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Aims and motivation
Develop an understanding of how well various problem

specific decisions work in a local search framework for
the irregular cutting problem.

=Investigate the performance of various local search
neighbourhoods for irregular stock- cutting

=Use iterated local search to minimise parameter
refinement

=Remove all problem specific enhancements

=Not to beat the best but to learn more about the
relationship between local search and such problems
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ms and motivation

Most of the successful implementations in the literature
employ problem specific enhancements and/or complex
optimisation procedures

S

ingle or multiple (conflicting) objectives

=Different representations of the solution
=Computationally expensive enhancements
=Complex neighbourhood move criteria

Why they work is often conjecture
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This study

Constructive algorithms have been shown to be
an effective solution approach.

However, decoding the representation as a
permutation of pieces and the layout of the
solution is not a 1-1 mapping

Hypothesis: There exists significant redundancy in
the search algorithm as a result of reproducing
the same solution from a different representation




Iterated local search

1. randomly generate initial solution (S,) with cost C(S,)
let Sbest: S0
2. If termination conditions are satisfied STOP
3. LetS;T N(Sp)i=1n
for all i if C(S;) < C(S,) accept S, =S,
if C(SO) = C(Sbest) Sbest = SO
return to 2
4 if i=n perform kick S, = S,
return 2
END

Iterated local search and iteratively construct solution

=solution represented by permutation of pieces
=initial solution randomly generated
=neighbourhood of piece j all possible insert moves
=piece j selected without replacement

=solution constructed using a outer-left strategy
=cost = length of constructed layout

=kick = K random insert or swap move




Investigation of data with construction algorithm

Step 1 : record searched neighbourhood moves (piece m
inserted in locationj) where C(S) = C(Sy)

Step 2 : identify distance moved in permutation
(abs(pos(m) —j)

Step 3 : identify no. of changed co-ordinate positions of
placed pieces in solution layout

Step 4 : identify piece type of m for each identified move

Data set:
Shirt patterns, Dowsland et al (1998)
99 pieces, stock sheet width = 40
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No. of different co-ordinate positions by move distance
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No. of different co-ordinate positions by piece area

0.12 4

o
S
y

0.08 4

0.06

0.04 4

0.02 4

3 4 8 12

enclosing piece area

18 108

Over all distances in permutation




cost difference

Universiy
of Sowthamptaon

Shirt - peice type 2
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Shirt - peice type 3
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Shirt - peice type 5
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Shirt - peice type 7
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Summary

» Construction algorithms are successful but slow

* There is no 1-1 mapping between the solution
representation and the physical solution

» Short cuts need to be made to establish local optima
and make a broad search of the neighbourhood

* There exist systematic interactions between the data
and the search neighbourhood

* These, if discovered, can be exploited to reduce
redundancy




