The University of Southampton
University of Southampton Institutional Repository

Designing catalysts for clean technology, green chemistry, and sustainable development

Designing catalysts for clean technology, green chemistry, and sustainable development
Designing catalysts for clean technology, green chemistry, and sustainable development
There is a pressing need for cleaner fuels (free or aromatics and of minimal sulfur content) or ones that convert chemical energy directly to electricity, silently and without production of noxious oxides and particulates; chemical, petrochemical and pharmaceutical processes that may be conducted in a one-step, solvent-free manner and that use air as the preferred oxidant; and industrial processes that minimize consumption of energy, production of waste, or the use of corrosive, explosive, volatile, and nonbiodegradable materials. All these needs and other desiderata, such as the in situ production and containment of aggressive and hazardous reagents, and the avoidance of use of ecologically harmful elements, may be achieved by designing the appropriate heterogeneous inorganic catalyst, which ideally should be cheap, readily preparable and fully characterizable, preferably under in situ reaction conditions. A range of nanoporous and nanoparticle catalysts that meet most of the stringent demands of sustainable development and responsible (clean) technology is described. Specific examples that are highlighted include the production of adipic acid (precursor of polyamides and urethanes) without the use of concentrated nitric acid nor the production of greenhouse gases such as nitrous oxide; the production of caprolactam (precursor of nylon) without the use of oleum and hydroxylamine sulfate; and the terminal oxyfunctionalization of linear alkanes in air. The topic of biocatalysis and sustainable development is also briefly discussed for the epoxidation of terpenes and fatty acid methyl esters; for the generation of polymers, polylactides, and polyesters; and for the production of 1,3-propanediol from corn.
evolution, laboratory evolution, heterogeneous catalysts, solvent-free processes, benign reagents, fatty-acid esters, selective, oxidation, single-site heterogeneous catalysts, molecular-sieve catalysts, hydrogen-peroxide, mesoporous silica, directed, adipic acid, olefin epoxidation, zeozymes
1531-7331
315-350
Thomas, J.M.
98879775-7bc8-4aeb-89c1-da6c60c856c2
Raja, R.
74faf442-38a6-4ac1-84f9-b3c039cb392b
Thomas, J.M.
98879775-7bc8-4aeb-89c1-da6c60c856c2
Raja, R.
74faf442-38a6-4ac1-84f9-b3c039cb392b

Thomas, J.M. and Raja, R. (2005) Designing catalysts for clean technology, green chemistry, and sustainable development. Annual Review of Materials Research, 35, 315-350. (doi:10.1146/annurev.matsci.35.102003.140852).

Record type: Article

Abstract

There is a pressing need for cleaner fuels (free or aromatics and of minimal sulfur content) or ones that convert chemical energy directly to electricity, silently and without production of noxious oxides and particulates; chemical, petrochemical and pharmaceutical processes that may be conducted in a one-step, solvent-free manner and that use air as the preferred oxidant; and industrial processes that minimize consumption of energy, production of waste, or the use of corrosive, explosive, volatile, and nonbiodegradable materials. All these needs and other desiderata, such as the in situ production and containment of aggressive and hazardous reagents, and the avoidance of use of ecologically harmful elements, may be achieved by designing the appropriate heterogeneous inorganic catalyst, which ideally should be cheap, readily preparable and fully characterizable, preferably under in situ reaction conditions. A range of nanoporous and nanoparticle catalysts that meet most of the stringent demands of sustainable development and responsible (clean) technology is described. Specific examples that are highlighted include the production of adipic acid (precursor of polyamides and urethanes) without the use of concentrated nitric acid nor the production of greenhouse gases such as nitrous oxide; the production of caprolactam (precursor of nylon) without the use of oleum and hydroxylamine sulfate; and the terminal oxyfunctionalization of linear alkanes in air. The topic of biocatalysis and sustainable development is also briefly discussed for the epoxidation of terpenes and fatty acid methyl esters; for the generation of polymers, polylactides, and polyesters; and for the production of 1,3-propanediol from corn.

Full text not available from this repository.

More information

Published date: August 2005
Keywords: evolution, laboratory evolution, heterogeneous catalysts, solvent-free processes, benign reagents, fatty-acid esters, selective, oxidation, single-site heterogeneous catalysts, molecular-sieve catalysts, hydrogen-peroxide, mesoporous silica, directed, adipic acid, olefin epoxidation, zeozymes

Identifiers

Local EPrints ID: 54205
URI: http://eprints.soton.ac.uk/id/eprint/54205
ISSN: 1531-7331
PURE UUID: 53ed766d-59d7-45bd-9c55-2dea0af2ab00
ORCID for R. Raja: ORCID iD orcid.org/0000-0002-4161-7053

Catalogue record

Date deposited: 31 Jul 2008
Last modified: 07 Oct 2020 08:15

Export record

Altmetrics

Contributors

Author: J.M. Thomas
Author: R. Raja ORCID iD

University divisions

Download statistics

Downloads from ePrints over the past year. Other digital versions may also be available to download e.g. from the publisher's website.

View more statistics

Atom RSS 1.0 RSS 2.0

Contact ePrints Soton: eprints@soton.ac.uk

ePrints Soton supports OAI 2.0 with a base URL of http://eprints.soton.ac.uk/cgi/oai2

This repository has been built using EPrints software, developed at the University of Southampton, but available to everyone to use.

We use cookies to ensure that we give you the best experience on our website. If you continue without changing your settings, we will assume that you are happy to receive cookies on the University of Southampton website.

×