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Abstract – Society is experiencing massive growth of global industrialised populations, which is putting 
increasing pressure on western governments to pursue more persuasive means to maintain and increase 
their share of the world’s diminishing fossil fuel reserves. To combat this, there is a growing body of 
enlightened researchers who are directing their abilities towards the development of alternative and 
preferably renewable energy types of supply systems. Many of these real world systems exhibit varying 
degrees of non-linearity. An example of this is the significant variations in the dynamic characteristics of 
a distributed collector field within a solar thermal power plant. Here a Sugeno-type fuzzy incremental 
controller was tuned using an ANFIS (Adaptive Neural Fuzzy Inference System) to optimise the fuzzy 
controller’s pre-clustered input membership functions, while a multiobjective genetic algorithm with an 
enhanced decision support system was used to fine tune the parameters of its first order output 
membership functions. The resulting solution choice produced an incremental fuzzy controller which was 
used to successfully control the plant exclusively in its high nonlinear regions, i.e., where the oil flow fell 
below 5 litres per second. This allowed the plant to function in environments where local solar radiation 
conditions have always been regarded as marginal. A feedforward term was also used to control plant 
disturbances caused by solar irradiation, mirror reflectivity etc. 
 

1. INTRODUCTION 
 

Previous research from Norway has demonstrated that a 
gain scheduling approach, (Johansen, et al., 2000), can be 
used to successfully control a solar power generation 
plant (Camacho, Berenguel and Rubio, 1997), over a 
large part of its operating range. However, the results of 
this type of control deteriorate somewhat when the plant 
is operated in its more nonlinear regimes. It is therefore 
proposed in this work to concentrate on designing a 
controller which is better suited to such slow system 
dynamics, i.e., when the plant is operating in regions of 
high nonlinearities. Earlier work on controllers that fit 
these requirements include: the fuzzy PD, (Malki and 
Chen, 1994), the fuzzy incremental PI controller, (Loebis, 
2000) and the fuzzy PI+D controller, (Tang et al., 2001).  

A Hierarchical Genetic Algorithm (HGA) chromo some 
structure, (Tang, et al., 1996), was employed in the 
search for parsimonious fuzzy controllers, i.e. ones with a 
reduced fuzzy set and rule base. This approach has also 
been successfully applied in (Ke, et al., 1998), and shown 
to offer acceptable control, and the possibility of a simple 
hardware realisation. In this work, this idea is extended 
by considering the use of a multiobjective genetic 
algorithm (MOGA), developed by (Fonseca and Fleming, 
1998), to fine tune the fuzzy output membership func-
tions, while the input membership functions were fine 
tuned using a pre-clustered ANFIS data-modelled optimi-
sation technique, (Matlab, 2002). 

The overall effect of using task-orientated control for a 
specific operating region, and having automatically tuned 
input membership functions, was to reduce the search 
space required for the MOGA tuning, and due to the non-

step-orientated nature of the control, also allowed the 
MOGA to increase the diversity of its objective functions. 
This greatly reduced the MOGA processing time, 
enabling it to quickly arrive at a set of optimal controller 
solutions, while at the same time improving control 
within the high nonlinear region of the solar thermal 
power plant. Hence this work improves on the compu-
tational efficiency of the previously mentioned MOGA -
tuned Mamdani-type fuzzy incremental controller 
(Loebis, 2000), which due to its simplicity, and use over 
the whole operating range of the plant, required a 
relatively large number of fuzzy sets, membership 
functions and fuzzy rules.  

The research here also employs a novel method of 
‘evolving conflict sensitivity’ to automatically adjust the 
goal information for improved decision support within 
the MOGA itself. This gives better tradeoff visualisation 
for solution or fuzzy controller choice within the non-
dominating solution set, while main taining the quality of 
solution within that set. 

An additional controller with a feedforward term 
(Camacho, Berenguel and Rubio, 1997) was used to 
control the plant’s inevitable disturbances due to solar 
irradiation, mirror reflectivity etc. 
 
2. THE SOLAR POWER PLANT 
 

The ACUREX-field, Plataforma Solar de Almeria 
(PSA), is located in the southern part of Spain. The field 
is composed of 480 distributed solar parabolic collectors, 
arranged in 10 parallel loops, and is outlined in schematic 
form, Fig. 1. The parabolic collectors or mirrors in the 
distributed collector field reflect solar radiation onto a 



pipe where oil gets heated while circulating. Each 
collector uses the parabolic surface to focus the solar 
radiation onto the receiver tube, which is placed in the 
focal line of the parabola. The heat-absorbing oil is 
pumped through the receiver tube, causing the oil to 
collect heat, which is transferred through the receiver 
tube walls. The thermal energy developed by the field is 
pumped to the top of the thermal storage tank, whereupon 
the oil from the top of the storage tank can be fed to a 
power-generating system, a desalination plant, detoxi fi-
cation plant or to an oil-cooling system if needed. The oil 
outlet from the storage tank to the field is at the bottom of 
the storage tank. 

For the initial start-up of the plant, the system is pro-
vided with a three-way valve, which allows the oil to be 
circulated in the field until the outlet oil tempera ture is 
adequate to enter the storage tank. The oil pump, which 
pumps the oil from the storage tank, through the collector 
tubes and into the top of the storage tank is located at the 
field inlet, Fig. 1. To ensure that the collectors give 
optimum solar absorption, every collector row has a sun 
tracking system fitted to it. 

A data acquisition system for the plant provides the 
following data: the solar intensity, inlet temperature to the 
field, outlet temperature of each loop and two other outlet 
temperatures between the field and storage tank, the 
current oil pump flow and requested value, and the 
tracking status of the collectors.  The plant can generate 
1.2 MW of peak power with beam solar radiation of 900 
W  m-2. The oil-storage tank has a capacity of 140 m3, 
which allows for storage of 2.3 thermal MWh for an inlet 
oil temperature of 210 oC and an outlet temperature of 
290 o C. 

The operation limits for the oil pump are between 2.0 
and 10.0 litres per second. The minimum value is there 
for safety and to reduce the risk of the oil being decom-
posed, which happens when the oil temperature exceeds 
305oC. The consequence of exceeding the maximum oil 
temperature is that all the oil may have to be changed, 
leading to plant down time and loss of power generation. 
Another important restricting element in this system is 
the difference between the field’s inlet and outlet oil 
temperatures. A suitable, or normal, difference is around 
or less than 70 oC. If the difference is higher than 100 oC, 
then there is a significant risk of causing oil leakage due 
to high oil pressure in the pipe system. 

A control system for this plant has the objective of 
maintaining the outlet temperature (in this case the 
average outlet temperature of all the parallel loops) at a 
desired level in spite of disturbances like solar irradiation 
(clouds and atmospheric phenomena), mirror reflectivity 
and inlet oil temperature. The oil flow rate is manipulated 
by the control system through commands to the pump. It 
should be noted that the primary energy source, solar 
radiation, could not be manipulated. The performance 
measures of the control system are to keep the oil outlet 
temperature close to its set point, and to avoid oscillations 
in the oil pump flow rate.  
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Fig. 1. Schematic representation of the solar plant  
 
3. THE FEEDFORWARD TERM 
 

The outlet temperature of the plant is influenced by 
changes in system variables such as oil flow, solar 
radiation, fluid inlet temperature, mirrors reflectivity, 
ambient temperature, etc. From the control point of view, 
the manipulative variable is the oil flow command to the 
pump. If either of the other variables change this 
introduces a change in the system output unrelated to 
fluid flow, which is the control input signal. Since both 
solar radiation and inlet temperature can be measured, 
this problem can be eased, by introducing a feedforward 
term in series with the system, calculated from steady 
state relationships. This makes an adjustment to the oil 
flow input, aimed at eliminating the change in outlet 
temperature caused by the variations in solar radiation 
and inlet temperature. 

The input signal to the feedforward term is the set point 
temperature demanded by the controller and the output 
signal is the flow command to the pump. The linearised 
model is based on partial derivatives of the change in 
outlet temperature ∆To with respect to changes ∆u, ∆I, 
and ∆Tin. 

                
in

in
o T

T
f

I
I
f

u
u
f

T ∆
∂
∂

+∆
∂
∂

+∆
∂
∂

=∆            (1) 

A simple approach, which reduces the complexity of the 
model, (Camacho et al., 1992), bases the feedforward 
term directly on the steady state energy balance relation-
ship:                        
          )5.151(485.07869.0)( −−=− oino TIuTT  

                                  7.80−             (2) 

where the output of the serial element forms the 
demanded oil flow signal us, which is calculated from the 
following expression: 
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where u is the output of the controller. 



 

Fig. 2. The input data to be modelled.   

The computer model calculates the feedforward 
controller in a more complex way, incorporating two loss 
functions X1 and X2 to take into account such geometric 
and thermal variables as solar hour, julianne day, inlet oil 
temperature etc. 
 
4. DATA MODELLING 
 
4.1 Fuzzy Subtractive Clustering 

The clustering tool (Matlab, 2002) was used to identify 
natural groupings of the input data, Fig. 2, to produce a 
concise representation of the system’s high nonlinear 
behaviour, and hence give an initial idea of the cluster 
radius and number of input membership functions 
required to best represent that data, Fig. 3. 

The cluster radius was then used as an initial starting 
point for a fuzzy inference generation function (genfis2) 
that builds on the subtractive clustering function to 
generate a Sugeno-type Fuzzy Inference System (FIS) 
that models the system behaviour from the input training 
data. The model FIS was then tested with twenty five data 
points of testing/checking input data (different from the 
training data) using an evaluation function.  

 
Fig. 3. Optimum Clusters and Cluster Radius/Influence. 

 
 
Fig. 4. Illustrates the poor performance of the input-tested 
model when compared with the output testing data. 
 

The model evaluation was then compared with twenty 
five data points of testing/checking output data, which 
produced the results shown in Fig. 4. 

4.2 ANFIS Optimisation 
Due to the poor performance of the FIS, Fig. 4, an 

ANFIS was chosen to tune (adjust) its membership func-
tions, using a combination of a backpropagation algori-
thm and a least squares method. This allows the fuzzy 
system to learn from the input/output data set, adjusting 
the FIS parameters (parameter estimation) to reduce the 
error measure, defined as the sum of the squared 
difference between the actual and desired outputs. 

The FIS model was run initially under two hundred 
epochs of ANFIS training to create a new FIS model. 
This model was then checked for over-fitting of the fuzzy 
system to the training data by comparing the training 
input/output data with the checking input/output data 
(which in this case is the same as the testing data). Fig. 5 
illustrates how a system can be over-fitted (the model’s 
ability to generalise the test data) when too many epochs 
are used. Here the training error settles at about the sixty-
fifth epoch with no further improvement in the checking 
data error. 
 

 
Fig. 5. Over-fitting the Fuzzy System. 



 
 

Fig. 6. Improved fit using ANFIS Optimisation. 
 

The ANFIS was then run for sixty-five epochs to give 
the much improved results of Fig. 6. The 3-D Surface 
plot, Fig. 7, gives a good insight into the optimised FIS 
input/output relationships, while Fig. 8 shows the actual 
membership functions themselves. Here the main 
difference between the different shapes of the Mamdani-
type of output membership functions and the Sugeno-
type of FIS is well illustrated. The Sugeno always uses 
singleton spikes to determine its output membership 
functions, either crisply defined constants or in this case 
efficient linear first order equations of the form: 

             If x is A and y is B then z = p*x+q*y+r            (4) 

where A and B  are the input fuzzy sets (antecedent) and p, 
q and r are the parameter constants of the first order 
linear equations that represent the output fuzzy set 
(singletons) of the Sugeno consequent. The values of 
these constants will be optimised further, by being 
considered as decis ion variables, to be randomly 
measured against a number of objective functions 
contained within a Multiobjective Genetic Algorithm 
(MOGA). 
 

 
 
Fig. 7. ANFIS Modelled Fuzzy Controller Input/Outputs. 

 
 
Fig. 8. Input and Output Sugeno Membership Functions. 
 
5. MOGA FINE TUNING 
 

In an initial study by (Loebis, 2000), a fuzzy PI type 
controller, Fig. 9, was designed for better control of the 
solar plant’s low flow rates. This offered an improved 
overall performance compared with the standard PI 
controller. A MOGA was used to optimise the rule-base 
and membership functions for the Mamdani-type fuzzy 
controller against two performance criteria. Rise time, for 
each portion of the set point (due to each step input 
having a different step time, initial value and final value), 
and Covariance (for all portions), giving ten objective 
functions in all. 

The fuzzy logic incremental controller (FLC) defined 
the error (e) as the difference between the plant’s output 
temperature (To) and the set point signal (Tr). The error 
and its increment (∆e) were considered to be the inputs 
for the fuzzy controller and the output variable (∆u) was 
the increment to the control signal. A feedforward term 
was also added after the FLC to improve the disturbance 
rejection caused by changes in the solar radiation. 
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Fig. 9. A Fuzzy Incremental Controlled Solar Power Plant. 



 

 

Fig. 10. GUI for Preference Articulation. 
 

In the work presented here, the search space is reduced 
by allowing the fuzzy incremental controller to operate 
only in the higher nonlinear areas of the system, i.e. when 
the oil flow falls below 5 litres per second. This permits a 
wider choice of objectives, such as overshoot and settling 
time, because the set point change into this area has only 
one portion, i.e. it is more suited to the task-oriented 
nature of the fuzzy-type controller. Also having opti-
mised input membership function sets, and an optimised 
output rule base, along with an efficient Sugeno FIS, 
gives the MOGA facility to quickly search for optimum 
output parameter sets. 

Improvements to the work of (Schroder, 1999), on the 
decision support tool with the MOGA, are developed to 
improve the trade-off between solutions in the non-
dominated set. This uses a novel technique of incorpora-
ting conflict sensitivity or trade-off into the evolutionary 
process itself. 

The MOGA uses the same Pareto-optimality criteria as 
developed by (Fonseca and Fleming, 1998), to determine 
fitness on the basis of non-dominance of the individuals. 
The criteria (including the four objectives) used to assess 
the performance of the fuzzy controllers are: 

1. integral of the absolute value of the error  
2. overshoot 
3. rise-time 
4. settling time 
5. variance 
6. oil flow rate 

The ranges of the objective cost values are from -1 to 1, 
with the initial values of the goals scaled to zero, i.e. 
halfway, Fig. 11. A standard binary coded representation 
was employed with a chromosome length of 28 decision 
variables (12 for the parameters and 16 for the rules), 
each with 8 bit precision and a 20 bit decision variable 
bound. This compares well to the original controller, 
(Loebis, 2000) which required 60 decision variables. An 
Epanechnikov density kernel was used for the fitness 
sharing and mating limits. A rank fitness value of 2.22 
was also used; hence exponential ranking was assumed 
indicating selective pressure. 
 
6. ENHANCED DECISION SUPPORT 
 

Here a novel enhancement to the MOGA decision 
support system is introduced, by using evolving tradeoff 
sensitivity information to automatically adjust the goal 
weighting.  This  is  carried  out  to  improve visualisation  
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Fig. 11. Method of parallel coordinates.  

 
and reduce the number of solutions in the non-dominated 
set, while at the same time maintaining the quality of 
those solutions. 

As described in (Fonseca and Fleming, 1998), the 
population based nature of the standard GA makes it the 
ideal vehicle for the development of a Multiobjective 
Genetic Algorithm (MOGA) where several possibly 
competing objectives must be optimised simultaneously. 
Towards this  end, goal and priority information are made 
available to the design objectives to make it possible to 
differentiate between some non-dominated solutions (best 
performers). These and other criteria form the basis of the 
decision support system that allows the decision maker to 
interactively control the final outcome of the simulation. 

The method of goal and priority change (manually via a 
GUI) is called Progressive Preference Articulation, Fig. 
10. The change of goal information allows the DM 
(Decision Maker) to investigate a smaller region of the 
search space or even to move on to a totally new region, 
which in turn affects the ranking of the population on that 
area of the search space. When priorities are assigned to a 
particular objective, zero priority corresponds to a 
standard objective to be optimised. A priority of 1 (minus 
1 constraint in the GUI) defines a hard constraint, which 
has to be met, but not minimised once met.  Higher 
priority values (minus 2, minus 3 etc.) define higher 
priority hard constraints. In a practical sense, the goals 
can be seen as the specifications of a design: an objective 
with zero priority might be percentage overshoot, 
whereas covariance for example could be treated as a 
constraint. 

Methods for progressive articulation of preferences 
require that trade-off information be communicated to the 
decision maker in a form, which can be easily 
comprehended. When there are only two objectives, non-
dominated solutions can be represented in objective space 
by plotting the first objective component against the 
second. 

For three and more objectives, a different representation 
is required. A common approach, known as the method 
of parallel coordinates, Fig. 11, consists of  associating an 
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Fig. 12. Benchmark solution without using evolving trade-off. 

 
integer index i to each objective and representing each 
non-dominated point by the line connecting the points (i, 

f xi
*( ) ), where f i

*  represents a normalisation of fi to a 
given interval, e.g., [0,1]. With such a representation, 
competing objectives with consecutive indices result in 
the crossing of lines, whereas lines that don’t cross 
indicate non-competing objectives, where the cost values 

equate to f xi
*( )  and the objective numbers equate to f1-

f4. Although the ordering of the objectives may be 
automatically decided upon on the basis of some measure 
of competition (in order to maximise the competition 
between adjacent objectives, for example), being able to 
change this ordering interactively is also useful, and not 
difficult to implement. 

The development of the decision support system was 
initiated by computing the minimum cost solution. This 
will be used later as a benchmark or measure for quality 
of solution. The minimum cost solution was obtained by 
summing the objective costs for each individual in the 
non-dominated set, sorting them to obtain the minimum 
then extracting the minimum for display, see Fig. 12. 

The graphical representation, shown in Fig. 11, and 
used by the multiobjective GUI tool, plots design 
objectives along the x-axis and the objective domain 
performance, within the environment of the problem, 
along the y-axis. Each line represents a single solution’s 
score against each objective. The displayed ranges of 
each objective are adjusted to leave the ‘× ’ marks (in 
blue) representing the optimisation goals. 

Study of these trade-off graphs can lead to a greater 
understanding of the trade-offs inherent in the system. In 
Fig. 11, it is difficult to see the trade-off information 
clearly as the number of non-dominating solutions is too 
large. Therefore a tool has been developed by (Schroder, 
1999) that allows a quantitative analysis of the amount of 
trade-off between objectives in such a graph, see Fig. 13. 

This tool measures the amount of competition between 
objectives by computing the distance by which the lines 
cross as a percentage of the maximum distance that they 
could cross by. It uses a partitioning of the objective 
space to normalise with respect to the density of solutions 
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Fig. 13. Percentage trade-offs (non-evolving), with the overall 
percentage trade-offs per objective in parenthesis.  
 
so as not to allow highly populated parts of the objective 
space to artificially dominate the measure. The results of 
applying this tool to the graph of Fig. 11, are shown in 
Fig. 13.  

The ranges upon which the trade-off figures are based 
are taken as the range between the maximum and 
minimum values of each objective. These represent the 
‘true’ competition on the Pareto surface. 

Each cell in the matrix of Fig. 13 represents the 
percentage trade-off between the objectives that represent 
its co-ordinates. The figures in parentheses on the 
diagonal are the sum of the trade-offs for that objective 
divided by the total number of objectives. This shows that 
the objective that caused the most amount of competition 
was objective two, which is reasonable when comparing 
it with the other objectives. The bar chart of Fig. 14 
highlights the overall trade-off per objective for each 
objective on view. It gives an instant visual assessment of 
what is happening within the multi-criteria system being 
analysed. 
A novel evolving goal weighting method is proposed in 
this work, that adjust the goals automatically in relation 
to trade-off information, which is only included if there 
are a minimum number of solutions in the non-dominated 
set. After each generation, this technique re-positions the 
goals to the initial maximum cost of each objective 
before it includes the trade-off information. The trade-off 
information   tightens  the  goals  on  the  objectives  with  
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Fig. 14. The parenthesised values of Fig. 13 in bar chart form. 



 
 
 
 
 
 
 
 
 
 
 

 
 
 
Fig. 15. Goal weighting in relation to the average trade-off 
sensitivity. 
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Fig. 16. Results of the enhanced visualisation: without evolving 
trade-off (left) and with evolving trade-off (right). 
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Fig. 17. Benchmark solution choice from the reduced set. 
 
conflict sensitivity below the halfway or overall average 
objective sensitivity, and reduces the goals  for the 
objectives that have conflict sensitivity above the overall 
average see Fig. 15. 
 
7. RESULTS 
 
The enhanced decision support and visualisation im-
proves the trade-off between the non-dominating solu-
tions in the set while conserving the quality of the set, 
Fig. 16.  The diagram shown in Fig. 17,  illustrates how a 

 
 

Table 1. Simulation without and with evolving trade-off 

                OBJECTIVES  

 O.shoot R.Time Err.Var. S.Time  

Initial 

Goals 
5 20 10 315 

Final 

Goals 
3.3 14.1 9.8 69.5 

Min cost 0.3334 0.3513 0.4913 0.1130 

Total Minimum Cost:    Without: 1.2911    With: 1.2890         

Number of Initial Individuals: 40 

Total Percentage Trade-off:    Without: 83%    With: 30%    

Number of Generations: 100 

Stochastic Universal Sampling 

Single Point Crossover Rate 0.7 

Mutation Probability 0.007 

Reinsertion 0.04 

Minimum Number of Potential Solutions  Found before 

Trade-off Initiated: 5 

Number of Near Optimum Solutions in the Non-Dominated 
Set:  Without: 356   With: 351 
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Fig. 18. Typical simulation results at plant start up time, for the 
fuzzy Incremental controller. 
 
particular solution (in this case the benchmark) represents 
a particular fuzzy controller. The results of the conflict 
sensitivity between the solutions within the non-
dominated set, before and after evolving trade-off is 
incorporated are shown in Table 1. 

A typical response for the outlet oil temperature track-
ing for the new improved fuzzy incremental controller at 
start up is shown in Fig. 18, along with the oil flow and 
radiation. In the figure, the single operating region 
facilitates the use of more design objectives. The design 
of the final controller is therefore a compromise that 
offers good performance across the highly non-linear 
operating range and also minimises the task-oriented 
nature of the set point tracking error. 
 

7. CONCLUDING REMARKS  
 
The design of an automatically tuned Sugeno-type 
incremental fuzzy controller for exclusive operation in 
high nonlinear regions: 

• Reduced the rule base and search space, which in turn 
permitted the MOGA to produce a set of non-
dominating solutions at a much faster rate. 

• Improved control by allowing a wider choice of 
performance criteria. 

• Increased the operating range at low oil flow rates, 
which allows the plant to function in environments 
where local solar radiation conditions have always 
been regarded as marginal. 

The reduction in the size of fuzzy controllers is 
attractive because they are simpler to both understand and 
validate, and also easier to implement in hardware. 

The work here also improved the visualisation 
techniques, required for a deeper understanding of the 
system. Allowing the trade-off, and hence goal 
information to evolve automatically gives the decision 
maker a solid foundation to work from, if further 

alterations to the goal information are required manually, 
in order to arrive at the best non-dominating solution, for 
the optimal tuning of the fuzzy controller.  

A benchmark solution was provided as a way to check 
that the quality of the non-dominating set has been 
maintained. It also provides the decision maker with an 
overall standard minimum cost solution from the non-
dominated set. 
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