Using the Attention Cascade Model to Computationally Account for the Age Differences in an Attentional Blink (AB) Task

Shui-I Shih, University of Southampton, United Kingdom (sis@soton.ac.uk)

The Study

Introduction

- The <u>attention cascade model</u> (Shih, 2008) is a general, mathematical model of attention and working memory. It is applied here to characterize <u>cognitive aging</u>.

· Method

- <u>Task</u>: search for two targets (T1 and T2) in rapid serial visual presentation (SOA = 100 ms)

 ⇒ T1: 3, 5, 7, 9; T2: 2, 4, 6, 8; Distractor: black letters
- <u>Design</u>: T1 Salience (red/black) \times T2 Salience (green/black) \times T1-T2 Lag

· Results

- The older group performed worse.
- The older group exhibited greater and longer AB
 a loss of performance on a later target, T2,
 when an earlier target, T1, is processed.
- Target salience improved accuracy.

Computational accounts (Table 1)

- 96 data points [3 measures by 32 conditions] for each group; Measures: P(T1), P(T2) and P(T2|T1)
- 10,000 bootstrap samples are used to estimate the
 optimum values and 95% confidence interval.
- Using α = .05, the two groups did not differ in
 - \Diamond The processing rate (1/ β) prior to the WM stages
 - \diamond The <u>width</u> of the attention window
 - \Diamond The <u>capacity</u> C of the consolidation processor
- However, relative to the young, the older adults
 - Suffer more <u>masking</u> effect of the salient (and brighter) stimulus
 - Require a longer consolidation duration
 - Have greater <u>mean</u> and <u>variance</u> of the internal noise (assuming a Gaussian distribution)

Conclusion

- The attention cascade model relates the age differences in the AB task to the sensory and working memory components. The model may be a useful tool in comparative studies.

Reference:

Shih, S. (2008). The attention cascade model and attentional blink. Cognitive Psychology, 56, 210-236.

Descriptions of the Attention Cascade Model

- Sensory processor (SP)
 - Interference may scale down the stimulus strength
 - Mandatory output to LTM; output to the ACM only if bottom-up salient (e.g., with a distinct color).
- Long-term memory (LTM) traces
- Same activation level assumed for well-learned items
- Preliminary representations (PRs) in the peripheral buffer
- Each PR is described by a <u>rectangular</u> function
 - Width = SOA (i.e., perceptually available)
 Scalable height (e.g., due to masking)
- Attention Control Mechanism (ACM)
- Attention window (AW) transfers PRs into the WM buffer
 - The AW is described by a <u>rectangular function</u>
 ⇒ width (interval) modulated by the task demand, etc.
- Target templates (TTs) \equiv task demands, behavioral goals
- Two modes of triggering the AW
- Ontrolled: by a top-down salient stimulus via TTs
- Automatic: by a bottom-up salient stimulus via the SP.
- The AW triggering time distribution is a 2nd- (automatic) or 4th-order (controlled) gamma function
 - Assuming the processing time in each pre-WM stage is iid as an exponential pdf with the time constant β

- Attention gating
 The overlap between the AW and PR
 The area under PR of the overlap defines the initial strength s of the input to the WM buffer
- Working memory (WM)
- WM buffer
- If s> response threshold, output to the response buffer
- Otherwise, hold the inputs
 if the CP is engaged
- \diamond Strength s decays

 exponentially while queuing —

 the greater the s, the slower the decay \diamond Delay (ms)
- Consolidation processor (CP)
- \diamond Requires π ms. Once engaged, it takes no more inputs. \diamond Resource: s is weighted according to its top-down
- Resource: s is weighted according to its top-down salience subject to resource availability
- Grow: the weighted s grows exponentially during consolidation
- Decision

 Order: an input wi
- Order: an input with greater s is perceived to have occurred earlier
 - If the final s > noise, produce a correct response. Otherwise, make a guess.

 $s = 0.7, \lambda = 0.3$

 $= 0.3, \lambda = 0.7$

Table 1. Parameter Estimates of 2.5, 50, and 97.5 Percentiles for Each Group

Parameter	Young				Older		
	2.5	50	97.5		2.5	50	97.5
θ, initial masking factor ()	0.49	0.52	0.55	*	0.41	0.44	0.48
β, time constant (ms) of pre-WM stages	9.3	11.0	12.6		11.5	13.8	15.8
w, width of attention window (ms)	135	140	164		141	145	194
C, CP capacity (item per SOA unit)	0.95	0.98	1.01		0.92	0.95	0.98
π , CP duration (ms)	580	590	635	*	684	700	747
μ _n , mean of CP noise (ms)	7	10	14	*	21	25	29
σ _n , SD of CP noise (ms)	36	40	43	*	61	65	70
R^2	0.83	0.92	0.95		0.79	0.87	0.91
Mean (SD) R ²		0.96	(0.006)			0.92 (0	0.008)

Note. CP = consolidation processor. The values for the 2.5 and 97.5 percentile respectively provide the lower and upper bounds of the 95% confidence interval for the distribution of 10,000 bootstrap samples. The value for the 50 percentile coincides with the optimum estimate. R^2 denotes the amount of variance in the data that is accounted for by the model corrected for the number of free parameters. The value of R^2 is between 0 and 1, with 1 denoting a perfect fit. In each round of simulations, there are 1000 Monte Carlo trials for each of the 32 conditions; each condition provides three dependent measures: P(T1), P(T2), and P(T2|T1). The Mean (SD) R^2 are based on 100 rounds of Monte Carlo simulations using the optimum estimates.