
Extensible efficient handling of 
metadata for e-Science 
Andrew R. Price, Marc Molinari, Zhuoan Jiao, Simon J. Cox

School of Engineering Sciences, University of Southampton, Southampton, Hants, SO17 1BJ, UK

Abstract

The Geodise data management platform provides a Grid-enabled

distributed file and data archive and enables users to annotate

their data with rich descriptive metadata in the form of XML. We

present a process model for the evolution of the Geodise data

management system from a free and flexible repository to a

structured scalable relational database for production purposes.

The model is designed to aid scientists and engineers to develop

XML Schemas describing their metadata requirement which can

be registered in the XML-enabled database to provide a scalable

back-end solution without any impact to the existing client side

application.

Introduction

Large collaborative scientific investigation is resulting in

increasingly large data collections which need to be available to

distributed user communities, with rigorous access and

authentication policies and efficient and reliable data delivery. In

order to manage data on the petabyte scale collaborative

projects are increasingly turning to Grid technology. A particular

challenge in managing data in distributed environments is

enabling users to identify and locate the data they want.

Metadata is critically important in e-science to provide the ability

to locate and characterise data, to provide provenance, enable

data re-use and express community standards.

Geodise Data Management

The Geodise data management platform provides a Grid-enabled

distributed file and data archive and enables users to annotate

their data with rich descriptive metadata in the form of XML

typically serialised from data structures in a problem solving

environment. The system exploits the Oracle 10g XML database

(XDB) to support storage, query and retrieval of XML instance

documents. In the standard Geodise database system, users are

free to annotate their data with any valid XML and can

subsequently query their metadata to find items of interest. This

provides considerable flexibility and extensibility. In contrast to

systems like the Globus Metadata Catalog Service (MCS) and the

Metadata Catalog MCAT of SRB the Geodise user can add new

metadata attributes without adding to or updating any

underlying database tables. However, this flexibility comes at the

expense of scalability and a strategy for imposing structure on

the user-defined metadata is required.

Geodise Database Development

The raw query performance for the standard Geodise database

server is critically dependent upon the XPath query engine of the

underlying database solution. Unfortunately, when dealing with

XML documents that have no pre-defined structure the database

is essentially limited to a raw text search of the data. The

performance of the standard Geodise system therefore does not

scale well. We present a process model for the evolution of the

Geodise data management system from a free and flexible

repository to a structured scalable relational database for

production purposes. The model is designed to aid scientists and

engineers to develop XML Schemas describing their metadata

requirement which can be registered in the XML-enabled

database to provide a scalable back-end solution without any

impact to the existing client side application. The process

follows four steps:

1. Unstructured storage. Studies exploit the standard Geodise

database server to archive, share and process data and

collaborative study of small problems is enabled in the virtual

organisation. The system supports small scale experiment

and design activities but is likely to hit scaling issues if data

volumes become sizeable.

4. Relational Database Prototype. With a suitable schema

registered in the database the user can create hierarchies of

datagroups, each describing a meaningful entity for the

management of their domain data. To provide a consistent

view on the data we provide the ability to apply constraints

on the many-to-many datagroup_datagroup table that they

restrict associations of XML entities and therefore enforce the

desired data schema. The XML schema can also be designed

such that any nodes in an instance document that are not

specifically declared in the schema are stored as CLOB

objects in the database and the system is therefore

extensible.

Conclusions

The Geodise database provides a flexible means to enable users

to describe, archive, query, share and retrieve their data from the

desktop. However, the costs of querying the metadata catalogue

scale poorly when the XML instance documents have no defined

structure. We have outlined a process model for systematic

improvements to the Geodise database server to enable an

extensible XML schema to be designed to improve the

management of a user’s domain data. By generating a schema to

constrain the permissible metadata in the catalogue the

underlying database can generate native storage for the

conforming XML instance documents. Native database scaling

performance is recovered for queries on the metadata catalogue.

Through the use of the <xs:choice> element in the XML schema

a number of data types can effectively be defined. By associating

instances of these types to datagroups, the logical aggregators

of the Geodise database, the user can construct meaningful data

structures within the database. If a firm data schema emerges for

the relationships between these types then the system can be

further augmented to impose those relations through

constraints.

Unstructured 
Data Model

•Prototype 
engineering 
design

•Ad-hoc, flexible 
data 
management

Performance 
Optimisation

•Constrain 
permissible 
metadata

•Query 
performance 
enhanced

Hierarchical 
Structured Model

•Provide simple 
relational 
constraints

•Expose Stored 
Procedures for 
table joins

Relational Data 
Model

•Provides a 
template for a 
relational 
database 
schema

•Client can be 
used if XML 
views provided 
on the tables

3. Hierarchical Structured Model. XML schemas are written to

describe the encoding of information in XML for a particular

domain. A useful feature of XML schema is the <xs:choice>

element which allows the schema to assert that a valid

document will contain only one of a number of defined

elements. Using such a construct the schema can be written

such that valid metadata may conform to one of many

different data structures in the host problem solving

environment. In this way the schema can define data types

that are acceptable for storage in the Geodise database. In

conjunction with a data grouping mechanism this provides

the user with a means to easily construct related logical

aggregations of data and to describe those aggregations with

metadata.

2. Performance Optimisation. Oracle provides the means to

register a XML schema which can be used to provide storage

in object-relational rows for any XML documents conforming

to the schema. If such a schema can be provided then the

data can be stored in tables that the SQL engine can perform

optimisations upon. Subsequent query performance is

significantly improved. In this phase of the Geodise database

development users are encouraged to look for commonality

in their metadata representations and to develop a XML

schema that can be registered in the database.

Figure 2: Process model followed during the development of the

GENIE data management system.

Figure 5: GENIE configuration metadata management.

GENIE Exemplar

The XML Schema for the GENIE system is a composite of

individual component code descriptions (maintained by the code

developers, capturing all metadata required to describe the

component and manage its input/output), entities for describing

and managing Earth System model studies in a Grid environment

(e.g. metadata associated with Experiments, Simulations,

Compute tasks, Resources, etc.) and domain specific metadata

(external data sets, observational data, etc.). The nature of the

framework means that the data schema has to be extensible to

allow new component codes to be added. Our system allows the

developer to produce an XML schema describing their code. This

is simply added to the composite XML schema document and

registered in the database. The GENIE framework can archive,

query and retrieve metadata conforming to the schema without

any change to the client application. The web service interface to

the database system also allows other consumer software to be

written that can utilise the database for GENIE model studies.

definition.xml config.xml merged.xml
NAMELISTS

merged-matlab.xml merged-matlab-new.xml

merged-new.xml

NGS: Oracle 10g

genie-composite.xsd

XML Document

XSL Transform

XML Toolbox

Oracle XDB

merge.xsl

toMatlab.xsl f romMatlab.xsl

matlab2schema.xsl

(complexType.xsl,

parameters2types.xsl)

xml_parse.m xml_format.m

toNml.xsl

gd_archive.m / gd_retrieve.m

Figure 3: Schematic of the relationship between the Engineer’s

problem solving environment and the database system.

Figure 1: Data flow of files and metadata: (A) file generation, (B)

archive of file and user metadata, (C) querying of metadata,

and (D) file retrieval.

Figure 4: Un-structured and structured management of XML

data in Oracle 10g (diagram modified from Chapter 5 of the

Oracle® XML DB Developer's Guide). User’s identify a

schema that describes their data. <xs:any> elements are

used to provide extensibility as structure is gradually

imposed.


