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Abstract

Background: Jena Virus (JV), a bovine Norovirus, causes enteric disease in cattle and represents a potential model for the
study of enteric norovirus infection and pathogenesis. The positive sense RNA genome of JV is organised into ORF1 (non-
structural proteins), ORF2 (major capsid protein) and ORF3 (minor capsid protein). The lack of a cell culture system for
studying JV replication has meant that work to date has relied upon in vitro systems to study non-structural protein
synthesis and processing.

Principal Findings: Only two of the three major ORF1 proteins were identified (p110 and 2C) following in vitro translation of
JV RNA, the N-term protein was not detected. The N-term encoding genomic sequence (59GS) was tested for IRES-like
function in a bi-cistronic system and displayed no evidence of IRES-like activity. The site of translation initiation in JV was
determined to be at the predicted nucleotide 22. Following the insertion of an epitope within the 59GS the JV N-term
protein was identified in vitro and within RNA transfected cells.

Conclusions: The in vitro transcription/translation system is currently the best system for analysing protein synthesis and
processing in JV. Unlike similarly studied human noroviruses JV initially did not appear to express the N-terminal protein,
presenting the possibility that the encoding RNA sequence had a regulatory function, most likely involved in translation
initiation in an IRES-like manner. This was not the case and, following determination of the site of translation initiation the
N-term protein was detected using an epitope tag, both in vitro and in vivo. Although slightly larger than predicted the N-
term protein was detected in a processed form in vivo, thus not only demonstrating initial translation of the ORF1
polyprotein but also activity of the viral protease. These findings indicate that the block to noroviral replication in cultured
cells lies elsewhere.
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Introduction

Jena virus, a bovine norovirus, is a member of the Caliciviridae

family of positive sense RNA viruses and was first isolated from the

diarrhoeic stools of newborn calves [1,2]. JV is a type I genogroup

III (GIII) norovirus which is closely related to the type II GIII

bovine noroviruses Newbury agent 2 and Dumfries [3,4]. The

GIII noroviruses are responsible for causing enteric disease in

cattle [2,5] and, thus, likely share a similar tissue tropism to the

human-associated enteric noroviruses. Like human noroviruses [6]

bovine noroviruses have a high seroprevalence [4]. JV is therefore

a potentially useful model for studying the molecular biology of

enteric norovirus pathogenesis and replication.

The 7.3 kb polyadenylated RNA genome of JV has been

characterised previously [7] and, like other noroviruses, is

organised into 3 open reading frames (ORFs). ORF1 encodes

the non-structural proteins in the form of a large 185 kDa

polyprotein, which is subsequently cleaved into functional

replication proteins by the viral encoded 3C-like protease.

ORF2 encodes the structural capsid protein (56 kDa) and ORF3

encodes a small basic protein, which has been shown to function as

a minor capsid component [8]. JV ORF1 is consistent with other

caliciviruses in that it encodes a 39 kDa 2C-like nucleoside

triphosphatase (NTPase), a 3C-like protease and a 56 kDa 3D-like

RNA-dependent RNA polymerase [7,9–13]. However, the

genomic sequence within the 59 region of JV ORF1 (59GS)

displays a high level of divergence. This divergence is mainly

attributed to the presence of several proline-encoding polypyr-

imidine tracts within the region predicted to encode a 35 kDa N-

terminal protein [7]. The predicted size of N-terminal proteins

relative to the size of the respective 2C proteins differs within the

norovirus genus. Within the GI noroviruses, such as Southampton

virus, the N-terminal protein (44.8 kDa) is larger in size compared

to the 2C protein (39.6 kDa). This is in contrast to the GII

noroviruses, such as Lordsdale virus and Camberwell virus, in that

the N-terminal protein is smaller in size compared to the 2C

protein [11,14]. This is also the case for Jena virus in which the

predicted JV N-terminal protein (35 kDa) is smaller than the JV

2C protein (39 kDa) [7].

The norovirus N-terminal protein varies in relative size across

the genus, and the encoding sequence bears no similarity to other

cellular or viral proteins. Alignment of the N-term protein
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sequences of various noroviruses indicates little similarity between

genogroups within the first 180 residues, however towards the C-

terminal end of the protein similarity between the amino acid

residues increases. Recent studies investigating the functions of the

Norwalk virus N-terminal protein have successfully demonstrated

association with the Golgi apparatus in transfected cells [15]. In

addition this study also identified a picornaviral 2B like region

within the N-terminal protein, suggesting that the protein is

involved with host cell membrane interactions, reinforcing other

findings that have suggested that the Norwalk virus N-terminal

protein disrupts intracellular protein trafficking, including proteins

destined for the host cell membrane [16]. A 3C protease-mediated

cleavage event within the N-terminal protein (37 kDa) was

described for Camberwell virus, a genogroup 2 norovirus, yielding

proteins of 22 kDa and 15 kDa [17]. Based on these observations

and location within the genome it was hypothesised that the N-

terminal protein of noroviruses corresponds to the 2AB region in

picornaviruses.

Another possibility is that the N-term encoding RNA itself

serves to function as a translational enhancer by interacting with

cellular proteins involved in translation. Indeed, this phenomenon

has been previously reported for Norwalk virus, within which a

double stem loop structure has been predicted at the 59 end of the

genomic RNA [18]. It was subsequently demonstrated that

elements within the 59 end of Norwalk virus bind specifically with

cellular proteins such as La, PTB and PCBP2 [19] which have all

been implicated in IRES-mediated cap-independent translation in

the closely related picornaviruses [20–23]. In this study the role of

the JV 59GS was investigated, including its potential to direct cap-

independent translation initiation. The precise location of

translation initiation in JV was also investigated.

Results and Discussion

JV ORF1 Polyprotein Processing
Previous studies of norovirus polyprotein processing have

yielded three major products following in vitro transcription and

translation, representing the uncleaved 3ABCD, N-term and 2C

proteins. However, initial analysis of JV polyprotein processing

indicated that only two major proteins are synthesised initially

which, based on molecular weight predictions, are the 3ABCD

(110 kDa) and the 2C (39 kDa). The lack of an N-terminal protein

encoded by the JV 59GS, predicted to be 35.3 kDa, is unique

among the noroviruses that have been studied in this way. The in

vitro transcription and translation profile for JV was therefore

studied in more detail. As initial experiments had analysed TNTH
reactions following a 1 hr incubation, reaction aliquots were

harvested at time points before and after the recommended 1 hr

incubation.

The results in Figure 1 show that there are no major reaction

products synthesised prior to the 1 hr time point, at which time the

3ABCD/p110 and 2C/p39 proteins are clearly visible. Extended

incubation past the 1 hr point resulted in further proteolytic

cleavage of p110 that coincided with the appearance of proteins of

the following sizes: 86 kDa, 55 kDa, and 51 kDa. In addition

proteins of 29 kDa, 22 kDa and 20 kDa were also visible at the

24 hr time point (Figure 1, lane 7). The only protein that was

consistently visible following the 1 hr time point was the 2C/p39

protein. Despite prolonged incubation there was no indication that

the N-terminal/p35 protein was synthesised.

A comprehensive study of polyprotein processing within the

murine norovirus (MNV) suggests likely identities for the

equivalent proteins in the similar profile for JV [12]. Using

region specific antisera the authors were able to identify p110 as

the 3ABCD uncleaved precursor, p90 as the 3BCD, p57.5 as the

3D-like polymerase, p52 as a 3ABC precursor and p40 as the 2C-

like NTPase, which was determined by mutagenesis and

microsequencing experiments. The 19 kDa protein was identified

as the 3C-like protease. The antisera used to detect the MNV N-

term protein recognised 3 products; one was the predicted

molecular weight at 39 kDa and the other two bands migrated as

a 45 kDa doublet.

Assessment of translational enhancing potential of the JV
59GS

The 59GS region of JV is highly divergent compared to other

noroviruses, mainly due to the relatively high cytosine content

(32%), which contributes to an overall G/C content of 58%.

There are many polypyrimidine tracts within the sequence,

potentially yielding a relatively high degree of RNA secondary

structure. Previous studies have described potential secondary

RNA structure and interaction with proteins involved with IRES-

mediated translation within the 59 genomic region of Norwalk

virus [18,24]. It was of interest therefore, based on these findings,

to ascertain whether or not the 59GS of JV possessed IRES-like

properties within the context of a ‘Bi-cistronic’ expression system,

independently of other viral proteins, including the VPg which, in

other caliciviruses, has been shown to be associated with

translation initiation factors [25,26].

Traditionally the bi-cistronic vector system has been used to

define potential IRES-like sequences from a variety of viral and

cellular mRNAs, and is recognized as being the standard test for

this function [27]. A bi-cistronic vector is comprised of a 59 and 39

cistron; translation of the 59 cistron being cap-dependent and

translation of the 39 cistron regulated by the putative IRES-like

sequence. Thus, if the 39 cistron is translated in addition to the 59

cistron then the sequence of interest is said to have IRES-like

properties, as translation is initiating internally.

To test for IRES-like function in JV, bi-cistronic constructs were

made with a cap dependent 59 EGFP cistron and a 39 lacZ cistron

under the translational control of either the JV 59GS (pEGFP-C1/

JV59GS/lacZ) or an authentic EMCV IRES (pEGFP-C1/IRES/

lacZ). CRFK cells were transfected with the bi-cistronic constructs

Figure 1. TNTH time course for JV displaying the progressive
stages of post translational polyprotein processing. Molecular
weight marker is represented by lane 1. Lanes 2–7 represent the
following time points; 15 min, 30 min, 1 hr, 2 hr, 4 hr and 24 hr
respectively.
doi:10.1371/journal.pone.0002169.g001

Analysis of the 59 GS of JV
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and, following incubation, were assayed for EGFP and lacZ

expression.

Both constructs were able to direct translation of the EGFP

cistron effectively as expected (Figure 2a and Figure2d). The use of

an authentic EMCV IRES to direct translation of the lacZ cistron

was also effective (Figure 2e), with levels of b-galactosidase activity

comparable to those of the b-galactosidase reporter (Figure 2f).

However, no b-galactosidase activity was detected from cells

transfected with the pEGFP-C1/JV59GS/lacZ construct

(Figure 2b), demonstrating that the JV 59GS was unable to initiate

translation, and therefore, in this context, did not possess any

IRES-like functions.

Translation initiation in JV ORF1
As it was clear that the JV 59GS did not posses any IRES-like

functions it was necessary to determine the location of translation

initiation within ORF1. This was predicted be the ATG encoding

methionine at nucleotide position 22, as it is situated in a

favourable context for translation initiation [7]. To investigate this

multiple translation termination codons (polySTOP) were inserted

into the JV genome within the 3B-encoding region, downstream of

the 59GS, to halt translation at a defined point. In vitro

transcription and translation of this construct would, in theory,

yield a product whose size would relate to the initiation codon used

within the 59GS (Figure 3). To address the unlikely event of

translation read-through or re-initiation downstream of the

polySTOP, which would result in subsequent translation of the

3C protease and cleavage of the truncated ORF1 polyprotein, a

mutation was made within the active site encoding region of the

3C protease within JV ORF1, to prevent any viral mediated

cleavage of ORF1 translation products (JV 3Cmut/polySTOP). A

point mutation of the critical cysteine residue within the highly

conserved GDCG motif to a glycine residue was performed, and

this approach has been described for the successful inactivation of

other norovirus’ 3C activity [28]. In vitro transcription and

translation analysis was performed on JV wild type (Figure 4,

lane 2), JV 3Cmut (Figure 4, lane 3) and JV 3Cmut/polySTOP

(Figure 4, lane 4). The mutation of the critical cysteine residue

Figure 2. Fluorescence microscopy images and light microscopy images following x-gal staining of CRFK cells transfected with: A
and B–pEGFP-C1/JV 59 GS/lacZ, C–no DNA, D and E–pEGFP-C1/IRES/lacZ, F–pSV b-Gal reporter.
doi:10.1371/journal.pone.0002169.g002

Analysis of the 59 GS of JV
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within the 3C region of JV successfully inactivated the 3C

protease, thus a large, .200kDa uncleaved polyprotein is yielded

following TNTH. The major product generated by JV 3Cmut/

polySTOP was calculated to be 103kDa in size. Based on

computer predictions this is in agreement with the initiation of

translation occurring at nucleotide 22, which demonstrates that

the JV N-term protein is translated in full in vitro. At this time it is

not possible to determine whether translation of intracellular VPg-

bound viral RNA initiates at nucleotide 22, although it is likely

given the favourable context in which the initiation codon is

situated.

Immune detection of JV N-term
As the JV N-term was found to be translated in vitro attempts

were made to express and purify the protein in bacteria for

immunisation so that the protein could be identified by radio-

immune precipitation assay (RIPA), as it was possible that the N-

term protein was migrating on gels aberrantly and possibly co-

migrating with 2C. Attempts to express the protein in bacteria

were unsuccessful due to toxicity. Therefore, the 14aa V5 epitope

encoding sequence was cloned in frame into the JV cDNA

construct at nucleotide position 123 (JV V5). The V5 epitope

originates from the P and V proteins of the SV5 paramyxovirus

Figure 3. A-JV ORF1 polyprotein showing mutation to the 3C protease at amino acid 1132 and insertion of the polySTOP cassette
at amino acid 930, as found in the JV 3Cmut/polySTOP construct. B-The possible in vitro transcription and translation products from the 6 in-
frame Met residues within the 59GS and their respective predicted molecular weights. M1 represents the initiation codon found at nucleotide 22
within the JV genome.
doi:10.1371/journal.pone.0002169.g003

Figure 4. Analysis of TNTH products for JV (lane 2), JV 3Cmut

(lane 3) and JV 3Cmut/polySTOP (lane 4), on a 7% SDS PAGE
gel. Molecular weight marker representation is displayed in lane 1. The
major band of approximately 103 kDa in lane 4 is indicative of
translation initiation at nucleotide 22.
doi:10.1371/journal.pone.0002169.g004

Analysis of the 59 GS of JV
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[29], for which a commercially available monoclonal antibody is

used for detection.

Following in vitro transcription and translation of JV V5 a new

product, approximately 42 kDa in size, was visible (Figure 5, lane

2). This product was not observed in any prior analyses of JV. To

confirm that this protein was V5/N-term associated the TNTH
reaction was subjected to RIPA using the anti-V5 antibody

(Figure 5, lane 3). This confirmed expression of the N-term protein

in vitro.

To confirm expression of the V5/N-term protein in cell culture

capped RNA was synthesised from the JV V5 T7 cDNA construct,

which was used to transfect CRFK cells. As there is currently no

host cell line in which to propagate JV the CRFK cell line was

used as it has been shown to support the replication of feline

calicivirus [30]. Confocal immunofluorescence of transfected cells

using the anti-V5 antibody demonstrated expression of the V5/N-

term protein in cultured cells (Figure 6). Expression of the V5/N-

term protein was diffuse and did not co-localise with the Golgi/

ER/plasma membrane marker wheat germ agglutinin (WGA) and

therefore displays a different pattern of cellular expression

compared to Norwalk virus [15]. Cells transfected with the wild

type full length JV RNA were negative for fluorescence (data not

shown).

Lysates of cells transfected with wild type JV and JV/V5 RNA

were subjected to western blot using the anti-V5 antibody

(Figure 7). No product was present for cells transfected with wild

type JV RNA, but a protein of approximately 42 kDa in size was

visible in cells that had been transfected with JV/V5 RNA,

confirming N-term expression and size as seen in the in vitro

system. In addition, this important observation also confirms for

the first time that the JV 3C protease was active in cells transfected

with capped RNA as the size of the V5/N-term indicated

successful cleavage of the protein from the ORF1 polyprotein.

To address the issue of potential rapid degradation of the JV N-

term protein CRFK cells were transfected with JV V5 RNA and

were harvested at designated time points following the addition of

the protein synthesis inhibitor cycloheximide. Cell lysates were

analysed by Western blot using the anti-V5 antibody (Figure 8).

The consistent appearance of the N-term/V5 protein suggested

that it is stable and insensitive to degradation by viral and host cell

proteases.

The predicted molecular weight of the JV N-term is 35.3 kDa,

based on the site of initiation of translation and location of

conserved cleavage sites. The appearance, therefore, of a

Figure 5. Analysis of TNTH (lane 2) and RIPA (lane 3) products
for JV/V5. The N-term/V5 product is approximately 42 kDa in size,
larger than the predicted size of 35.3 kDa. Molecular weight marker is
represented in lane 1.
doi:10.1371/journal.pone.0002169.g005

Figure 6. Confocal immunofluorescence of CRFK cells transfected with JV/V5 RNA. A = cells stained with wheat germ agglutinin (plasma
and Golgi/ER membrane marker, red) and DAPI (blue). B = cells stained with anti-V5 (green). C = merged.
doi:10.1371/journal.pone.0002169.g006

Figure 7. Western analysis from lysates of CRFK cells trans-
fected with no RNA (lane 2), JV RNA (lane 3) and JV/V5 RNA
(lane 4) using the anti-V5 monoclonal antibody. Bradford analysis
was performed on the lysates to ensure equal loading. The appearance
of the 42 kDa V5 product confirms ORF1 translation and activity of the
3C protease in vivo. Molecular weight marker is represented in lane 1.
doi:10.1371/journal.pone.0002169.g007

Analysis of the 59 GS of JV
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previously unseen 42 kDa protein in the in vitro transcription and

translation profile was unexpected but this protein does represent a

translation product for the JV 59GS. To date, it has not been

possible to explain the difference in the predicted and observed

sizes for the JV N-term, and the addition of the 14 amino acid V5

epitope within JV N-term does not account for this apparent large

shift in molecular weight. However, a recent study described a

similar anomaly when investigating proteolytic processing in the

murine norovirus MNV-1 [12]. The predicted molecular weight

for the MNV-1 N-term protein was 38.3 kDa. The authors

successfully generated antisera against the MNV-1 N-term and

used it to immunoprecipitate the protein from in vitro transcription

and translation reactions and observed that the N-term existed as a

45 kDa doublet, in addition to the predicted size of 38 kDa.

However, when MNV-1 N-term antisera was used to probe

MNV-1-infected cell lysates only the 43–45 kDa doublet and a

large 115 kDa precursor could be detected, suggesting that the

predicted 38 kDa form of the N-term is not generated in cell

culture. Again, it was not possible to conclusively determine the

cause of this discrepancy, but it was speculated that the N-term

protein may migrate abnormally in SDS-PAGE, or may be

proteolytically processed at a previously unknown cleavage site

downstream of the protein’s predicted C-terminus. It is also

possible that the N-term protein might be modified in some way

leading to a shift in observed molecular weight. At this time the

same conclusions would seem appropriate for the JV N-term. In

addition, it is not known why the JV N-term was previously not

detected in in vitro transcription and translation studies prior to the

insertion of the V5 epitope. It cannot be ruled out, however, that

the wild type JV N-term aberrantly co-migrates with the 39 kDa

JV 2C protein in SDS-PAGE. Indeed, the appearance of the V5/

N-term product from transfected cell lysates would appear to be

one of a doublet (Figure 8), also analogous to the observed

appearance of the MNV N-term protein in infected cells,

suggesting the likelihood of a further cleavage site within the JV

N-term protein which has yet to be elucidated. Nevertheless, these

studies clearly demonstrate that a protein representative of the

59GS of JV is translated both in vitro and in vivo and is

proteolytically processed from the ORF1 polyprotein following

translation initiation at nucleotide 22.

Conclusions
Human norovirus infection has been shown to be the leading

cause of non-bacterial gastroenteritis [31], however there is

currently no cell culture system available to facilitate viral

replication and ethical considerations have hindered progress in

establishing a permissive human organ culture system. The study

of Jena virus offers a potential animal model of enteric noroviral

infection. However, until a permissive bovine cell and/or organ

culture systems is established analysis of the molecular mechanisms

underpinning viral replication and pathogenesis rely upon in vitro

systems, most notably polyprotein synthesis and processing.

Unlike similarly studied human noroviruses JV initially did not

appear to express the N-terminal protein, presenting the possibility

that the encoding RNA sequence had a regulatory function itself,

most likely involved in translation initiation in an IRES-like

manner. This was shown not to be the case and, following

determination of the site of translation initiation at the predicted

nucleotide 22 the N-term protein was detected following the

insertion of an epitope tag, both in vitro and in vivo. Although

slightly larger than predicted the N-term protein was detected in a

processed form in vivo, thus not only demonstrating initial

translation of the ORF1 polyprotein but also activity of the viral

encoded protease. These important findings indicate that the block

to replication of enteric norovirus in cultured cells cannot be

attributed to a failure to synthesise and process the non-structural

proteins. The detection of processed and active ORF1 proteins in

transfected cultured cells, however, highlights the potential for the

development of cell and bovine organ based systems to facilitate

the replication of Jena virus.

Materials and Methods

Construction of Bi-cistronic vectors
The pEGFP-C1 vector (Clontech) comprises of an EGFP

coding sequence under the control of a CMV promoter and a

Kozak translation initiation site. Downstream of the EGFP

sequence is the multiple cloning site containing unique BglII, SacI,

HindIII and ApaI restriction sites. Contruction of pEGFP-C1/JV

59 GS/lacZ was as follows; The JV 59 GS sequence was amplified

from the JV full length cDNA clone [7] using Bio-X-Act DNA

polymerase (Bioline) with the primers 59 GS F (59-AACTGCA-
GATCTTAATAAGTGAATGAAGACTTTGACGAT-39), con-

taining the BglII restriction site (bold) and two in-frame translation

termination codons (underlined) to ensure that translation of the

EGFP sequence did not carry over to the 59 GS, and 59 GS R (59-

AACTGCAAGCTTCTGCAGGACACAATGAGG-39), contain-

ing theHindIII restriction site. The JV 59 GS amplicon was ligated

to the pEGFP-C1 vector, following restriction enzyme digestion of

both amplicon and vector with BglII and HindIII restriction

enzymes, and the ligated DNA used to transform E.coli Top10

(Invitrogen). This intermediate construct was named pEGFP-C1/

JV 59 GS. The lacZ coding sequence was amplified from the pSV-

b-Gal reporter vector (Promega) using Bio-X-Act DNA polymer-

ase and the primers lacZ F (59-AACTGCAAGCTTGA-

TATGGGGGATCCCGTCGTTTTACAACG-39), containing

the HindIII restriction site (bold) and a kozak translation initiation

site (underlined), and lacZ R (59-AACTGCGGGCCCTTAT-

TATTTTTGACACCAGACCA-39) containing the ApaI restric-

tion site (bold) and translation termination codons (underlined).

The lacZ amplicon was ligated to the pEGFP-C1/JV 59 GS vector

following restriction enzyme digest of both amplicon and vector

with HindIII and ApaI restriction enzymes, and the ligated DNA

used to transform E.coli Top10. The construct was verified by

sequencing. Construction of pEGFP-C1/IRES/lacZ was as

follows; The EMCV IRES sequence was amplified from the

pIRES2-EGFP vector (Clontech) using Bio-X-Act DNA polymer-

ase and the primers IRES Bgl F (59-ACTCGAAGATCTTAA-

TAGAGCTTCGAATTCTGCAGTCGA-39), containing the

BglII restriction site (bold) and translation termination codons

(underlined) to prevent carry over translation as before, and IRES

Sac R (59- ACTCGAGAGCTCTGTGGCCATATTATCATC-

GTG-39), containing the SacI restriction site (bold). The IRES

amplicon was ligated to the pEGFP-C1 vector follwing restriction

Figure 8. Degradation analysis of N-term/V5 following treat-
ment of JV/V5 transfected CRFK with cycloheximide (CHX).
Whole cell lysate was collected at the following time points following
CHX treatment: 0 hr, 1 hr, 3 hr, 6 hr, 12 hr, 24 hr. Bradford analysis was
performed on the lysates to ensure equal loading. Following Western
analysis the ECL treated membrane was exposed to film for 1 min.
Molecular weight marker is represented in lane 1.
doi:10.1371/journal.pone.0002169.g008
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enzyme digest of both amplicon and vector with BgIII and SacI

restriction enzymes, and the ligated DNA used to transform E.coli

Top10. The lacZ amplicon described previously was ligated to the

intermediate pEGFP-C1/IRES vector following restriction en-

zyme digest of both amplicon and vector with HindIII and ApaI

restriction enzymes, and the ligated DNA used to transform E.coli

Top10.

Construction of JV 3Cmut and JV 3Cmut/polySTOP
The JV 3C protease mutant was created by point mutation of

the critical TGT encoded cysteine residue, within the GDCG

active site motif, to a GGT encoded glycine residue by mutagenic

overlap PCR using Bio-X-Act DNA polymerase. Three rounds of

amplification using the JV full length cDNA clone as template

were used to generate the final mutant protease cassette. Round 1

used the primers JV F1 (59-CGTCTCAGGGTTGATACT-39)

and JV Mut 1 (59-GCAACCACCGTCACCAG-39), yielding a

222 bp amplicon (point mutation nucleotide shown in bold).

Round 2 used the primers JV Mut 2 (59-CTGGTGACGGT-

GGTTGC-39) and JV R2 (59-TTCCTGGGAGGAACAAGTT-

39), yielding a 651 bp amplicon. Amplicons generated in rounds 1

and 2 were pooled to serve as template for round 3 using the

primers JV NF (59-ATGTCAACCACCACCAGC –39) and JV

NR (59-AAGGGCTCCGGTGAAGG-39). This cassette contained

two BclI restriction sites flanking the 3Cprotease active site, as also

found in the wild-type full length clone. Restriction digest using

BclI was used to remove the appropriate wild-type cassette from

the JV full length clone. The mutant cassette was also digested

with BclI prior to ligation to the BclI-digested JV full length clone.

The ligated DNA was used to transform E.coli Top10, and was

designated JV 3Cmut.

Construction of JV 3Cmut/polySTOP was as follows: comple-

mentary oligonucleotides with three translation termination

codons (underlined) in each reading frame in sense and anti-sense

orientations were desgined in such a way that upon annealing the

duplex would contain blunt termini. The oligonucleotides were

termed pSTOP Top (59-CTAGGTAAGTAAACGCGTCTACT-

CACTCAC-39) and pSTOP Comp (59- GTGAGTGAGTA-

GACGCGTTTACTTCAATAG-39). Each oligo (1 mg) was

incubated with T4 polynucleotide kinase and ATP to phosphor-

ylate the 59 termini, pooled and heated to 75uC for 15 min, and

left to cool to room temperature to anneal the oligos. Following

purification the polySTOP duplex was ligated to Eco47III digested

JV 3Cmut, and ligated DNA was used to transform E.coli Top10.

The duplex contained the unique restriction site MluI (shown in

bold) to assist screening of recombinant clones.

Construction of JV V5
The V5 epitope (N-Gly-Lys-Pro-Ile-Pro-Asn-Pro-Leu-Leu-Gly-

Leu-Asp-Ser-Thr-C) is recognized by the anti-V5 monoclonal

antibody (Invitrogen). Complementary oligonucleotides encoding

the V5 epitope were designed in such a way as to generate SacII

compatible termini following annealing (bold), and to preserve the

reading frame when inserted into the SacII restriction site at

nucleotide 123 within the 59 GS of the JV genome (underlined).

The oligos were termed V5 Top (59-GGTAAGCCTATCCC-

TAACCCTCTCCTCGGTCTCGATTCTACGAGC-39) and

V5 Comp (59-TCGTAGAATCGAGACCGAGGAGAGGGT-

TAGGGATAGGCTTACCGC-39). The oligos were phosphory-

lated and annealed as described previously and the duplex ligated

to the SacII digested JV full length clone. Ligated DNA was used to

transform E.coli Top10.

In vitro Transcription/Translation and RIPA analysis
In vitro coupled transcription and translation was performed

using the TNTH Coupled Reticulocyte Lysate System (Promega)

as per the manufacturer’s instructions. Reactions were incubated

at 30uC for 1–2 hr. For non-radiolabelled reactions the 35 S-

Methionine was replaced with 1 mM unlabelled Methionine

(2 ml). Reaction products (1–2 ml) were analysed by SDS-PAGE.

Gels were stained and prepared for autoradiography by incubating

for 30 min in a solution containing 32 g sodium salicylate, 100 ml

methanol and 100 ml dH2O. Gels were dried under vacuum and

the reaction products were detected by exposure to Kodak X-

Omat scientific imaging film (Sigma) at 270uC for 16 hr followed

by developing using a Kodak automated developer.

Specific V5-tagged proteins synthesised by TNTH were

precipitated from 5–10 ml of reaction product using the anti-V5

monoclonal antibody (Invitrogen) at the recommended dilution in

600 ml of 16RIPA buffer (diluted from 10x stock: 10 mM Tris-

HCl (pH 7.5), 1 mM EDTA, 0.15 mM NaCl, 0.1% SDS, 0.5%

Empigen BB, 0.1 mM phenylmethylsulphonylfluoride) for 1 hr at

37uC. This was followed by a second incubation of tube for 2 hr

rotating at room temperature with goat anti-mouse immuno-

globulin G agarose beads (Sigma) to absorb the immune

complexes. The beads were washed three times with 500 ml 16
RIPA buffer and once with 500 ml PBS. The beads were

resuspended in sample buffer for analysis by SDS-PAGE and

autoradiography as before.

Transfection of CRFK cells with Bi-cistronic vectors
Endotoxin-free preparations of plasmid DNA were prepared

using the GenEluteTM Endotoxin free plasmid midi prep kit

(Sigma). Crandall-Reese Feline Kidney cells (CRFKs) were

seeded into a 12 well tray at approximately 40–50% confluence.

CRFK cells were transfected with no DNA (negative control),

pSV-b-Gal (control for b-galactosidase activity), pEGFP-C1/JV

59 GS/lacZ and pEGFP-C1/IRES/lacZ (control for IRES

activity) using the SuperfectTM transfection reagent (Qiagen) as

per the manufacturer’s recommendations. Following a 16 hour

incubation the cells were observed for EGFP expression using a

Leica Leitz DMRB fluorescence microscope. The cells were

washed in PBS and fixed using a 0.5% solution of glutaraldehyde

for 30 min at room temperature. The cells were incubated with

an X-Gal stain solution: 5 mM K3Fe(CN)6, 5 mM K4Fe(CN)6,

2 mM MgCl2, 1x X-Gal (Sigma) for 4 hours at 37uC and were

observed for b-glactosidase activity by light microscopy. The

experiment was performed more than once to confirm the

results.

RNA synthesis and transfection of CRFK cells
JV V5 and JV FLC T7 cDNA plasmid constructs were

linearised using NdeI (Invitrogen). Capped RNA was synthesised

using the mMessage mMachineH Capped RNA Transcription kit

(Ambion) according to the manufacturer’s instructions. CRFK

cells were seeded into 6 well trays at approximately 50%

confluence and were transfected with 2 mg purified RNA per well

using Transmessenger transfection reagent (Qiagen) according to

the manufacturer’s instructions.

Immunological analysis
For immunofluorescence CRFK cells were seeded onto 19 mm

coverslips in 6 well trays and were transfected with RNA as

described. Following a 24 hr incubation the coverslips were

washed with PBS and fixed in 4% formaldehyde for 15 min at
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room temperature. Cells were permeabilised and blocked in

saponin buffer, also used as staining buffer, (0.1% saponin, 10%

foetal calf serum, 0.1% sodium azide) for 1 hr at 4uC. Cells were

stained using an anti-V5 monoclonal antibody (Invitrogen)

followed by an anti-mouse Alexafluor 488 conjugated secondary

antibody (Molecular Probes) at the recommended dilution in

staining buffer for 30 min in the dark. Cells were then stained for

30 min in the dark with a Wheat Germ Agglutinin Alexafluor

594 nm conjugate (Molcular Probes) to allow identification of

plasma and Golgi membranes. Coverslips were washed and

mounted onto slides using Vectashield containing DAPI (Vector

Labs). Microscopy was performed using an inverted Leica TCS-

NT confocal laser scanning microscope.

The anti-V5 antibody was also used to detect V5-tagged protein

by Western blot. Cell lysates were prepared following transfection

using lysis buffer (0.15 M sodium chloride, 0.5% (v/v) sodium

deoxycholate, 0.1% (w/v) SDS, 50 mM Tris-Cl pH 8.0) and

protease inhibitor cocktail (Sigma). Lysates were incubated for

15 min on ice followed by sonication to shear genomic DNA.

Following Bradford analysis equal protein content from JV V5 and

JV FLC lysates were run on a 10% SDS-PAGE gel and

subsequently transferred onto Immobilon-P PVDF membrane

(Millipore) according to the manufacturer’s recommendations.

The membrane was probed using the anti-V5 monoclonal

antibody at the manufacturer’s recommended dilution, followed

by an anti-mouse HRP-copnjugated secondary antibody (Santa

Cruz) at the recommended diltution. The ECL Western blotting

reagents kit (G.E. Healthcare) was used to detect antibody bound

protein, which was visualised by exposure to BioMax Light film

(Kodak).

Degradation analysis
CRFK cells were seeded into 6 well trays and transfected with

capped JV V5 RNA as described. Following a 24 hr incubation

cycloheximide (Sigma) was added to the cells at a final

concentration of 50 mg/ml. Cells were harvested at indicated

times for the preparation of lysates for V5 Western analysis as

described above. Bradford reagent (Sigma) was used to ensure

equal loading of lysates according to the manufacturer’s

recommendations.
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