used to apply a static preload comparable with
that which would be imposed by the motor. The transfer apparent mass of
the isolator to be used under the front left foot, KI(l) is shown in
figures 10.8(a) and (b). The low frequency behaviour, 0-1 kHz, in

figure 10.8(a), was that of a hysteretically damped spring, i.e.,

Kil) = (WZ/K).(1 + in)

where K = 4.43 x 105 N/m, n = 0.08.

The cross coupling effects, particularly noticeable in the imagina;y
component, were probably associated with resonant behaviour of the static
loading arrangement. To avoid these imperfections, the modelled data,
equation (10.6) and figure 10.8(a), was actually used in the power trans-

mission experiments.

The high frequency behaviour data, 1 kHz-10 kHz, shows that the spring-
liké behaviour ceased at the natural frequency of the isolator at about
2.2 kHz. Thereafter the modulus of the transfer apparent mass is approxi-
mately 4 x 10_3 kg.




10.3 Power Input to and Transmitted from a Motor Mounted upon Four

Isolators when Subjected to a Rapid Swept Sinewave Forcing Function

The motor was mounted on the seating structure using the four
isolators. Figure 10.10 shows the arrangement for only one isolator.
Each isolator was attached to the seating structure via a 1.5 cm diameter
washer, at points mid-way between the edge and centre of the beam flangé.

Cyanoacrylate cement was used for the bonding.

A Ling exciter type 406, shown in figure 10.10, was attached via a
short flexible drive rod to position 5 at the front of.the motor. The
applied force was monitored using a B & K force transducer type 8200,
and the acceleration by an adjacent accelerometer B & K type 4333.
Accelerometers were positioned above and below each isolator as shown in

figure 10.10.

The objective of the experiment was to excite the stationary motor

with a rapid frequency sweep between O-1 kHz and measure the energy* input

* It must be noted here that when a structure is subjected to continuous
excitation,the power, (or rate of energy dissipation,)is the quantity of
interest. For random excitation w x power/Hz was given in equation (1.13b)
as

X = . T |
W Pin/Hz G Im{IS},

FF
where GFF is the force spectral density, having units of FZ/Hz. However,
if the structure is excited by a transient force, the total energy

dissipated Ein becomes the quantity of interest, where

(o]

Ein = J P(t)dt
o)
where P(t) is the instantaneous power. The spectral content of the energy

is expressed in a similar manner to equation (l.13b ), i.e.,
= F 2 T
w x E;_/Hz |F(£) | I AT)

where [f(f)I is the modulus of the transient force Fourier transform,
with units of F/Hz. It can be seen from the above expressions that the
same relationship is derived if, for continuous excitation the power is
normalised by the force spectral density, or, for transient excitation the
energy is normalised by the square of the force Fourier transform modulus,
i.e.,

w x P, /Hz ) w x Ein/Hz ) _
— = —2 = i)
FF |F(£) |

-~

Likewise similar relationships exist between the energy transmitted and the
power transmitted.




at position 5 and the energy transmitted via the four isclators.

The energy input, Ein’ was normalised to the force input and was
therefore equivalent to the imaginary component of inertance at point 5

of the coupled systems.

w x E. /[Hz
in
Fe) |2

where f(f) is the Fourier transform of the applied force.

The total energy transmitted, Etr was the sum of the energies

transmitted through each isolator, and when normalised to the force input

is given from section 7.4 as

w.E /Hz ' .
== i @™ (6.5, (6) .5} o)
| F(e) | [F(6) " n=1

where gén)(f) and 5(n)(f) are the Fourier transforms of the accelerations

above and below the nt isolator, K%n) is the transfer apparent mass of ‘the

th .
n isolator.

Figure 10.11 shows the normalised power X w+ transmitted by each of
the n isolators. As the excitation was applied on the central axis of the
motor the front two isolators transmitted similar quantities of normalised’
power and likewise did the back two isolators. However, apart from at the
resonance at 320 Hz the front pair of isolators transmitted at least three
times as much normalised power as the back pair. To understand this it is
necessary to look at a model of the experimental system shown on the follow-
ing page. The rigidity of the beams at low frequencies permits the low
frequency behaviour to be modelled as a two dimensional system as shown.
The relevant expression of power transmission in a more general case is
given in Appendix 10. The power transmitted is the sum of the torque

(F x a) and the direct force (F) contributions. At the front of the motor

e s s i s . e

As the normalised energy is equivalent to the normalised power, the
discussion of results will refer only to the normalised power to conform
with the bulk of the text.




T %= T T

Two-dimensional model of coupled motor séating.

the torque and direct force are in phase, giving large power transmission
to the seating, whereas at the back, the contributions tend to cancel. It
is interesting to note that below 100 Hz (the region of the cut-off
frequency, equation (10.1)) the normalised power tends to flow in the
negative direction up the back isolators. This was verified with steady
state measurements. Such negative power flows are likely when the seat-
ing moves in phase at the mounting points while the motor is being excited

in the rocking mode, or vice versa.

Figure 10.12 shows the normalised power input at point 5 and the sum
of the normalised powers transmitted by the four isolators. Below the‘
first resonance of the motor, 320 Hz, the normalised power input was
closely related to that transmitted. The imaginary component of inertance
at point 5 could not be measured between 50 Hz and 300 Hz as it was very

small compared with the real component.

In this low frequency there were two peaks in normalised power trans- .
mission. The first peak i§ the fundamental vertical resonance of the
motor upon the four isolators with resonance frequency fo = 2nv 4K/m =
37.5 Hz. It can be shown from equation (A9.4) that, at resonance, the
normalised peak power transmission becomes

1 (1 D)

= 6.1 x 1072 kgt  (10.8)

n?. (1 (T a2/ @)y

(1) 3

s kg_l). The

imaginary component of the isolator inertance (nwzl(éK)) was comparable

where I is the seating inertance at point 1 (4 x 10

. 1 . . . ..
with Im{Ié )} causing half of the normalised power input to be dissipated

in the isolators (equation (3.29)).




The second peak was the resonance of the rocking mode of the motor,

which using equation (10.5), was calculated to be f2 = 20/8K/m = 53 Hz.

The peak can only be estimated using equations (10.1) and (10.2), as

f§13) was not measured. The estimated peak height, assuming the seating

1

was an infinite array of beams, was 0.15 kg_ , which as expected, is an

overestimation.

The power transmission at frequencies above these two resonances can
be estimated using high frequency approximations to equation (A9.4), where
it could be assumed that the motor behaved as a veldcity source above the.
isolators. With reference to the previous figure in the text, equation
(A9.4) becomes .

f
=1m{1§1)}(2 - cos Y).(—‘fl)‘* | . (10.9)

2
l

where fo = 2nv/4K/m, and cos y is given in equation (10.2).

On average this equation (10.9) becomes simply

- f
_ (L o.4 .
!2 = Im{IS }.2.(-—-f-) . (10.10)

which is exactly twice the power transmission that would occur if the
rotation of the motor had been neglected. Equation (10.10) was plotted

in figure 10.12 using the straight line apprdximation to the point seating
inertance, shown in figure 10.3. The agreement was quite good even in the
resonant region between 300 Hz and 1 kHz. This was because fhese
resonances were heavily damped and the rigid body motion of the motor could

still be a dominant component of the motor foot vibration.
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10.4 Power Transmission to the Seating Via a Single Isolator from

the Free-running Motor

For this experiment only the front left isolator (no. 1) was connected
(see figures 10.9, 10.10), while the remainder of the motor was supported
by three nylon cords. The motor was run at 40 cycles/sec. and the power

transmitted to the seating was measured using two comparative methods:

(i) wusing the cross spectral density of the accelerations above: and

below each mount, G (1) (2) and the isolator transfer apparent mass,
a ‘’a

m S
K%l) (see figures 10.8a and b).
wx B/Rz = LG ) o "§1)} (10.11)
2 s

(ii) Using the spectral density of the acceleration on the seating
G (1) and the imaginary component of the seating apparent mass Eél)
a

)

w X P/Hz = x Im{Kél)}. ' (10.12)

G
LD
S

Apart from providing a confirmation of the measured power, using the
two methods provide useful information about the strength of the acoustic
coupling between the motor and the seating: the isolator transférAmass
method (equation (10.11)) rigorously measured the power which was trans-
mitted by the isolator, but the estimate of power obtained using the
seating apparent mass (equation (10.12)) was derived only from the
aéceleration at one point on the seating and was therefore insensitive to

the origin of the vibration, whether in the isolator or acoustic excitatibn,

The power transmitted measured using the two methods is shown in
figure10.13. The acceleration spectral densities were estimated with
78 statistical degrees of freedom, and the transform size of each estimate

was 1024 points, giving a 2 Hz resolution for the O-1 kHz frequency data

and 20 Hz resolution for the 0-10 kHz data.




Figure 10.13 shows that between 3 kHz and 7 kHz the two methods were

in agreement, indicating that in this region the power was transmitted by
the isolator. However, below this frequency, particularly between 200 Hz
and 2 kHz the bulk of the power appears to have been transmitted by

acoustic excitation, as the isolator transfer apparent mass method measured
much lower values than the seating apparent mass method, (equation (10.12)).
This result is confirmed from figure 10.13,which shows that in this
frequency region the acceleration level at the connecting point on the’
seating was unchanged when the isolator was disconnected,while the

running motor was suspended in the same position. This was not a- surprising

result as the motor was cooled by a rather noisy internal fan.

Figure 10.14 shows that at 80 Hz, 120 Hz and 160 Hz the acceleration
levels were the same above and below the connected isolator, which would
appear strange; however, it can be seen from figure 10.13 that the acoustic

path is dominant at these frequencies by an order of magnitude.

At the fundamental rotation frequency the power was transmitted by
the isolator as the two methods gave results which were in moderately

good agreement.

10.5 Power Transmission to the Seating Via a Single Isolator from the

"Impulsively" Excited Running Motor

In the previous section it was observed that at many frequencies the
noise radiated by the motor was responsible for more power transmission to
the seating than the vibration isolators. It was therefore decided to
increase the vibration level of the motor by exciting it impulsively in
synchronisation with the rotation frequency. Impulsiﬁe excitation of
this sort has a broad frequency spectrum, not unlike that of the combustion

forces in a diesel engine.

The configuration used in this test is shown in figure 10.9 and 10.10.
A circular aluminium plate with a slot in the circumference was mounted on
the motor output shaft. With each rotation, the slot passed through a

detection device which output a voltage pulse, which after amplification




caused the shaker hammer fixture (see figure 10.10) to impact the motor
casing at position 5. The hammer fixture was a mild steel cylinder, which

in its inactive position was about 1 mm above the casing.

The motor was run at 40 cycles/sec. and fhe hammering amplification
adjusted to give a steady sound. The input was monitored at position 5
'with an adjacent accelerometer, B & K type 4333, Figures 10.l16a and b
show the acceleration time history of one impact at the excitation (point
5) and the foot (point 1), when the motor was‘freely suspended by four’

nylon cords. Figures 10.17a and b give the spectral densities of these

two- signals between O-1 kHz, resolution 2 Hz. The side bands around each

harmonic in the excitation spectrum indicate some kind of amplitude
modulation of the impacting, perhaps associated with the natural frequencies
of the hammer upon the shaker suspension.‘ The spectral density of the
motor foot acceleration is also shown for a 20 Hz resolution. Figure
10.18 displays the spectral densities of the accelerations at these two
positions for the 1 kHz-10 kHz frequency range. It can be seen that the
spectral density at point 1 has a similar form to the imaginary component

of inertance at point 1 (see figure 10.4), and the spectral density at
point 5 is of a similar form to the modulus of the inertance ét‘point 5.

Low pass filtering at 7 kHz was responsible for the decrease in the

spectral densities (figures 10.18a and b) at high frequencies.

Figure 10.19 compares the power transmitted to the seating measured
by the two methods, using the isolator transfer apparent mass and the
seating point apparent mass. The two measurements agreed well below 500 Hz,
which confirms that the power was transmitted by the isolator in this
frequency region. Between 500 Hz and 1 kHz it can be seen that the
seating apparent mass method (equation (10.12)) gave a slightly larger
answer than the isolator transfer apparent mass method (equation (10.11)),
which indicates that sound radiation from the casing and the isolator
vibration were responsible for similar quantities of power transmission

to the seating.

Figure 10.20 compares the power measured using the two methods between
1 kHz and 10 kHz. There is excellent agreement until about 7 kHz. Above
this frequency it could be that the seating point apparent mass method is
in error as the isolator was not connected at the edge of the flange (as-was
assumed in applying equation (10.12)), but rather mid-way between the edge -

and centre of the flange.




Figure 10.21 shows the power transmitted to the seating measured using
the isolator transfer apparent mass method (equation (10.11)). This was
measured using 20 kHz sampling rate, giving a 20 Hz frequency resolution.
Between 0 and 240 Hz the power transmitted was predictéd using equation

(A9.4), adapted for single point transmission, i.e.,

' Im{fs(l)}
wP/Hz =G (1) . 1 w‘ 3 _(1) T]UJ‘
. G- R Gl b )

2 (10.13)
m K '

The predicted points were calculated by using the measured value of the
seating imaginary component of inertance Im{fil)} (figure 10.3)
at each of the harmonics of 40 Hz, and values of G (1) in figure 10.17.

. a
The agreement 1s seen to be reasonable. s

In the higher frequency region the motor moved as a velocity source
above the isolator,and this was confirmed by calculating the transmitted

power using the acceleration at the foot of the free motor, as below

wP/Hz = G

D 12 w1l (10.14)

L
s

where G is shown in figure 10.18b, and |A§1)| is the modulus of

the as(;lolator transfer apparent mass. These multiplications were
performed using the measured data files on the computer, and can be seen
to give good agreement with the power measured using the transfer apparent.
mass method. The exception to this is in the trough region around 2 kHz,
where there was significant acoustic excitation of the seating. In this
region, equation (10.14) predicts power assuming that there are no other

sources of vibration acting on the seating, giving a positive value.

However, the measured values are sometimes greater than these values or
negative (which may have little meaning with such low signal levels) which
is possible if a seating has a source of vibration in additionm to a

single isolator.




10.6 Power Transmitted to the Seating Via Four Isolators, from the

Impulsivély Excited Running Motor

The motor with all four isolators connected was run, as before, at
40 cycles/sec. The power was measured through each isolator with
equation (10.11), using the cross spectrum between accelerations above and

below each mount.

Figure 10.22 shows the power transmitted by the four isolators between
0-1 kHz compared with the one isolator result discussed earlier. It cam be
seen that the power transmitted at the fundamental rotation frequency,
40 Hz, was unchanged. At higher frequencies more power was transmitted by
the four isolators than the single isolator. The bulk of it was trans-

mitted by the front two isolators.

Flgure 10.23 compares the power transmitted by the front and back pairs
of isolators in the 1 kHz-10 kHz frequency range. - The front two 1solators,-
being closer to the excitation point, were responsible ‘for the majority of

the power.

Figure 10.24 gives the comparison of the power transmitted by the
single isolator with that transmitted by the four isolators over the whole
frequency range, resolution 20 Hz. The power transmitted at the funda-

mental rotation 40 Hz is given using a modification of equation (10.13).

Im{I(l)}

(1)/9). . 2 ; 5 = ,09

%n 1. ZE + (Im{I(l)} + ﬂ%ﬁ,)z _7 (10.15)

wP/Hz = (G

The term G (1) /9 arises on account of the acceleration being one third

at the centre of gravity of the motor, compared with that at the end -where

‘the excitation was applied (equations (10.4) and (10.5)).

Between 40 Hz and 300 Hz the motor moved as a rigid body and the

power is given using equation (10.10), i.e.,

=(1)
2.{1s }

/9). —
a(1) 2

L w
m .(23?

wP/Hz = (G (10.16)

2




and can be seen to be approximately 4 times the single isolator value.
Between 300 Hz and 2 kHz, when the motor moved in the overall modes of
vibration (see figure 10.11, 300-500 Hz), the power was equally transmitted

from the front and back of the motor. Therefore,

(11}
wP/Hz = G ;) .2. -{}——- (10.17)
am (gb 2
7K

which is eight times that of the single isolator case.

In the high frequency region between 3 kHz-10 kHz, the local modes of
the motor vibration dominated the behaviour and only the front end of the
motor, nearer to the excitation, contributed significantly to the power
transmission (figure 10.23). Above 3 kHz the seating tended to resonate
locally (see figure 10.3) and so the power was transmitted independéntly

through the front two isolators. Therefore

wP/Hz = |A§1)|2.Im{fs<l)} | (10.18)

2.G .
Ned
m

and can be seen in figures 10.24 and 10.25 to be, on average, a factor of
two greater than the single isolator case., Figure 10.27 shows a very

similar expression to equation (10.18), namely,

. 4 ,
wP/Hz = ( ) (l)lz.Im{IS(l)}, - (10.19)

G, ).]A
n=1 a(n) o1
m

. . . t
where G (n) is the acceleration spectral density at the n B foot of the
a :
m

freely suspended motor. It is assumed in this equation that the power

transmission from each of the isolator feet was independent. As can be

seen from the figure (10.27) this assumption is vindicated for frequencies
greater than 3 kHz. 'However, at lower frequencies this assumption tends
to cause the predicted power to underestimate the true value by a factor

varying between two and four. This would probably be because at lower

coupled, due to the long wavelengths of the beam vibration.

|

\
frequencies each pair of isolators on the same beam would be very closely

|

\




Figure 10.26 compares the averaged power transmitted between 1 kiHz
and 10 kHz, measured using the two alternative methods (equations (10.11)
ahd (10.12)) at each of the connecting points. The application of equation
(10.12) in this manner assumes that the vibrations at the connecting points

on the seating are uncoupled, i.e.,

4 .
wP/Hz = ] G (n).Im{A(l)} o (10.20)
: n=l a s

s
. . . th o
where G (n) 1s the acceleration spectral density at the n coupling
points 3s on the seating. It can be seen that this assumption causes
an overestimation of the true power by a factor of two between 3 kHz and

4 kHz, but thereafter provides a good answer.

Finally, figure 10.28 compares the power input to the motor at
point 5 (measured using the acceleration and 'imaginary' component of
apparent mass at that point) with the total power transmitted by the
four isolators, The two curves have a similar form, which above 3 kHz
can be seen to be associated with the resonant peaks in the point
inertance at the excitation point (figure 10.5). Thus for this type of
structure, as for the simpler ones considered earlier, the'power is input

and transmitted at the resonance frequencies.

10.7 Summary

(1) The seating structure was a beam stiffened plate. The inertance
at a point on the beam had three significant regimes of behaviour. At low
frequencies the beams moved as rigid masses interconnected by the plate
sections with stiffness-like behaviour. In the mid and high frequency
range the point inertance on the centre of the beam was on average that
of a single ﬁncoupled beam. The point inertance at the edge of the top
flange of the T-section beam became an order of magnitude greater than that

of the centre, for frequencies above the first resonance frequency of the

beam section.




(ii) The D.C. motor, a compact built-up construction, had three

regimes of behaviour: first, rigid body motion below 300 Hz. 'Seéond,
between 300 Hz and 3 kHz the structure moves in the whole body modes

of vibration, while the structure local to the excitation point behaved
as a pure stiffness. Lastly, above 3 kHz the individual components of
the structure could resonate and the local structural characteristics
dominated the point inertance measurement. These modes of vibration

were heavily damped and not strongly coupled around the motor.

The motor coupled to the seating with the isolators had three types
of excitation applied: a rapid frequency sweep, internal forces due to
the free running motor and,external impacting applied to the motor casing.,

These yielded the following results:-

(iii) With the rapid frequency sweep excitation it was seen that the
power was transmitted to the seating mainly by the resonances of the
fundamental rigid body modes of the motor, namely, the fundamental
vertical mode, and the rocking mode of the motor; these transferred
similar quantities of power. Above these resonance frequencies the
behaviocur was straightforward, with the motor acting as a velocity source
above the isolators. Power was successfully measured through the

individual isolators, and in some cases negative values occurred.

(iv) When the motor was run without any additional external exitation
it was found that below 3 kHz the acoustic radiation from the motor was
responsible for much of the power transmission to the seating, rather than
the isolator vibration. However, it was found that the isolator transfer
apparent mass method of measuring power was successful in measuring the
power through the isolator alone, despite the significant additional

acoustic excitation of the seating.

(v) The motor was impulsively excited with each revolutionjand power
measured through each of the four isolators was -compared with simple
predictions made using the acceleration on the feet of the freely
suspended motor. These predictions never became difficult, as the effect
of increasingly complicated behaviour at high frequencies was mitigated

by increased decoupling between mounting points on the seating structure.

¥




CHAPTER 11

CONCLUSIONS

The thesis is presented in three parts. The first part gave a
theoretical investigation of the parameters which controlled power trans-—
mission via spring-like isolators between machine sources and seating
structures. The second part was concerned with practical issues, namely,
the measurement of power input to a seating, and the accuracy with which
the point frequency response of structures could be measured. The final
part discussed the application to the practical situation of the theory
developed earlier. This was culminated in an -experiment on a semi-

practical machine-seating configuration.

The results of these three sections were summarised at the end of

‘each section but are briefly restated here for completeness.

11.1 Theoretical Considerations

The first section dealt with the parameters controlling power trans-—
mission between simplified machine sources and seatings, and produced

the following results:

(i) For force source excitation to a structure the power is input
at resonance. However, the frequency averaged power input is the same to
a finite structure as that to an equivalent structure of infinite extent.
- This fact enables simple estimates of power input to be made from readily

available mobility data of infinite structures.

(ii) At low frequencies a machine moves as a rigid body. The power
transmitted from such a source to a finite seating via an isolator was
considered and simple algebraic formulae for frequency averaged and peak
power transmission were developed. Maximum frequency averaged power 1is
transmitted at the resonance of the maés-spring and equivalent infinite
seating. The isolator dambing is an important parameter in controlling
power transmitted at this resonance frequency. Less power is transmitted,

at this resonance, to a finite seating than to an equivalent seating of
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infinite extent. For frequencies above and below this resonance, the
' frequency averaged power transmitted to a finite seating is the same as

that transmitted to an equivalent structure of infinite extent.

For practical machines the rigid body motion in each of the degrees
of freedom can transmit power tb the seating. Provided there is
symmetry in the mounting arrangement each of these contributions can be
considered separately, using the theory presented for the single degree

of freedom case.

(iii) The power transmission via an isolator from a resonant source
of vibration, namely, a short beam, to a long receiver beam, was analysed.
A useful point that arises in characterising the source structure is that
for a beam the real component of mobility at one end is prbportional to
the square of the modulus of the transfer mobility to the other end. This
statement only holds in an average sense for general structures, but is a

useful approximation.

The fiequency averaged power input to the source structure was found
to be independent of the coupling to the seating structure. Fufthermore,
the peak power that could be input at resonance increased with decreasinglx
coupling between machine and seating. This means that if a machine is
isolated from the seating the vibrational power that has to be absorbed
internally is increased, thereby increasing noise radiation and allowing

the possibility of damage occurring.

The formulae were derived expressing the peak and frequency averaged
power input to the machine source, and the péak and frequency averaged
power transmitted to the seating structure. These formulae, which pro-
vided no resonance frequency information, required only knowledge of the
frequency averaged point mobility and the resonance peak value of mobility
of the machine source and the seating. In practice, it is hoped that
these two quantities could be obtained theoretically or estimated from

experience.

At low frequencies all the power input to the machine source is’
transmitted to the seating. This represents the worst case from the trans-—
mission viewpoint. A frequency is reached when the modulus squared of

the isolator transfer mobility is equal to the product of the resonant
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peak values of the source and seating mobilities. Above this frequency

the machine behaves as a velocity source above the isolators. From
theoretical and experimental work it was found that the frequency
averaged power to a finite seating structure was the same as that to an
equivalent infinite structure except at the low frequency resonances of
the coupled source seating system‘whenlslightly less power was trans-—

mitted to the finite seating.

11.2 The Measurement Methods

Three potentially useful methods for measuring the power input to a
seating structure were proposed, the use of which was verified experi-

mentally.

(i) Power measured through isolators, using accelerations above
and below each isolator. This method successfully measures
the power to a seating via one isolator in the presence of
vibration contributions to the seating from other sources such

as noise Or other vibration inputs.

(ii) Power absorbed by a structure with modal behaviour, can be
measured using accelerations at one, two or four points.
This method would be particularly useful at low frequencies

when modes are well-separated in frequency.

(iii) Power can be measured using the acceleration spectral density
at uncoupled input points on the seating structure. This method
is only useful at high frequencies if there is multipoint

excitation.

Caution must be exercised in the measurement of the real component
of mobility of a structure. If the structure is heavy then the back-
ground noise, the finite sampling rate of digital data and structural,
local stiffness, can all degrade fhe accuracy of measured data. Alter-

natively, if the structure is light, the exciter moving element mass,

the transducer rotational inertance and the sampling rate of digital

data can cause denegration of the measured data.




11.3 The Practical Experiment

The seating structure, which consisted of a very heavily damped
periodically-stiffened plate, had three zones of behaviour which could
be characterised by approximate mobility formulae. At low frequencies
the stiffening was effective and this particulér structure behaved as
a periodic mass—-spring arrangement, the masses associated with the beams
and the springs with the intermediate plate sections. The point
mobility was very low; stiffening is therefore a useful way of reducing
low frequency power transmission. In the mid frequency range,(the
lower limit was defined as when the intermediate plate had its first
resonancev)the beams tended to be vibrationally uncoupled and the point
mobility on a beam tended to the value of an uncoupled beam. At high

frequencies the point mobility tended to that of the local beam flange.

The machine structure, likewise, had three zones of behaviour, which
may be characterised by approximate mobility formulae.. At low frequencies
there was rigid body motion. In the mid-frequency range the real
cbmponent of mobility was dominated by the overall modes of the machine.
The modulus of the mobility tended to be dominated by the local flexibility
of the structure (which incidentally only has an influence on power trans-—
mission to the seating if there is no isolator). At high frequencies
the local elements of a machine could resonate independently. This fact,
in combination with the heavy damping of the machine, resulted in poor
transmission of vibration around the machine and the vibrations of the

mounting points became uncoupled.

For the chosen experimental parameters,the behaviour of the coupled
system was very straightforward. There were similar power transmission
contributions at low frequencies involving the translational and rocking
resonances of the rigid machine upon the isolators. Although the power
level of the translational resonance was well estiﬁated, the levei from
the rocking resonance was not well judged. In practice a low frequency
transfer measurement between the two sets of mounting points on the
seating is necessary in order to take power transmission by rocking into
account. Incidentally, the measurements in this frequency region showed
that although the net power transmission from the sum of the isolators

was positive, two isolators were actually transmitting power in the nega-

~tive direction,back into the machine.




Above these low order resonances the machine behaved as a velocity
source above the isolators. It seemed to be possible to estimate the
effect of the multiple isolators by assuming that if they were positioned
within a spacing of half a flexural wavelength on the seating they were
coupled as a single isolator, but if there was at least half a wavelength
spacing then the power contributions were independent. This of course

only holds if the seating does not have strong resonant behaviour.

Useful topics for further work would be to experimentally_examine,
using the power flow techniques, the power transmission via multi-
supports to resonant and non-resonant seatings. Also to experimentaliy
examine, or by u31ng flnlte element methods, the low frequency mobility
of bu11t up structures (i.e., when the stiffening is effectlve), with-

a view to conp111ng a llst of approximate formulae.
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APPENDIX 1

Calculation of the Average Value of the Real'Component of Mobility

The real component of the cantilever mobility, excited at the free

end, may be written in the form of equation (2.5)

- _ W cos B . .
Re{M} = "1 - sin B sin 6 ° (AL.1)

The average value of this expression over the frequency interval

W, <w<w corresponding to 2nm < 8 < 2(n + 1)7 in the 6 plane, is

1 2°

®2

e 1 -1 cos B P

<Re{M}> = T f Dw * T sin § 5in 0 .dw - (Al.2)

w
1

Dt - = .

EIk

The 6 and w planes are related by the definition given in equation
2.1).

6 =g = Cqﬁ

where
C =21 (Bt (AL.3)
EI '
therefore
dw = - %wé dae. (Al.4)

If we name the centre value of the 6 interval, ec, i.e.,

ec = (2n + D




then the corresponding value of w, from equation (Al.3) is

Using equation (Al.5), wy and w, can be written in terms of w.»

which gives rise to the following relationship,

(Al.6)

By making substitutions from equation (Al.6) and'(Al.4) into equation

(Al.2) gives

ki)

2
~ D cos B
<Re{M}> = ] J 1 - sin B sin
2w
c 0

To solve this integral it must be assumed that «r, hence "B,
change slowly compared to 6. In this event, by making use of a standard

integral (see, for example, reference !27]), namely,

™

2
a 2ma
——— =
l b - c sin B (b2 _ CZ)Z

a, b and ¢ are constants,

equation (Al.7) becomes

<Re{M}> = —9-{ . (A1.9)

w
Cc

This result is equal to the average value of the real component of mobility

of a semi-infinite beam integrated over the same frequency interval, i.e.,




(Al1.10)

Therefore, for frequency average calculations, the real component of

mobility of a finite beam may be represented by that of an infinite beam.




APPENDIX 2

Determination of the Reflection and Transmission Coefficients at the

Termination of a Beam

If a beam is coupled to an arbitrary structure, as below

Belkx ——

4"_"'"Bre]'écalk)~{

with continuity of shear force and velocity across the boundary, but no
continuity of slope (i.e., a hinged connection). Then the reflection

coefficient at the boundary is given by

re = . - (A2.1)

where M, is the point mobility of a semi-infinite beam and M, is the

2 3
point mobility of an arbitrary receiving structure. (* denotes
complex conjugate.)
Hence the modulus of transmission coefficient defined by
t2 =1 - r2
is
Re{M,} . Re{M.,}
2 = 4 —2 3. | (42.2)

= = |2
[M2+M3|




When two structures are coupled by a hysteretically damped spring,

the mobility term in equation (A2.2) can be replaced by

i +n) + M

w
‘R)iEe

giving
nw o
4Re{M2}.(—E-+ Reﬂﬁg)

|ﬁ2 +‘%(i +1n) +ﬁR|2

|e|? (A2.3)

where (w/K)(i + n) is the spring mobility, and ﬁR is the mobility at

the attachment point on the receiving structure. -




APPENDIX 3

Calculation of |M1z‘2 for a Free—free Beanm

be—kx .
~ilx (1 = =)
\\* —  _» Be '
I 1
! S
A arBe 2ik2(1-in/4) | cak(X72)
X=0 x:l

' The displacements along a free—-free beam are given,with reference

to the figure above,as

. .n : .1
-ikx(1 - i) _ ikx(1l - i7) -
y = Be 4 + be kx ar.B.e A c:ek(x 2
(A3.1)
A i -2ik2
where r = re .e .
By setting the boundary conditions at x = &
32 a3
-—32&= 0 and —§= 0
ox x=2 ox x=4
and assuming that k& > 2, manipulation of equation (A3.1) yields
-7
- . 1 -‘ R
re16 = e 2 and c = a’B(l - i)e. 1k2- - (A3.2)

Inserting the boundary conditions at x = 0, namely,

3 32
F=EI—8—% 2X=-o
9x x=0 ox x=0
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Now by setting x = O in equation (A3.1) gives

y]x=0 = 2B(1 - iaefZIkz).

Likewisé, by settihg y =% in equatiqﬁ (A3.l),vgives"

. 1 —ika
.le=2 = 2Ba’ (L - i)e ek

Using the relationéhip between velocity and dispiacemen;

-V = iwy,

the real component of the point mobility at 'x = O, can be found from

7 equatidns (A3.5) and (A3.4) to be

2 : .
CRelif} =S 1- s : . (A3.7)

EIk3 1 + az + 20 cos 2k2_

In the same manner lﬁlzlz

(A3.5)

~ can be found from equations (A3.6) and

|2=' w2 4o

I _ ,
: (EIk3)2 1.+ az + 20 cos 2k&

12




Therefore it can be seen that Re{ﬁl} and Iﬁlzlz are related by

- .2 : ‘W ba
[M l = Re{ }- .
12 Ml EIk3 1 ~-a

) (A3.8)

Using the convention of Chapter 4, equationsA(ﬁ.Z), (4.3),

M,,1% = s_.5.sin e. o  (a3.9)




APPENDIX 4

Power Transmission between a Long and a Short Finite Beam Coupled

by a Damped Spring

(i) General relationships

The power transmission from the short to the long finite beam,
shown in Figure 5.1, is to be calculated. The purpose of this section
is to cover the analysis in greater detail than the ‘summary in -

Section 5.2.

The short end of the beam is driven by a force of magnitude Fl.
End (2) of the beam is connected by a damped spring, of complex stiffness

K(1 + in); to the receiver beam.

‘The power transmission between two arbitrary structures is given by

the expression in equation (3.8).

- 2
My, |

| #, + F+ 201+ in) |

- 2
Pr—§[F1| .

. .R_e(@. (A4.1)

The mobility at end (2) of the short source beanm, M2’ is given from

equation ( 4.1) as

My = Sp 715 15, (A4.2)
where
_ S cos € _ S sin e.cos ¢
St = T = sin e.sin ¢’ S -1 - sin e.sin ¢ s (A4.3)

S is the real component of mobility of a semi-infinite beam, € and ¢
are the source beam damping and frequency parameters respectively, ‘as

defined in equations (4.2) and (4.3).

The transfer mobility ﬁlz between points (1) and (2) is shown in v

Appendix 3 to be defined by

I, | = 8.5 .sin e, o | (A4.4)

153.




28
cos €

, | C (A4.5)

738
i

where

which is the peak value of mobility if the damping is light.

Equation (A4.4) illustrates the simple relationship between the real
- component of the point mobility and the square of the modulus of the

transfer mobility.

The two quantities are closely related because Sr is proportional
to the power input, and Iﬁlzlz to the energy content. The ratio
between energy content and power input is expressed in the relatiomship

|21], power = nw.(eﬁergy content), for a modal single DOF model.

The mobility of the receiver beam ﬁk is given in equation (2.53) as

M= Q- iQ; - i, | (84.6)
where
- _Qecos 8 : - Q sin B cos ©
G =T % B sin 6° Q 1 - sin B sin 6 ° (44.7)

& and B are the frequency and damping parameters of the receiver beam.
The damping parameter is defined by the peak value of the real component

of mobility @ in equation (2.6),

l\— 2Q
Q= cos B ° . (A4.8)

(ii) The average power from the receiver beam resonances, <P>

Power transmission occurs between the two beams on account of
resonances in both systems. The receiver is much larger tham the source,
céusing 6 >> ¢. This means that for each source beam resonance, that
is, an interval of O < ¢ < 2w, there are many receiver beam resonances,
see Figure 5.3. It is therefore assumed that for each receiver resonance,
@.e., an interval O < 6 < 2m,) ¢, and hence the source mobility,
remains constant. The average power transmission due to each receiver
resonance <P>, which is shown in Figure 5.3, can be found by averaging

Ptr over an interval of O < 8 < 2m, as follows.
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First, substituting equation (A4.6) and (A4.2) into (A4.1) gives.

2
M, 1%.Q
Per © HF-IIZV . miz =5 — ) (A4.9)
. +x* Qr). + (Si +C + Qi)

where C = (S + Q'- %?.

By substituting from equation (A4.7) for ;Qf and Qi; and by

making use of the identity

2 2 -2 1+ sin B sin 6

enables equation (A4.9) to be written in térms of 6 and B
i} 2
Ptr = %IFII x
) .
IM12| .Q cos B
u12 +2Q(s_ + TP)cos B - sin B[(ulz - 29%)sin 8 - 2Q(S, * C)cos 6]
(A4.11)
where
2 _ nw, 2 2 2
R G - L CHR S
Using the two-angle formula
sin(A - B) = sin A.cos B - cos A sin B (A4.12)
in equation (A4.11), gives
_ 2
Per © %lFll X
IMl IZ.Q cos B
RiiA - . - lind, . e -
u,” o+ ZQ(Sr + K)cos B - sin B[ul 4Q (Sr + K) ] sin( Y)
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: 2Q(s; + 0
~ where tan Y = —m——p5 .

(A4.14)

uy - 2Q

Now as © varies over an interval 0 < 6 < 2w, all the other terms

in equation (A4.13) remain approximately constant being functions of

either ¢ .or w. There is a peak in power transmission associated with

a receiver mode whenever sin(6 -.y) = 1.

The average power trans—
mission from each of these peaks <P>, is formed by averaging equation

(A4.13) over an interval 0 < 6 < 2m, 1i.e.,

, 2
<> = =L j‘ P__.de.
27
[

‘This integral is solved using a standard solution, see for example

| 271,
27 : _
1 d _ d :
z—nf Presinx X T (44-15)
° o (b =¢) _
a, b, ¢ are constants; b > c.
- Therefore,
2 -
o M ,17.Q
<> = }|F. |°. 12 : (A4.16)
' 1 wl+ (s, +2Q
o 1 r K

Substituting for |M12|2 and ul2 in terms of S_ and S, using

equations (A4.2) and (A4.4), respectively,.gives

ZS.Sr.tan £.Q

<P> = %|F1|2 .

2 o 2 ~ 2nw ' 2 . 2
(Sr * Si )¢ Sr(Q,+ K )+ ZSiC_+ c + Qd
(A4.17)
L 2 2,4, w2 |
where Q" =Q +% Q + ( K) . | , (A4.18)




By making use of the identity

2_ g2 i i |
2 S“(1L + sin € sin ¢) ' (A4.19)

S + 5.° S - -
r 1 1 - sin € sin ¢

substituting for Sr and Si in terms of ¢, from equation (A4.3),

becomes, after some manipulation,

HE %

S sin £.28Q
S cos e{ﬁ + E%Q} - sin‘e[(uz2 - 282) sin ¢ - 2SC cos ¢]

(A4.20)

Using the identity in equation (A4.12), the term in [ ] becomes,

after some manipulation,

sin(¢ - v),

(a4.21)

<P> therefore becomes.

<P> = §|F1|2 x

S sin € . 28Q
_ __ (A4.22)
245 cos e(Q + &) - sin efo,* - 452Qd2]i sin(d - v)

Y




Calculation of the peak <§>, ~ trough <P>  and mean << P >>

values of - <P>

<P>, as expressed in equation (A4.22), is of the same form as the
real compénént of the source beam mobility Sr’ equation (A4.3), except
that <P> is a function of ¢ - y rather than ¢. This means that the
maximum power is, in this case, input and transmitted at the resonant
frequencies of the coupled system when ¢ - y = 1, rather than at the

uncoupled resonance frequency when ¢ = 1.

The properties of <P> can be summarised in terms of its maximum
value <P>, -when sin(¢ - y) =1, its trough value <§>, when

sin(¢ - y) = -1, and its frequency averaged value <<P>>,

(i) cCalculation of <P>

The maximum value of <P> is found from equation (A4.22) by making
the following three steps. First, set sin(¢ - y) = 1. Second, it is

assumed that the damping of the source beam is light, allowing sin € to

2
be written as 1 - EE%_E . Third, if it is assumed that S # Qd at the
frequency of maximum coupling (when (S + Q - %9 = 0) then it can be said
that 2 !
If it is further assumed that -~
4 2.2
u, >> 4S Qd
then the following approximation can be made
2 2
287Q
2 _ 4227, 2 _ 77 =a
[uz 4sqd] u, —

2
On making these substitutions into equations (A4.22), the peak value
of <P> becomes

a2, . 2
(8)7Q sin €.u, (A423)

4, uzz.é[d + znu/K] + [§2 - ZSZ]del

)




(ii) Calculation of <Pb>

The trough value of <P> is found by setting sin(é¢ - y) = -1 in
equation (A4.22) and making the same two assumptions as stated for the

calculation of <P>. Then

SZ.Q sin e.u22

Y0 28[Q - 2] - s 2 |

F> = 4lF, |2, (A4.24)

Y2

S = §—5§§—E, the trough value of the source beam mobility.

(iii) Calculation of <<P>>

The frequency averaged value of <P> can be found by integrating

<P> over an interval 0 < ¢ = y > 2m, that is across the range shown in

‘Figure 5.3, i.e.,

27w
=1
T 2w f

o

It is assumed that all other variébles, Uys S, Qd which are functions

of w do not change rapidly compared to ¢,

This integral is solved using the standard solutlon given 1n

equations (A4.15), g1v1ng

<<P>> = élFﬂz x

S sin € . §Q :
=) +8 Q + §2Qd2 - 482Q2)j;

an (A4.25)

4 2 A A
[uz + u2 S (Q +




Calculation of f the Envelope of Power Transmission Peaks Caused by the

Receiver Resonances

The final quantities to be calculated can be seen in Figure 5.3.
They are the envelope of the peaks in transmission caused by the receiver

resonances, ﬁ, and also the peak possible value of P.

" Equation (A4.13) gives the power ;ransmissiOn as a function of
b - v). The peak power transmission P is found by making the substi-

tution sin(6 - y) =1, giving

|M .Q cos B

IZ
) v 12 .
2 \ . 4 L2 ' 214
u f 2Q(s_ + D%9c°§ B - sin B[u1 - 4Q7(s_ + 3%9 ]2

. (A4.26)

If it is assumed that the receiver damping is light then sin B can

be expanded as

éoszB : ’
sin B =1 - — - ' (A4.27)

Also, subject to the condition that ul2 > 2Q(Sr + ﬂ% , . the

expression in [ ] can be expanded as

2 nw
2 _ ZQ (Sr + K
1 L2
’ 1

(A4.28)

This condition is always met, except.when ﬁlz = ZQ(Sr + ﬂ% , in

the unlikely event of both

being simultaneously satisfied.




On making the substitutions from equations (A4. 27) and (A4.28) into

equatlons (A4 26), and substituting for lMlzlz from equations (A4.4),

P becomes

- | | S Siﬁe,sr6°u12
1
= 3 |F . (A4.29)
1 2 2 SNw, 12
uT e, TR |
or by substituting from equation (A4.16)
L2

P = we>, —2 7 T (44.30)

: ‘ U+ Qs+ ';?

From equation (A4.30) it can be seen that there are two zones of
behaviour depending on the relative magnitudes of ul2 and
Q(S + ﬂ%). The following analysis therefore determines when each of

these two terms domlnates or when
2 ~ ’ : ‘ A '
u,“ > QS_. (A4.31)

For ease of analysis it is necessary to ignore the isolator damping.

Substituting for u 2 from equation (A4.11) gives

1

s 24 si2 + Q% + 2cs,; + c? > sr&. (A4.32)

Then substituting for Sr and Si from equation (A4.3), and making use
of the angle difference formula in equation (A4.12) enables the inequality

in equation (A4.3l) to be expressed as

u22 - sin € [u24 - 4SZQ2]% sin(¢ - v) > 68 cos € , (A4, 33)




Dividing by u22 gives
2 2
. t . t cos €
. 1 sin € [ -—4-] sin(¢ Y) > =5 - m . (A4.34)

When sin(¢ - y) = 1 (the frequency when < P> is a maximuﬁ) the

- left hand side of the inequality is a minimum; hence at this frequency
the inequality is least likely to be satisfied. Therefore, by substitut-—’
ing sin(¢ - y) =1, the condition for the inequality to be satisfied for

all values of (¢ - y) can be found. Itvis'when
2 _ ‘ ,
t” < cos B cos €, ‘ (A4.35)

which is the condition for the source beam to behave as a 'velocity source’

at the top of the spring.

There are therefore two regions of behaviour. First at high fre-

quencies when equation (A4.35) is satisfied, ul2 > 6Sr for all values

of (¢ - y) and so the peak power is given from equation (A4.30),

P = <p>. co_i_s ) | (A4. 36)

Secondly, at lower frequencies when t2 > cos B cos g, equation (A4.34)

shows that the value of sin(¢ - y) determines whether ul2 > ésr.

There are three possibilities, illustrated in Figure 5.3. First, when
sin(¢ — y) << 1 at the troughs of the <P> functions, ul2 > dSr and

 the peak power P is

5 _ 2
P - <P>0 cos B >

which means that the source beam behaves as a velocity source in these
regions. Second, as sin(¢ - y) increases, two frequencies are reached,
at either side of the peak in <P>, at which ul2 = QSr. By making this

substitution into equation (A4.30) the peak power is

- 2 S _ <p> 2
Prax = H[F|" 4 "4 ° cos B’
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This is the peak possible power transmission under any circumstances, it
is only dependent on the source characteristics, and it can occur in the

region of each coupled source receiver resonance, (sin(¢ = y) = 1).

Finally, as shown in Figure 5.3, between the two peaks a trough in
the P envelope occurs when sin(® - y) = 1, when <P> is a maximum,

At this frequency u12 < dsr and the peak power becomes

163.




APPENDIX 5

Real and Imaginary Components of Impedance of a Rigid Element, With

Translational and Rotational Inertia, Connected to a Semi-infinite Beam

F

MY

In the figure above, the velocity V and angular velocity é of
the rigid element and the semi-infinite beam, when disconnected, are
related to the applied force F and moment T by their respective

impedance matrices [A] and [B], i.e.,
(i) For the rigid element
e @t
T ¢ |-
where
[a] = _[‘all a1, = iwm 0 (AS.l)
a21 a22 0 1wl
m and I are the mass and rotational inertia. .

(11) For the semi-infinite beam

(85.2)

e R

Ml o= _ Elk
B] - F’u blz] e
P21 P22

k 1is the wavenumber.

=+
[
|
N




On rigidly connecting the two elements, they each move with the

same velocity and angular velocity, therefore the impedance of the

coupled system is simply the sum of that of the two components, i.e.,

F v (A5.3)
- B, |-
¢

The point impedance when a force, but no moment, is applied is found

by setting T = 0 in equation (A5.3), giving

2
c e +b - (b, +35))
b

11 11 b22 + ay,.

<}

which on substituting from eéquations (A5.1) and (A5.2) reduces to

<}
]
N

w 2

JEn | _a-w? b, _a-m? }
1+ (- 1+@Q-v7°

(A5.4)

where the rotational impedance ratio Yy is

and the point impedance ratio B 1is

This equation has three regions of behaviour.

(1) At low frequencies when <y << 1, the rotational impedance of
the mass is unimportant and
EIk3

Z=-50T-(l+1)+1wm

which is simply the sum of the two point impedances.




(ii) When y = 1, the moment impedance of the beam is of the same

magnitude as that of the mass, giving

3 _
7= i(Eik + wm).

At this frequency the real component of impedance goes to zero.

(iii) When vy >> 1, the rotational impedance of the mass is so

great as to prevent the end of the beam from rotating, i.e.,

- 3
Z=§—I—E—(1+i)+iwm.

- The real component of impedance is now twice the low frequency value.




APPENDIX 6

The Response of a Single Degree of Freedom System to a Swept Sine Wave

The response of a single degree of freedom system of mass, m,
and stiffness K, to a rapid swept sine wave is found by evaluating the

convolution integral.

The impulse response h(t) of a lightly damped single degree of

freedom system is

@ ) —Cwot . .
h(t) =/mwde sin w,t ~ (A6.1)
L _ _ 2 - -IS
where w, = wo/(l o), W, Y = .

'd
The forcing function of a swept sing wave is
f(t) = F sin(at2 + bt) - ‘0 <t <T .(A6.2)
where b 1is the starting frequency when t = 0 and 2a is the rate of.

change of angular frequency with time.

The displacement response may be written as the convolution integral.

t : .
x(t) = f f(t - T)h(x)dx (A6.3)
: .

substituting equations (A6.1) and (A6.2) into the above expression leads

to

F T 2 -Cwot
x(t) = —~—-J sin(a(t - )% + b(t - 1)) sin wyT.e dr.
m 4

o

This expression may be rearranged to give

F [ 2 —Con
x(t) = Eﬁg j‘sin(ax - w(t)t + ¢(t)) sin wyT.e dr , (A6.4)
o
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where ¢(t) = at2 + bt (the phase of the force at any instant), and

w(t) = d¢/dt = 2at + b (the instantaneous angular frequency). Using the
identity that 2 sin A sin B = cos(A - B) - cos(A + B), equation (A6.4)

may be rewritten as

S o1
x(t) = [ cos(at” - (w(t) + wo)r + ¢(t)).e dt
o

2mw
(86.5)

d

oW T
CO

2mw dt.

t
- = J cos(a'r2 + (wo -w())t + ¢(t)).e
d .

o

The second of these two terms contains the difference frequency
0 - w(t), which will hereafter be referred to as Aw(t). Only this
term contributes significantly at frequencies in the resonance region,
when Aw(t) becomes small. Therefore‘only the second term will be
included in subsequent analysis. If (A6.5) is rewritten in complex

exponential form to include the damping ratio

2mw

t
x(t) = - F Re j exp{-i(at2 + (Aw(ﬁ) - iCmo)r + ¢(t)) }dr. (A6.6)
d
o

This integral may be solved using 'error functions', but first it must be

put in a form compatible with the standard solutions.

Firstly, writing

Aw(t) - 1Cwo = W.

Then rearranging the argument of the integrand

2mw

t —
x(t) = - =—— Re j exp{-i[aCc + 397 + 4(6) - Gpallar.  (a6.7)
d |

If the substitutions




the time to reach resonance frequency,

2 2
) (wo +b) (cwo) o
4a 4

.

The response of a single degree of freedom system to a rapid sweep is
expressed as the product of four terms: a magnitude, dependent upon the
force and the sweep rate, an exponential decay term due to damping, a
harmonic oscillation at the natural frequency, and é modulating term

defined by the "error functions".

(i) Discussion of the form of the modulating function

Error functions can only be evaluated using tables (see, for
example, reference [39|). However, the approximate response of the
single degree of freedom system may be estimated from asymptotic values

of the "error function", which are given as follows.

For large values of z

erf(z)
erf(z)
erf(z)

For small values of 2z the series form is useful

5 ' 2n+1
z

z 130
10 -1 n!(2n + l)

10 e e }

erf(z) = {z - 53 +

therefore
2n

d_(erf =<0 -2 2* -1)" 2} A6.13
d—z-(er (Z)) = zZ + —2 P —n-:— ( . )

It is assumed that the initial sweep frequency 'b' is well below the

natural frequency W, and that the sweep continues to a final frequency

well above the resonance frequency. This being the case the first
"error function" term in equation (A6.11) is approximately unity,

provided that va t, >> 1. The second "error function" term is a




equation (A6.7) becomes

X
2
£ __ Re exp{-i(% + B(t))} J exp(-Xz)dX

2m ;vVa : X (A6.8)

x(t) = -
1
B(t) = ¢(t) - G a.

The solution to the integral may now be expressed in terms of the

‘error function', which is defined as

VA
erf(z) = 7127 f exp (-X2)dx
[o]

(see, for example, reference l39|), giving

4mw

. B + P .
x(t) = —— Refe : . 2-{§rf(xz) - erf (Xl)]}.
d

By substituting for B(t), X2 and Xl in terms of a, b,

¢ the solution for x(t) becomes

izw i—
_ o - 4
>3 )) erf(e ".va
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. W . .
function of %a (the time for the frequency to sweep from the instant-
aneous value to the resonance frequency). This time is positive and at
its maximum at the start of the sweep, zero at resonance, and large and

negative at the end of the sweep.

Therefore from (A6.12) it may be deduced that at the beginning of
the sweep the response is small. As the sweep frequency approaches the
resonance fréquen;y the amplitude increases, and at the resonance

frequency it becomes

The amplitude continues to increase as the sweep goes above resonance

until it reaches its maximum value of

- _F s : |
¥pax ~ 2mw .V/(:— (86.14)

d w > w
o

If there is no damping, the response amplitudes remain at this value.

The response amplitude at the resonance frequency is therefore only
half the maximum value. However, at the resonance frequency the rate of
increase of amplitude is a maximum. The rate of increase may be
calculated from equation (A6.13) by substituting 2z = O and using the
identity -

Ya.t + const.

giving




amplitude (x)

By substituting this expression into equation (A6.11) the maximum rate

of change of the amplitudes is given as

d F
E% =5 _ _ ‘ (A6.15)
d

It is seen that the rate of increase of amplitude is independent of
sweep rate, and in fact is equal to that of an undamped single degree
of freedom system excited by a steady harmonic force at its resonance

frequency.

The time over which the amplitude increase may be approximated to

being simply the maximum amplitude divided by the maximum increase rate

Hence it is seen that a faster sweep. rate gives less time for the

‘amplitude to increase.

The overall approximate envelope of the response for a single

degree of freedom system is shown below:

L /x
N Ty ——— ——— === 2mu., a
1/ e increasing d
‘T a damping (undamped)

AN

time (secs)



(ii) The effect of damping

The effect of the damping on the response of the single degree of
freedom system is expressed in the experimental decay term in equation
(A6.11). It is seen that for time greater than 'to' the response
decays at the same rate as that of our impulsively excited single degree

of freedom system, namely,

“Cwot
e

as shown in the figure on the previous page.

It can also be seen from this figure that, for time greater than t»

the damping could limit the maximum amplitude obtained if

—
tw, > 2/% . R | ~ (A6.16)

(iii) Comment on the magnitude of the peak amplitude

If criterion (A6.16) is satisfied, equation (A6.14) gives the
maximum response amplitude of a single degree of freedom system excited

by a swept force of magnitude F.

F

x B ee———
max 2mwd a

E]

This is the same as would be produced by an impulse I of magnitude

Y.
L= 2 a °’
that is,
I
*max ~ mw. °
d

However, it may be observed that the magnitude of the equivalent impulse

'I' above is exactly the size of the Fourier Transform modulus of the

swept sine wave forcing function, |26]




This has the significant implication that the maximum response of
a system is independent of the shape of the forcing function, but only

dependent upon the modulus of the Fourier transform in the region of the

resonance frequency.




APPENDIX 7

Investigation of Cross Terms in Velocity Product

The purpose of this section is. to investigate the magnitude of the
cross terms in equation (7.18 ) relative to the squared terms. When only
two modes p and q contribute to the vibration at points s and r,

equation (7,18 ) becomes

v v = e 12 @ 2y Py e 2 @2 @, @

(A7.1)

Above the pth natural frequency the modal mobility becomes mainly

mass controlled, therefore,

1 m®y=-u®), | (47.2)

Likewise, below the qth resonance frequency the modal mobility becomes

stiffness controlled, therefore,

Im{M(q)} MCAR | | . (A7.3)

In this region if fp and 'Eq are the result of uncorrelated forces
the second pair of terms in equation (A7.1) will be small compared with
the first pair, and so only the first pair contribute to VsVr*. if,
however, the forces fp and fq are in or out of phase, as would be
the case for single point excitation, the second pair of terms achieve
their maximum value, and equation (A7.1) becomes

AKEN AL |fpl2.|M(p)|2.¢ (p)wr(p) + lfq|2.|M(q)|2.wé(q)w (q)

S r

+ |fp||fql|M(p)lIM(q)I(wr(q)¢s(p) . ws(q)¢r(p))

(A7.4)




From this equation it can be seen that when |fp|]M(p)| ='|fq||M(q)‘
the third term is comparable with the sum of the first and second, and
so' it is not possible to have great confidence in power estimates made at
this point. However, if the first two terms are used, a rough estimate

is obtained. If s = r, equation (A7.4) becomes

2 _ (p)), (p) (@), (@)2
Ve I% = e T e 00+ g [ty 5% (A7.5)

If the power is being estimated from the squared terms in the expansion

of equation (A7.5), i.e.,

v 12 = e 12 P12 0 @ o e P17 @ e

then by comparison of equations (A7.6) and (A7.5) it can be seen that the
estimated value will be at worst, twice that of the true value. Although
there is one equal likelihood of the estimated value going to zero if

6:)) (@
Vg v

is of opposite sign to




APPENDIX 8

Program to Detect Peaks in Mobility, XPEAK

r//’/ \\\beA//J-\J\,rq\AA/ Threshold

The main problem in detecting peaks is the noise and unevenness in
the surrounding data, see Figure above. The sensitivity of the program

can be varied in the following ways:
(1) A threshold can be imposed to ignore all data of lower value.

(ii) The local maximum is found, simply when one point is greater

than the two surrounding points.

(iii) n steps, each of M points are made away from the local
peak in each direction (higher and lower in frequency).
A peak is only registered if the level at each step
decreases. It was found that only two or three steps are

necessary, i.e., n = 2, 3 and M can vary between 1 - 100

data points, depending on the width of the peak.




"APPENDIX 9

Power Transmitted via a Spring to a Seating Structure from a General

Source Structure Excited by Multiple Forces

1 n forces §1 > fN

/

Complex stiffness K(1 + in)

Receilver

‘'The power transmitted via a spring from a source structure to a passive

receiving structure is given in equation (3.8) as

Re{MR}
- i . - ;2
lMs + i%(1 + in) + MR!

5 -
=1
Per 2lVf' :

where Vf is the velocity of the attachment point on the machine, prior
to attachment of the spring, ﬁs and ﬁR are the mobilities at the attach~

ment points on the source and receiving structures, respectively.

If the machine is sufficiently lightly damped for the vibration to be
governed by modal behaviour, then, from equations (7.20) and (7.18), the

mean square velocity can be given as the sum of the modal contributions,

v 2 =4 5 1E 12 reu® )0 o P))2 (49.2)

p=1 s

is the generalised force for the p'th mode, i.e.,




(P) ﬁ(p)

ws is the eigenvector of the p'th mode at points and
ﬁ(p) are the modal mobility and resonant peak values of the modal mobility
respectively (equation (7.9)). Equation (A9.2) does not hold true between

two resonances when two modes make similar velocity contributions (Appendix 7).

Now, in practical machines, there can be heavy damping, causing
significant attenuation of vibration from the excitation region of the source
structure to the coupling point. (Although this feature is only likely to
be important when individual machine elements can resonate independently)
This effect can be allowed for, although without mathematical rigour,

(p)

using a modal attenuation term sin(es ), mnotated thus by way of comparison

with the beam studies earlier (equation (5.3)).

The mean square velocity contribution from the p'th mode at the coupling
- point on the unconnected source structure, £|Vf(p)! may therefore be

written from equation (A9.2)'as

pv, @2 - ;,|fp|2.ﬁ(").sin(es(1’)).Re{ﬁs(p)'} (A9.3)

where ﬁs(p) = (\ps(p))2 ﬁ(p) is the mobiiity of the_p‘th mode at the

connecting point of the source structure.

On making this substitution into equation (A9.1), the power transmitted

to the seating structure is given .in general as

= (p) =
n Re{M }.Re{M,}
p=d 1 1e 2P since, @), i

tr pel

(A9.4)

My + 28+ 0y + B |

If the particular case of the two coﬁpled beams in Chaﬁters 5 and 6

is considered, with multipoint excitation rather than single point excitation,

F. F. ..... T
[¥f+tNl

3 ~ )

then equation (A9.4) becomes:
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A

S sin e.S_.Re{M.}
- %prlz L — r ® — (A9.5)
|M2 + E(i +1n) + MRI

Ptr

where it is assumed that prlz does not change rapidly for different
modes, Sr = Z Re{M } and S = M(P) Equation (A9.5) has an
identical forg_ as the single point excitation case considered earlier in

equations (5.1)-(5.3), except that F1 is replaced by f . Therefore,

the expressions in table 2 hold approx1mate1y true for mu1t1p01nt exc1tat10n

of the source structure.

; ~(p)

Now, in general, for a vibrating source, such as a machine, s

(p))

and sin (es are not known, but their product can be found from the

free velocity on the surface and the real component of mobility at that
. point, ‘as can be seen from equation (A9.3).

va(p) lz

= glfp|2.ﬂ(P).sin<es‘p))= p{P) (49.6)

(P)
Re{MS }

Thus ﬁiﬁ), which. is the maximum power that can be input to the source
by the p'th mode, is the only quantity that can be determined from the
surface, but it is all that is necessary to make power transmission estimates.

For a single mode, equation (A9.4) becomes

=(p) v
P(p) _ ﬁ(p) Re{M2 }Re{MR}

tr in

(AS.7)

lﬁgp) +-%(i +n) + ﬁkl

For estimates of power over a broad frequency range, these modal contri-

butions can be summed so that Ptr = z P(p) s SO

Re{M,}Re{M_}
p =B . —2 VMR . (49.8)
| rg @+m o+ MR,
where the function ﬁin is measured as éIVfIZ/Re{ﬁz}. - (A9.9)

This term, ﬁin’ is independent of the measurement position, and can
therefore be estimated from more than one point on the machine. The
estimates of this term can be in error when two modes interfere destructively

at a point on the surface. However, this will always lead to an under-
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estimation, which could be corrected from an additional measurement else-
where. At high frequencies, for example greater than 2 kHz, on 6 mm
thick steel panels, the mass and inertia of point mobility measurement
transducers could seriously affect the measured value of Re{ﬁz} (as

described in section 8.5), and would therefore lead to unreliable values

of P, .
in

ﬁin can only be measured if no power is being absorbed by the machine
seating, but this would permit measurements to be made on a machine mounted

by isolators on a rigid foundation.

The form of the second group of terms in equation (A9.8 ) is the same
as that which are in the analysis of the two coupled beams, equations
(A4.4) and (A4.9). Therefore, if straight line approximations of the
frequency averaged and resonant peak values of ﬁz and ﬁR were made,
the equations given in table 2 could be used to make estimates of power,

if divided by S sin €. For example, for the velocity source region

(a22 > §Q»<<P>> = ﬁin.SQ/az2
where § = <Re{ﬁ2}>
Q = <Re{MR}>
ag = (w/K)?
ﬁin is measured for the particular machine.
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APPENDIX 10

Power Transmission to a Symmetrical Seating Via Springs from a Rigid

. v, . . .
Machine Moving in Rotation and Tramslation.

The free machine

Force F

l \\V Torque T

5 mass m
[ :: moment of inertia I
. ' / £

connecting point A

De

For the free machine, the velocity of the centre of gravity Vf is

2
AR RS (A10.1)

(wm)2 .

given as

Likewise, the velocity at the connecting points due to the angular

velocity éf is

: 1)
bo]%.0% = 3 A2 s .22, (A10.2)
(0I)

The connected system

! \ T

v Y 1

springs of complex stiffness
Y u, K(1 + 1in)

2 1 receiver




If it is assumed that the receiver is symmetrical about axis Y-Y

then the receiver mobility matrix can be written as

. "

M= M1 M12 ’ (Al10.3)

12 4

=i

where ﬁl is the mobility at points 1 and 2 and ﬁlZ is the transfer

mobility between points 1 and 2.

The velocity V and angular velocity 6 of the mass can be expressed

in terms of the velocities at the tops of the springs Vl and V2.

= } . (A10.4)
1
- _i_ V

D
o=

The equation of motion of the mass is

4 v, 0 F
= - [7] (410.5) 7
6 0 Sf F2
where [P] = [1/iwm 1/iwm .
' 2/iwl -2/iwl

The velocity response of the receiver uy and u, of points 1 and

2, respectively, is

= [M] . (A10.6)

2 FZ

The forces in the isolator are given as

K_ _k
iw

(A10.7)




Using equations (Al0.1) to (Al0.7), the forces applied to the receiver

Fl and F2 can be expressed in terms of the force and torque applied to

the mass

F a a Fl

- (A10.8)

T b b F2

where
iwm = 1w =
=T Moy
b = - lol o, + 22 - ) = 2
28 T M2

Now, from equation ( 7.3 ) the power transmitted by two forces F
and FZ is

1

P, = %[IFllz + |F2|2]Re{M1} + 5[2.Re{F1F2*}.Re{1\"412}} (A10.9)

On substituting for F1 and F2 from equation (Al0. 9), the power

transmission becomes

Re{(M, + M..)/2}
_ 2 1 12
Per = élvfl :

1w 1,2
1222+~ -

| (M, + M
1 2K

22 Rel(M) - M, ,)/2}
= = iw _ 124 2
0ty - M) /2 *e T et

+ 46| (A10.11)

Thus it can be seen that the power transmitted by the translation and

rotation of the mass are independent. These expressions are identical to

the single coupling point expression (given by ﬁl = ﬁlz) except that the
seating is characterised by a (ﬁl + EQ)/Z term as compared to ﬁl for

single point coupling (or My in equation (9.1).




Table 1. Power input to and transmitted from a finite beam coupled

to an arbitrary structure, for unit mean square force input.

TRANSMITTED




Legend for Table 1

<P> envelope of peak power

P> frequency average power

B> envelope of trough power

r reflection coefficient modulus

t transmission coefficient modulus related by 1 - r2 = t2

attenuation in wave amplitude travelling twice the length

of the beam

A
% ratio between peak and average real component of mobility
§ peak value of real component of mobility
S frequency average value of real component of mobility
$ trough value of real component of mobility
note 1. LI . 4 _ 2 if t2 < 4.
1-r t2




~ M . .
Table 2. <P>, <P>, <<P>> for power transmission between a

short source beam and a long receiver beam

Zone <P> <<P>> <pP>
oY) . y~ . SZ .
" 2 > §6 S7.Q sin € S.5Q sin € Q sin €
2 2 2 2
) ) )
Note:- High or or or
frequencies, source A2t 2 ¢ 2 ¢ 2
beam acts as (8)< —a . §. 4 s.-4 o
'velocity source' s g SmE T T cSinE T Sim e

~ A~ ~ o . 2 I3
SQ > uz2 > §Q S.% sin € SSQZSiT T 5Qsine s;n £
Q [u,” sQ]? u,
0 + W
+ 8(Q + K)
Note:~ Mid- or or or
frequencies, when ¢ 1 ¢ 2
S/S ,is comparable g Los 8 . . g _d |cos B sine | s.-9 sin e
to Q/Q cos € ° * 2 |cos € 4"
~ ~ Vv nw 2
SQ + S(Q + < Y
(1) sQ > §@ + 1% | s, B oin e 5.5 B cin e 5,05 B cin e
K cos € cos € cos €
Note:~ Very heavy
source damping
- : -7
. 0 A ~ YA 3 3 .
(ii) S(Q + ﬂ”.) > SQ S.——(g-)zsm > S.Q—- .sin € S.—E .sin €
K 2°Q Q 4
td d d

Note:- Light source
damping and heavy
isolator damping:-
same as for infinite
beam receiver




Legend for Table 2

- see Figure 5.3 for definitions of <P>, <P>, <<p>>

<P> envelope of peak power
<<P>> frequency average power
<b> envelope of trough power
S peak value of source real component of mobility
S frequency average value of source real component of mobility
8 trough value of source real component of mobility
6 peak value of receiver real component of mobility
Q frequency average value of receiver real component of mobility
6 trough value of receiver real component of mobility
sin ¢ is the decrease in vibration level between the two ends of the
source beam (sine = 1/cosh nk2/2)
cos € is the source beam damping parameter
S = 2.S/cos € as cos € = 2nkf
cos B is the receiver beam damping parameter
a = 2Q/cos B

%(1 + in) 1is the isolator complex mobility

2 _ .2 w2 2
u2 =8° + (Q +8 K) +Qd
) ~
where Qd“ = Q2 + ﬂ%g‘+ 63%92
2 4QS . .. .. ,
td == is the transmission coefficient from the source beam to

u . .
2 the isolator and receiver beam
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Fig. 2.1 Model of end excited beam.
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Fig. 2.2  Real component of mobility as a function of
reflection cvefficient, r, and damping
.-attenuation ‘'a'.
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Fig. 2.4 Experimental infinite beam model.
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Fig. 2.5 Measured values of mobility modulus and phase of
: an experimental infinite beam.




excitation

Fig. 2.6 Experimental finite beam
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Fig. 3.1 Two coupled systems, no moment coupling.
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< - complex stiffness K(1 + in)
F

£ 5
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Fig. 3.2 Two systems coupled by a damped spring.
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FIG. 3.3 Model of connected mass, spring and finite beam.
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Experimental layout.
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FIG. 3.6 Real and imaginary components of isolator transfer
apparent mass,
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FIG. 3.7 Modulus and phase of isolator transfer apparent mass
0-4 kHz.
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Fig. 3.8 Exp. 1. Power x w, input to isolator and transmitted to
the infinite beam, for unit force spectral density.
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Fig. 3.9 Comparison between w x power transmitted to the finite beam

and the infinite beam for unit force spectral density input
0-1 kHz.




*zPY 1-0 ‘andutr A3tsudp Jealdoads o103
3TUN 103 ‘meaq 93ITUTI 8yl 03 PolIjTWsSuUeII pue 103BJOST 03 Indul *a8med x m 7z *dxg  -*01°'¢ 814

z Aouanbaly
0001 001 Ot

— ¥ T T T T T T L i L] | T

-~

pajiiwsupyy Jamod \

yndut semod ~ e m————

-0l

Buijpes wpaq a4iuijul |
1o} ‘uoypwixosddo 92IN0S 8240§ — — — — <00t
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Fig. 3.11. Exp. 3, Power X w Input to isolator, and transmitted
to the infinite beam for unit force spectral density,
0-4 kHz.
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Fig. 3.12. Comparison of w X power/Hz measured using the isolator
transfer apparent mass method, and the seating apparent
mass method.
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Fig. 4.1 Source beam coupled to an arbitrary structure.
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Figure 7.1 Diagram of plate
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Fig. 10.10 Close up of the motor, showing the accelerometer arrangement
on the isolator, and the hammer exciter above the casing.
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Fig. 10.23 w x power/Hz transmitted by the front pair of isolators compared with
that.transmitted by the rear pair of isolators, impulsively excited
running motor, 1 kHz - 10 kHz.
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Fig. 10.25 w x power/Hz transmitted by four isolators compared with that
transmitted by a single isolator, measured using isolator transfer
apparent mass, resolution 160 Hz, impulsive excitation of reacing
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Fig. 10.26 w x power/Hz transmitted by

4 1solators, measured using the isolator
transtfer

apparent mass

; and measured using the seating apparent nass,
resolution L6V Hz,

Impulsive excitatjion of running motor.
-




*zZH 01 - wm 01 ‘uotinjosax zH 07 ‘iojom papuadsns L1991 aYy3z JO
3993 In0j 3yl 3@ UOTILIITIIO® 3y) 3Jursn pajorpaid eyl yijtm paanseaw zH/aemod x m 3Jo uostaedwmo)

(zH) Aousnbaag 001
1] 1] 1 1 _ ¥

LZ°01 214

T T ! 1 4 1 1 1

L L

000°01 0001
T

Ty # 4 1 3

S1038T10ST
anoJ ySnoayy paanseswm

1ojom papuadsns-£199a3
3yl jo 3333 iInoj 3yj Jo uUoIIeidT[aVo® 3yl Sursn pajorpaad

o1

o1

ZH/S33IBM x ™




w X Watts/Hz

—
(o]
'lrlilll‘l

—

. Ol

. L]
[1"].""'r'lf

input at point 5 on motor

2
z
=
‘2

mc{{Nm\ jk M\ transmitted by 4 isolato,z's {.m

! ' 1 { 1 §

-

o=

2 3 A 5 6 7 8 9 10x 10
Frequency (Hz) ‘
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