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Abstract

We report on experimental and theoretical studies of a photorefractive ring resonator pumped
by a 1.06 um beam and injected with a weak external, seeding beam. The competition between
two dominant gratings that form inside a photorefractive crystal leads to characteristic
oscillations in the intensity of the resonating beam. We show that can such a system can be

treated as a driven non-linear oscillator.

OCIS terms: 160.5320; 230.4910; 190.5330; 190.7070; 230.5750; 190.3100



Introduction

Ring resonators are commonly used in laser and nonlinear optics. For example, cavities with
laser gain media have been extensively studied for their self-adaptive capabilities and pattern
formation'. However, photorefractive ring resonators’ offer probably the richest variety of non-

345 to study and show unique features of operation. The dynamics of a

lipear effects
photorefractive ring resonator system, consisting of a cavity with a photorefractive crystal
pumped by a laser beam, has proved, however, to be quife complex(”7 to analyse and model as
it involves considerations of multimode oscillations with their spatial-temporal instabilities and
mode competitiong’g. In particular, studies into spatié-temporal behaviour of ring resonators,
based on the photorefractive band-transport model, have predicted that even a single oscillating
mode can show self-pulsation and bistability when the cavity is injected with a seeding beam'®.
One of the possible' origins of self-pulsing has also been identified and demonstrated
experimentally, as competition between gain and loss mechanisms, with different time
constants, in a photorefractive material'!. Externally driven self-pumped phase conjugators also

show periodic pulsations and instabilities and numerical modelling confirmed that the

competition between self-oscillations and the injected signal® gave rise to instabilities.

In this present work we show further evidence of self-pulsations - in a unidirectional ring
resonaior, based on a two-beam coupling interaction. We also show that a simple, more general
than a band transport, model also predicts periodic variations in the output intensity of the
resonating beam. These periodic variations can be identified as originating from grating
competition — a stationary grating formed by the pump and injected signal and a moving
grating between the freely oscillating beam and the pump beam. We show that diffraction of

the 6scillating beam on both gratings leads to instabilities.



Injected ring resonator

Photorefractive resonators rely on two-beam coupling and/or phase conjugation to provide
energy for oscillations inside a cavity. One of the unique features of thes\e resonators is that the
oscillation beam can build-up almost regardless of the optical cavity length with frequency
dgtennined by the round-trip phase condition'?. This is due to the appearance of an additional
phase shift that originates from photorefractive coupling. This phase shift is, in fact, a function

of resonating beam frequency" and can be measured'*,

In the typical ring resonator geometry pfesented in figure 1, a pump beam incident on a
photorefractive crystal placed inside the cavity induces scattered light, which can give rise to
self-sustained oscillation. Oscillation starts from this scattered light which gets amplified
through subsequent two-beam coupling interaction with the pump beam in the photorefractive
crystal. An oscillatioﬂ beam builds up, if the two-beam coupling gain is above threshold (i.e.
when gain exceeds losses). This beam can reach high intensity even with a moderate value of
two-beam coupling coefficient provided the cavity losses, including the crystal’s absorption,

1'°. In the photorefractive ring configuration, light propagation inside a cavity should

are smal
be unidirectional as the two-beam coupling gain is also directional and determined by the

crystal’s symmetry, alignment and the charge transport properties.

When :the resonator's gain is below the threshold, the oscillation will decay. This occurs when
the two-beam coupling gain (coupling coefficient) is too small or the scattered light is too weak
to overcome the ;avity losses and crystal's absorption. In this case, the injection of an external
weak seeding beam can promote the resonator oscillations by creating additional scattéred
photons. Such a resonator can be regarded as equivalent to a driven non-linear oscillator and

can therefore be approximated by a simple mathematical model.



The model of nonlinear dynamic behaviour of a single-mode seed-injected ring resonator we
present here is based on the analysis developed by Anderson and Saxena'® and also used by

Jost and Saleh!”.

For simplicity, let us consider the one-dimensional model of a photorefractive ring resonator
with an external seeding beam injected in a single resonator mode. The geometry of such
resonator is shown in figure 2. We assume that optical electric field of the pump beam can be

presented as:

E,(r,))=E,()explilk, ¢ r-o,t)]+cc, (1)

where E,(¢)is the slowly varying pump amplitude, and k, and o, are its wave vector and

angular frequency respectively. The electric field inside the resonator is assumed to consist of

two components:

E(r,t)=E,(r,t)+E(r,2), ()

where E,(r,t) and E o(r,z) are the passive resonator and seeding beam electric field
amplitudes respectively, which can be assumed to have the same form as the pump beam
amplifilde. k is the resonator field wave vector, ® its frequency and we assume that

sl =k

We have chosen the resonator mode as well as the pump and seeding waves to be a uniform
plane wave for simplicity. Also we use the mean field limit in which we neglect the amplitude
variation along the cavity length. Moreover, we also assume the weak-field limit, i.e. the total

intensity of the resonator field is far less than that of the pump beam I, I, <<I,. Finally we

take all beams to have the same, extraordinary polarisation. They all propagate at small angles



to each other and with respect to the cavity axis. We can also assume that the resonator mode

frequency o is nearly equal to the pump angular frequency ®,.

The optical field inside a cavity that contains a lossy medium with conductivity ¢ is given by

the following wave equation'®:

JE J’E 1 O*P
VZER —H, o-—dTR——,uog o"tzk =—;—V(V'PNL)+,UO ﬁ’ 3)
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where P, (r,z) is the non-linear polarisation of the photorefractive medium induced by
contributions from all fields inside the crystal. We neglect here the term (V-P,; ~ 0) that is

due to the effect of dispersion. Taking into account all the earlier assumptions the nonlinear

polarisation can be written as:
P, (r,1) =26, {E . (r,) + E(r,2 )} An(r,t) ~ 28 ,E , (r,2)An(r,¢), (4)

where An(r,?) is the refractive index change in the photorefractive material. This photoinduced

change in refractive index An is created by the interference pattern between all beam that are

present: pump, seeding and the resonator beams :

I(r,t)=%[Ep(r,t)+ER(r,t)+Es(r,t)]2

*

=1, (t{l + [E’}ER expli(Ak o r — Aw )]+ c.cJ + (F—’}Eﬁ- exp[iAk,, . r]+ c.cﬂ (5)

] 0

=1,(t)+1,(r,t)+ I,(r,2),



where Ak =k, —-k,Ak, =k, -k;,A0 =0, ~0,1,¢)=[E,|" +[E|'+[E[", L=
EpER*exp[I(Akw-Acot)]-hc.c. and Iz(r,t)=EpEs*exp[iAkp.r]+c.c. We have assumed that the
interference between the resonator beam and seeding beam as well as terms with higher

frequencies such as 2w, are negligible.

The modulated terms, namely the second (I;) and the third (I;) terms are particularly
interesting. I; is responsible for creating a moving grating and I, for forming 2 stationary

interference pattern between the pump and the seeding beam.

The time development of An as a function of intensity modulation can be shown to be equal to:

[%+1}An(r,t)=if{ll (60)+ 1, (6,0)} ©)

T

where I' = }/nf,reﬁr /21 x, and v is the complex coupling constant, T is the intensity-dependent

response time, which can in principle be complex, t. = 1 /I, is a photorefractive time constant,
ny is the background index of refraction, and 7.4 is the effective electro-optic coefficient of the
crystal. We assume the solution of this equation to be a linear superposition of two separate

terms:

Anr, t) =0, (t)exp[i(Ak or—Am t)]+ 0, (t)exp[iAk p® r] +cec., (7

where Qi(t) and' Qy(t) are two slowly varying components of the index grating complex
amplitude. Substituting into equation (6) for the refractive index change we obtain the

equations for grating amplitudes:



% - _B - 'Aa)}Ql (t)+iT(E,E} )

(®)

49,

=2 = -20,()+iT(E,E;)

These two equations describe the time development of the index grating. The first component
of the index grating, with amplitude (Q;), will oscillate with the frequency difference, Aw, and -
decay in time when the pump beam is blocked. The other, stationary component (Q,), decays

smoothly in time, when the pump beam is blocked.

Let us consider again the field equation (3). If we assume, for simplicity, that the variations in
the field intensity along the direction transverse to the resonator axis are slowly varying as
compared to optical wavelengths, we can neglect transverse derivatives. Solving the wave

equation (3) for the resonator field gives the following expression:

o /,l Ly aZP
—E,-—"—%-Im J‘exp[—i(kr—wt)]-—a;z—"idz . &)
0

where L is the resonator length and integration is carried over L. Conductivity ¢ = ,0/Qg is

related to the resonator quality factor Qg.

Substituting expressions for grating components (8) into the resonator field equation (9) we

obtain:
dtR =— 20, E, +aE,0; + fE,Q, sin(Aot), (10)



2 : 2
/10800)1”6= #o2o@; 2sin((k k)l/Z)E Hofo@p I, and [ is the length of the

where o =
L, oL, k; -k oL,

crystal.

The normalised form (E' = E, / E,,) for the resonator field can be expressed as:

dE' 1o _, . ..
7‘;=—-2-é:E +aQ; + 0, sin(Awt). (11)

This is the equation for a driven non-linear oscillator.

The simple analysis of stationary and moving grating in a photorefractive medium we
considered here shows that an injection of an external seeding beam into the resonator cavity
makes the cavity behave like a driven non-linear oscillator with its output intensity periodically
oscillating. The amplitude of these oscillations depend§ on the stationary grating amplitude and
on the beat frequency. In the case ;vhen the intensity of the injected beam is zero, then the
equation goes to a typical case “free” oscillator, as described in detail in work published earlier
1617 The other special case is when Ao=0 and then we observe synchronisation of the

resonator and pump oscillations.

Experimental results

In our experimenf we used a sample of Rh:BaTiO; pumped by a single-longitudinal mode 1.06
um miniature diode pumped Nd: YAG laser. The output laser beam was split into pump and
seeding beams. Four mirrors, three of them with high reflectivity (99.9%) and one with 90%
reflectivity formed a ring resonator. The seeding beam was injected into the cavity through the

=90% mirror.



The pump beam power was kept constant at 100 mW and the seeding beam power was varied

in the range from 16 uW to16 mW. Both beams had extraordinary polarisation.

The alignment of the resonator was optimised by examining the intensity of the seeding beam
after a single pass inside the resonator and then after multiple passes. Before each new
measurement, we erased the remaining grating by uniform illumination of the crystal and its

subsequent small rotation.

We determined the maximum level of amplification inside the cavity by optimising the
coupling coefficient by changing the incident angle of the pump beam and reorienting the
crystal with respect to the resonator’s axis. In the crystal sample we used (3200 ppm

Rh:BaTi0Qs), the coupling coefficient was measured to be 7.4 em™.

The output beam was coupled out of the resonator via a beam splitter placed inside the cavity.
The out-coupled beam was measured on a detector and read via a computer, where the

temporal evolution of the output beam could be stored and analysed.

Figure 2 presents the experimental data on the resonator output with the seeding beam present.
In both plots the measurement starts with both pump and seeding beams incident. When stable
oscillation is established, we block the seeding beam and observe the fast decay of the

resonator oscillation.

As can be seen in figure 2a, in addition to the steady-state oscillation we observed periodic
behaviour, as expected from our theoretical analysis. The periodic variations in intensity
originate from induced grating competition. The injected external beam fors one grating with
the pump beam that is stationary (Q:) and another that is moving (Qlj, as explained in the
previous section. The relative strength of the two grating amplitudes vary and can be calculated
from equation (8). The resonator beam diffracts from both gratings, and if the oscillating

amplitude Q, is strong enough, periodic variation in the diffracted resonator beam intensity can



be observed. When the pump beam is switched off, the grating will start to decay, but its effect
on the resonator’s intensity can persist for some time. When the strength of the temporal

grating is small compared with the stationary pattern, a stable output (figure 2a) is observed.

As expected, the contribution from stationary and moving gratings have to be comparable in
order to induce the small periodic fluctuations. The most regular fluctuations were observed for
very weak seeding beams (below 20 uW). Similarly, when the gain and the geometry of the
cavity favoured strong free oscillations, i.e. oscillating beams with powers of the order of

mWs, the periodic fluctuations features were not clearly distinguishable.

Conclusions

We have carried out a theoretical analysis of a photorefractive ring resonator injected with an
additional seeding beam that originates from the same laser as a pump beam. Using a general
semi-classical theory of resonators we showed that the expression for the output resonator
beam consists of two main contributions: a stationary grating and a grating that oscillates in
time with the frequency difference between the pump beam and self-induced cavity
oscillations. We have shown that the oscillating grating will cause periodic variation in
intensity of the output resonator beam. This theoretical prediction has been confirmed by our
experimental results from a ring resonator containing Rh:BaTiOj3 crystal pumped by a 1.06 pm
beam. The strongest resonator beam with periodic oscillations in intensity was achieved with

weak seeding beams.
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Figure captions

Figure 1 Typical arrangement for a ring resonator with a photorefractive crystal inside and a
seeding beam. M1, M2, M3 and M5 - high reflectivity mirrors, M4 - partially reflective mirror,

D- detector, BS — beam splitter.

Figure 2 Temporal evolution of the resonator beam showing the build-up and the decay of

oscillation when the pump was turned off: a) stationary output; b) periodic output.
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