Optical super-oscillations as a way to sub-wavelength localizations of light without evanescent waves

Fu Min Huang, Yifang Chen, F. Javier Garcia de Abajo, and Nikolay Zheludev

1Optoelectronics Research Centre, University of Southampton, SO17 1BJ, UK
2Central Microstructure Facility, Rutherford Appleton Laboratory, Didcot, OX11 OQX, UK
3Instituto de Optica - CSIC, Serrano 121, 28006 Madrid, Spain

Here for the first time we demonstrate experimentally and theoretically that the Talbot effect on a quasi-periodic array of nano-holes may be used to achieve sub-wavelength field localizations and well-isolated 'hot spots' of high electromagnetic energy concentration.

Fig. 1 Far-field hot spot created by a quasi-periodic array of nano-holes at different distances h from the array. The size of all images is 1.5×1.5 μm2, λ=500 nm. At the "focal distance" $h=7.2$ μm the hot-spot diameter is only 160 nm.

It is commonly believed that far-field optical resolution is fundamentally limited by diffraction at the wavelength level because evanescent waves carrying sub-wavelength-scale information from an object dissipate in the far field. A recent remarkable theoretical discovery suggests that evanescent fields may not be needed to achieve sub-wavelength resolution: Berry and Popescu [1] predicted that a grating structure could create sub-wavelength localizations of light that propagate further into the far field than more familiar evanescent waves. They relate this effect to the fact that band-limited functions are able to oscillate arbitrarily faster than the highest Fourier components they contain, a phenomenon called super-oscillation.

Here we report on how a quasi-periodic array of holes creates sub-wavelength localizations of light without evanescent waves and how the fields created by such diffraction fall into the class of super-oscillating fields [2]. This effect offers a new way to achieve sub-wavelength imaging in the far field.

References
