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Abstract

This paper considers the problem of estimating bus passenger waiting times at bus stops using incomplete bus arrivals data. This is of importance to bus operators and regulators as passenger waiting time is a key performance measure. Average waiting times are usually estimated from bus headways, that is, time gaps between buses. It is both time-consuming and expensive to measure bus arrival times manually so methods using automatic vehicle location systems are attractive; however, these systems do not usually provide 100% data coverage and missing data is problematical. The paper contributes to the general theory of estimating headway variance using incomplete data. Various methods for replacing missing buses or discarding spurious bus headways are compared and tested on different data sets.
Keywords: bus headways, passenger waiting times, missing data
Introduction

The problem considered in this paper is to estimate the average passenger waiting time for a high frequency bus service using bus arrivals data which is subject to missing data. This problem is highly relevant to bus operators as average passenger waiting time is a key performance indicator and in some places (e.g. London) financial penalties are incurred by operators if passenger waiting time targets imposed by a bus regulator are not met. 
Missing bus data is liable to occur in practice when the bus data is obtained from an automatic vehicle location (AVL) system due to communications faults. AVL systems are widely used in bus operations and have several applications, including providing bus arrival information at bus stops, providing bus priority at traffic signals and for monitoring bus performance. AVL systems use a wide variety of different architectures (Hounsell and Shrestha, 2005) but none of these can guarantee complete knowledge of the location of all buses at all times, so missing data is inevitable. Passenger waiting times are currently estimated in London by manual survey but these are very expensive to conduct and automated methods, using available AVL data, would be much cheaper. 
Bus passenger arrivals at a bus stop for a high frequency bus service are assumed to be random, and uniformly distributed over the time period being considered. Indeed, a ‘high frequency’ bus service could be defined as a service where passengers tend to arrive at the bus stop at random, rather than timing their arrival to meet a specific scheduled bus. Observations of bus passenger arrivals in Greater Manchester suggested that the assumption of random passenger arrivals was valid for a bus frequency of a bus every 12 minutes or less (Seddon and Day, 1974).
The assumption of a uniform arrival rate implies that passenger demand does not vary over the time period of interest. In practice, the level of bus passenger demand is likely to vary over the day, being greater, for example, during peak periods. This complicating factor is not explicitly treated here; it is considered that time periods having appreciably different passenger demand levels could be treated separately. 
With the above assumptions, the expected average waiting time (AWT) for bus passengers, for the time period of interest, can be calculated from bus headways, that is, the time differences between consecutive buses arriving at the bus stop. The relationship between AWT and bus headways is well known (McLeod and Hounsell, 2001) and is shown in (1).

AWT 
= ½ (h2 + h2) / h 

= ½ h2 /h + ½h






(1)

where hand h2 are the mean and variance of the bus headways.
It can be seen from (1) that the average passenger waiting time comprises a part, ½ h, that is determined by the frequency of the bus service and a part, ½h2/h, that is affected by the variability of the headways. The part of the average passenger waiting time that is due to the bus service irregularity is usually of most interest in measuring performance,  as the other part is constant for a given bus frequency. It is known as the excess passenger waiting time (EWT), given by:

EWT =  ½ h2 / h


        

         


(2)

It is noted that EWT is zero in the ideal situation where the headway variance is zero, that is, where all of the buses are evenly spaced.
Equivalent ways of calculating AWT and EWT are as shown in (3) and (4):

AWT = ½
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EWT = ½
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(4)

where the hi  (i=1,N-1) are the individual bus headways for N buses and the hSi  are the scheduled bus headways for those buses. The scheduled headways considered here are taken to be constant, although this is not a requirement. The problem in calculating AWT or EWT as shown above is that not all of the bus headways can be obtained due to some of the bus arrivals data being missing. This paper investigates methods for estimating AWT and EWT, subject to missing data. 
Formulation of the problem

The problem is formulated in mathematical terms, as:

Let T = {t1, t2, t3, …, tN} denote the set of actual bus arrival times of N buses at a bus stop, where N is known but not all of the times are known.
Let H = {h1, h2, h3, …, hN-1} denote the set of N-1 bus headways (not all known) defined by, 

hi = ti+1 – ti   (i =1,2,…, N-1)






(5)
Let  K = {k1, k2, k3, …, kM} denote a subset of T containing M known bus arrival times, where M is assumed here to be less than N, that is, there is some missing data. Then estimate hand h2, the mean and variance of the bus headway values in set H with knowledge of set K only. 

Discussion of the problem
It is assumed that the number of buses, N, is known, for the time period under consideration. In practice this is likely to be true for a sufficiently long time period since the number of scheduled bus trips is known and the bus operator should have information available about any buses which went out of service before reaching the particular bus stop under consideration. In practice, there could be difficulties associated with collating the required information.

Estimating the mean bus headway

The mean bus headway can be estimated straightforwardly by dividing the length of the time period being considered by (N-1). There might be some difficulties associated with attributing time at the start and end of the data recording periods, particularly for short time periods (Hutchinson and Nicholl, 1983); however, as long as the time period is sufficiently long, this approximation should be satisfactory.

Estimating the headway variance

The bus headway variance 

h2 = 
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(6)
is more difficult to estimate than the mean, as it depends strongly on the individual headways and some of these are not known due to the missing bus arrivals data.  The known information is the set K = {k1, k2, k3, …, kM} of known arrival times for M buses, where M<N. If the differences in bus arrivals times, si are derived from the set K, as

si = ki+1 - ki   (i=1,2,…, M-1)






(7)

then some of these values, si, will represent genuine bus headways, whereas other values will be greater than the actual bus headway due to there being one or more missing buses in the time gap. Clearly these values cannot be assumed to be valid bus headways so some form of correction is required. This involves two fundamental tasks: 
1. Identifying the gaps in the data
2. Treating the gaps by either making some assumptions about the arrival times of the missing buses or by discarding the gaps. 
Identifying gaps in the data

This section of the paper discusses the sources of information that may aid the identification of gaps in the data.
Size of the gap

In an idealised situation, bus headways would be quite regular and missing buses would be easy to identify from the sizes of the gaps: larger gaps suggesting missing buses. While bus headways at the start of a bus route might be quite regular, there is a natural degradation of bus headways along a route, mainly due to the effects of variation in the time spent at bus stops. Once the headway in front of a bus starts to become longer than the average the resulting gap tends to result in more passengers waiting for it when it eventually reaches the bus stop, which delays the bus and increases the headway in front of it.  Conversely, short headways tend to get shorter, as fewer passengers are waiting at the bus stop. These two mechanisms combine to produce bus bunching (McLeod, 1998). Bus operators, equipped with an AVL system, may be able to take some remedial actions to try to improve bus headways; however, their powers to affect bus progress along a route are often rather limited, which leads to irregular bus headways and difficulty in identifying gaps in the data purely from the sizes of the bus gaps. An illustration of bus headway deterioration along a route is shown in Figure 1. These data were measured from on-street observations of around 72 buses at three different points on a London bus route: one point near the start of the route, one point mid-route and one point near the end of the route. The survey took place from 0700-1900 hours on one day. The bus frequency was six buses an hour, giving a mean bus headway of 600s. The standard deviation of the bus headway was 190s at the start of the route, deteriorating to 290s mid-route and to 390s at the end of the route. From (2) these values equate to excess passenger waiting times of 30s, 70s and 127s at the start, middle and end of the route, respectively.
In summary, the sizes of the gaps between buses in the data are of most significance when the bus headways are regular but become less significant as the bus headways become irregular. 
Using bus identification numbers to track individual buses

AVL data typically includes bus identification numbers which, in theory, allow the progress of an individual bus to be tracked through the network. If an individual bus is present in the data at some of the location points but missing from others, due to some intermittent fault, then it may be possible to use interpolation methods, and/or historical knowledge of typical journey times, to produce estimates for the missing timing points. This approach would not work, however, where a bus was missing from all of the timing point locations, which could happen if, for example, there was a fault with on-bus communications equipment which made it ‘invisible’ to the AVL system. In this situation it would be necessary to determine whether the missing bus was actually in service or not and whether it undertook its entire scheduled route or was turned around early. Although tracking of individual buses may be possible, the data and systems requirements are somewhat complicated, suggesting that this approach would be difficult to implement in practice.    
Using bus timetables/schedules 
If a bus timetable has been specified then this could be used, in theory, to help identify gaps in the data. Bus arrival times at the bus stop could be matched with scheduled times. This would give indications of any patterns of late or early arrivals and help in deciding the likely locations of missing buses. The timetable would only be useful if there was a reasonable expectation of buses being able to run on time. Timetables for high frequency bus services are often not specified, however, as the timetables are difficult to keep to and the frequency (e.g. bus every 10 minutes) is of more interest to the bus passenger anyway. 

Treating gaps in the data
Two general approaches for treating the data have been used here: 

(i) Replace the missing buses back into the data. 

(ii) Discard gaps in the data in which the missing buses are believed to lie. 
Six different methods were tried, as outlined in Table 1 and described below. The methods have been numbered for convenience.
Method 1 – Replace buses into middle of largest gaps
Each missing bus, in turn, is replaced into the largest gap that remains in the data after previous buses have been replaced. This is an extremely simple and crude method, which is highly likely to underestimate passenger waiting times. It does not require the gaps containing missing buses to be identified.  

Method 2 – Replace buses into middle of known gaps
This method assumes that the gaps containing missing buses have already been identified somehow, as discussed earlier. If one bus is to be replaced into a gap then it is placed into the middle of the gap; if two or more buses are to be replaced into the same gap then they are replaced to produce an equal spacing between buses. 

Method 3 – Replace buses into gaps randomly (Uniform distribution)
This method also assumes knowledge of where the gaps in the data lie. Buses are replaced randomly into the known gaps by sampling from a Uniform distribution whose range equals the size of the gap.  
Method 4 – Replace buses into gaps randomly (Normal distribution)

This method is similar to method 3 but, here, buses are replaced into the known gaps by sampling headway values from a distribution which is chosen to reflect the perceived underlying bus headway frequency distribution that is found, on average, at the particular site and time of interest. Details of how this is done are given below. The rationale of this method is that replacements are made appropriately for the given conditions. An obvious drawback of the method is that it requires some prior knowledge about the bus headway distribution. This knowledge could come from historical data either collected manually or from other AVL data; however, this data may not be available or may not be representative of the current data set. An alternative approach could be to produce an initial estimate of the mean and standard deviation of the bus headway using another method, such as method 5, and to assume a Normal, or some other distribution for the headways; however, this introduces a problem in defining the appropriate headway distribution to use. In this study, for simplicity, it was assumed that the bus headway data could be approximated by a Normal distribution, although this will clearly not be valid at all sites, as is suggested from the range of bus headway frequency plots shown in Figure 1 and from other locations (Krbalek and Seba, 2003).  
Details of method 4
If a single bus is placed z seconds into a gap of size G seconds, then new headways of z and G-z seconds are formed. Assuming that the underlying probability density function of the headways, p(h), is known or can be estimated, then if the missing bus had associated headways of z and G-z seconds (headways to bus in front and behind of it) the probability density function of z is given by:


probability(z) = p(z) p(G-z) / 
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The bus is then placed zs seconds into the gap, where zs is a sampled value from the probability distribution specified in (8). A similar method was used for the cases where two or more buses had to be replaced into the same gap. 
Method 5 – Discard known gaps

The rationale of this method is not to replace missing buses at all but to discard gaps which are thought to contain missing buses. In this way only the remaining, genuine headways are used to calculate the AWT and EWT.  Expressed mathematically, let

ti = time of ith bus in data (i=1, 2,…,N), where buses in time order,

hi = ti+1 – ti (i=1, 2, … ,N-1)
F is the set of indices, i, for which hi is known, i.e. both ti+1 and ti are known.

Then, in a similar way to (3) and (4), calculate AWT and EWT as:
AWT = ½ 
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EWT = ½ 
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where the hSi are the scheduled headways, which can be summed over the entire time period, as long as they don’t vary during the time period of interest, otherwise the summation should also be taken using the set F of indices only.
Method 6 – Discard largest gaps
Similar in concept to method 5, the largest gaps are assumed to contain the missing buses and are discarded from the calculations of AWT and EWT. If there are L (=N-M) missing buses, then the simplest implementation of this method, used here, is to discard the L largest gaps. It is anticipated that the method will tend to underestimate EWT, as the missing buses will not always be contained in the largest gaps. It is noted also that the method could be improved by modifying it to cater for the situation where a large gap contains more than one missing bus. Such a refinement of this method was not devised in this study. 
Data and Methodology used 
A limited amount of on-street survey data, with corresponding AVL data, was available to this study. The AVL data was subject to missing data, while the on-street data was complete, providing the true bus headway and passenger waiting time statistics. Frequency plots for these data were shown in Figure 1. 
The on-street data were supplemented by artificial data generated from specified probability distributions, from which buses were removed to create ‘missing’ buses as desired. The artificial data provided a controlled environment while the on-street data provided real conditions. In total, six data sets were used:
· DS1 = Fifty buses observed near the start of their route 

· DS2 = Fifty buses observed near the middle of their route 

· DS3 = Fifty buses observed near the end of their route 

· DS4 = Fifty buses with headways sampled from a N(500, 100) distribution
· DS5 = Fifty buses with headways sampled from a N(500, 300) distribution
· DS6 = Fifty buses with headways sampled from a negative exponential distribution ( = 500s,  = 500s)

Bus headway and passenger waiting time statistics for these data sets are shown in Table 2. It can be noted from Table 2 that the data sets were chosen to represent differing levels of bus regularity, ranging from very good regularity, where the standard deviation is only one fifth of the mean headway (DS4), to rather poor regularity, represented by the random arrivals associated with the negative exponential distribution (DS6), where the standard deviation was nearly equal to the mean headway. It is noted too that the form of DS6 (negative exponential) is quite different from the Normal headways assumed in DS4 and DS5: the random arrivals of the negative exponential distribution result in higher frequencies of closely spaced buses and a small number of large gaps between buses.
Numbers of buses, L (=1,2,5 and 10), were removed from each of the six data sets to represent data that is subject to missing buses. As a sample size of 50 buses was used in each case, these removals corresponded to missing data levels of 2%, 4%, 10% and 20% for L=1,2,5 and 10, respectively. Buses were removed at random with the aid of a random number generator. The procedure for randomly removing buses was performed 100 times for each data set to obtain an average result and to avoid being misled by a few unusual results. This gave rise to a total of 6 x 4 x 100 = 2400 sets of bus arrivals times subject to missing buses, although not all necessarily unique, as the same buses may have been removed at random.
The six methods for treating gaps in the data were applied to the data sets above. For each data set, the average percentage error in the resulting estimate of EWT was calculated as:

error (%) =  
[image: image12.wmf]å
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where 

EWTi is the estimate of EWT for the particular estimation method using the ith (i=1,100) data set, subject to random removals, and
EWTactual is the actual value of EWT for the original data set with no buses removed.
Percentage error statistics for AWT were also calculated in the same way. 

Results

The percentage errors in the estimates of AWT and EWT for each of the six methods are shown in Tables 3 and 4, respectively. Negative errors indicate that waiting time was underestimated and positive errors indicate that waiting time was overestimated. For all of the methods errors tended to increase as the number of removed buses increased. Also, percentage errors in EWT were higher than for AWT, since EWT < AWT. The performances of the methods are described below.
Method 1 – Replacement of buses into middle of largest gaps
Passenger waiting times are consistently underestimated, indicating that, as expected, the method is biased. The level of error was lowest for the most regular bus headway distribution considered (DS4 = Normal (500,100)), as in this case, the largest gaps will tend to indicate missing buses. Conversely, the worst result (-36% average error in EWT) was obtained for this method when the bus headway distribution was poor (DS6 = negative exponential). 
Method 2 – Replacement of buses into middle of known gaps
This method also underestimates passenger waiting times, as replacements are made into the middle of gaps. The level of error with this method is less than for method 1, since the buses are replaced into the correct gaps (assumed known).

Method 3 – Replacement of buses at random (Uniform) into known gaps
Random replacements of buses tend to overestimate passenger waiting time, particularly when the bus headway standard deviation is relatively low. This is most clearly seen in the results for DS4 (Normal (500,100)). Conversely, the level of overestimation of passenger waiting time is lower wherever the bus headway standard deviation is relatively high, as for data sets 3 and 6. The method would appear to show little sign of bias (error approximately zero) in the example where the bus headway data follows a negative exponential distribution (DS6). 

Method 4 – Replacement of buses at random (Normal) into known gaps

In each case, here, buses were replaced using a Normal() distribution, where  and were taken as the actual mean and standard deviation of the bus headway for the original data set with no missing buses. It is noted that, in practice,  will be unknown so this method may give somewhat over-optimistic results.
The method works well for the two artificially-generated Normal data sets (DS4 and DS5) with the average error being close to zero. This suggests that replacements can be made without substantial bias, if the underlying bus headway distribution can be estimated well. 
The method tends to underestimate passenger waiting time for the negative exponential distribution and for the observed data sets which are not necessarily well represented by a Normal distribution. These results suggest that the observed data sets were more widely distributed than Normal. 
The level of underestimation for this method is considerably lower than for methods 1 and 2, and could be considered to be acceptable, as long as the percentage of missing buses is small.

Method 5 – Discard known gaps
This method would appear to show little sign of bias and appears to work well for all of the data sets used.
Method 6 – Discard largest gaps
This method tends to underestimate passenger waiting time, particularly when the bus headway standard deviation is relatively high. The method only appears to be suitable when the bus headway standard deviation is relatively low

Conclusions

To calculate passenger waiting time from incomplete bus arrivals data it is important to know the number of buses in operation. It was assumed that this information would be known to the bus operator. 

The methods that assume knowledge of the location of the gaps in the data have been shown, unsurprisingly, to perform better than the methods with no such knowledge. The methods which were based on the largest gaps in the data, either discarding these gaps or replacing buses into the middle of them, were shown to underestimate waiting times considerably. 

Assuming that the gaps in the data can be identified, it was shown that the best option available was to discard these gaps and estimate waiting time using the remaining data. The results for this method showed no substantial bias. The method also appeared to perform well even when 20% of buses (10 out of 50) were missing. 

The bus replacement methods considered tended to be biased. Replacement of buses into the middle of an identified gap in the data was shown to underestimate EWT quite considerably. Even for a single missing bus this method underestimated EWT by up to 14%, with the error increasing substantially as the number of missing buses increased. In contrast, replacement of buses at random, sampling bus arrivals from a Uniform distribution, tended to overestimate EWT considerably and cannot be recommended. Replacement of buses according to a specified probability distribution showed little bias, as long as a distribution which was representative of the true bus headway distribution was used. The method is considered to be impractical, however, since bus headway distributions were shown to vary widely between locations and are also likely to vary between different bus services, different times of day and times of year. 
Probabilistic estimation of the expectation of EWT over the range of gaps in the data, not just the largest gaps, or over the range of outcomes of the random placing of buses can be envisaged and is suggested as further research.
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Figure 1. Illustration of deteriorating bus headways along a route
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Table 1. Methods considered
	No.
	Method
	Knowledge of

gap assumed?

	1
	Replace buses into middle of largest gaps
	No

	2
	Replace buses into middle of known gaps
	Yes

	3
	Replace buses into gaps randomly 
(Uniform distribution)
	Yes



	4
	Replace buses into gaps randomly 
(other specified distribution)
	Yes

	5
	Discard known gaps
	Yes

	6
	Discard largest gaps
	No


Table 2. Bus headway and passenger waiting time statistics
	data set
	description
	mean headway (s)
	standard deviation of headway (s)
	AWT (s)
	EWT (s)

	DS1
	start of route
	582
	205
	327
	36

	DS2
	mid-route
	590
	299
	371
	76

	DS3
	end of route
	588
	383
	419
	125

	DS4
	Normal(500,100)
	496
	94
	257
	9

	DS5
	Normal(500,300)
	523
	321
	360
	99

	DS6
	negative exponential(500)
	515
	485
	486
	228


Table 3. Average percentage errors for estimation of AWT
	data set - no. of buses removed
	middle of largest gap
	middle of known gap
	random (Uniform)
	random (Normal))
	discard known gap
	discard largest gap

	DS1 - 1
	-1.1%
	-0.2%
	1.1%
	-0.1%
	0.1%
	-1.2%

	DS1 - 2
	-1.9%
	-0.7%
	2.1%
	-0.2%
	-0.1%
	-2.0%

	DS1 - 5
	-3.2%
	-1.4%
	5.1%
	-0.3%
	0.4%
	-3.5%

	DS1 - 10
	-4.3%
	-3.0%
	10.5%
	-0.9%
	0.1%
	-5.2%

	average
	-2.6%
	-1.3%
	4.7%
	-0.4%
	0.1%
	-3.0%

	DS2 - 1
	-1.4%
	-0.7%
	0.5%
	-0.3%
	0.0%
	-1.1%

	DS2 - 2
	-2.9%
	-1.3%
	0.9%
	-0.6%
	0.1%
	-2.1%

	DS2 - 5
	-5.8%
	-3.2%
	2.8%
	-1.5%
	0.0%
	-5.0%

	DS2 - 10
	-9.3%
	-6.2%
	5.4%
	-2.4%
	0.0%
	-8.4%

	average
	-4.9%
	-2.8%
	2.4%
	-1.2%
	0.0%
	-4.2%

	DS3 - 1
	-2.0%
	-1.0%
	0.1%
	-0.5%
	-0.1%
	-1.3%

	DS3 - 2
	-3.7%
	-2.2%
	0.0%
	-1.3%
	-0.4%
	-2.5%

	DS3 - 5
	-7.9%
	-4.7%
	1.1%
	-2.6%
	-0.2%
	-5.7%

	DS3 - 10
	-13.5%
	-9.4%
	1.5%
	-4.5%
	-0.3%
	-10.6%

	average
	-6.8%
	-4.4%
	0.7%
	-2.2%
	-0.3%
	-5.0%

	DS4 - 1
	-0.1%
	-0.1%
	1.4%
	0.0%
	0.0%
	0.0%

	DS4 - 2
	-0.2%
	-0.2%
	2.7%
	0.0%
	-0.1%
	-0.2%

	DS4 - 5
	-0.2%
	-0.3%
	7.0%
	0.1%
	-0.2%
	-0.4%

	DS4 - 10
	-0.2%
	-0.8%
	13.7%
	0.1%
	-0.2%
	-0.5%

	average
	-0.2%
	-0.3%
	6.2%
	0.0%
	-0.1%
	-0.3%

	DS5 - 1
	-1.8%
	-0.5%
	0.8%
	-0.2%
	-0.2%
	-1.7%

	DS5 - 2
	-3.2%
	-0.8%
	1.9%
	-0.1%
	-0.3%
	-3.3%

	DS5 - 5
	-6.8%
	-2.2%
	3.6%
	-0.3%
	0.0%
	-6.6%

	DS5 - 10
	-11.6%
	-4.4%
	8.0%
	-0.8%
	-0.5%
	-12.5%

	average
	-5.8%
	-2.0%
	3.6%
	-0.3%
	-0.3%
	-6.0%

	DS6 - 1
	-6.7%
	-1.0%
	-0.3%
	-0.5%
	-0.2%
	-8.1%

	DS6 - 2
	-12.8%
	-2.0%
	-0.1%
	-0.9%
	-0.1%
	-16.2%

	DS6 - 5
	-20.4%
	-5.2%
	0.1%
	-2.9%
	-0.6%
	-25.9%

	DS6 - 10
	-27.9%
	-9.9%
	0.0%
	-4.8%
	-0.5%
	-34.3%

	average
	-17.0%
	-4.6%
	-0.1%
	-2.3%
	-0.3%
	-21.1%


Table 4. Average percentage errors for estimation of EWT
	data set - no. of buses removed
	middle of largest gap
	middle of known gap
	random (Uniform)
	random (Normal))
	discard known gap
	discard largest gap

	DS1 - 1
	-10.2%
	-2.2%
	10.3%
	-0.5%
	0.4%
	-6.8%

	DS1 - 2
	-17.3%
	-5.9%
	19.3%
	-2.2%
	-0.6%
	-11.1%

	DS1 - 5
	-29.3%
	-12.9%
	46.0%
	-2.6%
	1.2%
	-17.8%

	DS1 - 10
	-38.8%
	-26.9%
	95.3%
	-7.7%
	3.3%
	-19.5%

	average
	-23.9%
	-12.0%
	42.7%
	-3.2%
	1.1%
	-13.8%

	DS2 - 1
	-6.9%
	-3.2%
	2.6%
	-1.4%
	-0.1%
	-3.0%

	DS2 - 2
	-14.1%
	-6.5%
	4.4%
	-2.9%
	-0.7%
	-6.6%

	DS2 - 5
	-28.5%
	-15.5%
	13.8%
	-7.2%
	-0.9%
	-13.0%

	DS2 - 10
	-45.6%
	-30.4%
	26.2%
	-11.6%
	-1.6%
	-20.6%

	average
	-23.8%
	-13.9%
	11.8%
	-5.8%
	-0.8%
	-10.8%

	DS3 - 1
	-6.5%
	-3.5%
	0.2%
	-1.8%
	0.0%
	-2.4%

	DS3 - 2
	-12.4%
	-7.5%
	0.1%
	-4.2%
	-0.4%
	-4.3%

	DS3 - 5
	-26.6%
	-15.9%
	3.6%
	-8.5%
	0.7%
	-8.7%

	DS3 - 10
	-45.3%
	-31.6%
	5.0%
	-15.2%
	1.3%
	-14.6%

	average
	-22.7%
	-14.6%
	2.2%
	-7.4%
	0.4%
	-7.5%

	DS4 - 1
	-2.0%
	-1.7%
	40.3%
	0.5%
	0.3%
	0.2%

	DS4 - 2
	-4.2%
	-4.5%
	78.9%
	-0.1%
	-0.5%
	-1.2%

	DS4 - 5
	-4.9%
	-9.3%
	203.5%
	2.8%
	-0.1%
	-1.8%

	DS4 - 10
	-7.0%
	-21.6%
	396.4%
	1.9%
	-3.5%
	-6.1%

	average
	-4.5%
	-9.3%
	179.8%
	1.3%
	-0.9%
	-2.2%

	DS5 - 1
	-6.5%
	-1.9%
	3.0%
	-0.6%
	-0.7%
	-3.0%

	DS5 - 2
	-11.6%
	-2.8%
	7.0%
	-0.3%
	-0.5%
	-5.3%

	DS5 - 5
	-24.8%
	-8.0%
	13.3%
	-1.2%
	-0.5%
	-10.4%

	DS5 - 10
	-42.2%
	-16.0%
	29.1%
	-2.7%
	-3.2%
	-18.7%

	average
	-21.3%
	-7.2%
	13.1%
	-1.2%
	-1.2%
	-9.4%

	DS6 - 1
	-14.3%
	-2.1%
	-0.6%
	-1.0%
	-0.3%
	-12.3%

	DS6 - 2
	-27.3%
	-4.4%
	-0.2%
	-2.0%
	-0.3%
	-24.8%

	DS6 - 5
	-43.5%
	-11.2%
	0.2%
	-6.1%
	-0.4%
	-36.9%

	DS6 - 10
	-59.4%
	-21.1%
	-0.1%
	-10.1%
	-0.5%
	-46.8%

	average
	-36.1%
	-9.7%
	-0.2%
	-4.8%
	-0.4%
	-30.2%
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