The University of Southampton
University of Southampton Institutional Repository

Woody biomass production during the second rotation of a bio-energy Populus plantation increases in a future high CO2 world

Liberloo, M., Calfapietra, C., Lukac, M., Godbold, D., Luos, Z.B., Polle, A., Hoosbeek, M.R., Kull, O., Marek, M., Raines, C., Rubino, M., Taylor, G., Scarascia-Mugnozza, G. and Ceulemans, R. (2006) Woody biomass production during the second rotation of a bio-energy Populus plantation increases in a future high CO2 world Global Change Biology, 12, (6), pp. 1094-1106. (doi:10.1111/j.1365-2486.2006.01118.x).

Record type: Article

Abstract

The quickly rising atmospheric carbon dioxide (CO2)-levels, justify the need to explore all carbon (C) sequestration possibilities that might mitigate the current CO2 increase. Here, we report the likely impact of future increases in atmospheric CO2 on woody biomass production of three poplar species (Populus alba L. clone 2AS-11, Populus nigra L. clone Jean Pourtet and Populus×euramericana clone I-214). Trees were growing in a high-density coppice plantation during the second rotation (i.e., regrowth after coppice; 2002–2004; POPFACE/EUROFACE). Six plots were studied, half of which were continuously fumigated with CO2 (FACE; free air carbon dioxide enrichment of 550 ppm). Half of each plot was fertilized to study the interaction between CO2 and nutrient fertilization. At the end of the second rotation, selective above- and belowground harvests were performed to estimate the productivity of this bio-energy plantation. Fertilization did not affect growth of the poplar trees, which was likely because of the high rates of fertilization during the previous agricultural land use. In contrast, elevated CO2 enhanced biomass production by up to 29%, and this stimulation did not differ between above- and belowground parts. The increased initial stump size resulting from elevated CO2 during the first rotation (1999–2001) could not solely explain the observed final biomass increase. The larger leaf area index after canopy closure and the absence of any major photosynthetic acclimation after 6 years of fumigation caused the sustained CO2-induced biomass increase after coppice. These results suggest that, under future CO2 concentrations, managed poplar coppice systems may exhibit higher potential for C sequestration and, thus, help mitigate climate change when used as a source of C-neutral energy.

Full text not available from this repository.

More information

Published date: 13 April 2006
Keywords: bio-energy, biomass distribution, EUROFACE, FACE, fertilization, leaf area index, photosynthesis, Populus, short rotation coppice, woody biomass

Identifiers

Local EPrints ID: 56122
URI: http://eprints.soton.ac.uk/id/eprint/56122
ISSN: 1354-1013
PURE UUID: d99e8022-0dd0-48e2-8a19-ffa382280a56

Catalogue record

Date deposited: 07 Aug 2008
Last modified: 17 Jul 2017 14:31

Export record

Altmetrics

Contributors

Author: M. Liberloo
Author: C. Calfapietra
Author: M. Lukac
Author: D. Godbold
Author: Z.B. Luos
Author: A. Polle
Author: M.R. Hoosbeek
Author: O. Kull
Author: M. Marek
Author: C. Raines
Author: M. Rubino
Author: G. Taylor
Author: G. Scarascia-Mugnozza
Author: R. Ceulemans

University divisions

Download statistics

Downloads from ePrints over the past year. Other digital versions may also be available to download e.g. from the publisher's website.

View more statistics

Atom RSS 1.0 RSS 2.0

Contact ePrints Soton: eprints@soton.ac.uk

ePrints Soton supports OAI 2.0 with a base URL of http://eprints.soton.ac.uk/cgi/oai2

This repository has been built using EPrints software, developed at the University of Southampton, but available to everyone to use.

We use cookies to ensure that we give you the best experience on our website. If you continue without changing your settings, we will assume that you are happy to receive cookies on the University of Southampton website.

×