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ABSTRACT

FACULTY OF ENGINEERING AND APPLIED SCIENCE

INSTITUTE OF SOUND AND VIBRATION RESEARCH

Doctor of Philosophy

ACOUSTIC EXCITATION OF CONTAINING STRUCTURES

by Francis John Fahy

An analysis is made of the vibration of thin shell structures by time-
randoﬁ sound generated in a closed volume of fluid contained by>the
structures. Classical analysis, which uses the differential equations

of motion of the structure, and integral equations for the soﬁnd field,
is discarded in favour of an analysis which treats the time—avérage power
flow between the vibration modes of the structure and the fluid.

Application to cases of (a) a rectangular panel which forms one wall
‘of an otherwise rigid rectangular box and (b) a right circular cylindri-
cal .shell, indicates that, in cases of regular fluid volume geometry,

" existing two-oscillator power flow equations can be generalised toAcover
multimode coupling.

The response of containing structures to sound in the contained fluid is
shown to be usually the same as that to a diffuse acoustic field in the
external fluid above a frequency determined by the geometry and speed of
sound of the fluid, and the material properties of th; structure. Below}
this 'lower limiting frequency' the response falls below'the diffu;e
field value and the transmission of soﬁnd through the cylindrical shell
is also affected. It is shown that, with geometrically regular fluid
volumes, the péwer flow is dominated by very few of the'available mode

pairs.




Coupled oscillator theory is extended to cover the case of the
statistical dependeﬁce of oscillator inputs péculiar to point forces,
and correspdnding measurements of sound radiation are made.

Measurements of response of box-mounted panels and a‘cylindrical shell
to valve noise in the contained air clearly demonstrate the lower
limiting frequency phenomenon. Small perturbétions of the fluid
boundary geometry affect response only at frequencies below the lower
limiting frequency. With low modal populations the response teﬁds
to follow.thé‘sméothiy varying,,étatistically estimated curves, rather

than the irregular‘curvés computed from individual mode pair power

) flows.
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CHAPTER I

INTRODUCTION

Thevresearch reported in this thesie forms part of a research
programme which was initiated in 1966 after several cases of structural
damage‘to the cooling-gas circuits ofjnuclear reactors. had been ascribed
to acOustically induced vibration and fatigue. A gas cooled reector

. circuit can.broedly‘be described as a closed duct circuit in which oom;
'pressed gas is blown-by a large compressor through a nuclear eore where
it picks up heat, anhd then through a heat exchanger, where it heats
“water in tubes to produce steam. The compressor_ls typlcally-of 15,000
shaft h.p. and normally'generates high acoustic power of the order of
103 Watts.‘ This acoustic pover is radlated 1nto the gas c1rcu1t. The
.alms of the overall research programme are uo increase understandlng of
the mechanisms of sound propagation in gas circuits,'and to develop
improved forms of analyeis‘of acoustically induced structural response
and strain distribution, for use at the design_stage. The programmebis
supported by the Central Electrioity Generating Board, the United Kingdom
Atomic Energy Authority and members of the commercial nuclear industry.
The'work reported here is supported by the C.E.G.B. ano is

vconcerned with the problem of acoustically induced vibration of plate

and shell-like areas of the gas ductwork. The vibration problem in

nuclear reactors differs in two main features from that of aero-space

structures, on which much work has been done over the past decade. First,

the duct structures are constructed typicallyeof between two inch‘and




one-half inch unstiffened steel plate work, as opposed to the lightweight
alloy stiffened structures of aircraft and missiles. Second, and_morel
important, the sound fields are generated in the fluid contained by the
responding strsctures, whereas the sound which excites aero—space'
structures 1is propageting largely in free space. Hence the fluid in the
reactor ducts exhibits resonant, modal behaviour and its high frequency,
multimodal pressure field characferistics are extremely complex. There
is particular interest in the effecf on response of limiting the volume
of fluid in which the sound is contained, and in the dependence upon

fluid sound speed.

1.1 Available Means of Analysis

Rational approaches to the estlmatlon of the resbonse of plate—
and shell—ilke mechanical structures to acoustlc fields may be broaaly
classified into (a) those which employ the equatlons of motion dlrectly_
ard; (b) those whlch consider energy flow between the fluid and mechanical
systems. The former approach requlres the definition of the fluctuatlng
acoustic pressure distribution at the surface of the'structure. Some
studies assume that these pressures are given by the incident field
_ characteristics, with either a simple pressure doubling correction for
wave reflection (1), or a more careful correction for the rlgld scattered
vpressure (2); other studies account for the additional pressures due to

surface vibration by means of a matched boundary condltlon solution (3),
or a radiation pressure approaeh (4, 5). In the last mentloned analys1s

use is made of the acoustic reciprocity principle to relate the surface




pressures causing modal response to the power radiated by vibration in
that mode. However this analysis is restricted to céses of response to
remote acoustic sources under free field_conditions.

The energy flow from a fluid into a structure may  formally be
determined from a knéwledée of the surface impedance of thé structure, 
which can be obtained from the equations of motion of the structure..
However, since it is necessary to determine the total surface acoustic
pressure (incident- + scattered), as previouslyvméntioned, there is no
advantage to be gainedvover~a direct solution of the equation of motion.
Indeed the.impedance expressions of finite shell and plate_structureé'are
offen so compléx théf‘uéually only iﬁfinite systems have been éohsidered
(6).

It is in cases of random vibration of coupled fluid—mechanical
systems thét an energy flow approach may be shown tO»prOQide a powerfgl_

A alternative.to the forée approach. Modal eqﬁations of motion, each.
describing the motion of one simple oscillator, are manipulated to pro-
duce expressioné for the nett power flow from the fluid system into the
mechaniéal'system,>wi£hout.resort to impedance expressions.’ The relevance
of this approach to the prbblém of acoustic excitation of containing
structureé by sound in_the contained fluid will be appreciated from the
following discussion.

it is neéeésary in all forms of analyses of acoustic excitation
to assume a suitable fbrm of idealised model‘of.the incident acoustic’
field. The two most commonly assumed forms are the uni—directional-plane
wave field and the diffuse field. The latter is defined to consist of

plane waves travelling in all directions with equal probability, a con-




dition approximately satisfied at high frequencies in rooms of many acoustic
wavelengths in size. It is one of the concerns of the present work to
consider those situations where structures that contain a sound field have
typical dimensions of the order of a wavelengﬁh, in which case the diffuse
field model is not necessarily applicable. Bécause a fluid in a structural
container will often behave acoustically as a highly tuned, multimode
system, the spatial and frequency variation of acoustic pressure on the
container surface will'be'extrémely complex, even for a ﬁell defined
acoustic source strength distribution. In practice it is usually impos-
sible to estimate the source strength distribution in deﬁail, but an |
“ estimate of the acopsti; poﬁer sﬁpplied to the'fluid_canfbftep_ﬁe made
-(é.g., steam valve noise in industrial pipes). Cohsequéntl&;-it will be
appreciated that the use of the coupled oscillator, energ& flow approach,
‘ﬁhich demands only a knowledge of the acoustic power supplied to the fluid,
and works difectly in terms of the eigenfunctions and frequéncies of the
separate mechénical and fluid_systems, is a natural choice for the pfesent
problem. |

A further reasoﬁ'for the use of coupled oscillator theory is
that it may be 'forced into service' to provide guidelines to the impor-
tant parameters in high frequengy, multimode situations where the
"classical, normal mode and finite element analyses become unwieldy and
where statistical approaches come into their own. The term in inverted
commas is used because no rigorous analysis ofiﬁultimode pbwer flow has
 yet been produced (T) with.which to combare the results of épproximate
theory.

As yet there has been no analytical treatment of the random

_y -




acoustic excitation of coﬁtaining vessels by sound in a contained fluid.
Some Qtudies have been made (8-14) of the related problems of sound
radiation by wall vibration into a closed space but, of these, only
Kihlman's study (8) of a panel-box system at supercritical frequencies,
and Crocker and Bhattacharyas' study (9) of éound transmission into a
closed box,have any relevance to the present problem. Kihlman's analysis
is restricted to frequencies above the critical (lowest coincidence)
frequency of a panel. Crocker and Bhattacharyas' analysis does not dis-
play the controlling parameters in a simple fashion. Pretlove's study
(10) of forced vibration of a panel on a box is restrictéd to the lower
order modes of the panel and the analysis could not be practicably extended
-to higher frequencies. The analysis by Fahy and Pretlove (11) is more
concerned with the effect of a duct on panel damping than with response
to sound in the duct. In the papers of Eichler (12), Lyon (13) and

White (1k4) various assumptions are made about the radiation efficiency of

structures without specific analysis.

1.2 Content of the Thesis

The main concern of the thesis is the application of coupled
oscillator, energy flow analysis to calculation of the response of two
geametrically regular containing structﬁres to broad band random sound
"in the contained air. These structures are (a) a closed right circular
cylindrical shell and (b) a rectangular plate which forms one wall of an
otherwise rigid rectangular box. Geometrically regular systems have been
chosen because they are amenable to analytical and numerical studies of

the coupling between the fluid and the structure, which allow the results

-5




of statistical theory to be checked for accuracy. Considerable interest
is however showﬁ in the effects of irregularities of fluid boundary
geometry on the coupling and oﬁ the resulting structural response. The
cylinder response analysis 1s also used to ihvestigate the transmission
of sound from the inside to the outside air.

A formal solution fbr the response to acoustic sources having
simple harmonic time dependence, which uses a classical modal approach,
is préseﬁted in Chaepter II. This solution is presented in order to
demonstrate the,imprqcticabiiify of using a classical approéch'to the
problem of high frequency, raﬁdom acoustic excitation. Itkhaé also been
used to derive écaling paramete¥svfor a dynamic model of a:rééctor-gas

circuit, which is being constructed as part of the general research pro-

gramme . It is concluded that the'coupled oscillator, energy flow approach

provides a more bromlslng means of analy51s.

The development of coupled oscillator theory is reviewed in the
first part of Chapter III. Newland's perturbation method (22) is then
used to compare the results of approximate and exact two-oscillator power
floﬁ aﬁélysié for'gyroscopic-(acoustic) coupling. Perturbation analysis
is also used to produce a new result for the partlcular case of statisti-
cally dependent modal 1nput forces which is produced by the application
‘of a point force to a structure. The implications for osc1llator set-
to-set power flow are discussed;

Coupled oscillator fheory is then applied to the case of the
rectangular panel—box'system in Chapter IV. The impliéatidns of thé
observed high degree of spétial and frequency selectivity of éanel;fluid
mode paifs are discussed at length:' they lead to appfoximate mode-set

power flow and response equations which differ from those previously

-6 -




presented by Lyon and Maidanik (16). Both simply supported and clamped
panel boundary conditions are treated. The analysis for the latter case
extends analyses previously presented in the literature (29, 23). Impor-
tant mode coupiing statistics are derived from a statistical analysis
which is supported by a computational study. The concept of a 'lower
limiting frequency', below which a diffuse acoustic fiéld model is
untenable, is derived from these statistics. The point excited panel is
also studied. Experimental measurements of panel response and radiation
follow in Chapter V where the results are compared with those of
statistical and compdtational analyses. The effects of irregularity of
fluid boundary geometry are-invesfigated experimentally. |

Similar theoretical-and experiméntal studies of cylinder res—
ponse and radigtion are presented in Chapter VI and measurements of the
transmissiop.of sound through>the cylinder are presented in Chapter VII.
Conclusions and recommendations for further research form the_concludidg

chapter.




CHAPTER II

GENERAL EQUATIONS OF MOTION: THE FORMAL SOLUTION

2.1 Introduction

This chapter presents a formal solution to the problem of
vibration of.a shell-like containing structure by acoustic sources which
are situated in the contained fluid and have harmonic time-dependence.
This classical solution is présented so that its complexity may be
appreciated, thereby affordipg some justification for the resért to
a more recently developed form of anélysis_in the following chapters-.
‘The formal harmonic éblution also displays some of the important physical
characteristics of a closed éhell—fluid system, and therefore forms.a
basis on which to.build a physical understanding of the dynam;c behaviour

of such a system with ahy type of time-dependent acoustic source strength.

2.2 Equation of Motion of a Shell

The equation of motion'governing the bending vibration of a

thin shell structure of mass per unit area m, which is subjected

“on one side to a time dependent pressure P(ES, t) at position vector

r , is
—S 2
°w(r ) ow(r )

2

=P(r , t) (2.1)
3t s '

| (L] W(LS) + m(zs)

ﬁJ is an operator which relates the local lateral elastic force per unit
area to the local surface displacement w(gs). B is an ad hoc’ viscous

damping coefficient which accounts for energy dissipation by mechanical

- 8 -
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means, excluding acoustic radiation losses.
The surface displacement may be expanded in terms of the in-
vacuo normal modes of the undamped structure as w\_s 2 £ (r )€ (t),
m=1 "

where the mode shapes fm satlsfy the equations of undamped free

vibration
{{t] - wmem(gs)} £(r) =0 | (2.2)

Substituting for fm(zs) in eguation (2.1) from equation (2.2), multiply-
ing through by fn(zs), and applying the condition of orthogonality
between normal modes, gives

p

o200 + E0)] [ 226 mGes « | T e Gr )i, ()35

s n=1"

[}

o A |
J P(_r_s-, t) fn(gs)ds , , | (2.3)
A .

If we‘further assume that there is no>damping coupling between modes B&
_virtue of meéhahical? but not acqﬁstic, forces, thén'we may assume that
' B(gs) = Bm(z%)_ vhere B is a conétant. Then the orthogonality
relatioﬁship holds for the damping terms, which iéads to the harmonic

form

m

g -Jf_mQ(_gs')m(;S)ds[wmQ - w2 g in] = f P(_r_s)fm(z_s)dS. (2.4)

S

" 2.3 Acoustic Equations

The acoustic field in the enclosed fluid 1s assumed to have a
velocity potential ¥, i.e. we are dealing with an irrotational field.

The acoustic pressure is related to the potential by




(e, t) (2.5)

P(r, t) = -p —==

: wherg N is the mean fluid mass density. For harmonic oscillations of

frequency w, P(r, t) = P(;)eiwt = iwpow(i)eiwt; or P(r) = iwpow(z).
Reference (15) gives the relétiénship, for steady wave (harmonic)

conditions, between the acoustic velocity potential within a closed volume’

V, any enclosed acoustic velocity potential source strength density

q(zo), and the boundary conditions on ¢ at the walls as follows:-

v (x) = J alr )6, (x/x_")av  + (1/@)’[ (6, (x/r _%)graa viz ®) -
v - s |
o o o

cl Wz Sgraa, o, (x/r_*)]as (2.6)

o

for r within and on So and where the gradient and surface vectors
point outward from the enclosing surface,'

The Green function;> G,

satisfies, for a source at r , the
b b
X ' : o

partial differential equation -
2 . 2\~
(vC + x7)G, = -bné(r - r ) (2.7)

where 6 is the Dirac delta function and k = w/co where ¢ is the
speed of sound: k 1is known as the acoustic wavenumbef. The Green
function for a completely enclosed fluid can be expressed in terms of
the eigenfunctions of the fluid in.the presence of rigid walls. Lgt
these eigenfunctiops.be 'wn and the cbrresponding eigen?alues be kn;
that is . _
(2 +x?)

+kn v, = 0. | (2.8)
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It is assumed that the eigenfunctions form a complete set so that it is

possible to expand .Gk(gjzo) in a series of y :

‘oo
G (x/r ) = - y Ay (r) (2.9)
n=1 . :
Introducing this series into equation (2.7) we find that .
(v° + x2)) Ay (2) = hns(r - r) . (2.10)
&7 n'n'= - =~ o v

Thus

*2(—k 2+ %) a v (r) = -bns(r - r )  ' | (2.11)
noon n'n =" = o’ : -

Multiplying through by ¢p and using the orthogonality’éohdition for

'rigid wall acoustic modes; fwnwbdv =0; n#p, we obtain = -

A= hmpn(go)[(krf - k2)J¢n2(£)de_l | | (2.12)

-After normalising by choosing ¥, such that . 'fwne(z)dv =1
) . N

we obtain, from equations (2.9)'and,(2.12),.

hﬂ¢n(£)wn(£0)
2 _ k2)

G, (r/x ) =VOZ° (2.13)

(x,
Substitution of this expression into equation (2.6) gives

© wn(_x;)ipn(go) (_r_)wn(zos) |

y(z) = MJ a(r ') Z SRR gy [ [OZO Yn

o’ L 2 2 L 2 2y
v nll(‘kn - k%) 5 n=1 (kn - k%)
S ety () (x %) 4
grad_ q;(_:_r_os) - ¥(x_%)grad ( ] a 5 1 —g ].dSO (2.14)
' " n=1 (1«:n - k%)

..'.._']_l -




Now grad v (r ®) is zero for a rigid surface becéuse it
. 1s proportional to the acoustic particle velocity normal to that surface.
Hence the last term in equation (2.14) is zero. The convenience affordéd
by expres51ng the Green Function in terms of the rlgld wall acoustic
modes is therefore seen to be the elimination of the term involving the
unknown surface pressuré ¢(£OS) at other points than the point, r,
éonsidered.

‘The term grédow(zos) is given by the normal veloc1ty of the

. . . . i 9
v1brgt1ng wall since ,gradow(go = =t

I
p=1 (%

iw Z f (r )gpﬁ)for'harmonic oscillation. The surface pressure
p=1 ’

may therefore be -expressed as follows

n'=s"'n-o - . o (. S
av_ + de | Z.fp(go )z

v, (r y_(x ) |
S

-k
n .
o H

Substituting this expression into equation (2.4) we obtain
2 2 2. . o
o) 5 e 0050, - P o sus] -

© Y (r )w (r)
[atey | ot g
v n=1 (k kn )

: ¥ (x )w.(r .
S n —s 1 —0O
5 );P nzl (k% - k 2) * ]
| _ -k




Collecting terms in L, Ve finally obtain

Gl [ 12 nte)as(e,? - o2+ sue) ¢ Po ([ g0 [ £, )
S

S -5
: o

n -—s n —o as )]
= 2 2 o)
=1 (x° =~ kn )
p_(x_dy (r )
=3 u"J (r )asf a(r ) nZs’’n "o gy
wp [ ! I I VO nzl (k2 _ kn2) . o
J (e ) J E e § wn(zs)wn(gos) ( ")
+ f as f z as 2.17
lws - §  pAw=l P£° Pl (57 -k 2) o1

2.4 Discussion

This formal solution for the_shell mode generalised coordinate
gm demonstfates the nature of the coupled structural—acqustic system
-problem. The second term in round brackets on the left hand side of
the equation represents”the effect~of the fluid on the mode due to its
own motion - a‘direct»vifﬁgai‘mass or stiffness effect. Notice that:the
magnitude of the c0ntribution of each term under‘the summation sign
depends upon the proximity of the driving frequency w to the natural

.4"frequency of the acoustic mode wn, through the difference between k

(= m/co) and k. (= Qn/co). It is obvious>tha§ some form of ad hoc
acoustic damping would have to be incbrporated‘into the mathematical
model for practical purposes;

The first term oﬁ the right hand side of therequation represenfs

the generalised acoustic force on the mode cm‘ due to the distribution of
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acoustic sources Q- Again acoustic mode resonance eifects are evidegt.
The magnitude of the contribution of any acoustic mode is seen ﬁo_dependf
also.on the degree of spatial matching between the acoustic mode 'shape'
¢n and tﬁg structural mode shape fm. Jt also depends upon the degree
of matching betweeh the acoustic source distribution and the particular
acoustic mode shape. The last term in equation (2.17) represents the
coupling forces between the mode and the other structural modes p Vvia
fhe fluid pressures. Hére theré is a double dependence upon spatial

matching between acoustic and structural modes, as well as the frequency

differénce dependence.

It will be réaliséd'that for any practical multi-mode system,

an appreciation of_eveh the éiﬁple'harmonic behaviour would be difficult
fo achieve. It is unﬁecessary_to demonstrate formally that the situatiop
in which the acoustic sdufces-are random functions of time, having
possibly wide freéuehcy,sfecfra, represenbs a formidébly complex situa-
tion. . The formai random solﬁtion contains expressions which represent
ﬁhe stétistically expected reiatiénship between écoustic sources, and
thereby between acoustic énd-étructural modes, for which it would bé very
difficulf to assume reasonable analytic forms. There are indeed very few
practiéal acoustic sourceé-for'which such characteristics have beeﬁ
reliaﬁly measured. A further most important consideration is thgt,even
if such characteristics could be adequately described, the resultant
behaviour of the structuré-woﬁld be derived in sﬁch a form thet a
reasonably simple parametric sfudy, such =s it is important for a designer
to be able to assimilate énd to use in making design.degisions, would

probably not be forthcoming.




It is well known that the acoustic source distribution of most
real random noise sources, such as compressors, jets and valves, are not

sufficiently well understood to enable adequate mathematical models to

be. formulated. However in many -cases qﬁite good estimates can be made

of the tdtal acoustic power output of such sources. Hence it is very
vreasonable to look to an approach to the calculation of structural
vfesppnse which utilises only the acoustic power output of the source.
Such an approach is the coupled oscillator, energy flow approach which

'is used in the follow1ng chapters.




CHAPTER III

COUPLED OSCILLATOR THEORY

~,
N

3.1 Survey of the Development of the Theory

The first applicatidn of coupled oscillator, energy flow theory
to randomly vibrating mechanical systems of engineering interest was that
of Lyon and Maidanik in 1962 (16). . They demonstrated the proportionality
of-power flow betweeﬁ two linearly, conservatively, lightly coupled
- oscillators to the difference betﬁeen the time average energies of the
oscillators when subjected to the‘same applied forces, but wheﬁ un-
coupled from each other. Their broof'dependgd upon an 'ad hoc' lineari-
sation of the power flow equafions, on the basis of the smallness of the
coupling force:coefficient compaféd with the modal damping force coeffi-
cients. They applied the analysis formally to the interaction between
the acoustic modes of a room and-éne flexible wall, but did not properly
explore the details of this problem. Consequehtly some of their
assumptions were not of ‘general validity, such as that concerning the
much greater number. of participating acoustic modes than structural
modes.  Some. of their aséumptions.were in general unnecessary, such as
that concerning the spectral properties of their pseudo input force pro-
duced by formal reduction of the problem to a two oscillator problem.
These matteré aré discussgd further in later chapters.

A number of papers and reports (12, 1k, 17, 18, 19) followed

the publication of Lyon and Maidanik's paper in which 'ad hoc' extensions
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of two oscillator theory was made to the interaction between sets of
modes. The poverflow expression was written in terms of the average
coupled modal energy difference between the coupled systems, and_a‘
modai,averagé coupling loés factor was defined (cf. reference 20).
Ungar (21) was first to poiht out the dangers éffsuch an arbitrary
-exteﬁsion ana he discussed .the conditions under which the two oscilla-
tor power flow relationship couid be validly extended to multimode
systems. These conditions were (a) uncorrelated force inputs to the
individual oscillators AND (b) equal modal énergies in each set OR
uniform mode to mode coupling;

Newland (22) was the fir;t‘to-present a powef flow analysis
ﬁhich enabled estimates to be made of the errors involved in the use of
approximations éuch as those made by Lyon and Maidanik in their éd hoe
linearisation. Thié perturbétion method also'allowed certain statistics
of thé pover flow procesé to be evaluated, such as the spectrum of thev
power flow.

Scharton and Lyon (7) first demonstratéd that thg power fiow
between randomly excited coupled oscillators is proporﬁional to the
difference between their actual time—averagé coupled enefgies, even when
they are strongly coupled, providéd that the oscillator enérgies are -
correctly defined (i.e., the coupling energy has to be correctly divided
up among the oscillators). HoweVer'they‘regretted.that 'the caiculatioﬁs‘
used to demonstrate the: proportionality for the two-oscillator sysfem :
become very tedious for an arbitrary system of even three Qscilldtors'.
Kakar's work (24) confirms this statement, but he is at least.able to

demonstrate that in the general three—oscillator case the power flow-
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energy difference proportionality relationship is not valid. However

his detailed consideration of errors arising from an assumption of this
proportionality shows that, unless the oscillators have very close

natural frequencies, they wili normally only be of the order of 1%.

Both Scharton and Kakar show that the relationship holds for N identical,
and identically coupled, oscillatérs. This case is not of great interest
to the engineer, excepﬁ possibly in the case of multi-element structures
such as turbine discs and blades,Aor periodically stiffened panels.

A considerable amount of effort has gone into the calculation
and measurement of'the constants of proportionality in the power flow
equation for different mechanical systems (25, 19, T, 26, 27). In many
cases a direct calculation of the‘modal coupling forces and,§elocities
is very difficult and resort is had to a wave transmission calculation
(ef. 7, 27). It is generally found that the wave approach, with the
assumption of an infinite 'receiving' system, giyes identical results
to a modal, or frequency-averaging calculation. This appears to be a
very convenient préperty'of'multi—ﬁode systems and should considerably
ease the problem of high frequency vibration transmission in complex

systems.

This thesis is not primarily concerned with the development of

coupled oscillator theory. The theory is used as a tool to analyse the

response of containing structures to sound in a contained fluidj but the
results of the analyses apd the aséociated experiments allow certain
obserfations to bé made regarding the application of coupled oscillator
to lightly coupled fluid;mechaniéal systems, particularly wifh respect to

deviations from average behaviour at frequencies where modal populations




N

are rathersmall. Also, important corrections to the widely used equations
of Lyon and Maidanik (16) are derived to account for the wide variation in
modal coupling factors associated with closed fluid systems of small

volume.

3.2 Power Flow Between Gyroscopically Coupled Oscillators

3.2.1 The Equations of Motion

The symbols used in thls and succeedlng sectlons differ from
those used in Chapter II. The reason is that the theory of Chapter II
is largely based upon'acoustic Green function theory‘presented by Morse
and Feshbach (15), and deviation from their nomenclature would make
reference to their work difficult. Much of the theory of the present
Chapter is based uébn Lyon and Maidanik's paper (16) and it is their
nomenclature that has been used in the author's papers to which exten-
sive feférence Vill be made. Apért from an initial reference'to |
Chapter‘II, the following theory is self contained, and therefore it 1is
hoped that thé minimum of confusion‘will ensue from the use of two sets
of Symbolé. .

The modal equations of.motion of the structure are of the
form of equation (2.3). The acoustic pressure.is proportional to the
time derivative of the acoustic velocityipotential ¢, and the total
pressure is written in the form of a summation over a‘series of coupling
terms bétween the particular structural mode and all the acoustic modes.
The acoustic equations are of similar form. Féllowing (16) we ﬁrite the

modal equations as

- 19 -




R 2 .
Bt BSp Uy sy T g‘ Brmqr = By (3.12)

.. . 2 . ‘
9y * qur * u’r 9. - 1%1 ersm 'Gr (3.1p)

It will be seen from equation (2.16) in Chéptei‘ II that the coupling
_coefficients B are such that -Brm = B .- -Reference (16) shows that
the form of equations (3.1) is such that no energy is dissipated in the

coupling. The terms in equations (3.1) are defined as follows:-

Nl

q. = (str/M.)\’f;r' . :_a“'z.

G, = (cbep/MVel;)% {[g(_r_; t)y (r).a(r)

s = (e )% ¢

P o= (emM"c‘)—';" é fx, t) ¢ (x).a(x)

B = (e Zorve et [ ()4, (0).a) » (3.2)
S

where velocity potential, y(r, t) = qu'(t)wr(g)
s =

]

shell displacement, ¢(x, t) = J Sm'(t)¢m(§_)
' m

acoustic source strength distribution = g(r, t)
pressure distribution applied to shell = f£{x, t)

Me
m

[o_Z(x)m(x)ax
S

Ve
r

| \flwf@d(_g)

Lyon and Maidanik reformulate each of the modal differential
equations of forced motion (3.1) by incorporating the terms representing

.coupling to all except one of the modes of the other systenm into a new

-
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forcing term; ~thus equations(3.1) become

. . 2 . .
+ i B = -— = 1 .
Sm Bmsm * “n sm * rmqr Fm z Bkmqk Fm (3.3a)
k#r
. . 2 " _ < '
Q. * Ba teay - s, T Gp * L Br®n = G (3.30)
. n#m

With the further assumption that these new forces F' and G'
are independent and 'white', equations (3.3) represent the ccupled motion
of only two oscillators, to which Lyon and Maidanik apply their:
previously derived linearised power flow equation, in which they write

the power flow per uhit mass from the mth to the rth mode. as
s = t 1
Snr = Er (0" - 8 (3.4)

6' are the éferage uncoupled energiesvper,unit mass when driven by forces
F' and G'. The linearisation in this case is based upon the smallness of
(er/Br) and (er/sm). Neglecting squares and products of these ratios,

the coefficient ey is given as

B 2 (8 0 + B w 2)
= my 5 211’.1 r rm > 5 (3.5)
(wm - o )T+ (Bm + 3r>(3m“’r + B W )

The most interesting and important feature of this expression 1is
the strong sensitivity of the denominator to the difference between the
structural and acoustic mode natural frequencies, wy and w.s which

enables the following first order approximation to be made

Bir( B. * Bm)—l 22 ]wm - mrl <(8m + Br)*’ (3.6a)
€y . ,
0 po2fyg, - ow | (8, o) (3.6b)

¥An error appears to have been made here in reference (16). The original
condition virtually excluded any power flow with practical damping values,

whereas the present modification restricts significant power flow to modes
of which the natural frequencies are less than the sum of half their half -

power bandwidths apart.




3.2.2 Perturbation Analysis

A perturbation method presented by Newland (22) is used to
derive the power flow equation for gyroscopic coupling and a two mode
analysis provides one estimate of the errors involved in the approximate

results presented above.

3.2.2.1 Power flow

Following reference (22) we rewrite the equations of motion

(3.1) as
E + g8 + s + YeB_ g = F (3.72)
m m°-m m . m 5 rm %4 m
. .2 - . “ '
Ap * B T oo, - g Bt = G : (3.7v)
where eBrm replaces Brm and e is a constant which may be made

arbitrarily small(€<=1)

The rate of energy input per unit mass to the mth structural
oscillator from the «r acoustig oscillators, Which ve denofe by - L
is given by

L ) 3, Bl (3.8)
r
The time average power flow is given by

m

no=E)=- g eB . E[5 4] - (3.9)

where E['] denotes the éxpectation or statistical average.
It is assumed that the solutions for sm(t) and qr(t) permit

expansion in powers of the parameter €:
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s (t) =s_ (t) + es () + 825m (t) + ... (3.10a)
[o) 1 2

a(¢) qro(t) *eq, (4) 4 e2qr2(t> ...  (3.100)

Substitution of equations (3.10) into the equations(3.7) gives, if the

resulting equations are to be satisfied identically in €,

(3.11a)

(3.11b)

(3.12a)

(3.12b)

Now interest there are no direct mechanical

input forces;

=0 (3.13)

Hence we have

(t) + e2q (£) + e¥q (£) + €Pq (6) + ...
qro ) qre " qrh ) qr6 (3.1k4a)

splt) = ey (6 ¢ e3sm3(t),+ g5sm5(t) e (3aw)

The product in brackets in equation (3.9) becomes




E(s 4] eB[s 4. | | (3.15)

Now the solution of equation (3.11b) is given by the convolution integral

J hm(é)qso(t - o0)ae, ' (3.16)
0 |

hm(e) is the response of the m"® mode to a unit impulse aq (t) =
d
6(e).

Similarly the solution of equation (3.12a) is given by

q?o(t)'= ‘j hr(e)G;(t - 8)de
0

Hence equation (3.16) becomes

s (t) = - z Bsm J hﬁ(el) ‘j ﬁs(ez)cs(t -8, - el)delde
0

0

1 2

The expectation of equation (3.15) therefore may be written, to second

order in €,

) J h (6,)E[G_(t - 6, - el)G¥(t - 85)]
0
d6,de,d6, - (3.18)

Now if the generalised acoustic sources G, are assumed to be
statistically independent of each other then E[Gs(t— ez-el)Gr(t-e3)] = 0:

r # s. Hence equation (3.18) becomes

E[sa] =- sBrm'J h_(6,) f h_(s,) J h (0)E[e (t - 6, - 8))G (¢t - 6.)]
d6,d6,d6 (3.19)




vhich may be further reduced to

]

]

_ * A { e - \ . T A
By [ B0 B, &= 0)a, (4] a0,
(o} o
0
- . n o
= - en, | B0 3, (6)0; (3.20)
0

for stationary random excitation (30). R'(6) denotes the derivative of
R with respect to 6. Hence the mean power flow per.unit mass from the

r acoustic modes into the mﬁh structural modes is given, to order 52, by

- _ o oo' ’ " .
no=¢ 1B I h (8))R"q_ (e )ae, (3.21)
r o
0 :
For the special case of acoustic white noise excitation of
spectral density SG the‘autocorrelaﬁion‘of the response of an acoustic

mode is given, in the notation of equations (3.7), by (31)

B 6
‘T
7S, . ——— B /2w .
Rqr () = ———QE— e 2 .{pos'Vl - a2 wre +-£———§ sin ¥l - azwre}
o B W, ' : vi- a
8>0 (3.22)
where o = (Br/2wr)
and the impulse response function' hr(e) is given by
- =(8_/2)
1 r . ' 2
h () = ————F— e {sin /1 - o w_8} (3.23)
r . vl - a2 W, d
From (3.22), the first derivative of Rq (8) is given by
' o
oy _ "Sg ”(Br/g) {sin V1 - o°w 6} (3.24)
Riq (8) = - : 5 e r
: o Bwl-a
rr
so that
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qur (8) R Q.-
) o)

-9 - (3.25)
hr(e) hr(6)

Hence the power flow equation (3.21) may be written

o . nSG
I hm(e)hr(e). —B:de (3.26)

2

Now. MTTSG/Br is the mean energy of the uncoupled rth acoustic
mode when subject to a flat (white) acoustic source spectrum SG'
‘Evaluation of the integral in equation (3.26) leads to the following
expression for power flqw'pér_unitfmass

2 2

- ® + B w
Br,m mr

2 2
w_“-w )
r m

(3.27)

2 2 24 -
+ (88 ) (8w %+8 o 2)

'Whgre MUro is the ﬁeah energy of the rth uncoupled acogstic oscilliator.
Note that this expression agrées fo second order in € with those of Lyon
and Maidanik (equations (3.4) and (3.5) in this thesis). . The total powef
flow per unit mass to the complete set of structural oscillgtors is of
course given by the sum of the power flows to individual modes, i.e.

DL
m

3.2.3 Exact power flow equations for two gyroscopically
coupled Qscillators- '

The approximate'powér flow equation (3:27) can be used to
calculate the ratio of the mean energy of an indirectly driven oscillator
m to that of a directly driven, but uncoﬁpled, oscillator r. Newland

(22) used the equations of motion of two stiffness coupled oscillators to
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investigate the accuracy of the approximate result. He found that the
accuracy depends upon the closeness of the 'biocked' natural frequencies
of the oscillators, and the strength of the coupling. Strong coupling
leads to a reduction in the energy of the directly driven oscillator, if
ité frequency 1s near that of the indirectly driven oscillator, which is
not accounted for in the approximate theory.

‘The equations of motion of two gyroscopically coupled oscillators
are used below to demonstrate that the power flow equation may be expressed
in terms of the difference between the actual coupled osgillator energies,

and that the factor of proportionality is the same as that in equation

(3.27) for the uncoupled energy difference. A similar analysis to that

‘of Newland's is used to calculate the actual oscillator energies.

Consider the coupled equations of motion of one structural mode

m, subject only to a gyroscopic coupling force, and one acoustic mode r

subject to a random acoustic source of spectral density 'SG which is

uniform in frequency,

q (3.28a)

rm-r
G +B& + wZq - eB 8 | (3.28b)
q rr r %4 rm m , cre

The equations may be combined in the following forms, which are not

independent,

—— . 2 2, 2, 2
s, * Sy (Sr. + )+ s (0 + BB +o + B_°)

2 2, _ . _
4 sm(wr w ) = ~ EBrmGr (3.29a)




and

.. oy 2 2 2, 2y, o« 2, 2
* qr (BI‘ * BlIl) * qr(wr ¥ Bmsr + wm t e Brm ) * ql'(Bme‘ ! Srwm )
2 2 . .
= O
+ qr(wm w, ) s w " G +BG +GC, (3.29b)

By using the standard relationships for spectral densities (31) we obtain

E(ém)2 = szBrmsz J.wh[Hl(iw)]zdw | (3.30a)
and - o : o
, E(c‘;r)2 = -8; [ w2_ [Hz(ig»)]zdw , - (3.30b)
~where H,(iw) = (wh — i¢3P - w2Q - iuR + s)™t

(qmz + inm —:11)2)'(“),4 - iw3P - w2Q + iR + S)—l

]

and Hé(im)

where P = B _+ B

r m
= 2 2 2 2
Q = w + BmBr + w + € Brm
_ 2 2
R = 8mwr * Brwm
S = w 2 '

Crandall and Mark (31) evaluate the integrals in equations (3.30)
which lead to the following expressions for the average values of modal
velocity and pressure.

2, 2 ' 2 2
+ -
. 2) - “SGE Brm 8 “r Br m i
2
(w “-w

8 brfu 202w (g, + 8,0 (8008w )(1+s2B§m/emsr) ]

(3.318)
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2y " [(w 2w ?? (el v Bl + 80210782 /8 ( Bm+,e.1;))J

E(q_“) = =
T B 2 2,2 2 2 2 2
- +
r Mo - )T (B8 )80 =+ B ) (1 "B /B B )
(3.31p)
Note that the actual energy of the mode r, which is given by ME(drg),

differs little from the uncoupled energy, given by MnSG/Br,' if
e2B 2/8 B, e?B 2/8 2 ana €°B 2/B 2 < 1; in other words, the
m mr ™m " m rm ' “r
actual and uncoupled energies of the directly driven mode r differ little
with light coupling, or with widely spaced natural frequencies mr'and W
The net power flow from mode r to mode m is dissipated by

mode m so that we may write

2.2 : 2

. 2
: _ ape 2 TrSGs Brm : Bmmr * Brwm
n =g ES )= -
nomom By 2 X 2 2 2.2
(0 = - w, )+ ,(_Bm+sr)(emwr +BLw Y(1+e“B° /8 6.)

rm mr
(3.32)
This expression may be compared with that of equation (3.27), where

Ur is -given by nSG/Br. Again the accuracy of the approximate expression
o

is seen to depend upon the magnitude of the ratio (eQBrmz/Bme) and the
natural frequency separatibn». Figure 3.1 illustrateé this compérison.
Tﬁe power flow Hm may also be expressed‘in terms of the
difference between the actual mean enérgies of oscillators r and m.
This energy difference is given by E(Qrz) - E(ém?) = E(qr)z(l - E(éﬁg)/

\Y
E(qu)’ which from equations (3.31) is given as

r

(0202 + (8u2+8u(p +5) .
E(q.%) - B(5 %) = (g )? L 5 . nr " rmom ‘

2,2 2 2y, .22, -
wr) + (smwr + Brwm}(sm-+ Br)(l+€ Bm/am(8r+sm)—

(3.33)
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Substituting E(QTQ) from equation (3.31b) we have

B3 )2 - B(s,7) =

2 2,2 2 2 .
LER (wm - o )<+ (Brwm + B0 (g, + Sr)
5 (3.34)
r 2 2.2 2 2 2.2
—(wm -, )<+ (Br + Bm)(Bmwr + By 1(1 + € Brm/BmBr)

Substituting into the denominator of equation (3.32) from equation (3.3k4)
we obtain
: 2 2
B w + B w
2.2 s 2 . 2 mr rm
no=e“B [E(4,") - E(5) )] | -

2 0\2 2 24
(0" - w9+ (_Br‘”m + 8w )8 +8)

(3.35)

We thus see that the power flow is proportional to the difference between

the actual coupled mean energies, and that the constant of‘proportionaiity
is identical to that of the approximate expressions of equations (3.27) and
(3.5). This result has previously been derived in a- somewhat different
manner by Scharton and Lyon (7). Figure 3.1 compares exact and approxi-
mate values of ﬁower flow between two modes as a function of (eBrm/B).
The interesting feéture of acoustic coupling is that there is no energy
assoclated with the coupling 'elements', as there is with inertial and
elastic‘coupling. Hence blocked and uncoupled conditions are equivalent.
This fact greatly eases acoustic power flow analysis.

It may easily be shown that the ratios of mean energy of the

indirectly driven oscillator m to that of the oscillator T
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as given by the approximate and the exact analyses, are respectively as

follows:

U €2B 2 B w 2 + B w 2
(_21_) = rm [ myr r m ]

U "approx. B -2 2,2 2 2

To - A(Nr “n )<+ (Br + Bm)(smwr * 8rwm )

(3.36)

.U €2B 2 B w 2 + B w 2
033 - . rm [ mr r m

U ‘exact B 2 2,2 2 2y,,. 2.2

r m (05 - w0 )"+ (8. + 8 )(B v +B_w ) (1+e"B /

(g (8, + er))]
(3.37)
Again it is seen,thét the difference between the exact agd |
approximate expreséions depepds upon the strength of thercoupling coefficient
as compared‘with the modal damping coefficient and also on the closeness of
the natural frequencies. The asymptotic value of the exact fatio‘of
energies as eBrm/B becomes large is unity; this is a condition of

equipartition of energy.

3.23h Multimode Power Flow

An exact multimode analysis would be ex¢eedingly laborious (22, .
7). Kakar (24) has treated the case of three coupled oscillatoré-énd has .
demonstrated thatrin most practical cases, whére the'oscillator-frequencies
are not expected to be very close together, use of the approximate power
flow expressions leads to errors of'the order of 1%. However even this
extension tovonly three modes invblved extremely tedious calculations and
lengthy expressions. Fortunately in the.followihg treatment of the

acoustic excitation of containing vessels it is found that in many practical
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situations the problem effectively reduces to one involving a set of
effectively singly coupled oscillators by virtue of the spatial and
frequency selectivity of the power flow proportionaiity.constant. Hence
in much of the rest of the_wqu the total power flow between a set of
acoustic oscillators and a set of sfructural oscillators 1s expressed

as a summation over mode pairs of the power flow between individual pairs,
each oscillator pair power flow equation being given by equation (3.35) in

terms of the difference between actual coupled mean energies.

3.2.5 Power Flow Between a Point-Excited Panel and a Fluid

Measureménts ére:ofteﬁ'made 6f tﬁé sound bower radiafed into a
fluid from a panel.which is subjected to mechanical excitation.af a singie
"point. In this case the éeneralised forces on the plate modes cannot be
considered ‘to be statistically independent. For this reason it is not
immediately obvioﬁs whether or not tﬁé'Radiation Resistance measured in
this manner corresponds to that calculatéd, through the previous response
equations, from panel response to random acoustic excitation of the fluid.
In the latter case the degree of independence of the acoustic mode genera-
lised sources will depend upon the means of acoustic excitation (3.19); in
other words, on the type of source. For instanée, the jet noise excitation
used in the present work is more likely to give independent modal excita-
tions than, say, a loudspeaker, which is approximately a point source. The
followiﬁg perturbation analysis was made in order to try to discqver those
characteristics of a coupled system which could cause fhe results of
measurements using statistically-independent and dependent force inputs

to differ significantly in a practical situation.
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3.2.5.1 Perturbation analysis for a point excited panel

The analysis closely follows that of section 3.2.2 but in this
case it is assumed that the acoustic sources Gr -are zero and that the
only inputs are the mechanical forces F .

The rate of energy input per unit panel mass to the rth acoustic
mode from all the structural modes is given by

no= T ..
T m ersmqr ' .(3'38)
Comparison with equation (3.8) shows that- B =B, if the coupling is

conservative. The time average power flow is given by

n, = E(n) = glger E[émé_r] ' - (3.39).

From equations (3.11), with 'Gr7= 0, we have

§m +BS s, = F ' (3.k0a)
o o o '
Q *+84 *two'q = 0 ’ - (3.hov)
. o o o
. . 2 3 N
sml + Qmsml + © sml = 0 (3.40¢)
. 2 _ .
qu'+‘8rqu * “r qu - mrom (3.40d)
sml(t) = sm3(t) =s (t)=.... =0
) ) 5( ) (3.41)
g (t) = t) =q (t) = .... =0
e (0) = q (8) =0,
Hence s (t) = s (t) ¢+ ®s (t) + ... (3.422a)
n - m
o} . 2
and q (1) = qr‘(t) + €3qT (t) + ... (3.42b)
1 - 73
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Solutions of equation (3.404) and (3.hk0Oa) are

[+

“qu(t) E B . i_pr(e)éno(t ~ 8)ae . (3.43)

(o]

s, (t) J n (8)F (¢t - 6)ad (3.Lh)
o 0 ) )

where the impulse response functions h(€) are defined as before.

co 00

Thus qu(t)'= ) B . I h (©.) Jhn(BZ)Fn(t - 0, - 8,)ad, a8,
n 0 0
(3.45).
E[ém(lr] = EE,Bnr Ihr(el)J hn(62)I hm( 63).delq82de E[Fn(t - 92 -
o o o0 _

0.)F (t - 8)] + 0(e%).. (3.16)

When the force applied to the structure has a white noise nature the

expectation in equation (3.46) is given by
[ o 6 6.)] -2 2 s((6, + 0 o)
B Fn(t - 1)Fm(t - 3) = M (Emen) (( o * l) - 3)

x 218 (w) )8(x — (%) 8(x -
x 2 st( ) J ¢m(_5) (x - x J)a(x) J‘l’n(z) (x _,gco)d(z)
5 s (3.47)
vhere Sf(w). is the uniform power spectral density of the input force,
1
X is the position vector of the applied force, and § 1is the Dirac

delta function. Equation (3.46) therefore becomes

o0

_E[émdr] =€ EBnr I ﬁr(el) Jﬁn(ez)ﬁm(el + 8,)d6 a6, x gnsfﬁm)mfzgemen)’%

0 0

o(x )6 (x) | (3.48)

m-o0 n-o

- It will be noted.that, because of the nature of the input force, the




expectation consists of a sum over all the structural modes, whereas in
the case of statistically independent excitation only functions of the
modes m and r would appear. An important feature of equation (3.48)
is the presence of the mode shape factors evaluated at X the point of
application of the fbrce. This feature will be further discussed later
in this section.

The integrals in equation. (3.48) appear innocuous enough but
in fact they involve exceedingly lengthy algebraic éperations which are
better suited to an gccountant than to an engineer. Some details of the
calculation are given in Appendix IV which will givg some appreciation.
of the immense book keeping task involved. The result bf these calcula-

tions is as follows:
J hr(el)J h.n(e2) .hm(el + <32)<1al<1e2 = y(m, n, r) =
o . o

2 2 2 2 2 2 2 2 2
(Bmwn + anm )(Bmwr * Brwm ) - “n (wm, - Y )(wm - Y )

[W2 - 222+ (8 + 8 (8 w2 + 8 o2)][(2 - uB)? + (g, + 8.)(8 uZ + B 02)]
, (3.49).
This expression bears close resemblance to the expreésion in
equatibn (3.27). 1Indeed the denominator and numerator contain products
of two expressions which are identical in form to those of equation (3.27).
The important difference lies in the second term of the numérétor, the
magnitude of which depends upon the differencé of natural fregquencies of
the strﬁctural:and acbustic modes' m and r and that of the structural
modes m and n. |

Substitution of the evaluated integral of equation (3.L49) into
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" equation (3.48), and use of equation (3.39), leads to the following
expression for the power flow into acoustic mode r from the structural

modes,

1

n, = 2rs (" Iy TG,y n)(epe) e n) 4(x) C(3:50)

where y(m, n, r) represents the integral of equation (3.49), which is a

function of the natural frequencies and dampings of modes m, n and r.

3.2.5.2 Statiétically independent forces

With statistically independent modal forces only the terms with

'm = n would be npn—zero.A In that case v(m, n, r) is given by

2 2
+ Brwm )

By

Y(ms n, I‘) = . ) .
. ' 2Bm[(wm2 - wr2)2 + (8 * ISI,)(BI,v.um2 + Bmwrz)]
‘ (3.51)

Now the mean energy per unit mass of the th uncoupled mode
subject to generalised random force 'Fm; with a flat spectrum of value

SF (Q), is given by
o N 2
Umo sFm(w}/sm = m.(w)e (x )/ em)em , (3.52)

‘Equations (3.46) et seq. give the power flow per unit mass in the case
of statisticélly independent input forces as

2 2
Brmm * Bmwr

n_=¢3YB “U [ ] (3.53)
r mr m 2. 2,2 2 2
m Jo b (wr - wm_-) + (B + Br.)(Brwm + Bmwr)- _
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This equation is of exactly the same form as equation (3.27), the only

difference between them being that Um replaces Ur .
o] o

3.5.2.3 Two structural modes subject to statistically
dependent forces

In the case of statistically related generalised forces, F_, the
situation is not so simple. In the extreme case of the existence of only

two structural modes m and n, vhich have identical frequencies and

it
€

dampings (wm b Pp = Bn), but which have different mode shapes, equation

(3.49) gives

- A - S -
y(m, n, r) = 2By (Bmwr +‘Bro,Jm')

2 2., 2 2.2 T2 2
- bg Tu [ -0 )T+ (B + 8 (B0 + B, )]

(3.54)
~This is the.same expression as for statistically independent modal forces.

The power flow per unit mass from these two modes into mode r 1is given

2 2 ez 2 -1 2 2 -1, 2
nr(m,n) = g 2n5f§w)M y(m,m,r) [Emr € m (50) +B e ¢ (Eb)
' ] .
—§ -
+2B B (ec ) oy (x )0 (x )] ) (3.55)
or
' ¢ (x) € 1 ¢ (x ) e 1
_ _ 2 2 2 N -0 [, D\3 m-=o', m2
IIr(m,n) =€ {[er U Bor U * B nr(Umo ¢m(§0) (em) * Un0 ?m(zoi(en 1
728
2 2
B w + B w
m mr .
" [ ] (as6)
(02 - 22 + (8 + 8807+ 80°5
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The power flow from these two modes to acoustic modes r is
therefore different from that in the case of statistically independent
forces. It cannot immediately be determined whether or not the power
flow is greater or less than that in the latter case because the signs
of the 'cros5'term$' in equation (3.56) depend upon the relative signs

of ¢m(50) ang - ¢n(§0) end of B and B .

3.2.5.4 The general case

Consideration of one of the terms of the double summation of
equation (3.50) in the general case shows that if any two structural

modes, m and n, and an acoustic mode r, are sufficiently close in

natural frequency to simultaneously satisfy the conditions,

2Iwm - u’n.l < (Bm * Bn); '2lwm - wrl < (B, * By
then that term reduces to the following approximate form

B B (¢ (x ) (x))

-2 mr nr m —0

822ﬂSf(w)M (3.58)

TS (B+B)(8+B)(ee)

Hr(m,n) =
assumed that the structural mode damping coefficients are simiiar,
= By» then equation (3.58) becomes

m

(—) Y ‘ | (3.59a)

(3.59b)

_Hr(m,n) -

Consequently it is possible to classify modal interactions in terms of




natural frequency proximity in a similar manner to that discussed in
section 3.2.1.

If we restrict the éonéideration of power flow to thoée mode
triplets which satisfy the conditions of expression (3.57), then the

total power flow per unit mass to an acoustic mode may be written as

2 v ' ¢ (x)

€ 2 . n' ‘2o
n,= —— {} B5, ,U, + B, ,B (~=——5U_, }

+ LI R TG g SO | t
r (BM Br) mr R'TTR T mirta'r ¢m,(50) m'
m'#n'
(3.60)
where it is assumed that €n = € and the prime refers to modes which

~satiéfy the freqﬁencyﬁproximity;¢ondition'stated.above._ The total power
flow per unit panel maés~to the-fluidvis given by EHr'; Of course, in
the multimode case, the power flow .can only bé evalu:ted if the SPatigl
gouplihg factors ‘eB can be calculated for the modes of the coupled
bsystems._

As with thé two mode case previously discussed, thé factor
(¢n(§0)/(¢m(50)),_which is the r?tio of the modal amplitudes at ﬁhé point.,
of applicafion of théffbféeg appears-in the cross terms. . The cqntriﬁution
of the cross terms can bnly be assessed by reference to specific coupled
systems. As will be seen later; in seétion 4.7, the vafiétion in magni-
tuae of the spatial coupling factors €B from mode to mode, and the
consequent dominance of the total power flow by certain types of mode
.triplets, determines the contribution of the cross terms to the total
pover flow. However iﬁ can be seen from the expression for v 'in (3.49)
that, for non-proximate moae'ééupiing;the’average difference between

structural mode natural frequencies (wm - wn), will affect the contri-

bution of the cross terms through the second term of the numerator.
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It would also appear fror the presence of the summation over n
in the expression (3.60) which distinguishes this expression from that for

g
statisticaily independent forces, thst structures of high modal density,
and high damping, with many modes wtich satiéfy the frequency proximity
criterion 2[wm - wnl < (Bm + Bn)’ would bg more sensitive to the degree
of statistical dependence of the mci=l gereralised forces. However,
sophisticated statistical arguments mey be advanced in some future work
.tO'refu£e these tentative suggestiocns. It might be noted here that the
value of the cross term in.equation (3.58), when averaged over the

surface of the panel, is zero by virtue of the condition of orthogonality

between normal modes.

< ko <
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CHAPTER IV

APPLICATION OF COUPLED OSCILLATOR THEORY
TO_A PANEL-BOX SYSTEM

In the following chapter application of the exéct twé—mode
power flov equation to the case of coupling between two multimode sys-—
tems is'considered in terms of the range of magnitude of the individual
mode pair coupling fgctbrs. The systems consist of a rectangular panel
and an adjacent fluid in a reétangular box. Under circumstances where
the coupling factor is large for only.relatively few of the available

" mode pairs, thé problem can 5e considered to reduce substantially to one
of power flow between a number of independent mode pairs. The reséonse
of one system to direct excitation of the other can then be written in
terms of a summation"ov'er the dominant mode pair coupling factors. Thnis
summation is expresséd as a parametef known as the Radiation Resi$tanqe
(Rrad)’ (cf. ref. 16). Panel response to broad band sound in the box
is derived in terms of Rrad' The rest of the chapter is concerned with
statistical and computed evaluatioﬁs of the Radiafion Resistance for a
panel-box systeﬁ and also with-an assessment of the affect on power fiow
of statistical dependence of modal forces under point éxcitation of the

panel.

4.1 The Response Equation

| .

' The relevant mode pair power flow equation for acoustic excitation
| .

|

of a containing structure is
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Hmr‘ = gmr(Ur - Um) : (k.1)

where &nr is defined by eq&ation~(3.5) and U is the mean coupled
modal energy. er, rather than EBﬁr’ is used for the coupling co-
efficienf in all future work; it is defined by equation (3.2).

Ungar (21) suggests that this form of power flow equation may
be generalised for use with two sets of coupled oscillators, provided
that the individual mode excitation forces are statistically independent,
and that the coupliné factors: g%r are all approximately equal. Although
Ungar's analysis is not éonsidered.to be rigorous it.is likely that some
form of classification of mode paifs into groups according fo the magni-
tude of the individual coupling factors could lead to a useful generali-

sation of equation (L4.1) in certain practical circumstances.

For instance, the follo&ing analyses of geometrically regular

panel-box and cylinder systems show that the coupling factors can be

classified into four groups on the basis of their magnitudes.

L

One group, which is gssociated with acousto-structural mode
pairs which are well coupled by virtue of both natural frequency proximity
and good matching of wavelength components, contains coupling factors
which are of an order greatef ﬁhaﬁ those of the other three groups. It
is also found that, for sméll fluid &olumes, these well coupled modes
occur on average in single pairs; well coupled triplets, quadruplets,
etc. are the exceptiqn fathef than the rule, (see sections h.S,l and
K.5.2). |

Under_thesé circumstances it seems reasonable to (a) independ-




ently sum the power flow between well coupled mode pairs by virtue of
their occurrence in independent pairs; (b) independently sum the péwer
flow between the poorly coupled mode pairs by virtue of the smallness of
the corresponding factors (Brm/B) and application of the approximate
poﬁer flow equation. |

The mode set to mode set power flow equation is therefore

written as

1 By (Up = )
r

m,

It is of course realised that the use of a sum of independent terms does

not take into account fhe fact fhat.the poﬁer flow from a poorly coupled
acoustic mode into a structural mode, which itself is well coupled to
another acoustic mode, will be made even smaller by the fact thaf the
energy of éhe structural mode is raised above its approximate uncoupled
value. Similarly the reduction of energy level of a well coupled acoustic
mode will affect the power flow to structural modes to which it is

poorly coupled. These effects, however, will tend to‘further reduce

the contribution of the poorly coupled mode pairs to the'idtal power

flow.

If it is further assuﬁed that the acoustic modes are all
directly excited to similar uncoupled energy levels, which can be shown
to be reasonable for volume distributed random acoustic sources such as
jet noise (32), then we may write

.

mn_= ) {<U> - <U>) Y
mr n=1 r'n mn m,r(n)» glnr




vhere n refers to the mode classification which is based upon the
magnitude of the coupling factors 8 The brackets < > denote
modal average.

It is shown later that for the geometrically regular systems
investigated, one class of Enp is such that the summation over the
coupled accustic and structural modes in that class greatly exceeds
those of the other three classes. With primarily singlY coupled mode
pairs, and with corresponding values of (er/B) ‘of the order of unity
or less, equation (3,31b) shows that the actual energy of the acoustic
modes which are.well coupled fo structural modes will not be significanﬁly

"less than that of modes which are_poorly‘coupled. In addifioﬁ; equation
(3.37) shows that, for close naturél frequencies, the actual“enérgy fatié
Um/Ur is less than 0.5 for values of (Brm/B) less than unify, A
comparison between two~mode pover flows based upon the approximate and

.exaet theories, in terms of the ﬁagnitude of Bmf/s’ is shown in Figure
3.1.

It may therefore be reasonably assumed that the term in
eéuatién (4.2) which represents fhat class of mode pair which has the
largest coupling factor will dominate the total power flow when (Brm/B)
is less than unity, because the corresponding modal average energy dif-
ference will not be significantly smaller than that of the poorly coupled
modes. In otherkwords an assessmént of the number and type of modes
which déminate the total power flow'can be based entirely upon a‘gonsid—
erétion of the magnitude of the éoupling coefficignts. Hence, we may

write

-
R

SIS {<Uf>l - <U >} ) & | (4.3)
' : m,r(1) .
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where the subscript 1 refers to the class of modes having maximum
&

1t has‘been shown in equation (3.6) that power flow is only
significant betwéen oscillators which have ﬁatural frequencies differing
by no more than half the sum of their half power bandwidth. For all
practical pufposes this means that the power flow may be considered in
independent frequency bands of width much greater than an individual
modal bandﬁidth, provided that there are sufficient modes in the band to
render modes near the band limits of little‘consequence (33). If we

write the average number of well coupled mode pairs in a band of width

" Aw  as Nrm’ the average number of acoustic modes in a band as Nr’ and

the average number of structural modes in a band as Ns’ then equation

(4.3) may be written as

~

=2 2
I = {<p“> V/NrpcO

_2 .
- - M <v >/Nrm} i} %1 &y A (4.4)

where p 1is the acoustic pressure in the fluid, v is the normal panel
velocity and the .form < > denotes a space and time average. 52/pc02 is
the energy density of the acoustic field. It has been assumed here that

the number of well coupled structural modes is equal to the total number

of well coupled mode pairs. It will be seen later, from a consideration

of mode coupling structures, that this is the normal situation in small

fluid volumes (Section L.4). Equating this power flow to the power
dissipated by the mechanical damping of the structural modes, and expres-

sing Nr in terms of the acoustic modal density of a-volume V we have,
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<Bni>l<"_’2> = {[(<1—>2>V)/((1‘\2V/21T2‘303)A“.’](pcog)_1 - us /Nrm}m E(l)gmr ’

from which the ratio of space averaged mean square velocilty to space

averaged mean square pressure 1s given by

2 - N
<;2> 2w‘cons(w) Rrad

_2 = —_— - ()-I».S) —
p > w Mo o <Rmech>l * (Ns/Nrm) Rrad ~

R.q= /M) 1 g .

- <Rmech>l = <8m>lM and ns(w) is the
m,r(1)

modal denéity of the structure. On the basis of arguments set out above

the sum z . will be very nearly as great as the sum over all modes,
5 m,r(1) ' '
,gmr' )
m,r ,
R is known as the Radiation Resistance (16) and <B >. is
rad ) m 1l

the modal averagé mechanical dambing coefficient. ‘Equatidn (4.5) is |
-similar to equation (9.33) of reference (16) except for the ratio -NS/Nrm
which appears in the denominator. Tﬁis is the result of the difference
between the assumption of uniform modal coupling implied in reference (16),
_and theApresent-restricfion of significant couplihg to relatively few of
the available mode pairs. Much of the following sections is de#oted to

an evaluation of R .
rad

4.2 The Model

The system analysed in this chapter consists of a thin elastic
_ rectangular panel of uniform thickness and density, which forms one
‘complete wall of an othervise rigid rectangular box. A diagram is shown

in Figure L.1. The coupled multimode systems are the panel and the




fluid in the box. The object of the analysis is to estimate the res-
ponse of the panel to broad band sound in the fluid, and to compare
this response with that to a diffuse sound fiela, for which theoretical
and experimental data exist (26).
If the panel is assumed to be simply sgppérted the eigenfunctions

of the fluid and the panel are given respectively as follows.

¢5<X>Y:Z) = cos(E%E)cos(g%l)cos(Egé- (k.6a)
¢m(x,Y) = sih(ggg)sin(ggx) . _ . (4.6v)

Substitution of these eigenfunctions into equation (3.2) for Brm gives

—

1 | h+p , -
B = (¢ 2p/Ve € M)é(—l)r{ha {(_l) —l}] [hb {(f;) —l}J : m#p
rm o " r m __p2Tr :l—(m/p)z R qaﬂ‘ l*(n/q)? n#q

B = 0 , _ : (m+p) even
or (n+q) even
(L.7) .
Consideration of B__ for a given panel mode order (m, n) shows that
;Brﬁ is an absolute maximum wvhen p =m + 1 and g = n * 1 simultaneously.
s . (o 2 3 2 : |
In these cases B_ = (co p/VeremM) (ab/%°) for m, n = 3. With
p=m+1 and g=n+3, or p=m+3 and q=n + 1, Brm =
1 :
(c 2p/Ve e M)® (ab/3ﬂ2), and so on. Thus we see that g will depend
) rm : . mr
upon spatial matching of acoustic and structural modes, as well as on .
natural frequency proximity.

We can investigate the conditions under which the various

degrees of coupling are possible by reference to Figures L.2 and k4.3.
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These are wavenumber, or frequency space, diagrams for sub—critical and
supercritical panel frequencies. Because flexural waves are disperéive
there is a unique frequency for every uniform elastic panel at which free
waves travel with tﬁe same speed cp as sound“waves in the adjaceﬁt
fluid. This frequency is called the critical frequency, f
2 2

given by c¢,” =c " = l.8hchL,

o2 and 1is
vhere h 1is the panel thickness and
'CL is the spéed of longitudinal waves in the panel material. For
example the critical frequency of a £ in. thick steel panel in air at
- N.T.P. is 2000 Hz;' that for an § in. thick panel is 4000 Hz, and so on.

The circular arc in the x,y plane of Figures h.é—h.h is the |
locus of the wavénumber §ec£or ‘kp 'wﬁich'corfesﬁoﬁds to é constanﬁ panel
frequency; At panel mode natural frequencies kp iS-rélated‘té the
simply supported panelAmode order (m,n) by the relatidnship kp2 =
(mﬂ/a)2 §(ﬁn/b)2¢F kx2 + ky2. A typical mode point is shown'in~Figure§
4.2 and 4.3. The relationship is not so simple for. other boundafy con-
ditibns as will be seen later.

For eééh panel mode it is necessary_firét to estimate the.
average number of acoustic modes having naturél frequencies sufficiently
close to the natural frequency of the panel mode to obey the frequency

proximity condition of equation (3.6a). The acoustic wavenumber L

corresponding to the acoustic mode order p, q, r 1is given by" kr

(pda)2 + (qn/b)2 + (rn/c)z. The lattice points of these acoustic modes

are seen to lie within the segment of spherical shell of mean radius

N =

k., given by w. =ke = w = kpcgl= kpco(fm/fc) . Hence k =
1 . .
kp(fm/fc)z’ In the following sections the subscript m is dropped

from fm; the symbol f 1is used to denote the frequency of'typiéal




panel modes in the frequency band of interest. The thickness of the
shell segment is given by Akr = (Bm + Br)/co, so that all acoustic
modes lying within the shell are sufficiently close in natural frequency

to the typical structural mode to obey equation (3.6a).

k.3 The Simply Supported Panel

4.3.1 Suberitical frequency range

A further selection of acoustic modes to which the typical panel
mode is well coupled is made by reference to equation (L.7) et seq. Con-
sideration of Figure 4.2 shows that the condition for absolute maximum

B> namely p=m+ 1 and q = n + 1 simultaneously, cannot be

achieved at sub-critical frequencies because kr'< kp. The best sub-

critical coupling thét can be achieved is with either p =m i_l or
Q=n i_l.‘ These conditions are necessarily associated respectively with
the relationships q <n and p < m. Figure 4.2 shows the acoustic
modes given by p=m+ 1, q < n.

Acoustic-structural mode pairs whichvboﬁh obey thé frequency
proximity condition (eg. 3.6a) and also have maximum possibie coupling

by virtue of wavelength component matching,; (in one direction only at

subcritical freguencies), are described as enjoying maximum proximate*
coupling; they may also be said to be well.coqpled. These mode pairs
form the group Yeferréd to in section h.1 as the dominant group.

With p=m+1, g= en and p= em, q = n.i_l, ‘where

—e <1, ‘B ts-given by




B_ = (oo 2/ve e 0? (2)E2)/(1 - £?) & n(e + 1) oad
(4.8a)

=0 : n{e + 1) even
and B = (pe 2/ve e )P )(E2)/(1 - @)t me + 1) oaa .

=0 : m(e + 1) even

At frequencies below 25% of the critical frequency, €2 << 1
and equations(4.8) simplify. = Subcritical coupling for (m -1 < p <m +
1: ¢ = en) and (n.— l<gq <n+1l: p= em) can be ignored because
for any one structural mode they are no more in number than the set having
maximum proximate coupling and their coupling constants . (= er2)
are at most 10% of the values given in equatipns (4.8).

Since fhe paramete; (Brm/B)2 is an important parameter by which
the strength of the coupling‘may be gauged~it is intefesting to briefly
consider its form. It is of course the largest values corresponding to
maximum proximate coupling which are of interest. Except very near
the critical frequency, thé factor (1 - €2) in equations (4.8) can be
ignored in estimating the magnitude of maximum Brm at subcritical

frequencies. Also it may be assumed that kp = (mn/a) for p=m + 1

and kp = (nm/b) for q = n + 1. Hence from equation (4.8) we have

962 1 on pc02 18 /l.8hCL
B_ = ( )¢ == ( ) : p=m+1
rm. VsremM 7 kp abceremabhps Tr2 Jr
and . ' '

oc ° pc @ . b/1.8nc
B = (522 2D 2 )2 L, g=n=+1
M VeremM ?\kp abceremabhps 2 /s -
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expressions reduce respectively to

2
l.8pco c

Cce_¢€
r mps

2
1.8pc0 °r, 3 1
()
an“f?

ce € 0 4

It is thus seen that the magnitude of (Brm/B)2 depends, for
given damping in a rectangular system, upon the ratio of the densities
of the fluid and panel, upon the square of the speed of sound in the fluid
and upon fhe‘first powér of the speed of sound in the strﬁcture; it is
inversely proportional to the frequency and varies with the typical length
L of the fluid volume as' L_3. Coupling is therefore seen to be
relatively étronger in systems of small voiume. It is independent of -
panel thickness.

‘Returning to the problem of evaluating R . we find that the
avéragé number of wéll coupled acoustic modes per structural mode may be
evaluatéd by considération of the average number of acoustic mode lattice
péints in strips, one of which is shown in Figure 4.2. However if
£ > O.25fc, account must be taken of the variation of coupling with e
in evaluation of theAsum ) By x (see equations (L.8)). The details of
this calculation are .given ?nrAppendix I. The result is as follows:

R =

a
ra 5

6hpth(a + b) -[sin-l(f/f )23

-3 2/
1- (f/f:) + (g /1) - 1) J 71, < 0.9 (4.9)




An evaluation of Rrad cannot be made for f = fc without a detaiied
estimate of the number of acoustic modes per structural mode by graphical

means.

For f/fc < 0.25 equation (L4.9) simplifies to Rrad =
(128pth(a + b)/ns)(f/fc)%. This result agrees with that of Maidanik
(26) for 'reverberant'! field vibration of a panel radiating into free
field conditions,to which it is comparéd in Figure 4.13. This result is
yet another indication thét frequency averaged coupling between finite
vibrating systéms approximates closely to coupling between semi~infinite
systems. The radiétion effiéiepcy O, defined by o = Rrad/pcoab’
is dependént upon the ratio of half the panel perimeter, (a + b), to the
panél area, (ab), and is also inversely_préportional to the speed of
sound for a given panel thickness and a given ratio of frequency to
critical frequency. The radiation efficiency corresponding to equation

(4.9) is plotted in Figures L.5, L.T and h.9Afor 1/16 in., 1/8 in. and

1/4 in. x 2.67 ft. x 2.16 ft. panels.

4.3.2 Supercritical Freguency Range

At frequencies greater than thé'critical the simultaneous
satisfaction of p=m+ 1 and g =n *+ 1 is possible, as can be seen
 from Figure 4.3. Mode paii; having p =m + l;r q =n+ 3, and vice
versa, contribute about 25% of the total coupling, all other contributions
being negligible. The»details of the analysis are in Appendix I. The

‘result is as follows:

1 i -]
R, = (156/7°) (1 - £,/£)% pe ab = 0.5(1 - £/)3pc_ab (4.10)
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and o = 0.5(1 - fc/f) .

This result doe§ not agree with any previous estimates of supercritical
radiation resistance for -baffled panels, which give a numefical constant
of unity, or with Kinlman's analysis (8) of a panel—box'systém vhich
gives a numerical constant near to unity. This is rather puzzling in
view of the subcritical agreement with Maidanik's work. However no
error has been found in the analysis by the author or by twd other
workers in the field (41). = The corresponding radiation efficiencyAis
plotted in Figuies %5, 4.7 and 4.9.

Maximum Aﬁrm at sﬁbercritiéal frequencies is given by

2 | e 2

2° - 2 ‘ce e hp
Ll o rm s

-

-

Hence the magnitude of (Brm/s)z' is independent of fluid volume and
 frequency, but depends upon panel thickness, unlike the subcritical

case.

4.4 The Clamped Panel

Nb exact analytic expreséion has been found for the eigen~
functions of a clamped rectangular panel. Beam functions are often used
in approximate frequency solutions. Howéver for the present purpose of
considering the coupling between a clamped panel and a sound field the
asymptotic expressionsdeveloped by Bolotin (28) are rather_éasier to
‘handle mathematically and also give a béfter'bhyéical'ﬁndefsfanding of

the differences between the behaviour of simply supported and clamped

i
Sy

. (u .

AR



panels.

The displacement eigenfunctions are of the form

= [as - : (w2 2)2
¢(x,y). L51n kl(x xa) + sin kox exp{ (kl + 2k, ) xJ x

1
[sin x, (y - y,) + sin X exp(~(k, 2 + 2k 2)%y] ' (k:11)
2 b 2"p 2 1/ -
_ -1 2 2,3
vhere kja = 2 tan (k /(k " + 2k,7)%) + mn
_ -1 2 . . 2\3
kb = 2 tan :(kz/(kz + 2k, )%) 4 nm
S | 2 243
kix o= sin © (k /(2% %+ 2k,%)%)
R | 2 2,3
k,y, = sin (k2/(2kl + 2k, )¢)

Smith (29) has used similar functions to analyse the radiation

. resistance of panels with various edge conaitiOné. The present analysis, .
detailed in Appendix II, shows that for panel modes having kl << k2 or
k, << ki, ('edge modes' in the language of Lyon and Maidanik), the
radiation resistance is twice that of a simply supported panel, in agree-
ment with Smith. For kl = k2, a condition which Smith did not analyse,
the radiation resistance is approximately the same as the simply supported
plate. Consequently, the clamped plate radiation efficiency is approxi-
mately 3 dB greater than that of the simply supported panel at
frequencies less than 0.5f_. The factor decreaées as (f/fc) approaches
unity and is equal to unity (O dB) at supercritiéal frequencies, (see

Figures 4.6, %.8 and™%.10). There is some “uncertainty as to the rate at

~ which this factor decreases between O.SfC and fc because of analytical
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difficulties discussed in Appendix II.

4.5 Statistics of Mode Coupling

4.5.1 Subcritical analysis

Three important conclusions may be drawn from the suberitical
analysis of the simply supported panel presented in Appendix I. First,
the average number of well coupled acoustic modes pef individual structural
mode is given closely by [(gr . Bm)(a + b)c/whci](f/fc)sin-l(f/fc)%. If
this number is less than unitj, i.e. (f/fc)sin—l(f/fc)% <'[nth/(a +
b)c(sr.+ Bm)], it may be assumed ﬁhat no modg of the acoustic qscillator
set is signifiéantly well coupled to more than one structural mode, and .

~ vice versa. A typical value of the right hand'side of the inequality
.for, say, an § in. thick steel panel and a small reverberation chamber
(20 x 10 x 25£t3) might be given by (m x 1072 x 17 x 103)/(20 x 10 x 25)
0.1. Thus (f/fc)3/2 < 0.1 gives f < 800 Hz. Below fhis frequency
the mu;timode interaction reduces effectively to a number of two mode
interactions, so that any assumptions about F' and G', as in reference
(16), are unnecessary. The multimodé pover flow equation will then be
good to a degree determined by the magnitude of the ratios (Brm'/Br) and
.(Brm'/Bm): rBrm' refers . to the coupling coefficient of the proximate mode
.pairs which have the next best coupling to the ma;imum, for which (Brm!)2

is approximately 10% of B f%eqn. (L.7) et séq.). For the experi-
: : max

. mental systems the corresponding frequencies are shown in Table 2.

Second, the average ratio of mode pairs having maximum proximate

coupling, to the total number of mode pairs in a frequency band,is given




} . -1 3
(a + b)c0 sin (f/fc)
abnf

closely by . This ratio is inversely proportional
to the typical dimensions of the box volume.

Third, the average total number o? mode pairs in a finite fre-
quency band of width Aw which have maximum proximate coupling is given

5154
by 3[(8r + 8 )(a + b)(abc)/(2n2h2cL2)](f/fc)sin—lAw. When this number
is less than unity, the probability of maximum proximate modal coupling
in the band becomes small, and the statistical analyéis of 'Rrad based
upon such coupling becomes invalid. Table 1 compares statistical esti-
métes of the total numbers of mode pairs having maximum proximate coupling
in 1/3 octave bands with:numbérs obtained from a computer analysis
described in éegtion 4.6.

The presence of (Br + Qm). in the numerator of the expression
above cancel§ its presence ir the formula for gmr:(= Bm2/(§a + Br)’ when
these two quantities are effectiveiy ﬁultiplied together in the evaluation
of Rrad = (M/NS) 2 8prt Hence, as shown later by numerical apalysis, the
radiation resistaﬁéz is more or less independent of the intgrnal dampings
of the coupled systems, except in that because (8r + Bm)_ appears in the
equation for total number of maximum proximate mode interactions, an

increase can make the difference between having one or no such coupled

mode pairs ir a frequency band.

4.5.2 Supercritical analysis

The corresponding expresgions for the supercritical range are
as follows:
(a) The number of well coupled acoustic modes pér structural mode is
given‘by hc(sm + Br)/nco(l - fc/f)%. This is purely a function of.

volume dimension normal to the panel and not of panel dimensions.
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Except for very large volumes, or near critical frequencies, this
number is normally less than unity. For the experimental system,

at fc/f = %, the numbers are shown in Table 2.

(b) The average ratio of well coupled mode pairs %o total number of
4
proximate mode pairs is given by 8c02/nf23b(l - fc/f)a. This

number will often be less than unity in practice.

(¢) The average total number of mode pairs in a band of width Aw which
have maximum proximate modal coupling is given by 2/3abc(8m + Sr)Aw/

7%he (1 - t/f )%:
o ¢’ °

4.6 Non-Proximate Mode Coupling

The statistical estimates of radiation resistance given in
equations (4.9) and (h.iO) are based uponAconsideration of only those
modes for which the coupling factor gmrAAis a maximum by Yirtue of both
 wavelength component matching and natural>frequency proximity. The
'previous section has suggested that there is a lower frequency limit for
such a restriction to be valid. A computer analysis described in
section 4.7, together with the results of experiments made on a panel-
box system and described in section 4.8, support this suggestion. For
these reaéons the statistical theory has been extended to cover those
frequency bands in which the probability of maximum proximate coupling
is very low.

It is assumed that in a frequency band of which the centre
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frequency is below that estimated to be the lower limit for maximum
proximate coupling, no acoustic modes have, on average, natural fre-
quencies sufficiently close to that of a typical structural mode in the
band to give such coupling. Hence, in the estimation of Rrad
(= (M/Ns)ngr) the summation is taken only over acoustic modes having
lattiqe points which 1ié outside th¢ wave number shells of thickness
8k~ shown in Figurés 4.2 and 4.3, but which lie withiﬁ.a_shell of
thickness Aw/co (= analysis bandwidth), centred on vkr =k co/cB, as
shown in Figure L4.k.

The>previous restriétion to modés having only maximum Br s
bykvirtue of wavelength ébmponent météhing, has been retained, because
fhe probability of goupling between a éfruétural mode and an aqoustic
mode proximate in frequency, but having less than maximum Brm’ is not
significantly greatér than for maximum Brm' This fact, togéther with
the rapid decreasg in Brm‘ with difference between p and m, and g
and n, Justifies the application of such a restriction. This set of
mode pairs produce»the sgpond class of‘coupling factors gﬁr, which
dominate the power flow in the absence of the maximum proximate class.

The analysis follows that of Appendix I closely in the calcula-
tion of ¥ g, Tfor those acoustic modes whose lattice points lie in a
strip of $igth 6k , and for vhich p=m+1 or g=n+1 (see
Figure 4.4); there are however the following differences. In Appendix
I the shéll cqnsidered was of width Ak, which is equal to ‘(Bﬁ + Br)/co.
Also the approximate forms of - arising from the frequency proximity

restrictions of equation (3.6) were used in this analysis. .When non-

proximate mode coupling is considered the full expression for 8p> given
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in equation (3.5), must be used. The expression for 2 - which
m,r -
appears in eguation (A.3.1) of Appendix I is

r 1 ' . -1
+ tan(sin kr/kp)}

2 . 2

2 : . =1
2co pNs(a + b)krskr [ sin (kx /k )
-k 7) Tk
P

€ € Mm
rm

P

2 2

N { Bmwr * Brwm
2
L (w

2 2
S w )+ (s, B (B "

This expression is.iﬁtegrated.over_the two wave number integrals from
- Ak : < - (8 + +
(cgk /e, = bu/2) %o (egi/e, (8, + 8 )/2c), and (cgk /e, + (B,
Bm)/zco) to (éokp/cé + Ak/2); Ak is given by Aw/co, where Aw
' is the bandwidth over which averages are taken. The simplifying approxi-
: -1 ! 5 o
mation, tén(51n | kr/kp) = sin (kr/kp) o wch/wmco, may be made
because the lower limiting frequency, below which non-proximate coupling
becomes important, is normally below fc/h.
The integration process is extremely lengthy and is described
more-fully in Appendix III.  The result for simply supported panels is

as follows:

\3/2
C)

1
: N 2
. W(a + Dle, [(f/fc) 8 A W B
be € 7 0 3 2 c rm3
Fm m

+

(4.13)

. 3 '_
(/20> %, ]
Ty

m

The integrals Il, I2; 13 and Ih are given to better than 90% accuracy




by the following approximate expressions:

Ao/ )+ o/2) o,

. I
8((s, + 8)8_) 8((s, + 8 )8 )°

(£/£,) (1 + £/£ ) 1

8((s, + 68 )

I

I
2 2 4
8 ({8, +8)8)

1. .
where I is givenby I = {tan—l[Aw/((Br + Bm)sm)ej - tan—l[(Br + Bm)/

2
((e, + 8,08 )]} |

The radiation éfficiency is.effecti#ély independent of the
bandwidth of anaiysis because normally Aw >>. ((Br + Bm)Sm)%; this is
in fact a necessary condition for Aw to be a suitable bandwidth over
which to tage statistical averages. Hence the first term of I is
usually very.close to 5/2' and independent of w or Aw. It is inter-
esting to note that tﬁe half power bgndwidths Qr and %n do enter the
expression for.radiatiqn efficiency whereas they do not feature in the
proximate mode coupiing éxpression of equation (4.9).

Calculations of o using measured values of B. and B  are
compared with experimental results in Figures h.S—h.lO.‘ The agreement is
remarkably good. It is always found thét non-proximate coupling makes
negligible contribution to the total power fldw when modes héving Proxi-—
mate coupling are available. The lower limit for non-proximate mode
calculafions.iS‘set by the freqﬁency for whiéh; 6n avefééé;:né mOde pairs

in the band have maximum Brm' This frequeﬁcy is usually so low that
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extension to even lower frequencles, using non-maximum, non-proximate
mode calculations is not Justified by the inadequacy of modal density

expressions at very low frequencies.

4.7 Computer Analysis for a Simply Supported Panel

The radiation resistance of & panel as defined by Rrad =
(M/NS)Zgmr was computed for a number of panel and box'configuratiohs.
A range of values of (B + Bm> vas considered in order to investigate
the effect of‘this parameter Qn Rrad and on the lower limiting fréquency
for maximum proximate coupling. For each chosen value of"(Bm + Br) |
only those mode pairs were considered which were sufficientiy close in
natural frequehcy to be within half the sum of the haif éowerfbahdwidths
of each other, i.e., they satisfied the frequenéy proxinity condition of
‘equation (3.6a): _2|wm - wr] < (Bm + Br). No restriction was placed,
 however, on the magnitude of the spatial matching conditioh, 6r magnitude
of Brm' Thus all proiimate mode pairs were considered. Checks on the
errors in the coﬁpufatibﬁ of Rrad incurred by omitting all non-proximate
ﬁode pairs-Showed that they were never more than 5%vpro§ided that some
mode pairs with maximum proximate coupling occurred within the 5and._
Figures 4.5, 4.7 and h.§ compare the computed values of radiation effic—
iency o (= Rrad/pcoab) with those calculated from the stat.is‘bically»
derived expressions of equations (4.9) and (4.10). The upper limit on
frequenéy for thé computational calculations was set by computer running

time which increased as (frequency)s. For instance the calculation for
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the 1/16 in. panel at f/fC = 0.5 (4000 Hz) took 1 hour; there were
91,000 mode pair coupling factors to calculate.

A limited study was made of the effect of slightly altering the
dlmen51ons of the panel—box system on the computed radiation eff1c1enc1es.
The basic conflguratlon was chosen to be the 2.167t x 2.67 ft. x § in.
thick panel mounted on a 2.16ft. x 2.67 ft. x 2.0 ft. deep box. This
corresponded fo'the experimental configuratioh. In one case the panel
dimensions were alte?ed by 10% to 2.94 ft. x 2.37 ft.  The box then
measured 2.94 ft. x 2.37 ft. x 2.0 ft. In thé other case the basic panel
dimensions were used but the box was made 2.20 ft. deep. The aim of
this limited study was to investigate the sensitivity of the computed

radiation efficiency to small changes in the dimensions of the (regular)

geometry, since it was felt that the computer anal y51s would be useless

for practical purposes if the results were over sen31t1ve to such changes.
Figure L4.11 shows that variations about the statistically estlmated value
of up to 5 dB are predicted for these small variations of geometry. This
“behaviour casts some dbﬁﬁﬁ upon the usefplness of a computer analysis, a

conclusion which is discussed further in later chapters.

4.8 Radiation Efficiency of a Point Excited Panel

Section 3.2.5 contains a perturbation analysis of the power
flow between a pbint excited structure and a fluid, which is applicable
to lightly coupled systems. " The total power flow per unit structural

mass to the fluid is given by




in, = “2u8 ()™ L1z, E B, Y(man,r) (e e )20 (x))¢, (x) (h.1%)

1s a function of the modal frequencies w , w_ , W and

whe Y
].?e ‘\(man)r) m n Tr

the modal damping coefficients Bm’ Bn and Br.

It has been demonstrated previously in this chapter that, in the
case of statistically independent modal generalised acoustic sources, the
pover flow between a fluid in a rectangular box and a panel which forms
one flexible wall is dominated by mode pairs which enjoy maximum proximate
coupling by virtue oé good spatial matching and close proximity-of'natural
frequencies. Sgction 3.2.5 shows that the power flow between the panel
and the fiuid‘will be-doﬁihated Ey,the same mode pairs vwhen the panel
modes are driven by statistically independent modal generalised forces.

It is further evideht from section 3.2.5 that the differences
between the poﬁer flow with statistically independent forces, and that |
for a single point force excitation, will be largely determined by those
mode triplets which satisfy a natural frequency criterion of a similar
nature to that used previously to define proximate modal-coupiing; (see
equations (3.57)-(3.60)). Consideration of equation (3.60), which for

convenience is presented again with €B replaced by B, thus

. $ '(X )
_ 1 2 n''‘%o (3.60)
It = (Bm t B, { 51 Bm'I"Um'o " E'En' Bm'r'Bn'r'(¢m't§0))Um'o} (4.15)

m_'#n'
shows that the dominant cross terms will involve those modes which have

maximunm spatial matching and which also satisfy the natural frequency

proximity criterion. Reference to the wavenumber diagrams 4.2 and 4.3,
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together with the evaluvation of B , mede in sectiors 4.1 and 4.2, shows
that it is theoreticall& possible to have the condition me'r' = i-Bn'r' =
Bmax’ vhere Bmax‘ is defined fgr subcritical frequenciés by equations
(4.8a) and (L4.8b), and in section 4.2.2 for supercritical frequencies.
Figure 4.12 shows such mode triplets; A typical acoustic mode
is shown (*) together with a typical structural mode (+) to which it is
well coupled. Figﬁre .12 shows the situation at subcritical frequencies
.where the relationship between the integers which denote the acoustic
mode order (p,q,r) 'and those which denote the structural mode order
(m, n) is given by m = p +.l; n > g in the particular case depicted.
The other structural modes of order, say, '(mf, n'), which have By =
i-Bm}’ and also satisfy the freqqency proximity condition; 2|wm -w | <

(Bm + Bn) are also shown (0).'_Their mode order intggérs must satisfy
the conditions m' =m; n>q OR m"=p-1=m —-2; n' > qa OR

‘'m' >p; n'=g-1 OR m'>p; n'=gq-1. It will be seen from Figure
4.12 that the structural mode pairs of order (m, n) and (m', n') occur
in four groups which correspond to these four alternative conditions.
These groups contain approximately equal numbers of mode'fairs, except
for the first grdup, which contains the mode pair giving the diréci_term
Bir' Since two groﬁps givg a posiﬁive value of tpe product Bmx;xBnr
(= Bir)’ and two givé a yalué equal in magnitude but negati?e in sigh to
the former, they would appear to make a ne§£ contribution to the.sum-

mation of cross terms in equation (4.15) which is equal in magnitude and

of opposite sign to the direct term. Unfortunately each mode pair
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product erBnr has to be multiplied by the modal amplitude ratio at

the driving point (50). The statistics of this product cannot be
reliably determined for the relatively small number of mode pairs in-
volved in expression (h.iS) when applied to a system of the size investi-
gated experimentally. it is however’cénéidered reasonable to advance
the hypothesis that, in éumming expression (4.15) overall acoustic modes
to obtain the total power flow, it is likely that the fluctuations about
zero of the cross term contributions will be such as to give zero nefﬁ/
contribution. In this case the average power fiow from a panel driven
by statistically independent modal forées and by a poiht'f§rce could be
"equal. Certainly, with lérge systems of high'modél density.this appears

to be the case (cf. ref 55).

4.9 Summary

The main conclusion to be drawn from this chapter is that the
power flow between'geometrically regular rectangular panel and fluid
systems 1is dominated by'relafively féw of the avaiiable mode pairs.
Below a definable frequency the coupling éan be considered to occur
between independent‘modé pairs, so that tﬁe exact two oscillator pbwgr
flow equation may reasonably be used to estimate panel response to, and
radiation of, sound. Also there has been'fqund to exist a lower limiting
frequency below which the panel response to random sound inrfhe‘éon—
tained fluid does not correspond to that produced by a diffuse field.
Point force excitation.of‘a'éahéi is nof thought likely to.éféduce sub-
stantially different radiation from statistically independent modal

forces.
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CHAPTER V

EXPERIMENTAL MEASUREMENTS OF RADIATION EFFICIENCY

FOR A PANEL-BOX SYSTTM

‘This chapter presents thé results of experimental measurements
of panel‘response to broad band sound in an otherwise rigid rectangular
box. The sound radiated into the box by point excited paneis was also
measured. Aux111ary measurements of panel and alir volume damplng are
also described. The radlatlon efficiencies correspondlng to the
measured-reéponse'and radiation are compared with theoretical éstimates.
The-statistical,.computed and measured results for radiatioﬂ efficiency

are discussed in detail.

5.1 Response Measurements

Rectangular, 2.67 ft x 2.16 £t steel panels, of uniform g in,
%,1n and 1/16 in thicknesses, were supported so as to form one wall of a
rectangular box. The edges of the panels were either bolted to a light
channél section of low'roﬂational and high shear stiffnessr(simply.
supported), or clamped by many bolts to a 1 in thick steel frame (clamped).
The other walls were those of a 0. th in thick steel rectangular water
tank which was surrounded by a 4 in thick layer of sand in an outer
wooden box (Figure 5.1). Intense broad band sound. of 148 dB;overall

S.P.L. was produced in the tank by allowing high pressure air to enter
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it at the base of cne side through a gate valve. A typical sound spectrun
1s shown in Figure 5.2. The air left the tank through a pipe in the
opposite wall.- Aerodynamic buffeting of the panels was found to be
negligible above 200 Hz, as shown by microphone measurementsvof fluc-
tuating pressure near the surface of the panel with and without a micro-
phone windshield. Microphone traverses ofltﬂe fluid volume were made
to determine space averaged, 1/3 octave band sound spectra. Windshielded
microphone measurements were indistinguishable from unprotected microphone
measurements at frequencies above 200 Hz. Twelve accelerometer positions
were used to measuretSpacerévéraged panel accelerations. The accelero-
meters were of the Bruel and Kjaer Type h336 which weigh 2 gmf; In
spite of this small mass, éorrections had to be made to the 1/16 inAplate
response measurements to allow for accelerometer loading. These
corrections, were based upon ﬁhé comparison of accelerometer and strain
gauge measurements (34). It is cohsidered that the conventional correction
factor, based upon the bbint impedance of an infinite plate (35), is not
relevant to finite panel measurements because of the wide rahge of point
impedance variation_about ﬁhé infinite plate value.

Panel radiatibn efficiencies o were calculated for 1/3 octave
bands from ﬁhe‘measﬁred ratio of spacé averaged mean square vibration:
velocity.to space averaged acoﬁstic pfeSsure, using the original uncor-

rected equation of Lyon and Maidanik (16)

-2 2n2c n_(w) R ' _

<V > - o 's ( rad ) ] (5.1)

— ’ - .

<p2> w2M o} <Rmech> * Rrad :
together with the relationship Rrad'= pcoAc. Corrections to these

calculated values, using the modified equation (L4.5), were also calculated.
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The results are presented in Figures 5.5 - 5.10.

" 5.2 Danmping Measurements

In order to calculate radiation resistarce, and hence radiation

efficiency, from response measurements, it was necessary to know the

modal average panel damping <B,>» or mechanical resistance, <Rmech> =
M<§m>. In the case of a panel-box system this damping included that due

to radiation of acoustic energj to the fluid external to the box.

There are many ways of measuring the damping of a structure;
these include harmonic frgquency—amplitude plots, harmonic phasé—amplitude
.plots, autocorrelation of response to random input, cross specfral density
measurements between random input'and response, Qibration decay meaéure-
ment following the cessation of harmonic or random force inputs, Foﬁrier
transformation of transient input and the resulting response (37), and
the direct.measurement'of steady state mechanical power input (26). The
quantity actually required for the present purpose was the modal average
damping under acoustic excitation which, as is shown by reference (38) and
Appendix V, depends upon the relative modal energy levels occurring under
such.excitation. After a considerable amount of experimentation it was
found that the most reliable means of measuring the relevant modal
average damping was the measurement of vibfation decay in 1/3 octave
bandvwidths following the cessation of random acoustic excitation by a
source external to the box ((38) and Appendix V).

Figure 5.3 shows the resultsof such measurements. At high

frequencies (> 2500 Hz) it was necessary to use tape transport to show

the decay rate so that the Bruel and Kjaer Level Recorder could correctly




time averages and plot the decays.

In the 'steady state' condition, before acoustic excitation is
stopped, the panel trénsfers energy to the internal fluid,as well as
dissipating it mechanically and re-radiating it to the external fluid.
Hence it is necessary to consider exactly what is measured from the decay
rate. For reasonably lightly damped systems it may be assumed that the
steady state equations also describe the energy transfer process during
decay (5). Hence the following equation may be written for the rate of

change of panel energy

) -2 -2
-2 : -2 M<v™> p Vv
— (M<Vv >) = <B >M<v'™> <+ ( - )'Zg _ (5.2)
ot . m Ns pe 2 i mr
' o rm
or
VN -2
) ( C =2y -2 -2 s <p~>
— (M<vD) = <B > M<V"> + M<v>(1 - )(z /N ) (5.3)
ot m MpcoeNm <2, Enr/ s

From measurements of the ratio <52>/<§2> made during decay it was found
Ry 32>
that the term 5 . p2 was negligible compared to unity.

Mpco Nrm <V >

_ Hence the exponential decay rate could be used to measure the sum

Rpeen” ¥ Rrad]' '
Figures 5.4a and b show the value of the parameters (Brm/fsm)2
and (Brm/sr)efor the various panels.
It must be noted carefully that the values of (Brm/Sm)z'and
(Brm/fsr)2 plotted in these graphs correspond ﬁo maximum proximate mode

coupling, and hence are associated with relatively few of the total mode

:pairs. The next largest values of these ratios are approximately 10% of
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the plotted values (eqn. 4.7 et seq.); while the great majority of mode
pairs give values of the order of 1% of the plotted values. The ratio

is not plotted for frequencies below the lower limiting frequency.

5.3 Direct Measurement of Radiation Efficiency

Measurements were also made of the radiation resistance and
efficiency of the panels when driven mechanically at a single point by

an electro magnetic vibration generator. Use of a multimode power flow

equation similar to equation (4.4)swith an assumption that no structural

mode is well coupled to more than one acoustic mode, and vice versa, as
discussed in Chapter IV, leads to the following relationship between
average mean square pressure produced in the fluid and the average mean
séuare velocity of the panel

2
pw Rrad M

2 ' T
2 conr(w)ERrast/Nrm * Rmech

where nr(w) is the modal density of the fluid volume, R =

rad
. f
(M/Ns)mzr By and Rmech
>

internal and boundary effects. This must be compared with the

is the loss resistance of the fluid due to

corresponding equation derived by Lyon and Maidanik (16) without regard
to variation in mode to mode.coupling,

2
pw Rrad M

(5.5)
2 . f
2w cbnr(m) Rmech

It will be seen that use of equation (5.5) to derive Rrad will give a

~lover value than that in equation (5.4), the ratio being given by




N R
li + s rad ']—l

T . For the clamped panels, on vhich the direct measure-
rm mech

/N

ments were made, the ratio (Ns R ) was never significant

rad’ “rm Rmech

compared with unity, because the mechanical damping was quite high at
frequencies yhere Rrad vas large (i.e., near the critical frequéncy).
Of course these formulae do not take into account the statistical depend-
ence of the generalised forces on the panel modes. In view of the
uncertainty regarding the interpretation of the results of the theoretical
analysis of section Q.?,,it was of interest to compére the measurehent
- with the results of the simplé_anaiysis.

Measurements were made of decay of the acoustic field in the
box following the cessation of 1/3 octave band acoustic excitation from
a loudspeaker. Averages were taken over microphone positions but, even
so, the small volume of the box, and the resulting low modal density,
caused a large scatter of results below about 500 Hz. From the measured

~decay rates it was possible to estimate the effective damping of the

f

fluid cavity, and hence, Rmech

. Steady state measurement of the sound
pressures produced by 1/3 octave band mechanical excitation of the
panel, together with accelerometer traverses of the pénel, then yielded

estimates of Rr . The results are plotted in Figures 5.6, 5.8 and

ad

.10 for comparison with the results of the simple theoretical analysis.

5.4 Measurements of Panel Response with Irregular Fluid Volume Geonetry

The theoretical analyses and corresponding experimental measure-
ments were made with regular panel and fluid volume geometries. It was
considered important to investigate whether the results of these studies

were special to regular geometries or whether perturbation of the geometry

T T -




would cause significant-changes in the behaviour of the system. It was
mgch more convenient to alter the geometry of the fluid boundary, by the
insertion of solid objects into the volume, than to change'the shape of
the boundaries of the.panel. These objects took the form of five 30 in.
long, 4 in diameter closedbsteel pipes which were stacked»in a pyramid in
one of the bottom corners of the box. The total volume of the pipes was
about 10% of the free fluid volume. Panel‘response measurements were

madé in the usual way and the resulting radiation efficiencies are plotted
in Figures 5.6 and 5:8.

5.5  Discussion of Panel Results

5:5.1 Statiétical and computed results

The most significant feature of the comparison vetween the
sfatisticai and computed estimates of Rréd’ shown in Figures 5.5, 5.7 .
and 5.9, is.the deviation of the latter esﬁimate from the fofmervin
frequenc&»bands wheré no mocde pairs pouid be fouhd which satisfied the
frequency proximity condition for maiimum proximate'coupling. Examples
oc’cﬁr with the & in panel at f/fc'= 0.5; (sr + em) = 250, and at
£/t = 25 (8, + B,) = 25, and with the 1/16 in panel at £/, = 0.1;
(Br + Bm) = 25. An increase in (Br + Bm) is seen to bring some modes

within the frequency proximity limits of equation (3.6a), which has the

effect of lifting Rrad to near the statistically estimated value.

This condition can occur ééora&ically even at supercritical
frequencies, with lightly demped systems and small box volumes. However

it has been shown to be the general occurrence below a frequency which,




bfor regular rectangular geometries, can be predicted from a consideration
of the combined acousto—structural,wavenumber diagram. Most significantly
this frequency represents a limit below which power flow calculations
become more difficult because proximate modal coupling does not predomi-
naté, as it does above this ffequency.

In order to support this conclusion, the statistical éaiculationé
were extended to includ; coupling between all non-proximate modé pairs
which had maximum cogpling by virtue of good wavelength component matching.
The results of these.calculations'merge with those based upon maximum
proximate coupling at frequencies close to those predicted from statistical
considerations to be the lower limiting frequency. These are shown as
crosses in the figures. The symbol N refers to the statistically esti-
mated total. number of well coﬁpled mode pairs. This behaviour is more
in accordance with the measured behaviour than that predicted to occur
near this frequency from the comput ed results, where sporadic high‘Values
of radiation resistance are predicted. This is seen well in Figures 5.5,
5.7 and 5.9.

The largest discrepancy between computed and stgtistical values
of radiation efficiency, in bands dominated by maximum proximate coupling,
is seen at i‘/fc = 0.4 (1,600 Hz) with the § in panel, where the numerical
value is about three times the statistical estimate, (Figure 5.7).
Interestingly thé experimental resﬁlts also rise .above the statistical
curve in this region of frequengy. Also the computed.curve for the

higher damping, (B + B_) = 100), lies consistently sabout 3 dB above
gh p n t BL) y
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the statistical curve between f/fc = 0.4 and 0.8. Although there is

nb obvious reason for this discrepancy, it will be seen later to have
relevance to the experimental results for the clamped 3 in panel which
has a similar value of damping in this frequency range. Figures 5.7
and 5.9 show computed points, at frequencies well below the estimated
lower limiting frequencies for low damping, which lie well above even
the statistically estimated curve for maximum proximate coupling. These‘
are due to coupling between single computed mode pairs which have fre-.

: quenéy separations fgf smailer than those estimated to be the average in
.thése‘frequency bands.  In this sense they are 'rogue' pairs. The relation-
ship of such théoretical‘pairs to the practical béhaviour of systems is
discussed 1atef.in the thesis.

The mode pair statistics presented in»sectioné b.4.1 ana 4.4.2
'afe of great interest because they clearly show that power flow between
a geometrically regular structure and a geometrically regular fluid volume
is associated with relatively few of the available mode pairs.

For instance, in one frequency band, £en of the 91,000 avail-
able mode pairs were computed to account for 82% of the pover flow. The
very important conclusion which may be drawn from this result is that
mode set to mode set power flow may, in certain circumstances, be well
' represeﬁted by a set of independent two-oscillator equations. In
adéition, assumptions concerning the number of modes involved in power
flow, which are based purely on considerations of modal density, such as
those of Lyon aﬁd Maidanik (16), must be more carefully examined where
geometrically regulai coupied sysfems are‘concerned.‘ An example is the

A

modification to the response equation of reference (16), which is given

by equation (4.5).




The lower limiting frequency estimated in section h.h.l, from

®n°e ?)/3(8, + B )(a + b)(abe),

the_equétion A(f/fc)sin-l(f/fc) = (27°h
indicates tﬁat'this frequency is proportional to the square of the speed

of sound in the fluid, co2, for a given panel and volume. This follows
from the rélatién fc = co2/l.8th. One practical compiicatioh of this

conclusion is that a given panel will be relatively less reSponsive to

broad band noise, which épans the lower limiting frequency, generated in

a fluld of hlgh sound speed, such as hellum, than, say, to noise of the

:»».., SRR Ts S

same sound pressure level in air. This will be true provided that the

value of structural mechanical damplng, or R substantially exceeds

mech’ ‘
Ro.a3 this is usually the case for practical structures. The reason for
this restriction is that if R >> R the structural feéponse is

rad mech’

independeﬁf of R 4 (see equation (4.5)).

5.5.2 Experimental results

5.5.2.1 Panel response

Values of radiation efficiency calculated from the response of
the § in, 3 in and 1/16 in panels are presented in Figures 5.5 - 5.10.
The upper limits of frequency for which results ‘are presented were set
by the highest frequencies for which reliable damping measurements could
be made, and for which accelerometer loading effects could be satisfact—
orily determined. These were such that it was not possible to conclusively
check the correctness, or otherwiée, of the theoretical resuit for superF
. critical radiatipn efficiency presented i# equation 4.10. The only

available results are for the § in clamped panel (Fig. 5.10) and for the

=15 -




5 in clamped panel (Fig. 5.8), and these, unfortunately are conflicting.

A feature common to all the experimental results is that the
measured radialion efficiency curves gquite clearly fall away from the
statistical curves based upon proximate coupling below frequencies close
to those predicted as the lbﬁer limiting frequencies for the particular
measured damping values. Also, the non-proximate statistical estimates'
of radiaﬁion efficiency below the lower limiting frequencies agree
remarkably well with the measured results. This is considered to be a
clear demonstration that, at "low frequencies, the response of a'structure
to broad band random:sound in an adjacent closed fiuid volume can fall
substantially below that.estimated on the basis of. the assumption of a
diffuse sound field in the volume: this occurs at fréquencies below a
Alower limiting frequengy which can be simply estimated, at least for a
rectangulaf geometry. This conclusion constitutes a major result of the
research. |

A furtheerbservation of great interest, and of some measure of
surprise, is that the response curve below this frequency is rather smooth
and does not exhibit the sﬁbétantial irregularity that might be expected
to be caused by the sporadic occurrence of well coupled modes of non-
average frequency separation (39).

The experiments made with irregular volume geometry (Figures
5.6 and 5.8) indicate that the irregularity only significantly affects the
response at frequencies below the lower limiting frequency, by as much as

T dB at some frequencies. This result is consistent with the hypothesis

that, where there are a sufficient number of mode pairs available for at




least some to satisfy the frequency proximity condition of equation (3.6a),
then a random redistribution of the natural frequencies of one set of modes,

such as the insertion of objects into the volume would be expected to

cause (40), would not change the average radiation resistance. This is

2,22
r

because the frequency difference term (wm is not significant
in' the expression for the coupling factor between proximate modesv(see
equation (3.6a)). however, where non-proximate coupling is dominant,
then changes in this term may well affect the sum of the coupling factors,
and hence the radiation resistance. To use Scharton and Lyons!' terminology
(7), the non-proximate coupling condition below the lower frequency limit
constitutes, at least on average, a hodal mismatch' situation. The presence
of the damping coefficients in the expression for radiation efficiency
(eqn. (L4.13) is consistent with their calculations for tﬁis condition.
That the introduction of irregularity raises the radiation efficiency
would seem to indicate that a condition of statistical modal frequency
separation is approached.

The general agreement between the radiation efficiency measured
from response and the theoretical values at frequencies above the lower
limiting frequencies is satisfactory except for the ranges of f/f from

c
lO_l to 5 x lO_'l (800-4,000 Hz) for the 1/16 in panels and from 3.2 x

1071 t0 8 x 1071 (1,250-3,200 Hz) for the } in clamped panel. It has
already been noted that there is a constant discrepancy of about 3 dB
between the computed and statistical curves for the } in simply supported
panel over the same frequency range. Although it cannot be explicitly

shown to apply also the clamped panel, such a modification to the statisti-

cally estimated curve shown in Figure 5.8 would substantially reduce the




discrepancy between theory and experiment. It must also be remembered

that the ratio of clamped panel to simply supported panel radiation
efficiency has not been accurately estimated at frequencies between O.SfC
and fc.

The 'bumps' in the experimental 1/16 in panel curves in Figures
5.5 and 5.6 have been the subject of considerable concern since they were
discovered. There seems to be little doubt that they truly represent the
behaviour of 1/16 in pénels because they have been observed with two
different panels, attached to the box in quite different ways; with‘both
regular and irregula% fluid volume geometry; from measurements of both res-.
ponse and mechanically driven panel radiation; and, in the éase of thev
simply supported panel response, by two different experimenters, one using
strain gauges and one using accelerometers, in experiments separated in
time by one year. |

In spite of much thought and discussion as to the cause of these
anomalous results no tenable explanation has been forthcoming. The fact
that the discrepaﬁcy occurs over a frequency range similar to that
mentioned above for the § in clamped panel led to the suggestion that the
box, rather than the panels, may be the‘culprit, because the acoustic
modes are a function of the constant box dimensions, vwhereas the panel
modes vary with the thickness of the panel. Examination of the sound
field decays and pressure distributions has however shown no peculiarities
associated with this frequency range. Regrettably, therefore, the matter
hgs been left as a discomforting mystery.

The effect of the correction to the radiation efficiencies

‘derived using Lyon and Maidanik's original equation, which is obtained

- 18 -




from equation (4.5), is clearly seen in Figure 5.9, where the corrected
values lie far closer to the theoretical values than do the uncorrected
results. This correction is only significant whén the radiation resis-
tance is of the same order, or greatef than, the_mechanicél resistance.
This circumsténce only occurs with the simply supported panels near the
eritical frequency.. The clamped panels have, in general, far‘higher
mechanical damping near their critical frequencies and any correction is
insignificant. It is'interesting that the supercritical radiation effi-
ciency of the 3 in simpi&vsupported panel falls in accordance with the
computed estimate which showed a lack of any well coupled modes in the
frequency band correspondlng to f/f = 2. The statistical estimate of

the average number of well coupled mode pairs in this band is :f-8.

5.5.2.2 Panel radiation

The results of thé measuremeht of panel radiation using single
point mechanical exc1tat10n are shown in Flgures 5.5-5.10. Three main
features of the radlatlon efficiency curves are apparent. First, they
follow the general shapes Qf the reéponse curves, except for the t in
panel at low frequencie;_wheré very few moaes'exist. The 3 in.panel
curve lies mostly belbw the response curve, whereas the.% in and 1/16 in
panel. curves lie mostly above the response curve. Second, the discrépancy
between the two curves is greater at, or just below, the critical frequency.
Third, the two curves tend to come closer together below the lower limiting
frequency, again except for the i in panel.

'Thése results show that there is a élose relationship between the

radiation from a point excited panel and its response to broad band sound,

particularly in respect of the lower limiting frequency. It has been

- T9 .~




suggested that, with systems of very higﬁ modal density, the radiation
resistance calculated from response and direct radiation measurements
should be the same, and that the statistical dependence of modal
_generalised forces inrsingle point excitation should be irrelevant. In
the experimental systems, at frequencies above the lower limiting fre-
quency, the power flow has been shown to be associated with relatively
few of the available mode pairs. Under these conditions it is not
reasonzble to consider the results of averaging over many mode pairs.
Therefore 1t cannét be determined whether or not the discrepancies.
mentioned above are:cau5ed by the statistical dependence of-the modal
'forces. However it is iptéresting to note that thé i in panel, of low
nodal density, gave a:loﬁer-fadiation efficiency when driven, than in
response, whereas the 1/16 in panel, of four times the modal density,
gave the g%eatest positive discrepancy in the opposite sense near the
critical frequency. It is also possible that the better agreement near
and below the lower limiting frequency may be associated with the rela-
tively greater proportion of available mode pairs which cont?ibute

significantly to the power flow below this frequency.




(uolieuanbijuod

X0q PpidEoqxo01q Ul

pues -—

padwe|D)

W21SAS  X0g - |auBy |ejuawii2dx3 L'G Big

NUEY ‘O'M'S 01

/

.

?Y

2 7 7 7 7 2 7T 77 7 V7l L LLr

- o— o - -
—

S INT

[

adid Kyddns Jie
"elp ulg —>

2A)BA 2}V 9 —> O}O

‘et

!

Bh's’d QgL e Jiy

yoild uiz e snoq

(1

t

[N ]
!

Ptoe bty
(B

1.t lll'
'l'c'l’ll

YU
1
R

1
‘Ill

T L b

SN NN MM NS M SN NS N NN

"
|

£a
i

i
S e
>
~

AN N N R N

2did )ix2 Jale ‘eip Ul

/

;

1z
1

Toued 31s2§

uoJ1 21bue yoiyy

Ul

1221s o1yy ul




'XOQ uj WwnJ12ads 24nssaud D]1SNOJE 2AB}D0 g¢ (e21dAL

§ Y 0USY P 330

2'G big

s

T SO NSO S

Dt e o . -4
T -
S Y 5P
o AR YO M A St At oy el b ™ -
B O N oy g N A i — — || : ]
) P E IO NN JONN RO -3 - O O O O [ Bl n 0 [ T D - N AN -

gPoL




ST = _ 'Sjoued JO SJ03}2B} SSO| |B1O) - bl : w

(zH) Kouanbauy 213u2) go £ L :
0000 g 0001 | 00! e e
_ _ _

) : _ pa2iJoddns Kjdwis. UIOf ey

_us_aESu vl oY o o —oe-
+// : p23toddns Ajdwis vy g) o——a
o\o‘l\o 3, & . .
b // / \ | padwed ulgf x-—-x

- T ,,.“.., X ! /. o p2iioddns A1dwis ‘ul P 0—9 8z

paduwe)d ‘v v, 0—o9

o/ \ T9z-
o)
X
\\
VAl —7z-
e
K -——%
10— 3

RN/ }°L601




107 o~

lII\HI I 1T T [T TTT T T T 7 TTT1

o
/

10°

\ V. ‘ _ / S@-o/ \Q\
\ . |

i
4
o/
~N
@]
/
(3]
\l
@’/6

I‘\
—
o
3
. F’/Q
O,
(0]
™ <

SR VAR
v v
102 \\
-9 o- Yain, simply supported V\
-0 o- s in. clamped N
-v - 1/t?»in. simply supported \lv v
1/ . b\"‘U
-v v- /8in. clamped \
-z o- 1/16 in. simply supported v
3 -0 a- 1/16in. clamped
Y M ! L1 L1l I I B O
102 107 % (f ) 10’
Fig.5.-4a Square of the

ratio of maximum coupling

coefficient to modal average mechanical damping

coefficient.




T T JTT1T1 T T [ [T1T1 1 T T [T1TTT]
a
. _ A
B \ v
v
10° |- A
0\0\ /o\o
i i ~
Brm)2 )
Br
S [} A4 Q
N\
o] v Q
S\
\z; A4 o g
VA
b—m\‘ ‘v—v\ Sl
Bep ) Yeg—v
102 \\“”E
o o Y4 in panel
v v Vs in panel
o o 1/1(5 in panel
103
10“ Lot L1l Lot
1072 107 10° (f/¢.) 10"

Fig.54b Square of ratio of maximum coupling coefficient to.
model average acoustic damping coefficient.




(sebeuane pueq aneyd0 ¢/ )
|aued uj gy, Paldoddns Ajdwis jo Adusidiys uolrelpey ggbid

/)
Ot -0 , Ot : 20l
. €91 621 00 1829 TS 07 Z€ 9Z|0Z| €L Ol € 9Qol|s Y% pueq sad
TTTT T T T [T 5o 60 & s 60 § §5F 7w g
|
2l
X WAN X X 3% Feeeiiy OM!
=z Lz =z R
( Bundnoo ajewxoid-uou) jeonsnels T LS N s mz . "
0y = (wg+sg) asuodsas [=+-- ST T B ° \
vios} Apuspuadapul painsedp |—x— ,W > Y lll|.+n..\w\x 09-
( Bundnos ajewixoid ) jeahyshels — . — 3 W ,.w_\ m_\ X
1] - -
001 = (uig+ 4g) PAINAWOD - mom — R & g 3 \
Ry
sz = (wgl+ugf) poindwoy —o— \l.l.m.\V\MHVIx o€
0Z-
0l-
[././. O
ol

0 %6001




Awmmmgwiw, PUBg 8AB3}D0 ¢/ )
‘Joued padwe|d Ulgl/ 40 Adusidlyja uoneipey 9¢ bid

2 : A ,
0! iy 00
R _ TTTT T 1T 1T 1 | [T T 11T 1T Taf |
A12wo026 2wnjon Je)nb2.4Jl : m —
yiym asuodsal jaued woiy PaInNsed o——0 wm
— a
‘youed udAlJp A130241p WoS) painsedpy O—O e 0S-
asuodses 18ued woJs) pasnseap X X s¢ % 2
(Bundnos ajewxold-uou) pedwe)d  1edIsneIs —— N 0Y- 5
( Bundnod ajewixosd) padweld jealyshigis - — H
o = =
3 og- c
= R 3
. 4] )
+ .
e 02- A
3
L4 “
N
(@] »
o
[} Ow...
i 5
MMNO\... » +
—~. X ® 0
- R
.v (¥8]
wﬂ o
TS ot
o
o




(sabeuane pueq 2ABIO0 g/))

|loued ‘ui g, pardoddns Ajdwis jo fousioiyyo uoneipey /'c Big

0%Boyo

| 2 |
oL (7/5) 0! . 0l | 01
ITTTT T T 66es w9 oslitv] €9z 0z Lh e 0L 8 9 g7 [€el € ¢ | [ pueq Jad
_ _ £ s3pow 3uey
ol
w2
. wlz .
X X X X — &l 0S-
z =z =z =z ~
O p A 3
l\\l — {\ll () Q.
( 6undnod syewixold - uou) |eo13sIeIS - B ® e © g
) ) - - .
07 % (wel+1g)) asuodsas joued e R S W 0%-
paisoddns Ajdwis wos) painsed 3 3 3 W
] "
( Bundnoo SmE_x__og_av JEOIISIIBIS — . — % w_v W._ W \x
00t= {wghigd) paindwoy -oe — x—X 0€-
Gz = (wglag) paindwo)y —o— xY/\ﬂ\I
\X\P X
/L 0Z-
<\\ T —
g e
L~ S 4
I \. \\ v
e AL Y
E.q.mﬁngum.:oufwtm\ ,.\ A
_ 2
. J/M‘/ o o
01




(sobedaae pueq aae}d0 ¢f|) : .
“joued padwe|d ul .m\_ 40 Aduaidiyye uonjelpey g-gbiy

(2f/¢)

;01 o0l - 4 _ 0t
T ] T T LTI Tl T T 1
’ o
’ ' clo
“ig
-—| D
X X i pid
( Bundnoa = = 3
areulixold -ucu) pedure)d-jeslysiyels - N = 8
KiyswoaB auwinjoa seynBsu Yiim \mu, > N
ssuodsas jeued psdwe)d wody paltnse S N »
”mcma %msmﬂ e e 2 \% 3 A2ua151448 uoljeRipes Padio)
udAlap Aj3c94ip wol) painsedp O—-=O ..7m. H mv 13ued oj1uljul edljau0ay)
asuodsas jaued pedwe)d wouy pasnseap Xe——x wv wu h . \x
=X
Sundnoalpaidoddns A)dwis - jeanysnelg — - —-— @\
2yeWIX0.4d X

padwe)o - jesnysneis

L0 %6oj )




X ! x
jm/ \x/x\\\\,.m.\
(-9 Ba) ufumtou-éfw\%:wx%x \x-:&w\\.\m

(sabeusne. pueq aae1o0 ¢))
lsued uiy p9lJoddns Ajdwis jo Aduairdijja uoneipey GG Bi4
. 2
al (/1) Ol | .o | 01
T T T T el zeszor o ciloi[e] Z § 9 € ¢ 2 zoaf P U T T pueq sad
s ! o oo a S3poOw |3uey
-~ ]
Clo
vl
X X x x  Ola
z =z z =z 3|7
T " " i o
IZ ('.. (Z I||$ Q
_ A Bundnood T~ = ~ o~ ®
arewixotd - uou ) yeanysneyg T /W W W W -
06 = (wg/+ 1¢/) D ® ™ W R
ssuodsas jaued pajsoddns 3 3 3 3
Aldwis woJ} paInsesy x———x W "o x
. NN XY N \x/x\
v Bundnos gyewixoud) jeaisne)g —. — . v & 3 _ \
052= (wg 1¢) poyndwoy --o- - _x
. : X
GZ = .Em\.f@: PoINJdWO) \w«\\..-
e /\.& . —_— il
1\ X —
1. "

0S5~

07-

Gl-

oL




(sobesone pueq aae}0 gf))

"loued Ui 7/, padwe|]d o Adu3si1d1}}d co:.m‘.__umm oL s b4

, /)
ﬁmmsi. oo C _O _. N© g
T T | [ TT T T ] | m_:_____ %
e
. S —— X X X X RE 0S-
z =z z = 3|~
n 1) il 1 o
(Z ¢|.v (Z (la.v o
. S )
- ® o R
e e - 3 an e e a— — l.u “.d + + o q -
(* Fundnoa W .w '.u.ﬁ 'wﬁ
azupid-uou) pedwed jeanspeyg —— = = oo
N N
qeued  podwe)d A g
ucAlID A12211p wouy pasnseap OO < ° ° ot~
) ssuodsal ‘AouD101 )32 uoneIPRL PaIoS
joued pIduwR)d WOl PSInNsSesy| X=———x . 1oued ajluljul 1e231313400Y]
perioddns Ajdwis- jesrysiieig —- - — N D/O.\O 0Z-
* mc:asouwvaaﬁfu- eanshe}s — - — . / - =ddns Tmzm_.m
ayewyold VAR
CQuay - P\Ww@\amd\o\\n /
- oL~
- 0
= ]
%
+
e
3
" 0]
=]

0 %6017 oI




'SUOISU2WIP XOQq pue |2ued

ul - 2bukeyod (jells [0

mc_z/o;m loued pa1Joddns Aldwis ul g/ JO AdU2(di}j2 UOLEIPEIDE US:QEOU L oI
(33/3) :
FOF OO— WO— _ N.o_.
| | 4
gz~
' 0¢-
X, O
[
/ }574 \\\\\
o) \ \L_‘.\
\X/. \\*\ \
/N \ | al-
¢ .
‘yolyEINdUIoD 2u} Ul N L SV
pepnyoul zde Bunjcnos ajeudixosd b 7 [
wnuipxevs Bupaey sapow AuQ \\ /B ~cf—a " i <
i/ ~
7 o 2] (&)
q 7 ot-
/, / 2jeulils2 (eonsliels abelary - ——-
/} ; _
R T 0s=("g+"g v .
/,
\/“m I cHTTXLITXIAT ZHLITXOLT BE
131 muv_o.mxh\m.mx\km.m AL Y6-CXLET x~——X
o ¢ WO ZXL9TXQIT DRENANAL IR A
. \\ / SUOISUZ WP %0g suoIsuaWIp jaued
/
/1
\\ [ 0
X




CHAPTER VI

APPLICATION OF COUPLED OSCILLATOR THEORY TO A

CYLINDRICAL SHELL

A problem of gonsiderable interest in the design.of nuclear
reactor gas circuits,and industrial pipework in general, is that of the
Vibration of the walls of a cylindrical shell structuré by sound in &
contained fluid. A closely associated problem is that of the trans-
mission of such nqis; to thé surrounding air. This chapter deals with
the responsé of a right cylindrical shell, with partially closed ends,
to broad band sound in the contained air. Chapter 7 is concerned witn

the transmission of this sound through the cylinder walls.

6.1 Previous Analyses

The response of thin walled cylinders to externally incident
discrete frequency sound has received considerable attention in the
literature, notably in the work of Cremer (6), Smith (42), Heckl (43) and
Franklin and Foxwell (44). A common feature of the approach of these
workers has been the direct use of the fluid and infinite length shell
equations of motion together with the interfage boundary conditions of
equality of radial velocity. Derived impedance expressions then lead to
calculations of response and transmission characteristics. The assumption
of incident field characf;ristics allows an assessment to be made, via the

impedance, of the variation with angle of incidence of the wayes of response

and transmission characteristics. It would appear from these analyses that
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sound transmission 1s very sensitive to angle of incidence to the cylinder
axis and that-for each frequency there is an angle for which transmission
is virtﬁally complete.

Excitation of a cyliﬁder by randon sound was considered by
Khabbaz (L45) who took a semi-classical, semi-statistical approach. How-
ever his analysis was limited to axisymmetric vibration. Franken (46)
tqok,% purely empirical approach to the problem of sound induced vibration
Oof a cylinder and his results have been used widely in missile response
calculations (7).  In a paper by White (1k4), which takes a completely
statistical approacﬂ, it is pointed out that the classical approach used
in references (6) and (42-44) has limitations when it is wished to con-
sider the response and transmission of a finite length closed cylinder,
particulariy because of the diffraction of sound around the ends of the
cylinder and the establishmeﬁt éf a reverberant field within the volume
of the cylinder, which complicates the pressure field aéting upon the
inside_of the shell. >Experimental’measurements‘presented in reference
(14) of the variation of transmission with angle of incidence of the
sound showed far less sensitivity to this angle than the infinite éylinder
theories predict. | This behaviour was attributed to the reverberant
nature of the shell vibration field.

The analysis of reference (1k) was based‘upon power flow
equations between multimode systems, as presented by Lyon and Maidanik
(16) and Eichler‘(12) for broad band random vibration. Essentially the
equation for sheil vibration energy states that the net power received
from the external acoustic field must be partly dissipated by mechanical

losses in the shell and partly radiated to the enclosed fluid volume.
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The net power transmitted to the interior fluid must be dissipated there-~

in. In reference (14) the author represented the coupling factor R4

vhich relates reponse of the shell to the energy of the external pressure
field, and Rrag, vhich relates the acoustic pover radlated to the
interior fluid to the shell vibration energy, by flat plate free field
radiation values; these were modified to account for the topology of the
particular radiation spaces. He also assumed & ratio of mechanical
(damping) resistance to radiation resistance on the basis 6f very little
evidence.’ In spite oOf these gross assumptions, and errors in the esti-
mates of R 4 and ﬁodal density (48), good agreement was ob?ained_
between the experimental results for transmission loss and the theory.
rad

It is felt however, that a more rigorous analysis of R nt should be

undertaken since it is not at all obyvious that plate radiation is rele-

. vant.

A paper by Manning and Maidanik (L9) spec1flcally considered the
response of finite length cylindrical shells to an external diffuse sound
field in terms of the free field modal radiation efficiencies, which have
been shown by Smith (L), Lyon and Maidanik (16), Smith and Lyon (5) and
others to govern the response of structural modés to diffuse sound.
Multimode response to broad band sound can be approximately determined in
terms of the ﬁodal average of the individual modal radiation efficiencies.
Hovever the efficiency with which structural modes exchange energy with
the contained fluid was not considered in reference (14).  Since the sound
field inside a cylinder,of which the dimensions are of the same order as

an acoustic wavelength,cannot approach the ideal diffuse condition, it is

not necessarily correct to assume that the free field radiation efficiency




corresponds to the 'internal' radiation efficiency. A knowledge of this

efficiency is necessary for calculations of the response of cylinders to
sound in the contained fluid and of the transmission of this sound to the
outside fluid. The present chapter presents a coupled oscillator, energy

“flow approach to this problemn.

6.2 Cylinder Theory

6.2.1 Modal Coupling

Following reference (16) vwe may write the frequency band average

as

radiation resistance, R .
) “rad
R.q.= W/N) § g (6.1)
m,r
where g.. 1s glyen by
2 2 2
.y B (Bpw =+ 8w %) (6.2)
T - 2 - 22 ) 2 2 :
. (wm - w, )<+ (Bm + Br)(Bmwr + Brwm ) ,

and er is proportional to the integral over the inside surface of the
cylinder of the product of the structural displacement and acoustic

velocity potential eigenfunctions of the m and r modes respectively.

P = ) [ v Gax. (6.3)
r m .

S

In the case of a cylinder with rigid closed ends, and with




simple support conditions at these ends, as shown in Figure 6.1, the

eigenfunctions may be written as

cos
sin -

Tz
L

, wr(r, 0, z) = (po) cos( )Jp(napé)

¢ (0, 2) = 52° (n(6+ B)) sin(*7%)

Because the plane ® = 0 is arbitrary, all structural and
acoustic modes of an ideal sysfem exist in pairs having the same natural
frequencies. The argumeht (ﬂapq) of the pth order Bessel function
JP is the solution of the eqﬁation (de(wa))/da_ = 0, which satisfies
the rigid wall acoustic boundéry condition of zero radial velocity (cf.

ref. 49). With the eigenfunctions used in equation (6.3), B is

mr
given by
2
cC pa (_1)111“!‘1' -1
B = (-——=)% mga COS(pB)['-“‘—-—‘——} J (na_ ) : P=n (6.4)
o Ve ey _ (r? - u?) LR ' A
and m # r
and = ; ?_# integer
B, =0 : P#n
orm =r
m+ r .
or 5 = 1integer

Note that er depends upon the phase angle B which determines the
relative orientation of the écoustic mode nodal diameters and structural
mode sxial nodal lines ardund the cylinder axis. The coupling-configu—
rations are illustrated in Figure 6.2. It will already be seen that

conditions on the mode orders given in equation (6.4) severely restrict
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the number of acoustic modes capable of coupling with any one structural
mode.

Equation (6.4) may be developed further to illustrate the
paucity of mode pairs which are well coupled by virtue of their relative
spatial amplitude distribution. The normalising constant for the

acoustic modes b is given by

5 e ﬂa- r CTo_y 'y
Ve = na"ge = J J (—&45) 5 (—2L )rar
: ~ P a P a
o
. 2w
. rnz r'nz :
X ' J cos ( . )cos ( 2_)dz- f cos p6 cos p'6As
o . - o
¥ 2 : .
i ma L - : :
= A - (6.
5 .2 pa , L 5)
! where E A' = 31J 2(na ) [i - (p/7ma )2 ] : p=p' and
| pQ P pa pQ rer' end
q=gq'
AL =0 : p#p' or
P r¥r' or
q # q'

Hence when the expression for €. 1s substituted in equation

~

(6.4) the Bessel function Jp disappears and the resulting expression

for B is
rm

hegoid 4 9 ™ |
. Por = Me ne) | 2] mt cos(pe) L (,2 2 '] Poponoand
m 1l - (p/ﬂapq) . - (rc - m“) . m#r and
. = ; r ;# integer
) _ (6.6)
Bp. = O p#n or
m=r1r or
mrr. integer
D) ' g
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" The following approximation may be written for non zero B

rm’
with r = m,i s; m 3> 3; s o044,
2 . 05292 2,%
e T T [(Memﬂ )@ - (oe 2] costoB) (61

It will be seen that except for the cos(pB) factor, Brm takes maximum
values with s =1 when p =0, and with s =1 and p = ﬂapd‘ when
p#o0.
In Chapter 4 and reference (50) it is shown that, because of
e . - 2 2 .
the sensitivity of g ﬁo (wm -, ), (gqn. (6.2)), acoustic
structural mode pairs may be broadly classified into two groups. The
first contains those which have modal natural frequencies separated by
not more than half the sum of their half power bandwidths, which pairs
are said to have proximate modal coupling. The second contains those
whose natural frequencies are wider apart and for which the term
2 2,2
- w )
r

(w

n dominates the denominator of equation (6.2). These pairs

are said to have non-proximate coupling. These conditionsare o

represented by the following approximations:

N

4

Enr (6.8a)

2,0, , ‘
er:/(srv+ By ¢t 2l - ] < (Bm.+ 8,.)

I}

0 : Qlwm - mr]_> (Bm + Br) _ (6.8b)

€y

Mode pairs which satisfy both the conditions for maximum B

from equation (6.7) and also the frequency proximity condition of

equation (6.8a) are said to have maximum proximate modal coupling, as




previously defined for the panel box system.

6.2.2 Evaluation of the Radiation Resistance

In the analysis of R for a panel (50) it was found that

ad
it was possible to consider the summation in the equation Rrad = (M/NS)

Z Enr in separate finite frequency bands provided_that their bandwidths
$é;e substantially greater than the average modal bandwidth of the modes
having natural frequencies in these finite bands. It was found by com-
parison of the results of a statistical analysis, which included only
mode pairs in a band having maximum proximate modal coupling, and a
numerical analysis, which included all mode pai;s in the band having
progimate coupling, that the former modé pairs dominated the total coup-
ling. It was also found that mode pairs having natural frequencies
more than half the sum of their half pover bandwidths abart, (non-proximate
mode pair§) did not contribute significantly to the total coupling in
frequencyibands in,yhich, on average, at least one mode pair having maximum
progimate coupling could be égpected to exist. A lower limiting frequency
was established above which non-proximate mode coupling could be neglected.
The following sections describe ana1ogous calculations'on a cylindrical

shell.

A

6.2.2.1 Numerical analysis

The sum Z gmr. was evaluated by computer for the cylindrical

m,r
shell and volume shown in Figure 6.1, on which experimental measurements
- were-made.  As with the panel, all mode pairs sufficiently close in

natural frequency to satisfy the proximate mode condition of equation

(6.8a) were accounted for in the summation, whatever their wavelength
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relationships, or Brm values. Such a restriction was found to be
satisfactory for the rectangular panel—box-system above the lower limit-
ing frequency and it is expected always to be reasonable for coupled
acousto-mechanical systems wiﬁh‘reasonably_smooth modal density curves.
The structural<m§de frequeﬁcy equation used was equation (8)

of reference (51). The acoustic mode frequency equation was

£ (eg/2) e/)? ¢ (o fa)?y (6.9)

r

In evaluéting_ R .4 = (M/NS)E g,.» the total number of structural modes in
a frequency band, Ns, vas obtained from the computer output. It agreed
well with the 'modified Bélotin"curve of Miller (52).

érad does not depend upon whether the double degeneracy of the
structural mode frequency distribution is taken into account or not
because Rrad is inversely propqrtional to NS. However the degenerécy
of the acoﬁstic mode frequency distribution préduces a total'numbér of
mode frequencies in a given-band which is half the total number of actual
modes. ?his was takeﬁ into account by doubling the value of zgmr as
computed. The term cosz(ps) in .each B~ vas considgred to vary
randomly over the set of mode pairs considered in each band and the
average value of 3 was applied as a factor to‘the sum. Hence the result-
ing value of Rrad corresponded to neglect of the acogstic mode frequency
degeneracy and of the terms cos?(pB);

The results of this numerical evaluation of radiation efficiency

o (= Rfad/2pcona£) are shown in Figure 6.10.
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6.2.2.2 Statistical analysis

The Radiation Resistance may be evaluated by making a statistical
estimate of the total number of mode pairs in any frequency band which'enjoy
maximum proximate coupiing. This estimate can be combined with the rele-
vant values of coupling coefficient, B -(equation (6.7)), together with

use of the frequency proximity criterion of equation (6.8a), to calculate

(M/N )] .-

m,r

The mode pairs which satisfy the frequency proximity condition

can be determined, as in Chapter IV, by consideration of a three-dimensional

structural-acoustic waygnumber'lgttice diagram, or frequency space diagram,
similar tovthosé-used in fhe statistical theory of room acoustics (cf. ref.
32). The structural modes of the shell are represented by poihts in a
two dimensional lattice in thé kykz plane. The distance from the,origin
of the coordinates to each lattice point is a measure of the wavenumber

(qJEB = ks)"of that mode at its natural frequency (wm). ¢, is the phase

B
speed of flexural waves ﬁravelling in the shell in the direction of the
wavenumber Vectof as défined'by‘the angle of the line joining the lattice
point to the origin. Figure 6.h4 shows such a lattice for the experimeqﬁal
cylinder, where the modes are grouped in 1/3 octave bands.

The acoustic ﬁodes of the fluid space are represented in a three
dimenéional lattice, where the_magnitude of the wavenumber of a mode at its
natural frequency is representéd by the distance from the lattice point to
the origin. Those mode'pairs which are pro#imate in frequency can be
identified by drawing é ﬁypical line of>constant ffequency w ~on the

kxkz plane, and then drawing two surfaces through the acoustic mode lattice
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space which are separated by a distance corresponding to twice the
alloﬁable frequency difference between proximate structural and acoustic
modes. The resulting shell has a middle surface given by kr = wm/co =
kScB/co, and a thickness given by bk = Aw/cO =-(Br + Bm)/cO (Figure
6.6). -Acoustic modes of which the lattice points lie within this shell
are proximate in frequency tq structural modes having lattice points which
lie on the constant frequency contour in the plane kxkz.

Application of the ﬁdde order restrictions given in equations
(6.6) and (6.7) to the ?roximate mode pairs completes the identification
of those mode pairs which enjéy maximum proximate coupling. A statistical
estimate of the number of such acoustic modes for typical structural modes
can be made fromva knowledge of shell and volume eigenfrequency statistics,
and the sum (l/NS) Z & can therefore be evaluated for well coupled

m,r

mode pairs. It should be noted that in the anglysis of Rr for external

ad
radiationi(h9) in which there are no frequency or spatial matching criteria,
all structural modes having k< w/co (= ké) are called acoustically
fast modes and are assumed to have a radiation efficiency of unity.

It was found in Chapter IV that there was a lower frequency
limit below which, on average, no mode pairs having maximum proximate
coupling existed in a frequency band. The following cylinder analysis also
indicates the existence of such a‘ibwer '1limiting frequency', and a special
estimate of Rrad’ using an analysis of non proximate mode pair coupling,
is preseﬁted in Appendix VI.

Manning and Maidanik (49), Heckl (51) and Chandiramini et al
(53) have shown that lines of conétant frequency for a finite cylindrical

shell do not take a simple form and are a function of the ratio of the
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frequency to the ring frequency of the cylinder, fR’ as shqwn in Figure
6.3. The latter depends only ﬁpon the‘diameter and material of the
cylinder and is given by o ='(CL/2na),at which frequency the length

of the cylinder circumference equals the-wavelength of longitudinal waves
in the cylinder material. It is associated with a peak in the modal
density curve (52). An approximate form of constant frequency lines which
may be used for frequencies given by (f/fR) < 0.8 is also shown. It is
interesting tc compare it with the wavenumber lattice diagramvwhich is
shown in Figure 6.4 for the experimental cylinder.

There is no strict frequency space representation of the acoustic.
modes of a cylindrical volume'becéuse standing waves are made up of waves
with coﬁpbnents in all directions perpendicular to the axis of the cylinder.
However Morse (49) suggests one formal representation of the allowed fre-
quencies in a cylindricgl room. Extensivé computation of cylindrical space
acoustic mode frequencies has broduced the relatively simple wavenumber
diagram shown in Figures 6.5a and 6.5b, for which Morse'providéd the

inspiration. It has been found that the wavenumber corresponding to the

natural frequency of a particular acoustic mode of mode order (p, g, r),

may be remarkably well approximated by the simple expression -kiqr =
app;@ximate expression of Morse (5k4), kior = {(nr/2)2 + (p+0.26 pl/3)2/

'1‘ .
a2}2; may be used. It was found that Morse's expression for p > 1,
P >g, q # O did not compare well with computed values of kpqr' The
wavenumber diagraﬁ in Figures 6.5 and 6.6 include only one lattice point

for each acoustic mode pair of equal frequency.

A combined approximate acoustic-structural lattice diagram is
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shown in Figure 6.6, for a frequency which is both below the ring fre-

quency, f

g> @nd.the critical frequency, f., of a cylinder. The latter

is calculated as for a flaﬁ plate of the same thickness and materiai of
the c&linder material. For a_detailed discussion of the importanc¢ of
the ratio (fR/fC) the readef is referred to reference (49) and Figure
6.12. As before; the segment of spherical shell is of thickness Akr =
(Br + Bm)/co and has a middle surface given by k, = 2nfm/co, vhere
fm is the frequency corresponding to the line of constant structural
frequency being considered, as shown in the kxkz plane of Figure 6.3.
This shell segment cgntains the lattice points of acoustic modes which
have frequencies sufficiently.élose to T to f&rm proximaﬁe mode pairs
with structural modes of‘fréquenc& f > as defined by equation (6.8a).
If we restrict thé terms in the summation 4 E - to'thqse
given by mode pairs having méximum proximate coupling, as defined by .
equationsl(6.8c) and (6.7) with s =1 and p=n, we are left onl&

with the problem of deciding which acoustic modes have P = napq apd
whether modes for which p =0 or p # "apq can make significant
contributions to the sum. | |

By reference to approximate expressions for apq given by
Morse (54), and from a sfudy of the computed values of the proximate mode

terms for the particular case described 'in sectiom 6.2.2.1, it is found

that the largest values of the term |1 - (p/napq)zi—l occur for q = 0

R

when, for p >> 1, (p/napq)z |1+ O.8p-?/3|_2. Figure 6.6 shows
that the condition p = n, q = 0, always requires p>1 so that the
above expression may be used for all g = O modes.

The cases p # 0, q # O can be shown on average to give very
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similar values of Brm to the case p = 0, excepting the cos(pB)

factor, because p/naPq varies between 0.3 and 0.1 for which (1 -
(p/wup)2 ~ 1 in equation (6.7).
The mode couplings for s = 1 (see eqn. (6.7) therefore fall

into two groups as follows:

|t

2

e edq -
Bzr = 2 {Mzm G J -+ o.8pf2/3)’2] 1 cos(pB) (6.10a)
‘with p = (2mt/c_)(1 - f/fr')%

(b)) s = 1, p=n=0, m> 3

(o]
H
[62]
]
-
e’
]

n.9éos,Q.#oa m >3

t
"

v oL, {cozolf_

- e cos (pB) A o ' (6.10b)
m

We shail call these a- and‘ b—type céupling respectively.
Except for the factor cos(pf), Bim is usualiy about three times B:m.
Structurai modes which have the potential for such éoupling correspond
to the acoustically fast modes of reference (49). However, the frequency
proximity restriction may not allow all these modes to couple well with
an internal fluid. |

The average number of mode pairs giving the abng.factors in

any._irequency band for which (f£/f.) < 0.8 and (f/f ) <1 can be
= - R c

~determined approximately from Figure 6.7 which shows a section through




the combined wavenumber diagram (Figure 6.6) on a plane p = constant.

The approximate form of the constant structural frequency line as shown
in Figures 6.3 and 6.4 is used, for (f/fR) < 0.8, to describe the average
distribgtion_of structural modes in a given frequency band over the. kxkz
plane. For a given frequency band this means of defermining the mode
distribution in wavenumber space becomes more accurate as the shell thick-
ness decreases, because the number of modes having natural frequencies
less than the centre frequency of the given band increases, so that actual
mode distribution deviates less from the average.

In a»frequgncy band for which f < O.8fR, and for a cylinder_
haviﬁg fR < fc, it can be shown from Figure 6.7 that the average total
number of structural modes which are capable of having a-type coupling to
the q=0 acoﬁstic ﬁodés i; given by (Akrd¢kra2/ﬂ).‘ A is given
vy (53), |

Ay = cbs_l[(f/fR)('l - Af/2f)]% - cos'l[(f/fR)(l + Af/2f)]% V'
| (6.11)
If the thickness of the shaded strip.of Figure 6.6, which is

shovn in plane in Figure 6.7, isvsubstantially less than the separation

(/%) between the structural mode lattice points in the k_ direction,
then only a fraction of the total number of structural modes capable of
a-type coupling will achieve it. This condition is given by [/EAkr/

(cos y + sin y)] < w/2. y is shown in Figure 6.6 from which (cos y +

=

sin y) = (1 + f/fR) . For practical purposes the condition approximates
to & < 206/(8r +'Bm): ~a typical value of the right hand side of the

inequality is 10 ft. The fraction of modes which will achieve a-type
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1
coupling to acoustic modes is then given by [/§ Akr/(l + f/fR)aj/(n/z)
and the average total number of mode pairs having a-type coupling is
given by

N = (2/2 (s )%k 8022 )(n2(1 + £/1,)%) (6.12)

I /2 Akr/(cos y + sin y) > 2n/%, then on average every structural mode

~ capable of a~type coupling will achieve it, and NSa vill be given by

a _ 2 2
N® = 2/2 (ak ) k 0425 (6.13)

This~will normally only occur_for long, or heavily damped, cylinders»and
is not the case with the experimental cylinder.

The average totai number of Structuralrﬁodes capable'éf having
b-type coupling is given by (lakr2A¢/21). The average number of gq # O
acoustic modes having b-type coupling with each of these structural modes
is given by‘ (2aAkr). Hence the average total ﬁﬁmber of mode pairs having

b-type coupling is- given by

N b = 2:8-2
S ’ -

, | _
grA§Akr/n. .' (6.14)

The absence of acoustic mode lattice points in the arc between the q =0
and q = 1 1lines of Figures 6.5a and 6.5b can lead to some modification
. ' 1
. : ; _ _ 3 .
of equation (6.14) when nooy» givenby n = akr(l , f/fR) ,» is greater
than Ppax 7 81Ven by the expression for kpqr with g=1 and r = 0.
However the alteration of the value of Nsb is normally small for f <

fp <f,. Now from equation (6.5) we have

R
| (e %2) | .
go, = (B2)%/(8, + 8) = 1‘-?»7%;3‘ [1 - (1 +0.8572/3]2eos?(p8)/ (8, + 8_)

(6.15)
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c 2p2

g2 = (B2 )%/(8, + 8) = b(z%—) cos® (p8)/(B, + B)) (6.15)
. m

Equations (6.15), (6.14), (6.11) and (6.1) give, for (f/fR) <

0.8 and f/fC < 1,

a

=¢
il

. . b b
rad ~(M/JS) er €nr (M/Ns)[Rsagmr M Ns Emr ]

_ hpa®2ag £e(8, + 8,)

' Z2
[1-(+o0.8p72/3) w2y (6.26)
c m N € ‘

o 'sm
Note that p has been treated as a constant, and taken. outside
the summation sign. This is because, when g = O, p is fixed by the
coincidence of the constant frequency line of the structural modes and
the intersection of the acoustic wavenumber shells with the kxkz plane
(Figure 6.6 and equation (6.10a)).- The validity of this procedure has
been confirmed by‘the‘computational study.
. 2 )
In equation (6.16) the factor cos” (pB) has been treated as a
random variable with an avérége value of 3. Inclusion of the s =3
‘modes will increase the numerical constant to 4.4, Mode pairs for which
s > 3 do not contribute significantly to the sum.
At well supercritical frequencies, when £ >> fc > fR’

structural modes have b-type coupling and there is no a-type coupling.

all

. . _ b
Then the radiation resistance is given by R 4= (Mngrm/Ns)(ZaAkr)

which gives, including the. s = 3 modes,

o h.hpcoal v :
Read T e (6.1
m
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The supercritical radiation efficiency is thus given by
_ 2
o = 17.6/27° = 0.9. (6.18)

At frequencies just above the critical frequency some of the
structural modes of'large n cannot couple well with acoustic modes
having p = n, q # 0. This is because of the previously mentioned
absence of acoustic lattice points in the arc of the wavenumber shell
between g = 0 and q = 1. This theoretically leads tova dip in the
radiation efficiencx curve between f = fc, vhere a-type coupling with
the q = 0 modes is dominant, and f = 3fC where all the structural
modes enjoy b-type coupling and equations (6.19) and-(6.i8) become
aﬁplicable.

It is interesting to compare the subcritical expression with

that corresponding to the radiation efficiency of an externally radiating

cylinder given by reference (49). If edge modes are neglected, and the

idealised structural wavenumber diagrem in Figure 6.3 is used to estimate
the ratio of acoustically fast modes to total number of modes in a fre-
quency band, the corresponding expression is

(R ) =@m£%2£2a2A¢/coNs | © (6.19)

rad’ext

It is found that, except in cases where %/a > 10, the second
term in the curly brackets of equation (6.16) is normally of one order
greater than the first term. Using only the second tern, €

the numerical constant 4.k, gives

R
rad _ (17-6)

(R )ext ) 2n2

0.89.

rad
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Inclusion of the first term in the curly brackets will normally bring this

ratio to very near unity. Evaluation of Rr for the experimental

ad

cylinder gives ratios insignificantly different from unity. The corres-

ponding curve, in terms of radiation efficiency o (= /pco2na2), is

Rrad
given in Figure 6.8, together with experimentally measured values obtained
by applying the usual statistical equations from reference (16) to measure-
ments of average acceleration and acoustic pressure of which details are

)

by the method of reference (49) using the computed modes and including edge

given in section 6.h. Figure 6.9 compares an evaluation of (R

rad’ext

modes, with the measured resuits. Figure 6.10 shows values of Rrad
obtained from numerical‘analysis described in section 6.2.2.1. Examination
of the tefms of equation (6.16) show that the subecritical radiation
efficiency, at frequencies bélow the‘ring frequency, will vary approxi-
mately as ‘(f)l. This is in disagreement with reference (14) which uses
the subcritical flat plate variation of (f)%. Figure 6.8 compares a

line of this slope with the statistical and experimental results.

6.2.2.3 Statistical analysis for f = fp < £

It is not possible to obtain a statistical estimate for the
frequency region near the ring frequency, when the ring frequency is less
than the critical frequency, because the distribution of structural modes
in the k kA wavenumber plane cannot be approximated by a simple e#pres—
sion, as can be seen froﬁ Figure 6.4. What in fact happens in this
region is that the percentage of structural modes in a frequency band
whiéh can have a- and b-type couplings to acoustic modés increase sig-

nificantly because of the preponderance of structural modes having small

- 99 -




kx. Hence the radiation efficiency rises locally to a peak. If the
critical frequency is more than twice the ring frequency, there will be
a frequency region between the two in which no a- or b-type couplings
will occur and the radiation efficiency will fall to values close to
that of a plafe of the same surface area and thickness as the cylinder
at the same value of (f/fc). As f approachés f_ a-type couplings
will once again appear and will give a local peak at f = f, as with
a plate.

| In view of the agreement between statistically estimated values
of radiation resistance for external and internal radiation (equation
(6.20))4it would seem reasonable to use the méthod of reference (49) to
estimate Rrad in the region above about O'8fRf However, corrections
" to the usual statistical response equations of the form described in
equation (4.5) of Chapter 4, may have to be applied in the case of

excitation by sound in the. contained fluid.

6.2.2.4 Statistical analysis for fp > £,

The difference between the cases fR'> fc and fR < fc is
illustrated in Figure 6.12. Thick walled, small diameter pipes of the

. industrial plant fype.will usually have £

> f . In this case the
R c

expression for R .4 given in equations (6.16) may be used for

(f/fR) < 0.8; (f/fc) <1 and that in equation (6.17) for f >> £,

In the region of the critical frequency the number of a-type mode couplings
will be far larger than that given by equation (6.12) because the radius
of the acoustic wavenumber shell will correspond approximately with the

radius of the circularlpart of the structural wavenumber line. The
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resistance will rise locally to a maximum given approximately by

. . =1 3
) hpa2s? 2420 Af sin (£/£5)

e = { T
rad f—fc conNsem a(l + f/fR)2

-G+ 0.81)'2/3')"2]"l

+2ﬁj?@ | (6.21)

ror  [(8, + 8)/c (1 + £/£)F] < w1,

and
| 2,2 4mc fAT sin_l(f/f )%
. Lpa®e® o R -2/3y-29-1
(Rréd)f=f T ¢ 1N ¢ { (B. + B )a [1-(1+0.8p ) ]
c O s m r m
+ 2T Af} - (6.22)

for [(3r + em)/co(l + f/fr)%] > 2n/%.

6.3 Lower:Limiting Freguency

The sum of Nsa and Nsb .from equations (6.12).and (6.13) and
equation (6.14) gives the avérage total number of mode pairs in a frequency
band which have 'maximum proximate coupling' as defined by equations (6.8a)
and (6.7) ﬁgth s = 1. Under conditions in which [Nsa + Nsb] is less
than unity, the expression for R .q &iven in équation (6.16) will not
be relevant, since it is based upon the coupling between mode pairs having

a .
and an estimate of

maximum proximate coupling. In general Nsb >> N
the lowest band centre frequency f for which on average at least one b-
" "type coupled mode pair will exist may be obtained from the following

equation
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yn2ala(B. + B )f°
r3 o (6.23)
Co .

The value of f glven by equation (6.23) will depend upon the
bandwidth of analysis through A, because for any centre band frequency
1t is always p0531ble to envisage a bandwidth whlch is suff1c1ently 1arge
to encompass at least one well coupled mode pair. However, because analysis
bandwidths are usually chosen so as not to obscure the trend of the results
with variation of frequency, equation (6.23) will normally give a meéning-
ful result for the léwer limiting frequency. For a given cylinder and
damping the lower limiting.frequengy.is proportional to (00)3/2 compared
with co2 for the panel—bbk system.

The value calculated for the experlmental cylinder is shown in '

Figure 6.8.

6.4 Experimental Measurements and Reduction of Data

Measurements were made on a steel cylindeerf dimensions given
in Figure 6.1, with one fi#ed>$lightly'domed end, and one removable 3"
thick end plate. The cylinder was mounted on a frame byAsix brackets
giving local attachment. The cylinder had a fabrication weld of about
3 in maximum thickness running parallel to.the axis. A compressed air
pipe entered the top of the cylinder-near the fixed end through a'heavy
12 in diameter, 2 in thick steel collar welded to the cylinder. The con-
figuration in which the end plate is bolted to the end flange of the
cylinder is Teférred to as 'partly closed'. Without this plate the cyl-

inder is said to be ‘'open'. The ring fregquency fR for this cylinder is




1800 Hz and the critical frequency f is 2660 Hz in air at 15°C.

Compressedlair was allowed té enter the cylinder through a gate
valve and could exit through a 14 in. hole in the end plate, when this
was attached. Acoustic pressure 1/3 octave spectra were measured with a
3 in.:Bruel aﬁd Kjaer condenser microphone at 50 measuring points within
the cylinder. This large number was necessary to obtain good space average
values of pressure becéuse, even at centre frequencies as high as 6300 Hz,
interference patterns giving variations ofAup to + 5 dB vere observed near
the walls of the cylinder. Accelerometers of 2 gm‘maés and semiconductor
strain gauges at 22 iositions were used to measure the spatial'average
response of fhe cylinder in 1/3 octave bands.

~The cylinder was also excited mechanically by a vibration

generator and the resulting average acceleration and sound pressufe levels
- were measured as before. Tbtal loss factors of the cylinder wgfe measured
by both impulsive and continuous mechanical excitations. The results |
obtained from these two methods agreed well (38). Average acéustic
pressure aecay times were measured in the partially closed cylinder follow-
ing steady state 1/3 octave random loudspeaker excitation. .No meaningful
decays could be obtalned for the open configuration..

The response measurements, together with the measured mechanical
loss factors and the theoretical modal density of the cylinder (52), were
used in the uncorrectédlstatistical energy resPonse‘equation, Sa(w)/sp(m) =

2n2[ns(w)/M|(co/p)|R /Rto T, to calculate the radiation efficiency

rad
c = (Rrad/pCOZnaz). The acoustic pressures produced by mechanical point
~ excitation, togeﬁher with the acoustic decay measurements, were used in

. | _ .- -1
the otatlstlcgl radiation equation, Sp(w)/Sa(w) = (p/co)(Rrad/Br)LZW nR(w)] s

to estimate the radiation efficiency of the partially closed cylinder. The
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results are shown in Figure 6.8.

6.5 Discussion of Results

6.5.1 Experimental and Statistical Results

The main feature-of the experimental results shown -in Figure 6.8
is the separation by up to 8 dB below 1250 HZ’of'the curves of radiation
efficiency calculated from the response of the two cylinder configurations.
Above 1250 Hz the curves are séparated at most by QVdB. . The open cylinder
curve deviates little from the statistically estimated curve for maximum

- proximate mode coupling above.hOO Hz and below 1400 Hz‘(O.8fR). This
curve has also been theoretically shown to correspond to the statistically
eétimafed response to excitation by an external diffuse field. The
partially closed cylinder response values fall significantly below this

_curve below 1250 Hz.

Tpis type of behaviour in which the response of a nearly closed
structure falls below that calculated statisticaliy for diffuse field‘
excitation, and in which it is sensitive to a change iﬁ boundary conditioﬁ,
is very similar to that of the panel-box system below the lower limiting
frequency. = The separation of the cylinder curves occurs near the lower
limiting frequency of 1100 Hz calculated from equation (6.23) using the
measured values of (Br + Bm). The results at well supercritical fre-
quencies agree with the statistical estimate of an asymptotic radiation
efficienéy of unitj.

_ The statistical estimate of ¥e5ponse for n9n-proximate modal
cbupling below the lower limiting frequency, éhown i;,Figure 6.8, does nét

agree as closely with the measured values as the corresponding results for
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the rectangular panel, but the general trend of the response islfairly
vell indicated. It is not surprising that the estimate of non-proximate
mode coupliﬁg is rather less accurate than for the panel-box system
because the cylinder response is far more dependeht upon the particular
mode pairs involved. This 1is because of the coﬁplicated variation of
cylindriqal shell natural-frequency with variation of mode order, which
makes estimates of the.average difference bétweén structural and acoustic
mode frequencies, upon which non-proximate power flow depends, rather
unreliable.

Figure.6.§ shows estimates of the external radiation efficiency
determined by the method Qf,Manning and Maidanik (L49), using the actual
wavenumber diagram of the e#perimental cylinder (Fig. 6.#).; It is
" interesting to note tﬁat at frequencies below 1000 Hz these estimates
oscillate considerably about the statistically estimated curve, because
the radiation depénds upon very few acoustically fast and edge modes; At
frequenciés-below 400 Hz no fast or edge modes are found and maséflaw
responée is predicted. The tendency for low frequency response to
correspond to statistically eétimated, smoothly varying curves, which do
not account for the déyiations of modal distributions and couplings from
the averagé, rather than to values calculated from a detalled theoretical
consideration of the coﬁpling of individual mode pairs; has been observed.
previously near the lower limiting frequencies of the panel-box system.

The correspondence above 400 Hz of the open cylinder response
curve with the statistical estimate of externally excited response
sﬁggests that the lower limiting frequency is a function of the ratio of

the opening dimension to an acoustic wavelength. In the ‘'open' configu-
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ration the fluid in the cylinder is acousticaliy coupled to fluid in
the surrounding room, which is very large compared with the cylinder.
Consequently the fluid in the open cylinder is likely to have a much
‘higher acoustic modal density than a completely closed cylinder. The
degree of coupling between the fluid in the cylinder and fhe external -
fluid is a function of the ratio of opening diameter to an acoustic wave-
length, and the type of acoustic mode considerea. This explains why the
partially closed cylinder acts as a closed cylinder and exhibits the
lower limiting frequency phenomenon. At the lower limiting frequency
the acoustic wavelenéth is equal to the end plate hole diameter and only
modes for which p = O can be coupled to the extefnal}fluid.b However,
these modes cannot éouple fo-the shell modes below i600 Hz, and so the
cylinder is effectively closed below 1600 Hz. The frequency at which
the open cylinder response félls below the statistically estimated value
also corresponds to equality of cylinder diameter and acoustic wavelenéﬁh,
fhe raéiation efficiency curve derived from the mechanically
driven partially closed cylinder measurements, Vhich is shown in Figure
6.8, follows the re5ponsé cur&e éloselyvexcept in the region of 400 Hz,
and between 2000 and 3150 Hz bands. There is better agreement between
these curves than for the panel-box system. There is no-fuily satis-
factory explanation of thé 400 Hz discrepancy, but it was found vépy
difficult, because of Sfrongyresonances, to make decay measurements at
this frequency, the results of which showed a wide spread ahd‘could-not
be considefed relisble. The discrepancy in the region of -the critical
frequency is considered to be further evidence of the need for a éorrection
to the usual statisticallresponse equations in ciosed systems of high

radiation efficiency and low mechanical damping as discussed 'in Chapters
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4 and 5. It is discussed further in the next section.

6.5.2 Computed results

Radiation efficiency curves derived using computgd mode frequencies
as described in section 6.2.2.1 are presented in Figures 6.10 and 6.11. The
partially closed response results are also shown for comparison.

As with the panel results, there are in general no proximate
‘mode pairs indiéated below the theoretical lower limiting frequencies
>corresponding to the particular valuves of .(Br + sm) chosen for the
computation. An'éxception is in the 630 Hz band with (Br + Bm) - 50.

This isolated point, coming well above the measured results is contributed
by one mode pair particularly close iﬁ calculated frequency and which is
also the only contributing pair with '(Br + Bm) =]§O. This point is
typical of "the effect produced by isolated mode pairs'which have modal
frequenciés separation far smaller than statistically estimated average.

As shown previously, computer analysis tends to predict such behaviour in
;poradic frequency bandé below the lower limitihg frequency, but the
experimental results do not usually correspond to this behaviour. A@other
‘peculiarity of the éomputéd results for A(Sr + Bm) = 150 is the absence of
any mode pair having proximate coupling in the 800 Hz band, although the
lower limiting frequency is.calculated to be 630 Hz. for this damping value.

As before it is observed that variation of the damping of the
‘system as expressed in (Sr + Bm) does not substantially alter'the
computed radiation efficiency except where very few vel; coupled mode pairs
exist in a band. This is the result of direct propoftionality between

the average number of well coupled mode pairs in a band and (Br + Bm),
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coupled with the dependence of &, upon (Br + Bm)—l. Where signifi-~
cantly less than the average number of well coupled mode pairs are
computed, as in the 1250 Hz band with (Br + Bm) = 50, 1increase of

(Br + Bm) significantly increases the radiation efficiency, and more

- important, non-proximate mode pairs can provide the major contribution
to the total value, as they do below the lower limiting frequency. This
'effect is seen in Figure 6.10, where the values‘computed from non-proximate
coupling compare favourably with the statistical estimate shown in

Figure 6.8. Where a sufficiently large number of well coupled mode pairs
exist in a band, the non-proximate pairs do not significantly contribute
to the total power flow.

The discrepancy in the region of the critical frequency between
the radiation efficiency curves calculated from cylinder‘response, that
measured by mechanical excitation, and that computed-may largely be
explained by the statistical response equation correction given in
equationl(h.S). It is caused by the fact that relatively few of the
available structural modes contribute to the total power flow. In the
3150 Hz band 10% of the structural modes contribute 82% of. the total
power flow. Similar figures for adjacent frequency bands lead to the
corrected vaiﬁes of radiation efficiency, as estimated from respoﬁse,
shown in Figure 6.11. The discrepancy between radiation efficiency as
measured from response and by point eicitation cannot.however be explained
in this way for the frequency region immediately around the ring frequency.
It i1s possible that this discrepancy, in a.regioh of very high modal
density, is related to that observed with the clambed 1/16 in panel on

the box, but no direct evidence can be advanced to support this suggested
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connection.

The dip in the radiation efficiency curves between f, and
3fc as predicted qualitatively in section 6.2.2.2 from a consideration
of the coupled acoustic-structural wavenumber diagram, and as seen in the
computed results of Figure 6.11, is not seen in the measured response,
and is only weakly suggested by the mechanically driven radiation measure~
ments in Figure 6.8. The vast number of mode pairs in frequency bands
above 5000 Hz prevented complete investigation in this region. 1In the
5000 band, for instance, there were approximately 2.5 x 106 mode pairs

to account for!
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CHAPTER VII

TRANSMISSION OF SOUND THROUGH A CLOSED CYLINDRICAL SHELL

T.-1 Introduction

The transmission of sound through a cylindrical shell is rather
different in character from the more familiar transmission through a flat
plate. The difference is associated with the particular forms of .
structural mode wavenumber diagrams which have been described in;p?évious
chapters. It is well known that, below the critical, or lowest coincidence
frequency, sound is transmitted through a flat plate vié vibration of low
order modes forced at frequencies well above. their natural frequencies
(cf. ref. 9). This is because all subcritical modes are poor radiators
at their natural frequencies. Consequently the transmission is mass
controlled:and energy flow analysis cannot easily be used to calcﬁlate
the tfansmission (55). This phenomenon is closely related to the fact
-that maximum subcritical- Brm is.always less.than maximum supercritical
B (section 4.2.1.).

With é cylindrical shell however, some subcritical modes may be
good radiators (or acousti;ally fast; ecf. ref. 49), at their natural
frequencies. These correspond to the a-type coupling described in
section 6.2.2.2. Hence cylinder transmission may be resonance con-
trolled at frequencies beldw the critical frequency, which is based upon

only the shell thickness and type of material. However at low frequencies

mass controlled, forced transmission can exceed resonant transmission.
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It was of interest to study the transmission of sound out of
the closed cylinder, previously described in chapter 6, to see if the
lower limiting frequency phenomenon affected transmission, as well as

resonant response.

T.2 Sound Transmission Calculation

Use of the straightforward response equations of Lyon and
Maidanik, together with a definition of external Radiation Resistance

in terms of power radiated to an external unbounded fluigd,

_ ext =2
"rad - Rrad V7 o (7.1)

leads to the following relationship between the intensity of sound in the
contained fluid incident upon the walls of the cylinder and the intensity

of sound transmitted through the cylinder:

\
\
%
)
J

2 : int ext
Iext - 8a cons(w) ['Rrad Rrad }
Tint WM A RO 4 R (7.2)
rad mech
The transmission loss is defined as 10 log (1. . /1 ). Rint is
10 int’ Text rad

the internal radiation resistance which is affected by the lower limiting

frequency phenomenon. Riz; can be calculated by the method of reference

(49).

T.3 Sound Transmission Measurements

The cylinder shown in Fig. 6.1 was completely closed by placing
_a heavy cover over the 1k in. diameter hole in the removeable end plate.

A small loudspeaker was suspended in the enclosed volume. White noise
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vas generated by the loudspeaker and microphone traverses were made to

determine the 1/3 octave sound pressure levels at 50 points in the

volume. 1/3 octave sound pressure levels were also determined'at 30

points at distances of 3 ft. from the outer surface of the cylinder in

a semi-anechoic chamber. From these measufements estimates were made

of the average sound intensities internal and external to the cylinder.
The cylinder was also driven mechanically at a single point

and the same external microphone points were used to calculate the pover

radiated from the surface. 2L accelerometer measurements cf cylinder

xt

ad to be calculated from equation
al

vibration enabled the quantity Ri

(7.1). The results are compared with theory (49) in Figure T.1.

7.4 Discussion of Results

Figure 7.2 shows the résults of the calculation of transmission
loss using%equation (7.2). Two features are of importance. First, it
can clearly be seen that mass controlled transmission exceeds resonance
(damping) controlled transmission at low frequencies. The mass law used
is th;t for random incidence (ecf. 56). Second, the measured results agree
more closely wit£ the calculation which uses the value of Rizg calculated
from response measurements, and which exhibits the lower limiting frequency
phenomenon, than with the célculation which uses the theoretical diffuse

int

‘field value of Rer’ which does not fall off sharply below the lower

limiting frequency.
The experiment shows that resonance controlled transmission can

be affected by the lower limiting frequency phenomenon. The importance
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of this effect will depend upon the specific pipe and fluid system of
concern, but it may generally be concluded that it will be more
important for fluids of high sound speed, such as steam and helium,

than for air.
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CHAPTER VIII

CONCLUSIONS

The conclusions which have been drawn from the work reported in
this thesis are presented below in order of importance as they appear to
the author. There is, therefore, a mixture of conclusions concerning the
general application of coupled oscillator, power flow analysis to problems
of acoustic excitation of containing structures, and of conclusions
specific to the particular rectangulaf énd cylindrical systems analysed
in detail. |

-It is apparent from the success(ﬁith which coupled oscillator,
powver flow analysis has been épplied to the systems stgdied, particularly
in respect of mode coupling statistics, thaf this‘foronf analysis is far
superior to classical férms of analysis where broadband acoustic excitation
of gas cOn%aining étructures is concerned. It has yet to be shdwﬁ that the
advantage extends to the case of liquid filled structures, where even
second order modal coupling ié.relatively'strong. This formvof.anaiysis
. 1s particularly useful with gyrdscopically coupled systems because the
constant of proportionality between power flow and éctual energy difference
is expressed in terms of the uncoupled modal characteristics, which can
usually be fairly easily estimated.

The study of mode coupling statistics for two geometrically
regular systems has shown that, in many cases of practical ipterest, only
a few of the available mode pairs transfer the major part of the energy

from one system to another. (These mode pairs have been defined to enjoy
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meximun proximate coupling.) This conclusion is very lmportant because
such a multimode interaction may be considered approximately as a set
of independent two mode interactions, the degreec of approximation being
a function of the mode coupling forces of second order, and not of the
major coupling forces. This constitutes a much less restrictive con-
dition than had previously been-considered.

Computation of mode pair coupling factors, together with mode
pair coupling statistics, led to the idea of a frequency for a particular
system, below which power flow would nof be dominated by that between a
few mode pairs whichAwere weil coupled by virtue of both good spatial and
frequency matching: the respdnse characteristics of both the réctangular
panel-box system and the cylindrical shell, have clearly demonstrated the
existence of such a 'lower limiting frequency' phenomenon. Statistical
analysis has given extremely-good agreement with experimental response
results at frequencies below the lower limiting frequency. The lower
limiting‘gréquency has been found to be a function of co2 for a panel-
box system and co3/2 for a cylinder. The important practical implication
of these results is that a given mechénical system wili be relatively less

responsive to a given broadband sound pressure level in a fluid of high

sound speed, such as water or helium.

It has also been demonstrated experimentally that the response
of a geometrically regular system is sensitive to perturbation of volume
geometry, and hence of acoustic mode characteristics, at frequencies
below the lower limiting frequency, whereas it is relatively insensitive
at higher frequencies. A‘reason is seen in the form‘of the coupling factor

in which the term involving the difference of the modal natural frequencies
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is insignificant of this difference is less than half the sum of the
modal half power bandwidths (proximate modes). At frequencies below
the lower limiting frequency, the dominant mode pairs are well matched
spatially, but do not have close natural frequencies. Consequently,
changes in the distribution of the fréquency difference among the
interacting modes can affect the coupling factors and the total power
flCﬂJ.

Calculation of modal average coupling factors for the rectan-
gular and cylindrical systems from individual mode to mode coupling
factors has in general shown g0od agreement with the statistically esti-
mated values. However, although such calculations first indicated the
existence of the lower limiting frequency phenomenon, by an absence of
well coupled modes at low frequencies, they often indicate an irregularity
of modal average response as a function of frequency, which is not
observed in practice. Particular examples are found in the sporadic,
high valuesxpf radiation efficiency below the statistically estimated
lower limitiﬁg frequency, and the sporadic low values above this frequency.
These irregularities are due to deviations of the modal distribution from
the ideal system statisties. Other eXxamples are seen in the very irre-
gular curve of external radiation efficiengy computed for the cylinder
and the considerable sensitivity of computed modal average radiation
efficiency of the rectangular panel to small variations in the panel-box
~dimensions. The limited number of measurements seen to indicate that
real systems do not exhibit this type of irregularity and sensitivity,
which is a point in favour of anstatistical~approach and against a deter-

ministic approach via idealised models of complex systems. However it
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must be said that the computatioﬁ of individual mode coupling is a-
valuable guide in the development and use of statistical analysis.

A further consequence of the tendency for geometrically regular
systems to exchange energy via a small percentage of the available modes
is that the original widely used response and radiation equations of Lyon
and Maidanik (16) have to be modified when the mechanical system is
capable of radiating the same order of energy into the fluid as it is
'capable of dissipating mechaniéally. This usually occﬁrs near the
critical frequency of a lightly démped mechanical system; the modification
increases in significance with increase of the fluid density.

Applications of power flow analysis to the cloéed rectangular
box and cylinderAsystems has produced values of modal average coupling
factor which correspond to the equivalent factor (e.g., Rrad) previously
calculated‘for a semi-infinite or infinite fluid sysfem. The exception
has been %pe supefcfiticai radiation efficiency of the plate, for which
no explanation is forthcoming. Except for thié case theﬁ, these results
lend furthér weight to the hypothesis that modal average coupling factors
may be calculated from the consideration of power flow between coupled,
semi-infinitely extended (modeless) systeﬁs (T, 25). A general proof of
such a hypothesis would be welcomed, but in its absence, relevant experi-
mental and theoretical evidence is very valuable. Certainly the assumption
of such a relationship greafly eases power flow calculations.

The analysis of péwer flow between a fluid and a pqint excited

structure has produced a new coupling factor which is a function both of

the natural frequency difference between an acoustic mode and a structural




mode and of the frequency difference between that structural mode and
all the other structural modes. The power flow between acoustically
coupled systems, of which one is point driven, would appear to apﬁroach
that between systems of which one is driven by statistically independent
modal forces, or soufces, when the modal density of both systems becomes
large. In the case of the experimental systems used in the present work,
it could not be reliably determined theoretically whether or not the
statistical dependence due to the single input force caused the dis-
crepancy between the:directAand indirect (response) measurements of the
radiation efficiency. This aépect of the research needs further experi-
mental and theoretical work.

-As well as theAagféement between values of panel radiation
resistance calculated from power flow theory and previously reported 'free
field' values, the coupled oscillator analysis, together with Bolotin's
approach to boundary effects on shell vibration, has led to an estimate
of modal ;verage radiation resistance for a clamped panel. No such
estimate has previously been reported, although some studies of clamped
panel ‘'edge mode' radiation has been made. Experimental measurements -
have indicated that the calculated increase of 100% over the radiation o
resistance of the simply supported at low frequencies is unconservative,
and that the factor does not decrease from two to unity;as the critical
frequency is approached, as fast as theory would suggest.

Turning from the rectangular panel to the cylinder we find that,
below the ring frequency, the 'internal' radiation efficiency is theoreti-
cally identical to the 'external' radiation efficiency, above the lower
 limiting frequency. It is also proportional to the first power of frequency

in disagreement with assumptions previously made by other workers. For a




cylindrical shell with a hole in one end, the lower limiting frequency
phenomenon has been found to be controlled by the degree of reeonant
coupling possible between'modes of the internal and external fluid. Small
central holes in an end plate do not constitute an opening from this

point of view, whereas completely open ends tend to do so. This distine-
tion can be important in an estimate of pipe and duct response to noise.
The lower limiting frequency phenomenon has also been shown to affect the
transmission of sound through a cylinder from an internal to an external
fluid. Experiments have clearly shown the regions of mass controlled and
resonance (damping) controlled transmission, and the effeet of the.limited
fluid volume on the latter.

_The results and conclusions of this work have already been
applied to a number of prectical problems by reactor designers.  The
cylinder theory has been used to estimateethe r.m.s. strain in a model
reactor d%ffuser subjected to broad band random excitation from flow
through a %leeve valve. The difference between the theoretical and
measured result was less than 10%. Cylinder theory has also helped to
optimise the design of a boiler casing for minimum response to noise.

A study of the implications for acoustically induced vibration of a
change of heat transport fluid from carbon dioxide to helium has been
aided by reference to the results of this research.

In conclusion 1t may be said that the value of coupled oscillator,
pover flow analysis in the pfesent application to the problem of acoustic
excitation of containing vessels, has been manifested largely in the
.establishment of a lower limiting frequency, below which the assumption

of a diffuse field model of the acoustic field becomes untenable. The
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main ereas in vhich further work is needed are those relating to
(a) the statistical dependence of input forces, (b) the acoustic
pover flovw between a structure and a dense fluid (liquid) and (c¢) the

effect of irregularity in the geometry of the structure and of the

fluid volume.
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APPENDIX 1

Radiation Resistance of a Simply Supported Panel

A.l.1 Determination of Maximum Mode Coupling Conditions

The radiation resistance is determined by considering the

magnitudes of the terms of the sum Z &y which appears in the equation

m,r
Rrad = M mzr gmr/NS. - For modes satisfying the frequency proximity con- .
>
. . 5. . ie _ 2 .
dition of equation ( 3.63, g, 1S g;vgn by g . er/(sr Bm) where B
.. .'2 l
is given by B = (co p/VergmM)Z £ £ ¢m(x, y)wr(x, y, c)dxdy. The

eigenfunctions ¢ and ¢ are for a simply supported panel given by

oy = sin(mwx/a) sin(nny/b) and Y. = (-1)F cos(pnx/a) cos(qny/b). The

integral becomes

T \m+p - n+q
(-1)F (-1)7°F - 1] ma (-1) -1 nb £ £, 4 0.
{l_r (m/p)2 J [ 1 _A(n/q)z ] qgﬂ or p qQFn

%
J

2
P

The terms in the brackets are zero for (m + p) or (n + g) even. The
maximum values of'the terms in the curly brackets occur for p =m + 1 and
g =n+1, and are given respectively by a/=u and b/m for m, n > 3.
For a given structural mode m, n having a subcritical natural
frequency, the acoustic modes of order (m 1, n+1, r) have frequencies
far from the structural natural frequency, (see Fig. 4.2). But it is
possible for acoustic modes m + 1, g (<n), r, and p (< m), n+1, r
to have natural frequencies close enough to satisfy the frequency proximity
éondition vhen mn/ a < kr and nn/b < kr respectively. The modulus

ay [(-1)™2 _
of the integral then has the value (=) |—f——= and

L (n/q)2




n+ .

(2) )™ -

L 2 J
-1 - (m/p)

are given by p=m+ 3, q<n and g =n + 3, p <m, when the integrals

respectively. The next largest values of the integral

have values one third of those given above and hence the corresponding 8y
have values of one ninth of those corresponding to p = m+1 or q= h‘i 1.
For p=m+ 5, gq<n and g=n+ 3, p<m the factor is one twenty-
fifth, and so on. The total number of non zero 8nr for each value of p

or g greater or less thean m+ 1 or n + 1 is fhe sane as for p=m + 1,
or g =mn+1l, sothat only the p=m+ 1, n<q and g=n+1, p<m
mode couplings need by considered in the sunm 2 Bor the error being.of

m,r
the order of 10%.

Al.2 Evaluation of X &, and R at Suberitical Frequencies
—— r rad
2

Consider the sum zgmr for a given mode m, n, when mw/a < kr’
r

and only the acoustic modes having p = m + 1 -are considered. Let q = en.

2,
rm

Then B~ (¢) = Kz(a/ﬂ)z(b/nn)g[K—l)n(l+€) -1)/(1 - 62)]2, vhere - K2 =
(co2p/VaremM), for n(l + €) is odd,and zero for n(l + €) even. The

average number of well coupled acoustic modes having a given € 1is given

- kaer :
by N(e) = [ ] from the geometry of Figure

ﬂ(kr2 _ ém'*';-‘)“')2 _ (_E%T_f_)z)%

4.2. This term is a much weaker function of € than the term in the

expression for Bfm(e). Hence we may write

2

=1 | (64 597
(en/n)2 -1 r o

krAkrc €'n [ﬁ:})n(1+a)
2(kr2 - (mn/a)g)% en=0

(A1.1)
krAkrc

where is the average number of well coupled acoustic

.2(kr2 - (mn/a)z)%

- Al¢2 -




modes with a particular value of €  and en 1is given by (b/n)(kr2 -
l .
(mw/a)z)z. Now every second term in this series is zero, vhen n(l + ¢)

is even, but if we include the p =m - 1 mode set in the sum z g then
r

the expression above holds.

N N N-1
Now since ) £(N) > [ f(x)ax > ¥ r{N), a good approximation
n=0 0 n=0 e'n 5. D
to this sum may be obtained from the integral 4 [(1 - (Fx)7) “dx, where
-1 th 0 . .
F=n and x = n, because the N term of the series 1s small

compared with the sum. The integral is given by

Or=

(k% - (m /2)?) . )
I=1 +1I,= + 2 log tan[ g +

11 - ()22 - (mr/2)?)]

5 2 ] (A1.2)

Thus

) - (Al1.3)

,E & f h(Kg/co)(ab/nﬂz)2 [CKr/Q(kre - (mﬂ/a)g)%J (Il + I,

Here Akr has been written as (Br + Qm)/co. By expressing K in its

original form equation (Al.3) becomes

. hcopabkr n27/2b n -

Loy = 24 22 2 5,3 (os tanly +

r 2€ € Mn v kW - k 2(kS - (mm/a)<)?

r m ol T T
. 1
sin 1b_ (k 2. (21)2)2
nm r a
> )}J

The second term in the square brackets may be shown to be very closely equal

to b/em over thé_whole range of Eg (< kr)' Hence

' 2
b -
Je = 2cop_a«kr n°n/2b L b - 2e pak,, 1 + —~g—§* (A1.4)
R L w3 Loadaegr) 2T
rm . p r ' “r i p e »




This expression has to be summed over all mw/a < k. for a given kp to

obtain Z Ep The first term is independent of m and n for a given
value of1 ?/fc. The average number of structural modes having a given

m in a band containing a total of NS modes is given by 2Nsb/anﬁ. Thus

the sum, over m, of the second term in the square brackets becomes

k k
r r

2 (2Nsb/aﬁn)(b2/2n2ﬂ2) = (Nc/a} z (b/nﬂ)3. Now (b/mr)3 =
i 2 e i - 5
(kp - (mn/a)?) . Utilising the integral approximation (Ns/akp) [ -
‘ x=0
(ﬂx/akp)g)—B/zdx we obtain

ol

(a1.5)

: . _l . -
. { «
ZCopaN kr l51n (f/fc) tan(sin
2

s .
3
™

f/fc) ]
nkg(l-f/fc) | mk

Z Eny .
m,r € e M

rm hs)

The sum z gmr for nw/b < kr takes the same form as equation (A1.5) with
m,r
a replaced by b. The total sum X 8- therefore becomes
m,r

2c ol k_(a + b) [sin™t (f/fc)% . |
z gmr}=. c s r " '2 1o (f/fc) + tan(sin (f/fc) )

m,r € e Mw 'k
rm D
. — M/ . .
from which Rrad M/ﬂS mzr &, 1S &lven by
3 .

- 1
57.6pth(a + Db) sin".l.(f/fc)2

rad Tr5 1 - (f/fc)

R

+ tan(sinﬁl(f/fc)%)l (A1.6)

where €. is taken as 1/8 fof»most acoustic modes and €. = 1/4% for a
panel. The numeripal constant increases to 6h wheﬁ the 1/9 contribution

from the p=m + 3, q <n and the g = n+ 3, p <m modes are included.
. The radiation effiéiency is obtained from (Al.6) by dividing'by pc ab, ‘and

is hence a function of c, 8s well as' of h and cp,.




Al.3 Evaluation of ) &, 2and Rrad at Supercritical Frequencies
m,r

The relevant vave number lattice diagram is shown in Fig. 4.3.

At supercritical frequencies it is possible to have p =m + 1 and

qg=m + 1 simultaneously so that Brm2 takes the maximum value of

K°(ab/72)°. The p=m+3, g=n+1, and p=m+1, g=n+3
N . 2 _ .2 2.2 . ) . 5
modes give Brm = K (ab/31°)°. A1l other contributions may be neglected.

The average number of acoustic modes having p=m+ 1, g =n+1 per

structural mode of order (m,'n) is given by Na = hc(Br + 3m)/nco(l -

[V

fc/f) » which 1s a function of box depth c  but not panel size. Hence

. o 2.2 s

Z &y, IS given by z &r = NsNa K(ab/n“) /(Sr + Bm) and the radiation

m,r m,r

resistance is given by R__. =.(M/NS) ) Er
m,r

well coupled p=m+ 3, g=n+1 and p

1
128pcoab/ﬂ5(l - fc/f)a. The

m+ 1, qg=n+ 3 modes
are twice as many as those m + 1, n + 1 modes. Hence the numerical

constant becomes 128(1 + 2/9) = 156. The radiation efficiency is

Y

Y

therefore g&ven by

ol

Nt

n

o = (156/%°)(1 - £,/£)° = 0.5(1 - £_/1) (AL1.7)
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APPENDIX II

Radiaticn Resistance of a Clamped Panel

The Mode Shapeés

In the calculation of natural frequencies of shells with clamped

edges a common choice for the modal displacement distribution normal to
2

4
the clamped edfe is that of a beam having corresponding boundary con-

/

ditions. A form which is more useful in the analysis of modal character-
istics at high frequencies (asymptotic behaviour) was proposed by
Bolotin (28). The displacement of a flat rectangular panel near the

boundary x =0 1is written as follows

x  exp(-(k 24 k22) x)]

1 a 1

¢(x,y) = [sin k (x - x_) + sin k
1 a
x [éin k. (y - y.) + sin k. y. exp(-(k 2 & 2k 2)%y]
\ \ 2 b 2°b . 2 1

A
)

s

k
1

V2 (k12 + k

where sin k.x

1"a '2)%

2

sin k2yb

and the modal frequency equation is of the same form as that for the

simply supported plate,

we = (kl2 + k22)(D/psh) (A.2.3)

The wavenumbers ‘kl and k2 are related to the mode orders m and n in

the following way




k) l
k.a = 2 arc tg T+ mw
1 (klz . 2k22)2j
- k, (A.2.4)
k2b = 2 arc tg > 57T + nm
(k," + 2k, %)%

The form of displacement function in equation (A.2.1) gives a sinmple
physical picture of the difference between the simply supported and
élamped panel mode shapes. For large x and y, the second terms in

the square brackets become insignificant, and the remaining functions

are sinusoidal with phase shifts given by k.a and k.,b. Eguations(A.2.k)

1 1

show that for kl >> k2 the phase shift in the x-direction approaches
ﬂ/h while that in the y-direction becomes small and approximately equal

to (k2/¢§ kl)’ and vice versa for k. << k

1 X This displacement function

is not general in the sense that there is no exponential term to account
for the boundary opposite and parallel to thg bourndary x = 0. However
the firstkterm does represent pure symmetric or anti-symmetric motion
over the gegion 0 < x < a. The other exponential term can easily be

accounted for in the evaluation of coupling coefficients, as will be

seen in the next section.

A.2.2 The Surface Integral

As with the simply supported panel, the integral over the
panel sgrface of the acoustic and panel eigenfunctions is required for e
the evaluation of the coupling coefficients B r Use of the cosine
functions for veiocity potential, and of the clamped panel displacement

function of equation (A.2.1), involves evaluation of the following

integrals:




PHX .
cos k.x cos (=) sin k.x dx
1 a 1

2 sin k.x Lk =1 : (m+ p) even
1l a a b 4

3

The integral Ix contains the factor two to account for the exponential
3 . .

factor near both boundaries, x =0 and x = a. It is zero for (m + p)

even. The results of the integrations are as follows

((—l)p+l cos kla + 1)

kl(l - (pﬂ/akl)2

cos klxa

i \p+tl . .
(1) sin kla sin klxa

k (1~ (pr/ak))?)

is non integer

(A.2.6)

is integer

- (a/2) sin klxa

2(a/pﬂ)2(k12 + 2K 2)2

2
2
+
2k2 ) + 1

sin k.x_ : (m + p) odd

: (m + p) even

The condition on Ix concerning the value of (kia/n) 1s necessary
2
because in general this number is not an integer for a clamped panel, as

- A2.3 ~




it is for simply supported boundary conditions. There are three corres-

ponding integrals I, I and I for the y-direction.
¥ Y y
1l 2 3
A.2.3 Approximations

Because the values of (kla/n) and (k2b/n) whiéh correspond
to the normal modes of a clamped panel are not normally integer values,
it is very much more difficult to classify the various coupling coeffi-
cients by megnitude in terms of the mode orders (m, n) and (p, q, r),
than it is in the case of the simply supported plate. Therefore it has
been found necessary to consider the above integrals in terﬁs of the
relative orders of magnitude of the wavenumbers kl and k2 in the
x and y direction. .

Reference to the expressions for kl and k2 in equations
(A.2.4) shows that the greatest differences between the wavenumbers of
clamped ana:simply supported panel modes of the same order (m, n) occur
when kl = (m + 3)n/a and k2 = (n + 3)n/b. These correspond to the

conditions kl >> k2 and kl << k2 respectively. Consequently as may
be seen from equation (A.2.3), the natural frequencies of cofresponding
high order modes of clamped and simply supported panels do not differ
greatly. Also, the direction of the rectangular grid structural wave-
number diagram which is caused by clamping the edges of a panel is evident
mainly near the axes of the diagram (Figure A.2.1). Hence it is reasonable,
and indeed the only practicable course, to estimate modal coupling

" statistics from a consideration of a basically rectangular grid diagram,

but with due account of the coupling-coefficients proper'to the clamped

panel mode shapes.




It 1s evident from the expressions for integrals IX and
1
I, in equations (A.2.5) and (A.2.6), that the best spatial matching,
2

and hence the largest coupling coefficients er, will be given by mode

pairs for which L (pn/a) anad k, =(qn/b). Hence, at well-subecritical

frequencies, only those modes for which kl << k2 or kl>> k2 will

simultaneously satisfy the frequency proximity condition and also the
spatial matching condition. These are the clamped panel 'edge modes'.
At higher, but still suberitical, frequencies, modes for which k. = k

1 2

have to be considered.

3+
A.2.3.1 Panel modes with kl << k2 or kl >> k2

For the condition k, << k_  the following approximations may

1 2
be made:
kl
sin k.x = . . ) ~ k_/V/2k
cos klxa = 1
sin k,.y, = k2 « L
T =
2’b /2 (k.2 + k. °2)2 V2
2 1
2 1
cos kyy, = (1-3)= —
V2
kla = 2 arctg 5 S| tmm o omm o+ /§kl/k2
(k)" + 2k,%)*

) : m
sin k.a = (-1) /2 kl/k2

cos k,a = (-1)™ cos (V2 kl/k2) = (-1)™

A2.5 -



kb = w/2 + nw

2

sin kyb = (-1)"
cos k2b = 0

k, >> qn/b

Consideration of the integrals
approximations gives,

((_l)m+p+1 + 1)

Ix = - 5 =0
1 | k (1~ (pr/ak )%)
o~ a/-r[
= a/3m
I = - ke
x, >
2v2 k2
\ 2m+1 2
. ;.("l) (kl/k2) a
2w
- 2
Ix3 N kl/k2

((—l)q+l cos kéb + 1)

I = cos k,.y
y _ 2 - 2°b

1 k2(l (qn/bkz) )

= b/V/2 nr
q+l' . .

.- (-1) sin kb sin ky,
Yo _ 2

2 k2(l (qn/bkg) )

(b/V2 nr)(-1)30HL

1

- A2.6 -

I ,1I and I with these
X b'e

1 %2 3
p=m
p=n+1l
Pp=m+3
p=mn
p=m+1
all pand m

n>1, all q, n

(A.2.8)

(A.2.9)

(A.2.10)

(A.2.11)

(A.é.le)




R

and I
y

R

R

I

R

13

1
[ 2(b/qn)2(k12 + 2k22)2

(b/qn)2 (kl2 + 2k22) +

1] sin Ky, o (n+q) odd

Y2b/nw : (n+tq) odd
(A.2.13)

0 » : (n+q) even

Summarising these results we have, where Ix = Ix + I + I

m+ 1, (n+ q) odd.

(a/m) + (1) /x,)%x (a/2n) + k /x,2 = (a/m)

b/V2nw + b/V2nw + V2b/nm = 2V2b/nu

m+1l, (n+ q) even.

)
*

b

(a/n) + (-1 (k) /x,)2 x(a/2m) + (k) /5,7) = (a/m)

%/VEnn - b/Y2nn +0 =~ Q

m.

= Q - (kl/ka) x(a/2/2) + (kl/kze)
2¥2b/nt : (n + q) odd

0 : (n + q) even.

m + 3.

= (a/3n)

= 2/2p/nn : (n + q) odd

= 0 : (n+ q) even

The coupling coefficient er is proportional to the product -

- A2.T7 -




Iny' As with the simply supported panel the mode pairs having p =m + 1
(group (a)), produce the largest coefficient, followed by group (d). The
condition (n + g) odd also applies in the simply supported case. A
corresponding result is obtained for panel modes with kl >> k2.

The total number of well coupled mode pairs will be very similar
in clamped and simply supported cases because of the previously mentioned
form of distortion of the wavenumber diagrsm. Hence the relative radiation
resistances of these panels may be estimated simply by considering the
ratio of the squares of the values of the surface integrals for the well
coupled mode pairs.: Equation (L4.8a) gives the value for the simply
supported panel having k., << k as (2ab/nﬁ). Thus the ratio of

1 2

radiation resistances,; at well subcritical frequencies, is given by

>
(Rrad)clamped _(2/2 ab/nﬂ)2 _ ky >k,
= = 2 : (A.2.14)
(R ) 2 or
rad“s.s (2ab/nw) .
ky <<k

This result agrees with those of Smith (29) and Nikiforov (23).

It can be seen from the contribution of I to group (a) that the

3
boundary near field causes the doubling effect.

A.2.3.2 Panel modes with kl = k2

This case presents more difficulties than the 'edge mode' cal-
culation and has apparently not previously been tackled in the literature.
The main problem is that the spatial phase shifts in the x and y directions,

k.x and k are comparable. There are in the surface integral

1%a b
product many more contributing terms of the same order of magnitude.

The following approximations are made:

- A2.8 -



sin

cOS

sin

sin

- COSs

cos

u
1l a /"2(1{12 + Xk 2)2
1 2
i
kx = (1- %)% =Y3/2
1l a
3 )
= 2 arctg 5 )
(k.° + 2k.°)

= [l + mn]
= [l + nﬂl

k.a = (-1)"(/3/2)

1

14

k. b

1

(-1)"(V3/2)

k.a = (-1)%(1/2)

24

(-1)"(1/2)

[}

k. b

The various integrals then take the following principal values:

= O.Ea-

= -0.3a

= 0.16a

= —(/3/40)a
= (/3/k0)a

» ~0.1lza

= - /3a/16
= ¥3a/32

= - V3a/lo
= /3a/ko

-A2.9

m

m

(A.2.15)
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(a)

(v)

(e)

(a)

1

Y3a/lkpn

1

Y3b/4nn

It

b/nn

24

V3b/hinm

1]

-/3p/bknn

b//§nﬁ

= 0

Summarising the results we have:

p=m, (n+ q) even

I Y
X

I
Y

0.2a - O.la + 0

]

/éb/hnn - /3b/knn

p=m, (n+ q) odd

I =0.2a - 0.1la + O
x _

Iy = b/am  + /3b/knn + b/Y3nw

m+ 1, (n+ qg) odda.

P:
I, =-0.3a - V3a/16 + V3a/lpw

I = 2b/nw
v /

p = m-1, (nv+ q) odd

1
O

L
[

+
o
n
o

= 0.la

2b/nn

n

1

: (n

: (n

:p=m, (m + p) even

: p#m, m+ p odd

(p = kla/ﬂ)

: (n + q) even

(gn/a < k,)

: (n + q) odd

: (n + q) odd

: (n

+
Ne
A

even

odd

+
e}
SN

+
‘.O
SN

even

-0.ha + V3a/lpn

I = 0.16a + /3a/32 + Y3a/bpn =« 0.2a + V3a/bpr
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2b/nm

(e) p=m+ 2, (n + q) odd
I, =- /3a/40 - V3a/LO0 + O =

Iy = 2b/nw

(f) p=m -2, (n+ q) odd
< = @a/).*o + \/-33/)40 + O = 0.l1la

Iy = 2b/nw

Considering the product Iny for each of the cases

(f) we have

(a) IXIy 0

(v) Iny 0.2ab/n7

-0.8ab/nm + 2/§ab/hpnn2
0.4ab/nm + 2/§ab/hpnn2
~0.2ab
y ab/nr
(£) Iny 0.2ab/nw.

%(e) II

The corresponding value of Iny for the simply supported panel
is 2ab/nﬂ2‘for p=m=+*1, (n + q) even. Hence the ratio of the radiation

resistance of the simply supported and clamped panels for kl = k2 is

given by

(Rrad)clamped _ %KO.2)2 + (O.8)2>+-(O.h)2 + (0.2)2 + (0.2)2]

(Rrad)s.s ) (2/7‘)2

= 1

(A.2.27)




A.2.h Modal Average Radiation Resistance

At well subcritical frequencies the panel modes having
kl << k2 or kl >> k2 are the only modes well coupled to the acbustic
modes of the fluid. Hence the radiatipn resistance of a clamped paﬁel
at such frequencies is twice that of the simply supported panel. A%
higher frequencies, above about O.Sfc, some panel modes having kl = k2
become well coupled‘and consequently the modal average radiation resis-
tance starts to approach the simply supported value, until at frequencies
near the critical freguency modes having kl k2 tend to dominate the
total power flow, and hence the clampéd and simply supported panels have
approximately the same radiation resistances.

An accurate calculaﬁion of the radiation resistance curve at
frequencies between O.Sfc and.fé' would be extremely difficult because
of the nee§ to use the full expressions for the coefficients er, and
not just their approximate forms, at frequencies above O.Sfc (see
equations; (4.8) andv(A.l.l). There is thus some uncertainty as to the
rate at wgich the ciamped.and simply supported curves converge and this
may well explain some of the discrepancies between the experimental and

theoretical results for the clamped panel radiation efficiencies at

frequencies between O'Sfc, and fc.
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APPENDIX 3

Non-Proximate Modal Coupling at
Subcritical Frequencies

For those frequency bands of analysis for which the average
number of acoustic modes having maximum proximate coupling to the structural
modes in the frequency band of analysis is less than unity)it is necessary
to consider coupling between acoustic and structural modes of which the
natural frequencies are further apart than half the sum of the half power
bandwidths. Figure 4.4 shows the lattice péints of acoustic modes which
have natural frequencies within an analysis bandwidth centred on the natural
- frequency of a typical structural mode, but not within the bandwidth for
proximate coupling.

The analysis of Appendix 1, Section Al.2 may be used to evaluate
) 8o fo; those acoustic modes lying in a bandwidth Sw_ (= coékr) which
TiZS between the analysis band limits and the proximate coupling band.

This sum is denoted by z g and is given by

mr
m,r(dkr) t

2 . .- :
2¢_ pﬂs(a+b)kr6kr sin (kr/k )

ol 1 . =1 ’
! g = + tan(sin = k_/k )1
m,r(ék ) e e ek 2 - k2 w2 TP
r rm p r D
2
B w 8 w
m r r m
[ _ (A3.1)
2 2,2 2 2 ] ,
-(wm - W, )<+ (Br + Bm)(Bmwr‘ + Brwm ) -

This expression is integrated over the frequency band previously defined

and involves evaluation of the following integrals;




— ' - — . - — 2 . — -
where w, = w - (Br + Bm)/2, w o= Mw/2; A = w (fc/f), B =1;

oy > . 2 _
C ((Br + sm)sm) - 20 © = -2 %) D =

G = ABC + BD = w h(1 - 2f /f).
\ m c

Il is given by the folliowing expression which is typical of all
integrals,
- -2 3/2
1, = (£ /0 - 1) " {1 ((£ /£)7" /2w ) + T,((1 - £,/£)8w )

+ (1, o+ L) [(3r/1 - 1)/8((8, + 8.)8,)°]

w
m

{wm((fc/f)% £ 1) - (8,4 B)/2
in

((fc/f) - 1) + Aw/2 ]}'

w (£ /€)% = 1) + (B, + B )/2 * w ((£/F)° + 1) - duw/2

r2w - (B_+ B )/2
m r m Aw/?2
an{[ 6+ B8)/2 }[ 2w~ hw/2 ]}
r m m




2w - (B + B ) + 2(!.)' = me - hw + 2w
IY = {tan"? [ o 2 1 ; L tan—lﬁ 1 LY
- ((B_.+ B8 )B) - e 2
" P (s, + £ )8 )
T (g + B ) -
15 = {tan—l [ bu T ] ~tan 1 l - L T j}
((B, + B )8 ) ((, + B )B )

I, is very small for fc/f > 4  and third octaeve analysis, (Aw/w = 0.23).

B
typically 0.5.

I, is typically 2&n 10 = L.5. IY is also very small and I is

Each of tﬁe integrals Il—h is dominated by the term containing
_Id because it contains in its denominator the tefm ((Br + Bm)Bm)% where-
as other terms, which are otherwise of similar order, have denominators
which contain w . The ratio of the former to the latter is of the order
n which is.of the order ZLO--:2 - 10_3. The integrals Il’ 12, I3 and Ih

and the radiation efficiency may therefore be well approximated by the

expressions presented in section 4.5.
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APPENDIX 4

Calculzstion of the Coupling Factor for Point

Driven Panels

Equation (3.48) gives the expected value of the product of the
time rate of chznge of acoustic mode and structural mode generalised

coordinates as

h (6,)n (8, + 0 )ae

2 2

2ns ()i 2 (e e )72 (x )6, (x,)
vhere
' e-(sn/z)e2 B
hn(e2) = n [A cos A8, - (Bn/2) sin Aﬁz]

e—(sm/g)(el+62)'

B 2

h (6, + 6,) = [B cos B(e, + 0,) - (B /2)sin B(8) + 6,)]

—(Br/2)61

= _ D) cos D6

5 - (8,/2) sin Do.]

1
= ? - (8 /2) - c= (g +8)/2

w? - (8 /2)° = (8, +8)/2

w? - (8./2)°

The integrations give approximately 1,000 terms vhich are

tabulated in a condensed form overleaf. Ultimately all but T of these

terms are found to cancel out.




oo

| jfur(el)del J 1:1n(9 )h (0. + 6,)a0,, =
(o]

2" m "1 2

O
p?[ck - ¢%s /2 + O /2 - ckp /2 + cP8 g /4 - cPkp /2 + ¢Pg g /o
- c%8 8 /b + CKB 8 /2 - csregsn/h ]
+ 82[k%8 8 /b - K38 /2 + k%8 B /b + KB B /b + CK> - CKPB_/2 - CK°8 /2
+ K38 /2 - KB_B 8 /I + CKB.§ /2 ]
+ 5% [c®8 8 /b - c®kp /2 + ck®8 - c%8 B /b - k%8 B /4 - CKB B
3

2 2 3
¢ Ban/h - K Ban/h +C

+

, 22 . o3 2, _ .3
K+ CK” -CK +C Br/2 + KC Br C Bm/2

2 2 3 .
CK Bm/2 -C K8m/2 - K em/z + CKanm/e + hBerBn/h + csrsmsn/h

-+

2 3 2 -
CKB B /2 - CK°B /2 + K°B /2 + K°8 B /U 1

+ D%A%[CK - B /2 + CB /2 + KB /2 ~ B B /4 - K8 /2 + B8 /b - B & /N]

Y
2.2 : 2 .
DB [ck:+ c© - CB./2 + CB /2 - KB /2 + B B /b + KB /2 - CB /288 /b

+

+

+ 8 B /U]
+ 8%A% [cK + K° + CB /2 - KB - CB_/2 + KB /2 + B B /4 - KB_/2

- 88 /h+p8 /]

p2a%82[-1]
+ B[k - k2 - c? + 0B_/2 - CB_/2 - KB_/2 - B 8 /h+ KB /2+CB + 88/
- B8 /4 + K8 ]

+ B2 [+1] + B2 [41] + _36 ~1]

2 2 2.3 2. 2 2 2 3
+[c K‘ smsr/u - C°K Bn/2 + C°K sner/h + C K snsm/h + CK anm/e

- Abk.2 -



2 2 3.3 3,2 3.2 2.3
- b - h - - ¢3g - o .. ¢?3
C Ksrgmsn/; CK BerBn/* + C7K C-K Br/e C~K Bm/a C°K em/e
3
+ C KBmBr/2}
The final result is as follows
| . ‘ . . _
| J hr(el)qel J hn(eg)hm(el + 62)d82 =
o o
2 2 2 | 2 2, 2 2y, 2 2
(Bmwn * OBy )(Bmwr ' Brwm') “n (wm T 9 )(wm % )

2

2 2,2 2 C 2 2 2 2 247
[0, " = 0 )%+ (8 + 8 )(Bw "+ 8w )] [(u," = w5 + (B +8 )(B u® + By

(aAL.2)




LETTERS TO THE EDITOR

REPLY TO THE LETTER TO THE EDITOR “DAMPING IN PLATES” BY
M. J. CROCKER AND A. J. PRICE

I welcome this letter [1] and a chance to reply to it because it brings into the open a matter
which is often passed over lightly in the literature concerning experimental studies of the
random vibrations of complex structures, and yet which is of vital importance in the com-
parison of experimental results and theory. Before discussing experimental techniques and
interpretation of results it is necessary to point out that the object of the exercise is normally
to measure the “average loss factor” of a structure in a frequency band which usually con-
tains a number of mode natural frequencies, the concept of loss factor being generalized
from the single mode application to a number of modes resonant in the band [2]. Thus the
rate of loss of energy from the structure when excited by forces having spectra flat compared
with the individual mode admittances is written as o = 1,y w.E where w, is the centre
frequency of a reasonably narrow frequency band, usually }-octave, and E is the time-
average total energy of the structure. This equation may also be used for decay following
the removal of such forces, provided that the damping is small. The rate of loss of energy is
also given by 7 = 7, w, E; + 9w, E; + ++* + n,w, E, for n modes resonant within the band.
Hence, for w, ~ w, ~ w, ~ w,, 14y is given by

_mE+mEt -+ nE,
Nav E|+E2+"’+En ’

The average loss factor is seen to depend upon the modal energy distribution and the
variation of modal loss factor from mode to mode within the frequency band. The best
guarantee that the measured average loss factor is meaningful for a particular experiment
is a direct measurement of power input from the experimental steady-state excitation forces.
However, only with single point mechanical excitation is this feasible. For more complex
excitation forces the initial slope of the energy decay curve following removal of the particular
type of excitation being studied will usually provide satisfactory results. Since the initial
modal response to impulsive loading is largely independent of damping it would be expected
that such measurements would indicate excessively high average loss factors. Figure 3 of
reference 1 illustrates the effect well, but very often the inability of the recorder to follow the
initial decay leads to an underestimate, rather than overestimate, of the loss factor from
impulse-decay records.

I am therefore in agreement with Crocker and Price [1] that the use of impulse-decay
records to measure modal average loss factors is not to be recommended. Unfortunately, I
was not aware of the dangers of such a procedure at the time of publication of reference 3.
However, I have established that by careful choice of hammer material (hide, copper or
steel), together with the use of tape transport to overcome recorder response problems,
reasonably good agreement may be obtained between measurements of loss factor from
decay following steady-state acoustic excitation and impulsive excitation. Figure 1 shows
such measurements together with individual modal loss factors measured from harmonic
response vector plots. Figures 2 and 3 compare decay records following continuous and
impulsive loading. It has generally been found that the decay records have a far better
appearance than those presented in Figure 2 of reference 1.

The decay records from which Figure 4 of reference 3 were obtained have been re-analysed
in the light of subsequent experience. The only significant errors that have been detected are
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Figure 1. Total loss factors for -in. clamped plate. ®, Decay after steady-state }-octave band
acoustic excitation; O, decay after impulsive mechamcal excitation; A, vector plot on individual

Briel and Kjoer

Strain gauge

10dB

1000 Hz %-octave band excitation.

Figure 2. Decay of cylinder after continuous

Figure 3. Decay of cylinder after impulsive

excitation (filtered in 1000 Hz $-octave band).

TABLE 1
Riveted stiffener

Third-octave band

centre frequency
(Hz)

Loss factor
e

Modified 10 lOglo TNrad

1000

2000

4-6 x 1073
10 x 1073

—60-5
—47

in the loss factors for the riveted stiffener-plate combination. The corrected values, together
with the modified radiation loss factors, are shown in Table 1.

4000
5000

9 x 1073
9 x 103

—66
-57




508

LETTERS TO THE EDITOR

The modified results still show the riveted and point-bolted stiffeners to be far superior
to the line-attached stiffener configuration by over 10 dB at most frequencies above 400 Hz.
An apology is extended to the authors of reference 7 in reference 3 for a misguided
rejection of their hypothesis.

In answer to the comments of reference 1 concerning the general behaviour of 7, for
plain panels it must be pointed out that the results presented in Figure 4 of reference 3 for
the plain panel do indeed show 7., to be approximately independent of frequency over most
of the range. The actual value depends largely on the boundary conditions of the panel
because the energy losses are dominated by frictional losses at the support and by the trans-
mission of energy to connected structures. The -in. angle section support described in
reference 3 has been consistently found to behave more like a simple support than like a
clamped support and has always given much lower mechanical loss factors than a 1-in. thick
steel frame support which gave the results presented in Figure 1 of the present letter.
“Clamping” of fairly large areas of the edges of panels generally leads to high mechanical
loss factors through wave motion in the “clamped” areas. Hence it is not considered useful
to generalize about the loss factors of plain panels. Careful measurements of 7, on thick
welded nuclear reactor structures have consistently given values which reduce with increase
of frequency. The presentation of results in Figure 3 of reference 3 in the form of 7,4 has
been discussed in that paper.

With regard to the hypothesis of reference 1 concerning the transfer of energy from
decaying low-order modes to high-order modes it must be concluded that the proposed
coupling elements are the acoustic modes of the adjacent fluid. Since a structural mode
decays at its individual natural frequency it will transfer energy substantially only to those
acoustic modes with frequencies within a half-power bandwidth of this frequency. Except in
the case of highly damped acoustic modes and high structural modal density such a process
is thought extremely unlikely to operate with sufficient efficiency to cause the phenomenon,
but the build-up of acoustic energy in these modes may well slow up energy transfer after a
certain period of structural energy decay.

F. J. Fany

Institute of Sound and Vibration Research,
University of Southampton,

Southampton,

SO9 5NH,

England

Received 23 January 1969
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APPENDIYX VI

Non-Proximate Mode Coupling

A.6.1 b-type Coupling

Folloving the approach of reference (50) and Apperdix III the

\
}
‘ coupling is considered between structural modes and acoustic modes which
have maximum Brm’ by virtue of spatial distribution of velocity potential
! and displacement (equation (6.10a)), but which do not satisfy the condition
| .

of proximity of natural frequency (equation (6.8a)). The sum z e

: m,r

is formally expressed as follows

kr
U _
D=2 [ 1 8, ak (A.6.1)
m,r k m,r (8k_) :
r r
- L
where kr and kr are the acoustic wavenumbers which correspond

U L
respectively to the frequencies (fé - Af/2) and (fO - coAkr/hn) where

fo' is an analysis centre band frequency and Af 1is the bandwidth. The
integration is thus over that wavenumber>space in which non-proximate
acoustic modes éxist, and excludes the shell of thickness Akr in which
proximate modes exist.

The average number of acoustic modes in a shell of thickness
dkr which have b-type coupling to each structural mode is given by 2aékr
(see equation (6.1L4) and Figure 6.7. The average number of structural

modes capable of b-type coupling B given by 2aA¢kr2/2n. Hence

- A6.1 -
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2., 2 2 2
2L¢ 03 + £
La Awyr SN B w 7)

U r m
kf ( 2w
T

L

2 2 } dkr
+ (Br + Bm)(fimwr *Bw )

2 w +Aw/2
C 4 m
-y fefasy So ®
= 4 (=
3 Me W
27c i}
o

2

2 2
w, (Bmwr + Brwm

2 242
(Br+8m) (mm~wr)
2

2 2 .J dwr
¥ (Bm+8r)(6mwr * Brwm)

w +
it}

(A.6.2)

Using the integrations of Appendix III, equation (A.6.2) becomes

22 2 2
L a Adc Tw B. + B

B

b
Z gmr = [
m,r m

2ﬂ2 Me
m

2
£aA¢wm

b _ b ~ b o
and o = Rrad/Qpconag =M X gmr/2pcona£hs =
m,r b emNSc

o
. _ _ 1 L
vhere I = tan_llAw/((Br + Bm)Baﬂz - tan l{Br + 8 )/ (B, + B8

N

1

A.6.2 a-type Coupling

The problem with evaluating the power flow due to coupling of
structural modes with the q = O acoustic modes is in the estimation of
the average frequency difference |wm2 - wrgl between non—?roximate
a-type coupled modes. An approximate average value may be found by con-
sidering the difference bétween kpo and k , Dbecause maximum

r PO(r41)

B:m is given by r = m + 1. Using equation (6.9) we have

(x V2 (k)%= (/)%(2r + 1) = (v/0)%(2m + 1) (46.5)
po(r+l) por.

Now, from Figure 6.3, ~%1. = kr sin ¢

1
2
- fm/fR)




Hence o 2 _ w 2} = (¢ n/2)2(2r + 1) and thus
n T o

(wm2 - wrg)/wm =~ (21:c0/£)(l - f/fR)Jé (A.6.7) A

Use of this approximate formula for the average frequency difference

between the structural and acoustic modes leads to the follouing form

a

for 8
a (2 2 2
g = (er) (Bmmr‘ M 8rwm )
nr 2 2.2 2 2
(mm - wr) + (Bm_f Br)(smwr + Brmm )

a 2 , .
(B, (8, + 8,

(wm2 - wr2)2/wm2 + (Br + Bm)2

2(B§r)2(er + sm)/l(znco/z)(l - £/gp) + (B, + em)2| - (a.6.8)

The average number of mode pairs having a-type coupling ié given

_closely by (lakrAwA¢/con). The second term in the denominator of equation

(A.6.8) can often be neglected in comparison with the first term. If this

is done, the expression for radiation efficiency due to a-type coupling is

given by
. a 224749 Br * Bm'f
o = 33 . (A.6.9)
N “n (1 - £/f,)
. . . . _ .a b b .
The total efficiency is given by ¢ =o¢ + o . In general o 1s larger

than o°. Equations (A.6.4) and (A.6.5) have been used to calculate the

non-proximate coupling curve in Figure 6.8.

- A6n3 -
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TABLE

2

Freguency ratios below which there is less than one acoustic

i

2(a).
mode well coupled to each structural mode {from subcritical
mode statistics).
Plate & in. $ in. 3 in. & in. 1/16 in. 1/16 in.
type simply clamped | simply clamped [simply clamped
supported * | supported supported
(£/£) 2.1 1.0 1.5 1.3 1.0 1.0
- 2(b). Average number of acoustic modes well coupled to each structural
mode (from supercritical mode statistics).
\ ‘
y -
(515) - 2
Plate & in. ¢ in. 3 in. 3 in. 1/16 in. 1/16 in.
type simply clamped simply clamped simply clamped
supported supported supported '
No. of 0.28 0.7h 0.28 1.43 0.28 0.k2
modes




