

Optical super-oscillations as a way to sub-wavelength localizations of light without evanescent waves

Fu Min Huang¹, Yifang Chen², F. Javier Garcia de Abajo³ and Nikolay Zheludev¹

¹*Optoelectronics Research Centre, University of Southampton, SO17 1BJ, UK*

²*Central Microstructure Facility, Rutherford Appleton Laboratory
Didcot, OX11 OQX, UK*

³*Instituto de Optica - CSIC, Serrano 121, 28006 Madrid, Spain*

Here for the first time we demonstrate experimentally and theoretically that the Talbot effect on a quasi-periodic array of nano-holes may be used to achieve sub-wavelength field localizations and well-isolated 'hot spots' of high electromagnetic energy concentration.

Fig.1 Far-field hot spot created by a quasi-periodic array of nano-holes at different distances h from the array. The size of all images is $1.5 \times 1.5 \mu\text{m}^2$, $\lambda=500 \text{ nm}$. At the "focal distance" $h = 7.2 \mu\text{m}$ the hot-spot diameter is only 160nm

It is commonly believed that far-field optical resolution is fundamentally limited by diffraction at the wavelength level because evanescent waves carrying sub-wavelength-scale information from an object dissipate in the far field. A recent remarkable theoretical discovery suggests that evanescent fields may not be needed to achieve sub-wavelength resolution: Berry and Popescu [1] predicted that a grating structure could create sub-wavelength localizations of light that propagate further into the far field than more familiar evanescent waves. They relate this effect to the fact that band-limited functions are able to oscillate arbitrarily faster than the highest Fourier components they contain, a phenomenon called super-oscillation.

Here we report on how a quasi-periodic array of holes creates sub-wavelength localizations of light without evanescent waves and how the fields created by such diffraction fall into the class of super-oscillating fields [2]. This effect offers a new way to achieve sub-wavelength imaging in the far field.

References

[1] M. V. Berry and S. Popescu, *J. Phys. A: Math.Gen.* **39**, 6965 (2006).

[2] F. M. Huang, Y. Chen, F. J. Garcia de Abajo, and N. I. Zheludev, *APL* (in press).