The University of Southampton
University of Southampton Institutional Repository

Recent and future modulation of the annual cycle

Recent and future modulation of the annual cycle
Recent and future modulation of the annual cycle
This study investigates changes to the annual temperature cycle in both observed records and output from a coupled ocean-atmosphere global climate model. Using least-squares harmonic analysis, changes to the observed annual harmonic (for the time period 1856–1998), in addition to the 1961–1990 climatology, are compared with 9 simulations from the HadCM2 model. The first simulation is a 1400 yr control integration, whilst the remainder are from 2 ensembles representing (1) increases in CO2 concentrations and (2) a combination of CO2 and sulphate aerosol increases. Observed and simulated climatologies are generally comparable, although large amplitude and phase discrepancies exist over northern North America and high-latitude oceans, respectively. The agreement may be partly artificial over the oceans due to the use of flux adjustments to maintain arealistic sea-surface temperature field. Observed northern hemisphere amplitude decreases during the 20th century agree well with simulated changes, although there are some regional differences; observed changes to the southern hemisphere amplitude are insignificant. The sign of northern hemisphere phase changes are opposite in the 2 data sets. The nature of these results is unchanged after consideration is given to the varying spatial coverage of the observed data set, by means of applying a frozen grid mask to both observed and simulated data. These findings are consistent with previous studies, though we extend them by updating the observed record, by using ensembles to better define the climate change signal, and by considering the direct effects of sulphate aerosols. For a given warming, the inclusion of aerosols results in an enhanced amplitude decrease within the northern hemisphere, related to the summertime maximum of the direct sulphate cooling effect.
0936-577X
1-11
Wallace, C.J.
cd83f277-0054-4769-b050-433fc7ec38e0
Osborn, T.J.
46450aea-60a7-4281-808d-946418793a4a
Wallace, C.J.
cd83f277-0054-4769-b050-433fc7ec38e0
Osborn, T.J.
46450aea-60a7-4281-808d-946418793a4a

Wallace, C.J. and Osborn, T.J. (2002) Recent and future modulation of the annual cycle. Climate Research, 22, 1-11. (doi:10.3354/cr022001).

Record type: Article

Abstract

This study investigates changes to the annual temperature cycle in both observed records and output from a coupled ocean-atmosphere global climate model. Using least-squares harmonic analysis, changes to the observed annual harmonic (for the time period 1856–1998), in addition to the 1961–1990 climatology, are compared with 9 simulations from the HadCM2 model. The first simulation is a 1400 yr control integration, whilst the remainder are from 2 ensembles representing (1) increases in CO2 concentrations and (2) a combination of CO2 and sulphate aerosol increases. Observed and simulated climatologies are generally comparable, although large amplitude and phase discrepancies exist over northern North America and high-latitude oceans, respectively. The agreement may be partly artificial over the oceans due to the use of flux adjustments to maintain arealistic sea-surface temperature field. Observed northern hemisphere amplitude decreases during the 20th century agree well with simulated changes, although there are some regional differences; observed changes to the southern hemisphere amplitude are insignificant. The sign of northern hemisphere phase changes are opposite in the 2 data sets. The nature of these results is unchanged after consideration is given to the varying spatial coverage of the observed data set, by means of applying a frozen grid mask to both observed and simulated data. These findings are consistent with previous studies, though we extend them by updating the observed record, by using ensembles to better define the climate change signal, and by considering the direct effects of sulphate aerosols. For a given warming, the inclusion of aerosols results in an enhanced amplitude decrease within the northern hemisphere, related to the summertime maximum of the direct sulphate cooling effect.

This record has no associated files available for download.

More information

Published date: 2002

Identifiers

Local EPrints ID: 54847
URI: http://eprints.soton.ac.uk/id/eprint/54847
ISSN: 0936-577X
PURE UUID: 46e278ea-7fa1-47ad-a2f0-b2f07130393e

Catalogue record

Date deposited: 22 Jul 2008
Last modified: 15 Mar 2024 10:50

Export record

Altmetrics

Contributors

Author: C.J. Wallace
Author: T.J. Osborn

Download statistics

Downloads from ePrints over the past year. Other digital versions may also be available to download e.g. from the publisher's website.

View more statistics

Atom RSS 1.0 RSS 2.0

Contact ePrints Soton: eprints@soton.ac.uk

ePrints Soton supports OAI 2.0 with a base URL of http://eprints.soton.ac.uk/cgi/oai2

This repository has been built using EPrints software, developed at the University of Southampton, but available to everyone to use.

We use cookies to ensure that we give you the best experience on our website. If you continue without changing your settings, we will assume that you are happy to receive cookies on the University of Southampton website.

×