The University of Southampton
University of Southampton Institutional Repository

The multifaceted role of mTOR in cellular stress responses

The multifaceted role of mTOR in cellular stress responses
The multifaceted role of mTOR in cellular stress responses
The mammalian target of rapamycin (mTOR) is a large multidomain protein whose function is inhibited by the immunosuppressant drug rapamycin. mTOR (or its homologues in lower eukaryotes) plays roles in cell growth and the cell cycle, control of the cytoskeleton and nutrient transport, protein and RNA stability and transcription and translation. In mammalian cells, the best understood effectors of mTOR are proteins involved in controlling the translational machinery. Signalling through mTOR is stimulated by amino acids and by hormones and mitogens. On the other hand, mTOR signaling is impaired in response to a range of stressful stimuli. These include DNA damage, nutrient withdrawal and depletion of cellular energy, as well as hypoxia. In response, e.g. to DNA damage, impairment of mTOR signaling appears to precede the commitment of cells to apoptosis. The mechanisms by which these stressful conditions still remain largely unclear. However, these responses make physiological sense, as impairment of mTOR signalling under these conditions will tend to inhibit anabolic processes and cell growth and division.
mTOR, signaling, amino acids, DNA damage, apoptosis, hypoxia
1568-7864
927-934
Proud, C.G.
c2cc50f9-4565-4d59-9dfc-aa70b9268a6e
Proud, C.G.
c2cc50f9-4565-4d59-9dfc-aa70b9268a6e

Proud, C.G. (2004) The multifaceted role of mTOR in cellular stress responses. DNA Repair, 3 (8-9), 927-934. (doi:10.1016/j.dnarep.2004.03.012).

Record type: Article

Abstract

The mammalian target of rapamycin (mTOR) is a large multidomain protein whose function is inhibited by the immunosuppressant drug rapamycin. mTOR (or its homologues in lower eukaryotes) plays roles in cell growth and the cell cycle, control of the cytoskeleton and nutrient transport, protein and RNA stability and transcription and translation. In mammalian cells, the best understood effectors of mTOR are proteins involved in controlling the translational machinery. Signalling through mTOR is stimulated by amino acids and by hormones and mitogens. On the other hand, mTOR signaling is impaired in response to a range of stressful stimuli. These include DNA damage, nutrient withdrawal and depletion of cellular energy, as well as hypoxia. In response, e.g. to DNA damage, impairment of mTOR signaling appears to precede the commitment of cells to apoptosis. The mechanisms by which these stressful conditions still remain largely unclear. However, these responses make physiological sense, as impairment of mTOR signalling under these conditions will tend to inhibit anabolic processes and cell growth and division.

This record has no associated files available for download.

More information

Published date: 1 August 2004
Keywords: mTOR, signaling, amino acids, DNA damage, apoptosis, hypoxia

Identifiers

Local EPrints ID: 56803
URI: http://eprints.soton.ac.uk/id/eprint/56803
ISSN: 1568-7864
PURE UUID: 25353ae6-7426-4a5f-a088-5df772a2bd83

Catalogue record

Date deposited: 08 Aug 2008
Last modified: 15 Mar 2024 11:03

Export record

Altmetrics

Contributors

Author: C.G. Proud

Download statistics

Downloads from ePrints over the past year. Other digital versions may also be available to download e.g. from the publisher's website.

View more statistics

Atom RSS 1.0 RSS 2.0

Contact ePrints Soton: eprints@soton.ac.uk

ePrints Soton supports OAI 2.0 with a base URL of http://eprints.soton.ac.uk/cgi/oai2

This repository has been built using EPrints software, developed at the University of Southampton, but available to everyone to use.

We use cookies to ensure that we give you the best experience on our website. If you continue without changing your settings, we will assume that you are happy to receive cookies on the University of Southampton website.

×