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ABSTRACT

Bayesian algorithms have been proven very successful in enhancing speech from back-
ground noise. A large number of such algorithms can be found in the scientific literature
of the past 25 years. In this report a number of frequency domain Bayesian algorithms
for speech enhancement is examined and evaluated. The algorithms can be grouped ac-
cording to the feature of the Short Time Fourier Transform (STFT) they act upon, the
estimator applied and the speech prior density function used. The STFT features consid-
ered are the DFT coefficients of the STFT (real and imaginary part) and their amplitude.
The estimators applied are the Minimum Mean Square Error (MMSE) and the Maximum
A Posteriori (MAP). Finally, the priors used are the one and two sided Chi and Gamma
probability density functions (pdfs). Of particular interest is the value of the parameter q,
which greatly influences the shape of the pdfs and subsequently the performance of the

respective algorithms.

Results from extensive simulations performed with all the examined algorithms are also
presented. The algorithms are evaluated according to two objective measures, the Seg-
mental SNR (SegSNR) and the Perceptual Evaluation of Speech Quality (PESQ). An

informal subjective evaluation of the enhanced speech is also given.

v



CHAPTER1 INTRODUCTION

The continuous evolution of computers and digital systems and the widespread use of
mobile phones has given rise to numerous man-machine voice interfaces, with applica-
tions such as voice portals, v-commerce etc. The portability of such devices enables
them to be deployed in environments where background noise conditions can be adverse.
Background noise poses a serious problem for both voice-based communication and auto-
mated services. Speech quality and intelligibility can be seriously hindered and automatic

speech recognition systems are far less robust to noise than humans.

Speech enhancing algorithms can restore, to some extent, the noise corrupted speech,
increasing its quality and potentially its intelligibility. The success rate of speech recog-
nition engines can also be improved. Most modemn speech enhancing algorithms work in
the frequency domain. The transformation to the frequency domain is usually achieved
with the Short Time Fourier Transform (STFT), because speech is a non stationary sig-
nal. To obtain the STFT, the time signal is divided into segments of ~ 30ms overlapped
by ~ 20ms, windowed by a tapered window, and transformed with a DFT. The resulting
DFT segments are then placed as columns in a matrix, which is called the STFT matrix
(or STFT). The columns of this matrix are called time frames, while its rows are called

frequency bins.

Speech enhancement algorithms typically try to restore the clean speech signal STFT
given the STFT of the noisy signal. Some algorithms restore the DFT coefficients (real
and imaginary parts) whilst others only modify the amplitude, which is combined with the
phase of the noisy signal to produce the enhanced speech. Processing is usually performed

in each frequency bin independently.

The speech and noise data in each frequency bin are modelled as random variables (r.v.),
which are assumed to be distributed according to a probability density function (pdf).
These modeling assumptions make techniques from Bayesian theory powerful tools for
the estimation of the clean speech coefficients. The most widely used Bayesian estimators

are the Minimum Mean Square Error (MMSE) and the Maximum A Posteriori (MAP),
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both of which have been successfully employed in the construction of speech enhance-
ment algorithms. A number of density functions have also been used to model speech
(also known as priors) such as Gaussian, Laplacian, Gamma etc. The most common as-

sumption used for the noise is that is distributed according to a Gaussian distribution.

The scientific literature has produced a number of Bayesian speech enhancement algo-
rithms. Beginning with those that enhance the DFT coefficients, we have the Wiener
filter (Gaussian speech priors, MMSE or MAP estimators [1]), and the method proposed
by Martin in [1] employing Gamma priors with « = 0.5 (see eq. 3.19) and the MMSE
estimator. Algorithms that enhance the amplitude of the STFT include the well known
Ephraim and Malah MMSE STSA [2] (Rayleigh speech priors, MMSE estimator), while
the MAP estimator with the same speech priors was proposed by Wolfe and Godsill in [3].
Finally, MAP estimators with Gamma and Chi priors were proposed by Dat et al in [4]
and Lotter and Vary in [5, 6].

We can therefore see that a framework of Bayesian speech enhancement algorithms is
forming. The algorithms that belong to it can be divided into the following categories:
Firstly, according to the feature of the STFT they are enhancing, which can be either the
DEFT coefficients (real and imaginary parts) or their amplitude. Secondly, according to the
Bayesian estimator that is applied, which is either the MMSE or the MAP. Finally, they
can be grouped according to the prior density which is used for the speech. The speech
priors mentioned above belong to two general families of priors. These families are the
Chi (egs. 3.7, 4.3) and the Gamma (eqs. 3.19, 4.15) density functions. The algorithms of

the above framework are the issue of investigation in this report.

Although some of the algorithms already exist in the literature, some are new in this
report. These include the MAP and MMSE estimators in the DFT domain with the Chi
and Gamma priors (note that the Wiener filter and the algorithm proposed by Martin
in [1] are only special cases) and the MMSE estimator in the amplitude domain with the
Chi priors (again the algorithm proposed by Ephraim and Malah in [2] is a special case).

Due to the large number of algorithms examined in this report a ‘code name’ is given to
each for easy reference. The names are of the form ‘Estimator-Prior’, where estimator
is either the MAP or the MMSE and prior is the Chi or Gamma. For example the name
‘MMSE-Chi’ refers to the MMSE estimator with the Chi priors. The feature of the spec-




trogram the estimator is applied on (DFT or Amplitude) should be clear from the context.
Otherwise the name will be extended 1.e. MAP-Gamma-DFT or MAP-Gamma-AMP.

The organisation of this report is as follows: In chapter 2 we lay down the theoretical
background of Bayesian estimation and introduce key concepts such as the prior and pos-
terior density functions and the MMSE and MAP estimators. In chapter 3 we present the
algorithms that work with the DFT coefficients (real and imaginary part), and in chapter
4 those who work with their amplitude. In chapter 5 we give the results from simulations

preformed with all the presented algorithms and chapter 6 concludes this report.




CHAPTER 2 BAYESIAN ESTIMATION

2.1 Introduction

Most modern speech enhancing algorithms work in the Short Time Fourier Transform
(STFT) domain, where each frequency bin is processed as a separate time series. The
frequency bin representations most often used in the processing are either the complex
DFT coefficients, or their amplitude. These features are assumed to be corrupted by noise

and some estimation rule has to be employed for their recovery.

Both representations are successfully modelled as non-stationary stochastic processes,
about whose probability distributions some k:riowledge is usually available. This mod-
elling assumption and the knowledge about the form of the distributions make Bayesian
estimation a promising method for a successful speech enhancing scheme. Indeed, Bayesian
estimators are highly applicable when the parameter we need to estimate is a random vari-

able (r.v.) itself and there is also some prior knowledge about its distribution.

A central concept in Bayesian estimation is the cost function C (a, 4(b)), where q is the
parameter we are trying to estimate, b is the observation and G(b) is an estimate of @ once b
is observed. The cost function defines the cost of observing b and saying that the estimate
for a is a(h). Tt is often possible to express the cost as a function of a single variable a.(b),

which is called the error and is defined as:
a.(b) = d(b) —a 2.1

Typical cost functions include the square error (eq. 2.2) and the ‘hit-or-miss’ cost function
(eq. 2.3), which assigns a uniform cost for absolute error values above a threshold 4.

These cost functions are also shown in figure 2.1.

Cielac) = al (2.2)
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CLe -4 ) Ge
Square error Hit-or-miss
Figure 2.1: Typical cost functions.
0 if|a.| <d
Chm(ae) = . la (2.3)
1 if|a.f > ¢

Once a cost function is chosen, the objective is to minimise its expected value. The
expectation (average) is with respect to all the possible values of the parameters a and
b and is often referred to as risk, which is defined in equation 2.4. p, ,(a, b) is the joint

probability density function (joint pdf) of a and b.
R2 E[C(a f / (a,3()) Pas(a, b) da db 2.4)

Minimisation of the risk for different cost functions leads to different estimators. The
estimators that are derived when the square error and hit-or-miss cost functions are used
are the Minimum Mean Square Error (MMSE) and Maximum A Posteriori (MAP) esti-
mators respectively. These estimators are the principal ones used in practice and will be

examined in the following sections.

2.2 Minimum Mean Square Error Estimator

The MMSE estimator is obtained by minimising the risk function (eq. 2.4) with respect

to a(b), using the square error cost function (eq. 2.2). The risk function can be written as:
R= /_ ” f_ N (@ — &(b))* pap(a, b) dadb (2.5)

Application of Bayes’ theorem transforms the above equation to:
= [~ [ (@ a(6)* pus(alt) da u(t) 2.6)
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As py(b) and the inner integral are non-negative, minimising the latter with respect to &
also minimises the risk. Differentiation of the inner integral w.r.t. 4 yields:

L[ -aersem do] =2 [ @-atnpepa 0D

da Jo’s) —00

For simplicity we have dropped the subscript of the pdfs, as their argument should make
clear which random variables they refer to. Setting equation 2.7 to zero and considering
that the integral of p(a|b) from —co to oo is one, we see that the estimate that minimizes
the mean square error is:

&wﬁthM:i/maMMMda 2.8)

—00

Tt is interesting to note that the MMSE estimate is always the mean of the a posteriori
density p(aib) (see figure 2.2). Further application of the Bayes theorem on eq. 2.8 can
yield the expression in eq. 2.9, where the MMSE estimate is expressed in terms of the

likelihood function p(bja) (evidence) and the prior p(a).

/_Zap(a,b)da_/_z fooapb|a da .

= p(b) - [m (a,b) da foop ba)p(

2.3 Maximum A Posteriori Estimator

The maximum a posteriori estimator can be found by substituting the hit-or-miss error

function (eq. 2.3) in the expression for the risk (eq. 2.4), which then reads:

= /;OO f_oo Chm(ae(b))p(aib) da db (210)

Applying the Bayes rule and following the same argument as in equations 2.6 and 2.7 we

see that for the minimisation of the risk it suffices to minimise:
=/c%mmmwwm @.11)

Considering that the cost function Cy,,(a.(b)) is 1 only for a.(b) > |5| or equivalently for

a > a(b) + 6 and a < a(b) — & while it is zero everywhere else, eq. 2.11 can be written



as:

X a(b)—4 o0
R = f 1-p(ald) da +/ 1-p{alb) da (2.12)
—o0 a(b)+é
or as:
X a(b)+3
R=1- f plalb) da (2.13)
a(b) -3

if we recall that {™_ p(alb) da = 1. As & approaches zero, the value of &(b) that minimises
R is the value of @ for which p(a}b) has its maximum. In other words, the risk is minimized
for the hit-or-miss cost function when the estimate is the maximum (mode) of the posterior

density function (see fig. 2.2); hence the Maximum A Posteriori name for the estimator.

plalb)

Mode Mean a

Figure 2.2: Posterior density with the mode and the mean.



CHAPTER 3 DFT DOMAIN ALGORITHMS

3.1 Introduction

The Bayesian methods presented previously can be applied for enhancing speech in the
DFT domain or more precisely, one of the estimation methods presented in chapter 2
can be applied to enhance the real and the imaginary parts of the noisy speech STFT
coeflicients in each frequency bin separately. This is in juxtaposition with methods that

act upon the amplitude of the STFT coefficients which are presented in the next chapter.

Suppose that we observe a signal z(t) which is the sum of a speech signal s(¢) and a noise

signal n(t), i.e.:
z(t) = s(t) + n(t) (3.1

Also denote by X, S, and Ny, the & frequency bin of z(¢), s(t), and n(t) respectively,
obtained with the STFT. Because the estimation rules are applied independently to the
real and the imaginary part of each frequency bin, to simplify the analysis we shall only
consider the real part. The results for the imaginary parts are identical. X, S and N in
the following, denote the real part of an STFT sample in the £** frequency bin. Because

of the linearity of the Fourier Transform the following equation will also hold:

X=8+N (3.2)

The estimation problem can be formulated as follows: we observe a sample of X and
we want to estimate S given the noise and the speech statistics. The estimators that
will be employed are the MMSE and the MAP, the derivation of which requires first the
calculation of the posterior probability density function p(S|X). According to Bayes

theorem the posterior density can be written as:

p(s1x) = 2D 3.3



We first state a fundamental result that if X = .S + N then:
p(X|S) = pn(X = 5) (3.4)

where py is the pdf of N. Assuming that N is a zero mean Gaussian r.v. with variance
o, the likelihood p(X|S) can be written as:
p(X|S) = —=—

2
7TO'N

exp [-E 2] (.5)

2
2oy

The prior p(9) is a density function that reflects our knowledge about the distribution of 5.
We will see in the following that the form of the prior strongly affects the performance of
the resulting algorithm; hence an appropriate selection of a prior is of critical importance.

The prior densities considered here are the 2-sided Chi and Gamma pdfs that will be
presented shortly.

The probability of the data p(X) is a normalising factor that does not depend on S and
ensures that the integral of the posterior density with respect to S equals 1. It can be

calculated according to Bayes rule as:

p(X) = ] " p(X1S)p(S) dS (3.6)

-0

Note the similarity of the numerator and the denominator of 3.3 if p(X) is replaced by

equation 3.6.

3.2 2-Sided Chi Speech Priors

The 2-sided Chi pdf is given by:

pl3) = eu;(a)

2
|S|** ! exp {—%—} (3.7)

where I'(.) is the gamma function. Special cases of this distribution occur when a = 0.5
(Gaussian) and when a = 1 (2-sided Rayleigh). Figure 3.1 shows some instances of the

2-sided Chi pdf for some characteristic values of a.




M

(8 a=0.1 by a=10.5 {(c)a=1

Figure 3.1: 2-Sided Chi pdfs for different values of a.

3.2.1 MMSE Estimator

As shown in chapter 2 the MMSE estimator is the mean of the posterior density. There-
fore, the MMSE estimator of .5 will be:

f " 5 p(X1S) p(S) dS
—o0 (3.8)

[ " p(X1S) p(S) dS

coC

S =E[5|X] =

where p(S5) and p(X|S) are given by eqs. 3.7 and 3.5 respectively. Calculation of the
integrals in 3.8 yields (see Appendix A.2):

D201 (—¢X) — D 501 {¢X) [ ey,
Do —CX) ¥ Da(CX) M o O

S =2a0%¢

where D,(x) is the Parabolic Cylinder Function (eq. 9.240, [7])

It is also possible to express the above estimator as a gain of the noisy coefficients X,
which is a function of the a priori and a posteriori SNRs. The a priori SNR is given by
the relationship £ = E[S?]/E[N?], which for this case can be written as { = fa/o%.
The a posteriori SNR is defined as v = X?/E[N?] and in this case can be written as
¥ = X?/c%. Substituting the expressions for £ and «y in equation 3.9 we get:

£y
£+ 2a

A~ 2(1.?7 D—Qa— ( n) - Dui’a.fl(n)
S=X
v  D_y (=1 + D_s.(n)

where 7 = sgn(X) (3.10)
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3.2.2 MAP Estimator

The MAP estimator 3 is the value of S for which the posterior density has its maximum.,
The probability of the data p(X') is not a function of S so it suffices to find the maximum
of p(X|S)p(S), which are respectively defined by 3.5 and 3.7. The algebraic manipula-
tions are substantially simplified if In(p(X|S)p(S)) is maximised instead. The resulting
estimator is given by (see Appendix A.3):

g

oy 2 2 1/2
S=CE-§*Sgn(X) (CE) + (a —0.5)20% ¢ where §:9+20_I2V (3.11)

where sgn(.) is the signum function. It is also possible to express the above estimator as
a gain of the noisy coeflicients, which is a function of the a priori and a posteriori SNR,

defined in section 3.2.1. The resulting expression is:

7 [(m)? o2 here 7= —2 3.12
_+[(_) +{a — )7] where =70 (3.12)

1t is easy to sec that when a < 0.5 the posterior density has a pdle at zero. The strategy
we follow in this case is to take the maximum provided by equation 3.11 when it exists
and when it does not {or when the argument of the square root is negative) we suppress

the noisy sample by a fixed amount i.e. 25 dB.

Although it is not evident at first sight (especially in the case of the MMSE), both the
MAP and the MMSE estimators give the well-known Wiener solution for ¢ = 0.5:

P
A Xog

vz 3.13
P G-13)

where 0% is the variance of the speech prior, which for a general 2-sided Chi pdf is equal

to fa and in this particular case is §/2.

3.2.3 On Lipne Estimation of the ¢ Parameter

A method for the estimation of the ¢ parameter can be found using the method of moment
matching. A method for finding Maximum Iikelihood estimates of « is described in [8],

but requires a significantly greater amount of computation and the availability of clean

11




speech samples. The moment matching method is quite simple in its implementation, can
be applied directly on the noisy samples and the accuracy of the estimates is found to be

satisfactory for our purposes.

Given the model X = S + N the fourth moment of the noisy speech can be shown to be:
E[X*] = B[S + 6E[S?|E[N?] + E[NY] (3.14)
Given the Gaussian noise model we have:
E[N?] = o3, and  E[N* =30} (3.15)
The corresponding moments of the 2-sided Chi pdf are:

E[5?%] = ba, and  E[SY =#%a(a+1) (3.16)
Finally, the second moment of S can be also found from the a priori SNR ¢ as E[S?] 2
o% = Eo¥.

Substituting the above equations in 3.14 we obtain:

40+1

E[X"] = 0% —+ 603y + 3o
or:
a+1 _ E[X*) - 60350?\; —3Nn _ . (3.17)
a Jg
Therefore:
1
o= (3.18)
k—1

In equation 3.17 x can be recognised as the kurtosis, defined as £ E[SY)/E[S?2. Note
that as the kurtosis tends to infinity a tends to zero and the priors are getting narrower with

longer tails. If the kurtosis is below 1, a has a negative value, which is not acceptable.

12
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Figure 3.2: 2-Sided Gamma pdfs for different values of a.

3.3 2-Sided Gamma Speech Priors

The 2-sided Gamma density function is a generalisation of the Laplacian pdf and is given

by:
S

The 2-sided Gamma pdf is more leptokurtic (higher value at zero, longer tails) than the
2-sided Chi pdf for the same value of a, while for a = 1 yields the Laplacian pdf. Some

plots for characteristic values of a are shown in figure 3.2.

3.3.1 MMSE Estimator

To obtain the MMSE estimator we need to substitute in equation 3.8 the expression for the
likelihood (eq. 3.5) and the Gamma prior, which is given by equation 3.19. The resulting
estimator is given by (see Appendix A.4):

@ e | S
) exp | & D_. i(¢1) —exp i D_._1(¢)
§ = aoy > = (3.20)
exp [Zl} D_.(¢1) +exp {f} D_.(C2)
where C1=%—%,Cz=%+%

To express the above estimator as a gain of the noisy coefficients we must bear in mind

that the expression for the a priori SNR is now £ = #%a(a + 1)/¢% and the a posteriori

13



SNR is again v = X?/0%. The resulting expression is:

m 73
§_x asgn(X) P [ 4] D-oalm) —exp {Z} D-oaltm) (3.21)
2 2 ’
al exp [%] D_(m)+exp %} D_.(n2)

where 1 =

3.3.2 MAP Estimator

The MAP estimator for the 2-sided Gamma priors can be obtained in the same way the
corresponding estimator for the 2-sided Chi priors was found. It therefore suffices to find
the maximum of In(p(X1S)p(S)) where p(X|S) is again given by eq. 3.5 and p(S) by
eq. 3.19. The resulting estimator is (see Appendix A.5):

2

§ = ¢ +sgn(X) (24 {a— 1)0?\,]1/2 where ( = % — sgn(X)(;r—gr (3.22)

The expression of the above estimator as a gain of the noisy coefficients is given below.

The expressions for the a priori and the a posteriori SNRs are the same as in section 3.3.1.

ala+1)

1
- 3.23

S=X

_ 1112 1
n+ sgn(X) [nz—l—aT] ] where n=g -

When a < 1 the posterior density has a pole. In this case we take the solution provided by
eq. 3.22 when it exists (or when the argument of the square root is positive) and suppress
the noisy sample by a fixed amount (25 dB) when it does not. If we also observe the form
of the posterior density (eq. A.22) we can see that the value of S where its maximum
occurs must have the same sign with X. It is possible however, that the expression in eq.
3.22 can yield negative solutions for positive X and vice versa. This is not acceptable and

in these cases the noisy samples are again suppressed by the same fixed amount.

14



3.3.3 On Line Estimation of the ¢ Parameter

An estimate for the o parameter can be obtained in a similar way as in section 3.2.3. The

corresponding moments for the Gamma prior arc now:
E[S?] = *a(a+1), and  E[§Y=#¢'ala+1)(a+2){a+3) (3.24)

Following the same procedure as in section 3.2.3 we have:

(a+2)(a+3) E[X?Y —60%c% — 30y

= —_ 3.25

a{a + 1) ol " (3.25)
Solving the quadratic equation we consecutively have:
55—k (5—k)?—2401—k)

= 3.26

¢ 2(k — 1) (3:26)
— 2 1
_ 5—k+ VK24 14+ (3.27)
2k —2

The root with the (4) is selected because for > 1 the root with the (—) is negative as it
can be seen from equation 3.26. If the kurtosis « is less than 1 the both roots are negative,

which is not acceptable.

3.4 Estimation of the Remaining Parameters

Although a number of density functions that model speech were discussed previously, the
noise coefficients were assumed to have a Gaussian distribution. This might need some
justification. If noise is stationary the Gaussian assumption for the DFT coefficients is
justified by the central limit theorem. If on the other hand, noise is non-stationary its DFT
cocfficients éan still be modelled as Gaussian but with a time varying variance o3, which
can track the noise changes. This model is viable because noise usually changes more

slowly than speech so we do not need to resort to other assumptions about its distribution.

It is therefore apparent, that some algorithm has to be employed to track the temporal
changes in the noise variance. A simple method involves the use of a Voice Activity De-
tector (VAD), which identifies the time frames that contain noise only and then estimates

its variance in each frequency bin. A more sophisticated method called noise estimation
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based on minimum statistics was presented in [9] and estimates the variance in each fre-
quency bin by searching for power minima. To be precise, the above algorithm estimates
the variance of the amplitude of the DFT coefficients. However, if the DFT coefficients are
independent, Gaussian, zero mean and of variance o then the amplitude has a Rayleigh
distribution with variance 20%. Hence, an estimate of the DFT coefficients variance can

be obtained from an estimate of the variance of their amplitude by a simple division by 2.

All the estimators presented previously were given in two forms: one involving only the
parameters of the density functions (a,6 and 0%, and one where the two latter parameters
were replaced by two popular quantities in the Bayesian speech enhancement literature,
the a priori and a posteriori SNR (£ and v respectively). From all the quantities and
parameters involved in the estimators the only ones whose calculation we have either not
discussed yet or is not straight forward are the a priori SNR £ and the parameter § of the
prior density functions. These two quantities are related by simple expressions, which
depend on the prior density used, so calculation of one of them is sufficient to define all

the involved quantities.

It is possible to estimate a fixed value for § from clean data samples or some other adaptive
scheme. It has been proven highly successful however, to estimate the a priori SNR
instead, with a method such as the Decision Directed Approach, presented in [2]. The
success of this approach is that it aids the suppression of the musical noise phenomenon
(narrow band noise with time changing frequency center that gives the impression of
musical tones) [10]. The rule for the decision directed estimation of the a priori SNR is
given by:

&2

£ = o fk_l + (1 — o) max(y, — 1) (3.28)

ON k-1

The subscripts k£ and & — 1 denote the current and the previous time frames, while ¢ is a
smoothing parameter, which is typically set to 0.99. 5’,3_1 is the estimated clean speech
sample in the previous time frame. Other methods for estimating the a priori SNR also

exist [11], but they are more involved computationally.
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CHAPTER 4 AMPLITUDE DOMAIN ALGORITHMS

4.1 Introduction

In the previous chapter we presented methods for estimating the clean speech DFT co-
efficients (real and imaginary parts) in every frequency bin given the noisy observations.
An alternative option is to estimate the amplitude and the phase of the clean speech fre-
quency bins instead, which generates a whole new family of algorithms. In practice it
is sufficient to estimate the amplitude only and then combine it with the noisy speech
phase to create the enhanced speech waveform. That is because it has been widely argued
that the perception of speech is phase insensitive [12], [13] and moreover, Ephraim in [2]
has shown that the optimal estimate for the clean speech phase is the noisy speech phase
itself. This property gives the amplitude estimation methods an advantage compared to
their DFT coefficients counterparts, which is that the number of data points that need to

be estimated is halved.

For every frequency bin k we can express the DFT coeflicients of the clean and noisy
speech in terms of their amplitude and phase as X, 2 Rpef*, and S, £ Ageit where
Ry, i, Ag, and ¢y, are the amplitude and phase of the noisy and clean speech respectively.
As the estimation procedure has to be applied in every frequency bin independently, the

subscript £ will be dropped in the following for notational simplicity.

The estimation problem can be formulated as follows: we are trying to find an estimate
of the clean speech amplitude A given the noisy speech amplitude R and phase 1. Re-
call from chapter 3 that in order to apply both the MMSE and the MAP estimators, the
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calculation of the posterior density p(A|R, 1) is first necessary. This can be written as:

p(R, 9| A)p(A)
/D p(R, 4| A)p(A) dA

p(A’R, 20) =

] " B(RIA, $)p(A)p(9) ds
0 4.1)

fow /UQWP(R’MA’ ¢)p{A)p(®) dAdg

In the above equation we note that p(A) and p(¢) are factorised, which implies that A
and ¢ are independent. This is indeed supported by simulation resuits, which also show
that the distribution of the clean speech phase is uniform; hence we can replace p(¢) with

1/2x.
The density function of R and 4 conditioned on A and ¢ is given by (see Appendix A.1):

R R? + A? — 2RAcos(yp — &)
5 CXp |— 3
2o 20%

p(R, 9|4, ) = (4.2)

We now proceed to derive the MMSE and MAP estimators for different families of speech

amplitude priors.

4.2 Chi Speech Priors

The Chi density function is the 1-sided version of the pdf described in section 3.2 and its

functional form is given by:

2

p(A4) = 9T (a)

2
A% exp [———%—} , with A > 0 (4.3)

It is easy to see that for @ = 1 yields the Rayleigh pdf, while for « = 0.5 the half Gaussian.
Some of its characteristic instances can be seen in figure 4.1. Let us now present the

expressions for the MMSE and the MAP estimators.
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Figure 4.1: 1-Sided Chi pdfs for different values of a.

4.2.1 MMSE Estimator

The MMSE estimator of the clean speech amplitude A given the noisy speech amplitude
R and phase 7 is given by:

~

A=EAR Y = / Ap(A|R, %) dA

fom /0% Ap(R, ¥|A, $)p(A)p(¢) do dA

i (4.4)
/0 /U (R, ¢|A, #)p(A)p(¢) dp dA

Substitution of p(R, 1| A, ¢) and p(A) from 4.2 and 4.3 respectively and the assumption
of a uniform phase distribution (p(¢) = 5-) yields (see Appendix A.6):

T(a+0.5) 1Fi(a+0.51 () 0
A=4/20%¢ ar : ;ZJN where (= -——— (4.5)
VIR TG Rt ) 7355

1F1 (5 B;v) is the Confluent Hypergeometric Function (eq. 9.210.1, [7]). The above

estimator with a = 1 (Rayleigh speech prior) is the one found in the well known Ephraim-

Malah algorithm [2].

The estimator in equation 4.5 can be expressed as a gain of the noisy coefficients, which
is a function of the a priori and the a posteriori SNRs. The expression for the a priori SNR
is £ = E[A?]/E[N?] or £ = fa/20%. The a posteriori SNR is given by v = R?/E[N?] or

v = R?/20%. The estimator can be written as:

A=

R{ 7 D(a+0.5) 1Fi(a+0.5;1;9n) where 7 = Eia @.6)

v T{a) 1 Fi(a; 1;m)
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4.2.2 MAP Estimator

The MAP estimator can be found by maximising with respect to A the posterior density
p(A|R, ). Once again since the denominator in the expression for the posterior density
in equation 4.1 is not a function of A it suffices to maximise the numerator only, or its

logarithm as the calculations are simplified significantly; thus:

-~

2m
A= argmin ([ ol 014,80t o2 ) @

Substituting p(R, 1| A, $) and p(A) from 4.2 and 4.3 and p($) = 5= yields (see Appendix
AT

1/2
. R R\? ) 6
=z = —0. A 4.
A C2 + ((2) + (@ — 0.75) 20% C] where ( 51207 (4.8)
The above expression as a gain of the noisy coefficients is:
i A% n]"? 3
A=R 3 + {(5) + (a - 0.75) A—J where 7= " 4.9)

By examining equations 4.8, 4.9 we can see that if ¢ < 0.75 the square root argument
can be negative, which reflects the fact that the posterior density has no finite maximum.
(It actually has a pole at zero). In this case the noisy samples are suppressed by a fixed

amount (1.e. 25 dB).

4.2.3 On Line Estimation of the ¢ Parameter

A method for estimating a from the noisy speech samples, similar to that developed in
section 3.2.3, is developed below. Given the model for the DFT coefficients X = S + N

the fourth moment of the noisy speech spectral amplitude can be written as:
E[RY = E[AY] + 4E[A*|E[B%] + E[BY] (4.10)

where B denotes the amplitude of the noise DFT coefficients, which are modelled as

independent, zero mean Gaussian t.vs. with variance o%. Given this model, the 27 and
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4* moments of the noise spectral amplitude are given by:
E[B? = 20%, and  E[BY] =8} 4.11)
The corresponding moments for the speech spectral amplitude given the Chi prior are:
E[A%] = fa, and E[AY] = #*a(a + 1) (4.12)

The second moment of A can again be found from the a priori SNR £ as E[4?] 2 o4 =

2£0%,. Substituting the above in equation 4.10 we have:

(a+1) _ E[RY] - 8d%0} — 80 _ .

= 4
a o4

(4.13)

or finally
(4.14)

where & is the kurtosis of the clean speech amplitude, defined as « 2 E[AY)/E[A%].
Note the similarity of equation 4.14 with equation 3.18, which is the result of the second
and fourth raw moments being the same for the 1-sided and the 2-sided Chi pdfs. Note
however, that the definition of » changes as in section 3.2.3 it is the kurtosis of the DFT

coefficients, while here it represents the kurtosis of the amplitude coeflicients.

4.3 Gamma Speech Priors

Another family of speech priors is be given by the Gamma density function, described by

equation:
1
PA) = 5y

A1 exp {--g-] , with A >0 4.15)

The Gamma density function is the 1-sided variant of the pdf described in section 3.3.
Some of its characteristic instances for various values of the parameter ¢ are shown in

figure 4.2.

One peculiarity of modelling speech amplitnde with Gamma priors is that a closed form
solution for the MMSE estimator cannot be found. It can be shown that the resulting inte-

grals are of the form [~ z# exp(—az?® — 8z) Iy(yz) dx, where Iy(yz) is the zeroth order
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Figure 4.2: 1-Sided Gamma pdfs for different values of a.

modified Bessel function of the first kind. The above integral has no analytic solution
known to the author and its value can be approximated only with numerical techniques.
For this reason the above algorithm is not considered here. Thus, for the Gamma speech

priors only the MAP estimator will be given below.

4.3.1 MAP Estimator

The MAP estimator can be found by maximising the expression in (4.7), where the likeli-
hood is again given in (4.2), the phase density is p(¢) = 5- and the Gamma speech prior
is given in (4.15). The resulting estimator is (see Appendix A.8):

2
12 here (=20 (4.16)

A=(+ [+ (a—15)0k] >~ 59

The a priori SNR is given by £ = 62a(a + 1)/20% and the a posteriori SNR by v =

R?/20%. The estimator in equation 4.16 can be written as:

A . a—15]"
A=R|n+ |n°+ . where 7= (4.17)

If @ < 1.5 the argument of the square root can be negative, which indicates that the
posterior density has no finite maximum. In this case the noisy samples are suppressed
by a fixed amount (i.e. 25 dB). The estimator in the above equations can sometimes
yield negative estimates, which are not acceptable, as the parameter we are estimating
is amplitude. In these cases the noisy samples are again suppressed by the same fixed

amount.
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4.3.2 On Line Estimation of the ¢ Parameter

A value for the parameter a can be obtained in a similar fashion as in section 4.2.3. The
procedure is identical apart from the different expressions for the spcech moments, which

have changed due to the new prior. These are:
E(A?%] = #%a(a + 1), and  E[4Y =#'a(a+1)(a+2)(a+ 3) (4.18)

Following the same steps as in section 4.2.3 we have:

(a+2)(a+3) E[RY —8d%0% ~ 80 _ .

ala+1) o4 (4.19)

Or finally, solving the quadratic equation w.r.t a:

_ 2
a=5 K+ vVE:+ 1441 (4.20)

25— 2

The valid root from the solution of the quadratic equation is the one with the (+) for the
same reasons stated in section 3.3.3. Note again the similarity with equation 3.27, which
is the result of the second and fourth raw moments of the 1-sided and 2-sided Gamma

pdfs being identical.

4.4 Estimation of the Remaining Parameters

The estimation of the remaining parameters is quite similar to that developed in section

3.4. Here, we will just point out some minor differences.

The variance of the amplitude of the noise coefficients can again be estimated with either
the use of a VAD or with the minimum statistics algorithm. Note however that the noise

variance in this section is 2%, while in section 3 was o%.

The a priori SNR can be estimated with the decision directed approach which is given in
equation 4.21. )
A% 4

52 + (1 — o) max(y, — 1) 4.21)
TNik-1

§p = v
where A2 | is the estimated speech amplitude sample of the (k — 1)** time frame (previ-
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ous), 2crj2\,!k_1 is the noise estimate of the (k — 1)*® time frame and ~y; is the a posteriori

SNR of the k*® time frame (current).
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CHAPTER S RESULTS

In this chapter we present the results from simulations performed with the family of
Bayesian algorithms described in this report. The simulations were performed with a
number of clean speech phrases, artificially corrupted by white Gaussian noise, and then
enhanced with the algorithms described here. The performance of the algorithms is eval-
uated using a number of objective measures, while an attempt has also been made to
subjectively assess the quality of the resulting speech. Of particular interest in this evalu-
ation, is the effect of the form of the speech prior densities.

Some details about the specifics of the simulation and the evaluation measures will be

given first, before presenting the simulation results.

5.1 Simulation Setup

The clean speech database comprised of 16 phrases, half of which were spoken by men
and half by women. The sampling frequency was 8 KHz and the total duration 27 seconds.
The speech phrases were corrupted by white Gaussian noise at 0, 10 and 20 dB mput
Segmental SNR. For these input Segmental SNR levels the corresponding PESQ values
were 1.536, 2.239 and 2.914 respectively!. The transformation to the frequency domain
was performed with Hamming windows of 256 samples length and using a 192 sample
overlap. The windows were also normalised so that their amplitude when overlapped and

added was 1.

The speech variance in all the algorithms was estimated from the a priori SNR which was
in turn estimated with the decision directed approach of Ephraim and Malah [2]. The
smoothing parameter o was set to 0.99. A lower limit was also set for the a priori SNR at

-25 dB as this was reported to help reducing the amount of musical noise [10].

'For a definition of Segmental SNR and PESQ see section 5.2
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5.2 Evaluation of the Algorithms

Evaluating the performance of speech enhancing algorithms is not a trivial task. Although
a number of evaluation measures has been proposed over the years, no objective measure
has been accepted as the ‘gold standard’. There is a number of aspects that affect the
overall enhanced speech quality, such as intelligibility, naturalness of speech, level and
type of residual noise, the assessment of which is difficult to be incorporated into a sin-
gle measure. Moreover, the subjective character of the above aspects complicates their

assessment even further.

Evaluation measures can be divided into two categories: subjective and objective. Sub-
jective measures are based on comparison of the clean and enhanced signals by a group of
listeners, who then subjectively rank the quality of the enhanced signals. Objective mea-
sures on the other hand, are based on a mathematical model, which may or may not try
to emulate a subjective measure. Two objective measures are used in this report: the Seg-

mental Signal to Noise Ratio (SegSNR) and the Perceptual Evaluation of Speech Quality
(PESQ).

The SegSNR is an extension of the traditional (or total) SNR and is believed to be more
suitable for the evaluation of speech enhancement algorithms. Segmental SNR is calcu-
lated by finding the SNR in each speech analysis frame in dB and then averaging across

the frames. Analytically it is given by [14]:

1 M m;+N-1 Sg(n)
SNRseg = M Zl 1010g10 Z m" (51)
j= n=m;

where M is the number of speech frames, m; is the starting sample of the 40 frame, s is
the clean and § the cleaned speech signal. The motivation for this measure is to emphasize
the effect of noise in the low energy speech segments, which are more sensitive to noise
than the high energy ones. Indeed, a segment with a very low SNR will weight much more
toward the final result in equation 5.1, because of the addition of the logarithms, compared
to the total SNR where the square errors would be summed across the entire waveform. A
problem that arises often when the Segmenta! SNR is used, is that the existence of silent
frames in the signal can produce large negative SNRs, which are not representative of the

enhanced speech quality. This problem however, is sidestepped if the silent frames are
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Figure 5.1: Spectrograms of clean and noisy speech at different input SegSNRs.

identified in the clean speech and excluded from the calculation of the Segmental SNR.

PESQ is an perceptual quality measurement for voice quality in telecommunications and
has been approved as the International Telecommunication Union (ITU) recommendation
P.862. It is designed to predict the Mean Opinion Scores (MOS) from a subjective lis-
tening test, returning a score for the degraded audio sample between 1.0 (worst) and 4.5
(best). It has been reported in [15] that the correlation between PESQ scores and those

obtained from subjective listening tests was indeed very high.

Throughout the presentation of the results, along with the above two objective measures
we will give an informal subjective evaluation of the degraded audio samples. The evalu-
ation will be mainly focused on aspects such as the nature of the residual noise (musical
vs. broadband) and the amount of speech distortion, which are not always illustrated in
the numerical results of the objective measures. A visual supplement will be provided
by spectrograms of a segment of the enhanced speech. To facilitate comparison between
different algorithms, all the spectrograms will correspond to the same phrase (the bow!
dropped from his hands) and will be normalised so that same colors indicate same lev-
els. The spectrograms of the above phrase prior to noise corruption and mixed with two

different noise levels are given in figure 5.1 for reference purposes.

A popular visualisation of an algorithm’s properties is given by its suppression curves.
These are plots of the suppression the algorithm applies (in dB) as a function of some
of its input parameters. A number of suppression curves plots will be given for each
algorithm and for some key values of the prior density function parameter a, so that their
shape for the whole range of a values should be easily inferred. The suppression curves

will be shown as a function of the a priori and the a posteriori SNR.
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5.3 DFT Domain Results

In this section we present the results of the algorithms that work in the DFT domain,
i.e. with the real and the imaginary part of the STFT coefficients separately. We will first
present the results for a range of different values of a to hopefully gain some insight about
the algorithms’ behaviour. The results obtained with the fixed optimum values of @ and

values that are adaptively estimated will be presented in the following.

5.3.1 Results for Different Values of a

Figure 5.2 shows the SegSNR and PESQ scores for all four algorithms, three different
input SegSNRs and a range of a values. Examination of the SegSNR plots reveals that
the Gamma speech prior algorithms yield better SegSNR scores. The PESQ plots show
that MMSE algorithms perform better but it is not clear whether Chi or Gamma priors are

preferable. We proceed with a closer examination of the results.

Comparison of MMSE and MAP Estimators for Gamma Speech Priors The MMSE
estimator yields almost uniformly better results for both the SegSNR and PESQ measures.
The residual noise is musical for small values of ¢ and becomes slightly more broadband
as the value of a increases, although it retains its musical character. The MAP estimator
produces musical noise for small values of @, which is concentrated in few frequency
bands. It has however, a relatively high amplitude which makes it much more perceivable
and possibly more annoying than the musical noise produced by the MMSE estimator.
As the value of a approaches 1, the musical noise is reduced but the speech is suppressed
significantly and only its strong components are retained. For values of a greater than one,
more residual noise is present but its character is now broadband rather than musical, a
rather uncommon feature of the algorithms that operate in the DFT domain. This change
is also reflected in the MAP-Gamma curves in figure 5.2, which have a local minimum
at ¢ = 1. The above comments are illustrated in figure 5.3 where the phrase The bowl
dropped from his hands is corrupted by white Gaussian noise at 0 dB SegSNR and then
enhanced with the MAP and MMSE-Gamma algorithms for different values of a.

Figure 5.4 shows the suppression curves of the two algorithms for different values of a.

For a = 0.1 note that as the a posteriori SNR drops the MMSE algorithm applies more

28




—— MapChi
- MapGamma
9.5 4 i MmseCal
[ MmseGamma |
e’
Z 6]
[£2]
o0
L 84
75}
7.5
7
85
& — T
T 8 T NM TR D e R e ow N oW om N &
ggoooaddddd = or T e e -
a
(a) Input SegSNR =0 dB
16 -
—+~MapChi
—=-MapGamma
15.5 - —a-MmsaChi
- MmseGamma
o 15 -
2 1as
G
Q 14
v
135
13
125
12

(c) Input SegSNR = 10 dB

{e) Input SegSNR =20 dB

—4—MapChi

-~ MapGamma
[~ MmsaChi
|PeMmzeGamma

Tﬂ—l——‘__‘__‘_‘_*L_._H

(b) Input SegSNR =0 dB

~4-MapChi
—-MapGamma
—a—MrnsaChi

MmsaGamma

{d) Input SegSNR = 10 dB

—+—~MapChi

|- MapGamma
f~#—MmsaChi
—%-MmsaGamma

(f) Input SegSNR = 20 dB

Figure 5.2: SegSNR and PESQ scores for different values of a, Input SegSNRs and algo-
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Figure 5.3: Spectrograms of enhanced speech with the MMSE-Gamma (upper row) and
MAP-Gamma (lower row) algorithms for different values of a.

suppression before the ‘cut-off” of the MAP algorithm is reached. This results in the MAP
enhanced speech exhibiting a few but high amplitude musical noise peaks, while spectral
components below the ‘cut-off” threshold are heavily suppressed. Another point that
needs mentioning is that for high values of o, the MAP estimator presents the ‘counter-
intuitive’ behaviour of increasing the suppression for larger a posteriori SNR values. This
property is believed to generate broadband noise instead of musical as it was reported

in [10].

From figure 5.2 one might also notice that for small values of a, (e < 0.1) and higher
input SegSNRs the MAP algorithm scores are better than those of the MMSE. For an
explanation of this phenomenon we must keep in mind that for small values of o the
MMSE estimator applies more suppression for relatively high a posteriori SNR values.
The application of less suppression by the MAP estimator makes the resulting speech
look spectrally closer to the clean speech than the MMSE enhanced speech does. Observe
for instance the two spectrograms in figure 5.5 between 0.8 and 1.4 secs in the frequency
band between 1.5 and 3 KHz and after 1.8 secs ("s’ from hands) and compare them with
the original signal in figure 5.1. The MAP algorithm has retained more energy in these
regions, which is believed to be the reason for the better results in the objective measures.
This excess of energy however is perceived as noise rather than as the original weak

spectral components. On the other hand, its elimination by the MMSE algorithm does not
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{lower row) algorithms for different values of g as a function of the a priori and a posteriori
SNRs.
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Figure 5.5: Spectrograms of clean and enhanced speech with the MMSE-Gamma and
MAP-Gamma algorithms. Input SegSNR was 20 dB and ¢ = 0.01.

introduce any significant distortion in speech, while it noticeably reduces the background
noise level. Therefore, despite the slightly inferior scores in the objective measures, the
MMSE algorithm still delivers a signal with lower background noise, at the expense of a
rather negligible distortion.

We make a final point, which also holds for all the MAP and MMSE algorithms found in
this report, and has to do with the efficiency of the algorithms rather than the quality of
the resulting speech. Recall from the theory chapters that the calculation of the MMSE
estimators involves the integration of the posterior density, which results in expressions
containing special functions (Parabolic Cylinder and Confluent Hypergeometric Func-

tion). If the special functions are chosen to be evaluated for each spectrogram sample

31




separately, MMSE algorithms can turn to be much slower than their MAP counterparts.
Also care has to be taken with extreme inputs because it is easy for these functions to cre-
ate an over- or underflow. The use of asymptotic forms is recommended for such cases.
An alternative option could be the use of look-up tables which should increase the speed

at the expense of some memory requirements and potentially some approximations errors.

Comparison of MMSE and MAP Estimators for Chi Speech Priors As onc might
expect, a number of parallels can be drawn between the comparison of the MAP and
MMSE estimators when Chi and Gamma speech priors are used. Again the MMSE algo-
rithm delivers almost constantly better PESQ scores, while the SegSNR scores are better
for o < 0.5. The change in the quality of the enhanced speech with changing values of @ is
also quite similar to the case of Gamma priors. For small a the MAP algorithm produces
a residual musical noise concentrated in few frequency bands, while noise is heavily sup-
pressed elsewhere. As a increases the residual noise becomes broadband but its level also
increases. The turning point in the behaviour of the algorithm is now at & = 0.5, and the
peak in the PESQ score in the vicinity of that value is found because both the musical
noise is suppressed and the overall noise level is low. The MMSE algorithm on the other
hand produces musical noise for all the examined values of ¢ which turns only slightly
more broadband for increasing a. The above comments are illustrated in the spectrograms

of figure 5.6.

A value of ¢ which is of particular interest is @ = 0.5. For this value the Chi function
yields the Gaussian pdf and the MMSE and MAP estimators produce the same estimate,
which is the Wiener filter. The suppression curves for a = 0.5 are constant with respect

to the a posteriori SNR.

Finally, let us mention that the reason why the MAP algorithm yields higher SegSNR
scores for high values of ¢ and high input SegSNR is simtlar to the one developed around
figure 5.5. The MAP algorithm applies less suppression and the resulting waveform is
spectrally closer to the original speech signal. This energy excess however, is again per-
ceived as noise, making the MMSE enhanced lsignal sound less noisy. Note also that the
PESQ results clearly favor the MMSE enhanced signal.

32




A%0,
—_ —
N 30004 00
£ =
= =
o 2  2500f
) &
= =]
i £ 5w
= =
gim g(m
B o B
00 ol
T Y I B T R R R R S50z 04 08 0B T 12 4 14 18 %oz oe 0o B ERET R TEETIET]
Time [s Time [s] Time [s]
{(aye=0.1 (b a =05 c)a=15
3500 2500
— —_ —
A 3000) N a0 N
= = jas]
= = =
S 2s0of o 2500 >
2 : g
g 2000 L 5
£
= N & s o
E 1500 E 1! E
= e B oo
5 e
o g i e e O
o oz 04 be 113 ta 18 18

'Fiml’. [s] ’ " Time [s] DTime fs]

Figure 5.6: Spectrograms of enhanced speech with the MMSE-Chi (upper row) and MAP-
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Figure 5.8: Spectrograms of enhanced speech with the MMSE Gamma and Chi algo-
rithms. Input SegSNR was 0 dB and ¢ = 0.2.

Comparison of the Gamma and Chi Speech Priors Observation of the SegSNR plots
in figure 5.2 reveals that the algorithms that use Gamma priors produce speech with the
larger SegSNR scores for every value of . The MMSE-Gamma algorithm also gets PESQ
scores which are consistently among the highest. One could therefore argue, that Gamma

density functions are more appropriate for modelling the speech DFT coefficients.

One point we have to make however, is that the MMSE-Chi algorithm gets better PESQ
scores for small values of @ (e < 0.2). Figure 5.8 shows a sample of speech corrupted
by Gaussian White noise at 0 dB input SegSNR and enhanced by the MMSE Gamma
and Chi algorithms with o = 0.2. Note that the peaks of the musical noise are slightly
smoother when the Chi prior is used. This is believed to increase the PESQ score. The
speech harmonics however, are somewhat better restored with the Gamma priors, which
probably contributes to the higher SegSNR. Let us add here, that the trade off between
sharply restored harmonics and smoothness of the residual noise seems to encompass all

the algorithms that are examined in this report.

Conclusion As a general remark about the MMSE algorithms we can say that they both
produce musical residual noise which becomes slightly more broadband for increasing
@. The MAP algorithms yield musical noise for small @, which is concentrated in very
few frequency bands, and it is therefore quite distinctive. As a increases the residual
noise turns to broadband. This can be useful in some applications where musical noise is

unwanted.

As for the suitability of priors, Gamma densities seem to be more appropriate as the

resulting speech scores better in the objective measures. The MMSE-Chi algorithm with
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small a should also be mentioned here as it produces somewhat better PESQ results, at

the expense of a small decrease in SegSNR.

5.3.2 Results for Fixed Optimal Values of ¢

In this section we present the results for fixed values of a, which are optimal for the given
clean speech data. The optimal values of o were found by minimising the Kullback-
Leibler (KL) divergence between the data and each speech prior. The definition of the KL

divergence (for the discrete case) is:

N
pa(n)
KL = paln) — ps(n ln( ) 52
where py(n) is the pdf of the data, calculated by their histogram and evaluated on N bins,

and p,(n) is the speech prior evaluated on the same N points.

Two ‘optimal’ sets of a were found: the first comprised of a separate a for each frequency
bin, while the second had a single value of @ for all frequency bins, estimated from all
the available data. Separate sets of & were found for the real and the imaginary parts
of the DFT coefficients, although the results were quite similar. Especially in the case
when a single value of o was estimated from the data in all the frequency bins, the results
were virtually identical. We proceed by showing the results for each prior, together with
the results for the values of a that yielded the best SegSNR and PESQ scores from the

previous section for comparison.

Figure 5.9 shows the optimal values of a for each frequency bin and for the two different
priors (Chi and Gamma). The results shown were obtained by fitting the real part of the
DFT coeflicients to the priors. The results from the imaginary parts were quite similar
and for this reason are not shown. Notice the similarity of the overall shape of the curves.
The values of a for the Gamma priors are constantly larger (~ 3 times), because for the

same value of a the Gamma priors have much longer tails than the Chi.

Tables 5.1 - 5.4 show the results for the four DFT algorithms examined with fixed values
of a. The first column indicates the values of a that were used. ‘opt,,,” indicates the
values estimated independently for each frequency bin, and ‘opt,,,’ refers to the case

when the value of ¢ was estimated from all the data available in the STFT. This value is
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Figure 5.9: Optimal values of o for each frequency bin and different speech priors.

shown in the column under the header ‘a’. ‘Best SNR’ refers to the value of a that yielded

the best SegSNR score for the respective algorithm and Input SegSNR and similarly for

the ‘Best PESQ’.

Tnput ScgSNR 0dB 10 dB 20 dB
SesSNR | PESQ | o | SegSNR | PESQ | a | SegSNR [PESQ [ «
OPtina 843 | 243 | - 1472 | 303 | - | 2174 | 3.60 | -
OPbyo4 8.73 237 | 0.07 15.08 3.04 | 0.07 22.09 3.62 | 0.07
Best SNR 8.79 236 | 0.05 15.25 294 | 0.01 2271 3.63 | 0.01
Best PESQ 798 | 247 |040| 1415 | 3.06 | 050 | 2229 | 3.64 005
Table 5.1: Results from the MAP-Chi Algorithm.
Input SegSNR 0dB 10dB 20 dB
SegSNR [ PESQ | @ | SegSNR [ PESQ | o | SegSNR | PESQ | a
ODbing 867 | 244 | - 1500 | 308 | - | 2198 | 367 | -
OPteos 885 | 243 | 0.07| 1520 | 3.07 | 007 2218 | 3.66 | 0.07
Best SNR 8.89 242 | 0.05 15.27 3.07 | 0.05 22.27 3.64 | 0.01
Best PESQ 8.36 245 | 030 14.79 3.08 [ 030 22.04 3.67 | 0.10
Table 5.2: Results from the MMSE-Chi Algorithm.
Input SegSNR. 0dB 10 dB 20 dB
ScgSNR | PESQ | @ | SegSNR | PESQ | a | SegSNR [ PESQ | a
OPtig 854 | 238 | - 1487 | 296 | - | 21.89 | 354 | -
0Pty 875 | 239 1023| 1505 | 3.00 | 023 | 2206 | 3.56 | 0.23
Best SNR 8.85 233 1010 15.35 298 | 0.05 22.65 3.62 | 0.01
Best PESQ 8.79 239 10.20 15.28 3.01 | 0.10 | 22.54 3.64 | 0.05

Table 5.3: Results from the MAP-Gamma Algorithm.

Examination of the tables reveals that the ‘optimal’ values do not produce the highest

scores, although they are reasonably close. Possible reasons for this discrepancy could be

estimation errors due to the finite number of samples, or the ability of the priors to model

the data accurately.
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Input SegSNR 0dB 10 dB 20dB
SegSNR | PESQ a SegSNR | PESQ a SegSNR | PESQ | @

ophing 893 | 243 | - | 1535 | 3.07 | - | 2236 | 365 | -
ODbyos 899 | 243 |023| 1538 | 3.07 |023| 2240 | 3.65 | 023
Best SNR 899 | 243 | 030| 1539 | 3.06 |020| 2241 | 3.65 | 020

Best PESQ 8.75 245 | 120} 1531 3.07 | 050 | 2241 365 | 020

Table 5.4: Results from the MMSE-Gamma Algorithm.

An important observation that can be also made is that estimation of a for each frequency
bin independently does not necessarily give better results than when q is estimated for all
frequency bins from all the available data. This could be attributed to the fact that much
more data are used in the second case, which may allow for a more accurate estimation.
A degree of similarity of the distributions across the frequency spectrum might also be
of some help towards this end. Note finally, that the values of a estimated from all the

frequency bins is lower than the average of values estimated for each bin separately.

Examination of the best scores in the above tables, shows that MMSE-Gamma algorithm
yields the best SegSNR scores, and its PESQ scores are almost identical to those of the
MMSE-Chi which are the best overall. The MAP algorithms are somewhat inferior to the
respective MMSE, but this should also be balanced with their computational and imple-

mentation complexity which is clearly lower.

5.3.3 Results for Adaptively Estimated Values of o

The value of ¢ can be adaptively estimated using equation 3.18 from section 3.2.3 for the
Chi priors and equation 3.27 from section 3.3.3 for the Gamma priors. The fourth moment
for the noisy speech DFT coefficients E[X*] can be found with a first order recursive
averaging. If we define an estimator ¢ for E[X*] an estimate for the fourth moment can

be obtained as:
en=(1—Ney_1+ /\Xi (5.3)

where the subscripts n and n — 1 indicate the current and previous time frames respec-
tively. X is a smoothing parameter whose best value was found through simulations. o2
in equations 3.18 and 3.27 was found by the a priori SNR ¢ as 0% = {o% and by a
subsequent smoothing according to equation 5.3, as this was found to improve the per-

formance. Applying lower and higher limits to the allowable values of a was found to be
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highly beneficial. A reason for that was that despite their simplicity in tmplementation,
moment methods are sensitive to outliers, and prone to produce erroncously high results
in their presence. Bounding the values of ¢ within certain limits circumvents this prob-
lem. To sum up, three parameters were found to affect the adaptive estimation of a; these
were A, the lower a limit g,,;, and the upper limit a,,,,. Their values that maximised
the algorithms’ performance were calculated through simulations and will be presented

together with the results.

The scheme described for the adaptive estimation of a was found to have different effects
when combined with an MMSE or a MAP estimator. For this reason we will present the
results for each estimator separately. The parameters that were found to give the best re-
sults for the MMSE were A = 0.008, a,,;, = 0.0001 and a,,,,, = 0.5. To demonstrate the
sensitivity of the algorithm to the above parameters we also state the following observa-
tions: Values of A in the region of [0.001,0.01] were also producing good results. Outside
these limits ¢ was fluctuating either very rapidly or very slowly, with a negative effect on
the performance. Decreasing a,,;, below 0.0001 did not seem to have any effect while
increasing it above 0.001 resulted in higher background noise levels. Finally, the value of
G.mag d1d not have a major impact, and any value in the [0.1,2] range produced reasonable

results.

Table 5.5 shows the results from the above adaptive scheme for the MMSE-Chi and
MMSE-Gamma algorithms. Comparison with the results in tables 5.2, 5.4 shows that
for high input SegSNR the adaptive scheme produces results as good as the best that
could be obtained with fixed values of a. For low input SegSNR however, the results of

the adaptive scheme are better.

Input SegSNR 0'dB 10 dB 20 dB

SegSNR | PESQ | SegSNR | PESQ | SegSNR | PESQ
MMSE-Chi 8.96 25 | 71522 717308 | 2226 | 366
MMSE-Gamma | 9.07 25 | 1538 | 3.08 | 2240 | 3.65

Table 5.5: Results from the MMSE-Chi and MMSE-Gamma Algorithms with the adaptive
scheme.

Figure 5.10 shows spectrograms of speech enhanced with the MMSE-Chi algorithm for
different input SegSNRs. The value of o was either fixed (o = 0.07) or adaptively esti-
mated with the above parameters. Although the spectrograms that correspond to the high
input SegSNR are rather similar, those who correspond to the low input SegSNR have
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Figure 5.10: Spectrograms of enhanced speech with the MMSE-Chi algorithm with adap-
tive and fixed values of @ and different input SegSNRs.
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Figure 5.11: Values of a corresponding to the spectrograms in figure 5.10.

significant differences. The reason is that the adaptive scheme detected that the noise
was dominant in the higher frequencies and reduced the value of « significantly, making
the prior very narrow. This resulted in the suppression of the background noise in the
higher frequencies while the speech components in the lower frequencies were preserved.
Had there been some extended silent periods in the processed speech sample, the noise
suppression would have occurred across the frequency spectrum. Figure 5.11 shows the
values of log;,(a) for every sample of the spectrogram and for the two different input

SegSNRs.

The above strategy for estimating a has quite different effects when used with the MAP

estimator and the same parameters. The main difference is that when very narrow priors
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Figure 5.13: Suppression curves for the MAP-Chi and MMSE-Chi for a = 0.0001.

are combined with the MAP estimator (a << 0.1) a significant amount of musical noise
is produced. On the contrary, when narrow priors are used with the MMSE estimator
both the speech and noise spectral components are heavily suppressed. See for example
the two spectrograms in figure 5.12, where noisy speech with 0 dB input SegSNR is
enhanced with the MAP-Chi and MMSE-Chi algorithms. The value of @ was 0.0001.
Figure 5.13 shows the suppression curves of the respective algorithms and priors. Note

that as the a posteriort SNR drops the MMSE algorithm applies more suppression.

On the whole, the simulation results showed that MAP algorithms did not benefit by
the use of the adaptive scheme. Numerous simulations were performed with the MAP
algorithms and the adaptive scheme for a grid of values of the smoothing and limiting
parameters A, ¢, and d.,.,. The results did not exceed the best results that were obtained
with the fixed values of a. Tables 5.6, 5.7 show the results of the MAP-Gamma algorithm
with the adaptive scheme. A number of different A and a,,,;,, values were used while a4,
was kept to 2, as varying its value did not seem to affect the results. Input SegSNR was 0
and 20 dB.

Examination of the above tables shows that the best results occur for A = 0.0001. Note
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SegSNR PESQ
Gmin | 0.001 [ 001 ] 01 | 02 | 1.1 {0001 (001 | O1 [ 02 | 1.1
A
00001 | 755 | 815885 | 879|831 | 215 { 224 | 2.34 | 2.39 | 2.38
0001 | 776 | 820 | 870 | 875 | 831 1 2.13 | 220|233 238 | 2.38
0.01 793 [ 814 | 857 | 864 | 831 212 | 2.18 ) 2.31 ; 2.38 | 2.38
0.1 7.60 | 8.03 | 878 | 8.82 | 837 | 2.13 | 2.19 {233 | 2.39 | 2.39

Table 5.6: Results from the MAP-Gamma Algorithm for different parameter values of the
adaptive scheme. Input SegSNR was 0 dB.

SegSNR PESQ
Gmin | 0.00L | 0.01 | 0.05 0.1 1.1 | 0001 (001 005 01 | 1.1
A
0.0001 | 22.58 | 22.60 | 22.52 | 22.37 | 2145 | 3.63 | 3.64 | 3.64 | 3.61 | 3.49
0.001 | 2227|2228 2229 2226|2145 | 359 | 3.60 | 3.60 | 3.59| 3.49
0.01 |22.08 | 22.09 | 22.10 | 22.08 | 2145 . 3.57 | 3.57 | 3.57 | 3.57 | 349
0.1 22,17 { 22,19 | 22.20 | 22,16 | 2149 | 355 | 3.56 | 3.57 ; 3.57 | 3.48

Table 5.7: Results from the MAP-Gamma Algorithm for different parameter values of the
adaptive scheme. Input SegSNR was 20 dB.

also that the values of a.,;, for which the adaptive scheme produces the best results coin-
cide with the fixed values of a that give the best results in table 5.3. Examination of the
values of a returned by the adaptive scheme for every sample of the STFT showed that
they were fairly constant and close to a,,;,. Thus, the adaptive scheme produces the best
results when the estimated values of o are the same as the fixed values from table 5.3. The
adaptive scheme however, was forced to converge to these values through the choice of
@min, Father than freely selecting them. We argue therefore, that the adaptive scheme does
not offer a benefit to the MAP-Gamma algorithm. The MAP-Chi algorithm showed the

same behaviour when combined with the adaptive scheme.

5.4 Amplitude Domain Results

In this section we present the results from the algorithms that operate on the amplitude of
the DFT coefficients in the STEFT domain. We develop our presentation again by present-
ing the algorithms’ behaviour for different fixed values of a and then the results obtained

with fixed optimal values and the adaptive estimation scheme.
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5.4.1 Results for Different Values of o

Figure 5.14 shows the SegSNR and PESQ scores for the different algorithms for a range
of input SegSNR and a values. If we observe the SegSNR plots we nete that the MAP-
Gamma algorithm delivers high scores for the whole range of a, which are constantly
higher than those of the MAP-Chi algorithm. The MMSE-Chi algorithm produces some
of the best SegSNR scores for small values of a, but its performance deteriorates rapidly
as q increases. Examination of the PESQ plots reveals that the MAP-Gamma scores are
among the lowest. The scores for the MAP-Chi algorithm vary with the value of @ but
they seem to reach a peak when a is in the range of 0.6-0.8. Finally, the MMSE-Chi
scores drop rapidly as a increases, but are again among the best for small values of a. Let

us now examine the behaviour of each algorithm analytically.

Comparison of the MMSE and MAP Estimators for Chi Speech Priors For small
values of o the MMSE-Chi algorithm leaves some residual noise, which although it has
some musical character it is much more broadband than the residual noise of the MAP-
Chi algorithm for the same value of a. The noise level is also higher, as it can be verified
by inspection of the spectrograms in figure 5.15, although this might contribute to the
higher PESQ values as the speech sounds a little more natural. As a increases the residual
noise becomes more broadband, although its level is relatively high even for moderate
values of a, which explains the rapid drop of SegSNR and PESQ values. A special case
of this algorithm is for @ = 1, when the Chi function simplifies to the Rayleigh pdf and
the resulting algorithm is the well-known Ephraim-Malah MMSE-STSA [2].

The MAP-Chi algorithm’s behaviour for different values of a resembles the behaviour of
the MAP algorithms examined in section 5.3. For small values of a the residual noise
has musical character and is concentrated at few frequency bands, which makes it quite
distinctive. As a increases, the musical noise is suppressed but some weak speech spectral
components are suppressed as well. For values of a larger than 0.75, the residual noise
becomes again broadband with the amount of suppression dropping for increasing a. The
peak in the PESQ measure in the vicinity of a == 0.75 is found because the musical noise

peaks are suppressed and the background noise level is low.

Figure 5.16 shows the suppression curves for some characteristic values of a. A signifi-
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Figure 5.15: Spectrograms of enhanced speech with the MMSE-Chi (upper row) and
MAP-Chi (lower row) algorithms for different values of . Input SegSNR was 0 dB.

cant point is found for ¢ = 0.75 where the curves are non decreasing as the a posteriori

SNR drops.

The MAP-Gamma Algorithm The MAP-Gamma algorithm bears again a number of
similarities with the MAP-Chi. For very small values of o the residual noise has a strong
musical nature. Inspection of figures 5.15(a) and 5.17(a) reveals that for ¢ = 0.1 the
Gamma priors produce musical noise of higher amplitude and in more frequency bands.
This should be attributed to the spikier form of the Gamma prior compared to the Chi for
the same value of a. As a increases the musical noise is suppressed but only the strong
speech spectral components are retained. The value of @ after which the residual noise
becomes broadband is now 1.5, while for the MAP-Chi algorithm was 0.75. This also
interprets the change of the SegSNR and PESQ curves ata = 1.5.

Figure 5.18 shows the suppression curves for some characteristic values of a. Note the
similarity of these curves with those of the MAP-Gamma-DFT algorithm in figure 5.4.
Compare also the curves in figure 5.18 with those in 5.16 and note that the MAP-Gamma
algorithm applies less suppression for high a posteriori and low a priori SNR. This con-

tributes to the higher levels of musical noise, especially for small a.
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Figure 5.17: Spectrograms of enhanced speech with the MAP-Gamma algorithm for dif-
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Figure 5.18: Suppression Curves of the MAP-Gamma algorithm for different a.
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Conclusion For small values of a both MAP algorithms produce musical noise, whose
concentration in few frequency bands make it quite distinctive. Its levels are higher for
the MAP-Gamma algorithm. The residual noise of the MMSE-Chi algorithm for small
a is again of musical nature but much more broadband compared with that of the MAP

algorithms. Its overall level is also much higher.

As a increases, the residual noise of the MMSE-Chi algorithm becomes even more broad-
band, but its overall level increases as well, causing a rapid drop in the objective measures.
The musical noise peaks of the MAP-Chi algorithm are suppressed with increasing a, but
so are the weak speech spectral components. This causes the PESQ drop until & ~ 0.7.
For a > 0.7 the residual noise becomes broadband, which shows in the change of the
SegSNR and PESQ curves. A similar behaviour is encountered by the MAP-Gamma

algorithm, although the turming point is now at ¢ = 1.5.

5.4.2 Results for Fixed Optimal Values of «

Optimal values for the o parameter of the prior densities were calculated for the amplitude
of the DFT coefficients. The optimal values for a were found by minimising the KL
distance between the amplitude of the coefficients and the prior densities. Two sets were
found again, one with values of a for each frequency bin separately and one with a single
value for the whole STFT using the data from all frequency bins. The first set of values is
shown in figure 5.19. Note the similarity of the values compared to those shown in figure

5.9.

Results for the three amplitude algorithms are summarised in tables 5.8 - 5.10, which have
the same format as those in section 5.3.2. We remind the reader that ‘opt; 4’ indicates the
results obtained with values of o estimated independently for each frequency bin, and
‘opt,” refers to the case when the ¢ value was estimated from all the data available in
the spectrogram. ‘Best SNR’ refers to the value of a that yielded the best SegSNR score
for the respective algorithm and Input SegSNR and similarly for the ‘Best PESQ".

The conclusions that can be drawn by examining the above tables are similar to those of
section 5.3.2. Firstly, the optimal set of ¢ values does not necessarily produce the best
results, although they are definitely close. Secondly, estimating a value of a for each

frequency bin separately seems to produce inferior results compared to using a single
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Figure 5.19: Optimal values of a for each frequency bin and different speech priors.

Input SegSNR 0dB 10dB 20dB
SegSNR | PESQ | « SegSNR | PESQ o SegSNR | PESQ | «
0Pt 919 | 242 | - | 1540 | 3.01 | - | 2242 | 361 | -
optiet 9.34 2.39 | 0.07 i5.61 3.04 | 007 22.66 3.63 | 0.07
Best SNR 9.31 241 | 0.10 15.66 304 | 005 2294 3.64 | 0.01
Best PESQ 8.89 251 | 0.70 14.86 306 | 090 ] 2276 3.65 | 0.05
Table 5.8: Results from the MAP-Chi Algorithm.
Input SegSNR 0dB 10dB 20 dB
SegSNR | PESQ | a | SegSNR | PESQ | a | SegSNR | PESQ | «
ODbing 944 | 247 | - 1596 | 3.1 | - | 2282 | 3.74 | -
ODtegs 9.44 | 247 |007| 1579 | 311 |007| 2286 | 3.73 | 0.07
Best SNR 9.43 248 | 0.10 15.79 3.10 | 0.05 22.86 372 | 0.05
Best PESQ 9.43 248 | 0.10 15.77 3.11 | 0.10 22.84 374 | 0.10
Table 5.9: Results from the MMSE-Chi Algorithm.
Input SegSNR 0dB 10 dB 204dB
SecgSNR | PESQ | @ | SegSNR | PESQ | @ | SegSNR | PESQ | a
Opting 9.2 741 | - 1545 | 298 | - | 2248 | 357 | -
opty, 934 | 237 1023} 1558 | 299 | 023 | 2263 | 3.60 | 023
Best SNR 9.35 237 1020 15.68 3.03 | 0.10 22.93 3.63 | 0.01
Best PESQ 9.31 240 1 0.40 15.68 303 | 0.10 22.89 365 | 0.05

Table 5.10: Results from the MAP-Gamma Algorithm.

value of a for all the STFT, calculated by the data available in all the frequency bins.

A comparison between the three algorithms reveals that MMSE-Chi algorithm yields bet-
ter SegSNR and PESQ scores. Note also that the scores obtained with the optimal a values
(case ‘opt,,,’) are cither the best or a compromise between the ‘Best SNR” and the “Best
PESQ’. The MAP algorithms seem to yield similar results, with the MAP-Gamima being
marginally better in the SegSNR and the MAP-Chi in PESQ results, especially for low
input SegSNRs.

47




5.4.3 Results for Adaptively Estimated Values of o

The parameter a can be adaptively estimated using equations 4.14 and 4.20 in sections
4.2.3 and 4.2.3 respectively. The fourth moment E[R?*] was estimated via an estimator e

and according to equation
en=(1— Ne,_1 + AR: (5.4)

where n and n — 1 denote the current and the previous time frames respectively. The
speech variance ¢ was estimated by the a priori SNR, and was also smoothed with the
parameter A, according to the above equation. The permissible values of a had upper and

lower limits given by a,,;,, and @, respectively.

The adaptive scheme had different effects when combined with the MMSE or the MAP
estimator, much like in section 5.3.3. MAP algorithms did not seem to benefit, producing
a lot of musical noise for very narrow priors (¢ << 0.1). The best results from the
combination of the adaptive scheme and the MAP algorithms occurred when the adaptive
scheme was forced to pick the values of a that yielded the best results, without being able
to select them on its own. On the other hand a combination of the adaptive scheme with
the MMSE-Chi algorithm produced results that were as good as the best found by fixed
and preselected a values, and for low input SegSNR were even better. The parameters that
produced the best results for the MMSE-Chi algorithm were a,,;, = 0.0001, @ne = 0.1

and A = 0.005. The results obtained with the above values are shown in table 5.11.

Input SegSNR 0dB 10 dB 20 dB
SegSNR | PESQ | SegSNR | PESQ | SegSNR | PESQ
MMSE-Chi 954 | 252 | 15.77 | 3.2 | 2284 | 3.71

Table 5.11: Results from the MMSE-Chi Algorithm with the adaptive scheme.
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CHAPTER 6 CONCLUSION

A family of Bayesian algorithms for speech enhancement was presented. The algorithms
that comprised it can be divided according to the following criteria: the STFT feature
estimated, the Bayesian estimator applied and the speech prior used. The STFT features
were the DFT coefficients and their amplitude. The Bayesian estimators applied were the
MMSE and the MAP and the speech priors considered were the Gamma and the Chi den-
sity functions. A key point in the selection of the prior was the parameter o, whose value
influenced the shape of the prior and the performance of the algorithm significantly. We

conclude this report by summing up the major findings from the algorithms” evaluation.

Focusing on the algorithms that process the real and imaginary parts independently we
note that a common feature is that they produce musical noise for small values of a,
which turns more broadband as o increases. The musical noise is quite distinctive for
the MAP algorithms and small a, while for large a it loses its musical character almost
completely. This effect is less dramatic for the MMSE algorithms. Small values of a also

preserve better the weaker speech spectral components.

The MMSE algorithms generally produce better results, according to our objective mea-
sures, than their MAP counterparts. Using them in combination with the adaptive scheme
for the estimation of a yields results which are as good as the best that can be obtained
with fixed a. This value of @ might be unknown so the adaptive scheme offers a way of
estimating it from the noisy samples. For low input SegSNR the adaptive scheme might
even produce results better than those obtained with any fixed value of a for the whole

STFT.

The algorithm with the best overall performance is the MMSE-Gamma, because it pro-
duces some of the best SegSNR and PESQ scores for a large range of ¢ values. The
MMSE-Chi algorithm yields very good PESQ results for ¢ ~ 0.1 at the expense of a
smaller SegSNR score. Compared to the MMSE-Gamma acoustically, it produces a little
less annoying musical noise but some weak speech components are not recovered. The

MAP algorithms are easier to implement alternatives to their MMSE counterparts but the
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resulting speech is somewhat inferior. Good SegSNR scores are obtained for a ~ 0.1,
although a significant amount of musical noise is present. For more broadband residual
noise and better PESQ results a ~ 1.8 and a ~ 0.5 can be selected for the MAP-Gamma
and MAP-Chi respectively. For these values however, the weakest speech components are

not preserved.

As far as the algorithms that work with the amplitude of the STFT coefficients are con-
cerned, again small values of a create musical noise which turns to broadband as a in-

creases. This effect is more pronounced in the MAP algorithms.

The MAP-Gamma algorithm produces better SegSNR results compared to the MAP-Chi,
while the latter produces better PESQ results. The MAP-Gamma produces more musical
noise while preserving better the weakest speech components, while MAP-Chi although it
suppresses some weak speech components, produces more broadband background noise,

which possibly explains the increase in the PESQ scores.

The MMSE-Chi algorithm generally produces better results in the objective measures
than the two MAP algorithms. The value of « that gives the best results is around 0.1. Tt
preserves the weak speech components while the background noise, although it has some
musical character it is much more broadband than that of the MAP algorithms for the
same values of a. Its overall level is higher compared to that of the MAP algorithms, but
the use of the adaptive scheme for the estimation of & can significantly reduce it in the

frequency bands where it is dominant.

A comparison between the algorithms that work with the real and imaginary parts and
those who work with the amplitude reveals that the latter produce better results (see figures
5.2 and 5.14). Additionally, the algorithms that work with the amplitude have only half
the data to process and are therefore faster. A theoretical justification for halving the data
is that the optimal estimate for the phase is the noisy phase itself [2]. Hence, it suffices to

estimate the amplitude only.
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APPENDIX A DERIVATION OF THE ESTIMATORS

A.1 Derivation of the Amplitude Posterior Density

If we denote by S, and X, the clean and noisy speech DFT coefficients in the &* fre-

quency bin we then have:
P(Xk|Sx) = pn(Xp — Sg) (A.1)

where py is the pdf of the noise DFT coeflicients. Assuming that these are Gaussian and

independent random variables with zero mean and variance 0% eq. A.1 can be written as:

— 2 P A V)
oxp [ =S (X = S)

A2
271'012\, 2012\, (A2)

p(X|S) £ p(X,, XilS,, Si) =

where X, and X; denote the real and the imaginary part of X and similarly for S. The sub-
scripts k were also dropped as the procedure holds for all frequency bins independently.

Our goal is to find p(R, 1| A, ¢) when we know p(X|S) or equivalently p{X,, Xi{S;, S;).
If we define by D gy, the slice of a circle of radius Ry and angle ¢y centered at zero on the

plane X,, X;, the probability mass that it encloses can be written as:
Prgas(Robol A 8) = [ plX, Xil5,,5) dX, dX, (A3)
Dgy

where Pg y4,6{Ro, %ol A, ¢) is the probability distribution function of R and 7 given A
and ¢, or in other words, the probability that B < Ry and ¢ < 1 given A and ¢. If we
change the cartesian to polar coordinates in the integral in eq. A.3 (ie. X, = rcosw,

X; = rsinw and dX, dX; = rdrdw) and express S, S; in their polar form A, ¢ we get:

Ro prio
Prya.6(Ro, tolA, &) = f fo p(r,w|A, ¢)r drdw (A4)
0
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Substituting the expression for p(X,, X;|S,, 5;) from eq. A.2 we have:

Proy|ag(Ro, 1ol A, ¢) =

Ro pio I _ 2 ; oyl 2
1 / / oxp {rcosw — Acos¢)? + (rsinw — rsin¢) } - dr di —
0 0

2ro%; i 20%;
Ro  pio [ 421 A2 _ 9 _
! / f exp |- Tt rA cosw ¢)} 7 dr dw (A.5)
9 2 2
To0x Jo Jo L 20%

The probability density function of R and 1 given A and ¢ is easily obtained by differen-
tiating the distribution function with respect to Ry and .

82

A =P A ) =
PR a.6(Ro, Yol A, §) 5Ra 0 rwlae( o, Yol A, @)
2 9 _ _
R02 exp l_ RO + A 2R0;4. COS(T,bg qb)} (A6)
2oy, 205
Finally, by denoting R, and 1/, with R and v we have:
R R%4+ A% —2RAcos(v —
p(R, YA, ¢) = 507 eXP [— . W ¢)} (A.7)
TOR 207

About the Notation of Distribution and Density Functions The formal notation of
the probability distribution and density functions requires a subscript and an argument
i.e. Py(zg) or py{xs). The subscript denotes the random variable the function refers to,
while the argument is a mere number (i.e. z9 = 5). P.{xo) for example, denotes then
the probability that the r.v. z is less or equal than z;. However, when there is no fear of
ambiguity the subscript is dropped and the argument defines both the independent variable
of the function (input) and the random variable.
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A.2 Derivation of the MMSE-Chi-DFT Estimator

Substitution of egs. 3.7 and 3.5 in eq. 3.8 yields:

(X _ 8)2:| |S|2a,—1 52

= 1
5 /_ws\/m o [_ 20% | 0T(a) " © [T} i

= A8
S foo 1 exp | — (X = 5)*] ISP * ex —~S-E dS .
Y 7 A AT Ol I
The numerator can be written as:
0 1 (X _ 5)2 (_S)za—l 52
num = /_OOS’W exp [— 208 } 5T (a) exp {——9—} dS
o0 1 (X _ S)2j| S2a—1 [ 82]
+ S exp |— exp |——| dS
/(; 4 1211'0'?\] b |: 20'12\; 9‘11-‘((1'.) P 7
Making the substitution S = — S in the first integral we have:
I 1 (X +8)?] 8! s
mmn = /0 S o3 exp {— %7 } T (@) exp |~ ds
+ fooS . ex {—(X_S)T il ex [ }
0 A /211'0'12V b 20'12\; 9”’]:1 P
Expanding the exponentials and taking common factors:
i
exXp ——5{| o0 X
num = 205 [— / 5% exp {—52 (51—2 + é—) — 5—2'} ds
2mo 6T (a) 0 N I
* 1 1 X
g% S =+-}-5= A9
+ /0 exp{ (20’_,2\]+9) SU?J dS} (A.9)

The above integrals can be solved with equation 3.462.1 found in [7], which is stated

below.

2

fom "~ exp|—fz” — yz] dz = (26) /P T(v) exp {g_ﬁ} D (ﬁ) @19

where D, (z) is the Parabolic Cylinder Function (eq. 9.240, [7]).
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Solving the integrals in eq. A.9 according to eq. A.10 we have:

2

exp [— %] 1 2) ~(2a+1)/2 (f{;

num = — | — 4 = I'(2a +1) exp 2
v/ 2mat 6T (a) (U?V f 8(5-15--1-%)

TN

X —X
o N
{ — D 351, —r_; + D _gq-1, — (A.11)
o2 d o2, + [
N N
Performing the same steps on the denominator of eq. A.8 we get:
X2 x\?
il AT (#
den = = — + = I'2a) exp | ——4—
Voo e T(a) \ 7 2 8( +3)
X _x
TN N
[D—zm \/ﬁ + D_zq, = (A12)
e 0 o% T B
Dividing the two above equations we get:
S\’ = (i 2) i F(2(,1 + 1) 'D—?G“*l(_CX) — D—za—l(CX) (A 13)
o2 0 I'(2a) D_g,(—C¢X) + D_2,(¢X) '

where

(o Yok _ [ 4
Vi/ek +2/0 | 0+20%

Considering that I'(2a + 1)/T'(2a) = 2a and expressing the first square root of eq. A.13

in terms of ¢ we have:

oo 2 D~2n71(_‘CX) '—D-Qa—l(CX) . (9/0'12\;
S = 2a03(¢ Do (—CX) T DalcX) where (= ”94— 307 (A.14)
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A.3 Derivation of the MAP-Chi-DFT Estimator

The MAP estimate is the value of S which maximises In(p(X|S)p(S)), where p(X|S)
and p(S) are given by 3.5 and 3.7 respectively. We therefore have:

w99~ g [T B 5]

2
Ty 20y

Taking the derivative w.r.t. S we get:

_ S 94—
d(ln(p(); !Sé’)p(s))) _ XJ?V L2 - 1_ % (A.15)

Setting the above equation to zero and solving w.r.t 5 we get:

) x X\ 2 1/2 )

The above estimator comes from solving a quadratic equation, which can have two solu-
tions. We briefly describe which one is chosen and how the sgn(.) appears in the above
equation. The value of S for which the posterior density has its maximum has the same
sign as X as it can be seen from the form of p{X|S) P(S). For a > 0.5 the two solutions
have different signs, so we chosc the one that has the same sign as X. For a < 0.5 both
of the solutions have the same sign but one only is a maximum, which is what we are
looking for. Following these rules, it turns that the correct sign from the = is the one that

matches the sign of X
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A.4 Derivation of the MMSE-Gamma-DFT Estimator

Substituting in equation 3.8 the expression for the likelihood (eq. 3.5) and the Gamma

prior, which is given by equation 3.19 we have:

* 8 (X = 3)2] 5] [ ISJ}
- 2 gs
6 [_m oo, ¥ { 307, | 26eT(a) P

¢
A.17
~ L exp |— (X — 5] 151" ex __ﬁ as ( )
o Orh T 20k [26°T(@) [
The numerator can be written as:
0 S (X — 8)?] (-9)1 S
= - —~| d
o = [ e [ e (7]
< 8 (X -5 &§+! S
- ——| dS
" /0 NeT T [ 207, ] 20:T(a) P |77
Making the substitution S = — 5 in the first integral we have:
o] 1 (X + 8)2 (S)a—l 5
- _ — ——1 dS
num /0 S oo exp [ 20 ] 26°T(a) exp | =7
oo 1 (X —8)?] §o! S
- ——| dS
" /0 S\/Z"rrcr?\r P [ 20% } 2602T(a) #PTe
Expanding the exponentials and taking common factors:
i
P __2] w0 s? X 1 |
num = 205 . [— S exp [—-2-?—“5' (—2—5—5)} das
2ra? 26°T{a) 0 ON On

o0 2
+ S®exp [——SH -8 <_J£2 + %)} dS|(A.18)

N
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Solving the above integrals with A.10 we get:

um 1 o' T(a+1) exc { X? ]
num = _ 2
22/2mo?, 0¢  T(a) P 20%,

[BXP [(%) 2] D_g-1(G) —exp [(%) 2] D 4 (Cz)] (A.19)

X
where (1=J—N—_}£, C2=f.fi+_
6 o f  on

if we perform the same operations on the denominator of eq. A.17 we have:

a

2
den:——-gﬂexp[ X ]

T 5.2
205

(%)2] D, (Cz)] (A20)

Dividing the numerator and the denominator we get:

2 2
exp {%1 D, (G)—exp {%} D_,+((2)
' 2 3

exp [%} D_.(G1) -+ exp [%} D_.(G)

~

S =aon (A2D)
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A.5 Derivation of the MAP-Gamma-DFT Estimator

The estimate of this algorithm is the value of S that maximises In(p{X|S5)p(S)) where

p(X|9) is again given by eq. 3.5 and p(S) by eq. 3.19. we consecutively have:

|51

_ 1 _x=82y 18t
In(p(X|S)p(S))—1n[ N { 27 }

Taking the derivative w.r.t. S we get:

A(n(p(X|S)p(S)) _ X =5  a=1 sen(s)
ds 0% S 0

Setting the above equation to zero and solving w.r.t 5 we get:

S = ¢ +sgn(X) [CQ-i-(a—l)a?V]l/g where C=§—sgn(X)-O2;%

260 T(a) 0 [_7

(A.22)

(A.23)

The sgn(.) in the definition of ¢ comes from the fact that the maximum of the posterior

density occurs at an S which has the same sign with X. The sgn(.) before the square

root appears because one of the two solutions of d{In(p(X|S)p(5)))/dS = 0 is chosen

according to the rules stated in appendix A.3.
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A.6 Derivation of the MMSE-Chi-AMP Estimator

The estimator for this algorithm can be obtained by substituting eqs. 4.2 and 4.3 into 4.4.

The numerator of the last equation will then read:

0o p2m 2 2 _ 9 A2~ gxp | -4
num:/ / AR exp {_R + A? - 2RA cos(y ng)} [ 9] ddA
0o Jo

2ro?; 20% 27 62T (a)

(A.24)

which after some algebraic manipulations can be written as:

oo 92 2
num = K f A* exp {—A2 ((9—}—_(271\_{)} Jo (z—Rizﬁ) dA (A.25)
0 8203, g%
where ,
1 i RA -
%G%ﬁ:_fem{ @?‘ﬂw (A.26)
O 2 Jy On

and J,(z) is the Bessel function of the first kind (see [7] eqs. 8.406.3, 8.431.5). K is:

2R R?
- S _ A
2 o3 0T (a) P [ 2012\,:| (A-27)

The integral in eq. A.25 can be solved with formula 6.631.1 from [7] which is stated

below.
oo v T (V+,L_b+1) v+ 1 )82
a2 _ g8 2 M . L
/0 zte Jy(ﬁﬂf)dﬂi—2v+15(#+y+1)/2r(y+1)1 1( 5 v+ 1 pr;
(A.28)
Solving the integral we get:
2026 \***° D(a +0.5) R0
= K & —— /| F 0.5 1; —————5~ A.29
““‘m (e+2a%v) 2 1(“* ’ ’201%(9+2<rir)) (8.2
Performing the same operations on the denominator we get:
2020 \* I'(a) R?9
den =K o Flal——m A.30
en (9 n ZJ?V) g 11 (a’ L o 0+ 202 ) (A.30)
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Dividing the the numerator (num) with the denominator (den) we get:

R2
A T(a+0.5) 1F1(a+0.5;1; 5-() 8
A=4/20% Y h = A3l
ove I'(a) 1F1(a;1;%§) where 6+ 20% (A.31)
N

60



A.7 Derivation of the MAP-Chi-AMP Estimator

Substituting p(R, 24, ¢) and p(A) from 4.2 and 4.3 and p(¢) = o= in eq. 4.7 yields:

X ™ R R? 4+ A? — 2RAcos(y) — o)
A = arg max In 5 €Xp | —
0

2
.2moyy 205

2 A2a,m1 A?

m exp |i——9—jl dd) (A32)

After some rearrangement the logarithm can be written as:

2m
i [ 2R Ao {_ R+ A% 1_4_2} _1_/ exp {RAcoz(z@b — QB)J dqb}
0

2ro3 64 T(a) 20% 6 | 2x Z
(A33)
Using eq. 8.431.5 from [7] we have:
2 _
%G§)=i/ m{mm%¢¢q® (A34)
o 2r J, T

where I;(2) is the modified bessel function of the first kind. Using also the approximation

Io(z) ~ e*/+/27 = the logarithm in eq. A.33 can be written as:

RA
24 A2 A2] €XD |3
al2m e mew ae[R]]
2ro2, 60T (a) 20% 9 on BA
N

Taking the derivative of the above expression w.r.t. A, setting to zero and solving w.r.t A
we get:

1/2
0

R 2
(C5> + (a — 0.75) 207, C} where (= §T 252, (A.36)

A=k

—=x
2

From the above two solutions the valid is the one which is a maximum and positive. Some

further analysis shows that this is always the one with the (4).
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A.8 Derivation of the MAP-Gamma-AMP Estimator

Substituting p(R, ¢'| A4, ¢) and p(A) from 4.2 and 4.15 and p(¢) = 5= ineq. 4.7 yields:

. R
A = argmax In / exp
A 0

R4 A’ — 2RAcos(y — ¢>)}

2 2
2roy, 20%

fa-! A
WBXP [—Ejl dgﬁjl (A37)

After some rearrangement the logarithm can be written as:

R R4 4?2 Al 1 [* RAcos(y) — o)
In|—————A%"1 — — = = d
" {szv T P [ 202, 9} o /0 P { = d”]
(A.38)
Transforming the integral as in Appendix A.7 the above expression becomes:
R Ry 4] e |2
In|—5———A"exp | ———F— — = | —== (A.39)
2wos, 02T (a) 20%, 7 orBA
N

Taking the derivative of the above expression w.r.t. A, setting to zero and solving w.r.t A
we get:
R o3

A=¢£ [+ (a—1.5)0%] Y2 where (= PR (A.40)

From the above two solutions the valid is the one with the (4) because it is always positive

and a maximum.
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APPENDIX B SUMMARY OF THE ESTIMATORS

MMSE-Chi-DFT

0/o%
8+ 20%

D—2a—1(m<X) - D—Za—l(C-X)
D_5u(—CX) 4 D_5.(¢X)

where (= (B.1)

S = 2005

Sy =X [2‘177 D~2a#1(_—n) — D—2a—1(n):l where n= Sgn(X) 5’}/ (Bz)

7 Do) T Do) €+2
MAP-Chi-DFT
X X\? e 0
S = C—Q— +sgn(X) {(Cg) + (a — 0.5) 20% Q:l where (= 203 (B.3)

X 1/2
S=X [g + {(E)Q + (a — 0.5)2—77] } where 7= 3 (B.4)

MMSE-Gamma-DFT

2 2
oxp H Do \(G) — exp [CZ] D_oi()

-~

S=QO’N (:2 CQ (BS)
o 4] Do)+ e | B D@
m 3
— D—a—l - - D—a—l
i i o e"p[élj S I
n

i exp F—i] D_o(m) +exp FZJ D_,(n2)
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where = VL —agnx)7, = Y2 o)y

MAP-Gamma-DET

S = ¢+ sgn(X) [QZ + (a— l)a;ﬂ 1/ where (= £ sgn(X)g#V B.7

2 20
X — 17142 1 1 fa(a+1)
S =X |n+sgn(X [2+a } where n=-— B.8
n+sgn(X) |7° +— =53\ " &Y
MMSE-Chi-AMP
R T ) 1F1(a+05,1,§—2§) 4
A= f20, ¢ Dt 05) _ 2k where ¢ — — (BY)
I'{a) 1F1(a; 1 @;C) 0+ 20y
R n T(a+0.5) 1F1(a+0.5;1;'m)] 3
A=R = where = B.10
{\ﬁ I'(a) 1F1(a; 159m) T+ (519
MAP-Chi-AMP
1/2
o R R\? 2 0
A=(S+ (42) + (a 075)201\,(} where (=F=o% (B.11)
i 1 A% n)"” 3
= — — — U. — h = B-
A=R 2+{(2) +(a 075)7} where 7= 5= (B.12)
MAP-Gamma-AMP
A R o}
A=+ [+ (a-15)0%]""  where (=7 - o (B.13)
1/2
- , a—15 1 1 Ja(a+1)
A=R|n+ [77 + :l ] where 7 == 571 & (B.14)




APPENDIX C

RAW MOMENTS OF THE PRIOR DENSITY FUNC-

TIONS
f(s) Raw k" moment
2-sided Chi
2 0*°D(a + k/2) .
(9&1} 1St exp [_%_} M, = T(a) if k even
() 0 if k odd
2-sided Gamma
k
1 a-1 _lﬂ _ AN CRL)] if k even
20°T (@) |S]*" exp 7 M, = I'(a)
¢ 0 if k odd
1-sided Chi
2 oaes 52 . 02T (a + k/2)
2 > =
°T(a) S exp { 7| with S > 0 & T(a)
1-sided Gamma
1 -1 S , GcT(a + k)
(1 _ - > P Sl A
5T (a) S0 exp [ 9} , with§ >0 My, T(a)

Table C.1: Prior Density functions and Raw Moments.
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