Using the Attention Cascade Model to Computationally Account for the Age Differences in an Attentional Blink (AB) Task

Shui-I Shih, University of Southampton, United Kingdom (sis@soton.ac.uk)

The Study

- Introduction

- The attention cascade model (Shih, 2008) is a general, mathematical model of attention and working memory. It is applied here to characterize cognitive aging.

- Method

- Task: search for two targets (T1 and T2) in rapid serial visual presentation (SOA $=100 \mathrm{~ms}$) T1:3,5,7,9; T2: 2, 4, 6, 8 ; Distractor: black letters Design: T1 Salience (red/black) \times T2 Salience (green/black) \times T1-T2 Lag
- Results

$$
\text { Older (} n=23, M=72.6 \mathrm{yrs} \text {) }
$$

- The older group performed worse.
- The older group exhibited greater and longer AB - a loss of performance on a later target, T2, when an earlier target, T 1 , is processed.
- Target salience improved accuracy.
- Computational accounts (Table 1)
- 96 data points [3 measures by 32 conditions] for each group; Measures: $P(T 1), P(T 2)$ and $P(T 2 \mid T 1)$
- 10,000 bootstrap samples are used to estimate the optimum values and 95% confidence interval.
- Using $\alpha=.05$, the two groups did not differ in
- The processing rate $(1 / \beta)$ prior to the WM stages
\checkmark The width of the attention window
\checkmark The capacity C of the consolidation processor
- However, relative to the young, the older adults
- Suffer more masking effect of the salient (and brighter) stimulus
\diamond Require a longer consolidation duration
\checkmark Have greater mean and variance of the internal noise (assuming a Gaussian distribution)

- Conclusion

- The attention cascade model relates the age differences in the $A B$ task to the sensory and working memory components. The model may be a useful tool in comparative studies.

Reference:

Shih, S. (2008). The attention cascade model and attentional blink. Cognitive Psychology, 56, 210-236.

Descriptions of the Attention Cascade Model

- Sensory processor (SP)
- Interference may scale down the stimulus strength
- Mandatory output to LTM: output to the ACM only if bottom-up salient (e.g., with a distinct color).
- Long-term memory (LTM) traces
- Same activation level assumed for well-learned items

Preliminary representations (PRs) in the peripheral buffer

- Each PR is described by a rectangular function Width = SOA (i.e., perceptually available) Scalable height (e.g., due to masking)
Attention Control Mechanism (ACM)
- Attention window (AW) transfers PRs into the WM buffer

The AW is described by a rectangular function
\Rightarrow width (interval) modulated by the task demand, etc.

- Target templates (TTs) \equiv task demands, behavioral goals
- Two modes of triggering the AW

Controlled: by a top-down salient stimulus via TTs Automatic: by a bottom-up salient stimulus via the SP.

- The AW triggering time distribution is a 2nd- (automatic) or 4th-order
(controlled) gamma function
Assuming the processing time in each pre-WM stage is id as an exponential pdf with the time constant β
strength s of the input to the WM buffer
- Working memory (WM)
- WM buffer
- If $s>$ response threshold, output to the response buffer
Otherwise, hold the inputs if the CP is engaged
- Strength s decays exponentially while queuing the greater the s, the slower the decay
- Consolidation processor (CP)
- Requires $\pi \mathrm{ms}$. Once engaged, it takes no more inputs. - Resource: s is weighted according to its top-down salience subject to resource availability Grow: the weighted s grows exponentially during consolidation

- Decision

- Order: an input with greater s is perceived to have occurred earlier If the final $s>$ noise, produce a correct response. Otherwise, make a guess.

Table 1. Parameter Estimates of 2.5, 50, and 97.5 Percentiles for Each Group

Parameter	Young				Older		
	2.5	50	97.5		2.5	50	97.5
θ, initial masking factor (--)	0.49	0.52	0.55	*	0.41	0.44	0.48
β, time constant (ms) of pre-WM stages	9.3	11.0	12.6		11.5	13.8	15.8
w, width of attention window (ms)	135	140	164		141	145	194
C, CP capacity (item per SOA unit)	0.95	0.98	1.01		0.92	0.95	0.98
π, CP duration (ms)	580	590	635	*	684	700	747
μ_{n}, mean of CP noise (ms)	7	10	14	*	21	25	29
σ_{n}, SD of CP noise (ms)	36	40	43	*	61	65	70
R^{2}	0.83	0.92	0.95		0.79	0.87	0.91
Mean (SD) R^{2}		0.96	(0.006)			0.92	(008)

Note. CP = consolidation processor. The values for the 2.5 and 97.5 percentile respectively provide the lower and upper bounds of the 95% confidence interval for the distribution of 10,000 bootstrap samples. The value for the 50 percentile coincides with the optimum estimate. R^{2} denotes the amount of variance in the data that is accounted for by the model corrected for the number of free parameters. The value of R^{2} is between 0 and 1 , with 1 denoting a perfect fit. In each round of simulations, there are 1000 Monte Carlo trials for each of the 32 conditions; each condition provides three dependent measures: $P(T 1), P(T 2)$, and $P(T 2 \mid T 1)$. The Mean (SD) R2 are based on 100 rounds of Monte Carlo simulations using the optimum estimates.

