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ABSTRACT
Faculty of Engineering and Applied Science
Department of Aeronautics and Astronautics

Doctor of Philosophy

- The Measurement of Particle Size using Light Scattering

by R. M. Waterston.

Two methods of particle sizing have been investigated.
The first uses least squares analysis to obtain particle size
distribution information in sprays from the angular variation of
scattered’ light infensity. The thesis presents theoretical
proof of the potential of theiFechnique and includes experimental
verification of its accuracy. The second method involves a
novel method of illuminating the suspension under investigation
-using crossed lasef beams. fhe technique is applicable to

submicron particles, affords a near point measurement and has an

inbuilt discrimination against background noise.
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SUMMARY

This thésis describes the development of two novel
méthods of usiné scattered light Qata in the sizing of particles.

The first section describes a new technique for
processing scattered light data to obtain a particle size
distribution. A series of pa?ticle size classes is preselected
and the Least Squares Approximation Theory is used to determine
the contribution made by these clasggs to the total light
scattered by the whole distribution. The processing method
represents a considerable improvement over previously tried
4te¢hﬁiques. 1t is easy to apply and does not require the
assumption of a specific functional form for the distribution.
Theoretical and experimental proof of the accurdcy of the method
are presented.

The second section describés the development of a
new method of illuminating particles. In contrast to normal
methods this affords a near point méasurement and considerable
discrimination against background noise. This.is achieved by
crossing two coherent laser beams in the test space. The
intersection region resolves itself into a set of fringes each
of which can be considered as a small beam of finiteylength.

A particle situated within one of these fringes projects its
forward and back scattered light into the free space between

the two incoming beams. The ratio of these twé components is

a monotonic function of particle size in the range 0.02-0.5um.
Particles traversing the fring system will give rise to modulated
light scatter the amplitude of which can be related to particle
size. The modulation frequency can be used to isolate the
signal from background noise and is a measure Qf the particle

velocity. - .f; $




PART 1. THE MEASUREMENT OF - SPRAYS USING-LIGHT SCATTERING

1.1 Introduction to Part 1

‘This thesis describes the development of two
techniques for determining experimentally the sizes of particles
in suépensions. Both methods are optical, and each is treated
separatelyvin the thesis.

There are many scientific and industrial fields in
which there is a requirement fof the accurate measurementlof.
particle'sizes in a suspension. These include the study of
atmospherics,“nucleation and particle growfh and pigment
manufacture. However, this work sprang from an investigation,
begun in 1968, into the cooling of turbine blades of gas-
turbine engines with wafer/air mists. The proposed metﬁod
of éooiing involved injecting étomised water into the turbine
cooling air at.compressor delivery conditiqns. A relatively
small mass of added water would raise significantly the cooling
capacity of the air because of its high latent heat of
evaporisation. Various heat transfer experiments were carried
out38,39,40 the success of which led to a contract with Rolls
Royce (1971) Ltd. to explore the method further. Several
areas were identified where data was required. VOne of the
most important concerned the behaviour of the water droplets

~following their injection into tﬁe hot, high pressure compressor
delivery bleed cooiing air. An experimental rig was built to
simulate these conditions2’/ which consisted of a 90 kw high
pressure air heater, and a 1} metre long 3.8 cm diameter test
duct. It was planned to measure the evaporation of water
droplets as they were.sﬁept, in the heated air stream, down
the test duct. ' The duct was equipped with instrument ports
and windows along its length. The sprays used to genérate the

2.




dréplets produced water particles between 20 and 60um.

A theoretical investigation indicated that within
the test section length (1} metres), the droplets would vaporise
to a mean df/;pproximately 5um, but with rapid evaporation over
the first few centimetres. The sizing technique used had to
be capable of good spatial resolution and able to accommodate
-a wide range of particle sizes (5-100um).

In the past, droplet sizes had.been measured using
a variety of methods, most of which required that a probe of
some description be inserted into the flow. These techniques
have been brought into question receﬁtly primarily because of
the disturbing effect of the probe on the flow. Large particles'
tend to bounce off or shattef, the small specimens will tend to
avoid ggpture altogether. Photographic techniques have
overcome some of these problems but are limited in their range
of applications. Small particles (<20um) require large
magnification which .demands very intense light sources and, if
the~particles are moving, generate extremely high image veiocities
at the film plane. In many cases the recorded image is elongated
or is a étreak rather than a sphere. An -additional disadvantage
of photographic techniques concerns the measurement of the particle
sizes from the photograph. This is an extreﬁely exacting and

time consuming procedure which would severely limit the number

of tests it would be possible to make in a given time. It is
‘against this background that light scattering methods have been

developed and are finding increasing use.

In many cases of interest the particles or droplets

are present in hostile or relatively inaccessible environments.
Modern light scattering methods have the potential of measuring

particle distributions from an area remote from the flow. The




only intrusion into the test space is made by a laser beam or
equivalent light source which has an immeasurable effect on
ﬁhe suspension within. It will also be seen that they have
the possibilitylof being built into an automatic 'on line'
sizing System capable of providing results with the minimum of
delay.  Finally, light scattering methods are capable of
measuring particles of a wide range of siées. The extreme
flexibility of light scattering methods has prémpted the
development¥of the systeﬁs described in this thesis. Both
methods were designed specifically for making measurements in
the evaporation experiment mentioned earlier. The subject of
this sectioh of the thesis is the development of a method of
analysis designed to reconstruct a particle size distribution

from scattered light data. It makes no assumptions about the

shape of .the distribution and is suitable for 'on line' operation.

Tﬁe work is a nétural,progression from the research of a
colleague, Dr. J.D.C. Vardon29, who made the first exploratory
theoretical investigation of the methods potential. Following
is z description of the theoretical and experimental work which
was carried out in bringing the technique to the point of
practical application.

1.2 The Scatter of Light by a Laser Illuminated Particle Suspension

The general theory of scatter of a plane polarised

wave by a spherical particle was derived by Miel in 1908. A

detailed description of the solution procedure can be found in
references 2 and 3. The strengtﬁ of a particle sizing technique
based on the scatter of light lies in the accuracy ofbthe
descriptive mathematics. The accuracy of Mie theory has often
been proved e#perimentally in recent years“. This hasAenabled

the experimenter to determine the size of particles by direct
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combarison of experimental results with a reliable theory.
The general solution of Mie's theory predicts the
intensity of scattered radiation at any point in space around
the particle:/A'Figure (1) defines the frame of reference
around which the theofy is derived. The solution is in two
parts representing respectively components perpendicular and

parallel to the scatter plane.

2

Z;f;?'il sin®¢ (perpendicular polarization)

2
a7 iz cos?¢ (parallel polarization)
r is the distance from the particle ceantre
¢ is defined in Figure (1)
. i, and i,, the intensity functions, are each’
dependent on a non-dimensional size parameter «, and on the

refractive index of the particle relative to the medium, m.

The size parameter is -

particle diameter
A light wavelength
Two special cases of direct relevance to scattering
experiments exist. . These are:
1 ¢ = 90°

I¢ = I, = (A*/4rr®)i,; I, =0

This defines a scatter plane perpendicular to the

electric wector.
OO
= I, = (A*/4rr®)i,; 1¢ = 0
In this case the electric vector is parallel to scatter plane.

If scattered light is measured in either of these

planes only one component of scatter requires computation because
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the sin®¢ and cos®¢ factors are either unity or zero. The light
scattered at angle 6 = 0° lies along the laser beam; that at

8 = 180° is also coincident with the ﬁain beam.but projects back
towards the light source.

Measurements taken simultaﬁeously in the Qertical and
parallel ﬁlanes can provide unique information about the particle
suspension under investigation. For particularly small (<1000 A)
particles the angular variations of scatter in the two planes are
radically different. Work relevént to these small particles is
described in Part II. With increase in size the difference
between the planes of scatter becomes less apparent. Tﬁe major
differences occur in the-region of 120° where I, generaliy reaches
a minimum substantially lower than that of I,. The intensity
functign i, is often more struétured than i», as can be seen from -
the examples.gn Figure (2) and Figure (3). The intensity functions
are unique indications of the particle size. If the angular
variationvof scattered light from a monodisperse was measured .
experimentally, the size of the particles could be deduced in
principle by matching the data to a series of théoretical intensity
distributions computed for a suitable range of «a.

In most pracfical situationsvthe light will be
scattered from a suspension which consists of a wide range of
~particle sizes. In this case the scattering signature consists
of the sum of the individual intensity functions for each a,
scaled by its respective number density.

At any scatter angle ej the intensity is:

= 3. I
= 321N Yo,
1

I.

3
where Ij is the observed intensity at ej
ny is the number of particles of size a,
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Ia. is the intensity scattered by particle
. a, at ej

-~~~ m 1is the number of size classes in the spray.
The above formulation assumes, first, that the particles are
sufficiently far apart that the intensity signature. for each
particle, as formulated by Mie, is unaltered. Secondly, no
substantial secondary scattering_occﬁrs within the suspension.
In mosﬁ practical cases of interest these limiting conditions
can be avoided: It has been proved that the maximum allowable
number density for a typical cloud lies between 10° and 10%°
ﬁarticles/cczo. This is adequate for most practical purposes.

To gain some insight into ﬁhe effect of the size
-distribution width, shape, and the position of the modal mean
of the(particle suspension, on the scatteréd light, intensity
~ functions were calculated in the i, plane using Mie theory for
several parﬁicle distributions. To aséertain the effect pf
shape'two sfandard distribution functions were assumed. The

.calculations are for water having refractive index m = 1.33.

(1) -Normal distribution

n{a) = ———lt—'ex - éfL:zgli

i (2n)zo P 20
¢ = nbnedimensionalt;ize (7D/2)
a = mean-éize parameter (ﬁﬁ/k)
o = standard deviation

(2) Zeroth order logrithmic distribution (2.0.L.D.)

' 2
n(a) = exp [:_ (log;GOIIOgam) ] / (2,") icoam exp [0,02/zj
where ¢ = @ [éxp(éooz) - exp(3o°2)]% a = modal mean




The normal distribution is not a realistic‘representa—
tion of a naturally occurring distribution as negative values of «a
are possible. However, being symmetric, it provides a useful
contfast wiégfthe Z.0.L.D., which is a skewed distribution. 'In.
both cases the modal value remains the same if the standard
dviation is changed. The range of particle sizes of interest in
this investigation was approximatély 2-100pm. However, préliminary
computations were limited to sizes between, a = 2-300 (diameters e
of O.Q—Gdum with a light source of A = 0.6328um). Figures 4, 5, 6
and 7 show intensity signatures of normal distributions and zero
order log distributions of various standard deviétions, o, and
mean diamcters, c. These were calculated from a set of individuai
intensity functions which had been compufed beforehand and stored
in a computer disc file. The size range restriction mentioned
above was imposed by the available file capacity. Each distribu-
fion intensity signature was calculated from a large number of
discrete sizes spaced-at intervals of a =2 (0.4um:for A = 0.6328um).
Iﬁcreasing the number. of size classes so this interval became less
than a = 1 made no‘apparent difference to the computed signatures;
Increasing the size of the interval beyond o = 2, hoyever, made a
considefablegdifference; the computed signatures became more
structured. It was assumed that the spraying systems of interest
would generate relatively dense particle distribuﬁions. Therefore
.small intervals were used to compute the intensity signatures through-
out the theoréticél investigation. Subseduent practical work
provéd that this assumption was correct.

The curves in Figures 4-7, reveal that the distribution

mean size and standard deviation has a considerable effect on the




scattered light polar diagrams. The shape of the forward scatter
lobe was evidently dictated almost exclusively by the modal size

of the distrfgﬁtion. Its width was relatively unaffected by the
standard deviation of the distribution. However, the distribu-
tion width affects the degree of structure in the intensity function
and tends to change the intensity of light scattered at the forward
angle (6 = 0°). A broadening distribution showed increasing loss
of structure and more light being‘scattered forward. Comparison

of equivalent normal and log distributions showed that skewed dis-

tributions have less structure than symmetric ones. If a rig were

available for measuring the angular variation of scattered light

from .a suspension and provided a Z.0.L.D. or normal distribution
was rep¥esentative, particle size could be obtained by comparing
the data with curves similar to those in Figures (4-7). The
potential-of this method is explored later.

Several design criteria for a light scattering experi-
mental apparatus can now be established. The importance of the
forward scatter cone meant it must be possible to obtain intensity
measurements very mear to the zero scatter angle. In practice
the light scattered directly forward is superimposed on the main
beam and is, as a consequence, unmeasurable. However, large
particles ( a >150) have a véry narrow forward lobe and for a
determination of size would require intensity measurements-within
0.5° of the forward direction. 'The angular range of-data necessary
to characterise a distribution need not be greater than that shown
in the accompanying figures for the range of sizes of intereét.

This is because the structure and absolute intensity Qf the scattered
light signature diminishes beyond 15°. Measurements .in this region

would have been difficult in practice because the scattered light is




sevéral orders smaller than the forward scatter. If the structure
in the signature is to be detected an angular resolution‘of
approxima;ely 15 minutes of arc would be necessary. Finally, the
light detgcfion system must be capable of monitoring accurately
changes of intensity which can cover several orders of magnitude.

A system of particle sizing in which experimental data
in the sensitive forward scatter régioﬁ is compared to a series of -
computed theoretical overlayé is possible. It is flexiblé and does
not require the insertion of a probe into the spray or suspension.
The zero order log distribution funcéion has been shown to be
representative of many real diétributionss. This is probably one
of tﬁe besc functions ;o use as a basis of comparison for obtaining
particle size information; The technique hés been applied experi-
mentally, to a variety of systems and the results are diécussed in a
later section.

If the comparison 6f theory and experiment could be
automated, the- sizing technique would assumé much greater value.
The fbllowing chapter describes several methods of data inversion .
tried by different research workers. This is a prelude to a
description of the least squares inversion technique which con-

stitutes a iange part of this thesis.

1.3 A Review of Techniques for Obtaining Distribution Information

from Light Scattering Data

Particle sizing techniques uéed by previous workers
have generally fallen into one of four categories.

(1) "Polarization techniques

(2) Turbidimetric methods

(3) Large angle variation of light scatter

(4) Measurements in the forward scattering cone.

I0




The first three of these methods required the 'a

priori' assumption of a specific distribution function. In

many cases the zero order log distribution was used. Another

distribution function which has had wide use is defined by,

p(e) = C(a - p) exp. {~|(a - p)/q|®}
where p = 2mao/A
Lo = 2wal/x
q = 2ms/A )
c = no:malisation constant
ao = radius of the smallest particle
a_ = modal radius
m
a = 'particle radius
. _1
a = ap = 3 v/3 S
m . .
S = detgrmines the modal diameter of the
distribution

1.3.a Polarization methods

?olarization techniques require the measurement of
‘the scattered_light in each of the two planes which constitute
the solution of tﬁe Mie theory. The ratio of the light
scattered in the two planes at the same angle of scatter is
a unique measure of particle size. Measuréments taken at
several angles provide enéugh informatién to establish the
" mean size and diétribution width of the particles under
investigation.
For a polydisperse the polarization ratio is

defined at a specific angle, 9, by,

P(O)V = i:gg)"— ”fp(é}iz(e; a)da/Sfp(a)i, (6, a)da

v/
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i intensity function Oﬁie theory)

p(a) = number deﬁsity function

- The characteristics of the suspension are ascertained
by comparing the angular experimental data with a series of
computed figures evaluated for‘a set of distributions of various
means and hidths7. The techniqué is only useful for particles
of submicron size whe?e‘the differences between the two planes,
i, and i; are large.

An altermnative polarization metﬁod involves measuring
the polarization ratio at one angle but for a variety of illuminat-
ing beam wavelengths (the polarization spectra method, ref (8)).
The size dependent parameter is called the scattering ratio and
incorporates the distribution function defined at the beginning

of this section as follows.

ziz(a)(a - plexp(~| (e - p)/q|®)da

I.(p, @) _
I, (p, @) Z’il () (a - p)exp('-l (¢ = P)/qls)da

p(p, @

“This technique has been used sﬁccessfully to size
‘partigles around one micron in diameter? with small errors well
within the range experienced in electron microscope techniques.
In order to use the methﬁa, however, extensive calculations of the
pertinent parameters had fo be undertaken for a large range of
refractive index and the previously defined quantities q'and ﬁ.
_The angle.of scatter commonly adopted was 90°. As before, the
distribution information was obtained by comparing experimental
results.with a large series of theoretical equivalents.

The two techniques can, if required, be combined;
measurements being taken simultaneously at several wavélengths

and scatter angles.




1.3.b Turbidimetric techniques

These methods involve theé measurement of attenuation
of an illuminating source. This attenuation arises because
light is intercepted and scattered out of the beam by the particle
suspension. The transmission, T, of light at one waveleﬁgth can

be expressed as

T = ;%- = ekp( -T8)

T = turbidity

% = path length

Ii = intensity of attenuated beam
I, = dintensity of beam at input.

For a polydiéperse the turbidity is,
0 o0 . - |
T A= (A%/2m) {.p(a) n§1(2n+l){lan|2 + lbn|2} do

where A= waveléngth of illuminating beam
a and bn.are constants derived in the Mie theory.
Turbidimetric measurements taken at various wavelengths
can produce detailed distribution information. Here again it is
necessary to define a particular quantity which can be both
measured, and predicted with Mie theory.
The non-dimensional quantity used is,

o

At gy {E,zSca(a - plexp{-|(x ‘vP)/QIa} da
¢ f: as(a — p) exp {_‘(a _ p)/ql3} dot
Lsca = nzl (2n+1)'{|an]2 + lbnlz}

¢ is the volume fraction of scattering material,

¢ = Z (4ma®/3) p(a)da
(4]

13




a particle radius

o non-dimensional parameters (an/A)

- A1l other quantities are as defined earlier. - The
distribution derived at the beginning of the chapter is incor-
porated in the XT/¢ quantity.

The droplet or particle distributions are ascertained
by direct viéual comparisoh:of experimental data with theory. A
comparison of the polarization spectra method, the last-mentioned
technique and electron microscopy proved that the two light
scattering methods were capable of eicellent resultsl0, Particle
measurement, in both techniques is again limited to the sub—micron-
range where the measured and computed parameters are sensitive to
particle size, a.

. .

Particles have been sized successfully in a moving -. ‘
stream-using the multi-wavelength turbidity approachll. The
transmission through wet steam flows was measured and compared
with a suitable set of theoretical results to obtain the Sauter

Mean Diameter of the fog.

The attenuation was expressed as,

I _ - 3 E -
I, - ©Xp { > (D32 Cvt)}
where t = optical path 1éngth
D3, = sauter mean diameter
CQ = volume fraction of suspeasion
E = particle extinction coefficient.

The parameter used for characterising the suspension was the
wave number (w/A) dependence of the attenuation. No assumption
of distribution shape was made, but only a mean size was obtained

from the data.
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The Sauter Mean diameter is also known as the volume-

surface mean diameter and can be expressed as,

P

number density

particle size

If the particles transmit all incident energy and
absorb none as heat, the extinction coefficient E is equivalent

to the scattering cross section Csca given by

2
Csca (*/2m) Zsca

All the previously described techniques are suitable
for the sizing of partiélés whose refractive indices are real.
Certain Eypes of material, soot and TiO, for eXample, have
refracti#e indices which unde? certain conditions, i.e. ‘high

temperature, can assume complex values. In this case the

analysis must be modified to account for the additional energy

‘which is absorbed by the particle as heat. - In the presence of
absorption the extinction cross section can be calculated from

Mie theory as
= 2 ‘ b3 ’
A%/2m AE1 (2n+1) {Re(a_ + bn)}

For non-absorbing particles

If it is required to calculate the angular variation

of light intensity for polarization measurements it is only
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necessary to apply a complex refractive index to the Mie theory.
The intensity solutions can be used directly in the polarization

and scattering ratios.

1.3.c . Large angle variation of light scatter

It has already been shown that the variation of
light scattered radially by a particle is a unique indication
of its size. 1f the particles are very small (a < 5) the lobes
‘of the intensity signature extends gradually over the whole
angular range of 0-180°. As thevpaiticle size is increased the
lobular structure becomes compressed, the peaks and troughs
migrate slowly towards the forward (8 = 0) direction.  Generally
a large quantity of light isscattered forwar. in ﬁhe form of a

pronounced lobe. This lobe, Which is symmetric about 6 = 0°,

is highly characteristic of the mean particle size. To obtain

accuracy from an angular scaftering technique it is advisable
to make measurements in this lobe. If distribution detail is
required the angular measurements should be extended to include
the secondary structure which exists beyond the forward scatter
lobe. |

Mie theory can predict *he light scattered in any
direction by a particle of known size and refractive index.
However, the computations associated with measurements are
simplified if measurements are confined to one of two planes.
These are perpendicular and parallel to the electric vector of

the illuminating beam and are respectively the i, and i, inten-

sity solutions which constitute the Mie theory. These are the
same planes which are used to calculate the aforementioned
polarization and scattering ratios. The compression of the

structure toward the forward angle, as the particle size




increases, occurs in both planes. This dictates that the choice

of angular range of measurement be tailored to the particle size
under investigétion. Sub-micron ﬁarticles require measurements

over the whole angular range (0-180°). Particles greater than

a = 20 can be measured from angular data taken over 0-15°. The

next chaptér describes a technique in which data taken over 0-3°

ié sufficient to size particles over @ = 25 (d = = 5um, A = 0.6328um).
The need to establish accurately the detailed lobular structure of
the intensity signature dictates that the measurement of scattered
light be made at a large number of angular stations. With small
particles, a < 5, the angular interval can be quite large_(&5°).
For larger particles the.interval may have to be as small as a

few minutes of arc.

A technique using fhe angular variation of light
intensity has been suggested‘to measure the distribution of
particle sizes in condensing and evaporating aerosolsl2, The
particles were generally sub-micron although there was no reason
why the technique should not be extended to larger partiéles.
Measuremehts were made .at a large number of angular stations
between 8 = 8-175°. A zero-order log distribution form was
assumed. A theoretical intensity signature was calculated for
a distribution of arbitrary mean and width and the new signature
was compared with the experimental data. The assumed distribu-
tion was progressively altered until the sum of the squares of
the differences between theoretical and experimental distribution
intensity data were minimised.

The large angle scatter method, discussed in section 1;2,
which uses theoretically derived intensity siénatures as compara-
tive overlays, falls into this category of scattered light sizing

techniques. The method discussed in the previous paragraph is an
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attempt to automate the purely visual comparative technique for
obtaining particle size.

1.3.d .-Measurements in the forward scatter cone

As already stated, the shape of the forward scatter
lobe is highly representative of partiéle sizel3, In recent
years several techniques have been suggested which require
detailed measurements to be taken within this forward scatter
regionlq. The light scattered forward is primarily due to.
diffraction and is relatively independent of the optical pfo—
perties of the particle. The intensity function in this region
can be calculated from an aéproximation of the Mie theory. In
the approximation the intensity at any angle B around a particle

a is written
I = Io 3.2 J],(KaB)/BZ

prdviding thé-approximation sinB = B is acceptable and that the

true particle size a >> A.

a = particle size
K = 2u/x
J; = is a bessel function of the first kind,

first order

Io input intensity of the beamn.

If a distribution of particles is present and is
represented by a function f(a), the number density in the inter—
val a to a + da is f(a)da.  The light scattered at B is,

I = -%% I £(a) a® J,%(KaB)da
[+

This integral can be inverted by applying a theorem

due to Titchmarshl!®, to provide an expression for f(a).
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£a) = T& LB Ji(Kap) Y, (KaB) $(8)dp

Y, is a Newmann function

and

(8) & lmee® = |

A further approximation makes the computation of
£(a) from experimental intensity data relatively straightforward.
The exact procedure is outlined in ref.(16) and results in the

expression,

™M i

£a) = “=3 P Kag 3, (kaB) Y (KaB) D(B° )

min

The rather unrealistic integration limits have been
replaced b& practical limité:dictatedlby the B = sinB approxima-
tion and the physical restraint which disallows measurement at
g = 0. Tﬁis apparentiy drastic reduction of the integral range
has little effect as the intensity equation is only valid over a
 limited angular range from the forward direction.’

| Measurement of intensity variations at small 3"

jntervals over an angular range of three degrees can be applied
to the equation to produce the distribution function, f(a). No
assumption of the form of the distribution is neéessary. The
analysis will reconstruct accurately a distribution of arbitrary
shape for particles between 5 and 60um. The assumption of dif-
fraction dominated scatter fails below a = Sum and above 60um.

This method has been used by the author to measure
the sizes of glass beads contained in a resin block. The

results were relatively accurate, comparing well with the size
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distribution as measured by microscope. The data is shown on
Figure 8.

i;’ah,alternative technique measurements are made of
the transmission of light through a suspension in which the
detector simultaneously measures some of the forward scattereu
lightl7, The effective cross section of the particle is
apparently reduced because of the inclusion of this extra light.

The scattering cross section efficiency term is

defined by

Effective cross section of the particle
sca . o wa® '

where o = 7D/

This can‘be re-expressed as: -

Q

T . .
/a? }'(i -+ i )sin® de
sca ° 1 2
i and i, are the Mie solution intensity functions
mentioned previously in chapter (1.2).
When some of the forward scatter is included, the

efficiency is reduced by the light scattered in the acceptance

cone of half-angle, w.

—(1/2)(})(° + i,)sin® de
Qs Ueca @) U 2/)51n

The term R = Qeff/Qéca

o

can be approximated, for particles greater

than a = 20, by,
R = 1 Il + Jo2%(aw) + J;z(aw)l

where Jo and J, are Bessel functions of order zero and one.

From the expression for transmission,
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e SR Q. a’p(a)da

wheré 2 = path length

an expression for the distribution function can be derived,

p(a)QSca a? ZwZM(m)|—J1(aw)N1(aw)(aw)*dw

where M(w) Egr'%a

J, and N, are Bessel and” Neumarnn fuﬁctions. M(w)
can be calculated from experimental values of I obtained by
varying w in known fashion. pfa) Q.. a® can be obtained by
integrating the whole of the equation g;aphically. This tech=
nique has produced accurate reconstructions of distributions of
particles aroun& 20pym where the limiting value Qsca = 2 can be
adopted. The term QSca increases with o to a maximum value of
approximately 5 and then oscillates about and eventually approaches
a value-of 2 in the limit éf large particles.

1.3.e- Practical considerations in the use of scattering

techniques

Of the techniques discussed in this section only .
one has the potential to size particles of both submicron
dimensions and the much larger diameters associated with sprays,
némely the large-angle scatter technique using Mie theory as the
comparative standard. The polarization methods ave size limited
becaﬁse of their relative insensitivity ét particle sizes above
lym. The small angle diffraction theories are valid for
particles between 5 and 60um.

Each méthod has its own_practical peculiarities

which must be considered when a choice of technique has to be




made. The particle size range aspect has already been discussed.
A further consideration concerns the nature of the measuring volume.
The polarization spectra method has a fixed volume; however, if
the measurinéféngle is fixed at 90° as is recommended in the
literature, the scattered light 1evelsAexperienced will be very
low. The'angular polarization method suffers from a problem
common to most angular measuring techniqﬁes; that is, as the
observation angle is altered, the scattering volume observed by
the detection optics changes in proportion to the reciprocal of
the sine of the scatter angle, 6. ‘This effect is particularly
powerful at small scatter angles, where thé measuring volume is
large and changes considerably in size as the observation angle
is altered. The particlé suspension must be either very much
larger Fhan, or smaller than, the measuring volume irrespective
of the anguiar range of measurement of light scatter.. The large
angle- scatter method shares this problem, but because there is not
a requirement.for measurements at very small anzles, the scattering
volumes observed by the receiving optics never become excessiﬁely
large. |

Light intensity measurementé performed at scattered
light angles less than 6 = 1° are known to encounter problems
of scattered light noise and poorly defined measuring volumes.
The apparatus (similar in concept to that described in section 1.6.b)
which was used by the author to obtain data for theShriffiﬁteéh—
nique (described above), was intended to overcome these difficulties.
However, problems with background noise and secondary scattef were
severé, particulafly at angles less than 6 = 0.5°. | As measurements

were ultimately to be made in a hot gas rig of restricted dimensions
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where secondary scatter was a particular problem it was decided
‘not to adopt a small angle method. In addition, at this stage

in the projegEﬂit was hoped that a single technique to cover ‘the
entire range of'particle sizes of interest (d = l—lOOum) in the
envisaged heat transfér experiments would be found. As it
transpired the large angle scattering method finally proved to
have a similar ranée of applicability as the 'Shifrin’ small

angle method. However, the new technique requiredlless data

and did not need measurements to be made at very small aﬁgles

(8 < 0.5°). In addition, an alteration in the range of-data
collected offered the possibility of extending the range of sizes
that could be ﬁeasured to larger or smaller particles. Thevémali
angle methods described offered no prospect of extending their
rangé of applicability.

The large angle measurement of light scatter appears to

offer manj practical advantéges over the alternative techniques.

The measuring volume is confined to a reasonable size allowing

measurement in a small part of a large system. The change in

~volume did not at -this stage seem excessive. The possibility of
sampiing a different distribution with a change of angle appeared
small. The avoidance of practical problems was not in itself
sufficient to z2llow the measurement of particles over the range
of sizes required. Thevexisting techniques for processing
scattered light data to give mean size and standard deviation of
the distribution were regarded as unsatisfactory. For example,
it has been found in previous work that it is possible to obtain
a seemingly plausible result from totally inaccurate data.
Least squares analysis provides a technique for

‘extracting distribution data fromAlarge angle data. No ‘a
priori' assumption of distribution shape is necessary; a ttué

distribution shape is obtained from the experimental data pro-

viding the data is truly representative of the suspension.



The basic theory is defined in the next section.

1.4 The Application of Least Squares Fitting to Particle Sizing

l.4.a Least squares theory

The method of least squares.fitting is one of a family
of techniques which constitute the more general subject of
'Approximation of Fqnctions'.'

1f f(x) is the function to be approximated and F(A, x)
is a linear approximating function, the best fif is achieved by
minimiéing thé 'distance function', E(f(x), F(A, x)). For the

most part these functions are norms which have the form!8,

' 1
]
L = |7 [£60]Pax] P 551 - 1.4

L3

or for approximation purposes
| ' P l/b
LP(F(A, x) - £(x)) = |/ [F(4, x) - £(x)]"dx] - 1.4.2
] .
In most instances the pth root can be “deletedl®

when obtaining the best fit without affecting the solution.

The function to be minimised then becomes,

=
It

]
I/ [Fa, o - £ (x) ] Pdx| -~ 1.4.3

Choice-of the value of p has a profound effect on the nature of
the achieved approximation. The value p = 2 is the least squares
norm. The other norms commonly uéed are those of p‘= 1 and

p =®. In the case of p'=1 the area difference between f(x)

and F(A, x) is minimised, and for p = < the maximum differences
are miniﬁised. Ricel® describes the L, approximation as having

the least 'moment of inertia' about f(x). The L, norm is that
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most universally used as it offers the least involved way of
obtaining a good approximation. The basic theory is well
developed aﬁ&’minimisation of the distance function involves
simple calculus operations. The result is a matrix of easily
calculable coefficients. In many cases exploitation of the
unique characteristics of orthogonal functions is possible,
considerably simplifying the solution procedure.

To consider a genefal case, suppose y(x) is to be
approximated by the géneral function ¢ (A, x),

n '
where ¢ A, x) = a;¢.(x) + apx) + ... an¢n(x) = igl-ai¢i(x)
(¢i(x) are linearly independent functions.

The best L, approximation is achieved by minimising
v 2 )
I/ GG - ¢(a, x))%ax| - 1.4.4

The pth root has been deleted as suggested earlier.
A minimum occurs where all the derivatives a/Bai = 0. Subse-
quent differentiation of the above function i times produces
the normal equations,
£ Y ' =1, 2 1.4.5
igl a, { ¢i(x) ¢j(x)dx = £ y(x) ¢i(x)dx i=1, 2...n - A,
Where the functions are expressed as a set of finite points the

normal equations have the form,

n m m N - ) '
iél aj kél ¢i(xk9 ¢j(xk) = kgl y(xk) ¢1(Xk) i=1,2...n-_1.4.6
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These result from the minimisation of the distance function
- 2
k_§_l Y(xk) - ¢(A’ xk))
The normal equations can be solved simultaneously to

give the coefficients a; directly.

When the functions are expressed as finite point sets '’

e -

o Cw | .
KBy S &xp%, Ly ¢;(xk)¢z(xk)--.Z¢1(xk)d>n(x:k) y (oo (xy )

m m
Kl 2%, ¢a(x)) 22 (x )¢ (x) y(x 92 (x,)

e

The resulting acéuracy of the computed function ¢ (A, x)
will depend on several factors:

&0 The choice of the functions ¢i(x).

Ideally these should have properties which are shared
by the function being approximated. |

(25 In the case of finite points sets the available
number of data points for each function y(x) and ¢i(x) shouid be
appréciably greater than the number of functions (m >> n).

3 The resulting matrix must be soluble.

If the normalised determinant of the matrix is
appreéiably less than unity, the matrix is ill conditioned. Ip
this case the resulting solution is totally unrepresentative of
the original function y(x). Much of the following text
describes methods of avoiding ill conditioning in the normal

equations. It became-apparent early in the development work

m ° m i :
kéi ¢h(xk)¢1(xk) .........;...._k§l¢n(xk?2 yk(xk)¢n(xk)

-




that the least squares matrices used for obtaining size information

were badly ill conditioned.

e

1.4.b Orthogonal functions and least squares

Many of the computational difficulties associated with
the solution of large matrix equations can be avoided if the
approximating functions Qi(x) are orthogonal functions. The

system of equations [¢i(x)] is orthogonal on the interval a, b if
% 6,00 ¢, (0dx it
b ¢ j J

m . . ‘ 3 - ) . 3
kél ¢i(xk) ¢j(xk) 0 i + j for flnltg point
a<xk <b
Should the normal equations be derived for an approxi-
mating function made up of orthogonal functions the result is a

coefficient matrix whose off-diagonal values are all zero.

- - 1 - v

. : m ..
kél_ ¢' 2 (xk) 2 ) ‘ *

e I 2 . m *

The coefficients are obviously given by

2 = ik 4 G0Y) m 2
w9305

The advantages of approximation with orthogonal
functions are readily apparent. Complicated elimination schemes
of solution are avoided, and problems with ill conditioning do not
arise. Typical orthogonal functions used for approximation are
Chebyshev and Legendre polynomials. The schemes are described

in detail in refefence 19.
- * - . 27
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1.4.c Estimation of size distributions using least squares

theory

Ooa The intensity of light at any angle, 9j, scattered

by a particle suspension can be expressed as,

n
= 2. n, I, 1.4.11

As Iij are known functions provided by Mie theory,
an L, distance function can be formed over the set of arguments

j=1,2,...M, i.e. all the observation angles 6

It

n

m .
Lz = .Z (I n.I 1.4512

- 2

j=1 expj iél i ij)
Differentiation of the distance function yields the

normal equations from which the number densities (ni) for each

size class, can be derived.

as
In-earlier research Vardon2? explored the possibility
of using this technique for reconstructipg distributions from
synthesized experimental data. The research showed that a
distribuﬁion consisting of a limited number of size classes, about
eight, could be reconstructed accurately. ‘Basic error analysis
showed that.experimental accuracy in the measurement of intensity
at a fixed angle, had t§ be betper than 17%. In addition the
number of angular measurements, ej, had to exceed the number of
size.ciasses, a, by at least a factor of three. Application of
this method of analysis to real data, however, proved unsatis-
factory for two main reasons:

1) For the most part a real spray or suspension consists

of an infinite number of size classes, not a limited number of
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discrete sizes. -
(2) ' The rormal equations were invariably ill-conditioned
and producedié;foneous results.
Several other practical problems also became appar-
ent. The original researcher2® had the benefit of foreknowledge

of the distribution and this was used to make an accurate choice

of the size classes which were applied to the analysis. In

practice the contributing classes are unknown and the correct

choice of the approximating functions, I,,, must be obtained by

ij
trial and error. The computation time required to calculate

the theoréficai intensity functions also became a problem.

For large particles (say >50) up to 100 seconds of computer time
was necessary. The following is a description of the develop-
ments and considerable-modifications that were necessary to
overcome-all of these problems.

The excessive time involved in calculating the
intensity function was reduced relatively easily. A family of
inténsity functions.was computed in the range 2 < a < 300, at
intervals of 2, and was permanently stored in a disc file.

Once the initial lengthy procedure of computing and storing the
data was complete the scattering functions could be rapidly
recalled in any order with the minimpﬁ delay; The same file
was used throughout the investigation. . The data was stored

at scatter angle intervals of 0.125° and covered an angular
range of 15°.

In theory, increasing the number of size classes
‘to a level more representative of a real distributién can be
done simply by increasing the size of the normal equation matrix.

A distribution consisting of 100 individual size classes would
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result in a normal equation matrix which has 100 x 100 elements.

When a matrix of this size was used the results became hopelessly

ill-conditioned making an accurate solution impossible. The
problem was partly overcome by blocking,together the intensity
functions of adjacent sizes as bne size class. In effect this

was reconstructing the original distribution as a histogram rather
than a_ continuous curve. In general fifteen blocked size classes
were used, each consisting of five intensity functions for
individual size classes spaced at intervals of Aa = 2. The
maximum width of distribution that could be accommodated was

Aa = iSO (30um, A = 0.6328um). This could be extended by including
more than five sizes in each size class.

. Three overlapping sets of fifteen size classes were ) -
applied in the analysis of a set of scattering data. ~ The mini-
mum size in each range was a;=-2, 74 &and 150 respectively (4, 15
~and 30um, A = 0.6328um). The computer programme which was written
to tes£~the least squares theory began its operation byvreading
intensity data from an input file, or computed synthetic data,
as required. This data was then applied to the analysisnwith
each of the three sets of overlapping size classes.

Overcoming ill-conditioning of the normal equations
proved difficult. One possible method is to scale the normal
equations. One of the most elegant ways of scaling is to trans-
form the equations to produce a matrix of simple correlation

coefficients?!, The normal equations then become,
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1.4.13

transformed solution for the number density

of size «
i

The matrix consists.of simple correlation coefficients
between all pairs of the independent variables. The right hand
side is made up of correlation coefficients between the independent
and dependent variableé‘ The coefficient matrix is characterized
by a diagonal of unity ﬁhich represents perfect correlation between
pairs of identiczl intensity functions. All other coefficients
lie within the limits +1 and -1.

The solution of these equations can be transformed
back to the solution of the original normal equations, through

the-expression
i = 1,2,.'...11 104014

Si and sexp represent the standard deviations of the

ith independent variable (Iij) and the dependent variable'(Iexp)

respectively.
‘These equations were used to obtain distribution

reconstructions from synthetically derived intensity éignatures
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similar to those in Figures (4-7). Tﬁe data was synthesized and
then inverted back to a distribution within the same computer
programme. -Thé infensity'signature and subsequent inversion
were both obtained using the disc file of individual size class
intensity functions described earlier.

To ensure maximum accuracy the equations were solved
with a sophisticated Gauss elimination and back substitution
technique. This included pivotal condensation, or row inter-
changing, and iteration on the resiéﬁals between the right and
left hand sides of the equations. All computation was.under—

taken in double precision arithmetic.

1.4.d Discussion of results of the transformed least

. squares normal equations

Theoretically derived intensity functions for both
Z.0.L.D. aﬁd Gaussian normalidistributions‘were used as input.
data for testing the least squares analysis. Generally an
accurate reconstruction of the original distribution was obtained.
Examples of these are shown in Figures 9 and 10. The computer
programme solved the least squares normal equations with each
of the éhree overlapping size ranges in turn.  Figure 11 shows
a s=t of typical results obtained for each of the size ranges.
v Only when a size range included the size classes which constituted

the distribution being xeconstructed was a plausible distribution

solution, as demonstrated in . Figures 9 and 10, obtained. This

was a particularly important discovery. The large positive
values of number density which were predicted below a = 20 arose
continuously during the theoretical study. The reason for this
is that the characteristic structure in the intensity function

of an individual particle migrates to larger angles as a decreases.




The angular range of data used for this study covered a maximum
range of 0-15°%. For most particles of interest the character-
istic structufe exists within these limits. However, at a = 2
for example the intensity signature ovef,this angular range is

a monotonic decay of a small fraction of an order of magnitude.
Any attempt to find a least squares solution for a.set of data.that
changes over several orders of magnitude with a function which
changes by so little will invariably lead to errors. if dis—
tribution information is required on such small particle sizes

the angular range of data should be increased. For particles
less than a = 2 measurements. from 0-180° are probably necessary.
It would also be necéssary to increase the number of, and decrease
the rané; of sizes in the sets of size élasses applied to the
analysis. However, .where a distribution is so broad thaf large
and small particles are included, errors of the kind experienced
and illustrated at the low « range on theruppef curve on Figure '
11 are-inevitable unless high resoluﬁion‘data is collected over

a large range of angles. Practically, this would be both
time-consuming and costly, with the probability of any feal

gain being uncertain. It is interesting to note that Abbissl®
experienced similar problems with the Russian small angle
-diffraction _technique for obtaining distribution data from

light scattering. Here again the angular range was limited

to a range of less than 4° from the forward direction. The
minimum size limit in this éase was 5um, equivalent to a = 25
with a helium-Neon illuminating beam. For the most part the
problems associated with these small particles were not important,
because the majority of distributions investigated did not

include the small particle size classes.
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The value of using a blocked intensity function as
one size c1a§§.can be assessed from Figure 12. Two recon-
structions have'been attempted using identical data, one with
blocked intensity functions as mentioned previously, the other
with a limited number of discrete functions. The blocked-
functions least squares solution produced a reasogably ac¢urate
reconstruction of the original distribution and is shown in
Figure 12(a). The solution obtained with discrete size clagses‘
is barely relateable to the originaivdistribution. The large
positive and negative excursions below a = 60 arise because
the analysis is attempting to minimise the difference between
the smooth set of éﬁperimental data and a linear' combination
of a small number of highl& oscillatory functions. Had the
experimentai data comprised a suspension of discrete sizes then
a solution‘could have been oﬁtained. However, most sprays
consist of a continuous envelope of particle sizes, in which
casea the‘usehof blocked functions becomes a necessary expedient.
In an experiment the rangé of ‘angular meaéurements
which i; is possible to make is subject to préctical 1imi£s.
First, £he sensitivity of the collecting optics dictates the
minimum measureabls intensity, and hence the maximum angle of
scatter. Secondly, the forward scattered light is orders of
magnitude weaker than, but is superimposed on, the main illuminat-
ing.beam; the two are indistinguishableﬁ Therefore? it was
important to find out how the-least squares solution was affected
by the absence of data.at the extreme ends of the angular range.
It was not surpriéing to find that distributions with relatively
small mean sizes (o < 90) were sensitive to the loss of data at

the larger angles but insensitive to the absence of data near 0°.
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These points are adequately demonstrated in Figures 13 and 14.
The former shows . reconstructions obtained after deleting in-
put data upig;‘1.25° from the forward direction. | Figure 14
shows reconstructions of the same diséribution after deleting
scatter'data at angles above 8.625°. The loss of accuracy;
although not great, is moré significant with the loss of large
angle data rather than that at small, forward angles. Con-
verself, if the distribution is centred around particle means
in excess of a = 150, the least squéres reconstruction is
affected most by the loss of forward scatter angular data.

It was fornd necessary to provide data to within 0.5° of the
forward direction,if an aéceptable reconstruction was required.
Extending this limit beyond 0.5° resulted in a rapid loss of | _ -
accuracy such that no recognisable solution was obtained. An
additional, important parameter was the choice of angular
intervals used to characterize the intensity signature. The -
value-used in this investigation, A8 = 0.125°, was chosen
following a close inspection of theoretical intensity signatures
such as those in Figures 4, 5, 6 and 7. The major criterion
was the;necessity of containing sufficient detail in the
scattered intensity diagram. Increasing this interval to 0.25°
resulted in no change in the reconstructions of distributions
below a = 150, providing the number of angular points exceeded
the number of size class by a factor of four. In all cases
reducing this factor below four caused a complete loss of
accuracy; this complied with the findings of a previous worker20.
Distributions centred around the nominal value of a = 200 could

0.25°.

i

not be reconstructed with an angular interval of A0

As in the previous cases the transition from an acceptable to .
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an unacceptable solution appeared to be relatively sudden.

The lobular structure in the intensity signatures of individual
particles aSove'a = 200 is too detailed to be captured by an
angular interval of this size.

An ability to measure three orders of magnitude
cﬁange in light intensity over an‘angular range of 0.5°-9°
would allow the estimation of particle sizes from a = ZO—éOO
(4-40pm, A = Q.6328um). This size range would be increased
substantially if measurements over the whole spectrum of
scattering angles were possible (0-180°). In theory it would
then be possible to extract distribution information from
scattered light from particles in a.size band in the submicron
(a < 5) range. The lower band limit is the Rayleigh region
where the particle signatures are of the same form irrespective
of size. | This precludes méasurements of particles in the
region of interest to researchers in the nucleation field,

(¢ = 0-0.07). No currently available light scatter technique
can produce size distribution information in this area.

The upper limit is less easy to establish but is

. certainly in.excess of @ = 300, the self-imposed limit in this
work. However, at some large particle sizes the forward
scatter cone must assume proportions comparable to the beam

. dimensions. The loss of detail in the forward lobe must

-inevitably affect the accuracy of an attempted distribution
inversion using the 1éast squareé method.

The ultimate aim of the technique is to process
experimental data to obtain distribution information of a real

suspension. The analysis should be capable of providing an

accurate result despite the presence of experimental error.




However, whenever a least squares solution was attempted the
normalised determinant of the normal equations was typically
between 10‘“°/;nd 107°°, The equations are still very ill-
conditioned. When the synthetic input.data was truncated from
the full range of digits available in the computer to three, a
solution proved impossible. . The sensitivity of the right hand
side of the equations to smalllchénges in value is a classic
manifestation of ill-conditioning. Any attempt to process
experimental data, where the best apbaratus would only provide
data accurate to three places of decimals, will inevitably fail.
However, tue problem is purely associated with the solution
procedure. If accurate data is available the proper solution
of the equations can be made to provide the required information.
I1l-conditioning of the least squares normal equations has been
the subject of much research‘in recentAyears as it severely
linits the usefulness of the technique. The equations are
ill—conditioned-by-their.very.natu;ezz. During the ﬁriaﬁgular—
ising stage of Gauss elimination, numbers in the matrix are
 succassively reduced in value until they are comparable with

the coméuter round-off error. From that point on the loss of
accuracy is dramatic. As the unknowns are then computed
successively by back substitution tﬁe accumulated error affects -
all of the solution values. The following section describes

a téchnique for solving the normal equations which avoids these
probléms. It allows acceptable solutions to be obtained from
data of whose accuracy is comparable to that obtained experi-
mentally. It is a matrix decomposition technique based on

orthogonal transformation of the independent variable.
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1.5 Least Squares Approximation with Gram—Schmidt Orthonormalisation

If the normal equations include a large number of
unknowns a solution often becomes impossible using standard
matrix decomposition methods. The problem arises because the
decomposition techniques which are most often used involve suc-—
cessive subtractions which invariably pfoduce very small numbers.
These numbers are, as a consequence, badly influenced by computer

round-off error. The least squares normal equations are parti-

cularly‘susceptible to this problem because of their close

similarity to the troublesome Hilbert matrix. This has been
adequately discussed by Golub22 and Osborne?3, An alternative
scheme of matrix decomposition has been suggested by Davis and
Robinow%tzzu using orthonormal transforms of the independent
variables. The course of the computational procedure is
altered- such-that small number computatiqns are avoided and-
acéuracy is maintained.

1.5.a The Gram-Schmidt orthonormalisation procedure

As discussed previously, the approximation problem
is considerably eased if the approximating functions are ortho-
gonal. " The normal equations resolve into a form where all but
the main diagonal elements of the coefficient matrix have a
coefficient value of zero. .The diagonal values can assume
unity value if, in addition, .the functions are orthonormal
“rather tﬂan~orthogonal. Orthonormal functions, which are
expressed as.-a set of finite points, have the property,

itk

B Oy &) -

A least squares approximation of a function can be

easily obtained in the same way as with orthogonal functiomns, i.e.
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where the coefficients are:given by,
N
321 (Ie:.I x ¢ij)

This has the same form as equation 1.4.10 except for
the denominator which is now unity. Tﬁis results from the
condition, shown in'(l.S.l), that occurs when two identical ortho-
normal functions are multiplied vectorally.

In many cases the approximating functions are not
orthonormal. However, it is possible to ptoduce an equivalent
set of<%unctions, which are orthonormal, using the Gram—Schmidt
procedure. These are obtained by linearly combining the original
functions in the form,

415 211 Tny
623 . a2y Ilj + az2 Izj

~¢3j asi I1j +'33g Izj + ass Iaj

¢mj - am; I1j + am2 Izj + ... amm Imj

where Ii’ are the original, non-orthonormal functions, and
J

where ¢ij now depicts the orthonormal equivalents. The least

squares approximation using the new functionms, ¢ij’ has an
identical form to that of equation 1.5.2. However, this can
be re-expressed in terms of the original functions by substitu-

ting ¢, in (1.5.2) and (1.5.3), with (1.5.4), i.e.
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where n = iZk (Iej, ¢ij)dik 1.5.7
and where_(Iej,<¢ij) denotes the vector product jél (Iej x ¢ij)

It is mot difficult to see that o are the coeffici-

ents which minimise the least squares distance function,

L > |1
2 = 121 ej -

n, I..]2 1.5.8
3

i=l "1 "ij

LS

The coefficients n,  are the coefficients “for an
approxima;ion using the non—grthonormal fﬁnctions Iij'

The orthonormalisation procedure required to trans-
forn the original functions to the form shown in (1.5.4) can

take the following form2*

= Iij/D1 where D, = (I

ij ij’

.y, _
again ‘;ij’ Iij)

635 = {Tyy = (ygs dgpbyp = (Type d28ay = ol Tty g 0, 43/D, 1,510

where . . .
Dy = (T4 I, —'[(Iij, $1) |2 - |(Iij, $2)]% - ... [(Iij, ¢i—1,j)|2}2 1.5.11

It can easily be shown that,

N

A new procedure for evaluating the coefficients in

a least squares approximation using non-orthonormal functions
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has been described. It requires that the functions be trans-
formed into an equivalent orthonormal set using equations (1.5.10)
and (1.5.11):" -It is then possible, using (1.5.7), to evaluatev'

the coefficients for an, approximation using the non-orthonormal

functions.
The discrepancy between the function being approxi-
N mated and the least squares expansion is given by,

he
]

m
Iej - .'2‘:_"1 (Iej’ ¢-.)¢ 105012

ij i

The following section describes the way in which the
residuals.(éj) and the coefficients‘in the orthonormalisation
equations (aik) are calcﬁlated automatically by modifying the
input d;,ta . » .

Close analysis of this least squares technique reveals
very close similarity with the very techniques it is suppoéed to
supercede. - This has prompted much discussion regarding the
actual benefit of obtaining a solution by this method. Winch25
has shown that when compared to Crouts method of matrix decomposi-
tion the Gram-Schmidt technique is uncannily similar. However,
Fougere?®, in his answer to Winches criticism, pointed out cor-
rgctly that the claimed advantages of thg method were justified

~“on the-basis of computational accuracy rather than purely algebraic
'grounds. The erosion of accuracy by successive subtractions is
avoided and accuracy maintained by altering the sequence of the
calculations. In this case the similarity with other methods

of solution is irrelevaﬁt., Certainly, in the case of this

research work enormous improvements in stability were obtained

[ 4

by assuming an orthonormal basis for the approximating functions.




-1.5.b Least squares distribution reconstructions using

Gram-Schmidt orthonormalisation

—Eie Gram-Schmidt scheme adopted for this work
followed that suggested by Davis and Rabinowitz. The computer
programme was written such that all of the pertinent parameters
could be calculated from a{limited equation set. If additional
values wére added onto each set of approximating function dis-

crete points, the orthonormalising equations provided the aik's

in addition to orthonormalising the original functions. Cal-

culation of the residuals, 8§, can be made to include evaluation

of the n, coefficlents by an appropriate choice of additional

values of I .
exp

The programme input data must take the following

Weights

W,

W2

[ . .

0 0 0 1
The N values of each vector have been extended with

m additional values most of which are zero's.
m = number of size classes assumed to represent the

distribution under investigation.

number of angular measurements, ej.
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The programme output is then,

b1 8 e b8
Paa 21 ' (bm: 8,

P12 $22 (sz 82

N . . L] .
¢'1N ¢2N ¢mN Gm

azy aza ' ' 'aml —n,_.

0 _ aza amzr —To

m 0 0 . .
: R : )

0 o a -n

T m

The number densities (nm) are included. in the résid-

ual array,  the coefficients a,, are in the orthonormalised func-

ik
tions array, ¢ij' Adoption of this computing scheme resulted

in an extremely compact and fast, least squares approximation
programme. Store was reduced by more than half and run time

‘by more than three quarters by comparison with the.previously
used techniques. The programme listing is shown in Appendix A.

The accuracy and stability of the.new technique was

evaluated in exactly the same way as that of the more conven-
-tional method,described earlier. Synthetic data was calculated

~ from an assumed distribution and then used to obtain a least
squares reconstruction within the same programme. The disc file
of intensity functions was again used. Unlike the previous
method, however, all éomputation was undertaken in single, rather
than double, precision arithmetic. - The computation of distri-

butions from ideal data was in no way affected by this loss of -

significant digits. This was an early indication of the improved
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stability of the orthonormal method.

Examples of distributions reconstructed using Gram-
Schmidt orthbgbrmalisation are shoﬁn in Figures 15, 16. These
show various widths of distribution at two means, o« = 80 and
150 (l6ﬁm and 30pm; X = 0.6328um). Both narrow and wide dis-
tributions can be accommodated without appreciable loss of
accuracy.  Fifteen size classes were used, each Aa = 10 wide.
However, if the distribution being reconstructed §s wider than
the range of sizes applied to the analysis, no recognisable
distribution reconstruction will be obtained. Therefore, care
must be taken when a set 0f~data'of an unknown suspension is
applied to the analysis.

The major test of the least squares method was its
sensitivity to error in the experimental data. Figure 17a
shows ‘a reconstruction of a Z.0.L.D. where the synthetic inten-

sity data has been truncated to three figures. No rounding up

or down of the numbers was made. Each simply had all digits
after the third significant digit deleted. In one of the two
cases shown the forward data from 0-0.5° has also been deleted
to simulate a practical set of empirical data. In all cases
the reconstructicn is a good representation of the original.
The discrepancies that exist are relatively small and do not
prevent a meaningful intérpretation of the result. A signifi-
cant improvement in stability had been achieved even in the
presence of simulated experimental error.

A final test made before the experimental verifica-
tion of the technique, established that the least squares method
could be used to analyse submicron distributions. The Gram-—
Schmidt Orthonormalised least squares technique has been used to

reconstruct submicron distributions from synthesized data.
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An example of one of these is shown in Figure 17b. As antici-
pated the angular range of data had to be extended to 180°.

The angular iﬁ&erval was also increased to A8 = 3°, and the
number of angular stations was 60. It was not found necessary
to alter the number of sub-sizes in each major size class, but
fhe range of particle sizes was compressed to match the width
of the distributions.

1.5.c Summary of the theoretical results

Although of limited practical use, the standard -
least squares method provided useful information rggarding the
sensitivity of a solution to the absence>of data over some
ranges of scatter anglesf It had shown that scattered light
data collected between 0.5 and 10° at intervals of 0.125° will
allow the measurement of distributions containing particles
between 5 and 60um.

The Gram-Schmidt orthonormalisation least squares
technique overcame the ill-conditioning problem. The new
scheme was compact and fast and proved capable of accommodating
errors in the angular intensity data. Finally, it indicated
thaﬁ extending the angular data to 180° will allow the analysis
of submicron particle diétributions.

~ The next section describes the experimental verifi-

cation of the method.
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1.6 Experimental Verification of the Least Squares Distribution

Inversion Technique

1.6.a Introduction

The final stage in the development of thé least squares
data processing technique was the testing of the method using
experimental light scattering data. The sizing technique was
being developed to méasure the vaporisation rate of water droplets
in a high temperature, high pressure air stream. Theoretical
calculations had revealed that the probéble range of mean droplet
sizes that would be encountered in the envisaged heat transfer
ekperiments was 5.6—100.0ﬂm. It was expected that the vaporisation
rates would be such that'the droplets would soon be of 50um or

less in diameter. Calculations?2? showed that this size would

3

Ld

occur approximately adjacent to the first observation port in the
experimental duct. Therefore, the range of sizes likely to be
encountered, 5-50um complied with the practical range over which
the calculations described in the previoué section had shown the:
least square‘method.to be most applicable. As a preliminary step
it was deéided to test the technique using sprays exhausting
directly into the laboratory. A series of sprays producing
different particle sizes were obtained and an optical particle
size apparatus was built around the spray system. The light
scattering rig was very simple and was based on a concept
originally devised by Moore and Carabinel2, The sévere restriction
on the time available for development of the apparatus meant that |
it had to be very quickly manufactured and the design had to
afford a high chance of success.

From the outset it was assumed that, in order to
ensure the applicability of Mie theory, the incident light field

should be planar throughout the measuring volume, To aid this
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it was decided not to focus the illuminating laser beam but to
raintain it as nearly parallel as was practically possible.
Similarly,'tﬂ; light collection optics were designed to accept
a near parallel column of scattered light. The measuring
volume was then simply defined by the intersecfion of two
parallel sided cylindrical beams of light that were joined at
any arbitrary angle, Figure 19. -The mefhod of changing the
scatter angle (0) invblved bending'the laser beam through an
observation point viewed by a stationary photomultiplier. The
new apparatus differed frqm that of Moore and Carabine in being
optimised for the measurement of light scattered over the range
8 = 0.5°-10°. In accordance with the.theoreticai results the
system yas‘designed to accommodate an angular interval of

A8 = 0.125°, The original system used by Moore and Carabine
was designed‘for the measurement of submicron particles and
involved measurements over 6 =3°-180°. Their apparatus involved
rotating the laser beam with a complicated system of fixed and
rotating front silvered mirrors.. The apparatus describgd in
this thesis was much éimpler to build and align. The design
did not prove to be optimum from the point of view of light
collection efficiency and methods of imbroving ii are described
in a later section. However, its simplicity was an -essential
advantage while the use of a high poweféd laser overcame the

problems of the inefficient light collection system.

"1.6.b A ‘degeription of the light s'c'a'.ttél_filig ‘apparatus
Schematics of the two pieces of eéuipment used are
shown in Figures 18a and 18b. In both of the systems the

variation of the scatter angle, 6, was achieved by directing a

laser beam via a front silvered mirror onto the face of a plano-




convex lemns. The mirror bent the beam of light, taken directly
from the laser, through 90? and directed it along a line .parallel
to the axié’;f'the main lens. A traversing mechanisﬁ was used
to travel the beam across the face of t;he lens resulting in the
beam being rotated about its focal point. The.angle of the

beam relative to the lens axis was simply the arc-tangent of the
distance between the incoming beam and the’lens.axis, divided by
the lens focal length. To counteract the beam convergence
impésed by. the main lens, a further lens of equal focal length
was mounted in the beam.path between. the laser and the right
angle mirror. Thisvfocussed~thé‘laser beam onto the face of

the mirror such that the beam entering the main iens was

» diverg%pg. This divergence was cancelled by the main lens so
that an esséntially pérallei ray of light was dirécted through
its focal:point. Some control of the final diameter of the
light beam was theoretically possible through a careful choice

of focal lengths of the two lenses. Thé relationship between
the laser beam diameter, the focal lengths of the lenses and

the beam diameter at the main lens focal point is simply,

o
h

?f. - ff; 1.6.1
% %
where ,df = diameter at the main lens focal point
di =  laser beam diameter
: ff = Main lens focal length
fz' = focal length of the lens following the laser.

An attempt to reduce the size of the beam emerging
from the main lens was made by using a short focal length main
lens (5 cm) and a relatively long lens (15 cm) immediately after

the laser. Although‘this should have reduced the beam size to
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a third of that emerging from the laser source, the practical

result was a diffuse beam of no value to the planned experiments.

This probably oécufred because of the severe aberrations
generated by the poor quality, thick, short focal length
laboratory lens used to deflect the laser beam. ~ As the range
of angles and beam sizes required by the experiments could be
met using two then available 10 cm focal length lenses this
configuration was adopted and used thréughout the experimental
period. No further attempts fo use lenses of diffefent focal
lengths to reduce the beam size were made or found necessary.
On occasions, however, the beam size was reduced by placing a

500um pinhole between the laser and the first lens. The :slight

divergence introduced into the laser beam by.the diffraction at

pinhole could, if required, be calculated using the formula for

the angular position of the first zero in the Airy pattern,

: ©1.22 A
sin 6 1;%2__.» 1.6.2

) angular position of the first zero-
A aperture diameter
A wavelength of light. .

In general, however, it was found that careful,
positioning of the two lenses in the beam deflecting optics
could ensure that a near parallel ray pf light was produced at

. the measuring volume. This éduld be checked by.projecting the
beam emwerging from the main deflecting lens across the length of
the laboratory.

To reduce the effect ofrlens aberrations and the
problem.of curvature of the focal plane only the central portion

of the main deflecting lens was used. . In the case of a 5 cm




diameter, 10 cm focal length'lens, the use of the central *1.25 cm
from the lens axis made available a range of light scattering
angles of 0 V0°-14.25°.  As the majority of lens aberratiomns

are functions of the distance of the incoming beam from the lens
axis raised to some power, the use of the central portion of the
lens reduced any possible effects to a minimumﬂ In addition,
plano-convex lenses were ﬁéed for all optical éémfonents to
minimise spherical aberrations. These were used to meet as
closely as possible the condition for lems surface curvature

given by Bérgmann.and Schaefer“3. .This has the form,

0% W (Z.m2 -m - 4)/(2 m? + m)
Ta ‘

T, radius of lens face through which the
parallel beam passés first

Ty radius of second face

m refractive index

Of the lenses available those that gave the nearest

to the optimum value of i/, (0.1667 for m =_1.5) were plano-

convex lenmses- (“!/r, = 0). ' These were used throughout the
experimental programme.

The beam of light produced by a laser yields a
Gaussian light intensity distribution. The focussing of
'Gaussian' light beams has very special problems which have been
- the subject of considerable study in recent years. The propaga-
.tioniof such beams through lenses has been analysed by Kogelnik
and Li%1, Relationships between the radius of curvature of the
incoming beam, the position of the waist and the waist diameter

of the focussed beam have been derived.




The relationship between the beam waist within the

-

lasers optical system (g) and that at a lens (OL) is given by,

[1 +.’(‘}‘6‘)2 ]% 1.6.4
op o T .6.

wavelength
distance of the lens from the beam waist in
" the laser.

beam wave curvature at the lens (PL') is given
1

. _ 4170'2 2
PL1 = s 1+ (—xg—) ] 1.675

The effect of the lens on the wave curvature us the
beam propagates through the lens is given by“1:
1

‘ ' 1.6.6
PL1

P.L2 curvature of Fhe wave after the lens
£ lens focal length
These values of beam radius (gL) and wave curvature
(PLz) can be used to calculate the position of the focussed beam

waist relative to the lens (z) and the new waist diameter (Uf),

using the general expressions,
- ..ﬁoL? ~
- Y2
o * 11+ Gg7|
. L2

L ARp
2\ 2
PL2/|1 + (HULZ) | 1.6.8

Substitution of real valﬁes into equations 1.6.4 and
1.6.5 and using the resulting values of PL andAoL in 1.6.6-1.6.7
1
shows that the beam waist will not be coincident with the lens

focal length, f. 1In practice this means that a small diameter




Gaussian beam traversed across the face of a lens would not
rotate about the centre of the beam waist. This creates
particular p;;flems with the.two béam Laser Doppler Anemometers
where the two beams, although they cross at the lens focal point,
do not have coincident beam waists. This problem is overcome
by placing a positi?e and negative lens between the laser and the
-tfansmitting lens. In this case the 'Gaussian' diveréence is
cancelled out by focussing the beam aﬁd then using the second
lens to make the beam more nearly parallel prior to the beam
splitting. This system can be used to move freely the-beam
waist positions around the focal length of the lens used to
cross the two initially parallel beams. The beam deflection
system ysed in the apparatus shown in Figures 18a and 18b uses
the same principles. The adoption of a two lens.system ensures
that the-main beam is parallel, and that problems of aligniﬁg a
beam waist with the focal point of the lens and the collection
optics system are .avoided. However, as wiil-be demonstrated,
this method of minimisingAthe problems of alignment by avoiding
the‘use of a focussad beam,:aggravated the problem of spatial
.resolution and measuring volume size. The system did have the
major advantage, however, that the collection optics'system
always viewed a near planmar light field. This generated~angular_
scattered light distributions from particles which were
accurately modelled by Mie theory. Initial tests with the beam
bending apparatus'shéwed that .this method of rotating the laser
beam around a fixed point was capable of providing a closely
controlled change in light écattering angle,

Two light collection optic systems were used in

conjunction with the previously described beam bending apparatus.




Early experiments used two pinholes of equal size to define a

near parallel light acceptance column. The pinholes were

—t

typically1300um in diameter and were usually between 40 and 60 cm

apart. . The detector, a photomultiplier was contained in a
holder with a 1 mm orifice admitting light. .This was placed
approximately -5 cm behind the second pinhole. The angular
resoiution of this system was limited by tﬁe effects of diffrac-
tion at each pinhole. This angle, which can be calculated using
equation-1.6.2, defines the light collection solid acéepténce
angle subteﬁded at the first pinhole. If a blue (0.488um) laser
beam intevsects with the collection optics column 20 cm from the
first pinhole then-the Qidth of the column at the crossing ﬁoint
is apprgximately 0.8 mm. This size increases strongly as the
“pinhole size is reduced, forAexample a 100um pinhole produces a
column width bf-2;4 mm; Diﬁergence in a light collection

system using 300ﬂm pinholes results in an angulér uncertainty,
given\by-equation.l.6:2; of 0.11°, This limits the resoiution
of the instrument and restricts its ability to resolve the detail
in z polar scattering exﬁeriment in which the particles producg

a series of closely packed lobes of light intensity. Bowever,'
this scheme was used with some success to measure the angular
variation of light intensity for a series of water droplet sprays
of different mean sizes.. _Theée results are discussed in fhe
“following séction.

The(problems encountered while using the twin pinhole
collection optics system included limited anéular‘resolution and
the systems poor discrimination agaiﬁst background light noise.
In an attempt to overcome these a second optical system was

constructed using a small grating spectrometer, Figure 18b.




The basic design was based on an optical arrangement described
by Chu“z. In this scheme a single lens was placed one focal
length awayME;om a pinhole ﬁlaced in the entrance to the
spectrometer. An additional aperture was placed in front of
the focussing lens. This latter aperture dicfafed the size of
the light acceptance column within which the scattered light
would be measured. The Gaussian beam equation for calculating
the size of é_spatial filter for diffraction limited operation
was used to fix the size of the spectrémeter pinhole“?. This

is very similar to the equation for calculating the diameter of

the first Airy disc, derived from equation 1.6.2, and has the

form: .
AN |
dp > (“) 5 | 1.6.9
dp = spatial filter pinhole diameter
A = wavelength of light
A = aperture size in fromt of the lens
f = 1lens focal length.

The angular uncertainty of the system is given by,
66 = -2 © 1.6.10

Using a 10 cm lens and an aperture of 500um equatidn
1.6.9 predicts that a l25pm pinhole is required producing an
angular uncertainty, §6, of 0.07°. This represented a substan-
tial improvement in resolution‘compared to the early twin pinhole
system. In practice a pinhole of 150um was available and this
was used throughout the experimental period. The angular
uncertainty of this arrangement was cohéidered adequate for the
envisaged series of experiments as theory had implied that a

resolution of around 0.125° was required. The introduction of
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“(an E.M.I. 9658B) allowed for accurate measurements. In the

this system made the experiments much easier to conduct as they
could now be carried out in a fully lit laboratory without the
need fof light shielding. The sbectrometer was used for the
bulk of the experiments following initial testing when the twin

pinhole system was used.

The size and shape of the measuring volume was
dictated by the néture of the intersection of the parallel laser
beam with the nearly parallel light acceptance column. The
simple schematic in Figure 19ademonstrates one of the problems
of this type of angular light intensity experiment. A change
in light sca;ter measurement angle 6 is accompanied by a change
in measuring volume. For parallel sides beams size of the
measuring volume is directly proportional to the reciprocal of
the sin; of the scatter angle (e). In order to normalise all e
measurements-to a scatter volume of constant size it was necessary
to multiply all scattered light intensity measurements by sine
(e). The increase in measuring volume with a reduction in © }f
raised two additional problems. Firstly, the intensity of the : :';.E
light collected by the photomultiplier coﬁered a much greater
range than that implied by Mie theory. In practice the collected
light variation was found to exceed more .than three orders of

magnitude and was greater than the resolution of the photomultiplier

s

-second place. the measuring volume became physically large compared

to the system under investigation for the smallest values of 6.
The first of these problems was simply overcome by
using carefully calibrated neutral density filters to atteﬁuate

the light at small scatter angles. This meant that the measure-

. ments could all be taken at a constant photomultipler supply

voltage and with the tube always operating over a range where

s
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output current was linearly related to the incident light
intensity. The second problem, however, was not sb easily
solved and in fact a fully satisfactory solution was nevef
implemented although scﬁemes for improving this situation are
discussed in a later section. The 1eﬁgth of the illuminated
observation volume (Y in Figure 19) can be expressed approxi-

mately as:

B A

Y = sin 0 L : 1.6.11
where B = beam diameters
A = collecting optics diameter

e = sgcatter angle.
For small angles, say 6 < 5°, the above equation

simplifies to the following fofm where 6 is expressed in

radians:

Y = | 1.6.12

Assuming a parallel laser beam of diameter = 0.5 mm
and a receiving optics column of diameter A = 0.5 mm, Y is 28 mm
at 6§ = 2° and 57 mm at 6 = 1°, These values were typical of
those used during the experiments. . To ensure that the optical
system was sampling a homogeneous sectioﬁ of the spray under
~investigation, the atomizers were positioned so that the spray
dimensions exceeded the sample volume at the measurement point.
This was achieved by moving the atomizer away from the sampling
point until the plume width was four or five times the maximum
size of the measuring volume. For the limited range of experi-
ments eventually undertaken this method was reasonably successful.

The light intensity was measured using an E.M.I. 9658B
photomultiélief suitable for use throughout the visibleApart of

-
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the spectrum. The tube was placed behind the second pinhole in
the scheme of Figure 18a or at the exit of the spectroﬁeter in
the system of Figure léb. .The short term variation in the
intensity of'thé scattered light was damped out using a low pass
filter. The output signals were output to a digital voltmeter
and were continuously monitored on an oscilloscope.

The light source was a Coherent Radiation 52G Argon/
Krypton laser with a total output power of 2 watts. This unit
was capable of operating at a variety of wavelengths between the
strong line limits of A = 0.488um tq-k = 0.657ﬁm, blue through
to red. The wévelengths outside this rangé were‘too weak in
power to be useful. Most data was taken at the blue line as
it was the strongest; the photomultiplier was also more efficient
at this .wavelength.

The laser output was stabiliséd with a small.solid
state detector mounted at thé laser head. A small fraction of
the output was directad at the detector which wés part of é
closed loop power control system. The large power po#ential of
the laser partly contribuﬁed to the success of the simple optical
systems used in the-experiments. The monochromatic, planar
light beam generated by the laser was a major asset in the
generation of data for use with the Mie theory based inversion
technique.

The method of using the apparatus invo%ved aligﬁing
the collection optics along the laser beam at one extreme of the
range of deflection angles which could be induced by the main
deflecting lens. - This was done by removing the photomultiplier
tube, dynode chain and base, and replacing them with é sheet of

semi-transparent paper. The collected light could then be

viewed on the paper and the optics aligned to maximise intensity




and centralise the disc of light at the centre of the PM housing.
This position was noted as the zero scatter point and all sub-
sequent meaéG;ements were referred to it. With the spectrometer
system scatter anglesvof 6 v 0.5° were_then possible without
meeting too many secondary light or background light.noise
problems. The detector was returned to its housing after
aligument and followiﬁg the removal of thé beam from the detector
housing inlet aperture. The spray system was then activated and
directed‘toward the intersection point of the illuminating beam
and collection optics column. The polar diagram was measﬁred
:by traversing the lasér beam across the main deflecting lens in
small increments and noting the PM output on thé digital volt-
meter. It was important to ensure that the gas supplied io the
pneumatic spraying systems was accurately regulated .to eliminate
drift in-the performance of the spray. This was essential because
the design of'thg ¥irst generation' experiméntal rig resulted'in
a full\tra§erse taking up to five minutes. 1f conditions were
not maintained constant the drift in the electronic apparatus and
in the range of spray droplet sizes generated could destroy the
validity of the test. These problems were largely overcome by
the use of a long time constant low pass filter on the input of
the digital voltmeter which monitored the PM tube output, and by
the adaption of a pressure regulator and the use of,bottled gas
(Nz) to generate the spray. However, problems of drift were
often encountered during these exploratory experiments and would

have to be more adequately countered in any later work.
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1l.6.c The experimental programme

Measurements were made on a variety of atomizing
devices producing water sprays of diameters betweenIZO and 60pm._
These includéd simple air bllast devices, hydraulic nozzles and
lubricating nebulizers. For the most part the work'was confined
to water sprays as these were readily available and did not
require special exﬁractioﬁ f;cilities in the laboratory.

-~ Initial tests were conducted simply to establish that
the apparatus performed satisfactorily and also to check the
viability of a sizing technique based on the shape of the forward
scatter lobe. This technique was discussed in section 1.2 and
involved comparing the light measurementé with a series of
theoretically derived overlays. - Three spraying systems were
chosen for this purpoée, each df which produced a different
particle.size. The performance of the sprays was known approxi-
mately from manufacturers data. The angular light intensity
distribution of each of the sprays was measured ﬁSing the
previously described apparatus and the results are all plotted
on the graph in Figure 20. These were then compared to overlays
similar to those in.Figures 5 to 7 but computed for a much wider
range of sizes. Tﬁe mean sizes of tﬁe sprays deduced from .this
crude comparison are also shown in Figure 20, These means aré
modal means and represent .the particle size which has the maximum
numbér of particles in the distribution. Reference to Figures 5
to 7 show that the width of the forward scatter lobe varies little
with distribution width but.is a good indication of the modal mean
of the distributioﬁ.' in general the measured means compared
favourably with the available manufacturers data. Thesé results
indicate that the simple light scattering apparatus was performing

with reasomnable accuracy. A more rigorous test of the apparatus
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was made, however, in which the overlay technique was used to
measure droplet size in a high pressure, high temperéture duct.
This was péf;Aof an experimental programme mentioned earlier

and funded by Rolls—Royce (1971) Ltd. to inyestigate the rate of
evaporation of water droplets in an environment similar to that

in gas turbine compressor bleed air passéges. The test duct,
constructed under this contract, consisted of a 3.8 cm diémeter
stainiess steel tube along whose length was situated'six pairs

of diametrically opposed windows, "To withstand the high
temperatures (773.K) the windows were manufactured from trans-—
parent fused silica. They were mounted on silvet plated stainleés
steel '0' rings to accommodate any differential expansion betweeﬁ
the Iubg and the quartz;. The high‘preséute air, from a dried : -
supply, was heated in an electrical resistance heater designed

and built- for the purpose2?. The optical apparatus of Figuré 18

was mounted on a moveable optical bench with the test duct aligned

to coincide with the measuring volume of the dpparatus. The beam

was rotated about the axis at the centre of the tube without the
spray activated to determine the effects of secondary scatter
from the windows and the polished surfaces of the duct were.

The photomultiplier registere&vvefy little noise until scatter
angles of less than 6 = 1° werelreached. Here the noise bﬁilt
up rapidly towa#d 6 = 0.5°, The formula, outlined in section
1.6.a, for predicting the size of the measuring volume indicated
that at © < 1° the measuring volume was longer than the duct
diameter. Various minor modifications to the apparatus were tried
to allow the measurement of scattered light at smaller angles,
but to no effect. It was rapidly concluded that, in order to

make more accurate measurements at the small angles that would
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be necessary. In spite of this, however, results were taken
with the apparatus at positions 30 cm and 60 cm from the point

at which the‘épray was injected into the hot air streaﬁ. The
heater was set to deliver gas at 300°C and at 8 atmospheres.

The average velocity in the duct prior'to evaporative cooling

was 10 m/sec. The spray used to cool the gas was generated

from a C.T. Spraying Company, hydraulic atomizer which,

according to the manufacturer's data, delivered particles of

20ym mean diameter. The light scatter data measured between

6 = 1° and 6° is shown in Figure 21. The nearest equivalent
theoretically derived scattering signatures for zero order log
distributiqns are also shown in the figure. This relatively
cfude comparison showed fhat the particles had Vaporised to
12.0um-;fter 30 ém'and 6.0ﬁm afﬁer 60 cm in the air stream.

These results compared reasonably well with the results from the
theoretical model of the vaporisation process27,menﬁioned
earlier. However, the recognition of the shortcomings of the
simple light scattering apparatus, and the need to test the least
squares technique in controllable, predictable conditions,
prompted a return to a further phase of laboratdry ﬁench testing
at this stage. The apparatus was re—assembled in the laboratory
and an attempt was made to obtain data from a small airblast
‘atomizer and.to invert the data using the least squares analysis.
In paral;el with this experimental effort a complete re-appraisal
of the suitability of the existing light scattering rig was made
and a new design prepared. In the event it was not possible to
build the new rig as the time for development and research ran

out.
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The airblast atomizing device was supplied by the
C.T. Spraying Company and, when operated in the syphon mode,
produced a fine plume of particles with a mean size between 10

and 12ym diameter. To accommodate the large measuring volumes

inherent with the existing scatter apparatus, measurements were

- made where the plume appeared to be a finely dispersed cloud of

about 40 cm overall diameter. This allowed the measurements

of scattered light doﬁn to 6 ~ 0.5° without the measuring volume
1ength~exceeding.the‘size of the>spfay; The method of collecting
the data was the same as that used in the earlier experiments.

The beam was rotated in steps of A® = 0.125° from 6 = 0.5° to
10.0°.

N The method of least squares analysis used was similar
to that used for the theoretical study described in an earlier
section. No foreknowledge of the size diSfribution was assumed
and three sets of overlapping size classes were applied in turn
as approximating functions to each set of data. _The ortho—
normalised least squares method. was used exclusively for the .
analysis and to save computation time the disc file of intensity
signatﬁres was-again used. The range of sizes investigated and-

programmed into the file was o = 2 to 300 (0.3 to 45um with

A= 0.488um).

The method of generating the experimental data was
deécribed earlier. It required that the mirror bé traversed in
closely defined steps across the face of the deflecting lens.

A vérnier traverse was used for this purpdse. In ﬁractice it
proved time consuming and difficult to generate pre-determined
scatter angles identical to those stored in the computer disc

files. This problem was overcome by modifying the least squares
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~computer analysis. A cubic spline fitting routine was added to

the computer programme and this was used to fit a curve to the

-

measured set of experimental data. This allowed the data to be
collected at an arbitrary set of angles. Scattered light |
intensities at the angles stored in the disc file were . then
obtained from the spline interpolation procedure. - A modification
which simplified the experimental procedure considerably.

However, the technique was not used to reiax the‘requirement for

a sufficient number of data points to characterize the intensity
signatures. The angular intervals used were those the théoretical
work had indicated were necessary toléapture sufficient of the
detail of the polar diagrams. The.procedure‘ﬁas used simply to
interpo}ate between the measured angular data péints.

A series of experimental data.sets wefe applied to
the least squares analysis with varying degrees of success.
Unfortunately only a limited number of experiments were possible
before the period available for development had to cease. In
many of‘the cases in which the least squares analysis was uged a
very poof distribution reconstruction was obtained.  However,
in an isolated number of cases a vefy_good reconstruction'was
obtained which compared favourably with the data available from
the atomizer manufacturers. An example of one of>the more
successful inversions is shown in Figure 22. A.comparison of

“the original light scatter data with the least squares approxi-
mation obtained from the reconstructed distribution is shown in
Figure 24. The distribution has a characterigtic log normal
shape with a modal peak at about 1llum. In order to achieve a

smooth distribution with a least squares fitted intensity

distribution which compares well with the 6riginél it was found




necessary to increase the number of subsizes'in each major size
class to ten. The degree of structure in both the derived
numberxdistf;gution and the angular intensity signature gradually
decreased as the number of subsizes increased and the size
interyal decreased from Aa = 2 toward Aa =1, figure 23, The
finél smooth distribution had a zero ordgr log normal form.

The -reconstructed polar scattering diagram compared closely to

the original except at the extreme angles where the theoretical

function showed an.oscillatory form.

The amount of experimental work to investigate the
potential of the least squares method was very limited and of
insufficient quantity to demonstrate the true value of the
technique. However, the basis of a practicai method was
developed and the technique\ﬁas used to obtain some.apparently
successful inversions from experimental data. In order to

achieve these reconstructions several modifications were necessary

before the least squares analysis'would work. These modifications

were to accommodate.the following:

15 A distribution would only reconstruct if the range
of sizes used in the least squares analysis ehcompassed the
range of si;es in the original distribution.

2) As mentioned previously the reconstruction conformed
to a recognisable distribution only after the interval between
the subsizes was decreased from Aa = 2 to Aa N1,

3) The modification described in (2) above also involved
a paraliel increase in the number of subsizes in each major
approximating size class function ftbm five to ten.

e

As the development proceeded the problems outlined




above were progressively overcome. In the case of (1) above
the number of size ranges with which a fit was attempted was
increased f;om the three used in the theoretical work to a
maximum of ten. The problems implicit in (2) and (3) involved
decreasing the non-dimensional size interval Aa -from 2 down to
1. This was done, howevef, at the expense of the total range
of sizes that could be covered as the computer disc file. As

a result this was reduced from 0.3—45ﬂm to a range of 0.3-25um.
This was necessary because of the limited size of the then
available computer. disc fileé used to store the data.used by the
least squares programme. The application of ten overlapping
size ranges to this limited total number of particle subsizes
gave a high probability that the condition in (1) above was met.
Despite thesé additional modifications the results proved to be
extremely variable. Diffefent sets of apparently acceptable
data could produce inversions or distribution reconstructiohs of
widely different quality. In some cases éh gcceptable distri-
‘bution was obtzined whereas on other occasions the solution
collapsed to large poéitive and negative particle number density
values. The major source of error was traced to .the accuracy
of the experiment=l apparatus. The inversion proved to be
extremely sensitivé to small changes in the intensity values at
angles between 6 = 5° and ld°. Equally, the accuracy of the
data recorded at small angles could also influence the solution.
The reason for the sensitivity of the solution to the accuracy
of these ranges of déta was simply that they représented the
areas of least experimental accuracy and cbnsistency. Data
recorded in the forward direction continually ran into the

problem of the measuring volume assuming proportions which were

66




large compared to the particulate system. This fact plus the

non—~homogeneity of the spray system under investigation was

N

assumed to be the major contributing factor to errors in the

forward direction. At the large angles the source of error

simply stemmed from the relatively low scattered light
intensities that were small compared to the ambient noise level
‘particularly at angles near 6 = 10°. Both of these problems
would havé been most readily overcome by a suitable redesign of
the opticai'apparatus. Insufficieﬁt time was available to
carry out the modificationsvbut a new arrangement has been
designed and is described in a following section. | The full
potential of the method described in this chapter willvonly be
properly assessed if these experimental deficiencies are

eliminated and the sizing tests repeated.




1l.7.a General discussion of the least squares eévaluation

and recommendations for further work

-‘The theoretical programme was successful in proving
the potentia}»of the least squares method in ideal circumstances.
The simple transition of the derived séatter data proved that
the Gram~Schmidt solution procedure was capable of'generating
solutions which wefé less sensitive to the accuracy of the
experimental data. Previous solution procedures including
Gaussian elimination had produced an ill conditioned matrix that
made a practical solution using raw experimental data impoésible
to obtain. The basis of a practical scheme for a general method
of sizing particles was developed around the Gram-Schmidt pro-
cedure and using the previously described disc file. This latter
modifiéation,allowed the use of a large nﬁmber of individual
intensity functions in the analysis while avéiding the problem
of inordinately long computer times and large demands on storage.
In practicg, however, a full appraisal of the leas; squares
technique was not possible because of a basic lack of time and
because of deficiencies in the experimental apparatus. These
deficiencies were largely confined to the variableAand large
size of the measuring volume at small Iight scatter angles
(6 < 3°). This could be overcome by a more careful consideration
“of thewoptics:desigﬁ incorporated in the experimental rig. A
suitable set of optics are discussed in the following section.

Any future work in this area should undoubtedly be
carried out with a more suitable liéht écattering apparatus.
In addition to reducing the measuring volume size the problem
of potential drift both in the electronics and in the nature of

the spray must be accommodated more effectively than was managed

in this study. This could poséibly be done by using a rapid




scan apparatus to traverse the illuminating beam around the
measuring point over a short time scale. An accurate mean
intensity fuﬁétiqn could be built-ﬁp by accumulating.angular
data from a series of these traverses. In this way data at
all angles would have approximately the same time history and
the effect‘of drift wouid be minimised. Data would h#ve to be
recorded continually in a fast response storage system. A
mﬁlti-chanpel instrument such.as that supplied by Malvern
Instruments for accuﬁulating photon counts could provide a
suitable means of achieving tﬁis. The beam ﬁould be travérsed
or rotated by using a rotating mirror or prism device.
Any further work té develop.the theoretical method

must, to a large extent, depend on the completioﬂ of a more

. A A
extensive practiéal study. Only then would a full appreciation

of any practical difficulties be obtained. However, in view of

the non-linear relationship between the optical diameter of the

et e
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particles and the angular period of the lobular structure in the

intensity function, some potentially desirable modifications can
be anticipated. The particle size interval between each major
size class was comstant throughout the whole size range used

in the analysis.k An investigation of Figufes 2 to 7 shows that
as a tends to small values the change in:the size and number of
scattered light lobes becoﬁes progressively less pronounced.

~A rough plot of the angular width of the first lobe as a function
of particle diameter rngals an inverse dependence with respect
to a(wd/1). . The possibility of using a criterion of the
following form to decidé the size interval betweeﬁ adjacent size

classes could be worth exploring,
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Ao, = X 1.6.14
i ai

- The value of k will be chosen to give a sensible range

of values for Aa over the total range of sizes of interest. For

a size range a = 5-100 a major size interval given by Ad = 50/a

may provide a starting point. The value of k could be éxperi—

‘mented with over a broad range.. It is not anticipated that

blocked size classes of the type used in the previously described

study will still be required. However, the potential of non-
combined single unit size classes can be retested if desired.
A éimilar form of relationship as.that of equation 1.6.14 can
also be used to define the required anguiar range of data for
a given particle size stﬁdy and to fix the angular resolution.

It is suggested that for the aﬁgular resolution the form be
rg° = =2 | | 1.6.15

and for the total angular range'qf data required

- 500
a

60 = 1.6016

These values have been chosen following a close
inspection of the theoretical data such as that in Figures 4-7.

They predict an angular range and resolution which will capture

~adequate_angular detail to characterise a suspension of a pre-

scribed size. The problem with using a variable angular range
and resélution is that it requires a foreknowledge of the
distribution of sizes. In addition it would put a greater
emphasis on the computational aspect of the method. The range
of intensity functions of the calculated angular range and
resolution would probably have to be calculated, using Mie theory,

as required. This would make the method very time consuming
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with all but the most powerful computers. This would be
particularly true for large values of distribution hean size.

A major advaﬁEége of the technique described earlier was that
it allowed the convenient:use of the pre-programmed disc file
of intensity functions which dramatically'feduced.data processing
times. It may be possible to programme the disc file in
accordance with the criterion of equations 1.6.15 and 1.6.16
above. - However, the range of apgular data and resolution would
have to be carefully chosen so that they were compatible with
_the least squaresimethbd whatever the range of particle sizes.
under investigation. In particﬁlar, the need for each Mie
function to have the same angular resolution and total range of
intensiFy data as the experimental data musﬁ be accommodated.
However, the criterion implicit.in equation 1.6.14 is much
easier torépply. It only dictates the interval between each
approximating Mie function and .allows the use of thé same
resolution and angular range in éach subsize class stored in
the disc file, This WQuld seem a modification worth testing
at an eariy stage in any future work. In the event of a
transfer of interest to smaller or larger particles then a re-
appraisal of tbeAméthod of application would be desirable.

For large particles the use of long wavelengths to reduce the

value of a may be necessary. Small particles may be easier to

-~analyse_.by monitoring the variation of light transmission with

changes in illuminating beam wavelength rather than the variation
of scattered light with wavelength. In this case the
approximating function would represent the effect of wavelength

on the scattering cross section of each subsize class.
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’Eﬁe problems associated with the‘simﬁle optical
apparatus have been touched on in previous sections. This
apparatus was designed to meet the need for simplicity and ease
of construction and to generaté a planar light scattering field.
This latter requirement was to ensure the full applicability of
. Mie theory. ﬁowever, the use of a parallel light beam and light

collection optics column resulted in impractically large

measuring volumes at small scatter angles (6 < 3°). In any

future exneriments this problem can be overcome by using‘focussedA
light beams and collection optics in the manner illuétrated'on
Figure 18c. These new optics must be carefully designed and
aligned to ensure that the light is sgatﬁered aﬁd collected from‘
the planar light field at the centre of the laser bgam waist.

As before the Gaussian beam relationships can be used to design
an optimum systém,

The proposed system uses the same method for changing
the scatter angle as-in the previous scheme. HoweQer, the first
focussing lensgis, in effect, deleted and the bending lens deflects
and focusses the béam at the lens focal point. Assuming the
lens was 5 cm in diameter and that the maximum. angular rénge to'
be accommodated_was approximately 15° an optiﬁum iens focal length
-was 10.cm. As before the lens woﬁld ideally be plano~convex and'
to minimise aberraticns only the central 2,5 cm at most would be
used. Spherical aberrations are a function of the cube of the:
distances between the incoming beam and the lens axis. The °
necessary degree of rotation of the light beam can be minimised

if a series of equally spaced light detectors are used, Figure 18c.




In this case the maximum required angle of beam rotation is
equivalent.to the angular interval betwgen the detectors..

The angular resolution and minimum forward scatter
angle at yhich'measurements can be made can be calculating using
the Gaussian beam relationships. The divergence introduced
into the beam at source can be eliminated if necessary by using
two lenses in series, one to focus and thevother to remake a
parallel beam. This would then be redirected onto the main
bending lens, as before, by a front -silvered mirror. The now
parallel beam will be focussed at, and deflecfed through, the
lens focal point.. The beam waist at the focal point can be
calculated from'the equation 1.6.7

. .A.ﬂoL’
o+ G
pbe

beam _radius at the lens

beam wavefront radius at the emergent side

of the lens.
If the beam has some divergence prior to meeting the

lerns then equation 1.6.6 can be used to calculate PL 3
2

Al,

PL2

PL1 radius of.curvature of incoming beam
f ' leus focal length.
If the two, lens system described in the previous
secticn is used to cancel the laser Eeam divergence then
L, = o and P.L2 = ~f where the negative sign denotes that the
curvature is convex relative to the direction of travel. If

PL is finite then, as mentioned in a previous section, a problem
b §

is encountered in alignihg the beam. waist with the main lens focal




point. The two lens system allows the beam waist generated
by the third lens to be moved and aligned relative to the lens
focal point with a high degree of control.

With a lens of 10 cm focal length and a parallel
beam of 1 mm diameter at the lens theniequation 1.6.7 predicts
that o; = 39}4k;. The far field diffraction angle, Figﬁre 19b

) A
which dictates the minimum measurable scatter angle is given by?

s = 1.6.17
wof

This gives -a minimum measurablé scatter angle of
8 = 0.22° using the components described above. This ensures
the full range of angles required for the sﬁccessful use of the
‘least squares analysis 66.5°—15°) is achievable.
h ‘In order to achieve the full bénefit from the
focussed light beam, some modifications to the collection.optics
are also reqﬁired. To allow some control of the measuring
volume dimensions-and to allow an bptimum choice of optical
components the two lens scheme shown in Figurefﬂois proposed.
The aperture between the two lenses and the carefully designed
pinhole in the photomultiplier system dictates the light collec-
tion efficiency and angular .uncertainty. The aperture size
should be chosen to pro&ﬁce a measuring volume matched to the
focussed -beam diameter. The ideal apertufe size is also
affected by the focal length of the first lens used in collection

system. The second lens, nearest the photomultiplier, should

be chosen such that the light entering through the pinhole expands

to cover the whole of the photomultiplier detection face.




The -diameter of the light collection optics column (AJ)
at the focal .point of the first lens is given by an equaﬁion of
the form of 1.6.9

A .
- f
do T ' 1-6.18

A . chosen aperture diameter

f lens focal length.

Equation 1.6.9 is used to calculate the pinhole
diameter in the face of the photomultiplier housing. In the
case of the second lens being of a shorter focal length than the
collecting lens the angular uncertainty will be dictated mainly

by the collecting lens. This is determined. from equation 1.6.10,

_ o de
(Y:] = £

Using equations 1.6.18 and 1.6.10 the diameter of
the apertuie necessary to acﬁieve a collection optic waist of the
same diameter as the laser beam waist can be calculated. If a
30 cm lens is used to collect tﬁe light and it is desired to match
the 78.8um beam derived earlier then-equation'l.6.18 predicts
that an aperture of 2.5 mm is required. The angular uncertainty
of this scheme is éalculated, using 1.6.10, to have a value of
0.0149°. This is well within the angular.resolption required
to obtain accurate light scatter data suitable for use with the
least squares analytical method.

The second lens shoﬁld, as stated eérlief, be chosen
with é view to optimising the quantity of light falling on the
photomultiplier face. If the second lens has a focal length of
10 cm equation 1.6.9 indicates that do > ZSﬁm for diffraction
limited operation. If an EMI 6256S photomultiplier is used to

detect the light then it should be placed 20 cm behind the pinhole
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to ensure that the detector tubes 1 cm diameter light collection
face is completely filled with light. In practice the several
variable components will have to be optimised to meet the pre-
viously experimental requirements. The proposed.scheme offgrs
considerable scope for flexibility and-adjustment.

This optical system shou;d provide a substantial
improvement in resolution and allow measurements to be made at
forward scatter angles less than those possible with the pre-
viously described simple apparatus. The theoretical limit of.
8 ; 0.22° will probably not be achieved in practice but angles
of less than 6 = 0.5°,ﬁhich was the minimum previously possible,
should be attainablg. ~ A limitation will be imposed by the
,diverging laser beam approéching the collection optics and
finallf saturating-the photomultiplier.with noise.

This optical system can be cémbined with the
modifications discussed earlier involving rotating prisms or

mirrors to rotate the laser beam around the measuring volume,

and multiple detectors to 1imitAthe extent to which the laser
beam angle must be altered. In this way the7timg to collect
the data can be reduced, the problems of drift eliminated and
the effect of imperfections in the main beam bending lens

ninimised.
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1.8 Conclusions and Recommendations

" The work described in this report had its origins
in an initial appraisal conducted by a previous worker and is
still far from complete. However, several important conclusions

can be drawn from the work and major advances toward the develop-

ment of the technique as a practical system have been made. In

addition certain experimental and practicai advantages afforded
by the least squares method over other technidues can'ﬁg shown.
The method has the following advantages?

1) - -.A particle size distribution of any arbitrary shape
can be measured and reconstructed. Many of the alternative
methods are only capable of fitting a log normal or other
assumed distribution shaﬁe.

2)K Any size of particlé distribution can be measured in
principle providing the correct angular range is used and that
the approximating functions cover the particle'sizes of interest.

3) Data is not required at extremely small forward
scatter angles (8 < 0.5°) for particle sizes betwéen a = 25-20°
and the angular resclution requirea is less than recommended
with other techniques. If carefully dgsigned optics are used
the absence of a requirement for small angle data will help
achieve good spatial resolution by minimising the size of the
‘measuring -volume.

4) It appears to be impossible to produce a plausible
but erroneous result using a least squares method because an
incorrect choice of-approximating functions or alternatively
inaccurate experimental-data.will result in a wil&ly oscillating

distribution solution.




The work described in this thesis reyealed that,

(a) In order to'produce a meaningful solution from
practical daE;‘the number of individual intensity functions
used as approximating functions in the_analysis must be increased
from that originally recommended?0. This can be accommodated
without disadvantage by grouping together adjacent size class
séattgr functions to form a series of averaged éize groups.
These can then be applied as approximating functions in the
least squares analysis.

(b) In order to accommodate the error inherent in

experimental data the Gram-Schmidt method of matrix decomposition'

must be used. Any other'method (such as Gaussian elimination)

will become ill-conditioned and a meaningful solution will be
impossible.

(¢)  To ensﬁre the most accufate solutioné the range of
approximating function size classes musf totally encompass the
range of sizes in the spray. This requires a carefully designed
search routine to obtain a distribution reconstruction.

(a) | The method used in this work proved incapable of
working with‘particle sizes giving a less than 2.5. This
problem can probably be overcome using a'more appropriate range
of angular data. This requirement for a varying range of
angular data depending oﬁ size may possibly be accommodated_if
‘the suggestions in 1.7.a are adopted.

(e) The experimental apparatus used towards the end of
-this work was inadequate in fully and accurately assessing the
true practical value of the least squares technique. However,
it was shown to be possible to achieve meaningful size distribu-

tion data, and further work is desirable.




In any future work the following recommendations

should be followed.

(i) _6nly thevGram—Schidt method should be used to obtain
a solution.

(ii) The disc file should continue to be used to store
computed intensify functions in order to minimise computer
time requirements. For sprays thelinterval Eetween sizés should-
be Aa = 1. Some refinement in this criterion along the lineé
diécussedvinv1.7.a may be possible.A

(iii) 1If the grouped size class approach is continued then

each group should consist of ten (summed) adjacent size classes

from the computer disc file.

(iv)v For water sprays giving a = 25 to 300 data between

A6 = 0.5-15° at intervals of about 0.125° should be collected.

(v) A For an automate&‘search for a solution a fixed
interval df sizes should be scanned at small incrementsr
throughout the whole size range accommodated. in the disc file.
or, if required, over a range specified in advance. This will
incr=ase the probzsbility that bne of the applied size ranges
will eﬁcomﬁassmthe‘true,rangelbf sizes present in the spray.
In the event of a solution not being achieved the width of the
applied size range can be altered. This latter facility can
be incorporated into the cbmputér search routine described in
the thesis.

(vi) A set of optics along the guidelines described in

section 1.7.b should be constructed to improve optical resolution

-and reduce measurement volume size.
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PART 2.- CROSSED BEAM PARTICLE SIZING

2.1 = Introduction to Part 2

The experimental programme described in the previous
section in addition to proving the viability of the least squares
technique, also highlighted several practical shortcomings of the
single beam apparatus. The most predominant of these was the
variation of the measuring volume with changes in the observation
angle and the inaccessibility of the forward scatter data. The
combined effect of these problems was to minimise the range of
particle sizes that could be measured. In an attempt to over-—
come these problems a new method was devised for illuminating the
particles, using crossed laser beams. Although it was soon
discovered that the new method possessed limitations of a differ--
ent kind, it was a sufficien?ly promising technique to warrant
further investigation. The programme involved the development
of a new light scattering theory together with.a preliminary
evaluation of the accuracy of a new technique for measuring sub-

-micron particles.

N

2.2 The Potential Advantages of Crossed Beam Illumination

When a particle is situated within a single plane wave
light beam the most intense components of écattered light are
projected along the propagation direction of the illuminating
beam. Normally thié light cannot be measured as it is many
orders weaker than the light upon which it is superimposed.  1If,
however, the particle is placed within the intersection region of
two crossed beams a substantial change in the direction of the most
intense scatter can result. The two main beams combine such
that the effective direction of propagation within the intersection

region lies along their bisector. Providing the particles are
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sufficiently small the forward and back scatter is projected into

free space between the beams where it can be readily measured.

e

Unfortunately thié phenomenon only oécurs for a specific range of
particle sizes beyond which the scattered light re-orientates
itself such that two primary peaks occur each aligned along a
different main beam. The intefsection region of two coherent,
monochromatic plane waves resolves itself into a set of fringes3,'
causing a sinusoidal variation in light intensity. The forward
and back scatter is redirected into free space when the particles
under investigation have a diameter smaller than the width of a
single fr.nge.

The fringe spacing can be calculated from the equationm,

Ax

>
Il

Seind wavelength of the light

(2]
I

half angle between the

intersecting beams.

Figure 25 shows the basic differences between single

‘beam and twin focussed beam systems. The single beam system
‘has a large irregular measuring volume and forward scatter:
directéd along the main beam. With two crossed, focussed beams
the measuring volume is small and for small particles the for-
ward scatter can be easily measured. Lens abberrations result
in an intersection volume of finite proportions with virtually
p#rallel fringes.

‘The fringe dimensions can be increased by using an
illuminating beam of longer wavelength or reducing fhe angle
between the beams. As a particle traverses the fringe region
it is subject to a continuously varying incident 1ight field.

This modulates the scattered light sinusoidally at a frequency
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which is a function-of the fring spacing and the particle velocity.
The crossed beam laser doppler anemometer utilises this signal.
to monitor tﬁ; velocity of particle seeded gas flows. In the
context of particle sizing, the modula;ion frequency can be used
to isolate the light scattered from the intersection region from
that scattered by particles situated elsewhere in the beams. It
also.provides a means of discriminating the required light scatter
from light noise. This would be particularly valuable in
measurements being made in reacting systems with appreciable
levels of combustion light emission. In practice the modﬁlated
signal can be isolated using phase sensitive detection or a simple
narrow band filter. The method has the additional advantage of
possesq?ng a small measuring volume which is invariant in size,

a feature which aids measuring resolution.

Preliminary theoretical invgstigatidns, using plane
wave theory, revealgd_that the ratio of forward to back scattered
light was a monotonic-function of particle size, between the
nomirnal limits of .0.015-0.5um. This is the range of sizes of
interest in investigations of particle nucleation and growth.

In view of the interest in soot and titanium dioxide particle
formation within the Department of Aeronautics and Astronautics
at this University the ratio technique was explored further.
The measurement of large particles was abandoned so that the
‘more immediate potential of the small particle technique could
be explored.

It was soon realised that plane wave theory was not
applicable to the crossed beam case and a new theory was derived.
This is described in the next section.

On further probiem concerned the measurement of

stationary particles, because under normal circumstances these
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would not give rise to a modulated scattered light signal. One
example of a gituation where it is desirable to make such a
measurementhis in the reflected shock region in a shock tube.
This practical difficulty was overcome .by applying an opposing
doppler shift on each of the two main beams; This caused each
beam to have a slightly different light frequency so that when
they were crossed the resulting fringes moved continuously through -
the intersection region. vA stationary particle situated in the
measuring volume was then subject té a sinusoidally changipg light
field. As a result the scattered light was modulated at a
frequency dependent on thé spacing and translational velocity of
the fringes. As in the case of moving particles, this frequency
can be «isolated and the signal amplitude equated to particle size.
The doppler shift can be imposed on the beams in a variety of
ways. These include splitﬁing the single laser beam with a
rotating diffraction grating, and the electro-accoustic Bragg
cell.

.The.following section describes briefly the‘theory
of crossed beam light scattering by a spherical pafticle. Single
beam piane wave scatteriﬁg is well described theoretically. with
Mie theoryl. Light scattering from particles in the intersection
region of two laser beams is not amenable to such a simpie treat-
ment. This is because the fringe field, which is the real part
of the product of the electric and magnetic vectérs, E x H, is
non-planar.

The development of the crossed laser beam technique
was undertaken on a joint basis with a colleague, Mr. Chou.
The original idea and the experimental development was the

responsibility of this writer. The derivation of the theory
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was the entire responsibility of Mr. Chou. Full accounts of the

theory are available?8,29,

2.3 Crossed Laser Beam Scattering

The two main, intersecting, beams are assumed to be

planar, coherent, monochromatic and of equal strength. The

particles are spherical and of arbitrary diameter. A brief

description of the theory-follows.
The governing equation is derived from Maxwell's

equations and is the potential field'equation3°. For a non-

conducting sphere,

VZWQE, t) - l/cz-éigig%—gl = 0 2.3.1

ot
where c is the speed of light, and y(r, t), a scalar potential,
is related to the magnetic (H) and electric (E) vectors by the

Lorentz condition,

2.3.2

I
o

VeA + l/c /3t

where "H = VxAand E -7y - 1/c dA/ot 2.3.3

A is a vector potential uniquely related to H and EF. The analysis

is confined to a periddic field (p(x, t) = Q(x) exp(iwt), in which

case (2.1) becomes,
via(x) = k*e(x) = O 2.3.4

where k = 2n/X and A is the wavelength of the incident light.

Equation (2.3.4), the Helmholtz equation, can now be solved using

classical methods and the following boundary conditions. These

are that the tangential components of E and H are continuous, i.e.
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(E, -E)xn = 0
boa | 2.3.5
(Hb - Ha) X n = 0

where the subscfipfs b and a represent media on each side of the
scattering surface. The solution, described in detail in
references 28 and 29, appiies to a particle positioned anywhere
within the intersection region of the beams. For this reason
it is necessary to define two sets of co-ordinates; . one centred
on the intersection region of the incident light beams, Figure
26, while the other is positioned at the middle of the particle.
The latter system is shown in Figure 27.- The angular variation
of light scatter is defined relative to those co-ordinates based
on thetparticle centre, while the main co-ordinates define the
particles position within the fringe field.

The general solution below is in the same form as

that of the Mie theory solution descrided in section 1.2.

— 2
I¢ A lE¢|
2.3.6
1= x|
; 8 4rr 0

These equations represent the intensities in two
mutually orthogonal planes. The two main beams lie in the 6
plane; the ¢ plane is perpendicular to the 6 plane. Both of
‘these are defined in Figure 26. The amplitude functions lE¢|
and |E9| are both. functions of a particle non-dimensional size
parameter, the particle medium relative refractive index and
the particles- position within the fringe field. As in the case
of the Mie theory solution the size parameter (a) has the

following form,
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o = fx— 2.3.7

where r is the particle radius and A the main illuminating beam
wavelength.

| Polar diagrams calculated using equation (2.3.6) are
presented and discussed in fhe next section. In all cases the
results were computed in either the ¢ = 0 or ¢ = 90° planes.
These arevrespectively, in the plane of the two main beams and
perpendicular to tﬁe main beams but in the plane of their bi-~
sector.

2.4 Numerical Results

The new theory has been used to calculate polar dia-
grams of the light>scattered in the two planes perpendicular,
I¢, and parallel, I

The zero degree (8 = 0) or forward direction lies along the

o° to the electric vector of the main beams.
bisector of the two incoming beams directed away from the light
source. The backscatter also lies aloﬁg the bisector and pro-
pagates at 180° (8 = 180°) to the forward scatter direction.
'Figure;28 shows the angular variation of>scatter for particles

of two sizes situated at the centre of a bright fringé region,
cailed here the symmetric case, with various beam intersection
angles x. With a zero intersection angle the solution collapses
to the‘same form as the Mie theory solutioﬁ. When the fringe
size is much larger than the particle diameter, the solution is
very similar to that of Mie with the exception that the forward
scatter lies between the main beams. As the intersection angle
is increased the scattered light is attenuated evenly in all
directions. The miniﬁum in the Ie plane occurs at the same
angle of scatter irrespective of the intersection angle. For

a particle whose diameter approaches the fringe spacing, in this
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case a = 6 (1.2ﬁm, A= 0.6328um) and x >5° (A% = 333um), the most
intense scatter occurs as two peaks either side of bisector as
shown in Figure 28(b). The scatter pattern assumes an increasing-
ly unusual form as the intersection angle, x, is increased. The
intense twiﬁ peaks mig;ate toward and through the incoming main
beams and a considerable area of attenuation opéns between the
primary and secondary scattered light lobes on the polar diagram.
The modulated scattered light signal occurs when the
particle migrates from a bright to a dark fringe regiom. Figure
29 shows a calculated polar diagram for light scattered by a lum
particle within the dark region. This is the asymmetric case.
The light has been strongly attenuated, in the forward direction.
The ampiitude of the modulated signal is the difference between
the symmetric and asymmetric cases. The size of particles of
interest in this étudy are sufficiently small that.the scattered
signal recorded at the forward point, & = 0, has optimum contrast.
The signal amplitude in this case is given by equation (é;B.ﬁ)lusing
co-ordinates which place the particle in the symﬁetric position.
In practice the recorded scattered signal has far from perfect
comtrast. The existence of several arbitrary placed particles
in the measuring vdlume, each with a slightly different velocity,
will produce a signal of reduced contrast or visibility. The
classical definition of visibility was first used in the field
of holography to characterise hologram fringe field quality.
It has the following form,

I - I.

max min

1 + L
X m

ma in

Ideally I ., =0 and V = 1.
min
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The visibility is a function of both the fringe
width, particle diameter and the particle number density or
spacing. The dependence of visibility on particle diameter
has prompted the development of another sizing téchnique31’32.
JOpes33 with an alternative analysis of crossed beam scattering,
has pointed out the possible value of visibility polar diagrams

in particle sizing field. This is certainly deserving of further

attention.. The visibility will in general be the same at 6 =.0°

~and 18° so the accurécy of the measurement of the ratio will be
preserved. There must; however, be a practical minimum visi-
bility below which measurements are not possible.

The calculations which were made using Mie theory
tobdetegmine the férward to back scatter ratio were repeated
using the new theory derived by Chou. The;resulté confirmed
the viability of the forward-back scatter ratio method. The
new theorétical results are shown as continous curves in Figure
30. The ratio is z monotonic function of particle size between
o = C.l and 2.1 (0.02ym-0.35um, A = 0.488um). The lower limit

~is imposed by the onsat of the Rayleigh region in which the
scattef ratio assumés a constant value of unity. Above & = 2.1
the ratio begins to oscillate and loses its uniqueness. The
practical lower limit has yet to be established in practice but
is probably a»larger size than suggested here because of the
limitationé<of measuring accuracy. Another factor yet to be
investigated is the effect of particle size distribution on the
ratio. In the experimenté described in the next section the
effects of distribution width were ignored; the suspensions

assumed to be mono-disperses.




2.5 The Particle Sizing Apparatus

A schematic of the apparatus is shown in Figure 31.
The light source was an Argon-Krypton Ion laser of 4 watts tétal
output. Most Qork was undertaken using the blue line, A = 0.488um,
at which 800 mwatts of powér was available. The laser beam was
split With a rotating diffraction grating which had 10,800 lines/
revolution, and which was spun with a phonograph motor at 1100
r.p.m. Sixty percent of the light was directed into the first
two orders the remaining orders beiﬁg blanked off with a black
mask. The zero order beam was used to align the optical apparatus
along a common axis. A lens focussed the laser light onto the
grating and a further lens was used to cross the first order beams
in the specimen suspension. Two smallAmirrors were placed between
the beéms, either side of the intersection point, which intercepted )
the forward and back scatteféd radiation and directed it through
90°. Two lenses made the light parallel and sharp edged orifices
ensured that both signals were collected over identical solid angles.
The light was then directed with further mirrors and lenses into a
comon spectromeier -and photomultiplier apparatus. Great care
was takén to keep the optical path of each scattered light beam
identical. In order to monitor either of the signals one was
temporarily obscured with a mask of black qard. The output of
the photomultiplier (E.M.I. 6256 S.A.) was displayed on an oscil-
loscope. The-amplitude of the.signal was measured directly
fr&m a photograph of the trace. The apparatus was designed to
provide an accurate test-bed for the technique while avoiding
unnecessary complications. One detector was used to overcome
the difficulty of obtaining a matched pair necessary for simul-

taneous measurement of both scattered light components. No loss
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of measuring accuracy was experienced becaﬁse the specimens were
static particulate suspensions. The modulated 'doppler' signals
were obtained through the use of a rotating diffraction grating
which imposed a doppler shift on each of the two beams and caused
fringes to translate through the suspension. Typical signals
were 50-200 mv in ampiitude and had a frequency of 1 Mhz.

The suspensions, one of TiO, with a mean size of
0.3um, ﬁhe other colloidal silica of 0.04um, were contained in a
spectroscope cell which was suspended in the intersection region.
The effective size of the intersection volume was 500um x 100um
x 100um. The intersection angle was 3° giving a fringe dimension
of A* = 4.18um. A»variable band pass filter was incorporated
into the plug-in amplifier used with the 'Tektronix' oscilloscope.
This was used to filter-out unwanted low and high frequency noise.
In general the signals obser;ed were clearly defined sine waves.
This would not happen in a flow situation where the particles
possessed a range of velocities and arbitrary spacing, because
these would result in a signal of low visibi}ity'ﬁhich consisted

of .a narrow band of frequency. Under these circumstances more

sophisticated instrumentation would be necessary.

The experimental results obtained using the apparatus
yielded particle -size-estimates that agreed well with the informa-—
tion obtaingd from electron micrographs of the same two suspensions.
These have been included on'Figure 30, the points corresponding
to particle-diameters of 0.33um (TiO,). and 0.035um (silica).

2.6 The Present State of Development

The preliminary experimental investigations described
in 2.5 have served to prove the viability of crossed laser beam

particle sizing. However, as already stated, the conditions in




o

which these results were taken were ideal; a low noise environ-

.ment, and stationary particles diluted to give optimum signal

visibility. Before the technique can be used with confidence

it ﬁill be ﬁecessary to.quantify the effect of the width of the
size diétribution on the calculated forward-back scattered ratio,
and its relationship to the mean size. Similarly the effects

of pérticle number density and velocity distribution must be
ascertained. | It is already known from Laser Doppler Anemometer
work, that scattered light signals from seeded gas flows ﬁave far
from ideal visibility. It is also known that Rayleigh sized
particles ( a <0.1) scatter light in proportion to a non-linear
function of «. This means that the few particles in the coarse
tail of*a log normal distribution of particles would contribute‘
the major proportion of the total scattered light. This has
already proved a problem in‘several fundamental shock tube studies
of soot formation3%:36, A programme of work has been planned to
provide answers to these remaining questioms.

2.7 Current and Prciected Work

At the cutset it was intended to develop the forward
to.bacg scatter ratio technique to be used in shock tube studies
of TiO, and soot formation.  In order to demonstrate that the
technique could work -in an experimental situation the next stage
in the development programme involved setting ﬁp a scattering
experiment on.a 2" diameter shock tube (Figure 32). A suspen-—
sion of known size was used, in this case potassium iodide smoke.
Only a limited amount of running was possible with the shock tube .
apparatus. However , éne component of scatter was detected and
monitored within the 800usecs running time of the glass shock

tube. The measurements were made in the reflected shock region
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of the tube, and the frequency of the scaftered light signal
confirmed that the gas was effectively stationary. This was:
as ig should be according to shock wave theory. It was not
possible within the time available to attempt to measure the
size of the KI smoke.

A comprehensive theoretical study of the pdtential
of crossed beam siéing is planned for the future, with a view
to finding new ways of using the light scattered from two crossed
beams to obtain .particle size.

2.8 Discussion

The basic principle of particle sizing using crossed
laser beams has been tested. However, much further work is
required before the method can be used with confidence. The
principal experimental effort must be directéd foward the develop-
ment of suitable processing:électronics. This must be backed up
by appropriate mathematical studies. | The work alréady conducted
has served to prove the basic idea, and the validity of the new
scattering theory. )

The crecssed lasér beam teéhniQuehas potential applica—
tions in many research and industrial process areas where the
sizes of submicron particles are required. These include the
monitoring of pigment quality, the monitoring of seed diameters
in laser doppler anemometry, and others. The technique incor-
porates the advantages of a near point measurement and uses the
most intense components of scatter to characterise the particle
size. )

In conclusion, it must be pointed out that only one

method of using the modulated light scatter signal for particle

sizing has been investigated. There may be other possibilities




including, for example, the angular variation of the visibility
signal and its relationship to particle size parameters. This
and other aspects of two beam particle illumination may be worthy

of attention.
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PART 3. OVERALL CONCLUSIONS-

This thesis has described two methods of particle sizing
using laser light scattering. Although the development of the
method is incomplete both technidues have been shown to have distinct
advantages that makes continued development attractive.

The a&option of the Gram-Schmidt orthonormalisation
procedure and groﬁped size class approximating functions has trans-
formed thé-least square method from one of only academic interest
to a.technique of potential practical value. The technique offers
tﬁe,advantage of being capable of accurately reconstructing distri-
butions of arbitrary shape. In addition it may be possible to apply
the techniqﬁe to a wide range of particle sizes. This work
demonstrated theoretically that both submicron and particles of 5
to 100um diameter can be measured provided an appropriate range of
angular theoretical and practical scattered light data is available.
The practical work gave some initial proof of the technique'é
ability to work with experimentally derived data.

The two beam method originated from the désire to eliminate
the probiems of variable measuring volume encountéred with the single
beam system, and to meke it possible to measure the iight scattered at
zero degrees. In practice the method was not suitable for the_
measurement of-.sprays as intended but proved most‘appr0priate to the
measurement of submicron suspensions. The modulated signél and the
discrete but small measuring volume may bé used to advaﬁtage wﬁen
monitoring‘Submicron particles in hostile environmenfs.

The practical development of both methods should be continued:
with further testing of each technique using real sprays and suspensions.
This additional work will prove, in the case of the least squares
method, whether or not the technique is suitable for use in the
ﬁaporising droplet experiments described earlier.. Further development

of the experimental scattered light rig design is recommended.
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The crossed -beam technique requires a thorough study

to establish its limiations and its strengths. The establishment

of many of these can probably be accomplished using the néwly

2
derived tpeory of cross beam particle light scatteriné} )
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LEAST SQUARES
EXPERIMENT

Intensity
Intensityatr®=5°
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o 2 G- 6 . 4 10, 2.
scatter angle © degrees

COMPARISON OF THE LEAST SQUARES |
APPROXIMATION OF THE ATOMIZER ANGULAR
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FIG.26 | -
FIELD CO-ORDINATES AND NOTATION
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