Robust design using Bayesian Monte Carlo


Kumar, Apurva, Nair, Prasanth B, Keane, Andy J and Shahpar, Shahrokh (2007) Robust design using Bayesian Monte Carlo International Journal for Numerical Methods in Engineering, 73, (11), pp. 1497-1517. (doi:10.1002/nme.2126).

Download

[img] PDF Kuma08.pdf - Version of Record
Restricted to Repository staff only

Download (3MB)

Description/Abstract

In this paper, we propose an efficient strategy for robust design based on Bayesian Monte Barlo simulation. Robust design is formulated as a multiobjective problem to allow explicit trade-off between the mean performance and variability. The proposed method is applied to a compressor blade design in the presence of maufacturing uncertainty. Process capability data are utilized in conjunction with a parametric geometry model for manufacturing uncertainty quantification. High-fidelity computational fluid dynamics simulations are used to evaluate the aerodynamic performance of the compressor blade. A probabilistic analysis for estimating the effect of manufacturing variations on the aerodynamic performance of the blade is performed and a case for the application of robust design is established. The proposed approach is applied to robust design of compressor blades and a selected design from the final Pareto set is compared with an optimal design obtained by minimizing the nominal performance. The selected robust blade has substantial improvement in robustness against manufacturing variations in comparison with the deterministic optimal blade. Significant savings in computational effort using the proposed method are also illustrated.

Item Type: Article
Digital Object Identifier (DOI): doi:10.1002/nme.2126
ISSNs: 0029-5981 (print)
Keywords: multiobjective robust design, Bayesian Monte Carlo, manufacturing uncertainty, process capability, compressor blade
Subjects:
ePrint ID: 59254
Date :
Date Event
30 July 2007e-pub ahead of print
12 March 2008Published
Date Deposited: 01 Sep 2008
Last Modified: 16 Apr 2017 17:34
Further Information:Google Scholar
URI: http://eprints.soton.ac.uk/id/eprint/59254

Actions (login required)

View Item View Item