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Introduction 

 

The p53 tumour suppressor is a nodal point for the response to a range of cellular stresses [1].  It 

suppresses cellular replication and survival primarily by promoting the transcription of specific 

target genes, including WAF1, which encodes the cyclin-dependent kinase inhibitor p21
WAF1

, and 

BH3 family pro-apoptotic genes BAX, PUMA and NOXA [1].  p53 also activates the transcription 

of the gene encoding its negative regulatory partner, HDM2 (Mdm2 in mice) [1,2], ensuring p53 

activity is maintained at low levels in proliferating cells.  The importance of correct control of 

p53 is clearly demonstrated by the p53-dependent embryonic lethality observed in Mdm2
-/-

 mice 

[3,4] and the ability of pharmacological HDM2 antagonists to inhibit the proliferation of wild-

type p53-expressing cancer cells [5]. 

 

Pax proteins are a family of developmentally regulated transcription factors with roles in 

proliferation, differentiation and survival [6].  Mouse embryos homozygous for an inactivating 

mutation in Pax3 (Splotch mice) die in mid-gestation with a variety of neural tube defects and 

cardiac abnormalities [7].  The neuroepithelial tissue of these embryos exhibit a post-

transcriptional increase in p53 protein abundance, and p53-dependent apoptosis with associated 

neural tube defects [8].  Pax3 is down-regulated in later development and its expression in the 

adult is restricted to a small number of highly specialised stem cells such as melanocytes in the 

bulge region of hair follicles [9].  PAX3 is, however, frequently expressed in human cancers 

derived from cells of neural crest origin, notably neuroblastoma and melanoma [6]¸ and 

inhibition of PAX3 expression in melanoma cells results in p53 protein induction and apoptosis 

[10].  These findings indicate that a primary role of PAX3 in the developing neural crest and 
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potentially also certain human tumours, involves the suppression of p53-dependent apoptotic 

pathways. 

 

In contrast to HDM2, which is well documented as both inhibiting the interaction of p53 with 

transcriptional co-activators, and targeting p53 for ubiquitination, nuclear export and degradation 

[1]; the mechanism whereby PAX3 regulates p53 function is unknown.  Here we describe the 

results of a series of experiments to dissect the molecular basis for the functional interaction 

between these two proteins. 

 

2. Materials and Methods   

 

2.1 Cell culture, plasmids, transfections, mRNA and reporter gene assays   

 

H1299 and NIH3T3 cells were grown in RPMI 1640 (Invitrogen), and DMEM (Invitrogen) 

respectively, supplemented with 10% foetal bovine serum (Autogen Bioclear).  The Hdm2luc03 

and Hdm2luc13 luciferase reporter vectors contain 165 b.p. (-132 to +33) and 616 b.p. (-583 to 

+33) of the HDM2-P2 promoter region respectively [11].  Hdm2luc17 is a derivative of 

Hdm2luc13 with two independent 2 b.p. substitutions in its two p53-response elements.  Baxluc 

contains a 369 b.p. fragment of the BAX promoter in pGL3Basic [12].  Expression vectors for 

p53 (pC53SN3), and HDM2 (pCMVmdm2) as well as the WAF1 promoter reporter (p21luc) 

were kind gifts from Professor Bert Vogelstein.  pCDNA3p53F19A has been described [13].  

pJ7PAX3 contains the entire  human PAX3 coding sequence (splice form PAX3c [14] ) in pJ7ω.  

Site–directed mutagenesis of pJ7PAX3 used the following primers (forward primers only are 
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shown): Stop281 (5’- CTGGAGCCAATTAACTGATGGCTTTCAACC-3’), SD42 (5’- 

CGAGTCAACCAGCTCCGAGGAGTATTTATC-3’), WS265 (5’- 

GAGGCCCGAGTGCAGTTCTGGTTTAGCAAC-3’), N47H (5’- 

GGAGGAGTATTTATCCACGGCAGGCCTCTGCC-3’).  All cell transfections used 

Lipofectamine 2000 reagent (Invitrogen) and total amounts of transfected plasmid were equalised 

using empty expression vector.  Reporter assays were performed 48 h after transfection of cells in 

96 well plates using a Dual-Glo
TM

 luciferase assay (Promega), with normalisation to Renilla 

luciferase expressed from co-transfected pRLSV40 (Promega) to produce relative luciferase units 

(RLU).  Data is expressed as ± S.E.M., or S.D. where n=2.  One-way ANOVA and Tukey HSD 

post-hoc testing with SPSS software were used for the statistical analysis of the effect of PAX3 in 

reporter assays.  Asterisks indicate significance of the difference from the relevant no PAX3 

control; *p<0.05, **p≤0.001.  Reverse transcriptase(RT)-quantitative (q)PCR was performed as 

described previously [15]. 

 

2.2 Protein analysis 

 

Cells were washed with phosphate-buffered saline, pelleted by centrifugation at 1000 g, snap 

frozen and stored at -80 °C.  Pellets were lysed for 15 min at 4 °C in denaturing urea buffer (7 M 

urea, 0.1 M dithiothreitol, 0.05% Triton X-100, 25 mM NaCl, 20 mM HEPES pH 7.6) then 

clarified by centrifugation at 13000 g for 10 min at 4 ºC.  Protein concentrations were determined 

by the method of Bradford (Bio-Rad).  Immunoblotting was performed by standard procedures 

and membranes were probed for PAX3 (Rabbit polyclonal, Active Motif), p53 (pAb421 or DO-1, 

Serotec) or EGFP (ab290, Abcam).  DO-1 was used to detect p53 protein unless indicated 

otherwise.  Bands were visualised by chemiluminescence (Supersignal, Pierce) using a Fluor-S 
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MAX system (Bio-Rad), and quantified using Quantity One software (Bio-Rad).  Quantification 

of the blots is expressed relative to EGFP. 

 

3. Results 

 

3.1 PAX3 inhibits p53-induced transcription 

 

Using a transient over-expression system in which the levels and activities of the two proteins 

could be readily manipulated and analysed, we first investigated the effect of PAX3 on p53-

dependent transcription from the promoter of the BAX gene in cells which express low (NIH3T3, 

Fig. 1A) or no (H1299, Fig. 1B) endogenous p53 protein.  In both cell lines, p53 caused a dose-

dependent activation of the BAX promoter.  This activation, but not basal promoter activity, was 

significantly inhibited by PAX3 (p<0.001 in NIH3T3, at 2.5 ng p53 plasmid plus 100 ng PAX3 

plasmid and p<0.001 in H1299, at 5 ng p53 plasmid plus 100 ng PAX3 plasmid).  We then 

extended this analysis to the HDM2 promoter, which is activated by much lower levels of p53 

than the BAX promoter, and is therefore a better model promoter, as it reduces the possibility of 

p53-induced cell death influencing the experimental results.  PAX3 caused significant inhibition 

of p53-dependent HDM2 promoter activity in H1299 reporter assays (Fig. 1C) (p<0.001 at 

0.0625 ng p53 plasmid plus 100 ng PAX3 plasmid).  Importantly, PAX3 also suppressed p53-

dependent expression of the endogenous HDM2-P2 transcript (Fig. 1D).  Fig. 1E confirms that 

repression of HDM2 promoter activity by PAX3 is dependent upon the presence of functional 

p53-response elements in the promoter (compare Hdm2luc13, with Hdm2luc17, in which the 

p53-response elements are mutated).  Finally, we examined the ability of PAX3 to repress p53-
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dependent transcription from the WAF1 promoter (p21luc, Fig. 1F).  In contrast to the HDM2-P2 

and BAX promoters, PAX3 over-expression caused a modest, but reproducible, up-regulation of 

WAF1 reporter activity in both the absence and presence of transfected p53.  This may indicate 

that the ability of PAX3 to regulate p53-dependent transcription of target genes can be promoter-

dependent. 

 

Suppression of p53 function by PAX3 involves regulation of p53 protein abundance, but is 

independent of p53 binding to HDM2 

 

The activity of p53 as a transcription factor can be regulated at multiple levels including 

sequence-specific DNA-binding, interaction with co-activators, sub-cellular localisation and 

overall protein levels.  In Fig. 2A we show that co-expression of PAX3 with p53 in the H1299 

cell line causes a striking reduction in p53 protein levels, for example to 17% and 26% of no 

PAX3 controls in 0.6 ng and 1.2 ng p53-expression-vector lanes respectively.  Fig. 2B 

demonstrates that PAX3 over-expression increases the rate of turnover of p53 protein in H1299 

cells.  These findings are consistent with the increase in p53 protein levels in PAX3 compromised 

melanoma cells [10], and murine embryos [8], though the magnitude of the effect was greater, 

presumably as a consequence of the over-expression system used. 

 

We next investigated the requirement for HDM2 in PAX3-mediated repression of p53 abundance 

and function.  The phenylalanine residue at position 19 of the amino terminus of p53 is critical 

for the primary interaction between p53 and the N-terminus of HDM2.  This interaction causes a 

conformational shift in HDM2 that promotes a secondary interaction between the two molecules 
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that is required for p53 ubiquitination.  Consequently, the F19A mutant of p53 is not targeted for 

degradation by HDM2 in vivo unless a p53 N-terminus mimic is present to activate HDM2 in 

trans [13,16,17].  Firstly, we established that it was necessary to transfect 0.5 ng of the p53F19A 

expression plasmid to induce a comparable level of p53-dependent transcription of Hdm2luc03 

reporter plasmid as obtained in Fig. 1 using the wild-type p53 expression vector (not shown).  

Fig. 2C shows (insert) that levels of the p53F19A protein are decreased by PAX3 over-

expression.  PAX3 also caused a 6-fold reduction in the activation of a p53-dependent reporter 

construct by 0.5 ng of p53F19A (Fig. 2C).  Therefore, neither the reduction of p53 protein level, 

nor the inhibition of p53-dependent transcription by PAX3, requires binding of p53 through its 

N-terminal domain to its primary cellular inhibitor, HDM2. 

 

PAX3 must retain full integrity as a transcription factor to inhibit p53 function 

 

PAX3 translated from the best characterised PAX3c mRNA splice form is a 479 amino acid 

protein.  It has a modular structure with two distinct sequence-specific DNA-binding domains 

(paired domain and homeodomain), an N-terminal transcription inhibitory domain and a C-

terminal transcription activation domain (Fig. 3A) [14,18].  To investigate the structural elements 

of PAX3 required for inhibition of p53 function, we created a series of mutant PAX3 expression 

constructs.  The truncation mutant Stop 281 was designed to lack the transactivation domain, 

SD42 corresponds to an inactivating point mutation in the paired domain found in the mouse 

mutant Splotch-delayed [19].  This mutant affects PAX3 transcriptional activity but has a less 

severe phenotype than the Splotch mutant used by Pani et al [8].  WS265 encodes PAX3 with an 

inactivating point mutation in the homeodomain that is associated with Waardenburg syndrome 

in humans [20,21].  Expression of each of the mutant proteins was confirmed in H1299 cells (Fig. 
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3B).  All these mutations also markedly, though not entirely, reduced the ability of PAX3 to 

diminish p53 protein abundance (Fig. 3B).  The mutants were then tested for repression of p53-

dependent activity of the BAX (Fig. 3C) and HDM2 (Fig. 3D) promoters.  Whilst, as before, wild-

type PAX3 repressed p53-dependent transcription from both promoters (p<0.001 BAX, p<0.001 

HDM2), none of the mutant PAX3 proteins had this effect. 

 

Biochemical and mutagenesis studies have shown that the two DNA-binding domains of PAX3 

are functionally interdependent [21,22].  Indeed, the SD42 mutation results in loss of DNA-

binding by both paired- and homeo-domains [22].  We therefore generated a further PAX3 

mutant N47H (Fig. 3E), that has been shown to abrogate DNA-binding by the paired domain but 

increase homeodomain DNA-binding activity [21].  N47H expressed in H1299 cells (Fig. 3E) 

was unable to repress p53-dependent transcription (Fig. 3F).  Therefore, the ability of PAX3 to 

repress p53-dependent transcription is dependent upon the ability of both its paired- and homeo- 

domains to bind DNA (shown by N47H and WS265 mutants respectively), as well as the 

presence of an intact transcriptional activation domain, as demonstrated by the Stop 281 mutant. 

 

Discussion 

 

Both Pani et al [8] and He et al [10] demonstrated that loss of PAX3 expression can result in a 

post-transcriptional increase in p53 protein abundance, as well as apoptosis which, in the case of 

the developing neural tube, is p53 dependent [8].  Here we have shown that this effect of PAX3 

on p53 protein abundance, and more specifically its rate of degradation, can be recapitulated in 

the H1299 over-expression system, confirming the existence of a functional interaction between 
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these two proteins.  The most widely recognised mechanisms for the regulation of p53 protein 

degradation involves an interaction between p53 and its ubiquitin E3-ligase HDM2, which results 

in the ubiquitination and proteosome-mediated degradation of p53 [1,23].  It was of interest, 

therefore, to discover that a well-characterised, HDM2-binding defective mutant of p53, F19A, 

was still down-regulated by PAX3.  Therefore, whilst a role of HDM2 that is independent of its 

binding to its primary interaction site on p53 has not been formally excluded, these data suggests 

the involvement of an alternative p53 ubiquitin E3-ligase such as COP1, [24] or an ubiquitin-

proteosome independent pathway. 

 

P53 protein stability and its activity as a transcription factor may be independently regulated [1], 

and previous reports have not investigated the effects of PAX3 loss on the transcriptional targets 

of p53.  Here we have shown that PAX3 does indeed inhibit the p53-dependent transcription 

from at least two p53-dependent genes, including that encoding the pro-apoptotic BAX protein.  

Intriguingly, the effects of PAX3 exhibited a degree of specificity to different p53-responsive 

promoters; specifically whilst HDM2-P2 and BAX promoters were suppressed, the WAF1 

promoter was not.  Further work will be required to establish whether this results in a differential 

regulation of p53-depenent apoptosis, compared to cell-cycle arrest, by PAX3. 

 

We have also clearly demonstrated that mutations in either of the two sequence-specific DNA-

binding domains in PAX3, or deletion of its C-terminal transactivation domain, abrogate its 

ability to inhibit p53 activity.  These PAX3 mutants do retain a partial ability to reduce p53 

protein abundance, suggesting that, as is the case for HDM2, the effect of PAX3 on cellular p53 

activity may not be solely through the regulation of p53 abundance.  Our analysis of the effects of 

PAX3 mutations on p53 function are consistent with a recent analysis of the effects of over-
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expressing PAX3 splice forms on the response of melanocytes to genotoxic chemotherapy, in that 

PAX3c and PAX3d, which are expressed in melanomas, provided protection from etoposide-

induced apoptosis, whereas PAX3a and PAX3b, which produce truncated proteins lacking the 

transactivation and homeodomains, did not [25].  Our interpretation of these data is either that 

PAX3 is a transcriptional activator of a gene, or genes, that regulate p53 function, and that only 

PAX3 proteins with functional paired- and homeo-DNA-binding domains are capable of 

activating the transcription of these genes, or that PAX3 and p53 proteins interact directly, but 

only fully functional PAX3 is able to influence p53 activity.  Future work will be required to 

distinguish between these two possibilities, and fully determine the molecular basis for the 

functional interaction between these two key proteins.  
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Figure Legends 

 

Fig. 1.  Effects of PAX3 on p53-dependent transcription.  NIH3T3 (A) H1299 cells (B) were 

transfected with 100 ng of Baxluc or pGL3Basic, 20 ng pRLSV40 and the indicated amount of 

p53 and PAX3 vectors, and luciferase reporter assays performed (n=4).  In (C), (E) and (F) 

similar experiments were conducted in H1299 cells using Hdm2luc03 (n=8), Hdm2luc13 and 17 

(n=2) and p21luc (WAF1 promoter) (n=4) reporters respectively.  In (D) pGL3Basic was used 

instead of a reporter vector and RNA was extracted 48 h post transfection.  The abundance of 

endogenous HDM2-P2 mRNA transcripts was determined by RT-qPCR.  Data is normalised to 
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GAPDH, and is mean + S.D. for duplicate qPCR assays, and is representative of two independent 

experiments (Transfections were in 60 mm dishes.  For ease of comparison, the amounts of 

plasmids shown are the equivalents by surface area of a 96 well plate transfection.). 

 

Fig. 2.  Effect of PAX3 on p53 protein abundance in H1299 cells.  (A) Cells were transfected in 

60 mm dishes with 5 ng EGFPN1, 1.8 µg pGL3Basic, p53 plasmid and 1.8 µg of pJ7PAX3 (+) or 

pJ7 empty vector (-) and analysed 48 h later.  (B)  H1299 cells were transfected in 60 mm dishes 

with 1.125 ng p53 plasmid, 1.8 µg pGL3 Basic, 5 ng EGFPN1 and 0.9 µg pJ7PAX3 or empty 

vector as indicated.  At 48 h post transfection, 100 µg/ml cycloheximide (CHX) was added and 

cells harvested for analysis at the times indicated.  Representative of three independent 

experiments.  Note that for the p53 blot the + PAX3 lanes are a longer exposure than the  No 

PAX3 lanes to facilitate comparison of p53 turnover.  (C) For luciferase reporter assays, cells 

were transfected with 100 ng of Hdm2luc03 or pGL3Basic as indicated, 20 ng pRLSV40 and the 

indicated amount of p53F19A and PAX3 expression plasmids.  (n=4).  p53F19A protein was 

detected by western blotting of lysates from scaled up transfections, using antibody pAb421.  

 

Fig. 3.  Dissection of the PAX3 functional domains required to inhibit p53-dependent 

transcription.  (A) PAX3 protein structure, and a description of the mutants used in the study.  ID 

= inhibitory domain, PD = paired domain, OM = octapeptide motif, HD = homeodomain, TA = 

transactivation domain.  (B) H1299 cells were transfected in 60 mm dishes with 5 ng EGFPN1, 

1.8 µg pGL3Basic, 0.5 ng p53 plasmid and 0.9 µg of pJ7 empty vector or the appropriate PAX3 

mutant plasmid as indicated.  Transfected cells were analysed by western blotting 48 h later.  (C 

& D) PAX3 mutants were tested for repression of p53-dependent transcription in a reporter assay 

in H1299 cells in a 96 well format.  Cells were transfected with 20 ng pRLSV40, 100 ng pJ7 
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empty vector or the indicated PAX3 mutant and 100 ng reporter vector ((C) Hdm2luc03) or ((D) 

Baxluc).  Open bars = 0 ng p53 plasmid, closed bars = 0.0625 ng p53 plasmid (C) or 2.5 ng p53 

plasmid (D).  (n=8).  (E) The PAX3 mutant N47H was generated, and expression confirmed as in 

(A).  (F) N47H was tested for repression of p53-dependent HDM2 promoter activity as in (C).  

(n=2).  
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Fig 1 
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Fig. 2 
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Fig. 3 

 


