Fuentes, M., Guttorp, P. and Challenor, P. (2002) Statistical assessment of numerical models. International Statistical Review, 71 (2), 201-221. (doi:10.1111/j.1751-5823.2003.tb00193.x).
Abstract
Evaluation of physically based computer models for air quality applications is crucial to assist in control strategy selection. The high risk of getting the wrong control strategy has costly economic and social consequences. The objective comparison of modeled concentrations with observed field data is one approach to assessment of model performance. For dry deposition fluxes and concentrations of air pollutants there is a very limited supply of evaluation data sets. We develop a formal method for evaluation of the performance of numerical models, which can be implemented even when the field measurements are very sparse. This approach is applied to a current U.S. Environmental Protection Agency air quality model. In other cases, exemplified by an ozone study from the California Central Valley, the observed field is relatively data rich, and more or less standard geostatistical tools can be used to compare model to data. Yet another situation is when the cost of model runs is prohibitive, and a statistical approach to approximating the model output is needed. We describe two ways of obtaining such approximations.
A common technical issue in the assessment of environmental numerical models is the need for tools to estimate nonstationary spatial covariance structures. We describe in detail two such approaches.
This record has no associated files available for download.
More information
Identifiers
Catalogue record
Export record
Altmetrics
Contributors
Download statistics
Downloads from ePrints over the past year. Other digital versions may also be available to download e.g. from the publisher's website.