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ABSTRACT

FACULTY OF ENGINEERING-& APPLIED SCIENCES

DEPARTHMENT OF AERONAUTICS & ASTRONAUTICS

Coctor cof Philosophy

A UNIFIED UNSTEADY FLOW THEOQORY OF DELTA WINGS WITH ATTACHED
SHGCK WAVES

by Danny DBing-Yu Liu

A unified unsteady flow theory has been developed for flat delta
wings performing siow pitching oscillations. The provision is

that the shock waves must be attached to the wing loading adges.

The present study is considered as a first attempt in the unsteady
wing theofy in which thé shock wave affect, hence.the rotationality,
is properly accounted for and Mach number ranges unified.

Emphasis is placed on methods of obtaining the unsteady flow
solutions over ths compression side of the wing vhich lead to the
calculation of its stability derivatives.

The lifts and moments of steady mean flow and the in-phase flow
are first obtained. A similarity rule for the delta-wing family
with addad volume of ncn—af}ipe shapes is shown to axist; The out-
of-phase flow is proved to be ‘quasi~conical', thus a formulation in
terms of pressure can be realized. In the outer region gher% tha
cross flow is supersonic the solution is exact representing parallel
surfaces of isobars (and isc-velocities). In the innsr rsgion'whgrs
the cross flow is subscnic the application of the method of spanuiss
integration yields directly a global formulation of the problsm. In
all cases, analytical closed=-form soluticns are obtéined. Consequent--

ly ths stability devivatives can be simply expressed in algebraic form.
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Numerical examples are presented -to exhibit the dependénce of
the stability derivatives on the given parameters, namaly, the
free-stream Mach number, the mean incidence, the sweepback angls,

the pitching-axis location and the ratio of specific heats. Some

. stability boundaries are also given.

Finally, critical ascessments of the present theory are presented.
In particular, the valid flow regions due to the present perturba-~
tion schems are defined. Improvemsnt schemes touard the refine-
ment of the present theory are outlined. Recommendations ars made .
fﬁr a number of cases in which further extensions of the present

theory are possible.
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l. INTRODUCTION

Wwith the advanée of fhé pressent spacs technoiogy, the detailed

 knowledge of space vehicle design, such as space shuttle, is of’in-
creasing demand.  One fundémental aspeqt of the design of é're-eﬁtry
hypersonic/supersonic lifting vehicle ié its aerodynamic stability
during its complete course of atmospheric flight. When the vehicls
descends to earth, for example, its entry path generally introduces a
fairlyvlarge flow incidence. Consgqqently, the shock waves encounter—
ed are génerally strong and may be either detachad or attached to the
wing edges. To achieve a highér aerédynamic efficiency (i.e lift to

. drag ratio) for a delta shape wing, it has been suggested that the
shock attachment case is more favourable for this purpose, cwing to the
fact that no 'flow spillage' could come from the lower sdrface, as it
is enclaséd by the shock waves (Refs..l & 2). Since there is no communi-
cation between the upper and lower surfaces in this situation, the

. asrodynamic problem can be tackled independently by first examining the
flow field of the lower surface (e.q. Refs. 3-8). Besides, in tﬁa
moderately high supersonic and hyberéonic sheed range, nsarly all thé
aerodyhamic forces and moments a:e,contributeé mainly from the compres-
"sion side. The present atﬁempt, thereforé, is to develop a unifiéd
unsteadyvflbw theory for delta wings at certain mean incidence perform=—
ing pitching oscillations in hypersonic/supersonic flow. The provision
is that the shock waves must be_attached to the wing leading adges.'
Emphasis will be'p}aced on analysing the unsteady flow.disturbancss

over the lower surface and the calculations of its stability derivatives.

l.1 Previous unsteady wing thecries

Research work in the past dealing with the unstsady supsrsonic flow

prdblsmg was mostly restricted to the linsarized potential flow model.




The unsteady linearized potential flom‘equation for thin wings has
been studied by many (e.g. Refs. 9-14). The methcds used tan be
classified broadly as.the moving source method proposed by Garrick &
Rubinow (Réf. 9), and the model Qf integral transform suggested by
Gunn (Ref. 16) and Stewartson (Refs. 10 and 11)., Following the first
approach, a series of NACA technical reports (Refs. 17-19) have
extensively applied the method for sweepbaék wings of different con-
figurations. Naivestuto et al (Ref. 17) and Martin et al (Ref. 18)
étudied how the tépered and tip effects could influence ths damping i
_ moment For_delta wings. Nelson (Ref. 19) and Froelicﬁ (Ref. 20) have
studied therpitching problém of 'wide' delta wiﬁgs and both presented
v the stability boundaries. The integral transform methods on ths other.
hand were adopted by many investigators to study wings of different
aspecf ratios and bodies of revoluticn, notably Miles (Ref. 1l4) and
Adam-Sears (Ref. 15) in supersonic flow and Landahl (Ref. 21) in trans= .
sonic flow. The quasi steady approach of Miles (Ref. 13) has alsc .
p:oVided_simple damping formula for wide delta wings, but with a crude
' approxim%tion to the flow fisld.

The advantage of the hnsteady linearized potential-flow approach
is that the solutions obtained generélly aliow higher order frequency
variations, thus ogpening wéys for flutter analysis,'and Fof analysiﬁg
other aeroelasticity problems. These theories, however, break down
as the supersonic Mach number increases and/or the wing thickness and
the mean incidence are no longer small.  The defipiéncy of the poten-
tial model is that the shock wave is replaced by a series of ﬁach waves, -
thus no effect of rotationality can be taken into consideration.
Various attempts were made to further incorporate the non-linear effects
into ths potential model by rendering a second order expansion in sz

(Landahl 1957, Ref. 22), or in the thickness parametsr (Van Dyke,Ref.23).




Nevertheless, the validity of their methods stiil suffer from ths
basic de?iciencies_of the pétential model.

In order to ﬁandle problems in higher Mach ranges, many investi-
gators adopted more physical models, such as tﬁe well-known piston
theory and Newtonian theory. " Based on the unsteady analogies of the
shock'e¥pansidn theory, the tangent wedge theory (see Ref. 24), or in
?xtending Hayes~-Lighthill piston theory (Ref. 25), Morgan et al (Ref.26),
éartarian et al (Ref; 27) and Ashley et al (Ref. 28) have vastly ex-
rﬁlored various aeroelastic aspects of airfoils and bodiss. Unsteady
Newtonian flow approaches were studied by‘miles (Ref. 29) and by Arocesty
et al (Ref. 30). These methods usually avoided the small perturbation
scheme, and yet the Mach ranges applicablse were still limited. In
ccntrast to the potential model, the shock wave effect in éome casss
was overestimated (e.g..Newtonian theory). Apparentiy, in these cases,
the Rankine-Hugoniot conditions were not properly satisfied in the

formulation.

1.2 \lWedge perturbation methods

To achieve a unified approach, the shock wave conditions must be
formulated properly. Rigorous treatment in dealing with the shock
wave-reflected wave interaction waes first given by Lighthili (Ref. 31)

and further extended by Chu (Ref. 32), and reviewsd by Chernyi (Ref.33).

Lighthill's formulation is a perturbation method based on the exact and
uniform flow over the wedge behind the shock wave (called 'wedge
‘perturbationt from hereon). The merits of this method are many, i.e.
the wedgs-~like body can bs of arbitrary thickness, the flow rotationa-
lity can be accouﬁtéd for, and hence the Mach ranges are unified provided
that the shqék attaches to ths apex. Furthermore, unlike the usual

free-stream perturbation scheme (e.q. linearized potential flow), the
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wedge perturbation scheﬁq results in a linear formulation but with a
bésic flow in which the flow nonlinearity and deflection are fully
imbe&ed. Following the sams lihe, Hui (Ref. 34) has further developed
an unsteady theory in which he found a new set of unstsady reflected
waves associated with higher order thickness effect. His unsteady
wédge sblutioﬁ aﬁpeared to include all the previous unsteady wedge
solutions (Refs. 33, 35 and_36) as special cases. For low frequency
oscillation Hui's4solution,is proved to be an exact one. (This solution
will be reformulated and solved in Appendix G. by é new method). His
method of solution also 1ndlcated the possibility of studylng the thres-

d1mens;onal problem, such as a caret wing.

1.3_ Thres-dimenSional flow problems
Including the shbgk—wave.treatment, the three—diﬁensional methods
have been déveloped by many researchers in the past dscade. Prelongad
interest in the blunt-body flow problem has yislded numerous methods of
approéch, direct or indirect. One analytical direct method called the
method of series truncation (Ref. 38) was devised by Swigart (Ref. 39)
to deal.with the steady problem. Chang (Ref; 40) furthar ganefalizsd

the method to the unsteady case which serves the analytical counter-

part of an earlier numerical work by Telenin & bipinskii (Ref. 41).

For low aspec£ ratio delta wings with shock detachment, there
-exists the thin shock layer.theory proposed by Nessite: (Ref. 42). Ex-A
tensive_applications to different wing configurations were performed by
Hida (Ref. 43) and Squire (Ref. 44). For delta wings with shock attach-
ment, its steady problem has drawn the attention of many researchers.
Numerical solutions were first obtained by Fowell (Ref. 3) and Babaev
(Ref. 4). The recent numerical developments were given by Voskrensenskii

(Ref. 5), South and Klunker (Ref., 6); among others (see Ref. 6).




Analytical approaches wsre given by Malmuth & Hui (Refs. 58“ahq 7;.
Based on the hypersonic small disturbance theory, Malmuth's theory is

. restricted to the hypersonic flow range énd to slightly swept angles
and small inéidences. Hui fufther generalized Malmuth's approach in
constituting a unified sUpersonic/hypersdnic theory, in the shbck
atfaéhhent domain, for délta wings inclined at any'incidence; Hui's -
solution consists of an exact flow solution in the outer region (the
4egion betwsen the oblique shock-waves and Mach cone, regions I and 1I
|Fig.»l.B), and a wedge perturbation solution in the inner region
(within the Mach cone, region III, Fig; 1.8), Rendering Lighfhill's
technique of strained coordinate, he then matched the solutiocns of two
regions along the spanwise direction. - The theory giueé almdsﬁ identical
results when compared with thoss of the numerical methéds (Fig. 6) except
in the neighboﬁrhood of the cross flow sonic line. ﬁefhaps an improved
matching scﬁeme may refine the solution in this region.

Although ths steady flow develoﬁment of the delta wing has reacﬁed

a mature stage, no unsteady work has been done for eiﬁher the detached
shock case or the attached shock case. It is therefors the>p§fposs of
the present étudy to generalize Hui's theories (Ref. 7 and 34) to a

three-dimensional unsteady theory. . This work is to be considered a

first attempt in the unsteady wing theory in which the shock-wave effect

is properly accounted for and Mach ranges unified.

1.4 An outline of the present theory‘

The premises of the unsteady flow assumptions are that the wing
performs pitching oscillaﬁions with a small amplitude ¢ and at reduced
' frequency, k (both being much less than one).
Let pA be the steady solution due to the mean flow past the delta

. (
wing at its mean position (Hui, Ref. 7), p‘o) and p(l) be the pres-

sures due to in-phase and gut-of-phass flow respectively, all being



" functions of space coordinate (X, ¥, z) then the total pressure p is

sought in the following form

-P- (;,;,;,t) = pA + € - [p(-o) + ikp(l) }. eikt

Clearly, both the mean flow and the in-phase flow are conical, as
no characteristic length appears in the problem. As the mean flow
solution P, is given as a function of é(o s the msan incidence, the

(o)

in-phase flow p is obtained by exacf differedtiation of P, with
respect to X, e The 1lifts and momegts are then obtained in closed
forms by integfation (Chapter 4). Furthermore, a similarity rule is
shown to exist. The rule states for given free¥stream M, and X
the steady 1lifts, homents and the stiffness deriuatiﬁes can be expressed
as a combination of terms, which separately account for the sweepback
angle effect, the added volume effect and the small anﬁedral effect
(e.g. caret wing), or the dihedral effect . (Chapter 5).

| Out-of-phase flow is again divided into the outer and the inner

(1)

in closed form
1
p()

régions (see Section 1.3). An exact solﬁtian of p
ie obtained'in the outer region. -Interestingly enough,
of-phase u;iocities and densities are found as linear functions of the
space coordinates (X, y, z){see Fig. 1-A), and the outer shock shape
is quadratic. This then suggests the 'quasi~-conical' nature of the
out-of-phase Flow*. The inner flow solution thus can be expressed in

the form of
oD (75,0 =% @ (5,8) + % A(7,2)

whers ‘? = /X and 5 = Z/; s and §0 is the positien of the

and ocut-

#* : ' )
This point was suggested in Ref. 17 {or unsiteady supersonic potential
flow but without proof.




pitch axis location with n = 1 for the case of flat-bottom delta wing.
The boundary value problem is then formulated solely in terms ofa single
dependent variableo')' (and 72 ) with two independent variables J,' and

zv (the conical coordinates). The boundary conditions are specified

at the wing surface, the shock surface and the Mach cone surfaces.

Upon application of the method of spanwise integration (Refs. 45 and 46),
the problem is further reduced to an ordinary differential equation with
two~point ﬁobndary condifions, one being at the shock, the othsr at the
wing surféce. Again, an exact solution is found iﬁ a close form for

the inner flow (Chapter 6).. After mafching the inner and outer solutions,
damping derivatives are obtained in simple algebraic expressions. Finally,
the formula for stability criterion is given and stability boundaries ars
presented for variocus cases (Figs. 24-27)(Chapter 7).

It is noted that the outer flow solution is based on an exact formu-
lation, whereas the inner formulation fo:.out-of-phase-flom is an approxi-
mate one. The approximation in essence ignores the intera¢tion bstuween
the mean flow and the out-cf-phase contribution of the reference wedge
flow (see Appendix H). Howsver, the terms ignorsd can be recovered, if
one wishses, in a straightforward manner following the present method of
approach. In fact, the terms ignored will eventually turn out to bs

the inhomogeneous terms in the ordinary differential equation obtained.

Thus, the present theory should expact to give accurats results for cases
in which :
(a) the mean flow incidence and/or the sweepback angle is not

too large where the interaction effect is small ;

(b) the Mach number is high enough so that the outer flow

region dominates the inner one over the planform.




2. STATEMENTS OF THE PROBLEM

Consider a Flat—bottom-delta wing of gweepback angle X in a
supersonic/hypersonic flow with the shock waves attached to its leading
edges. The right-handed Cartesian coordinate system (X, y, z) fixed
with the lower wing surface (flat-bottom side), is employed as shown in
Figure 1-A. The origin is set at the apex of the wing. The X-axis
is placed along the root chord of the wing; Yy-axis is normal to the
wing surface and Zz-axis normal to the §§ plans. (see fig. 1-A).

Restricting the present interest to the lower surface of the wing,
(i.e. the windward side), figure 1-A is drawn bottom up with the
uniform supersonic/hype;sonic flow U;,: (Uw , 0, B) approaching the
wing surface at an inclined angle 0(0 (i.e. the mean flow incidence).
Denote by‘ u, v and w respectively, the velocity compenents of the
flow field in the X, y and 2 directions, and by p and p the
pressure and the density of the flow field. These flow velocities and
properties are considered generally to be functions of §,‘;, z and %,
the real tims. The barred notation hence indicates the physical
lengths or quantities. Also, denote by Ugs Vg Wos P and (00' the
corresponding flow velocities and properties in the flow field over the

flat plate whose condition is given by reducing the émeepback angle

to zero. Clearly, vy = wg = 0 under the present coordinate system.

2.1 Flow regions and geometry relations

The flow field of interest is enclosed by the attached shock waves
and the wing surface. According teo the flow nature, it is sub-divided .
into two regions by the Mach core (see Fig. 1-B), namely the outer
region (Region I and 1II) and the inner region (Region IIi), defined
in Sec. 1.3 . The cross flow in the outer region is of hyperbolié type

and the cross flow in the inner region is of ellipfic type. For steady




mean flow, the flow in the outer region is a uniform one, and in the
inner region a non-uniform one. For unsteady flow in general, they’
are both non-uniform. Further specification of the related problems
in these regions encountered in bscillatory case will be given later
in Sec. 2.3 .
In the outer régiﬁn, the geometry of the wing and the flow

incidence constitue different planes as shawn in Figure 1-C . The
qblique plane is defined as one which is normal to the leading edges

—

i
and the side plane as one which contains free stream vector V_, and

»*

one side of the leading edges.

let T be the angle in the side plane measured from the leading

-

edge to V.., C(l the angle between the wing surface and side plane,

and /31 be the shock angle measured from the side plane to the plane

of the oblique shock surface, the following relations hold,

I

tan o(o v
tan O(l = —;;;72— o ) (2.1)
cos T = cos o(D sin )X : (2.2)

[2+ -1 mn2 ]tan3pl - [(hnz - 1) cot ] tanzpl

n

2
Y4+ 1 2 _ . ' |

+[1+ ; m ] tan 3, + cot O =0 (2.3)

M = M_ sinT ’ ' (2.4)

where M, is defined as the freestream Mach number.
Thus, for a given set of M, , = and X one obtains O(i,‘t‘
and /31' from the above relations. The generalisation of equations
(2.1) and (2.2) for a delta-wing femily is given in the Appendix A .
Equation (2.3) is the well-known oblique shock relation, the explicit

form of ﬁ31'= (31 (o) is derived through the cubic formulae in




Appendix B .
Let the notation subscript ( )o indicate the flow properties
and geometry quantities corresponding to the wedge flow. fhus, for

given Mo and &, the " aft -shock Mach number M, » and the

shock wave angle ﬁ‘o can be found from the oblique shock relation

(Appendix B). Hence, the uniform flow in regions 1 and II can be

represented as :

[ u, = ug (1 + uS)
Ve = U v,
a n
Py = P, (1 +—5—p,)
NOZ
\ /o* A= /oo (l + )\ f)s)
cos <p0 sin T cos Bl
where roug = E;gjg;--[cos T sin X + cos P, cos'X}— 1
Vs =0 .
cos <P0 sin T cos ﬁl .
W, = Tooo | vos T cogs X - o sin X
{ ' Po 1 .
. 2 . 2 . 2 -
~ oapd, [sin” B, sin” T - sin ﬂo (2.6)
Ps T T2 2 2
) 2 Y% sin /30—("(-1)
. 2 . 2 . 2
o - 2 [sun ﬂls;m T~ sin ﬁo }
. S - 2 .2 ’
My 810 /30 2 + 'Y-l)f’li sinztsinzﬂl

. | 2 :
In the equations (2.6), P, = 3y = o A= m° -1 and Y is
the specific heat ratio of the gas.

Note that when X = 0, u_=v_=w_=p

/Os =0 , implying

s s s s
Uy Su y V=0, w, =u , Py = Pg and P*z/oo,areduction
to two-dimensional wedge flow.
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furthermore, the oblique plane shock surface is defined as-

y = tan ‘701 (X cos X =Z sin X ) (2.7)

and the three dimensional Mach cone, which divides the flow regions,

is described by the following formula

2 2 . - 2 - - 2
M =1) ¥y +(xsin@ -~Zcos@ ) =(Xcos @ +2zsing )

(2.8)
where M, 4is the uniform flow Mach number in regiohs I and 11, i.e.

- 2
2 2y 2
Fe (U, +w,) ‘

M, = (2.8a)

and 6 is the angle between the x-axis and the flow vslocity in the

regions, i.e.

1

. w
6= tan" ' —

(2.8b)

*

2.2 Perturbation schemse

,

Llet L be tﬁe characteristic length (the root chord) of the delta

wing, two sets of non-dimensional coordinate systems are defined :

In the inner region,

[ X = X/
¢ ' ' f/L (2.9)
z =2z,
u

. .
The brief notation for Mach cocne surface is written as

ms (;1 ;9 E) =0

- 1] -



and in the outer region,

s X = §/L
{ Yoo ;/L

. ;/L (2.10)
e = ¢ "/

When the delta wing performs a small amplitude oscillation with
respect to its mean incidence czo s there exist tuwo. physical parameters
namely the small amplitude parameter € , € << 1 and the oscillation
circular frequency < . Twé reduced frequencies are introduced for

inner and outer regions, i.e.

o
l B
OciEl
-

(2.11)

x
i
o~
Ic
-
o

*

Also the commonly-used reduced frequency k based on the freestream

velocity U is defined as ’

£1

=
]

(2.11)° ¢

(2

* .
The relations then read K =‘Q__ « k and k., = Uee , Ke
o uo * U,

From here to Chapter 6, the perturbation schemes are based on small

parameters k_  and k, . But in the final evaluation of the

oscillatory force and Moment coefficients in Capter 7, they are based

on reduced frequency K. (see equation (7.7)).

-»-12_-




In the present study', it is considered the wing performs slow
oscillation at a low circular frequency (:; much smaller than the chord

length travelled per unit time as measured by U, . Consequently

k << 1

hencg ks k* << 1 as u_, U, ~ 0(Ueo )

Thus, the five dependent variables can be written in the following
perturbation forms :
In the inner region

2 o
NP, [p + €.p (x,Y,z,T)]
X L § .‘ J

(F=p, +
=u +u [US + G-G(X,Y,Z,T)].
< v=u [VS + 6~3~(x,v,z,7)] , - - (2.12)

w = UO [ws + €.U (X’Y,Z,T)]

. 2
\ /3=/oo +_C9§9_ [/06 + _G-a (X9Y,Z9.T)]

vhere subscript ( )8 indicates perturbed flow properties and

velocities of 0(§); and § is a small parameter representing the
three dimensional departure from the wedge flow. The subscript ( )A

denotes the mean flow solution previously obtained by Hui (Ref. 7 ).
In the outer region

E = p* + € p* p (X’sz’t)

G =u, + € u, U (xsy,2,t)

V=c¢€- u, V (x,y,z,t) : ' (2.23)
U= w, +e-u, W(x,y,z,t)

:;v=/°* +e Py R (xyy,25t)

It ié assumed that the oscillation is simple harmonic with small ‘
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frequency and the following expansiens in ko(and ky) are introduced.

In the inner region,

P(X,Y,Z,T) = [p(°)(x,v,z) + ikoP<l)(X,Y,Z)- etkoT

Pas I s
U(X,Y,Z,T) = | u(°)(x,v,z) + ikOU(l)(X,Y,Z) eikoT

:v(°)(x,v,z) + ikov(l)(X,Y,Z)_] ;‘eikoT (2.24)
)
)

4 U(x,¥,2,T)

W(X,Y,2,T) oo T

:w(°)(x,v,z) + ikdw(;)(X,Y,Z)

R(X,Y,2,T) etKoT

;R(°)(x;v,z) + ikoR(l)(X,Y,Z)

In the outer region,

P(x,y,z,t) = [p°(x,y,z) + ik*Pl(x,y,z) ] . ikt
U(XsY,z,t) = lUD(x,y,z) + ik*Ul(x,y,z) ] . ;ik*t
V(x,ysz,t). = :VO(x,y,z) + ik*Vl(x,y,25 ] . eiKat (2.15)
W(x,y,2,t) = iwo(x,y,z5 + ik*wl(x,y,z) ]'. okt

[RO(X’Y’Z) + ik*Rl(X9Y9Z) ] ‘ elk*t

\ R(X:Y9Z’t)

where the superscripts ( )(D) and ( )° indicate the in-phase
components of the oscillatory flow and the superscripts ( )(l) and

( )l indicate the ocut-of-phase cohponents of the flow.

2.3 Definition of the problems
According to the above perturbation scheme, four problems ars
catagorised here (see Fig. 1-B)

i) Problem A : pO s the in-phase flow problem of the outef region.

The flow field is conical and is uniform. The
mathematical formulation is an initial valued problem

.

(Hyperbolic-type P.D.E.)
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i

iii) Problem c

1
!

i) Problem B

v) Problem D

(1]

(o)

p s the ip-phase flow problem of the inner region.
The flow field is conical but non-uniform. The
mathematical formulation is a boundary valued problem

(Elliptic-type P.D.E.)

pl s the out-of-phase flow problem of the outer region.
The flow field is proved later to be quasi;conical and

is an initial valued problem (Hyperbolic-type P.D.E.)

p(l), the in-phase flow problem of the inner region.
The flow field is quasi conical and is non-uniform.
The mathematical formulation is a boundary valued

problem. (Elliptic~type P.D.E.).
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3. PROBLEM FORMULATICN

J.1 Governing equations and boundary conditions

For an inviscid adiabatic flow of a gas, the continuity,

momentum and energy equations can be written as

a"i+6'(lo\-/~)=0

o0t

bv R - 1 = -

2V L (V.9)V ==-1 F 3.1
3'E+ ( ) 5 P (3.1)

o |
o
L —

I
-

- - - > -

where V = ui +v j+uk d
_— 3 - - P -
v:-—-—-1+-a——j+-——k

The general tangency condition (T.C.) requires no normal velocity at

the wing surface for 2ll time, i.s.

B oo at 5 (X,5,%,8) = 0 (3.2)
Dt .

where s represents the general wing surface, i.e.
s = ;-GA(;Q;QE,E) = 0 (3‘28)

/A being the amplitude perturbed surface and

—

D
Dt

d Y ' )
= — + V+V | the substantial derivative.
t

oS/

The shock condition (S.C.) requires the conservation of mass,
momentum and energy across the shock wave, i.e. the Rankine~-Hugoniot
condition. Denoting (

)oo as the flow quantities upstream of the

- 16 ~



shock and ( )S as the flow quantities immediately downstream behind

the shock, the conditions are i
(continuity)
S
- (38 . &=
P (-—EL + V . ‘7[{) = 0 a
ot
- J oo

( normal momentum)

s
- - - —_— - 2 — -
p(%%-+ v.VG)+(vc)25 =0 b
t
.Oov

(tangential momentums) - ' . (3.3)

. S .
[ {7' %] = 0 c
oo
- _\s
\I‘,d] = 0 d
: 0o
(energy)
) S
1 ba - - - 2 - 2 -
—(-—-——+V-VG) +(VG) «h =0 e
2 b-t-_:
o
where E is the shock surface, given by
& = G (xy) + Fé (,2) + €+ 0 (X,Z,8) =0 (3.4) a
for the innér region
G = G (X,y,2) +€° 0,(x,2,E) = 0 (3.4) b
for the outer retion iy
/ .
and G0 = x tan 900 -y=20
G, = (x cos X - z sin X ) tan sol-n;:[l

;; is the perturbed shock shape of the mean flow,

@ and Qg are the amplitude ‘perturbed shock shapes. Also, T and &

represedt the tangential vectors along the shock surface. ‘
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The slowly oscillatory motion of the wing ensures the.shock
atta?hment condition (S.A.C.) along the leading edges at all time,
i.e. |

Q, (X,7,2,t) = A(X,%) | (3.5)"

at z =x cotX

Furthermore, the Mach cone condition (M.C.) is introduced so that the
solution of the inner region can be matched toward that of the outer
region. The con&ition simply ensures that all the flow velocities and
properties remain the same on the interface of the Mach cone (eqn.(2.8)) "
i.e.

For the mean flouw,

ps = pS

ug = d - - -
Vs = VS :
Ws = \.Us i

For the oscillatory flow,

A ( X Py )
p - e ————— . p
2
‘Ymo Po

<D

<>

u* - d
-——-) . v at Ms(x,y,z)=0 (3.6)b

0>
]

=?
i}
T — ~N N ——
lc
E
S
(=4

* : -
For a flat surface delta wing here the relation is simply Q, = A (X,t)
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Perturbed equations

According to the perturbation schemes preposed in 5ec. 2.2, the
equations for the mean flow (of order § ) and for the oscillaroty flow
(of order € ), in the inner and the outer regions are linearized. For
the oscillatory flow, the inner flow equations are approximate(,

' 2 2.* .
accurate to 0( §¢, §°, €°) , the outer flow equations are sccurate to
o( €2) but otherwise exact, i.e. the sffect due to sweepback angle X

is fully accounted for.

i) Mean-flow equations :

Making use of ths inner non-dimensional‘coordinates in equation (2.9)
and subsﬁituting the inner perturbation expression equation (2.12) into
the govarhing equations (3.1), and collecting terms of like order oé
.0(3 )s yield the inner equations

p + v + w = 0 a
5x by 4y

Eliminating v and wyg from equations (3.7) a, ¢ and d,

a second order equation with one single variable % results, i.e.

P -(p, +p ) =0 ~ (3.8)
$ xx Syy 827

*
By means of differentiation with respect to the mean-flow solution

(Hui, Ref. 7) the in-phase flow solution is improved to include st
least the terms of 0(§€¢ ) (See Chapter 4).
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The uniform outer flow solutions (exact) are given previously
in equations _(2.5). The dérivation and solution of the mean fldw
problem were given in Ref. 7 (Hui). Further application of the
solution and extension of the fofmulation will be giQen later in the

next chapter in achieving the more accurate in-phase solutions.

ii) Oscillatory flous.

Ibner region :

: Making use éf the inner non-dimensional coordinates in equation
(2.9) ‘and substituting the inner perturbation expression equation (2.12)
into the govefning equations (3.1), dropping térms of order O0(§€ ),
0(82) and 0(6?2), and collecting terms of like order of 0(€ ), yield

~the following equationé

K (PT + PX) +3T U+ VU, =0 a
(UT + UX) + Py = 0
A A
Vg + P, = O c {3.9).
~ A\ . N
wx + Pz = 0 d
e
RX -~ PX = 0 J e
n
where K = —
d X

Eliminating G,'V and ﬁ from equations (3.9) a,b,c and d ,

. . . . ~ .
a second order equation with one single variable p results, i.e.

A ~ A

2 ’~ .
Pex = (pYY + pzz) + Kk (2 Py = 0 (3.10)

P
Tt

»

Notice that equations (3.9) and. (3.10) reduce to mean-flow equations

(3.5) and (3.6) as T~ oo

Outer region @

Making use of the outer non-dimensional coordinate equations (2.10)




and substituting the outer perturbation expressions equations (2.13)
into the governing equations (3.1) and collecting terms of like order

of 0(€) yield the following perturbed equations

P, +P_+aP. = =7Y(U V. o+ U ) a
S X z SVTX y z .

U +U +al = —«yP b
x z
V. 4V +aV. = =DP \ ¢ (3.11)
X z

X Z r4

+ R_ +aR_)
x z

]
©
‘-f
+
=]
X
+
o
o
N
®

Eliminating U, V and W from equation (3.9) a, b, ¢ and .d results

in a second order equation with one single variable P , 1i.e.

2

*

-1)p =P =~P +om2p . +m2p

(m X yy 2z * xt * tt

2

+ a-. ZM* sz

. 2 ) . ) - N
+ Pzt) +aM, PZZ = 0

Notice that letting w, =0 and N*—4 No y (with changes in non-

dimensional coordinates systems) reduces outer eguations (3.11) and

(3.12) to inner equations (3.7) and (3.8).

3.3 Perturbed boundary conditions

i) Perturbed tangency condition ( T.C.)

For the mean flow,




For oscillatory flow let A (x, t) represent the flat delta

wing surface in oscillatory motion, associated with € , and let

2A -

. A :
— = A(X,T) and =— = A (x,t), thus the tangency condition (3.2)
L L

can be written, to the order of OB(€ ), for the inner flow as.

~ W A A 4
V=54 3% at Y= €. .4A(X,T) (3.14a)
and for the outer flow as
24 24 , ‘ '
V = 3T + > at’ y = € A(x,t) (3.14b)

ii) Perturbed shock conditions (5.&.)

Inner region :

Substituting the perturbed shock surface equation. (3.4a) into
the shock condition equations (3.3) yield the following sets of
perturbed conditionrs |

To the order of 0§ ), the shock conditions (s.c.) of the mean~

flow read (see Hui, Ref. 7)

( P = Cfy o (X,2) S _ a
ug = Ef‘sx (X,2) , . b
{
v = Af o (x,2) at Y = HX (3.15) ¢
we = Kfy, (x,2) d
\ /% = G% X (x,2) e
where _
f — ﬂ. -
§ L
H = X tan‘f

and the coefficients A,C,E,K and G are functions of given M, and 0(0
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" defined in equation (3.17) .
To the order of O(€ ), the shock conditions (S.C.) of the

oscillatory flow reads

[ ,l; = CQX (X,2,7) + DQT (X5Z,T) | - a
vV = Ay (X,2,T) + 8. (X,2,T)  at Y = HX (3.16) «c
U. = K, (X,z,T) | | . o
~ A ~ . )
\ R = G0, (X,2,T) + 3G, (x,2,T) -
where - ' D (S= =
Q = a (X,Z,T) - __Q__%_:_Z_:ll

and the_coefficients.are defined as

2.
B ~(1--—0—)c0323oo[1+(—’%:)u-Yu(%—l)] (1 - T
c - ZKH(I-_;)cosa%[l-h;g(%_I)J/m (1 -%)
D = C/cos-zsoo |
| £ = (- eot P - L (3.17)
F = -Brtansoo | |
6 = «H (1_7%"3) cos"‘%[(vu)-(Y-l)’—;i-]/rno(l-'ﬁ)
3 = G/coszsoo | |
| K= -sing, cosgy, (2o 1)

~ 2 . 2
and W = l"io sin (zpo




Outer region :
Substituting equations (2.13) and. (3.4b) into S.C. (3.3)
and collecting the lowest order terms (i.e. 0(1)) results in the

exact outer flow solutions of the mean-flow preoblem, i.e.

Bl oo cos X = a sin X
1 Pxbx ~  cos & cos X+ sinococot 2y 8
P =P
hnd X = sinzfl(cos X - a sin')()2 .
Io-xlu* ' :
Ay (UN cos Ofocos X + sin o cot ‘fl .
U s cos X - a sinX :
P = Ny sinZYJl {(cos X = asinX)
3 .
ﬁ (u,/2)
- (L= (co o« cos X + sinX_cot )2'- e
U, S X0 o»? 93
u .
L o ol = sin o tan P, cos X ' c
T =cosof - sinol 1 A
Ys 2 . 2 2 ( Y
T =tan" cos X sin X + (1 4+ tan ¥, cos X).TJ—::) .
§ = tan (Pl sin X (tan 501 cosX  cos X + sin o(o)

(3.18)

Note fhat solving these relations gives exactly the sames solutions for
Ugs Vyey Wy, , and p. as previously obtained in equations (2.5).
Moreover, as X -» C , the above rslations reduce identically te those‘
of the two-dimensional oblique shock relations. Hence, it is stated
here that equations (3.18) derived are generalizations of the wedge
oblique shock relations (due to the steady mean flow) - called the skewed
wedge oblique shock relations.
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Next, substituting equation (3.4b) into equation (3.3)
and collecting terms of like order of 0(€ ) yield the perturbed
S.C. of the oscillatory flow (see Appendix €C), which in turn

provide the S.C. in the following form :

[ P = Ele + E'ZQ +D Qt
| U = EQ +E0 +Fa,
V vo= R +Re +Fa, ety = (b)x- (t)z  (3.19)
W o= Equ + T(zaz +T Qt
{ R = EIQX+EZQ +5’Qt_
wvhers
( t, = tan (Pl cos X
g ‘ tg = tan¢p sinX
L 0 = Q(x,z,t) a(x,z,t) -
L
and the goefficients E— ’ R' ,‘E «eo gtc. are functions of given

Mo s 0(.0_ and X , defined as :-




‘@l )

R

o

0

m

l

e

2

7]

?

o

w?

t

x

e

‘=

N

i

96
€40, = d, (ct - et)
%6
Sy = 81F1 = sA
Sz
S =S FE _87%
yA lE2 2A2
S3
?./ ~o
- f} + s_.B
S3
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whers

¢ = tan ¢, cos X

cz = =1
€ = = tan 501 sin X
'05 = tan Sﬂl (cos X = asinX )
! d — l) . 1 i -
} 4 2 ' singcosp, (cos X = a sinX)
’ 1
dg = 32 %5
84 = l o 1
(Y - il)f’l.“_2 sin ¢/, cos "2 (cos X - a sinX )
&g = - &, (3.21) a
&g = S, (tzcl - tlcz) + g (sztl - Sltz)
96 = (o5 = dgle, = (c5 - eg)d,
tl- = 1
b =5
Sl = .--'t:lc3
S2 T %3
2 2.
\.ss_l+tan solcosx
and
c, = *ﬁi? -1
4 t I‘)*
c = lgLQZL cos 6 -1
X /‘ u (o}
* *
c, = =-a (3.21) b

continued ...




d = (cosX-asinX)[(%ﬁ) cosoco-l]

X
| Poo = P
+ ('——é')COSX}/(COSX -~ asinX)
/ogu* ' ’

o b . : _ .
—-—-Z—t sin X + a(cos X = a sinX )} /(cos X = a sinX)
Paby

1 — Uoo) 2 ' Joos ol
. ' o4 s + sin cot ¥, )cos
cos X = a sin’X (U* (cos 0°° X+ sl 9(0 sol o

1 U o

—) (cos O'LocosX+ sin O(Ocot <,01) -1

U

(S;Zl)b

tan Sﬂl sin X + 2a tan "flcos X

tan C,Dl cos X = (-g—-—) sinO(0
* .




Equations 2.19) are the generalized perturbed skewed wing
shock conditions which contain previous 2D perturbed wedge shock
conditions (3.16) and (3.17) as its shecial case. That is to

say, letting X ->» 0 gives

~ ~ ~s ~ ~r ~
C2=E2=A2=K2=G2=L=U
‘and reduces
o~ ~r o~ 2
A1=AA; B= XB ; Cl=’Ym0C;
'b':frmzo; ?:'1:)\5; F =XF 3 (3.22)
~ 2 . N- 2 ’v"
Gl = Mo Fs 3= mo J and Kl = K

(see Appendix 1)

iii) Perturbed Mach cone conditions (M.C.)

The inner region is based on the wedge perturbation.scheme
(equation 2.12). ~ Hence, the e*aci Mach cone surface {equation 2.8)
is now replaced by a two-dimensional Mach cone in order to be consistent
with the perturbation scheme. This Mach cone is obtained simply by
faking.the limit X - O, -and- Me =M, » thus equation {2.8) becomes
(see Fig. 1-B),

2 2 2

Y< + 2 (3.23)

il
b

Thus, at constant X , the exact Mach cone (equation 2.8) is of
elliptical cross section and it is now a circular cross—section for the
2=D Mach cone.

For steady mean flow, the M.C. of equation (3.6)a reduces to

p‘S = ps = 0
v 9
v o=, o= 0 at ¥2 1722 = %° (3.24)a
. sin‘p0
t u& = us = 'X E.E)-s-;_ﬁ: sin OCO
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For detailed derivations, one is referred to Hui (equations (6) and
(8) of Ref. 7).
T 1 L ] L
For oscillatory flow lst P , U , V , W and R be the
perturbed solutions obtained from the cuter region (Problems A and

C), the perturbed Mach cone conditions can be expressed as

B ( Ap*)P'
¥ m %
o O

<
it

<3
il

(3.24) b

e
]
——" — —— ———
c
*®
~——
=

, A
These ( ) solutions nead not bs determined as they will be replaced
by their exact expressions P,U,V,W, and R at a later stage (see

chapter 6).

iv) Perturbed shock-attachment condition :

The non—dimensional perturbed S.A.C. is simply

e o o, = A {x,t) at z = x cotX (3.25)

3.4 full formulation of the mean-flow problem and preoblems A;B,C and D
Now, if it is further assumed that the oscillatory motion is of
simple harmonic type, the following time dependent function can bs

written as (-




A (x,T) = (X~ X_) oy
' . (3.26) a
2?2 (x) + kg B (x) eikoT

£

~

>

-

-

~
|

Alxt) = (x = x)) et |
(3.26) b
ikyt

Q (xy2,t) = 2%(x,z) + ik, Ql(x,z) e
Thus, substituting equations (2.14) énd (3.26)a into equations
(3.9), (3.10) (3.14)a, (3.16) and (3.24), and collecting terms of the
like order of 0(€ ) and O(¢€ ko) yield the problems of the inner
region, namely Problem 8 and Problem D. Similarly, substituting
eduations £2.15) and (3.26)b into equations (3.11), (3.12), (3.i4)b,
(3.19) and (3.25), and collecting terms cf the like order of 0(€ )
and 0(¢ k*) yield the problems of the outer region, némely Problem A
and Problem C . for the convenience of later analyses, the full
formulation of Problems A, B, C and D are presented separately in

the following pages.




PROBLEM A

T.C.

5.C.

S.A.C,

o

Yy
P° +ap? =
X z
W +aul =
X z
V0 + a Vo =
X z
W+ aw® =
X z
Wwo= 1
[s] ~ 0
p -ClQ
o R o
U = Ele
o ~ o
V. = Ale
o ~ 0o
W = Kle
B = x-

X at =z

o 2'0 ,
pxz + aM, pzz) =0

o 2

P, +a- (20,

' ) o o
-7 (U, + v, + w))

o

- P2

at y=0 (3.27)

at y = (tan ?lcosX) o X

N
N
|

(tan salsin')( ) oz

x cot X
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5YM.C.

_ SiC.
PROBLEM B ; -3 <
L2 s AU - , N
/- ' \ -
; \Mece
/ DIE. \
1 ! \
T{C.
(o) _ (o) _ (o) _
D.E. Py’ = Pyy’ =Py = 0O
.r.p>((o)_+ Uso) + wgo).= 0
1 (o) , (o) _
v+ = 0
w§°)‘+ P§°) =0
! :
T.C. ed =y - at Y =0
S.C. [ plo) CQ§°) (X,2) : (3.28)
b :
- yle) | Au§°) (x,2) at Y = HX
L ule) o KQ§0) (X,2)
. )
M.Co ( p = P£°)
‘ ve) o yle) at Y2+ 2% =x°
o) '
\ MCI w&c)
- SYM.C. p§°) =0 at Z =0

Note that here P&O) s Uio) and w;°) are given by the exact values
of the exact sclution eof Problem A , through the matching procedure

discussed later in chapter 6 .



PROBLEM. €

- S.AOCQ

D.E.
2 1 1 1 2 1 1 2,0 a
(M = 1)p =P =P, taly (2 sz+apzz)_-2m*(px+apz)
'Pl+apl+’7(ul+\ll+wl) =-p°
X X y z
ulsaultsopel = -°
* X VA
1 1 1 o
\lx +aV’ + ¥ Py = =V
L outsaut e v Pt o= -
T.C W= x - x * )
e v 7 o at y=0 " (3.29)
1 1 ~ 1l ~ 1 ~ 0
S.C. Pt o= C,Q, + C,0,7 + 00
1 ~ 1 ~_ 1, =o
¢ U o= B0+ BT, + Fd at y = (tan?lcos')(_)x
1~ a1 7.1 Fq° ~ (tan¢ . sinX ) z-
Vvt o= Alﬂx +A2Qz + BQ 1
1l -~ 1 = 1 ~.0
VouT = KT+ KA + LQ
. 1
S.A.C. - . ] = 0 at z = x cot X
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These values will be/in the
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sym.cC.

PROBLEM D . SsC.
P , ~
Vs \
\
// \ N.C.
! DLE. \
L |
(1) _ (1) _ o) 2.(o) T
1 1 o
D.E. Pxx' = Pyy’ = Pzz" =~ 20 Py
p
(1) , (1) (1) _ _  2.(0) _ 1 (o)
Px +VY +wz = - K'P +'\U
4 (1) , (1) _ _ (o)
\.'X +PZ = - V
(1) (1) _ _ (o)
X g+ Py = U
T.C. i) L ox o X_ at Y=0
_ (3.30)
A
s.c. oY) - CQ§1)(x,z) + DQ(O’(X,Z) .
| v o walBz) v ea®lx,2) et v =
1 .
WY - KQ§ )(x,2)
me. [ ot2) o plt)
() o (D) at Y2 + 7% = X
. W(l? = hlil)
SMY.C. pél) = 0 at Z =10
. 1) - ‘ )
Again, Pg ) : Vil) s ng’ are given by the exact solutions of
given .
Problem C . later matching schems.




Form the foregoing formulation of these problems, it is clear

that the solving procedure must be carried out in a particular sequsence.

Problem A will be first solved. Then Probiem B can be solved as
its boundary condition is given at ‘M.C. from Problem A « Next,
Problem C is solved by knowing all the inhomogeneous terms provided by
Problem A . Finally, Problem O , whose solution depends on knowing
all the solutions given by Problems A, B énd € , can then bs com-
pletely solved.

Furthermore, it is understood now that Problems A and t ars
exact (WRT § ) but Problems B and D are approximate in which the
effect of & only enters through M.C. from the exact solutions of A
and C (i.e. through the Z-dependence). Thus, for cases close to the
: shock detachment region (see Figs. 2 and 3) where the inner region
dominateé the planform area, the approximate scheme of Problems B and
D may introduce inaccurate results. In order to improve the approxi-
mate scheme for Problem B , it is found possible to make use of Hui's
meén flow solution by differentiating it with respect to czo . Hence
the improved problem B can fully include terms of order 9(§€) .
Héwever, unless a pulsating mean flow solution is fouﬁd cr before other
improved schemes can be achieved, the solution of Problem D  will _

. . *
remaln as an approximate one.

In the next Chapter, the exact differentiation method for the
improved Problems A and B will be presented. Expressions for
force, moments and stability derivatives for steady mean flow and in-
phase flew will be given. In Chapter 5 a generalized similarity rule
will be dsrived. The solutions of Problems A, B, C and D formulated
based on the so;called '‘perturbation method® will be given in Chapter 6 ,

so that the damping derivetives can be presented last (Chapter 7).

* - . .
See Appendix H for an improved scheme.




4. FORCES AND MOMENTS OF STEADY MEAN FLOW
____AND IN-PHASE FLOW '

The conventional way to obtain in-phase 1lift and moment has been

to perturb the steady mean flow solution, as presented in Sec. 3.3,

‘e.g. mz
_ ) o
P =po[1+ ~  (p, + ¢ plo)

A
(o)

is obtained from the formulation, Problem B say, one then

(o)

Once P
can integrate p over the platform to get the 1ift and moment co-
efficients, CL' and CM . say. As p(o) is a perturbed solution,
this method is termed the 'perturbation method' from nouw on; To
determine stability derivatives at zero mean incidence, the perturbation
method appears to be the only practical way and has been widely used for
wings and bodies. As in the linearized potential flow problems, for
example, the steady mean flow is represented by source distribution and
in-phase (or oscillatory) flow by dcublet distributions. However, the
determination of the source strength is quite different from that of the

doublet strength (e.g. see Adam Sears, Ref. 15).
Hence, to relate the mean-flow solution to the in-phase solution is by

A}

no means obviocus in the source methods of the potential flou.theories.
Unlike the 'source doublet' method, the present approach to the

delta wing problem provides a simple means of obtaining the in-phase-

f}om when the mean flow solution is known. Since the mean-flow solution

p. o say, given by Hui (Ref. 7), generally contains ¢, as a parameter

PaN [+
the associated in-phase flow soluticn is simply its derivative aFk/é&h
This procedure is then termed exact differentiation method. Thus,

integrating QA results in CL and differentiating CL with respect

to OC results in C, » the in-phase lift coefficient (or the 1ift .
«

slope). .
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-To begin with, it is required to revisit Hui's theories (Refs. 7

and 46) for the steady mean flow solutions.

4,1 The mean-flow :

Hui's solutions

Introducing the conical coordinate

Y?:
g =

and writing the shock shape

where F(¢ ) = f)g—

i) Linear solutions :

Inner region

S
X
Z
X
(equation 3.4a) in the form

H+F(g)

a($)

2 : 2 .\
D.E. (n“-1)p + 20P + (¢°=1) P + 2nP
i I A TR P
T.C. 5, = 0 at
7
12 . 2
5.C. H 5’37 +[Hao_- (A_o+ H) ¢ ]p‘g =0 at
~--M.C. p& = 0 at ?2 + g 2
1]
H dPJ w's
E»Ca —i— = Bo at

1

y the mean~flow is formulated as below

i

(4.1}



. A
ghere A = T

)
K
Bo =TT
H' = /1 - H?
sin® *
and w ' = X+ =———= . sin&
s cos 3 o

1 The details of the formulation and method of solution are given

| by Hui (Ref. 7). Hui's soclution on the wing surface thus reads

| - .
| Py (0,2) = }: an'cos [(2n - 1) sin lg] (4.2)
n=1 . .
(1l < 1)
'
h LI ! l:‘n
whers ® ¥ (2n = 1) cosh (2n = 1) a,
‘ b, = A
:H .
~ ~
b, (A0 + c2) - b, (A0 +c, - 200) = 0 | (4.3) a
i :
| ~ _ .
: b (A, +€) +20 b . +b (A =T ) =0
(K =3,4,5 ...) _ .

- tanh )

o = tanh (2k = 1 g,

0, = tanh™' H

1 t
—— ' Zws H
8, =~ (4.2) b
N T B, b

* :
From the linsar X expansion of Wy s also Wy = - K tan Sﬂo « X




On the other hand, if one defines the half-range spanwise pressure

’ *
integral, following Hui (Ref. 46)

-2
Pup) = P(73¢) dg (4.3)

An ordinary differential equation (0.D.E.) based on the integral

formulation can be derived resulting in a global formulation of the

problem. The 'spanwise-~integral' solution was found in a simple form,

on the wing surface (For details, see Ref. 45 and 46, or see Chapter 5
and Appendix E)
P =-—= (4.4)
AD + H :

Clearly, integration of & (0,8 ) (equation 4.2) along the span

~results in IE(D) (equation 4.4). Thus, for convenience,- the former

solution is called the 'local’ solution, the latter is called the
'global®' solution.
In the outer regiony; the exact pressure and velocities are con-

sistently expanded to the order of 0(§), or X .

Thus,
|

P =0

s

v'= 0

s .

sin 99

"'s' = X = sin o, (4.5)

CDSp
s}

The full expression of the pressure solutions with regard to the present
formulation of 0( § ) is precissly equation (4.2) and equation (4.4},

called the 'local-linear' solution {LL) and the 'global~linear' solution

For detailed derivation and discussion on the method of spanwise
integration see Sec. 5.2, Appendix E and Sec. 8.3
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(GL), respectively.

iij Imhroved solutions ;

Knowing the exact uniform flow in the outer region (equation (2.6)),
one can then match the inner linear solution (equation 4.2) towards the
exact pressure (équation (2.6.d) by the method of strained coordinates,

i.e. following Hui's procedure,

X e =Py 3 :
~ e s |
= ——— a - ip —
;3 (0, C) P+ P £ n cos [(Zn 1) sin <. ]
(0 £ T ¢ §d) (4.6)
. oo |
whers Pc = Z an' y representing the perturbed pressure along the
i n=1 .

.root chord

X cot Xf, ‘conical' distance from root chord to the

S

leading edge'

A, 8in @ <+ cos @

s the'intersecting point of

d .
an g* A* cos 9 - sin 4 /

3-D Mach cone surface and the wing surface, resulting from equation (2.8)

Solution (4.6), 5; is called the ‘'local-stretched® solution {LS).
" An example of Mo, = 4.0 O =15° and X =50° is plotted in Fig. 6
"which exhibits excellent comparison with other‘numerical solutions

(Refs. 4, 5 and 6).

The 'global-linear' solution (equation 4.4) can alsoc be sketched

in a slightly different manner. To stretch the inner flow,
Polo) =Pulo) - ¢,
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whereas the outer flow is exact again
$d

P(°)= Psd§=Ps(§d—§*)
Ce

Hence, the 'global-stretched' solution is defined as the addition of

these two parts

7~

F. (o

P(o) +Bo) -

w'H :
=-(S ) +p, (g = T,)

A +H
o

‘(4.7)

Integrating the 'local-strétched' solution throughout the span
gives the 'local-stretched' spanwise pressure integral (see equation'd.S)

in the form

Cd

Pgo=1 P (0,8) dg
(=]

’ P T .
_psxcotx+(1--5i-)- 4*-31 (4.8)

The followin) observations are made :-

(a) The 'global-linear' solution ]?G (o) .is exactly the same as the

'local-linear' spanuise pressure I?L (o) = J' I% (0,§ ydg -
c

T.
Hence, a convenient form is provided for ay s le.eo

]
a'_....-‘-‘-"-.(Hw )
1l i AoiiH

{(4.9)

o
and IDL (o) = - * &
. o
Note that the expression (4.2)b for ay is mot closed, equation {4.%)
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for al

14
here is an exact expression.

(b) The 'global—stretched'.solution i?gs(o), based on a novel idea,

is different from the 'local-stretched' solution j?LS(o) . The

latter solution is a more reliable one as it is based on a good ‘local’
" solution (equation 4.6) (sée Ref. 7).

N : ,
| As indicated by numerical studies on P_ ==Z:an' y Hui (Ref. 7)
n= ,

t

1
the difference betuween I?GS "and ]?LS can be roughly

converges véry rapidly. With the approximation

]
Pc:z a1

found that a

estimated as
\
\

~ » o
]?GS - Plg = %er, (1= e

For example, in the case of M_, = 4.0 , o = 15° y X= 50°

a, = = ,02435
a8, = - .0007435
L
83 — haad 000015 s e e
. 20
and Z a, == .0249
. n=1 )
F = L01312
s
Thus
? -~
G5 ~ ]?Ls = .0036

and if it is normalized by PS ’

Pgg - ]?LS

P
s

a W27

This is an acceptable differential errof, since they only produce .5%
difference resulting in the normalized 1ift coefficients (CL/CLO) R

v (See Table 1, .page 47).
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~S N .
(¢) Numerically, all IDG ’ T%S and Iis are of very small order.

For exampls, for given condition of Moo 4.0 , O(O = 15° ; 7(::500

P, (0) =- .08
P.o(0) = - 0102

c

PLS(U) = = ,007 (- .0066 , for P

It will be shown later (Sec. 4.2) this substantiates the fact that
3-D effects are indeed small in 1lift éontribution, as pointed out earlier

by Babaev (Ref. 4). Dloreover, it is ‘seen that E?GS(D) is closer to

fis(ﬁ), indeed an improvement on I?G (0)

(d) It is seen that the global formulation due to the method of spanwise
integration (equation (4.3)) is indeed a much simpler one than the 'local!
formulation (equation (4.1)). In fact, in Chapter 6, both the in-phase
ana the out-of-phase flow in the inner region are obtained.by means of
this method. Since the stretchiqg scheme in global formulation is
different from ths 'local' one, care must be exercised in detecting their
difference. Thus, equation (4.8) is pressnted to compare with

equation (4.7).‘ From the numerical examwle‘given in items (b) and (c)
it partly justifies that the difference due to the 'global-stretched’
solution and the 'local-stretched' solution may not be large for the
cases of in-phase and the out-of-phase flow (Chapter 6) .

4.2 Life and Moment coefficients : mean flow

The pressure coefficient is defined in the usual way
p
—_— -1
V2 (pm )




where

2
- p 280
B.__2 —_— -
Poe T P l*( x )pJ(U’Q) 1
Thus Ep can be written in two terms

2
C _ 2 . (.ﬂli)(:zfg_) p (U ; )
Py 2 P § \Yo
1 ’XN°$ oo A .
where C is the 2-D pressure coefficient and C
Po 1
‘correction' pressure coefficient due to P% .

(4.11)

is the 3D

The Lift coefficient for the full wing is simply defined as

x=0L z=x cot
2 cos X - -
CL = = € dx dz
S
x=0  7Z=0
where § 1is the wing platform area, S = L2 cot X

The moment coefficient is then defined as

x=0 z2=0
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(4.13)




Equation (4.12) can be written in two terms in the same manner

as the pressure coefficient, i.e.

C = C + C -
L e h ‘ (4.14)
C, = C - cos'O% (4.14) a
(] [»]
cos D(o 2 po (’”’102) ( | )
c, = -= 4.14) b
b1 A eotX (w 2)(“«») A
(g
where 1 = F:S (o,g’) d¢ (4.14)9
0

The integral (4.14)c is indéed the spanwise pressure integral
defined in the last section. Thus, 1 1is assigned fo the value of
I% (8) (equation 4.4), i?GS (equation 4,7)‘ or i?LS (equation 4.8),
according to different approximate schemes chosen, resbectively, the
'global-linear' (or local-linear), thé ‘global-stretched' " or the
'local-stretched' methods. |
Once C, is known, the moment coefficient (equation 4.13) can

be obtained in a simple form

C .
L 2
Cm- = cos o . (3 - xo) (4.15)

" The aerodynamic center is located at 2/3 chord as expected, independent

of M (>1); < and X . Now, if the lift coefficient CL is

normalized by its corresponding two-dimensional 1ift coefficient CL ,
0

equation (4.14) becomss

C

c L
L 1
C C
L0 Lo
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where

c : P
L 0/
P
L = X K2 tan‘x ——Ye 1
c 1 -P
L0 o/p

To further demonstrate the smallness of the three-dimensional

effect on the 1ift, a table is shown below :

| : CL/ CLO . c,
Moo ol X o
Lin. L.'So G.SO
o o | '
4 5 50 .9667 .999 .998 .055
4 10° 50° 964 .992 .993 L1324
4 15° 50° .959 .981 .986 2326
17 10° 75° .970 .975 .984 L0767
TABLE 1

1

The steady pressure distribution due to mean flow of these cases
is given by Hui (Ref. 7) (Roy.Soc. 1971). Some immediate conclusion
may be drawn from these examples. First, the difference between the -
'local-stretched' method and the'global-stretched' method are within
3% y and the linear method at most gives 9% error, if the 'local-
stretched' method is taken as the standard one.

Secondly, the ratio (CLl/CLD) ranges from roughly 1% to 4%
substantiating Bahaev's conclusion (Ref. 4), from his numerical

solutions that the 1lift is insensitive to the sweepback angls X .



4.3 In-phase flow: Differentiation method

As mentioned earlier, the static stability derivatives CLO( and
‘ ero( caﬁ be directly’deriue’d from the mean flow CL and Cm through

direct differentiation with respect to 0(0 . with the explicit
expressions available in the last section, (equation 4..14:, 4.15), it
is poésible to apply the exact t-jif‘f‘erentia\‘tion.

Aithough the principle of exact dif‘f‘erentiat?ion is sound and dirsct,
the procedure is laborious. In order to apply the procedure systema-
tically, the previous expressions for spanwise pressure integrals

PG’ ) :PGS and ?LS are rewritten in more unified form.

~~ -~

I Pe o+ Igg=TPgg and Ijg= P g then

(4.15) b~

- ¢, .[IG.(;CS.-l) -ps,];ps-(gd- $)

/
All expressions are now presented in the form with the first term

representing the inner flow contribution and the second term the outer-
flow contribution. Thus, by the elementary differentiation formula,

the following derivatives are obtained

)"’s JtAo + H) = w " (b__g__‘_é_ii_)l

®o S ' aol(:; 3“0}

(4.16)

- :
Note that P .. > es {1 and P >0
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s _ _( ¢ Yo, 3%
deto *oko B0 )
’bp 3§d af* ]
- — 4,16} b
la«o (£4=Td +F (aoc aoto)) (4-10)
s -] ..[(p_s._ 1))16 + ' ( A 9__p_s) _a_is.
9Xo *{Pe do Pcz © o Sado 0%o
3Ty [ Ps
— I . (v—=1)-P
+30<0 G (Pc ) sJ
2P 908g 96« '
+ (8, - S,) so * (a% 30(0) } (4.18) ¢
It is seen now, for the inner-flow part, three derivatives
d H oYs | QA .
’ and -~ are yet to be derived. For the outer-flow
ado acx.o 30(0
p) p p
pgrt, gi: s ai: ’ ;o:) and ;;—- are required. These are vevry

complicated and lengthy functions of M., , OCO and X , the

derivation of these expressions is given in Appendix D.

Hence, differentiating equation (4.14) UWRT o the in-phase
life céef‘f‘icient is written as
2 C
6, =c=C, + 0y (4.17)
oL b o
where
. 0L 2¢p
C, = S = cos - sinx_ + Cp (4.17) a
00( axo o 3 o ’ 0
C )
with J Po _ 9 (po/poo)
0o Y Noz d X




For convenience

L= CP

in equation

=3 Iss
IS
=31LS
d &g

- Here, the derivatives of equations
0 _[Fa) ., Ak
20, Poo 3050
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is written in the following form

1" cos a;

(Linear)
(Global~stretched)

(Linear-stretched)

(4.17) thus reads

(Linear)

(Global~stretched)

(Linear-stretched)

(4.17) a and (4.17) b,

'are also presented in the Appendix D .

(4.17) b




From equation (4.15) the in-phase moment can be expressed as

Y '
m 1 2
= = . - (0.4 C . -~
El’lo( 3¢, cos ¢ {CL“_ tan o} L] (3 xo)
(4.18)
It is seen that the static stability boundary is given at
X, = %’ , a unique pitch location for all delta wings under the preseni
assumptions.

Finally, comparison of ths numerical results on CL o of previous

example cases (in Table 1) is presented in the following table.

c C ‘
L/ L C
Moo Oﬂ) X 2 Loac
Lin. L.S. G.S.
o o ) ‘
4 5 50 .962 .992 .993 754
4 10° 50° .948 .978 .983 1.018
4 15° 50° .931 .955 .969 1.273
17 10° 75° .975 .996 .997 1.273
TABLE 2

Some immediate conclusions may be drawn from these examples :

First, it is observed from Table 2 that the lafgest deviation
between these three methods is no more than 8%, produced by the
'linear' msthod. In order to check out the ‘exact differentiation?
method, a numerical differentiation scheme was devised - (unpublished
here). It was found that for wide ranges of cases, almost‘identical
numerical results were obtained between the 'exact differentiation'
method and the numerical one.

Sscond, Babaev's stztement on the insensitivity of C can be

L

further extended to the in-phase lift C , based on the observation

L o
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from TABLE 2 and Figures 7 and 8. However, it should be pointed

|
| out that this fact may not be so when the flow region approaches the
zong of shock detachment (e.g. ~see Figures 7 and 8).

\

|

For further discussion on this point, see Sections 8.1 and 8.3.

| 4,4 A similarity rule for flat delta wings

; It has been shown that the 1ifts and moments for mean flow and
ihe in-phase flow can be split into two terms (e.g. equations 4.14
‘ *
and 4.17) .

Based on the 'linear' formulation (i.e. 0( § ), see equations
(4.1), (4.4) and (4.15)a), it is then possible to devise a similarity
rule for flat delta wings at different sweepback angles, 7(]- say ,

and X2 but placed at the same flow conditions ™M ., , °<0 and 7 .

i) The mean flow :

Equation (4.14) gives

Now, if the flow conditions are the same for both wings, this ihplies
C c
L (X)) = 7 (X))

as cL0 is—independent of X .
The second term can be expressed as for the wing of X 1 0
CLl (Xl) =cosoC + Co o+ I( Xl) + tan Xl
for the wing of )(2

CLl (Xz) = coso(o *Cp v IG( X2) * tan X2

*
With the first term attributed to the corresponding 2-D flow and
the second term to the 3-D corrsction.
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Also, c is independent of X . This allows the relation

CLI( Xl) IG(Xl) ’ (tan)(l)_ ws'(Xl) (tanxl)

. - . '
1 s 2

as the parameters AD and H are independent of X . From equation

| , sin 5

(4.1)‘ w, = X . ;gﬁ: sino(

thus,

(4.19)

tha.ﬂxz )

C = .
Ll( XZ) CLl( Xl) ( X ltanxl

According to equations (4.14) and (4.15) the moment coefficient

‘can also be written in two terms, i.e.

,Cm = cN + Cy, (4.20)
o 1 :
where’ CL ,
C, = - (%=-x_)
l‘!lo cose 3 0
c
L
1 2
£, = =—=— (% - x )
lYl_.l coso(o 3 o

Thus, for two wings having the same pitching-axis location X s the
the rule givas :

X (4.21)
tan .
(X,) X, 2

1 Xl tanxl

G (X, = €
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ii) The in-phase flow :
Equations (4.17), (4.19), (4.20) and (4.21) thus provide the

similarity ruls for the stability derivative as follouws

c, (X)) ot X;)

0k o

: X5 tanxz) _
C ) = C o | m—— 4,22
le(xz Ll“(xl) (Xlimnxl ( )

and
CMO «(XZ) = CNOOC(X]_)
‘ than)(z

leoc(X?_.) = le «( Xy) (m) (4.23)

for two wings having the same pitching~axis location .xo .

Note that a more general expression inclddes different X énd
can be easily obtained, if one wishes.

In the next chapter, a generalization of the present similarity
rule will be derivedy; in which the effects of added-volume for wing-
body combinations and the effect of small=-bend for caret wings and

V-shape (diamond) wings will also be included.




5. FORCES AND MOMENTS OF DELTA WING-BODY COMBINATIONS:
A LINEAR FORMULATION

In the previous Chapter, it was shown that based on the linear
formulation, the lifts and moments of a flat delta wing can be split
inte terms of purely two-dimensional contribution and three-dimen-
sional sweep~back effects. Thus, a similarity rulse was shown to
exist for wings 5? gifferent swept-back angles.

In the presenf Chapter, a formal generalizafioh will be made in
order to treat a wing of délta platform but with small bend along its
root chord (i;e. V-shape wing of smali detached caret wing of small
anhedral) and with an added veclume. From Appendix A, the geometry

equation and outer flow solutions clearly show that the caret wing
O~

'is indeed a generalization of the delta wing. Hence, For,%mall»bend

s
carst wing, one may apply the Taylor's expansion taking the flat delta

wing solution as a first order approximateion to include the small
bend effect in the next higher order approximation.  0On the other
hand, the added volume réfers here to a symmetricél conical body
enclosed in the linearized Mach cone (i.e. ’22 + 2 £ 1)(see Figure
1-8). Ouiside of the Mach cone, the wing surfaces are required to béi
that of a caret wing of small bénd.

The problem for a flat delta wing with added volume, or the wing-
body combination, has been treated by Malmuth (Ref. 45) and generalized
by Hui (Ref. 46) in their so-called ‘hypersonic/supersonic area rule'.
The basic technique used for such a study is termed 'the spanwise
integral method' (see Chapter 4, or Sec. 5.2) or ‘the method of
spanwise integration' by which one can arrive direct;y at the global

.

information, such as 1lifting forces, without explicitly seeking the

detailed knowledge of the local flow field. This method is particularly
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5.1

advantageous for the present force and moment derivation. Making
use of. the method, the present study further investigates how the

effects of sweep-back angle, of added volume, and of small bend con-

~tribute to the steady and in-phase lifts and moments. Consequently,

a generalized similarity rule (of Sec. 4.4) accounts for these

effects and will be presented.

The linearized formulation

Let /7 be the half angle between two inner surfaces of the caret
wing measured in the plane normal to the lower ridge (see Figs. 1=I, 1-G)

”~
the small-bend parameter T is thus defined as

A

-r

’Tt‘
2

as a first term of the expension ssries of cot /7 for large enough [,

Hence, the following perturbation scheme is introduced for Fk , v

and W

R (a¢) p(v’g)mp (7, s)+tP (yC) + eee &

Yy (n,3) "(’? g)+1‘v (’r},()+'tv (w? ) .. b

w (N, 8) =w(n,¢) +Tw (9, 1) + T2 (y,g) +... o

(5.1)
When equations (5.1) are substituted into the linear formulation
(4.1), all the equations and the bounddry condition remain the same

I

for P and PT except fhe tangency condition. This condition is

complicated by the added volume and the small bend effects.




i) The tangency conditions : the inner region
Formally, the surface for a'caret wing of angle /7 with added

. ~ .
volume surface Y) = G({) can be written generally as

N=Ag+ 6(5)

where A = cot[”

and G(T) = 0(§)

" The tangency condition to the order of 0( §) reads

Vg --_/\w8 =->J:—[E(§)-§EES)] _at YI—-:_/\_S (5.2) b

Writing equation (3.7) in conical coordinates

TVsg +5§
Tui, *S
YIPJ’I +C Vgy U
Comﬁinigg equations (5.2)b and (5.3) provides tﬁe tangency

condition‘purely in % alone, i.e.

‘ o ) .SZA//" .
Q’?(YI,C)-_/\P‘S(’?,g)=-TG (§) (5.4) a

M =Ag
For the caret wing with small bend, i.e. A ~ T , equation (5.4)

reads

7

- ~ ~ g2 A
(o) - Th B¢ =-3-8 (g)

Now, it is essential to apply the Taylor's expansion about 77 =0 so

that the tangency condition can be expressed explicitly in terms of T .




'Thus, the expansion of Ps and its derivatives are given as

follows

ps(%gvg) =p8 (OsC) +%§F;?(U,§)—+ %232%72,2(09S) a
~ A A2 2
Psq(tg,g) =§7(0,;) +tg*3w(0,§) + ¢ P,,Pm(D,E) b,

]

y o r;ﬁ(o,g)+%;a;7(o,g)+%2gzem(o.§) e

(5.5)
»Substituting.equations (5.1)a into equation (5.4)b and making use

of the above expression (5.5), the tangency conditions afe obtained,

in accord with the like order of 0(1), O0(T) and U(;Ez), i.e.

b 4 ng\” : .

0(1) : p7(0’§)=-TG (g) : a
.A ]I I N I N

o(T): pq (0,¢) = Pe (0,¢) =~ % p,m (0, T) (5.6) b

A2y . o _ 4 ‘_. P18 ‘
o(x )‘- Pq (0,%) = PS (0,¢) (P,m (é,g)

+CP (0,¢) - 2pi(o )
gn 180T S 08 |

ii) The formulations

The inner region @

Substituting the perturbed expression (5.1)a into the formulation
equaticns (4.1) and adding the tangency conditions obtainedvpreviously

the formulation of 0O( §) reads :=




D.E.

SYM.C.

m.c.

with

P
s

2 1 1 | 2 1 r I
(vl-l)pw +27’]§P’7g+(§ --1)Psg+2)zp,?+2gpg =0

P,)I (0,¢)

Pe (740) =

]

1
p - =p'
s
' .
1 P
S1¢
~H'
= 0 and

52 AN
-—G
X (¢)
0 (5.7)
12 1 2 I _
H SP7 (H,S)+ {H Bo--v(;xoﬂuﬁ)gjpS (Hy¢) =0
at 7?2-+ §2 =1
2”5' .
B at W? = H
)
ws' = =K tan 300'5( given from the outer flow

from the flat delta wing solution.

tion is the same as that for a flat delta wing (equations

except ths tangency condition.

The 0(T$) formulation thus reads

D.E.

T.C.

2 I
A Y

r
9,7 (o,%)

r
SYM.C. p((rl,o)

S.c.

M.C.

+ 2quf)g+ (e;z- 1)p

I
pe (0,8) =

I
P

m

I
+
£CQ

(0, ¢)

12 T | 2 T
H ;p? (HyT) + [H B, = (A, + H)T }PS (Hy X))
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at \72 + T

2

It is seen that the above formula-

(4.1)),

U I
0Py +2¢P =0

(5.8)

il
o

=1

continued «..




n 2[1]”
E.C. 1 dp
v T ag 95 = B_ at W =H

-H

(5.8)

with P;' and ”g" given from the outer region flow, which will be

derived in the next step.

Note that again the formulation here is the same as the previous

‘one except the tangency condition.

The outer region :

The conical shock shape can be expressed as (equation

: I
Y]=H+ f‘J (CT)=H+ F(§}+"5FIE_O
s

and the outer wing surface is described by
AR

The shock attachment condition demands 72 equal to

leading edge ’? = Acot X , and results in

F Y (eotX)

- H

Fr (XcotX) = ) cotX

T

(3.4)a )

(5.9) a

(5.9) b

at the

(5.10)

From equations (3.15) the following shock condition in conical

coordinates can be derived, i.e. 3~

- & -



[T o) = [F ) - gr ()]
<'VI(H,§)=A'-[FI(§)-QFI’(g)] (5.11) a
L wTmgy = [r ()]
and |

f(P“(H',§)=c-LFn(§)-§Fm(§')]

] . . . Y

< vn(H,§)=AoLFn(§)-§Fu(§)] (5.11) b
\ w"<H,c>=K-'r"f<c>]
Next, the tangency condition fori vy and W are expanded in

Taylor's series as was previously done for %

(5..12) a

n
o

o(1) v’ (o,7)

I

1

o) VT (0,¢) = wi(o,¢) - C v, (0,8) (5.12) b

Since the flow in the outer region is a uniform one (for all orders),

the  downwash v® is identically zero, hence for 1< L <}lcot X

vI(:q,g)-—- 'vI("?,g) = 0 (5.13)
Equation (5.12)b thus becomes
v (0, 8) = (o, g)

From equations (5.11)a, (5.12)a and (5.13), the shock shape.

) .
Ir
F ™ (AcotX) is cbtained and from equation (5.11)b- and (5.12)by
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/

I
the shock shape F  (AcotX) is obtained, i.e.

FI:EA.cot]X)

J
Fﬂ(XCotX)

- tan ffo tan X

1+

K tan

%o

A X

X tan X

(5.14)

Notice that in arriving at these expressions, the sidewash velocity

I

w -~ has been approximated as

I

w' o= =K tan® tan X ¥ - K tanf X

which is consistent with the value used previously (last equation of

(4.1)).

Knowing the perturbed shock locations and their slopes at the

leading edges, the solutions for the outer region can be written down

as

o(§) : (P

0(§T): ¢ P

~K- tan‘fo X

K
- Ao tan 300 X

—K-'tan?oo'x

K|l1 4 ——=t
A

K tan ¥
P\

XtanX]

>~ K + 0(X?)

(5.15) a

(5.15) b

With the outer-flow perturbed pressures and velocitiss given, the
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formulations for the inner region flow eguations (5.7) and (5.8)

are thus complete.

The method of solution of the inner region
i) The 'full-range' spanwise integral :
In their previous analyses, both Malmuth and Hui (Refs. 45 and 46)

have used the half-range spanwise integral of pressure, i.e.

Instead of the half-range, the present analysis will use the spanuise

integral in the full range, i;e.

_.../1 -72\< </l ~ 172

The merits of the full range spanwise infegral ars essentially two :
first, no information about pressure, say, along the root chord is
required; second, one may fully exploit the symmetry properties and

the anti-symmetr; properties of the pressure and its higher derivatives.
These points will be further demonstrated as follows.

The full-range spanwise integration is defined as

b

P = P (nagdg =3[p T (7,¢0)]

/- [ -n? (5.16) a

likewise for Pn. s l.€.
T n
Pop =3[p" (9,0
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Since the wing and the added volume is symmetric with respect
. : I .
to g =0, the pressures P and P , say, are therefore also
symmetric, a priori; hence they are even functions.
o v
Clearly P; and Pg and their higher derivatives in &§ are
antisymmetric with T = 0, and herice are odd functions.

The following properties can then be defined for any given function

ip in (- /1-72 ’ /1 -72), i.e.

+y1-p2
n+l _2_11 n+l _é:ﬁi _
g e
/. l_~v2 .
('odd' integrand) :
(5.17)
+/1-72
2n+1 97p 2n+1 bn?.
S TR RS S ol L :

('even' integrand)
' , 2 < 2
where n =0, 1, 2, 3 ... (= J1-n" =T ¢ - )

(0<% <H )

This leaves only the integrand with even functions to be evaluated.

- To write down a few, i.e.

3 [.P,?(?»E)] =P27) +ﬁr27l72p (9, [1-72) c

(5.17)

2./1-72 p(v, {1=-7%) = P() d

More evaluations of thess integrals for higher derivatives can be

3 [g P (7,0)]

found in the Appendix E .
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ii) The integral formulation and the solutions :

Applying the spanwise integral, equations (5.16) and (5.17),
to the previocus local formulations, equations (5.7) and (5.8), the
global fermulations are cobtained as two ordinary differential equations

in order of 0(§) and of 0(8‘%), each/ with two end point conditions :

o(§) :

2 P

(1-7)/2

I”
D.E. F'(Yz)

T.C. PI(D) = - 20, (5.18)

1l -~ H H

e Bl () P - (2, (3

where G:{ is the added volume parameter defined as
1
O:r = G(g ) d¢

-1

E(g) = 0 for Igl?l

since G g )~0($%) as stated previously, the order of 6:, is also

of 0(6 ). Notice the above formulation is exactly what Hui has

obtained (Ref. 46). The next higher order formulation of order

U(Si) reads :—




0($§7T) ¢

x” ' Z Ps ' (5.19)
T.C. PH(O) = 0 .
.y A, +H - 2 A, " 2 H Y
A _ - P - —= ]
s.c. Pwmw o+ (l_Hz) P(H)-( - ) s (Hz) Wy

It is interesting to hote that the added volume parameter c{v
does not appear in equations (5.19). This is due to the fact that
as observed from equation (5.6)b, all terms on the RHS of the tangency
condition are odd functions. However, for the next higher order formu-
lation of 0(;528 ), as observed from equation (5.6)c, the added
volume parameter (ﬁv will enter through the tangency condition, since
the last two terms on the RHS are even functions.

The solutions of equations (5.18) and (5.19) can be immediately

obtained, i.e.

(5.20)

Pz(?)

Pn(*z)

. " 2 wS H (5 l)
R B Al s 2
The total spanwise pressure integral for the inner region then reads

Pi(.’y) = :PI("() + T Pn(")) (5.22)

~

Notice that when letting G;;: T= 0 and evaluating equation (5.22)

at Y?::O E?i(D) = ng (0) as expected. (see equation (4.4)).
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The pressure integral in the outer region is defined as

o g : |
P(U): 2 [pl(gs.gv)'*%pn(o’g')] d§

1

With the values of P~ and PZ -given in equations (5.15)a

tand (5.15)b, the above expression becomes

;

0 Al S
P (o) =TX‘[72\"5 tan _ ] (¢ -1 (5.23) a
0o , .

Explicitiy the pressure integral ih the inner region (equation

5.22) reads

. . [ 2KHtan<P 2(1 + A-H) _
P*o) = X[""———Q} + O - [—‘——-‘9‘—]

A +.H A +H
o o

2 2K , KH -
+ T [ A »ta_n?O0 X - A +H} (5.23) b

Further let the total pressure integral be
T i é
I, = P7(0) + P (o)

I 2
......_.l_'l.......z Xtanx o[ 2KH

Acot X

U
- 2(1 + A, H) J

o.. tan .
" Oyt X [)\Z(AD+H)

~ , -=-2KH(2A0 + H)
+Ttanx.[XA0(Ao+H) }
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It is seen now in equation (5.24)b the three-~dimensional effects
and the added volume effect are separated from the corresponding two-
dimensional effects. This thus prevides ground for the later develop-

ment of the general similarity rule.

5.3 The forces and moments

i) The mean flow :
Following the expression for 1ift coefficients given in equations

(4.14), its general form can now be expressed as

C = C , + C . |
L Lo Ll : (5.25) a
€, = Cp cos y o (5.25) b
o o} o .
IU v
L, = Cq+cosot —= (5.25) ¢
1 O AcotX
- \ ~ :
Let CL ’ CL and CL be the lift coefficients due to the contri~

bution of sweepback effect, the added-volume effect and the small-bend

effect respectively, equation. (2.25)c can be expressed as

-— v N )
CLl = C +C_+¢C (5.26
where ) ' .
1 EL = X tanX °ﬁ°([ﬂw, OCO) , a
o _
4 C, = 0y tan X - % (ﬂ”, oco). ) (5.26) b
~ ~ ) )

(T, = Tt X+ T (Me,00) , c

with the corresponding two~dimensional functions _ejg ’ 22{0 and f?g
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explicitly written as

(of (M, ,00) = ¢ a'( K
= * COS . . a
o' o? o} f (8] AZ(AO +H)
1+A H :
{ ?(m,o,oto)= Cp * cos O | ——2—— | . (5.27) b
° ° A‘(AO + H) - S
' ~KH(2A  + H) |
L E;ro(NOQ,CYO) = Cp * cos o 2 . c

p\ AO(AO'+ H)

Note that the factor tan X appeared in equations (5.26) and is
introduced by the definition of the 1ift coefficient, i.e. the platform
* ’ '
area § = L2 cot X . Hence, if one is only interested in the total

lifting force, by definition

L = q_°5- c, (5.28) a
where q = i f’ U2 the dynamic pressure, it is found thét
. . Qo 2 loo Yoo p ’
O L ¢
— = 6)/0(!‘4”, oco) (5.28) b
B v ' :
and
21 | < '
é_}; = ?70(”«»’“0) (5.28) ¢

In all the 1lift coefficients defined herein it is only for convenience
that the reference area used being that of a flat delta and the circum=—

ferencial area of the added volume is not included.




‘Thus, in the present linearized formulation, the function QV;
represents the total 1lift force changing rate due to added volume
and the function firo due to small bend. quthermore, it is sesn
in equations (5.27), _ng(moo’ a%) <0 , 6%;(m°°, m%) >0 and.
f7g(m,°,<x6) > 0, since all the coefficients on the RHS are
positive except for K which is negative. These lead to ths
ifollowing conclusion :

According to equations (5.25) and (5.26), increasingly the
sweepback angle X results in a reduction of 1lift, whereas increasing
either the added volume or the caret-wing small bend results in an
inérement of 1lift.

Clearly, the present lift expression equations (5.25), (5.26)
include* the previous lift expression for a flat delta wing, equations
(4.14) and (4.15), as a special case.

Finally,'the moment coefficient is defined in the usual way (see

equation (4.15))

ii) The in-phase flow :
The in-phase 1ift and moment can also be easily found by exact
differentiation of the mean-flow lift and moment, in the same way

described in Chapter 4. Thus, following equation (4.17)

c = C + C ’ (5.29)

where €. is given in equation (4.17)a
o
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C _ 1
Ly - 3, , (5.29) a
3 0 L . 0 € . 2 &
IXg dXg ¥
and
Y C
r —L = )(:tanXD = a
| ’ 9% g pIo &
J = = G, tanX A (5.30) b
30(0 30(0
‘ p: EL ~ ;Z
. = T tan’( c
@ 3ty ) o
|
|
All derivatives ajo ’ 3% and depend on knowing
0 A0, 0 ¥g .

9 Ep d_K 2 A 3H d EL}&

doto | dcle % T e T Yo

s whose expressions were given

in Appendix D . Since the differentiation procedure used here for
obtaining equations (5.30) is quite elementary and is similar to the
one used in Chapter 4, no further detail will be given. However, it
should be stated that their behaviour is 3
3o o o 70 3T
99,

. = > 0 similar to the behaviour of
’ ?0(0 130(0 ] .,ego,

fyl, and 575 . Again, the in-phase moment coefficient is defined as

in equation (4.18)

2
Cy = "[CL“-tan“o CL] ( a -xo)

In Figure 9, the in-phése lift coefficients are plotted against
K, » at freestream Mach M, = 4. and 20, for the cases of the flat

delta wing and two dslta wings of small~bend (small anhadral and
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dihedral) with the same sweepback angle X and added volume (G;: 1
for M_ =4 and for M. = 20.). It is seen that the caret wing

configuration with added volume achieves the highest CL as expected.

o<

5.4 The generalized similarity rule

i) ~ The mean flow :
As mentioned previously, the results of equations (5.26) invite

the establishment of a more general similarity rule.

The basic features of the present similarity rule are :

¢ For given M _, and 0(0 , the steady and in-phase lifts and
moments can be expressed in a combination of terms which separately
account for the effects of sweepback angle 7Y , of the added volume

6} and of the small bend ;% .

e It is a géneralizad similarity rule for non-affine bodies of
the added volume (see Figure 1-H).
The rule can be derived as follows :
Consider two qingwbodies of different sweepback angles, 7(1 and
'X2 say, of different added volumes, ()"vl and o‘vz say, and of

~

different small bend, T, and T, say, but both are cruising at the
samg freestream Mach M, and at the same incidence 0(0 (see Figures
1-F and 1-G). Let the supsrscript 1 indicate the lift and moment

coefficients of the wing 1 and superscript 2 of the wing 2 .

Equations (5.25) and (5.26) provide the following relations for

the lift, i.e.

(5.31) a




. 2 1 'X 2 tan }:2

E = E . b
L L :
‘X 1 tan )(1
Ov, tan X
7/ v/
I Sk Bl (s.51) o
: G-vl tan)(l .
~2 ~1 T, tan X,
L CL. = CL s d
Ty tan X3

Hence, knowing the 1lift components of wing 1 and knowing the configuraf

tion of both wings, the lift éémponents, and hence the total lift, of

wing 2 can be found from equations (5.31). : -
Employing the same notation and superscripts for the momsnt co-

efficient, the same rule also applies to it, at tﬁe same pitching-axis

location X s

(5.32) a

]

1 (wing 1) (5.32) e
2 (wing 2)




ii) The in-phase flow :
Similar to the mean-flow lifts and moments, the rule for the in-

phase lifts and moments can also be expressed as

CL 2 = CL 1 a
0 o 0 K
(= 2 -1 Xyt X,
CL = EL —_— b
o Pl
Xl tan Xl |
o | (5.33)
{ v 2 Vol v, tanX,
CL = EL ——— c
o < 6-\/1 tan X,
2 ! T, tan X, d
L = Py
and
2 1l
Cm = CM a
4 0
= 2 -1 Xptan X,
(G =T e :
o < X3 tan X-l
(5.34)
< v o9 v o1 G\Iz tanX2
c = C —_—f e -
i o M o< G"\fl tanXl
~ 5 ~ 1 ﬁ?z tan 7(2
CM = CN ———— d
The total stiffness defiVatives thus reads
. - [V A~
o n = Cy o+ (T, "+ Cy "y cm4“) n =1 (wing 1)
o
0 < < & o«

n =2 (wing 2)




6. THE UNSTEADY FLOW SOLUTIONS: PROBLEMS A, B, C & D

The present chapter aims at providing methodsof solution for
Problems A,'B, C and D, previoysly formulated in chapter 3 (i.e.
equations (3.27), (3.28), (3.29) and (3.30) respectively). The
method of solution employed here for Problems A and C of the
outer region is similar to that of Hui's work for wedges and caret
wings. In each case the solutions yield constant properties on
parallel planar surfaces for the out-of-phase flow. The method of
solution for solving Problems B and D depends on the extensive
application of the spanwise integration technique, discussed in

chapters 4 and 5 , to ths out-of-phase flow in the inner region.

PROBLEM A ¢ The in-phase flow of the outer reqgion

Based on the formulation in equations (3.27), exact solutions are
found. They represent uniform in-phase flow solutions in the region

as expected, i.e.

C

.(6;1)

and the outer shock shape is an oblique planar surface described by

~r

Q%(x,z) = 55 x+e z+f

5 5 (6.1)

where

(6.2)




Note that as X » 0, implying G = O, P?, v°, U° and @° reduce

identically to the in-phase wedge solutions previously cbtained by

Hui (Ref.37, 1969) and W’ = 0 as expected.

6.2 PROBLEM C : The out-of-phase flow of the outer ragion

Based on the formulation given in equation (3.29), solutions of

fthe following form are sought, namely
F

3 1 ' :
P = Alx + Bly + Clz + Dl a
V1 = AX + B + C,z + D b

) 2y T 5 2 -

AR (6.3)
W = Azx + B3y + CSZ + 03 c
ut = AX+By+C,z+0D d

- T4 4 4 4

together with the out-of-phase shock shape in quadratic form

1 2 2
Q (x,z)—A5x + Bgxz + Cgz" + Dgx + Egz + Fg (6.3) e
They are indeed the exact solutions of the Problem C. Thus, as a
part of the solutions, the coefficients Al’ Bl’ Cl «sse etc. are given
as follous :
For Pl ’
= 20 C. Dd -
rAl—2u1A5+C285+(DdS Bltc) a
1+ \°
B, = - (35— b
€, = C; By +2C, Cg + (D ey + B, tg) (6.4) ¢
\ Dl = Cl 05 + C2 E5 = dlU < X, d
where y = s > ' e
yn,
~ A ~
00 -6
90° - T = £
AZ(T - A



For VYV,
'r A2 = 1
B, = 2 [2fh.n +7%.8 + (8- a - 1)
2 tc 1l 5 2 5 5 ..
4 ' S | (6.5)
C2 = B0 -
<02 = -xo
For W , ,
[ ~ ~oA ~
2a & Ky a(k, G +K;) +:)cl
(R =\Te-T ) st = " 8y
G_ a0 -1
2a K, +2 ) T,
+( 26 2 -C5+a30
aG-l .
(6.6)
B, = - [2k .o +K B + (T d. - A,)
3 tc 1 5 2 5 5 3
o 2K, G D K26'+K1+1)C10‘ -
3 1-ag 5 l-ag 5
. 2K2+_21)(5‘f32 o4
l-ag 5 30
k _ "~ . ~
D, = K; Do +K, Eg
where
asg ={ al (0‘d5 + es) + ))(Des + Bl.ts) + w] /(aG = 1)
. A e - OA ~ N~ ~ ~ ’
Ca0 =[00‘(Des+81 ts)+w o +L(O‘d6+es)} /(1 = aG)



b4 -
- _.ZaElG‘ +2/C .A+a(E26" +El)+ c, .
4 ~ ag -.1 5 ag -1 5
2a E; :
+(36'-1 -‘[.Ts-i-a40 a
{ 8, = 2| 26,- A +E,-8 +F.d, - A, b
4 tc 1 '5 2 5 5 4
(6.7)
c ~ ~ o~ ~
4 = El . B5 + 2E2 . Cs + F o ey + B4 . ts c
~ ~
\ D4 = E105+E2 E5 d
where aq is defined in equation (6.10)

In the previous equations (equations (6.4), (6.5), (6.6) and (6.7),
certain coefficients are still dependsnt on the values of AS’ 85, C5, D5
and E5 given below. Thus
For Ql '

AS =(~ "2"’) 2,.(5, o~ ) a

r av -q cv - g - c-cv

85 = - 26A -4 b

- 5 50

C. = -~G2A -G8 c
. 5 5 5
< ) |

Dy = e — (6.8) d

0—A2 - Al

E5 = - 0'05. e

" F-5 = 0 f

where
rv ‘N AN N Pa e d
- ~ A, (YL, +aGE)) =0 K
a_ = 2Cl+2’¥- Tt =
v c ag-~1
S e (Fosac e 11_2-+1)82+a(E20'+ ) KO+ Ky +J6Cy
v T ‘2T £, ag - 1 ag - 1

continued ..

|



~ ~ ~ A
~ ~ aEz-—(K2+1)G' C,)
ey = 2aC, +2 D . ~
ag -1
' (6.9)
~ o
dv=am+acm+’T'(a40+b20+c30)+_P
and with
[ %10~ D« dg =By ¢
clU = D . es + B1 ts
‘ - ~.~— . . . ) .
byg (B dg 1)/tc (6.10)
~ o~ ’ ~ N ~ ~ 0 ~ .‘
8,0 = [ Y (D dg - Bl.tc) + af .(e5 4—0‘d5) + U J /lag = 1)
~ _§g+6_(g-g-l)
[ dgg = 5~ _ A5
A, - A, G

. . . o
Some remarks are in order to describe the pressure solutions P and

Pl of Problems A and C .

i) According to the perturbation scheme for the outer region eguations

(2.13) and (2.15), the following identity holds

0 Py
%o

P° = ‘g;
*

(6.11)

This is to say that in the outer region the in-phase flow obtained from
the present perturbation formulation is exactly the same as that obtained

by the previous differentiation method.

ii) The present solutions constitute the exact in-phase and out-of-

phase skewed wedgs solutions (the skewed angle being the sweepback
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angle X (see Appendix C)).

As X -0,

the present solutions

reduce to the sxact two-dimensiocnal wedge solutions given by Hui.

iii) 1In Problem C, all the flow pressure and velocities are found

to

va

of

sSu

he

be linear functions of (xy vy, 2)o

lues along each parallel planar surface.
pl is a constant vector V Pl = A
rface, Sl say, normal to VP.]' ’ Pl

nce called the iso-baric surface.

Hence, they assume constant

-

1

iv) 1In view of the above argument, the flow pressure Pl

wr

an

No

va

x

*
itten as
pl= X'@l(

a QP = Ay + 8y (

Xl

X<

XN

w, it is seen that function (3° !

riables., The separable form of

the so-called gQuasi~conical flow.

For example, the gradient

i+ Big + Clk sy along any planar

1

therefore is constant. S” is

can be

(6.12)

is expressed in the conical

ol

indicates that the flow field is

The 'quasi-conical' nature of the

out-of-phase flow in the outer region provides information for one to

seek the flow solution in the inner region in the same form. This will

be discussed further in detail in Sec. 6.4, and in Chapter 8((iii)a

an

d (iii)b of Sec. 8.2)

*

Here, X is set to be zero for convenience, hence D

this will not affect the generality of the statement
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PROBLEM B : The in-~phase flow of the inner region

i) The formulation :
Adopting the conical coordinates, Problem B (equation 3.28)

can be formulated in the same manner as the mean—flow problem.,

"~ Thus ,

2 (o) (o) 2
(9 --J.)P77 +-27§P7§ + (¢

_ (o) (o) (o) _
lﬁk; +2779,7 +2§pg = 0

7?UQ;),+ S Vg?)

Qw%)+gw%)
(o) (o)

ﬂpn +gpS

5(0)

,7=0 ‘ | 7?=D

| H'ZS p(") + [HBO— (AO+H)Q2 P(go)].—:' 0 at n =H

7
POV, g) = e[ s(g) - 1 el (g)]
00,5y =4[ 6y - ¢ s (0]
), 3 = k 5 (¢)

p(o) |

P£°)
ve) . \,§0)

w§°)




Note that the D.E. and the S.C. for U(O) reads respectively
(o) (o)y _ (o) (o)
- A (quy +gu§)_v)p7 + g P (p.E.)

u(°)(H,§ ) =E - [G(")(g) - g gt (¢ )] (s.c.)
The shock shape (3.4)a is written in conical form as

where ' (6.14)*
G(ng)is the in-phase shock shape as in the above S.C.

G(l)(g s {) 1is the out-of-phase shock shape where £ =X

Relating to the Problem A, the values of P(D), V(o) and w(°) at

Mach cone are

p£o) = X . p°
V£0) = -ﬁ— . Ve (6.15)
wﬁo) - Zg WP
— X Py
whers ol = >
’ZF% o)
ﬁ = U*/uo

Here, it is to assume Q(D)(X,Z)/XA= G(°)(g ), similar to the mean-

flow shock shape.




ii) The method of Spanwise Integration :
Now, the method of full-range spanwise integration introduced

in equations (5.16) is applied to the above formulation. Hence

/1 -n?
P(O)(7)= p(O)(7’§) dt

RN

and making use of the properties at the Mach cone together with the

dgfining

operations derived in Appendix E , the integral form of equation (6.13)

can be represented as

(o) o plo)

D.E. P ° (n) = - "—'—'j':—? ' . a
7 (1- Y]2) /2 )

1. PO oy =0 o (6.16) b

. ) A + H 2A
e B (e () (1) 4

+
' 1l -H H
4 _
where p$°) = P(O)(H,H )
. o
m$°) = m(°)(H,H ) ‘ d
om — el |
and GV Y(H) = de + eH given from Problem A

The solution of (6.16) can be written down immediately

'f>(°)(v?) = 2P£°) 1-v?2 + 7 i - [AOH' (p£°) - p$°)) - wa°)J
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6.4

In order to match the present solution toward the outer solution

of Problem A, Pﬁo) and USO) are then replaced by P( o) and u(°) .

The global solution above is then simplified’

h (o)
2HW
P = 20 °) [1- e (6.17) a

Evaluating the above equation at the wing surface, ’7 = 0 results

Hw£°)

(é.l?) b

P ©w = 2.

A +H
o

PROBLEM D : The out-of-phase flow of the inner region

The present problem attehpted to be solved here is the most complex
one of all. The complexity is mainly due to the ﬁon;uniform nature of
the thfee—dimensional flow field. Furthermore, as observed from the
previous formulation equation (3.30), the solutions of Problems A, B
and C enter into the present formulation as a result of the perturba-
tion scheme. To be more precise, the solution of Problem B8 enters
through the inhomogeneous terms of the D.E. and the S.C. of equation
(3.30); the solutions of Problems A and C enter through the M.C.

of the equation (3.30).

i) Method of solution :
In order to deal with the three-dimensionality of the problem, the

following generalized conical coordinate is first introduced

_ A
-
]
>x)=<

- 84 o



The formulation equations (3.30) written in the generalized
conical coordinates become

D.E. g“;g ZE(YIP(” +§P(”)+(q - el

- zng(qp(f;_) + g P(go_)')

, p(gl) (,?p(l) e p(l)) " V(71) + u(l) £b )(7,";)

g Vg;) (Y?V(l) +T V(l)) + p(l) E U( )(,?,t )
g w(gl) (Y)U(l) +C U(l)) + p(l) g “’(O)(ng)

2 (o

_where b(o)(Y),g)= ""‘U(O)(Yz,g)-K P

Y )(vy,; )

(6.18)

T.C. »p%l) = -2¢ at » =0

o [ W - g o] o [)e))
W o [ g o) - g ] 48 {5 600))]

h](l) = K G(gl) at \? = H
m.C. p(1) o p(1) |
V(l) = V_S_l) ' at "72 + T 2 =1
(1)
llJ(l) = W,
SYM.C. p(g) = 0 at T =0

where

py)"QJﬁ4-@lv+-élg]+ D,
GV g[drt @20* Gac )t B, (6:19)"
wa(el) =§[c§243+@3’]+ 6‘3§]+9

*
Note that Dl’ 02 and D3, hence ial’ 2)2 and 293, are linearly propor-

tional to Xgo the pitching axis location.
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(o) =t Ay (A, = B Ay rc,a/z,:é

= B = 3 = 3

) f3, =« 1/, J B2 R By ) @3 3
g1 =% l:1/)‘ &2 = B Ly, &3 = B “3/y
& Dy L D, =B D, D3 =B D

k81=

The out-of-phase shock shape G(l)(g » T ) remains its general

form here and is related to a(l)(x,z) as

(1)
Q' 7/ (Xx,2) - s(l)(g,g)

X

Unlike all the previous problems, the present formulation equation (6.18)

is difficult to recast into the single indepandent variable P(l) alone.

Apparently the difficulty ariseé because of the S.C., After eliminating
U(l) and w(l) in the S.Ci, although the resulting S.C. can be
expressed solely in P(l) it becomes a second-order differential relation,
compatable with the order of the D.E. Alse, the S.C. 1is further
complicated by the unknown shock shape G(l)(g sy C) - t is essential

e

to further specify the form of the shock shape , since it appears as

AS

5 _
3/

the lowest-order (in differentiation) of the whole problem.

The latter problem is settled by the confirmation that Problem D
is indeed a quasi-conical flow field. This is recognized from two
viewpoints. First, it is known that the flow field of Problem C is
quasi-conical (equation 6.12), which transmits the characteristic
through the Mach cone into Problem D (as in equation 6.19) . Second,

by inspection, all the boundary conditions and the D.E. of Problem D

(equation 6.18) admit solutions which are linearly dependent in £ .
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Based on the above argument, the solutions of the Problem D

are sought in the following forms

pNE, M, 8) = R g) +x, 4 (0. ¢)

Ve, 0, ) =g V() +x, v (9,7)

(6,20)

w(l)(g,yz,c) —..-g%(“f?,() +?<o "Uf(’f]sC)

e g.g)= £ 6(¢)+ x, 8(g)

The solutions are tﬁen split in two terms, the first term being
the'quasi—conical' term. Evidently, with ihe absence of the second
term, the flow fisld represents one which results from the wing oscil-
lating about the apex.  Hence (5)(17, £) ... etc. are called the apex
solutions, Qhereas “p( 7,¢)y ar(9,¢) ... etc. are called the axis

solutions, indicating the latter solutions add the effect of pitching-

axis location to the total solution.

ii) The apex solution :
Substituting equations (6.20) into the total formulation and
collecting like terms linear in E » the formulation for the apex

solution now reads

0.6, (9% D@+ 29¢8) + (€% DG = = 2x20pol) 4 ¢ L))

6 - (’7637+:;6%) + ‘7));2-{»?(};: (o)
V- Ve Yp) + O = - ot
%-(r)wl-rg‘l,();)-f(j)g = ylo)

(6.21)
T.C. 697 = - 2 . ' at 7? =0

continued ...




s.Cor P = c-[zc(c)- CG'(C)] +D-G(°)(C)
Y= a-[26)- ¢s(g)] +8-6°g)
W = ke (L) - at v =H
me. 6 =d, +B; 9+ G, ¢ at »>+ gl=1
UV =dy*B2 1+ 62 ¢
W=dds+@s 1*6s¢ e
sym.c. 6’§= 0 | at ¢ =0
where
0 E0 2 o : E
o) = (2 k2 e,y L =
() a6, ) , A = b

Now, making use of the first order equations of the D.E., the S.C.

can be written in a second-order form solely in terms of CF) as, at 7== H
-H'z'@-r HB - (A +H)CZ]Q —[(E-‘-’- k20 JH - A ].'g p‘(o)
¢ ¢ [ o o J ¢ L0 A ° ° 9

SERY ] e
Hence, with the S.C. ‘expresséd in the form of equation (6.22), the
problem of the apex solution, equations (6.21) can be formulated_
solely in terms of 63 . A method of solution is proposed here to
solve for 63(‘7,1;) formulated in equations (6.21).

The proposed solution is sought in the following steps :

First, let

@(7’;) = 6)0(’731;) +A2K'2 p(O)(79C)

in which the first term represents the complementary solution and the
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second term the particular solution given in equations (6_.13). '

Next, splitting again 6)0 in two terms, i.e.

6)0 (’?:C) = 6)¢(?:§) + L¢(’7:C)

where L¢(?,§)= 02!1 +(Bl’? +'él?.:
C,d' = cdl—Zsz_E_o)

1

results in the formulation of 6);6 (?,g )

D.E. (72-1)62w+27463%+(g2-1)6g =0

£g
T.C. @7= -2-03, | ) at v =0
' Y
5.C. H 2,; 6:7; [HBO - (A, + H)gz]@«: (J g “,“Et')-) pé‘”
M.C. @ = 0 at < = 1—72
SYM.C. 63"( = 0 ' at ~§ =0
(6.23) a
where |
Vg = VYot Uy 8 -
{ Vp =-V1 - V3B
Eo 2 2 .
(2)o = (';"-K‘ A) H=A =2r" (A +H)
J J; = 2;\-2HBO
Yy = (8 -A D)/ K
L ¥, = D HEC |




Moreover, introducing the pressure differential function }P’ such

that

Yopo = 57 Gopo

thé formulation for (;; (equation (6.23)a) becomes

2 2
D.E. ( -1)ﬂm+27§ }{77§+(§ -1)]{/“4- 2(7}_117+<\I/§) =0
T.C. Y = 0 at M =0

S A [, - (8, + €] P = (0, ¢ + 22 ) oL

at '7 = H

/1-«72

m.C. \I/d; +'\_P*(7)‘=0 at ¢

Anti-Sym.C. ?('7, "§)=—}P(77;C)

(6.23) b

where '91(77) needs to be determined as it is a part of the solution.
Now, it is seen that both- D.E. and T.C. arerthe same aé the
mean-flow formulation (equation (4.1)). However, in order to cope
with the other boundary conditions, care must be e*ercised upon the S.C.
! and the M.C. No effort is given here in further derivation of ths

final 'local! solution.

The Global solution :
For a more direct approach, the global formulation by the method
of spanwise integration is once again applied to the equations (6.21).

The spanuise inteqral of pressure and velocity is defined as (for the

spanuise integral defined in the Tschaplygin plane (Q,u ), see

Appendix F).
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L-n
J[CMe)] -] C.reg =P

S /l _’?2

First, the spanwise integral is applied to the 6S.C. According
to the operations derived in Appendix E , the first two first-order D.Es.

of equation (6.21) evaluated at W? = H can be written as

2Py - w Py + Vim =& @, - 2 G - 290,
H H

E
2 (2 - 2Pl a

A
(6.25)

J .
2VH) - 1 V(1) + Pn) =;{2.ch+ - .Z_Fi @, - o P

where ), = Aoﬁ?P +(8 - AD) SEC
G, = cfzst) -n's’ (W) ]+ s’y
W ¢ K G (H)

P ©w
G(°)(H') =

G (H')

¢ (1)




While the first two S.C. of equation (6.21) can be related as

V (#)

a P) + (8 - a_D) 5(o)

where (6.26)

I

n 4 L

glo) ng [G(")(g)] = -[-:l-_(o)(H) +2n'60) ")
e’

Eliminating V (H) and V (H) from equations (6.25)a , (6.25)b and

(6.26) results in the S.C. in terms of the spanwise pressure integral

alone, i.e.

P +2(%;‘)P(H) = (f—)‘]ﬁ -!—2{-“—2’2(&

E _~
+—J~‘—{[H( 2 _e?) - Ao} P(°)(H) - 2(B = A_D) G(O)}
B (6.27)
In order to match with the exact solutions obtained in the outer

region (Problems A and C), the terms Gv; R 6)+ and qMIF are

replaced by GUj-,'GD * and ?U* as below

[ ‘ZT* dﬁg *'632 7f *'6?2 Cﬁ ' : " a’

{67

AL+ By * 618 | (6.28) b

L9 cds”r@s']**és(* | ¢

* * -
where -7 and C' indicate the intersection of the three-dimensional’
Mach cone and the outer oblique plane shock. They are determined by

solving equations (2.7) and (2.8) in the conical coordinate, thus ;.
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3
{

. TG wffP-a g g
2 ¢,

(6.29)

™
!

where

. g, = )\*2 (c0829 + tsz) - sin29

v
=y
I

' 2 . 2
-2 (X" +1) 'Xcosesm@—ztc- tg X,\l

Ze = XZ .[)\ ,’sz(tcz2 + sin26 ) —'00526]

(Similarly, the value of H' appeared in the shock sﬁapes G(O)(H') ,
G(H') and G’(H') is replaced by ¢ * and they becoms G(O)(C*) ,
G(c*) and G’(g*) respectively. It is seen now that the S.C.
(equation (6.27)) becoms an improved ‘hybrid' condition in which the
coefficients such as A0 ’ Bo and H ... etc. are from two-dimensional
perturbation but the flow velocities are the true three-dimensional cnes).
Next, the spanwise integral is applied to the D.E. of equation
(6.21). Following the derivation in Appendix F , the spanuise integral

form of it reads . o -
1 =P ) + 29Pn) - 2P(p) = - 262 [P0y =py)]

-[ax?0{?N0) + 6 Q)] /1 =97 (530)

where

}
N .
o
K o~

[w]
N’
ot
-~
N

r PP

i p ey = P

L O, (¢)

"
LS
+
D

=
-~ .
-+
N
V
~3




After some rearrangement, the foregoing equation, together with

the T.C. of equation (6.21) and the shock condition equation (6.27)

can be written as

D.E. (1-»?2)13)27)+v27Pi7)-—21’(q)=

1 o {
> + r
_7 1._7

+ o(ﬂ’

c(I &/l

T.C. ]??0) = -4

H

’ H
5.C. P +2 (l0 =) P =@ + &,
wvhere
( I 6(@&
Xy = =64

H

The solution of equations (6.31) can be found as

P(7)=CI7+CH-(1 +v12)- 4 (-/_-»? )

- by i - 5
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(6.31) b

Py = -f—z{[n( %’- - %) - N Pl - 2(8 - AOD)E("))I

(6.32)




2 [HH'2 +(A, + H)(1 + ) )

. CI%-{- 9-3\8~CI-[$L+2H(§—C%)]

1-H
A, +H
+ Ky (——x)
¢ 1-H2
2A_ + H
+ X_* (=————)
I 3H
2AH + 1
+ o+ ( - )
I 3H

Evaluating at the wing surface, the spanwise Pressure Integral
becomes

P =c, - (3F+9 | (6.33)

iii) The Axis Solution :
Substituting equation (6.20) into the total formulation of
equation (6.18) and collecting like terms associated with x, s the

formulation for the axis solution, with the transformation ,

-/F(Y),g) =‘7"(’79"§)+/\D
V(n,g) = viy.g) +re
T (rg) = wlnig)




2 ~ Py > bar Dy -
(v -1)/13”+27251;g+(c; - 1) 1§§+2(MD?+§4§)—0

r*?'!l’,2+‘§’l)7;= _foq

[ vir e con- 7
Y]’Uf7+§w 13(.

g
+ [HBO-(AO+H)§ J*kg:o e
c[g(;>-cg'(.;)]

(6.35)

2=l




-1t is seen that the axis-solution formulation is the same as the
formulation of the mean flow (equatioﬁs 4.1) and that of the in- |
Iphase flow (equations 6.13). The local solution, if one wishes,
can be éasily obtained following the same method of seolution (equations

4.2) given by Hui.
For a more direct appfoach, a global formulation of equations (6.35)

is more desirable. Hence, the spanuwise integral of pressure 7? is

defined as
2

l-y) o
d [’E(’z,g)]= f)'(7,§)d§ = f(wy) (6.36)

-/l - 72 .

The spanwise integral formulation of equations (6.35) is thus obtained
in the same manner as equations (6.16), i.e.

2B,
3/2

(1-»{)




Again the values of «ﬁ; and ia; are replaced by their ovuter region

values ﬁb* and i;¥ . Hence the solution of euqations (6.37) is

(6.38)

From equation (6.34), the relationship is realized as

J1-n? | . |
Py = P (9:g)dag=F(xn) -2x0 1 -9*  (6.39)
- /1 _.72

Hence, the apex solution becomes

Heo,

fP(?)= 2 [(7;*')&0) 1—72-7\;—:7;

Evaluating at the wing surface, it becomes

H W :
] (6.41)

b =2 [-r0) - 5

. o
iv) The total solution : Global formulation
Based on equation (6.20) the total solution of equations (6.21)

in the spanwise integral form is derived, i.e.

S [PMg )] = PMsm) =3[@ (,5)] + %, 9Py, )

e P Pgum) =g PO exg p0p) (5.42)

where P(v) and :P()?) are given previously by equations (6.32)
and (6.40).
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Evaluating at the wing surface )? = 0, equation (6.42)

becomes

P (1)(§ ,b )'==§ P (o) + x, P(0) (6.43)

where P (0) and :P(D) are given previously by equations,_(S.SS)

and (6.41).




7. THE STABILITY DERIVATIVES

Previously in Sec. 4;2, the 1lift and moment coefficients were
defined for the steady mean flow. In what follows, general expressions
of forces and moments for in-phase flow and out-of-phase flow will be
defined.A Exact integrations of the pressure solutions (from Problems
A, B, C and D) obtained in Chapter 6, the stiffness derivative and

damping derivative can be expressed simply in algebraic form.

7.1 The Definition of the derivatives

i) The force and moment coefficients :
By definition, the normal force acting on the flat delta wing

(windward side) reads

p (X,0,2) dx dz

!
i}

S

wvhere S represents the area of the wing. Thus, the normal force

coefficient is defined as

Fy
2
3 RU, s

hence with the Ep defined in equation (4.11)

X=L z=x cotX
2 = =
C =3 Cp dx dz
x=0 - 72z=0
Clearly the lift coefficient -is defined as

C = (C, + cos o
(s}
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The total moment acting on the wing with pitching axis location

at §0 therefore follouws

=
il

p (X,0,2) ¢ (X = X ) dx dz

The moment coefficient is defined as

-

! M
b = 2
3 fU.SeL
thus
%=L r z=x cot X
2 = e =y = - - '
Ch = 5T Cp (xA- xo) dx dz : (7.3)
x=0 z=0

ii) The pressure coefficients

Defined by equation (4.10), the pressure coefficient

£ o= —2— (&_1)

P 'sz Poo

oo

where from equations (2.12) and (2.14)

Y WO p (o)

P =p + =2 [ps +€ p + ik € p(l) ] etkoT (7.4)

for the inner region;

from equations (2.12) and (2.15)

- . 1
P =Py + Py [e po + ik, € p ] e * (7.5)




Note that

k T
o

Now, the

= _ 2 0) L el (D
Cp..cpA + [ecp;, + iky€ Cp

* ol X,
c a ") 2 b
[ Pa | P ¥Yn2
P 1 7m°2 76-)
a =P [ MY ps] (7
\
2
M
(o) 2 [ Po\[3 o) (o)
C = -— P c
P o yn2 \ Pl A
« g oo
M 2
(0, R e
P . = 2 Poo /| Uoo |°
o O(?O(o me A »
Note that to write (C_ ) and (C_ . ) is equivélent to
4 oLy, P’ ar oo :
oC 3 C : :
writing ( == ) and ( —=) with o/ =of + € .
0€ ey di€k €0
‘ QL . ‘
Furthermore, note that k = T and is related to k0 and k, as
U oo
Ko ="u K >
0
(7.7)
Uoo
k*_u*k b
Thus the Ep in the outer region can be expreéssed as
t =c +[€c° + ik€ o C T ] ikxt (7.8) a

i
~
ot
It
)
ot |

Cp in the inner region can be written as

)

ik T
e o
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continued ...




Py :
{ £ 0 =—ts (=) p° (7.8) ¢
P p
<« YW oo
; _
1 2 * ux 1 . _
\Cp'—Y 2(p )(U“)'P - _ d
& Nw oo

iii) The stability derivatives :

.Next, define the force and mcment coefficients in the same form as

equations (7.7) and (7.8), i.e.

e In the inner region : The normal force coefficient reads
o (o) L (1) ik T -
CN = CNA [6 EN + ik§ CNac e” o a

o> o,
z=X cotX :
where '
C = X dz - : , o b
( NA cotx
x
(7.9)

z=x cotX

{ CN(;) = CDtX/ ] C(o)dx dz | : c
X=0 .“

z=x cot X,

L CN(‘l) = ﬁ# / C (l)dx dz d
(-4

*
Note that from now on the limit 0(“}0[0 is dropped for convenience.
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With the lift coefficient

-

+[6 cL(°) + ik € cL(.l) J . etioT
o< (2.4 :
K> o,

the moment

[~ (o) + iK€ lec (1) . elkoT
Xy X,
ix=1 z=x cot X

C o (x=x_) dx dz
p (9}
=0 Jz=0 4

‘x=1 ¢z=x cot)Y

(o)_ (o)
-C = c (x = x_) dx dz
< l"I(>< otx o 0 po( o]

x=1 s z=x cot X*

(1) 2
C“CN = .. soty Cp('l) (x ~ xo) dx dz

« x=0 Jz=0 &

¢ In the outer region :

the normal force

+ ik € CNl J .

% s ec,

x=1 z=x cot X

C_ dx dz
. Px
x=0 =x cot X ,

continued ...




x=1 z=x cot X
o o
CNo( - cot)(/, [ dx dz ' ©
z=X cot)(* '

(7.12)
z=x cot X
1 .
= - d
CN . cotx / dx dz
x x=0 =X cotx*
the 1ift
1l ik, t .
C, = C, +]€¢C° +ik€ C .oetx a
L Ly { Lo( L |
oL oy
( CL* = cos 0(9 . CN* b
o o (7.13)
{ CL = cos O CN c
o
1 1
L CL. = CcOS(X °* CN d

the moment

' o\ . 1 ik T
Cﬂ = CM*+ {g (—me)+ 1k0€ (-Cmo_c)] . e o ' a
. oL KL,

x=1 g z=x cot X

C. = L (x -=x) dx dz b
’ My cot Y Px 8]
=0 Jz=x cot x,
' (7.14)
g Fx=1 [ z=x cot X ,
o 2 o : '
( - Cmoc_ cotx Cp o((x - Xo) dx dz . c
x=0 z=X cotX*
x=1 7 z=x cotX
1 2 1
\ - C .~ = ‘C 7 (x - x_) dx dz d
N& cot X P& 's]

J x=0 z=x cot x ,
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- Te2 The evaluation Qf the Stability Derivatives

1) The derivatives in the inner region :
Substituting equations (7.6)c,d into equations (7.10)c,d and
(7.11)c,d and after the simple integration the contributions to

the stability derivatives become

) 2
(o) cos & 2 an P (o)
Lo =[ coto"(m.,f N R (7.18)
where _
{I*(o) .
' I(O) = % P(U)(O)
’ ' )
and _‘_p(°)(0) = f p(o)d ¢ » given in equation (6.17)b
-1
2
el [, 2 ’Ymo;g_.(%_x).l*(o)
M x A cot X ’Tmof A [ o _
) (7.16)
, 2
(1) cos & 2 T p.u ) (1)
P Paereioy Ry (7.37)
I*(l) - C, (1) )
I 1 X
1 = L P+ 240
2
e a2 Tl PoY 1Y (7.18)
P XeotX Ym2 A P U
n, M - ¢, u®

a2 2 Po) +x, G40 =3P (o) - x ZGP0))

whers 1? (0) and ff>(0) are given-in equations (6.33) and (6.41)

respectively.,




where

where

Substituting equations

ii) The derivatives in the outer region

(7.8)c

2 Ps

and (7.8)d

into equations

(7.13)c, (7.13)d, (7.14)a and (7.14)d, after some simple integra-

vfion prbcedure the contributions to the stability derivatives become

. C,. = cos & — *p (1 -GecotX,) (7.19)
b ° Tn2 e ¥
A
0O = tanX
p® is given by equation ‘' (6.1)a
-c’ =¢c° - ( -;-- ) (7.20)
< P °
) o
CN“ -.secOCU . CLoc
Pe Uy A
CLl = cos & | —2 T %(1 - 0 cot X)) 1 (7.21)
a o Tn oo “ oo
o0
it = 2a +C (cot X + cotX,.) + 3D
1t x/ T OY
Ays €, and D, are given in equations (6.4).

: P,u
A *
-t =% (1-Geot X,) =2 2( - )J 11t (7.22)
& ¥ 1" \Peo Yoo
1 2
117 = D1 = x 11, = x © 11,
11 =+ [3a, +=c. (cot X + cotX )J
{ o 2 172" *
11, =2 (Al - le) + Cl‘(cot X +cotX,)
\ 11 g 4. =T, 3 +C. 8 (equati
5 = 3 dlg )whera_ d10 = Cl 5 * Cz 8y - D {equation




iii) The total expressions :
The total expression for the stiffness derivatives are obtained
by adding the ones in the inner region (equations (7.15) and (7.16)

to the outer ones (equations (7.19) and (7.20) ), i.e.

the lift :

(7.23)

the moment : ' i
-c, = "Cm(O) -cm" (7.24)
-4 <

Similarly, the damping derivatives are obtained by adding equations

(7.17) and (7.18) to equations (7.21) and (7.22), i.e.

the 1lift :

- ¢ (1) 1
c,.o= ¢l g

o< & <

(7.25)

the moment

M,

-C = .cm(l) c ! : (7.26)
X (-4 ‘ : :




73

The Stability Criteria

It is desirable to find the dynamic stability boundaries for
design purposés. When the damping moment Cm & is‘negative, it
indicates the wing oscillation is stabilizing. While the dahping
moment Cméz ié positive, the wing oscillation becomes destabili-

zing. Hence the dynamic stability boundary is defined when the

loscillation becomes neutral, this is represented by demanding

C = 0 (7.27)

Explicitly, equation (7.27) should read, by combining the expressions

obtained in equations (7.18) and (7.22) ,

. .
[%—D—ﬂ?(o) + De1L, | ><02 + ))c- I, -

))b(f(ﬂ) --I’(U))J

3

[ 110+—‘%9]?(o) ]

=0
e a
L
. 5 (7.28)
where 2 P, Y, RN g,
1) i L4 L] . b
D an 2 Peo Yoo A Akcotkl
2) 2 P* % cot )( - cotX*
— L] . m——— c
ne ”fmof o Yoo 3 cotX

Far given CXO s, X and 4 , stability onndaries are presented in
the Moo = X, diagrams as shown in Figures 24, 25 & 26 . For
given M , Xg and 7y , the stability boundaries are presented in
the X - X diagram as shown in Figure 27 . It can be generally
stated that these unstable regions coccur only when the given flow
conditions are near the shock detachment zone (see Figure 2 ), for
both flat delta and wedge cases. It is also observed that in the

iﬂoq - o(o diagrams, the peak of the stability boundaries occurs around

1 1 .
Xy = for wedges and X, =3 for flat dglta wings.
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. e
The peak indicates the critical Mach number M., of the

instability, and also the critical pitching axis location ';; .

Pal
The critical Mach number M_ can be obtained from the condition
when equation (7.28) provides double roots of x_ = and the critical

~

pitching axis location X is simply given by

2 ' Y
Y, -P(o
| un_oivco) P (0)
. ~ c 1 3
x, = = ( (7.29)
Vo J
—= P(o) + Y _11 ~
2[ 3 P(o) + ¢ 11, -
\ /

In the case of X = 0 , implying DD =0, equation (7.28)a

*
can be written simply as

4 o x24+2( g )x -2a =0 (7.30) a
10 "0 3 V1 10/ "0 21 _
_consequently it yields
N 1
X, = 3 (7.30) b

This result seems to represent a conjecture based on observations for
all the cases of flat delta wings, that the critical pitching axis
locatioq is independent of the given flow condition. However, no
proof is given here as the general form of x_ = in equation (7.29) is
quite involved.

On the other hand, for the case of ‘one-side' wedge (essentially
a flat plate), with the pitching axis located on the surface, the

stability boundary, as the two~dimensional counterpart'of equation 7.28,

Note that C, cotX > 0 as X-> 0
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g x2+ 3 (A -d )~ = =0 (7.31) a
consequently it yields
:20 = '%' . | ‘ (7.31') b
744 The limits of Cmo(ar;d. Cy ., @8 X-=> o
One question may arise as to why fhe limiting case of cmck for

a delta wing as X - 0 gives different values to that for a one-sided
wedge (see Figure 19 ). For the same reason, one may ask why the
critical pitching axis location Qo differs in both cases (see
equations (7.30)b and (7.31)b>. . Thié may be explained by the fact
that Cm‘k wedge is defined by a single integral bu? Cm‘k delta is-
inherently defined by double integrals; hence,; even in the limiting

wedge by a factor

case as X » 0 of Cm‘k'delta, it differs from C

Mo
due to 'moment! of one-order higher. For example, at the same flow

condition for a wedge and a delta wing (of X ) with Xy = 0 whoss

out-of-phase pressures read respectively

pl wedge (x, 0) = & (7.32) a

]
1 X
pl delta (x, 0, 2z 3 X) = Apx + Ciz (7.32) b

Numerically, as X=>0 AL Ay and C;~» 0

Pwédge

becomes (see Hui AIAA, 1969)
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However, in using them to evaluate for CN&( .y for the case of

wedges

for the case of delta wing, by equation (7.26)

1 1 '
1im  ‘m =Ly, = 2M (7.33) b
o.(,delta o
X*o
Thus C. . wedge
mee = 2 (7.34)

CN & delta

X»0

This can be observed in Figure 18.
Consequently, the same explanation is responsible for the
different value in QO for both cases. Also, for stiffness moment

cFlo( s the well~known fact that the aerodynamic centre ( the neutral

static stability, i.e. Cmcx.= 0) of a wedge and of a delta wing

occur at x_ = L and x_ = is due to the same argument presented

o~ 2 o

KN

above.

7.5 Stability Derivatives for two-sided delta wings

The purpose of introducing a two-sided delta wing (see Figure 1-H)
is a heuristic onse. It is difficult to justify by only studying the
oute; surfaces of such a wing witﬁout considering the internal flow
field within these two surfaces, particularly for cases whers M, is
low or C(O is large. Because the internal flow field may be subject

may

L t
A
1 1
Cr T oL pwedge x dx = 3 (7.33) a
|
to vortex separations and/broduce internal shock waves as a result of

leading edge expansion, both are of a complex nature.
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In order to compare the results of the present theory with those
of a wedge (pianar case) and of a cone (axisymmetric case), only the
contribution from the ocuter surfaces of a‘tw0~sided delta wing are
considered. Besides, as the external flow field is enclosed by the
attached shock waves, the effects due to the internal flow field
mentioned above may be subject to a separate study.

, Hence, with the pifching axis hO defined from D. to 1 (see
;Figure 1-H, hO = xo costxo) and the reference plan form area
s' = cot‘?(‘ sec o the out-of-phase lift and moment for the two-

sided wing can be written as
In the inner region,

x=sec & z=x cot X,
S (1) _ 4 | ° |

(1) .
L & —-———-—-——mtXSBC“O cp dx dz (7.35)a

x=0

| x=sec z=x cotX,
c (1)
“ & cotheco(‘I ] (x = h oG0S X ) dx dz -
x=0 =0 ~ (7.35)b

"In the outer region,

x=sec o z=X cot‘x

1 = dX dz
L X cotx seco(
z=x cot X,

Xx=sec o(o z=x cot X

1 4 ,
= 1
M & cot X sec o cp (x - hocosoco) dx dz

z=x cot X,

(7.36)b




where h0 represents the pitching axis location lying in the center

plane, parallel to the plane of the free stream and 0 < ho £1.

Making use of equations (7.6)c and d, equations (7.8)c and d,

equations (7.35)a and (7.35)b become

_ 2 DD N hy cos &

=(1) _—— 5 L)+ P (o) (7.37) a

€ = cosool |° 2

ol )
f
~ 2 h cos&
= (1) D 1 ) )
o & - ) P (0) + h_cos of_ -
M & cosSOLo 4 3 o o
1 h0 cosol0 , ‘ :

. (5= ) 4 (0) } (7.37) b

and equations (7.36)a and (7.36)b become

= 2 )) -

! = C .)2a. +¢C, (cot X +cotX,)
. 3 1 1l *
-4 cos o(o

N
+ 3 dyg hcos oL } (7.38) a

= 2 ) c
=1 I _1 }
-Cy . = {(2 2 h_cos olo) [Al + (cot X+ cotX,)
o cos 0(0

(2 -3h ) h . 4 (7.38) b
+ (2 - ocos()(o 0r:c)s O(O 10 .

Finally, the stability derivatives for a two-sided delta wing read

EL&z ;L(t)k + —ELI& (?.39)‘
"'E‘m o= (-—E-M(lé)() +(—§mlo_() (7.40)

In Figure 13, the damping derivative (equation (7.40)) for a two-sided

wing of X = 30° is compared with a wedge and a cone of semi-apex

angle of 01.0 =9° .,




8.1

8. RESULTS AND DISCUSSION

In this Chapter, a complete description of the figures (from
Figures 2 to 29) will be given first. Subsequently, in the rest
of the sections, a full-length discussion will be carried on with
regard to the neuw coptributions due to the present theory, its

applicability and its limitations.,

Description of the figures

Figures 1 (from 1A to 13J) are all sketches, not necessarily

" drawn to the physical scale, but to illustrate the descriptions in the

text. The solid lines shown in Figure 2 are the shock-attachment
(to the'leading edges) boundaries, based on equation (A.9). Uhile
the dotted lines are the sonic lines, Eésed on equation (A.10). It
is seen that as X = 0, the attachment boundary of the flat delta wing
approaches to that of the wedge. For axisymmetric flow past a cone,
the apex shock attachment boundary encloses a wider range of No; and
c(o (the apex angle); this is expected. In Figures 3, 4 and 5,
the shock aﬁtachment boundaries and sonic lines are presented in the
X - X diagrams for the flat delta wings ( [ = 90°) and caret
wings of small bend ( " = 80°, [ = 60°), reSpgcfivaly..

The details of calculation are given in Appendix A. It should
be pointed out that the narrow regions enclosed by each solid line and
dotted line represent a non-uniform, shdck—attached flow field, confined

by the .3D Mach cones. Since the present theory is based on a uniform

flow field, the valid region of applicability should be bounded away

from the sonic line, not the solid line. This point will be further

elaborated in Section 8.4 .
A typical pressure distribution based on Hui's theory (Ref. 7)

is presented in Figure 6. The pressure is calculated according to
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equation (6.4). When compared with other numerical sglutions
(Refs. 5 and 6), the overall deviation is less than 2% except near
the sonic line (z/X = .47). These deviations may be corrected by a
second order approximation (i.e. @ (‘xz)) (see Ref. 7). Further
discussion on this point can be found in Section 8.4 (ii) .

Figures 7 and 8 show the in-phase 1lift CL°4 (or the 1lift

slope) due to changeé of mean incidence < o and sweptback angle X

respectively.

In checking with Tables 1 and 2, together by observing Figure 7,

it can be stated that CL and CL<x are of small deviation from its

corresponding C value of a wedge. For steady 1ift, as stated in

Lo e
Chapter 4 (Sec. 4.2), the deviation appears to be no more than 4% for

Mea=4, X = 50° and o(o < 150 . For the same case, the in-

phase lift, as calculated by all three methods by exéct differentiation
(equation (4.17)b), the largest deviation is no more than 8%, oiven
by the 'linear' method. Howsver, when the flow region approaches the
detachment zone, the in-phase 1ift due to 'local-stretched' and 'global-~
stretched' deviate from the wedge value rather rapidly. In the normal
applicable ranée, say 0 < Oﬂ)$ 15° s these two methods provide

almost identical results for €. (see Table 1) and CLoc .« This

then partly justifies the later application of the ‘'global-streiched?

method to the unsteady flow. When 0(0-9 o, Cle due to Miles'!

quasi-steady theory is the same as CL sy Given by the well-known
0 x

2
formula CL = > = L,516 for M_ = 4.0 , independent of X.
o Mo -1 =

o0
Figurs 8 indicates CL is generally insensitive to X variations,
oL
particularly for cases where c(o is small. A similar conclusion

was stated by Babaev (Ref. 4) from his observation of the normal

force. The plots of CL are based on the perturbation method
o«
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(equation (7.10)c) and on the exact differentiation (equation (4.17)b).
The difference between these two curves represents the measure of the
interaction due to the in-phase wedge flow and the 3-D mean flow.

Note that when c(o = 5° the difference becomes indistinguishable.

- This is éxpected, since the global featuré'of the 3-D mean flow becomss

essehtially two—dimensionél, the interaction is negligible. The study
Iin Figure 8 thus partly»justifies the later application of the ‘perturba-
!tion-method; formulation in the inner region (namely,.dropping the terms
!of‘ 0(€é§ ) for unsteady flouw (see equations (3.28) and (3.30) ,
Problems B and D ). |

Figure 9 illustrateé the application of the similarity rule for
the non<affine wing-body combinations. For a fixed added volume‘para—
meter, G}-: 1, the addéd volume need not be of affine geometry.
" For moderate and high Mach number it is clearly‘shownifhat the caret

wing with added volume produces the highest C Careful study of

_ Lee *
equations (5.26), (5.27), (5.29) énq (5.30) reveals the similarity
functions and their derivatives behave as Jo 5 Joac < 0, 6}[0, %x> 0
and €7; ,. i7;d:> 0. Hence, it can be étated that ths sweptback
effect reduces both CL and CLo< y whereas the volume and small--bend
(dihedral) effects increase both CL and CL o If is also important
to note that in the calculation scheme, the reference line of -the basic
vedge flow of these configurations should be carefuliy chosen (see
Figure 1~F) . |

Figure 10 presents the coﬁparison of the present theory (linear
formulation) and the experimental data in the low supersonic rahge.
Based on a model (wing A) of X = 49.1° and thickness T = 0.05
suggested by Orlik-Ruckemann et al (Ref. 48), Cch is éalculated

according to equations (5.30) and (5.34). In the calculation scheme,

N .
=X, = G;,: 0 and the small~bend parameter T assumes a negative
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value. Since upper and lower surfaces of the wing A are symmetric,

the total Cmo‘ is obtained simply by multiplying the CVI« of one

side by 2 . Good agreement is found with Hall & Osborne's data
(Ref. 49). Figures 11 and 12 show the effects of pitching axis
location X, on the in-phase moments at moderate and high Mach numbers.

It is observed that the effect of X, on (% 'is.not large for high

Mex

Mach numbers., Figure 13 further compares the in-phase moment and

out-of-phase moment CM . (or damping-in-pitch) for a wedge and a flat
x

delta wing ( X =50%) at M., = 4.0 and o =15, Figure 14

compares Cm<z for a wedge.and a wing at a higher Mach number (M., = 10).

It is seen that a wing has more positive damping than a wedge (i.e. - CNd;'

is positive) when x, is placed in the neighbourhpod'of the apex.
‘Figure 15 compares the contribution of the damping-in-pitch from

the inner and the outer regions, In the case conside?ed contributions

from both regions are of the same ordsr. However, if 0<0 approaches

zero, the outer contribution dominates and C becoming insensitive to

M &

)(, approaches to ths corresponding value of the wedge; the latter

fact can be cross-checked by Figure 21. Figure 16 exhibits CM' ~ X
. &

variations for a wedge, a two-sided wing and a cone. It is seen that

for all X, (o ¢ X, € 1), the present case indicates the cone gains

highest damping. When the out-of-phase normal forces CN<& for these

configurations are compared at Xg = 0 , similar trends are found in
the low to moderate Mach range (M_= 2,~ 7. ).

Figures 18 and 19 study the effect of free stream Mach numbers
on CN¢k o In Figure 18, drastic changes are observed for cN<k at .
different X when the flow region approaches the shock detachment zone.
In Figure 19, it is seen that when M, becomes higher, the values
of Cméc for different X are rather insensitive to the free stream Moo *
Note that when X~ 0 s Cm é(.for a delta wing does not approach to Cm&
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for a wedge (lowest line), but differs by a ratio of 2/3 (equaéion
(7.34)). An explanation of this was given in Section 7.4.

Figures 20 and 21 investigate the mean incidence effect on
CN&( . In these two cases studied, it seems that the effect of c<°

appears to be more important than the effects of M_, or 'j( .

. at x_ =0 is observed. Also,
M o¢ o

Particularly, a rapid change of C
it is noticed that in Figure 21, when the flou region approaches the
shqck detachment zone, CMc& for the delta wing and for the wedge

break down along gradients of opbosite direction for the same pitching
location. X (see (i) qf Sec. 8.4 for further discussion).

Figures 22 and 23 examine the suweepback angle effects on Cha
Similar to the earlier finding in Figure 19, less dependence of CMcx
dn X is obéerved for Mo =10 than for M_= 1.5 . The highest
damping is obtained when X is located at the wing apex in the former
case; uwhereas in the latter case, it is obtained when Xq is placed
at the trailing edge.

Figures 24, 25, 26 and 27 are plots of some stability boundariés
for delta wings and wedges. The detailed derivation and partial
descriptioh of these diagrams can be found in Section 7.3 . Further
discussion and common features of these stability boundaries cén be put
forth as follows :

1) The unstable regions for delta wings generally shift rearwards
from the unstable regions for (one-sided) wedges (Figures 24,25 & 26).
This is due to the locations of the critical pitching axis X0 for both
cases being shifted by an amount of l/6 (see equations (7.30)b and
(7.31)b).

2) 1In all cases, the Qdétable regions occur and gradually enlarge

when the flow region approaches the zone of shock detachment (Figures

25 and 26).
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3) Unlike the stability boundaries for wedges (e.g. Refs. 23 & 37)
and for wings given by potential theories (e.g. Refs. 19 and 20), in
some cases of the present study (Figures 24 and 26), closed boundaries
(of bubble shape) are formed. | In Figure 24, two separate unstable
regions appear, one.of them occurs near the trail%ng edge, and extends
downstream. The bubble-shape stability boundary is not new, and occurs
in the results of Miles' study (Ref. 14, p. 83) for rectangular wings.
:However, to the best of the author's knowledge, thé appearance of two
lseparated unstable regions has not been claimed in the previous stability

analysis for either wings or bodies. Whether or not the lower unstabls

region exists needs further investigation (see (i) of Section 8.4).

4) The occurrence of unstable region near the trailing edge and
further downstream is interesting‘and yet needs careful re~examination.
As these regions (Figures 24 and 27) occur very near to the shock
detachment zone, it is félt that its existence may be subject to the
question of the valid region of the present theoéy. This point will be
further discussed in Section 8.4 .

From Figure 2 to Figura 27, all cases assume perfect gas of

specific heat ratio of Y = 1.4. On the last two figures, Figures 28

n.42

and 29, effects of real gas of different specific heat ratios (7 = Y
n= 3,5, 7) are investigated.
In Figure 29, the effect of ¥ on C, . are shown for a wing of

M

X = 50° « . It is seen that a decrease in'damping occurs at lower Mach
number M ., = 4 , when the value of -y decreases.,

It is realized now, unlike the Newtonian-flow model, the bresent
study can let M,  approach to infinity and let -y independently vary
(without assuming -y = 1 simultaneously). Or one can fix -y and vary
M, independently. Hence, even in the hypersonic flow range; the

present theory embraces a larger scope of applicability than that of the
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8.2

Newtonian theory. = This fact has been pointed out earlier in one aof

Hui's studies (Ref. 53 , Aeronautical Acta) of hypersonic flow.

The fleow field solutions: new contributions

In the following sub~-sections, a brief review will be made in order

to assess the new contributions due to the present theory.

i) The steady mean flow ¢

The uniform flow solutions in the outer region for a delta wing, a
caret wing and a V-shaped (or diamond) wing have been redérived in a
unified manner (Appendix A). Previously, these solution; have been
originally obtained by Hui (see Refs. 7, 8 and 54). However, these
éolutions he obtained are not unified due to the fact that the geometrical
relationship is specified individually for each case considered. It is
shown in Appendix A and Ref. 51 (Liu) the geometrical relation of the

flat delta wing becomes a special case of that of the delta-wing family,

which also contains the caret wing and the diamond wing.

ii) The mean flow and the in-phase flou :

(a) Differentiation Method: Exact differentiation of Hui's mean flow
solution provides useful analytical formulas for CLc{ and Cmc‘ (see
equations (4.17) and (4.18) and Appendix D). )

(b) Similerity Rule : Based on the 'linear' formulation (Chapter 5),
the application of the spanwise integral technique yields the generalized

similarity rule (Section 5.4). The rule states that for given M,

and czo » the steady lifts, moments and the in-phase lifts and moments

~ can be expressed in a combination of terms. These terms separately

account for the sweepback angle effect (X), the added volume effects
((Tb), and the small bend effects (T). This rule is most convenient

for practical uses such as gernerating a series of data from one single
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experimental result. In fact, it is a generalized similarity rule

for non~affine bodies of the added volume; it includes affine body
shapeé as a special case (see Fig. 1-H). This is because the lifts
and moments only depehd on the global parameter of added volume, namely

G, » but do not depend on the body shape distribution, namely c{c).

(c¢) Small bend approximation : The classical technique of thin
wing expansion (e.g. see Van Dyke, Ref. 56) is formally employed in
Chapter 5 (Sections 5.1 and 5.2) to account for the small-bend
effect of a caret wing ( %‘)’0) or a VU~shape wing ( T < 0). For
the first order aﬁproximation D(;%), the result shows good agreement
with experiment (Figure 10). Second order approximation (or higher)
(see equation (5.6)) can be carried out in a straight-forward manner
if one wishes to account for larger bend effects, without difficulty.
Hence, in Van Dyke's sense (Ref. 56), the approximation is a 'raticnal!
one.

(d) Applicable configurations : (see Figure 1-F)

In combining the methods of (a), (b) and (c), the lifts and

C and C

moments (i.e. C y Em » O M o )

L of a number of vastly

different configurations can thus be calculated by the present theory

(Chapters 4 and 5). Some examples are shown in Figures 1-F. Two

categories. are specified; namely, the large - X, case ( o > 0)

and the small o(  case (T >, X 2 0).

0
In the former case, the theory is applicable only to the windward
side of the wing-body (see Figure §). In the latter case, closed
profiles can be treated provided that the thickness T is alwaysklarge£
than cio so that the shock waves are attached on the upper and the
lower surfaces. These surfaces need not be symmetrical (e.g. full

caret), and CKD need not be zero. When the wing is symmetrical




(e.qg. %l = %2 in full diamond wing) and it is placed at zero
incidence, the present theory should be compared with the results
provided by previous non-linear potential theories (e.g. Landahl,

Ref., 22).

iii) Out-of-phase flow :

(a) Exact outer flow solutions : Within the frame of small-
amplitude and small~-frequency oscillation (to the orders of 0(€ ).
and 0(€ k)), the solutions of Problem A and C obtained in Chapter 6
are exact. Referring to Section 6.7, solutions '(6.3) can be
described in the following observation. It is clear that for given
conditions M. , X, and X , the gradients of the out-of-phase
pressure, density and velocities (i.e. Pl, Rl, Ul, \ll and ml) are
all constants (see (iii) of Section 6.2). This implies that all
these flow properties and velocities are constant along the parallel
planar surfaces. Hence, the nature of these solutions are similar to
the conical flow field in which flow properties and velocities are
constant along conical rays. In fact, solutions (6.3) are special
cases of a so-called 'quasi-conicai' flow, a generalized conical flou._
.(See equation (1.2), n =1, or see Ref. 57).

(b) Quasi-conical flow : Suggested by the solutions of outer
flow, the inner flow (Problem D, Section 6.4) is proved again quasi-
conical, but in a more general sense (see equation (6.20)). In other

words, the solutions of Problem D can be written in a similarity form

namely, F’(l)(g,YI,C):gn 6)(77,<), (n =1 for flat delta).
This finding is confirmed by checking all the boundary conditions
considered (from equation (6.18) to equation (6.21). Hence, Problem D

can be solved as a reduced 2-D problem. This enables a formulation of

C? (? ,Q) alone (see equation (6.21)).
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It is observed that although the quasi conical form has been
suggested previously in Ref. 17, it was only based on the unsteady
potential flow model and no proof was given.

(c¢) Supefposition solutions : Since the present theory is based
on a linearizgd formulation, solutions of Problem D can be treated
5y superposition of twe solutions (see equations (6.20)); namely,
the apex solution and the axis solution. The apex solution ((ii) of
Sec. 6.4) corresponds to a case where x0 =0 , and the axis solution
((iii) of Sec. 6.4) corresponds to a case where O < X, £ 1 (xolx D).
While the apsex solution is quasi conical, the axis solution is conical.
This method of solution in low frequency unsteady flow is new, which |
may also be possible in épplication(to the unsteady flow analyses of thin"
axisymmetric bodies or to low aspect ratio wings with shock waves.

(d) Higher approximations in k : The present study is restricted
to the slow oscillation of a rigid delta wing planform. In the rangse
of hypersonic flow, however, the oscillatory frequency, Cb , need. not
be small, as the uniform freestream velocity U, becomes very large,

- rendering the reduced frequency k considerably small. Thus, it

may be remarked that in the unified range of Mach number considered,

the stability derivatives obtained here are accurate enough for slow

oscillatory frequencies so that @«-U—:-?- .

From an aeroelastician's viewpoint, it is also important to study
the bending oscillaticn of an elastic delta wing of given modes or to
perform the flutter analysis. In these cases, higher érequency
solutions are most desirable; therpresent formulation indeed admits
higher approximations for k , as it is a perturbation préblem

expanded in small parameter k (see equations '(2.14) and (2.15)).

Hui (Chapter 111, Ref. 34) previously pointed out that the exact
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formulation procedure for a wedge can be carried out to any Arder in

k (k <. I). It is believed that similar statement can be made for
the present case, as the present formulation is a formal genefalization
of Hui's work; .hence, it should preserve its nature of being a

rational approximation in k .

iv) The pressure formulation :

In the formulation of the inner flow problems of (i), (ii) and
(iii), tHe flow dependent variables are eliminated to a single variable,
namely the perturbed pressure. The pressure formulation for the steady
mean flow was first proposed by Lighthill (Ref. 71), Malmuth and Hui
(Refs. 52 and 7). The pressure formulation for the unsteady flow
equations was originated by Hui (Refs.>34 and 37), but he did not
completely forhulate these problems in terms of pressure alone. The
basic difficulty in échieving a pressure formulation arises from the
unsteady shock boundary condition. This was overcome, however, by
realizing the ou£—of—phase flow is quasi-conical (see Sec. 6.4).

The benefits of pressure formulation are many, namely :

(a) it reduces the problem to oné.similar to the unsteady
potential flow problem, with the additions of Mach cone and shock
boundary conditioné (the present problem is a free boundary problem);

(b) it allows the application of the spanuisé integral method;

(e) its solution can be readily integrated to yield forces and
moments - an exact and direct way of obt#ining damping=in=-pitch

(d) it can be readily extended to the problems of a delta wing

e,

in rolling and yawing oscillation; the only alternative will be the ’ (//

tangency condition.
In checking out the pressure formulation, the unsteady wedge flouw
was re-derived as a special case of the present 3-D formulation (see

Appendix G ).
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8.3 The Method of Spanwise Integration

In their previous studies, Malmuth and Hui (Refs. 45 and 46)
originated the method of Spanwise Integration to examine the so-~
called 'area rule'! in hypersonic and supersonic flows. In the
present study, this method is further generalized to account for the
.unsteady flow (Chapter 6) and is used to construct the generalized
similarity rule (Chapter 5). Since this method is being employed
extensively throughout the present theory (Problems B and D), it
is essential to re-examine its principle and its pfactical applica-

tions.

i) The principles : The method is essentially an integral

method, which integrates 6)(7?,§) say, over the spanwise direction
 , resulting in O0.D.E. formulation in ]?(v?) (see equations
(6.24) and (6.25)). It resembles the Fourier transform in the sense
that the end point values at Mach cone for 63(v7, g) and its
derivatives need to be specified. On the other hand, unlike the
Fourier transform, the present integral space is a pﬁysical one (in‘? )
and no inverse transform is available. The method yields an exacf
global information for steady or unsteady flow most efficiently. The
*local' (or the flow field) solution may be recovered from the global
one in solving the integral-equation formulation Ey a method similar

to that of Malmuth (Ref. 50).

ii) The present contributions :

(a) Full-range integration :

Only half-range integration, whose integration limits being
from £ =0 to the Mach cone, are defined in Refs. 45 and 46. In
Chapters 5 and 6, full-range integrations are introduced, whose limits
are from one side of the Mach cone to the other side (see Appendix E).

In this way, the properties in the centre line C =0 need not be
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specified. Hence, ﬁne difficulty encountered in the present unsteady
formulation can then be avoided.

(b) The operaters and the operation :

Operators représenting the full-range integration are defined
in Appendix E . Based on the definition of the full-range integration,
integrals involving odd-function integrands are identically zero (e.g.
see equation (5.17)). The operational rules thus greatly simplify
the scheme of integration. The effectiveness of using the operator was
cleafly demonstrated in Chapters 5 and 6 .

(c) Generalization to the unsteady flow :

In Chapter 6, Problems B and D are guccessively solved
by means of the full—range spanwise integration. The ﬁresent method,
therefore, is considered as a generalized method which includes the

global treatment of the low frequency oscillatory flow.

iii) Other merits :

| 2O
(a) The exact evaluation of a, : UWhen equation (4.2)b
and equation (4.9) are compared, it is seen that the latter expression

¥ . - . . .
of a is an exact one, as an outcome of the spanwise integration.

1
(o)
1

1 (or

Also, it should be pointed out that the evaluation of a
in Problem B) need not be carried out on the mean shock position
( M =H). 1In fact, if one applies the operator equation ( E.2 ) on

the mean flow problem, it can be shown that for M in (0 ¢ Y?é H)
]

2

remains invariant at any n . While this fact has not been
mentioned either in Refs. 45 or 46 .

Accordingly, the above finding may shed some light in obtaining
the 'local' solution of Problem D (see equétions (6.23)) in the
future.

(b) More direct method : The common practice in obtaining

C and Cm .

say, usually resorts to solving the unsteady flouw
X C

L&
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field solution first and then upon integration of the pressure results
in Forces or Moments. It has been shown that for the same purpose,
the present method is more direct in arriving at this global informa-

tion, and in the same time without loss of the exactness of the problem.

(c) Further spplications : 1In Chapter 5, the method is

applied to deal with wings of small bend and added volume (also see (ii)

of Sec. 8.2). It is possible that the method can also be used to deal

with these wing~bodies for unsteady flow problems (e.g. Problem D).

limitations of the present theory

In this section, the general valid region of the present theory
other restrictions will be investigéted. The non-uniformity of
mean flow solution (the linear formulation) will be discussed and

improvement of the perturbation scheme will be outlined.

i) The scope of the unified theory

By 'unified tﬁeory' it is meant that the flow region is unified
in its Mach number and it makes no distinction for supersonic or the
hypersonic flow so long as the shock attachment requirement is fulfilled.
However, the valid flow region is subject to the following examination.

(a) Applicable flow region : The region of anaiyticity

Referring to Figure 2 (the M - & diagram), it can be said
that the supersonic potential theory (e.g. Ref. 13) occupies a valid,
narrow region in the left-hand cérner, whereas the thin shock layer
theory (i.e. Ref, 42) is valid in the-upper left portion (or further
upmqrd) of the diagram. Hence, the requirement for the potential flow
field to be valid is that M, and o _ have to be low enough, but it
makes no restrlctlon on X , whereas for thln shock layer theory, both

M

o and 0(.0 need to be hlgh enough(and/ X be large enough)so that




the shock wave considered is situated quite near to the Qing surface.
The valid region of the present theory, however, covers the region
where both theories cease to apply. Instead of putting explicit res—
trictions on the parameters M, , O<0 and X , the present theory
only requires shock attachment to the wing leading edges.

On the other hand, the first two theories are based on the:free-
stream perturbation scheme and the present theory is based on the wedge
pefturbation scheme (see Chapter 1). In the former case, the basic
flow, say U, °, is independent of other paraméters such as c(o or

X . ;n the latter case, the bésic flow, say u, (or wu.) is
indeed a function of the given parameters, namely M., , o(o and Y
(and X ). These differences lead to the following requirements.

; Free-stream perturbation :

No explicit boundaries of the applicable region need to be specified.
The validity of the methods requires the perturbation parameter to be
small (e.g. for thin shock layer theory €< 1, €= (¥ = l)/( ’1+.l)
# 2/( A+ 1) W, sin“ex )

e lledge perturbation :

Explicit boundaries offths applicable region must be specified.
The perturbation parameter (e.g. X ) needs to be small only for the
purpose of linearization of the problem.

Therefore, the foregoing discussion ieads to the two fundamental
requirements of the basic-flow region in the present theory :

b Uy (or u,) and other flow properties (PO y P, «o. etc.) must
be analytic WRT the given flow parameters WM , X X and ’7-
(the regioﬁ of analyticity).

b U (or wu,) and other flow properties must be a uniform flow.

Rigorously the valid region must then be bounded away from the

sonic lines (the dotted lines in Figures 2, 3 and 4) pointing left-
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ward. In fact the sonic line shock detachment line ‘pocket' contains
non-uniform flow (elliptic in nature) but with the shock attached (the
region of shock-attached nen-uniform flow). It constitutes a
completely different problem by itself and is excluded from the present
theory. A thorough study of the basic~flow regions of a caret wing

at design condition has been given by Liu (Ref. 51). He has shouwn
]that the 'pocket' is quite considerable for caret wings at design.

'But for carét wings at off design or flat delta wings, it is compara-
'tively small, and becomes vanishingly small at high fMach numbers, say 10

(see Figures 2, 3 and 4)

(b) Other restrictions :
e The ratio of specific heats
As mentioned in Sec. 8.1 (Figures 28 and 29), the present
theory puts no restriction on (1 < < ?55-) except that the present
theory is not applicable for a gas.with dissociation or ironization
effects.
s The low~frequency assumption : k
The present theory only accounts for linear-k solutions.
®¢ A compression-side analysis
No expansion flow is allowed in the present theory. Therefore,
it amounts to two conditions for shock-attached flow

(1) olo> 1]

(see Figure 1-F)

or (2) Ty« and o 2 O

ii) The mean-flow solution :

The present theory is based on Hui's steady mean flow model
(Ref. 7). Consequently, it inherits all the basic characteristics

of Hui's model. Although Hui's theory compares favourably with many
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other recent numerical works in pressure distribution the model (the
linear solution, equation (35) Ref. 7) yields a square root singularity
in the pressure gradient along the span at the Mach cone*. In his
stretching scheme (equation (Sb) , Ref. 7), he is able to improve

the overall pressure distribution in rendering the solution uniformly

valid but keeping the singularity unchanged. Apparently, the 1lifts

and moments according to the stretched pressure formula would produce
Brrors as a result'of this ‘inherent singularity. The accumulative
error is negligible when o, or X 1is small, but it becomes notice-
able when c(o or X approaches the detachment zone.

It is recognized that the singularity of the surface pressure
gradient at the Mach cone does not exist. Roe (Ref. 60) has given a
finite slope formula for the pressure solution only valid at the Mach

cone~wing surface point. Otherwise, not even a local solution is

available at present.

In order to improve Hui's mean flow model, it is felt that the
formal procedure of Method of strained coordinate should be applied to
the whole problem once more. According to Crocco (Ref. 62), there
are two ways of applying the method, namely, Lighthill's method (Ref. 63)
and Pritulo‘'s Methgd (Ref. 64). Both methods require the second order
(in X ) analysis be carried out toc a certain extént; Lighthill's
method may be more suitable to the problem as the completes second order
solution is difficult to obtain. In fact, when carried out the dif-

ferential equation (in )(2) , in terms of second brder pressure, it was

*
Same behaviour is found in the sclutions of Malmuth (Ref. 58), and

Clark & Wallace (Ref. 61).




found that the inhomogeneous terms due to the first order-solption
amount to some forty terms. Transformation of these terms into the
new (strained) coordinate will further multiply this number many times.
The lengthy procedure makes the method become very involved.indeed.

An alternative way is by ths method of Matched asymtotic expansion.
Once the expansion parameters and the gauge function are properly iden-
tified , in principle, one-~term 'inner! soiutions (from the FMach cone
going inboard) can be matched to a one-term ‘outer' solution (from the
centre going outboard). In this case, it is possible that only first-

order (in X ) analysis is sufficient.

iii) The oscillatory flow solutions :

(a) The globally~-stretching scheme : The 'global-stretched!
solution of Problem B (perturbation method) was compared with the
'local-stretched! solution obtained by a differentiation method in
Figure 8. However, the comparison cannot be made for the t'global-
stretched' solution of Problem D (equation (6.32)), since the
'local' sclution (or the flow field solution) is not yet available.
In order to assess the accuracy due‘to the proposed stretching scheme
used for Problem D , it is desiréble to obtain the 'local' solution
from the formulation equation "(6.23).

(b) An improved perturbation scheme : The épproximate formula~-
tion of Problems B and D amounts to neglecting the interaction
terms (in coupling) due to the mean flouw and the oscillatory wedge
flow. Based on the new perturbation scheme proposed in Appendix H,
these terms ignored were explicitly derived. The proposed method of
solution was also outlined.

Basically, if one follows the global formulaticn ((ii) of Sec. 6.4),
the 'new' approach leads to the same eduation as equation (6.31)a ,

except with many more inhomogenecus terms on the =~ RHS .. This should




not present any difficulty in principle as the solution techniqus
for a second-order O0.D.E. is a standard one (e.g. the variation of

parameters). The procedure of solving the 'new' formulation may be

lengthy, it is nevertheless stfaightforward. It is suggested that

the 'new' formulation be solved so that the interaction effect ignored

in the present theory can be fully measured.




9. RECOMMENDATIONS

On experimental research

Among the literature available, to ths best of the author's
knowledge, little experimental data was published along the lines of
the present study. In terms of numerical comparison this makes the
assessmant of the present theory very difficult. For this reason, it
is first recommended that the dampings-in-pitch be measured in the
present flow region for a series of flat delta wings. In the first
instance, it is suggested that the sweespback angle be kept small so
that one can always check with the corresponding damping-in-pitch for

a wedge.

0On theoretical research

Following the discussion in Chapter 8, the following problems
are recommended for further studieé H

i) Steady mean flow 3
A refinement of Hui's delta wing soclution (Ref. 7) based on
an improved matching scheme is desirable((ii) of Sec. 8.4)

ii) Unsteady flow 3

a) The 'new' formulation based on the improved perturbation

scheme (Appendix H) sﬁould be carried out so that the

present approach can be fully evaluated ((iii)b of Ssc. 8.4).

b) The present theory can be immediately extended for calculation
of the damping=~in-yaw and the damping-in-roll for & flat delta

wing ((iv) of Sec. 8.2).

c) Since the region of analyticity ((i)a of Sec. 8.4) for a
caret wing at design is clarified (Liu, Ref. 55), a theory
can be readily presented to calculate its dampings-in-pitch,

in-yaw and in~-roll.
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(d) Based on the method of spanwise integration, the
present unsteady theory can be further generalized tb
include the effects of wing-body combinations ((iii)c of
Sec. 8.3). |

(e) Higher-frequency solutions should be evaluated so
that investigations such as flutter analysis could be

performed ((iii)d of Sec. 8.2).




10. CONCLUSIONS

A unified unsteady flow theory has been developed for flat

delta wings ﬁerforming slow pitching oscillations. The only

restriction imposed on the flow condition is that the shock waves

must be attached to the wing leading edges. Emphasis is placed

on methods of obtaining the perturbed unsteady flow solutions over

the compression side of the wing surface leading toc the calculation

of its stability derivatives.

In the present study, the essential contributions are :

1.

2.

4.

A similarity rule for the steady flow and in-phase flow cases

was shown to exist. The rule provides a convenisnt means
of obtaining lifts and moments for the delta-wing family

with added volumes of non=-affine shapes.

The out~of-phase flow is proved to be a 'quasi-conical'

flow field. The solution of the out-of-phase flow in the

outer region is proved to be exact.

- A pressure formulation in the inner region is made possible

as a result of the ‘quasi conical! pature of the flow field.

The method of spanwise intsgoration is generalized in the

full range in order to achieve a global formulation for the

out-of-phase flow.

In all the formulations, analytical closed-form solutions

were obtained.

The numerical results are presented for the stiffness . derivatives

and the damping derivatives plotted against a number of flow and

geometrical parameters; namely, the mean incidence, the freestream

Mach number, ths sweepback angle, the pitching axis location and the
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ratio of specific heats. The effects on damping derivatives for a
cone, a wedge and a flat delta wing were compared. Also, the
stability boundaries were given for a number oF.cases in different
ranges of Mach numbers.

Finally, critical assessments of the present theory are given.
The present work is to be considered a first attempt in the unsteady
Ping theory in which the shock-wave effect, hence the rotationality,
is properly accbunted for and Mach number ranges unified. Neverthe-
iess, a rigorous examination restricts the validity of the present
theory to the following conditions :

1) The given flow region must be bounded away from the sonic

lire (the region of analyticity);

é) The flow region is restricted to that in which the
interaction between the unsteady wedge flow and the
steady mean flow is smaller than the unsteady flowy con-
tribution due to the outer region.
The last restriction can be removed following an improved scheme
proposed in Appendix H , which is recommended for a future study.
It is also suggested that the present theory may be extended. to

study the rolling and yawing problems of wings of the delta family.
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A.)

APPENDIX A

THE GEOMETRICAL RELATIONS OF THE DELTA-WING FAMILY :
ITS DETACHMENT CRITERIA AND EXACT FLOW SOLUTIONS

The delta~wing family defined here generally contains three

types of wings with delta planform, namely

/4
i) the flat delta wing (r= > )
~ v
ii) the caret wing (r<r < 7
iii) the diamond wing (F<r s3)

Referred to the notation shown in figures 1-C, 1=D and 1l-E,
I’ is defined as the dihedral angle, while /7 is the dihedral (or
anhedral) angle corresponding to the occurrence of the leading-edge

shock detachment.

The unified expressions of the geometry relations

Four planes are defined first so that the flow-wing.geometry
can be related, i.e., the side plane, the obliqus plane, the (oblique)‘
shock plane and the leading-edge plane (see figures 1-C, 1-D and 1~E).
The first three planes are defined in Sec. 2.1, Chap. 2); the leading-
edge plane is defined as a plane which contains the leading edges of
the wing considsred.

The given parameters to the problem are Mes , 0(0, X s y%
and ¥ ; where X is the swept-back angle of the wing measured in
the leading-edge plane (X = X .for flat delta wing) and y% is

the design angle for caret wing or the thickness angle for diamond

wing ( w,bo = 0 for flat dslta wing).

From the geometry shown in figures 1-C, 1-D and 1l-E the

following relationship can be established, viz :
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6, = ¥+ & : (A.1)

o

6, = tan™* [tan 90/003 ‘)Z ] | (R.2)
7= tan~t [cot )?/sin y% ] (A.3)
/ﬂi = sint [cos [7/sin  x ] ’ (A.4)

A table is provided for equivalent angles in each case

considered :

Caret Caret .
of f design at design Diamond Flat Delta
Bo ‘)Do + o, | /3 oo o
X X X X X
\PO \/JO ¥o "/Jo 0
v,
r r r, [ 7,
r,:;. Fl ‘701 /"i 0
01 2SR Y /31 xy = I oy

- where fBo = Pt L, s /31 = ¢, + o, and X - tan-l[tan )-( cos}g]

Making use of the last row of the table together with equations

(A.2) and (A.4), the flow incidence angle o, in the obligue plane
can be found as
= 6, (Flat delta)

61 - [*i (Caret off design) (A.5)

6, + ["i '(Diamond) ‘




- " The free stream-leading edge angle on the side plane, T ,

is given from the projection of Uoo as
fC =17 . vl ]
= cos | cos &o sin X _ (A.6)
Hence the Mach number associated with Un is

Nn = Moo sin T (A.7)

Knowing M and oy » the shock angle /31 in the oblique plane
can be found by solving the oblique shock relations (see Appendix B),

i.e.

Y- 1 2 } 3 2 2
{ 1+ ; Mo § tan” B, = (Nn - 1) cot o, tan /31

1 2} -
4-{1 +3 (7 +1) M { tan /3y + cot ) =10 (A°8)

In the subsequent development, equation (A.8) is written as

Ry = B ()

when i =0, it refers to the given flow (Mo , OCO)

i =1, it refers to the given flouw (Mn ’ OCl)

A.2 The shock detachment criteria

Viewed from the oblique plans, the detachment of the oblique
shock wave occurs when the shock wave angle /5,, is related to the
normal Mach number ﬁn by the following formula (NACA 1135 eqn.(168),

Ref. 47 )

L2412 ~ 2 J/Q A4 2
Sujﬂl-dYﬁz (7+J)WI-A+-k7w-Umn + 8(7Y 1W% +15](¢'+1)
n

(A.9)

In order to present the detachment lines in the Meo - odo
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diagram or the X - OCO diagram (e.g. see solid lines of Figures
2, 3 and 4), an implicit calculation scheme is employed., In other
words, the given condition (Meo , oy X, %g) is altered to the
given condition (Mn, %, X . y%). Thus, specifying Mo /31 is found
y 1is obtained from equation (A.8). On the

t

other hand, geometrical angles such as 80, éﬁ and ["l can be

from (A.9); hence, o

readily found from equations (A.2) = (A.4) and the table for given
!;Z and %b and knowing 521 . Finally, c(o is obtained from
‘ ~
‘equation (A.1) and Me from equations (A.6) and (A.7). In
this way, the Moo = c(o diagram as shown in figure 2 is generated.
The X - 0(0' diagrams (the solid lines of Figures 3, 4 and 5) can be
generated in very much the same way.

Viewed from the oblique plane, the following equation provides
the creterion for the flow behind the plane shock to be physically
sonic (NACA 1135, equation (167), Ref. 47.)

. 2 * , 1 %2 ‘
sin®. 3, = Z:(-;q-:“z {(’7+ 1M = (3 -7Y)

W s D[y + m? - 2372 4 (74 9)] ) (a.20)

"

where /3 ; and M: correspond to /31 and Mn ;n the oblique plane.
For given condition of (Mn, oy iz , y%), an implicit scheme,
similar to the detachment case, is employed to obtain the final Mﬁm

and o(: . The resulting sonic lines (the dotted lines) are plotted
together with the shock detachment lines in Figures 2, 3, 4 and 5 .

It is seen that among all figures presented, the enclosed region between
these two sorts of lines is small when compared with the case of caret
wing at design (see Ref. 55 , Fig. 10 ). However, it is cartain

that the flow field for both delta wing and caret wing at off design

conditions of fixed geometry will only achieve the shock detachment
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pattern after the leading edges are engulfed by the 3D Mach cone
(i.e. in the conically elliptic zone). The same conclusion.is drawn
for the case of caret wing at design (see Ref. 55,)

It is remarked that the conically sonic cone calculated with
the present scheme checks identieally with that given by equation
(2.8) for tHe same given condition of (Me , o< s X ) for a delta

wing, say.

A.3 The exact solutions of the outer flow

If the flow pressure and velocities in the outer region of all

types of wings are defined as

Yn?
P, = Po (1 + X PS) (d)
U, = ug (1 + us) : : (a)
. (2.5)
Ve = ug v , ’ (b)
W = U wg ) . (c)

a unified expression for the pressure PS can be written once for all.

Based on the notation defined in Sec. A.l,it is read

2 . 2 . 2 . 2
. DL sin /81 sin” T - sin® g _ (a.12)
s 2 2 . 2 ‘ ' .
e Y MG, sin®@ - 2(v-1) '

The expressions for the flow velocities are written individually
for each case as below :

i) Fflat delta wing

u_ = e [cos T sin X + Ul'cosX] -1

W = e o [cos‘T cos X - Ul.sin)(} (A.12)
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sin T cos /3,
cos 301

where u. =

u being the uniform velocity behind the oblique shock,
parallel to the wing surface as measured in the

cblique plane

Ueo cos $oo

Uo' cos ﬂ o

ii) Caret wing at off design condition

)

u, = %ﬁi . [cos T sin X + Gl * cos 52] *gin =1
o

= ?— . [cos T cos 7-(— - Gl « sin X ] . sin2[' (R.13)
(o]

v =

Wy * cot [

With the help of the equations and the table of Section A.l, it can
be shown that for the case of caret wing at design condition equations

(A.11) and (AR.13) reduce to

P =u =w =v =0 ) (A.l"i)

This is expected since a caret wing at design only possesses a simple

flow field of the wedge flow, i.s.

(A.15)




iii) Diamond wing
L ]

Uso . - > '
?-[cos‘(‘sz.n'}( +u - cos X - cos /"l]-l

U oo v .= '
a-c-’- [cos’(‘cos’)( - u,.sin X + cos I'"l]

Uoo '
s -——-Uo * u; sin /"l

Finally, it is noted that the equations (A.1l), (A.12), (A.13),

(R.14) and (A.16) completely check with the expressions derived

previously by Hui in his separate works (Refs. 7, 54 and 8).




APPENDIX . B

THE WAVE-ANGLE FORMULAE FOR THE OBLIQUE-SHOCK RELATION

fFor a given freestream Mach number M,, and a deflection
angle 0(0 the usual practice to find the shock-wave angle /30
has been either by applying the approximate formula (e.g. Ref. 65)
or by numerically solving the oblique shock relation (e;g. Ref. 66).
In this Appendix, the explicit exact formulae for the shock wave
angles by emplying the solutions of cubic equationS'(Ref. 67) are
derived.

Following the expression for oblique shock relation given in
Ref. 47 (equaéion 150), the rcots of the cubic squation (cubic in

'sinz/ao) are solved.

sin6/30 + a, sin4/30 + a; sinz/eo +a =0 _ (B.1)
where
2
Mo + 2 4
a, = - 5 -~ Y sin o,
Mm ‘

1 e, 4 mZa
cos” X
a = - 2
° ml,

and Y is the specific heat ratio of the gas. According to the
cubic root formulae, the three solutions of equation (B.l) can be

expressed exactly as

: %
sin2 /3;: = - -Eg- + 2(’1’2 + Pz) cos =5 (8.2)
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a 1/6

sin? ﬁn=--52-(r2 +/02) [cos-;-f--&/j sin%&-] (B.3)
rsin.2 ﬁmz--a—z; (r + P ) [cosi-IS s:.n-;-(:- (B.4)
where
r =%(alaz—380)-§%a23
1 1 2
9 =398 "9

ZI%

F=la’+r

\/lztan-l(ﬁ, 0 s¥<nx

r

From physical reasoning, only consider the positive values of
/3, from equations (B.2), (B.3) and (B.4). It should be noted

: s

3 $ < < < - . i

that in general O ﬁn‘. /3117 /3: 5 Whilse ﬂx is the strong shock
wave angle, /3111’ is the week shock wave angle and ﬁx s being less
than the Mach angle, thus corresponding to a decrease in entropy, is
hence disregarded. Also, it is interesting to note that as V¥ = O,

7!- EN
ﬁ:r: P whereas ﬁn_ equals to ﬁm and both reduce to the Mach
angle of the freestream. In particular, as ¥ =7r, f’ = 0, Bz
equals to ﬁm and both become ﬁomax’ the maximum angle for shock
attachment. The relation ﬂ = 0 provides the maximum deflection
angle o{,max’ for a given M« ; hence, pomax can be evaluated from

the following formula

sin? Bomax = = 24 | 2,1/3 (B.5)

Furthermore, an alternative form of the oblique-shock relation

was given in Ref. 4 , (equation 7) as :=
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{1+ 30Y - 1t tan3/3o - {(n% - 1) cot o } tan2/30
+§1+3 Y+ 1)m§3} tan @B + cot & =0 (8.6)

Solving this equation bylthe same cubic root formulas, three solutions
B Bis and /3iii are obtained and it is found that /31 =/31
‘and /3i‘ii =/31E . However, /3ii = —'/33' which indicates an
improper shock wave propogation angle, hence should be again rejected
on physical ground.

Note that in the case of viewing the flow from the oblique plans,
the given flow condition (Me , OCO) is replaced by (Mn, eil) and
the wave-angle /30 is replaced by /31_ throughout the equations above.

Symbolically, equation (B.6) is expressed as

i

/50 ﬂo(mw y OC_)

| (B.?)*

and B, = B, , )

Clearly, throughout the present work, it is the weak-shock-wave angle

/3iii (or ﬂ%ﬂ ) which is employed for the calculation.

#
Even simpler, sometimes they are written as

o= o ()

and /31 = 8, (o(l) for convenience.

i
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APPENDIX C

THE PERTURBED SHOCK CONDITIONS (S.C.) FOR A SKEWED WEDGE
PERFORMING UNMSTEADY MOTIONS

Let the leading edge and the outer region of a delta wing (or
a cafet wing or a diamond wing).be,replaced by a skewed wedgs. v Thus
the skewed angle is properly defined by the swept-~back angle X .
Now consider the unsteady motion of such a skewed wedge with
attached plane éhock waves.

Suppose the unsteady motion is associated with a small distur-
bance parameter, say € , the small amplitude of oscillation. The
Rankine-Hugoniot conditions (equations (3.3)) are then perturbed by

€ to yield a set of perturbed shock conditions. They are useful
in the formulation of a number of problems (e.g. see Hui's work,
Ref. 68 ). In particular, the problems A and C are formulated
according to these shock conditions.

Thus, substituting equations (2.13) and (3.4)b into
equations (3.3) and collecting like terms of order O( € ) result
in the following equations. For convenience, they are arranged in

the matrix form as

( \ u . r )
‘ 2 % °3 0 & Ux ¢t °x % a,
|
‘ v
| —— =
{ cl 02 c3 d4 d5 or 0 dx dz Qx
| w
1 c c c e e _— e e e Q
1 2 3 4 75 Uy t X z z
£
tl t2 0 8] 0 - 0 tx 0
P
sl 82 33 0 0 /& 0 sx Sz
\ / N /

(c.1)

wvhere all fhe constants €17 Cos Cgy eee etc. are given in equations

(3.21)a and (3.21)b.
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Writing U =

Ux
Vo= L
Uy
y . :
u = Uy (c.2)
P = '
Px
and R = "F-'
f
.“}

and making use of the matrix (C.l) yields equation (3.19).
Note that when X — 0, (C.1) reduces to four equations

(as W =0) previously given by Hui (Ref. 34 ), the shock condition

for a oscillating wedge. -




APPENDIX D

THE DERIVATIVES OF SOME FLOW PARAMETERS: DIFFERENTIATION METHOD

In the present derivation, consider M __ , Y and X as fixed

parameters.

p
D.1 The expression of 2 (—=)
P
l 30Co tad
|
Knowing
P 2%
0 2 . 2
il (N«; sin® 3 - 1) +1

from the oblique shock relation, for given Moo , oco and X

-b po) ZY 2 . 3ﬁ0 '
v (-p—- =TI Mo - | smz/g,o (a% ) (p.1)
where
P
Bo = seczc( . —7—2;—— (D.2)a
9% TR

with /30 = /30(cz0) given from Appendix A (also see equation 2.3)
o1, 20Ty ‘
T.(3.) T, —=~-T
and T'(ﬂo) =2 [Tl( °)J= 23Bo 1 2
3, L Tl By T22

T(B,) =2cot B [ ma sin®@ - 1]

!

T(B,) =ma (74 cos 2(3,) + 2

2 2
;)—{30" 2[[‘1«7 cos Zﬁo-rcsc‘ﬁo‘]

-2 mzco sin Zﬂo
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Hence, with 300 = /30 - X,

3 %o _ 3 (3g -1

Py -Yo'4
(s} o

9P,
$
d X

D.2 - The expression of
o

From equation ( 2.6 )d, P, reads

' 2 A\ Pg
p=mw._._2.._p._
M 6

o

. 2 . 2 A
P. = sin /31 sin® T - sin /30

P =Y M%o sin? o= 2 (¥ ~1)

6
Thus, . »
= M, -
AN 2%, M 2 p6 M 2
o o

i) The expression of e __ :i—
oG, \ 2
O

The oblique shock relation gives
PA

2
N2 1
M o= = ¢ ——
° Nl sinzsp
(s]
where
N =2"fm%° sin2/30-(7-1)

2 4+ (Y~ 1) Mo 3102/30

=
1l
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[' aN2 'aNl ]
« | N - N
13/%, 2 Yo

2 Y 1. sin 2[30

(Y -1) me sin2p

o

ii) The expression of ~——

First, one needs to find the derivatives of the angles in the

/31 2T

side plane and the oblique plane, namel — s = From
p q p 3 y g 30<O

equations (2.1) and (2.2) it is obtained
37T sin X sin 0(0
20

~/l - sinz}( coszo( o
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and

23 . 1 (BT ) aﬂ“) (D.8)
0 Xg (BT(ﬂl)) cos X ° 00520(1 CA LA
3[3)1
where
CAEY 2T, _
T, —-T, —=
:91'(/31)= 234, 12f, L 21 _ TaTl_Tf.Z_
261 12 Cfoem T Tz zpm T nnm
2 2
- _ 2.2 '
’ Tl(/jl) = 2 cot 3, [Nn sin /31- l] 2T,
! . an =2l‘fln sin Zﬁl
' 2 .
’1'2(@2):[“1n ('Y+c052/$’l) + 2
- T2
\ —-I;l-=2Nn(7+coszﬁl)
dT,(3,) n
-—-L--L=2[m2cosz '+csc2 ]
o7,(3,)
'—"'g—'——l—'=-2["lzsin2/,’>
bﬁl n 1
~and
» tan ¢
O(lztan-l[ OJ
cos X
mn =M, * \/l'-— sin2X CDSZOCO
{31= ﬂl (0(1) s Qgiven in Appendix B
Thus
> p dP oP ' |
_(_5)=(p_§_p_6. L (0.9)
L p6 6 ao(o > 0%y P62 '
where

9 Pg 2 231 2 T
—O—(—--_-s.m T sin 2ﬁ1<—— )+s:.n ﬂl sin 2‘(‘(5‘&:)




oP )
—2 = Yl sin2f —@3)

2, 2 %o
9 T - : - o
with ng & 0T given in equation (D.7) and (D.8) and 122
9%y 9%, _ : : o
given in equation (D.2)
K
D.3 iThe expressions of EJL and a——-
As defined previously, H = X tan Y’o
Hence,
9 ' P
OH A tan®? + A seczc,o (——°—- 1) (p.10)
0y 0%y 0 \ae,
'MD
As defined previously, K = X—-
Hence,
PRy R E
°K=12[A S .m 3——} (D.11)
0% X Iy 039,
o, 3 ' 203
with £ . —— given in equations (D.4) and (D.5) and —=
Y- Y- o

given in equation (D.2).

AT

. Des4 The expression of —
9 &g

From equation (4.6), { ., can be written as

S, - x(%)

where
z, = A s 8in 6 4+ cos @
Z,= ANyCos § =sin g
and >
A, = /m° =1
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ARs given by equation (2.8a), M, can be written as

*
n 2
o
(1+-—-f )
mZ=n2. 2 — - [(2+u) +u? |
1['] S s -
(1+ 2 Ps)

and by equation (2.8b)

w
9 = tan-l ( S )
: l + uS

‘aws o Us

i) The expression of d
Kq 0 Xg

Rewrite w_ and u, from equations (2.6a) and (2.6c) in
the form

W =<—L%3)- [wz --uw-l-j: . sin)(_}

ug =(-Lg—)' [wz +-l-::-13- . cosXJ

o]

whers
w, = cos T cos X u, = cos T sin X
Wy = sin T cos f3 1 U, _ cos 9oo
: u, ~ cos Bo '
w4 = CO0S 701 .
Thus

QU
2= - sin T cos X (?_}_)

oo, 0
]
3 0T . . 2R3
: = ¢cos T cos (—-— )- sin T sin ( l>
_a W

231 Aoy
- si - )o [_.____-
2ol in {fy -y &y g

| S —Y
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where

2
261 (seco(l)
d0¢, cosX \ seco

oY,
200

=« sin T sin)((f—o%z-)

and

) U,,)__a <cos 0) 1 ' 3/50) sin ¥,
u /") cos =Ty SN * Cos
9% o o 20, o

o cos po
Hence
ou d o~ v QW W
s _ (U ) [, = 22 sinx] + ,u,,).[ J2_ (%), sy ]
0o %o u0 w4 - uo 30{0 0%, ul&
(D.12)
ou ] du w.
s _ 2 (u.,,),[z___zsmx}%.um).[ 2 (__i)_wsx]
.()ao a% uO w4 u )“0 3&0 w[‘
(D.13)
where
L(i’g)__l_.[w 2%y, 20 ]
00 \ Y4 w42 430, 3
P
ii) The expression of --P—§~
(]
Reurite f _ from equation (2.6)e in the form of
, N P
() (2)
S o moz P7
where
2
Ro B sinzﬁo
P, = 2+ (7- }) m?,. sinZg sin”3,
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Thus,

a._R__o_ 4cos[5° 5/30)

0o sinzﬁo A 9Xg
2P 3B
7 2T 2 1
— = (7~ 1)m«, sin 27 sin ( + sin 2 3. sin ’C\-—-) '
9o /31 o) A1 204,
T PICS .
with Qéi_ given in equation (D.2) , [ nd 2L given in
00(0 a(xo bao
equations (D.7) and (D.8), and (-2%5) given in equation
(D.6), the expression of Qﬁii reads
0,

M
-0 o o
(D.14)
- where .
3 P 1 o AP P,
—_— =] = = p7—---95——-
90, 7 P72 3o 3“
oM, 26
iii) The expression of —— and ~—
g Daf
_ 2
Rewrite M,  as
2 2 m
IVI* = I"lo _u
Mg
where 9
o] 2
m, =(1+-——IDS)[(1+L:) + W ]
M 2
m, = l-+Q’—2—-P
d
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2
No QPS

ANV WU

A d0g

whereas

96 1 [ a )3“’ Y I
J oo (1+us)2 + “’sz s'dxg | S0,

Hence

25e

9z J
yA -2
9oy YA,

<X*c039 - sin 6 ) +a-—)\i' sme.
' 9 g

LN U LS
- (A sin @ + cos @ ) +a“ | 8
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_(ms)

) dR, 2By 20
D.5 The expressions of 2L ’ L ’ 2K and —= ’ —2 and —=
0 30, (g b 1o 8 2O o,

i) The coefficients C, A and K can be rearranged in the following

forms

2 .2
l - mo sin 900

*
All the notations here are defined locally, to be distinguished

from the main text.




3 2
’po 2
A, = (== )H
1 FPoo
’ /oo . 2
A2 = Y(1 - ﬂo Asm Ps
2 . 2
A, = H (1 - M~ sin 5’0)
P
K, = —2.1
1 Poo
K2 = sz.nsoo cos 900

denote the terms

Po _ %y
Poo R]_
N
2 ., 2 2
Mo sin 300 = ¥
1l
R2 and Rl reads
2 . 2
R, = ("(+l)m,,‘,sm/<;0
2 . 2
Ry = (’Y-l)m,,s:mﬂo+2

~and N, are given in equation (D.4),

Thus, the derivatives read

o R
(a'-&f = (°Y+1) ['l:., sin 2[3 /30
3R
3-&:1; = (7Y¥=-1) N‘s\, sin Zﬁ BBO
p) (100> 1 R, 9Ry 1
= R, ™= = R, —™
304, | Po Rl2 [ 130(0 230{0]
2 /1 ¥ 3R,
boco< foo)_ R2 l‘Rz 00, ) Rlado ] =260 -
2 -



Hence,

e
b—;(-i- =(cos VA - 3 cos? CIO 51n<p)<a$oo)
T2 _ (L&)
2 &, X\ Po
04 Y\ (), 2 A
20( ='( 2 )[aao(&,) "o Sm? (—ft’:
00 _ 2 <__2.)
0 906 \ N
ofs 35, 9Ly 93
— — . C —= +C,*C — +C_+C
00g 20 2'%s * Ao l3.'-30(0 21
2c 2 | s %
00, C42 4« 530‘0
Also,

aAl 2 ¢ (Po' JdH %
—= = H | orvmenin H == | ———
d o, 2, N) 2 3, (‘ooo)
dA Coy 2 N

2 0 2 2 .2
———— . l-—"-—' — — —m
s, [( o) () R
aAS aAl aAZ
0y oy %
bAa H 2 3 NZ
oo =a 3 122-1£\3 +a 2 Cl-A3 +30[0 Cl'Cz

Hence,

o4 _ 1 [A o ‘)_A.é]
édo A42 43“5 53&b
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Now

30y 9 \ Pe
oK d
a?(g' - Coszipoa%

[s] (s}

Hence,
JK YK ‘

a—K ::—(K —"g'+K "'—];> '(D'ZD)
30, 130,  20a,

ii) The coefficients A, B and D_ are
0 ] [s]

' A
Ao - C
K
Bo T C
D

Do = 'EL - Ao

2
where D = 2H B
{ 1 o
' 2

' 02 = H

Thelr derivatives can be written as

%f _[o2a _,2c ] 1
aqo 30(0 ayo C2

d B
— (c.a_.g__aé_[.:-> (0.21)

20\ dx, | dag
3 b, 1 [ 3D, 9D, J o
—_— eEe e [ = . D, —= - —
2y~ pZ L23d, T 13 30,

where a___?_}_=2[a_io_ BBH]
20, *

)




dw J 03

D.6 The expression of an
' a“o 0 0o
- ) t
From equations (4.1) and (4.9) w,  and 'al' are given by
. | sin % -
Vg = cos g3 sin X,
4
N ( _*Li’_s_)
’ 1 T AO 4+ H
The derivative of W is

du_ ' 2
30(8 = X . -———:zl——-- [cosﬁosin( jPO -Olo) +(a—§g ) sino(ocos O(OJ
o cos ﬁo : 0
(D.22)
\ : .
a W oL
0 KXo T (‘A +H)2 o S 30(0 30(0 s 30(0 30%
0
(D.23)
: P
D.7 The expression of —=
2,

From equation (4.2a), the term an' can be written as




c, =tanh & 0, = (2K = 1) 6'0
6, = tanh™t H
k = 1,2,3, co e
and
A 4
d  =sech G_ ; o'n = (2n = 1) o,
| n = 1,2,3, see
é First, the derivatives of gk and Sn
Pal
90 2 d 0y
—— = sech o’k
aao . bdo k = 1,2,3, se e
~
J d 36,
- —_sech 6'n tanh G-n D
b(xo bdo n = 1,2,3, oo
whers
0Kk '
. .._k. - (Zk - l) .._::‘.2_ .a...}j_
Lo H o
30_n - (2n _ l) 12 a H
3o H'S g
Thus, the derivatives of bl s b2 and bk
J bl H OH
9o H'3 00
b A
gz-abl. Ao+cl-2oo‘1
90 e A +0 R
o 2
N
1 A [oR, 3Ty 3D,
+ b, P ot %30 * 2~ |~ (A+7T
AT
[%__9 "2 ]
Ay g
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b, R Y ¢ A
bk= 1'2. (A+ck).l_—l<—2(ck2-‘\)+bk2( k=2 _ o>
0% (A +7¢) © 3o e ° TE\d A0 0%

| 30, abk_l) B '
-2 (bk-l é-z‘(—o + Do 3&—0-—- -[(ck—Z- A,O) bk-2 - 200 bk—l:l'

(La 3%
I ado ()0(0 ' k = 3,4,5, e

! Hence from equation (4.6)

oo ]
P = 3. a
c el n
the derivative is
co ]
e &2
Bdo n=1 30(0
where
! 1 ~
9 an 1 ) 2 ~ abn A bdn L

30(0 = 2n-1 ° dX o n n 30(0 1l n '30(0 1 n

This then completes the full derivation of the derivatives required

i
in Sec. 4.3 .




APPENDIX E

ON OPERATORS REPRESENTING SPAMWISE INTERGRATION

The full-range spanwise integral is defined as an operator

/1- n?

e ] =| rlprerec=F(y) (£.1)
- /1~ ?2
where P (7_,;) is an even function in (= /1-7? y, V1= 72).

For the integrands that are sven

) 2N A : .
S[ e, p.6)] =2(x) +/f——-% P(q,\/l-rf).

(E.2)

3[5%(7.5)]57 2/1-9? P.(vz,/l-»f)-P(»?)

and for odd integrands, according to equation (5.17), they are all

ZeTrgo.

Also, define the following operator as

H
[ P(H,g) d¢ =P ()

@H["]:;Zg[ JEN3

H
(E.3)

1

lim -
30[9]1}90 J ].p(V’()] =( P(0,5)d( =P(0)
i8]
at M=H
J.[ 21,61 ] = P'twy + 2. p(u, v
H

(E.4)

‘SHRF’;(H,; y] = 2i-ew, vy - P (H}
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|

!

at ’7:0

Note that the above operation also holds for flow velocities v 7, <)

P’ (0)

]

3, [ P,I(o,’;)]

J,_[¢ P (0,5)]

]

and u(’?,§ )e

Next, for the side velocity w(w,g)

Apparently,

but

Hence

at ?

i
=

g{“(’?sS)]
3[W7(7?y§)]= 0
9 [iws (n.¢ )=

o

v, (nye)]= 20y, /A -n?

= H

‘S H [w;]>= 2u (H, H')

-167 -

2 p(0, 1) - E (0)

which is an odd function

rin (=1 -'72 y /1 = 72 ) the operator is defined as

(E.5)

(E.7)

Z

G~




APPENDIX F

APPLICATION DF SPANWISE INTEGRAL IN THE
TSCHABLYGIN PLANE

The Tschaplygin plane is defined (e.g. see Ref. 7 ) by the

following Tschaplygin Transformation

1

=t nh- A
; ’ ? 7 (F.1)
| M= sin™* >
| 1-?
or '
= tanh O
1 - (F.2)
€ = sin U sech G
Their derivative operators are related as
%—-—— = sechzo‘ [—- sinu sech G tanhO'] _ab__;]_
' X (F.3)
°O__ | _ o .
3/4 = 0 cosu sechG 3C
%——- = cosh26 [:coshzo’ tanh ¢~ tan,u] %—-O:
o (F.4)
%—E- = 0  cosh O fcos u %—/{:
and hence
1 2 32 32 2 32 3 J
- 1) ==+ 2N{ -1l) —— +2N— + 27—
2 32 22
= - cosh™ ¢ (5-0_-.—2' + 5—/{‘:‘3‘ (F.5)

Making use of the transformations from equations (F.1l) = {(F.5)

the LHS of equation (6.21) of problem D can now be transformed

into the Tchaplygin plane as -




(0% =1) Oy +2798 G + (&% - 10

= - co’shzo- [( @0'0‘+Q?w) + 2(6?,, tanh G +6?u tan,u)] (F.6)

Next, define the full=-range spanwise integral in the Tschaplygin

coordinate (Refer to Fig. 1-3J)

i
2
i 96[6) (0-9/(*) J =P(O-) =f6)(6,/41) SQC.hG COS/{’(‘dN (F.?) a
g .
| 2
thus
7
0
é"o": [P(O") coshG]:j@(O’,/U) cos au-d i | b
| s
-2
Tv
» 2
b2 ‘ :
36—5 {P(O’) coshO']:Jéo?o_(G',/,() cos Ad-d e
g
T2

Also, given are the Mach cone condition (M.C.) for the upper and lower

limits of the integrals of equations (F.7), i.e.

G, T)=C( 0 ,-D =0 )

=cd1 + @l tanh ¢ + fl sech g (F.8)

Applying the spanwise integral te equation (F.6) and writing in the

notation introduced in equation (F.7) vyields :=
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]

= = cosh?g - Qo_[( G2 +6)/4) + 2(tanh 0‘62_4-6—;* tan & )J

g o

L7 =06, v 29 v (7 - 016y

2 3?2
= - cosh™ @ .{(3-0:3- 1) [P(O‘) cosho"]

9

+ 2 tanh0 = [P(o) cosh&]

-2P(0) cosh 6+ 66)*(0‘)}

Bn the other hand, applying the spanuise integral to the RHS of

equation (6.21) results in
-3 [2k%(7 p () L¢ p (o), ]
(4
=-2k?. {tarh&'-gz_[P(o)(o‘) coshc;]- f(")(o-) cosho‘}
-2 p(g) | (F.10)

Finally, equations (F.9) and (F.10) are transformed back to the
(7?, T ) plane. Hence the full-range spanwise integral expression of

equation (6.21) reads

(-2 P () +29Pln) = 2P () = - zn"’[pf(”'(?) -P 9]

17 = 4, Pio) () +6@ (¢)

Equation (F.11) is precisely equation (6.30).




APPENDIX G *

THE PRESSURE FORMULATION FOR THE WEDGE FLOU :
A SPECIAL CASE

It can be shﬁun that (Chapter 3) when letting the sweptback
angle X approach zero, problems A ana C reduce to the in-phase
flow and out-of-phase for a wedge. Hence, Hui's wedge solution
i(Ref. 34 ) is recovered from the outer flow formulation. The task
lhere is to attempt to recover the wedgeiéolution from the innér flow
formulation, i.e. problem B and D by reinstating the X dependence
of the flow and removing the M.C. Thus, in this way the formglation
is expressed solely in pressure as ths dependenﬁ variable of the

problem.

Introducing the coordinate transformation

& = X
V=5
z = %

the D.E., the T.C. and the S.C. of equation (3.28) can be written
generally as

(o)

o (0) (o) 2 (o)
..2g(,?l3,‘ré +gpSE )+(*? -1) p’l‘?

D.E. 2p
g
+ 290 (o) + (g .-1)9“(‘3 +2(7P(°)+gps(°))=o
gp (0) (?p (0' S(O)) +V7(0) +wS(0) =0

(o) + % Vs(O)) +P_ =0

(o)
§Ve -y K

) - (17\1}7(0) + g wS(O)) + P;

]
o

(G.1)

continued ...

-171-




; ' (o)
where G(O) (g,g) = L..Qi:...z).

above formulation for P(o)(g ,YI) reads

= o 5o 4ol - g6 )]

V®)=.A[§%b)+8®)-gsgw]

: ' at Y[=H c
NO EIEG?).+40)_S[%w)]
wle) - KGS(O) (G.1)

X

Clearly, for the case of delta wing, P(O) = P(o)(‘:?,s ) and G(0)= G(O)(g)

equations (G.l1) become equations (6.13). For the case of wedge flou,

€ =0, hence p(0) _ p(o)(g ') s(0) _ c;(")(g ) and uw®) = 0, the

5.0
THE IN-PHASE FLOU ¢
S.A.C. 4 b.E
T.C.

2 (o) (o) 2 (o) (o) _ S

D.E. g ng -257;1,2; +(7 - 1) p,I7 +27p7 =0 a
(o) _ - ' _

T.C. P,I = 0 at M=10

V(O) = 1

s.C. (a, +H)E Pg(o) + H‘ZPQ(O) =0

pw>=c[§gw}g)+cwhg)]

v(®) < [gs(c’)'(g) + 65y ]

ule) o ¢ [gc(o)'(g> + G(°)(g)]
S.A.C. [g G(g)] = - ) X

£€»0
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From the T.C. and the S5.C., the solutions representing again

a uniform flow are obtained as

P(O)(gs’?) =» '%" | a
velig,q) = 2 (6.3) b
U(o)(g’yl) = -EA— | | . c

The solution of the perturbed in-phase shock shape results from

solving the following problem

)
gslgy s clg) = 2 o

with As.A.c. [g ()]

-AX_ as its ipitial condition.
g0 0

The solution thus reads

. X
G(O)(g) = "]\-"f‘%"_o (G.3) d
£
or in terms of Q(o) '
Q(O)(X) - _ﬁ_’_ )ﬁ xo . e

The solutions obtained in equation 3 are identically the solutions

obtained by Hui (Ref. 38, equation 19), i.e.

Q%(x) =

X
= %
A
W
Similarly the problem D can be put down in general as

(see equations 6.18)

2, (1) p (1) (1) 2 (1)
D.E. gpgg -2%(7;37§ +§PSg )+(7 - 1) pw.

+29g p‘?;(l).; (Sz_ 1)Psél) + 2(,? pél) +C pg(l)) _ ]

- (2‘25(7"7(0) + R (°)) (G.4)
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1

(1), ¢ 'ws(l)) N pS(l) = - u®

- (rzvq(l) + Vs(l)) + P (1) = = g U(o)

§ “’g(l) - (7 Y

b(e) _ _/\;_ -2 plo)

where

T.C. p (1)

-7 : ‘=0

N I ) Cn

p (1) _ o[, §Gg(l) "fG(sl)-]‘ +olgcl®(g, o]
y2) = A [c(1) . Ecg(l) -g Gs(l)]"‘.a [EG(")(g ¢ )]

e

K G (1)
s

1
G(l)(g,g) = 9_(_)L>£a_Q

X

Clearly, for the case of wedge flow, § =0, hence P(l) = FJ(l)( §,77),

1 - '
G( ) = G(l)(g) and w;(l) = 0 , the above formulation for p(l) thus

éngg(l) - zgq p*zél) + ( 72- 1) P?,(?l) + 27p7‘1) =0

(1)
P? = -2 g at Y?: 0

(A0 +H)E Pg(l) + (1 - ﬁ2)97(1)+§ '(Er;—c)-)

at \?
£




Note that the equations (G.5) still remain a hyperbolic-type problem.
Following the similar procedure as for problem D , a solution of

the form
p(l)(g,yz) = g @(7) -1 xo ) (6.6)

is sought.
Thus, equations (G.5) can be reduced to an ordinary differential

equation formulation, i.e.

I
o

D.E.. .63»(7)
T.C. & (g)

-2 | | (5.7)

, (o)
5.C. (R, + H) & (H) + (1 =) 63?(H) = (Hb(o) -1 - E—A—- )

where 0 < 7 < H<L1
The solution reads
S () = by M) +a _ (G.8)

o) :
A

2(AH + 1) + THCO NN

whers a
A + H
o]

o
]

-2
Hence the total out~of-phase pressure is obtained
p(l)(g ) = €(a, +b,yn) -1Ix (G.9)
7 Ela+5 7 0

Making use of the following conversion (given in .Appendix I )

to the wedge~flow notation

~nS

w:)\A c, = hC
’E}’:)\B 5:[‘10

W ' w




together with the pressure notation

pl o Jop(1)
woo X
equation (G.9) becomes

1 t

(x,y) Al x +By=Tx . (6.10)
' .
where Al = K a;
E H ' B D
— b 4+ 2« H+E ( l - f:E') +':;£ }
= k| ¥ Ay A y
EMH -'J
1l 4 ~—
K
, .
and ' 8l == 2 No

Referred to ‘Ref. 34 . (Hui), equation (G.10) above is proved

identical to Hui's solution (equation 19 , Ref. 34 ).

Finally, the out-of~-phase shock shape, G(l)(g ) can be

determined by solving any one of the equations (G.4)c thus

D
al + bl H - A

56(1)Z§)+G(1)(§)=[ - ]E,L{E—)-\-E:—ﬂx

with S.A.C.

g G(l)(§)‘ =0 (6.11)

£20

Hence the solution reads

a

D-~
+ by H =%
1 AJ D)\—I] (6.12)

55 ) =[

Again, in terms of Hui's wedge solution expression, equation(G,12)

becomes : -




1 Al —2KH=-= b -1
Q (x) = Ry X + X, . X
T A T
2 ¢, ” .
(G.13)
where I = K1

w
This is indeed Hui's out-of-phase shock shape solution. Hence, the
proof of a reduction to the wedge case is complete.

Some remarks concerning the present pressure formulation are in
order as follows :
i) Although the present method of solution does seem less direct than
that given by Hui, (Ref.37 ), the method is a formal one.- Following
the same general formulation for the 3D flow, the present method of

solution is also consistent with the 3D method of solution.

ii) To formulate the problem in terms of P alone has merit in

studying other related problems with attached shock waves, i.s.

(a) small perturbation in geometry: either the thickness or
the incidence can be the perturbed parameter for studying
the airfoil curvature = shock reflected wave effects (see
Lighthill, Ref. 31).

(b) small perturbation in flow condition :

For studying the locally subsonic flow behind the curved
shockvwave of the finite wedge the perturbed parameter ‘ko
can be used ( ko = /1 - Noz). Here the local Mach number
immediately behind the éhock at the apex is defined as

m , m £ 1. (see Tamada, Ref. 69 , and Dguchi, Ref. 70).

*
Apparently, Hui's shock shape (equation (19), Ref. 37 ) is in error.
In the second term of his expression 1 should be replaced by 5;
and a factor of X is multiplied to be term.
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In the studies of Lighthill and Oguchi, the formulations
were expressed in terms of a 'pressure potential' aleone in the

‘differential equation but no single equation was obtained for the

shock~wave boundary condition.

.

Hence, it would be interesting to apply the present formulation

(equation (G.5)) to these problems.
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APPENDIX H

AN TMPROVED PERTURBATION SCHEME TO THE INNER PROBLEMS

At the end of Chapter 1 the approximatse nature

and Chapter 8,
of Problems B and D was pointed out and possible improvement was
indicated. In the present appendix, an improved perturbation scheme

is proposed as follows :

The Scheme :

Let S and € be the small perturbation parameters representing
. -X-'
2-D departure and the small amplitude of oscillation respectively |,

the new scheme thus reads

u = u, r(l + §u) + € (U0 + § Ul) ]

Vo= oug [ §v + e (v, +§ V)

w o= u, r3u14~ € (ulo + wl) ] (He1)
L M - ;

N PO RS

_ - w2 :

f:fo 1+-—)\9—- {3/0+ €(R0+5 Rl)]

Corresponding to equations (2.12), §u = uc Sv = Vg s
Pa

8"’:"’5 , szpcﬁ and W::fs ;

PaS
1= V ... and so on.

and U+ § U =U,

The subscript ( ) represents the oscillatory solution of the
o Y

wedge flow obtained by Hui (Ref. 37 ). The subscript ( )l represents

* .
Since the purpose here is to demonstrate the new perturbation scheme,
for convenience some notations are re-defined.
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the oscillatory solution of the 2-D departure flow now toc be sought.

For example, U0 and U1 are expressed as
o) . . 1 ik T
0,1 = [0l s ) (y) ] et (H.2)

. 1 ik
U (X, Y2, T) = U(D)(XsY,Z) + ik _U ( )(X,,Y,Z) el UT
1 1 ol
(o) (r) . .. L
where {( ) and () indicate the in-phase flow and out-of-
phase flow as usual.

Hence, Uo’ '} P, «.. and so on, can be expressed in the

1r Por 1
like manner. Note that wo = 0, by definition of the wedge flouw.
In checking the limits of the perturbation procedure :

letting € >0, u > U, s reduces U to the steady mean flow

delta wing solution ;

o |

letting §-> 0, 2> U (1L +¢€ Uo) reduces u to the oscillatory
wedge solution j
letting k_ - O, U uu —+€(U0(0) +§ Ul(o)) reduces U to

the in-phase mean flow delta wing solution.

Indeed, they all approach to the correct limits.

The x-momentum equation : an example

For demonstration of the new perturbation scheme, the x-momentum

equation (equation (3.1)b) is selected as an example, i.e.

=

36 -
+u

2
ot dt

(H.3)

N1{CH

X

o

1
r

Qv

< yict

Following the inner-region coordinate system, equation (2.9),
and substituting egquation (H.l) intoc equation (H.3), yield two

perturbed equations in O0(€ ) and in O(€ ko)
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o(€) :

v

oT

| 0(ek) &

u
‘:0+—i‘1p0=0 (He4) a
X X
> + 12 —-[Ué—u--l»lva—— <2 2B
d X ) X 0) X 0JY 0.3 X
u
..[u-b—-—wbkvg——(l- 2fboJ
X dY d X
(Hed4) b

Clearly, equation (H.4)a is the unsteady wedge equation and

equation (H.4)b

of equation

is the 'new' unsteady delta wing equation.

The RHS

(He4)b are all known terms to be treatéd as inhomogensous

terms in the formulation.

Next, substituting equation (H.2) into equation (H.4)b vyield

two perturbed equations in 0(€ §) and in 0(e§ ko)

0(eS) -

3U1(0)

+

‘o

1
R A dX

() ) 3
1 =_[U(0)_u+>‘v(o)_y,_,czﬂ(o)%_e B
°©  Ix o Jy °©  Qyx
= hg’) (X, Y, 2) (H.5) a
(1)
2Py ©) _ [, (1) 2u (1) _ 2. (1)3p
__.__-:-Ul -[Uo 5~;+/\U0 a'—-;-,( RD a-—x}
[ TAR TSP
+ju 3y X + \Y aY - K fs‘-sz-- J
= - ul(") +_hA(l) (X, ¥, 2) (H.5) b
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Equations (H.5)a and (H.5)b are the 'new' in-phase and out-
oF-phasé equations. The inhomogeneous terms on the RHS of (H.5)a,
h éo), represent the interaction between the in-phase wedge flow
(equation (H.4)a) and the mean flow of a delta wing (equation (3.7)).
fhe inhomogeneous term on the RHS of (H.5)b, hA(l)’ represents the
interaction between the out-of-phase wedge flow and the mean flow of a
htfo) and hA(l)

delta wing. Clearly, in the present formulation,

were dropped in order to simplify the problem.

Proposed Method of solution

When equation (H.5)a is expressed in the conical coordinates,

it becomes

(o) o 1 0 o)
R R AN I

0) (qu? +§ Ug ) +A UO(O) Up?"’K'-Z-RQ

Together with the other form equations derived for the in-phase flouw
then, ul(°) , ul(°) , wl(°) , and Rl(O) can be eliminated in the
same way as Problem B, Lonsequently, a Pl(o)_formulation is possible

and the equation reads

(o) (o)
(q 1w WW +29(P) g + (¢ -J)p +27P +2§plg

Nf) (9:¢)  (H7)

It is in the same form as eguation (6.13) except that Ntfo)(q s g )
involves many known terms of interaction. Tne boundary conditions can
be perturbed and result in a similar form as eguation (6.13). This
allows the 'new' method of sclution to follow the same method used in

Chapter 6, except one needs to cope with all the inhomogensous terms.
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If one applies the method of spanwise integration, the formulation
then becomes an O0.D.E. with inhomogeneous terms. This presents

little problem, as the solution technique is standard (see equatiens

.(6.31) and (6.32)).

Similarly, the out-of-phase solution of (H.5)b can be obtained ;

following the same method of solution.




APPENDIX I

CONVERSION TABLES FOR VARIABLES AND COEFFICIENTS
FOR VARIOUS PROBLEMS IN THE PRESENT FORMULISM.

DEPENDENT VARIABLES
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INDEPENDENT VARIABLES
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FIG.1A. FLAT-BOTTOM DELTA WING PLACED IN THE CARTESIAN
CO-ORDINATE.
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FIG.1-B  PROBLEMS A,B,C & D AND THE DEFINED REGIONS.
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FIG. 1-D CARET WING SHOWING NOTATIONS.
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FIG.1-E  DIAMOND - WING SHOWING NOTATIONS.
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FIG. 1-F  APPLICABLE CONFIGURATIONS.



FIG.1G CARET WINGS WITH ADDED VOLUMES.
OF NON-AFFINE SHAPES



FIG.1-H TWO-SIDE WING GEOMETRY.
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FIG. 28. ka vs X, FOR DIFFERENT RATIOS OF SPECIFIC HEATS.
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