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ABSTRACT

We examine and compare simulation-based algorithms for
solving the agent scheduling problem in a multiskill call
center. This problem consists in minimizing the total costs
of agents under constraints on the expected service level
per call type, per period, and aggregated. We propose a
solution approach that combines simulation with integer or
linear programming, with cut generation. In our numerical
experiments with realistic problem instances, this approach
performs better than all other methods proposed previously
for this problem. We also show that the two-step approach,
which is the standard method for solving this problem,
sometimes yield solutions that are highly suboptimal and
inferior to those obtained by our proposed method.

INTRODUCTION

The telephone call center industry employs millions of
people around the world and is fast growing. A few
percent saving in workforce salaries easily means several
million dollars. Call centers often handle several types
of calls distinguished by the required skills for delivering
service. Training all agents to handle all call types is
not cost-effective. Each agent has a selected number of
skills and the agents are distinguished by the set of call
types they can handle (also called their skill set). When
such skill constraints exist, we speak of a multiskill call
center. Skill-based routing (SBR), or simply routing, refers
to the rules that control the call-to-agent and agent-to-call
assignments. Most modern call centers perform skill-based
routing (Koole and Mandelbaum 2002, Gans et al. 2003).
In a typical call center, inbound calls arrive at random
according to some complicated stochastic processes, call
durations are also random, waiting calls may abandon after
a random patience time, some agents may fail to show up

to work for any reason, and so on. Based on forecasts
of call volumes, call center managers must decide (among
other things) how many agents of each type (i.e., skill
set) to have in the center at each time of the day, must
construct working schedules for the available agents, and
must decide on the call routing rules. These decisions are
made under a high level of uncertainty. The goal is typically
to provide the required quality of service at minimal cost.
The most common measure of quality of service is the
service level (SL), defined as the long-term fraction of calls
whose time in queue is no larger than a given threshold.
Frequently, multiple measures of SL are of interest: for a
given time period of the day, for a given call type, for a
given combination of call type and period, aggregated over
the whole day and all call types, and so on. For certain
call centers that provide public services, SL constraints are
imposed by external authorities, and violations may result
in stiff penalties (CRTC 2000).
In this paper, we assume that we have a detailed stochastic
model of the dynamics of the call center for one day of
operation. This model specifies the stochastic processes for
the call arrivals (these processes are usually non-stationary
and doubly stochastic), the distributions of service times and
patience times for calls, the call routing rules, the periods of
unavailability of agents between calls (e.g., to fill out forms,
or to go to the restroom, etc.), and so forth. We formulate
a stochastic optimization problem where the objective is
to minimize the total cost of agents, under various SL
constraints. This could be used in long-term planning, to
decide how many agents to hire and for what skills to train
them, or for short-term planning, to decide which agents to
call for work on a given day and what would be their work
schedule. The problem is difficult because for any given
fixed staffing of agents (the staffing determines how many
agents of each type are available in each time period), no
reliable formulas or quick numerical algorithms are available
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to estimate the SL; it can be estimated accurately only by long
(stochastic) simulations. Scheduling problems in general
are difficult (they are NP-hard) even in deterministic settings
where each solution can be evaluated quickly and exactly.
When this evaluation requires costly and noisy simulations,
as is the case here, solving the problem exactly is even
more difficult and we must settle with methods that are
partly heuristic.
Staffing in the single-skill case (i.e., single call type and
single agent type) has received much attention in the call
center literature. Typically, the workload varies considerably
during the day (Gans et al. 2003, Avramidis et al. 2004,
Brown et al. 2005), and the planned staffing can change
only at a few discrete points in time (e.g., at the half hours).
It is common to divide the day into several periods during
which the staffing is held constant and the arrival rate does
not vary much. If the system can be assumed to reach
steady-state quickly (relative to the length of the periods),
then steady-state queueing models are likely to provide a
reasonably good staffing recommendation for each period.
For instance, in the presence of abandonments, one can use
an Erlang-A formula to determine the minimal number of
agents for the required SL in each period (Gans et al. 2003).
When that number is large, it is often approximated by the
square root safety staffing formula, based on the Halfin-
Whitt heavy-traffic regime, and which says roughly that the
capacity of the system should be equal to the workload plus
some safety staffing which is proportional to the square root
of the workload (Halfin and Whitt 1981, Gans et al. 2003).
Scheduling problems are often solved in two separate steps
(Mehrotra 1997): After an appropriate staffing has been
determined for each period in the first step, a minimum-
cost set of shifts that covers this staffing requirement can
be computed in the second step by solving a linear integer
program. However, the constraints on admissible working
shifts often force the second step solution to overstaff in
some of the periods. This drawback of the two-step ap-
proach has been pointed out by several authors, who also
proposed alternatives (Keith 1979, Thompson 1997, Hen-
derson and Mason 1998, Ingolfsson et al. 2003, Atlason
et al. 2004). For example, the SL constraint is often only
for the time-aggregated (average) SL over the entire day;
in that case, one may often obtain a lower-cost scheduling
solution by reducing the minimal staffing in one period and
increasing it in another period. Atlason et al. (2004) devel-
oped a simulation-based methodology to optimize agent’s
scheduling in the presence of uncertainty and general SL
constraints, based on simulation and cutting-plane ideas.
Linear inequalities (cuts) are added to an integer program
until its optimal solution satisfies the required SL constraints.
The SL and the cuts are estimated by simulation.
In the multiskill case, the staffing and scheduling problems
are more challenging, because the workload can be covered
by several possible combinations of skill sets, and the

routing rules also have a strong impact on the performance.
Staffing a single period in steady-state is already difficult;
the Erlang formulas and their approximations (for the SL)
no longer apply. Simulation seems to be the only reliable
tool to estimate the SL. Cez̧ik and L’Ecuyer (2007) adapt the
simulation-based methodology of Atlason et al. (2004) to the
optimal staffing of a multiskill call center for a single period.
They point out difficulties that arise with this methodology
and develop heuristics to handle them. Avramidis et al.
(2006) solve the same problem by using neighborhood
search methods combined with an analytical approximation
of SLs, with local improvement via simulation at the end.
Pot et al. (2007) impose a constraint only on the aggregate
SL (across all call types); they solve Lagrangean relaxations
using search methods and analytical approximations.
Some authors have developed queueing approximations for
the case of two call types, via Markov chains and under
simplifying assumptions; see Stolletz and Helber (2004) for
example. But here we are thinking of 20 to 50 call types
or more, which is common in modern call centers, and for
which computation via these types of Markov chain models
is clearly impractical.
For the multiskill scheduling problem, Bhulai et al. (2007)
propose a two-step approach in which the first step deter-
mines a staffing of each agent type for each period, and
the second step computes a schedule by solving an IP in
which this staffing is the right-hand side in key constraints.
A key feature of the IP model is that the staff-coverage
constraints allow downgrading an agent into any alternative
agent type with smaller skill set, separately for each period.
Bhulai et al. (2007) recognize that their two-step approach
is generally suboptimal.
In this paper, we propose a simulation-based algorithm for
solving the multiskill scheduling problem, and compare it
to the approach of Bhulai et al. (2007). This algorithm
extends the method of Cez̧ik and L’Ecuyer (2007), which
solves a single-period staffing problem. In contrast with the
two-step approach, our method optimizes the staffing and
the scheduling simultaneously. Our numerical experiments
show that our algorithm provides approximate solutions to
large-scale realistic problem instances in reasonable time (a
few hours). These solutions are typically better, sometimes
by a large margin (depending on the problem), than the
best solutions from the two-step approach. We are aware
of no competitive faster method.

MODEL FORMULATION

We now provide definitions of the multiskill staffing and
scheduling problems. We assume that we have a stochastic
model of the call center, under which the mathematical
expectations used below are well defined, and that we can
simulate the dynamics of the center under this model. Our
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problem formulations here do not depend on the details of
this model.
There are K call types, labeled from 1 to K, and I agent
types, labeled from 1 to I. Agent type i has the skill set Si ⊆
{1, . . . ,K}. The day is divided in P period, labeled from 1 to
P. The staffing vector is y = (y1,1, . . . ,y1,P, . . . ,yI,1, . . . ,yI,P)t

where yi,p is the number of agents of type i available in
period p. Given y, the service level (SL) in period p is
defined as

gk,p(y) = E[Sg,k,p]/E[Sk,p +Ak,p],

where Sk,p is the number of type-k calls that arrive in period
p, Sg,k,p is the number of those calls that get served after
waiting at most τk,p (a constant called the acceptable waiting
time), and Ak,p is the number of those calls that abandon
in period p after waiting at least τk,p. Aggregate SLs, per
call type, per period, and globally, are defined analogously.
Given acceptable waiting times τp, τk, and τ , the aggregate
SLs are denoted by gp(y), gk(y) and g(y) for period p, call
type k, and overall, respectively.
A shift is defined by specifying the time periods in which an
agent is available to handle calls. Let {1, . . . ,Q} be the set
of all admissible shifts. We assume that this set is the same
for all agent types. The admissible shifts are specified via
a P×Q matrix A0 whose element (p,q) is ap,q = 1 if an
agent with shift q works in period p, and 0 otherwise. A
vector x = (x1,1, . . . ,x1,Q, . . . ,xI,1, . . . ,xI,Q)t, where xi,q is the
number of agents of type i working shift q, is a schedule. The
cost vector is c = (c1,1, . . . ,c1,Q, . . . ,cI,1, . . . ,cI,Q)t, where
ci,q is the cost of an agent of type i with shift q. To any
given shift vector x, there corresponds the staffing vector
y = Ax, where A is a block-diagonal matrix with I identical
blocks A0, if we assume that each agent of type i works
as a type-i agent for her entire shift.
However, following Bhulai et al. (2007), we also allow an
agent of type l to be downgraded to an agent with smaller skill
set, i.e., of type ip where Sip ⊂ Sl , in any time period p of her
shift. Define S +

i = { j : S j ⊃ Si}, S −
i = { j : S j ⊂ Si}, and

let zl,i,p be the number of type-l agents that are downgraded to
type i during period p. These are the skill transfer variables.
A schedule x = (x1,1, . . . ,x1,Q, . . . ,xI,1, . . . ,xI,Q)t is said to
cover the staffing y = (y1,1, . . . ,y1,P, . . . ,yI,1, . . . ,yI,P)t if for
i = 1, . . . , I and p = 1, . . . ,P, there are nonnegative integers
zl,i,p for l ∈S +

i and zi,l,p for l ∈S −
i , such that

Q

∑
q=1

ap,qxi,q + ∑
l∈S +

i

zl,i,p− ∑
l∈S −

i

zi,l,p ≥ yi,p. (1)

These inequalities can be written in matrix form as Ax +
Bz≥ y, where z is a column vector whose elements are the
zl,i,p variables and B is a matrix whose entries are in the

set {−1,0,1}. With this notation, the scheduling problem
can be formulated as

(P0) : [Scheduling problem]
min ctx = ∑

I
i=1 ∑

Q
q=1 ci,qxi,q

s.t.
Ax+Bz≥ y
gk,p(y)≥ lk,p for 1≤ k ≤ K and 1≤ p≤ P
gp(y)≥ lp for 1≤ p≤ P
gk(y)≥ lk for 1≤ k ≤ K
g(y)≥ l
x≥ 0, z≥ 0, y≥ 0 and integer

where lk,p, lp, lk and l are given constants.
In practice, a given agent often works more efficiently
(faster) when handling a smaller number of calls (i.e., if his
skill set is artificially reduced). The possibility of down-
grading agents to a smaller skill set for some periods can
sometimes be exploited to take advantage of this increased
efficiency. In case where the agent’s speed for a given
call type (in the model) does not depend on its skill set,
one might think intuitively that downgrading cannot help,
because it only limits the flexibility of the routing. This
would be true if we had an optimal dynamic routing of
calls. But in practice, an optimal dynamic routing is too
complicated to compute and simpler routing rules are used
instead. These simple rules are often static. Then, down-
grading may sometimes help by effectively changing the
routing rules. Clearly, the presence of skill transfer vari-
ables in (P0) cannot increase the optimal cost, it can only
reduce it.
Suppose we consider a single period, say period p, and we
replace gk,p(y) and gp(y) by approximations that depend
on the staffing of period p only, say g̃k,p(y1,p, . . . ,yI,p) and
g̃p(y1,p, . . . ,yI,p), respectively. If all system parameters are
assumed constant over period p, then natural approximations
are obtained by assuming that the system is in steady-
state over this period. The single-period multiskill staffing
problems can then be written as

(P1) : [Staffing problem]
min ∑

I
i=1 ciyi

s.t.
g̃k(y1, . . . ,yI)≥ lk for 1≤ k ≤ K
g̃(y1, . . . ,yI)≥ l
yi ≥ 0 and integer for all i

where ci is the cost of agent type i (for a single period),
and the period index was dropped throughout. Simulation-
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based solution methods for this problem are proposed in
Cez̧ik and L’Ecuyer (2007) and Avramidis et al. (2006).
Pot et al. (2007) address a restricted version of it, with a
single constraint on the aggregate SL over the period (i.e.,
they assume lk = 0 for all k).
In the approach of Bhulai et al. (2007), the first
step is to determine an appropriate staffing, ŷ =
(ŷ1,1, . . . , ŷ1,P, . . . , ŷI,1, . . . , ŷI,P)t. For this, they look at each
period p in isolation and solve a version of (P1) with a
single constraint on the aggregate SL; this gives ŷ1,p, . . . , ŷI,p
for each p. In their second step, they find a schedule that
covers this staffing by solving:

(P2) : [Two-stage approach]
min ctx
s.t.

Ax+Bz≥ ŷ
x≥ 0,z≥ 0 and integer

The presence of skill-transfer variables generally reduces
the optimal cost in (P2) by adding flexibility, compared with
the case where no downgrading is allowed. However, there
sometimes remains a significant gap between the optimal
solution of (P0) and the best solution found for the same
problem by the two-step approach. The following simplified
example illustrates this.

Example 1 Let K = I = P = 3, and Q = 1. The
single type of shift covers the three periods. The skill sets
are S1 = {1,2}, S2 = {1,3}, and S3 = {2,3}. All agents
have the same shift and the same cost. Suppose that the
total arrival process is stationary Poisson with mean 100.
This incoming load is equally distributed between call types
{1,2} in period 1, {1,3} in period 2, {2,3} in period 3. Any
agent can be downgraded to a specialist that can handle a
single call type (that belongs to his skill set), in any period.
In the presence of such specialists, an incoming call goes
first to its corresponding specialist if there is one available,
otherwise it goes to a generalist that can handle another call
type as well. When an agent becomes available he serves
the call that has waited the longest among those in the queue
(if any). The service times are exponential with mean 1,
there are no abandonments, and the SL constraints specify
that 80% of all calls must be served within 20 seconds, in
each time period, on average over an infinite number of
days.
If we assume that the system operates in steady-state in
period 1, then the optimal staffing for that period is 104
agents of type 1. Since all agents can serve all calls, we
have in this case an M/M/s queue with s = 104, and the
global SL is 83.4%, as can be computed by the Erlang-C
formula. By symmetry, the optimal staffing solutions for
the other periods are obviously the same: 104 agents of

type 2 in period 2 and 104 agents of type 3 in period 3.
Then, the two-step approach gives a solution to (P2) with
104 agents of each type, for a total of 312 agents.
If we solve (P0) directly instead (e.g., using the simulation-
based algorithm described in the next section), assuming
again (as an approximation) that the system is in steady-state
in each of the three periods, we find a feasible solution with
35 agents of type 1, 35 agents of type 2, and 34 agents of
type 3, for a total of 104 agents. With this solution, during
period 1, the agents of types 2 and 3 are downgraded to
specialists who handle only call types 1 and 2, respectively,
and the agents of type 1 act as generalists. A similar
arrangement applies to the other periods, mutatis mutandis.
Note that this solution of (P0) remains valid even if we
remove the skill transfer variables from the formulation of
(P0), if we assume that the routing rules do not change;
i.e., if calls are always routed first to agents that can handle
only this call type among the calls that can arrive during
the current period.
Suppose now that we add the additional skill sets S4 = {1},
S5 = {2}, S6 = {3}, and that these new specialists cost 6
each, whereas the agents with two skills cost 7. In this case
it becomes attractive to use specialists to handle a large
fraction of the load, because they are less expensive, and to
keep a few generalists in each period to obtain a “resource
sharing” effect. It turns out that an optimal staffing solution
for period 1 is 2 generalists (type 1) and 52 specialists of
each of the types 4 and 5. An analogous solution holds
for each period. With these numbers, if downgrading is
not possible, the two-step approach gives a solution with 6
generalists (2 of each type) and 156 specialists (52 of each
type), for a total cost of 978. If downgrading is allowed,
then the two-step approach finds the following much better
solution: 2 agents of type 1 and 52 of each of the types
2 and 3, for a total cost of 742. The reader can easily
verify that by appropriate downgrading in each period, this
solution can cover the optimal staffing in each period. If we
solve (P0) directly with these additional skill sets, we get
the same solution as without them; i.e., 104 agents with two
skills each, for a total cost of 728. This is again better than
with the two-step approach, but the gap is much smaller
than what we had with only three skill sets.

Example 2 Observe that in the previous example,
if all the load was from a single call type, there would
be a single agent type and the two-step approach would
provide exactly the same solution as the optimal solution
of (P0). The example illustrates a suboptimality gap due
to a variation in the type of load.
Another potential source of suboptimality (this one can
occur even in the case of a single call type) is the time
variation of the total load from period to period. If there
is only a global SL constraint over the entire day, then
the optimal solution may allow a lower SL during one (or
more) peak period(s) and recover an acceptable global SL
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by catching up in the other periods. To account for this,
Bhulai et al. (2007), Section 5.4, propose a heuristic based
on the solution obtained by their basic two-step approach.
Although this appeared to work well in their examples, the
effectiveness of this heuristic for general problems is not
clear.
Yet another (important) type of limitation that can signifi-
cantly increase the total cost is the restriction on the set of
available shifts. Suppose for example that there is a single
call type, that the day has 10 periods, and that all shifts
must cover 8 periods, with 7 periods of work and a single
period of lunch break after 3 or 4 periods of work. Thus
a shift can start in period 1, 2, or 3, and there are six shift
types in total. Suppose we need 100 agents available in
each period. For this we clearly need 200 agents, each one
working for 7 periods, for a total of 1400 agent-periods.
If there were no constraints on the duration and shape of
shifts, on the other hand, then 1000 agent-periods would
suffice.

OPTIMIZATION BY SIMULATION AND CUTTING
PLANES

We summarize the proposed simulation-based optimization
algorithm. The general idea is to replace the problem
(P0) by a sample version of it, (SP0n), and then replace the
nonlinear SL constraints by a small set of linear constraints,
in a way that the optimal solution of the resulting relaxed
sample problem is close to that of (P0). The relaxed sample
problem is solved by linear or integer programming.
We first describe how the relaxation works when applied
directly to (P0); its works the same way when applied to the
sample problem. Consider a version of (P0) in which the
SL constraints have been replaced by a small set of linear
constraints that do not cut out the optimal solution. Let ȳ
be the optimal solution of this (current) relaxed problem.
If ȳ satisfies all SL constraints of (P0), then it is an optimal
solution of (P0) and we are done. Otherwise, take a violated
constraint of (P0), say g(ȳ) < l, suppose that g is (jointly)
concave in y for y≥ ȳ, and that q̄ is a subgradient of g at
ȳ. Then

g(y)≤ g(ȳ)+ q̄t(y− ȳ)

for all y≥ ȳ. We want g(y)≥ l, so we must have

l ≤ g(y)≤ g(ȳ)+ q̄t(y− ȳ),

i.e.,

q̄ty≥ q̄tȳ+ l−g(ȳ). (2)

Adding this linear cut inequality to the constraints removes
ȳ from the current set of feasible solutions of the relaxed
problem without removing any feasible solution of (P0). On

the other hand, in case q̄ is not really a subgradient (which
may happens in practice), then we may cut out feasible
solutions of (P0), including the optimal one. We will return
to this.
Since we cannot evaluate the functions g exactly, we replace
them by a sample average over n independent days, obtained
by simulation. Let ω represent the sequence of independent
uniform random numbers that drives the simulation for
those n days. When simulating the call center for different
values of y, we assume that the same uniform random
numbers are used for the same purpose for all values of
y, for each day. That is, we use the same ω for all y.
Proper synchronization of these common random numbers
is implemented by using a random number package with
multiple streams and substreams (L’Ecuyer et al. 2002,
L’Ecuyer 2004).
The empirical SL over these n simulated days is a function
of the staffing y and of ω . We denote it by ĝn,k,p(y,ω) for
call type k in period p; ĝn,p(y,ω) aggregated over period p;
ĝn,k(y,ω) aggregated for call type k; and ĝn(y,ω) aggregated
overall. For a fixed ω , these are all deterministic functions
of y. Instead of solving directly (P0), we solve its sample-
average approximation (SP0n) obtained by replacing the
functions g in (P0) by their sample counterparts ĝ (here, ĝ
stands for any of the empirical SL functions, and similarly
for g).
We know that ĝn,k,p(y) converges to gk,p(y) with probability
1 for each (k, p) and each y when n→ ∞. In this sense,
(SP0n) converges to (P0) when n → ∞. Suppose that we
eliminate a priori all but a finite number of solutions for (P0).
This can easily be achieved by eliminating all solutions for
which the total number of agents is unreasonably large. Let
Y ∗ be the set of optimal solutions of (P0) and suppose
that no SL constraint is satisfied exactly for these solutions.
Let Y ∗

n be the set of optimal solutions of (SP0n). Then,
the following theorem implies that for n large enough, an
optimal solution to the sample problem is also optimal for
the original problem. It can be proved by a direct adaptation
of the results of Vogel (1994) and Atlason et al. (2004);
see also Cez̧ik and L’Ecuyer (2007).

Theorem 1 With probability 1, there is an integer
N0 < ∞ such that for all n ≥ N0, Y ∗

n = Y ∗. Moreover,
under mild assumptions on the arrival processes, see Cez̧ik
and L’Ecuyer (2007), there are positive real numbers α

and β such that for all n,

P[Y ∗
n = Y ∗]≥ 1−αe−βn.

We solve (SP0n) by the cutting plane method described
earlier, with the functions g replaced by their empirical
counterparts. The major practical difficulty is to obtain the
subgradients q̄. In fact, the functions ĝ in the empirical
problem (computed by simulation) are not necessarily con-
cave for finite n, even in the areas where the functions g of
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(P0) are concave. To obtain a (tentative) subgradient q̄ of a
function ĝ at ȳ, we use forward finite differences as follows.
For j = 1, . . . , IP, we choose an integer d j ≥ 0, we compute
the function ĝ at ȳ and at ȳ+d je j for j = 1, . . . , IP, where e j
is the jth unit vector, and we define q̄ as the IP-dimensional
vector whose jth component is

q̄ j = [ĝ(ȳ+d je j)− ĝ(ȳ)]/d j. (3)

In our experiments, we used the same heuristic as in Cez̧ik
and L’Ecuyer (2007) to select the d j’s: We took d j = 3
when the service level corresponding to the considered cut
was less than 0.5, d j = 2 when it was between 0.5 and 0.65,
and d j = 1 when it was greater than 0.65. When we need a
subgradient for a period-specific empirical SL (ĝp or ĝk,p),
the finite difference is formed only for those components
of y corresponding to the given period; the other elements
of q̄ are set to zero. This heuristic introduces inaccuracies,
because ĝp and ĝk,p depend in general on the staffing of
all periods up to p or even p+1, but it reduces the work
significantly.
Computing q̄ via (3) requires IP+1 simulations of n days
each. This is by far the most time-consuming part of the
algorithm. Even for medium-size problems, these simula-
tions can easily require an excessive amount of time. For
this reason, we use yet another important short-cut: We
generally use a smaller value of n for estimating the sub-
gradients than for checking feasibility. (The latter requires
a single n-day simulation experiment.) That is, we compute
each ĝ(ȳ + d je j) in (3) using n0 < n days of simulation,
instead of n days. In most of our experiments (including
those reported in this paper), we have used n0 ≈ n/10.
With all these approximations and the simulation noise, we
recognize that the vector q̄ thus obtained is only a heuristic
guess for a subgradient. It may fail to be a subgradient. In
that case the cut (2) may remove feasible staffing solutions
including the optimal one, and this may lead our algorithm
to a suboptimal schedule; Atlason et al. (2004) and Cez̧ik
and L’Ecuyer (2007) give examples of this. For this reason,
it is a good idea to run the algorithm more than once
with different streams of random numbers and/or slightly
different parameters, and retain the best solution found.
At each step of the algorithm, after adding new linear cuts,
we solve a relaxation of (SP0n) in which the SL constraints
have been replaced by a set of linear constraints. This is an
integer programming (IP) problem. But when the number
of integer variables is large, we just solve it as a linear
program (LP) instead, because solving the IP becomes too
slow. To recover an integer solution, we select a threshold
τ between 0 and 1; then we round up (to the next integer)
the real numbers whose fractional part is larger than τ and
we truncate (round down) the other ones. We memorize the
cumulated amount of truncation and whenever it exceeds 1,
we reset it to 0 and add one agent of the currently considered

type. These two versions of the CP algorithm are denoted
CP-IP and CP-LP.
When we add new cuts, we give priority to the cuts associated
with the global SL constraints, followed by aggregate ones
specific to a call type, followed by aggregate ones specific to
a period, followed by the remaining ones. This is motivated
by the intuitive observation that the more aggregation we
have, the smoother is the empirical SL function, because
it involves a larger number of calls. So its gradient is less
likely to oscillate and the vector q defined earlier is more
likely to be a subgradient. Moreover, in the presence of
abandonments, the SL functions tend to be non-concave in
the areas where the SL is very small, and very small SL
values tend to occur less often for the aggregated measures
than for the more detailed ones that were averaged. Adding
cuts that strengthen the aggregate SL often helps to increase
the small SL values associated with specific periods and
call types.
After adding enough linear cuts, we eventually end up with a
feasible solution for (SP0n). This solution may be infeasible
for (P0) (because of random noise, especially if n is small)
or may be feasible but suboptimal for (P0) (because one of
the cuts may have removed the optimal solution of (P0) from
the feasible set of (SP0n)). To try improving our solution to
(SP0n), we do a local search around it, still using the same
n and the same random numbers. This local search has
two phases. In phase 1, we attempt to reduce the cost by
iteratively removing one shift at a time, until either none of
the possibilities is feasible or a time limit is reached. For
the CP-LP version, we first round the solution to integer
by using a threshold τ as explained earlier. We start with
τ = 0.5 and decrease the value of τ by 0.01 successively
until we get a feasible solution. In phase 2, we attempt
to reduce the cost by iteratively considering a switch move
in which we try to replace an agent/shift pair by another
one with smaller cost. The candidates for the switch are
drawn at random, at each step. Phase 2 terminates when
a time limit is reached, or when a maximum number of
consecutive moves without improvement is reached.
If we start the cutting plane algorithm with a full relaxation
of (SP0n) (no constraint at all), the optimal solution of
this relaxation is y = 0. The functions ĝ are not concave
at 0, and we cannot get subgradients at that point, so we
cannot start the algorithm from there. As a heuristic to
quickly remove this area where the staffing is too small
and the SL is non-concave, we restrict the set of admissible
solutions a priori by imposing (extra) initial constraints. To
do that, we impose that for each period p, the skill supply
of the available agents covers at least αk times the total
load for each call type k (defined as the arrival rate of
that call type divided by its service rate), where each αk is
a constant, usually close to 1. Finding the corresponding
linear constraints is easily achieved by solving a max flow



Avramidis, Gendreau, L’Ecuyer, and Pisacane

problem in a graph. See Cez̧ik and L’Ecuyer (2007) for the
details.

A NUMERICAL ILLUSTRATION

We consider a call center with K = 20 call types and I = 35
agent types, whose skill sets are shown in Table 1. There are
52 time periods of 15 minutes each, so the center operates
for 13 hours each day. Arrivals are assumed to obey a
Poisson process stationary over each period, for each call
type, and independent across call types. The arrival rates
for each period and call type can be found in an extended
version of this paper, available from the authors; they vary
from 5 to 27 calls per minute. The rates increase gradually
over the first 10 to 12 periods, then they decrease slowly
for the rest of the day. All service times are exponential
with mean 8 minutes and patience times have a mixture
distribution: the patience is 0 with probability 0.001, and
with probability 0.999, it is exponential with rate 0.1 per
minute. We consider 123 different shifts, all lasting 7.5
hours and including one 30-minute lunch break near the
middle and two 15-minute coffee breaks (one pre-lunch and
one post-lunch). A description of these shifts can be found
in the extended version of the paper. The cost of an agent
with s skills is 0.9+ s/10. The SL constraints are that for
each period, at least 80% of the calls (aggregated over all
types) must be answered within 20 seconds, on average
over many days. That is, τp = 20 seconds and lp = 0.8
for each p. This implies that the global constraint with
τ = 20 seconds and l = 0.8 must also be satisfied. There
are no other constraint. All these numbers are inspired
from observations in real-life call centers at Bell Canada.
In particular, we point out the presence of specialists (agents
with a single skill) in the available skill sets for all call
types.
We solved this problem using (1) CP using LP and rounding
up at each stage (CP-LP), and (2) the two-step approach in
which the staffing is first optimized separately for each period
using steady-state approximation via simulation with batch
means (TS). (The CP-IP is not practical for this problem
instance, because the IP is too large to be solved exactly at
each step with the given CPU time budget.) Each method
was given a CPU time budget of 5 hours and was applied 8
times, with independent random numbers. The 8 solutions
thus obtained were then simulated for n∗ = 50000 days
as an additional (more stringent) feasibility test, and each
solution was declared feasible or not according to the result
of this test, i.e., according to the feasibility of (SP0n∗ ).
The results appear in Table 2. In this table, n is the number of
simulated days for checking feasibility at each step and for
the local search at the end of the algorithm (for TS, these n
days are split into batches to apply the batch-means method);
n0 is the number of simulated days used for generating the
cuts; “min cost” and “median cost” are the minimum and

Skill Agent type
0 0,2,4,6,8,15
1 0,10,12,14,16
2 1,3,5,7,9,17
3 3,11,13,18
4 0,1,4,10,19
5 2,6,7,9,20
6 4,8,11,12,21
7 4,5,9,11,13,14,22
8 1,3,4,5,9,23
9 4,5,8,12,13,24

10 0,4,7,9,11,25
11 3,8,10,13,14,26
12 1,4,6,9,14,27
13 7,8,12,14,28
14 1,5,6,13,29
15 0,4,9,11,30
16 1,5,10,31
17 2,3,12,13,32
18 1,7,11,14,33
19 2,5,7,11,12,13,34

Table 1: Each line of the table lists the agents types that
can handle a given call type. The skill set of each agent
type can be easily inferred. The numbering in the table
is started from 0 instead of 1, for compatibility with the
simulation and optimization software.

median costs of all solutions (feasible or not) obtained by this
method over the 8 independent trials; P∗ is the percentage
of trials that returned a feasible solution for (SP0n∗ ); and
P∗1 is the percentage that returned a feasible solution with
cost within 1% of the best known feasible solution (the
lowest-cost feasible solution for (SP0n∗ ) generated by either
algorithm, over all replications and CPU time budgets).

Algo n n0 min median P∗1 P∗

cost cost
CP-LP 300 20 136.2 137.5 50 50

TS 1500 156.1 156.1 0 100

Table 2: Empirical results for the example

Among the 8 solutions found by CP-LP, 4 were declared
feasible by the 50000-day simulation, and all of them have a
cost of 138.8. For the 4 infeasible solutions, the constraints
were violated only by a very small margin: The worst
SL in any given period for these 4 solutions was 0.797
(for period 31), 0.797 (for period 31), 0.798 (for period
30), and 0.799 (for period 28), respectively. The cheapest
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solution, whose cost is 136.2, was one of the two with
worst-case SL of 0.797. In practice, a manager might
be willing to use this almost-feasible solution, considering
the fact that the center will always experience stochastic
variation in the arrival process and the SL in any case. For
this reason, it could be useful to report slightly infeasible
solutions in general, and not only the feasible ones. All the
solutions returned by TS were declared feasible, but they
are significantly more expensive, with a cost of 156.1. This
shows that large suboptimality gaps with the TS method
do occur in realistic call center settings, and not only in
artificial examples. We repeated this experiment with a
10-hour CPU budget (n0 was doubled and n was increased
to 400 for CP-LP), and none of the two algorithms found
a better solution than with the 5-hour budget.
Table 3 summarizes the empirical optima found by CP-LP
and by TS. The agent types are regrouped by cost (number
of skills). The table gives the total number of agents of
each group (each cost) in the solution. We see that CP-LP
selects a larger number of agents than TS, but less expensive
ones, whence the lower cost.

agent type cost CP-LP TS
4 1.8 0 1

1,5,9,11,13 1.6 3 32
7,12,14 1.5 15 18
0,2,3,8 1.4 19 33
6,10 1.3 23 23

15,. . .,34 1.0 55 0
total number 115 107

total cost 138.8 156.1

Table 3: A summary of the best feasible solutions found
by CP-LP and by TS

We also made experiments with other variants of this prob-
lem, e.g., with a larger variety of shifts or with fewer periods,
and also with other (smaller) problems, and the results were
similar. For the smaller problems, the gap between CP and
TS was generally smaller (this should depend mostly on
the structure of the problem more than its size), but TS was
always dominated by CP. We also implemented a meta-
heuristic method based on neighborhood search combined
with queueing approximation, along the lines of Avramidis
et al. (2006), but we were unable to make it competitive
with CP for solving (P0).

CONCLUSION

We have proposed in this paper a simulation-based method-
ology to optimize agent’s scheduling over one day in a mul-
tiskill call center. Even though the use of common random
numbers reduces the simulation noise (or variance) signif-
icantly, there is still randomness in the solution provided

by the algorithm, mainly due to the fact that the simula-
tion lengths must be kept short (because the estimation of
each subgradient requires simulations at up to thousands of
different parameter values). Yet, our approach finds better
solutions than with any other method that we know. In prac-
tice, one may run the algorithm a few times (e.g., overnight)
and retain the best solution found. Future research on this
problem include the search for faster ways of estimating the
subgradients, refining the algorithm to further reduce the
noise in the returned solution, e.g., by improving the way
we round non-integer solutions, and extending the technique
to simultaneously optimize the scheduling and the routing
of calls (via dynamic rules).
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